ORACLE’
PEOPLESOFT ENTERPRISE

Enterprise PeopleTools 8.50
PeopleBook: PeopleCode
Developer's Guide

September 2009

ORACLE

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Devel oper's Guide
SKU pt850pbr0

Copyright © 1988, 2009, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracleisaregistered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under alicense agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhihit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

Theinformation contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to usin writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software” or "commercial technical data' pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in avariety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create arisk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Preface
PeopleCode DevelOper's GUIAE Prefacecccociiieieiiieiiee et Xiii
Overview of PeopleCode DeVEIOPEr'S GUILEccccoiiiiieiieieciecie ettt sttt st st re st ene e Xiii
PeopleCode TypographiCal CONVENTIONS cciiirieiririisiesiee ettt sb e nnea Xiii
Chapter 1
Getting Started With PEOPIECOUEooiieiieireee ettt 1
PEOPIECOUE OVEIVIEIW ...ttt b et h e e e bbb e e e e e st e Rt b e e e e eneenene e s e e eneas 1
Creating PeopleCode PrOgIraMS ocuiiiceiece ettt sttt st e be et s tesbeeae e tesbesreeneeresneens 2
Chapter 2
Understanding the PeopleCode LanQUAagEcccccceeeiiriiriieesiee st see e ses s see e e sre e e s sneesneesneesneas 5
PeopleCode LangUage SITUCLUIE oiiiieieieiesie ettt b ettt nn e 5
I = 3 0= TP U PSPPI 5
(00 101V/= 1Ko lgT= I BT r= R 1Y 0 1= TSRS 6
(@] o= ol D= = N o= J SRS S PP PR 7
(001001007 01K TSRS 9
S 101 01T TSPV R ST URTURTPRPPRN 10
SEPBIGIONS ...veteeieeee sttt sttt b e ettt e bR e R e SR e R e R SRR e e R e R R e e R e Rt R e e Re e R e nE e eRe e e e R nRe e e e ne e 11
ASSINMENT SEALEMENTS ...ttt e et e st e et e e e e ereeeneeenreenteeneeeneeenreeneeenren 11
(= TaT0 (U= o T @0 g (o K PSR 11
BranChing STBLEMENTS ...ttt b et e et b e b b e e e enenre s 12
(@0 o] 10 =!I 1o o] 15
FUNCLIONS ..ttt bbb b4 h bbb et R bt bt E et et e bt e b e b et e e e ne et e st e nte e 15
SUPPOITEA FUNCLIONS ...ttt b et e st b e e s e e senb e b e nnenenenne s 16
FUNCLION DEFINITIONS ...ttt ettt st e st et e b s eeeme e besaeene e s e sbeeneeneeneas 16
FUNCLION DECIAIAIIONS ..ottt ettt bbb bbbttt 17
T o T PR 17
FUNCLION REIUM VAIUES ..ottt st b e s et e b e b ese et e tesneeneeneas 18
Function Naming CONFIICES oiiiiieeeire bbb 18
0= 0] USSP PRSPPI 19
EXPression FUNJAMENTAIS c.eoiiiiieee ettt st e ae et st s beese e tesaeeaeesnesbesneenneeas 19
00 1 = | TSR 19

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ili

Contents

FUNCLIONS 8S EXPIESSIONS viiicieciecie ettt st sttt e st e st e e aeetesbesbeeae e besbeereentestesneenneseas 21
SYSEEM VATADIES ...ttt b e bbbt st e b et et b e b na e 21
IMTELASIIINTS .ttt h et b e et b s R8s e e e Rt e R s e e et e Rt e Rt nb e e e e e e e e bt e nenren e ereas 21
RECOrd Field REFEIENCES ...ttt bbbt s e be st e s e ene s 22
Definition NamME REFENENCES vviveeeece ettt e sttt esaeste s reeaestesteenaensessenrens 23
Reserved Word SUMMEry TaDI@ ...ttt 24
RV = o] =SSP 26
SUPPOITEd VarialDle TYPES ..ottt ettt e et b e 26
UsSer-Defined Varial@Sottt sttt b e e e e seesneeneennenne s 27
User-Defined Variable Declaration and SCOPE cvevviiiieeieie et se s see et s st st eaesresnens 27
VariaDl@ DECIAIEIION oceeeiiiiiciee ettt te st et e s tesee e e etesbesreeeestesneeneesennreeneeneens 28
User-Defined Variable INtialiZation ooooieiiieeee et e 29
ReSINCioNS ON Vaiahl@ USE ...t sttt 29
SCOPE Of LOCE VAITADIES ...t 30
Duration of LOCEl VariablESociiieieieee ettt ettt s sre e e 30
VariaDleS @and FUNCLIONS ...ttt bbbttt e 31
S o L= AV g Tox £ o P 32
State of Shared Objects Using PeopleSoft Pure Internet ArchiteCtureccccooveeeveeeievesecciene e 32
(@ 0= 1= (o= TP P PRSPPI 33
MEBEN OPEIAEOIS ...ttt et b et R e et Rt s e e e s e e e ae e b e R e e e e e e st ebenn e e nenn e e enenre s 33
Operations 0N DateS anNd TIMES ..oviceciici ettt e e be s be s re e e e tesbeeaeetesbesneenneeas 34
SUNG CONCAENGLION ...ttt b et a b e e e e bt b e st e et e st sb e st e e et eseebenee s enneneas 34
(@2 o= > () S 35
(001101072 1S o A [@] 1= - (0] 5= TSP S 35
BOO0IEAN OPEIAIOIS viueiieciieiiie ettt b et s bbb e st b e et et e e st bt ne e e e s e n e renn s 36
Chapter 3
Understanding Objects and Classesin PeoOPIECOUEcccocvveeieiiiieie ettt 39
(=SS 3= oo [o] o SRR 39
ClBSSES .uitiieeeeeie ettt ettt b ettt b e b AR Rt bt Ao e R e Rt R oA e e e R e e Rt Rt Ao £ et Rt b e b e ne et et b e be e e e enen 39
(@] 0= o1 £ PSPPSR PP PRSP 40
(@ o1= o i 1 0= | =4 o o I 40
Creating and USING ODJECLSvicuiciiii ettt ettt be s ae s aeetesbesae e e e seesteeneetesresseennensesrens 40
INSEANLTIAEING ODJECLS ...t b bttt ettt b et b e b b e ne e 41
(@1 T] aTo = o o= 1= 41
INVOKING MEINOOS ...ttt st st ae et e st e s ae et e tesae e e e testeenaesestesreensansens 42
(00076}, 0o 1@ o] = o £ TSRO P USSP URTURPP 43
F = Lo 010 L o] = ox =SSR 43
e S Lo O o= ox S 44

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Chapter 4
Referencing Data in the Component BUFEN ..o e 47
Understanding Component Buffer Structure and CONtENESccooviieieie e 47
Component BUFTEr CONTENTS oouiiiiiiiieiisie ettt bttt nb b e ens 47
ROWSELS GNA SCIOI ATEES ...ttt ettt e e seeeae e e e s beseeeneetesaesreeneeseesneeneeneas 49
Record Fields and the Component BUFFEr ccuo it st 50
Specifying Datawith Contextual REFEIENCES ooveiriiiieieee s 51
Understanding CUrrent CONTEXTE o.uiieeiieeeee ettt eeseeseeeneeaesneeneeneeseesneeneeseas 51
Using Contextual ROW REFEIENCES ocviiiiiecece ettt st st st pe e enas 53
Using Contextual Buffer Field REFEFENCES c.ooviiiiiireec e 54
Specifying Data with References Using Scroll Path Syntax and Dot NOtationccocceveveeerenencene e 56
Understanding SCroll PatNS ocueeiiii ettt sttt sttt re s e e e r e reennenas 56
Structuring Scroll Path Syntax in PEOPIETO0IS 7.5 ocuiiiieieeeeeee e 56
Referencing Scroll Levels, Rows, and Buffer FIEldS ..o 59
Chapter 5
ACCESSING the DAta BUFTEr ...t r e 67
Understanding Data BUFfEr ACCESSocviiiiiiiiticieie sttt st sttt st ae et te et e st e ere e e e tesne e e e seesreens 67
Dz ez Y T oo S 67
o0y O =TS 67
Data Buffer Model and Data ACCESS CIASSES uevviieuirieriirierieiee sttt st 68
Understanding Data Buffer ClasseS EXAMPIESccoeiiiiiiieenese e 68
Employee Checklist Page SITUCIUIE ocveeece ettt ettt et e enneens 69
Object Creation EXAMPIES oiieeee ettt st e e e s re e e s te s re e e st e sreeneentesresreeneenes 72
Data Buffer Hierarchy EXaMPIES cooiiiiieieiestee st 78
0TS = Sz 4] o] 1= TR 82
Hidden WOrk SCroll EXAMPIEoouiiiieieieireee sttt 84
Understanding CUrrent COMEEXE c.oeeirrirreeeieiesies e se e e s e se s n e e s e ene s nenn s 85
Accessing Secondary Component BUFFEr Data ccccovveeieeiiniciece ettt 87
Instantiating Rowsets Using Non-Component BUFfer Dataccooeveieirenineneecses e 87
Chapter 6
PeopleCode and the COMPONENE PrOCESSON cccciiiiiiiie e steeeese et e sttt se e aesresre e e e e e 89
Understanding the COMPONENT PrOCESSON c.ciiiiirieieeiriisieseese sttt sn e sne e sneneneas 89
Events Outside the Component ProCeSSOr FIOW coicuiiieie ettt 89
Peopl€CO0E Program TIIOOEIS .ocooeeeirierieieieie sttt sttt e ettt e s et e bt st e b e e e st b b e e e 20
Understanding PeopleCode Program TIQOE'Scoiiieeereieeeeese e see e sseeee e snesneeneas 90

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. v

Contents

Accessing PeopleCOUE PrOQraMS ccciuiiuiiieiieiieeecite e te e s e s te s e et stesreeeesbesbe e e e stestesseensessesreeneessesneens 91
Associating Execution Order of Events and PeopleCodecccoveiininicnineseeesese s 93
Component ProCeSSOr BENAVION coueiiiriiiiieeee ettt b e sn e b sn e n e enennen 96
Component Processor Behavior from Page Start to Page Display cceeceeve e 97
Component Behavior Following User Actionsin the COmponent coeveieienineneneeienese e 98
PrOCESSING SEUENCES ...eieeeiiieieie ettt ste sttt et e st et e e e st e e ae e eeseeeseemeeeeseeeseeneesaeemeeneeseesnesnsenseseeeneensensens 100
FIOW CREITS ..ottt et b bttt b b st et et e bt nb e b e st et e nenbenaenbenees 101
DEFQUIT PrOCESSING ..ottt sttt bbb e e e et bt e e e e e e e b e b e nn e e 101
Search Processing in Update MOUES oo it 104
Search Processing in AAd MOOES ouiieie et st s e e re e 108
Component Build Processing in Update MOUES ..o 111
ROW SEIECE PrOCESSING .eiieeiieiieiieiieseeseesesstestesaeesseesseessessasesatesssesseesseessessneesnsesnsessesssessnessnsesnsesnsens 112
Component Build Processing in Add MOUES c.ocueeiiiieiieece ettt s 115
[T o 1Y/ oo [1o 4 o] o I 116
ROW INSEIT PrOCESSING .eeeiveeieeiieiteesteesteesieeseeseessesstesssesssesssesssesssesssesssesssessaesssesssesssesssesssesssssssssnesssnnss 119
R0 A BT Fc (= o 0101 s o P 121
BULLIONS ...ttt ettt e sttt e e ae e e s st e s abe e e Re e e e se e e e Re e e Re e e saEe e e Re e e Re e e Re e e aRee e snreesareeeneeeanes 123
0] 0105 PSSR 123
POP-UP MENU DISPIAY .ottt ettt 124
SElECLEA [TEIM PrOCESSING ..oveueeieeieriisteieee ettt b s et s e s e e b e b nn e e et e b e sn e ren e e s 124
S VL 01015 T o RS 125
PeopleSoft Pure Internet Architecture Processing CONSIAErationS cccccevererieneeienenenieseeese e 127
Deferred ProCESSING MOOE ovieiiiiiiteit ettt e et s b nn e e e enenn e r e 127
S0 01 oo L=l Y= o] (RSP 130
F o A= (= Y | S 131
LTS o @ gtz T Lo Y = o | S 131
FIelODEfBUIT EVENT ...ttt sttt e et s bt et 132
L= o | o Y= o | SRS 132
L= o Lo 01U = = o P 133
ITEMSEIECIEI EVENT ..ottt bbbt bttt b e bbb e s nns 133
[0S U] o I | S 134
(= =01 Lol Y | USSR 134
(= 0] 01 Y = o | S 134
ROWDEIELE EVENL ...ttt et et s se et e te s seeneeseesteeseensensesreeneensesneeneenennees 135
ROWINIT BEVENT ettt bttt b e s b st e e e sbe b e et e s besbesse et e sbesneeneeeenne 135
ROWINSEIMT EVENT et ettt bttt b e a e b e s b e s bt e ae e b sb e e ae et e b e s ae e e e neennis 136
ROWSEIECE EVENL ..ot sttt e e te e e e e steseeeseeteseesneeneensesneeneeseeseeenen 138
SAVEEAIT EVENT ..ottt ae st bt R e et e e ne e 138
SAVEPOSICNENGE EVENT ...ttt 139
SAVEPTECHANGE EVENT ...t r e n e 139
ST LT Y o | OSSR 140
S o S Y Y| S 141
LAY o L TV Y = o | PR 142
PeopleCode Execution in Pages with Multiple SCroll Ar€ascccccveveeecce i 142

Vi Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Chapter 7
PeopleCode and PeopleSoft Pure Internet ArChite€CtUreocoovoiviieiieinisiseseees e 145
Considerations Using PeopleCode in PeopleSoft Pure Internet Architecturecccccooeveeceiececeecienn, 145
Using PeopleCode with PeopleSoft Pure Internet ArchiteCturecooeoeinineneneieneseseeeee e 146
USING INEEIMEL SCIHIPLS .ottt s et r e e n e e s nnenn e 146
Using the Field ObJect SEYIE€ PropEItY ocveceeeee ettt s ne e sne e 146
USING TNE HTIML ATBA ..ottt bbbttt e et b bt 147
Using HTML Definitions and the GEtHTMLTEXt FUNCLION oveoeieiie e 148
Using HTML Definitions and the GetJavaScriptURL Method ..., 149
Using PeopleCode to Populate Key Fieldsin Search Didlog BOXES cccevvvvveeienc e 150
Calling DLL Functions on the APPliCation SEIVEr cociiiiieeereeeee et se e eeas 150
Sample Cross-Platform External TeSt FUNCLIONooeeiiiiiiceeese e 151
Updating the Installation and PSOPTIONS TaDIES ccviiiiieeiisieee et 153
Chapter 8
Using Methods and Built-1N FUNCLIONSc.coiiiiiiiieeeeeesi et 155
Understanding Restrictions on Method and FUNCLION USEoocieiiecicce et 155
THINK-TIME FUNCLIONS ...t b ettt bbbttt b e b 156
WinMessage and MessageBOoX FUNCHIONS coiiiiiieirierieseeeese et 157
Program Execution with Fields Not in the Data BUFfer —........ccooveiieiiecieecece e 159
0 ESY= 10 I VAT g T 0TSSP 159
(1035 Y= o £ o TSNP 160
Record Class Datahase MEthOOS ooiiiiieieeeee ettt st ee e 160
SQL Class Methods and FUNCLIONS c.cccvieiiiiiiieie ettt et st s sre s nesaresabesabesaresaneeanesanesnnesane 161
Component Interface Restricted FUNCLIONS cocooiiiieiieie e 161
Searchinit PeopleCode FUNCtION RESLIICHIONS oouiiiiceeece e 161
CallAPPENGINE FUNCIION ...ttt bbb e 162
REUNTOSEIVEr FUNCHION ...ttt st e ee et e tesae e e e s e sbeeneeneeseennis 162
€Tz o LN W 0t (o) o SRR 162
GetGrid and GetANaYtiCGIid FUNCLIONS ccuoiiiiiiiiiieieeeese e 163
[0S 1Y/ = € To o SR 163
Y0 S0 U 1= =1 o SO PR 163
IMmplementing Modal TraNSFEISc.oiiiieeec ettt bt n e e 163
Understanding Modal TranSferS ouooeeeeieeere et sttt ee e seeens 164
Implementing Modal TraNSFErS ...cc.ecciii e e ae s resreenaenbenre s 165
Implementing the MUlti-ROW INSEI FEAIUNE oooiiiiicieeeee e 166
Using the IMageREferenCe FIEIT ..o e st e e e 167
Inserting ROWS USING PEOPIECOUE ocueeieciecectese ettt sttt st s saesteenaesenre s 168
USING OLE FUNCLIONS ..ottt sttt s ettt bt n e b e s s e 169

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. vii

Contents

Understanding OLE FUNCLIONS cooioiiiiiiccsie ettt sttt st s e ettt sne e e e e sreens 169
USING the ODJECE DA TYPE ..oveieiiiieieiesiese ettt sttt sttt bt ne e 169
Sharing aSiNgIe ODJECE INSLANCE c.ooiiiiiiirieeeeeer e 170
Using the Exec and WINEXEC FUNCLIONS ccoiuiiiiiieiiisieceesie sttt sttt eae st aaesaesresreennennens 170
Using the Select and SEleCtNEW MELNOGS ..o 171
Understanding the Select and SelectNew Methods ooeoii e 171
USING the SEIECt MEINOU ..o st sttt s ae e e tesreens 172
USING SEANAAIONE ROWSELS ...ttt b et eb et b et s bt e e e e b nns 174
Understanding Standalong ROWSELS oeciieiiiiie ettt ettt et et 174
USING thE Fill MEINOO ...ttt st st sre e ae et e s resae e e e re e 175
USING the COPYTO MEINOU ooeeiiieeeees st b e et besn e 175
Adding Child ROWSELS ...ttt e e sre e s ae e s b e e s re e sre e saeesaeesneesneesreesneesneesneesnees 176
Using Standalone ROWSELS tO WIHIE @ FIl€ oceeeeiieceee et s 176
Using Standalone ROWSELS IO ReBT A 1€ cvoiiiiiiee e 179
USING Errors and WaININGS ..c.ecceeieeiee e seeseesieeseesteesteesteesteeste e teesteesaeesseenseenseesesssesssensessessessesssesnsenns 181
Using Error and Warning SYNEBX ...cc.ccceieeeeiienieieeeeseesieseesaestesresaessesresseessessessessssssessessssssessessesssensens 181
Using Errorsand Warnings in EQit EVENES ..o 181
Using Errors and Warnings in ROWSEIECt EVENES ceoiiiieiece ettt sttt st 182
Using Errors and Warnings in ROWDE ete EVENES ccooiiiiirinieicereseeeees e 183
Using Errorsand Warnings in Other EVENES ... 183
UsSIiNG the REMOLECEll FEAIUMEccviiviieeeeece ettt sttt et st sae e e e s resbeeaaesaesresreenaentens 183
Understanding RemoteCall COMPONENLS c.oiveiiiriiriiieieese st 184
Deciding Between RemoteCall and PeopleSoft Process Scheduler ... 186
Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall ..., 186
Chapter 9
Using HTML Treesand the GenerateTree FUNCLIONcccccoiiiieiineiieere e 189
Using the GenerateTree FUNCLIONcccciiiiieii ettt st e s aesreese e tesaesreenaennesneens 189
UNderstanding HTIML TEEES ..ottt ettt et eseeene e e sbesreeneenesaesneeneenes 189
BUIIAING HTML TrEE PAgES ...ocveitiieeieieirieste ettt sttt sttt sttt nn s 190
Using HTML Tree ROWSEL RECOIAS ...ocviiiiieieieiiesieeiesie sttt e sae st sne e aesne e e saesnesneenenneas 191
Using HTML Tree ACtIONS (BVENLS) ooiiieeeeeee ettt st ee 194
INITTAIIZING HTIML TIEES oottt sttt b e sttt e nbe s 195
Processing Events Passed from a Treeto an APPliCatioN cccevevieeenini e 198
Adding Mouse-Over ADility t0 HTIML TIEES ...oveiieie et 203
Adding Visua Selection NOAe INQICAIOIS cceeeirieriiieinisiesie e 204
o Lc ol A T @Y= g o Lo = S S 204
Chapter 10
Using File Attachments and PeopIECOUE ..o e 205

Viii Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Using File AttachmentSin APPlICALIONSccocoiiiiiiiece et st s reereeaenre s 205
Understanding File Attachment ArChitECIUIEooiiuiiiiiiereee s 205
Debugging File Attachment ProbIEMS ..o 206
Configuring Multiple Application Serversto Support File Attachments ..o 208
ViIiewing File ATEBCHMENTS o.oiiiieee ettt e s 208
Using Chunking With AttaChIMENES ooi e ens 210
Using the Microsoft WIindoOWS NT 4 FTP SEIVEN ...ttt sttt 211
USiNg NON-DNS URLSWItN UNIX Lot 212
UsiNg AttaChMENt FUNCLIONS ccueiiiicie et ee st s st e s st sre e s e e e snaesaeesreesreesneesneesneesnneas 212
File NamMeE CONSIOEIALIONScviirierieieieiesiesie ettt ettt bttt e b et be et st e s nsenns 216
Converting USEr FILENAIMES ..ottt e b nn e 217
Naming URLS and File AttaChMENESooi ittt st snne s 217

Chapter 11

Accessing PeopleCode anNd EVENTSccooiiiiiiieeeeneseseeeee e e sn e nne s 219

Understanding PeopleCode Programs and EVENES cccecoeiiiiee ittt 219

Understanding Automatic Backup of PEOPIECOTEcccciiiriirieieiresieeeee e 220

Accessing PeopleCode in Application DESIGNE ccieiiieiiesee e se e se e se e sre e te e ee e te e sre e sreesreesre e reenreens 220

Accessing Record Field PEOPIECOUEoovviieeeiee ettt sttt sttt e nne e 222
Understanding Record Field PeOPIECOUE ccvoiiiiiriiiieieeeese et 222
Accessing Record Field PeopleCode from a Record Definitioncccooevvevcn v 223
Accessing Record Field PeopleCode from aPage Definition cccooiiiinennineneeeeeeseeseeeeees 224

Accessing Component Record Field PEOPIECOUEccooiiiriirieieisereee e 226
Understanding Component Record Field PeopleCode ... iiiiecicecese e 226
Accessing Component Record Field PeOpleCOTe cccoiiirinieieerirese e 226

Accessing Component Record PEOPIECOURccuoieiriiirieieieere e 227
Understanding Component Record PEOPIECOAE cccevvieeieiece e e 227
Accessing Component Record PEOPIECOOR cooiiiririiieesicreee e 228

Accessing Component PEOPIECOMEoieeieieieeeeer ettt sne e e e seesreenes 228
Understanding Component PEOPIECOUE coiveeieieiecece ettt s sre 229
Accessing Component PEOPIECOAE ccoouiiiiiiieierter e 229

ACCeSSING Page PEOPIECOTEooiieeeeee ettt sttt et te et e nteseeeae et e neesneeneeneeee 229
Understanding Page PEOPIECOUE ocueeueeie ettt sttt st reens 229
ACCesSING Page PEOPIECOOR ooiiiieiieeei ettt 230

Accessing Menu I1em PeopleCOdEcooeiiiiiiicie et et et e b e r e et e e re e reenas 230
Understanding Menu 1tem PeoplECOUE oovviiieiee ettt st sre s 230
Defining PeopleCode POP-UP MENU ITEMS ..ot 231
Accessing Menu 1tem PeopleCode ..ot 231

Copying PeopleCode with aParent DEfINITION ocveieiiieiece st s 231

Upgrading PeopleCO0E PrOgramS ccocieiriieiiesieieeisie et sttt s s b nnenrennas 232

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ix

Contents

Chapter 12
USING the PEOPIECOOE EQITON c.eouiieiieieieieete ettt st b e nre 233
Navigating Between PeopleCode PrOgraMS ccccviiiiieiie ettt st ee st e sne st nesreereens 233
Understanding the PeopleCode Editor WINCOW —........cooiiiiiririneeeeesese e 233
Navigating Between Programs Associated With a Definition and Its Children ... 235
Navigating Between Programs Associated With EVENES ccoceeviiiiiccecc e 235
USiNG the PeoPI@COUE EQITONccceiieiriirieieieiesie ettt sttt e ettt e b e b nr e 236
Understanding the PeopleCode EITOr ... e 237
Writing and Editing PEOPIECOUE cveiieciecece ettt s st s sresreeneenrenne s 237
Find and REPIACE DIA OGS vouviieiiiiiiieieieeeie ettt b e 238
L€ To T o 1 0T - e o 239
Validate SYNtax ULHITY ..ottt ettt st re e e et s ne e e e sresreenes 239
Formatting Code AULOMELICAIY coiiiiieeeeee e 240
OIS Talo l DI ="o 2= 190 BT o) oI = 1 (] oo [240
Accessing PeopleCode EXternal FUNCLIONS cocveiiiiieeie sttt 241
Accessing PeopleCode Application Packages and Application ClaSSeSccovvevereeiinenenicneeieniennes 241
Accessing Definitions and Associated PEOPIECOUE oovevieriir i s 243
F oot oo = o 244
SEIING UP HE P et b et h bt b e e et b e e e e e n e r e 244
Changing Colorsin the PeopleCode EQItOr ccccvviriir et see s sneesnee 245
Selecting a Font for the PeopleCode EItOr ..o 245
Changing Word Wrap in the PeopleCode EditOr cccoiiiiiiicieeneseree e 245
Using the PeopleCode EVENt PrOPEITIESc.occeeiiiiieciee ettt sttt st 247
Generating PeopleCode Using Drag-and-Drop cccooiiiiiinieneseeeeeese st 247
Generating Definition REFEIENCES ocvoiiieieece e 247
Generating PeopleCode for aBusiness INtErlinK ccooveeeiiiicece e 248
Generating PeopleCode for a Component INTEIface ..o s 248
Generating PeopleCode for @FIl@ LayOUL coooirieeeee e 249
Chapter 13
L0 L= gTo g TSI @ T I o 1) (o] 251
Understanding the SQL EditOr WINCOWcooiiiiieiiieisese et 251
Accessing SQL DefiNition PrOPEITIES cc.oeiiriiiieeeeee sttt 252
ACCESSING the SOL EGITOF ..ottt ae et e e e steese et e seeseeeneeneesnenneeneenes 253
Creating SQL DEfINITIONS ccoiiiicecece ettt st e e et s re e e e e tesne e e e srenras 253
Creating Dynamic View or SQL VIiew RECOIAS ccoeiriririeieieisese et 254
Accessing the SQL Editor from Application ENgine Programs ccccccevieeveeveeseesessesses e seesseesees 255
USING the SQL EQITOr ..ottt sttt e e e e b e e e et e s reeseensesresaeessentesneenneneenrn 256

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Chapter 14
Creating Application Packages and CIASSEScccccviviieieiiniiieeese e seesae e ste st sre e sse e sseeseessesneens 259
Understanding Application PACKAQESc.oceeieii ettt sttt ene 259
Creating APPliCation PACKBOEScciiiiieiiiieee et 260
Understanding Package NaMES c.ooiiiiie e 260
Creating Application Package DEfiNItioNScccoviiiiieie et 261
Using the Application Package BEItOr ..ot e 262
Editing Application Package ClaSSES cciiiiieieisecee ettt sttt saeseesneeee e 263
Chapter 15
[D]= o 18{e o [T To I Ao 1N T g2 o] o] 1T o= § o] o NS 265
Understanding the Peopl@Code DEDUGUES c.ciiiirieirinerenie sttt s nnas 265
Accessing the PeopleCode DEDUGOEr ooieee et sne e e e nreens 265
Using PeopleCode DeDUGOEr FEAIUINESoii ittt st sre e e neesnesneeneeseas 268
Visible Current Ling Of EXECULION oc.oiiiiiiirieieeeesiesie sttt st 268
ViSIDIE BreakKPOINTS oiiiieiceei ettt et e et b b n s 268
L 0= 110 ot S 269
S g To Lol DT oo o = P 269
RV = 0 1S = 11RO 270
Call SLACK PANE ...ttt st se et e et eseesesse st et e st enenbeseente e eneenenreneenenneas 273
Setting Values for Variables and PropertieSccccceivieieeie sttt st sne e 275
General DEDUGUING TIPS .veveeeuirierierteeeiest ettt sre e e e st b e e e e st ebe s b e s s e s e e ese s b e ss e s e e e seeneneennenneneas 276
Using PeopleCode Debugger OPLIONS ccceeieeiieiieseeseeseeseesteesteesieeste e teeteeste e eeenae e seeseeneeeseeneesnsesnnes 278
Setting Up the Debugging ENVIFONMENT c.ooiiiecece ettt 281
Compiling All PeopleCode Programs a ONCE c.coveererierierieesiesiesse et 281
Setting PeopleCode Debugger LOG OPLiONS ocueciiiiceciee ettt st s sne e 282
Interpreting the PeopleCode Debugger LOG FIlE ... 285
LOG FIlE CONLENESevitiieeeeeei ettt b e e et b e e e m e nn e nenn e e 285
Other HEMSINTNELOG FIE ..o.eeieeeeee ettt et s b e s re e e pesne e 286
USING APPIICALION LOGUING eeuveueeieriirtiieieiesseste sttt st be st s ss st st e et be st e e et e se et b et e e s e 287
Setting the Application Log Fence in the Configuration File ... 287
Using the Log Fence with PeopleSoft Analytic Calculation Engingcccoooveeevevicecceeve e 288
USING ThE FING TN FEBIUMNE ...ttt bttt b et enas 288
Searching for SQL TNJECIION ...ttt e et s ae e e et e seeeneeeeseesreeneeeeas 292
UsSiNG Cross-REFErENCE REPOMS ccviiviiieie ettt st ae st e st e e ae e tesbesae e e e stesneennesrenras 292

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. Xi

Contents

Xii

Chapter 16
IMProving Your PEOPIECOUE ooiiiiiiiiiiieiee sttt 295
RedUCING TIPS TO thE SENVEN ..ot e et s b e s ae et e s tesbeeaeesaesteereensenrens 295
COUNTING SEIVEN THIPS .eieeieetietertese ettt ettt e ettt e et b e b e b et et e bt st et e e et e s e eb e ne et e e e s e 296
USING DEFEITEA IMOUE ...ttt n bt n e nennenn e 296
Hiding and Disabling FIEIAS couoiiiiecece ettt st s sre st enne it 297
USiNg the REfTESh BULLON ...t 297
Updating TotalS and BA@NCES ooiieeiieii ettt st ae e e eestesneeeeseeseeenes 297
USINg WarNiNG MESSAJES ocveeueeieiticieeie st et e st e te st e e s te s tesae et e s besbeeaaestesbesseensestesaeeasesestesneenseseesrennes 298
Using the Fastest AIGOrTRM ... 298
Using Better Coding Techniques for Improved Performance coooooereieiene e 298
RUNNING @SQL TIACE .eeeiiiticiee et e st sttt e et e et e st e e be et e st e s reeae e tesaeeaeentestesneenseseesresnnentans 299
(@] 0111 1 0T41 0T SO | ST UP TP 299
Using the GetNextNumberWithGaps FUNCLION ...t 299
Consolidating PeopleCode Programsocvceieeieiiseeiese sttt st ee st sae st e et sre e e s reeneens 299
Moving PeopleCode to a Component or Page Definitioncccooiiiieieiinineseecses e 299
Sending Messages in the SavePostChange EVENL ooe e 300
Using Metadata and the ROWSEICACNE ClaSS ccvciiiiiiceeese et 300
Setting MaxXCaCNEMEIMIONY oiuiieieeee ettt et b et b b e e e st b b nn e s 300
Writing More EffiCIent COOE oocieee ettt et et ae et e e te e be e beereeteeeeens 300
Writing More Efficient Code EXaMPIEScoiiiiiiiiiesiereeeesie sttt 305
Searching PeopleCode for SQL TNJECTION oiiiiiitiiee e 310
Preventing SQL TNJECHIONooueiiee ettt sttt s ae s re et e s aeeae e e e besneensesresreenes 311
Appendix A
PeopleCode Editor SNOIt CUL KEYS ..o e ettt et st ne b b et e e ee e ee e eeenas 313
PeopleCode EdItOr SNOM CUL KKEYSoceciiii ettt et te s re e e e saesreeneensenre s 313
o 1= S 317

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode Developer's Guide Preface

This preface provides an overview of the PeopleCode Developer's Guide and lists typographical conventions

used in PeopleCode.

Overview of PeopleCode Developer's Guide

This PeopleBook covers the concepts of PeopleCode, the programming language used in the development of

PeopleSoft applications. Its chapters describe techniques for adding PeopleCode to applications, tips for using

PeopleCode, the interaction of PeopleCode and the Component Processor, and a hnumber of other specialized

topics, such as the use of the PeopleCode debugger and referencing datain the component buffer.

The accompanying books, the Enterprise 8.49: PeopleCode API Reference and the Enterprise 8.49:

PeopleCode Language Reference, contain the reference material for the PeopleCode language. The chapters

in these books describe the syntax and fundamental elements of the PeopleCode language.

The "About These PeopleBooks' preface contains genera product line information, such as related

documentation, common page elements, and typographical conventions. It also contains a glossary of useful

terms that are used in PeopleBooks.

PeopleCode Typographical Conventions

Throughout this book, we use typographical conventions to distinguish between different elements of the
PeopleCode language, such as bold to indicate function names, italics for arguments, and so on.

This table describes the typographical conventions used in PeopleCode:

Font Type

Description

nonospace font

Indicates a PeopleCode program or other example.

Keyword In PeopleCode syntax, keyword entriesindicate
function names, method names, language constructs,
and PeopleCode reserved words that must be included
literally in the function call.

Variable In PeopleCode syntax, itemsin variable font are

placeholders for arguments that your program must
supply.

In PeopleCode syntax, ellipses indicate that the
preceding item or series can be repeated any number of
times.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

xiii

Preface

Font Type Description

{ Option1|Option2} In PeopleCode syntax, when multiple options are

available, they are enclosed in curly braces and
separated by a pipe.

In PeopleCode syntax, optional items are enclosed in
square brackets.

& Parameter In PeopleCode syntax, an ampersand before a parameter

indicates that the parameter is an already instantiated
object.

PeopleBooks and the Online PeopleSoft Library

Xiv

A companion PeopleBook called PeopleBooks and the Online PeopleSoft Library contains general
information, including:

Understanding the PeopleSoft online library and related documentation.
How to send Peopl eSoft documentation comments and suggestions to Oracle.

How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

Understanding PeopleBook structure.

Typographical conventions and visual cues used in PeopleBooks.

I SO country codes and currency codes.

PeopleBooks that are common across multiple applications.

Common elements used in PeopleBooks.

Navigating the PeopleBooks interface and searching the PeopleSoft online library.
Displaying and printing screen shots and graphics in PeopleBooks.

How to manage the PeopleSoft online library including full-text searching and configuring areverse
proxy server.

Understanding documentation integration and how to integrate customized documentation into the library.

Glossary of useful PeopleSoft terms that are used in PeopleBooks.

Y ou can find this companion PeopleBook in your PeopleSoft online library.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1

Getting Started with PeopleCode

PeopleCode is the proprietary language used by PeopleSoft applications. This chapter provides an overview
of PeopleCode and discusses how to create PeopleCode programs.

This chapter providesinformation to consider before you begin to use PeopleCode. In addition to the
considerations presented in this section, you should take advantage of all PeopleSoft sources of information,
including the installation guides, release notes, and PeopleBooks.

PeopleCode Overview

This section provides an overview of the conceptual information available about the PeopleCode language.
The reference material, that is, the actual descriptions of the functions, methods and properties can be found
in the following:

» Enterprise 8.49 PeopleBook: PeopleCode Language Reference

This book contains information about PeopleCode built-in functions, meta-SQL, system variables, and
metacHTML.

« Enterprise 8.49 PeopleBook: PeopleCode API Reference

This book contains information about all the classes delivered with PeopleTools, as well as specifics
about each class's methods and properties.

PeopleCode resembles other programming languages. However, many aspects are unique to the language and
the PeopleTools environment. To learn more about the language, see Understanding the PeopleCode
Language.

See Chapter 2, "Understanding the PeopleCode Language,” page 5.

PeopleCode is an object-oriented language. To learn about objects and how they're used in PeopleCode, see
Understanding Objects and Classes in PeopleCode.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

The component buffer isthe areain memory that stores data for the currently active component. Which fields
are loaded into the component buffer, as well as how to access them, is covered in Referencing Datain the
Component Buffer.

See Chapter 4, "Referencing Data in the Component Buffer," page 47.

The system uses a data buffer as well as the component buffer. The data buffer is used to store data added
from sources other than the component, such as from a Application Engine program, an application message,
and so on. For information about this buffer, see Accessing the Data Buffer.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 1

Getting Started with PeopleCode Chapter 1

See Chapter 5, "Accessing the Data Buffer," page 67.

All PeopleCode is associated with a definition and an event. The events run in aparticular order from the
Component Processor. To learn more about the Component Processor and the standard event set, see
PeopleCode and the Component Processor.

See Chapter 6, "PeopleCode and the Component Processor," page 89.

Y ou should take into account certain considerations when creating applications to be used in the PeopleSoft
Pure Internet Architecture. These include how to make your code more efficient when running on the internet,
aswell as considerations when using specific definitions.

See Chapter 7, " PeopleCode and PeopleSoft Pure Internet Architecture,” page 145.

There are restrictions on using some of the functions and methods in the PeopleCode language, as well as
considerations for others, like using standal one rowsets and the OLE functions. These are covered in the
Using Methods and Built-in Functions chapter.

See Chapter 8, "Using Methods and Built-In Functions," page 155.

PeopleCode has a tremendous amount of specialized functionality, such as:
» Using the GenerateTree function to create atree in your application.
« Viewing, adding, and deleting files.

See Chapter 9, "Using HTML Trees and the GenerateTree Function,” Using the GenerateTree Function, page
189.

See Chapter 10, "Using File Attachments and PeopleCode," page 205.

Creating PeopleCode Programs

All PeopleCode programs are associated with a definition as well as an event. To learn more about where you
can place your PeopleCode, and have it executed as part of the Component Processor event flow, see
Accessing PeopleCode and Events.

See Chapter 11, "Accessing PeopleCode and Events," page 219.

Use the PeopleCode editor to create your PeopleCode programs. All the functionality of the PeopleCode
editor is described in Using the PeopleCode Editor.

See Chapter 12, "Using the PeopleCode Editor," page 233.

Every PeopleCode program is associated with a definition. The following definitions have additional
functionality associated with the PeopleCode editor:

* SQL definitions
« Application Package definitions
See Chapter 13, "Using the SQL Editor," page 251.

See Chapter 14, "Creating Application Packages and Classes," page 259.

2 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1 Getting Started with PeopleCode

After you have created your program, you must run it. Often, that involves fixing any errors that you find.
The PeopleCode debugger is an integrated part of PeopleSoft Application Designer, and it has many useful
tools for determining where code errors are occurring. All the functionality is described in Debugging your
Application.

See Chapter 15, "Debugging Y our Application,” page 265.

After your PeopleCode program is running, you may want to either improve its performance or the user
experience. Techniques for doing this are discussed in Improving Y our PeopleCode.

See Chapter 16, "Improving Y our PeopleCode," page 295.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 3

Chapter 2

Understanding the PeopleCode Language

This chapter discusses:

« PeopleCode language structure.
« Datatypes.

+ Comments

+ Statements.

« Functions.

* Expressions.

« Variables

» Operators.

PeopleCode Language Structure

This chapter assumes that you are familiar with a programming language, such as C, Visual Basic, or Java.

Inits fundamental's, PeopleCode syntax resembles other programming languages. Some aspects of the
PeopleCode language, however, are specificaly related to the PeopleT ools environment. Definition name
references, for example, enable you to refer to PeopleTools definitions, such as record definitions or pages,
without using hard-coded string literals. Other language features, such as PeopleCode data types and
metastrings, reflect the close interaction of PeopleTools and SQL. Dot notation, classes, and methodsin
PeopleCode are similar to other object-oriented languages, like Java.

Data Types

Conventional data types include number, date, string. Use them for basic computing. Object data types
instantiate objects from PeopleT ools classes. The appropriate use of each data type is demonstrated where the
documentation discusses PeopleCode that uses that data type.

Declare variables before you use them.

This section discusses:

« Conventional datatypes.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 5

Understanding the PeopleCode Language Chapter 2

» Object datatypes.
See Also

Chapter 2, "Understanding the PeopleCode Language,” Variables, page 26

Conventional Data Types
PeopleCode includes these conventional data types:
« Any

When variables and function return values are declared as Any, the data type is indeterminate, enabling
PeopleTools to determine the appropriate type of value based on context. Undeclared local variables are

Any by default.
+ Boolean
+ Date
« DateTime
* Float
* Integer

Note. The Float and Integer data types should be used instead of Number only when a performance
analysisindicates that the increased speed is useful and an application analysis indicates that the different
representations will not affect the results of the computations.

e Number
+ Object

« String

« Time

Considerations for Float, Integer, and Number Types

The Integer type is a number represented as a 32-bit signed twos complement number, so it has arange of -
2,147,483,648 to 2,147,483,647.

The Float type is a number represented using the machine floating binary point (double precision)
representation. This floating binary point representation is not appropriate for exact calculations involving
decimal fractions; in particular, calculationsinvolving money. For example, because atenth (1/10 or .1)
cannot be exactly represented in floating binary point, a floating binary point sum of .10 + .10 is not be equal
to .20.

The Number type has asize limit of 34 digits, not including the decimal point, with a maximum of 32 digits

to the right of the decimal point. Since the Number typeis afloating decimal point representation, it isthe
appropriate data type for calculations involving money.

6 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding the PeopleCode Language

Operations (other than division) are done using integer arithmetic if the operands are both integers and the
destination is an integer, even if the variable is declared as the Number type. The destination is considered to
be an integer if one of the following is True:

The destination is an assignment to an integer variable or parameter.
The destination is an array subscript.
The destination is the right-hand operand of a comparison and the left-hand operand is an integer.

The destination is awhen-expression part of an evaluate statement, and the expression evaluated at the
start of the evaluate statement is an integer.

The destination is afor-loop initial, limit, or step expression and the control variable of the for-loop isan
integer.

Division (the/ operator) is never performed using integer arithmetic. It is always performed using the
floating-decimal-point arithmetic, even if the result variable is declared as an Integer type.

Follow these recommendations for assigning types to numbers:

Use Number for most application data values.
Use Integer when you are counting items, such as rowsin arowset.
Use Float only when you are tuning the code for performance (after it is already working).

In addition, you should only use the Float type when you are certain that the resulting loss of precision
will not affect the application and that the increase in the speed of the computation makes a differenceto
the transaction. In general, few applications should use the Float type.

Object Data Types

For most classesin PeopleTools, you need a corresponding data type to instantiate objects from that class.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

PeopleCode includes these data buffer access types:

Field
Record
Row

Rowset

PeopleCode includes these display datatypes:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

AnalyticGrid
Chart

Gantt

Grid

Understanding the PeopleCode Language Chapter 2

« GridColumn

» OrgChart

.+ Page

« RatingBoxChart

PeopleCode includes these internet script data types:

« Cookie
* Request
* Response

PeopleCode includes these miscellaneous data types.

« AESection

« Analyticlnstance

« Array

« Crypt

» Exception
- File

e Interlink

- BIDocs

Note. BIDocs and Interlink objects used in PeopleCode programs run on the application server can only
be declared as type Local. Y ou can declare Interlinks as Global only in an Application Engine program.

See Chapter 2, "Understanding the PeopleCode Language,”" User-Defined Variable Declaration and
Scope, page 27.

« JavaObject

Note. JavaObject objects can only be declared as type Local.

+ Message

« MCFIMInfo
» OptEngine

» PostReport

« ProcessRequest
» RowsetCache

« SoapDoc

8 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding the PeopleCode Language

+ SQL
» SyncServer

« TransformData

Note. TransformData objects can only be declared astype Local.

« XmlDoc

« XmiNode

Note. XmINode objects can only be declared as type Local.

API Object Types

Use this data type for any ApiObject, such as a session object, a tree object, a component interface, a portal
registry, and so on.

The following A piObject data type objects can be declared as type Glaobal:
e Session

« PSMessages collection

PSMessages

All tree classes (trees, tree structures, nodes, levels, and so on)

All query classes

All other ApiObject data type objects (such as al the Portal Registry classes) must be declared as Local.

Com

Copyright

ments

Use comments to explain, preferably in language comprehensible to anyone reading your program, what your
code does. Comments also enable you to differentiate between PeopleCode delivered with the product and
PeopleCode that you add or change. This differentiation helpsin your analysis for debugging and upgrades.

Note. Use comments to place a unique identifier marking any changes or enhancements that you have made
to a PeopleSoft application. This marker makes it possible for you to search for al the changes you have
made, which is particularly helpful when you are upgrading a database.

Y ou insert comments into PeopleCode in these ways:
« You can surround comments with /* at the beginning and */ at the end.
» You can use aREM (remark) statement for commenting.

Put a semicolon at the end of aREM comment. If you do not, everything up to the end of the next
statement is treated as part of the comment.

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 9

Understanding the PeopleCode Language Chapter 2

« You can surround commented text with <* at the start and *> at the end.

Use this type of comment to enclose one set of comments within another set. Y ou generally use this when
you are testing code and want to comment out a section that already contains comments.

Warning! In application classes, you will see the use of /+ +/ style comments. Do not use these in your
PeopleCode. These annotations are generated by the compiler. If you use them, they are removed by the
system the next time you validate, compile, or save your PeopleCode. They are used to provide signature
information on application class methods and properties, and they are regenerated each time the compiler
compiles your application class PeopleCode. Instead, use the standard commenting mechanisms listed above.

Note. Commented text cannot exceed a maximum of 16383 characters.

The following code sample shows comment formatting:

<* this programis no |longer valid comenting out
entire thing

REM This is an exanpl e of comrenti ng Peopl eCode;
[* - Logi ¢ for Conpensation Change ----- */
/* Recal cul ate conpensati on change for next row
Next row is based on prior value of EFFDT. */
cal c_next _conpchg(&0OLDDT, EFFSEQ 0);

/* Recal cul ate conpensation change for current row and next row.
Next row is based on new val ue of EFFDT. */

cal c_conp_change(EFFDT, EFFSEQ COVP_FREQUENCY, COVPRATE,
CHANGE_AMTI, CHANGE_PCT) ;

cal c_next _conpchg(EFFDT, EFFSEQ O0);

*>

Note. All text between the <* and *> comment markersis scanned. If you have mismatched quotation marks,
invalid assignments, and so on, you may receive an error when using this type of comment.

Statements

10

A statement can be a declaration, an assignment, a program construct (such as a Break statement or a
conditional loop), or a subroutine call.

This section discusses:

» Separators.

« Assignment statements.
» Language constructs.

» Branching statements.

« Conditional loops.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Separators

PeopleCode statements are generally terminated with a semicolon. The PeopleCode |language accepts
semicolons even if they are not required, such as after the last statement completed within an If statement.
This functionality enables you to consistently add semicolons after each statement.

Extra spaces are ignored. They are removed by the PeopleCode Editor when you save the code.

Assignment Statements

The assignment statement is the most basic type of statement in PeopleCode. It consists of an equal sign with
avariable name on the left and an expression on the right:

vari abl eNanme = expression;

The expression on the right is evaluated, and the result is placed in the variable named on the left. Depending
on the data typesinvolved, the assignment is passed either by value or by reference.

Assignment by Value

In most types of assignments, the result of the right-hand expression is assigned to the variable as a newly
created value, in the variable's own allocated memory area. Subsequent changes to the value of that variable
have no effect on any other data.

Assignment by Reference

When both sides of an assignment statement are object variables, the result of the assignment is not to create a
copy of the object in aunique memory location and assign it to the variable. Instead, the variable points to the
object's memory location. Additional variables can point to the same object location.

For example, both & AN and & AN2 are arrays of type Number. Assigning & AN2 to & AN does not assign a
copy of &AN2 to &AN. Both array objects point to the same information in memory.

Local array of nunmber &AN, &ANZ;
Local number &NUM

&AN = CreateArray(100, 200, 300);
&AN2 = &AN;
&NUM = &AN[1] ;

In the code example, & AN2 and & AN point to the same object: an array of three numbers. If you were to
change the value of & AN[2] to 500 and then reference the value of & AN2[2], you would get 500, not 300.
On the other hand, assigning &NUM to the first element in & AN (100) is not an object assignment. Itisan
assignment by value. If you changed & AN[1] to 500, then & NUM remains 200.

Note. In PeopleCode, the equal sign can function as either an assignment operator or a comparison operator,
depending on context.

Language Constructs

PeopleCode language constructs include:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 11

Understanding the PeopleCode Language Chapter 2

» Branching structures: If and Evaluate.

» Loops and conditional loops. For, Repeat, and While.

« Break, Continue, and Exit statements |oop control and terminating programs.
» The Return statement for returning from functions.

« Variable and function declaration statements: Global, Local, and Component for variables, and Declare
Function for functions.

« The Function statement for defining functions.
« Class definition statements.

e Try, Catch, and Throw statements for error handling.

Functions as Subroutines

PeopleCode, like C, does not have subroutines as we generally refer to them. PeopleCode subroutines are the
subset of PeopleCode functions only that are defined to return no value or to return avalue optionally. Calling
a subroutine is the same as calling a function with no return value:

function_nane([paramlist]);
See Also

Chapter 2, "Understanding the PeopleCode Language,”" Branching Statements, page 12

Chapter 2, "Understanding the PeopleCode Language,” Functions, page 15

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Function

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Declare Function

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," CreateException

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Try

Branching Statements

Branching statements control program flow based on evaluation of conditional expressions.

If, Then, and Else statements

The syntax of If, Then, and Else statementsis:

12 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

If condition Then
[statement _|ist_1]
[El se
[statement _|ist_2]]
End-if;

This statement eval uates the Boolean expression condition. If condition is True, then the If statement executes
the statementsin statement_list_1. If condition is False, then the program executes the statements in the Else
clause; if there is no Else clause, the program continues to the next statement.

Evaluate Statement
Use the Evaluate statement to check multiple conditions. Its syntax is:

Eval uate left _term
VWen [relop_1] right_term1
[statement _|ist]

VWhen [relop_n] right_termn
[statenment |ist]
[When- ot her
[statement |ist]]
End- eval uat e

The Evaluate statement takes an expression, left_term, and comparesit to compatible expressions
(right_term) using the relational operators (relop) in a sequence of When clauses. If relop is omitted, then the
equal sign isassumed. If the result of the comparison is True, the program executes the statementsin the
When clause, and then moves on to evaluate the comparison in the following When clause. The program
executes the statements in all of the When clauses for which the comparison evaluates to True. If none of the
When comparisons evaluates to True, the program executes the statement in the When-other clause, if oneis
provided. For example, the following Evaluate statement executes only the first When clause.
&USE_FREQUENCY in the following example can only have one of three string values:

eval uat e &USE_FREQUENCY

when = "never"
PROD USE FREQ = 0;
when = "soneti mes"

PROD USE FREQ = 1;
when = "frequently"

PROD_USE_FREQ = 2;
when- ot her

Error "Unexpected val ue assigned to &USE FREQUENCY."
end- eval uat e

To end the Evaluate statement after the execution of a When clause, you can add a Break statement at the end
of the clause, as in the following example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 13

Understanding the PeopleCode Language Chapter 2

14

eval uat e &USE FREQUENCY
when = "never"
PROD USE FREQ = O0;
Br eak;
when = "soneti mes"
PROD USE FREQ = 1;
Br eak
when = "frequently"
PROD USE FREQ = 2;
Br eak;
when- ot her
Error "Unexpected val ue assigned to &USE FREQUENCY."
end- eval uat e

In rare cases, you may want to make it possible for more than one When clause to execute, as shown in the
following example:

eval uat e &PURCHASE_AMI
when >= 100000
BASE DI SCOUNT = "Y";
when >= 250000
SPECI AL_SERVI CES = "Y"
when >= 1000000
MJUST_GROVEL = "Y"
end- eval uat e;

For Statement

The For statement repeats a sequence of statements a specified number of times. Its syntax is:

For count = expressionl to expression2

[Step i];
statement |i st
End-for;

The For statement initializes the value of count to expressionl, and then increments count by i each time after
it executes the statementsin statement_list. The program continuesin thisloop until count is equal to
expression2. If the Step clause is omitted, then i equals one. To count backwards from a higher valueto a
lower value, use a negative value for i. Y ou can exit a For loop using a Break statement.

The following example demonstrates the For statement:

&VAX = 10;
for &COUNT = 1 to &MAX;
W nMessage(" Executing statement list, count =" | &COUNT);
end-for;
See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," If

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Evaluate

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," For

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Conditional Loops

Conditional loops, Repeat and While, repeat a sequence of statements, evaluating a conditional expression
each time through the loop. The loop terminates when the condition evaluates to True. Y ou can exit from a
conditional loop using a Break statement. If the Break statement isin aloop embedded in another loop, the
break applies only to the inside loop.

Repeat Statement

The syntax of the Repeat statement is:

Repeat
statenment |i st
Until | ogical _expression;

The Repeat statement executes the statements in statement_list once, and then evaluates logical _expression.
If logical_expression is False, the sequence of statementsis repeated until logical_expression is True.
While Statement

The syntax of the While statement is:

Wi | e | ogi cal _expression
statement |i st

End- whi | e;

The While statement evaluates logical _expression before executing the statements in statement_list. It
continues to repeat the sequence of statements until logical_expression evaluatesto False.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," Repeat

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions,” While

Functions

This section discusses:

» Supported functions.
» Function definitions.
« Function declarations.
« Function calls.

* Function return values.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 15

Understanding the PeopleCode Language Chapter 2

» Function naming conflicts.
See Also

Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions’

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Function

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Declare Function

Supported Functions
PeopleCode supports the following types of functions:

« Built-in: The standard set of PeopleCode functions. These can be called without being declared.

» Internal: Functionsthat are defined (using the Function statement) within the PeopleCode program in
which they are called.

» External PeopleCode: PeopleCode functions defined outside the calling program. These are generally
contained in record definitions that serve as function libraries.

« External non-PeopleCode: Functions stored in external (C-callable) libraries.

Note. PeopleSoft Analytic Calculation Engine provides its own set of built-in functions.

See Enterprise PeopleTools 8.50 PeopleBook: Analytic Calculation Engine, "Using Built-in Functionsin
Analytic Models."

In addition, PeopleCode supports methods. The main differences between a built-in function and a method
are:

« A built-in function, in your code, is on aline by itself, and it does not (generally) have any dependencies.
Y ou do not have to instantiate an object before you can use the function.
» A method can only be executed by an object (using dot notation).

Y ou must instantiate the object first.

Function Definitions

PeopleCode functions can be defined in any PeopleCode program. Function definitions must be placed at the
top of the program, along with any variable and external function declarations.

By convention, PeopleCode programs are stored in records whose names begin in FUNCLIB_, and they are
aways attached to the FieldFormula event.

16 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding the PeopleCode Language

Note. Application classes can provide an alternative, and sometimes cleaner, mechanism for separating
functionality than the functions stored in FUNCLIBs.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Function

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Application Classes'

Function Declarations

If you call an external function from a PeopleCode program, you must declare the function at the top of the
program. The syntax of the function declaration varies, depending on whether the external function is written
in PeopleCode or compiled in adynamic link library.

The following is an example of a function declaration of afunction that isin another FUNCLIB record
definition:

Decl are Functi on Updat ePSLOCK Peopl eCode FUNCLI B_NODES. MSGNODENAME Fi el dFor nul a;

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Declare Function

Function Calls

Functions are called with this syntax:
function_nane([paramlist])

The parameter list (param _list)isalist of expressions, separated by commas, that the function expects you to
supply. Itemsin the parameter list can be optional or required.

Y ou can check the values of parameters that get passed to functions at runtime in the Parameter window of
the PeopleCode debugger.

If the return value is required, then the function must be called as an expression, for example:
&RESULT = Product (&RAI SE_PERCENT, .01, EMPL_SALARY);

If the function has an optional return value, it can be called as a subroutine. If the function has no return
value, it must be called as a subroutine:

W nMessage(64, "I can't do that, " | &OPER NI CKNAME | ".");

Parameters are always passed to internal and external PeopleCode functions by reference. If the function is
supposed to change the data the caller passes, you must also passin avariable.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 17

Understanding the PeopleCode Language Chapter 2
Built-in function parameters can be passed by reference or by value, depending on the function. External C
function parameters can be passed by value or by reference, depending on the declaration and type.

See Also

Chapter 15, "Debugging Y our Application," page 265

Chapter 2, "Understanding the PeopleCode Language,” Variables and Functions, page 31

Function Return Values
Functions can return values of any supported data type; some functions do not return any value.

Optional return values occur only in built-in functions. Y ou cannot define afunction that optionally returns a
value. Optional return values are typical in functions that return a Boolean value indicating whether execution
was successful. For example, the following call to DeleteRow ignores the Boolean return value and deletes a
row:

Del et eRowm(RECORD. BUS EXPENSE PER, &L.1 ROW RECORD. BUS EXPENSE DTL, &L2 ROW;
The following example checks the return value and returns a message saying whether it succeeded:

i f Del et eRowm RECORD. BUS_EXPENSE_PER, &L1_ROW RECORD. BUS_EXPENSE_DTL, &L2_ROW then
W nMessage(" Row del eted.");

el se
W nMessage("Sorry -- couldn't delete that row ");

end-if;

Function Naming Conflicts

If you define afunction with the same name as a built-in function, the function that you defined takes
precedence over the built-in function.

Anytime you compile the PeopleCode in the PeopleCode Editor, a warning message appearsin the Vaidate
tab, indicating that a user-defined function has the same name as an existing built-in function.

In addition, if you select Compile All PeopleCode, an error message is generated in the log file for every
user-defined function that has the same name as a built-in function.

The following is an example error message: User-defined function IsNumber is overriding the built-in
function of the same name. (2,98)

If you notice that you named a function the same as a built-in function, and that the built-in function does
what you're trying to achieve, replace your function with areference to the built-in function. The built-in
function is probably more efficient. In addition, using the built-in function reduces confusion for people who
maintain your code, because if they miss the warning message in the Validate tab, they might assume the
built-in function is being called when it is not.

18 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Expressions

This section discusses:

» Expression fundamentals.

+ Constants.

» Functions as expressions.

« System variables.

* Metastrings.

» Record field references.

« Definition name references.

» Reserved word summary table.

See Also

Chapter 2, "Understanding the PeopleCode Lanquage," Variables, page 26

Expression Fundamentals

Expressions evaluate to values of PeopleCode data types. A simple PeopleCode expression can consist of a
constant, atemporary variable, a system variable, arecord field reference, or afunction call. Simple
expressions can be modified by unary operators (such as anegative sign or logical NOT), or combined into
compound expressions using binary operators (such aplussign or logical AND).

Definition name references eval uate to strings equal to the name of a PeopleTools definition, such as arecord
or page. They enable you to refer to definitions without using string literals, which are difficult to maintain.

Metastrings (also called meta-SQL) are specia expressions used within SQL string literals. At runtime, the
metastrings expand into the appropriate SQL for the current database platform.

Constants

PeopleCode supports numeric, string, and Boolean constants, as well as user-defined constants. It also
supports the constant Null, which indicates an object reference that does not refer to avalid object.

Note. Y ou can express Date, DateTime, and Time values by converting from String and Number constants
using the Date, Date3, DateTime6, DateTimeV alue, DateValue, Time3, TimePart, and the TimeValue
functions. Y ou can aso format a DateTime value as text using FormatDateTime.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 19

Understanding the PeopleCode Language Chapter 2

20

Numeric Constants

Numeric constants can be any decimal number. Some examples are:

. 7
. 08725
. -172.0036

String Constants

String constants can be delimited by using either single (') or double (") quotation marks. If a quotation mark
occurs as part of astring, the string can be surrounded by the other delimiter type. As an alternative, you can
include the delimiter twice. Some examples are:

« "Thisisastring constant."

« 'Soisthis!

» 'Shesaid, "Thisisastring constant.""
» "Shesad, ""Thisisastring constant."""

Use the following code to include aliteral quotation mark as part of your string:
&cDbl Quote = '"'; [/* singlequote doubl equote singl equote */
The following also produces a string with two double quotation marksin it:

&cDbl Quote = """"; [* dquote dquote dquote dquote */

Y ou can aso directly embed the doubled double quotation mark in strings, such as:
&l mage = Char(10) | '<IMs SRC="% MAGE(' | &plnmageNarme | ')"';

Strings must be contained on a single line. If you need to create a multi-line string, you must use
concatenation to connect the lines to be a single sting.
Boolean Constants

Boolean constants represent atruth value. The two possible values are True and False.

Null Constant

Null constants represent an object reference value that does not refer to avalid object. This meansthat calling
amethod on the object or trying to get or set a property of it fails. The Null constant is just the keyword Null.
User-Defined Constants

Y ou can define constants at the start of a PeopleCode program. Then you can use the declared constant
anywhere that the corresponding value would be allowed. Constants can be defined as numbers, strings, or
Boolean values.

User-defined constants can only be declared as Local.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

The following is an example of user-defined constant declarations:

Constant &Start_New I nstance = True;

Const ant &Di spl ay_Mode = O;

Const ant &AddMbde = "A":

Local Field &Start Date;

i\/yi:uhcti on(&Start_New | nstance, &Display_ Mde, &Add_Mode);
See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions'

Functions as Expressions
Y ou can use any function that returns avalue as an expression. The function can be used on the right side of
an assignment statement, passed as a parameter to another function, or combined with other expressions to
form a compound expression.

See Also

Chapter 2, "Understanding the PeopleCode L anguage,” Functions, page 15

System Variables
System variables are preceded by a percent (%) symbol whenever they appear in a program. Use these
variables to get the current date and time, or to get information about the user, the current language, the
current record, page, or component, and more.
See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " System Variables'

Metastrings
Metastrings are special SQL expressions. The metastrings, also called meta-SQL., are preceded with a percent

(%) symbol, and can be included directly in string literals. They expand at runtime into an appropriate
substring for the current database platform. Metastrings are used in or with:

» SQLExec.
« Scroll buffer functions (ScrollSelect and its relatives).
« PeopleSoft Application Designer to construct dynamic views.

« Somerowset object methods (Select, SelectNew, Fill, and so on).

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 21

Understanding the PeopleCode Language Chapter 2

» SQL objects.

« Application Engine.

« Somerecord class methods (Insert, Update, and so on).
- COBOL.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," SQLExec

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," ScrollSelect

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL"

Record Field References

22

Use record field references to retrieve the value stored in arecord field or to assign avalue to arecord field.

Record Field Reference Syntax
References to record fields have the following form:
[recordname.]fiel dnane

Y ou must supply the recordname only if the record field and your PeopleCode program are in different
record definitions.

For example, suppose that in a database for veterinarians you have two records, PET_OWNER and PET. A
program in the record definition PET_OWNER must refer to the PET_BREED record field in the PET record
definition as PET.PET_BREED.

However, aprogram in the PET record definition can refer to this same record field more directly as
PET_BREED.

If the program isin the PET_BREED record field itself, it can refer to thisrecord field using the caret (?)
symbol.

The PeopleCode Editor replaces the caret symbol with the actual record field name.

Y ou can also use object dot notation to refer to record fields, for example:
&FI ELD = Get Recor d(RECORD. PET_OWNER) . Get Fi el d(FI ELD. PET_BREED) ;

See Chapter 4, "Referencing Data in the Component Buffer," page 47.

Legal Record Field Names

A record field name consists of two parts, the record name and the field name, separated by a period.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

The field names used in PeopleCode are consistent with the field names allowed in the field definition. Case
isignored, although the PeopleCode Editor for the sake of convention, automatically formats field namesin
uppercase. A field name can be 1 to 18 characters, consisting of alphanumeric characters determined by your
current language setting in Microsoft Windows, and characters#, @, $, and _.

A record name can be 1 to 15 characters, consisting of aphanumeric letters determined by your current
language setting in Microsoft Windows, and characters#, @, $, and _.

Definition Name References

Definition name references are special expressions that reference the name of a PeopleTools definition, such
as arecord, page, component, business interlink, and so on. Syntactically, a definition name reference
consists of areserved word indicating the type of definition, followed by a period, then the name of the
PeopleTools definition. For example, the definition name reference RECORD.BUS EXPENSE _PER refers
to the definition name BUS EXPENSE PER.

Generally, definition name references are passed as parameters to functions. If you attempt to pass a string
literal instead of a definition name reference to such afunction, you receive a syntax error.

Y ou also use definition name references outside function parameter lists, for example, in comparisons:
I f (%age = PAGE. SOMEPAGE) Then

/* do stuff specific to SOVEPAGE */
End- 1 f;

In these cases, the definition name reference evaluates to a string literal. Using the definition name reference
instead of a string literal enables PeopleT ools to maintain the code if the definition name changes.

If you use the definition name reference, and the name of the definition changes, the change automatically
ripples through the code, so you do not have to change it or maintain it.

In the PeopleCode Editor, if you place your cursor over any definition name reference and right-click, you
can select View Definition to open the definition.

In addition, for most definitions, if you specify a definition that was not created in PeopleSoft Application
Designer, you receive an error message when you try to save your program.
Legal and lllegal Definition Names

Legal definition names, as far as definition name references are concerned, consist of alphanumeric letters
determined by your current language setting in Microsoft Windows, and the characters#, @, $, and _.

In some cases, however, the definition supports the use of other characters. Y ou can, for example, have a
menu item named A& M stored in the menu definition even though & isanillegal character in the definition
name reference. Theillegal character resultsin an error when you validate the syntax or attempt to save the
PeopleCode.

Y ou can avoid this problem in two ways:

» Rename the definition so that it uses only legal characters.

» Enclose the name of the definition in quotation marks in the reference, for example:
ITEMNAME."A&M"

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 23

Understanding the PeopleCode Language Chapter 2

The second solution is a commonly used workaround in cases where the definition name containsillegal
characters. If you use this notation, the definition name reference is not treated as a string literal: PeopleTools
maintains the reference the same way as it does other definition name references.

Note. If your definition name begins with a number, you must enclose the name in quotation marks when you
useit in adefinition name reference. For example, Complintfc."1_DISCPLIN_ACTN".

Reserved Word Summary Table

The following table summarizes the reserved words used in definition name references:

Reserved Word Common Usage

BARNAME Used with transfers and modal transfers.

BUSACTIVITY Used with TriggerBusinessEvent.

BUSEVENT Used with TriggerBusinessEvent.

BUSPROCESS Used with TriggerBusinessEvent.

COMPINTFC Used with Component Interface Classes.

COMPONENT Used with transfers and modal transfers, as well as for
generating URLSs.

FIELD Used with methods and functions to designate afield.

FILELAYOUT Used with the SetFilelL ayout File class method.

HTML Used with the GetHTML Text function.

IMAGE Used in with functions and methods to designate an
image.

INTERLINK Used with the Getlnterlink function.

ITEMNAME Used with transfers and modal transfers.

MENUNAME Used with transfers and modal transfers.

24 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

Reserved Word Common Usage

MESSAGE Used with Messaging functions and methods.

MOBILEPAGE Used to identify a mobile page (used with transfers.)

NODE Used with transfers and modal transfers, aswell as
generating URLS.

PAGE Used with transfers and modal transfers to pass the page
item name (instead of the page name), and with controls
and other functions to pass the page name.

PORTAL Used with transfers and modal transfers, aswell as
generating URLSs.

RECORD Used in functions and methods to designate a record.

SCROLL The name of the scroll areain the page. Thisnameis
aways equal to the primary record of the scroll.

SQL Used with SQL definitions.

STYLESHEET Used with style sheets.

See Also

Enterprise PeopleTools 8.50 PeopleBook:

Functions," TriggerBusinessEvent

Enterprise PeopleTools 8.50 PeopleBook:

Functions," GetHTML Text

Enterprise PeopleTools 8.50 PeopleBook:

Functions," GetInterlink

Enterprise PeopleTools 8.50 PeopleBook:
Enterprise PeopleTools 8.50 PeopleBook:
Enterprise PeopleTools 8.50 PeopleBook:
Enterprise PeopleTools 8.50 PeopleBook:

PeopleCode Language Reference, "PeopleCode Built-in

PeopleCode Language Reference, "PeopleCode Built-in

PeopleCode Language Reference, "PeopleCode Built-in

PeopleCode API Reference, "Component Interface Classes"
PeopleCode API Reference, "Message Classes'
PeopleCode API Reference, "File Class," SetFilel ayout
PeopleCode API Reference, "SQL Class'

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

25

Understanding the PeopleCode Language Chapter 2

Variables

This section discusses.

» Supported variable types.

e User-defined variables.

» User-defined variable declaration and scope.
« Variable declaration.

» User-defined variableinitialization.

* Restrictions on variable use.

» Scope of local variables.

« Duration of local variables.

« Variables and functions.

» Recursive functions.

« State of shared objects using PeopleSoft Pure Internet Architecture.
See Also

Chapter 2, "Understanding the PeopleCode Language,” System Variables, page 21

Supported Variable Types
PeopleCode supports these types of variables:

User-defined variables These variable names are preceded by an & character wherever they appear in a
program. Variable names can be 1 to 1000 characters, consisting of letters A
through Z and athrough z, digits 0 through 9, and characters#, @, $, and _.

System variables System variables provide access to system information. System variables have a
prefix of the % character rather than the & character. Use these variables
wherever you can use a constant, passing them as parameters to functions or
assigning their values to fields or to temporary variables.

26 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

User-Defined Variables

A user-defined variable can hold the contents of arecord field for program code clarity. For example, you
may give a variable a more descriptive name than arecord field, based on the context of the program. If the
record field is from another record, you may assign it to atemporary variable rather than always using the
record field reference. This makes it easier to enter the program, and can also make the program easier to
read.

Also, if you find yourself calling the same function repeatedly to get a value, you may be able to avoid some
processing by calling the function once and placing the result in avariable.

User-Defined Variable Declaration and Scope
The difference between the variable declarations concerns their life spans:
+ Globa
The variable isvalid for the entire session.
« Component
The variable isvalid while any page in the component in which the variable is defined stays active.
+ Loca

The variable is valid for the duration of the PeopleCode program or function in which the variableis
defined.

Y ou can declare variables using the Global, Local, or Component statements, or you can use local variables
without declaring them. Here are some examples:

Local Nunber &AGE;

A obal String &OPER NI CKNAME;
Conmponent Rowset &MWY_ ROWSET,;
Local Any &SOVE_FI ELD;

Local Api Obj ect &WTREE;

Local Bool ean &Conpare = True;

Variable declarations are usually placed above the main body of a PeopleCode program (along with function
declarations and definitions). The exception isthe Local declaration, which you can use within afunction or
the main section of a program. Y ou can declare variables as any of the PeopleCode datatypes. If avariableis
declared as an Any datatype, or if avariableis not declared, PeopleTools uses an appropriate data type based
on context.

Note. Declare avariable as an explicit data type unless the variable will hold a value of an unknown data
type.

Global variables can be accessed from different components and applications, including an Application
Engine program. A global variable must be declared, however, in each PeopleCode program where it's used.
Use global variablesrarely, because they are difficult to maintain.

Global variables are not available to a portal or applications on separate databases.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 27

Understanding the PeopleCode Language Chapter 2

Component variables remain defined and keep their values while any page in the component in which they
are defined remains active. Similar to a global variable, acomponent variable must be declared in each
PeopleCode program where it is used.

Component variables act the same as global variables when an Application Engine program is called from a
page (using Call AppEngine).

Component variables remain defined after a TransferPage, DoModal, or DoM odal Component function.
However, variables declared as Component do not remain defined after using the Transfer function, whether
you are transferring within the same component or not.

Local variables declared at the top of a PeopleCode program (or within the main, that is, non-function, part of
aprogram) remain in scope for the life of that PeopleCode program. Local variables declared within a
function are valid to the end of the function and not beyond.

Y ou can check the values of Local, Global, and Component variables at runtime in the different variable
windows of the PeopleCode debugger. Local variables declared within afunction appear in the Function
Parameters window.

Variable Declaration

28

Declare variables before you use them. If you do not declare avariable, it is automatically declared with the
scope Local and the data type Any. Y ou receive awarning message in the Validation tab of the PeopleSoft
Application Designer output window for every variable that is not declared when you save the PeopleCode
program, as shown in the following example:

Wariable &MYFIELD auto-declared. [2,67]
“Wariable &l auto-declared. [2.67]

Wariable SFOUND auto-declared. [2,67)
Wariable &K auto-declared. [2,67]

Wariable SCOPYFRMRBOW auto-declared. [2,67)
Wariable SCOPYTROW auto-declared. [2.67]

A b Build A Upgrade 4 Resuttz # Validate /

Validation tab with auto-declared variables

If you declared all the variables, you can use these values to ensure you do not have misspellings. For
example, if you declared avariable as & END_DATE and then accidentally spell it as &EDN_DATE, the
"new variable" appears on the Validate tab when you save the program.

Another reason to declare variablesis for the design-time checking. If you declare avariable of one data type
and then assign to it avalue of a different type, the PeopleCode Editor catches that assignment as a design-
time error when you try to save the program. With an undeclared variable, the assignment error does not
appear until runtime.

The following example produces a design-time error when you try to save the program:
Local Field &DATE;
&DATE = Get Recor d(RECORD. DERI VED_HR) ;

In addition, if you declare variables, the Find Object Reference feature finds embedded definitions. For
example, suppose you wanted to find all occurrences of the field DEPT _ID. If you have not declared
& MyRecord as arecord, Find Object References does not find the following reference of the field DEPT _ID:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

&WRecor d. DEPT_I D. Vi si bl e = Fal se;

User-Defined Variable Initialization
To declare and initiaize variables in one step, use the following format:
Local String &WString = "New';
Local Date &WDate = %bate;
This method is available only for variables with the scope of Local.

Though you can declare more than one variable on asingle line, you can only initialize one variable on aline.
The following code creates a syntax error when you try to save the program:

Local Nunber &N1, &N\2 = 5;

Y ou cannot declare avariable, theninitialize it in a second declaration statement. The following produces a
duplicate declaration error when you try to save the program:

d obal Number &N1;
Local String &N1 = "Str"; /* Duplicate definition. */

If you do not initialize variables, either when you declare them or before you use them, strings areinitialized
as Null strings, dates and times as Null, and numbers as zero.

Restrictions on Variable Use
The following data types can only be declared as L ocal:
» JavaObject

o Interlink

Note. Interlink objects can be declared as type Global in an Application Engine program.

* TransformData
« XmiNode

The following ApiObject data type objects can be declared as Global:

* Session

PSM essages collection

PSMessage

All tree classes (trees, tree structures, nodes, levels, and so on)

* Query classes

All other ApiObject datatype objects (such as al the PortalRegistry classes) must be declared as Local.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 29

Understanding the PeopleCode Language Chapter 2

Scope of Local Variables
The two types of local variables are: program-local and function-local.
» A program-local variable is declared aslocal in the main part of the program and is local to that program.
« A function-local variableis declared aslocal inside afunction and islocal only to that function.

See Chapter 2, "Understanding the PeopleCode L anguage,”" Recursive Functions, page 32.

A program-local variable can be affected by statements anywhere in the program. For example, suppose
RECORD_A.FIELD_A.FieldFormula has two functions, FUNC 1 and FUNC_2, and both modify alocal
variable named & TEMP. They could affect each other, as they both use the same variable name in the same
PeopleCode program.

If, however, FUNC 3isdefined in RECORD_ B FIELD B.FieldFormulaand makesreferenceto & TEMP, it
isnot the same & TEMP asin RECORD_A.FIELD_A.FieldFormula. This difference becomes important
when FUNC_1 cals FUNC_3. Technically, both functions exist at the same time, one inside the other, but

& TEMP isadifferent variable for each of them. However, if FUNC_1 callsFUNC_2, then & TEMP isthe
same variable for both.

Duration of Local Variables

A local variableis valid for the duration of the PeopleCode program or function in which it is defined. A
PeopleCode program is defined as what the PeopleCode Editor in Application Designer presentsin asingle
window: a chunk of PeopleCode text associated with a single item (arecord field event, a component record
event, and so on.)

When the system evaluates a PeopleCode program and calls a function in the same PeopleCode program, a
new program evaluation is not started.

However, when afunction from a different PeopleCode program is called (that is, some PeopleCode text
associated with a different item), the current PeopleCode program is suspended, and the Component
Processor starts evaluating the new program. This means that any local variables in the calling program
(called A) are no longer available. Those in the called program (called B) are available.

Evenif the local variablesin the A program have the same name as those in the B program, they are different
variables and are stored separately.

If the called program (B) in turn calls afunction in program A, anew set of program A's variables are
alocated, and the called function in A uses these new variables. Thus, this second use of program A gets
another lifetime, until execution returns to program B.

The following is an example of pseudocode to show how this might work. (Thisis non-compiled, non-
working code. To use this example, you'd have to enter asimilar program without the external declaration of
the function in the other, not yet compiled, one.)

30 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Varia

Understanding the PeopleCode Language

Program A (Rec. Fi el d. Fi el dChange) :

| ocal nunber &t enp;

decl are functi on Bl Peopl eCode Rec. Field Fiel drFormul a;

/* Uncoment this declaration and coment above to conpile this the first tine.
function Bl
end- functi on;

*/

function Al

W nMessage("Al: &enp is " | &enp);
&enp = &enp + 1;

A2();

B1();

A2(); .

end- f uncti on;

function A2

W nMessage("A2: &enp is " | &enp);
&enmp = &enmp + 1;

end-functi on;

AL();

Program B (Rec. Fi el d. Fi el dFormul a) :

| ocal nunber &t enp;

decl are functi on A2 Peopl eCode Rec. Field Fi el dChange;

function Bl

W nMessage("Bl: &enp is " | &enp);
&emp = &emp + 1,
A2();

end- f uncti on;

When thisis compiled and run, it produces the following output:

Al: &emp is O
A2: &empis 1
Bl: &enp is O
A2: &emp is O
A2: &empis 2

bles and Functions

PeopleCode variables are always passed to functions by reference. This means, among other things, that a
function can change the value of avariable passed to it so that the variable has the new value on return to the
calling routine.

For example, the Amortize built-in function expects you to passit variables into which it places the amount of
aloan payment applied towards interest (& PYMNT_INTRST), the amount of the payment applied towards
principa (&PYMNT_PRIN), and the remaining balance (& BAL). It calcul ates these values based on
information that the calling routine suppliesin other parameters:

& NTRST_RT=12;

&PRSNT_BAL=100;

&PYMNT_AMNT=50;

&PYMNT_NBR=1;

Anortize(& NTRST_RT, &PRSNT_BAL, &PYNMNT_AMNT, &PYMNT_NBR,
&PYMNT_| NTRST, &PYWNT_PRI N, &BAL);

&RESULT = "Int=" | String(&PYMNT_INTRST) | " Prin=" |
String(&PYMNT_PRIN) | " Bal=" | String(&BAL);

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 31

Understanding the PeopleCode Language Chapter 2

Recursive Functions

PeopleCode supports True recursive functions. A function can cal itself, and each possibly recursive call of
the function has its own independent copy of the parameters and function-local variables.

When writing recursive functions, be careful about passing variables as parameters, because PeopleCode
implements such calls by reference. This means that if you call afunction such as.

Function Func(&n as Nunber)

&n = 3;

End- Functi on;
| ocal & = 5;
Func(&x);

After the call to Func(&Xx), &x hasthe value 3, not 5. If the call was Func(Vaue(&x)), after the call &x is still
5.

State of Shared Objects Using PeopleSoft Pure Internet Architecture

32

Consider the following scenario:

» Alocal and aglobal variable refer to the same object.
« That object is used in amodal component.
» Instead of completing the modal component, the user clicks the browser Back button.

In general, the global state of the object isrestored. If the object has not been destroyed from the global state,
the global state of the object isused for local references; otherwise, the local stateis used for local references.

Hereis an example:

A obal array of number &G obal _Array;
Local array of number &lLocal _Array:

&4 obal _Array = CreateArray(1, 2, 3);
&L ocal _Array = &G obal _Array

DoMbdal (Page. PAGENAME, "", -1, -1, 1, Record. SHAREDREC, 1);
/* return to here */

&Local _Array[1] = -1;

&4 obal _Array[2] = -2;

W nMessage(&L.ocal _Array is " | &L.ocal Array.Join());

W nMessage(&d obal _Array is " | &d obal _Array.Join());

The following program, program 2, is located on the modal page the user is transferred to:

d obal array of nunmber &G obal Array;
&d obal _Array[3] = -3;

The following program, program 3, is also located on the modal page:

d obal array of nunber &G obal _Array;
&4 obal _Array = CreateArray(1l, 2, -3);

If program 2 isrun, the output is the following:

&Loca Arrayis-1,-2,-3

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

&Global_Array is-1,-2,-3

However, if program 3 is run, thereby destroying the original global state, the output is the following:
&Loca_Arrayis-1,2,3

&Global_Arrayisl, -2, -3

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " System Variables'

Chapter 15, "Debugaging Y our Application,”" page 265

Operators

PeopleCode expressions can be modified and combined using math, string, comparison, and Boolean
operators.

This section discusses:

« Math operators.

« Operations on dates and times.
« String concatenation.

* (@ operator.

« Comparison operators.

« Boolean operators.

Math Operators
PeopleCode uses standard mathematical operators:
¢ +

Add

Subtract (or unary negative sign)

Multiply
e/
Divide

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 33

Understanding the PeopleCode Language Chapter 2

. *%

Exponential

Exponentiation occurs before multiplication and division; multiplication and division occur before addition
and subtraction. Otherwise, math expressions are evaluated from left to right. Y ou can use parentheses to
force the order of operator precedence.

The minus sign can also, of course, be used as a negation operator, asin the following expressions.

-10
- &NUM
- Product (&PERCENT_CUT, .01, SALARY)

Operations on Dates and Times

Y ou can add or subtract two date values or two time values, which provides a Number result. In the case of
dates, the number represents the difference between the two dates in days. In the case of time, the number
represents the difference in seconds. Y ou can also add and subtract numbers to or from atime or date, which
results in another date or time. Again, in the case of days, the number represents days, and in the case of time,
the number represents seconds.

The following table summarizes these operations:

Operation Result Type Result Represents
Time + number of seconds Time Resulting time

Date + number of days Date Resulting date

Date - date Number Differencein days
Time - time Number Difference in seconds
Date + time DateTime Date and time combined

String Concatenation

The string concatenation operator (|) is used to combine strings. For example, assuming
& OPER_NICKNAME is"Dave", the following statement sets & RETORT to "'l can't do that, Dave."

&RETORT = "I can't do that, " | &OPER NI CKNAME |

The concatenation operator automatically converts its operands to strings. This conversion makes it easy to
write statements that display mixed data types. For example:

&DAYS LEFT = &CHRI STMAS - %bat €;
W nMessage("Today is " | Yate | ". Only " | &DAYS LEFT | " shopping days left!");

34 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language

@ Operator

The @ operator converts a string storing a definition reference into the definition. Thisis useful, for example,
if you want to store definition references in the database as strings and retrieve them for use in PeopleCode;
or if you want to obtain a definition reference in the form of a string from the operator using the Prompt
function.

To take asimple example, if therecord field EMPLID is currently equal to 8001, the following expression

evaluates to 8001:

@ EMPLI D'

The following example uses the @ operator to convert strings storing a record reference and arecord field
reference:

&STR1 = " RECORD. BUS_EXPENSE_PER';

&STR2 = "BUS_EXPENSE_DTL. EMPLI D*;

&STR3 = FetchVal ue(@ &STR1), Current RowNunber (1), @&STR2), 1);

W nMessage(&STR3, 64);

Note. String literals that reference definitions are not maintained by PeopleTools. If you store definition
references as strings, then convert them with the @ operator in the code, this creates maintenance problems
whenever definition names change.

The following function takes a rowset and arecord, passed in from another program, and performs some
processing. The GetRecord method does not take a variable for the record, however, you can dereference the
record name using the @ symbol. Because the record name is never hard-coded as a string, if the record name
changes, this code does not have to change.

Functi on Get _My_Row(&PASSED ROWSET, &PASSED RECORD)
For &ROWSET_ROW = 1 To &PASSED_ ROWSET. RowCount
&UNDERLY!I NGREC = "RECORD. " | &PASSED ROWBET. DBRecor dNane;
&ROW RECORD = &PASSED ROWSET. Get Row(&ROWBET ROW . Get Recor d(@UNDERLYI NGREC) ;
/* Do other processing */

End- For ;

End- Functi on;

Comparison Operators

Comparison operators compare two expressions of the same data type. The result of the comparisonisa
Boolean value. The following table summarizes these operators:

Operator Meaning

= Equal

1= Not equal

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 35

Understanding the PeopleCode Language Chapter 2

Operator Meaning

<> Not equal

< Lessthan

<= Lessthan or equal to

> Greater than

>= Greater than or equal to

Y ou can precede any of the comparison operators with the word Not, for example:

« Not=
+« Not<
« Not>=

Expressions formed with comparison operators form logical terms that can be combined using Boolean
operators.

String comparisons are case-sensitive. Y ou can use the Upper or Lower built-in functionsto do a case-
insensitive comparison.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," Lower

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," Upper

Boolean Operators

Thelogical operators AND, OR, and NOT are used to combine Boolean expressions. The following table
shows the results of combining two Boolean expressions with AND and OR operators:

Expression 1 Operator Expression 2 Result
False AND False Fase
False AND True False

36

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding the PeopleCode Language
Expression 1 Operator Expression 2 Result
True AND True True
Fase OR Fase False
False OR True True
True OR True True

Copyright

The NOT operator negates Boolean expressions, changing a True value to False and a False value to True.

In complex logical expressions using the operations AND, OR, and NOT, NOT takes the highest precedence,
AND isnext, and OR islowest. Use parentheses to override precedence. (Generally, it isagood ideato use
parentheses in logical expressions anyway, because it makes them easier to decipher.) If used on theright side
of an assignment statement, Boolean expressions must be enclosed in parentheses.

The following are examples of statements containing Boolean expressions:

&FLAG = (Not (&FLAG)); /* toggles a Bool ean */
if ((&HAS _FLEAS or &HAS TI CKS) and
SOAP_QTY <= M N_SOAP_QTY) then
SOAP_QTY = SCOAP_QTY + Order Fl eaSoap(SOAP_ORDER _QTY) ;
end-if;

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 37

Chapter 3

Understanding Objects and Classes in
PeopleCode

This chapter discusses:

» Classes and objects

» Creating and using objects.
» Assigning objects.

» Passing objects.

Classes and Objects

PeopleSoft delivers classes of objects that you can manipul ate with PeopleCode. In addition, you can extend
the existing classes or create your own. The delivered classes may or may not have a graphic user interface
equivalent; some are representations of data structures that occur only at runtime. With PeopleCode, you can
manipulate data in the data buffer easily and consistently. These classes enable you to write code that's more
readable, more easily maintained, and more useful.

This section discusses:
e Classes.
» Objects.

» Object instantiation.

Classes

A classisthe formal definition of an object and acts as atemplate from which an instance of an object is
created at runtime. The class defines the properties of the object and the methods used to control the object's
behavior.

PeopleSoft delivers predefined classes, such as Array, File, Field, SQL, and so on. Y ou can create your own
classes using the Application class. Y ou can aso extend the functionality of the existing classes using the
Application class.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 39

Understanding Objects and Classes in PeopleCode Chapter 3

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Application Classes'

Objects

An object represents a unique instance of a data structure defined by the template provided by its class. Each
object has its own values for the variables belonging to its class and responds to methods defined by that
class. Thisisthe same for classes provided by PeopleSoft and for classes you create yourself.

After an object has been created (instantiated) from a class, you can change its properties. A property isan
attribute of an object. Properties define:

» Object characterigtics, such as name or value.
« The state of an object, such as deleted or changed.

Some properties are read-only and cannot be set, such as Name or Author. Other properties can be set, such as
Value or Label.

Objects are different from other data structures. They include code (in the form of methods), not just static
data. A method is a procedure or routine, associated with one or more classes, that acts on an object.

An analogy to illustrate the difference between an object and its classis the difference between a car and the
blue Citroen with license plate number TS5800B. A classisagenera category, while the object is a specific
instance of that class. Each car comes with standard characteristics, such as four whedl's, an engine, or brakes,
that define the class and are the template from which the individual car is created. Y ou can change the
properties of an individual car by personalizing it with bumper stickers or racing stripes, which islike
changing the Name or Visible property of an object. The model and date that the car is created are similar to
read-only properties because you cannot alter them. A tune-up acts on the individual car and changesits
behavior, much as a method acts on an object.

Object Instantiation

A classisthe blueprint for something, like abicycle, acar, or adata structure. An object is the actual thing
that is built using that class (or blueprint.) From the blueprint for a bicycle, you can build a specific mountain
bike with 23 gears and tight suspension. From the blueprint of a data structure class, you build a specific
instance of that class. Instantiation is the term for building that copy, or an instance, of a class.

Creating and Using Objects

This section discusses how to:
» Instantiate objects.
» Change object properties.

* Invoke methods.

40 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Understanding Objects and Classes in PeopleCode

» Copy objects.

Instantiating Objects

Generally you instantiate objects (create them from their classes) using built-in functions or methods of other
objects. Some objects are instantiated from data already existing in the data buffer. Think about this kind of
object instantiation as taking a chunk of datafrom the buffer, encapsulating it in code (methods and
properties), manipulating it, then freeing the references. Some objects can be instantiated from a previously
created definition, such as a page or file layout definition, instead of from data.

The following example creates a field object:
Local field &WField
&WField = GetField();

Get functions, which include functions such as GetField, GetRecord, and so on, generally provide access to
datathat aready exists, whether in the data buffers or from an existing definition.

Create functions, which include functions such as CreateObject, CreateArray, CreateRecord, generally create
defined objects that do not yet exist in the data buffer. Create functions create only a buffer structure. They do
not populate it with data. For example, the following function returns a record object for arecord that already
exists in the component buffer:

&REC = Get Record();

The following example creates a standal one record. However, thereis no datain & REC2. The specified
record definition must be created previously, but the record does not have to exist in either the component or
data buffer:

&REC2 = CreateRecord(EMP_CHKLST_I TM ;

Objects with no built-in functions can only be instantiated from a session object (such as tree classes,
component interfaces, and so on). For most of these classes, when you use a Get function, all you get isan
identifier for the object. To fully instantiate the object, you must use an Open method.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, " Session Class'

Changing Properties

To set or get characteristics of an object, or to determine the state of an object, you must access its properties
through dot notation syntax. Follow the reference to the object with a period, followed by the property, and
assign it avalue. Theformat is generally asfollows:

oj ect. Property = Val ue
The following example hides the field & MY FIELD:

&WFI ELD. Vi si bl e = Fal se

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 41

Understanding Objects and Classes in PeopleCode Chapter 3

Y ou can return information about an object by returning the value of one of its properties. In the following
example, & X isavariable that is assigned the value found in the field & MY FIELD:

&X = &MWYFI ELD. Val ue
In the following example, a property is used as the test for a condition:

I f &ROWBET. Acti veRowCount <> & Then

Invoking Methods

42

Y ou also use dot notation to execute methods. Follow the reference to the object with a period, then with the
method name and any parameters the method takes. The format is generally:

oj ect . net hod() ;

Y ou can string methods and property values together into one statement. The following example strings
together the GetField method with the Name property:

| f &REC BASE. Get Fi el d(&R) . Nane = &REC_RELLANG. Get Fi el d(&J) . Nane Then

Some methods return a Boolean value: True if the method executes successfully; False if it does not. The
following method compares all like-named fields of the current record object with the specified record. This
method returns as True if all like-named fields have the same value:

| f &MYRECORD. Conpar eFi el ds(&OTHERRECORD) Then

Other methods return areference to an object. The GetCurrEffRow method returns arow object:
&MYROW = &MYROWSET. Get Cur r Ef f Row() ;

Some methods do not return anything. Each method's documentation indicates what it returns.

Many objects have default methods. Instead of entering the name of the method explicitly, you can use that
method's parameters. Objects with default methods are composite objects; that is, they contain additional
objects within them. The default method is generally the method used to get the lower-level object.

A good example of acomposite object is arecord object. Record definitions are composed of field
definitions. The default method for arecord object is GetField.

The following lines of code are equivalent:

&Fl ELD
&Fl ELD

&RECORD. Get Fi el d(FI ELD. EMPLI D) ;
&RECORD. EMPLI D;

Note. If the field you're accessing has the same name as a record property (such as NAME) you cannot use
the shortcut method for accessing the field. Y ou must use the GetField method.

Another example of default methods concerns rowsets and rows. Rowsets are made up of rows, so the default
method for arowset is GetRow. The two specified lines of code are equivalent: They both get the fifth row of
the rowset:

&ROWSET = Get RowSet () ;
/*the next two lines of code are equival ent */

&ROW = &ROWSET. Get Row(5) ;
&ROW = &ROWSET(5) :

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Understanding Objects and Classes in PeopleCode

The following exampleillustrates the long way of enabling the Name field on a second-level scroll area (the
code is executing on the first-level scroll area):

Get Rowset (SCROLL. EMPLOYEE_CHECKLI ST) . Get Row(1) .
Get Recor d(EMPL_CHKLST | TM . Get Fi el d(FI ELD. NAMVE) . Enabl ed = True;

Using default methods enables you to shorten the previous code to the following:

Get Rowset (SCROLL. EMPLOYEE_CHECKLI ST) (1) . EMPL_CHKLST | TM NAME.
Enabl ed = True;

Expressions of the form class.name.property or class.name.method(..) are converted to a corresponding
object. For example, the code & enp = RECORD. JOB. | sChanged; isevaluated asif it were&t enp =
CGet Recor d(RECORD. JOB) . | sChanged,; .

Furthermore, the code JOB. EMPLI D. Vi si bl e = Fal se; isevauated asif it were
GetFiel d(JOB. EMPLID). Visible = Fal se; .

Copying Objects

Many of the classes delivered with PeopleTools have some sort of copy method, such as the rowset class
CopyTo, the tree class Copy, and so on. Unless specifically identified (such as the message class
CopyRowsetDelta) all copy methods use the current data of the object. This may be different than the original
datavaluesif the object was retrieved from the database and the valuesin it have been changed either by an
end-user or a PeopleCode program.

Assigning Objects

When you assign one object to another, you do not create a copy of the object, but only make a copy of the
reference.

In the following example, & A1l and & A2 refer to the same object. The assignment of & A1 to & A2 does not
alocate any database memory or copy any part of the original object. It makes & A2 refer to the same object
towhich &Al refers.

Local Array of Number &Al, &A2;

&A1
&A2

CreateArray(2, 4, 6, 8, 10);
&A1,

The following diagram shows how both references point to the same object:

&A1

&A2

Representation of two arrays

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 43

Understanding Objects and Classes in PeopleCode Chapter 3

If the next statement is&A2[5] = 12;, then &A1[5] also equals 12, as shown in the following diagram:

&A1[5] 1
2 4 6 8 12
&A2[5] *

Representation of two arrays with same content

The following exampleis not considered an object assignment:

Local number &NUM
Local Array of Number &A1;

&A1 = CreateArray(2, 4, 6, 8, 10);
&NUM = &A1[3];

&NUM is of data type Number, which is not an object type. If you later change the value of &NUM in the
program, you will nott change the element in the array.

Passing Objects

44

All PeopleCode abjects can be passed as function parameters. Y ou can pass complex data structures between
PeopleCode functions (as opposed to passing long lists of fields). If afunction is passed an object, the
function works on the actual object, not on a copy of the object.

In the following simple example, areference to the Visible property is passed, not the value of Visible. This
enabl es the MyPeopleCodeFunction either to get or set the value of the Visible property:

MyPeopl eCodeFuncti on(&My Fi el d. Vi si bl e) ;

In the following example, the function Process Rowset |oops through every row and record in the rowset
passed to it and executes an Update statement on each record in the rowset. This function can be called from
any PeopleCaode program and can process any rowset that is passed to it.

Local Rowset &RS;
Local Record &REC;

Function Process_RowSet (&ROWNSET as Rowset);

For & = 1 To &RONSET. Rowcount
For & = 1 To &ROWSBET. Recor dcount
&REC = &ROWBET. Get Row(&l) . Get Recor d(&J) ;
&REC. Updat e() ;
End- For ;
End- For ;
End- Functi on;

&RS = Get Level 0();

Process_RowSet (&RS) ;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Understanding Objects and Classes in PeopleCode

The following function takes a rowset and a record passed in from another program. GetRecord does not take
avariable for the record; however, you can use the @ symbol to dereference the record name.

Function Get M/ _Row(&PASSED ROWSET, &PASSED RECORD)

For &ROANSET_ROW = 1 To &PASSED ROWSET. RowCount
&UNDERLYI NCREC = "RECORD. " | &PASSED ROWSET. DBRecor dNane;
&ROW RECCORD = &PASSED_ROWSET. Get Row(&ROWSET_ROW . Get Recor d(@UNDERLYI NGREC) ;

/* Do other processing */
End- For ;

End- Functi on;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 45

Chapter 4

Referencing Data in the Component
Buffer

This chapter provides an overview of component buffer structure and contents and discusses how to:

» Specify datawith contextual references.

» Specify data with references using scroll path syntax and dot notation.

Understanding Component Buffer Structure and Contents

This section discusses:

« Component buffer contents.

* Rowsets and scroll areas.

» Record fields in the component buffer.
See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with References Using Scroll Path
Syntax and Dot Notation, page 56

Component Buffer Contents

PeopleCode frequently must refer to data in the component buffer, the areain memory that stores data for the
currently active component.

The two methods for specifying a piece of datain the component buffer from within PeopleCode are:

« Contextual references, which refer to datarelative to the location of the currently executing PeopleCode
program.

» References using scroll path syntax, which provide a complete, or absolute, path through the component
buffer to the referenced component.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 47

Referencing Data in the Component Buffer Chapter 4

48

In addition to the built-in functions used to access the component buffer, PeopleCode provides enhanced
access to structured data buffers using the object syntax. Use the object-oriented PeopleCode to resolve
contextual ambiguities when you reference a nonprimary record field that appears on more than one scroll
level in acomponent. Aswith built-in functions, object syntax provides for both relative and absolute
references to component buffer data.

See Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39.

The component buffer consists of rows of buffer fields that hold data for the records associated with page
controls, including primary scroll records, related display records, derived/work records, and Trand ate table
records. PeopleCode can reference buffer fields associated with page controls and other buffer fields from the
primary scroll record and related display records.

See Chapter 4, "Referencing Datain the Component Buffer," Record Fields and the Component Buffer, page
50.

Primary scroll records are the principal SQL tables or views associated with page scroll levels. A primary
scroll record uniquely identifies ascroll level in the context of its page: each scroll level can have only one
primary scroll record, and the same primary scroll record cannot occur on more than one scroll area at the
same level of the page. Parent-child relations between primary scroll records determine the dependency
structure of the scroll areas on the page. The primary record on alevel one scroll areamust be a child of the
primary record on level zero, the primary record on alevel two scroll area must be a child of the primary
record on its enclosing level one scroll area, and the primary record on alevel three scroll area must be a child
of the primary record on its enclosing level two scroll area.

Note. Level zero may have multiple records.

The hierarchical relations among scroll areas, controlled by hierarchical relations among primary scroll
records, enable the user and PeopleCode to drill down through the scroll hierarchy to access any buffer field,
including related display, derived/work, and Translate table buffer fields, which occupy space on the same
rows as the primary scroll record buffer fields with which they are associated.

For example, to access a page field on level two of a page, a user must:
1. Select afield onlevel one of the page.
2. Scroll to and select the field on level two of the page.

The following diagram illustrates this scroll path taken by the user:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Referencing Data in the Component Buffer

Level zero row

F1 F2 F3 F4
R1

Selected row on level one

Target row and buffer figld
on level two

FI F2 F3 F4

Scroll path to a buffer field

To access the same field in the component buffer, PeopleCode must:
1. Specify ascroll areaand row on scroll level one: this selects a subset of dependent rows on level two.
2. Specify ascroll areaand row on scroll level two.

3. Specify the recordname.fieldname on the level two row.

PeopleCode component buffer functions use a common scroll path syntax for locating scrolls, rows, and
fieldsin multiple-scroll pages.

Rowsets and Scroll Areas

Copyright

Rowsets enable more consistent, more convenient, and less ambiguous manipulation of buffer data than
previous built-in functions could achieve. It's a hierarchical data object that can represent an entire scroll area
and all of its subordinate scroll aress.

A rowset can contain the entire contents of a component buffer, or the contents of any lower-level scroll area
plus all of its subordinate buffer data. The hierarchical structure of component levels—scroll area, row,
record, field—is provided by the new object data types, Rowset, Row, Record, and Field.

Y ou can access any rowset, row, record, or field within the buffer using the dot notation inherent in

PeopleTools 8 object-oriented programming. This enables you to reference fields within a record object,
records within arow object, and rows within arowset object as properties of the parent objects.

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 49

Referencing Data in the Component Buffer

See Also

Chapter 5, "Accessing the Data Buffer," page 67

Chapter 4

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Rowset Class'

Chapter 3, "Understanding Objects and Classes in PeopleCode," page 39

Record Fields and the Component Buffer

The record fields in the component buffer are a superset of those accessible to the user through page controls.
In most cases, PeopleCode can reference any record field in ascroll areds primary scroll record or in arelated
display record, not just those fields that are associated with page controls. The following table lists record

types and locations:

Type and Location of Record

Presence in Component Buffer

Primary record on scroll levels greater than zero

On scroll levels greater than zero, all record fields from
the primary scroll record are in the component buffer.
PeopleCode can refer to any record field on the primary
scroll record, even if it is not associated with a page
control.

Primary record on scroll level zero

If scroll level zero of apage contains only controls
associated with primary scroll record fields that are
search keys or aternate search keys, then only the
search key and alternate search key fieldsave in the
component buffer, not the entire record. The values for
the fields come from the keylist, and the record cannot
run RowInit PeopleCode. If level zero contains at |east
one record field from the primary scroll record that is
not a search key or alternate search key, then all the
record fields from the primary scroll record are
available in the buffer. (For this reason, you may
sometimes need to add one such record field at level
zero of the page to make sure that all the record fields of
the level-zero primary record can be referenced from
PeopleCode.)

Related display record fields

The buffer contains the related display record field, plus
any record fields from the related display record that are
referenced by PeopleCode programs. Y ou can reference
any record field in arelated display record.

Derived/work record fields

Only derived/work record fields associated with page
controls are in the component buffer. Other record fields
from the derived/work record cannot be referenced from
PeopleCode.

50

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

Type and Location of Record Presence in Component Buffer

Tranglate table record fields Only Tranglate table fields associated with page controls
are available in the component buffer. Other fields from
the Tranglate table cannot be referenced from
PeopleCode.

Note. In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed.

Specifying Data with Contextual References

In acontextual reference, PeopleCode refersto arow or buffer field determined by the context in which a
PeopleCode program is currently executing.

This section includes an overview of current context and discusses how to:
» Usecontextual row references.

o Usecontextua buffer field references.

Understanding Current Context

All PeopleCode programs, with the exception of programs associated with standard menu items, execute in a
current context. The current context determines which buffer fields can be contextually referenced from
PeopleCode, and which row of datais the current row on each scroll level at the time a PeopleCode program
is executing.

The current context comprises a subset of the buffer fields in the component buffer, determined by the row of
datawhere a PeopleCode program is executing. The current context includes:

« All buffer fieldsin the row of datawhere the PeopleCode program is executing.

« All buffer fieldsin rows that are hierarchically superior to the row where the PeopleCode program is
executing.

In the following diagram, all rows enclosed in dotted rectangles are part of the current context:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 51

Referencing Data in the Component Buffer Chapter 4

52

Level zero row is
always in context

F1 F2 F3 F4
R1

Parent of row where execution
takes place is in context

Fi F2 F3 F4

Row where PeopleCade
executes is in context

Fi F2 F3 F4

v
8

All rows on lower scroll are
out of contaxt

FI F2 F3 F4
R1
R2
R3

Y

Context of PeopleCode executing on a level two scroll area

In the preceding diagram, a PeopleCode program is executing in a buffer field on row R3 on scroll level two.
Therowsin scroll level two are dependent on row R2 on scroll level one. The rowsin scroll level one are
dependent on the single row at scroll level zero. The current context consists of all the buffer fields at level
two row R3, level onerow R2, and level zero row R1. The rows in the current context on levels one and two
are the current rows on their respective scroll areas. The single row on level zero isaways current and is
included in any current context. All rows other than the current rows and the level zero row are outside the
current context. No current row can be determined on scroll areas below the one where the PeopleCodeis
executing.

With PeopleTools 8, contextua references work within the structure of a rowset object, and can include
referencesto all field objects, record objects, row objects, and rowset objects in the current context.

Contextual Reference Processing Order

PeopleCode resolves contextual references at runtime by first checking the row where the PeopleCode
program is executing. |f PeopleCode does not find an appropriate buffer field, it looks in progressively higher
rows in the current context. The following diagram indicates this processing order:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

O,

Level zero row is
always in context

R1

F1

F2 F3 F4

Referencing Data in the Component Buffer

@ Parent of row where execution
takes place is in context

F1 F2

F3

F4

Row where PeopleCode
exaculas is in context

Processing order of a contextual reference

All rows on lower scroll are

out of context

F1 F2 F3 F4

F1 F2 F3 F4
R1
» R2

e T T T

R T !

R1

—» R2

R3

In typical pages, this processing order is not significant; however, if the same record occurs on more than one
level of apage, you should understand how the direct reference is resolved.

Using Contextual Row References

A contextual row reference refersto arow in the current context on level one or lower in the page. Because

each scroll area uses a unique primary record, the name of that record uniquely identifies whichever row isin
the current context for that scroll level. A contextual row reference uses a RECORD.recordname component

name reference to specify the scroll level of the intended row, resulting in areference to the current row at the
specified scroll level.

For example, you can use contextual row references with the RecordDel eted, RecordNew, and
RecordChanged functions:

| f RecordDel et ed(RECORD. SOVE_REC) Then. ..

With PeopleTools 8 object-oriented programming, arow can be referenced by specifying parent rows or

rowsets of the current rowset:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

53

Referencing Data in the Component Buffer Chapter 4

I f Get RowSet (). Par ent Rowset . Par ent Row. | sDel et ed Then. ..

In early versions of PeopleTools, you could make contextual row references using arecordname.fieldname
expression:

Hi deRow(SOVE_REC. ANY_FI ELD)
| f RecordDel et ed(SOVME_REC. ANY_FI ELD) Then. ..
This syntax is still supported.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Understanding Current Context, page 51

Using Contextual Buffer Field References

54

A contextual buffer field reference is atype of PeopleCode expression that refers to a buffer field by
specifying arecord field. The row of the buffer field is determined by the current context of the PeopleCode
program where the reference is made. Y ou can use a contextual buffer field reference to retrieve or update the
valuein the buffer field, to pass the buffer field value to afunction, or to reference an instance of a page
control associated with the buffer field. The following statements use contextual buffer field references:

/* Assigns value of variable to buffer field */

SOVE_RECORD. SOVE_FI ELD = &VAL;

/* Assigns value of buffer field to variable */

&VAL = SOVE_RECORD. SOVE_FI ELD;

/* Hides instance of control associated with buffer field */
Hi de(SOVE_RECORD. SOVE_FI ELD) ;

With PeopleTools 8 object-oriented programming, afield object incorporates information about both the
record field on which the buffer field is based and the page control with which the buffer field is associated.
By referring to the field object, you either make a contextual buffer field reference or you change an interface
attribute of the associated page control, depending on the object property you use. The following example has
the same effect as a contextual buffer field reference:

/* Assigns value of a variable to a buffer field */
&MWYFI ELD. Val ue = &SOVEVAL;

Contextual Buffer Field Reference Ambiguity

Nonprimary record fields may appear on more than one scroll level in a page. For example, a page may use a
derived/work field DERIVED_JS.CALC 1 asawork field on level one and level two of the same page. This
creates distinct DERIVED_JS.CALC 1 buffer fields for rows on both levels. Because of the order in which
PeopleCode resolves contextual buffer field references, if the contextual reference &VAL =

DERI VED JS. CALC 1; executesin aPeopleCode program on alevel-two row, the reference aways
retrieves the buffer field value on the current row on level two. PeopleCode on level two is unable to retrieve
the value of the DERIVED_JS.CALC_1 on level one using a contextual reference.

To explicitly reference the DERIVED_JS.CALC_1 buffer field on level one, use acomponent buffer function
with a scroll path:

&AL = FetchVal ue(SCROLL. | evel 1_scrol | nane, Current RowNunber (1), DERIVED JS. CALC >
1);

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

The CurrentRowNumber function returns the current row on level one, or the parent row of the level two row
where the PeopleCode program is executing.

Ambiguous Contextual References to Buffer Fields on Level Zero

Level zero of a page contains only asingle row of data, and the buffer fields in thisrow are dwaysin the
current context. For this reason you can amost always refer to alevel zero buffer field using a contextual
reference. However, referential ambiguity can make it impossible to reference a buffer field on level zero
contextually. For example, a page may use a derived/work field DERIVED_JS.CALC_1 asawork field on
level zero and level one of the same page. This creates distinct DERIVED_JS.CALC_1 buffer fields for rows
on both levels. Because of the order in which PeopleCode resolves contextual field references, if the &VAL =
DERI VED JS. CALC 1; contextual reference executesin a PeopleCode program on alevel-one row, it
always retrieves the buffer field value on the current row on level one.

To explicitly reference the DERIVED_JS.CALC _1 buffer field on level zero, you must use a component
buffer function with this syntax:

Function([recordnane.]fiel dname, rownum

Here rownum, because it ison level zero, is always equal to one. In the previous example of the
DERIVED_JS.CALC_1 field, you would use this statement:

&VAL = FetchVal ue(DERI VED_JS. CALC 1, 1);

Ambiguous References with Objects

With PeopleTools 8 object-oriented programming, even if two field objects that are in different rowsets
contain buffer data that's based on the same underlying record field, references to those objects are inherently
unique, because each is instantiated with respect to a specific point in the hierarchy of the buffer. Any
manipulation of afield object's interface properties affects only the page control with which it's associated.

The following example instantiates afield object using the long form, to emphasi ze the hierarchical form of
the data. It then hides the field's associated page control. Because thisis a unique instance of the field, based
on its hierarchy, hiding this field does not affect the visibility of any other page control associated with the
same record field:

&MYFI ELD = Get Rowset (SCROLL. EMPL_CHECKLI ST) . Get Row &l) .

Get Recor d(RECORD. EMPL_CHECKLI ST) . Get Fi el d(EMPL_CHECKLI ST. EMPLI D) ;
&WFI ELD. Vi si bl e = Fal se;

/* the same code, using the "short" form?*/

&WFI ELD = Get Rowset (SCROLL. EMPL_CHECKLI ST) . Get Row(&l) .
EMPL_CHECKLI ST. EMPLI D;

Note. Any changein afield object's value affects both the underlying record field and the value of any other
field object oriented on the same record field. This behavior is the same as the behavior of contextual buffer
field references that ater the field value.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with References Using Scroll Path
Syntax and Dot Notation, page 56

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 55

Referencing Data in the Component Buffer Chapter 4

Specifying Data with References Using Scroll Path Syntax and Dot
Notation

This section provides an overview of scroll paths and discusses how to:
» Structure scroll path syntax in PeopleTools 7.5.

« Reference scroll levels, rows, and buffer fields.

See Also

Chapter 5, "Accessing the Data Buffer," page 67

Understanding Scroll Paths

A scroll path is a construction found in the parameter lists of many component buffer functions, which
specifiesascroll level in the currently active page. Additional parameters are required to locate arow or a
buffer field at the specified scroll level.

PeopleTools 7.5 scroll path syntax enables you to eliminate ambiguous references, which, although rare, do
sometimes occur in complex components.

See Chapter 4, "Referencing Data in the Component Buffer," Using Contextual Buffer Field References, page
54.

Peopl€eTools 8 adds the convenience of object-oriented dot notation and default methods, which produce
inherently non-ambiguous references, to PeopleCode programs. There are examples of dot notation in this
section and examples of the scroll path syntax available in PeopleTools 7.5, which is still valid in
PeopleTools 8.

Structuring Scroll Path Syntax in PeopleTools 7.5

PeopleTools 7.5 offers two constructions for scroll paths: a standard scroll path syntax and an alternative
syntax using a SCROL L .scrollname expression. The latter is more powerful in that it can process some rare
cases where a RECORD.recordname expression results in an ambiguous reference.

Scroll Path Syntax with RECORD.recordname

Here is the standard scroll path syntax:

[RECORD. | evel 1 recnane, |levell row, [RECORD.|evel2 recnane, level2 row,]] RECORD. >
target _recnane

If the target level (the level you want to reference) is one, you must supply only the RECORD.
target_recname parameter. If the target scroll level is greater than one, you must provide scroll name and row
level parameters for all hierarchically superior scroll levels, beginning at level one. The following table
indicates the scroll path syntax for the three possible target scroll levels:

56 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer
Target Level Scroll Path Syntax
1 RECORD. t ar get _r echane
2 RECORD. | evel 1_recnamne, |evel 1_row,
RECCRD. t ar get _r ecnane
3 RECORD. | evel 1_recnane, levell row, RECORD.|evel 2 =
recnane, |evel2_row, RECORD.target_recnane

If you are referring to arow or abuffer field, additional parameters are required after the scroll path.

The following table describes the standard scroll path syntax parameters:

Syntax Parameters Description

RECORD.levell_recname Specifies the name of arecord associated with scroll level
one, normally the primary scroll record. This parameter is
required if the target scroll level istwo or three.

levell row An integer that selects arow on scroll level one. This
parameter isrequired if the target scroll level istwo or
three.

RECORD.level2_recname Specifies the name of arecord associated with scroll level

two, normally the primary scroll record. This parameter is
required if the target row ison scroll level three.

level2 row An integer that selects arow on scroll level two. This
parameter isrequired if the target row is on scroll level
three.

RECORD.target_recname Specifies arecord associated with the target scroll level,

generally the primary scroll record. The scroll can be on
level one, two, or three of the active page.

Copyright

Scroll Path Syntax with SCROLL.scrollname

As an aternative to RECORD.recordname expressions in scroll path constructions, PeopleTools 7.5 permits
use of a SCROL L .scrollname expression. Scroll paths using SCROL L .scrollname are functionally identical
to those using RECORD.recordname, except that SCROL L .scrollname expressions are more strict: they can
refer only to ascroll level's primary record; whereas RECORD.recordname expressions can refer to any
record in the scroll level, which in some rare cases can result in ambiguous references. (This can occur, for
example, if the RECORD.recordname expression inadvertently references arelated display record in another
page in the component.) Use of RECORD.recordname is still permitted, and there is no requirement to use
the SCROL L .scrollname alternative unless it is needed to avoid an ambiguous reference.

The scrollname is the same as the scroll level's primary record name.

The scroll name cannot be viewed or changed through the PeopleSoft Application Designer interface. Hereis
the complete scroll path syntax using SCROL L .scrollname expressions:

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 57

Referencing Data in the Component Buffer Chapter 4

[SCROLL. | evel 1_scroll nane, level1l row, [SCROLL.Ievel2_scrollnane, level2 row,]],
SCROLL. target scrol |l nane

Thetarget scroll level in this construction is the scroll level that you want to specify. If the target level is one,
you need to supply only the SCROL L .target_scrollname parameter. If the target scroll level is greater than
one, you need to provide scroll name and row-level parameters for hierarchically superior scroll levels,
beginning at level one. The following table indicates the scroll path syntax for the three possible target scroll

levels:
Target Level Scroll Path Syntax
1 SCROLL. t arget _scrol | nane
2 SCROLL. | evel 1_scrol |l name, level 1_row, SCROLL.target_ =
scrol | nane
3 SCROLL. | evel 1_scrol | name, level 1l row, SCROLL.|evel 2 >
scrol I name, level 2_row, SCROLL.target_scrollnanme

If the component you are referring to isarow or abuffer field, additional parameters are required after the
scroll path.

The following table describes the aternative scroll path syntax parameters:

Parameter Description

SCROLL .levell _scrollname Specifies the name of the page's level-one scroll area. This
is always the same as the name of the scroll level's
primary scroll record. This parameter isrequired if the
target scroll level istwo or three.

levell row An integer that selects arow on scroll level one. This
parameter isrequired if the target scroll level istwo or
three.

SCROLL .level2_scrollname Specifies the name of the page'slevel two scroll area. This

is always the same as the name of the scroll level's
primary scroll record. This parameter is required if the
target row is on scroll level three.

level2 row An integer that selects arow on scroll level two. This
parameter isrequired if the target row is on scroll level
three.

SCROLL .target_scrollname The scroll name of the target scroll level, which can be

level one, two, or three of the active page.

58 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

=>

Chapter 4 Referencing Data in the Component Buffer

See Also

Chapter 4, "Referencing Data in the Component Buffer," Referencing Scroll Levels, Rows, and Buffer Fields,
page 59

Referencing Scroll Levels, Rows, and Buffer Fields

Y ou can reference a scroll level using the scrollpath construct only. Functions that reference rows for buffer
fields require additional parameters. The following table summarizes the three types of component buffer
references:

Target Component Reference Syntax Example Function

Scroll level scrol | path Hi deScrol | (scrol | pat h);

Row scrol I path, row nunber Hi deRow(scrol | path, row =
nunber) ;

Field scrol I path, row nunber, Fet chval ue(scrol | path, row =

[recordnane.]fiel dnane N

=
nunber, fiel dnane);

Peopl€eTools 8 provides an alternative to the scroll level, row, and field components in the form of the data
buffer classes Rowset, Row, Record, and Field, which you reference using dot notation with object methods
and properties. The following table demonstrates the syntax for instantiating and manipulating objectsin the
current context from these classes:

Target Object Example Instantiation Example Operation

Rowset &MYROWBET = Get Rowset () ; &MYROWSET. Ref resh();

Row &WROW = Get Row() ; &MYROW Copy To(&SOVEROW ;

Record &MYRECORD = Get Record(); &MWYREC. Conpar eFi el ds(&REC) ;

Field &MWYFI ELD = Get Record(). &WYFI ELD. Label = "Last Nane";
fiel dname;

The following sections provide examples of functions using scroll path syntax, which refer to an example
page from afictitious veterinary clinic database. The page has three scroll levels, shown in the following

table:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

59

Referencing Data in the Component Buffer

60

Chapter 4

Level Scroll Name (Primary Scroll Record Name)
0 VET

1 OWNER

2 PET

3 VISIT

The examples given for PeopleTools 8 object-oriented syntax assumes that the following initializing code was

executed:

Local Rowset &VET_SCROLL, &OMNER SCROLL, &PET_SCROLL, &VISIT_SCROLL;

&VET_SCROLL = GetLevel 0();

&OMER SCROLL = &VET_SCROLL. Get Row(1) . Get RowSet (SCROLL. OANER) ;
&PET_SCROLL = &OWNER_SCROLL. Get Row(2) . Get RowSet (SCROLL. PET) :
&VI SIT_SCROLL = &PET_SCROLL. Get Row(2) . Get RowSet (SCROLL. VI SI T) ;

Referring to Scroll Levels

The HideScroll function provides an example of areferenceto ascroll level. The syntax of the functioniis:

Hi deScrol | (scrol | pat h)
where scrollpath is

[RECORD. | evel 1_recnane, |evel 1 row,
target _recnane

[RECORD. | evel 2_recnane, |evel 2_row,]] RECORD. =

To referencethe level 1 scroll in the example, use this syntax:

H deScr ol | (RECORD. OANNER) ;

This hidesthe OWNER, PET, and VISIT scroll areas on the example page.

In PeopleTools 8, the object-oriented version of thisis:

&OWNNER_SCROLL. Hi deAl | Rows() ;

To hide scroll levelstwo and below, supply the primary record and row in scroll level one, and then the

record identifying the target scroll area:

Hi deScr ol | (RECORD. OMNER, &L1ROW RECORD. PET);

The following diagram shows the scroll path of this statement, assuming that the value of & LIROW is 2:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Copyright

Referencing Data in the Component Buffer

Level zero: Vet

F1 F2 F3 F4
R1

Level one: Owner

Level two: Pet

FI F2 F3 F4
R1
> R2
R3

Sample scroll path

Similarly, to hide the VISIT scroll area on level three, you specify rows on scroll levels one and two.
Hi deScrol | (RECORD. OANER, &L1ROW RECORD. PET, &L2ROW RECORD. VI SIT);

To use the SCROL L .scrollname syntax, the previous example could be written as the following:

Hi deScrol | (SCROLL. OANER, &L1ROW SCROLL. PET, &L2ROW SCROLL.VISIT);

In PeopleTools 8, the object-oriented version of thisis:

&VI SI T_SCROLL. Hi deAl | Rows() ;

Referring to Rows

Referring to rows is the same as referring to scroll areas, except that you need to specify the row you want to
select on the target scroll area. As an example, examine the HideRow function, which hides a specific row in
the level three scroll area of the page. Hereis the function syntax:

H deRow(scrol | path, target_row)

To hide row number & ROW_NUM on level one:

H deRow(RECORD. O\NER, &ROW NUM) ;

To do the same using the SCROL L .scrollname syntax:

H deRow(SCROLL. O\NER, &ROW NUM) :

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:
&OWNER_SCROLL(&ROW NUM . Vi si bl e = Fal se;

On level two:

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 61

Referencing Data in the Component Buffer Chapter 4

H deRow(RECORD. OANER, &L1_ROW, RECORD. PET, &ROW NUM ;
In PeopleTools 8, the object-oriented version of thisfor the PET rowset is:
&PET_SCROLL(&ROW NUM . Vi si bl e = Fal se;

The following diagram indicates the scroll path of this statement, assuming that the value of &L1 ROW is2
and that & ROW_NUM isequal to 2:

Level zero: Vet

Fi F2 F3 F4
R1

Level one: Owner

Level two: Pet

Scroll path statement

On levd three:

H deRow(RECORD. OANER, Cur r ent RowNurber (1), RECORD. PET,
Cur r ent RowNurber (2), RECORD. VI SIT, &ROWN NUM ;

In PeopleTools 8, the object-oriented version of thisfor the VISIT rowset is:
&VI SI' T_SCROLL(&ROW NUM) . Vi si bl e = Fal se;

Referring to Buffer Fields

Buffer field references require a [recordname.]fiel dname parameter to specify arecord field. The combination
of scroll level, row number, and record field name uniquely identifies the buffer field. Here is the syntax:

Fet chVal ue(scrol |l path, target _row, [recordnane.]fiel dnane)

Assume, for example, that record definitions in the veterinary database have the following fields that you
want to reference:

Record Sample Field

OWNER OWNER_NAME

62 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

Record Sample Field
PET PET_BREED
VISIT VISIT_REASON

Y ou could use the following examples to retrieve values on levels one, two, or three from a PeopleCode
program executing on level zero.

To fetch avalue of the OWNER_NAME field on the current row of scroll area one:

&SOMVENAME = Fet chVal ue(RECORD. O\WNER, &L1_ROWN OANER OWNER NAME) ;

In PeopleTools 8, the object-oriented version of this for the OWNER rowset is:

&SOVENAME = &OWNER SCROLL(&L1_ROW . OANER. OWNER NANE;

To fetch PET_BREED on level two:

&SOVEBREED = Fet chVval ue(RECORD. OMNER, &L1 ROW RECORD. PET, &L2 ROW PET. PET_BREED);
In PeopleTools 8, the object-oriented version of thisfor the PET rowset is:

&SOVEBREED = &PET_SCROLL(&L2_ROW . PET. PET_BREED;

The following diagram indicates the scroll path to the target field, assuming that & L1 ROW equals 2,
&L2 _ROW equals 2, and field F3is PET.PET_BREED:

Level zero: Vet

F1 F2 F3 F4
R1

Level one: Owner

Level two: Pet

F1 F2 F3 F4

Scroll path to target field

To fetch VISIT_REASON on level three:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 63

Referencing Data in the Component Buffer Chapter 4

64

&SOVEREASON = Fet chVal ue(RECORD. O\NER, &L1_ROW RECORD. PET,
&L2_ RON RECORD.VISIT, &3 ROW VI SIT.VISI T_REASON)

To do the same using the SCROL L .scrollname syntax:

&SOVEREASON = Fet chVal ue(SCROLL. O\NER, &L1_ROW SCROLL. PET,
&2 RON SCROLL.VISIT, &3 ROW SCROLL. VI SI T_REASON):

In PeopleTools 8, the object-oriented version of thisis:

&SOVEREASON = &VI SI T_SCROLL(&L3_ROW . VI SI T. VI SI T_REASON,

Using CurrentRowNumber

The CurrentRowNumber function returns the current row, as determined by the current context, for a specific
scroll level in the active page. CurrentRowNumber is often used to determine avalue for the level1_row and
level2_row parametersin scroll path constructions. Because current row numbers are determined by the
current context, CurrentRowNumber cannot determine a current row on ascroll level outside the current
context (ascroll level below the level where the PeopleCode program is currently executing).

For example, you could use a statement like this to retrieve the value of a buffer field on level three of the
PET_VISITS page, in a PeopleCode program executing on level two:

&VAL = Fet chVal ue(RECORD. OANER, Current RowNunber (1),
RECORD. PET, Current RowNunber (2), RECORD. VI SIT, &TARGETROW
VI SI T_REASQON) ;

Because the PeopleCode program is executing on level two, CurrentRowNumber can return values for levels
one and two, but not three, because level three is outside of the current context and has no current row
number.

Looping Through Scroll Levels

Component buffer functions are often used in For loops to loop through the rows on scroll levels below the
level where the PeopleCode program is executing. The following loop, for example could be used in
PeopleCode executing on alevel two record field to loop through rows of data on level three:

For & = 1 To Acti veRowCount (RECORD. ONNER,
Cur rent RowNunber (1), RECORD. PET, Current RowNurber (2), RECORD. VI SIT)
&AL = Fet chVal ue(RECORD. OANER, Cur r ent RowNumber (1),

RECORD. PET, Current RowNunber(2), RECORD.VISIT, &, VISIT_REASON)

If &AL = "Fl eas" Then

/* do sonething about fleas */

End- | f;

End- For ;

A similar construct may be used in accessing other level two or level one scroll areas, such as work scroll
areas.

In these constructions, the ActiveRowCount function is often used to determine the upper bounds of the loop.
When ActiveRowCount is used for this purpose, the loop goes through all of the active rowsin the scroll
(rows that have not been specified as deleted). If you use Total RowCount to determine the upper bounds of
the loop, the loop goes through all of the rows in the scroll area: first those that have not been specified as
deleted, then those that have been specified as deleted.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Referencing Data in the Component Buffer

See Also

Chapter 4, "Referencing Data in the Component Buffer," Structuring Scroll Path Syntax in PeopleTools 7.5,
page 56

Chapter 4, "Referencing Data in the Component Buffer," Understanding Current Context, page 51

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," CurrentRowNumber

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 65

Chapter 5

Accessing the Data Buffer

This chapter provides overviews of data buffer access, data buffer class examples, and current context, and
discusses how to:

» Access secondary component buffer data.

« |Instantiate rowsets using non-component buffer data.

Understanding Data Buffer Access

This section discusses:

« Databuffer access.
o Access classes.

« Databuffer model and data access objects.

Data Buffer Access

In addition to the built-in functions you use to access the component buffer, classes of objects are available
that provide access to structured data buffers using the PeopleCode object syntax.

The data buffers accessed by these classes are typically the component buffers that are loaded when you open
a component. However, these classes may also be used to access data from general data buffers, loaded by an
Application Engine program, a component interface, and so on.

The methods and properties of these classes provide functionality that is similar to what has been available
using built-in functions. However, they also provide improved consistency, flexibility, and new functionality.

Access Classes

The four data buffer classes are: Rowset, Row, Record, and Field. These four classes are the foundation for
accessing component buffer data through the new object syntax.

A field object, which isinstantiated from the Field class, is a single instance of data within arecord. Itis
based on afield definition.

A record object, which isinstantiated from the Record class, isasingle instance of adatawithin arow. Itis
based on arecord definition. A record object consists of oneto n fields.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 67

Accessing the Data Buffer Chapter 5

A row object, which isinstantiated from the Row class, isasingle row of datathat consists of oneto n
records of data. A single row in acomponent scroll areaisarow. A row may have oneto n child rowsets. For
example, arow in alevel two scroll areamay have n level three child rowsets.

A rowset object is adata structure used to describe hierarchical data. It is made up of a collection of rows. A
component scroll areaisarowset. Y ou can also have alevel zero rowset.

Data Buffer Model and Data Access Classes

The data model assumed by the data buffer classesis that of a PeopleTools component, where scroll bars or
grids are used to describe a hierarchical, multiple-occurrence data structure. Y ou can access these classes
using dot notation.

The four data buffer classes relate to each other in a hierarchical manner. The main points to understand these
relationships are:

« A record contains one or more fields.
« A row contains one or more records and zero or more child rowsets.
« A rowset contains one or more rows.

For component buffers, think of arowset as a scroll area on a page that contains all of the date in that scroll
area. A level zero rowset contains all the data for the entire component. Y ou can use rowsets with application
messages, file layouts, business interlinks, and other definitionsin addition to components. A level zero
rowset from a component buffer only contains one row: the keys that the user specifiesto initiate that
component. A level zero rowset from data that is not a component, such as a message or afile layout, might
contain more than one level zero row.

The following is basic PeopleCode that traverses through a two-level component buffer using dot notation
syntax. Level zero is based on record QA_INVEST_HDR, and level oneis based on record
QA_INVEST_LN.

Local Rowset &HDR ROWSET, &LI NE ROWNBET;
Local Record &HDR REC, &LI NE_REC,
&HDR_ROWBET = Get Level 0();

For & = 1 to &HDR ROWSET. RowCount
&HDR REC = &HDR ROWSET(&l). QA | NVEST HDR;
&EMPLI D = &HDR REC. EMPLI D. Val ue;
&1 NE_ ROMSET = &HDR ROWBET(&l) . Get Rowset (1) ;
For & = 1 to &LI NE_ROASET. RowCount
&LI NE_REC = &I NE_ RONBET(&J) . QA | NVEST_LN;
&LI NE_SUM = &LI NE_SUM + &LI NE_REC. AMOUNT. Val ue;
End- For ;
End- For ;

Each rowset is declared and instantiated. In general, your codeis easier to read and maintain if you follow
this practice.

Understanding Data Buffer Classes Examples

This section discusses;

68 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

» Employee Checklist page structure.
+ Object creation examples.

« Databuffer hierarchy examples.

* Rowset examples.

« Hidden work scroll area example.

Employee Checklist Page Structure

Most of the examplesin this section use the Employee Checklist page.

Accessing the Data Buffer

Employee Checklist page

This page has the following record structure:

Ermployee Checklist ‘.I_

Schumacher,Simon ID: 2001

*Checklist Date: IEIEH“IIEEIEIEI Checklist: IEIEIEIEIEIE ﬂ Fepatriation Checklist
Responsible ID; IEEDE ﬂ FeppenJacques

Comment: | =
*Chklst *Chklst tm *Briefing Status *Status Date
Seq

[100 [oooo1s Q| Briefing with Humnan [initiated =] [oar 172000

Resources

200 [oooozs Q) Repatriation Discussion [initiated =] [oar 172000
(E [000028 @) careenPlacementdiscussion [Initiated <] [172000
=] Savejl L Return to Searchjl

Scroll Level Associated Primary Record

Rowset and Variable Name

Level zero PERSONAL_DATA

Level zero rowset: & RSO

Level one scroll area EMPL_CHECKLIST

Level onerowset: & RS1

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

69

Accessing the Data Buffer Chapter 5

Scroll Level Associated Primary Record Rowset and Variable Name
Level one hidden work scroll area CHECKLIST_ITEM Level onerowset: & RS1H
Level two scroll area EMPL_CHKLST _ITM Level two rowset: & RS2

Another way of looking at the structure of a component is to use the Structure view. All the scroll areas are
labeled, and the primary record is associated with each:

2§ EMPLOYEE_CHECKLIST.GEL [Component]

Definition ~ Structure l

EMPLOYEE_CHECELIST [Companent]
PERS_SRCH_GEL [View) - Search Record

SRR C ol - Level O

' FERSOMAL _DATA [T able]
Scroll - Level 1 Primary Record: CHECKLIST_ITEM
Scroll - Level 1 Primary Record; EMPL_CHECKLIST

B= EMPL_CHECKLIST (Tablg)

=3 DERIED_HR [Derived)

=

- E Scroll - Level 2 Primary Record: EMPL_CHELST_ITM

foen|

EMPLOYEE_CHECKLIST structure

In the example, the visible level one scroll area aso has only one row. That row is made up of the following
records:

« EMPL_CHECKLIST

- DERIVED_HR

e« CHECKLIST_TBL

« PERSONAL_DATA

Y ou can see which records are associated with a scroll area by looking at the Order view for a page:

70 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Accessing the Data Buffer

i EMPLOYEE_CHECKLIST.EMG [Page]

Page Designer 'Onder l

IS I=] E3

Lv Label Type Field Record Dizplay Control| Related Field ~
7
2 0 |Frame Frame
3 0 |Frame Frame [[
4 0 |Employes Name |Edit Box Mk E PERSOMAL_DATA B B
5 0D Edit Box EMPLID FERSOMAL DATA [[
G
T 1 |Checklizt Sequen |Edit Box CHECKLIST_SEQCHECKELIST_ITEM r r
g
5 1 |Checklizt Date |Edit Bos CHECELIST_DT |EMPL_CHECKLIST [[
10 1 |derived_hr.effdt |Edit Bos EFFDT DERMED_HRA [[
11 1 |Checklist Edit Box CHECELIST_CD |EMPL_CHECKLIST v [
12 1 |Checklizt Descripti Edit Bos DESCH CHECELIST_TEL [v
13 1 |Responzible I |Edit Box RESPOMSIBLE_| | EMPL_CHECKLIST rd [
14 1 |Responzible Ham |Edit Bos MakE FERSOMAL_DATA [v
1 1 | Comment Long Edit Box COMMEMTS EMPL_CHECKLIST [[
16
17 2 |Chklst Seq Edit Box CHECKLIST_SEQ EMPL_CHKLST_ITH [[
18 2 | Chklst [tm Edit Box CHELST_ITEM_CEMPL_CHELST_ITHM 4 [
1] 2 | Briefing Descriptio| Edit Box DESCR CHELST_ITEM_TEL [v
20 2 | Briefing Statuz Drop Down List |BRIEFING_STAT |EMPL_CHKLST_ITM [[
4 |

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

EMPLOYEE_CHECKLIST page Order view showing records

The level two rowset has three rows. Each row is made up of two records: the primary record,
EMPL_CHKLST_ITM, and CHKLST _ITM_TBL, the record associated with the related display field
DESCR. The following example shows the rowset:

71

Accessing the Data Buffer Chapter 5

Jr Emploves Checklist ‘.I_

| Schurnacher, Simaon I: g0

*Checklist Date: [08A1/2000 Checklist: [000003 Q| Repatiaion Checklist
ResponsiblelD: [660z Q) Peppen Jacques
Comment: | =l
=
LEVEI2 ROWSE! e ;:h“m “Chklst ftm *Briefing Status "Status Date
B
|1gu_ [000015 Q) Briefing with Human [initated =] [08/11/2000
Pt e [0 [000025 Q) RepariafionDiscussion [Inibated =] [oa1/z000
Field 300 [poo028 Q] careenPlacement discussion |Initiated ¥ [osr17z000

= 5avej 12 Rraturn fio Searchj

EMPLOYEE_CHECKLIST rowsets and rows

Every record has fields associated with it, such as NAME, EMPLID and CHECKLIST SEQ. Thesefields are
associated with the record definitions; they are not the fields that appear on the page.

Object Creation Examples

72

When declaring variables, using the class with the same name as the data buffer access data type (rowset
objects should be declared as type Rowset, field objects as type Field, and so on). Data buffer access class
objects can be of type Local, Global, or Component.

The following declarations are assumed throughout the examples that follow:
Local Rowset &LEVELO, &ROWBET;
Local Row &ROW

Local Record &REC;
Local Field &FlIELD;

Level Zero Access

The following code instantiates a rowset object, from the Rowset class, that references the level zero rowset,
containing al the page data. It stores the object in the & LEVELO variable.

8LEVELO = Get Level 0();
The level zero rowset contains all the rows, rowsets, records, and fields underneath it.

If the level zero rowset is formed from component buffer data, then the level zero rowset has one row of data
and that row contains al the child rowsets, which in turn contain rows of data that contain other child
rowsets.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

If the level zero rowset is formed from buffer data, such as from an application message, then the level zero
rowset may contain more than one row of data. Each row of the level zero rowset contains all the child
rowsets associated with that row, which in turn contain rows of data that contain other child rowsets.

Use alevel zero rowset when you want an absolute path to alower-level object or to do some processing on
the entire data buffer. For example, suppose you load all new data into the component buffers and want to
redraw the page. Y ou could use the following code:

/* Do processing to rel oad Conponent Buffers */
&LEVELO = Cet Level O();
&LEVELO. Refresh();

Rowset Object

The following code instantiates a rowset object that references the rowset that contains the currently running
PeopleCode program:

&RONBET = Get Rowset () ;

Y ou might later use the & ROWSET variable and the ActiveRowCount property to iterate over all the rows of
the rowset, to access a specific row (using the GetRow method), or to hide a child rowset (by setting the
Visible property).

The level onerowset contains al the level two rowsets. However, the level two rowsets can only be accessed
using the different rows of the level one rowset. From the level zero or level one rowset, you can only access
alevel two rowset by using the level one rowset and the appropriate row.

For example, suppose your program is running on some field of row five of alevel two scroll area, which is
on row three of itslevel one scroll area. The resulting rowset contains all the rows of the level two scroll area
that are under the row three of the level one scroll area. The rowset does not contain any data that is under
any other level two scroll areas. The following diagram illustrates these results:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 73

Accessing the Data Buffer

@ Level zero

==

@ Level one

@stel two

Chapter 5

F1 F2 F3
R1

F4

r___f_'l__EZ__ES___E{,
iR1 |

I-----------------‘

B2 I

Level 2 rowset

R2

R3

@ Level two

L J

Fi F2 F3

F4

R1
R2

R3

R4

RS

Level two rowset from level one row

Y

@ Leveal two

v

Fi F2 F3

Fa

A further illustration uses an example from the Employee Checklist page.

Suppose that one employee was associated with three different checklists: Foreign Loan Departure, Foreign
Loan Arrival, and Foreign Loan Host. The checklist code field (CHECKLIST_CD) on thefirst level of the
page drives the entries on the second level. Each row in the level one rowset produces a different level two

rowset.

The Foreign Loan Departure checklist (000001) produces a checklist that contains such items as Briefing with
Human Resources and Apply for Visas'Work permits, as shown in the following example:

74

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Accessing the Data Buffer

Ermployes Checklist ‘.I_

Schumacher,Simon ID: 3001

Responsible ID: IEE':'2 ﬂ PeppenJacgues

*Checklist Date: IEIEIHIEEIEIEI Checklist: IEIIZIEIEIEH ﬂ Foreign Loan Departure Choklst

Resources

cormpany

Comment: ;l
=Previous 10of3 EI Iext=

*Chklst *Chklst itm *Briefing Status *Status Date

Seq

[too | [oo0015 @] Briefing with Human [inisted =] [08r1172000
[200 [000030 @) appiyfor visastwork Permits [Initiated =] [oai 112000
|3EIEI |IIIIIIIZIIIIIIIEI Q) Reconfirm Relocation Packagelm M
[400 [000001 @] Select movingtstorage [initiated =] [oai 112000

=] Savej L Return to Searchjl

EMPLOYEE_CHECKLIST Foreign Loan Departure checklist

The Foreign Loan Arrival checklist (0000004) produces a checklist that contains items such as Register at

Consulate and Open New Foreign Bank Accounts, as shown in the following example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

75

Accessing the Data Buffer

76

Chapter 5

Ermplayee Checklist ‘.I_

Schumacher,Siman

ID: 8001

*Checklist Date: IUEHHEDDD Checklist: IDEIEIEIEI# ﬂ Foreign Loan Arrival Choklist

Responsible ID: ITT 03 ﬂ Holt,Susan

Comment:

]

5ot 3 [Nest=

*Chklst *Chklst km
Seq

[100 |oooozz |G
|200 [oooooz |G
300 [oooots Q)
[400 [oooo1e Q)

*Briefing Status *Status Date

Register at Gonsulate IInitiated 'I IDEHHEDDD
Open new foreign hank IInitiated "I IEIEIHIEEIEIEI
accounts

Register children in school IInitiated 'I IEIEIHIEEIEIEI
Join Mewcomer's Club IInitiated 'I IDEIHIEDDD

E Savejl 2 Return to Search)

EMPLOYEE_CHECKLIST Foreign Load Arrival Checklist

Row Object

When you create a page, you put fields from different records onto the page. Y ou can think of this as creating
atype of pseudo-SQL join. The row returned from this pseudo-join is arow object.

For example, thefirst level scroll area of the EMPLOY EE_CHECKLIST page contains the following fields,

associated with these records:

Field

Record

CHECKLIST_DT

EMPL_CHECKLIST

CHECKLIST_CD

EMPL_CHECKLIST

COMMENTS EMPL_CHECKLIST
DESCR CHECKLIST_TBL
NAME

PERSONAL_DATA

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

Field Record

RESPONSIBLE_ID EMPL_CHECKLIST

The pseudo-SQL join might look like this:

JO N A CHECKLI ST_DT, A. CHECKLI ST_CD, A. COMMENTS, B.DESCR, C.NAME, A. RESPONSI BLE | D
FROM PS_EMPL_CHECKLI ST A, PS_CHECKLI ST_TBL B, PS_PERSONAL_DATA C, WHERE.

What goes into the Where clause is determined by the level zero of the page. For our example, the valueis
WHERE EMPLI D=8001.

When the component is opened, datais loaded into the component buffers. Any row returned by the pseudo-
SQL statement isalevel one row object. The following table shows a returned row:

CHECKLIST_DT | CHECKLIST_CD COMMENTS DESCR NAME RESPONSIBLE_ID
12/03/98 000001 Foreign Loan Peppen, Jacques | 6602

Department

Checklist

Record Object

A record definition is a definition of what your underlying SQL database tables ook like and how they
process data. After you create record definitions, you build the underlying SQL tables that contain the
application data that your users enter online in your production environment.

When you create a record object using the CreateRecord function, you are creating an areain the data buffers
that has the same structure as the record definition, but no data.

When you instantiate a record object from the Record class using some variation of GetRecord, that record
object references asingle row of datain the SQL table.

Note. The datain the record that you retrieve is based on the row, which is analogous to setting keys to return
a unique record.

The following code instantiates a record object for referencing the EMPL_CHECKLIST record of the
specified row:

&REC = &ROW Get Recor d(RECORD. EMPL_CHECKLI ST) ;
Using the short method, the following line of code isidentical to the previous line:

&REC = &ROW EMPL_CHECKLI ST,

Y ou might later use the & REC variable and the CopyFieldsTo property to copy al like-named fields from
one record to another. In the following example, two row objects are created, the copy from row

(COPY FRMROW) and the copy to row (COPY TROW). Using these rows, like-named fields are copied from
CHECKLIST_ITEM to EMPL_CHKLST_ITM.

For & = 1 To &ROWNBET1. Act i veRowCount

©FRMROW = &ROWSET1. Get Row(&l) ;

©TROW = &RS2. Get Row(&l) ;

©FRMROW CHECKLI ST_| TEM CopyFi el dsTo(©TROW EMPL_CHKLST | TM) ;
End- For ;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 77

Accessing the Data Buffer Chapter 5

A row may contain more than one record: in addition to the primary database record, you may have arelated
display record or a derived record. Y ou can access these records as well. The level one rowset, & ROWSET1,
is made up of many records. The following accesses two of them: EMPL_CHECKLIST and DERIVED_HR.

&REC1 = &ROW ENMPL_CHECKLI ST;
&REC2 = &ROW DERI VED_HR;
Field Object

The following instantiates a field object, from the Field class, that is used to access a specific field in the
record:

&Fl ELD = &REC. Get Fi el d(FI ELD. CHECKLI ST_CD) ;
Y ou might later use the & FIELD variable as a condition:
I f ALL(&FI ELD) Then

Here is another example:

I f &FI ELD. Val ue = "N' Then

Note. The datain the field that you retrieve is based on the record, which isin turn based on the row.

Y ou can also set the value of afield. Using the GetField function does not create a copy of the data from the
component buffer. Setting the value or a property of the field object sets the actual component buffer field or

property.
See Chapter 3, "Understanding Objects and Classes in PeopleCode," Assigning Objects, page 43.

In the following example, the type of field is verified, and the value is replaced with the tangent of that value
if itisanumber
| f &FIELD. Type <> "NUMBER' Then
/* do error recording */
El se

&Fl ELD. Val ue = Tan(&FI ELD. Val ue) ;
End- | f;

Data Buffer Hierarchy Examples

Suppose you want to access the BRIEFING_STATUSfield at level two of the following page:

78 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

Employee Checklist ‘.I_

Schumacher,Simon ID: 2001

*Checklist Date: IDEH*IIEEIEIEI Checklist: IIIIEIEIEIEIB ﬂ Fepatriation Checklist
Responsible ID: IEEDE ﬂ Feppen,Jacgues

Comment: | =
“Chkist *Chklst ttm *Briefing Status *Status Date

Seq

[100 [oooo1s @] Briefing with Hurnan [initiated 7] [oar 172000

Resources

|2E|E| |E|E|E|E|25 Q| Repatriation Discussion ||ﬂiTiETEd "I IDEIHIEDDD
300 [000028 Q] careenPlacement discussion |Inifiated <] [oa 172000

=] Save) 1 Return to Search)

EMPLOYEE_CHECKLIST repatriation checklist

First, determine where your cade is running. For this example, the code is starting at afield on arecord at
level zero. However, you do not always haveto start at level zero.

If you start with level zero, you must traverse the data hierarchy, through the level one rowset to the level two
rowset, before you can access the record that contains the field.

Obtaining the Rowset

You first obtain the level zero rowset, which isthe PERSONAL_DATA rowset. You do not need to know the
name of the level zero rowset to accessit:

&LEVELO = CetlLevel 0();

Obtaining Rows

The next object to get isarow. Asthe following code is working with data that is loaded from a page, only
onerow isat level zero. However, if you have rowsets that are populated with data that is not based on
component buffers (for example, an application message), you may have more than one row at level zero.

&LEVELO_ROW = &LEVELO(1);

Obtaining Child Rowsets

To obtain the level two rowset, traverse through the level one rowset first. Therefore, the next object to get is
the level one rowset, as shown in the following example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 79

Accessing the Data Buffer Chapter 5

80

&L EVEL1 = &LEVELO_ROW Get Rowset (SCROLL. EMPL_CHECKLI ST) ;

Obtaining Subsequent Rows

If you are traversing a page, obtain the appropriate row after you get arowset. To process all the rows of the
rowset, set this functionality up in aloop, as shown in the following example:

For & = 1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);

Endl F'orE

Obtaining Subsequent Rowsets and Rows

Traverse another level in the page structure to access the second level rowset, and then use aloop to access
the rowsin the level two rowset.

Because we are processing al the rows at level one, we are just adding code to the previous For loop. Aswe
process through all the rows at level two, we are adding a second For loop. The new codeisin bold in the
following example:

For & = 1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1 ROW Get Rowset (SCROLL.
EMPL_CHKLST I TM;
For & = 1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);

End- For ;
End- For ;

Obtaining Records

A row always contains arecord, and it may contain only a child rowset, depending on how your pageis set
up. GetRecord is the default method for arow, so al you have to specify is the record name.

Because we are processing all the rows at level two, we just add code to the For loops of the previous
example. The new codeisin bold:

For & =1 to &L.EVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1 ROW Get Rowset (SCROLL. EMPL_CHKLST | TM ;
For & = 1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);
&RECORD = &L EVEL2 ROW EMPL_CHKLST | TM

End- For ;
End- For ;
Obtaining Fields

Records are made up of fields. GetField is the default method for arecord, so all you have to specify isthe
field name.

Because we are processing all the rows at the level one, we are just adding code to the For loops of the
previous example. The new codeisin bold:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

For & =1 to &LEVEL1. Acti veRowCount
&LEVEL1 ROW = &LEVEL1(&l);
&LEVEL2 = &LEVEL1_ ROW Get Rowset (SCROLL. EMPL_CHKLST | TM;
For & = 1 to &LEVEL2. Acti veRowCount
&LEVEL2 ROW = &LEVEL2(&J);
&RECORD = &LEVEL2 ROW EMPL_CHKLST | TM
&Fl ELD = &RECORD. BRI EFI NG_STATUS;
/* Do processing */
End- For ;
End- For ;

Using Shortcuts

The previous code is the long way of accessing thisfield. The following example uses shortcuts to access the
field in one line of code. The following code assumes al rows are level one:

Rowset Row Rowset po Rmin.rset Row Record Field
I I | | |

AFIELD=Get Leveld()(1).EMPL_CHECKLIST(1).EMPL_CHKLST ITM{1).EMPL_CHKLST ITM.BRIEFING STATUS:

Rowset example

Here's another method of expressing the code:

Object Type Code

Rowset &LEVELO = GetLevel 0();

Row &LEVELO_ROW = &LEVELO(1);

Rowset &LEVEL1 = &L EVELO_ROW Get Rowset (SCROLL. EMPL_CHECKLI ST) ;

For & =1 to &LEVEL1. Acti veRowCount

Row &LEVEL1_ROW = &LEVEL1(&l);

Rowset &LEVEL2 = &LEVEL1_ROW Get Rowset (SCROLL. EMPL_CHKLST_I TM) ;

For & = 1 to &LEVEL2. Acti veRowCount

Row &L EVEL2_ROW = &LEVEL2(&J);

Record &RECORD = &L EVEL2_ROW EMPL_CHKLST_I TM

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 81

Accessing the Data Buffer

Rowset Examples

82

Chapter 5

Object Type

Code

Field

&FI ELD = &RECORD. BRI EFI NG_STATUS;

/* Do processing */

End- For ;

End- For ;

The following code example traverses up to four levels of rowsets and could easily be modified to do more.
This example only processes the first record in every rowset. To process every record, set up another For loop
(For &R =110 & LEVELX.RECORDCOUNT, and so on). Notice the use of the ChildCount function (to
process all children rowsets within arowset), ActiveRowCount, |sChanged, and dot notation.

In the following example, ellipses indicate where application-specific code should go.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

&L evel 0_ROANBET = GetLevel 0();
For &0 = 1 To &Level 0 _ROWSET. Act i veRowCount

/***************************/

/* Process Level 1 Records */

I f &Level O_ROABET(&A0) . Chil dCount > 0 Then

For &1 = 1 To &Level 0_ROABET(&A0) . Chi | dCount
&LEVEL1 _ROASET = &Level 0_ROASET(&A0D) . Get Rowset (&B1) ;
For &A1 = 1 To &LEVEL1_ROWBET. Act i veRowCount
I f &LEVEL1 ROWSET(&A1) . Get Record(1).1|sChanged Then

/***************************/

/* Process Level 2 Records */

I f &LEVEL1_ROWSET(&Al). Chi | dCount > 0 Then

For &B2 = 1 To &LEVEL1_ROWBET(&Al). Chi | dCount
&LEVEL2 _ROWSET = &LEVEL1_ROWBET(&Al) . Get Rowset (&B2) ;
For &A2 = 1 To &LEVEL2_ ROWSET. Act i veRowCount
I f &LEVEL2_ROASET(&A2) . Get Record(1) .1 sChanged Then

/***************************/

/* Process Level 3 Records */

I f &LEVEL2_ROWSET(&A2) . Chi | dCount > 0 Then

For &B3 = 1 To &LEVEL1_ROWSET(&A2) . Chi | dCount
&L EVEL3_ROWSET = &LEVEL2_ ROWBET(&A2) . Get Rowset (&B3) ;
For &A3 = 1 To &LEVEL3 ROWSET. Act i veRowCount
I f &LEVEL3_ROASET(&A3) . Get Record(1) .1 sChanged Then

End-1f; /* A3 - I|sChanged */
End- For; /* A3 - Loop */

End- For; /* B3 - Loop */

End-1f; /* A2 - ChildCount > 0 */

/* End of Process Level 3 Records */

/**********************************/

End-1f; /* A2 - |sChanged */

End- For; /* A2 - Loop */

End-For; /* B2 - Loop */

End-1f; /* Al - ChildCount > 0 */

/* End of Process Level 2 Records */
/**********************************/

End-1f; /* Al - I|sChanged */
End-For; /* Al - Loop */
End-For; /* Bl - Loop */
End-1f; /* AO - ChildCount > 0 */

| * o e e e e e e e e o * [
/* End of Process Level 1 Records */

/**********************************/

End- For; /* AO - Loop */

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 83

Accessing the Data Buffer Chapter 5

Hidden Work Scroll Example

In the FieldChange event for the CHECKLIST _CD field onthe EMPL_CHECKLIST record, a PeopleCode
program does the following:

1. Flushes the rowset and hidden work scroll area.

2. Performs a Select statement on the hidden work scroll area based on the value of the CHECKLIST _CD
field and the effective date.

3. Clearsthelevel two scroll area

4. Copies like-named fields from the hidden work scroll areato the level two scroll area.

The following example shows how to do this using built-in functions.
&CURRENT_ROW L1 = Current RowNunber (1);

&ACTI VE_ROW L2 = Acti veRowCount (RECORD, EMPL_CHECKLI ST,
&CURRENT _ROW L1, RECORD. EMPL_CHKLST | TM:

If Al (CHECKLI ST_CD) Then

Scrol | Fl ush(RECORD. CHECKLI ST_I TEM ;

Scrol | Sel ect (1, RECORD. CHECKLI ST_I TEM RECORD. CHECKLI ST_| TEM
"Where Checklist _Cd = :1 and EffDt = (Select Max(EffDt) From
PS Checklist_Item Were Checklist_Cd = :2)",

CHECKLI ST_CD, CHECKLI ST_CD);

&FOUNDDOC = Fet chVal ue(CHECKLI ST_I TEM CHKLST_I TEM CD, 1);
&SELECT_ROW = Act i veRowCount (RECORD. CHECKLI ST_I TEM) ;

For & = 1 To &ACTI VE_ROW L2
Del et eRow(RECORD. EMPL_CHECKLI ST, &CURRENT ROW L1, RECORD. EMPL_CHKLST |ITM 1);
End- For ;

If Al (&OUNDDOC) Then
For & =1 To &SELECT ROW
CopyFi el ds(1, RECORD. CHECKLI ST_ITEM &, 2,
RECORD. EMPL_CHECKLI ST, &CURRENT_ROW L1, RECORD. EMPL_CHKLST ITM &l);
If & <> &SELECT_ROW Then
| nser t Row(RECORD. EMPL_CHECKLI ST, &CURRENT_ROW L1,
RECORD. EMPL_CHKLST I TM &l);
End- | f;
End- For ;
End- I f;
End- I f;

The following example performs the same function as the previous code, only it uses the data buffer classes:
1. Flushesthe rowset and hidden work scroll area (& RS1H).

2. Performs a Select statement on & RS1H based on the value of the CHECKLIST_CD field and the
effective date.

3. Clearsthelevel two rowset (& RS2).

84 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Accessing the Data Buffer

4. Copieslike-named fields from & RS1H to & RS1.

Local Rowset &RSO, &RS1, &RS2, &RS1H;

&RSO = Get Level 0();
&RS1 = Get Rowset () ;
&RS2 = Get Rowset (SCROLL. EMPL_CHKLST | TM ;

&RS1H = &RS0. Get Row(1) . Get Rowset (SCROLL. CHECKLI ST_| TEM ;
&MWYFI ELD = CHECKLI ST_CD;

If Al (&WFIELD) Then

&RS1H. Fl ush();

&RS1H. Sel ect (RECORD. CHECKLI ST_I TEM "where Checklist_CD = :1
and EffDt = (Select Max(EffDt) from PS_CHECKLI ST | TEM
Where CheckList CD = :2)", CHECKLI ST _CD, CHECKLI ST _CD);

For & = 1 To &RS2. Acti veRowCount
&RS2. Del et eRow(1) ;
End- For ;

&FOUND = &RS1H. Get Curr Ef f Row() . CHECKLI ST_| TEM CHKLST | TEM CD. Val ue;

If Al (&OUND) Then
For & = 1 To &RSI1H. Acti veRowCount
©FRMROW = &RS1H. get row &l) ;
©TROW = &RS2. getrow &l) ;
©FRMROW CHECKLI ST _| TEM CopyFi el dsTo(©TROW EMPL_CHKLST | TV ;
If & <> &RS1H. Acti veRowCount Then
&RS2. I nsert Row &l) ;
End- 1| f;
End- For ;
End- I f;
End- | f;

Understanding Current Context

Most PeopleCode programs run in a current context. The current context determines which buffer fields can
be contextually referenced from PeopleCode, and which row of datais the current row on each scroll level at
the time a PeopleCode program is running.

The current context for the data buffer access classes is similar to the current context for accessing the
component buffer, as shown in the following diagram:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 85

Accessing the Data Buffer Chapter 5

86

Level zero row is
always in context
Level two

. F1 F2 F3 F4 F1 _F2 F3 Fa
R1
> R2
Row where PeopleCode R3
executes is in context

F1 F2 F3 F4

—®*R2_ —— —— —— T 0
R3
Level two

F1 F2 F3 F4
R1
.| R2
"I R3
Rowset accessible by second R4
row in level 1 rowset is in » R5
context

@ Leveal two

F1 F2 F3 F4

R
R2
—» R3
R4
R5
RE

Current context for rowsets

In this example, a PeopleCode program is running in a buffer field on the second row of the level one rowset.
The following code returns arow object for the second row of the level one rowset, because that is the row
that is the current context.

Local Row &ROW

&ROW = Get Rowm) ;

The following code returns the B2 level two rowset because of the current context:
Local Rowset &ROWBET2

&ROWBET2 = &ROW Get Rowset (SCROLL. EMPL_CHKLST | TV ;

This code does not return either the C2 or the A2 rowsets. It returns only the rowset associated with the
second row of the level one rowset.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Accessing the Data Buffer

Creating Records or Rowsets and Current Context

When you instantiate a record object using the CreateRecord function, you are only creating an areain the
data buffers that has the same structure as the record definition. It does not contain any data. This record
object does not have a parent rowset and is hot associated with arow. It is afreestanding record object and,
therefore, is not considered part of the current context.

The same concept applies when you instantiate a rowset object using the CreateRowset function. You are
only creating an area in the data buffers that has the same structure as the records or rowset that the new
rowset is based on. The rowset does not contain any data. This type of rowset does not have a parent rowset
Or row.

See Also

Chapter 4, "Referencing Data in the Component Buffer," Specifying Data with Contextual References, page
51

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," CreateRecord

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," CreateRowset

Accessing Secondary Component Buffer Data

When a secondary page isrun, the datafor its buffersis copied from the parent component to a buffer
structure for the secondary page. That is, two copies of this data are made. The data buffer classes give access
to both of these copies of the data. Direct field references (recname.fieldname) always use the current context
to determine which value to access. So, in general, when using a secondary page, make sure that references
are based on the secondary page.

Instantiating Rowsets Using Non-Component Buffer Data

Both the application message and the file layout technol ogies represent hierarchical data, and both use the
rowset, row, record, and field hierarchy. Though you use different methods to instantiate a rowset object for
this data, you still use the same rowset, row, record, and field methods and properties to manipulate the data.
(Any exceptions are marked in the documentation.)

To instantiate a rowset for a message:

&MBG = Cr eat eMessage(OPERATI ON. EMPLOYEE_DATA) ;
&MWRONSET = &MBG Get Rowset () ;

To instantiate arowset for afile layout:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 87

Accessing the Data Buffer Chapter 5

88

&MYFI LE = Cet Fi | e(&SOVENAME, "R');

I f &WFILE. | sOpen Then
&MWYFI LE. Set Fi | eLayout (FI LELAYOUT. SOVELAYQUT) ;
&WRONSET = &MYFI LE. ReadRowset () ;

End-if;

In an Application Engine program, the default state record is considered the primary record and the main
record in context. Y ou can access the default state record using the following:

&STATERECORD = Get Record();

If you have more than one state record associated with an Application Engine program, you can access them
the same way you would access other, nonprimary data records, by specifying the record name. For example:

&ALTSTATE = Get Recor d(RECORD. AE_STATE_ALT) ;
See Also

Chapter 8, "Using Methods and Built-In Functions," Using Standalone Rowsets, page 174

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker, "Managing Messages'
Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Using Meta-SQL and PeopleCode"

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component
Processor

This chapter provides an overview of the Component Processor and discusses:

Events outside the Component Processor flow.

PeopleCode program triggers.

Component Processor behavior.

Processing sequences.

PeopleSoft Pure Internet Architecture processing considerations.
Deferred processing mode.

PeopleCode events.

PeopleCode execution in pages with multiple scroll areas.

Understanding the Component Processor

The Component Processor is the PeopleTools runtime engine that controls processing of an application from

the time that a user requests a component from an application menu until the database is updated and

processing of the component is compl ete.

Events Outside the Component Processor Flow

An Application Engine program can have a PeopleCode program as an action. Though the right-hand drop-

down list box on the PeopleCode Editor window displays the text OnExecute, the PeopleCode program really
is not an event. Any PeopleCode contained in an Application Engine action is executed only when the action
is executed.

A component interface can have user-defined methods associated with it. These methods are not part of any
processor flow; they are called as needed by the program executing the component interface.

Security has a signon event during signon. Thisis actually PeopleCode programs on arecord field that you

have specified in setting up security.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

89

PeopleCode and the Component Processor Chapter 6

Though application packages have aright-hand drop-down list box on the PeopleCode Editor window that
displays the text OnExecute, thisis not an event. Any PeopleCode contained in the application classis only
executed when called explicitly in a PeopleCode program.

See Also
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Component Interface Classes'
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Application Classes'

Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Creating Application Engine Programs;,”
Specifying PeopleCode Actions

Enterprise PeopleTools 8.50 PeopleBook: Security Administration, "Understanding PeopleSoft Security"

PeopleCode Program Triggers

This section provides an overview of PeopleCode program triggers and discusses how to:

» Access PeopleCode programs.

» Associate execution order of events and PeopleCaode.

Understanding PeopleCode Program Triggers

PeopleCode can be associated with a PeopleCode record field, a component record, and many other items.
PeopleCode events areinitiated at particular times, in particular sequences, during the course of the
Component Processor's flow of execution. When an event isinitiated, it triggers PeopleCode programs on
specific objects.

The following items have events that are part of the Component Processor flow:

Items Event Triggers
Menu items Programs associated with the menu item
Component record fields Programs on specific rows of data
Component records Programs on specific rows of data
Components Programs associated with the component
Pages Programs associated with the page

90 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Items Event Triggers

Record fields Programs on specific rows of data

Suppose a user changes the datain a page field, and then presses Tab to move out of the field. This user
action initiates the FieldEdit PeopleCode event. The FieldEdit event affects only the field and row where the
change took place. If a FieldEdit PeopleCode program is associated with that record field, the program is
executed once.

If you have two FieldEdit PeopleCode programs, one associated with the record field and a second associated
with the component record field, both programs execute, but only on the specific field and row of data. The
FieldEdit PeopleCode program associated with the first record field isinitiated first, and then the Fiel dEdit
PeopleCode program associated with the first component record field isinitiated.

By contrast, suppose a user has opened a component for updating. As part of building the component, the
Component Processor initiates the Rowlnit event. This event triggers Rowlnit PeopleCode programs on every
record field on every row of datain the component. In a scroll areawith multiple rows of data, every Rowlnit
PeopleCode program is executed once for each row.

In addition, if you have RowlInit PeopleCode associated with both the record field and the component record,
both programs are executed against every record field on every row of datain the component. The RowlInit
PeopleCode program associated with the first record field isinitiated first, and then the Rowlnit PeopleCode
program associated with the first component record isinitiated. If you set the value of afield with the record
field Rowlnit PeopleCode, and then reset the field with the component record RowlInit PeopleCode, the
second value appears to the user.

When you devel op with PeopleCode, you must consider when and where your programs are triggered during
execution of the Component Processor flow.

This section discusses how to:

» Access PeopleCode programs.

» Understand the execution order of events and PeopleCode.
See Also

Chapter 6, "PeopleCode and the Component Processor," Associating Execution Order of Events and
PeopleCode, page 93

Accessing PeopleCode Programs

Every PeopleCode program is associated with a PeopleCode event and is often referred to by that name, such
as Rowlnit PeopleCode or FieldChange PeopleCode. These programs are accessible from, and associated
with, different items. The following table lists items and associated events.

Note.

During search processing in update modes or add mode, the Searchlnit and SearchSave events (in the
Component Record column of the table) are available only for the search record associated with a component.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 91

PeopleCode and the Component Processor

Chapter 6

Record Field Component Component Component Page Events Menu Events
Events Record Field Record Events Events
Events
FieldChange FieldChange RowDelete PostBuild Activate ItemSelected
FieldDefault FieldDefault Rowlnit PreBuild
FieldEdit FieldEdit Rowlnsert SavePostChg
FieldFormula PrePopup RowSel ect SavePreChg
PrePopup SaveEdit Workflow
RowDelete SavePostChg
Rowlnit SavePreChg
Rowlnsert Seachlnit
RowsSelect SearchSave
SaveEdit
SavePostChg
SavePreChg
Searchinit
SearchSave
Workflow

The following table lists types of PeopleCode programs and where to access them in PeopleSoft Application

Designer.

PeopleCode Programs

Location in PeopleSoft Application Designer

Record field

Record definitions and page definitions

Component record field, component record, and

Component definitions

component
Menu item Menu definitions
Page field Page definitions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Associating Execution Order of Events and PeopleCode

In PeopleSoft, the component is the representation of a transaction. Therefore, any PeopleCode that is
associated with a transaction should be in events associated with some level of the component. Code that
should be executed every time afield is edited should be at the record field level. If you associate code with
the correct transaction, you do not have to check for the component that isissuing it (such as surrounding
your code with dozensof | f % Conponent = statements). Records are more reusable, and code is more
maintainable.

For example, if you have start and end dates for a course, you would always want to make sure that the end
date was after the start date. Y our program to check the dates would go on the SaveEdit at the record field
level.

All similarly named component events are initiated after the like-named record event. The PeopleCode
program associated with the record field event isinitiated first, and then the PeopleCode program associated
with the like-named component event isinitiated. If you set the value of afield with the record field
PeopleCode, and then reset the field with like-named component PeopleCode, the second value is displayed
to the user.

Events After Field Changes

The following events occur after a user changes afield:
Record.recordA. fielda. FieldEdit -> Conponent.recordA fielda.FieldEdit ->
Record.recordB. fieldb. Fiel dEdit -> Conponent.recordB.fieldb.FieldEdit ->

Record. recordA. fi el da. Fi el dChange -> Conponent.recordA. fiel da. Fi el dChange ->
Record. recordB. fi el db. Fi el dChange -> Conponent.recordB. fiel db. Fi el dChange ->

The following diagram shows the event flow:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 93

PeopleCode and the Component Processor

94

FieldEdit Event

s

FieldEdit Event

Record A
Field A
PeopleCode

.

Record A
Field A
PeapleCode

Record B
Field B
PeopleCode

Flow of events and PeopleCode programs after a user changes a field

Events After User Saves

Record B
Field B
PeopleCode

The following events occur after a user saves:

Chapter 6

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Record. recordA. fiel da. SaveEdit ->
Record. recordA. fiel db. SaveEdit ->
Record.recordA. fiel dc. SaveEdit ->
Conponent . r ecor dA. SaveEdi t

Record.recordB. fi el da. SaveEdit ->
Record.recordB. fi el db. SaveEdit ->
Record.recordB. fi el dc. SaveEdit ->
Conponent . r ecor dB. SaveEdi t

Record. recordA. fi el da. SavePr eChange
Record. recor dA. fi el db. SavePr eChange
Record. recordA. fi el dc. SavePr eChange
Conponent . r ecor dA. SavePr eChange

Record. recordB. fi el da. SavePr eChange
Record. recordB. fi el db. SavePr eChange
Record. recordB. fi el dc. SavePr eChange
Conponent . r ecor dB. SavePr eChange

Record. recordA. fi el dA. Wor kFl ow - >
Record. recordB. fi el dB. Wr kFl ow - >
Record. reocrdC. fi el dC. Wor kFl ow
Conponent . Wor kf | ow

Record. recor dA. fi el da. SavePost Change
Record. recor dA. fi el db. SavePost Change
Record. recor dA. fi el dc. SavePost Change
Conponent . r ecor dA. SavePost Change

Record. recor dB. fi el da. SavePost Change
Conponent . r ecor dB. SavePost Change
Conponent . SavePost Change

The following diagram shows the event flow:

->
->
->

->

->

->
->
->

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode and the Component Processor

95

PeopleCode and the Component Processor

SavePostChange

:

Record A
Field A
PeopleCode

.

Record A
Field B
PeopleCode

.

Recard A
Field C
PeopleCode

Component
Recaord A
FeopleCode

Record B
Field B
PeopleCode

Component
Recaord B
FeopleCode

Component
FeopleCode

Chapter 6

Flow of PeopleCode programs after SavePostChange event

Note. SaveEdit does not fire for deleted rows, but SavePreChange, Workflow, and SavePostChange do.

Component Processor Behavior

96

This section discusses:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

» Component Processor behavior from page start to page display.

» Component Processor behavior following user actions in the component.

Note. Components behave differently when run in deferred mode .

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

Chapter 6, "PeopleCode and the Component Processor," Processing Sequences, page 100

Component Processor Behavior from Page Start to Page Display

Before a user selects a component, the system is in reset state, in which no component is displayed. The
Component Processor flow of execution begins when a user selects a component from a PeopleSoft menu.
The Component Processor then:

1. Performs search processing, in which it obtains and saves search key values for the component.
2. Retrieves from the database server any data needed to build the component.

3. Buildsthe component, creating buffers for the component data.

4. Performsany additional processing for the component or the page.
5

Displays the component and waits for user action.

The following flowchart shows the flow of execution at a high level:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

97

PeopleCode and the Component Processor Chapter 6

Default Processing

4

Rowlnit

Y

PaostBuild

-

Activate

l

Display page,
Wait for user action

N N)
NN AN AN

Processing up to Page Display

Component Behavior Following User Actions in the Component

After acomponent is built and displayed, the Component Processor can respond to a number of possible user
actions. The following table lists the user actions and briefly describes the resulting processing:

See Chapter 6, "PeopleCode and the Component Processor," Processing Sequences, page 100.

User Action Description

Row Insert Processing When a user requests a row insert, the Component
Processor adds arow of datain the active scroll area,
then displays the page again and waits for another
action.

See Chapter 6, "PeopleCode and the Component
Processor," Row Insert Processing, page 119.

Row Delete Processing When a user requests a row del ete, the Component
Processor flags the current row as deleted, then displays
the page again and waits for another action.

See Chapter 6, "PeopleCode and the Component
Processor," Row Delete Processing, page 121.

98 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

User Action

Description

Field Modification

If auser edits a page field, then leaves the field, the
Component Processor performs standard edits (such as
checking the data type and checking for values out of
range). If the contents of the field do not pass the
standard system edits, the Component Processor
redisplays the page with an error or warning message
and changes the field's color to the system color for field
edit errors, usualy red. Until the user corrects the error,
the Component Processor does not |et the user save
changes or navigate to another field. If the contents of
the field pass the standard system edits, the system
redisplays the page and waits for further action.

See Chapter 6, "PeopleCode and the Component
Processor," Field Modification, page 116.

Prompts

If auser clicks the prompt icon next to afield, alist of
values for the prompt field appears. If the Allow Search
Events for Prompt Dialogs checkbox is selected in the
record field properties for the search key, the Searchinit
event will trigger before the prompt dialog appears. If
the user clicks the Look Up button the SearchSave event
will trigger.

If the end-user clicks the detail button next to adate
field, a calendar appears.

If the user clicks Return To Search, or presses Alt+2, a
search page appears, enabling the user to enter an
alternate search key or partial value.

See Chapter 6, "PeopleCode and the Component
Processor," Prompts, page 123 and Chapter 6,
"PeopleCode and the Component Processor," Search
Processing in Update M odes, page 104.

Pop-up Menu Display

If auser clicks the pop-up icon next to afield, a pop-up
menu appears. This can be a default pop-up menu or one
that has been defined by the developer. If the user clicks
the pop-up icon at the bottom of the page, the pop-up
menu for the page appears.

See Chapter 6, "PeopleCode and the Component
Processor," Pop-Up Menu Display, page 124.

ItemSelected Processing

A user can select an item from a pop-up menu to
execute a command.

See Chapter 6, "PeopleCode and the Component
Processor," Selected Item Processing, page 124.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

99

PeopleCode and the Component Processor

Chapter 6

User Action Description

Push Button A user can click a button to execute a command.
See Chapter 6, "PeopleCode and the Component
Processor," Buttons, page 123.

Save Processing A user can direct the system to save a component by

clicking Save or by pressing Alt+1. If any component
data has been modified, the system also prompts the
user to save a component when the Next or List button
isclicked, or when a new action or component is
selected.

The Component Processor first validates the datain the
component, and then updates the database with the
changed component data. After the update, a SQL
Commit command finalizes the changes.

See Chapter 6, "PeopleCode and the Component
Processor," Save Processing, page 125.

Processing Sequences

100

This section presents an overview of flow charts and discusses:

Default processing.

Search processing in update mode.

Search processing in add mode.
Component build processing in update mode.
Row select processing.

Component build processing in add mode.
Field modification.

Row insert processing.

Row delete processing.

Buttons.

Prompts.

Pop-up menu display.

Selected item processing.

Save processing.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Flow Charts

Actions and PeopleCode events can occur in various sequences within the Component Processor's flow of
execution. Flow charts represent each sequence. In aflow chart, different shapes and colors represent
different concepts.

Blue rectangles represent actions taken by the system.
System Action

Dark rhomboids represent branches (decision points) in the logic.

Decision Point

Dark ellipses represent PeopleCode events.
PeopleCode Event

Light ellipses are subprocesses.
Subsequence

Most processing sequences correspond to high-level component processor behaviors. However, two
important subsequences occur only in the context of alarger sequence. These subsequences are:

» Default processing, which occursin anumber of different contexts.

» Row select processing, which most commonly occurs as a part of component build in any of the update
action modes.

Row select processing also occurs when a Scroll Select or related function is executed to load datainto a
scroll area.

See Chapter 6, " PeopleCode and the Component Processor," Component Processor Behavior, page 96;
Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 101 and Chapter 6,
"PeopleCode and the Component Processor," Row Select Processing, page 112.

Note. Variations may occur in processing sequences, particularly when a PeopleCode function within a
processing sequence initiates another processing sequence. For example, if arow of dataisinserted or deleted
programmatically during the component build sequence, arow insert or row delete sequenceisinitiated. Also
note that components that run in deferred mode behave differently.

See Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127.

Default Processing
In default processing, any blank fields in the component are set to their default values. Y ou can specify the

default value either in the record field properties or in FieldDefault PeopleCode. If no default valueis
specified, the field is left blank.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 101

PeopleCode and the Component Processor Chapter 6

Note. In PeopleSoft Pure Internet Architecture, if auser changes afield, but there is nothing to cause atrip to
the server on that field, default processing and FieldFormula PeopleCode do not run. They only run when
another event causes atrip to the server.

Default processing is relatively complex. The following two sections describe how default processing works
on the level of theindividual field, and how default processing works in the broader context of the
component.

Field-Level Default Processing

During default processing, the Component Processor examines all fields in all rows of the component. On
each field, it performs the following:

1. If thefieldisset to NULL (blank) for a character field, or set to O for a numeric field, the Component
Processor setsthe field to any default value specified in the record field properties for that field.

2. If no default value for the field is defined in the record field properties, then the Component Processor
initiates the FieldDefault event, which triggers any FieldDefault PeopleCode associated with the record
field or the component record field.

3. If anerror or warning executes in any FieldDefault PeopleCode, a runtime error occurs.

Important! Avoid using error and warning statementsin FieldDefault PeopleCode.

The following flowchart shows thislogic:

102 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Field Blank

!

Yes

¥

Record field property
defaults

) Mo
Field Blank

Yes

¥

(FigldDefault)

Errar/Warning Result

Unrecoverable ermor;
cancel page

Continue processing o

Field-level default sequence flow

Default Processing on Component Level

Under normal circumstances, default processing in a component is relatively simple: each field on each row
of data undergoes field-level default processing. For typical development tasks, thisisall you need to be
concerned with. However, the compl ete context of default processing is somewhat more complex.

See Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 101.

During component-level default processing, the Component Processor performs these tasks:
1. Field-level default processing is performed on all fields on all rows of data in the component.

2. If any fidld is still blank and any other field in the component has changed, field-level default processing
may be repeated, in case a condition changed that causes default processing to now assign avalue to
something that was previously left blank.

3. TheFieldFormulaEvent isinitiated on al fields on all rows of data in the component.

This PeopleCode event is often used for FUNCLIB_ (function library) record definitions to store shared
functions, so normally no PeopleCode programs execute.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 103

PeopleCode and the Component Processor Chapter 6

4. If the FieldFormula Event changed anything, field-level default processing is performed again, in case
FieldFormula PeopleCode changed afield value to blank, or changed something that causes default
processing to now assign avalue to afield that was previously left blank.

Because there should not be any FieldFormula PeopleCode, thisis unlikely to affect the devel opment
process or performance.

5. If any fidld is still blank and any other field in the component has changed, field-level default processing
is repeated.

The following flowchart shows this logic:

C Field-level Default

Processing _/ h

Any field blank and
another field changed

Result |

Else

v

(FieldFormula)

v
(FIBE;:;:’:;;; l:;:;ault)4

Arny field blank and
anather field changed

Result |

Else

v

Continue processing

Default processing on component level

Search Processing in Update Modes

If auser selects any of the update action modes (Update, Update/Display All, or Correction), the Component
Processor begins update mode search processing, which includes the following steps:

104 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

1. The Searchinit PeopleCode event isinitiated, which triggers any Searchinit PeopleCode associated with

the record field or the component search record, on the keys or alternate search keys in the component
search record.

This enables you to control the search page field values or the search page appearance programmatically,
or to perform other processing prior to the appearance of the search page.

Note. Set the search record for the component in the component properties.

For example, the following program in Searchinit PeopleCode on the component search key record field
EMPLID sets the search key page field to the user's employee I D, makes the page field unavailable for
entry, and enables the user to modify the user's own data in the component:

EMPLI D = %Enpl oyeel d;
&Fi el d CGet Fi el d(EMPLI D) . Enabl ed = Fal se;
Al | onEnpl | dChg(True);

Note. Generally, the system search processing displays the search page. Y ou can use the Searchinit event,
and the SetSearchDialogBehavior function, to set the behavior of the search page beforeit is displayed. If
SetSearchDialogBehavior is set to Force display, the dialog box is displayed even if al required keys
have been provided. Y ou can also set SetSearchDialogBehavior to skip if possible. In addition, you can
force search processing to always occur by selecting Force Search Processing in the component definition
properties in PeopleSoft Application Designer.

. The search page and prompt list appear, in which the user can enter search keys or select an advanced

search to enter aternate search keys.

Note. Normally, the values in the search page are not set to default values. However, if the SearchDefault
function was executed in Searchlnit PeopleCode for any of the search key or alternate search fields, those
fieldsin the dialog box are set to their system default values. No other default processing occurs (that is,
the FieldDefault event is not initiated).

3. Theuser entersavalue or partial value in the search page, and then clicks Search.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 105

PeopleCode and the Component Processor Chapter 6

106

4. The SearchSave PeopleCode event is initiated, which triggers any SearchSave PeopleCode associated

with the record field or the component search record, on the search keys or alternate search keysin the
search record.

This enables you to validate the user entry in the search page by testing the value in the search record field
in PeopleCode and, if necessary, issuing an error or warning. If an error is executed in SearchSave, the
user is sent back to the search page. If awarning is executed, the user can click OK to continue or click
Cancel to return to the search page and enter new values.

If partial values are entered, such that the Component Processor can select multiple rows, then the prompt
list dialog box isfilled, and the user can select avalue. If key values from the search page are blank, or if
the system cannot select any data based on the user entry in the search page, the system displays a
message and redisplays the search page. If the values entered produce a unique value, the prompt list is
not filled. Instead, the user is taken directly to the page.

Note. Normally, no system edits are applied when the user changes afield in the search page. However, if
the SearchEdit property is executed for specific search page fields in Searchinit PeopleCode, the system
edits are applied to those fields after the user changes afield and either leaves the field or clicks Search.
In addition, the SearchEdit property can also be set in metadata for the record field definition.

If the user entry in the field fails the system edits, the system displays a message, highlightsthe field in
guestion, and returns the user to the dialog box. The FieldEdit and SaveEdit PeopleCode events are not
initiated. The SearchSave event is not initiated after values are selected from the search list. To validate
data entered in the search page, use the Component PreBuild event.

. The Component Processor buffers the search key values.

If the user then opens another component while this component is active, the Component Processor uses
the same search key values and bypasses the search page.

The following flowchart shows this logic. (It does not show the effects of executing the SearchDefault and
SearchEdit Field class properties.)

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

(Searchinit)

.

»| Search Dialog Display

User Action

Search button

¥

(SearchSave)

Search and Fill list

Mo values or

rows found

FPartial key value returned

¥

Build Prompt List

List
Select
Unigue
valug ——p

returned

Buffer search key values

Search processing logic in update mode

PeopleCode and the Component Processor

Note. Y ou can use the IsSearchDialog built-in function to create PeopleCode that runs only during search
processing. To create processes that run only in a specific action mode, use the %M ode system variable. This
could be useful in codethat is part of alibrary function and that isinvoked in places other than from the
search page. It could also be used in PeopleCode associated with arecord field that appearsin pagesand in

the search page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

107

PeopleCode and the Component Processor Chapter 6

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," SetSearchDia ogBehavior

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Field Class," SearchDefault

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " System Variables,” %Mode

Search Processing in Add Modes

When a user opens a component in add or data-entry modes, the following actions occur:

1

108

The Component Processor runs default processing on the high-level keysthat appear in the Add or Data
Entry dialog box.

The Component Processor initiates the Rowlnit event, which triggers any Rowlnit PeopleCode associated
with the record field or the component record, on the Add or Data Entry dialog box fields.

The Component Processor initiates the Searchinit event on dialog fields, which triggers any Searchinit
PeopleCode associated with the record field or the component search record.

This enables you to execute PeopleCode programs before the dialog box appears.

The Component Processor displaysthe Add or Data Entry dialog box.

If the user changes adialog box field, and then leaves the field or clicks OK, the following actions occur:
« In add mode only, afield modification processing sequence occurs.

See Chapter 6, "PeopleCode and the Component Processor,” Field M odification, page 116.

» Default processing is run on the Add or Data Entry dialog box fields.
Normally this does not have any effect, because the fields have avalue.

When the user clicks OK in the dialog box, the SaveEdit event isinitiated, which triggers any PeopleCode
associated with the record field or the component record.

The Component Processor initiates the SearchSave event, which triggers any SearchSave PeopleCode
associated with the record field or the component search record.

This enables you to validate user entry in the dialog box. If an error is executed in SearchSave, the user is
sent back to the Add or Data Entry dialog box. If awarning is executed, the user can click OK to continue
or click Cancel to return to the dialog box and enter new values.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

8. The Component Processor buffers the search key values and continues processing.

Note. If you compare the following diagram with search processing in update modes, notice that the add
modes are considerably more complex and involve more PeopleCode events. However, in practice,
PeopleCode development is similar in both cases. PeopleCode that runs before the dialog box appears (for
example, to control dialog box appearance or set valuesin the dialog box fields) generaly is placed in the
Searchinit event; PeopleCode that validates user entry in the dialog box is placed in the SearchSave event.

See Chapter 6, "PeopleCode and the Component Processor,” Search Processing in Update M odes, page
104.

The following flowchart shows thislogic.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 109

PeopleCode and the Component Processor Chapter 6

Failed

{

(Rowlnit
v
(Eaarl:hlnit)

Add/Data Entry Dialog

—/

Fail

k4
Iy

Add Mode Only Error

Y as—1—p System Edits

(SaveEdit)—
Error/\Warning

Cancel Pass

¥

(FieldEdit)

I\

(Searchsave)

Accept Waming
¥

(FieldChange)

Buffer search key values

110 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Search processing logic in add and data-entry modes

Note. Y ou can use the IsSearchDialog function to create PeopleCode that runs only during search processing.
To create processes that run only in a specific action mode, use the %M ode system variable. This could be
useful in code that is part of alibrary function and that isinvoked in places other than from the search page. It
could also be used in PeopleCode associated with arecord field that appears in pages and in the search page.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," IsSearchDialog

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "System Variables," %Mode

Component Build Processing in Update Modes

After the Component Processor has saved the search keys values for the component, it uses the search key
valuesto select rows of datafrom the database server using a SQL Select statement. After the rows are
retrieved, the Component Processor performs these actions:

1. Performsrow select processing, in which rows of datathat have already been selected from the database
server can befiltered before they are added to the component buffer.

See Chapter 6, "PeopleCode and the Component Processor,” Row Select Processing, page 112.

2. Initiates the PreBuild event, which triggers any PreBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

The PreBuild event is aso used to validate data entered in the search page, after a prompt list is displayed.

Note. If aPreBuild PeopleCode program issues an error or warning, the user is returned to the search
page. If thereis no search page, that is, the search record has no keys, a blank component page appears.

3. Performs default processing on all the rows and fields in the component.

See Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 101.

4. Initiates the Rowlnit event, which triggers any Rowlnit PeopleCode associated with the record field or the
component record.

The Rowlnit event enables you to programmatically initialize the values of non-blank fieldsin the
component.

5. Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

6. Initiatesthe Activate event, which triggers any Activate PeopleCode associated with the page about to be
displayed, enabling you to programmeatically control the display of that page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 111

PeopleCode and the Component Processor Chapter 6

7. Displaysthe component and waits for end-user action.

The following flowchart showsthislogic.

anﬁelect Prﬂcessing)

.

PreBuild

.

Default Processing

.

(Rowlnit
(FostBuild
Activate

NN AN

O

.

Display Page, and wait
for user action

Component build processing in update modes

Row Select Processing

112

Row select processing enables PeopleCode to filter out rows of data after they have been retrieved from the
database server and before they are copied to the component buffers. Row select processing uses a SQL
Select statement .

Row select processing is a subprocess of component build processing in add modes. It also occurs after a
ScrollSelect or related function is executed.

See Chapter 6, "PeopleCode and the Component Processor,” Component Build Processing in Add Modes,
page 115.

Note. Instead of using row select processing, it is more efficient to filter out the rows using a search view, an
effective-dated record, the Select method, or ScrollSelect or arelated function, before the rows are sent to the
browser.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

In row select processing, the following actions occur:
1. The Component Processor checks for more rows to add to the component.

2. The Component Processor initiates the RowSelect event, which triggers any RowSel ect PeopleCode
associated with the record field or component record.

This enables PeopleCode to filter rows using the StopFetching and DiscardRow functions. StopFetching
causes the system to add the current row to the component, and then to stop adding rows to the
component. DiscardRow filters out a current row, and then continues the row select process.

3. If neither the StopFetching nor DiscardRow function is called, the Component Processor adds the rows to
the page and checks for the next row.

The process continues until there are no more rows to add to the component buffers. If both StopFetching
and DiscardRow are called, the current row is not added to the page, and no more rows are added to the

page.

Note. In RowSelect PeopleCode, you can refer only to record fields on the record that is currently being
processed, because the buffers are in the process of being populated. This means that the data might not
be present.

The following flowchart showsthislogic:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 113

PeopleCode and the Component Processor Chapter 6

More rows to read?

Yes

v

Selected Rows

)
(RowSelect)

DiscardRow
only

Result

StopFetching anly

Result

Meither
function
called

L 4 Y ¢

Add current row to page Add current row to page Add current row (o page —

T StopFetching and
DiscardRow

RowSelect processing logic

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," StopFetching

114 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

Component Build Processing in Add Modes

After search processing in add or data-entry modes, the Component Processor:

1
2.

Initiates the PreBuild event.
Runs default processing on all page fields.
This enables you to set default fields programmatically using FieldDefault PeopleCode.

Initiates the Rowlnit event on all fieldsin the component, which triggers any Rowlnit PeopleCode
associated with the record field or component record.

This enables you to initialize the state of page controls, using Rowlnit PeopleCode, before the controls are
displayed. (Rowlnit enables you to set the values of non-blank fields programmatically, whereas default
processing is used to set blank fields to their default values.)

Initiates the PostBuild event, which triggers any PostBuild PeopleCode associated with the component
record, enabling you to set global or component scope variables that can be used later by PeopleCode
located in other events.

Initiates the Activate event, which triggers any Activate PeopleCode associated with the page about to be
displayed, enabling you to programmeatically control the display of that page.

Displays a new component, using the search keys obtained from the Add or Data Entry dialog box, with
other fields set to their default values.

The following flowchart shows the logic:

(Default Processing)

s

Rowlnit

.

(PostBuild)

v

(Actvate)

v

Display Page, and wait
for user action

Logic of component build processing in add modes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 115

PeopleCode and the Component Processor Chapter 6

Field Modification
The field modification processing sequence occurs after a user does any of the following:

» Changes the contents of afield, and then leaves the field.
» Changes the state of aradio button or check box.
« Clicks acommand button.

In this sequence, the following actions occur:

116 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

1. The Component Processor performs standard system edits.

To reduce trips to the server, some processing must be done locally on the machine where the browser is
located, while someis performed on the server.

Standard system edits can be done either in the browser, utilizing local JavaScript code, or on the
application server. The following table outlines where these system edits are done.

System Edits Location of Execution
Checking data type Browser

Formatting Application server or browser
Updating current or history record Application server

Effective date Application server

Effective date or sequence Application server

New effective datein range Application server

Duplicate key Application server

Current level is not effective-dated but one of itschild | Application server

scroll areasis

Required field Browser

Date range Browser

Prompt table Application server

Trangdlate table Browser

Yes/no table Depends on the field type. Browser if thefieldisa

check box. Application server if thefield is an edit
box and the valuesare Y or N.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 117

PeopleCode and the Component Processor Chapter 6

118

Note. Default processing for the field can be done in the browser only if the default value is specified as a
constant in the record field properties. If the field contains a default, these defaults occur only upon
component initialization. Then, if auser replaces a default value with a blank, the field is not initialized
again. The required fields check is not performed on derived work fields when you press Tab to move out
of afield.

If the data fails the system edits, the Component Processor displays an error message and highlights the
field in the system color for errors (usually red).

. If thefield passes the system edits, Component Processor initiates the FieldEdit PeopleCode event, which

triggers any FieldEdit PeopleCode associated with the record field or the component record field.

This enables you to perform additional data validation in PeopleCode. If an Error statement iscalled in
any FieldEdit PeopleCode, the Component Processor treats the error asit does a system edit failure; a
message is displayed, and the field is highlighted. If a Warning statement is executed in any FieldEdit
PeopleCode, a warning message appears, aerting the user to a possible problem, but the system accepts
the change to the field.

. If thefield change is accepted, the Component Processor writes the change to the component buffer, then

initiates the FieldChange event, which triggers any FieldChange PeopleCode associated with the record
field or the component record field.

This event enables you to add processes other than validation initiated by the changed field value, such as
changes to page appearance or recalculation of valuesin other page fields. An Error or Warning statement
in any FieldChange PeopleCode causes a runtime error.

Important! Do not use Error or Warning statements in FieldChange PeopleCode. All data validation
should be performed in FieldEdit PeopleCode.

After FieldChange processing, Component Processor runs default processing on all page fields, then
redisplays the page. If the user has changed the field value to ablank, or if SetDefault or arelated function
is executed, and the changed field has a default value specified in the record field definition or any
FieldDefault PeopleCode, the field isinitialized again to the default value.

The following flowchart shows thislogic:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

System Edits

PeopleCode and the Component Processor

Result Failed >
Fass
\ 4
(FieldEdit)
Result Error: »

(FieldChange)

AcceptWaming
A 4

Error\Warning Result
Else
¥
(Default Processing)
. .

Unrecoverable error;
cancel page

Display page, and wait
for user action

Logic of field modification processing

Row Insert Processing

Row insert processing occurs when:

» A user requestsarow insert in ascroll area by pressing Alt+7, by clicking the Insert Row button, or by

clicking the New button.

Display Error Messages

h J

Highlight field,
redisplay page

« A PeopleCode RowlInsert function or a InsertRow method requests a row insert.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

119

PeopleCode and the Component Processor Chapter 6

120

In either case, the Component Processor performs these actions:

1

Inserts a new row of datainto the active scroll area

If the scroll area has a dependent scroll area, the system inserts a single new row into the blank scroll area,
and the system continues until it reaches the lowest-level scroll area.

Initiates the Rowlnsert PeopleCode event, which triggers any Rowlnsert PeopleCode associated with the
record field or the component record.

This event processes fields only on the inserted row and any dependent rows that were inserted on lower-
level scroll areas.

Runs default processing on all component fields.

Normally this affects only the inserted row fields and fields on dependent rows, because other rows
aready have undergone default processing.

Initiates the Rowlnit PeopleCode event, which triggers any RowInit PeopleCode associated with the
record field or the component record.

This event affects fields only on the inserted row and any dependent rows that were inserted.

Redisplays the page and waits for user action.

Important! Do not use Error or Warning statements in Rowlnsert PeopleCode. All data validation should
be performed in FieldEdit or SaveEdit PeopleCode.

The following flowchart showsthislogic:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

Insert Mew Row

:

C Rowlnsert)

Error

Unrecoverable errar:
cancel page

Logic of row insert processing

Accept/Warning

Default Processing

h J

=)

h J

(Post Build)

h J

Display page,
waiting for user action

Note. If none of the data fields in the new row are changed after the row has been inserted (either
programmatically or by the user), the new row is not inserted into the database when the page is saved.

Row Delete Processing

Row delete processing occurs when:

« A user requests arow deletein a scroll area by pressing Alt+8, by clicking the Delete Row button, or by
clicking the Delete button.

» A PeopleCode RowDelete function or a DeleteRow method requests arow del ete.

In either case, these actions occur:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 121

PeopleCode and the Component Processor Chapter 6

1. The Component Processor initiates the RowDelete PeopleCode event, which triggers RowDel ete
PeopleCode associated with the record field or the component record.

This event processes fields on the deleted row and any dependent child scroll areas. RowDel ete
PeopleCode enables you to check for conditions and control whether a user can delete the row. An Error
statement displays a message and prevents the user from deleting the row. A Warning statement displays
amessage alerting the user about possible consequences of the deletion, but permits deletion of the row.

2. If the deletion isrejected, the page is redisplayed after the error message.

3. If thedeletion is accepted, the row, and any child scroll areas dependent on the row, are flagged as
deleted.

The row no longer appearsin the page, but it is not physically deleted from the buffer and can be accessed
by PeopleCode al the way through the SavePostChange event (note, however, that SaveEdit PeopleCode
isnot run on deleted rows).

4, The Component Processor runs default processing on all component fields.

5. The Component Processor redisplays the page and waits for a user action

Note. PeopleCode programs are triggered on rows flagged as deleted in SavePreChange and
SavePostChange PeopleCode. Use the IsDeleted row class property to test whether arow has been
flagged as deleted. Y ou can also access rows flagged as deleted by looping through the rows of a scroll
area using a For loop delimited by the value returned by the RowCount rowset property.

The following flowchart shows thislogic:

C RowDelete)

Error Accept/Waming

l

Unrecoverable error:
cancel page Row flagged as deleted

h J

(Dafault Processing)

Display page,
waiting for user action

Logic of row delete processing

122 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

See Also
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Row Class," 1sDeleted
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Rowset Class," RowCount

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," For

Buttons

When a user presses a button, this initiates the same processing as changing afield. Typically, PeopleCode
programs started by button are placed in the FieldChange event.

See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

Prompts

If the Allow Search Events for Prompt Dialogs checkbox is selected for the Record Field propertiesfor a
search key on a prompt table record, the search processing events are enabled for that field. When the user
selects the prompt icon, the Searchinit event for that field executes before the search dialog displays. When
the user selectsthe Look Up button on a prompt dialog the SearchSave event for the field executes.

Search event processing on prompt dialogs can affect performance. Oracle recommends that you limit the use
of search eventsin prompt dialogs to simple tasks such as showing and hiding fields or character
manipulation. Do not use the search events on prompt dialogs for complex functions such as
AddKeyListltem, ClearKeyList, ClearSearchDefault, ClearSearchEdit, IsSearchDialog, SetSearchDefault,
SetSearchDialogBehavior, or SetSearchEdit, and so on.

By default, Allow Search Events for Prompt Dialogs s off, in which case no PeopleCode event is initiated as
aresult of prompts.

No PeopleCode events are initiated as a result of the user returning to the search page or displaying a
calendar. This processis controlled automatically by the system.

Note. When the value of afield is changed using a prompt, the standard field modification processing occurs.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
Record Definitions,” Setting Record Field Use Properties

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update M odes, page 104

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 123

PeopleCode and the Component Processor Chapter 6

Pop-Up Menu Display

To display a pop-up menu, auser can click the pop-up button, either next to afield or at the bottom of a page
(if the page has a pop-up menu associated with it.) The user can open a standard pop-up menu on a page field
if no pop-up menu has been defined by an application developer for that page field.

The PrePopup PeopleCode event initiates only if the user opens a pop-up menu defined by an application
developer on a pagefield. It does not initiate for a pop-up menu attached to the page background.

The PrePopup PeopleCode event enables you to disable, check, or hide menu items in the pop-up menu.

PrePopup PeopleCode menu item operations (such as HideM enultem, EnableM enultem, and so on) work
with pop-up menus attached to a grid, not afield in agrid, only if the PrePopup PeopleCode meant to operate
on that pop-up menu resides in the record field that is attached to the first column in the grid. It does not
matter if thefirst field isvisible or hidden.

The following flowchart shows thislogic:

User request
poOpUp Menu

!

(PrePopup)

i

Display Popup menu

Logic of PrePopup even processing

Selected Item Processing

Selected item processing occurs when a user selects amenu item from a pop-up menu. This initiates the
ItemSel ected PeopleCode event, which is a menu PeopleCode event.

The following flowchart shows thislogic:

124 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

PeopleCode and the Component Processor

User request
poOpUp Menu

!

(PrePopup)

i

Display Popup menu

Logic of selected item processing

Save Processing

A user can direct the system to save a component by clicking Save or by pressing Alt+1.

An application can prompt the user to save a component when the Next or List button is clicked, or when a
new action or component is selected. If the user clicks Save after being prompted, save processing begins.

The following actions occur in save processing:

1

The Component Processor initiates the SaveEdit PeopleCode event, which triggers any SaveEdit
PeopleCode associated with arecord field or a component record.

This enables you to cross-validate page fields before saving, checking consistency among the page field
values. An Error statement in SaveEdit PeopleCode displays a message and then redisplays the page,
stopping the save. A Warning statement enables the user to cancel save processing by clicking Cancel, or
to continue with save processing by clicking OK.

The Component Processor initiates the SavePreChange event, which triggers any SavePreChange
PeopleCode associated with arecord field, a component record, or a component.

SavePreChange PeopleCode enables you to process data after validation and before the database is
updated.

The Component Processor initiates the Workflow event, which triggers any Workflow PeopleCode
associated with arecord field or a component.

Workflow PeopleCode should be used only for workflow-related processing (TriggerBusinessEvent and
related functions).

The Component Processor updates the database with the changed component data, performing any
necessary SQL Insert, Update, and Delete statements.

The Component Processor initiates the SavePostChange PeopleCode event, which triggers any
SavePostChange PeopleCaode associated with a record field, a component record, or a component.

Y ou can use SavePostChange PeopleCaode for processing that must occur after the database update, such
as updates to other database tables not in the component buffer.

The Component Processor issues a SQL Commit statement to the database server.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 125

PeopleCode and the Component Processor

126

7. The Component Processor redisplays the component.

Chapter 6

Important! Never use an Error or Warning statement in any save processing event other than SaveEdit.
Perform al component data validation in SaveEdit.

The following flow chart shows the logic of this sequence:

(SaveEdit)

Result

Acc:ept."Waming

(SavePreChange)

WorkFlow

SQOL, Insert,
Update, Delete

.

SavePostChange

)
_/

New

Mo

ErrorfWarning
Cancel

e requested

Yes

¥

Start New Page

Logic of save processing

k

Display page, and
wait for user action

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

PeopleSoft Pure Internet Architecture Processing Considerations

Keep the following pointsin mind concerning the PeopleSoft Pure Internet Architecture:

» |f auser changes afield that field has nothing to cause atrip to the server, then default processing and
FieldFormula PeopleCode do not run.

These processes only run when another event causes atrip to the server.

Other fields that depend on the first field using FieldFormula or default PeopleCode are not updated until
the next time a server trip occurs.

» In applications that run on the PeopleSoft portal, external, dynamic link information must be placed in
Rowlnit PeopleCode.

If it is placed in FieldChange PeopleCode, it will not work.

Deferred Processing Mode

When a component runs in deferred processing mode, trips to the server are reduced. When deploying some
pages in the browser, you may want the user to be able to input data with minimal interruption or tripsto the
server. Each trip to the server can slow down your application. By specifying a component as deferred
processing mode, you can achieve better performance.

PeopleSoft applications use Asynchronous JavaScript and XML (AJAX) technology to limit server trips and
perform partial page refreshes. With a partial page refresh, the browser refreshes the entire page only when
the user navigates to a new page. Any server trips triggered by PeopleCode functions such as FieldChange
and FieldEdit for related display fields do not redraw the entire page; the refresh updates only the changed
fields. Because of AJAX technology, much of the communication with the server happens in the background.
Y ou continue to work uninterrupted during the process.

Even with AJAX and partia page refresh, Oracle recommends that you leverage deferred processing mode to
limit network traffic. Although server trips are reduced, if you selectively disable deferred processing you
will incur not only additional network traffic to process the request, you will aso add additional processing
on the webserver and appserver to deal with this request.

See Enterprise PeopleTools 8.50 PeopleBook: Using PeopleSoft Applications, "Working With Pages.”

If you specified deferred processing mode for a component, you can then specify whether a page within a
component, or afield on a page, aso performs processing in deferred mode. The default isfor all pages and
components to allow deferred processing. By default, fields do not allow deferred processing.

If you specify that afield or page alows deferred processing but do not set the component to deferred
processing mode, then the deferred processing mode is not initiated. Y ou must set the component first.

The characteristics of this mode are:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 127

PeopleCode and the Component Processor Chapter 6

128

. Field modification processing is deferred.

No field modification processing is done in the browser. FieldEdit and FieldChange PeopleCode, as well
as other edits, such as required field checks, formats, and so on, do not run until a specific user action
occurs. Several actions cause field modification processing to execute, for example, clicking a button or
link, navigating to another page in the component, and saving the page. The following actions do not
cause field processing:

« Clicking an external link.
» Clicking alist (performing a search).
» Clicking a process button.

Deferred processing mode affects the appearance of pagesin significant ways. For example, related
processing is not done when the user presses Tab to move out of afield. Avoid related fields for
components that use this mode.

. Drop-down list box values are static while the page appears in the browser.

Drop-down list box values are generated on the application server when generating the HTML for the
page.

If trandate values are used to populate the drop-down list box, and the current record contains an effective
date, that date is static while the page is displayed. This means the drop-down list box values may become
out of date.

If prompt table values are used to populate the drop-down list box, the high-order key field values for the
prompt table are static while the pageis displayed. This means the drop-down list box values may become
out of date.

Avoid interdependencies in drop-down lists used on pages executed in deferred mode, because the lists
may quickly become out of date.

. No field modification processing is done during prompt button processing.

When the user clicks a prompt button, atrip is made to the application server (if values were not already
downloaded) to select the search results from the database and to generate the HTML for the prompt
dialog box. During thistrip to the application server, field modification processing for the field being
prompted is not performed, because this may cause an error message for another field on the page, and
this error may confuse the user. When deferred changes are made to other fields, field modification
processing for these fields is done before prompting. The field modification for the prompted field is done
after returning from the prompt page. While the system displays the page, the high-order key field values
for the prompt table should be static or not require field modification processing. Display-only drop-down
list box, radio button, and check box fields do not require field modification processing. Field values that
do not require field modification processing are temporarily written to the component buffer, without any
field modification processing being performed on them, including FieldEdit and FieldChange
PeopleCode. The system restores the original state of the page processor before returning to the browser.

. Field modification processing executesin field layout order.

The entire field modification processing sequence executesin field layout order for each field. If afield
passes the system edits and FieldEdit PeopleCode, the field value is written to the component buffer. If an
error occurs, field modification processing stops, and the system generates new HTML for the page, with
thefield in error highlighted and sent to the browser.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

PeopleCode and the Component Processor

5. PeopleCode dependencies between fields on the page do not work as expected.

Avoid PeopleCode dependencies between fields on pages displayed in deferred processing mode. Also,
avoid FieldChange PeopleCode that changes the display.

The following are examples of PeopleCode dependencies between fields on the page and the application
server's action. In the following examples, field A comes before field B, which comes before field C.

» Field A has FieldChange PeopleCode that hides field B or it makes unavailable for entry.
Thevaluein field B of the page that was submitted from the browser is discarded.

» Field B has FieldChange PeopleCode that hides field A or makes it unavailable for entry.
The change made by the user for field A, if any, remains in the component buffer.

» Field A has FieldChange PeopleCode that changes the value in the component buffer for field B.

If thevaluein field B of the page that was submitted from the browser passes the system edits and
FieldEdit PeopleCode, it iswritten to the component buffer, overriding the change made by field A's
FieldChange PeopleCode.

» Field B has FieldChange PeopleCode that changes the value in the component buffer for field A.

The change made by field B's FieldChange PeopleCode overrides the change made by the user to field
A, if any.

» Field A has FieldChange PeopleCode that unhides field B or makes it available for entry.

Field B has the value that was aready in the component buffer. If the user requests a different page or
finishes, the user may not have the opportunity to enter avaue into field B, and therefore the value
may not be correct.

« Field B has FieldChange PeopleCode that changes the value in the component buffer for field A, but
field C has FieldChange PeopleCode that hides field B or makesit unavailable for entry.

The change made by field B's FieldChange PeopleCode, afield that is now hidden or unavailable for
entry, overrides the change made by the user to field A, if any.

Avoid such dependencies by moving FieldChange PeopleCode logic from individual fieldsto save
processing for the component or FieldChange PeopleCode on a PeopleCode command button.

. Not al buttons cause field modification processing to execute.

Externa links, list (search), and process buttons do not cause field modification processing to execute.

. You can use a PeopleCode command button to cause field modification processing to execute.

An application can include a button for the sole purpose of causing field modification processing to
execute. Theresult is anew page showing any display changes that resulted from field modification
processing.

In addition, if the user clicks the Refresh button, or presses Alt + 0, deferred processing is executed.

Note. The Refresh button does not refresh the page from the database. It simply causes a server trip so
any deferred PeopleCode changes get processed. If the page has no deferred changes or the deferred
changes do not cause any errors or other changes on the page, it may appear to the user asif nothing
happened.

129

PeopleCode and the Component Processor

Chapter 6

8. A scroll button (link) causes field modification processing to execute.

PeopleCode Events

130

This section discusses;

Activate event.
FieldChange event.
FieldDefault event.

FieldEdit event.

FieldFormula event.

ItemSelected event.
PostBuild event.
PreBuild event.
PrePopup event.
RowDelete event.
RowInit event.
Rowlnsert event.
RowSelect event.

SaveEdit event.

SavePostChange event.
SavePreChange event.

Searchlnit event.
SearchSave event.

Workflow event.

Note. The term PeopleCode typeis till frequently used, but it does not fit into the PeopleT ool s object-based,
event-driven metaphor. The term PeopleCode event should now be used instead. However, it's often
convenient to qualify aclass of PeopleCode programs triggered by a specific event with the event name; for
example, PeopleCode programs associated with the Rowlnit events are collectively referred to as Rowlnit
PeopleCode.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Activate Event

The Activate event is initiated each time that a page is activated, including when a pageisfirst displayed by a
user, or if auser presses Tab between different pages in a component. Each page has its own Activate event.

Activate PeopleCode associated with a popup page execut after the page activate event for the main page.
When fields on the main page change and trigger updates on the popup page the page activate event for the
popup pageis executed.

The Activate event segregates PeopleCode that is related to a specific page from the rest of the application's
PeopleCode. Place PeopleCode related to page display or page processing, such as enabling afield or hiding a
scroll area, in this event. Also, you can use this event for security validation: if an user does not have
clearance to view a page in a component, you would put the code for hiding the page in this event.

Note. PeopleSoft builds a page grid one row at atime. Because the Grid class applies to a complete grid, you
cannot attach PeopleCode that uses the Grid class to events that occur before the grid is built; the earliest
event you can use isthe Activate event. The Activate event is not associated with a specific row and record at
the point of execution. This means you cannot use functions such as GetRecord, GetRow, and so on, which
rely on context, without specifying more context.

Activate PeopleCode can only be associated with pages.

Thisevent isvalid only for pages that are defined as standard or secondary. This event is not supported for
subpages.

Note. If your application uses the MessageBox built-in function in the Activate event with a message from
the message catalog that's defined as type Error, Warning or Cancel, all component processing stops with an
error message to that effect. If the message has a type of Message, processing does not stop.

See Also

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Update M odes, page
111

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Add Modes, page
115

FieldChange Event

Use FieldChange PeopleCode to recal cul ate page field values, change the appearance of page controls, or
perform other processing that results from afield change other than data validation. To validate the contents
of thefield, use the FieldEdit event.

See Chapter 6, "PeopleCode and the Component Processor,” FieldEdit Event, page 132.

The FieldChange event appliesto the field and row that just changed.

FieldChange PeopleCode is often paired with RowInit PeopleCode. In these RowlInit/FieldChange pairs, the
Rowlnit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution and
resets the state or value of page controls.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 131

PeopleCode and the Component Processor Chapter 6

To take asimple example, suppose you have a derived/work field called PRODUCT, the value of whichis
aways the product of page field A and page field B. When the component is initialized, you would use
RowlInit PeopleCode to initialize PRODUCT equal to A x B when the component starts up or when a new
row isinserted. Y ou could then attach FieldChange PeopleCode programs to both A and B which also set
PRODUCT egual to A x B. Whenever a user changes the value of either A or B, PRODUCT isrecal cul ated.

FieldChange PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

FieldDefault Event

The FieldDefault PeopleCode event enables you to programmatically set fields to default values when they
areinitially displayed. Thisevent isinitiated on all page fields as part of many different processes; however,
it triggers PeopleCode programs only when the following conditions are al True:

» Thepagefieldisstill blank after applying any default value specified in the record field properties.

Thisis Trueif thereis no default specified, if anull value is specified, or if a0 is specified for anumeric
field.

» Thefield has a FieldDefault PeopleCode program.

In practice, FieldDefault PeopleCode normally sets fields by default when new datais being added to the
component; that is, in Add mode and when anew row isinserted into a scroll area.

If afield value is changed, whether through PeopleCode or by a user, the IsChanged property for the row is
set to True. The exception to thisis when a change is done in the FieldDefault or FieldFormula events. If a
valueisset in FieldDefault or FieldFormula, the row is not marked as changed.

At savetime, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

Y ou must attach FieldDefault PeopleCode to the field where the default value is being popul ated.

Note. An error or warning issued from FieldDefault PeopleCode causes a runtime error.

FieldDefault PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6, "PeopleCode and the Component Processor," Default Processing, page 101

FieldEdit Event
Use FieldEdit PeopleCode to validate the contents of afield, supplementing standard system edits. If the data

does not pass the validation, the PeopleCode program should display a message using the Error statement,
which redisplays the page, displaying an error message and turning the field red.

132 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

To permit the field edit but aert the user to a possible problem, use a Warning statement instead of an Error
statement. A Warning statement displays awarning dialog box with OK and Explain buttons. It permitsfield
contents to be changed and continues processing as usual after the user clicks OK.

If the validation must check for consistency across page fields, then use SaveEdit PeopleCode instead of
FieldEdit.

The FieldEdit event applies to the field and row that just changed.
FieldEdit PeopleCode can be associated with record fields and component record fields.
See Also

Chapter 6, "PeopleCode and the Component Processor," Field Modification, page 116

FieldFormula Event

The FieldFormula event is not currently used. Because FieldFormula PeopleCode initiates in many different
contexts and triggers PeopleCode on every field on every row in the component buffer, it can seriously
degrade application performance. Use Rowlnit and FieldChange events rather than FieldFormula.

If afield valueis changed, whether through PeopleCode or by a user, the IsChanged property for the row is
usually set to True. However, if avaueisset in FieldDefault or FieldFormula, the row is not marked as
changed.

At savetime, all newly inserted and changed rows are written to the database. All newly inserted but not
changed rows are not written to the database.

Note. In PeopleSoft Pure Internet Architecture, if auser changes afield but that field has nothing to cause a
trip to the server, then default processing and FieldFormula PeopleCode do not run. They only run when
another event causes atrip to the server.

As amatter of convention, FieldFormulais now often used in FUNCLIB__ (function library) record
definitions to store shared functions. However, you can store shared functions in any PeopleCode event.

FieldFormula PeopleCode is only associated with record fields.

ltemSelected Event

The ItemSelected event isinitiated whenever a user selects a menu item from a pop-up menu. In pop-up
menus, ItemSel ected PeopleCode executes in the context of the page field from where the pop-up menuis
attached, which means that you can freely reference and change page fields, just as you could from a button.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

ItemSel ected PeopleCode is only associated with pop-up menu items.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 133

PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6, "PeopleCode and the Component Processor," Selected Item Processing, page 124

PostBuild Event

The PostBuild event isinitiated after all the other component build events have been initiated. Thisevent is
often used to hide or unhide pages. It is aso used to set component variables.

PostBuild PeopleCode is only associated with components.

PreBuild Event

The PreBuild event isinitiated before the rest of the component build events. This event is often used to hide
or unhide pages. It is also used to set component variables.

Note. If a PreBuild PeopleCode program issues an error or warning, the user is returned to the search page. If
the search record has no keys, a blank component page appears.

Also use the PreBuild event to validate data entered in a search page after a prompt list is displayed. For
example, after auser selects key values on a search, the PreBuild PeopleCode program runs, catches the error
condition, and issues an error message. The user receives and acknowledges the error message. The
component is canceled (because of the error), and the user is returned to the search page. PreBuild
PeopleCode is only associated with components.

PrePopup Event
The PrePopup event isinitiated just before the display of a pop-up menu.

Y ou can use PrePopup PeopleCode to control the appearance of the pop-up menu.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

PrePopup PeopleCaode can be associated with record fields and component record fields.
See Also

Chapter 6, "PeopleCode and the Component Processor," Pop-Up Menu Display, page 124

134 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

RowDelete Event

The RowDelete event is initiated whenever a user attempts to delete a row of data from a page scroll area.
Use RowDel ete PeopleCode to prevent the deletion of arow (using an Error or Warning statement) or to
perform any other processing contingent on row deletion. For example, you could have a page field called
Total on scroll arealevel zero whose value isthe sum of all the Extension page fields on scroll arealevel one.
If the user deleted arow on scroll arealevel one, you could use RowDelete PeopleCode to recalcul ate the
value of the Total field.

The RowDelete event triggers PeopleCode on any field on the row of data that is being flagged as del eted.

Note. RowDelete does not trigger programs on derived/work records.

RowDelete PeopleCode can be associated with record fields and component records.

Deleting All Rows from a Scroll Area

When the last row of ascroll areais deleted, a new, dummy row is automatically added. As part of the
Rowlnsert event, Rowlnit PeopleCode is run on this dummy row. If afield is changed by RowlInit (even if it's
left blank), the row is no longer new, and therefore is not reused by any of the ScrollSelect functions or the
Select method. In this case, you may want to move your initialization code from the Rowlnit event to
FieldDefault.

See Also

Chapter 6, "PeopleCode and the Component Processor," Row Delete Processing, page 121

Chapter 8, "Using Methods and Built-In Functions," Using Errors and Warnings in RowDel ete Events, page
183

Rowlnit Event

The Rowlnit event isinitiated the first time that the Component Processor encounters arow of data. Useit to
set theinitial state of component controls during component build processing and row insert processing. The
Rowlnit event also occurs after a Select or SelectAll Rowset method, or a ScrollSelect or related function, is
executed.

Note. Generally, if none of the fieldsin the new row are changed after the row is inserted (either by a user
pressing Alt+7 or programmatically) when the page is saved, the new row is not inserted into the database.
However, if the ChangeOnlnit rowset class property is set to False, you can set values for fields anew row in
Rowlnsert or Rowlnit PeopleCode, and the row will not be saved.

Rowlnit is not field-specific. It triggers PeopleCode on all fields and on al rowsin the component buffer.
Do not use Error or Warning statements in Rowlnit PeopleCode. They cause aruntime error.

Rowlnit PeopleCode is often paired with FieldChange PeopleCode. In these Rowlnit/FieldChange pairs, the
Rowlnit PeopleCode checks values in the component and initializes the state or value of page controls
accordingly. FieldChange PeopleCode then rechecks the values in the component during page execution and
resets the state or value of page controls.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 135

PeopleCode and the Component Processor Chapter 6

For asimple example, suppose you have a derived/work field called PRODUCT, the value of which is always
the product of page field A and page field B. When the component is initialized, use Rowlnit PeopleCode to
initialize PRODUCT equal to A x B when the component starts up or when a new row isinserted. Y ou could
then attach FieldChange PeopleCode programs to both A and B, which also sets PRODUCT equal to A x B.
Whenever a user changes the value of either A or B, PRODUCT isrecalculated.

RowlInit PeopleCode can be associated with record fields and component records.

RowlInit Exceptions

In certain rare circumstances, the Component Processor does not run RowlInit PeopleCode for some record
fields. The Component Processor runs Rowlnit PeopleCode when it loads the record from the database.
However, in some cases, the record can be initialized entirely from the keys for the component. When this
happens, RowInit PeopleCode is not run.

For RowlInit to not run, the following must all be True:

e Therecordisat level zero.
» Every record field that is present in the data buffersis also present in the keys for the component.

The Component Processor determinesif the field is required by the component. In practice, this usually
means that the field is associated with a page field, possibly hidden, for some page of the component. It
could also mean that the field is referenced by some PeopleCode program that is attached to an event on
some other field of the component.

» Every record field that is present in the data buffersis display-only.

Rowlnit not running is not considered to be an error. The purpose of Rowlnit PeopleCode isto complete
initialization of data on the row after it has been read from the database. Because the data in this special
circumstance is coming from the keylist, it was already initialized correctly by whatever processing produced
the keylist. More general initialization of the component should be done in PostBuild PeopleCode, not
RowlInit.

See Also

Chapter 6, "PeopleCode and the Component Processor," Component Build Processing in Add Modes, page
115

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Rowset Class," ChangeOnlnit

Rowlnsert Event

136

When a user adds arow of data, the Component Processor generates a RowlInsert event. Y ou should use
Rowlnsert PeopleCode for processing specific to the insertion of new rows. Do not put PeopleCode in
Rowlnsert that aready exists in Rowlnit, because a RowInit event always initiates after the Rowlnsert event,
which will cause your code to be run twice.

Note. Generally, if none of the fieldsin the new row are changed after the row has been inserted (either by a
user pressing Alt+7 or programmeatically), when the page is saved, the new row is not inserted into the
database. However, if the ChangeOnlnit rowset class property is set to False, you can set values for fields a
new row in Rowlnsert or Rowlnit PeopleCode, and the row won't be saved.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

The Rowlnsert event triggers PeopleCode on any field on the inserted row of data.
Do not use awarning or error in Rowlnsert.

Y ou can prevent auser from inserting rows into ascroll area by selecting the No Row Insert check box in the
scroll bar's page field properties, as shown in the following illustration. However, you cannot prevent row
insertion conditionally.

Page Field Properties E |

Label Use | General I
— Scroll Attributes

Cecurs Level: |1 DOocurs Count; |1

— Field U=e Options

[Invisible W Drefault width
[T Mo Auto Selec [T Modute Update
W Mo Fow inser [T Mo PRow Delete

— Scroll Action Buttonz

[T Pievious Page [T Mext Page
™| Eowilieert [Fiow Delete
[T Top [Eottom

[T Show Fow Counter

— Popup Menu

— Field Help Context Murmber:

I < Auto Aazigh |

¥ Allow Deferred Processing

| k. I Cancel

Setting row insert properties in page field properties for a scroll bar

Note. Rowlnsert does not trigger PeopleCode on derived/work fields.

Rowlnsert PeopleCode can be associated with record fields and component records.
See Also

Chapter 6, "PeopleCode and the Component Processor," Row Insert Processing, page 119

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Rowset Class," ChangeOnlinit

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 137

PeopleCode and the Component Processor Chapter 6

RowSelect Event

The RowSelect event isinitiated at the beginning of the component build processin any of the update action
modes (Update, Update/Display All, Correction). RowSelect PeopleCode is used to filter out rows of data as
they are being read into the component buffer. This event also occurs after a ScrollSelect or related function
is executed.

A DiscardRow function in RowSelect PeopleCode causes the Component Processor to skip the current row of
data and continue to process other rows. A StopFetching statement causes the Component Processor to accept
the current row of data, and then stop reading additional rows. If both statements are executed, the program
skips the current row of data, and then stops reading additional rows.

PeopleSoft applications rarely use RowSelect, because it's inefficient to filter out rows of data after they've
already been selected. Instead, screen out rows of data using search record views and effective-dated tables,
which filter out the rows before they're selected. Y ou could also use a Scroll Select or related function to
programmatically select rows of datainto the component buffer.

In previous versions of PeopleTools, the Warning and Error statements were used instead of DiscardRow and
StopFetching. Warning and Error statements still work as before in RowSelect, but their use is discouraged.

Note. In RowSelect PeopleCode, you can refer to record fields only on the record that is currently being
processed. This event, and al its associated PeopleCode, does not initiate if run from a component interface.

RowSelect PeopleCode can be associated with record fields and component records.

See Also

Chapter 6, "PeopleCode and the Component Processor,”" Row Select Processing, page 112

SaveEdit Event

138

The SaveEdit event isinitiated whenever a user attempts to save the component. Y ou can use SaveEdit
PeopleCode to validate the consistency of datain component fields. Whenever avalidation involves more
than one component field, you should use SaveEdit PeopleCode. If avalidation involves only one page field,
use Fieldedit PeopleCode.

SaveEdit is not field-specific. It triggers associated PeopleCode on every row of datain the component
buffers except rows flagged as del eted.

An Error statement in SaveEdit PeopleCode displays a message and redisplays the component without saving
data. A Warning statement enables the user to click OK and save the data, or to click Cancel and return to the
component without saving.

Use the SetCursorPos function to set the cursor position to a specific page field following awarning or error
in SaveEdit, to show the user the field (or at least one of the fields) that is causing the problem. Make sure to
call SetCursorPos before the error or warning, because these may terminate the PeopleCode program.

SaveEdit PeopleCode can be associated with record fields and components.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," SetCursorPos

SavePostChange Event

After the Component Processor updates the database, it initiates the SavePostChange event. Y ou can use
SavePostChange PeopleCaode to update tables not in your component using the SQL Exec built-in function.

An error or warning in SavePostChange PeopleCode causes a runtime error. Avoid errors and warningsin
this event.

The system issues a SQL Commit statement after SavePostChange PeopleCode completes successfully.

If you are executing Workflow PeopleCode, keep in mind that if the Workflow PeopleCode fails,
SavePostChange PeopleCade is not executed. If your component has both Workflow and SavePostChange
PeopleCode, consider moving the SavePostChange PeopleCode to SavePreChange or Workflow.

If you are doing messaging, your Publish PeopleCode should go into this event.

SavePostChange does not execute if there is an error during the save. For example, if there is a data conflict
error because another user updated the same data at the same time, SavePostChange does not execute.

Important! Never issue a SQL Commit or Rollback statement manually from within a SQL Exec function.
L et the Component Processor issue these SQL commands.

SavePostChange PeopleCade can be associated with record fields, components, and component records.
See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," SQLExec

SavePreChange Event

The SavePreChange event isinitiated after SaveEdit completes without errors. SavePreChange PeopleCode
provides one final opportunity to manipulate data before the system updates the database; for instance, you
could use SavePreChange PeopleCode to set sequential high-level keys. If SavePreChange runs successfully,
aWorkflow event is generated, and then the Component Processor issues appropriate Insert, Update, or
Delete SQL statements.

SavePreChange PeopleCaode is not field-specific: it triggers PeopleCode on all fields and on all rows of data
in the component buffer.

SavePreChange PeopleCaode can be associated with record fields, components, and component records.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 139

PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

Searchlnit Event

140

The Searchinit event is generated just before a search, add, or data-entry dialog box is displayed. Searchlnit
triggers associated PeopleCode in the search key fields of the search record. This enables you to control
processing before a user enters values for search keysin the dialog box. In some cases, you may want to set
the value of the search dialog fields programmatically. For example, the following program in Searchinit
PeopleCode on the component search key record field EMPLID sets the search key page field to the user's
employee 1D, makes the page field unavailable for entry, and enables the user to modify the user's own data
in the component:

EMPLI D = %Enpl oyeel d;
Gray (EWMPLID);
Al | onEnpl | dChg(True);

Y ou can activate system defaults and system edits in the search page by calling SetSeachDefault and
SetSearchEdit in Searchinit PeopleCode. Y ou can also control the behavior of the search page, either forcing
it to appear even if al the required keys have been provided, or by skipping it if possible, with the
SetSeachDialogBehavior function. Y ou can also force search processing to always occur by selecting the
Force Search Processing check box in the component properties in PeopleSoft Application Designer.

Note. This event, and all its associated PeopleCode, does not initiate if run from a component interface.

Searchlnit PeopleCode can be associated with record fields on search records and prompt table records and on
component search records and component prompt table records.

Searchlnit with Prompt Dialogs

Beginning with PeopleTools 8.50 you can put PeopleCode on the Searchlinit and SearchSave events on the
search keys of prompt table records. Searchlnit and SearchSave events will only execute if the Allow Search
Events for Prompt Dialogs checkbox was selected for the search key's record field propertiesin Application
Designer. By default Allow Search Events for Prompt Dialogsis off.

Note. Search processing with prompt dial ogs can affect performance. Oracle recommends that you limit the
use of PeopleCode with prompt dialogs.

Searchlnit PeopleCode Function Restrictions

Y ou cannot use the following functionsin Searchinit PeopleCode:

+ DoModa

» DoModa Component
e Transfer

« TransferExact

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

« TransferNode
» TransferPage
« TransferPortal
See Also

Chapter 6, "PeopleCode and the Component Processor,” Prompts, page 123

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," SetSearchDefault

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update M odes, page 104

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Add Modes, page 108

SearchSave Event

SearchSave PeopleCode is executed for all search key fields on a search, add, or data-entry dialog box after a
user clicks Search. This enables you to control processing after search key values are entered, but before the
search based on these keysis executed. A typical use of thisfeatureisto provide cross-field edits for selecting
aminimum set of key information. This event is also used to force a user to enter avaluein at least onefield,
even if it'sapartial value, to help narrow a search for tables with many rows.

Note. SearchSaveis not initiated when values are selected from the search list. To validate data entered in the
search page, use the Component PreBuild event.

Y ou can use Error and Warning statements in SearchSave PeopleCode to send the user back to the search
page if the user entry does not pass validations implemented in the PeopleCode.

Note. This event, and all its associated PeopleCode, is not initiated if run from a component interface.

SearchSave PeopleCode can be associated with record fields and component search records.

Note. Do not use the %M enu system variable in this event. Y ou may get unexpected results.

SearchSave with Prompt Dialogs

Beginning with PeopleTools 8.50 you can put PeopleCode on the Searchlinit and SearchSave events on the
search keys of prompt table records. Searchinit and SearchSave events will only execute if the Allow Search
Events for Prompt Dialogs checkbox is selected for the search key's record field propertiesin Application
Designer. By default Allow Search Events for Prompt Dialogs is off.

Note. Search processing with prompt dial ogs can affect performance. Oracle recommends that you limit the
use of PeopleCode with prompt dialogs.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 141

PeopleCode and the Component Processor Chapter 6

See Also

Chapter 6, "PeopleCode and the Component Processor,” Prompts, page 123

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Update Modes, page 104

Chapter 6, "PeopleCode and the Component Processor," Search Processing in Add Modes, page 108

Workflow Event

Workflow PeopleCode executes immediately after the SavePreChange event and before the database update
that precedes the SavePostChange event. The Workflow event segregates PeopleCode related to workflow
from the rest of the application's PeopleCode. Only PeopleCode related to workflow (such as
TriggerBusinessEvent) should be in workflow programs. Y our program should deal with the Workflow event
only after any SavePreChange processing is compl ete.

Workflow PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of datain the
component buffer.

WorkFlow PeopleCode can be associated with record fields and components.
See Also

Chapter 6, "PeopleCode and the Component Processor," Save Processing, page 125

Enterprise PeopleTools 8.50 PeopleBook: Workflow Technology, "Defining Event Triggers,” Writing
Workflow PeopleCode

PeopleCode Execution in Pages with Multiple Scroll Areas

142

Components with multiple levels can have multiple rows of data from multiple primary record definitions.
Y ou must know the order in which the system processes buffers for this data, because it applies PeopleCode
in the same order.

The Component Processor uses a depth-first algorithm to process rows in multiple-scroll-area pages, starting
with arow at level zero, drilling down to dependent rows on lower levels, and then working up the hierarchy
until the system has processed all the dependent rows of the last row on the highest level.

Scroll Level One

When pages have only one scroll bar, the Component Processor processes record definitions at scroll level
zero, and then all rows of data at scroll level one.

Dataisretrieved for all rows with asingle Select statement, and then it is merged with buffer structures.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 PeopleCode and the Component Processor

Scroll Level Two

With scroll bars at multiple scroll levels, the system processes a single row of data at scroll level one, and
then it processes all subordinate rows of data at scroll level two. After processing all subordinate data at scroll
level two, it processes the next row for scroll level one, and al the subordinate data for that row. The system
continues in this fashion until all datais processed.

Scroll Level Three

The Component Processor uses the same method for processing subordinate data at scroll level three. Datais
retrieved for all rows with asingle Select statement, and then merged with buffer structures. The Component
Processor processes asingle row of data at scroll level two, and it processes all subordinate data at scroll level
three. After processing all subordinate data at scroll level three, it processes the next row for scroll level two
and all the suboridinates data for that row. The system continues in this fashion until all datais processed..

See Also

Chapter 4, "Referencing Data in the Component Buffer," Understanding Component Buffer Structure and
Contents, page 47

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 143

Chapter 7

PeopleCode and PeopleSoft Pure Internet
Architecture

The chapter discusses how to:

Using PeopleCode in PeopleSoft Pure Internet Architecture.

Using PeopleCode with PeopleSoft Pure Internet Architecture

Call dynamic link library (DLL) functions on the application server.
Update the Installation and PSOPTIONS tables.

Considerations Using PeopleCode in PeopleSoft Pure Internet
Architecture

Consider the following points when writing PeopleCode programs for PeopleSoft Pure Internet Architecture:

To help your application run efficiently, avoid using field-level PeopleCode events (FieldEdit and
FieldChange).

Each field-level PeopleCode program requires atrip to the application server.

The magjority of PeopleCode programs run on the application server as part of the component build and
save process. Do not hesitate to use PeopleCode for building and saving components.

If auser changes afield but nothing on that field will cause atrip to the server, then default processing
and FieldFormula PeopleCode do not run.

This processing occurs only when another event causes atrip to the server.

Other fields that depend on thefirst field using FieldFormula or default PeopleCode are not updated until
the next time a server trip occurs.

In applications that run on the PeopleSoft portal, external dynamic link information must be placed in
Rowlnit PeopleCode.

If external dynamic link information is placed in FieldChange PeopleCode, it will not work.
Trips to the server are reduced when a component runs in deferred processing mode.

Each trip to the server results in the page being completely refreshed on the browser, which may cause the
display to flicker. It can also slow down your application. Deferred processing mode results in better
performance.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 145

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

Using PeopleCode with PeopleSoft Pure Internet Architecture

This section discusses how to:

» Useinternet scripts.

» Usethefield object Style property.

¢ UsetheHTML area

e UseHTML definitions and the GetHTML Text function.

e Use HTML definitions and the GetJavaScriptURL method.

» Use PeopleCode to populate key fieldsin search dialog boxes

Using Internet Scripts

Aninternet script is a specialized PeopleCode function that generates dynamic web content. Internet scripts
interact with web clients (browsers) using a request-response paradigm based on HTTP.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Internet Script Classes (i Script)"

Using the Field Object Style Property

In PeopleSoft Application Designer, on the Use tab of the page definition properties, you can associate a page
with a style sheet component.

The style sheet has several classes of styles defined for it. Y ou can edit each style class to change the font, the
color, the background, and so on. Then, you can dynamically change the style of afield using the Style field
class property. The style sheet does not change, only the style class associated with that field changes.

The following example changes the style class of afield depending on avalue entered by the user. This code
isin the FieldChange event.

146 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Local Field &field;
&ield = GetField();

I f TESTFIELDL = 1 Then

& ield. Style = "PSHYPERLI NK";
End- I f;
I f TESTFI ELD1 = 2 Then;

& ield. Style = "PSI MAGE"
End- | f;

The following examples show the fields with different styles:

TESTFIELDT i

Field with PSHYPERLINK style

TESTFELD 1 [l

Field with PSIMAGE style

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
Style Sheet Definitions'

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Field Class'

Using the HTML Area

Two methods are used to populate an HTML area control. Both require accessing the HTML areain the
PeopleSoft Application Designer. One method is to select Constant on the HTML tab of the HTML page field
properties dialog and enter HTML directly into the page field dialog.

The other method isto select Value on the HTML tab of the HTML page field properties dialog and associate
the control with arecord field. At runtime, populate that field with the text that you want to appear in the
HTML area.

If you are using an HTML areato add form controls to a page, you can use GetParameter request class
method in PeopleCode to get the user input from those controls.

Note. When you associate an HTML area control with afield, make sure the field islong enough to contain
the data you want to passto it. For example, if you associate an HTML area control with afield that is only
10 characterslong, only the first 10 characters of your text will appear.

The following code populatesan HTML areawith asimple bulleted list. This code isin the RowlInit event of
the record field associated with the HTML control.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 147

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

Local Field &HTM.Fi el d;

&HTMLFi el d = GetFiel d();
&HTM_Fi el d. Val ue = "ltemonetemtwo";

The following codeisin the FieldChange event of a button. It populates an HTML area (associated with the
record field CHART_DATA.HTMLAREA) with asimple list.

Local Field &HTM.Fi el d;

&HTM_Fi el d = Get Recor d(Recor d. CHART _DATA) . HTMLAREA;
&HTM_Fi el d. Val ue = "ltemonetemtwo";

The following code populates an HTML area (associated with the record DERIVED HTML and the field
HTMLAREA) with the output of the GenerateTree function:

DERI VED_HTM.. HTMLAREA = Gener at eTr ee(&TREECTL) ;

The following tags are unsupported by the HTML area control:

+ Body

* Frame

* Frameset
 Form

s Head

« HTML

+ Meta

- Title
See Also

Chapter 9, "Using HTML Trees and the GenerateTree Function,” Using the GenerateT ree Function, page 189

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
HTML Definitions'

Using HTML Definitions and the GetHTMLText Function
If you are using the same HTML text in more than one place or if it isalarge, unwieldy string, you can create
an HTML definition in PeopleSoft Application Designer, and then use the GetHTML Text function to
populate an HTML area control.

The following isthe HTML string to create a simple table:

148 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

<p>
<TABLE>

<TR bgCol or =#008000>
<TD>
<P><FONT col or =#f 5f 5dc face="Arial, Helvetica, sans-serif"
si ze=2>nmessage 1 </ FONT></ P></ TD></ TR>
<TR bgCol or =#0000cd>
<TD>
<P><FONT col or=#00ffff face="Arial, Helvetica, sans-serif"
si ze=2>message 2</ FONT></ P></ TD></ TR>
</ TABLE></ P>

ThisHTML issaved to an HTML definition called TABLE_HTML.

This code isin the Rowlnit event of the record field associated with the HTML area control:
Local Field &HTMFi el d;

&HTMLField = GetField();

&string = Get HTM.Text (HTM.. TABLE HTM.) ;

&HTMLFi el d. Val ue = &stri ng;

This code produces the following:

HTML definition example

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions,” GetHTML Text

Using HTML Definitions and the GetJavaScriptURL Method

HTML definitions can contain JavaScript programsin addition to HTML. If you have an HTML definition
that contains JavaScript, use the GetJavaScriptURL Response method to access and execute the script.

This example assumes the existence in the database of aHTML definition called HelloWorld_JS that contains
some JavaScript:

Function | Script_TestJavaScript ()

Y%Response. WitelLine("<script src="
%Response. Get JavaScri pt URL(HTM.. Hel | oWbr1 d_JS) | "></script>");

End- Functi on;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 149

PeopleCode and PeopleSoft Pure Internet Architecture Chapter 7

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Internet Script Classes (i Script),"
GetJavaScriptURL

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
HTML Definitions'

Using PeopleCode to Populate Key Fields in Search Dialog Boxes

In a PeopleSoft Pure Internet Architecture application, you typically want users to directly access their own
data. To facilitate this, you may want to use Searchinit PeopleCode to populate standard key fieldsin search
page fields and then make the fields unavailable for entry. Y ou might assign the search key field a default
value based on the user ID or alias the user entered when signing in.

Y ou must aso call the AllowEmplldChg function, which enables users to change their own data. This
function takes a single Boolean parameter in which you pass True to alow employees to change their own
data.

Hereis a simple example of such a Searchinit program, using %Employeeld to identify the user:
EMPLI D = %Enpl oyeel d;

Gray (EMPLID);

Al | onEnpl | dChg(True);

Calling DLL Functions on the Application Server

150

To support processes running on an application server, you can declare and call functions compiled in
Microsoft Windows DLLs and in UNIX shared libraries (or shared objects, depending on the specific UNIX
platform). Y ou can do this either with a special PeopleCode declaration, or using the business interlink
framework.

When you call out to aDLL using PeopleCode, on Microsoft Windows NT application servers, the DLL file
has to be on the path. On UNIX application servers, the shared library file must be on the library path (as
defined for the specific UNIX platform).

The PeopleCode declaration and function call syntax remains unchanged. For example, the following
PeopleCode could be used to declare and call afunction LogMsg in an external library Testdll.dll on a
Microsoft Windows client or a Windows application server, or alibtestdll.so on an UNIX application server.
The UNIX shared library's extension varies by the specific UNIX platform.

Decl are Function LogMsg Library "testdl " (string, string)
Returns i nteger;

& es = LogMsg("\tenmp\test.log", "This is a test");

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 PeopleCode and PeopleSoft Pure Internet Architecture

Sample Cross-Platform External Test Function

Following is the C source code for a sample cross-platform test file. It is a basic function that opens alog file
and appends alineto it. If you compile the code using a C++ compiler, the functions must be declared using

external C, to ensure C-language linkage.

Thisfile contains an interface function required for non-Microsoft-Windows environments. Thisfunction is
compiled only when compiling for a non-Windows environment (for example, UNIX). The interface function
references a provided header file, pcmext.h. The interface function is passed type codes that can be optionally
used for parameter checking.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 151

PeopleCode and PeopleSoft Pure Internet Architecture

152

Sinple test function for calling from Peopl eCode.

This is passed two strings, a file name and a nessage.
It creates the specified file and wites the nessage
*toit.

*/

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i ncl ude <string. h>

E o S

#i f def _W NDOWS

#def i ne DLLEXPORT __decl spec(dl | export)
#defi ne LI NKAGE _ stdcal

#el se

#def i ne DLLEXPORT

#def i ne LI NKAGE

#endi f

DLLEXPORT int LINKAGE LogMsg(char * fnane, char * nsQ);

EE R I I R I R R I I S I S I R I I R I R R I R I I R I R

Peopl eCode External call test function. *
*

Paranmeters are two strings (filenanme and nessage) *
Result is O if error, 1 if K

*
*

/

*

*

*

*

*

*

* To call this function, the foll ow ng Peopl eCode is *
* used *

* *

* Declare Function LogMsg Library "testdll" *
* (string, string) *

*
*
*
*
*

Returns i nteger; *
*

& es = LogMsg("\tenp\test.log", "This is a test"); *

*
***/

DLLEXPORT int LINKAGE LogMsg(char * fnane, char * nsQ)

{
FI LE *fp;

fp = fopen(fnane, "a"); /* append */
if (fp == NULL) return O;

fprintf(fp, "%\n", nsQg);

fcl ose(fp);
return 1,

#i f ndef _W NDOW6

/**

* |Interface function. *

* *

* This is not needed for Wndows.... *
* *

**/

#i nclude "pcnext.h"
#i ncl ude "assert.h"

void LogMsg_intf(int nParam void ** ppParans, EXTPARAMDESC * pDesc)

Chapter 7

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

i nt rc;

/* Some error checking */
assert (nParam == 2);

assert (pDesc[0] . eExt Type == EXTTYPE_STRI NG
&& pDesc[1] . eExt Type == EXTTYPE_STRI NG
&& pDesc[2] . eExt Type == EXTTYPE_I NT);

rc = LogMsg((char *)ppParans[0],
(char *)ppParans[1]);
*(int *)ppParans[2] = rc;
}

#endi f

PeopleCode and PeopleSoft Pure Internet Architecture

Updating the Installation and PSOPTIONS Tables

When an application updates either the PSOPTIONS or the Installation table it must call UpdateSysVersion
from the SavePreChange PeopleCode event. This way, updates take effect at the next page load. Otherwise,
the change does not take effect at the client workstation until the user signs out and signs back in.

Important! Only a database administrator or the equivalent should change these tables.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

153

Chapter 8

Using Methods and Built-In Functions

This chapter provides an overview of restrictions on method and function use and discusses how to:

« Implement modal transfers.

» Implement the multi-row insert feature.

» Usethe ImageReferencefield.

» Insert rows using PeopleCode.

« Useabject linking and embedding (OLE) functions.
» Usethe Select and SelectNew methods.

» Use standalone rowsets.

» Useerrorsand warnings.

+ Usethe RemoteCall feature.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions'

Understanding Restrictions on Method and Function Use

This section discusses:

« Think-time functions.

« WinMessage and MessageBox functions.

» Program execution with fields not in the data buffer.
» Errorsand warnings.

« DoSave function.

» Record class database methods.

« SQL class methods and functions.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

155

Using Methods and Built-In Functions Chapter 8

Component interface restricted functions.
Searchlnit PeopleCode function restrictions.
CallAppEngine function.

ReturnToServer function.

GetPage function.

GetGrid function.

Publish method.

SyncRequest method.

Think-Time Functions

156

Think-time functions suspend processing either until the user has taken some action (such as clicking a button
in amessage box) or until an external process has run to completion (for example, aremote process).

Avoid think-time functions in the following PeopleCode events:

SavePreChange.
Workflow.
RowSel ect.
SavePostChange.

Any PeopleCode event that executes as aresult of a ScrollSelect, ScrollSelectNew, RowScroll Select, or
RowsScroll SelectNew function call.

Any PeopleCode event that executes as aresult of a Select or SelectNew rowset method.

Violation of thisrule can result in application failure.

The following are think-time functions:

Callsto an external DLL.

DoCancel.

DoModal.

DoM odal Component.

Exec (thisis think-time only when synchronous).

File attachment functions AddAttachment, ViewAttachment, and DetachA ttachment.
Insertlmage.

Object functions, such as CreateObject, ObjectDoMethod, ObjectSetProperty, and ObjectGetProperty
(these are think-time only when the object requires user action).

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

« Prompt.

+ RemoteCall.

* RevalidatePassword.

» WinExec (think-time only when synchronous).

» WinMessage and MessageBox (depending on the style parameter).

WinMessage and MessageBox Functions

The WinMessage and MessageBox functions sometimes behave as think-time functions, depending on the
value passed in the function's style parameter, which controls, among other things, the number of buttons
displayed in the message dialog box.

Note. The style parameter isignored if the message has any severity other than Message.

Here is the syntax of both functions:
MessageBox(style, title, nmessage_set, nessage_num default _txt [, paranlist])

W nMessage(nessage [, style] [, title])

Note. The WinMessage function is supported for compatibility with previous releases of PeopleTools. New
applications should use MessageBox instead.

If the style parameter specifies more than one button, the function behaves as a think-time function and is
subject to the same restrictions as other think-time functions (that is, it should never be used from
SavePreChange through SavePostChange PeopleCode, or in RowSelect).

If the style parameter specifies a single button (that is, the OK button), then the function can be called in any
PeopleCode event.

Note. In the Microsoft Windows client, MessageBox dialog boxes include an Explain button to display more
detailed information stored in the message catalog. The presence of the Explain button has no bearing on
whether a message box behaves as a think-time function.

The style parameter is optional in WinMessage. If styleis omitted, WinMessage displays OK and Cancel
buttons, which causes the function to behave as a think-time function. To avoid this situation, always pass an
appropriate value in the WinM essage style parameter.

The following table shows the values that can be passed in the style parameter. To calculate the value to pass,
make one selection from each category in the table, then add the selections.

Category Value Constant Meaning

Buttons 0 %MsgStyle OK The message box
contains one button: OK.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 157

Using Methods and Built-In Functions

158

Chapter 8

Category

Value

Constant

Meaning

Buttons

%MsgStyle_ OK Cancel

The message box
contains two buttons; OK
and Cancel.

Buttons

%MsgStyle AbortRetryl
gnore

The message box
contains three buttons:
Abort, Retry, and Ignore.

Buttons

%MsgStyle Y esNoCance
I

The message box
contains three buttons:
Yes, No, and Cancel.

Buttons

%MsgStyle YesNo

The message box
contains two buttons; Y es
and No.

Buttons

%MsgStyle RetryCancel

The message box
contains two buttons:
Retry and Cancel.

Note. The following values for style can only be used in the Microsoft Windows client. They have no affect
in PeopleSoft Pure Internet Architecture.

Category Value Constant Meaning

Default Button 0 %MsgDefault_First Thefirst button isthe
default.

Default Button 256 %MsgDefault_Second The second button is the
default.

Default Button 512 %MsgDefault_Third The third button isthe
default.

Icon 0 %Msglcon_None None

Icon 16 %Msglcon_Error A stop-sign icon appears
in the message box.

Icon 32 %Msglcon_Query A question-mark icon

appears in the message
box.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Using Methods and Built-In Functions

Category Value Constant Meaning

Icon 48 %Msglcon_Warning An exclamation-point
icon appearsin the

message box.

Icon 64 %Msglcon_Info Anicon consisting of a
lowercase letter i ina
circle appearsin the

message box.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," MessageBox

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," WinMessage

Program Execution with Fields Not in the Data Buffer

Under certain conditions, when you access afield that is not in the data buffer, a portion of your PeopleCode
program is skipped. The skip occurs when:

« Thereferenceisin the Import Manager.
« Thereferenceisfrom the FieldDefault or FieldFormula events.

After the call to the invalid field, execution skips to the next top-level statement. Top-level statements are not
nested inside other statements. The start of a PeopleCode program is atop-level statement. Nesting begins
with the first conditional statement (such as While or If) or the first function call.

For example, if your codeis executing in afunction and insidean If ... then ... end-if statement, and it runs
into the skip conditions, the next statement executed is the one after the End-if statement, still inside the
function.

Errors and Warnings

Copyright

Errors and warnings should not be used in FidldDefault, FieldFormula, Rowlnit, FieldChange, Rowlnsert,
SavePreChange, WorkFlow, and SavePostChange PeopleCode events. An error or warning in these events
causes aruntime error that forces cancellation of the component.

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 159

Using Methods and Built-In Functions Chapter 8

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Warning

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Error

DoSave Function

Use DoSave only in Fieldedit, FieldChange, or MenultemSel ected PeopleCode events.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," DoSave

Record Class Database Methods

Y ou use the following record class methods to update the database:

Delete
Insert
Save
Update

Only use these methods in the following events (events that allow database updates):

SavePreChange

WorkFlow

SavePostChange

FieldChange

Application Engine PeopleCode action

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Record Class'

160

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Using Methods and Built-In Functions

SQL Class Methods and Functions

Use the SQL class to update the database. Use these functions and methods only in the following events
(eventsthat allow database updates):

SavePreChange

WorkFlow

SavePostChange

FieldChange

Application Engine PeopleCode action

Component Interface Restricted Functions

PeopleCode events and functions that relate exclusively to graphical user interfaces and online processing
cannot be used by component interfaces. These include:

Menu PeopleCode and pop-up menus.

The ItemSel ected and PrePopup PeopleCode events are not supported. In addition, the DisableM enultem,
EnableM enultem, and HideM enultem functions are not supported.

Transfers between components, including modal transfers.

The DoModal, EndModal, IsMaodal, Transfer, TransferPage, DoM odal Component, and
| sM odal Component functions cannot be used.

Cursor positioning by the SetCursorPos function.
The SetControlVVaue function.

The WinMessage function.

When executed using a component interface, these functions do nothing and return a default value.

Using the Transfer function terminates the current PeopleCode program.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Component I nterfaces, " Programming Component
Interfaces Using PeopleCode"

Searchlnit PeopleCode Function Restrictions

Y ou cannot use the following functions in Searchinit PeopleCode:

DoModd

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 161

Using Methods and Built-In Functions Chapter 8

» DoModal Component
» Transfer

« TransferPage

CallAppEngine Function
Use the Call AppEngine function only in events that allow database updates, because, generally, if you are
calling Application Engine, you intend to perform database updates. This category of eventsincludes the
following PeopleCode events:
» SavePreChange (Page)
» SavePostChange (Page)
« Workflow
+ FieldChange

CallAppEngine cannot be used in a Application Engine PeopleCode action. If you need to access one
Application Engine program from another Application Engine program, use the Call Section action.

See Also

Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Creating Application Engine Programs'

ReturnToServer Function
The ReturnToServer function returns a value from a PeopleCode application messaging program to the
publication or subscription server. You would use thisin either your publication or subscription routing code,
not in one of the standard Component Processor events.
See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker, "Managing Messages'

GetPage Function

The GetPage function cannot be used until after the Component Processor has loaded the page. Y ou should
not use this function in an event prior to the PostBuild event.

162 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," GetPage

GetGrid and GetAnalyticGrid Functions

PeopleSoft builds agrid onerow at atime. Because the grid and AnalyticGrid classes apply to a complete
grid, you cannot use either the GetGrid or GetAnalyticGrid functions in an event prior to the Activate event.

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," GetGrid

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Grid Classes'

Publish Method

If you are using PeopleSoft Integration Broker, your sending PeopleCode should go in the SavePostChange
event, for either the record or the component.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker, "Managing Messages'

SyncRequest Method

If you are using PeopleSoft Integration Broker, your SyncRequest PeopleCode should go in the
SavePostChange event, for either the record or the component.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker, "Managing Messages'

Implementing Modal Transfers

This section provides an overview of modal transfers and discusses how to implement modal transfers.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 163

Using Methods and Built-In Functions Chapter 8

Understanding Modal Transfers

164

When you use modal transfers to transfer from one component (the originating component) to another
component (the modal component), the user must click the OK or Cancel buttons on the modal component
before returning to the originating component.

Modal transfers provide some control over the order in which the user fillsin pages, which is useful where
data in the originating component can be derived from data entered by the user into the modal component.

Limit use of this feature, as it forces users to compl ete interaction with the modal page before returning to the
main component.

Note. Modal transfers cannot be initiated from Searchlnit PeopleCode.

A modal component resembles a Microsoft Windows modal dialog box. It displays three buttons; OK,
Cancel, and Apply. No toolbars or windows are available while the modal component has the focus. The OK
button saves changes to the modal component and returns the user to the originating component. The Apply
button saves changes to the modal component without returning to the originating component. The Cancel
button returns the user to the originating component without saving changes to the modal component.

Modal components are generally smaller than the page from which they are invoked. Remember that OK and
Cancel buttons are added at runtime, thus increasing the size of the pages.

The originating component and the modal component share record fields in a derived/work record called a
shared work record. The derived/work fields of this record provide the two components with an areain
memory where they can share data. Edit boxes in both components are associated with the same derived/work
field, so that changes made to this field in the originating component are reflected in the modal component,
and vice versa. The following diagram illustrates this shared memory:

DerivedWork
Record Field

v v

Edit Box an Model Edit Bax an Criginating
Component Component

Edit boxes on the originating and modal components share the same data

Edit boxes associated with the same derived/work fields must be placed at level zero in both the originating
component and the modal component.

Y ou can use the shared fields to:

» Passvalues assigned to the search keys in the modal component search record.

If these fields are missing or invalid, the search page appears, enabling the user to enter search keys.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

» Pass other values from the originating component to the modal component.

+ Passvalues back from the modal component to the originating component.

Implementing Modal Transfers

Any component accessible through an application menu system can be accessed using a modal transfer.
However, to implement a modal transfer, you must modify pages in both the originating component and the
modal component. After these modifications are complete, you can implement the modal transfer using the
DoM odal Component function from a page in the originating component.

Before beginning this process, you should answer the following questions:

« Should the originating component provide search key values for the modal component?
If so, what are the search keys? (Check the modal component's search record.)
» Doesthe originating component need to pass any data to the modal component?
If so, what record fields are needed to store this data?
» Doesthe modal component need to pass any data back to the originating component?
If so, what record fields are needed to store this data?
To implement amodal transfer:
1. Create derived/work record fields for sharing data between the originating and modal components.

Create a new derived/work record or open an existing derived/work record. If suitable record fields exist,
you can use them; otherwise create new record fields for any data that needs to be shared between the
components. These can be search keys for the modal component, data to pass to the modal component, or
data to pass back to the originating component.

2. Add derived work fields to the level-zero area of the originating component.

Add one edit box for each of the derived/work fields that you need to share between the originating and
modal components to the level-zero area of the page from which the transfer will take place. You
probably want to make the edit boxesinvisible.

3. Add the same derived work fields to the level-zero area of the modal component.

Add one edit box for each of the edit boxes that you added in the previous step to the level-zero area of
the page to which you are transferring. Y ou probably want to make the edit boxes invisible.

4. Add PeopleCode to pass values into the derived/work fields in the originating component.

To provide search key values or pass data to the modal page, write PeopleCode that assigns appropriate
values to the derived/work fields before DoM odal Component is called.

For example, if the modal component search key is PERSONAL_DATA.EMPLID, you could place the
following assignment statement in the derived/work field's Rowlnit event:

EMPLI D = PERSONAL_DATA. EMPLI D

Y ou also might assign these values in the same program where DoM odal Component is called.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 165

Using Methods and Built-In Functions Chapter 8

5. Add PeopleCode to access and change the derived/work fields in the modal component.

No PeopleCode is required to pass search key values during the search. However, if other data has been
passed to the modal component, you may need PeopleCode to access and use the data. Y ou may also need
to assign new valuesto the shared fields so that they can be used by the originating component.

It is possible that the component was accessed through the menu system and not through a modal transfer.
To write PeopleCode that runs only in the component when it is running modally, use the
IsModa Component function:

I f | sMdal Conmponent () Then

/* Peopl eCode for nodal execution only. */
End- | f

6. Add PeopleCode to access changed derived/work fields in the originating component.

If the modal component has altered the data in the shared work fields, you can write PeopleCode to access
and use the data after DoM odal Component has executed.

Note. Y ou can use the EndM odal Component function as a programmatic implementation of the OK and
Cancel buttons.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," DoM odal Component

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," 1sModal

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," EndM odal Component

Implementing the Multi-Row Insert Feature

166

Enabling the multi-row insert feature in grids or scroll areas can reduce response times for transactions that
usually require entering many rows of data. With the multi-row feature, users specify the number of rowsto
add to agrid or scroll area, and empty rows appear for data entry.

This feature cannot be used with effective-dated grids or scroll areas. In addition, the feature may not apply if
the entire row is populated using PeopleCode, especially if the datais copied from prior rows. If the feature
does apply in this case, the default value of the ChangeOnlinit property can be used (the default valueis True,
which means any PeopleCode updates done in the Rowlnit or RowlInsert events set the IsChanged and IsNew
propertiesto True).

To use the multi-row insert feature:
1. Specify deferred mode processing.

The multi-row feature reduces transaction times by eliminating excess server trips. To take full advantage
of this feature, the transaction should be set to execute in deferred mode. Deferred mode should be set for
the component, all pages in the component, and all fields on those pages.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

2.

Using Methods and Built-In Functions

Enable the multi-row feature.

For each grid or scroll area where appropriate, select the Allow Multi-row Insert check box under the Use
tab in the grid or scroll area property sheet.

Add ChangeOnlnit PeopleCode.

Setting the ChangeOninit property for arowset to False enables PeopleCode to modify datain the rowset
during Rowlnit and Rowlnsert events without flagging the rows as changed. This ensures that only user
changes cause the affected row to be saved.

Note. Each rowset that is referenced by agrid or scroll areawith the multi-row feature enabled should
have the ChangeOnlnit property for the rowset set to False. This includes lower-level rowsets. In addition,
this property must be set prior to any Rowlnsert or Rowlnit PeopleCode for the affected row.

Empty rows at save.

After atransaction is saved, any empty rows are discarded before the page is redisplayed to the user. An
empty row means that the user did not access the data because PeopleCode or record defaults may have
been used to initialize the row for the initial display.

Note. PeopleCode save processing (SaveEdit and SavePreChange) PeopleCode executes for all rowsin
the buffer (including the empty ones). Therefore, SaveEdit and SavePreChange PeopleCode should be
coded so that it is executed only if the field contains data, or if the row properties IsNew and 1sChanged
are both True. An alternative method is adding PeopleCode in the first save program in the component, to
explicitly delete any row based on the IsNew and |sChanged properties. If you choose this method, then
rows should be deleted from the bottom of the data buffer to the top (last row first).

See Also

Chapter 6, "PeopleCode and the Component Processor," Deferred Processing Mode, page 127

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Rowset Class," ChangeOninit

Using the ImageReference Field

To associate an image definition with afield at runtime, the field has to be of type ImageReference. An
example of thisisreferencing ared, yellow, or green light on a page, depending on the context.

To change the image value of an ImageReference field:

1
2.

Create afield of type ImageReference.

Create the images you want to use.

These images must be saved in PeopleSoft Application Designer as image definitions.
Add thefield to arecord that will be accessed by the page.

Add an image control to the page and associate the image control with the ImageReference field.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 167

Using Methods and Built-In Functions

5. Assignthefield value.

Use the keyword | mage to assign a value to the field. For example:

Local Record &WRec;
A obal Nunber &WResult;

&WRec = Get Record();
I f &WResult Then

&WRec. Myl mageFi el d. Val ue = | mage. THUVBSUP;

El se

&WRec. Myl mageFi el d. Val ue = | mage. THUVBSDOWN,;

End- I f;

See Also

Chapter 8

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating

Field Definitions"

Inserting Rows Using PeopleCode

168

When inserting rows using PeopleCode, you can either use the Insert method with arecord object or create a
SQL Insert statement using the SQL object. If you do a single insert, use the Record Insert method. If you are
in aloop and,therefore, calling the insert more than once, use the SQL object. The SQL object uses dedicated

cursors and, if the database you are working with supportsit, bulk insert.

A dedicated cursor means that the SQL gets compiled only once on the database, so PeopleT ools looks for

the meta-SQL only once. This can increase performance.

For bulk insert, inserted rows are buffered and sent to the database server only when the buffer isfull or a
commit occurs. This reduces the number of round-trips to the database. Again, this can increase performance.

Thefollowing is an example of using the Record Insert method:

&REC = Creat eRecord(Record. GREG) ;
&REC. DESCR. Val ue = "Y" | &l;
&REC. EMPLI D. Val ue = &l;

&REC. | nsert();

The following is an example using a SQL object to insert rows:

&SQL Creat eSQ.("% NSERT(: 1)");
&REC = Creat eRecord(Record. GREG) ;
&SQL. Bul kMbde = True;
For & =1 to 10
&REC. DESCR. Val ue = "Y"
&REC. EMPLI D. Val ue = &l ;
&SQL. Execut e(&REC) ;
End- For ;

| &

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Record Class," Insert
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "SQL Class'

Using OLE Functions

This section provides an overview of OLE functions and discusses how to:
» Usethe Object datatype.
« Shareasingle object instance.

« Usethe Exec and WinExec functions.

Understanding OLE Functions

OLE automation is a Microsoft Windows protocol that enables one application to control another's operation.
The applications communicate by means of an OLE object. One of the applications (called the automation
server) makes available an OLE object that the second application (the client application) can use to send
commands to the server application. The OLE object has methods associated with it, each of which
corresponds to an action that the server application can perform. The client runs the methods, which cause the
server application to perform the specified actions.

PeopleCode includes a set of functions that enable your PeopleCode program to be an OLE client. You can
connect to any application that's registered as an OLE automation server and invoke its methods.

Note. Differencesin Microsoft Windows applications from one release to the next (that is, properties
becoming methods or vice versa) can cause problems with the ObjectGetProperty, ObjectSetProperty and
ObjectDoMethod functions.

See the documentation for the OL E-automated application.
See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions”

Using the Object Data Type
To support OLE, PeopleCode has a special data type, Object, which it uses for OLE objects. The purpose of

the Object data typeisto hold OLE objects during the course of a session so that you can run its methods.
Y ou cannot store Object data for any extended period of time.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 169

Using Methods and Built-In Functions Chapter 8

Important! Object isavalid data type for variables, but not for record fields. Because OLE objects are by
nature temporary, you cannot store Object datain arecord field, including work record fields.

Some OL E object methods return data to the client. Y ou can use such methods to get data from the
automation server, if the method returns the data in a PeopleCode-supported data type. If the method returns
datain an spreadshest, for example, you cannot accept the data, because PeopleCode does not support
spreadsheets.

Sharing a Single Object Instance

When you need the services of an OLE automation server, you create an instance of its OLE object, using the
CreateObject function. After you have the object, you can run its methods as often as you like. Y ou do not
need to create a new instance of the object each time.

In atypical scenario, you have a PeopleSoft component that needs to access Microsoft Excel or Word, or
some other automation server, perhaps one you have created yourself. Various PeopleCode programs
associated with the component must run OL E object methods.

Rather than create a new instance of the OLE object in each PeopleCode program, you should create one
instance of the OLE object in a PeopleCode program that runs when the component starts (such as Rowlnit)
and assign it to aglobal variable. Then, any PeopleCode program can reference the object and invoke its
methods.

Using the Exec and WinExec Functions

The WinExec and Exec built-in functions provide another way to start another application from PeopleCode.
Unlike the OLE functions, however, Exec and WinExec do not enable you to control what actions the
application takes after you start it. Y ou can start the application, and if you use the synchronous option you
can find out when it closes, but you cannot affect its course or receive any datain return.

WinExec is appropriate in two situations:
+ When you want to start an application and continue processing.
» When you have a short, unvarying process that you want to run, such as copying afile.

The Exec function, unlike WinExec and the OLE functions, is not Microsoft Windows-specific. You can run
it on an application server to call an executable on the application server platform, which in PeopleTools
release 7 and later can be either Windows NT or UNIX.

Important! If you use the WinExec function with its synchronous option, the PeopleCode program (and the
PeopleSoft application) remain paused until the called program is complete. If you start a program that waits
for user input, such as Notepad, the application appears to hang until the user closes the called program. The
synchronous option aso imposes limits on the PeopleCode.

170 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Exec

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," WinExec

Using the Select and SelectNew Methods

This section provides an overview of the Select method and discusses how to use the Select method.

Understanding the Select and SelectNew Methods

The Select and SelectNew methods, like the Scroll Select functions, enable you to control the process of
selecting datainto a page scroll area. The Select method selects rows from atable or view and adds the rows
to either arowset or arow. Let's call the record definition of the table or view that it selected from the select
record. Let's call the primary database record of the top-level rowset object executing the method the default
scroll record.

The select record can be the same as the default scroll record, or it can be a different record definition that has
the same key fields as the default scroll record. If you define a select record that differs from the default scroll
record, you can restrict the number of fields loaded into the buffers by including only the fields you actually
need.

Y ou can use these methods only with arowset. A rowset can be thought of as a page scroll area.

A level zero rowset starts at the top level of the page, level zero, and contains al the datain the component
buffers. A child rowset is contained by an upper-level rowset, also called the parent rowset. For example, a
level one rowset could be considered the child rowset of alevel zero, or parent, rowset. Or alevel two rowset
could be the child rowset of alevel one rowset. The data contained in a child rowset depends on the row of
the parent rowset.

When arowset is selected into, any autoselected child rowsets are also read. The child rowsets are read using
aWhere clause that filters the rows according to the Where clause used for the parent rowset, using a
Subselect.

The Select method automatically places child rowsets in the rowset object executing the method under the
correct parent row. If it cannot match a child rowset to a parent row, an error occurs.

The Select method also accepts an optional SQL string that can contain a Where clause restricting the number
of rows selected into the scroll area. The SQL string can also contain an Order By clause, enabling you to sort
the rows.

The Select and SelectNew methods generate an SQL Select statement at runtime, based on the fields in the
select record and the Where clause passed to them in the function call. This gives Select and SelectNew a
significant advantage over the SQL Exec function: they enable you to change the structure of the select record
without affecting the PeopleCode program, unlessthe field affected is referred to in the Where clause string.
This can make the application easier to maintain.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 171

Using Methods and Built-In Functions Chapter 8

Also, if you use one of the meta-SQL constructs or shortcuts in the Where clause, such as %K eyEqual or
%List, even if afield has changed, you do not have to change your code.

Unlike the Scroll Select functions, neither Select or SelectNew allow you to operate in turbo mode.

Note. In addition to these methods, the SelectByK ey record class method enables you to select into arecord
object. If you're only interested in selecting a single row of data, consider this method instead.

See Also

Chapter 5, "Accessing the Data Buffer," page 67

Using the Select Method

172

The syntax of the Select method is:

Select([parmist], RECORD.selrecord [, wherestr, bindvars]);
Where paramlist isalist of child rowsets, given in the following form:

SCROLL. scrol | nanel [SCROLL., scroll nane2]

The first scrollname must be a child rowset of the rowset object executing the method, the second scrollname
must be a child of the first child, and so on.

This syntax does the following:

« Specifies an optional child rowset into which to read the selected rows.
« Specifiesthe select record from which to select rows.

» Passes astring containing a SQL Where clause to restrict the selection of rows or an Order By clause to
sort the rows, or both.

Specifying Child Rowsets

Thefirst part of the Select syntax specifies a child rowset into which rows are selected. This parameter is
optional.

If you do not specify any child rowsets in paramlist, Select selects from a SQL table or view specified by
selrecord into the rowset object executing the method. For example, suppose you've instantiated alevel one
rowset &BUS _EXPENSES PER. The following would select into this rowset:

Local Rowset &BUS EXPENSES PER

&BUS EXPENSES PER = Get Rowset (SCROLL. BUS_EXPSNESE_PER) ;
&BUS_EXPENSES_PER. Sel ect (RECORD. BUS_EXPENSE_VW

"WHERE SETID = :1 and CUST_ID = :2", SETID, CUST_ID);

If the rowset executing the method is alevel zero rowset, and you specify the Select method without
specifying any child rowsets with paramlist,, the method reads only a single row, because only one row is
allowed at level zero.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Note. For developers familiar with previous rel eases of PeopleCode: In this situation, the Select method is
acting like the RowScroll Select function.

If you specify achild rowset in paramlist, the Select method selects from a SQL table or view specified by
selrecord into the child rowset specified in paramlist, under the appropriate row of the rowset executing the
method.

In the following example, rows are selected into a child rowset BUS EXPENSE_DTL, matching level-one
keys, and with the charge amount equal to or exceeding 200, sorting by that amount:

Local Record &REC EXP;
Local Rowset &BUS EXPENSE PER

&REC _EXP = Cet Recor d(RECORD. BUSI NESS_EXPENSE_PER,;
&BUS_EXPENSE_PER = Get Rowset (SCROLL. BUS_EXPSNESE_PER) ;
&BUS_EXPENSE_PER. Sel ect (SCRO_L BUS_EXPENSE_DTL,

RECORD. BUS_EXPENSE _DTL, "WHERE %KeyEqual (: 1) AND EXPENSE_AMI'
>= 200 ORDER BY EXPENSE_AMI", &REC_EXP);

Specifying the Select Record

The record definition of the table or view being selected from is called the select record, and identified with
RECORD.selrecord.. The select record can be the same as the primary database record associated with the
rowset executing the method, or it can be a different record definition that has compatible fields.

The select record must be defined in PeopleSoft Application Designer and be a built SQL table or view (using
Build, Project), unless the select record is the same record as the primary database record associated with the
rowset.

The select record can contain fewer fields than the primary record associated with the rowset, athough it
must contain any key fields to maintain dependencies with other records.

If you define a select record that differs from the primary database record for the rowset, you can restrict the
number of fieldsthat are loaded into the buffers on the client work station by including only the fields you
actually need.

The Where Clause

The Select method accepts a SQL string that can contain a Where clause restricting the number of rows
selected into the object. The SQL string can also contain an Order By clause to sort the rows.

Select and SelectNew generate a SQL Select statement at runtime, based on the fields in the select record and
the Where clause passed to them in the method parameters.

To avoid errors, the Where clause should explicitly select matching key fields on parent and child rows. Y ou
do this using the %K eyEqual meta-SQL.
Select Like RowScrollSelect

If the rowset executing the method is alevel zero rowset, and you specify Select without specifying any child
rowsets with paramlist, the method reads only a single row, because only one row is allowed at level zero.

Note. For developers familiar with previous rel eases of PeopleCaode: In this situation, the Select method is
acting like the RowScroll Select function.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 173

Using Methods and Built-In Functions Chapter 8

If you qualify the lower-level rowset so that it only returns one row, it acts like the RowScroll Sel ect method.

&RSLVL1 = Get Rowset (SCROLL. PHYSI CAL_I NV) ;
&RSLVL2 = &RSLVL1(&PHYSI CAL_ROW . Get Rowset (SCROLL. PO RECEI VED | NV) ;
&REC2 = &RSLVL2. PO RECEI VED | NV;
If &PO ROW = 0 Then
&RSLVL2. Sel ect (PO_RECEI VED_I NV, "WHERE %KeyEqual (: 1)
and qty_available > 0", &REC2);
End-if;

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %K eyEqual

Using Standalone Rowsets

This section provides an overview of standal one rowsets and discusses how to:
e UsetheFill rowset method.

» Usethe CopyTo rowset method.

+ Add child rowssts.

+ Use standalone rowsets to write afile.

o Usestandalone rowsetsto read afile.

Understanding Standalone Rowsets

174

Standal one rowsets are not associated with a component or page. Use them to work on data that is not
associated with a component or page buffer.In earlier releases, this was done using derived work records. Y ou
still must build work pages.

Note. Standalone rowsets are not connected to the Component Processor, so there are no database updates
when they are manipulated. Delete and insert actions on these types of rowsets are not automatically applied
a savetime.

As with any PeopleTools object, the scope of standalone rowsets can be Local, Global, or Component.
Consider the following code:

Local Rowset &MYRS;
&WRS = Creat eRowset (RECORD. SOVEREC) ;

This code creates a rowset with SOMEREC as the level zero record. The rowset is unpopulated. Functionally,
it isthe same as an array of rows.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Using the Fill Method

The Fill method fills the rowset by reading records from the database, by first flushing out all the contents of
the rowset. A Where clause must be provided to get all the relevant rows.

Local Rowset &MYRS;
Local String &EMPLID;

&WRS = Creat eRowset (RECORD. SOVEREC) ;
&EMPLID = ' 8001';

&WRS. Fil | ("where EMPLID = :1", &EMPLID);

Use the Fill method with standal one rowsets, created using the CreateRowset function. Do not use Fill with
component buffer rowsets.

Using the CopyTo Method

The CopyTo method copies like-named fields from a source rowset to a destination rowset. To perform the
copy, it uses like-named records for matching, unless specified. It works on any rowset except the
Application Engine state records. The following is an example:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLI D;

&WYRS1
&MYRS2

Cr eat eRowset (RECORD. SOVEREC) ;
Cr eat eRowset (RECORD. SOVEREC) ;

&EMPLID = ' 8001';

&MWRSL. Fi | | ("where EMPLID = : 1", &EMPLID);
&MYRSL. CopyTo(&MYRS2) ;

After running the previous code segment, & MY RS2 contains that same data as & MY RS1. Both & MYRS1
and & MY RS2 were built using like-named records.

To use the CopyTo method where there are no like-named records, you must specify the source and
destination records. The following code copies only like-named fields:

Local Rowset &MYRS1, MYRS2;
Local String &EMPLI D;

&WYRS1
&MYRS2

Cr eat eRowset (RECORD. SOVEREC]) ;
Cr eat eRowset (RECORD. SOVEREC?) ;

&EMPLID = ' 8001';

&WRSL. Fil | ("where EMPLID = : 1", &EMPLID);
&MYRS1. CopyTo(&MYRS2, RECORD. SOVEREC1, RECORD. SOVEREC?) ;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 175

Using Methods and Built-In Functions Chapter 8

Adding Child Rowsets

Thefirst parameter of the CreateRowset method determines the top-level structure. If you pass the name of
the record as the first parameter, the rowset is based on arecord. Y ou can aso base the structure on a
different rowset. In the following example, & MY RS2 inherits the structure of & MY RSL:

Local Rowset &MYRS1, MYRS2;

&MYRS1
&MYRS2

Cr eat eRowset (RECORD. SOVEREC]) ;
Cr eat eRowset (&WMYRS1) ;

To add a child rowset, suppose the following records describe a relationship. The structure is made up of
three records:

+ PERSONAL_DATA

+ BUS_EXPENSE_PER

 BUS EXPENSE DTL

To build rowsets with child rowsets, use code like the following:
Local Rowset &rsBusExp, & sBusExpPer, & sBusExpDtl;
&r sBusExpDt | Cr eat eRowset (Recor d. BUS_EXPENSE_DTL) ;

&r sBusExpPer Cr eat eRowset (Recor d. BUS_EXPENSE_PER, &r sBusExpDtl);
& sBusExp = Creat eRowset (Recor d. PERSONAL_DATA, &r sBusExpPer);

Another variation is

& sBusExp = Creat eRowset (Recor d. PERSONAL _DATA,
Cr eat eRowset (Recor d. BUS_EXPENSE_PER,
Cr eat eRowset (Recor d. BUS_EXPENSE DTL)));

Using Standalone Rowsets to Write a File

176

The following is an example of using standal one rowsets along with afile layout to write afile:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

@ EMPLID

US_EXP_0OUT (File Layout)

PERSOMAL DATA,

& NAME

{Z) BUS_EXPEMSE_PER

----- & EMPLID

----- @ EXPENSE_PERIOD_DT
----- @ SUBMIT_FLG

----- & INTL_FLG

----- & APPR_STATUS

----- & APPR_INSTANCE

----- & COMMENTS

=-{Z) BUS_EXPENSE_DTL

----- & EMPLID

----- & EXPENSE_PERIOD_DT
----- & CHARGE DT

----- & EXPEMSE_CD

----- & EXPENSE_AMT

----- & CURRENCY CD

----- & BUSINESS_PURPOSE
----- & DEPTID

File layout example

Using Methods and Built-In Functions

The following example writes afile using afile layout that contains parent-child records:

177

Using Methods and Built-In Functions Chapter 8

178

Local File &MWYFILE;

Local Rowset &rsBusExp, & sBusExpPer, & sBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQ.1, &SQ.2, &SQ3;

& BusExp = Creat eRecor d(Recor d. PERSONAL_DATA) ;
&r BusExpPer Creat eRecor d(Recor d. BUS_EXPENSE_PER) ;
&r BusExpDt | Creat eRecor d(Recor d. BUS_EXPENSE _DTL) ;

& sBusExp = Creat eRowset (Recor d. PERSONAL DATA,
Cr eat eRowset (Recor d. BUS_EXPENSE_PER,

Cr eat eRowset (Record. BUS_EXPENSE_DTL))) ;

& sBusExpPer = &r sBusExp. Get Row(1) . Get Rowset (1) ;

&WFILE = GetFile("c:\tenp\BUS EXP.out", "W, 9%-ilePath_Absol ute);
&WYFI LE. Set Fi | eLayout (Fi | eLayout . BUS_EXP_OUT) ;

&EMPLI D = "8001";

&sqL1
&SQL2

CreateSQ.("%sel ectal | (: 1) where EMPLID
D

: 2", & BusExp, &EMPLID);
CreateSQ.("%sel ectal | (: 1) where EMPLI : 2",

& BusExpPer, &EMPLID);

VWil e &SQL1. Fet ch(& BusExp)
&r BusExp. CopyFi el dsTo(& sBusExp. Get Row(1) . PERSONAL_DATA) ;
&l = 1;
Wi | e &SQL2. Fet ch(& BusExpPer)
& BusExpPer . CopyFi el dsTo(& sBusExpPer (&). BUS_EXPENSE_PER) ;
&) = 1,
&SQAL3 = CreateSQ("%electall(:1) where EMPLID = :2
and EXPENSE_PERI OD DT = :3", & BusExpDtl, &EMPLID,
&r sBusExpPer (&) . BUS_EXPENSE_PER. EXPENSE_PERI OD_DT. Val ue) ;
& sBusExpDt| = & sBusExpPer. Get Rom &l). Get Rowset (1) ;
Wi | e &SQL3. Fet ch(& BusExpDt 1)
& BusExpDt | . CopyFi el dsTo(& sBusExpDt | (&J) . BUS_EXPENSE_DTL) ;
& sBusExpDt| . | nsert Row &J) ;
&) = &3 + 1;
End- Wi | e;

& sBusExpPer . | nsert Row &l) ;
& =&l + 1;
End- Wi | e;
&WYFI LE. Wit eRowset (& sBusExp) ;
End- Wi | e;
&WYFI LE. d ose();

The previous code generates the following output file.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

AA8001 Schumacher, Si non

BB8001 06/ 11/ 1989YNAO

CCs8001 06/ 11/ 1989

06/ 01/ 198908226. 83

10100

BB8001 08/ 31/ 1989YNAO

CC8001 08/ 31/ 198908/ 11/ 1989012401. 58
10100

CC8001 08/ 31/ 198908/ 12/ 198904250. 48
10100

CCs8001 08/ 31/ 198908/ 12/ 198902498. 34
10100

BB8001 03/ 01/ 1998YYPO

CC8001 03/ 01/ 199802/ 15/ 1998011200
00001

CC8001 03/ 01/ 199802/ 16/ 19980220000
00001

BB8001 05/ 29/ 1998NNPO Annual Subscription
CC8001 05/ 29/ 199805/ 29/ 199814125. 93
10100

BB8001 08/ 22/ 1998NNPO

CC8001 08/ 22/ 199808/ 22/ 19981045. 69
10100

CC8001 08/ 22/ 199808/ 22/ 19980912. 44
10100

BB8001 12/ 12/ 1998NNPO Custoner Visit:
CC8001 12/ 12/ 199812/ 02/ 199801945. 67
00001

CCs8001 12/ 12/ 199812/ 02/ 19981010. 54
00001

CC8001 12/ 12/ 199812/ 03/ 19980610
00001

CC8001 12/ 12/ 199812/ 03/ 199804149. 58
00001

CCs8001 12/ 12/ 199812/ 04/ 1998055. 65
00001

CC8001 12/ 12/ 199812/ 04/ 19980988
00001

CC8001 12/ 12/ 199812/ 04/ 199802246. 95
00001

CC8001 12/ 12/ 199812/ 04/ 199803135. 69
See Also

Using Methods and Built-In Functions

Cust oner CGo-Live Cel ebration

USDEntertain Clients =

Cust omer Focus G oup Meeting

USDCust oner Visit

USDCust onrer Vi si t

USDCust orrer Vi si t

Attend Asi a/ Paci fic Conference

USDConf er ence

JPYConf er ence

USDSof t war e, | nc.

Regi onal Users G oup Meeting

USDDri ve to Meeting

USDCi ty Par ki ng

Nevco

USDCust oner Feedback
USDTo Airport
USDAI r port Tax
USDCust oner Feedback
USDCheck Voi cerai
USDAI r port Par ki ng

USDCust orrer Feedback

USDCust oner Feedback

00001

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, " Constructing

File Layouts and Performing Data I nterchanges"

Using Standalone Rowsets to Read a File

The following code shows an example of reading in afile and inserting the rows into the database:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

179

Using Methods and Built-In Functions Chapter 8

Local File &MWYFILE;

Local Rowset &rsBusExp, & sBusExpPer, & sBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;
Local SQL &SQL1;

& BusExp = Creat eRecor d(Recor d. PERSONAL_DATA) ;
&r BusExpPer Creat eRecor d(Recor d. BUS_EXPENSE_PER) ;
&r BusExpDt | Creat eRecor d(Recor d. BUS_EXPENSE _DTL) ;

& sBusExp = Creat eRowset (Recor d. PERSONAL DATA,
Cr eat eRowset (Recor d. BUS_EXPENSE_PER,
Cr eat eRowset (Record. BUS_EXPENSE_DTL))) ;

&WFILE = GetFile("c:\tenp\BUS EXP.out", "R', 9%-il ePath_Absol ute);
&WYFI LE. Set Fi | eLayout (Fi | eLayout . BUS EXP_QOUT) ;

&Q.1 = CreateSQ("%nsert(:1)");

& sBusExp = &WYFI LE. ReadRowset () ;
Wil e & sBusExp <> Nul | ;
& sBusExp. Get Row 1) . PERSONAL_DATA. CopyFi el dsTo(& BusExp) ;
& sBusExpPer = &rsBusExp. Get Row(1) . Get Rowset (1) ;
For & = 1 To & sBusExpPer. Acti veRowCount
&r sBusExpPer (&) . BUS_EXPENSE_PER. CopyFi el dsTo(& BusExpPer) ;
& BusExpPer . Execut eEdi t s(%Edi t _Requi r ed) ;
| f & BusExpPer.|sEditError Then
For & = 1 To & BusExpPer. Fi el dCount
&MWYFI ELD = &r BusExpPer . Get Fi el d(&K) ;
| f &MWYFI ELD. Edi t Error Then

&VBGNUM = &MWYFI ELD. MessageNunber ;
&VBGSET = &MWYFI ELD. MessageSet Nunber ;
End- | f;
End- For ;

El se
&SQL1. Execut e(& BusExpPer) ;
& sBusExpDt| = & sBusExpPer. Get Rom &l). Get Rowset (1) ;
For & = 1 To & sBusExpDtl| . Acti veRowCount
& sBusExpDt | (&J) . BUS EXPENSE DTL. CopyFi el dsTo(& BusExpDtl);
& BusExpDt | . Execut eEdi t s(%&di t _Requi red) ;
| f & BusExpDtl.|sEditError Then
For & = 1 To & BusExpDtl. Fi el dCount
&WFI ELD = &r BusExpDt! . Get Fi el d(&K) ;
| f &WFI ELD. Edi t Error Then
&VBANUM = &MWYFI ELD. MessageNunber ;
&VBGSET = &MYFI ELD. MessageSet Nunber ;
End- I f;
End- For ;
El se
&SQL1. Execut e(& BusExpDt 1) ;
End- | f;
End- For ;
End- I f;
End- For ;
& sBusExp = &MWYFI LE. ReadRowset () ;
End- Wi | e;
&WYFI LE. d ose();

180 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

Using Errors and Warnings

For the most part, errors and warnings display messages to users informing them about invalid data. For this
reason, they are almost always placed in FieldEdit or SaveEdit PeopleCode, or in SearchSave PeopleCode for
validation during search processing. In conjunction with edits, errors stop processing, while warnings allow
processing to continue. When errors and warnings appear in places other than FieldEdit or SaveEdit, their
effectsvary.

This section discusses how to:

« Useerrors and warning syntax.

» Useerorsand warningsin edit events.

» Useerrors and warnings in RowSelect events.
» Useerrors and warnings in RowDelete events.

» Useerrorsand warningsin other events.

Using Error and Warning Syntax

Errors and warnings require only a message that the Component Processor displays to users. Y ou can code
the message into the error or warning statement, or you can use the message catal og. Use the message catalog
with the MsgGet, MsgGetExplainText, and similar functions.

Errors and warnings use the same syntax. For example:

Error MsgGet (11100, 180, "Message not found.");
Warni ng MsgGet (11100, 180, "Message not found.");

Using Errors and Warnings in Edit Events

Y ou can use the following PeopleCode events for validation edits: FieldEdit and SaveEdit. The Component
Processor applies FieldEdit when the user changes afield, and SaveEdit when the user saves a component.
Errors and warnings in these events display a message. Most errors and warnings appear in these event types,
although you can use errors and warnings el sewhere.

FieldEdit Event Errors

Y ou can use either the record field or component record field event. The record field event for each record
runs before the component record field event for that record.

An error in FieldEdit prevents the system from accepting the new value of afield. The Component Processor
highlights the problem field. The user must either change the field back to its original value or to something
else which does not trigger the error. A warning enables the Component Processor to accept the new data.
The Component Processor does not highlight afield that has warnings.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 181

Using Methods and Built-In Functions Chapter 8

SaveEdit Event Errors

Y ou can use the record field or the component record event. All record field events for arecord run before the
component record events.

An error in SaveEdit prevents the system from saving any row of data. The Component Processor does not
update the database for any field if one field has an error. Although the Component Processor displays an
error message, it does not turn any field red. Unlike FieldEdit errors, SaveEdit errors can happen anywhere on
apage or component, for any row of data. The data causing the error may appear on a different page within
the same group, or arow of data not currently displayed. If thisisthe case, thefield in error is brought into
view by the system.

A warning in SaveEdit also is applied to all datain the page or component, but the Component Processor will
accept the data, if told to by the user. In a FieldEdit warning, the Component Processor displays a message
box with the text and two buttons: OK and the standard Explain (the Explain button returns an explanation for
the last message retrieved with the MsgGet function). In a SaveEdit warning, the message box contains an
additional button, Cancel. OK accepts the data, overriding the warning and continuing the save process.
Cancel ends the save process.

Because errors and warnings apply to al rows of dataand all pagesin a group, you must provide the user
explicit information about what caused the error. Typically, you use the message catalog function to store
messages and substitute variables into them. However, you can also facilitate this by concatenating in afield
value. For example, if you have a stack of historical data on the page, you could use the following error
statement:

Error ("The value exceeds the maxi mumon "|effdt|".");

Using Errors and Warnings in RowSelect Events

RowSelect PeopleCode filters out rows of data after the system applies search record criteria. It also can stop
the Component Processor from reading additional rows of data.

Note. Errors and warnings should no longer be used in RowSelect processing; instead, use DiscardRow and
StopFetching. The behavior of errors and warnings in RowSelect PeopleCode is retained for compatibility
with previous releases of PeopleTools.

A warning causes the Component Processor to reject the current row, but the Component Processor continues
reading more data. An error prevents more data coming into the page or component. The Component
Processor accepts the row that causes the error, but does not read any more data. To reject the current row and
stop loading additional rows, issue awarning and an error.

Y ou must specify text for an error or warning, but the Component Processor does not display messages from
RowSelect. Y ou can still use the message text as away of documenting the program.

182 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

See Also

Chapter 11, "Accessing PeopleCode and Events,” page 219

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," DiscardRow

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," StopFetching

Using Errors and Warnings in RowDelete Events

When you delete arow of data, the system prompts you to confirm. If you confirm, any record field
RowDel ete PeopleCode runs, and any component record RowDel ete PeopleCode al so runs. Errors and
warnings in RowDelete display a message box.

A warning from RowDel ete presents two choices: accept the RowDelete (the OK button), or cancel the
RowDel ete (the Cancel button). An error from RowDel ete PeopleCode prevents the Component Processor
from removing that row of data from the page.

Using Errors and Warnings in Other Events

Do not put errors or warning in PeopleCode attached to the FieldDefault, FieldFormula, Rowlnit,
FieldChange, Rowlnsert, SavePreChange, WorkFlow, and SavePostChange events. These event types
activate processing that a user has no direct control over. However, the Component Processor may issue its
own errors and warnings when it runs PeopleCode and encounters an unrecoverable error. The Component
Processor cancels the transaction to avoid unpredictabl e results.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Warning

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," Error

Using the RemoteCall Feature

This section provides an overview of RemoteCall components and discusses how to:

» Decide between RemoteCall and PeopleSoft Process Scheduler.
« Modify PeopleSoft Process Scheduler programs to run with RemoteCall.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 183

Using Methods and Built-In Functions Chapter 8

See Also

Chapter 8, "Using Methods and Built-In Functions," Think-Time Functions, page 156

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," CallAppEngine

Understanding RemoteCall Components

184

RemoteCall is a PeopleTools feature that enables executing a COBOL program remotely from within a
PeopleSoft application. Remote calls are made using the RemoteCall PeopleCode function.

Because all PeopleCode runs on the application server, the RemoteCall PeopleCode function has more
limited utility. However, RemoteCall can enable you to take advantage of existing COBOL processes.

In the application server configuration file, you can specify where the COBOL executables are |ocated.

See Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Setting Application Server
Domain Parameters,” Remote Call Options.

The RemoteCall function is a synchronous call. The PeopleSoft system passes parameters to the remote
program, and then waits while the program runs. When the remote program is done, it returns any results or
status information to the client, which then resumes execution. This means that RemoteCall is a think-time
function. RemoteCall is designed for fast response time, and has an application programming interface (API)
that provides programs with the response time needed for transaction processing. However, RemoteCall has
no scheduling or multistep job capabilities. Each execution of RemoteCall is independent.

Note. For PeopleTools 8, you can no longer use RemoteCall to execute an Application Engine program. Use
the Call AppEngine function instead.

The RemoteCall PeopleTools feature consists of the following components:

» PeopleCode program.

This interface consists of the RemoteCall PeopleCode function. It is used from PeopleCode to start a
remote program and process results. The PeopleCode program does not include any specia code to
specify where the remote program is executed. Y ou can configure Oracle Tuxedo to locally execute the
program for testing.

« Remote program API.
Thisis used by the remote COBOL program to receive or pass parameters and return status information.
» PeopleSoft RemoteCall service.

The PeopleSoft application server, PSAPPSRV, advertises the RemoteCall service. The service receives
requests from clients and starts the reguested program. When the program is compl eted, it passes the
parameters and status code back to the client.

* Oracle Tuxedo.

Oracle Tuxedo is a message-based transaction monitor for distributed applications. No direct Oracle
Tuxedo calls need to be implemented in PeopleCode or remote programs.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

PeopleCode Program

Y ou can execute the RemoteCall function from PeopleCode associated with any Component Processor event
except SavePostChange, SavePreChange, Workflow, RowSelect, or in any PeopleCode event resulting from a
ScrollSelect or related function call. However, remote programs that change data should not be run as part of
a SaveEdit process, because the remote program may complete successfully even though an error occurs later
in the save process.

To call aremote program that changes data, use FieldChange PeopleCode in arecord field associated with a
command button, or from a pop-up menu item.

Do not use RemoteCall if you expect the remote program to return alarge amount of datato the client,
because datais passed back only through the parameters of the PeopleCode API.

Authorization to run aremote program is like authorization to run a PeopleCode program. Because aremote
program is started from PeopleCode, the user has authorization to use the page that executes the PeopleCode.

The remote program runs in adifferent unit of work from the page. A commit isissued by PeopleTools if
needed on the client before RemoteCall is called. This meansthat, by default, the remote program does not
know about any database changes unless the page is saved before the program is called. After the remote
program starts, it runs to completion and commits or ends before returning to the page. In this way, the
remote program and the page do not have locking contention. To ensure that the save has actually been done,
use the DoSaveNow built-in function.

When using RemoteCall to execute a COBOL program, two types of errors can occur:
» PeopleToolserrors.

An error could occur in PeopleTools or Oracle Tuxedo, or the service might not be found. These are
treated as hard errors by PeopleCode. An error message box appears, and that piece of PeopleCodeis
terminated. In the case of a PeopleTools error, the remote program always either returns a code of zero or
terminates with a message due to a system error.

« Application-specific errors.

Any error information specific to the remote application must be passed back in regular data variables,
and the application can process these in an application-specific way. If you have a status code on which
the application depends, you should initialize it to an invalid value to be sure the COBOL program does
return the status code.

Because the remote program is executed synchronously, users receive an hourglass icon and cannot do
anything in the current window until the remote application completes. They could move to another window
and do processing there, or they could open another PeopleSoft window. They cannot cancel the remote
program after it starts. If the program does not terminate in atimely fashion (as determined by the
RemoteCall timeout set with PeopleSoft Configuration Manager), RemoteCall attempts to terminate the
process and returns an error indicating that the program was terminated.

Remote Program API

The remote program API provides the functions to get and put data between the network and the COBOL
program. These functions are implemented in C, but are callable from COBOL through the PTPNETRT
program. For an example, seethe PTPNTEST.CBL program.

Note. If these APIs are called when the program is not running as a remote program, ACTION-GET and
ACTION-PUT return an error. All other actions return without doing anything.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 185

Using Methods and Built-In Functions Chapter 8

If an unexpected error is found, call PTPNETRT with ACTION-RESET, then with ACTION-PUT to send
back any error status variables, then with ACTION-DONE to send the buffer.
PeopleSoft RemoteCall Service

The RemoteCall service serves as a bridge between the PeopleCode APl and remote COBOL programs.
RemoteCall is one of many services advertised from the PSAPPSRV Oracle Tuxedo server, and can be
configured as part of the standard domain setup and administration.

The client sends the RemoteCall service request, consisting of the connect information and the program
name, as well as any other parameters for the program, to the application server. The RemoteCall service then
executes the program and passes it the connect string.

RemoteCall Programming Guidelines

K eep the following points in mind when using RemoteCall:

» Do not use RemoteCall for long-running batch jobs.

Asadgenera rule, if you think execution will take more than 15 seconds, you should not be using
RemoteCall, but should instead use PeopleSoft Process Scheduler.

» RemoteCall is meant for running jobs on the server.

It should not be used to invoke client-only programs. Support for local calling with RemoteCall is
provided solely as a debugging and development aid. For client-only programs, use Declare Function,
then call the external function from alibrary.

« If you do not want to modify an existing program, then pass only the program name and run control, and
do not return any parameters.

Thisway, the program requires few changes to run as a remote function.

Deciding Between RemoteCall and PeopleSoft Process Scheduler

COBOL application programs initiated by the RemoteCall service use the same COBOL application
architecture used by PeopleSoft Process Scheduler. After being initiated by the dispatcher, COBOL
application programs call the COBOL SQL API program, PTPSQLRT, to connect to the relational database
management system to compile and execute SQL statements. Y ou can design and implement COBOL
programs to be understood by both PeopleSoft Process Scheduler and RemoteCall.

Follow these guidelines to select the optimal method for running a particular COBOL program:

» Use PeopleSoft Process Scheduler for asynchronous processes, or processes that can be scheduled, are
multistep, or that require printed output.

« Use RemoteCall for synchronous processes that are quick (transaction processing types of processes).

Modifying PeopleSoft Process Scheduler Programs to Run with RemoteCall

To enable an existing program that runs under PeopleSoft Process Scheduler to run under RemoteCall as
well, make the following changes:

186 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Using Methods and Built-In Functions

» Include the PTCNETRT copy member.
» Include the PTCNCHEK member before the connection call to PTPSQLRT.

+ Addthecdl to PTPNETRT ACTION-DONE just before the program terminates (after the call to
disconnect from the database).

This should be conditional on whether you are RUNNING-REMOTE-CALL.
» If you are running as a RemoteCall, ensure that PROCESS-INSTANCE OF PRUNSTATUS is hot set.

Otherwise your callsto PTCPSTAT try to update the PSPRCSRQST table. This does not cause an error,
but it is unnecessary processing.

This program can now run from PeopleSoft Process Scheduler or from RemoteCall. If a program has to pass
parameters, it must have RemoteCall-specific ACTION-GET and ACTION-PUT calls.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 187

Chapter 9

Using HTML Trees and the GenerateTree
Function

This chapter discusses the GenerateTree function.

Using the GenerateTree Function

This section provides an overview of HTML trees and discusses how to:

* Build HTML tree pages.

e UseHTML treerowset records.

» Usetree actions (events).

« Initialize HTML trees.

» Process events passed from atree to an application.
» Add mouse-over ability to HTML trees.

« Add visua selection node indicators.

» Specify override images.

Understanding HTML Trees

Use the GenerateTree function to display datain atree format. The result of the GenerateTree function is an
HTML string, which can appear in an HTML area control. The tree generated by GenerateTreeis called an
HTML tree.

The GenerateTree function displays data from arowset. Y ou can populate this rowset using existing record
data. Y ou can also use the tree classes to display data from trees created using PeopleSoft Tree Manager.

To use this function, you must set up a page for displaying the data and populate a standal one rowset with the
data to be displayed.

The following example shows an HTML tree:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 189

Using HTML Trees and the GenerateTree Function

Building HTML Tree Pages

The page you useto display the HTML tree must contain:

190

‘."' Tree Control Test ‘.I_

SetlD:

Tree Name: DEPT_SECURITY

Set Control Value:

Effective Date:

| Mext | Last |

[= 00001 - Corporate Headguarters

FIM - Financial Serices

HLC - Health Care Senices

(= MFG - Manufacturing

M-AMERICAS - Morth and South America

M-ASIAPAC - Asia Pacific

M-EUR-ALL - Europe-Africa-Middle East

LOC - Local Counties

LIMY - Higher Education

[E= UTIL - Liilities

= Toon

Q Return to Search

HTML tree example

Chapter 9

The positional links at the top of the page (First,Previous,Next, Last,Left,Right) enable the user to navigate

around the tree. These links are automatically generated as part of the execution of GenerateTree.

When a node is collapsed, a plus sign appears on the node icon, and the node's children are hidden. When a
node is expanded, all child nodes appear, and the icon displays a minus sign. |cons without a plus or minus

sign are terminal nodes, which have no children and cannot be expanded or collapsed.

« AnHTML areaused to display the HTML tree.

« A character field that has a page field name, is at |east 46 characterslong, and isinvisible.

Note. The edit box should be invisible, but not display-only. An invisible edit box cannot be seen by the user,
but it still has a buffer that can be written to. Page fields that have been specified asinvisible do not need to
be marked as Modifiable from HTML unless they are located on a page that is not active when GenerateTree
iscalled. For example, if your application calls GenerateTree from one page and then savestheresultin a
field that is displayed by an HTML area on another page in the component, the associated event field must be

marked both Invisible and Modifiable from HTML.

Events are sent to the application from the HTML tree using the invisible field. The events are processed by

FieldChange PeopleCode that is attached to the invisible field.

Thisis an example page for an HTML tree:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function

Page Dezigner 10rder ;

‘et Comtrol Yalue: | HHHHHHHNNNHNNMNNNRRE $3

Example of PeopleSoft Application Designer HTML tree page
The large areathat is selected in the example isthe HTML areathat displaysthe HTML tree. The HTML area
is attached to the DERIVED_HTML.HTMLAREA field for this example.

The white edit box isthe invisible field used to pass events from the HTML tree to the application. It is
attached to the DERIVED_HTML.TREECTLEVENT field for this example.

The edit box must have a page field name. In this example, the page field nameis TREECTLEVENT.

Using HTML Tree Rowset Records

The GenerateTree function takes a prebuilt and populated rowset as a parameter. This rowset must have a
certain structure and contain certain fields. In the following examples, the rowset is standalone, that is, the
rowset is created using the CreateRowset function. The fields necessary for the rowset are contained in the
following record definitions:

» Theheader record TREECTL_HRD, containing the subrecord TREECTL_HDR_SBR.
« Thenoderecord TREECTL_NDE, containing the subrecord TREECTL_NDE_SBR.

The header record isthe level zero record of the HTML tree rowset. It contains options for the HTML tree,
such as the name of the collapsed node image, the height of the images, the number of pixels to indent each
node, and so on.

The node record isthe level one record of the HTML tree rowset. |t contains the tree data and information
about the data, such as the dynamic range leaf, the level, and so on.

The level one scroll area contains arow for each node or leaf in the tree data

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 191

Using HTML Trees and the GenerateTree Function

192

Chapter 9

To store additional application data with each node in the tree, you can incorporate the
TREECTL_NDE_SBRinto arecord of your definition and use your record to define the HTML tree rowset.

For example, you might want to store application key values with each node record, so that when a user
selects anode, you have the data you need to perform the action that you want.

This table describes the relevant fieldsin TREECTL_HDR_SBR:

Field

Description

PAGE_NAME

Name of the page that containsthe HTML area and the
invisible field used to processthe HTML tree events.

PAGE_FIELD_NAME

Page field name of the invisible field used to process the
HTML tree events.

PAGE_SIZE

Number of nodes or |eaves to send to the browser at a
time. Set to 0 to send all visible nodes or leaves to the
browser. The default valueis 0.

DISPLAY_LEVELS

Number of levelsto display on the browser at atime. The
default valueis 8.

COLLAPSED_IMAGE

Collapsed node image name. The default valueis
PT_TREE_COLLAPSED.

EXPANDED_IMAGE

Expanded node image name. The default valueis
PT_TREE_EXPANDED.

END_NODE_IMAGE

End node image name. The default valueis
PT_TREE_END_NODE.

LEAF_IMAGE

Leaf image name. The default valueisPT_TREE_LEAF.

IMAGE_WIDTH

Image width in pixels. All four images need to be the
same width. The default value is 15 pixels.

IMAGE_HEIGHT

Image height in pixels. All four images need to be the
same height. The default value is 12 pixels.

INDENT_PIXELS

Number of pixelsto indent each level. The default value is
20 pixels.

TREECTL_VERSION

Version of the HTML tree. The default valueis 812. Used
with the DESCR_IMAGE field in the
TREECTL_HDR_SBR record.

This table describes the relevant fieldsin TREECTL_NDE_SBR:

Field

Description

LEAF_FLAG

If thisisaleaf, setto Y. The default valueis N.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function
Field Description
TREE_NODE Node name.
DESCR (Optional) Node description.
RANGE_FROM The range from value of the lesf.
RANGE_TO The range to value of the leaf.

DYNAMIC_FLAG

If this leaf has adynamic range, setto Y. The default
vaueisN.

ACTIVE_FLAG

Set to N for the node or leaf not to be alink. The default
vaueisY.

DISPLAY_OPTION

Set to N to display the name only. Set to D to display the
description only. Set to B to display both the name and the
description. Used for nodes only. The default value is B.

STYLECLASSNAME

Use to control the style of the link associated with the
node or leaf. The default value is PSHY PERLINK.

PARENT_FLAG

If thisnodeis aparent and its direct children are loaded
now, set to Y. If thisnode is a parent and its direct
children are loaded on demand, set to X. If thisnodeis not
aparent, set to N. The default valueis N.

TREE_LEVEL_NUM

Set to the level of the node. The default valueis 1.

LEVEL_OFFSET

If achild node isto appear more than one level to the right
of its parent, specify the number of additional levels. The
default value is 0.

DESCR_IMAGE

Use to display an image after the node or leaf image and
before the name or description. The two images are
separated by a space. The new image is not scaled. This
field takes a string value, the name of an image definition
created in PeopleSoft Application Designer.

Thisfield isonly recognized if the TREECTL_VERSION
field is greater than or equal to 812.

EXPANDED_FLAG

When the EXPANDED_FLAG of anodeissettoY, the
GenerateTree function expects the immediate children of
the node to be loaded into the & TREECTL rowset (such
asin PostBuild), and GenerateTree generates HTML such
that the node is expanded and its immediate children

appear.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

193

Using HTML Trees and the GenerateTree Function Chapter 9

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," CreateRowset

Using HTML Tree Actions (Events)

The GenerateTree function works with an HTML area control and an invisible field. When a user selects a
node, expands a node, collapses anode, or uses one of the navigation links, that event (user action) is passed
totheinvisible field, and the FieldChange PeopleCaode for the invisible field is executed.

The FieldChange PeopleCode example program (below) checks for expanding (or collapsing) a node and
selecting a node by checking the first character in the invisible field. The following example checks for
whether anode is selected:

I f Left(TREECTLEVENT, 1) = "S" Then

In your application, you can check for the following user actions:

Event Description

Tn Expand or collapse the node, whichever is the opposite
of the previous state. N is the row number of the nodein
the TREECTL_NODE rowset.

Xn Expand the node, but load the children first. The
children are loaded in PeopleCode, and then the event is
passed to GenerateTree so that the HTML can be
generated with the node expanded. N is the row number
of the node in the TREECTL_NODE rowset.

F Display the first page.

P Display the previous page.

N Display the next page.

L Display the last page.

Q Move the display left one level.

R Move the display to the right one level.

Sn Select the node or leaf. N is the row number of the node

or leaf inthe TREECTL_NODE rowset.

194 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function

Note. Drag-and-drop functionality is not supported in an HTML tree.

Initializing HTML Trees

For this example, the PeopleCode for initializing the HTML tree was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

The PostBuild PeopleCode Example program is an example of how to initialize the HTML tree using the
Tree classes and load only the root node into the HTML tree rowset.

The first time a user expands a node, the direct children of the node are loaded into the HTML tree rowset by
the FieldChange PeopleCode Example program, shown in the following section. This chunking functionality
enables the HTML tree to support trees of any size with good performance.

Y ou cannot simply copy either the PostBuild or FieldChange PeopleCode example programs into your
application. Y ou must modify them to make them work with your data. Y ou must make these changes to the
PostBuild PeopleCodeto initialize HTML trees:

1. Setthe PAGE_NAME and PAGE_FIELD_NAME fields.

The PAGE_NAME field contains the name of the page that contains the HTML areaand the invisible
field that processes HTML tree events. The PAGE_FIELD_NAME field is the page field name of the
invisible field that is used to processthe HTML tree events.

Note. The PAGE_FIELD NAME field isthe page field name of theinvisible field, not the invisible field
name.

2. Set tree-specific variables.

The & SET_ID,& USERKEYVALUE,& TREE_NAME, & TREE_DT, and & BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the example
PeopleCode that follows, these varaibles are set as follows:

&SET_| D = PSTREEDEFN_VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NANME,
&TREE_DT = PSTREEDEFN VW EFFDT;
&BRANCH _NAME = "";

3. Setthe PAGE_SIZE field.

If you do not want the page to expand vertically to display the tree, set the PAGE_SIZE to a number of
rowsthat will fit insidethe HTML area. If some vertical expansion is okay, but you do not want the page
to get too large, set the PAGE_SIZE to whatever value you like. Set the PAGE_SIZE to 0 if you do not
care how big the page gets.

4. Setthe DISPLAY_LEVELSfield to the number of levelsthat will fit inside the HTML area.

If thisfield is set too large, wrapping may occur. Positional links at the top of the HTML area enable the
user to navigate as the tree expands.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 195

Using HTML Trees and the GenerateTree Function Chapter 9

5. (Optional) Set the DISPLAY_OPTION field.

The default for the DISPLAY _OPTION field is to display both the node name and the description. Y ou
can display just the node name or just the description. The values for thisfield are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

6. (Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The default
for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK is not the style you want to use,
change thisfield value to the style you want.

7. Changethelast line to assign the output of GenerateTree to the field attached to the HTML area that will
display thetree.

In the example that follows, the HTML area control isthe DERIVED _HTML.HTMLAREA. Y ou must
specify the record and field name associated with the HTML area control on your page.

PostBuild PeopleCode Example

The PeopleCode for initializing the HTML tree for this example was put into the PostBuild event of the
component that contained the page with the HTML area used with the HTML tree.

This example shows how to initialize the HTML tree using the tree classes and load only the root node into
the HTML tree rowset:

196 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function

Conponent Rowset &TREECTL;

&NODE_ROWSET = Cr eat eRowset (Recor d. TREECTL_NODE) ;
&TREECTL = Creat eRowset (Record. TREECTL_HDR, &NODE ROWSET) ;

&TREECTL. I nsert Rowm 1) ;
&REC = &TREECTL. Get Row(2) . Get Record(1);

/* Set the HDR options:

1) PAGE_NAME - Name of the page that contains the HTM. Area

and the invisible field that will be used to process the HIM.
tree events.

2) PAGE _FIELD NAME - Page field nane of the invisible field that
will be used to process the HTM. tree events.

3) PAGE_SIZE - Nunber of nodes or |leaves to send to the browser at

a tine.

Set to 0 to send all of the visible nodes or | eaves to the browser.

Default value: 0

4) DI SPLAY _LEVELS - Nunber of levels to display on the browser at

atime. Default value: 8

5) COLLAPSED | MAGE - Col | apsed node i mage nane.

Default val ue: PT_TREE COLLAPSED

6) EXPANDED | MAGE - Expanded node i mage nane.

Def aul t val ue: PT_TREE_EXPANDED

7) END _NODE | MAGE - End node inage nane.

Def aul t val ue: PT_TREE_END_ NODE

8) LEAF_| MAGE - Leaf inmge name. Default value: PT_TREE _LEAF
9) IMAGE_ WDTH - | nage wi dth.

Al four images need to be the sane size. Default value: 15
10) | MAGE HEI GHT - I mage height. Default value: 12

11) | NDENT_PI XELS - Nunber of pixels to indent each |evel.

Def aul t val ue: 20

*/

&REC. Get Fi el d(Fi el d. PAGE_NAME) . Val ue = "TREECTL_TEST";

&REC. CGet Fi el d(Fi el d. PAGE_FI ELD_NAME) . Val ue = " TREECTLEVENT";
&REC. CGet Fi el d(Fi el d. PAGE_SI ZE) . Val ue = 15;

&REC. CGet Fi el d(Fi el d. DI SPLAY_LEVELS) . Val ue = 8;

&REC. Get Fi el d(Fi el d. COLLAPSED | MAGE) . Val ue = "PT_TREE_COLLAPSED';
&REC. Get Fi el d(Fi el d. EXPANDED _| MAGE) . Val ue = "PT_TREE_EXPANDED";
&REC. Get Fi el d(Fi el d. END_NODE_| MAGE) . Val ue = "PT_TREE_END_NODE";
&REC. Get Fi el d(Fi el d. LEAF_I MAGE) . Val ue = "PT_TREE_LEAF";

&REC. CGet Fi el d(Fi el d. | MAGE_W DTH) . Val ue = 15;

&REC. CGet Fi el d(Fi el d. | MAGE_HEI GHT) . Val ue = 12;

&REC. Cet Fi el d(Fi el d. | NDENT_PI XELS) . Val ue = 20;

&SET_| D = PSTREEDEFN_VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NAME,
&TREE_DT = PSTREEDEFN_VW EFFDT;
&BRANCH NAME = "";

&MYSESS|I ON = %Bessi on;

&SRC TREE = &MWYSESSI ON. Get Tree() ;

&RES = &SRC TREE. OPEN(&SET | D, &USERKEYVALUE, &TREE NAME,
&TREE DT, &BRANCH NAME, Fal se);

/* Just insert the root node into the &TREECTL Rowset.

If the root node has children, set the &ARENT FLAGto ' X,
so that its children will be | oaded on demand. */
&ROOT_NODE = &SRC TREE. Fi ndRoot () ;

| f &ROOT_NODE. HasChi | dren Then

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

197

Using HTML Trees and the GenerateTree Function Chapter 9

&PARENT FLAG = "X";
El se

&PARENT_FLAG
End- I f;

"N

&NODE_ROWBET = &TREECTL. Get Row(2) . Get Rowset (1) ;
&NODE_ROWSET. | nsert Row(1) ;
&REC = &NODE ROWBET. Get Row 2) . Get Record(1);

/* Set the NODE val ues:

1) LEAF_FLAG - If this is a leaf set to "Y'. Default value: N

2) TREE_NODE - Node nane.

3) DESCR - Node description. (optional)

4) RANGE FROM - Leaf's range from val ue.

5) RANGE TO - Leaf's range to val ue.

6) DYNAM C FLAG - If this |leaf has a dynanic range, set to "Y".

Default value: N

7) ACTIVE FLAG - Set to "N' for the node or leaf not to be a link.
Default value: Y

8) DI SPLAY OPTION - Set to "N' to display the nane only.

Set to "D' to display the description only.

Set to "B" to display both the nanme and the description.

Only used for nodes. Default value: B

9) STYLECLASSNAME - Used to control the style of the link

associated with the node or leaf. Default value: PSHYPERLI NK

10) PARENT_FLAG - If this node is a parent and its direct

children will be |oaded now, set to "Y'. |If this node is a
parent and its direct children are to be | oaded on demand,
set to "X'. Default value: N

11) TREE LEVEL NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed nore than
one level to the right of its parent, specify the nunber of
additional levels. Default value: 0

*/

&REC. Get Fi el d(Fi el d. LEAF_FLAG) . Val ue "N';

&REC. Get Fi el d(Fi el d. TREE_NCDE) . Val ue = &ROCOT_NODE. NAME;

&REC. CGet Fi el d(Fi el d. DESCR) . Val ue = &ROOT_NODE. DESCRI PTI ON,;

&REC. Cet Fi el d(Fi el d. RANGE_FROM) . Val ue = "";

&REC. Get Fi el d(Fi el d. RANGE_TO). Value = "";

&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue = "N';

&REC. Get Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y";

&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Val ue = "B";

&REC. Get Fi el d(Fi el d. STYLECLASSNAME) . Val ue = " PSHYPERLI NK";
&REC. Get Fi el d(Fi el d. PARENT_FLAG) . Val ue = &PARENT FLAG
&REC. Get Fi el d(Fi el d. TREE_LEVEL_NUM) . Val ue = 1;

&REC. Get Fi el d(Fi el d. LEVEL_OFFSET) . Val ue = 0;

&SRC TREE. d ose();
DERI VED_HTM.. HTMLAREA = Gener at eTr ee(&TREECTL) ;

Processing Events Passed from a Tree to an Application

To modify the FieldChange PeopleCode to load the direct children of the node into the HTML trees, use the
following FieldChange PeopleCode to process the events passed from an HTML treeto an application. The
code that processes the load children event loads the direct children of a node the first time the node is
expanded by the user. Changes that you must make to the FieldChange PeopleCode are as follows.

1. Globally change TREECTLEVENT to the name of theinvisible field used to process the events.

198 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using HTML Trees and the GenerateTree Function

. Set the tree-specific variables.

The & SET_ID,& USERKEYVALUE,& TREE_NAME,& TREE_DT, and & BRANCH_NAME variables
contain specific information about the tree. Set these values to the tree you want to open. In the example
PeopleCode that follows, they are set like this:

&SET | D = PSTREEDEFN VW SETI D
&USERKEYVALUE = "";

&TREE_NAMVE = PSTREEDEFN VW TREE_NAME;
&TREE_DT = PSTREEDEFN VW EFFDT;
&BRANCH NAME = "";

(Optional) Set the DISPLAY_OPTION field.

The default for the DISPLAY _OPTION field is to display both the node name and the description. Y ou
can display just the node name or just the description. The values for thisfield are:

Field Value Description

N Display the name only.

D Display the description only.

B Display both the name and description.

(Optional) Set the STYLECLASSNAME field for the root node.

The STYLECLASSNAME field controls the style of the link associated with a node or leaf. The default
for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK isnot the style you want to use,
change thisfield value to the style you want.

. Change the assignment of the output of every GenerateTree call to the field attached to the HTML area

that will display the tree.

In this example, the HTML area control isthe DERIVED _HTML.HTMLAREA. Y ou must specify the
record and field name associated with the HTML area control on your page.

. Change the code that processes the select event to perform the action you want when the user selects a

node or leaf.

This section is marked as Process Select Event in the following code sample.

FieldChange PeopleCode Example
The following is the PostBuild PeopleCode example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 199

Using HTML Trees and the GenerateTree Function Chapter 9

Conponent Rowset &TREECTL;

/* process load children event */

I f Left(TREECTLEVENT, 1) = "X' Then
&ROW = Val ue(Ri ght (TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
&NODE_ROWSET = &TREECTL. Get Row(2) . Get Rowset (1) ;
&PARENT_REC = &NODE_ROWSET. Get Rowm &ROW . Get Recor d(1) ;
&PARENT_LEVEL = &PARENT_REC. Get Fi el d(Fi el d. TREE_LEVEL_NUM . Val ue;
&ROW = &ROW + 1;

&SET_| D = PSTREEDEFN_ VW SETI D;
&USERKEYVALUE = "";

&TREE_NAME = PSTREEDEFN_VW TREE_NAME,
&TREE_DT = PSTREEDEFN_VW EFFDT;
&BRANCH _NAME = "";

&MYSESS| ON = %Bessi on;

&SRC TREE = &MWYSESSI ON. Get Tree() ;

&RES = &SRC TREE. OPEN(&SET | D, &USERKEYVALUE, &TREE NAME,
&TREE DT, &BRANCH NAME, Fal se);

/* Find the parent node and expand the tree one |evel bel ow
the parent. |Insert just the direct children of the parent node
into the &TREECTL Rowset. |If any of the child nodes have
children, set their PARENT FLAGto 'X , so that their children
are | oaded on demand. */

&PARENT_NODE = &SRC TREE. Fi ndNode(&PARENT_REC.
Get Fi el d(Fi el d. TREE_NCDE) . Val ue, "");
I f &PARENT_NODE. HasChi | dren Then
&PARENT _NODE. Expand(2) ;

| f &PARENT_NODE. HasChi | dLeaves Then
/* Load the child | eaves into the &TREECTL Rowset. */
&FI RST = True;
&CHI LD LEAF = &PARENT_NOCDE. Fi r st Chi | dLeaf;
Whi |l e &I RST Or
&CHI LD _LEAF. HasNext Si b
I f &FI RST Then
&FI RST = Fal se;
El se
&CHI LD LEAF = &CHI LD LEAF. Next Si b
End- I f;
I f &CHI LD LEAF. Dynanic = True Then
&RANGE_FROM = "";
&RANGE TO = "";
&DYNAM C RANGE = "Y"
El se
&RANGE_FROM = &CHI LD _LEAF. RangeFr om
&RANGE_TO = &CHI LD_LEAF. RangeTo;
&DYNAM C RANGE = "N
End- I f;

&NODE_ROWSET. | nser t Row(&ROW - 1) ;
&REC = &NODE_ROWBET. Get Row(&ROW . Get Recor d(1) ;

/* Set the NODE val ues:

1) LEAF_FLAG - If this is a leaf set to "Y'. Default value: N
2) TREE_NODE - Node nane.

3) DESCR - Node description. (optional)

4) RANGE FROM - Leaf's range from val ue.

5) RANGE TO - Leaf's range to val ue.

6) DYNAM C FLAG - If this leaf has a dynanmic range, set to "Y".

200 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using HTML Trees and the GenerateTree Function

Default value: N

7) ACTIVE FLAG - Set to "N' for the node or leaf not to be a link
Default value: Y

8) DI SPLAY OPTION - Set to "N' to display the nane only.

Set to "D'" to display the description only.

Set to "B" to display both the nane and the description

Only used for nodes. Default value: B

9) STYLECLASSNAME - Used to control the style of the link

associated with the node or leaf. Default value: PSHYPERLI NK

10) PARENT_FLAG - If this node is a parent and its direct

children will be | oaded now, set to "Y'. |If this node is a
parent and its direct children are to be | oaded on demand,
set to "X'. Default value: N

11) TREE LEVEL NUM - Set to the node's level. Default value: 1
12) LEVEL_OFFSET - If a child node is to be displayed nore than
one level to the right of its parent, specify the nunber of
additional levels. Default value: 0
*/
&REC. CGet Fi el d(Fi el d. LEAF_FLAG) . Val ue "y
&REC. Cet Fi el d(Fi el d. TREE_NODE) . Val ue s
&REC. CGet Fi el d(Fi el d. DESCR) . Val ue = "";
&REC. Get Fi el d(Fi el d. RANGE_FROM) . Val ue = &RANGE_FROM
&REC. Get Fi el d(Fi el d. RANGE_TO) . Val ue = &RANGE_TGQO
&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue =
&DYNAM C_RANGE
&REC. Cet Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y";
&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Val ue = "B";
&REC. Get Fi el d(Fi el d. STYLECLASSNAME) . Val ue =
" PSHYPERLI NK";
/* Leaves never have children. */
&REC. CGet Fi el d(Fi el d. PARENT_FLAG) . Val ue = "N
&REC. Cet Fi el d(Fi el d. TREE_LEVEL_NUM) . Val ue =
&PARENT_LEVEL + 1;
&REC. Get Fi el d(Fi el d. LEVEL_OFFSET) . Val ue = 0;

&ROW = &ROW + 1;
End- Wi | e;
End- I f;

| f &PARENT_NODE. HasChi | dNodes Then
/* Load the child nodes into the &TREECTL Rowset. */
&FI RST = True;
&CHI LD _NODE = &PARENT_NOCDE. Fi r st Chi | dNode;
Whi |l e &I RST Or
&CHI LD _NODE. HasNext Si b
I f &FI RST Then
&Fl RST = Fal se;
El se
&CHI LD_NODE = &CHI LD _NODE. Next Si b
End- I f;
| f &CHI LD_NODE. HasChi | dren Then
&PARENT FLAG = "X";
El se
&PARENT FLAG = "N';
End- I f;

/[* If the tree uses strict levels, set the
&LEVEL_OFFSET to the number of levels that the child node is to
the right of its parent minus 1. */

| f &SRC TREE. Level Use = "S" Then

&LEVEL_OFFSET = &CHI LD_NODE. Level Nunber -
&PARENT _NODE. Level Nunber - 1
El se
&L EVEL_OFFSET = 0;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 201

Using HTML Trees and the GenerateTree Function

End- I f;

&NODE_ROWBET. | nsert Row(&ROW - 1) ;
&REC = &NCDE_ROWSET. Get Row(&ROW . Get Recor d(1) ;
&REC. Get Fi el d(Fi el d. LEAF_FLAG) . Val ue = "N'

&REC. Cet Fi el d(Fi el d. TREE_NODE) . Val ue = &CHI LD_NCDE. Nane;

&REC. Get Fi el d(Fi el d. DESCR) . Val ue =
&CHI LD_NODE. Descri pti on

&REC. Cet Fi el d(Fi el d. RANGE_FROM) . Val ue = "";
&REC. Get Fi el d(Fi el d. RANGE_TO) . Val ue —'”H
&REC. Get Fi el d(Fi el d. DYNAM C_FLAG) . Val ue = "N';
&REC. Get Fi el d(Fi el d. ACTI VE_FLAG) . Val ue = "Y‘
&REC. Get Fi el d(Fi el d. DI SPLAY_OPTI ON) . Value = "
&REC. Cet Fi el d(Fi el d. STYLECLASSNAME) . Val ue =
" PSHYPERLI NK" ;
&REC. Get Fi el d(Fi el d. PARENT_FLAG) . Val ue = &PARENT_ FLAG
&REC. Get Fi el d(Fi el d. TREE_LEVEL_NUM) . Val ue =
&PARENT _LEVEL + 1;
&REC. GEtFieId(FieId.LEVEL_CFFSET).VaIue = &LEVEL_OFFSET

&ROW = &ROW + 1;
End- Wi | e;
End- | f;

/* change the parent's PARENT _FLAG from'X to 'Y */
&PARENT_REC. Get Fi el d(Fi el d. PARENT_FLAG) . Val ue = "Y"

HTMLAREA = Gener at eTr ee(&TREECTL, TREECTLEVENT);
End- I f;

&SRC TREE. d ose();
El se

/* Process select event. */

/* As an exanple, just display the selected node nanme or
| eaf range as a MessageBox. */

I f Left(TREECTLEVENT, 1) = "S" Then
&ROW = Val ue(Ri ght (TREECTLEVENT, Len(TREECTLEVENT) - 1)) + 1;
&NCDE_ROWBET = &TREECTL. Get Row(2) . Get Rowset (1) ;
&REC = &NCDE_ROWSET. Get Row &ROW . GEtRecord(l)
| f &REC. Get Fi el d(Fi el d. LEAF_FLAG). Value = "N' Then
MessageBox(0, "", 0, 0, "The selected node is %A.
&REC. Get Fi el d(Fi el d. TREE_NCDE) . Val ue) ;
El se
| f &REC. Cet Fi el d(Fi el d. DYNAM C_FLAG) . Val ue = "N' Then
I f &REC. Cet Fi el d(Fi el d. RANGE_FROM) . Val ue =
&REC. CGet Fi el d(Fi el d. RANGE_TO) . Val ue Then
&TEMP = "[" | &REC. CGet Fi el d(Fi el d. RANGE_FRQOM) .

Value | "1";
El se
&TEMP = "[" | &REC. GetFi el d(Fi el d. RANGE_FROW)
Value | " - " | &REC CetField(Field. RANGE TO.Value | "1";
End- | f;
El se
&TEMP = "[1";
End- | f;
MessageBox(0, "", 0, 0, "The selected leaf is %d.", &TEMP);
End- I f;
El se

/* process all other events */
HTMLAREA = Gener at eTr ee(&TREECTL, TREECTLEVENT);
End- | f;

Chapter 9

202 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Using HTML Trees and the GenerateTree Function

End- I f;

/* done processing the event, so clear it */
TREECTLEVENT = "";

See Also

Chapter 9, "Using HTML Trees and the GenerateTree Function," Using HTML Tree Actions (Events), page

194

Adding Mouse-Over Ability to HTML Trees

To add mouse-over ability to HTML tree elements, you must add fieldsto the TREECTL_HDR_SBR record
and PeopleCode to the program to set the values and the images.

1

2.

3.

4.

Add the following fields to thr TREECTL_HDR_SBR (tree control header subrecord) record.
« COLLAPSED_MSGNUM

e COLLAPSED_MSGSET

« END_NODE_MSGNUM

- END_NODE_MSGSET

« EXPANDED_MSGNUM

« EXPANDED_MSGSET

« LEAF _NODE_MSGNUM

. LEAF NODE_MSGSET

Add the following PeopleCode to set the message set and number for the mouse-over text:

&REC. Cet Fi el d(Fi el d. EXPANDED_MSGSET) . Val ue = 2;

&REC. CGet Fi el d(Fi el d. EXPANDED_MSGNUM) . Val ue 903;
&REC. CGet Fi el d(Fi el d. COLLAPSED_MSGSET) . Val ue = 2;
&REC. Cet Fi el d(Fi el d. COLLAPSED_NMSGNUM . Val ue = 904;
&REC. Cet Fi el d(Fi el d. END_NODE_MSGSET) . Val ue = 2;
&REC. Cet Fi el d(Fi el d. END_NODE_MSGNUM) . Val ue = 905;

&REC. Get Fi el d(Fi el d. LEAF_MBGSET) . Val ue
&REC. Get Fi el d(Fi el d. LEAF_MBGNUM) . Val ue

2;
906;

Add the following fields fields to the TREECTL_NDE_SBR record:

« DESCR_MSGNUM

+ DESCR_MSGSET

Add PeopleCode to set the DESCR_MSGNUM and DESCR_MSGSET fields.

These two fields should be set to the correct message number and message set values that contain the text
to be used as the mouse-over text.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 203

Using HTML Trees and the GenerateTree Function Chapter 9

Adding Visual Selection Node Indicators

Sometimes, users need a visual indicator, such as adifferent color or style, to indicate which node is selected.
This example shows a selected node style:

[= 00001 - Corporate Headguarters
FIM - Financial Services
HLC - Health Care Services
MFG - Manpiacturing
LOGC - Lo& JCounties
UMY - Higher Education
B UTIL - Utilities
31000

Example of selected node style

To add selected node highlighting:

1. Addthefield NODESELECTEDSTY LE to the TREECTL_HDR_SBR record.

2. Add PeopleCode to set the NODESELECTEDSTY LE field to provide the highlighting effect.
The NODESELECTEDSTY LE field takes the name of astyle class.
The following example uses the PSTREENODESELECTED style:
&REC. Cet Fi el d(Fi el d. NODESELECTEDSTYLE) . Val ue = " PSTREENODESELECTED";

Y ou can set the style of the selected node when processing the select event.

Note. Y ou also must reset the style of the previous selected node when processing the select event. To
find the previous selected node, you can search the node rowset looking for anode with a
STYLECLASSNAME equal to the style you set for selected nodes. Alternatively, you can keep a global
variable with the index of the node in the rowset. If you keep an index variable, however, you may have
to update the index when processing the load children event.

Specifying Override Images
Y ou specify different images to represent the nodes in atree by using the TREECTL_NODE record.
To specify override images:
1. Add thefollowing fields to the tree control node record:
« OVERRIDE_IMAGE
« OVERRIDE_MSGSET
« OVERRIDE_MSGNUM

2. Add PeopleCode to use the override values when writing tree control node records.

204 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

Using File Attachments and PeopleCode

This chapter discusses how to use file attachments in applications.

Using File Attachments in Applications

This section provides an overview of file attachment architecture and discusses how to:

» Debug file attachment problems.

» Configure multiple application servers to support file attachments.
« View file attachments.

» Use chunking with attachments.

» Usethe Microsoft Windows NT 4 FTP server.

* Usenon-DNS URLswith UNIX.

» Useattachment functions.

« Name URLs and file attachments.

« Convert user filenames.

Understanding File Attachment Architecture

File attachments are supported by using PeopleCode built-in functions that implement the transfer of afileto
or from a browser using the application server. Thefile is either stored on, or retrieved from, an FTP server or
database table, referred to as the data storage system.

Files can be transferred back and forth from the browser to the data storage system (by way of the web server
and application server) or transferred back and forth from the application server file system to the data storage
system.

The browser-to-web server transfer is performed using a standard HTML form construct. This can be done
securely in an encrypted fashion if the web server uses Secure Sockets Layer (SSL) to communicate to the
browser.

When afileis uploaded, after the fileisreceived at the web server, 1 megabytes chunks are brought from the
web server to the application server and temporarily stored in a PeopleTools table in the database.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 205

Using File Attachments and PeopleCode Chapter 10

Note. The 1-megabyte transfer size cannot be customized.

Oncethe entire file istransferred, the application server reassembl es the file as atemporary file on the
application server's file system, deletes the temporary copy from the PeopleT ools table in the database, and
sends the file to its ultimate destination on either an FTP server the target database table

Note. When the user selects afile for uploading, file size is not checked until after the file is transferred to the
web server. If the final destination of the file is a database table, then it gets rechunked (as specified by the
value of Max Chunk File Size field on the PSOPTIONS page) when that insertion happens.

Once thefile getsto the web server the file size is compared to the value of the AddAttachment function's
MaxSize parameter.

See Chapter 10, "Using File Attachments and PeopleCode," Using Chunking with Attachments, page 210 and
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions,” ContainsOnlyCharType.

The web server-to-application server transfer is performed by using Oracle Jolt, which is securely encrypted.
Because this transfer is done using the standard Oracle Jolt mechanism, no additional settings to the firewall
are required (you do not need to open additional ports).

By using separately named subdirectories for each attachment, support for the simultaneous transfer of
identically named filesis guaranteed, and attachments will not be mixed up.

The application server-data storage system transfer is performed using either FTP or directly to a database
table.

Note. The file attachment functionality does not support SFTP.

No log file or script isinvolved for writing to database tables. For debugging, these commands leave tracesin
the PeopleCode trace files if PeopleCode statement tracing (2048) is on.

Note. The search APl does not work with database attachments.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, " Search Classes,” Understanding
Search Class.

File attachment architecture is designed to be used in aframe template. Thisis because when afileisbeing
uploaded to a content site, the browser is communicating directly with the content site and its database. This
means that the work being done is on the content site, while the portal site is unaffected. Frame templates
enable you to direct the upload work to the site that it is intended for. There is no proxy work being done.

However, if you want to use HTML templates, you must first ensure that the portal site can handle the
reguest. Y ou should look into any performance issues that may occur on the portal site if thefileisbig or the
network is slow.

Debugging File Attachment Problems

Error information will be written to log file. For more detailed logging you may enable Trace by setting
TracePC to 2048 on application server.

206 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Using File Attachments and PeopleCode

See Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using PeopleSoft
Configuration Manager," Specifying Trace Settings and Enterprise PeopleTools 8.50 PeopleBook:
PeopleCode Language Reference, "PeopleCode Built-in Functions,” TransformExCache.

If the file transfer wasn't successful, error messages in the log can help you determine the problem.

A common reason that atransfer failsisthat the FTP server was not accessible from the application server.
This error could be due to awrong password or wrong account name, or because the application server was
unable to resolve the FTP server hostname. Perhaps the FTP server was down and the application server was
unable to routeto it. Try pinging the FTP server from the application server system, and then try to FTP to the
FTP server from the application server.

If you have a Microsoft Windows file server, the hostname for the system may not be associated with a fixed

I P address and may not be resolvable using the Domain Name System (DNS). If the application server ison a
UNIX machine (such as Solaris, HP-UX, or AlX), the application server can only resolve the hostname using
DNS (or perhaps the Network Information System [NIS] or an /etc/hosts file), but not using WinBeui or
WINS. Therefore, the application server will not be able to convert the hostname indicated for the Microsoft
Windows file server into an |P address and route to it.

If you suspect thisis the prablem, try the following:
1. Telnet tothe UNIX application server.
2. Try to ping the suspect hostname.

For example:

pi ng TCARREONO52500

If thisfails, you must resolve the problem by either specifying the IP addressin the FTP URL or by putting
your hostname into DNS, NIS, or a hosts file so that UNIX can resolveit.

Debugging Paths

In general, FTP serversrequire the full path from the top-level directory, rather than the path from the home
directory (arelative path). If you've been able to add an attachment but can't view it, verify that you're using a
full, absolute path, as opposed to arelative path.

Attachments with non-ASCII Filenames

To successfully upload attachments whaose filename comes from a language which uses anon-ASCI|I string,
such as Japanese, from your web browser to either an FTP server or database table, Oracle recommends

running the application server in an environment that supports non—ASCI| character languages.

If the destination for your attachment is an FTP server, Oracle recommends that the FTP server also be
running in an environment that supports the same language or locale as the filenames used. (The web server

can be running on either an English environment or anon—ASCI| character language environment.)

If your environment does not fully support non-ASCI| characters, then the file-processing system will convert
file namesinto names that are fully ASCII strings that, at upload time, will be passed back to the calling
PeopleCode program rather than the orginal name of the file as selected by the end-user. This meansthat it
may be more difficult for an end-user to later identify the renamed file for further processing, such as
viewing.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 207

Using File Attachments and PeopleCode Chapter 10

Viewing Error Messages

If you want your user to be ableto view error messages (such asthefile is too large, the file was not found, or
the datain the file is corrupt) when attaching files, add one of the following lines of PeopleCode to the

FILE ATTACH_WRK record, tothe ATTACHADD field, immediately above the line

&ORI GSYSFI LENAMVE = &ATTACHSYSFI LENAME; :

&MVESSAGE LVL=1
Or
&NMESSAGE_LVL=2;

Configuring Multiple Application Servers to Support File Attachments

When you have multiple application servers, the /tmp/PSFTP/Domainl Dxxx directory is created by the first
application server process to run on your application server. The assumption is that all such application server
processes run with the same user ID. However, a single computer might run application servers with many
user IDs.

The default /tmp/PSFTP is created so that all users can access it (777 permissions, or drwxrwxrwx). For
proper security, however, the Domainl Dxxx directory is created so that only that application server can
access that directory (711 permissions, or drwx--x--X). If multiple users need read and write access, you must
change the permissions.

When using file objects, the service request can be sent to different application servers, so that if afile was
created under one application server machine environment and that service is next serviced on a different
application server machine, the file might not exist. Therefore, your application should check that the fileis
open, particularly when returning from a user interaction (since the process of the handling user interface
results in a serialization/deserialization of all the transaction states.)

Note. The file attachment functionality does not support running multiple application servers concurrently to
support the same application. This can happen if aload-balancer is used or your web server is configured to
do Jolt Session Poaling. Because afile attachment operation is such a complex process, if the application
switches application servers in the middle of such an operation, the operation may fail.

Viewing File Attachments

208

When viewing afile attachment, the browser invokes a viewer based on the content-type Multipurpose
Internet Mail Extensions (MIME) category sent in the response header from the web server.

For example, if the user tried to view an MP3 file, the response header sent to the browser by the web server
would indicate the audio/MPEG content type.

HTTP/ 1.1 200 K

Server: Mcrosoft-11S/5.0

Date: Mon, 01 Cct 2001 21:25:51 GVr
Cont ent - Type: audi o/ npeg

Accept - Ranges: bytes

Last-Modified: Mn, 01 Cct 2001 21:00:26 GVI
ETag: "78e21918bc4acll: cc8"

Content-Lengt h: 60

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Using File Attachments and PeopleCode

Notice that the Content-Type is audio/mpeg. The browser uses this MIME type to determine that a viewer for
audio/MPEG is appropriate. If the web server did not send this content-type header, the browser would not be
able to determine the nature of the file being transmitted, and it would be unable to invoke the correct
application. The browser would try to display the file as text/plain, which might be the wrong assumption.

The web server determines the MIME type by looking at the extension of the attachment file and mapping it
to aMIME type. The mapping is done in the following ways, depending on the web server and platform:

« For Microsoft |1S, the mapping is done by using the standard Microsoft Windows extension association
mechanism.

« For Apache, the mapping is done by editing a configuration file called mime.types.
» For WebLogic, afile called web.xml does the mapping.
Thefileweb.xml islocated in the WEB-INF subdirectory. This file contains a section that looks like this:

</ m nme- mappi ng>
<m nme- mappi ng>
<ext ensi on>
doc
</ ext ensi on>
<m me-type>
appl i cati on/ nswor d
</ m ne-type>
</ m nme- mappi ng>
<mi nme- mappi ng>
<ext ensi on>
xl's
</ ext ensi on>
<m me-type>
appl i cation/vnd. ns- excel
</ m nme-type>
</ m me- mappi ng>

Let's say you want to add an extension that causes log files to be interpreted as plain text files.

To determine the correct MIME type, check Request for Comments (RFC) documents 2045, 2046, 2047,
2048, and 2077, which discuss internet media types and the internet mediatype registry.

After checking the RFCs, you determine that the correct MIME type istext/plain. The following isan
example of code you would add to the previous section of web.xml:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 209

Using File Attachments and PeopleCode Chapter 10

</ m nme- mappi ng>
<m nme- mappi ng>
<ext ensi on>
doc
</ ext ensi on>
<m me-type>
appl i cati on/ nswor d
</ m ne-type>
</ m nme- mappi ng>
<mi nme- nappi ng>
<ext ensi on>
| og
</ ext ensi on>
<m me-type>
text/plain
</ m nme-type>
</ m me- mappi ng>
<mi nme- mappi ng>
<ext ensi on>
xl's
</ ext ensi on>
<m nme-type>
appl i cation/vnd. ns- excel
</ m nme-type>
</ m me- mappi ng>

Once you save thefile, the log extension is associated with the content type of text/plain.

Note. Y ou must restart the WebL ogic server before these changes are recognized.

Similar mappings can be achieved on other web servers, such as IBM WebSphere or Netscape Enterprise
Server.

See your web server documentation.

Note. When trying to view the objects, the extension must exactly match what is set up in the web.xml file.
Thisvalue is case-sensitive. If the object view appears garbled, chances are that either the extension is not set
up in the web.xml file or there is a case mismatch.

Using Chunking with Attachments

210

When writing data to database tables, the data is automatically chunked, or stored, in different rows of the
database table. The size of each chunk is determined by the Max Chunk File Size field on the PSOPTIONS

page.

Because each file is chunked, you cannot pull data directly from the table. Y ou should use the provided
attachment functions, which automatically put the data back together into one file for you. Because the chunk
sizeis stored with thefile, if you change the system chunk size you can till retrieve files with different chunk
Sizes.

See Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using PeopleTools
Utilities," PeopleTools Options.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Using File Attachments and PeopleCode

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," CopyAttachments

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," AddAttachment

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," PutAttachment

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,"
PeopleTools Options

Using the Microsoft Windows NT 4 FTP Server

If you are using FTP and running Microsoft Windows NT 4 with the standard Microsoft FTP server, you
must consider this point:

Non-Microsoft FTP server programs on Microsoft Windows NT, the Microsoft Windows 2000 FTP server, as
well asall UNIX FTP servers, execute a chroot command to the home directory of the FTP server
automatically.

However, the Windows NT 4 FTP server does not follow this behavior. When an FTP client connects to the
Microsoft FTP server, the client can gain access to the entire drive, not just the FTP home directory.

For example, suppose you are running the Microsoft Windows NT 4 FTP server and the home directory is
c:\inetpub\ftproot.

When you log in, your current directory is c:\inetpub\ftproot.
When you type the following, your current directory becomes c:\:

cd \

If you are not running the Microsoft Windows NT 4 FTP server and the home directory is the same—
c:\inetpub\ftproot—then when you type the following:

cd \
Y our current directory becomes c:\inetpub\ftproot.
Y ou must know the FTP server associated with the URL.

If you are using aWindows NT 4 FTP server or another FTP server that shows this behavior, your URLS
should have the following format: ftp://ftp:ftp@NT4system/inetpub/ftproot/tmp. Note that the home directory
of the FTP server must be appended to the address.

If you are not using these sorts of servers, your URL s should have the following format:
ftp://ftp:ftp@NT4system/tmp.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 211

Using File Attachments and PeopleCode Chapter 10

Using Non-DNS URLs with UNIX

The URL passed to file attachments generally has the following format:
ftp://user: pass@systemname/dirl/dir2.

Thisformat assumes that the domain name systemName can be resolved with DNS.

Some Microsoft Windows systems can resolve systemName even when it cannot be resolved with DNS.
However, some UNIX systems cannot these resolve names.

If you are using a UNIX system and the domain name cannot be resolved with DNS, then use the | P address.
The following example assumes systemName has the |P address of 123.123.123.123:
ftp://user:pass@123.123.123.123/dir1/dir2.

To determine the | P address, try to ping the system by typing the following:
pi ng syst enNane

Y ou should use domain names that can be resolved. Only use IP addresses when absolutely necessary.

Using Attachment Functions

212

To storefile references in a database, you must create a record that receives the file references. This record
can be called anything, but it must have the FILE_ATTACH_SBR subrecord included in it. You must also
includethe FILE_ATTACH_WRK work record in your component when using the file attachment functions

Follow these steps to devel op an application that uses file attachments:
1. Determine how the file will be stored.

The file can be stored on an FTP server or in the database.

» Storing thefile on an FTP server.

Although you can either have the user enter the FTP location or you can store the FTP locationin a
URL definition using the URL Maintenance page (People Tools, Administration, Utilities, URL
Maintenance), Oracle recommends that you use a URL definition since that approach gives you the
flexibility of later changing the storage location of your files without having to modify your
PeopleCode.

Use a URL definition if you need to mask the FTP user ID and password. If the URL abject only
contains a portion of the string that will be passed to the file-processing function, for example, if the
the user ID and password are added the full URL at runtime, then you can use the GetUrl function to
get the underlying FTP URL.

Y ou must use a URL definition with secure FTP (FTPS).
« Storing the file in the database.

To store the file in the database, create a new target record, for instance
MYAPP_ATTACH_CONTENT, and insert the FILE_ATTDET_SBR subrecord into it. The target
record must have no other fields. If you need to store other information, store it as part of thefile
reference, as described in the next step, or create another record and use it in the component.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

Using File Attachments and PeopleCode

Create a custom record to store the file reference information and any additional information, for instance
MYAPP_ATTACH_REF. The new record must include the subrecord FILE ATTACH_SBR. Add fields
for any other information related to the transaction you want to store. Y our program should populate this
record with the file name, URL, and any other information you want to save.

Clonethe FILE_ATTACH_WRK record to create a custom derived/work record. Give it a unique name,
for instance MY APP_ATTACH_WRK. Save the PeopleCode with the new record. Y ou can use the
sample PeopleCode on the record as the basis for your own application.

Note. The FILE ATTACH_WRK record isdelivered as a sample only. It is not intended for use as part of
an application running in production unlessit is customized.

It isimportant to create your own program. Oracle may change the delivered sample PeopleCode in future
releases. Any application that directly uses the sample PeopleCode may fail. Customizing your
application makesit easier to manage during upgrades and your PeopleCode can be reused in other
components that use file attachment functionality.

Use the records you created in the previous steps to create the file attachment page and component.

The custom derived/work record has fields with FieldChange PeopleCode that you can use for Add,
Detach, Delete, and View buttons.

Add PeopleCode, probably at the component record field level, to invoke the underlying functionsin the
custom derived/work record when the user clicks on one of the buttons.

Create a URL definition (PeopleTools, Administration, Utilities, URL Maintenance). Use one of these
formats:

« ftp://ftpuser:password@ftpMachineName/
» ftps://ftpsuser:password@ftpsM achineName
» record://MYAPP_ATTACH _CONTENT

See Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using
PeopleTools Utilities,” URL Maintenance.

The following table summarizes the delivered record definitions for use in afile attachment application:

Field Example Description

FILE_ATTDET_SBR MYAPP_ATTACH_CONTENT Insert this record in the custom record

that will store the attached files. No
other fields should be added to this
record.

FILE_ATTACH_SBR MYAPP_ATTACH_REF Use the subrecord

FILE_ ATTACH_SBR or thefields
ATTACHSY SFILENAME and
ATTACHUSERFILE to store the
system file name and the user file
name in the custom record that will be
used on the page to alow usersto
specify URL_ID, FTP location, or
record name.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 213

Using File Attachments and PeopleCode

Chapter 10

Field

Example

Description

FILE_ATTACH_WRK

MYAPP_ATTACH_WRK

Thisrecord can be used to clone and
create your own custom derived
record to provide Add, Delete,
Detach, View buttons. Y ou can
modify the delivered sample code to
meet your file attachment
requirements.

The FILE_ATTACH_SBR subrecord contains the following fields:

Field

Description

ATTACHSY SFILENAME

The system file name.

ATTACHUSERFILE

The user file name.

No PeopleCode is associated with this subrecord. Y ou should include this subrecord in target records for

using attachments.

The FILE_ATTACH_WRK work record contains the following fields:

Field Description

ATTACHADD Contains a PeopleCode program used for adding
attachments (the AddAttachment built-in function).

ATTACHDELETE Contains a PeopleCode program used for deleting
attachments (the Del eteAttachment built-in function).

ATTACHVIEW Contains a PeopleCode program used for viewing
attachments (the ViewAttachment built-in function).

For storing attachments in the database, you must create a record that receives the attachments. This record
can be called anything, but it must havethe FILE_ATTDET SBR subrecord included in it, and it can contain
no additional fields. The subrecord FILE_ATTDET_SBR hasthe following fields:

Field

Description

ATTACHSY SFILENAME

A unique system file name.

FILE_SEQ The file sequence number (used in chunking).
VERSION Version number.

FILE _SIZE The physical size of thefile.
LASTUPDDTTM Last update date and time.

LASTUPDOPRID

The employee ID of the last user to update the attachment.

214

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Using File Attachments and PeopleCode

Field Description

FILE_DATA The data of thefile.

Secure File Transfer Using FTPS

When transferring afile using secure FTP (FTPS), the file attachment function expects the URL parameter to
beaURL ID, not astring. Use the URL Maintenance page (PeopleTools, Utilities, Administration, URLS) to
create a URL definition.

When you create a URL for FTPS you will need to enter values for Certificate Alias, Verify Host, Verify Peer
and SSL Usage.

See Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using PeopleTools
Utilities," Adding Secure FTP (FTPS) URLs.

Coding Considerations Using the Attachment Functions

All file attachments are performed using PeopleCode built-in functions, such as AddAttachment,
ViewAttachment, GetAttachment, and so on. These functions move afile into and out of afile storage
system, either the database or afile system. The file system movement is done using the FTP protocol.

Because these functions abstract the storage of the attachments, you can use either database or FTP file
systems. The system to be used is determined by the URL passed as the first parameter in the attachment
built-in function. The actual value of the URL is maintained on the URL Maintenance page. Y ou don't know
whether users will store attachments in a database or afile system.

The following PeopleCode functions are used with administration work:

« DeéeleteAttachment del etes unwanted attachments.

This cannot be rolled back. For example, suppose a user selectsto view an attachment, and then cancels
before the attachment appears. A copy of the attachment may till be in the user's temp directory.

« CopyAttachments moves all of the attachments specified from one file storage system (database or FTP)
to another (database or FTP).

» CleanAttachmentsis an audit-like script that removes attachments that exist in the database that are not
referenced by any record field.

If you only have afew filesto copy using CopyAttachments, you may want to use the CopyFiles page (part of
the PeopleTools Administration pages). The CleanAttachments function is also available from this page.

To schedule aregular job to clean up orphaned file attachments, you can use the Application Engine program
CLEANATTSA4.

Store all references to attachments using the standard ATTACHSY SFILENAME field. Do not reuse thisfield
to store incompl ete or nonstandard versions of the name. For example, you should not store the full URL
version of the attachment in this column and then use PeopleCode to parse the URL before invoking
attachment commands. While this method may work for get or put attachment calls, the Clean Attachments
function deletes any file stored in atable that does not have a corresponding reference stored in
ATTACHSY SFILENAME.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 215

Using File Attachments and PeopleCode Chapter 10

Scanning Attachments for Viruses

Files uploaded using AddAttachment can be scanned for viruses. See Enterprise PeopleTools 8.50
PeopleBook: PeopleCode Language Reference, "AddAttachment" for details.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," AddAttachment.

Copying Files Using the File Attachment Functions

Use the CopyAttachments function to move a group of attachments from one archive to another, such as
when you want to move files from one FTP server to another or if you want to move all the filesin a database
record onto an FTP server. It does not create new system file links.

If you want to create a new file attachment by making a copy of an existing file attachment (both the system
filelink and the file itself), do the following:

1. Use GetAttachment to retrieve the file from the repository (either from the FTP server or from a database
record) and place it on your application server (or process scheduler system if you are using Application
Engine).

2. Use PutAttachment to move the file from the application server (or process scheduler system), and place
it into the new archive location.

3. Savethe new system file link that you passed as a parameter to PutAttachment so that you can
subsequently useit. In general, this action is part of the page transaction when you save the record that
hasthe FILE_ATTACH_SBR subrecord in it.

Errors in CopyAttachments

Because CopyAttachments is designed to work with multiple files, to track errors when using
CopyAttachments set your PeopleCode trace to 2112 and your SQL trace to 15 so that errors will be written
to the appropriate trace files.

See Also

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using PeopleTools Utilities,"
Copy File Attachments

File Name Considerations

216

If auser specifies alocal filename (using the functions GetAttachment , DetachAttachment , PutAttachment).
with any of the following characters, the process will be stopped and an error (YeAttachment _Failed) will be
returned to user. The actual error message can be found in the logs.

e * (asterisk)
« :colon)

» " (quotation mark)

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Using File Attachments and PeopleCode

< (less than symbol)

e > (greater than symbol)
* ?(question mark)
When the file istransferred, the following characters are replaced with an underscore:
+ space

+ semicolon

« plussign

» percent sign

» ampersand

» apostrophe

« exclamation point

+ poundsign

« dollar sign

Converting User Filenames

If auser attaches afile through the browser dialog box generated by the AddAttachment function, the
filename may be converted before that filename is returned to the AddAttachment call for storage.

For example, the file My Resume.doc is returned through the AddAttachment parameter as My _Resume.doc,
with the space changed to an underscore.

No comparable mapping occurs for user filenames with the PutAttachment function, which requires the user
filename as an input parameter rather than an output parameter that is returned to the user.

Instead, before storing the ATTACHUSERFILE value, you should invoke code similar to this:

&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE
&ATTACHUSERFI LE

Subst it ut e(RATTACHUSERFI LE, ",
Substi t ut e(&ATTACHUSERFI LE, ";",
Substi t ut e(GATTACHUSERFI LE, " +"
Substi t ut e(SATTACHUSERFI LE, "%,
Substi t ut e(&ATTACHUSERFI LE, "&",
Subst i t ut e(&ATTACHUSERFI LE, "' ",

Substit ut e(&SATTACHUSERFI LE, ™!

Substit ut e(&GATTACHUSERFI LE, " @
Substi t ut e(GATTACHUSERFI LE, "#"
Subst i t ut e(&QATTACHUSERFI LE, " $"

e e e e e e e e e

Naming URLs and File Attachments

If you change a URL on the URL Maintenance page from FTP to record, you may have to reboot your
application server before you can use the URL in your PeopleCode program.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 217

Chapter 11

Accessing PeopleCode and Events

This chapter provides overviews of PeopleCode programs and events and PeopleCode automatic backup, and
discusses how to:

» Access PeopleCode in Application Designer.
» Accessrecord field PeopleCaode.

» Access component record field PeopleCode.
» Access component record PeopleCode.

» Access component PeopleCaode.

» Access page PeopleCode.

» Access menu item PeopleCode.

» Copy PeopleCode with a parent definition.

» Upgrade PeopleCode programs.

Understanding PeopleCode Programs and Events

Every PeopleCode program is associated with an aspect of a Application Designer definition and an event.
Events are predefined points either in the Component Processor flow or in the program flow. As each event is
encountered, it fires on each component, triggering any PeopleCode program associated with that component
and that event. Each definition in Application Designer can have an event set, that is, a group of events
appropriate to that definition. A definition can have zero or one PeopleCode programs for each event in its
event set.

Some definitions have events that fall outside the Component Processor flow. These definitionsinclude
Application Engine programs, component interfaces, and application packages. In addition, security has a
signon event,. which is described in the documentation for the definition or topic.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 219

Accessing PeopleCode and Events Chapter 11

See Also
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Component Interface Classes'
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Application Classes'

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker, "Managing Messages," Adding
Message Definitions

Enterprise PeopleTools 8.50 PeopleBook: Application Engine, " Creating Application Engine Programs,”
Specifying PeopleCode Actions

Enterprise PeopleTools 8.50 PeopleBook: Security Administration, "Understanding PeopleSoft Security"

Understanding Automatic Backup of PeopleCode

A PeopleCode program is automatically saved to afile while you are working on it. This checkpoint occurs at
the following times:

» Every 10 keystrokes.

« Onasave command, just before the save is executed (in case the save does not actually execute because
the codeisinvalid).

» When another PeopleCode program is selected to be edited (if you have two PeopleCode editor windows
open at the same time and you move from one to the other).

Thefileis saved to your temp directory, as specified in your environment, in afile with the following name:
PPCVVDDYY_HHMVES. t xt

, where MMDDYY represents the month, date, and year of the checkpoint, respectively, and HHMMSS
represents the hour, minute, and second of the checkpoint, respectively.

Thetop of the checkpoint file contains the following information:
[Peopl eCode Checkpoint Fil e]
[RECORD. r ecor dnaneFl ELD. f i el dnameMETHOD. event nane]

If your PeopleCode program saves successfully, checkpoint files associated with that program are
automatically deleted.

Accessing PeopleCode in Application Designer

Y ou can access PeopleCode associated with Application Designer definitionsin severa ways.

220 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

For record fields and pop-up menu items, the Project view displays PeopleCode programs within the project
hierarchy using alightning bolt icon. The programs are children of the fields and pop-up menu items with
which they are associated, and they are named according to their associated events, such as ItemSel ected,
Rowlnit, or SaveEdit, as shown in the following example. Double-click arecord field or pop-up menu item
program in the Project view to start the PeopleCode Editor and load that program for editing.

55 oemo &

D Application Engine Programs
-] Business Interlink
(0] Component Interface
-] Components
-] Fields
{2 File Layout Definitions
F- HTHL
-] Images
-3 Menus
=-Bd CORE_PERS_DATA_POPUP
=B JOBCODE_POFLP
= MENUITEM1
- ADD_JOB
- 4F ltemSelected
E JOBCODE_TR&MSFER
27 Meszage Definitions
-7 Pages
=5 Recards
=23 DIMENSION
=< DIMEMSION_ID
L £F Rowlnit
¢ DIMENSION_T'PE
o £F SaveEdit

: g FieldE dit
E| Q DESCH
‘2% FieldDefault

L £F BaldThanoe T
1| | »
%I Development £ Upgrade I

Example of PeopleCode programs in the Project view hierarchy

Y ou can associate PeopleCode with other types of definitions, such as:
+ Components

+ Pages

« Component interfaces

Such PeopleCode programs do not appear in the Project view. Instead, you right-click the name of the
definition and select View PeopleCode. Y ou can also access these programs from their associated definitions.

PeopleCode can also be associated with:

« Component records (specific records included in components).

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 221

Accessing PeopleCode and Events Chapter 11

» Component record fields (specific record fields included in components).

Because component record fields and component records do not appear in the Project view, you must access
their associated programs through their parent definitions.

See Also

Chapter 11, "Accessing PeopleCode and Events," Accessing Record Field PeopleCode, page 222

Chapter 11, "Accessing PeopleCode and Events," Accessing Component PeopleCode, page 228

Accessing Record Field PeopleCode

This section provides an overview of the record field event set and discusses how to:

« Accessrecord field PeopleCode from a record definition.

» Accessrecord field PeopleCode from a page definition.

Understanding Record Field PeopleCode

222

A record is atable-level definition. Record definitions are of different types, such as SQL table, dynamic
view, derived/work, and so on.

Record fields are child definitions of records. Record field PeopleCode programs are child definitions of
record fields. A record field can have zero or one PeopleCode programs for each event in the record field
event set.

The following events are associated with arecord field:

FieldChange Event

» FieldDefault Event

« FieldEdit Event

« FieldFormula Event

* Rowlnit Event

* RowSelect Event

* RowDelete Event

« PrePopup Event

+ SaveEdit Event

» SavePreChange Event

« Workflow Event

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

SavePostChange Event
Searchinit Event

» SearchSave event
See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Record Field PeopleCode from a Record Definition

Record definition fields that have PeopleCode associated with them appear in bold type in record views.

Efi EMPL_CHECKLIST (Record)

Eecord Fields IRE.;.;.,».;{ Type I

Hum Field Hame Type | Len | Format | H Short Hame Long Ham
EMPLID Upper : EtmpliD
2 CHECELIST_DT Date 10 Chkl=st Ot Checklizt Date
3 CHECELIST_CD Char E Upper Checklizt Checklist Code
4 RESPOMSIBLE_ID Char 11 Upper Resp 1D Responzibhe (D
5 COMMENTS Long o Commernt Commenit

Record definition showing three fields associated with PeopleCode

In the previous example, the first three fields (in boldface font) have PeopleCode associated with them. If you
expand the subrecords in arecord definition, any fields in the subrecord that have PeopleCode associated with
them also appear in bold type.

To access record field PeopleCode from an open record definition:
1. Click the PeopleCode Display button on the toolbar.

A grid appears with a column for each event in the record field event set. Each cell represents a field-
event combination. The column names are abbreviations of the record field event names, for example,
FCh for the FieldChange event and RIn for the RowlInit event. A check mark appears in the appropriate
cell for each field/event combination that has an associated PeopleCaode program.

2. Access the PeopleCode using one of these methods:
« Double-click the cell.
« Right-click the cell and select View PeopleCode.
« Select View, PeopleCode.

The PeopleCode Editor appears. If the field/event combination has an associated program, it appearsin the
editor.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 223

Accessing PeopleCode and Events Chapter 11

See Also

Chapter 11, "Accessing PeopleCode and Events," Understanding Record Field PeopleCode, page 222

Chapter 12, "Using the PeopleCode Editor," page 233

Accessing Record Field PeopleCode from a Page Definition

224

Y ou can associate a PeopleCode program with any page control that you can associate with arecord field.

To access record field PeopleCode from a page definition, right-click a page control and select View Record
PeopleCode. The PeopleCode Editor appears, displaying the first event in the event set associated with the
underlying record field of that control.

Button controls are a specia case. Y ou can associate a PeopleCode program with a button only if its
destination is defined as PeopleCode Command. When the user clicks a button defined using this method, the
FieldEdit and FieldChange events are triggered, so the PeopleCode must be associated with one of those two
events. Typically, you use the FieldChange event. The following example shows button properties:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

Page Field Properties E |

Type |Lahe| I Generall

— Tupe = Extermal Link
> [i
Puzh Buttan Huyperlink, b Dy
Qestinatinn: F'E|:||:||E|:|:||:|E Command ‘. Ziafie
Eecord Mame: [DIMENSION_wRK =] EL | =l
Field Mame: |PB_DIM_D PTIONS =]
= | termal Lk
[T EnableWhen Page is Dizplay Orly -
: : (il = I J
™| Gper i ewiwindavs
— dligrment [EamEaremt I J
£ [leff) Centered. 00 Fight Fage: I j
= Ak Aation: I j
EEHOTTEE: I j I} 12 data fram cunent page in seamch
Helated [Eamtnal I j
= Fiozess
T Secondary Fage Ipe; I j
Fage; I j fame: I j

k. I Cancel

Page Field Properties dialog box for buttons

To define acommand button:

1. Inthe page definition, double-click the button to access its properties.

2. Select PeopleCode Command as the button destination.

3. Select the record and field with which your button and PeopleCode are associated.

Y ou should associate the button with a derived/work record field, which separates its PeopleCode from
the PeopleCode associated with any of the page's other underlying record fields. Y ou can then store
generic PeopleCode with thisfield so that you can reuse it with buttons on other pages.

4. Click OK to return to the page.
Right-click the command button and select View PeopleCode to access the PeopleCode Editor.
See Also

Chapter 12, "Using the PeopleCode Editor," page 233

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 225

Accessing PeopleCode and Events Chapter 11

Accessing Component Record Field PeopleCode

This section provides an overview of component record field PeopleCode and discusses how to access
component record field PeopleCode.

Understanding Component Record Field PeopleCode

Component record field PeopleCode is associated with arecord field, but only with respect to a component
and one of its events. Use thistype of association to tailor your programsto a particular component. This
PeopleCode is accessible only through the component structure view, not from arecord definition.

The following events are associated with a component record field:
« FieldChange Event

» FieldDefault Event

» FieldEdit Event

» PrePopup Event

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component Record Field PeopleCode

To access PeopleCode associated with a component record field, open the component, click the Select tab,
select afield, right-click the field name, and select View PeopleCode. A lightning bolt appears next to the
field name if PeopleCode is associated with the field at the component level. If PeopleCode is associated with
thefield at the record level, then alightning bolt does not appear, as shown in the following example:

226 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

j&j OF_ABSENCE_HISTORY.GEL {Component}

Defintion Structure I

QE_ABSENCE_HISTORY [Component]
QE_PERS_SRCH [Wiew) - Search Fecord
= E Scroll - Level 0
QE_PERS_DATA [Table]
= E Scroll - Lewel 1 Primary Record: QE_ABSEMCE_HIST
=62 QE_ABSENCE_HIST (Table)
----- e JE_EMPLID [Record Field)

¢ OE_DURATION_DAYS (R
----- ¢ OE_DURATION_HOURS (Fecord Field)
..... ¢ OE_REASOM [Record Field)
----- ¢ QE_PAID_UNPAID (Record Field)
----- ¢ QE_EMPLOYER_APPROV [Record Field)
----- ¢ OE_COMMENTS (Record Field)
=63 QE_DERNED_HR [Derived)

~ @ QE_DAY_OF_WEEK (Fecord Field)

Accessing component record field PeopleCode from the component structure

Note. The Structure tab displays only the runtime state of the PeopleCode. That is, it only displays record
field PeopleCode. For example, PeopleCode programs that are orphaned as a result of a page definition
change do not appear on the Structure tab. Orphaned PeopleCode programs do appear, however, in the
PeopleCode Editor, which displays the design-time view of PeopleCode.

The PeopleCode Editor appears. If that field has associated PeopleCode, then the first program in the
component record field event set appearsin the editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 233

Chapter 11, "Accessing PeopleCode and Events," Accessing Record Field PeopleCode, page 222

Accessing Component Record PeopleCode

This section provides an overview of component record PeopleCode and discusses how to access component
record PeopleCode.

Understanding Component Record PeopleCode
Component record PeopleCode is associated with arecord definition, but only with respect to a component

and one of its events. Use this type of association to tailor programs to a particular component. This
PeopleCode is directly accessible through the component structure view, not from the record definition.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 227

Accessing PeopleCode and Events Chapter 11

Search records and non-search records in components have different associated event sets. The following
events are associated with component search records:

e Searchlnit Event
» SearchSave Event

The following events are associated with component non-search records.

« RowDe€ete Event
* Rowlnit Event

In rare circumstances, the Component Processor does not run Rowlnit PeopleCode for some record fields.
The Component Processor runs Rowlnit PeopleCode when it loads the record from the database.
However, in some cases, the record can be initialized entirely from the keys for the component. When this
happens, RowInit PeopleCode is not run.

+ RowSelect Event

« SaveEdit Event

» SavePostChange Event
» SavePreChange Event
See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component Record PeopleCode

To access PeopleCode associated with a component record, open the structure view of the component, select
arecord, right-click the record name, and select View PeopleCode.

The PeopleCode Editor appears. If the record has associated PeopleCode, then the first program in the
component record event set appears in the editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 233

Accessing Component PeopleCode

This section provides an overview of component PeopleCode and discusses how to access component
PeopleCode.

228 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

Understanding Component PeopleCode
Component PeopleCode is associated with a component definition and an event.
The following events can be associated with a component:
» PostBuild Event
+ PreBuild Event
» SavePostChange Event
» SavePreChange Event
« Workflow Event
See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Component PeopleCode

To access PeopleCode associated with a component, open its structure view, select the component name,
right-click the name, and select View PeopleCode.

The PeopleCode Editor appears. If the component has associated PeopleCode, the first program in the
component event set appears in the editor.

See Also

Chapter 12, "Using the PeopleCode Editor," page 233

Accessing Page PeopleCode

This section provides an overview of page PeopleCode and discusses how to access page PeopleCode.

Understanding Page PeopleCode
Page PeopleCaode is associated with a page definition. The page event set consists of a single event, the

Activate event, which fires every time the page is activated. This event isvalid only for pages that are defined
as standard or secondary, and it is not supported for subpages.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 229

Accessing PeopleCode and Events Chapter 11

See Also

Chapter 6, "PeopleCode and the Component Processor," page 89

Accessing Page PeopleCode

To access PeopleCode associated with a page, right-click any part of the page definition and select View Page
PeopleCode.

Note. Page PeopleCode can only be accessed in thisway. Y ou cannot access Page PeopleCode from the
component definition Structure tab, from a project, or any other way.

The PeopleCode Editor appears. If the page has associated PeopleCode, it appears in the editor.

Note. The term page PeopleCode refers to PeopleCode programs owned by pages. Do not confuse page
PeopleCode with PeopleCaode properties related to the appearance of pages, such asthe Visible Page Class
property.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Page Class'
Chapter 12, "Using the PeopleCode Editor," page 233

Accessing Menu Item PeopleCode

This section provides an overview of menu item PeopleCode and discusses how to:
» Define PeopleCode pop-up menu items.
» Access menu item PeopleCode.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
Menu Definitions'

Chapter 12, "Using the PeopleCode Editor," page 233

Understanding Menu Item PeopleCode

PeopleTools menus are one of two types, either pop-up or standard, both of which are standalone definitions
in the project hierarchy. However, you can only associate PeopleCode with menu items in pop-up menus.

230 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11 Accessing PeopleCode and Events

The menu item event set consists of asingle event, the ItemSelected Event. This event fires whenever an user
selects amenu item from a pop-up menu.

Note. Do not confuse menu item PeopleCode with PeopleCode functions related to the appearance of menu
items, such as CheckMenultem.

See Also

Chapter 6, "PeopleCode and the Component Processor," [temSelected Event, page 133

Defining PeopleCode Pop-Up Menu Items
To define a PeopleCode pop-up menu item:
1. Inthe open pop-up menu definition, double-click the menu item to access its properties.
If you are creating a new menu item, double-click the empty rectangle at the bottom of the pop-up menu.
The Menu Item Properties dialog box appears.
2. If thisisanew menu item, enter aname and alabel for the item.
3. Select PeopleCode from the Type group box.

4. Click OK to close the Menu Item Properties dialog box.

Accessing Menu Item PeopleCode
To access pop-up menu item PeopleCode:
1. Open the pop-up menu definition.
2. Right-click the menu item and select View PeopleCode.

The PeopleCode Editor appears, displaying the associated program for that menu item, if any.

Copying PeopleCode with a Parent Definition

When you copy a Application Designer definition that contains PeopleCode, you can choose whether to copy
all PeopleCode programs and the definition. Each copy of the definition receives a separate copy of the
PeopleCode programs.

To copy adefinition with its PeopleCode:

1. Open the definition you want to copy.

2. Select File, Save As.

The Save As dialog appears.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 231

Accessing PeopleCode and Events Chapter 11

3. Typeaname for the new definition in the dialog box.
4. Click OK, and then click Y esto copy the PeopleCode.
Click Yesto copy al PeopleCode associated with the definition.

Upgrading PeopleCode Programs

Y ou can upgrade PeopleCode programs independently of the definitions with which they are associated.
Refer to the upgrade instructions for your product for details.

232 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12

Using the PeopleCode Editor

This chapter discusses how to:

» Navigate between PeopleCode programs.
» Usethe PeopleCode Editor.

» Generate PeopleCode using drag-and-drop.

Navigating Between PeopleCode Programs

After you access a PeopleCode program associated with a Application Designer definition, you can access
programs associated with other related definitions without having to close the editor window.

This section provides an overview of the PeopleCode Editor window and discusses how to:
» Navigate between programs associated with a definition and its children.

« Navigate between programs associated with a definition’'s event set.

See Also

Chapter 11, "Accessing PeopleCode and Events,” page 219

Understanding the PeopleCode Editor Window
Application Designer supplies an independent editor window for each parent definition, such as arecord,

component interface, or an analytic model, for which you invoke the editor. The editor window's title bar
displays the name and type of the parent definition, as shown in the following illustration:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 233

Using the PeopleCode Editor Chapter 12

!__JIJE_ABEEHEE_HIST.QE_RETURN_DT.FiEIdEhangE {Record PeopleCode)

QE_RETURM DT ([field) j FieldChange j

IIf All{QE_AR3IENCE_HI3T.(QE_BEGIN DT, QE_ABIENCE HIST.(QE_FETURMN DT &And ﬂ
QE_AB3IENCE _HI3T.(QE_BEGIN DT <= QE_AR3IENCE HI3T.QE_FETUFRN DT Then
«DURATION DAYS = QE_ABSENCE HIST.QE _FETURN DT - QE_ABIENCE HIST.QE_EEGIN DT
If &DURATION DAYE > 999 Then
QE_ABRSENCE HIST.QE DURATION DATS
Else
QE_AB3ENCE HI3T.(QE _DURATION DAYS3
End-If:;
End-If:;

S99

sDURATION DAYS

1 | Y

PeopleCode Editor window with record field PeopleCode

The editor window contains the main edit pane, the drop-down definition list at the upper-left, and the drop-
down event list at the upper-right. The drop-down lists enable you to navigate directly to the PeopleCode
associated with related child definitions, for example, fields within arecord and their event sets.

Note. When you make a selection from either drop-down list box, your selected entry has a yellow
background, indicating that you must click the edit pane before you can start typing.

Y ou can open as many editor windows as you want and resize them in Application Designer. Each line of
code wraps automatically based on the window's current width. A vertical scroll bar appearsif the program
has more lines than the editor can display in the edit pane.

Note. Y ou cannot open two editor windows for a single parent definition, or for any two of its child
definitions.

See Also

Chapter 12, "Using the PeopleCode Editor," Navigating Between Programs Associated With a Definition and
Its Children, page 235

Chapter 12, "Using the PeopleCode Editor," Navigating Between Programs Associated With Events, page 235

234 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Navigating Between Programs Associated With a Definition and Its Children

Y ou use the drop-down definition list to navigate between PeopleCode programs that are associated with a
parent definition and its children. The list displays the complete hierarchy of child definitions to which you
can navigate; bold items have PeopleCode associated with at least one event in the item's event set. The
structure of the definition list depends on the type of parent definition. Parent definitions include:

* Records.

Select record fields from the record drop-down list. The record name appears at the top of thelist asa
visual clueto clarify the location of the record fields, but you cannot associate PeopleCode with a record.

« Components.

Select component records and component record fields from the component drop-down list.
» Pages.

Select the page definition from the page drop-down list.
« Pop-up menus.

Select pop-up menu items from the menu drop-down list. The menu and menu bars appear in thelist as
visual clues, but you cannot associate PeopleCode with these elements.

Navigating Between Programs Associated With Events

Use the PeopleCode Editor's drop-down event list to select an event from the event set of the currently
selected definition. Use this event list to navigate between PeopleCode programs that are associated with that
definition. For every definition-event combination with associated PeopleCode, the event name is displayed
in bold, and it appears at the top of the event list, as shown in the following illustration:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 235

Using the PeopleCode Editor

!__JABSENEE_HIST.HETI.IHN_DT.FieIdEhange [Record PeopleCode]

Chapter 12

RETURN_DT (field) j FieldChange j
If 411(EEGIN DT, RETURN DT} ind :
BEGIN DT <= RETUERN DT Then E.E'I;IEEd"l
sDURATION_DAYS = RETURN_DT - BEGIN DT i
If <DURATION DAT3I > 993 ThEI‘J.l FieldE dit
DURATION DAYS = 993 (=Y
Elze S avePreChange
DURATION DAYS = sDURATION DAYS 5 aveFoztChange
End-If: - - EDWIS E|Elft
QWIREEr
End-If; R owDelete
S earchlmit
SearchSave
ok flom
FreFopup

Selecting an event from the PeopleCode Editor

See Also

Chapter 11, "Accessing PeopleCode and Events," page 219

Chapter 6, "PeopleCode and the Component Processor," page 89

Using the PeopleCode Editor

236

This section provides an overview of the PeopleCode Editor and col or-coded language elements and

discusses how to:

» Write and edit PeopleCode.

» Format code automatically.

» Usedrag-and-drop editing.

» Access PeopleCode external functions.

» Access definitions and associated PeopleCode.
« Access help.

« Setuphep.

» Change colors in the PeopleCode Editor.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12

Using the PeopleCode Editor

Select afont for the PeopleCode Editor.
Change word wrap in the PeopleCode Editor.
Use PeopleCode Event properties.

Understanding the PeopleCode Editor

The PeopleCode Editor works much like any other text editor, but has capabilities specifically geared toward
the PeopleTools environment. Some of its features include:

Editing functions are integrated with the menus and toolbar of Application Designer and are a'so
accessible from a pop-up window.

It checks, formats, and saves all programs associated with Application Designer definitions
simultaneously when any definition is saved.

It includes a Validate Syntax command for checking and formatting a single PeopleCode program without
saving.

It supports standard Microsoft Windows drag-and-drop editing.
It supports color-coding for the different elements of the PeopleCode language.

It supports word wrap based on either the size of the editor window or a specific number of characters per
line.

Y ou can open separate instances of the editor simultaneously, and you can use a drag-and-drop text
operation between programs.

Y ou can open the definition with which the current set of PeopleCode programs is associated from within
the PeopleCode Editor.

Y ou can open afield, record, page, file layout, or other definitions from a PeopleCade reference to the
field, record, page, or file layout, and so on.

Y ou can access PeopleCode programs associated with afield, record, page or file layout, or other
definitions from a PeopleCode reference to the field, record, page, or file layout, and so on.

Y ou can open a PeopleCode Editor window containing an external function definition from afunction
declaration or function call.

Y ou can press F1 with the cursor in a PeopleCode built-in function, method, meta-SQL., and so on, to
open the PeopleSoft help for that item.

Writing and Editing PeopleCode

The PeopleCode Editor supports standard editing function commands such as Save, Cancel, Cut, Copy, Paste,
Find, Replace, and Undo, from the PeopleCode Editor pop-up menu. Cut, Copy, and Paste use standard
Microsoft Windows keyboard shortcuts. Y ou can also cut, copy, and paste within the same PeopleCode
program or across multiple programs.

Use these buttons to perform editing functions:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 237

Using the PeopleCode Editor

g

|

By

2z B

See Also

Chapter 12
Save the current PeopleCode program. Y ou can also use the key combination
CTRL+S.

Cut the selected text or item. Y ou can also use the CTRL+X or SHIFT+DEL key
combinations.

Copy the selected text or item. Y ou can also use the CTRL+C or CTRL+INS key
combinations.

Paste from the clipboard. Y ou can also use the CTRL+V or SHIFT+INS key
combinations.

Find specified text. Y ou can also use the key combination CTRL+F.
Find and replace specified text. Y ou can also use the key combination CTRL+H.

Vaidate the current PeopleCode program.

Undo the last change. Use the CTRL+Z or ALT+BACKSPACE key
combinations.

Cancd the current operation. Use Esc key.

Appendix A, "PeopleCode Editor Short Cut Keys," page 313

Find and Replace Dialogs

When you use the Find and Replace functions, any text string that is highlighted appears when either the Find
or Replace dialog boxes are called. For example, if you select the method ActiveRowCount it appearsin the
Find dialog box whenit's called, as shown in the following example:

Find what; IE

[Match whale word only
[T Match caze

| Find Mest

EER,

Direction——— b ark Al
" Up
&~ Down Cancel

Find dialog box

Y ou can move through finding and replacing text strings one string at atime, or click Replace All to replace
globally. The Undo function is available to undo the last replace or replace all.

238

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor
The Mark All button places a bookmark next to all lines that have the matching text. Use Shift+ctrl+f2 to
remove all bookmarks.

With the Replace dialog box, you can select to replace text either in a selected section or awholefile (that is,
a PeopleCode program.)

Go To Dialog

Use the Go To dialog box to specify aline number in the current program, then go to that line. If you have
line wrap not enabled, you can specify to go to statement numbers instead of line numbers.

G ta Enter Line Mumber: -
_Gu:u Tao

% Line Mumber

= Statement Mumber Cloze |

T o enable Statement Mumber uncheck YWiew | Word ‘wWirap.

Go To dialog box

Validate Syntax Utility

To check the syntax of the current PeopleCode program and format it if it is syntactically correct, do one of
the following:

» Click the Validate Syntax button on the Application Designer toolbar.
« Within Application Designer, select Tools, Validate Syntax.
« Right-click in the PeopleCode Editor window, then select Validate Syntax.

The Validate utility has severa functions, such as finding undeclared variables, mismatching data types, or
invalid methods or properties for a class. Y ou can check either a single component or an entire project.

Errors or warnings produced by the Validate utility are displayed in the Validate tab at the bottom of the
PeopleCode Editor window.

Any variables that you don't declare are automatically declared for you, and a warning message appears in the
Validate tab for each undeclared variable. Y ou can right-click in the Validate tab and select Clear to delete all
the warnings listed there, then use the Validate utility again to ensure that your code runs without errors or
warnings.

Note. Thisfeatureis convenient if you have written multiple PeopleCode programs and you want to check the
syntax of one without saving. All PeopleCode programs associated with an item (record, component, and so
on) are checked prior to saving.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 239

Using the PeopleCode Editor Chapter 12

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Working
With Projects,” Vaidating Projects

Chapter 15, "Debugging Y our Application,"” Compiling All PeopleCode Programs at Once, page 281

Formatting Code Automatically

Y ou do not need to format your PeopleCode statements; you need only to use the correct syntax. When you
save or validate, the system formats the code according to the rules in the PeopleCode tables, no matter how
you entered it originally. The PeopleCode Editor automatically converts field names to uppercase and indents
statements.

PeopleCode is case-insensitive, except for quoted literals. PeopleCode does not format anything surrounded
by quotation marks. String comparisons, however, are case-sensitive. When you compare the contents of a
field or avariable to a string literal, make sure the literal isin the correct case.

All field names in a PeopleCode program must be fully qualified, even if the field is on the same record
definition as the PeopleCode program. However, you only need to type in the name of the field. The editor
validates if the field exists on the current record, and reformats the field name to recordname.fieldname.

Using Drag-and-Drop Editing

In addition to the standard keyboard shortcuts and toolbar buttons, you can copy or move text within a
window or between two PeopleCode Editor windows by using the mouse and the CTRL key.

Note. Y ou cannot open two editor windows for a single parent definition, or for any two of its child
definitions.

To move text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Place the mouse over the text and drag the text to the other PeopleCode Editor window.

3. When the cursor appears at the place where you want to insert the text, release the mouse button.
To copy text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Hold down the CTRL key as you drag the text to the other PeopleCode Editor window.

3. When the cursor appears at the place where you want to insert the text, release the mouse button.

240 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Accessing PeopleCode External Functions

An external PeopleCode function is afunction written in PeopleCode (as opposed to a built-in function or
external DLL function) and defined in a program outside the one from which it is called. Externa
PeopleCode functions can be defined in any record PeopleCode program, but typically they are stored in the
FieldFormula event in records beginning with FUNCLIB_.

The PeopleCode Editor provides immediate access to external PeopleCode function definitions. Right-click
the function name in the program where the function is called, then select View Function FunctionName. This
opens a new PeopleCode Editor window containing the external function definition.

Note. Internet scripts are contained in records similar to FUNCLIB_ records. However, their names begin
with WEBLIB._.

Accessing PeopleCode Application Packages and Application Classes

The PeopleCode Editor provides immediate access to application packages, application classes, and
application class method definitions.

Right-click the package, class, or method name and, depending on the context, select from:

« View Application Package

+ View Application Class

« View Application Class Method

This opens the application package or a new PeopleCode Editor window containing the application class.

The following example shows the context menu for a fully-qualified application class name.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 241

Using the PeopleCode Editor

!__J PT_SECURITY.LDAP.AuthenticationMap.OnExecute {Application Package PeopleCode)

Chapter 12

I AuthenticationMap [application_class)

j ID nE xecute

method setDirProd(edirProd As string)l:

method setlonnectDN (econnectDN As string)l:

method setlonnectPWD (sconnectPWD As string)s

method setSSL(&isSSL As string):

method addLDAFServer (saServer As PT_SECURITY:LDAP:LDZPS=rireri-
method ButhenticationMap(); View Application Package

View Application Class

private

instance string sm_host; all:

instance integer sm_port; Copy

instance integer em_S5Lport; Paste

instance string &m_base;

instance string sm_scope; Find...

instance string &m_authAttr; Replace...

instance string &m_connectDN;)

instance string &m_connectPwd; fashing & Unds ikt

instance string sm_dirID; validate Syntax

instance string sm_dirProd;

instance string sm_authMapID; Definition Praperties

instance boolean sm_bSSL;
instance array of PT_SECURITY:LDAP:LDAPServer sm_ldapServers;

| v
Context menu with options for View Application Package and View Application Class
The following example shows the context menu for a method.

!.' PT_NAV.NavEndMNode.OnExecute (Application Package PeopleCode) - |EI|E|

j IDnE xecute

I MavEndMode [application_clazs]

/+ s0penFolderHIML as String, +/

/+ snavlevel as Number +/

/+ Beturns String +/

/+ Extends/implements PT_NAV:NavNode.GenerateHIML +/
Local string enewHIML;

Beturn cnewHTML: View Application Class Method

end-method; View Application Class
120k
method GetFolderCachePath
/+ Beturns 3tring +/ opy
Paste
EEM Build the folder ob? Find caching;
Local string sFolderPath nel...
Local string &Path = %TL Replace...
Local number &StartPos = o uioq by (jndg CHi+Z
Local number sRightParer
Local number ctleftParent Validate Syntax H
While cLeftParenPos <> [Definition Properties

tRightParenPos = Findi '! ', &Fatﬁ, &EEtFarenFnsF:
KN -

snewHIML = $This.GetNavihem i e e e """""I, tThisz, snavlevel, sFolderId, %This.:

£FolderPath = eFolderPath | Substring(ePath, sleftParenPosz + 1, sRightParenPos - {&I.EftPaE-ij
L P

[
[

J

Context menu with options for View Application Class Method and View Application Class

242 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Using the PeopleCode Editor

Note. The application class context menu is not available for methods that are called by indirection.
In the following example the method CallMe would not be available to view using the context menu.

hj ect 0. Get bj ect (). Cal | Me();

Accessing Methods in Derived Classes

A method that is defined only in the superclassis not available if you attempt to view it using View
Application Class Method with the derived class, or subclass.

For example, in the following code snippet CCl_CRM extends CCI_BASE. The method Validate is not
defined in CCI_CRM; itisavailableto CCl_CRM by extension. The method Submit, on the other hand, is
overriddenin CCl_CRM.

If you right-click Validate and select View Application Class Method, the cursor will be placed at the
beginning of the application class CCR_CRM, not at the method definition in CCl_BASE.

If you right-click Submit and select View Application Class Method, you will be taken to the method
definition for Submit in CCI_CRM.

| mport EOCC: CCl _CRM
&CCl = Create EOCC:. CCl _CRM);

&CCl . Val i dat e(&Car d) ;
&CCl . Submi t (&Card);

This may be helpful when you need to know whether a method has been overridden.

Accessing Definitions and Associated PeopleCode

Y ou can open fields, records, pages, application packages, and other definitions from the PeopleCode Editor.
Or you can open a new PeopleCode Editor window containing the programs associated with afield, record,
page, application class, or other definition.

To open adefinition from the PeopleCaode Editor, right-click a PeopleCode definition reference and select
View Definition or View Application Package.

For example, you could open definitions by clicking the following references:
e Record.BUS EXPENSE _PER

« BUS EXPENSE_PER.EXPENSE_PERIOD DT

+ Page BUSINESS EXPENSES

+ PT_BRANDING:BrandingBase

If you access arecord definition from arecord field reference (that is, recordname.fieldname) the specified
record field is sel ected when the record definition opens.

To open anew PeopleCode editor window, right-click a reference to the definition and select View
PeopleCode or, for application class PeopleCode, select View Application Class Method or View Application
Class.

For example, you can access record PeopleCode from the following record and record field references:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 243

Using the PeopleCode Editor Chapter 12

+ Record.BUS EXPENSE_PER
« BUS EXPENSE_PER.EXPENSE_PERIOD DT

Note. Y ou can only view the PeopleCode and definition when the text isin the format recordname.fieldname.
If the text isin the format method(i).recordname,method(i).fieldname, or & MyRecord.Fieldname,