ORACLE’
PEOPLESOFT ENTERPRISE

Enterprise PeopleTools 8.50
PeopleBook: PeopleSoft Application
Engine

September 2009

ORACLE

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Engine
SKU pt850pbr0

Copyright © 1988, 2009, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracleisaregistered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under alicense agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhihit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

Theinformation contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to usin writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software” or "commercial technical data' pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in avariety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create arisk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Preface

APPlICAtioN ENGINE PIEFACEc.ooiiicieieee ettt s e e se b bt n e Xi

APPHCALION ENQING ..ottt sttt et st ae et e s be e ae e e e s besbeeae e besbeebeeasesbesaeessesbesbeeseessestesseententenrens Xi

Chapter 1

Getting Started With Application ENQINEccco ettt ee st st ee s st ne e s 1

APPlICaLioN ENGINE OVEIVIEW ...ttt sttt b et a ettt b e ne et e e e bt st et e e e e enenbeas 1

Application ENgine IMpPIEMENTBLION ..o e 2

Chapter 2

Understanding Application ENQINE ..ot 5

Application ENging FUNDAMENTAIS ccooiiiiieie ettt ettt sttt sae e et e s be e e e saesreeneententens 5

Y= 2 SOOI 5

Application Engine Program EIEMENS ccooiiiiiiiie e 6
0SS o1 0] TSSO 6
R L= oS TP P PP RSP PR 6
o 0] PR 6
S = £ L 0] (0 LTSRS 8

Application ENGINE Program TYPES ...oeeieiriiiirieieeiesie sttt ettt b e st s e et nenneneas 8
Application ENgiNe Program TYPES ...ocuioieeiiieeiere e eete ettt eee st ee e ee st ae e eseeseesneeeeseeseeeneenseseesnean 8
(DF=tc aqTe ol o 0o (= o T IV oL PSPPSR 9
Transform Program TYPE ...ttt bbbt b b b e 10

Chapter 3

Creating Application ENQGINE PIrOQraMS cciiieieriiiieieesteseseeieste e eaeste e sseeaessesseessessessesssessessessesssensens 11

Viewing Application ENGINE PrOgramS oooiioieiiieeiese st eee e e st st re e tesae e eneesnesneeeeseeenas 11
USING DEFINITION VIBW .ottt sttt e ettt 12
USING Program FIOW VIBW ..ottt ettt ae st steesaetesnesseeneestesneenneneas 13
Switching Between Definition and Program FIOW VIEWS cceeierie e 15
USING the REFFESN OPLION ..ottt e st e b e s re e e besaeereenenre e 16

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ili

Contents

LS LT YA =TT O] 0 1= g £ SRS 16
Printing Program and FIOW DefiNITIONS ooviiiiieicines ettt 19
Creating, Opening, and RENAMING ProgramS ooeieiiririrerieieeese e 19
Creating NEW PrOOraMS ...ovicieii ettt ettt e st st e e teetesbesae e e e stesbeeneestesresseensantessens 20
Opening EXiStiNg PrOGIaIMS co.iiiiiiieieisti ettt eb et s e se b b nn e e ene s 20
S A= Tl 0o = P 20
Copying or Moving Program EIEMENLS c.ecceiiiicece ettt s re s 21
Testing Application ENGINE PrOQraMS oouiiiiiiiieiieiee sttt nne s 21
Setting Program PrOPEITIES oceiiei ettt s e st e st e st e e ae e et e saeesneesneeeneeeneeeneeeneennns 22
F oo ol 0] 0= =S 23
Setting General PrOPEITIES ...ttt b e e et nb b nn e enenne s 23
Setting State RECOrd PrOPEITIES c.viieiier et ee s ee st st s e st e st e s e saeesneesneesneesneesnnesnneas 23
Specifying TEMPOrary TADIES ..ottt ae e b sne e srenreenes 25
Setting AOVANCEA PrOPEITIES ocuieiieiiiitit ettt ettt e e r e ene b 26
N0 [0 [T a0 T o 1 o 1S 27
UNderstanding SECHIONS cuociiiiiiiiiee et e e e s te e ae e e s besae e e e tesaeeneessesreeneesenrenreas 28
INSEITING SECHIOMNS ..ottt b b et b b e e e e st b e s bt b e e e e bt e b e e e e eneenas 28
(0o 1 0TS = o RS 29
SEtting SECHION PrOPEITIES ...ttt bttt ettt b e ens 30
F 0 (6] 0T S [= TSR P ST SRR OPPP 30
FES g T To TS (= < S 31
SEting UpP SEED PrOPEITIES ...ttt ettt ettt st 31
SPECITYING ACHIONS ..ottt e e st bR e e e e h e Rt e et s e e e e e Rt e R e nn e e e e e n e e b e nnenn s 32
UNderstanding ACHIONS oceeieie ettt sttt st st e et s beeaa et e s tesaeeaesbesteeaaetesaeereennenrens 33
INSEITING ACHIONS .ottt et s bbb e et b e bt ne e e e s e e bt s bt b e e e e e aenbennennennas 34
S L o AN ot (o] N] 7 =R 34
SPECITYING SQL ACLIONS ...ttt st s e e b e et et e st e s be e e e stesbesaeensesbesteeseensesresaeeneensens 36
SPECITYING DO ACHONS ..ttt b ettt b bttt b e b et e bbb e s 37
Specifying PeOPIECOUE ACLIONS oieiieiiee e et ee et et s e st e st e saeesaeesneesneesneesneesnnesnnens 39
Specifying Call SECLION ACLIONS oceee et e st sre e e tesbeenaeneneas 40
SpeCifying LOg MESSAE ACLIONS oiveieiiitirierieie ettt sttt b e nn s bbb nn e enenneas 41
SPECITYING XSLT ACHONS .oeeei e e ettt e et e e e e e s ae e s ae e be e beesteesreesreenaeenreerean 42
Chapter 4
Developing EffiCIENT PrOgraMS ..ottt s seeste e me e e e seeeseeneesaesreeneensens 43
(0L aTe IS = L= oo o <SS 43
Understanding State RECOITS couiiiiiieieieiiitesi ettt b e e nn s 43
Sharing StAte RECOMIS eiiiiiii et st et e st e et e e ate et e eateeaeeeneeenteenteenseeneeensennes 44
Choosing a Record Type for Stat@ RECOIAS ocvieieceiiecece ettt e 45
SELING COMITITS ..ottt h et e et h b e e s e st e bt bt e e e e e e bt e b e e b e e e e e se e bt neennennenens 45
e NS T o TS = (= = 1 £ 46
USING BUIK TNSEIT ettt bbb bbbt b et et b b e 48

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

0L gTe = . 007 oo O 48
UNderstanding St PrOCESSING ...cvoeeirieriiieieesie ettt sttt b et st ne et ese b b e e 49
Using Set Processing EffECHIVEIY ..o 49
Avoiding ROW-DY-ROW PrOCESSING coiiiiiiiicece ettt sttt st ae s resreenne e 51
Using Set Processing EXAMPIES o.voiiiiiriieeieese ettt 52

Chapter 5

Using Meta-SQL and PeOPIECOUE oiiiiiicece ettt st sttt sreere et e 57

Understanding Application ENgine MetarSQL eoiiieieieee e e 57

Using PeopleCode in Application ENGINE Programscccceieieeiesese et sttt s ene e 58
Understanding PeopleCode and Application ENgiNg Programs ccoevereeieeeneneneneeeseseese s 58
Deciding When to USe PeOPIECOOE ooiiieee ettt eeas 60
Considering the Program ENVIFONMENT ccoieeiieieieceece e eee s se et sae e seeaestesreenaensesnesneas 61
Accessing State Records With PEOPIECOUE coiiiiriiiieeerese e 62
L0 L 1o TN 78 1 1= o 1 o o 63
USING PeoPIE€COUE IN LOOPS ..ocuviiieieeeeie st eee ittt st teste e e e st s et et e s ae e e stestesneeseseesteensentesreeneensenrenns 63
USING the AESECTION ClASS ...ttt n e 64
Making Synchronous Online Callsto Application ENgine Programsccccccevervienveesiesseeseeseeseeens 64
USING tNE FIIE CIASS ..ieieie ettt sttt e e st e st e s ae e e e s tesbeesaentesresreenneee e 65
Calling COBOL MOUUIES ...ttt st b et eb et n et b e n e 65
(0= T a0 o o] L= o0 ES AN K< 68
Using the COmMMITWOIK FUNCEION ...ttt 69
Calling WINWORD Mail MEIGE ...ttt n e 69
Using PeopleCode EXAMPIESoceiiieceee ettt sttt sttt st e ae et s besae e e e renreens 69

INCIUING DYNAMIC SQL ...ttt b et e et b et s e bbb enennas 72

Application Engine Meta-SQL REFENENCE ocvoiiiiieeieeer e 72
YA ¢ SRS 72
YA 00 =1 o PP S PR RTUR PP 73
YA =S o 1 o o SRR 73
8N S (< o PR 73
TN @ BT (= RSSO 73
T AN @ D = Y SRS 73
DOBINARY SORT .ottt ettt b et e et b e b b et e bt e bbb et et be st et et nennas 74
=1 Lo PSR 74
L= O =" o] SRR 76
QOCOALESCE ...t bR R bRt R bttt b e e n e 77
0] 1 111 T= AR RRURPRURTRN 78
0O o= TP U PP UP R UUTUPPUPRTRTRR 78
B N L= 011D = (= o SO PSPPSR 78
QOCUITENTDEIEOUL ...ttt ettt st ettt e e et e et e e abe s beeabeeabeeabeeabeeabeenbeenbeeneeeneeebeenras 79
QOCUITENIDALETIMEIN .ottt st a et e b e bt emeesbesbeeae et e sbeeneeeeseesreeneeteas 79
QOCUITENDALETIMEOUL ...viiieieie ettt et e e e et e e et e st e e e e besteeseentesaesseeneessesneensesseseeeneensensens 79

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. v

Contents

vi

O 1 1= o1 T 1= ORI 80
SN g g= 10 1 L | OO 80
L] (=7 AN o o 80
0 L (= B i R 80
L BT (= o OO RS RSP RR 81
051 (= 81
B3I (= O U | TP 81
L BT = | OO ERRORSRRRO 82
D =L 101 DL 1 OO 82
L (=Y W11 o TSRS 82
D L= 1NN [1 OO 82
Iz (=] 1= O LU | R 83
I I< o) B LY OO 83
L] 1= o3 1Y V1 83
5] 1 I I Y TR 84
QOEFTDICRECK oottt e e e s ae e sae e saeesaeesbeesbeesaeesaeesaeesaeesaeesbeesaeesaeesanesanesnneas 84
QOEXECULE ...ttt ettt e e ettt e s abeeeeeaaee e e e abeeeeeaseee e e abeeeeasaeeeeanbbeeeaanbeeeeaareeeaanbeeeeantreeeanrens 84
B (S oW = =0 [R 85
TS 10T £ 87
LT L o I I = PSPPSR 87
LIS = ST = o AR 88
0INSENSEl ECIWITILONGS ...ttt ettt n e ens 88
N o] o] 1S =T ol O RORRRO 89
0N o1 ISR 89
A < 1 = = [OOSR 89
s 1T 90
B L = v O 90
L I 90
85 I E 1= 1o 93
0 IS o = TSSO 94
QONEXE ANA YOPTEVIOUS ..ottt ettt e et e e st e e st e e st e e st e s sbesesbseesabeeesbessasessnbessabenesaneenns 95
B8 AN L0180 0 S 96
QONUMTOCKA .ottt ettt e bt e s te e s be e sbe e s be e be e beesbeesbeeabe e be e beenbeeabeeabeebeenbeenbeenbeesteentennns 96
QOPTOCESSINSIANCE ..ottt et e e et e s e e e e e e tae e e e abeeeeeassee e e abeeesasbeeeeaabeeeeanteeesensreeeenrens 96
QORESOIVEMEIASOL ...ociiieciee ettt e st e st et e s te b e e te e e e besheeae e s e besaeeasesbesbeeaeeneestesteeneentesreas 96
DOREIUMCOUE ..ovviiei ittt st e et e s eesae e sabesaeesbeesaeesaeesaeesasesaeeaaeesaeesasesasesasesaeesseesseesanesanesanesnnens 98
ORIGNTPAIEN .ttt h bt e e e e Rt e Rt b e e e e et b e bR e e e e e R b n e e e 99
5] (011 o [T 99
YOROUNTCUITENCY .ttt sttt b bbbt b e e e b e b b e e e bbb et e e e st bt st et e e e s nns 99
U (@0 a1 1 (o] OO 100
S = <o AU 100
s = 1< ot 1 I T 101
RIS 72 o PP 102
LS | RS 102
BN (o 11T SRR 103

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

BT 011 o SR 103
LI o (=TSRRI 104
L= TSRS 104
0L =L o TSR T SR U PR PPPP 105
L I L0172 (o [105
B0 1LL0=1 1 RSP RRSNSRR 105
LI L1)L PSSP 105
0 IS T | 106
LI L1 = SRR 106
LS T | PSPPSRSO 106
L0107 (PR PR PR 107
L8 0= (=] 1= o] = SR 107
B Lo 0= 1S = P 108
018 o] < PSPPSR 112
Chapter 6
Managing Application ENGINE ProgramsS ...t 113
Running Application ENGINE PrOgraMS c.occeiiiiiii e et see e e te st st ne e s st eeeenaesneeeneesneesnees 113
Understanding Program EXeCUtion OPLIONS c.ccviieieirieiieiese ettt st ennene s 113
Creating ProCeSS DEfINITIONS coiuiiiiriiieieiesie sttt sttt eb e resn e e e b nn e 114
Listing Process Definition ParamELErS ccocceiiiiieiie e see e steestee e s s see s e e reesre s sreesneesneenneenneas 115
Starting Programs with the Application Engine Process Request Page ccccooeevenivencienencsicnenes 116
Using PeopleCode to Invoke Application ENgiNe Programs ccocoeoerineneneeiesieneseseeseeesre e 118
Using the Command Line to Invoke Application Engine Programsccccevvvievevecieseece e 119
Debugging Application ENGINE PrOgramS cccciiiiiieiieesi et st 122
Enabling the Application ENgiNe DEDUGOE! ocvooveiiieiirieeeeeenie et 122
Setting DeEbUGOING OPLIONS ooiviiiiciicece ettt s s a et e s re e e e sesbesaeesesresteennentens 123
Restarting Application ENGINE PrOGIaIMS ccoiiiiiieisii ettt 127
UNderstanding RESLAIT ooeoeieeeeere ettt s ee et et e besae e e e stesseeneeneeseeeneeseneens 127
Determining When to USE RESLAIT cceiieeicceeese ettt sttt b st ne e 128
Controlling ABNormal TErMINGLIONS ccveieiiiieree e nn e 129
Restarting Application ENGiNE PrOgIramS ooiiiiieeie et 130
Starting Application Engine Programs from the Beginning cccoccvvereeve i cecveese e 131
Enabling and Disabling RESLAITcooiiiieiiieseeies et 132
Caching the Application ENQINE SEIVEN ...ttt te e st e s e s e e s ae e s be e sre e sreesreesreenreeneeas 132
Freeing Locked TEMPOrary TADIESoceeiiieciee sttt st sae e naenaenre s 133
Chapter 7
Calling Application Engine Programsfrom COBOL ccccooiininineeenenesie e 135
Adding CopyboOKS t0 COBOL PrOQIaIMS ccceeiuirieieeeiisiesteseeneesessessessesessessessessessesessessessessssessessessesenens 135

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. vii

Contents

AsSIgNING COPYDOOK VAIUES oeeeeieiectecee ettt ettt sttt sbeeae et e s besae et e sbesbeeneeseesresnneneenrens 137
HaNAING COBOL EITOIS ...ttt sttt ettt sttt st b et b bt e st se st et et et e st e b e sb et e e eneenenbens 141
Chapter 8
Tracing Application ENQGINE PIrOgramMScocvcueeiieieieeeesie st seeee et sae et saestesre e e nsestesaeesessesneenseneas 143
Understanding Tracing Application ENgiNE Programs coeoeriiiriieieniseseeseeese e 143
Understanding TraCe RESUITS ccviiuieeie ettt et st ae e ae s ae s beeae e besaeereennesnesneens 143
LI e 1 T LSS = (o] 1SS 144
R < o I = S TPV URRPRTRN 147
0 I I = o > S 147
StAEMENE TIMINGS TTACE ..ottt b bbbt e e et b e b e e e e bt n b benn e s 147
(D= 2107z S SN @ o110 1174 = G I = o= SR 149
Enabling Application ENGINE TIaCING ..c.ocoviiiieie e ste et eee et e et sae b s reesae e sne e e tesbesneennesreens 152
Setting CommaNd LiN€ OPLIONS ooiiirieieiisiisie ettt se e es s b e e se s s e 152
Setting Parametersin Server Configuration FIlESc.eovv e 153
Setting Options in PeopleSoft Configuration Managerccceeeeveieeeese s 154
LOCEIING TTACE FIIES ..ottt b et b et h bt e e bbb s 154
Chapter 9
USING TEMPOTAry TADIES ..ttt sttt b et 157
Understanding TemMPOrary TaDIESccei it e s e e sae e sre e sre e sreesneesneesnnas 157
Creating Temporary Tabl@ INSLANCES cceeieiiiicie ettt st et e et b e e nesbesneenneneas 159
Understanding Temporary Table INSIANCES c.oviiiiiiieeeeeeee e 159
Defining Temporary TADIESccci it e e s e st esaeesneesreesneesneesnnesnneas 160
Setting the Number of Temporary Table INSLANCES ocveueeiiiiceeee e 160
Building TabIE INSLANCES ...t b e en b nn e 162
Managing Temporary Tabl@ INSLANCES cceiuiieiieiiecicie et e e s beeaaeaesresreeneeneens 162
Understanding Temporary Table Instance NUMDEIS ..o 162
Assigning Temporary TableSt0 Programs ccooeieiieiirinineeeese st 163
F o T g o Y= = | R 166
MaKING EXIENEI CallS ...ttt b e bttt ettt e 168
Viewing Temporary TaDI@ USAJE ccooiiiieieiiiesie ettt n e n e 170
Viewing Temporary Table Usage by RECOIAcooeeiiiicecece et s 170
Viewing Temporary Table SettingS by Program ..o 171
Viewing ONline INSANCE USAgE oooeiieieeceierie ettt sttt se e te e e eeseeseeeneeeennens 172
Resolving the Temporary Table Usage Warning MESSAgE ocveeevevieiieeie st 172

Viii Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ix

Application Engine Preface

This PeopleBook describes Application Engine.

Application Engine

Application Engine is designed to help you develop, test, and run background SQL processing programs. This
PeopleBook explains the concepts and advantages of Application Engine, how to develop Application Engine
programs in Application Designer, how to run and debug programs, and the use of the special toolsto
maintain your programs.

The "About These PeopleBooks Preface” contains general product line information, such as related
documentation, common page elements, and typographical conventions.

Note. DB2 UDB for OS/390 and ZOSis the official IBM name for the database management system
(DBMS). In the current PeopleTools release, Oracle no longer supports the OS/390 operating system, only
Z/0S, its replacement. For the sake of brevity, this PeopleBook sometimes refersto DB2 UDB for OS/390
and Z/OS as DB2 Z/OS, and it sometimes refersto DB2 UDB for Linux, UNIX, and Windows as DB2
UNIX/NT.

PeopleBooks and the Online PeopleSoft Library

A companion PeopleBook called PeopleBooks and the Online PeopleSoft Library contains general
information, including:

» Understanding the PeopleSoft online library and related documentation.
» How to send PeopleSoft documentation comments and suggestions to Oracle.

» How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

» Understanding PeopleBook structure.

» Typographical conventions and visual cues used in PeopleBooks.

» 1SO country codes and currency codes.

» PeopleBooks that are common across multiple applications.

« Common elements used in PeopleBooks.

» Navigating the PeopleBooks interface and searching the PeopleSoft online library.
« Displaying and printing screen shots and graphicsin PeopleBooks.

» How to manage the PeopleSoft online library including full-text searching and configuring areverse
proxy server.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. Xi

Preface

» Understanding documentation integration and how to integrate customized documentation into the library.
» Glossary of useful PeopleSoft termsthat are used in PeopleBooks.

Y ou can find this companion PeopleBook in your PeopleSoft online library.

Xii Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1

Getting Started With Application Engine

This chapter provides an overview of Application Engine and discusses:
« Application Engine implementation

o Other sources of information

Application Engine Overview

Application Engine is a PeopleTool designed to help you develop background SQL processing programs.
Thistool isintended to be used by devel opers with knowledge of SQL, SQL tools, and PeopleTools.

Application Engine offers you an alternative to writing COBOL or SQR programs for background SQL
processing. While Application Engine does not generate, parse, or understand SQL, it does execute SQL that
you provide.

This diagram shows the program structure of Application Engine:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Getting Started With Application Engine Chapter 1

Application

Action Action Action

Application Engine Program Structure

Application Engine Implementation

This section provides information to consider before you begin to use Application Engine.

Implementation of Application Engine can be divided into the following activities:

Set up properties.

Specify actions.

Create temporary table instances.
Set up debugging options.

Enable application engine tracing.

Setting Up Properties

To set up Application Engine properties, you perform the following steps:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1 Getting Started With Application Engine

Step Reference

1. Set up program properties. See Chapter 3, "Creating Application Engine Programs,”
Setting Program Properties, page 22.

2. Set up section properties. See Chapter 3, "Creating Application Engine Programs,”
Setting Section Properties, page 30.

3. Set up step properties. See Chapter 3, "Creating Application Engine Programs,"
Setting Up Step Properties, page 31.

4. Set up action properties. See Chapter 3, "Creating Application Engine Programs,”
Setting Action Properties, page 34.

Specifying Actions

To modify the action properties, you perform the following steps:

Step Reference

1. Specify SQL actions. See Chapter 3, "Creating Application Engine Programs,"
Specifying SQL Actions, page 36.

2. Specify Do actions. See Chapter 3, "Creating Application Engine Programs,”
Specifying Do Actions, page 37.

3. Specify PeopleCode actions. See Chapter 3, "Creating Application Engine Programs,”
Specifying PeopleCode Actions, page 39.

4. Specify Call Section actions. See Chapter 3, "Creating Application Engine Programs,”
Specifying Call Section Actions, page 40.

5. Specify Log Message actions. See Chapter 3, "Creating Application Engine Programs,"
Specifying Log Message Actions, page 41.

Creating Temporary Table Instances

To set up temporary tables to improve performance, you perform the following steps:

Step Reference

1. Define temporary tables. See Chapter 9, "Using Temporary Tables," Defining
Temporary Tables, page 160.

2. Set up the number of temporary table instances. See Chapter 9, "Using Temporary Tables," Setting the
Number of Temporary Table Instances, page 160.

3. Build table instances. See Chapter 9, "Using Temporary Tables," Building Table
I nstances, page 162.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 3

Getting Started With Application Engine

Setting Up Debugging Options

Chapter 1

To set up debugging options for Application Engine programs, you perform the following steps:

Step

Reference

1. Enable the Application Engine debugger.

See Chapter 6, "Managing Application Engine Programs,”
Enabling the Application Engine Debugger, page 122.

2. Set up debugging options.

See Chapter 6, "Managing Application Engine Programs.”
Setting Debugging Options, page 123.

Enabling Application Engine Tracing

To trace Application Engine programs, you perform the following steps:

Step

Reference

1. Set command line options.

See Chapter 8, "Tracing Application Engine Programs,”
Setting Command Line Options, page 152.

2. Set parametersin server configuration files.

See Chapter 8, "Tracing Application Engine Programs,”
Setting Parameters in Server Configuration Files, page 153

3. Set options in Configuration Manager.

See Chapter 8, "Tracing Application Engine Programs.,”
Setting Options in PeopleSoft Configuration Manager,

page 154.

Other Sources of Information

In addition to implementation considerations presented in this chapter, take advantage of all PeopleSoft
sources of information, including the installation guides, release notes, and PeopleBooks.

See Also

"Application Engine Preface," page Xi

Enterprise PeopleTools 8.50 PeopleBook: Getting Started with Enterprise PeopleTools

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding Application Engine

Y ou use Application Engine to develop batch or online programs that perform high-volume, background
processing against your data.

This chapter discusses:

« Application Engine fundamentals.

« Meta-Structured Query Language (SQL).
« Application Engine program elements.

« Application Engine program types.

Application Engine Fundamentals

Application Engine comprises two distinct components—a designer where you define your batch program
and the runtime environment where you run and monitor your program.

In Application Engine, aprogramisaset of SQL statements, PeopleCode, and program control actions that
enable looping and conditional logic. A program is defined in Application Designer and performs a business
process. Y ou can use Application Engine for straight, row-by-row processing, but the most efficient
Application Engine programs are written to perform set-based processing.

Application Engine does not generate SQL or PeopleCode. It executes the SQL and PeopleCode that you
include in an Application Engine action as part of your program.

Application Engineis designed for batch processing where you have data that must be processed without user
intervention—for example, calculating salariesin payroll processing (although not printing the checks).
Another example might be converting money from one currency to another.

Meta-SQL

Y ou can write SQL within Application Engine, or you can copy SQL statements into Application Engine
from any SQL utility with few, if any, changes. This enables you to write and tune SQL statements before
you try to incorporate them into an Application Engine program.

Database platforms can have different syntax rules, especialy in regard to date, time, and other numeric
calculations. Generally, you can work around syntax differences using PeopleSoft meta-SQL, which
Application Engine supports. Meta-SQL is a set of predefined terms (meta-strings), designed to replace
relational database management system (RDBMS)-specific SQL syntax with a common syntax.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 5

Understanding Application Engine Chapter 2

In addition, PeopleSoft meta-SQL enables you to dynamically generate portions of SQL code. For example,
to join two tables based on their common keys, use the following meta-string:

%Joi n(COVWON_KEYS, PSAESECTDEFN ABC, PSAESTEPDEFN XYZ)
At runtime, the function would be expanded into the following:

ABC. AE_APPLI D = XYZ. AE_APPLI D

AND ABC. AE_SECTI ON = XYZ. AE_SECTI ON

AND ABC. DBTYPE = XYZ. DBTYPE
AND ABC. EFFDT = XYZ. EFFDT

Application Engine Program Elements

A Application Engine program comprises the set of processes to execute a given task. It is made up of these

key elements:
+ Sections
« Steps

« Actions

« Staterecords

Sections

Sections comprise one or more steps and are equivalent to a COBOL paragraph or an SQR procedure. All
Application Engine programs must contain at |east one section entitled MAIN.

A section isaset of ordered steps that is executed as part of a program. Y ou can call sections (and other
programs) from steps within other sections.

A program must contain at least one section. The execution of the program always starts with the section
defined as MAIN.

Steps

Steps are the smallest unit of work that can be committed within a program. Although you can use astep to
execute a PeopleCode command or log a message, typically you use a step to execute a SQL statement or to
call another section. The SQL or PeopleCode that a step executes are the actions within the step.

When a section is called, its steps execute sequentially. Every program begins by executing the first step of
the required section called MAIN and ends after the last step in the last section completes successfully.

Actions

Y ou can specify multiple types of actions for inclusion within a step. Multiple actions are commonly
associated with asingle step.

6 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding Application Engine

Do Actions

Do actions contain a SQL Select statement designed to return results on which subsequent actions depend.
For instance, if a Select statement returns no rows, then subsequent actions may not need to execute. A Do
action is equivalent to a COBOL Perform statement and has similar constructs.

The four types of Do actions are;

» Do While
+ DoWhen
+ Do Select
+ Do Until
SQL

Most SQL actions contain asingle SQL statement. These actions can perform the following types of SQL
statements:

+ Update

« Delete

e Insert

+ Select

The SQL action differs from the Do actions, which also contain SQL, in that the SQL action does not
control the flow of the program.

PeopleCode

Y ou can include PeopleCode in the PeopleCode action. Application Engine PeopleCode provides an excellent
way to build dynamic SQL, perform simple if/else edits, set defaults, and other operations that do not require
atrip to the database. It also enables you to reference and change active Application Engine state records.

Most importantly, PeopleCode provides access to the PeopleSoft integration technologies, such as PeopleSoft
Integration Broker, Component Interfaces, Business Interlinks, and file processing.

Log Message

Y ou use aLog Message action to write a message to the message log based on a condition in your program.
This gives your program multilanguage capability. The system stores the message generically as a message
set, message number, and parameter values. When a user views the messages using the Application Engine
Message Log page, the system retrieves the appropriate message string from the message catal og based on the
user's language preference.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 7

Understanding Application Engine Chapter 2

Call Section

You can aso insert an action that calls another section. The called section can be in the same program as the
calling section, or it can be in an external program. This enables you to chunk your program into more
maintainable, reusable pieces. If a section already exists in one program, rather than copying it into another
program, just call it.

Note. Application Engine supports up to 99 levels of nested Call Section actions. For example, the first called
section can call a second, which can call athird, and so on, up to 99 calls.

State Records

A state record is a PeopleSoft record that must be created and maintained by the Application Engine
developer. Thisrecord defines the fields a program uses to pass values from one action to another. Think of
the fields of the Application Engine state record as the working storage for your Application Engine program.

An Application Engine state record can be either aphysical record or awork record, and any number of state
records can be associated with a program. Physical state records must be keyed by process instance.

Application Engine Program Types

This section discusses:
« Application Engine program types.
« Daemon program type.

+ Transform program type.

Application Engine Program Types

Application Engine has five types of programs. Y ou specify the type in the Program Properties dialog box for
your program definition. The types are:

» Standard, which isanormal entry-point program.

« Upgrade Only, which is used in PeopleSoft upgrade utilities.
« Import Only, which is used by PeopleSoft import utilities.

« Daemon Only, atype of program used as a daemon process.

« Transform Only, a program type used to support Extensible Stylesheet L anguage Transformations
(XSLT).

8 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding Application Engine

Daemon Program Type

Application Engine provides a daemon process, called PSDAEMON, that runs continuously when PeopleSoft
Process Scheduler is running, and isintended for recurring jobs. It polls the system, checking for certain
conditionsto occur. A predefined set of conditionsis an event. When the conditions are true, PSDAEMON
schedules a process to handle the event.

PSDAEMON supports limited tracing, because it runsindefinitely. Specifically, it only allows Application
Enginetracing at the step and SQL levels, in addition to the standard PeopleSoft SQL and PeopleCode
tracing. Other options, such as Timings and DB Optimizer tracing, are not supported.

Y ou activate PSDAEMON in PeopleSoft Process Scheduler or from the command line.

Note. One PSDAEMON process can run for each row in the PS_ SERVERDEFN table. The
PS SERVERDEFN.DAEMONENABLED field must be set to 1.

Starting PSDAEMON from the Command Line
The command line syntax is:

psdaenon [-CT dat abase_type] [-CD database_nane] =
[-CO userl D [-CP password] -R server_nane

Use the—R option to query PS_SERVERDEFN, obtaining the daemon group, sleep time, and recycle count
(terminate after N iterations). Server_name isthe key value for PS_ SERVERDEFN. Y ou do not need to pass

Processlnstance (—1) or AE Program ID (—Al).

Starting a Daemon Program from PeopleSoft Process Scheduler

Before starting a daemon Application Engine program, you must add the program to the Daemon Group page
in PeopleSoft Process Scheduler.

To add a daemon program:

1. Select PeopleTools, Process Scheduler, Daemon Group.
2. Select the Add New Value page.

3. Enter adaemon procedure group name, and click Add.
4

. On the Daemon Group page, add the appropriate programs to the program name list.

Restarting the AEDAEMONMGR Program

AEDAEMONMGR is arestartable Application Engine program, which commits after each daemon
procedure. When the PSDAEMON executes, it determines whether it must restart AEDAEMONMGR
following an abnormal end to a program.

If arestart is not required, PSDAEMON assigns a new process instance and runs AEDAEMONMGR from
the beginning. Because of this design, PeopleSoft Process Scheduler does not have to determine whether
PSDAEMON exited due to an error or because it had reached the recycle count.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 9

Understanding Application Engine Chapter 2

AEDAEMONMGR uses the Daemon Group page value to get related daemon procedures from

PS DAEMONGROUP in order, and then it initiates each procedure. After al procedures have been executed,
AEDAEMONMGR logs a sleep message and returns control to PSDAEMON. The sleep time is used only to
log an informational message at the end of each cycle, for example "Sleeping for N minutes...". A messageis
also logged at the beginning of each cycle, so an administrator can monitor the runtime and sleep-time of a
specific PSDAEMON process.

If an error occursin AEDAEMONMGR,; if the recycle count has been reached; or if
PSSERVERSTAT.DAEMONACTION ="1' (indicating that PeopleSoft Process Scheduler isidle),
PSDAEMON exits. Otherwise, it deeps for the requested number of minutes, and then calls
AEDAEMONMGR again.

Using PSDAEMON to Start Parallel Processing

Within a daemon group, programs are invoked sequentially, and one program does not execute until the
previous program has completed. The programs contained in a daemon group should be quick programs that
scan information to find events. When an event is discovered, the daemon program can use the
ProcessRequest class to invoke programs that are not of the daemon type. These non-daemon type
Application Engine programs can execute in parallel. For that reason, do not include application-specific
processing in a PSDAEMON type program.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Process Scheduler, "Defining PeopleSoft Process
Scheduler Support Information," Defining Process Type Definitions

Transform Program Type

Transform Only type programs enable different systems to communicate with one another by transforming
messages into appropriate formats. When you specify an Application Engine program as a Transform Only
program, you must specify actions of type XSLT or PeopleCode. Y ou can use transform programs to do any
of the following:

« Apply atransformation to a message to make its structure comply with the requirements of the target
system.

« Perform adata trandation on a message so its data is represented according to the conventions of the
target system.

« Determine whether to pass a message through to its target, by filtering it based on its content.
See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker, "Applying Filtering,
Transformation and Trandation," Developing Transform Programs Using PeopleSoft Application Engine

10 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

An Application Engine program includes alogically ordered set of sections, steps, and actions. An executable
program must contain at least one section, called MAIN, used to identify the starting point of the program; it

should contain at least one step; each step should contain at |east one action.

This chapter discusses how to:

View Application Engine programs.
Filter view contents.

Print program and flow definitions.
Create, open, and rename programs.
Copy or move program elements.
Test Application Engine programs.
Set program properties.

Add sections.

Add steps.

Specify actions.

Viewing Application Engine Programs

This section discusses how to:

Use Definition view.
Use Program Flow view.
Switch between Definition and Program Flow views.

Use the Refresh option.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

11

Creating Application Engine Programs Chapter 3

Using Definition View

Y ou use Definition view to create definitions within a defined hierarchical structure, in which nodes represent
the definitions. A node isthe visual representation of a section, step, or action that you can select, collapse,
modify, and so on.

The sections that appear in Definition view do not necessarily appear in the order that they execute. To see
the actual order in which the sections execute, switch to Program Flow view.

Besides using the mouse, you can navigate in this view using the following keyboard combinations:
» Press Ctrl+Home to scroll to the top of the program definition and select the first node.

» Press Ctrl+End to scroll to the end of the program definition and select the last visible node.

» Press Tab to move from the currently selected field to the next updateable field.

» Press Ctrl+Down Arrow to move from the currently selected node to the next node.

» Press Ctrl+Up Arrow to move from the currently selected node to the previous node.

The following example shows the Definition view:

Definition Ingram Flouy I

|5 ection |Step |Action B
—|] MAIN [| Adelide (25
—| &5 S5tantUp | £ oo st e | Adudias s
Cormmit After: Frequency: Or Erraor;
0m [Default | | &bt
Log Message | {or Aersams siavasine
Mezzage Set: Mumber: —
[108 108
—| CH|RunProc | Seer Sasonan Fovasteasl | Adudias s
Cormmit After: Frequency: Or Erraor;
0oz [Drefaul |1 | &bor

(Do Select | o Satan dtascnindion
Rellze Statement: Do Select ™
1| | 3

Example of Application Designer Definition view

Definition View Pop-up Menu

The following table describes each item you see when you right-click a Definition view window. Certain
menu items are enabled only when a particular definition is selected.

12 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Creating Application Engine Programs

Menu Command

Description

View PeopleCode

Launches the PeopleCode Editor with the appropriate PeopleCode loaded.
Enabled when a PeopleCode action is selected.

View SQL Launches the SQL Editor with the appropriate SQL |oaded. Enabled when an
action containing SQL is selected.

View XSLT Launches the SQL Editor with the related Extensible Stylesheet Language
Transformations (XSLT) text loaded. Enabled for Transform Only program
types only, when an XSLT action is selected.

Cut Removes the selected item and copies it to a clipboard. Here, the word
clipboard refers to a PeopleTools-only repository for sharing PeopleTools
objects. Y ou cannot copy or paste into another program.

Copy Copies the selected item.

Paste Pastes the contents of the PeopleTools clipboard (the most recently cut or
copied item) to the current location of the cursor.

Delete Removes the currently selected node from the program definition.

Refresh View Refreshes the current view and reorders the definition objects as necessary.

Show Comment

Reveals the comments associated with the selected definition object.

Insert Section Inserts a new section into the current program, at the place where the cursor
is positioned. This option is enabled only when you have MAIN or another
section selected.

Insert Step/Action Inserts anew step and action within the currently selected section. This
option is enabled only when you have a section or a step selected.

Insert Action Inserts a new action within the currently selected step. This option is enabled

only when you have a step or action selected.

Jump to This Program Flow

Switches to the Program Flow view with the first occurrence of the currently
selected definition in focus.

Print

Displays the print dialog box for the definition view.

Insert Section Into Project

Appliesto sections. Inserts the currently selected section into the current
project.

Using Program Flow View

Program Flow view is aread-only view that shows the expected sequence of steps to be executed at runtime
for the program you are developing. The following example shows the Program Flow view:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 13

Creating Application Engine Programs Chapter 3

14

Definition Program Flow l

: Step 2 TESTMUM =

F Call Section - TESTHUM. GBL. default. 1900-01-01
{Bs| Step1: INTEGERS
oL soL
{Bs| Step 2 INTRESLT
.
TB| Step 2 INTMSG
{i| Step 3 FILE4/D
£ Call Section - FILE.GBL. default.1300-01-01
Tl Step1: FILE4/D
| PeopleCode
{i| Step 4 SESSION !
Call Section - SESSION. GEL. default. 1900-01-01
E Step 1: Sesion
I v -
$3elect(AE_TINT_15) SELECT %Bind(AE_TNT 15) + 3Bind(AE_TNT 14) + &
$Bind (AE INT 13) + %Bind(AE_INT 12) + %Eind(&E_INT 11} +
$Bind (AE INT 10) + %Eind(AE_INT 9) + %Eind(AE INT &) +
$Bind (AE INT 7) + %Bind(AE INT &) + %Bind(AE INT 5 +
$Bind (AE INT 4) + %Bind(iE INT 3) + %Bind(AE INT 2} + ;|

Example of Application Designer Program Flow view
Y ou can control the amount of detail that appears for each definition by clicking it to expand to the next level.
Y ou can also view the SQL or PeopleCode in the lower (splitter) window area by clicking the lower window.

If aprimary step node (one that is not the result of a section call) is selected, the Print Options dialog box
permits either the printing to begin at that step node or the printing of the entire program. However, if a
secondary step node (one that is the result of a section call), a secondary action node, a call section action
node, an SQL node, or a PeopleCode node is selected in the Program Flow view, the Print Options dial og box
only permits the printing of the entire program.

To display the pop-up menu for a node, right-click the node. Y ou do not have to select the node first.

Y ou can also display the comments associated with definitions by selecting View, Show All Comments, or
for a particular node, right-click and select Show Comment.

Y ou can double-click SQL or PeopleCade statements to launch the editors.

Program Flow Pop-up Menu

The following table describes each pop-up menu item in Program Flow view:

Menu Command Description

View PeopleCode Launches the PeopleCode Editor with the appropriate PeopleCode |oaded.
Enabled when a PeopleCode action is selected.

View SQL Launches the SQL Editor with the appropriate SQL loaded. Enabled when an
action containing SQL is selected.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

Menu Command Description
Refresh View Refreshes the current view and reorders the definition objects as necessary.
Show Comment Reveals the comments for a single definition object that appearsin the

Program Flow view.

Jump to This Definition Switches to the Definition view with the first occurrence of the currently

selected definition object in focus.

Print Launches the print dialog box for the program view.

Switching Between Definition and Program Flow Views

By default, navigation within either view does not affect the currently active row in the other view. This
functionality enables you to retain your place in one view while scrolling around in the other.

To switch between the two views, you can use any of the following methods:

View tabs.

Aswith any tabbed interface, if you select atab, the associated view interface becomes active. When you
return to the previous view, it remains positioned on the current or last selected node within the program
when you switched. Thisistrue whether you selected the item or just placed the cursor within an edit box.

View menu.

Select a section or step in the current view (note that selecting an action does not enable this
functionality—you can only jump from parent nodes). Then select View, Jump to Program Flow or View,
Jump to Definition, depending on the view that is currently active. When you select one of these
commands, the focus of the target view depends on what you have selected in the previous view. For
example, if you have section C, step 4 selected in Definition view, and you select View, Jump to Program
Flow, section C, step 4 is the focus of the Program Flow window. If the selected item isin a program that
is not already open, Application Engine opens the appropriate program, and then navigates to the
reguested node in the view window.

Pop-up menu.

The same commands as the View menu are al so available from the pop-up menu.

Switching Within Program Flow View

While you are in Program Flow view, you can select these options from the pop-up menu:

Go to Next Reference

Select to switch to the next reference of a particular definition object. This helps you to quickly navigate
through a program. For instance, if referencesto section C, step 4 appear three times because there are
multiple callsto this object at runtime, you select Go to Next Reference to quickly and easily navigate to
each reference, or call.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 15

Creating Application Engine Programs

Chapter 3

« Jump to this Definition

Select to go directly to the definition node in Definition view that pertains to the current selection in the
Program Flow view.

Using the Refresh Option

Asyou develop an Application Engine program, you may be inserting, renaming, and deleting definitions. In
alarge program, it can be easy to lose your place or become disoriented. The Refresh option reorders all the
nodes for the current definition according to the following logic:

» For standard program definitions, the MAIN section is always displayed first (Library program types do
not contain aMAIN section because they contain only callable sections).

The remaining sections appear alphabetically by name, which makes it easier to locate a section within
the program definition. The system, at runtime, executes sections through Call Section actions within
steps, not by the order in which sections are defined.

» Steps are never automatically reordered in Definition view, and, at runtime, they execute in the sequence
in which you define them.

» Actionsare alwayslogically reordered within a step, based on their action type, which defines their
runtime seguence.

Note. When you save a modified definition, the system automatically refreshes the view.

Application Engine inserts any delete requests for a given section into the current project, regardless of the
Tools, Options setting in Application Designer.

For example, suppose you delete a section node from the current Application Engine program, and then you
reinsert a section hode and rename it to the same name as the section you just deleted. The section object is
not inserted into the project regardless of your Tools, Options setting. Thisis because a delete action already
exists for this object. To resolve this situation, either manually remove the delete request before inserting the

new copy request or manually reset the proper flags in the upgrade project that changes the action type from
delete to copy.

Filtering View Contents

16

Section filtering options enable you to filter the current view so that you see only sections and steps based on
specified criteria.

To enable or modify the filtering options, select View, Section Filtering. Y ou can select from the following
filtering options:

Menu Command Description

No Filtering Select to see all objectsin your program regardless of any section attributes,
such as Market, Database Type, Effective Date, and Effective Status.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs
Menu Command Description
Default Select to display the definition filter according to the default filtering criteria.
If you change the value of any filter option and click OK, you have defined a
custom filter.
Custom Select to display the definition filter dialog box and define custom filtering
options for the current view.

Behavior of Section Filtering Options

When using the section filter options, consider the following:

The default is no filtering; therefore, all section definitions are included in this view.

If you select custom filtering, the default filtering options are displayed while you're in the current session
of Application Designer.

If you modify these filtering options and click OK, the new options are stored as the currently active
options and the view is updated accordingly.

If you select the default filter option, the original default options appear in the dialog box.

After clicking OK, the view reappears with only those sections that qualify. However, if you change the
default options and do not click OK, these options are stored as a custom filtering request and the view
reappears as necessary.

If no platform-specific section is defined for the target filter value, the default (base platform) is always
included, because this more accurately represents the A pplication Engine runtime behavior.

If you select Section Filtering, Default, or Section Filtering, Custom, the following dialog box appears:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 17

Creating Application Engine Programs Chapter 3

18

Definition Filter |

Section I

M arket: ||T-"-"- i

Kl

Blatform: IMil:rl:uscuft j

A of Date: |zunn-n4-11

g o= o
T L 1] T L] T In]!
T ar b 2 B0 3 i
H H 4 5 g T H
5 10 E 12 1 14 15
e —
1 1 18 1A 20 21 22
28 24 25 2 b 28 28
20 1 F z 4 5 g

| aF. I Cancel

Definition Filter dialog box

In this example, only definitions that represent the following criteria appear in Definition and Program Flow
views.

Market Select amarket code to see only the definitions within that market. To see all
market-related definitions for a program, you could update the default profile, or
define a custom filter, selecting (none) from the Market drop-down list box. In
the illustration, sections pertaining only to the Italian market (market code ITA)
are shown.

Platform Select the platform filtering. In the illustration, sections that are defined only for
the Microsoft SQL Server platform are shown. Select Default to display sections
defined to be database-pl atform-independent (default platform). Specific
platforms include Oracle, DB2 UDB for OS/390 and z/OS, DB2/UNI X,
Informix, Microsoft, and Sybase.

Asof Date Select the date filtering. In theillustration, sections with an as of date equal to or
greater than April 7, 2000 are shown. Select None to display all sections,
regardless of effective date.

Active Status Select to show active section definitions.

Note. All filtering options pertain only to section-level nodes.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

Printing Program and Flow Definitions

Y ou can print the program definition or program flow depending on which view you are in when you select
print.

To print an Application Engine program definition:

1. Right-click and select Print in either Program Flow or Definition view, or select File, Print.

2. Select print options.

Program ID

All Sections

All Steps
All Attributes
SQL Statements

PeopleCode Statements

Comments

Include External Calls

Max No. of Levels
(maximum number of
levels)

Select to print the whole program.

All sections are expanded in printed report only for the primary Application
Engine program being printed and only if that program is an application
library. Otherwise, only the MAIN section, first section, or called section is
printed.

Select to print al the steps in the section.

Select to print all detail level attributes for the specified node and its children.
Select to print, for every SQL type action, the text of each SQL statement.

Select to print the text of the PeopleCode statements for every PeopleCode
action.

Select to print the long description comments for the selected node and its
children.

Select to print the section detail of all external calls.

Specify the maximum number of recursive levelsto print for the specified call
sections, including both external section calls and internal section calls. This
edit box is aways enabled. The maximum number of levels can only be set to
avalue greater than or equal to 1.

Creating, Opening, and Renaming Programs

This section discusses how to:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Create new programs.
Open existing programs.

Rename programs.

19

Creating Application Engine Programs Chapter 3

Creating New Programs
To create anew program definition:
1. Select File, New or press Ctrl + N.

2. Inthe New dialog box, select App Engine Program from the Definition Type drop-down list box, and
click OK.

3. Save and name your program.

Select File, Save As, enter the name of your program in the Save Name As edit box, and click OK.

Note. It isaso important to provide a program description and specify its owner in the properties dialog box
for the new program.

See Chapter 3, "Creating Application Engine Programs,” Setting Program Properties, page 22.

Opening Existing Programs
To open an existing program:
1. Select File, Open.

2. Inthe Open Definition dialog box, select App Engine Program from the Definition Type drop-down list
box.

3. Enter your search criteriafor the program you want, select your program in the search results list box, and
click Open to open the program.

Renaming Programs
To rename a program:
Select File, Rename.
. In the Rename dialog box, make sure that App Engine Program appears as the definition type.

. Inthe box that contains the results of your search, click the program that you want to rename.

1.
2
3
4. Click Rename.
5. Place the cursor in the box that appears around the highlighted program name.
6

. Enter the new name for the program.

20 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

7. Click Rename again, and respond appropriately in the Confirm Rename dialog box.

Note. The system automatically modifies all static references in other programs to the renamed program.
For instance, if you call the renamed program from another Application Engine program, the Call Section
action in the calling program is modified to reflect the new program name. All sections and steps are
saved under the new name. Only one occurrence of a program name can exist for a given database.

Note. If the renamed program is called in adynamic Do action, the reference is not automatically
modified. Y ou should also manually check and modify any embedded references to the new program
name in Call AppEngine or other PeopleCode functions.

Copying or Moving Program Elements

The following procedures apply to sections, steps, and actions. Note that when these functions are performed
for agiven object, the result applies not only to the selected object, but also includes its defined children, if
they exist. Also note that all references to menu items apply not only to the main menu bar items, but also to
their related items in the context menu, where applicable.

To copy adefinition:

1. Select the definition.

2. Select Edit, Copy.

3. Position the cursor where you would like to put the copied definition, and select Edit, Paste.
To move adefinition:

1. Select the definition object.

2. Sdlect Edit, Cut.

3. Position the cursor at the target location and select Edit, Paste.

Testing Application Engine Programs

After creating or modifying your program, you can test it while in Application Designer in two-tier mode.
Y ou use the Run Reguest dialog box:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 21

Creating Application Engine Programs

Chapter 3

Program Mame: AETESTPROG

Fur Contral D IHUND'I

¥ Bun minimized

Lag File Name: Ic:htemp"-.f-‘-.ETESTF'HEIG.Ing

Process Instance: IEI

s

Run Request dialog box

s I Cancel

To run an Application Engine program in two-tier mode:

1. Select Edit, Run Program from the Application Designer toolbar.

The Run Request dialog box appears.

2. Enter appropriate values.

When you click OK, these values are passed as runtime parameters to the initiated Application Engine

runtime executable.

Run Control 1D

Run Minimized

Output Log to File
Log File Name

Process | nstance

3. Click OK.

Enter the run control 1D of the program that you are testing.

Select to have the window of the requested process minimized when it is
submitted to run.

Select to write the output log to afile.
Specify the log file name (enabled only when Output Log to Fileis selected).

Specify the process instance for this run request, or use the default value of
zero if an instance number is not needed.

Setting Program Properties

22

This section discusses how to:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

» Access properties.

» Set genera properties.

» Set state record properties.
« Specify temporary tables.
» Set advanced properties.

Accessing Properties

When you have an Application Engine program open in Application Designer, you can view and modify the
properties assigned to an entire program just as you would a step or a section.

To view or modify the properties associated with a program, click the Properties button or select File,

Definition Properties while the program is open. Y ou can also press Alt+Enter. The Program Properties
dialog box appears.

Setting General Properties

Access the Program Properties dialog box and select the General tab. Y ou can specify identification values
for your Application Engine program.

Owner ID (Optional) Enter the owner I1D for the program. The owner ID isaway to identify
which definitions are owned by which PeopleSoft applications, such as
PeopleSoft General Ledger, Accounts Receivables, and so on. The valuesin the
drop-down list box are Trand ate table values associated with the
OBJECTOWNERID field.

Setting State Record Properties

Select the State Records tab.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 23

Creating Application Engine Programs

24

Program Properties

Gereral State Recards | Temp Tal:nlesl .-’-'-.u:l'-.fann::edl

Qualify Search;

I.-’-‘-.E et List |

Fecord List

Chapter 3

— Selected:

Eemayve |

|.-’-‘-.E INTTEST AET &F_TESTAPPL_AET

&AE_UIPGEIDH_AET
AEMASSCHMG_AET

" Default State Recard

0k, Cancel

Program Properties dialog box: State Records tab

Qualify Search

Get List
Record List

Selected

Enter any wildcard characters or complete table names to limit the results that
appear in the record list. By default, the Record List box contains al record
names that end with the extension AET. This extension identifies the record as an
Application Engine record.

Click to populate the Record List box.
This text box contains the results of your state record search.

Select state records for use with a particular program. Click Add to include
selected records from the record list into the selected list. Click Removeto
remove selected records from the selected list. Indicate which state record to act
as the default state record by selecting its check box. For your default state
record, you need to reference only fieldnamesin your PeopleCode and SQL (for
the active program). When you reference a non-default state record, you do so by
using recname.fieldname.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Specifying Temporary Tables

Select the Temp Tables tab.

Program Properties

Generall State Records Temp Tables |.-’-'-.u:|vanu:eu:||

Cualify Search:

—

Get List |

— Selected:

Add | Eemayve |

Fecord List

MEMU_LAMG_THP

Instance Count: I 5

Inzert Selected list inta Project [

MEMU_LAMG_THP

— Runtime;

If hon-ghared T ables cannat
be aszzigned:

= Continue
i~ Abort

Program Properties dialog box: Temp Tables tab

Temporary tables store intermediate results during a program run.

Creating Application Engine Programs

Note. Y ou must have already defined required temporary tablesin your database prior to associating them
with an Application Engine program.

Qualify Search

Enter any wildcard characters or complete table names to limit the results that
appear in the record list. By default, the Record List box contains only records

that are of type Temporary Table. Y ou apply this attribute when you create the

Get List

Record List

record in Application Designer.

Click to populate the Record List box.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

This text box contains the results of your search for temporary tables.

25

Creating Application Engine Programs

Selected

Instance Count

Insert Selected List into
Project

Runtime

Chapter 3

Select temporary tables for use with a particular program. Click Add to include
selected records that appear in the record list. Click Remove to exclude selected
records that appear in the selected list.

Enter the number of physical tablesto be created for each dedicated table for this
program during the SQL Build procedure in Application Designer. Typically,
you would set this number to equal the maximum number of parallel program
runs that you anticipate. For instance, if you expect up to five instances of the
same program to run simultaneously, then you would set the instance count to 5.

If the active Application Engine program definition belongs to a project, select to
include the dedicated temporary tables for this program within the same project.

Control how an Application Engine program behavesif an instance of its
specified dedicated temporary tablesis not available. If you select Continue, then
Application Engine uses the base version, or nondedicated version, of the
temporary tables. If you select Abort, then the program exits with an error

message.

Note. If the table is keyed by PROCESS _INSTANCE, and the application SQL includes the process instance
in the Where clause, then the table can be shared by multiple processes. The best performance, however,
occurs when a program runs against a dedicated temporary table instance.

See Also

Chapter 9, "Using Temporary Tables," page 157

Setting Advanced Properties

26

Select the Advanced tab.

Program Properties

General | State Records | Temp Tables Advanced I

[T Dizable Bestart
[Application Libray

[Batch Only

Mezzage Set: IEI - I
Program Tepe: |Standard - I

Upograde Only |
Irapart Ol
Transform Dnlg i

L3

Program Properties dialog box: Advanced tab

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Disable Restart Select to disable the built-in restart capabilities for a particular program.

Application Library In some cases, you may want a program to contain only a collection, or library,
of common routines (in the form of callable sections) that you do not want to run
as a standalone program. When sections are defined as public, other programs
can call the sections, or routines, that exist in the library at runtime. Because this
type of program is not designed to run as a standalone program, it does not
require the MAIN section, or initial entry point. Select this check box to rename
or remove any existing MAIN section.

Note. An application library is the appropriate location to store a collection of
shared Application Engine program sections. Libraries are not intended for
storing a specific SQL action within a section. To share common SQL, use the

SQL repository.

Batch Only Select for batch-only programs. Batch-only programs are not executed from the
CallAppEngine PeopleCode function. Any dedicated temporary table used for
batch-only programs do not have online instances created.

M essage Set Specify the default message set value for this program. The system uses this
message set value for all Log Message actions where the message set isn't
specified.

Program Type Select from:

» Sandard: Used by standard entry-point programs.

« Upgrade Only: Used by PeopleSoft upgrade utilities only.
« Import Only: Used by PeopleSoft import utilities only

» Daemon Only: Use for daemon-type programs.

» Transform Only: Support for XSLT programs.

Adding Sections

This section provides an overview of sections and discusses how to:

* |nsert sections.
« Locate sections.

» Set section properties.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 27

Creating Application Engine Programs Chapter 3

Understanding Sections

A section comprises steps and is somewhat equivalent to a COBOL paragraph or a PeopleCode function. Y ou
can create sections that are platform-independent or platform-specific, intended for a particular market, and
effective-dated.

Whenever you create a new program, you simultaneously create a section called MAIN. The MAIN section
identifies the entry point of the program so that it can be called by another program.
Section Execution Order

A section is unique based on the program and section names, and based on its intended database platform and
effective date. Y ou can also create unique market-specific sections. When you execute an Application Engine
program, it executes sections based on the following order of precedence:

1. If asection for the current market exists, execute it.
Otherwise, execute the default GBL (global) market section.

2. If asection for the current platform, or database exists, execute it.
Otherwise, execute the default database platform section.

3. If multiple effective-dated sections exists, execute the section with the most recent effective date, based
on the current (run) date.

For example, suppose you have two versions of a particular section: SECTO1 for the Public Sector market and
SECTOL1 for the Global market. If you request to run the public sector version of the program, Application
Engine executes the Public Sector version of SECTOL. If the program is running on Oracle, Application
Engine then looks for an Oracle version of the SECTO1 for Public Sector.

Inserting Sections

28

To insert asection:
1. Select Insert, Section, or right-click and select Insert Section.

The default name for a section that you insert is Section N, where N is an incrementally changed number
that attempts to provide a unique name for each section object. Unless you rename sections, the sections
you add are named SectionN+1, where N isthe last section you inserted. Consequently, you get names
such as Sectionl, Section2, Section3, and so on.

The designer inserts the new section directly beneath the subordinate objects within the owning section of
the highlighted object. For instance, if Section2 were selected, then Section4 would be inserted between
Section2 and Section3 rather than after Section3.

Note. Sections are aways reordered alphabetically by name at save time to make it easier to locate a
given section. However, order of execution is dependent on internal call section references and is,
therefore, independent of the order that sections are inserted and displayed.

2. Enter the remaining section property values.

3. Savethe program.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Locating Sections
Various methods are available for locating references to sections within an entire database as well aswithin a
program.
Finding Call Section References

Y ou can generate alist of all the referencesto a particular section. Thelist applies only to Application Engine
programs defined within a single database.

To locate section references:
1. Open the program containing the shared, or called, section.
2. Select Edit, Find References.

The Find Definition References dialog box appears.

3. Onthe Call Sections tab, select the appropriate section from the Section name drop-down list box, or
enter the name.

By default, the current program name and MAIN section appears in the dialog box.
4. Click OK.
5. In the output window, view the generated list.

The output window lists the programs and sections that call a particular program. Thislist also shows the
total call references made to a particular section. Call sections within the current program appear first in
thelist.

Double-click an item in the output window list to automatically navigate the definition view to that calling
section.

Finding Sections Within the Current Program

Within large and more complicated Application Engine programs, such as those upgraded from a previous
release, it is not uncommon to have over a hundred sections. Rather than scrolling through alarge program,
use the Go To Section feature.

Note. Thisfeature applies only to the current program.

To automatically navigate to a selected section:
1. Select Edit, Go To Section.
The Find Definition References dialog box appears.

2. Onthe Go To Section tab, select the appropriate section from the Section name drop-down list box, or
enter the name of the section.

3. Click OK.

The Definition view scrollsto the first occurrence of the section with the name you selected.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 29

Creating Application Engine Programs Chapter 3

Setting Section Properties

Controls that specify section properties are located in Definition view. For example, for each section included
in your program, a node, as shown in the following example, appears from which you specify all of the
attributes to associate with a particular section.

{3 MAIN [MAIN deseription | MAIN. GBL {hase) 1900.07-01
Market: Platfarm: Effective Date; Effective Status: Section Type: Auto Commit; Access:
[GBEL = Jort ot pr.9i0 [active [Prepare only |[Atter Step [Public

Section object

The values you specify at the section level generally apply to al the objects contained within that section.

Section Name Develop a naming convention and be consistent throughout your projects. Y ou
are limited to eight characters.

Market Select the market for which the section isintended. If a particular market is
irrelevant to your batch program, keep the default market value of Global (GBL).

Platform Select the target database platform for which this section definition is to execute.
L eave the default value for al sections whose defined actions are not specific to
any given database platform.

Effective Date To make a particular section effective-dated, enter the target date.

Effective Status Specify whether a section is active or enabled at runtime.

Section Type In the case of an abnormal termination of the program, the value of this system

field specifies whether you must restart the section.

If a section controls a procedure that, if not run to completion, could corrupt or
desynchronize your data, select Critical Updates. Otherwise, use the default
value of Preparation Only.

Auto Commit Select to specify the commit level for the section. Y ou can have no commit or
you can have Application Engine commit after the step successfully compl etes.

Public Select to enable a section to be called from another program.

Adding Steps

30

A step represents the smallest unit of work that can be committed in a program. When you create a program,
you have adefault MAIN section and step, initially named Step01.

This section discusses how to:

+ Insert steps.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

Set up step properties.

Inserting Steps

Toinsert astep:

1. Highlight the section or step that you want to precede the new step.

For example, if you want the new step to be the first step in the section, select the section node.
Otherwise, select the existing step that you want the new step to follow.

Note. The name of the section in which you insert the step appears to the right of the step description. In
large programs, this step enables you to determine the section in which a step resides, if the section is not
in view. Also, note that a sequence number appears on each step (001, 002, 003, and so on) so that you
can determine the order of a step within a section. The sequence numbering for steps begins at 001 within
each section.

Select Insert, Step/Action.

By default, the steps are given a default name of StepN+ 1 beginning with Sep01. Rename the step to
better define the type of actions this step contains.

Note. The designer continues to increment the step name until it has a unique step name within a section.
If the designer is unable to create a unique name after 50 attempts, a new step is not inserted.

Specify a step name and the remaining val ues.

To rename the step name, position the cursor in the step name edit box and enter a custom name. Only
accept the default name for building quick, simple programs and for training purposes.

Setting Up Step Properties

Y ou set up step propertiesin Definition view.

Step Name Enter a name (up to eight characters).

Commit Specify the commit level for the step:

« Default: Select to inherit whatever commit level you specified for the section
in which the step resides.

« Later: Select to postpone the commit until a subsequent commit occurs. Here
you can override the section-level commit, if it happened to be set to After

Sep.

« After Step: Select if you have acommit level of None specified at the section
level. Thisway you can override the section-level commit and commit a
specific step within a section with no other commits.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 31

Creating Application Engine Programs

Frequency

On Error

Status

Chapter 3

Enabled only when a step contains one of the following actions. Do While, Do

Select, or Do Until. Enter the numeric frequency with which Application Engine
should commit. If non-zero, Application Engine commits every N iterations, and
then again after the last iteration.

Specify how Application Engine should respond to an error at the step level. The

On Error routine behaves the same for both SQL and PeopleCode actions. The
program only terminates on errors, not warnings. Select from:

Abort: The application terminates with an error message.
Ignore: The program continues but |ogs an error message.
Suppress: The program continues and presents o error message.

NL: Usually aprogram terminates if a SQL Prepare statement or execute
fails. If you select Ignore or Suppress, errors on executing programs are
suppressed, but errors on compiles still cause the program to terminate. Thus,
if you select to reuse on an Update statement, the program fails on the
compileif the SQL isincorrect, but it does not fail on a duplicate key error or
similar error when the program executes.

PeopleCode: There is a PeopleCode error in the program if the return code
satisfiesthe statement | f (nRet & PCM_ERROR) .

Select to activate a step. If the step is currently applicable to your program (and

working) you'll probably want to keep it active.

Note. The On Error property does not apply to compile errors (for example, specifying erroneous SQL
statements). It checks only for execution-type errors. If your program has a syntax error, the program
terminates.

Specifying Actions

32

This section provides an overview of actions and discusses how to:

Insert actions.
Set action properties.
Specify SQL actions.

Specify Do actions.

Specify PeopleCode actions.

Specify Call Section actions.

Specify Log Message actions.

Specify XSLT actions.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Understanding Actions

Y ou can include eight types of actions within a step, and a step can contain multiple actions. The actions you
define for a step depend on the results that your program requires at each stage of execution.

The only mutually exclusive actions within asingle step are Call Section and SQL Statement; you cannot add
a Call Section action to a step that already contains a SQL Statement action, and visa versa. Y ou can include
only one of each action type within a single step. Because there are eight types of actions, and two are
mutually exclusive, the maximum number of actions a single step can contain is seven.

Action Execution Order

At runtime, the system evaluates actions by type and executes them within a strict hierarchy. For example, if
both a Do When and PeopleCode action exist within a given step, Application Engine aways executes the Do
When first.

The following diagram shows the sequence and level of execution for each type of action:

WHEN a SELECT returns a row.

— WHILE a SELECT returns a row.

For every row returned from a SELECT,
continue in the following order:

Execute PeopleCode if any.

Loop

Execute SCL or Execute the Section.

Insert message into the Message Log.

UNTIL a SELECT returns a row,

Action execution hierarchy

Asyou add actions to a step in the definition view, the actions areinitialy inserted after the selected
definition (the owning step or a previous action). However, following a save request or arefresh of the view,
the designer reorders all actions to match the execution hierarchy. This feature helps you visualize the
sequence in which each step of your program logic executes.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 33

Creating Application Engine Programs Chapter 3

Note. A SQL action and a Call Section action are interchangeable and mutually exclusive. Only one of these
two actions can appear within a step.

When inserting actions, remember that:

Y ou cannot have more than one action of a specific type within the same step.
Y ou cannot have a SQL action and a Call Section action within the same step.

You can only define XSLT type actions for programs defined as Transformation types (see the program
properties).

Inserting Actions

To insert an action:

1
2.

Highlight the step in which you want to insert the action.
Insert the action.

Y ou do this using one of the following methods:

» Select Insert, Step/Action.
» Right-click the step and select Insert Step/Action.

Select the action type from the drop-down list box, or when current action type is selected, type the first
character or so of the desired action type, and then press Tab. Thefirst (or only) type qualified by your
entry is updated in this control.

Enter a description of the action.

Specify the appropriate properties for the action you selected.

Setting Action Properties

To modify action properties, you must have Definition view active. Because you can include a variety of
actions within a step, there are different sets of properties specific to a particular action type. Depending on
the action type you select, the properties that appear change.

For example, you can specify the reuse feature with a SQL action. This feature does not apply to a
PeopleCode action; instead, you need to specify how to respond to the return value of the PeopleCode
program.

This example shows how you can select action-specific properties for different action types:

34

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

'ah]u Select |Dc- Select descrintion |
Relze Statement. Do Select Type:
[Fo |selectFetch |

'a|CaII Section | Calf Section description |
Section Mame: Program I
[sTATS |aETESTPROG | Dynamic

Actions and associated properties

PeopleCode and all SQL action types invoke the related PeopleTools Editor to define or maintain the related
text.

ReUse Statement Property

The ReUse Statement property is available for all SQL action types (SQL, Do When, Do While, Do Until, Do
Select). Y ou use the ReUse Statement property to optimize the SQL in your batch program. ReUse Statement
converts any %BIND references to state record fieldsinto real bind variables (:1, :2, and so on), enabling the
Application Engine runtime process to compile the statement once, dedicate a cursor, and then re-execute it
with new data as often as your program requires. When you are using SQL or a Do action to process alarge
volume of rows, one at atime, inside afetch loop, compiling each statement that you issue can be a
considerable performance issue. ReUse Statement is away to combat potential performance decreases.

Note. Y ou can have Application Engine recompile a reused statement by using the %ClearCursor function.

When setting the ReUse Statement option, choose from these val ues:

Bulk Insert When used in conjunction with statements like | NSERT | NTO t abl enane
(fieldl, field2...) VALUES (98BI ND(refl), 9% Bl ND(ref2),
the Bulk Insert feature offers the most powerful degree of performance
enhancements related to the ReUse Statement feature. This option turns on
ReUse Statement, and, in addition, it holds all the datain a buffer and performs
an insert only after alarge volume of rows has gathered in the buffer. The
number of rows alowed to gather in the buffer depends on your database
platform. Storing datain the buffersis applicable only if you've selected Bulk
Insert and the SQL is an Insert statement. For statements other than Insert, the
Bulk Insert option isignored.

No Select this option to disable ReUse Statement. With ReUse off, the Application
Engine runtime process recompiles the SQL statement every time the loop
executes. By default, ReUse Statement is disabled.

Yes Select this option to enable basic ReUse Statement functionality.

Note. The ReUse Statement property can offer significant performance gains. However, do not use it if
%BIND variables are building parts of the SQL statement or arein the field list of a Select statement (this
does not apply if you use the Static option in %BIND).

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 35

Creating Application Engine Programs Chapter 3

Specifying SQL Actions

36

Thisisthe default action type for the first action within a given step. Use this action to perform the following
SQL commands on multiple rows:

» Update
e Insert
+ Delete
+ Select

Note. Before you insert SQL (select View, SQL) into a SQL action within a new Application Engine
program, you must have previously saved the program. Thisis required because the program name you use to
save this definition is used to relate your program with the SQL objects you are about to create. The sameis
true for inserting PeopleCode.

With a SQL action, you use the SQL Editor to create and modify a SQL statement. Following are some
examples of SQL statements:

uSel ect (AF_PERFM AET. PREV_ASOF_DT)
SELECT %Dat eQut (ASOF_DT)

FROM PS_AF_FCST_SCHTBi nd(EPM_CORE_AET. TABLE_APPEND, NOQUOTES)
WHERE AFDEFN | D = 9®i nd(AF_CORE_AET. AFDEFN_| D)

AND ASOF DT = (SELECT MAX(ASOF_DT)

FROM PS_AF_FCST_SCHT®i nd(EPM_CORE_AET. TABLE_APPEND, NOQUOTES)
WHERE AFDEFN | D = 9@i nd(AF_CORE_AET. AFDEFN_| D)

AND ASOF_DT < 9Bi nd(AF_PERFM AET. ASOF_DT))

Note. If you intend to include multiple SQL statements within a single action, you should use the meta-SQL
construct %EXECUTE. The previous sample SQL statement sample contains bind variables from a previous
Application Engine action.

No Rows Property

In addition to the ReUse Statement property, the No Rows property is available for SQL actions. If the SQL
(Insert, Update, or Delete) associated with the SQL action does not return any rows, you must specify what
the Application Engine program should do.

For example, you could use thisin a case where you insert into atemporary table, and then you intend to
perform further operations on the inserted rows (provided that some rows meet the criteria). If the initial
combination of Insert and Select statements provides no rows, you could save the program from having to
reselect on the temporary table before executing another operation, or you could prevent the program from
performing set operations on the table with no qualifying rows.

When you set the No Rows property, you choose from the following values:

Abort The program terminates.
Section Break Application Engine exits the current section immediately, and control returns to
the calling step.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

Continue The program continues processing.
Skip Step Application Engine exits the current step immediately and moves on to the next

step. Application Engine ignores the commit for the current step at runtime. If the
current step contains only one action, use Skip Step only to bypass the commit.

Note. Using No Rows in conjunction with a Truncate Table operation is unreliable. Some database platforms
report zero rows affected for truncations, regardless of how many rows were in the table.

Specifying Do Actions

There are four types of Application Engine actions that, although distinct from the others, can be grouped

together as:

+ Do When
« Do While
« Do Until
« Do Select

Use these actions to control the execution of your program. With these action types, you can control the
execution of subsequent sections, actions, or SQL statements depending on the results of a Do SQL statement
in the form of a Select statement. If you were coding in COBOL, you would perform similar actions using the
If and While functions.

Any of the Do actions can control the execution of a section, a SQL statement, a PeopleCode program, or a
log message. For example, a Do Select can execute a SQL statement for each row returned by the included
Select statement.

Do When

When using a Do When action, consider the following:

+ The Do When action is a Select statement that allows subsequent actions to be executed if any rows of
data are returned.

e Thisactionissimilar to aCOBOL If statement.

A Do When statement runs before any other actions in the step. If the Do When statement returns any
rows, the next action is executed. If the Do When conditions are not met, the remaining actions within
that step are not executed. Y our program executes a Do When action only once when the owning step
executes.

» Theonly property that you can specify for the Do When action is the ReUse Statement property, which
appliesto all SQL-based actions.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 37

Creating Application Engine Programs Chapter 3

38

Do While

The Do While action is a Select statement that, if present, runs before subsequent actions of the step. If the
Do While does not return any rows of data, the action terminates. The Do Whileisidentical to the COBOL
While statement. Subsequent actions within the step are executed in aloop aslong as at |east one row is
returned by the Select statement for the Do While action. If the Do While does not return any rows, the step is
complete.

The only property that you can specify for the Do While action is the ReUse Statement property, which
appliesto all SQL-based actions.

Do Until

A Do Until action is a Select statement that runs after each action when a step completes. If the Select
statement returns any rows of data, the step terminates.

« UseaDo Until action if you want the processing actions to execute at least once, and to execute over and
over until acertain condition istrue, such as until a Select statement returns some rows.

* You can aso use aDo Until action to stop a Do Select action prematurely.

For example, if the Select statement for the Do Until action does not return any rows, then the actionsin
the step are repeated (except if a Do When action appearsin the step). Normally, aDo Select action
continues until no rows are returned. If any rows of data are returned, the Do Select action stops and the
step is not repeated.

« Theonly property that you can specify for the Do Until action is the ReUse Statement property, which
appliesto all SQL-based actions.

Do Select

The Do Select action is a Select statement that executes subsequent actions once for every row of data that the
Do Select returns. For instance, a Do Select can execute a SQL statement for each row returned from the
Select statement. The subsequent actions within the step are executed in aloop based on the results of the
Select statement. The type of the Do Select determines the specific looping rules.

Like the other Do actions, for the Do Select action you can specify the ReUse Statement property, which
appliesto all SQL-based actions.

In addition to the ReUse Statement property, you must also specify another Do Select property: Do Select
Type.

Note. Application Engine does not commit a step containing a Do Select action with the Select/Fetch option
enabled until the entire step completes successfully, regardless of the other options you have selected.

For example, suppose at the step level, you specified to commit every 100 iterations of the step. One of the
actions of this step is a Do Select with Select/Fetch chosen. Because Application Engine does not checkpoint
or commit while the Do Select is active, the transaction performed by the actions within a step is not
committed until the entire step completes successfully. Thisisalso trueif any sections are called from inside
the loop.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Creating Application Engine Programs

Do Select Type Property

When you specify the Do Select Type property in a Do Select action, you choose from the following values:

Select/Fetch

Re-Select

Restartable

Application Engine opens a cursor for the Do Select action, and then, within that
cursor, Application Engine performs a Fetch statement for each iteration of the
loop to get each row from the Select statement. When a Fetch statement resultsin
an end of table message, the looping is complete. Y ou can't restart thistype of
Select statement, because Application Engine does not perform a checkpoint or a
commit within the step containing this action while Select/Fetch is running.
Ultimately, your program ignores the commit settings at runtime until the
outermost Select/Fetch completes.

Note. When an Application Engine program is not set up for the capability to
restart, then commits are not controlled, monitored, or restricted by Application
Engine. When Restart is disabled, commits are controlled by the program.

For each iteration of the loop, Application Engine opens a cursor and fetches the
first row. Y our program processes the first row returned from the Select
statement. The cursor is reopened for each iteration of the loop. With this type of
Fetch statement, you typically want some aspect of the loop to eventually cause
the Select statement to return no rows. Otherwise, there is no mechanism in place
by which to exit the loop. Thistype of Do Select is restartable.

Thisoption is similar to Select/Fetch in that Application Engine opens the cursor
associated with the Do Select action once, and then it performs a Fetch statement
on each iteration of the loop to get each row from the Select statement. However,
unlike the Select/Fetch option, you can restart this action, because Application
Engine performs a checkpoint in the middle of the step. Application Engine treats
thisloop asif it isrestartable, but it does not manage the restart. Make sure that
the SQL you include within this action is such that, upon restart, the program
recognizes where the previous run failed and where to restart processing. For
example, you can employing a processed switch, or base the next Select
statement on the key.

Specifying PeopleCode Actions

Use this action type to insert PeopleCode within your Application Engine program. Y ou can invoke the
PeopleCode Editor directly from the designer interface to code your PeopleCode programs.

With a PeopleCode action, there is only one property that you can specify—On Return.

Use the On Return value to determine how your Application Engine program reacts based on the return of
your PeopleCode program. The On Return setting takes effect if your PeopleCode program issues a "return 1"
or "exit 1." You can use the True keyword in place of a non-zero numeric return.

When you specify the On Return property, you choose from the following values:

Abort

The program issues an error and exits immediately.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 39

Creating Application Engine Programs Chapter 3

Break The program exits the current step and section, and control returns to the calling
step.
Skip Step The program exits the current step, and continues processing at the next step in

the section. If thisisthe last step in the section, the calling step resumes control
of the processing.

Specifying Call Section Actions

40

Use the Call Section action to call another section defined in an Application Engine program. Y ou can call a
local section defined within your current program, and you can make external callsto a section defined in
another Application Engine program.

The external section you intend to call must have its access property set to Public. If a section's access
property is set to Private, that section can be called only from within the same program. By default, a section's
access property is Private. If you attempt to make a call to a section that does not allow externa calls, you
receive an error message at runtime.

Note. Y ou can call only programs that reside within the same database as the calling program.

Program ID Property

Because you can call sections defined in the current program or within external programs, you must first
specify the program ID of the program containing the section you intend to call.

The default valueis (current). If you call a section defined in another program, make sure that you first select
the appropriate external program from the Program ID drop-down list box. The drop-down list box contains
the names of all program definitions that currently exist in the database.

Section Name Property

Select from names defined in the program that appearsin the Program ID list box. To call asectionthat is
defined in an external program, select the program name in the Program ID edit box prior to selecting the
section name.

Also use the Call Section action to call an entire external program. First, select the program ID, and then
select section name MAIN. At runtime, this call executes the entire program defined by the value in the
Program ID field.

Note. Application Designer does not prevent you from calling the main section of the current program or the
current section. For instance, Sectionl can contain a step that has alocal call section reference for Sectionl.
This enables recursive calls, and should therefore be used with caution.

Dynamic Property

Usethe AE_APPLID and AE_SECTION fieldsin the state record to execute different sections depending on
the conditions a program encounters during runtime.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Application Engine Programs

These two fields must be defined on the default state record for the program. If AE_APPLID is not present or
isblank (at runtime), the current program is substituted for the AE_APPLID vaue. If AE_SECTION is not
present or is blank, an error occurs.

When issuing adynamic call, both the section and the program ID must be dynamically set. Y ou enable a
dynamic call by first having your program store different section namesin the AE_SECTION field, and
different program namesin AE_APPLID field. The values you insert in these fields are normally based on
various conditions met within your program. Y ou then create a Call Section action that calls the section name
defined in the state record field by selecting the Dynamic check box.

Selecting Dynamic automatically populates the AE_SECTION field with the symbolic value %Section, and
the Program ID field with the symbolic value %AEAPPLID. At runtime, the program calls the section name
stored in AE_SECTION that belongs to the program name defined by AE_APPLID.

Program Properties of Called Sections

When you call asection defined in an external program, the current program (the program containing the
defined call section) defines the properties that apply to the running process. Suppose tracing is enabled for
the current program, but tracing is disabled for the called program section. In this case, the called program has
the trace option enabled at runtime because it inherits the properties of the calling program.

For example, if program A calls program B, and program B calls program C, then the properties of A apply to
both programs B and C. The calling program always controls the properties for the called program. In this
case, program A controls the properties for program B, and because program B inherits the properties of
program A, when program B calls program C, program A's properties also apply to program C.

Note. Although program properties are inherited, state records do not follow this inheritance model.

State Records of Called Programs

When you call a program from another program, the called program'’s default state record becomes active
until processing returnsto the initial program. However, al of the state records associated with both programs
are available. State records that are common between the two programs share values. To communicate
between the two programs, or share %BIND variables, define the same state records in both programs.

Specifying Log Message Actions

Use this type of action to write a message to the message log. The message |og refers to the PeopleTools table
(PS_MESSAGE_L OG) where execution messages reside. Any substitution parameters are written to
PS MESSAGE_LOGPARM. The following illustration shows a L og Message action:

lE|Lv|:|ng| Messzage |Lc-g Me ssage description |
Mezsage Set: Mumbet: Parameters:
[10862 |zra |sBINDAF_CORE_AET AFDEFN_ID)

Log Message action

Y ou can use the Log Message action to insert any type of messages. Typicaly, aLog Message action writes
error messages to the message log, but you could also write informational or status messages.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 41

Creating Application Engine Programs Chapter 3

Note. Y ou can also use MessageBox PeopleCode to populate PS MESSAGE L OG instead of using the Log
Message action. This enables you to easily record errors encountered within Application Engine PeopleCode

programs.
M essage Set and Select the message defined in the message catal og.

Number

Parameters Enter values to insert in the log message. This field should be a comma-delimited

list of values to substitute for the message variables (%1, %2, and so on) in the
message text. These parameters can be hard-coded values or %Bind references.
The information specified isinserted in the PS_ MESSAGE_L OG at runtime, and
any %Bind values are replaced by the current state record field values. You can
then view the logged messages from the Process Monitor page.

For example, using message set 1012, number 10, the message reads "The total number of %1 rows exceeds
the control count value, %2," and you need the following parameters:
Invoice, %Bind(CONTROL_CNT)

Suppose you run this program with the CONTROL_CNT field value of 120. When the process ends, the
following message would be included on the Process Details dialog box in Process Monitor: "The total
number of Invoice rows exceeds the control count value, 120."

Specifying XSLT Actions
These are used for transform programs only.
See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker, "Applying Filtering,
Transformation and Trandlation,” Using XSLT for Transformation

42 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Developing Efficient Programs

This chapter discusses how to:
e Use state records.

e Set commits.

* Reuse statements.

» UseBulk Insert.

» Useset processing.

Using State Records

This section provides an overview of state records and discusses how to:

o Share state records.

» Choose arecord type for state records.

Understanding State Records

Y ou assign variables for your Application Engine program through state records, while sections, steps, and
actions pass values to subsequent program steps through state records.

Y ou can have up to 200 state records associated with a particular Application Engine program. However, only
one record can be the default state record. Y ou can specify both work (derived) and physical (SQL table)
records to be used as state records. The only differenceisthat derived state records cannot have their values
saved to the database at commit time, and so the values are lost during arestart. Therefore, Application
Engine erases the contents of derived state records at commit time if Restart is enabled for the current

process.

A Application Engine state record must have a process instance defined as the first field and the only key
field, and the state record name must end with _AET.

Not all the database columns referenced in your program must be in the state record, just the columns that
must be selected into memory so those values can be referenced in a subsequent program action. Y ou may
also want to include additional fields to hold pieces of dynamic SQL, to use as temporary flags, and so on.

Application Engine supports long fields, unlike COBOL or Structured Query Reports (SQR). However, it
allows only one long field per state record. Y ou set a maximum size for the field in Application Designer and
make sure that the data space is compatible with the size of the field that you set.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 43

Developing Efficient Programs Chapter 4

Application Engine also supportsimage fields and long text fields.

= AETESTPROG_AET [Record) M=l &3

Fecord Fields IRB.;.;.m Type I

Hum Field Hame Type | Len | Format =

1 |PROCESS_INSTANCE

2 |AE_INT_1 Hbr 1

3 |RECMAME Char 15 pper

4 |AE_CMW_IM_FLD_MM Char 18 |Upper

5 |AE_CMW_0OUT_FLD_MM Char 18 |Upper

E |AE_CMW_FILL_CHAR [|Char 1 Upper

7 |AE_CMY_IUSTIFY "% | Char 1 Upper

| 8 |AE STRIP ZERO Char 1 | Ul:uner_lll
4 [

Sample state record

During batch processing, Application Engine automatically performs all state record updates. When a
program starts, it inserts arow into the state record that corresponds to the process instance assigned to that
program run. Application Engine updates the record whenever a commit operation occurs. When restart is
enabled and acommit occurs, al state records that have been updated in memory are written to the database,
except for derived state records, which areinitialized instead.

After the program completes successfully, Application Engine deletes the corresponding row in the state
record. Thereis only onerow in the state record for each processinstance. Multiple programs can use the
same state record, and each program has its own row based on the unique process instance key.

To set values in the state record, you use the %SELECT construct in a SQL statement or write PeopleCode
that references the state field with the standard record.field notation. To reference fields in the state record,
use the %BIND construct.

Sharing State Records

State records can be used by multiple sections and by multiple programs. When you call a section in another
program, any additional state records defined for that program (as in state records that are not already in use
by the calling program) are initialized, even if the program has been called previously during the run.
However, state records that are common to both programs retain their current values.

To reference variables that exist within a state record, use the following:
98BI ND(fi el dnane)

Unless a specific record name is specified preceding the fieldname, %BIND references the default state
record. To reference a state record other than the default, use the following:

98l ND(r ecor dnane. fi el dnane)

In the case of a called program or section, if the called program has its own default state record defined, then
Application Engine uses that default state record to resolve the %BIND(fieldname). Otherwise, the called
program inherits the default state record of the calling program. In theory, the called program does not require
astate record if all thefieldsit needs for processing exist on the calling program's state record.

44 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

For those state records that are shared between programs (during an external call section), any changes made
by the called program remain when control returnsto the calling program. Any subsequent actions in the
calling program can access residua values |eft in the common state records by the called program. This can
be useful to return output values or status to the calling program, yet it can also cause unforeseen errors.

Generally, a called program should not share state records with the caller unless you need to pass parameters
between them. Most programs have their own set of state records unless a program calls another program that
reguires specific input or output variables. In that case, you must include the state record of the called
program into the calling program's state record list, and make sure to set the input values before issuing the
call section.

Choosing a Record Type for State Records

Asagenerd rule, to preserve state record field values across commitsin your program, you should store
those values in a state record with arecord type of SQL Table. Only derived/work-type state records store
values that don't need to be accessed across commits. Derived/work records are, however, an excellent choice
for temporary flags and dynamic SQL containers that are set and then referenced immediately. Because these
values aren't needed later, you don't want to have to save them to the database at each commit. When you
create your state record in Application Designer, you should have an idea regarding how your state record
will be used. With thisinformation, you can select the appropriate record type to build.

With Application Engine programs, state records that are derived/work records function the same as SQL
Table records. However, there is one notable distinction: unless you have disabled Restart, derived work
records have their field values reinitialized after each commit. Therefore, unless you anticipate this behavior,
you may encounter problems. One quick way to diagnose such a problem isto examine atrace. Typically,
you see %BIND variables resolved to values prior to acommit, and then after the commit, they have no
value.

This behavior is necessary to ensure consistency in the event of an abnormal termination and restart. During
the restart, Application Engine begins, or restarts, at the point of the last successful commit and restores the
values of any state records with corresponding database tables. Derived/work records aren't associated with a
physical database table, and consequently they can't be restored in the event of arestart.

Setting Commits

For new Application Engine programs that you develop, by default, the commit values at the section and the
step level are turned off. No commits occur during the program run, except for the implicit commit that
occurs after the successful completion of the program.

Y ou are responsible for dividing your program into logical units of work by setting commit points within
your program. Typically, agood time to commit is after Application Engine completes a self-contained task.
How often you apply commits affects how your program performsin the event of arestart. For set processing
programs, commit early and often. For row-based processing, commit after every N iterations of the main
fetch loop that drives the process.

If you have a step with a Do While, Do Until, or aDo Select action, you can set the frequency option, which
drives your commit level. This setting enables you to set acommit at the step level that occurs after a
specified number of iterations of your looping construct. Application Engine programs commit whenever they
are instructed to do so, so you can enable the frequency option as well as have other individual commits
inside of aloop.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 45

Developing Efficient Programs Chapter 4

The only restriction for batch runs occurs when you have restart enabled, and you are inside a Do Select
action that is of the Select/Fetch type (instead of Re-select or Restartable). With Select/Fetch, all commits
inside the loop are ignored, including the commit frequency if it is set.

The Restartable option is similar to Select/Fetch, except that you are implying to Application Engine that
your SQL is structured in such away that it filters out rows that have been processed and committed. This
enables a successful restart. One technique for accomplishing thisis to have a processed flag that you check
in the Where clause of the Do Select action, and you perform an update inside the loop (and before the
commit) to set the flag to Y on each row that you fetch.

The commit logic is designed to perform a commit regardless of whether any database changes have
occurred. The program commits as instructed, except when the program is restartable and at a point where a

commit would affect restart integrity—inside a non-restartable Do Select action, for example.

When you set a step to commit by default, the commit frequency of the step is controlled by the auto commit
setting of the section. If the section is set to commit after every step, then the program commits. Otherwise,
the program never commits unless the step is explicitly set to commit afterward.

Note. The Commit After, Later setting at the step level enables you to override the section setting if you do
not want to commit after a particular step.

%TruncateTable Considerations

Some databases, such as Oracle, issue an implicit commit for atruncate command. If there were other
pending (uncommitted) database changes, the results would differ if an abend occurred after the
%TruncateTable. To ensure consistency and restart integrity, Application Engine checks the following:

« Whether there are pending changes when resolving a % TruncateTable.
» |f the program is at a point where a commit is not allowed.

If either condition istrue, Application Engine issues delete from syntax instead.

Considerations with the No Rows Setting

The default for the No Rows setting (on the action) is Continue. This setting controls how your program
responds when a statement returns no rows. In the case of %UpdateStats, you may want to set No Rows to
ip Sep and thus skip the commit. For example, suppose you have a single Insert statement into atable,
followed by an %UpdateStats. If the stats were current before the Insert statement, and the Insert statement
affects no rows, then the %UpdateStats is unnecessary.

Reusing Statements

46

One of the key performance features of Application Engine isthe ability to reuse SQL statements by
dedicating a persistent cursor to that statement.

Unless you select the ReUse property for a SQL action, %BIND fields are substituted with literal valuesin
the SQL statement. The database has to recompile the statement every timeit is executed.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

However, selecting ReUse converts any %BIND fields into real bind variables (:1, :2, and so on), enabling
Application Engine to compile the statement once, dedicate a cursor, and re-execute it with new data multiple
times. This reduction in compile time can result in dramatic improvements to performance.

In addition, some databases have SQL statement caching. Every time they receive SQL, they compare it
against their cache of previously executed statements to see if they have seen it before. If so, they can reuse
the old query plan, but only if the SQL text matches exactly. This circumstance is unlikely with literals
instead of bind variables.

When using ReUse, keep the following itemsin mind:

» ReUseisvalid only for SQL actions.
» UseReUseonly if you do not use bind variables for column names,
» UseReUseonly if you have no %BIND variablesin the Select list.

« If the SQL isdynamic, asin you are using %BIND to resolve to avalue other than a standard bind value,
and the contents of the bind change each time the statement is executed, then you cannot enable ReUse.

In this situation, the SQL is different each time (at least from the database perspective) and, therefore,
cannot be reused.

« If you use the NOQUOTES modifier inside %BIND, a STATIC isimplied.

For dynamic SQL substitution, the %BIND has a Char field and NOQUOTES to insert SQL rather than a
literal value. If you enable ReUse, the value of the Char field is substituted inline, instead of using a bind
marker (asin :1, :2, and so on). The next time that the action executes, the SQL that it executesisthe
same as before, even if the value of a static bind has changed.

» To prepare areused statement from scratch, because one of the static binds has changed and the SQL has
to reflect that, use %ClearCursor.

« When making calls to an external section, program or library, the reusable cursors are retained upon
exiting the program. However, if the calling program attempts to call another external section thereafter,
the reusabl e cursors are discarded.

If you are running DB2 on OS/390 or AS/400, use the ReUse property only when you are not using %BINDS
as operands of the same operator, as shown in the following example:

UPDATE PS_PO WRK1
SET TAX = 9Bl ND(STATE) + %8| ND(FED)

This example causes error -417. Y ou can modify the SQL so that you can use ReUse successfully. Suppose
your program contains the following SQL :

UPDATE PS_PO WRK1

SET TAX = 0

WHERE 98I ND(TAX_EXEMPT) = 98l ND(TAX_STATUS)
If you modify it to resemble the following SQL, ReUse works:
UPDATE PS_PO WRK1

SET TAX = 0
WHERE 9@! ND(TAX_EXEMPT, STATIC) = 9@ ND(TAX_STATUS)

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 47

Developing Efficient Programs Chapter 4

Using Bulk Insert

By buffering rows to be inserted, some databases can get a considerable performance boost. Application
Engine offers this nonstandard SQL enhancement on the following databases: Oracle, Microsoft SQL Server,
and DB2. Thisfeatureis named Bulk Insert. For those database platforms that do not support bulk insert, this
flag isignored.

Y ou should consider using this feature only when an Insert SQL statement is called multiple timesin the
absence of intervening Commit statements.

Application Engine ignores the Bulk Insert setting in the following situations:
» The SQL isnot an Insert statement.
» The SQL isother than an Insert/Values statement that inserts one row at atime.
For instance, the following statements are ignored: Insert/Select, Update, or Delete.
» The SQL does not have aValues clause.

« The SQL does not have afield list before the Values clause.

Note. Bulk Insert is also ignored when all three of the following conditions are true: the database platformis
Oracle, the record contains an EFFDT field (effective date), and the record contains a mobile trigger. A
mobile trigger is required because an Oracle database does not allow the reading of mutating tablesin arow
trigger.

In the situations where the Bulk Insert setting isignored, Application Engine still executes the SQL; it just
doesn't take advantage of the performance boost associated with Bulk Insert.

To prepare or flush aBulk Insert statement because one of the static binds has changed and the SQL hasto
reflect that, use %ClearCursor. A flush also occurs automatically before each commit.

Using Set Processing

This section provides an overview of set processing and discusses how to:
» Useset processing effectively.
« Avoid row-by-row processing.

e Use set processing examples.

48 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

Understanding Set Processing

Set processing is an SQL technique used to process groups, or sets of rows, at one time rather than processing
each row individually. Set processing enables you to apply a business rule directly on the data (preferably
whileit resides in atemporary table) in the database using an Update or Insert/Select statement. Most of the
performance gain is because the processing occurs in the database instead of |oading the data into the
application program, processing it, and then inserting the results back into the database tables. Because the
data never leaves the database with set processing (whether it remainsin the same table), you effectively
eliminate the network round trip and database APl overhead.

Note. Because the updates in set processing occur within the database, use temporary tables to hold transient
data while your program runs. Although temporary tables are not required for set processing, they are often
essential to achieve optimum performance in your batch program.

Using Set Processing Effectively

Keep the following in mind if you are developing new or upgrading older Application Engine programs to
adhere to a set-based model.

SQL Expertise

Even if you are developing row-by-row programs with Application Engine, you should be a SQL expert.
With set-based programs, thisis especially true. The following concepts are particularly important:

» Group by and Having clauses.

« Complex joins.

» Subqueries (correlated and non-correl ated).

« Toolsfor your database to analyze complex SQL statements for performance analysis.

Typically, you use these SQL constructs to refine or filter the set to contain only the rows that meet particular
criteria. Keep in mind that SQL iswhat you code with in Application Engine, and Application Engine passes
that SQL directly to the database, where it is processed. If you have acomplex SQL statement that works
functionally, it may not necessarily perform well if it is not properly tuned.

Planning

Well-constructed, robust, and efficient Application Engine programs are usually the product of a detailed
planning stage where loops, program flow, the use of temporary tables, sections, steps, and so on, are
discussed.

In an ideal situation, address batch processing as a whole while you are designing the system. Sometimes,
systems analysts and devel opers focus primarily on the online system during the database design, and then
they consider the batch component within the existing database design. Set processing works best in an
environment where the data models are optimized for set processing.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 49

Developing Efficient Programs Chapter 4

50

For example, you could have a separate staging table for new data that hasn't been processed, rather than
having numerous cases where existing rows in atable get updated. In set processing, it is much easier to
process the data after moving it to atemporary table using an Insert or Select statement rather than just using
an update. Avoid performing updates on real application tables, and try to perform your updates on temporary
tables. To minimize updating real application tables, structure your data model to prevent that.

Another important consideration is keeping historical data separate from active transactions. After thelife
cycle of given piece of transaction datais over, so that no more updates are possible, consider moving that
datato an archive or history table and deleting it from the real transaction table. This keeps the number of
rowsin the table to a minimum, which improves performance for queries and updates to your active data.

Temporary Tables

Although temporary tables are not required for set processing, well-designed temporary tables complement
your set-based program in a variety of ways.

Creating temporary tables enables you to achieve one of the main objectives involved with set based
processing—the processing remains on the database server. By storing transient data in temporary tables, you
avoid the situation where the batch program fetches the data, row by row, and runs the business rule,
processes the data, and then passes the updated data back to the database. If the program were running on the
client, you encounter performance issues due to the network round trip and the diminished processing speed
of aclient compared to the database platform.

Y our temporary tables should be designed to accomplish the following:

» Hold transaction data for the current run or iteration of your program.
« Contain only those rows of data affected by the businessrule.

» Present key information in a denormalized, or flattened, form, which provides the most efficient
processing.

» Switch the keys for rows coming from the master tables if needed.

A transaction may use a different key than what appears on the master tables.

Denormalized Tables

The most efficient temporary tables store data in denormalized form. Because most programs need to access
datathat resides in multiple tables, it is more sensible to consolidate al of the affected and related data into
one table, the temporary table. It's much more efficient for the program to run directly against the flattened
temporary table rather than relying on the system to materialize complex joins and views to retrieve or update
necessary datafor each transaction.

If your program requires the use of a complex view to process transactions, then resolve the view into a
temporary table for your program to run against. Each join or view that needs to materialize for each
transaction consumes system resources and affects performance. In this approach, the system applies the join
or view once (during the filtering process), popul ates the temporary table with the necessary information that
the program needs to complete the transaction, and then runs the program against the temporary table as
needed.

For example, consider the following situation:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

A program needs to update 10,000 rows on the Customer table, which contains 100,000 rows of data. The
Customer tableis keyed by setlD. To complete the transaction, the program references data that resides on a
related table called PS_ SET_CNTRL_REC. PS SET_CNTRL_REC is used to associate setlD and
BUSINESS_UNIT values. The transaction is keyed by BUSINESS_UNIT.

Given that set of circumstances, the most efficient processing method would be similar to the following:

» |solate affected or necessary data from both tables, and insert that into the temporary table.

Now, instead of dealing with a 10,000-row Customer table and ajoin to arelated table, the program faces
a 10,000-row temporary table that contains all of the required datato join directly to the transaction data,
which can also be in atemporary table. If all necessary columns reside on the temporary tables, the
program can modify all the rows at once in a simple Update statement.

This example presents two different uses of temporary tables. In one situation, the temporary tableis
designed to hold setup/control datain a modified form. In the other situation, the temporary table is
designed to hold transaction data in a denormalized form, perhaps with additional work columns to hold
intermediate cal culations.

« Make sure the data appears in a denormalized form for optimum processing.

» Because thetransaction is keyed by BUSINESS UNIT, the temporary table that holds the control data
should also be keyed by BUSINESS_UNIT.

In this case, the table that holds the control datais the Customer table.

Avoiding Row-by-Row Processing

A set-based program is not an all-or-nothing situation. There are some rules that call for row-by-row
processing, but these rules are the exception. However, you can have a row-by-row component within a
mostly set-based program.

For example, suppose your program contains five rules that you will run against your data. Four of those rules
lend themselves well to a set-based approach, while the fifth requires a row-by-row process. In this situation,
run the four set-based steps or rules first, and then run the row-by-row portion last to resolve the exceptions.
Although not pure set-based processing, you will obtain better performance than if the entire program used a
row-by-row approach.

When performing a row-by-row update, reduce the number of rows and the number of columns that you
select to an absolute minimum to decrease the data transfer time.

For logic that cannot be coded entirely in set, try to process most of the transactionsin set, and process only
the exceptions in arow-by-row loop. A good example of an exception is the sequence numbering of detail
lines within a transaction, when most transactions have only a single detail line. Y ou can set the sequence
number on all the detail linesto 1 by default, in aninitial set-based operation, and then execute a Select
statement to retrieve only the exceptions (duplicates) and update their sequence numbersto 2, 3, and so on.

Avoid the tendency to expand row-by-row processing for more than what is necessary. For example, just
because you are touching all of the rows of a given table in a specific row-based process, you do not
necessarily gain efficiency by running the rest of your logic on that table in arow-based manner.

When updating a table, you can add another column to be set in the Update statement. However, do not add
another SQL statement to your loop just because your program islooping. If you can apply that SQL in a set-
based manner, then, in most cases, you achieve better performance with a set-based SQL statement outside
the loop.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 51

Developing Efficient Programs Chapter 4

Therest of this section describes techniques for avoiding row-by-row processing and enhancing performance.

Filtering

Using SQL, filter the set to contain only those rows that are affected or meet the criteria and then run the rule
on them. Use the Where clause to minimize the number of rows to reflect only the set of affected rows.

Two-Pass Approach

Use atwo-pass approach, wherein the first pass runs arule on all of the rows, and the second pass resolves
any rows that are exceptions to the rule. For instance, bypass exceptions to the rule during the first pass, and
then address the exceptions individually in a row-by-row manner.

Parallel Processes

Divide setsinto distinct groups, and then run the appropriate rules or logic against each set in parallel
processes. For example, in terms of employee data, you could split the population into distinct sets of
"hourly" and "salary," and then you could run the appropriate logic for each set in paralldl.

Flat Temporary Tables

Flatten your temporary tables. The best temporary tables are denormalized and follow aflat file model for
improved transaction processing.

For example, payroll control data might be keyed by set ID and effective dates rather than by business unit
and accounting date. Use the temporary table to denormalize the data, and switch the keys to business unit
and accounting date. Afterwards, you can construct a straight join to the Time Clock table, keyed by business
unit and date.

Technigues to Avoid

Note the following:

« If you have a series of identical temporary tables, examine your refinement process.

« Don't attempt to accomplish atask that your database platform does not support, asin complex
mathematics, non-standard SQL, and complex analytical modeling.

Use standard SQL for set processing.

« Although subqueries are a useful tool for refining your set, make sure that you're not using the same one
multiple times.

If you are using the same subguery in more than one statement, you should probably have denormalized
the query results into atemporary table. Identify the subqueries that appear frequently and, if possible,
denormalize the queried datainto atemporary table.

Using Set Processing Examples

Each of the following sections contains an example of set processing.

52 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

Payroll

In this example, suppose the payroll department needs to give a USD 1000 salary increase to everybody
whose department made more than USD 50,000 profit. The following pseudocode enables you to compare the
row-by-row and set-based approaches.

* Row-by-Row:

declare A cursor for select dept_id from departnment where profit > 50000;

open A

fetch Ainto p_dept_id

whil e sqgl _status ==
updat e personnel set salary = (sal ary+1000) where dept _id = p_dept _id;
fetch Ainto p_dept_id;

end whil e;

cl ose A

free A

o Set-Based:

updat e personnel set salary = (salary + 1000)
where exists
(select "X from departnent
where profit > 50000
and personnel .dept _id = departnent.dept _id)

Note. The set-based example employs a correlated subquery, which isimportant in set-based processing.

Temporary Tables

One technigue to improve database performance is to use atemporary table to hold the results of a common
subquery. Effective dating and setl D indirection are common types of subqueries that you can replace with
joinsto temporary tables. With the joinsin place, you can access the temporary table instead of doing the
subquery multiple times. Not only do most databases prefer joins to subqueries, but if you combine multiple
subgueriesinto asingle join as well, the performance benefits can be significant.

In this setID indirection example, you see ajoin from a transaction table (keyed by BUSINESS_UNIT and
ACCOUNTING_DT) to asetup table (keyed by SETID and EFFDT).

To accomplish thisusing a single SQL statement, you need to bring in PS_SET_CNTRL_REC to map the
business unit to a corresponding setID. Thisistypicaly donein asubquery. Y ou also need to bring in the
setup table a second time in a subquery to get the effective date (MAX(EFFDT) <= ACCOUNTING_DT). If
you have a series of similar statements, this can be a performance issue.

The aternative isto use atemporary table that is the equivalent of the setup table. The temporary tableis
keyed by BUSINESS _UNIT and ACCOUNTING_DT instead of SETID and EFFDT. Y ou popul ate it
initially by joining in your batch of transactions (presumably also atemporary table) once, as described
previoudy, to get all the business units and accounting dates for this batch. From then on, your transaction
and setup temporary tables have common keys, which allows a straight join with no subqueries.

For the example, the original setup table (PS ITEM_ENTRY _TBL) iskeyed by SETID, ENTRY_TYPE and
EFFDT.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 53

Developing Efficient Programs Chapter 4

54

The denormalized temporary table version (PS_ITEM_ENTRY _TAO) iskeyed by PROCESS INSTANCE,
BUSINESS _UNIT, ENTRY_TYPE and ACCOUNTING_DT, and carries the original keys (SETID and
EFFDT) as simple attributes for joining to other related setup tables, asin PS_ITEM_LINES TBL for this
example.

If the program references the setup table in only one Insert/Select or Select statement, you would not see
increased performance by denormalizing the temporary table. But if several SQL statements are typically
executed in asingle run, all of which join in the same setup table with similar setID and effective date
considerations, then the cost of populating the temporary table up front provides long-term advantages.

» Original setup table version:
I NSERT | NTO PS_PG _PENDDST_TAO (...)

SELECT
((1.ENTRY_AMI_BASE - |.VAT_AMI_BASE) * L.DST_LINE_MULTIPLR * L.DST_LI NE_PERCENT /=
100),
((I.ENTRY_AMI - |.VAT_AMI) * L.DST_LINE_MULTIPLR * L.DST_LI NE_PERCENT / 100),

FROM PS_PENDING | TEM |, PS PG REQUEST TAO R, PS | TEM LINES TBL L,
PS_| TEM ENTRY TBL E, PS SET CNTRL REC S, PS BUS UNIT TBL AR B

VWHERE

AND L. ENTRY_REASON = | . ENTRY_REASON

AND L. SETID = E. SETI D

AND L. ENTRY_TYPE = E. ENTRY_TYPE

AND L. EFFDT = E. EFFDT

AND E. EFF_STATUS = ' A

AND S. RECNAME = ' | TEM ENTRY_TBL'

AND S. SETID = E. SETID

AND S. SETCNTRLVALUE = |.BUSI NESS_UNI T

AND E. ENTRY_TYPE = | . ENTRY_TYPE

AND E. EFFDT = (SELECT MAX(EFFDT) FROM PS_I TEM ENTRY_TBL Z

WHERE Z. SETID = E. SETI D

AND Z. ENTRY_TYPE = E. ENTRY_TYPE
AND Z. EFF_STATUS = ' A
AND Z. EFFDT <= |. ACCOUNTI NG DT)

AND B. BUSI NESS UNIT = |.BUSI NESS_UNI T

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Developing Efficient Programs

» Denormalized temporary table version:
| NSERT | NTO PS_| TEM ENTRY_TAO

SELECT DI STI NCT 9@l ND(PROCESS_| NSTANCE), | . BUSI NESS_UNI T, | . ACCOUNTI NG DT,
E. ENTRY_TYPE. . .

FROM PS_PENDING | TEM |, PS PG REQUEST TAO R,
PS_| TEM ENTRY TBL E, PS SET CNTRL_REC S, PS BUS UNIT TBL_AR B
WHERE R PROCESS | NSTANCE = 9@l ND(PROCESS | NSTANCE)

AND R PGG GROUP_TYPE = 'B'

AND | . POSTED FLAG = ' N

AND R GROUP_BU = | . GROUP_BU

AND R.GROUP_ID = | . GROUP_I D

AND E. EFF_STATUS = ' A

AND S. RECNAME = ' | TEM ENTRY_TBL'

AND S. SETID = E. SETID

AND S. SETCNTRLVALUE = |.BUSI NESS_UNI T

AND E. ENTRY_TYPE = |.ENTRY_TYPE

AND E. EFFDT = (SELECT MAX(EFFDT) FROM PS_| TEM ENTRY_TBL Z

WHERE Z. SETID = E. SETID

AND Z. ENTRY_TYPE = E. ENTRY_TYPE
AND Z. EFF_STATUS = ' A
AND Z. EFFDT <= | . ACCOUNTI NG DT)

AND B. BUSI NESS UNI T = |.BUSI NESS_UNI T

/

| NSERT | NTO PS_PG PENDDST TAO (...)

SELECT ...

((1.ENTRY_AMI_BASE - |.VAT_AMI_BASE) * L.DST_LINE_MULTIPLR * L.DST_LI NE_PERCENT /=

100),

((I.ENTRY_AMI - |.VAT_AMI) * L.DST_LINE_MULTIPLR * L.DST_LI NE_PERCENT / 100),

FROM PS_PENDI NG | TEM |, PS_PG REQUEST TAO R, PS_I TEM LI NES_TBL L,
PS_| TEM ENTRY_TAO E

VHERE

AND L. ENTRY_REASON = | . ENTRY_REASON
AND L. SETID = E. SETI D

AND L. ENTRY_TYPE = E. ENTRY_TYPE

AND L. EFFDT = E. EFFDT

AND E. BUSI NESS UNIT = |.BUSI NESS_UNI T
AND E. ACCOUNTI NG _DT = | . ACCOUNTI NG _DT
AND E. ENTRY_TYPE = | . ENTRY_TYPE

Platform Issues

Set processing does not behave the same on every database platform. On some platforms, set processing can
encounter performance breakdowns. Some platforms do not optimize update statements that include
subgueries.

For example, environments that are accustomed to updates with subqueries get all the qualifying department
IDs from the Department table, and then, using an index designed by an application developer, update the
Personnel table. Other platforms read through every employee row in the Personnel table and query the
Department table for each row.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 55

Developing Efficient Programs Chapter 4

On platforms where these types of updates are a problem, try adding some selectivity to the outer query. In
the following example, examine the SQL in the Before section, and then notice how it is modified in the After
section to run smoothly on al platforms. Y ou can use this approach to work around platforms that have
difficulty with updates that include subqueries.

Note. In general, set processing capabilities vary by database platform. The performance characteristics of
each database platform differ with more complex SQL and set processing constructs. Some database
platforms allow additional set processing constructs that enable you to process even more datain a set-based
manner. If performance needs improvement, you must tailor or tune the SQL for your environment. You
should be familiar with the capabilities and limitations of your database platform and can recognize, through
tracing and performance results, the types of modifications you need to incorporate with the basic set
processing constructs described.

« Basicversion:

UPDATE PS_REQ LI NE
SET SOURCE_STATUS = '

WHERE

EXI STS

(SELECT ' X' FROM PS_PO_ | TM STG STG

WWHERE

STG PROCESS_| NSTANCE =98I ND{ PROCESS_| NSTANCE) ~ AND
STG PROCESS_| NSTANCE =PS_REQ LI NE. PROCESS_| NSTANCE AND
STG STAGE_STATUS = '|' AND

STG BUSI NESS_UNI T = PS_REQ LI NE. BUSI NESS_UNI T AND

STG REQ I D = PS_REQ LI NE. REQ | D AND

STG REQ LI NE_NBR = PS_REQ LI NE. LI NE_NBR)

« Optimized for platform compatibility:

UPDATE PS_REQ LI NE
SET SOURCE_STATUS = '

WHERE
PROCESS | NSTANCE = 9@I ND(PROCESS_| NSTANCE) AND
EXI STS

(SELECT ' X' FROM PS_PO | TM STG STG

WHERE

STG PROCESS_| NSTANCE =98I ND{ PROCESS_| NSTANCE) ~ AND
STG PROCESS_| NSTANCE =PS_REQ LI NE. PROCESS_| NSTANCE AND
STG STAGE_STATUS = 'I' AND

STG BUSI NESS_UNI T = PS_REQ LI NE. BUSI NESS_UNI T AND

STG REQ I D = PS_REQ LI NE. REQ | D AND

STG REQ LI NE_NBR = PS_REQ LI NE. LI NE_NBR)

Note. This example assumes that the transaction table (PS_REQ_LINE) has a PROCESS INSTANCE
column to lock rows that are in process. Thisis another example of designing your database with batch
performance and set processing in mind.

This modification enables the system to limit its scan through PS_REQ_LINE to only those rows that the
program is currently processing. At the same time, it enables amore set-friendly environment to first scan the
smaller staging table and then update the larger outer table.

56 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

This chapter provides an overview of Application Engine meta-Structured Query Language (SQL) and
discusses how to:

» Use PeopleCode in Application Engine programs.
» Include dynamic SQL.

« UseApplication Engine meta-SQL.

Understanding Application Engine Meta-SQL

Application Engine meta-SQL is divided into the following categories:
» Construct
A construct is a direct substitution of avalue, which helps to build or modify a SQL statement.
» Function
A function performs an action on its own or causes another function to be called.
+ Metavariable

A meta-variable allows substitution of text within SQL statements.

Note. Some meta-SQL elements can be used only in Application Engine programs, some can be used both in
Application Engine programs and in other environments, and some cannot be used in Application Engine
programs at all. Only meta-SQL elements that can be used in Application Engine are discussed in this
PeopleBook. Y ou can find a complete reference to all PeopleSoft meta-SQL elements in the PeopleTools 8.50
PeopleCode Reference PeopleBook.

See Also

Chapter 5, "Using Meta-SQL and PeopleCode," Application Engine Meta-SQL Reference, page 72

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," Meta-SQL

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 57

Using Meta-SQL and PeopleCode

Chapter 5

Using PeopleCode in Application Engine Programs

This section provides an overview of PeopleCode and Application Engine programs and discusses how to:

Understanding PeopleCode and Application Engine Programs

Decide when to use PeopleCode.
Consider the program environment.
Access state records with PeopleCode.
Use If/Then logic.

Use PeopleCode in loops.

Use the AESection class.

Make synchronous online calls to Application Engine programs.

Usethefileclass.

Call COBOL modules.

Call PeopleTools APIs.

Use the CommitWork function.
Call WINWORD Mail Merge

Use PeopleCode exampl es.

Inserting PeopleCaode within Application Engine programs enables you to reuse common function libraries
and improve performance. In many cases, a small PeopleCode program used instead of Application Engine
PeopleCode is an excellent way to build dynamic SQL, perform simple If/Else edits, set defaults, and perform
other tasks that do not require atrip to the database.

Scope of Variables

This table presents the different types of variables typically used in Application Engine programs and their
scope:

58

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

Type of Variable

Scope

Comments

State record (work record)

Transaction (unit of work)

Using awork record as your
Application Engine state record
means that the values in the work
record cannot be committed to the
database. Commits happen as
directed, but any valuesin work
records are not retained after a
commit.

State record (database record)

Application Engine program

Using a database record as your
Application Engine state record
preserves the values in the state
record on commit, and the
committed values are available in
the event of arestart.

Local PeopleCode variables

PeopleCode program

Local PeopleCode variables are
available only for the duration of
the PeopleCode program that is
using them.

Global PeopleCode variables

Application Engine program

Global PeopleCode variables are
available during the life of the
program that is currently running.
Any global PeopleCode variables
are saved when an Application
Engine program commits and
checks points; therefore, they are
available in the event of arestart.

Component PeopleCode variables

Application Engine program

Component PeopleCode variables
act like global variablesto
Application Engine.

Action Execution Order

No other types of actions are required within a step in conjunction with a PeopleCode action (or program).
S0, you can have a step that contains nothing but one PeopleCode action. If you include other actions with
your PeopleCode action within the same step, it'simportant to keep in mind the execution hierarchy.

With PeopleCode actions, Application Engine executes the PeopleCode program before the SQL, Call
Section, or Log Message actions, but a PeopleCode program executes after any program flow checks.

Because there are multiple action types, they must execute in agreement within a system, and therefore the
order in which action's execute is significant. At runtime, actions defined for a given step are evaluated based
on their action type. All of the action types exist within a strict hierarchy of execution. For example, if both a
Do When and PeopleCode action exist within a given step, the Do When is always executed first.

The following example shows the sequence and level of execution for each type of action:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

59

Using Meta-SQL and PeopleCode Chapter 5

WHEN a SELECT returns a row.

— WHILE a SELECT returns a row,

For every row returned from a SELECT,
continue in the following order:

Execute PeopleCode if any.

Loop

Execute SCL or Execute the Section.

Insert message into the Message Log.

UNTIL a SELECT returns a row.

Example of action execution hierarchy

Deciding When to Use PeopleCode

60

Application Engine is not intended to execute programs that include nothing but PeopleCode actions. The
primary purpose of Application Engineisto run SQL against your data.

For the most part, use PeopleCode for setting If, Then, Else logic constructs, performing data preparation
tasks, and building dynamic portions of SQL statements, while till relying on SQL to complete the bulk of
the actual program processing. Y ou also use PeopleCode to reuse online logic that is already devel oped. Also,
PeopleCode is the tool for taking advantage of the new technologies, such as component interfaces and
application classes.

Most programs need to check that a certain condition is true prior to executing a particular section. For
example, if the hourly wage islessthan or equal to X, do Step A; if not, fetch the next row. In certain
instances, you need to modify variables that exist in a state record. PeopleCode enables you to set state record
variables dynamically.

Avoid rowset processing in an Application Engine program. Loading data into a rowset can use a significant
amount of memory, approximated by the following formula:

mem = nrows * (row overhead + nrecords * (rec overhead + nfields* (field overhead) + average cumulative
fielddata))

where

« memisthe amount of memory required to store the rowset.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

* nrows isthe number of rows.

« row over head isthe overhead per row.

« nrecor ds isthe number of records per row.

« rec over head istherecord overhead (approximately 40 bytes).

« nfi el ds isthe number of fieldsin the record.

« field overhead isthe overhead per field (approximately 80 bytes).

« average cumul ati ve fi el ddat a isthe average amount of data per field.

Using this formula, arowset containing 500,000 rows with one record per row, 50 fields, and 200 bytes per
field would reguire approximately 2.3 gigabytes of memory.

Considering the Program Environment

When writing or referencing PeopleCode in a PeopleCode action, you must consider the environment in
which the Application Engine program runs. Environment indicates the differences between online and batch
modes. Application Engine programs usually run in batch mode, and, conseguently, your PeopleCode cannot
access pages or controls asit can while running in online mode. Any PeopleCode operations that manipul ate
pages will not run successfully. Even if you invoke your Application Engine program online from arecord or
a page using the Call AppEngine PeopleCode function, the Application Engine PeopleCode still does not have
direct access to component buffers.

Any record field references that appear in a PeopleCode action can refer only to fields that exist on an
Application Engine state record. Component buffers, controls, and so on are still inaccessible even if you
define the page records as state records on the Program Properties dialog box. An Application Engine
program can access only state records or other objects you create in PeopleCode.

However, you do have several options for passing data from a component buffer to an Application Engine
program. Y ou can use the Call AppEngine PeopleCode function, or you can define global variables.
Passing Parameters Through the CallAppEngine Function

For individual page fields and simple PeopleCode variables, such as numbers and strings, you can use the
Call AppEngine PeopleCode function to pass values as parameters.

To use the Call AppEngine function:

1. Declare arecord object in PeopleCode.
Hereis an example:
Local Record &WRecord;

2. Assign the record objects to any state record that you want to pass to the Application Engine program.
Record objects are parameters to the Call AppEngine function.

3. Set the appropriate values on that state record.

4. Include the record object in the function call.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 61

Using Meta-SQL and PeopleCode Chapter 5

After these values get set in the state record, all the actionsin a particular program can use the values, not just
the PeopleCode actions.

Defining Global Variables

Y ou can aso define global variables or objects in PeopleCode before calling an Application Engine program.
Application Engine PeopleCode actions only are able to access the variables you define; however, the
PeopleCode could set a state record field equal to a number or string variable for use by other Application
Engine actions.

Also, an Application Engine PeopleCode program can read or update a scroll areaor agrid using a global
rowset object. When accessing a scroll area or agrid from Application Engine PeopleCode, the same rules
apply, and the same illegal operations are possible that you see with accessing PeopleCode not in an
Application Engine program.

The parameters submitted in a Call AppEngine are by value. These parameters seed the specified Application
Engine state record field with the corresponding value. If that value is changed within Application Engine by
updating the state record field, the component datais not be affected. The only way to update component
buffers or external PeopleCode variables from Application Engine isto use globa PeopleCode variables and
objects.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," CallAppEngine

Accessing State Records with PeopleCode

62

Executing PeopleCode from Application Engine steps enables you to complete some simple operations
without having to use SQL. For example, to assign aliteral value to an Application Engine state record field
using SQL you may have issued a statement similar to the following:

Y%SELECT(MY_AET. MY_COLUWN)
SELECT ' BUSI NESS UNI T FROM PS_| NSTALLATI ON

Y ou can use a PeopleCode assignment instead:
MY_AET. MY_COLUWN = "BUSI NESS UNI T";

Similarly, you can use a PeopleCode If statement instead of using a Do When action to check the value of a
state record field.

When accessing state records with PeopleCode, keep the following in mind:
« Staterecords are unique to Application Engine programs.

« Within Application Engine PeopleCode, state record values can be accessed and modified using the
standard r ecor dnane. f i el dname notation.

Note. When you launch an Application Engine program from PeopleSoft Process Scheduler, you can generate
a process warning status on completion of the program by including and modifying the AE_ APPSTATUS
field in a state record. Y ou can generate the warning status by setting AE_ APPSTATUS to avalue of 1.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Using If/Then Logic

From PeopleCode, you can trigger an error status, or false return, by using the Exit function. Use the On
Return value on the PeopleCode action properties to specify how your Application Engine program behaves
according to the return of your PeopleCode program. This example shows the On Return property:

alPEDmECDdE |Pe-:-p.l’el$oafe description |
2N Return:
| Skip Step |

Example of On Return action property

By default, the program terminates, similar to what happens when a SQL error occurs. But by changing the
On Return value to Skip Sep, you can control the flow of your Application Engine program.

Y ou can use Exit to add an If condition to astep or a section break. For example:

If StateRec.Fieldl ="'N
Exit(1l);

El se

/* Do processing */
End-if;

Y ou must specify a non-zero return value to trigger the On Return action. The concepts of "return 1" and
"return True" are equivalent. So, if the return value is non-zero or True, then Application Engine performs
what you specify for On Return, asin Abort or Skip Step. However, if the program returns zero or False,
Application Engine ignores the selected On Return value.

Using PeopleCode in Loops

Y ou can insert PeopleCode inside of a Do loop, but take care when using PeopleCode inside of high-volume
Do loops (While, Select, Until). Keep the number of distinct programs inside the loop to a minimum. Y ou
should avoid having PeopleCode performing the actual work of the program and instead use it primarily to
control the flow (If, Then logic), build dynamic SQL, or interact with external systems.

Using bind variables instead of literals to pass valuesto SQL statementsis essential in PeopleCode loops or if
the PeopleCode is called in aloop. If the PeopleCode loops, there is a good probability that Application
Engine will use adedicated cursor, which saves the overhead of recompiling the SQL for all iterations. If the
PeopleCode is called from within aloop, Application Engine does not reduce the number of compiles, but
Application Engine avoids flooding the SQL cache (for those database servers that support SQL cache) when
it uses bind variables. Do not use bind variables for valuesin a Select list or for SQL identifiers, such astable
and column names, as some databases do not support this.

Note. Null bind values of type DateTime, Date, or Time are aways resolved into literals.

On those database platforms for which PeopleSoft has implemented this feature, Setting BulkMode to True
often results in significant performance gains when inserting rows into atable in aloop.

In general, avoid PeopleCode calls within aloop. If you can call the PeopleCaode outside of the loop, use that
approach. This can increase overall performance.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 63

Using Meta-SQL and PeopleCode Chapter 5

Using the AESection Class

The AESection PeopleCode class enables you to change the properties of an Application Engine program
section dynamically, without having to modify any of the Application Engine tables directly. This enables
you to develop rule-based applications that conform dynamically to variables that a user submits through a
page, such as the Application Engine Request page.

The AESection class provides the following flexibility:

« Portions of SQL are determined by checks prior to execution.
» Thelogic flow conforms as rules change, and the program adjusts to the rules.

When using an AESection object, keep the following in mind:

» Check to make sure that you primarily reguire dynamic capabilities with the SQL your program generates.

» Make sure that the rules to which your program conform are relatively static, or at least defined well
enough such that a standard template could easily accommodate them.

» Consider using SQL definitionsto create dynamic SQL for your programs to avoid the complexity created
by the AESection object using the StoreSQL function.

» The AESection classis designed to dynamically update only SQL -based actions, not PeopleCode, Call
Section, or other actions.

Y ou can add a PeopleCode action to your generated section, but you can not alter the PeopleCode.
» The AESection classis designed for use for online processing.

Typically, dynamic sections should be constructed in response to a user action.

Note. Do not call an AESection object from an Application Engine PeopleCode action.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode APl Reference, "AESection Class'

Making Synchronous Online Calls to Application Engine Programs

64

To make synchronous online calls to an Application Engine program, use the PeopleCode function
CallAppEngine.

Note. If you make a synchronous call, the user can't perform another PeopleSoft task until the Application
Engine program completes. Consider the size and performance of the Application Engine program called by
CalAppEngine. Y ou should ensure that the program will run to successful completion consistently within an
acceptable amount of time.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

If an Application Engine program called by Call AppEngine terminates abnormally, the user receives an error,
similar to other save time errors, that forces the user to cancel the operation. The Call AppEngine function
returns a value based on the result of the Application Engine call. If the program was successful, it returns a
zero, and if the program was unsuccessful, it returns a non-zero.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," CallAppEngine

Using the File Class

Thefile layout class enables you to perform file input and output operations with Application Engine using
PeopleCode. A file object enables you to open afile (for reading or writing), read data from afile, or write
datato it. Using the combination of the file class and Application Engine provides an effective method to
integrate (or exchange) the data stored in alegacy system with your PeopleSoft system. Thefile class
facilitates the creation of aflat file that both your legacy system and Application Engine programs support.

An Application Engine program running on the application server uses afile object to read the file sent from
the legacy system and trandate it, so that the file can update the affected PeopleSoft application tables. For
the PeopleSoft system and the legacy system to communicate, you must first construct afile object that is
compatible for both systemsto insert and read data.

Attain rowset and record access for afile using afile layout definition. Y ou create the file layout definition in
Application Designer, and it acts as atemplate for the file that both systems read from and writeto. This
simplifies reading, writing, and manipulating complex transaction data with PeopleCode.

Generally, use the file class and Application Engine combination when you cannot implement the Peopl eSoft
Integration Broker solution.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode APl Reference, "File Class'

Calling COBOL Modules

Using the PeopleCode RemoteCall function, you can call COBOL modules from a PeopleCode action. This
option supports existing Application Engine programs that call COBOL modules. You can also useit to
upgrade Application Engine programs from previous releases.

PTPECOBL Program

The PTPECOBL interface program is a PeopleSoft executable that enables you to invoke your called COBOL
module and passit required values. Y ou code the RemoteCall function to invoke PTPECOBL, which in turn
calls the specified COBOL module.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 65

Using Meta-SQL and PeopleCode Chapter 5

66

If you use PTPECOBL, you don't have to write your own executable to process this task. However,
PTPECOBL does not perform any SQL processing other than retrieve alist of state record values.
Consequently, if your current logic requires prior SQL processing, you may want to write your own
executable file to call your COBOL module. In most situations, PTPECOBL saves you from having to write a
custom executable file to handle each call to a generated dynamically loadable code (.GNT) file.

PTPECOBL performs the following tasks:

1. Initializes the specified state record in memory.

2. Invokesthe COBOL module specified in your PeopleCode.
3. Submits required parameters to the called COBOL module.

4. Updates the state record as necessary, issues a commit, and then disconnects from the database after your
program compl etes.

Note. While your COBOL program runs, it can access and return values to the state record.

Shared Values in Application Engine and COBOL

Note the following options for sharing values between the Application Engine program and your called
COBOL program:

o Usestate records.

If you add field names, Application Engine enables you to pass state record values to the called COBOL
program and to get changes passed back to the calling PeopleCode program. If you pass the state record
valuesin this manner, use PTPECACH to retrieve and update values just as PTPEFCNV does.

» Code custom SQL.

If you do not pass theinitial values using state record fields, you need to insert the appropriate SQL in
your called COBOL moduleto retrieve the appropriate values. Then, to return any updated values to the
calling Application Engine program, you must insert the appropriate SQL into a PeopleCode program.

If your COBOL program needs values that do not appear in a state record field, then you can pass
PeopleCode variables and values. These variables and values are then retrieved and updated by calling
PTPNETRT from within your COBOL program.

« Create a custom executable file.

If you include extra SQL processing and use non-state record values, for consistency purposes, it might be
a better approach to create a custom executable file. Thisway, you can call your program directly and
have it perform all the PTPNETRT processing. Remember that a RemoteCall command can only call an
executable program, not a GNT file.

Syntax and Parameters

This example shows a sample RemoteCall function, issued from an Application Engine PeopleCode action to
aCOBOL module:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Remot eCal | (" PSRCCBL", ?
" PSCOBOLPROG', "PTPECOBL", ?
" AECOBOLPROG', "MY_GNT", ?
" STATERECCRD', " MY_AET",?
"PRCSI NST", MY_AET. PROCESS_| NSTANCE, ?
"RETCODE", &RC, ?
"ERRMBG', &ERR _MSG, ?
"FI ELD1", MY_AET. FI ELD1, ?
“FI ELD2", MY_AET. Fl ELD2);

This table describes each parameter:

Parameters Description

PSRCCBL The Remote Call dispatcher. It executes the specified COBOL program using
the connect information of the current operator.

PSCOBOLPROG Specify the name of the COBOL program to run.

Inthis case, it is PTPECOBL. This parameter makes the remote call from
Application Engine distinct from a normal remote call. When you enter this
parameter, you in effect enable the following parameters, some of which are

required.

AECOBOLPROG Specify the name of the COBOL module you're calling; for example,
MY_GNT.

STATERECORD Specify the appropriate state record that your Application Engine program will

share with your COBOL module; for example, MY _AET. PTPECOBL then
reserves space in memory for all of the fields on the state record, regardless of
whether they will ultimately store values for processing.

PRCSINST Specify the state record and Process Instance field; for example,

MY _AET.PROCESS INSTANCE. Thisretrieves the current process instance
value that appears on the state record and submitsit to your COBOL module
using PTPECOBL .

RETCODE and ERRMSG (Optional) Include RETCODE if you need to return information about any
potential problems that the COBOL processing encountered, or useit if your
Application Engine program must know whether it completed successfully.

Fieldnames and Values Thisiswhere you specify any fields on the state record that contain initial
values for your COBOL module. The quoted field names you specify must
exist on the specified state record. The corresponding value can be a
PeopleCode variable, arecord.field reference, or a hard-coded value.

Commit and RemoteCall

Note the following using RemoteCall and an Application Engine program:

« Thecaled COBOL module executes as a separate unit of work.

» Execute acommit in the step immediately preceding the step containing the RemoteCall PeopleCode
action and also in the step containing the Remote Call PeopleCode action.

This enables the COBOL process to recognize the data changes made up to the point that it was called,
and it al'so minimizes the time when the process might be in a non-restartable state.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 67

Using Meta-SQL and PeopleCode Chapter 5

» If youinsert SQL processing into your COBOL module, commit updates are made by your module.
PTPECOBL does hot issue any commits.

« If theintent of your COBOL processisto update the value of a passed state record field, then the calling
Application Engine PeopleCode is responsible for ensuring that the state record field has been modified,
and the Application Engine program is responsible for committing the state record updates.

» Consider how your COBOL module will react in the event of arestart.

Because the work in COBOL will have already been completed and committed, will your module ignore a
duplicate call or be ableto undo or redo the work multiple times? Thisis similar to issues faced when you
execute aremote call from PeopleCode.

« Typicaly, when a COBOL program updates the database and then disconnects or terminates without
having issuing an explicit commit or rollback, an implicit rollback occurs.

Without an explicit commit, the database does not retain any updates.

Note. By default, RemoteCall does not generate any log files after the program completes. To generate and
retain the .out and .err log files, you must set the RCCBL Redirect parameter in the PeopleSoft Process
Scheduler configuration fileto avalue of 1.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions," SetNextPanel.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Process Scheduler, "Using the PSADMIN Utility,"
Editing the PeopleSoft Process Scheduler Configuration File

Calling PeopleTools APIs

68

You can call all of the PeopleTools APIsfrom an Application Engine program. Keep the following itemsin
mind when using APIs:

« All the PeopleTools APIs contain a Save method.

However, when you call an API from your Application Engine program, regardless of the API's Save
method, the data does not actually get saved until the Application Engine program issues a commit.

« |If you've called a component interface from an Application Engine program, al the errors related to the
API get logged in the PSMessage collection associated with the current session object.

« |If you've sent a message, the errors get written to the message log and the A pplication Engine message
log.

« If an Application Engine program called from message subscription PeopleCode encounters errors and the
program exits (with Exi t (1)), the error iswritten to the message log and is marked as an error

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Using the CommitWork Function

This function commits pending changes (inserts, updates, and del etes) to the database. Keep the following in
mind when using CommitWork:

» Thisfunction applies only to a batch Application Engine program.

If the program isinvoked by Call AppEngine, the CommitWork function isignored. The sameis true for
commit settings at the section or step level.

« Thisfunction can be used only in an Application Engine program that has restart disabled.

« The CommitWork function is useful only when you are doing row-at-a-time SQL processing in asingle
PeopleCode program, and you need to commit without exiting the program.

In atypical Application Engine program, SQL commands are split between multiple Application Engine
actions that fetch, insert, update, or delete application data. Y ou use the section or step level commit
settings to manage the commits.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, " PeopleCode Built-in
Functions," CommitWork

Calling WINWORD Mail Merge

If the Process Scheduler is booted using a shared drive on another machine, and you intend to call a
WINWORD mail merge process from Application Engine, one of the following must be done to ensure
successful completion:

1. Configure the Process Scheduler to run Application Engine programs using psae instead of psaesr v.

2. Ensure the generated document is saved locally, and not on a shared network drive.

Using PeopleCode Examples
The following sections provide some examples of common ways that you can utilize PeopleCode within
Application Engine programs.
Do When Actions

Instead of a Do When action that checks a %BIND value, you can use PeopleCode to perform the equivalent
operation. For example, suppose the following SQL existsin your program:

YSELECT(EXI STS) SELECT 'Y' FROM PS_| NSTALLATI ON WHERE 98I ND(TYPE) = ' X'),

Using PeopleCode, you could insert the following code:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 69

Using Meta-SQL and PeopleCode Chapter 5

If TYPE = 'X Then
Exit(0);

El se
Exit(1l);

End-if;

If you set the On Return parameter on the PeopleCode action properties to Skip Sep, this code behaves the
same as the Do When action. The advantage of using PeopleCode is that there is no trip to the database.

Dynamic SQL
If you have a Select statement that populates a text field with dynamic SQL, such as the following:

YSELECT(AE_\WHERE1)
SELECT ' AND ACCOUNTI NG DT <= 9@i nd(ASOF_DATE)"

Y ou can use this PeopleCode:
AE_WHERE1 = "AND ACCOUNTI NG DT <= 9Bi nd(ASOF_DATE)";

Sequence Numbering

If you typically use Select statements to increment a sequence number inside of a Do Select, While, or Until
loop, you can use the following PeopleCaode instead:

SEQ NBR = SEQ NBR + 1,

Using PeopleCode rather than SQL is significant. Because the sequencing task occurs repeatedly inside a
loop, the cost of using a SQL statement to increment the counter increases with the volume of transactions
your program processes. When you are modifying a program to take advantage of PeopleCode, the areas of
logic you should consider are those that start with steps that are executed inside aloop.

Note. Y ou can also use the meta-SQL constructs %oNext and %Previous when performing sequence
numbering. Using these constructs may help performance in both PeopleCode and SQL calls.

Rowsets

Y ou can use rowsets in Application Engine PeopleCode. However, using rowsets means you'll be using
PeopleCode to handle more complicated processing, which degrades performance.

Math Functions

Use the math functions that your database offers whenever possible.

Internally, PeopleCode assigns types to numeric values. Calculations for the Decimal type are processed in
arrays to ensure decimal point uniformity across hardware and operating system environments. Thisis much
slower than calculations for type Integer, which are processed at the hardware level.

When PeopleCode converts strings to numeric values, it does so using the internal Decimal type. For
performance reasons, avoid cal culations using these values.

A third type of numeric value is the Float type. It is not used as frequently, for the following reasons:

70 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

« Constants are never stored as Float types in the compiled code.
For example, 2.5 isaways Decimal.

« Theonly way to produce a Float valueis by using built-in functions, such as Float or the Financial math
functions.

The Float type is used to produce afloat result only if al operands are also of the Float type. Float operations
occur at the hardware level.

PeopleCode does not offer optimum performance when processing non-Integer, non-Float math calculations.
To perform cal culations with these numeric types, consider allowing the database to perform the calculations
in COBOL.

PeopleCode supports a range of mathematical functions and numeric types. Generally speaking, if a complex
calculation is executed repetitively in an Application Engine program, careful analysis should be done to
determine whether to perform the calculation in a PeopleCode action or to use the relational database
management (RDBMS) functions through a SQL action. Using SQL may require PeopleSoft meta-SQL to
handle platform differences, but it may be the most efficient way to update field values. If SQL is not
appropriate, consider numeric typing in PeopleCode, as this affects the speed and accuracy of the calculation.

SQL Class

Instead of using the SQL class within PeopleCode, have Application Engine issue the SQL and use aDo
Select action that loops around sections containing PeopleCode actions.

It might appear easier to code all of the logic within a single PeopleCode program, but splitting the logic into
smaller piecesis preferable because you will have better performance, and you get afiner granularity of
commit control. Within a PeopleCode program, you can commit in certain cases using the CommitWork
function. Y ou can always issue a commit between Application Engine steps.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "PeopleCode Built-in
Functions,” CommitWork.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "SQL Class," Understanding SQL
Objects and Application Engine Programs.
Arrays

Instead of using arrays in Application Engine PeopleCode, explore the use of temporary tables for storing
pertinent or affected data. This has the following advantages:

« Dataisavailablefor restarts.
+ AnRDBMSisefficient at managing and searching tables.
« Using temporary tables also lends itself to set-based processing.

Y ou can use the Statement Timings and PeopleCode Detail Timings trace options to generate an Application
Engine timings report to determine whether your program is spending significant time processing arrays.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 71

Using Meta-SQL and PeopleCode Chapter 5

Including Dynamic SQL

Typically, developersinclude dynamic constructs in Application Engine programs to change SQL based on
various runtime factors or on user-defined input entered through a page. Y ou can include dynamic SQL in
Application Engine programs in avariety of ways. For example, you can use:

» Dynamic sections, using the AESection object.
» Changing SQL, using the SQL class.
» Referencesto SQL in your own tables.

The AESection classis primarily designed for online section building, and therefore won't be the most
frequently used solution.

Use the SQL classto store SQL in a SQL definition that you can also access in Application Designer. Then, if
you have afew SQL statements to execute, generate the SQL 1Ds based on some methodology, such asa
timestamp, and then store these in atable.

When the program runs, your SQL could query this table based on process and extract the appropriate SQL
IDs to be executed with a SQL action in aDo Select |oop.

%SQL(9@l ND(MY_SQLI D, NOQUOTES))

For adynamic Do action, the AE_APPLID and the AE_SECTION fields must appear on the default state
record.

Application Engine Meta-SQL Reference

This section describes the meta-SQL constructs, functions, and meta-variables you can usein Application
Engine.

Note. The SQL Editor does not validate all of the meta-SQL constructs, such as %Bind and %Sel ect.
Messages might appear stating these constructs are invalid.

%Abs

Description

Because the %A bs function can be used in more than just Application Engine programs, it is documented in
the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %Abs

72 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

%AeProgram

Description

Use the %A eProgram meta-variable to specify a quoted string containing the currently executing Application
Engine program name.

%AeSection

Description

Use the %A eSection meta-variable to specify a quoted string containing the currently executing Application
Engine section name.

%AeStep

Description

Use the %A eStep meta-variable to specify a quoted string containing the currently executing Application
Engine Step name.

%AsOfDate

Description

Use the %A sOfDate meta-variable to specify a quoted string containing the as of date used for the current
process.

%AsOfDateOvr

Description

Use the %A sOfDateOvr meta-variable only as a parameter of the %ExecuteEdits function, to override the
default use of the system date with the value of afield on ajoined record.

See Also

Chapter 5, "Using Meta-SQL and PeopleCode," %Table, page 104

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 73

Using Meta-SQL and PeopleCode Chapter 5

%BINARYSORT

Description

Because the %BINARY SORT construct can be used in more than just Application Engine programs, itis
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %BINARY SORT

%Bind

74

Syntax
9Bi nd([recordnane.]fieldname [, NOQUOTES][, NOARAP][, STATI()

Description

Use the %Bind construct to retrieve afield value from a state record. Can be used anywherein a SQL
statement. When executed, %Bind returns the value of the state record field identified within its parentheses.

Notes About %Bind

Typically, when you use %Bind to provide avalue for afield or a Where condition, the type of field in the
state record that you reference with %Bind must match the field type of the corresponding database field used
in the SQL statement.

On most platforms, you cannot use aliteral to populate aLong Varchar field. Y ou should use the %Bind
(recordname.fieldname) construct.

In the case of an external call to a section in another program, if the called program has its own default state
record defined, then Application Engine uses that default state record to resolve the %Bind(fieldname).
Otherwise, the called program inherits the default state record of the calling program.

All fields referenced by a %Select construct must be defined in the associated state record.

Y ou must use the Date, Time, and DateTime output wrappersin the Select list that popul ates the state record
fields.

This ensures compatibility across all supported database platforms. For example:
« First SQL action:

%5el ect (dat e_end)
SELECT %bat eCut (date_end)
FROM PS_EXAMPLE

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

» Second SQL action:

I NSERT | NTO PS_EXAMPLE
VALUES(98i nd(dat e_end))

Bind Variables and Date Wraps

Using Meta-SQL and PeopleCode

The behavior of bind variables within Application Engine PeopleCode and normal PeopleCode is the same.

Alternately, if you compare Application Engine SQL to PeopleCode (of any type), then the system processes

bind variables differently.

If you use the following approach:

AND TL_EMPL_DATAL. EFFDT <= %°(1))
Then in PeopleCode you issue:
%SQL(MY_SQL, Y%Dateln(:1))

This assumes that you have referenced the literal as a bind variable.

Or in Application Engine SQL you issue:

%SQL(MY_SQ., %Bi nd(date_field))
YBQL(MY_SQ., uBi nd(date_field, NOARAP))

Parameters

Parameter Description

Recordname The name of a state record. If you do not specify a particular state record,
Application Engine uses the default state record to resolve the %Bind (fieldname).

Fieldname Thefield defined in the state record.

NOQUOTES If the field specified is a character field, its value is automatically enclosed in
quotes unless you use the NOQUOTES parameter. Use NOQUOTES to include a
dynamic table and field name reference, even an entire SQL statement or clause, in
an Application Engine SQL action.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

75

Using Meta-SQL and PeopleCode Chapter 5

Parameter Description

NOWRAP If thefield is of type Date, Time, or DateTime, the system automatically wrapsits
value in %Dateln or %DateOut, unless you use the NOWRAP parameter.
Therefore, if the state record field is populated correctly, you do not need to be
concerned with the inbound references, although you can suppress the inbound
wrapping with the NOWRAP modifier inside the %Bind. Furthermore,
Application Engine skips the inbound wrapper if the %Bind (date) isin the select
field list of another %Select statement. Thisis because the bind valueis already in
the outbound format, and the system selects it into another state record field in
memory. In this circumstance there is no need for either an outbound wrapper or
an inbound wrapper. For example,

First SQL action:

%Sel ect (dat e_end)
SELECT %bat eCut (date_end)
FROM PS_GREG

Second SQL action:

I NSERT | NTO ps_greg
VALUES(98i nd(dat e_end))

STATIC The STATIC parameter enables you to include a hard-coded value in areused
statement. For %Bind instances that contain dynamic SQL, this parameter must be
used in conjunction with the NOQUOTES parameter for proper execution of a
reused statement.

Example

UPDATE PS_REQ HDR
SET | N_PROCESS_FLG = 9Bi nd(MY_AET. | N_PROCESS_FLQ),
PROCESS_| NSTANCE = 9Bi nd(PROCESS_| NSTANCE)
WHERE | N_PROCESS FLG = ' N
AND BUSINESS UNIT || REQID
IN (SELECT BUSINESS UNIT || REQ I D
FROM PS_PO_REQRCON VK1
WHERE PROCESS_| NSTANCE = 9Bi nd(PROCESS_| NSTANCE))

In the previous example, %Bind (PROCESS_INSTANCE) assigns the value of the field
PROCESS_INSTANCE in the default state record to the PROCESS _INSTANCE field in table
PS REQ HDR.

The %Bind construct is also used in a Where clause to identify rowsin the table PS PO_REQRCON_WK1,
in which the value of PROCESS INSTANCE equals the value of PROCESS INSTANCE in the default state
record.

%ClearCursor

Syntax

%l ear Cur sor ({ program section, step,action | ALL})

76 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Description

Use the %ClearCursor function to recompile a reused statement and reset any STATIC %Bind variables.
When you use the %ClearCursor function, keep the following in mind:

« The function must be located at the beginning of the statement.

» %ClearCursor can be the only function or command contained in the statement.

Parameters
Parameter Description
program Specify the name of the Application Engine program containing the reused
statement you want to recompile.
section Specify the name of the section containing the reused statement you want to
recompile.
step Specify the name of the step containing the reused statement you want to
recompile.
action Specify one of the following values:
* D: Do Sdlect.
* H: DoWhen.
e N: Do Until.
* W: Do While
e S SQL.
ALL Clear al cursorsin the current Application Engine program.
%COALESCE
Description

Because the %COALESCE function can be used in more than just Application Engine programs, it is
documented in the PeopleTools 5.50 PeopleCode Language Reference PeopleBook.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %COALESCE

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 77

Using Meta-SQL and PeopleCode Chapter 5

%Comma

Description

Use the %Comma meta-variable to specify acomma. Thisis useful where you must use a comma, but
commas are not alowed due to the parsing rules. For example, you might use thisif you wanted to pass a
comma, as a parameter, to the %SQL meta-SQL function.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %SQL

%Concat

Description

Because the %Concat meta-variable can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %Concat

%CurrentDateln

Description

Because the %CurrentDateln meta-variable can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %CurrentDatel n

78 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

%CurrentDateOut

Description

Because the %CurrentDateOut meta-variable can be used in more than just Application Engine programs, it is

documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %CurrentDateOut

%CurrentDateTimeln

Description

Because the %CurrentDateTimel n meta-variable can be used in more than just Application Engine programs,
it is documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ,"
%CurrentDateTimeln

%CurrentDateTimeOut

Description

Because the %CurrentDateTimeOut meta-variable can be used in more than just Application Engine
programs, it is documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language
Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ,"
%CurrentDateTimeOut

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

79

Using Meta-SQL and PeopleCode Chapter 5

%CurrentTimeln

Description

Because the %CurrentTimeln meta-variable can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %CurrentTimeln

%CurrentTimeOut

Description

Because the %CurrentTimeOut meta-variable can be used in more than just Application Engine programs, it
is documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %CurrentTimeOut

%DateAdd

Description

Because the %DateAdd function can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %DateAdd

%DateDiff

Description

Because the %DateDiff function can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

80 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %DateDiff

%Dateln

Description

Because the %Dateln construct can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %Dateln

%DateNull

Description

Because the %DateNull meta-variable can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %oDateNull

%DateOut

Description

Because the %DateOut function can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %DateOut

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 81

Using Meta-SQL and PeopleCode Chapter 5

%DatePart

Description

Because the %DatePart function can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %DatePart

%DateTimeDiff

Description

Because the %DateTimeDiff function can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %DateTimeDiff

%DateTimeln

Description

Because the %DateTimel n construct can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %DateTimeln

%DateTimeNull

Description

Because the %DateTimeNull meta-variable can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

82 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

%Dat

Using Meta-SQL and PeopleCode

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %DateTimeNull

eTimeOut

Description

Because the %DateTimeOut function can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %DateTimeOut

%DecDiv

Description

Because the %DecDiv function can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %DecDiv

%DecMult

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Description

Because the %DecMult function can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %DecMult

83

Using Meta-SQL and PeopleCode Chapter 5

%DTTM

Description

Because the %DTTM function can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL " %DTTM

%EffDtCheck

Description

Because the %EffDtCheck construct can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %EffDtCheck

%Execute

84

Syntax

Y%execute([/])
comandl{; | /}
comuand2{; | /}...
commandN{; | /}

Description

Use the %Execute function to execute database-specific commands from within your Application Engine
program. Also, the %Execute function enables you to include multiple statements in a single Application
Engine action without encountering database-specific differences. For instance, there are instances where you
could code a single Application Engine action to contain multiple SQL statements, and they may run
successfully on one database platform. However, if you attempt to run the same code against a different
database platform, you might encounter errors or skipped SQL.

By default, Application Engine expects a semicolon to be used to delimit multiple commands within an
%Execute function statement. Y ou can instruct Application Engine to use aforward slash (/) delimiter instead
by placing aforward slash inside the function parentheses.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Note. When you use the %Execute function, it must be located at the beginning of the statement and can be
the only function or command contained in the statement. The action type must be SQL.

Example
The following code enables you to use an Oracle PL/SQL block in an %Execute statement:
Y%Execut e(/)

DECLARE

count er | NTEGER

BEG N

FOR counter := 1 TO 10

UPDATE psl ock SET version = version + 1;
END FOR;

END;
/

%ExecuteEdits

Syntax

%Execut eEdi t s(type, recordnane [alias][, fieldl,field2, ...])

Description

Use the %ExecuteEdits function to apply data dictionary edits in batch. The %ExecuteEdits functionis
Application-Engine-only meta-SQL. Y ou cannot use it in COBOL, SQR, or PeopleCode—not even in
Application Engine PeopleCode.

Notes About %ExecuteEdits

Note the following:

« Consider performance carefully when using this function.

Prompt table and Trandlate table edits have a significant impact, because they involve correlated
subgueries. Run a SQL trace at execution time so that you can view the SQL generated by
%ExecuteEdits. Look for opportunities where it can be optimized.

« Ingeneral, %ExecuteEditsis best used on atemporary table.

If you must run this against areal application table, you should provide Where clause conditions to limit
the number of rows to include only those that the program is currently processing. Process the rowsin the
current set all at once rather than processing them row by row.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 85

Using Meta-SQL and PeopleCode Chapter 5

86

With %ExecuteEdits, you cannot use work records in a batch, set-based operation.

All higher-order key fields used by prompt table edits must exist on the record that your code intends to
edit, and the field names must match exactly. For example,

%Execut eEdi t s(%Edi t _Pronpt Tabl e, MY_DATA TMP)

Therecord MY_DATA_TMP containsthe field STATE with a prompt table edit against

PS REGION_VW, which has key fields COUNTRY and REGION. The REGION field corresponds to
STATE, and COUNTRY isthe higher-order key. For %ExecuteEdits to work correctly, the

MY _DATA_TMP record must contain afield called COUNTRY . It is permissible for the edited field
(STATE) to use adifferent name, because Application Engine always references the last key field
(ignoring EFFDT).

In Application Engine, %ExecuteEdits uses the system date when performing comparisons with effective
date (EFFDT); however, in some cases, this is not appropriate (Journal Edit, Journal Import, and so on).
In these situations, Journal Date should be used when comparing with EFFDT. To override a program's
use of the default system date with a selected field from ajoined table, use %AsOfDateOvr. For example,

%Execut eEdi t s(YAsOf Dat eOvr (alias.fieldnane), 9Bind(...)...)
Restrict the number and type of edits to the minimum required.

Do not edit fields that are known to be valid or that are given default values later in the process. Also,
consider using a separate record with edits defined specifically for batch, or provide alist of fieldsto be
edited.

Parameters
Parameter Description
type Specify any combination of the following (added together):
* %Edit Required
* O%Edit_YesNo
* O%Edit DateRange
* O%Edit PromptTable
* OoEdit TrandateTable
recordname Specify the record used to obtain the data dictionary edits.
fieldl, field2, ... Specify asubset of the record's fields to which edits apply.
Example

Suppose you want to insert rows with missing or invalid valuesin three specific fields, selecting datafrom a
temporary table but using edits defined on the original application table. Notice the use of an alias, or
correlation name, inside the meta-SQL.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

| NSERT | NTO PS_JRNL_LINE_ERROR (...)
SELECT ... FROM PS_JRNL_LINE_ TMP A
VWHERE A. PROCESS | NSTANCE = 9Bl ND(PROCESS_| NSTANCE)
AND %EXECUTEEDI TS(%Edit _Required + % &dit_Pronpt Tabl e, ?
JRNL_LINE A, BUSINESS UNI'T, JOURNAL | D, ACCOUNTI NG DT)

To update rows in atemporary table that have some kind of edit error, you can use custom edits defined on
the temporary table record:

UPDATE PS_PENDI TEM TAO

SELECT ERROR FLAG = 'Y

VWHERE PROCESS | NSTANCE = 98I ND(PROCESS | NSTANCE)

AND %EXECUTEEDI TS(%Edit_Required + %Edit_YesNo + %Edit_Dat eRange +?
%Edit _Pronpt Tabl e + %&dit _Transl at eTabl e, PENDI TEM TAQO)

%FirstRows

Description

Because the %FirstRows meta-variable can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %oFirstRows

%GetProgText

Syntax
% et Pr ogText (&Pr og, &Sect i on, &var ket , &Pl at f or m &Ef f dt , &St ep, &Event)

Description
The %GetProgText function returns a string with the text of a PeopleCode program uniquely identified by the
parameters.
Parameters
Parameter Description
&Prog A string with the name of an Application Engine program.
& Section A string with the name of an Application Engine program section.
& Market A string specifying the market for an Application Engine program section.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 87

Using Meta-SQL and PeopleCode Chapter 5

Parameter Description

&Platform A string specifying the platform for an Application Engine program section.

& Effdt A string specifying the effective date for an Application Engine program section.
& Sep A string specifying a step in an Application Engine program section.

& Event A string specifying the PeopleCode event.
Returns

A string containing the text of a PeopleCode program.

Example

&Peopl eCodeText = Get ProgText (" DYNROLE_PUBL", "MAIN', "GBL", "default",
"1900-01- 01", "Step03", "OnExecute");

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Developer's Guide, "Using the SQL Editor"

%lnsertSelect

Description

Because the %l nsertSel ect construct can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %ol nsertSel ect

%lInsertSelectWithLongs

Description

Because the%ol nsertSel ectWithL ongs construct can be used in more than just Application Engine programs, it
is documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

88 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ,"
%I nsertSel ectWithLongs

%Joblnstance

Description

Use the %Jobl nstance meta-variabl e to specify the numeric (unquoted) PeopleSoft Process Scheduler job
instance.

%Join

Description

Because the %Join construct can be used in more than just Application Engine programs, it is documented in
the Enter prise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %Join

%L eftParen

Description
Use the %L eftParen meta-variable to specify aleft parenthesis. Usage is similar to %Comma.
See Also

Chapter 5, "Using Meta-SQL and PeopleCode," %Comma, page 78

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %SQL

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 89

Using Meta-SQL and PeopleCode Chapter 5

%Like

Description

Because the %L ike construct can be used in more than just Application Engine programs, it is documented in
the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %L ike

%LikeExact

Description

Because the %L ikeExact construct can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %L ikeExact

%lList

Syntax

%.ist({FIELD LIST | FIELD LI ST_NOLONGS | KEY_FIELDS | ORDER_BY}, recordnane |
correlation_id])

Description

The %List construct expandsinto alist of field names, delimited by commas. The fieldsincluded in the
expanded list depends on the parameters.

Note. This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

Considerations Using %List

When using %List in an Insert/Select or Insert/Values or %Select statement, you must have matching pairs of
%List (or %ListBind) variablesin the target and source field lists, using the same list type argument and
record name to ensure consistency.

90 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

Parameters
Parameter Description
FIELD _LIST Use all field names in the given record. Y ou can select only one option from
FIELD_LIST, ORDER _BY, FIELD_LIST_NOLONGS, or KEY_FIELDS.
KEY_FIELDS Useall key fieldsin the given record. Y ou can select only one option from
FIELD_LIST, FIELD_LIST _NOLONGS, KEY_FIELDS, or ORDER_BY.
ORDER_BY Use dll the key fields of recordname, adding the DESC field for descending key

columns. This parameter is often used when the list being generated is for an
Order By clause. Y ou can select only one option from FIELD_LIST,
KEY_FIELDS, ORDER_BY, or FIELD_LIST_NOLONGS.

FIELD_LIST_NOLONGS

Use dll field namesin the given record, except any long columns (long text or
image fields.) Y ou can select only one option from FIELD_LIST, ORDER_BY,
KEY_FIELDS, or FIELD_LIST_NOLONGS.

recordname

Identify either arecord or a subrecord that the field names are drawn from. This
can be abind variable, arecord object, or arecord name in the form recname. You
cannot specify RECORD.recname, arecord name in quotation marks, or atable
name.

correlation _id

Identify the single-letter correlation ID to relate the record specified by
recordname and its fields.

Example

Thefollowing is agood example of using %List. Both the Insert and Select statements use the same %L st

variable.

| NSERT | NTO PS_PO DI STRIB_STG (%8ql (POCOVVONDI STSTGFLDLSTU)
%.i st (FI ELD LI ST, CF16_AN_SBR)

MERCHANDI SE_AMT
MERCH_AMI_BSE
QTY_DEMAND
QTY_PO
QTY_PO_STD
QTY_REQ

SELECT %8q! (POCOMVONDI STSTGFLDLSTU)

%.i st (FIELD LI ST, CF16_AN_SBR)

., MERCHANDI SE_AMT
., MERCH_AMT_BSE

., QTY_DEMAND

. QTY_PO

. QTY_PO_STD

, QIY_REQ

FROM PS_PO DI ST_STG WRK WRK
WHERE WRK. PROCESS | NSTANCE = 9@i nd(PROCESS_| NSTANCE)

The following example shows a poor example of how to use %List. The Insert and Select field lists both use
%List, but the Select field list isonly partly dynamic. Therest is hard-coded.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 91

Using Meta-SQL and PeopleCode Chapter 5

92

| NSERT | NTO PS_EN_TRN_CMP_TMP (%.i st (FI ELD LI ST, EN_TRN_CWP_TMP))
SELECT B.EIP_CTL_ID

, 9i st (SELECT_LIST, EN_BOM COWPS A)
, E. COPY_DI RECTI ON

, E. BUSI NESS_UNI T_TO

, E. BOM_TRANSFER STAT

, "N

, B. MASS_MAI NT_CODE

, 0

FROM PS_EN_BOM COVPS A

., PS_EN_ASSY_TRN_TMVP B

, PS_EN_TRNS_TWP E

WHERE . . .

The following example shows the previous poor example rewritten in a better way:

I NSERT | NTO PS_EN_TRN_CWMP_TMP (EIP_CTL_I D,
%.i st (FI ELD_LI ST, EN_BOM COWPS)
COPY_DI RECTI ON
BUSI NESS_UNI T_TO
BOM TRANSFER STAT
EN_MVC_UPDATE_FLG
MASS_MAI NT_CODE
EN_MVC_SEQ FL®01

, EN_MVC_SEQ FLG20)

SELECT B.EIP_CTL_ID

. 9%.i st (FIELD LI ST, EN_BOM COVPS A)
E. COPY_DI RECTI ON

E. BUSI NESS_UNI T_TO

E. BOM TRANSFER_STAT

"N

B. MASS_MAI NT_CODE

0

0

FROM PS_EN_BOM COVPS A
, PS_EN_ASSY_TRN_TMVP B
. PS_EN_TRNS_TMP E
WHERE . . .

The following code segment is another poor example. Only the field list of the Insert statement is dynamically
generated, and the Select statement is statically coded. If thetable STL_NET_TBL isreordered, the Insert
statement will be incorrect.

| NSERT | NTO PS_STL_NET_TBL (%.i st (FIELD LI ST, STL_NET_TBL))
SELECT : 1

~NoOo Ok wWN

i='Rc83|v| PS_I NSTALLATI ON

The following code shows the previous poor example rewritten in a better way:
| NSERT | NTO PS_STL_NET_TBL (%.i st (FI ELD_LI ST, STL_NET_TBL))
VALUES (%.i st (BIND LI ST, STL_NET_TBL MY_AET))

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

%ListBind

Syntax

%.i st Bi nd({FI ELD_LI ST |
State_record_alias])

Description

Using Meta-SQL and PeopleCode

FI ELD LI ST_NOLONGS | KEY_FI ELDS}, recordnane |

The %ListBind meta-SQL construct expands afield list as bind references for use in an Insert/Value

statement.

Note. This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

Considerations Using %ListBind

When using %ListBind in an insert/select or insert/values or %Select statement, you must have matching
pairs of %List or %ListBind in the target and source field lists, using the same list type argument and record

name to ensure consi stency.

Parameters
Parameter Description
FIELD_LIST Useall field namesin arecord. Y ou can select only one option from

FIELD_LIST, FIELD_LIST_NOLONGS, or KEY_FIELDS.

FIELD_LIST_NOLONGS

Use dll field names in arecord, except any long columns (long text or image
fields). You can select only one option from FIELD _LIST,
FIELD_LIST_NOLONGS, or KEY_FIELDS.

KEY_FIELDS Use adll key field namesin arecord. You can select only one option from
FIELD_LIST, FIELD_LIST_NOLONGS, or KEY_FIELDS.
recordname Identify either arecord or a subrecord that the field names are drawn from. This

can be a bind variable, arecord object, or arecord name in the form recname. Y ou
cannot specify RECORD.recname, arecord name in quotation marks, or atable
name.

Sate record alias

Specify the Application Engine state record buffer that contains the values (this
could be different than the record used to derive the field list). If missing, the
default state record is assumed.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 93

Using Meta-SQL and PeopleCode Chapter 5

Example

I NSERT | NTO PS_TARGET (FI ELD1, FIELD2, %. st(FlIELD _LIST, CF_SUBREC), FIELDN)=>

VALUES (9@i nd(MY_AET. FI ELD1), 9%Bi nd(MY_AET. FI ELD2), %.i st Bi nd(FlI ELD_LI ST, CF =
SUBREC MY_AET), 98i nd(MY_AET. FI ELDN))

%ListEqual

Syntax
%.i st Equal ({ ALL | KEY }, Recordnane [alias], RecordBuffer [, Separator])

Description

The %ListEqual construct maps each field, possibly to an alias with a%Bind value, with a separator added
before each equality. Each field is mapped as follows:

alias. X = 9Bi nd(recbuffer.X)

This construct can be used in the Set clause of an Update statement or in a Where clause.

Note. This meta-SQL is not implemented for COBOL, dynamic view SQL, or PeopleCode.

Parameters

Parameter Description

ALL |KEY Specify if you want all fields or just key fields.

recordname I dentify either arecord or a subrecord that the field names are drawn from. This
can be abind variable, arecord object, or arecord name in the form recname. You
cannot specify RECORD.recname, arecord name in quotation marks, or atable
name.

alias (Optional) Specify an aliasto precede each field name.

RecordBuffer Specify the record buffer for the bind variables (this could be different than the
record used to derive the field list).

Separator If you want to specify alogical separator, specify either AND or OR with this
parameter. If you do not specify a separator, no logical separator is used; the value
of acommaisused instead.

94 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

Example
UPDATE PS_TEMP

SET 9%.i st Equal (ALL, CF_SUBREC, MY_AET)
WHERE %.i st Equal (KEYS, TEMP, MY_AET, AND)

%Next and %Previous

Copyright

Description

Use the %Next and %Previous functions to return the value of the next or previousfield in a numbered
sequence. These functions are valid in any Application Engine SQL action, and should be used when
performing sequence-numbering processing. Typically, you use them in place of a %Bind construct. These
functions use the current value of the number field as a bind variable, and then increment (%Next) or
decrement (%Previous) the value after the statement is executed successfully. A number field indicates the
numeric field on the state record that you have initialy set to a particular value (asin 1 to start).

If the statement is a Select and no rows are returned, the field value is not changed. The substitution rules are
the same as for %Bind. For example, if the ReUse property is enabled, then the field isatrue bind (:n'
substituted). Otherwise, inline substitution occurs.

Example

Y ou could use these functions in an Update statement within a Do Select action.

« Do Sdlect action

YSELECT(fieldl, field2, ...) SELECT keyl, key2, ... FROM PS_TABLE WHERE ...
ORDER BY keyl, key2, "
« SQL

UPDATE PS_TABLE SET SEQ NBR = %Next (seq_fiel d) WHERE keyl = 9Bi nd(fi el d1)
AND key2 = 9Bi nd(fi el d2) .

With aDo Select action, the increment/decrement occurs once per execution, not once for every fetch. So
unless your Do Select action implements the Reselect property, the value is changed only on the first iteration
of the loop. Alternatively, with the Reselect property or Do While and Do Until actions, every iteration re-
executes the Select statement and then fetches one row. With these types of 1oops, the value changes on every
iteration.

See Also

Chapter 5, "Using Meta-SQL and PeopleCode," %Bind, page 74

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 95

Using Meta-SQL and PeopleCode Chapter 5

%NoUpperCase

Description

Because the %NoUpperCase construct can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %oNoUppercase

%NumToChar

Description

Because the %NumToChar construct can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %NumToChar

%Processinstance

Description

Use the %Processl nstance meta-variable to specify the numeric (unquoted) process instance.

%ResolveMetaSQL

96

Syntax
%Resol veMet aSQL(&SQL)

Description

The %DatabaseRel ease function returns a string with any meta-SQL in the string expanded to platform-
specific SQL, similar to the text that is returned on the Meta-SQL tab when using the Resolve Meta-SQL

functionality in the SQL Editor.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

If & SQL does not contain any meta-SQL then the function returns a string identical to & SQL.

Parameters

Parameter Description

&SQL Specify a string containing the SQL to be resolved.
Returns

A string with meta-SQL expanded to platform-specific SQL.

Example

Hereis an example:

&SQ . Text = Fet chSQ.(SQL. PTLT_CODE_MARKET) ;
&Resol veSQ . Text = Resol veMet aSQ(&SQ.Text) ;

Suppose & SQL Text contains the following SQL :

| NSERT | NTO 9%Tabl e(PTLT_ASSGN_TASK) (PTLT_FEATURE_CODE
, PTLT_TASK_CODE
. PORTAL_NANE
, PTLT_TASK_CODE2
. MENUNANVE
, OBJECTOANER! D)
SELECT A. EOLT_FEATURE_CODE
, 98ql (PTLT_TASK_CODE, A. PNLGRPNAME, A. MARKET)
, ' EMPLOYEE'
, 98ql (PTLT_TASK_CODE, A PNLGRPNAME, A. MARKET)
, A MENUNANE
FROM 9%Fabl e(EOLT_FEAT _COWP) A
, 9Fabl e(PTLT_TASK) B
, 9abl e(PTLT_TASK_LOAD) C
WHERE %8q| (PTLT_TASK CODE, A. PNLGRPNAME, A. MARKET) = B. PTLT_TASK CODE
AND B. PTLT_TASK CODE = C. PTLT_TASK_CODE
AND B. PTLT_LOAD _METHCD = C. PTLT_LOAD METHOD
AND A. MENUNAME <> '
AND A. MENUNAMVE <> C. MENUNANE
AND NOT EXI STS (
SELECT ' X'
FROM 9%Tabl e(PTLT_ASSGN_TASK) Z
WHERE Z. PTLT_FEATURE_CODE = A EOLT_FEATURE_CODE
AND Z. PTLT_TASK CODE = %8ql (PTLT_TASK CODE, A. PNLGRPNAMVE, A. MARKET))

& ResolveSQL Text would contain the following text (depending on your database platorm):

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 97

Using Meta-SQL and PeopleCode Chapter 5

| NSERT | NTO PS_PTLT_ASSGN_TASK(PTLT_FEATURE_CODE
, PTLT_TASK_CODE
, PORTAL_NANE
, PTLT_TASK_CODE2
VENUNAVE
OBJECTOWNERI D)
SELECT A. EOLT FEATURE CODE
, RTRI M SUBSTR(A. PNLGRPNAVE

1
,18)) || "' || A MARKET

, ' EMPLOYEE'

, RTRI M SUBSTR(A. PNLGRPNAVE
1

,18)) || "' || A MARKET

, A, MENUNAMVE

FROM PS_EOLT_FEAT_COMWP A
., PS_PTLT_TASK B
, PS_PTLT_TASK_LOAD C
WHERE RTRI M SUBSTR(A. PNLGRPNAME, 1,18)) || '.' || A MARKET = B. PTLT_TASK_CODE
AND B. PTLT_TASK CODE = C. PTLT_TASK_CODE
AND B. PTLT_LOAD _METHCD = C. PTLT_LOAD METHOD
AND A. MENUNAME <> ' '
AND A. MENUNAME <> C. MENUNANE
AND NOT EXI STS (
SELECT ' X
FROM PS_PTLT_ASSGN TASK Z
WHERE Z. PTLT_FEATURE CODE = A EOLT_FEATURE_CODE
AND Z. PTLT_TASK_CODE = RTRI M SUBSTR(A. PNLGRPNAME, 1,18)) || '.' || A. MARKET)

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Developer's Guide, "Using the SQL Editor"

%ReturnCode

Description

Use the %ReturnCode meta-variable to evaluate or specify the return code of the last Application Engine
program step performed. If the operation fails, breaks, or generates an error, %oReturnCode is set to one of the
following types of return codes:

» Database (SQL) call errors.

» PeopleCode function errors.

+ GEN_ERROR, when produced by general runtime exceptions.

« AE_ABORT, when produced by application or runtime logic, including some memory-related errors.

If the application processis not terminated, %ReturnCode is reset to the default value of O for each
subsequent successful operation.

98 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

%RightParen

Description
Use the %RightParen meta-variable to specify aright parenthesis. Usage is similar to %Comma.
See Also

Chapter 5, "Using Meta-SQL and PeopleCode," %Comma, page 78

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %SQL

%Round

Description

Because the %Round function can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %Round

%RoundCurrency

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Syntax

9%RoundCur rency(expression, [ALIAS.Jcurrency_field)

Description

Use the %RoundCurrency function to return the value of an amount field rounded to the currency precision
specified by the field's Currency Control Field property, as defined in the Application Designer Record Field
Properties dialog box. For this function to work, you must have the Multi-Currency option selected on the
PeopleTools Options page.

See Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using PeopleTools
Utilities," Using Administration Utilities.

Thisfunction is an enhanced version of the Application Engine & ROUND construct that appeared in
previous releases, and is valid only in Application Engine SQL ; it isnot valid for SQLEXxecs or view text.

99

Using Meta-SQL and PeopleCode Chapter 5

Y ou can use this function in the Set clause of an Update statement or the Select list of an Insert/Select
statement. The first parameter is an arbitrary expression of numeric values and columns from the source
tables that computes the monetary amount to be rounded. The second parameter is the control currency field
from a particular source table (the Update table, or atablein the From clause of an Insert/Sel ectstatement).
Thisfield identifies the corresponding currency value for the monetary amount.

Note. Remember that the as of date of the Application Engine program is used for obtaining the currency-
rounding factor. The currency-rounding factor is determined by the value of DECIMAL_POSITIONS on the
corresponding row in PS_ CURRENCY _CD_TBL, which is an effective-dated table.

If multicurrency is not in effect, the result is rounded to the precision of the amount field (either 13.2 or 15.3
amount formats are possible).

Example

UPDATE PS_PENDI NG _DST
SET MONETARY_AMOUNT =
9RoundCur r ency(FOREI GN_AMOUNT * CUR_EXCHNG RT, CURRENCY_CD)
WHERE GROUP_BU = 9@i nd(GROUP_BU) AND GROUP_I D = %Bi nd(GROUP_| D)

%RunControl

Description

Use the %RunControl meta-variable to specify a quoted string containing the current run control identifier.
The run control ID is available to your program when using %RunControl, regardless of whether there's arow
inthe AEREQUEST table.

%Select
Syntax
%Sel ect (statefieldl], statefield2]...[, statefieldN)
Select fieldl[, field2]...[, fieldN

100

The statefields must be valid fields on the state record (they may be fieldname or recordname.fieldname, as
with %Bind), and fields must be either valid fields in the From tables or hard-coded values.

Description

Use the %Select construct to identify the state record fields to hold the values returned by the corresponding
Select statement. The %Select construct is required at the beginning of all Select statements. For example,
you need one in the flow control actions and one in the SQL actions that contain a Select statement.

Y ou use the %Select construct to pass variables to the state record, and you use the %Bind construct to
retrieve or reference the variables.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

Example

Consider the following sample statement:
%SELECT(BUSI NESS_UNI T, CUST_I D)
SELECT BUSI NESS UNI T, CUST_ID
FROM PS_CUST DATA

WHERE PROCESS | NSTANCE = %8Bl ND({ PROCESS | NSTANCE)
The following steps illustrate the execution of the previous statement:
1. Resolvebind variables.

The string %Bind(PROCESS _INSTANCE) is replaced with the value of the state record field called
PROCESS _INSTANCE.

2. Executethe SQL Select statement.
3. Perform a SQL Fetch statement.

If arow isreturned, the state record fields BUSINESS UNIT and CUST _ID are updated with the results.
If the Fetch statement does not return any rows, all fields in the %Select construct retain their prior values.

Note. All fields referenced by a %Select construct must be defined in the associated state record. Also,
aggregate functions always return arow, so they always cause the state record to be updated. As such, for
aggregate functions, there is no difference whether you use %Sel ectlnit or %Sel ect.

%SelectlInit

Syntax
%Sel ectlnit(statefiel dl], statefield2]...[, statefieldN)
Select fieldl[, field2]...[, fieldN

The statefields must be valid fields on the state record (they may be fieldname or recordname.fieldname, as
with %Bind), and fields must be either valid fields in the From tables or hard-coded values.

Description

Use the %Selectlnit construct to identify the state record fields to hold the values returned by the
corresponding Select statement.

The %Selectinit construct isidentical to the %Select construct, with the following exception: if the Select
statement returns no rows, %Sel ectlnit reinitializes the buffers. In the case of a %Select construct where no
rows are returned, the state record fields retain their previous values.

Note. For aggregate functions, there is no difference whether you use %Sel ectlnit or %Sel ect.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 101

Using Meta-SQL and PeopleCode Chapter 5

%Space

Description
Use the %Space meta-variable to specify asingle space. Usage is similar to %Comma.
See Also

Chapter 5, "Using Meta-SQL and PeopleCode," %Comma, page 78

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %SQL

%SQL

102

Description

Use the %SQL construct to specify a SQL object, which replaces the %SQL construct in a statement. This
enables commonly used SQL text to be shared among Application Engine and PeopleCode programs alike. In
Application Engine, you use %Bind to specify bind variables. In PeopleCode SQL, you can use

:record.field
or
01

If you create SQL objects that you plan to share between Application Engine and PeopleCode programs, the
%SQL construct enables you to pass parameters for resolving bind variables without being concerned with
the difference in the bind syntax that exists between Application Engine and PeopleCode. However, the base
SQL statement that uses %SQL to represent a shared object with binds needs to be tailored to Application
Engine or to PeopleCode.

When a SQL object specified has more than one version, the database type always takes precedence. That is:

« |f one or more versions of a SQL definition are found for the database type of the current database
connection, and if any of the versions have an effective date less than or equal to the current date, the
most recent version is used.

« |If noversions are found for the current database type, or if all of the versions have effective dates greater
than the current date, the system looks for an effective version of the SQL definition under the database
type "generic". If no version isfound, an error occurs.

Example

For example, assume that your SQL is similar to the following:

UPDATE PS TEMP_TBL SET ACTI VE = %8I ND(MY_AET. ACTI VE)
WHERE PROCESS | NSTANCE = %°r ocessl nst ance

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

That would not be valid if the SQL ran in PeopleCode. However, if you define your SQL as shown, you could
use parameters in %SQL to insert the appropriate bind variable:

UPDATE PS_TEMP_TBL SET ACTIVE = %°(1)
WHERE PROCESS | NSTANCE = %°r ocessl nstance

From Application Engine, the base SQL, or source statement, might look like the following:
%SQL(SQL_I D, 98I ND(MY_AET. ACTI VE))

The PeopleCode SQL may appear as the following:

%SQL(SQL_I D, : MY_AET. ACTI VE)

Note. You can use %SQL only to reference SQL objects created directly in Application Designer. For
instance, you can not use %SQL to reference SQL that resides within a section in an application library.
Common SQL should be stored as a proper SQL object.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %SQL

%SQLRows

Description
Use the %SQL Rows meta-variabl e to specify whether a SQL action returned any rows.

Can be used in any Application Engine SQL statement, but the underlying value is affected only by SQL
actions. It is not affected by Do When, Do Select, Do While, and Do Until actions. For Select statements, the
value can only be 0 or 1: row not found or rows found, respectively. It does not reflect the actual number of
rows that meet the Where criteria. To find the number of rows that meet the Where criteria, code a Select
Count (*) statement.

%Substring

Description

Because the %Substring function can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %Substring

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 103

Using Meta-SQL and PeopleCode Chapter 5

%Table

Syntax

%rabl e(r ecnane)

Description
Use the %Table construct to return the SQL table name for the record specified with recname.

This construct can be used to specify temporary tables for running parallel Application Engine processes
across different subsets of data.

Example
For example, the following statement returns the record PS ABSENCE_HIST:
odabl e(ABSENCE_HI ST)

If the record is atemporary table and the current process has atemporary table instance number specified,
then %T able resolves to that instance of the temporary table PS_ABSENCE_HISTnn, where nnisthe
instance number.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %Table

%Test

Description

Because the %Test construct can be used in more than just Application Engine programs, it is documented in
the Enter prise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %Test

104 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

% Textln

Description

Because the % TextIn construct can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %Textln

%TimeAdd

Description

Because the %TimeAdd construct can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %TimeAdd

%Timeln

Description

Because the % Timeln construct can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enter prise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %Timeln

%TimeNull

Description

Because the %TimeNull meta-variable can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 105

Using Meta-SQL and PeopleCode Chapter 5

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %TimeNull

%TimeOut

Description

Because the %TimeOut construct can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %TimeOut

%TimePart

Description

Because the % TimePart function can be used in more than just Application Engine programs, itis
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %TimePart

%TrimSubstr

Description

Because the % TrimSubstr function can be used in more than just Application Engine programs, it is
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," % T rimSubstr

106 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Using Meta-SQL and PeopleCode

%Truncate

Description

Because the % Truncate function can be used in more than just Application Engine programs, itis
documented in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL," %Truncate

%TruncateTable

Syntax

%l runcat eTabl e(t abl e nane)

Description

Use the % TruncateTable construct to invoke a bulk delete command on atable. It's functionally identical to a
Delete SQL statement with no Where clause, but it is faster on databases that support bulk deletes. If you're
familiar with COBOL, this construct is an enhanced version of the COBOL meta-SQL construct with the
same name.

Some database vendors have implemented bulk delete commands that decrease the time required to delete all
the rows in atable by not logging rollback datain the transaction log. For the databases that support these
commands, Application Engine replaces %TruncateTable with Truncate Table SQL. For the other database
types, %o TruncateT able is replaced with Delete From SQL.

Y ou should commit after the step that immediately precedes the step containing the %TruncateTable
statement. In generdl, it is best to use this construct early in your Application Engine program as an
initialization task. In addition, avoid using this meta-SQL when your Application Engine program is started
from the PeopleCode Call AppEngine function.

Unlike the COBOL version, Application Engine determines if a commit is possible prior to making the
substitution. If acommit is possible, Application Engine makes the substitution and then forces a checkpoint
and commit after the successful execution of the delete.

If acommit is not possible, Application Engine replaces the meta-SQL with a Delete From string. This
ensures restart integrity when your program runs against a database where there is an implicit commit
associated with Truncate Table or where rollback datais not logged.

For databases that either execute an implicit commit for %TruncateTable or require acommit before or after
this meta-SQL, replace %TruncateTable with an unconditional delete in the following circumstances.

« A commit is not allowed, asin within an Application Engine program called from PeopleCode.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 107

Using Meta-SQL and PeopleCode Chapter 5

» The program issues a non-select SQL statement since the last commit occurred. In such a situation, datais
likely to have changed.

» You are deferring commitsin a Select/Fetch loop within arestartable program.

Note. To use arecord name as the argument for %TruncateTable (instead of an explicit table name), you must
include a %Table meta-SQL function to resolve the unspecified table name. For example, to specify the
record PO_WEEK as the argument, use the following statement:

%runcat eTabl e(%rabl e(PO VEEEK)) .

See Also

Chapter 5, "Using Meta-SQL and PeopleCode," %Table, page 104

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL.," %TruncateTable

%UpdateStats

108

Syntax

%Jpdat eSt at s(record nane ,[H G LOW)
For example,

%Jpdat eSt at s(PO_WRK1)

The default is LOW.

Description

Use the %UpdateStats construct to generate a platform-dependent SQL statement that updates the system
catal og tables used by the database optimizer in choosing optimal query plans. Use this construct after your
program has inserted large amounts of data into atemporary table that will be deleted before the end of the
program run. This saves you from having to use dummy seed data for the temporary table and having to
update statistics manually.

Notes About %UpdateStats

For databases that either execute an implicit commit for %UpdateStats or require a commit before or after this
meta-SQL, Application Engine skips %UpdateStats in the following circumstances:

« A commit is not allowed, asin within an Application Engine program called from PeopleCode.
» The program issues a non-select SQL statement since the last commit occurred.

In such asituation, datais likely to have changed.
* You are deferring commits in a Select/Fetch loop in arestartable program.

Application Engine skips %UpdateStats even if the previous condition isfalse.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

The following table shows how the %UpdateStats construct is resolved by the supported database systems.

Using Meta-SQL and PeopleCode

Database Function

Behavior

MSS %UpdateStats Specifying LOW produces the statement
UPDATE STATI STI CS t abl enane
Specifying HIGH produces the statement
UPDATE STATI STI CS t abl ename W TH FULLSCAN
Sybase %UpdateStats LOW and HIGH = UPDATE ALL STATISTICS tablename
Oracle %UpdateStats PeopleSoft uses DDL templates (in PSDDLMODEL) to determine SQL

statements for %UpdateStats. Use DDLORA.DM S to change.
Specifying LOW produces the statement

execut e DBMS_STATS. GATHER TABLE_STATS (ownname=>=

' PT8468908' , tabname=>' PSSTATUS , esti nate_percent=>
>20, nethod_opt=> 'FOR ALL | NDEXED COLUWNS S| ZE>

1', cascade=>TRUE)

Specifying HIGH produces the statement

execut e DBMS_STATS. GATHER_TABLE_STATS (ownnanme=>=
' PT848908' , tabnane=>' PSSTATUS , esti mate_percent =>=

dbns_stats. aut o_sanpl e_si ze, nmethod_opt=> "'FOR ALL>
| NDEXED COLUWNS SI ZE 1', cascade=>TRUE)

DB2 UNIX %UpdateStats

In DB2 UNIX, %UpdateStats is performed by issuing sglustat() calls that are
equivalent to SQL statements. The sglustat() is an internal DB2 API call
function rather than an SQL command.

Specifying LOW is equivalent to issuing the statement
RUNSTATS ON TABLE t abl ename AND | NDEXES ALL
Specifying HIGH is equivalent to issuing the statement

RUNSTATS ON TABLE tabl enane W TH DI STRI BUTI ON AND=
DETAI LED | NDEXES ALL

Note. You cannot view the sglustat() calls nor the RUNSTATS statement in
the SQL trace.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

109

Using Meta-SQL and PeopleCode

Chapter 5

Database Function

Behavior

DB2 390 %UpdateStats

Usesa DDL model template (in PSDDLMODEL) to format a control
statement for the DB2 UDB for OS390 and z/OS Runstats utility. Refer to the
PeopleTools Installation Guide and the Administration Guide for more details

on using %UpdateStats with DB2 UDB for OS390 and z/OS.
Specifying LOW produces the statement

RUNSTATS TABLESPACE [DBNAVE] . [TBSPCNAMVE] TABLE([=
DBNAME] . [TABLE]) SAVPLE 25 [I NDEXLI ST] REPORT NO-
SHRLEVEL CHANGE UPDATE ACCESSPATH

Specifying HIGH produces the statement

RUNSTATS TABLESPACE [DBNAVE] . [TBSPCNAVE] TABLE([=

DBNAME] . [TABLE]) [| NDEXLI ST] REPORT NO SHRLEVEL=
CHANGE UPDATE ACCESSPATH

Informix %UpdateStats

Specifying LOW produces the statement

UPDATE STATI STI CS MEDI UM FOR TABLE t abl enane
Specifying HIGH produces the statement

UPDATE STATI STI CS H GH FOR TABLE t abl enane

%UpdateStats Database Considerations

The following table lists potential issues that you might encounter when using %UpdateStats.

Database

Consideration

Microsoft SQL Server Sybase
uDB

PeopleSoft forces a commit before and after the %UpdateStats statement.
Therefore, the system skips this meta-SQL if acommit is not allowed. For

instance, acommit is not alowed in the following situations:

* The Application Engine program is not running in batch mode.

* You have issued non-Select/Fetch SQL (in which the dataislikely to

change) since the last commit.

* You are deferring commits in a Select/Fetch loop within arestartable

program.

Oracle

Oracle has an implicit commit after the %UpdateStats statement executes.

Same behavior as previous consideration.

110

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Using Meta-SQL and PeopleCode

Database

Consideration

DB2 UDB for OS/390 and z/OS

For DB2 UDB for OS/390 and z/OS, %UpdateStats requires IBM stored
procedure DSNUTILS running in an authorized Work Load Manager
Application Environment. It is also highly recommeded that individual tables
intended to be atarget of the %UpdateStats function are segregated to their
own tablespaces. Refer to the following documents for more details on using
%UpdateStats: PeopleTools Installation Guide for DB2 UDB for OS/390 and
7/0S; PeopleTools Administration Guide for DB2 UDB for OS/390 and z/OS.

Note. You can trace information messages from the Runstats command on
DB2 for z/os executed as a result of issuing %UpdateStats. To enable this
trace, select the SQL Informational Trace check box on the Configuration

Manager — Trace page.

Informix IBM UDB

%UpdateStats locks the table being analyzed on UDB and Informix. Therefore,
use this meta-SQL only on tables that are not likely to be concurrently
accessed by other applications and users. Y ou might use %UpdateStats to
analyze Application Engine dedicated temporary tables.

All

%UpdateStats consumes a large amount of time and database resourcesif run
against very large tables. Therefore, analyze permanent data tables outside of
application programs. Also, if temporary tables are likely to grow very large
during abatch run, run the batch program only with %UpdateStats enabled to
seed the statistics data or when the data composition changes dramatically.

Disabling %UpdateStats

Y ou can disable %UpdateStats in the following ways:

» Include the following parameter on the command line when running an Application Engine program:

-DBFLAGS 1

» Change the Dbflags=0 parameter in the PeopleSoft Process Scheduler configuration file (or PSADMIN)

to Dbflags=1.

Using %UpdateStats With COBOL

Y ou can use the %UpdateStats construct from SQL embedded in COBOL programs. Use this syntax:

%Jpdat eSt at s(t abl enane)

When you issue this construct from PeopleTools, the parameter is record name.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 111

Using Meta-SQL and PeopleCode Chapter 5

%Upper

Description

Because the %Upper construct can be used in more than just Application Engine programs, it is documented
in the Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference, "Meta-SQL ," %Upper

112 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Managing Application Engine Programs

This chapter discusses how to:

Run Application Engine programs.

Debug Application Engine programs.
Restart Application Engine programs.
Cache the Application Engine server.

Free locked temporary tables.

Runn

ing Application Engine Programs

This section provides an overview of program execution options and discusses how to:

Create process definitions.

List process definition parameters.

Start programs with the Application Engine Process Request page.
Use PeopleCode to invoke Application Engine programs.

Use the command line to invoke Application Engine programs.

Understanding Program Execution Options

Y ou execute Application Engine programsin one of the following modes: batch using PeopleSoft Process
Scheduler, online using a PeopleCode function, and manually using the command line. The following table
lists some differences between online and batch programs:

Online Execution Batch Execution

Started by the CallAppEngine function from Started through PeopleSoft Process Scheduler.
PeopleCode.

Program runs quickly, synchronously, and at random Programs run for longer amounts of time,
times. asynchronously, and at scheduled times.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 113

Managing Application Engine Programs Chapter 6

Online Execution Batch Execution
Potential for simultaneous execution. Can be designed for parallel execution for performance.
Uses the online temporary table poal. Uses the batch/dedicated temporary table pool.

Batch Programs Using PeopleSoft Process Scheduler

Thisisthe most typical mode of execution. Y ou invoke programs that run in this mode using PeopleSoft
Process Scheduler or the Application Engine Process Request page. Batch mode is also referred to as
asynchronous execution, meaning that it runs independently in the background. Application Engine runs on
any operating system that PeopleSoft supports as an application server. If your site uses an operating system
that is not supported for Application Engine, you must run Application Engine programs on the application
server. (The only exception is 0OS/390 [z/O9]).

To run Application Engine programs on the batch server, you must install BEA Tuxedo. This appliesto both
UNIX and to Microsoft Windows NT batch servers. If you run your batch server on the same server machine
as your application server, then the application server and the batch server can share one BEA Tuxedo
installation. If your batch server is separate from your application server, then you must install BEA Tuxedo
on your batch server.

The TOOLBINSRV parameter in the PeopleSoft Process Scheduler configuration file determines where
PeopleSoft Process Scheduler invokes an Application Engine program. For high-volume batch environments,
specify the PS_HOME\bin\server\winx86 directory that exists on the same machine where the Application
Engine program runs.

Online Programs Using PeopleCode

Application Engine programs that execute online are typically executed from a page with the Call AppEngine
PeopleCode function. Such online processes are synchronous, meaning that subsegquent processes wait on the
results. For instance, a page may be frozen until the online process returns the necessary results. With the
CalAppEngine function, there are no Commit statements issued. However, if you use the asynchronous
online PeopleCode option, ProcessRequest, Commit statements are allowed.

Manual Programs Using the Command Line

Usually, you use this technique only during testing or if you need to manually restart a program.

Creating Process Definitions

Select PeopleTools, Process Scheduler, Processes to access the Processes - Process Definition page.

114 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Process Definition Process Definition Options Oyerride Options Destination

Process Type: Application Engine

Name: AEMINITEST
*Description: |Simp|e AE test program ¥ APl Aware
Long Description: Simple AE program to test that AE works. ™ Restart Enabled?
Retry Count: | 0
*Priority: [Wedium =] Retention Days: | 0
*Process Category: |Defau|t A Dpefautt Category

System Constraints

Max Concurrent; Max Processing Time: minutes

Mutually Exclusive Process(es) customize | Find | P0) B8 First B0 4 o1 I Last

*Process Type *Process Name Description

Processes - Process Definition page

To use PeopleSoft Process Scheduler for starting Application Engine batch programs, create a process
definition for each program. Running Application Engine programsis very similar to running any COBOL or
Structured Query Report (SQR) program that you typically invoke with PeopleSoft Process Scheduler. Use
Application Engine as the generic process type definition. Each Application Engine program that you invoke
using PeopleSoft Process Scheduler requires a unigue process definition derived from the generic process
type definition.

Note. When creating a process definition based on the Application Engine process type definition, the process
name you assign must exactly match your Application Engine program name.

Listing Process Definition Parameters

Access the Processes - Process Definition Options page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 115

Managing Application Engine Programs Chapter 6

Process Definition Process Definition Options Page Transfer II]I

Process Type: Application Engine

Hame: AEMIMITEST
Server Name: Q
Recurrence Name: | Q

On File Creation

File Dependency: [

Wait for File: | Time Out Max Minutes:

System Recovery Process

Process Type:| L Process Name: Q

Process Security

\AE_REQUEST Q [=] TLSALL Q [=]

[PRCSMULTI Q [=]

Processes - Process Definition Options page

Use this page to list parameters. The complete parameter list is:

+ -ct MICROSFT

« -cd %%DBNAME%%

* -co %%OPRID%%

+ -cp %%OPRPSWD%%
o -1 %%RUNCNTLID%%
e - %%INSTANCE%%

+ -al %%PRCSNAME%

Starting Programs with the Application Engine Process Request Page

Y ou can aso start an Application Engine program by using the Application Engine Process Request page.
Using this request page enables you to specify additional values and parameters than those that appear within
PeopleSoft Process Scheduler process definitions.

Most users start Application Engine programs from an application-specific request page using PeopleSoft
Process Scheduler. A systems expert or power user may, at times, need to create custom process requests that
require multiple programs to perform parallel processing or that need to set specific, initial valuesin a state
record. Thisis an example of where you might use the Application Engine process request page.

116 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Managing Application Engine Programs

Note. Generally, if seed data or other Application Engine request settings are required for a particular
program, the application-specific request page has SQL executables that do the work transparent to the user.
Typically, no user should invoke programs from the generic process request page. Use this page for internal
testing and as a basis for designing program-specific request pages.

Tables Used in the Process Request Page
The Application Engine process request page inserts values into the following tables:
« AEREQUESTTBL.
Contains all of the values that appear on the page except those in the Parameters group.
« AEREQUESTPARM.

Includes only initial state record values specified in the Parameters group, if needed.

Note. Inserting arow in either of the Application Engine request tablesis not required to run an Application
Engine program. Thisis akey difference from versions of Application Engine prior to PeopleTools 8, where
arow in Application Engine request tables is required to start a program regardless of how it isinvoked. The
run control 1D is available to your program using %RunControl, whether or not arow isinserted into the
AEREQUESTTBL table.

Y ou need to use the Application Engine Request page to invoke Application Engine and insert arow into the
Application Engine request records only if you need to perform any of the following tasks:

» Insertinitial values into the state records associated with a particular program.
» Set an as of date for the Application Engine program to perform retroactive processing.
» Set anon-default market for the program.

» Set up atemporary tableimage to useif you are submitting a PeopleSoft EPM process request that
performs parallel processing. Refer to PeopleSoft EPM application documentation for details.

Note. Entriesin the AEREQUESTTBL table do not have any effect on Application Engine programs called
from PeopleCode using the Call AppEngine function.

Application Engine Requests

Select PeopleTools, Application Engine, Request AE to access the Application Engine Request page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 117

Managing Application Engine Programs Chapter 6

Application Engine Request

User ID: QEDMO Run Control ID: PORTAL_MTUPG S
Program Name: PORTAL _MTUPG
Process Origin: Other Process Instance: Status: Pending
Process Frequency: I Once :I' Market: I :I' As Of Date: Bl
State Record: Q *Bind Variable Name: Q (=]
Value:
Date: il
Application Engine Request page
Process Origin Displays where the program was invoked: from PeopleSoft Process Scheduler,
from the command line, and so on.
Process | nstance Displays the process instance assigned to the previous program run.
Status Displays the status of the last program run, whether it is successful, pending, and
so on.
Process Frequency Specify how long a particular process request will remain active or valid:

« Always: Select to run the process regquest as needed.
« Once: Select if aprocess request is aone-time-only request.

« Don't: Select to disable a process request, so that no oneinvokesit and
potentially corrupts data.

As Of Date If you are requesting retroactive processing, specify the appropriate as of date.
Bind Variable Name Enter the appropriate field or bind variable for which you are inserting a vaue.

Value Enter the initial value that you want to set for the specified field.

Using PeopleCode to Invoke Application Engine Programs

To call aparticular Application Engine program from a page using PeopleCode, use the Call AppEngine
function in SavePreChange or SavePostChange PeopleCode. The basic syntax for CallAppEngineis as
follows:

Cal | AppEngi ne(applid [, statereclist]);

118 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Note. The RemoteCall function is no longer valid for invoking Application Engine programsin PeopleCode.
However, the RemoteCall function still applies to calling other COBOL functions. If you don't convert the
RemoteCall PeopleCode that previously called an Application Engine program to use the new function, an

error message appears.

Use CallAppEngineif the program you are invoking is a quick process. Because the processis synchronous, a
user must wait for any process invoked by Call AppEngine to complete before doing anything else. If the
called program causes an unreasonable delay, then use another aternative, such as the ScheduleProcess
PeopleCode function.

Use Call AppEngine when you have a complex, SQL-intensive business process that must run in batch and
online, or the process requires the use of dedicated temporary tables. If thisis not the case, you are usually
better off writing the entire program in native PeopleCode. If you've written logic in PeopleCode, presumably
for online execution, and you want to reuse it in a batch program, you may be forced into row-by-row
processing. Design the batch logic first, and then decide whether to have a separate online version or just
reuse the batch code using Call AppEngine. Consider the trade-off between code reuse and performance. It is
inherently more difficult, but not impossible, to develop a common solution that performs adequately in both
batch and online environments.

Do not use CallAppEngine within an Application Engine PeopleCode step. If you need to call an Application
Engine program from another Application Engine program, you must use the Call Section action.

Do not use Call AppEngine to control the commit operation. Programs called with Call AppEngine are
embedded within alarger unit of work defined by the page trigger, such as a page save.

Note. Online PeopleCode that calls Call AppEngine should be set to run on the application server. You
encounter performance issuesif you run PeopleCode on the client in athree-tier configuration, because every
SQL statement that Application Engine issues must be serialized and then sent to the application server for
execution.

Using the Command Line to Invoke Application Engine Programs
Y ou might invoke an Application Engine program through the command line in the following situations:
+ Restarting.

When a program abends, a system administrator might restart the program using the command line. If
needed, you can locate al of the specific program and process information from Process Monitor on the
Process Request Detail dialog box. Normally, users (or system administrators) perform arestart from
Process Monitor.

» Development or Testing.

Many developers include the command line in a batch file to launch a program they are developing or
testing. Thisway, they can quickly execute the batch file as needed. This also enables separation of
development of the application program from its associated pages.

« Debugging.

To debug a program running on the server, you can sign into the server (using telnet, for example) and
invoke the program from the command line.

To start an Application Engine program from the command line, you must specify the Application Engine
executable (PSAE.EXE) followed by the required parameters, as shown in the following example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 119

Managing Application Engine Programs

Chapter 6

psae -CT dbtype -CS server -CD database nane -CO oprid -CP oprpswd?
-R run_control _id -Al programid -1 process_instance -DEBUG (Y| N)?
-DR (Y| N) -TRACE traceval ue - DBFLAGS fl agsval ue - TOOLSTRACESQ. val ue?
- TOOLSTRACEPC val ue -OT outtype -OF outformat -FP filepath

Or, if your command line options are stored in atext file, you can enter:

psae optfil ename

Note. For Microsoft Windows NT and UNIX servers, you must set the PS SERVER_CFG environment
variable before you invoke an Application Engine program from the command line. PS_SERVER_CFG must
contain the fully qualified name of a correctly configured Process Scheduler PSPRCS.CFG file. When
Application Engine runs from the command ling, it resolves %PS _SERVDIR% to the value of the
environment variable PS_SERVDIR instead of the parent directory of a Process Scheduler configuration.

Command Line Options

-CT

-CS

-CD

-CO

-CP

-DEBUG

-DR

120

Specify the type of database to which you are connecting. Values are ORACLE,
MICROSFT,SYBASE,INFORMIX,DB2UNI X, and DB20ODBC.

Required for Sybase and Informix. For platforms that require a server name as
part of sign-on, enter the appropriate server name. This affects Sybase, Informix,
and Microsoft SQL Server. However, for Microsoft SQL Server, thisoptionis
valid but not required.

Enter the name of the database to which the program will connect.
Enter the user 1D of the person who is running the program.

Enter the password associated with the specified user ID.

Enter the run control 1D to use for this run of the program.
Specify the Application Engine program to run.

Required for restart. Enter the process instance for the program run. The default
is 0, which means Application Engine uses the next available process instance.

This parameter controls the Debug utility. Enter Y to indicate that you want the
program to run in debugging mode, or enter N to indicate that you do not.

This parameter controls restart disabling. Enter Y to disable restart, or enter N to
enable restart.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

-TRACE To enable tracing from the command line, enter this parameter and a specific
trace value. The value you enter is the sum of the specific traces that you want to
enable. Traces and values are:

1: Initiates the Application Engine step trace.
2: Initiates the Application Engine SQL trace.

128: Initiates the Application Engine timings file trace, which is similar to the
COBOL timings trace.

256: Includes the PeopleCode detail timingsin the 128 trace.

1024: Initiates the Application Engine timings table trace, which stores the
results in database tables.

2048: Initiates the database optimizer explain, writing the results to the trace file.
This option is supported only on Oracle, Informix, and Microsoft SQL Server.

4096: Initiates the database optimizer explain, storing the results in the Explain
Plan table of the current database. This option is supported only on Oracle, DB2,
and Microsoft SQL Server.

For example, to enable the 1, 2, and 128 traces, you would enter 131,the sum of
1, 2, and 128. To indicate that you do not want any traces, enter O. If you do not
explicitly enter O, Application Engine uses the trace value set in PeopleSoft
Configuration Manager.

8192: Sets atrace for PeopleSoft Integration Broker transform programs.

16384: Initiates the statement timings trace, but stores the results in the following
tables: PS_ AE_TIMINGS LG and PS_AE_TIMINGS DT.

-DBFLAGS To disable %UpdateStats meta-SQL construct, enter 1.
-TOOLSTRACESQL Enable the SQL trace.
-TOOLSTRACEPC Enable the PeopleCaode trace.

-0T (Optional) Initialize the PeopleCode meta-variable %OutDest Type (numeric).
PeopleCode example of %0OutDestType:
&Pr ocessRgst . Qut Dest Type = %ut Dest Type ;

-OF (Optional) Initialize the PeopleCode meta-variable %OutDestFormat (numeric).

PeopleCode example of %0utDestFormat:
Query. RunToFi | e(Record Q yPronpt Record, %ut Dest Fornat);

-FP (Optional) Initialize the PeopleCode meta-variable %FilePath (string).
PeopleCode exampl e of %FilePath:

If Al (%ilePath) Then
&FI LENAVE = 9%F-i | ePath | &FI LENAMNE;
&WFI LE = GetFil e(&I LENAME, "E", %-il ePath_Absol ute);
El se
&WFI LE = GetFil e(&FI LENAVE, "E", %-ilePath_Rel ative);
End- I f;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 121

Managing Application Engine Programs Chapter 6

optfilename If you submit afile to Application Engine as the first parameter in the command
line, Application Engine reads the contents of the file and interprets the contents
asif it were parameters entered on the command line. This option is intended
mainly for the Microsoft Windows NT or UNIX Process Scheduler server
environment. For example, you might enter psae $temp/mypar nfile.txt

Note. For security reasons, after Application Engine interprets the contents of the
parameter file, it immediately deletes thefile.

Debugging Application Engine Programs

This section discusses how to:

« Enable the Application Engine debugger.
» Set debugging options.

Enabling the Application Engine Debugger
To run aprogram in debug mode:
1. Set the debug option.

Y ou can set the debug option in the following locations:

« Start PeopleSoft Configuration Manager and select the Process Scheduler tab.

In the Application Engine group, enable debug by selecting the Debug check box. Thisis the method
that applies to all methods of invocation.

» If you used the command line option to invoke your Application Engine program, then you can
include the -DEBUG Y parameter in the command line you submit to PSAE.EXE.

If you already have the Debug check box selected in PeopleSoft Configuration Manager, then you do
not need to include the -DEBUG parameter in your command line.

Note. Setting debug capabilitiesin either PeopleSoft Configuration Manager or the command line
turns debug mode on. However, if you have debug enabled in Configuration Manager and you submit
—DEBUG N on the command line, the PeopleSoft Configuration Manager setting defines your default
command line value, and the command line can override the default.

« |f you have PeopleCode in your Application Engine program, enable the PeopleCode debugger.

When you launch your program and the PeopleCode action executes, you enter the PeopleCode
debugger.

2. Execute the Application Engine program to debug.

122 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

3. Atthe Application Engine Debugger prompt, enter a command to enables a debugging option.

Each command is represented by a single letter, such as X, L, or M. Enter the letter that corresponds to the
option you want to engage. To see alist of the available debugging options, enter ? at the prompt.

To enable the PeopleCode debugger for Application Engine:

1. Sign on to PeopleTools using the same user ID that you are going to use to invoke the Application Engine
program.

2. Open Application Designer.
3. Select Debug, PeopleCode Debugger Mode.

Y our Application Engine program can be open on the desktop, but you do not need to open the
Application Engine program or the PeopleCode action that you want to debug.

4. Select Debug, Break at Start.

This causes the Application Engine program to break prior to executing any PeopleCode programs within
it.

Setting Debugging Options
Each debugger option is represented by asingle letter that you specify at the prompt. To engage the option
you select, press Enter.
Debugging Tips
Note the following tips about debugging programs:
» In some cases, such as when setting breakpoints or watch fields, submenus offer more options.

After you are familiar with the commands, you can enter multiple items on the command line to combine
commands and bypass the submenus. For example, to see alist of the breakpoints, you could enter B L.

To set afield asawatch field, you could enter W SMY _FIELD.
Or, if it'son adifferent state record, enter W SMY_AET.MY_FIELD.

Note. The exception to this option is Modify, which always displays the current value and then prompts
you to enter the new value. Y ou can, however, enter M MY_AET.MY_FIELD to get directly to the new
value prompt.

* Theletter commands are not case-sensitive.

For example, Q and g are valid commands.

Debugging Options

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 123

Managing Application Engine Programs

124

Chapter 6

Option

Description

Quit

Enter Q. This option performs arollback on the current unit of work in
the debugging run, and it ends the debugging session. It effectively
terminates your Application Engine program.

Quit is useful for testing restart. Have some work committed and some
uncommitted. Then, terminate the program at that point and roll back
the pending work. Y ou want to make sure the program restarts from the
point of the last successful commit.

This optionisvalid only after one step has completed and another has
not already begun. It is not valid once you reach the action level.

Use this option as an alternative to Quit. Exit ends the program run and
the debugging session, but it also commits the current unit of that the
program has already completed. This option can be helpful when testing
your restart logic.

Commit

Enter C. To commit the current unit of work in your program, use this
option. It isvalid only after a step has completed and before another has
aready begun. It is not valid once you reach the action level.

Y ou can use this option, for example, to use your database query tool to
check the datain your database.

Break

Enter B. Sets a breakpoint. When the program reaches the breakpoint, it
temporarily halts execution to enable you to observe the state of the
current process.

Breakpoint options include:
Set: Enter Sto set a breakpoint location.

The breakpoint location defaults to the current location in the program,
but you can specify other sections or steps by overriding the default
values that appear in the brackets.

Unset: Enter U to remove breakpoints previously set.

List: Enter L to list breakpoints. When you enter this command, make
sure that you have entered B first to specify the break option. If you just
enter L from the main command prompt, you engage the Look option.

Look

Enter L. Enables you to observe the values currently in the state record
associated with the program you are debugging. Y ou must specify the
state record at the Record Name prompt. By default, the default state
record as specified in your program properties appears with the
brackets.

Y ou can also specify a specific field name on the state record in the
Field Name prompt. To look at all the fields in the state record, leave
the asterisk (*) within the brackets unchanged.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Managing Application Engine Programs

Option

Description

Modify

Enter M. Enables you to modify the value of a state record value for
debugging purposes. Suppose the previous steps did not set avalue
correctly. However, you may want to see how the rest of the program
would perform if the appropriate value existed in the state record. This
enables you to give your program some help in the debugging or testing
phase.

Aswith the Look command, you must specify the appropriate state
record (if you are using multiple state records), and you must specify
one field. Y ou can modify only onefield at time.

Watch

Enter W. When you specify afield as awatch field, the program stops
when the value of the field changes.

Similar to the Break command, you can specify options for Set, Unset,
and List.

Step Over

Enter S. Executes the current step to completion and stop at the next
step in the current section.

The behavior depends on the current level or the program. Y ou start at
the step level, and then can step into the action level. If you are at the
step level and use step over, you go to the next step in the current
section, skipping over all actions (including any call sections). If you
are at the action level, step over executes the current action and stops at
the next action in the current step, or at the next step in the current
section.

Step Into

Enter |. Use this option to observe a step or called section in amore
granular level. For instance, you can check each SQL statement and
stop. By using this option and checking the state record at each stop,
you can easily isolate problem SQL or PeopleCode.

Aswith Step Over, the behavior depends on the level. At the step level,
you can step into the action level and stop before the first action in the
step. At the action level, if the current action isacall section, Step Into
takes you to the first step in the called section. For other action types,
Step Into acts the same as Step Over, because there is no deeper level in
which to step.

Step Out of

Enter O. After you've stepped into a step or called section, use the Step
Out of option to run the rest of the current step or called section and
stop. Aswith the previous step options, the behavior of Step Out of
depends on the current level of the program.

At the step level, Step Out of completes the remaining stepsin the
current section, returns to the calling section or step, and stops at the
next action in that step. If the sectionisMAIN and is not called by
another section or step, then Step Out of behaves the same as the Go
option.

At the action level, Step Out of completes the current step and stops at
the next step in the current section, or if the program is at the end of a
section, Step Out of returnsto the calling section or step.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 125

Managing Application Engine Programs Chapter 6

Option Description

Go Enter G. After the program has stopped at a specific location, and
you've examined its current state, you can use the Go command to
resume the execution of the program. Thisis a helpful command when
you have breakpoints set. With this command, the program won't stop
at astep or action; it only stops at the next breakpoint or watch field, or
when the program runs to completion.

Run to commit Enter R. Resumes execution of your program after it has stopped. This
command forces the program to stop again after the next commit. This
isagood option to use when observing your commit strategy and how it
will affect arestart.

Example of the Look Option

To view the value stored in a specific field of the state record after a step or action, enter the appropriate field
name at the Field Name prompt. For example, if you entered AE_TESTAPPL_AET at the Record Name
prompt and AE_INT_6 at the Field Name prompt, you would see the value of the AE_INT_6 field in the
AE_TESTAPPL_AET record.

Y ou can also use an asterisk (*) asawildcard to get apartia list. For example, if you enter AE_INT* at the
Field Name prompt, you see only the fields that start with AE_INT. Thisis also true for the Record Name
prompt. Thisis useful both to list multiple fields across multiple records or as a shortcut. If you know thereis

only one state record that starts with XXX, you don't have to type the full name—just enter XXX.

Example of the Modify Option

If you wanted to set the AE_INT_15field in the AETESTPROG to 10, you would enter the record
(AE_TESTAPPL_AET) at the Record Name prompt and the field (AE_INT _15) at the Field Name prompt.

Y ou then see the current value of the field. At the prompt, you can enter anew value.

Using the Look command, you can check to see that the value you specified now exists in the state record.

Example of the Watch Option

Enter Sto set awatch field. After you enter S, you enter the record name (such as AE_TESTAPPL_AET) and
field name (such as AE_INT_7) at the appropriate prompts.

Enter U to unset, or remove, awatch field from the list. After you enter U, you see alist of active watch
fields. Y ou enter the watch field 1D number to remove afield. For example, if thefield AE_INT_7 were
second in the watch field list, you would enter 2 to removeit.

After the completion of astep or action, enter L to list, or view, the values of all the fields that you have
included in the watch list.

Note. Y ou cannot set awatch on along text field.

126 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Restarting Application Engine Programs

One key feature of Application Engine isits built-in checkpoint and restart capabilities. If thereisan
abnormal termination or failure on a step in the program, you can restart the request from the last successful
checkpoint, or the step immediately preceding the step that failed. Y ou restart the program from the process

request page.

This section provides an overview of restart and discusses how to:
» Determine when to use restart.

« Control abnormal terminations.

» Restart Application Engine programs.

« Start Application Engine programs from the beginning.

+ Enable and disable restart.

Understanding Restart

Application Engine programs save to the database (perform a commit) only when an entire program
successfully completes. You must set any individual commits where appropriate.

At the section level, you can set a commit after each step in that section. At the step level, you can require or
defer commits for individual steps, or you can increase the commit frequency within astep to N iterations of a
looping action within a step, such as a Do Select or Do While action.

The commit level that you select plays amajor rolein how restart worksin a program. Each time that
Application Engine issues a commit with restart enabled, it records the current state of the program. The
recording of the current state that Application Engine performsis referred to as a checkpoint.

Using the restart feature enables you to perform commits more often in a program. Restart reduces the overall
impact on other users and processes while the background program is running, because it reduces the amount
of rows that are locked by the program, allowing multiple instances of the program to run concurrently
(paralel processing), which may be useful for high-volume solutions.

With restart, if afailure occurs at any point in the process, the user can restart the program and expect the
program to behave in the following manner:

« Ignore the steps that have already completed up to the last successful commit.
» Begin processing at the next step after the last successful commit.

The ability for Application Engine to remember completed steps depends on arecord called
AERUNCONTROL, which is keyed by process instance.

When a program runs, each time Application Engine issues acommit it also saves al of the information
required for a program restart in the AERUNCONTROL record.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 127

Managing Application Engine Programs Chapter 6

Determining When to Use Restart

128

Usually, you want to develop programs to take advantage of Application Engine restart capabilities. Programs
that are good candidates for restart do alot of preparation work up front, like joining tables and loading data
into temporary work tables. Also, programs that might put datain an unstable state if they terminate
abnormally during arun should be considered to take advantage of restart. Asageneral rule, restart is
essential for programs that primarily do set-based processing.

However, if your program has one the following characteristics, you may want to disable restart:
» Itismainly row-by-row processing.

» Theoverhead involved with Application Engine performing a checkpoint during the program run is not
desirable.

« The program commits after N iterations of alooping construct within a step, and the Select statement
driving the loop is composed in such away that if the program terminated and then started again, it would
ignore transactions that were already processed in the previous program run. In this sense, the program
processes the restart internally, in that Application Engine treats each start of a program as a fresh start,
instead of restarting a previous instance.

When developing for restart, consider the consequences if a program fails and you can't restart the program.
Given the commit structure that you've defined for your Application Engine program, would your data remain
in an usua state if afailure wereto occur after any of the commits? Would it be easy to recover from such a
case?

Using Restart at the Program Level

Application Engine automatically performs all state record updates. When an Application Engine program
dtarts, it inserts arow in the state record for the assigned process instance. Then the system updates the state
record whenever the program performs a commit to store changed values into the database. Finally, the state
record row is deleted upon successful completion of the application.

However, if the state record the program uses is awork record, no database updates can be made to the
record. Consequently, if you restart the program, you might get unexpected results, because the memory was
lost when the program terminated. In fact, the system reinitializes any state records that are work records at
each commit, to ensure consistent behavior during anormal run and arestarted run. Therefore, you may need
to make at least one of your state records a SQL table to contain values that must be retained across commits
or in case of termination.

Finally, the other consideration for programming for restart at the program level isto check both the
Application Engine Program Properties dialog box and PeopleSoft Configuration Manager to make sure that
Disable Restart check box is not selected.

Using Restart at the Section Level

The section level property associated with restart is section type, which has the options Prepare Only and
Critical Updates.

If asection isonly preparing data, asin selecting it, populating temporary tables, or updating temporary

tables, then set the section type to Prepare Only. However, if the section updates permanent application tables
in the database, set the option to Critical Updates.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

During runtime, when the system arrives at the first section set to Critical Updates, it setsthe
AE_CRITICAL_PHASE value in the AERUNCONTROL record to Y. Once set, the value of
AE_CRITICAL_PHASE remains Y until the program completes successfully. When the program compl etes,
the corresponding row in AERUNCONTROL is deleted. Therefore, a Prepare Only section following the
Critical Updates section won't reset the AE_CRITICAL_PHASE valueto N.

If your program terminates, the user can check the AE_CRITICAL_PHASE value. If it's Y. the user knows
that the section that failed is critical and that the program should be restarted to ensure data integrity. If
AE_CRITICAL_PHASE is N, restarting may not be necessary; however, as a general rule, you should restart
evenif AE_CRITICAL_PHASE isset to N.

Using Restart at the Step Level

In your program's Where clause of a Do Select action, you should include conditions that reduce the answer
set returned from the Select statement.

For example,

SELECT RECNAME, FI ELDNAME
FROM PS_AE_RECFI ELD
ORDER BY RECNAME, FI ELDNANME

If you ran this Select statement as part of a Do Select action with Restartable selected as the Do Select type,
the system might process some of the rows twice after arestart. Also, if you have specified Reselect, the
program could execute in an infinite loop, because there's nothing to reduce the answer set. However, if you
modified the Select statement to look more like the following, you could make it Restartable.

SELECT RECNAME, FI ELDNAVE

FROM PS_AE_RECFI ELD

WHERE RECNAME > 9@i nd(RECNAME)

OR (RECNAME = 9Bi nd(RECNAME) AND FI ELDNAVE > 9@i nd(FI ELDNAVE))
ORDER BY RECNAME, FI ELDNANE

A Do Select action that has been coded for Restartable can be converted to Select/Fetch, but the oppositeis
not true.

The previous exampl e shows the use of a key column to reduce the answer set. This can be convenient if your
record has only one or two key fields. However, if your record has three or four keys, your SQL would
become overly complex.

Instead of matching key fields, you could add a switch to the selected table, and then have the processing of
the called section modify the switch as it processes the row. In this example, your Select statement could look
like the following:

SELECT COLUWN1, COLUMNZ,
FROM PS_TABLE1
WHERE PROCESSI NG _SW TCH=' N .

Controlling Abnormal Terminations

A controlled abnormal termination (sometimes called an abend) means that Application Engine exits
gracefully because of a calculated error condition. Some examples of controlled abends are:

» SQL errors while you have set On Error toAbort.
» A PeopleCode return value, when On Return is set to Abort.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 129

Managing Application Engine Programs Chapter 6

» A SQL statement that affects no rows, when you have set On No Rows to Abort.

In these situations (when Application Engine isin control) the Run Status field in Process Monitor reads
Error.

An uncontrolled termination occurs when there is amemory violation or a user terminates a process. In these
cases, the Run Status field in Process Monitor shows Processing.

Restarting Application Engine Programs

130

Y ou can restart an Application Engine program in one of these ways:

« From the command line.

+ From a process request page.

Note. The following procedures for restarting a failed Application Engine program assume that you have
rectified the error that caused the program to fail in the first place. For instance, suppose the name of a
referenced table has changed. Regardless of how many times you restart the program, it will continue to fail
until you've modified references to the old table name.

Restarting from the Command Line

Normally, only developers and system administrators use the command line for restarting Application Engine
programs. Users, in most cases, should not be expected to use this method.

Y ou can use the command line option to restart programs that run on the client or the server. Application
Engine references only the process instance of the failed process. Therefore, if you run a process on the client
and it fails, you can restart it from the server using the server command line. Likewise, if you run a process
from the server and it fails, you could restart it from the client using the command line.

To restart an Application Engine program from the command line;
1. Collect the command line values associated with the failed program.

These values include database type, database name, user ID and password, run control 1D, program name,
and the process instance. Y ou can find these variables on the Process Details dialog box, the
corresponding state record, or the Application Engine Run Control table. Where the values reside depends
on how you invoked the program. For instance, if you invoked the program using the command line, or
outside of PeopleSoft Process Scheduler, then you cannot view details associated with the program run on
the Process Details dialog box.

2. Enter the following command line syntax at the command prompt substituting the values from the
previous step:

PSAE. EXE -CT DB_TYPE -CD DB_NAME - CO OPRI D - CP PASSWORD - R
RUN_CONTROL - Al PROGRAM NAME -1 PROCESS_| NSTANCE

Note. Some database platforms, such as Sybase, also require that you include a server namein the
argument list.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

Restarting from the Process Request Page
Y ou can restart programs from a process request page only for those programs that run on the server.
To restart an Application Engine program from a process reguests page:

1. Open PeopleSoft Process Scheduler by selecting PeopleTools, Process Scheduler, System Process
Requests.

2. Locate the run control ID number of the program to restart.
3. Todisplay the details of the failed process, click the Process Detail link.

4. On the Process Request Details page, select Restart Request, and click OK.

Bad Restart Error

If you attempt to restart what Application Engine believesto be a process that completed successfully, you
receive abad restart message. Y ou can also get this message if your Application Engine application is defined
with restart disabled.

Starting Application Engine Programs from the Beginning

When an Application Engine program ends abnormally, you may have to decide whether you should restart
the process or just start it from the beginning. As your Application Engine program ran at least part way
through, starting over may leave your datain an unknown state. Also, application logic might need to be
undone, depending on what stage the program was at when it failed, what data the program had committed,
and so on.

However, if restart is enabled and you attempt to start a new process that matches the run control ID and user
ID for another process, you receive a suspend error. Because the process instance for these two processesis
different, the new request fails. This usually occurs when a user tries to run the program again after receiving
an error on the previous attempt.

To start the program over from the beginning, you can use SQL to delete the row that corresponds to the
failed program from the Application Engine run control table and your state record.

To restart an Application Engine program from the beginning:

1. Open your native SQL editor and manually delete the row in PS_ AERUNCONTROL that corresponds to
the program you want to start from the beginning.

Use the following SQL to accomplish this step:
DELETE FROM PS_AERUNCONTROL
VWHERE OPRI D=OPRI D
AND RUN CNTL_| D=Run_Control I D
2. Delete from your state record the row that corresponds to the failed program run.
Use the following SQL to accomplish this step:

DELETE FROM PS_MY_AET
WHERE PROCESS | NSTANCE=Pr ocess_I| nst ance

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 131

Managing Application Engine Programs Chapter 6

Note. To restart the program, you can al so select Restart Request from the Process Request Details dialog
box.

Enabling and Disabling Restart

To disable restart, use any of these methods:

» Select the Disable Restart check box on the Application Engine Program Properties dialog box.
To access program properties, select File, Definition properties, and select the Advanced tab.
» Select the Disable Restart check box in the Configuration Manager profile.

To access the profile, start Configuration Manager, select the Profile tab, and click Edit. Then select the
Process Scheduler tab.

« Includethe -DRY option in the command line of PSAE.EXE.

If you disabled restart in any of these three places, restart is disabled.

Therefore, if you want the program to restart in a production environment while still keeping arestart
condition from getting in the way during development and testing, you can deselect the Disable Restart check
box in the Application Engine program properties. Then, during development, you can select the Disable
Restart check box in Configuration Manager or invoke your program from the command line with the -DR Y
option, without having to reconfigure the program for testing.

Caching the Application Engine Server

132

Application Engine caches metadata, just like the application server. This caching enhances performance,
because a program can refer to the local cache for any objects that it uses.

Cache Directory Location

Application Engine programs that run on a Microsoft Windows NT or UNIX server each lock their own
cache directory for the duration of the run. These directories are found under the master cache directory. The
master directory is created under the directory specified by the CacheBaseDir variable in the Peopl eSoft
Process Scheduler configuration file. If al existing cache directories are locked, anew oneis created. Cache
subdirectories are named sequentially, starting at 1.

If you do not enter afully qualified path for the CacheBaseDir variable, then Application Engine creates the
cache directory within the directory in which the program is set to run.

Note. Do not share the CacheBaseDir variable with application servers, and do not use environment variables
when specifying CacheBaseDir, because the system does not resolve them. For example, do not set
CacheBaseDir to $PS_CFG_HOME.

Cache Parameters

The PSPRCS.CFG (PS_SERVER_CFG) file has two additional cache parameters. They are:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Application Engine Programs

» Enable Server Caching
» Server Cache Mode

Do not alter these settings from the delivered defaults. These settings are reserved for future use.

Freeing Locked Temporary Tables

If you use dedicated temporary tables for Application Engine programs, then you might need to free, or
unlock, atemporary table if the program running against it terminates abnormally. Because most Application
Engine programs run through PeopleSoft Process Scheduler, typically you use Process Monitor to unlock the
temporary tables. Deleting or restarting a process using Process Monitor automatically frees the locked
temporary tables.

For the programs that you invoke outside of PeopleSoft Process Scheduler, use the Manage Abends page.
Programs running outside of Process Scheduler include those invoked from Call AppEngine PeopleCode and
the command line.

To free locked temporary tables using the Manage Abends page:
1. Select PeopleTools, Application Engine, Manage Abends.
2. ldentify the program that has the particular temporary tables locked.

Y ou can uniquely identify programs using the process instance, run control ID, program name, user 1D,
and run date and time columns.

3. Click the Temp Tableslink.

4. Onthe Temporary Tables page, click the Release button to unlock the temporary tables associated with
the program.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 133

Chapter 7

Calling Application Engine Programs from
COBOL

To facilitate the conversion of existing COBOL programs to Application Engine programs, you can call
Application Engine programs from existing COBOL code.

This chapter discusses how to:
» Add copybooksto COBOL programs.
» Assign copybook values.

« Handle COBOL errors.

Adding Copybooks to COBOL Programs

To enable you to call Application Engine programs from COBOL programs, include the copybook called
PTCCBLAE.CBL with your COBOL programs. This copybook islocated in PS_ HOME\src\cbl\base.

Thefollowing isthe PTCCBLAE.CBL copybook.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 135

Calling Application Engine Programs from COBOL

136

*01 CBLAE
NOCLN 02 CBLAE- PRCSNAME
NCCLN 02 CBLAE- COW T- FLAG

88 AE- COMM TS- SUCCESS

88 AE- COWM TS- ALL

02 CBLAE- PARMS.

03 CBLAE- PARM CNT

03 CBLAE- PARM ENT

05
05
05
05
05
NOCLN 05

Chapter 7

PIC X(12) VALUE SPACE.
PIC X(1) VALUE SPACE.
VALUE 'B' .

VALUE ' C .

Pl C 9(4) COWP.
OCCURS 500 TI MES.

CBLAE- STATEREC PIC X(15).
CBLAE- FI ELDNM PI C X(18).
CBLAE- DATA- PTR PO NTER.
CBLAE- LENGTH Pl C 9999 COWP.
CBLAE- SCALE PI C 99 COwVP.
CBLAE- TYPE PI C X

88 CBLAE- TYPE- CHAR VALUE ' C .

88 CBLAE- TYPE- SVALLI NT VALUE ' S'.

88 CBLAE- TYPE- | NT VALUE "I ".

88 CBLAE- TYPE- DEC VALUE ' P' .

88 CBLAE- TYPE- DATE VALUE 'D .

88 CBLAE- TYPE-TI ME VALUE 'T'.

88 CBLAE- TYPE- TI MEONLY VALUE 'V .

88 CBLAE- TYPE- NUMERI C VALUE 'S 'I' "P'.

Data Transfer Process Between COBOL Programs and Application Engine Programs

To interface between COBOL programs and Application Engine programs, the process uses afile to pass
parameters from COBOL to the Application Engine program. Thisfileis owned by the process and has the
prm extension. The location of the file is determined by the following:

« |If an application server root directory is defined, the file resides in the output directory of that particular

process instance.

« |If the output directory on the application server isnot defined, the file resides in the default output
directory of the Process Scheduler domain..

» If neither one of the above is defined, the file is written to the default temp directory.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Calling Application Engine Programs from COBOL

Assigning Copybook Values

To assign values to the copybook of the calling COBOL program,to be passed as parameters into the state
records of the called Application Engine program:

+ ldentify the fieldsin your COBOL program that contain the values you want to pass to the Application
Engine program.

» Load the PTCCBLAE.CBL copybook with the state record name, field name, field length (this should be
the size of the field not the size of the contents), the scale (decimal placesif any), and set the field type.

» Cadl the PTPSETAD program to set the pointer in PTCCBLAE.CBL to the host programs variable.
» Setthevariable AE-COMMIT-FLAG to either AE-COMMITS-ALL or AE-COMMITS-SUCCESS.

AE-COMMITS-ALL meansthat the Application Engine program commits as specified in the program.
AE-COMMITS-SUCCESS means that the Application Engine program ignores all commits and performs
one commit at the end of successful execution.

Example of Loading Values from PTPTSTAE.CBL Sample Program

Make sure the calling COBOL program has successfully connected to the database before calling the
PTPCBLAE copybook, and ensure that the calling program is not running through a RemoteCall function.

The following code shows an example of how to load val ues from the copybook:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 137

Calling Application Engine Programs from COBOL Chapter 7

MOVE 0 TO CBLAE- PARM CNT OF CBLAE

ADD 1 TO CBLAE- PARM CNT OF CBLAE
MOVE ' QE_CBLAETST_AET' TO CBLAE- STATEREC
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE ' DESCR TO CBLAE- FI ELDNM
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE 30 TO CBLAE- LENGTH
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE 0 TO CBLAE- SCALE
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
SET CBLAE- TYPE- CHAR OF CBLAE (CBLAE- PARM CNT OF CBLAE)
TO TRUE
CALL ' PTPSETAD USI NG CBLAE- DATA- PTR
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
W DESCR OF W WORK

ADD 1 TO CBLAE- PARM CNT OF CBLAE
MOVE ' QE_CBLAETST_AET'" TO CBLAE- STATEREC
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE ' QE_AE_INT_7' TO CBLAE- FI ELDNM
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE 2 TO CBLAE- LENGTH
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
MOVE O TO CBLAE- SCALE
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
SET CBLAE- TYPE- SVALLI NT
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
TO TRUE
CALL ' PTPSETAD USI NG CBLAE- DATA- PTR
OF CBLAE (CBLAE- PARM CNT OF CBLAE)
W SM NT OF W WORK

138 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Calling Application Engine Programs from COBOL

DAOOO- CALL- AE SECTI ON.

DA0OO.

MOVE ' QE_AETESTPRG TO CBLAE- PRCSNAME OF CBLAE

SET AE- COW TS-ALL TO TRUE

CALL ' PTPCBLAE USI NG SQLRT CBLAE.
CALL- AE-EXIT.

EXIT.

Sample of the Communication Area of PTPBLAE.CBL

If the called Application Engine program updated the state records or fields that were passed by PTPCBLAE,
the fields or records are stored in the local variables of the calling program as identified by PTPSETAD.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 139

Calling Application Engine Programs from COBOL

140

* PTCCBLAE - Communi cation area for PTPCBLAE

*01 CBLAE.

NCCLN

*

NOCLN

NOCLN

02 CBLAE-PRCSNAME PIC X(12) VALUE SPACE.
Name of AE programto be call ed.

02 CBLAE- COMWM T- FLAG PIC X(1) VALUE SPACE.

Flag to determ ne which of the follow ng conmits to nake.

88 AE- COW TS- SUCCESS VALUE 'B'.
No in-process conmt; if successful, then conmt occurs.
88 AE- COW TS- ALL VALUE ' C .
Conmits occur when defined in the AE program
02 CBLAE- PARMS.
03 CBLAE- PARM CNT Pl C 9(4) COWP.
Counter of the nunber of state records passed.
03 CBLAE- PARM ENT OCCURS 500 TI MES.
Maxi mum val ue of state record entries.
05 CBLAE- STATEREC Pl C X(15).
State record nane.
05 CBLAE-FIELDNM PIC X(18).
Fi el d nane.
05 CBLAE- DATA- PTR PO NTER.
Poi nter to your own working storage area.
05 CBLAE- LENGTH PI C 9999 COVP.
Field length of defined state record.
05 CBLAE- SCALE PI C 99 COWP.

Nunber of deci mal places.

05 CBLAE- TYPE PIC X

Fiel d data type.

88 CBLAE- TYPE- CHAR VALUE ' C .
88 CBLAE- TYPE- SMALLI NT VALUE 'S'.
88 CBLAE- TYPE- I NT VALUE "[|".
88 CBLAE- TYPE- DEC VALUE 'P' .
88 CBLAE- TYPE- DATE VALUE 'D .

Chapter 7

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Calling Application Engine Programs from COBOL

Chapter 7
88 CBLAE- TYPE-TI ME VALUE 'T'.
88 CBLAE- TYPE- TI MEONLY VALUE 'V .
88 CBLAE- TYPE- NUVERI C VALUE 'S '"I' '"P'.

Handling COBOL Errors

If your COBOL program needs error handling, try the following procedure:

Add afield (return code) to your state record.

=

2. Initialize the field to a negative value.
3. Passthevalueinto the Application Engine program.
4

. At the successful completion of the Application Engine program, change the field value to a positive
value.

5. Check for that value in your COBOL program.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 141

Chapter 8

Tracing Application Engine Programs

This chapter provides overviews of tracing Application Engine programs and trace results and discusses how

to:

Enable Application Engine tracing.

L ocate trace files.

Understanding Tracing Application Engine Programs

Y ou can set the following traces to monitor the performance of Application Engine programs:

Application Engine step trace.
Application Engine SQL trace.
Application Engine statement timings trace.

Database optimizer trace.

Note. The general PeopleTools SQL and PeopleCode traces also apply to Application Engine programs.

Understanding Trace Results

This section discusses;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Trace file sections.

Step trace.

SQL trace.

Statement timings trace.

Database optimizer trace.

143

Tracing Application Engine Programs

Trace File Sections

Chapter 8

At the top of each trace, useful information helps you to identify the PeopleTools version, the database name,

and the database platform type.

SQL Counts and Timings Section

The first section of atrace fileisthe SQL section. It records the performance of application-specific SQL.
The trace values appear within a series of columns and sections. The following table describes each column

within the first section of the tracefile:

Column

Description

SQL Statement

Application Engine SQL actions and stored SQL objects always have a
statement ID. The SQL Statement column shows the statement ID, so
that you can attribute trace values to individual SQL statements. In the
case of SQLExec SQL, aportion of the SQL statement appearsin the
first column, to help you identify it. For SQL objects, use the
TraceName property in the Create SQL so that you can uniquely
identify it in the traces.

Compile Column

This column shows how many times the system compiled a SQL
statement and how long it took. The term compiled refers to the SQL
statement being sent to the database to be parsed and optimized, and it
also includes the time required for the first resolution of any PeopleSoft
meta-SQL.

Execute Column

This column shows how many times the system executed the SQL
statement and the time consumed doing so. The term executed refers to
the system sending the compiled SQL to the database server to be run
against the database.

Fetch Column

This column applies to Select statements. It shows how many rows your
program fetched from the database and how much time this consumed.
The system must first execute a Select statement against the database to
find the relevant rows and generate an active set. After the set exists, the
program must still fetch the rows. Some database APIs have buffered
fetches, which means that the fetch may include more than one row.
Therefore, subsequent fetches are free until the buffer becomes empty.

Total Column

This column shows the sum of the compile, execute, and fetch times of
the SQL statement. Some database APIs may defer a compile to the
execute phase, or defer an execute to the first fetch operation.

PeopleCode SQL

This subsection is for SQL executed from PeopleCode actions. Compile
counts and times for such SQL isincluded in execute count and times,
because you do not explicitly control the ReUse feature. To determine
whether ReUse is occurring, you must do a program run after enabling
the generic PeopleTools trace for SQL statements, API calls, and so on.
Asastarting point, use atrace value of 31.

144

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Tracing Application Engine Programs

Column

Description

Application Engine SQL

This subsection reveals the time attributed to Application Engine
overhead that is not directly related to the SQL within your program.
For example, the values in this section represent the SQL generated for
checkpoints, commits, and so on. If there are Commit statements
without checkpoints, it indicates that restart has been disabled, or a
restartable program has called a non-restartable program.

If the time consumed performing a checkpoint or committing seems
more than expected, you should try to reduceit if possible by setting the
commit frequency of the steps containing Do loops.

AE Program: program_name

This subsection shows SQL actions for a particular program. The action
properties that affect performance are flagged. For example, BulkInsert.
ReUse is not flagged because it is self-evident when the Execute count
is higher than the compile count.

Note. When you run a SQL trace at the Application Engine level and the PeopleTools level simultaneoudly,
you may see misleading results. Extra overhead is added to the overall SQL timings by the PeopleT ools trace.
Tracing SQL at the Application Engine level (-TRACE) adds to the non-SQL times because PeopleTools

writes the trace data after timing the SQL.

PeopleCode Actions Section

The second section of the trace file, or PeopleCode section, records the performance associated with all the
PeopleCode actionsin your program. The following table describes each column in this section:

Column Description

PeopleCode This column contains the names of the PeopleCode actions in your
program.

cdl This column shows how many times each PeopleCode action is called
during the program run.

Non-SQL This column shows the time spent by your PeopleCode actions that
does not involve any SQL.

SQL This column shows the time spent by your PeopleCode actions
executing SQL. The SQL time total should be similar to that of the
PeopleCode SQL subsection in the first section of the tracefile.

Total Thetotal indicates the cumulative amount of time spent in the action.

Note. The system roundsto the first decimal place (tenths), but only after calculating the sum of each action

time.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 145

Tracing Application Engine Programs Chapter 8

PeopleCode Built-ins and Methods Section

The third section of the trace file contains either alist or summary of PeopleCode built-ins and methods used.
To seealist of built-ins and methods, you must enabl e the PeopleCode detail timings in addition to the
statement timings trace.

If amethod or built-in function takes alarge amount of time, you may want to consider alternatives. For
example, if array processing dominates your runtime, consider inserting the data into temporary tables and
performing the processing on tables in the database.

Summary Data

The fourth section of the trace file contains summary data. The valuesin this section reveal an overview of
the program run without drilling down too far into details.

The following table describes the val ues that appear in this section:

Column Description

Total run time This value presents the overall amount of time a program
required to complete from start to finish.

Timein application SQL This value represents the time that your program spent
executing SQL. The value includes SQL executed by both
PeopleCode and SQL actions.

Percent time in application SQL This value represents the percentage of time spent
executing SQL compared to the entire program run.

Timein PeopleCode This value represents the time that your program spent
executing PeopleCode. Time in PeopleCode excludes
SQL executed from within PeopleCode.

Percent time in PeopleCode This value represents the percentage of time spent
executing PeopleCode compared to the entire program
run.

Total timein Cache This value represents the amount of time your program

spent retrieving objects from the cache or refreshing the
cache. Timein cache includes all memory cache access,
file cache access, and SQL executed to load managed
objects, such as Application Engine program components,
metadata, and so on. Time varies according to where
Application Engine finds an object. For instance,
retrieving an object that the system cached during a
previous run is faster than retrieving it from the database.

Number of callsto Cache This value represents the actual number of calls your
program made to the cache. The number of callsto the
cache remains constant for the same Application Engine
program processing the same data.

146 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

Environment Information Section

The fifth section of the trace file contains environment information specific to Application Engine. If
programs appear to be performing poorly, check the trace value that you have set.

Each trace produces an unavoidable degree of overhead. As such, the more traces you have enabled, the more
likely you are to see degraded performance. Run only the traces you need. This section of the trace file shows
you information about the following:

» SQL trace
» PeopleCode trace
« Application Engine trace

« Application Engine DbFlags (%6U pdateStats)

Step Trace

The step trace reports each step hame that your program executes and in what order. Associated with each
step is atimestamp, the Do action level, and the action type.

The trace shows the steps that execute within a called section by indented formatting. For example, a step that
executes within a called section is preceded by two dots (..), while other steps are preceded by only one dot.

SQL Trace

The SQL trace report shows formatted SQL processes, including commits, rollbacks, and restarts. Y ou can
also view the buffers associated with each SQL statement. Use the SQL trace to spot errorsin your SQL and
to view your commit strategy.

Statement Timings Trace

The Application Engine statement timing trace report is similar to a COBOL timings trace, in which you
monitor the execution of COBOL programs for performance evaluations. This trace enables you to gather
performance information to determine program bottlenecks. Once bottlenecks are identified, you might be
able to modify your program to run more efficiently, or you may want to change the database schema and
configuration to optimize the execution of your program.

The statement timings trace is invaluable for tuning an Application Engine program. It may aso be useful as
adefault trace level for al production runs, to provide a metric for long-term performance trends.

By examining all of the figuresin this trace, you can identify areas of your program that are not running as
efficiently as possible. For instance, if compile counts are high, you can reduce the numbers by using the
Application Engine reuse feature. If inserts appear to be running slow and you have many of them, you can
increase the performance by using the Application Engine bulk insert feature. Each valuein the trace,
including cumulative totals, appears in aform rounded to the nearest tenth of a second, but totals are
calculated using nonrounded timings.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 147

Tracing Application Engine Programs Chapter 8

148

Y ou can write thistrace to afile, or you can write the results to tables. Either way, timings trace overhead is
minimal. Internal testing reveal s that the Application Engine trace has an overhead between 2 percent and 5
percent of total runtime.

By storing timings information in atable, you can store historical data in the database, which enables you to
produce reportsthat aid in trend analysis, allow ad hoc SQL queries for longest running statements, and so
on. With the timings data stored in the database, you can manipulate and customize reports to show only the
metrics in which you are most interested.

Y ou can use third-party tools to query and present the datain such ways as detailed graphical representations
of your program's performance. Y ou can also implement alarmsiif the performance of a program reaches a
specified maximum value in a particular area such as SQL compile time.

Note. Application Engine does not write the timings trace to atable for programsinvoked by the
Call AppEngine PeopleCode function. To write to atable, a process instance is required, and programs
invoked by Call AppEngine are not assigned a process instance.

The Statements Timings (table) option, or 1024 -TRACE option, populates the following tabl es.
« PS BAT_TIMINGS LOG (Parent)
This table stores general information for a program run.
« PS BAT_TIMINGS DTL (Child)
This table stores detail s associated with a program run, such as the execute count, fetch time, and so on.
The SQL Timings (table) option, or the 16834 -TRACE option, populates the following tables.
« PS AE _TIMINGS LG (Parent)
This table stores general information for a program run.
« PS_AE_TIMINGS DT (Child)
This table stores detail s associated with a program run, such as the execute count, fetch time, and so on.
PS BAT_TIMINGS FN
This tabl e stores PeopleCode detailed timing information.

PeopleSoft provides BATTIMES.SQR as an example of the type of reports you can generate to reflect the
information stored in the BAT_TIMINGS tables. Y ou can produce a summary report for all the programs for
aspecific run control 1D, or you can get detail datafor a specific process instance.

To invoke the BATTIMES.SQR report through PeopleSoft Process Scheduler:
1. Select PeopleTools, Process Scheduler, Batch Timings.

The Batch Timings page appears.
2. From the Report Type drop-down list box, select Detail or Summary.

3. Inthe Batch Timings For group box, enter the run control 1D for summary reports, and enter the process
instance for detail reports.

4. When you have made the appropriate selections, click the Run button.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

To view batch timings using Process Monitor:

1. Select PeopleTools, Process Scheduler, Process Monitor.

2. Locate the program run associated with the current trace.

3. Click the Job Details button.

4. Onthe Process Detail dialog box, click the Batch Timings link.

PeopleCode detail timings do not appear. They appear only in the file format.

Database Optimizer Trace

The database optimizer trace reveals the execution or query plan for the SQL that your Application Engine
program generates. Each SQL statement is traced only once. Y ou can write the trace to afile or atable.

How you view the results of this trace depends on the relational database management system (RDBMS) that
you are currently using. For instance, on some platforms, only the trace-to-file option is available, whereas on
others only the trace-to-table option is available. The following table shows the options available for each of
the platforms PeopleSoft supports:

RDBMS Output
Oracle File and table

DB2 for OS/390 Table

DB2 for UDB (AlX, Sun Solaris, Microsoft Windows Table

NT)

Microsoft SQL Server File and table

Informix File

Sybase N/A

Note. PeopleTools does not collect optimizer data for SQL originating from PeopleCode actions, except if
you run Oracle and Informix and use file output. In this case, the system traces all SQL that executes after the
first SQL action executes.

Oracle

When outputting the trace to afile, Application Engine writes the trace file to the default Oracle trace
directory specified on the database server. To read the trace file, use the TK PROF utility.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 149

Tracing Application Engine Programs Chapter 8

150

To output the trace to atable on Oracle, aPLAN_TABLE table must exist, and the statement_id must be of
type VarChar2(254), instead of VarChar2(30).

When outputting to a table, the PeopleSoft application updates the trace rows as follows:

« EXPLAIN PLAN SET STATEMENT_ID: PeopleSoft updates the STATEMENT ID column:
EXPLAI N PLAN SET STATEMENT | D = Appl I d. Secti on. Step. Type FOR sql stnt

PLAN_TABLE's REMARKS column: PeopleSoft updates the REMARKS column:

PLAN TABLE' s REMARKS col um = ' Processl nst ance- RunControl | d(QueryNo)'

gueryno is a count of how many SQL statements have been traced up to a particular point.

Note. When tracing to atable with Oracle, PeopleSoft does not perform optimizer traces on %oUpdateStats
and %TruncateT able unless the latter resolves into a Delete statement. Alternatively, outputting the Oracle
TKPROF utility to file handles both the Analyze and Truncate commands.

Microsoft SQL Server

When you output the trace to afile, Application Engine writes the optimizer trace to the following location:
%TEM PY%\psms<queueid><spid>.trc. To read the trace, you use the SQL Server Profiler utility.

Note. The trace fileiswritten to the server directory when you've specified the trace on the client. If the client
has %Temp% set to adrive or directory that does not exist on the server, Application Engine does not
generate atracefile.

When you output to atable, Application Engine writes the trace data to the dbo.PS OPTIMIZER_TRC table.
PeopleTools creates the table automatically when you run the trace for the first time. The trace data written to
thetable isidentical to the data appearing in the optimizer tracefile.

Y ou also need to use the SQL Server Profiler utility to view the optimizer results. To view the popul ated trace
table, specify the current server and database on the Source Table dialog box. The Owner value must be dbo,
and the Table value PS OPTIMIZER_TRC.

In the trace, you find information regarding text, duration, and start time for the following:

» Execution plans.

» Remote procedure calls.

» Insert statements (Update, Delete, and Select statements).

» PeopleSoft-generated user events associating trace data with a PeopleSoft SQL identifier.

If the Application Engine program terminates while you are using this trace option, check that Application
Engine was not tracing a SQL statement at the moment the program terminated. If it was tracing a SQL
statement at that time, you must manually kill the trace. Otherwise the trace thread on the server continuesto
run and lock the trace file, and each time that server process ID (SPID) is reused by the server, new
information is appended to the locked tracefile.

To stop the trace manually, submit the following command from Query Analyzer:

Xp_trace_destroyqueue queueid

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

The queueid in the file name % TEMP%\psms_queueid spid.trc isthe ID corresponding to the queue used for
the first SQL statement that the system profiled. Because this trace is only designed to trace Application
Engine SQL (not PeopleTools SQL), the queue is closed after every statement profiled. Therefore, the queue
that must be destroyed may not be the queue ID used in the tracefile.

Note. If the %TEMP% variable is set to alocation that does not exist, Application Engine does not generate a
tracefile.

Informix

For Informix, you can only output the trace to afile. The trace file location depends on the operating system
on which your database server runs.

* UNIX.

For UNIX, Application Engine writes the plan to the sgexplain.out file. If the client program runs on the
same machine as the database server, the sgexplain.out file appearsin the current directory. When the
current database is on another computer, the sgexplain.out file is written to the PeopleSoft owner's
directory on the remote host.

« Microsoft Windows NT.
For Microsoft Windows NT, Application Engine writes the plan to the following file:
INFORMIXDIR%\sgexpln\username.out.

DB2 for OS/390

For DB2 for OS/390, you can only output the optimizer trace to a table. PeopleSoft has implemented the
following to facilitate this trace:

» PeopleSoft selects the maximum query number from the PLAN_TABLE table, incrementsit by 1000 to
avoid clashing with other processes, and then incrementsit by 1 for every SQL statement traced.

» PeopleSoft setsthe SET REMARKS parameter to the following value: Applld.Section.Step. Type-
RunControl | d(Processl nstance)

Note. Before using the Database Optimizer Trace, you must first create aDB2 PLAN_TABLE. Refer to your
DB2 UDB for 0S/390 and z/OS Administration Guide for the proper format and instructions on creating the
PLAN_TABLE.

DB2 for UNIX

For DB2 for UNIX, you can only output the optimizer trace to atable. To facilitate this trace for DB2/UNIX,
PeopleSoft has implemented:

EXPLAIN ALL SET QUERY NO =Processinstance SET QUERY TAG = 'Section.Step' FOR sgl stmt

Note. Before using the Database Optimizer Trace, you must first create the DB2 explain tables.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 151

Tracing Application Engine Programs Chapter 8

Database Optimizer Trace and Performance

While the database optimizer trace is enabled, performance may be affected. Typically, you turn on this trace
only when you are collecting detailed performance metrics. When you are not tuning your performance, turn
off the optimizer trace.

To prevent an administrator, or perhaps a user, from unwittingly turning the optimizer trace on or leaving it
on after doing performance tuning, you can disable the database optimizer trace for an entire database.

For example, suppose you have a production and a devel opment database, you might want to enable the
optimizer trace for the development database while disabling the optimizer trace for the production database.

On the PeopleTools Options page, clear the Allow DB Optimizer Trace option to disable the optimizer trace
for the database.

Enabling Application Engine Tracing

By default, all Application Engine traces are turned off. To see atrace or a combination of traces, set trace
options before you execute the program.

This section discusses how to:
» Set command line options.
» Set parametersin server configuration files.

« Set optionsin Configuration Manager.

Setting Command Line Options

152

The command line option is available for Microsoft Windows NT and UNIX, but it is not available when
calling Application Engine programs from PeopleCode.

To enable tracing from the command line, specify the —TRACE option within the command line that you
submit to PSAE.EXE. For example:

n: \ pt 840\ bi n\ cl i ent\ wi nx86\ psae. exe -CT M CROSFT - CD PT800GES - CO PTDMO?
-CP PTDMO - R PT8GES - Al AETESTPROG -I 45 -TRACE 2

The following table describes the available TRACE option parameter values:

Value Description

0 Disables tracing.

1 Initiates the Application Engine step trace.
2 Initiates the Application Engine SQL trace.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

Value Description

4 Initiates the trace for dedicated temporary table alocation to an
Application Engine trace (AET) file. Y ou can trace how the system
allocates, locks, and releases temporary tables during program runs.

128 Initiates the statement timings trace to afile, which is similar to the
COBOL timingstraceto afile.

256 Initiates the PeopleCode detail to the file for the timings trace.

1024 Initiates the statement timings trace and stores the results in the
following tables: PS_ BAT_TIMINGS_LOG and
PS BAT_TIMINGS DTL.

2048 Requests a database optimizer tracefile.

4096 Requests a database optimizer to be inserted in the Explain Plan table of
the current database.

8192 Sets atrace for PeopleSoft Integration Broker transform programs.

16384 Initiates a SQL timings trace and stores the results in the following
tables: PS_AE_TIMINGS_LG and PS_AE_TIMINGS DT.

To specify traces on the command line, you enter the sum of the desired trace options. Thisis similar to
adding the trace values using PSADMIN, such as the COBOL statement timings or the SQL statement trace
value. To specify acombination of traces, enter the sum of the corresponding trace values. For example, to
enabl e the step (1), the SQL (2), and the statement timings (128) traces, you would enter 131—the sum of 1,
2, and 128.

To disable tracing, explicitly specify —-TRACE 0. If you don't include the -TRACE flag in the command line,
Application Engine uses the value specified in the Process Scheduler configuration file or in Configuration
Manager. Otherwise, the command-line parameters override any trace settings that may be set in
Configuration Manager.

Setting Parameters in Server Configuration Files

Y ou can also enable traces in the configuration files for both the application server and the Peopl eSoft
Process Scheduler server.

For programs invoked by PeopleCode and run on the application server, set the TraceAE parameter in the
Trace section of the Application Server configuration file (PSAPPSRV.CFG). Y ou can use PSADMIN to set
this parameter.

In the PeopleSoft Process Scheduler configuration file, set the TraceAE parameter in the Trace section to
indicate alevel of tracing. Y ou can use PSADMIN to set this parameter.

This option is available on Microsoft Windows NT and UNIX, and applies only to Application Engine
programs invoked in batch mode.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 153

Tracing Application Engine Programs Chapter 8

Note. The TraceFile parameter does not specify the location of the Application Engine trace file; it applies
only to the generic PeopleTools SQL and PeopleCode traces.

Setting Options in PeopleSoft Configuration Manager

For processes running on a Microsoft Windows workstation, you can set trace options using PeopleSoft
Configuration Manager. This procedureisvalid only if you are running Application Engine programs on a
Microsoft Windows workstation—the development environment.

— Application Engine Trace
[T Step
™ saL
[T Ded. Temp. Table

[~ Statement Timings file)

[T Statement Timings ¢able)
[PeopleCode Detail Timings
[T DE Optimizer file)

[T DB Optimizer fable)

[T SGL Timings ¢able)

Application Engine Trace check boxes

To set Application Engine traces:
1. Start Configuration Manager, and select the Trace tab.
2. Select appropriate trace options.

Y ou can select any combination of the options.

3. Click either the Apply or OK buttons to set trace options.

Locating Trace Files

Where you look for the generated trace file depends on how you invoked the program and the operating
system on which the program runs, as shown in the following table:

Location Where the Program Was Initiated Trace File Location
Microsoft Windows workstation Look for the trace file in % TEMP%\PS\<db name>.
PeopleCode Look for the trace filein %TEMP%\PS\db_name on

Microsoft Windows NT andin PS CFG_HOME
Nlog/\<db name> on UNIX and Linux systems.

154 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Tracing Application Engine Programs

Location Where the Program Was Initiated Trace File Location

Command line Look for the trace file in the directory specified in the
Log/Output field in the PS_SERVER_CFG file.

PeopleSoft Process Scheduler Look for the trace file in a subdirectory of the directory
specified in the Log/Output field in the
PS SERVER_CFGfile.

When a program includes a process instance, Application Engine names the trace file according to the

following convention: AE_Program name_Process_Instance. AET. When the program does not include a

process instance, Application Engine names the file according to this convention: AE_Date/Time_Samp OS
PID.AET. The date and time stamp isin the format month, day, hour, minute, second, with two values for

each date element and no punctuation between elements. For example, August 12 at 5:09 p.m. and 30 seconds
would be 0812170930.

Note. For an Application Engine program running on a server, PeopleT ool s writes the generic PeopleTools
trace for SQL and PeopleCode trace files to the same directories as the AET traces. The prefix of the tracefile
name is also the same, and the suffix istrc. On the Windows workstation, the trace is written to thefile
specified in the People Tools Trace File field on the Trace tab of PeopleSoft Configuration Manager.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 155

Chapter 9

Using Temporary Tables

This chapter provides an overview of temporary tables and discusses how to:
» Create temporary table instances.

» Manage temporary table instances.

+ Makeexterna calls.

« View temporary table usage.

Understanding Temporary Tables

Because Application Engine programs run in batch mode, multiple instances of the same program often
execute in parallel. When this happens, there is a significant risk of data contention and deadlocks on tables.
To avoid this, you can dedicate specific instances of temporary tables for each program run.

Y ou can also use temporary tables to improve performance. For example, if you find that, multiple times
during arun, the program accesses a small subset of rows from a much larger table, you can insert the
necessary rows into a temporary table as an initialization task. Then the program accesses the dataresiding in
the smaller temporary table rather than the large application table. Thistechniqueis similar to reading the
datainto an array in memory, except that the data never leaves the database, which is an important
consideration when the program employs a set-based processing algorithm.

Any number of programs, not just Application Engine programs, can use the temporary table definitions.
When you specify atemporary table on the Temp Tables tab in the Application Engine program properties,
Application Engine automatically manages the assignment of temporary table instances. When Application
Engine manages a dedicated temporary table instance, it controls the locking of the table before use and the
unlocking of the table after use.

Parallel Processing

Parallel processing is used when considerable amounts of data must be updated or processed within alimited
amount of time, or batch window. In most cases, parallel processing is more efficient in environments
containing multiple CPUs and partitioned data.

To use parallel processing, partition the data between multiple concurrent runs of a program, each with its
own dedicated version of atemporary table (for example, PS_ MYAPPLTMP). If you have a payroll batch
process, you could divide the employee data by last name. For example, employees with last names beginning
with A through M get inserted into PS_ MY APPLTMP1; employees with last names beginning with N-Z get
inserted into PS MYAPPLTMP2.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 157

Using Temporary Tables Chapter 9

158

To use two instances of the temporary table, you would define your program (say, MY APPL) to access to one
of two dedicated temporary tables. One execution would use A-M and the other N-Z.

The Application Engine program invokes logic to pick one of the available instances. After each program
instance is matched with an available temporary table instance, the %Table meta-SQL construct uses the
corresponding temporary table instance. Run control parameters passed to each instance of the MY APPL
program enable it to identify which input rows belong to it, and each program instance inserts the rows from
the source table into its assigned temporary table instance using %Table. The following diagram illustrates
this process:

PS_MYAPPLTMP1
MYAPPL
I (250,000 Rows of Affected Data)
1
N PS_MYAPPLTMP2
MYAPPL
I {250,000 Rows of Affected Data)
2
— PS_MYAPPLTMP3
MYAPPL (250,000 Rows of Affected Data)
I3
— P5_MYAPPLTMP4
MYAPPL (250,000 Rows of Affected Data)
|
4

Multiple program instances running against multiple temporary table instances

No simple switch or check box enables you to turn parallel processing on and off. To implement parallel
processing, you must complete the following set of tasks. With each task, you must consider details about
your specific implementation.

=

Define and save temporary table recordsin Application Designer.

Y ou do not need to run the SQL Build process at this point.

N

In Application Engine, assign temporary tables to Application Engine programs, and set the instance
counts dedi cated for each program.

Employ the %Table meta-SQL construct so that Application Engine can resolve table references to the
assigned temporary table instance dynamically at runtime.

w

Set the number of total and online temporary table instances on the PeopleTools Options page.

o

Build temporary table recordsin Application Designer by running the SQL Build process.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

Creating Temporary Table Instances

This section provides an overview of temporary table instances and discusses how to:

» Define temporary tables.
» Set the number of temporary table instances.

« Buildtableinstances.

Understanding Temporary Table Instances

To run processes in parallel, you need to enable multiple instances of the same temporary table. Y ou use the
PeopleTools Options page to set the number of temporary table instances for Application Engine processes
started online from the PeopleCode Call AppEngine function.

This global setting is separate from the instance count setting for a particular program. To use atemporary
table with a specific program, you assign the table to the program and set the number of instances created
when a particular program isrun.

Key Fields for Temporary Tables

To take advantage of multiple instances of atemporary table, use the Temporary Table record type.

Insert the PROCESS INSTANCE field as akey on any temporary tables that you intend to use with
Application Engine. Application Engine expects Temporary Table records to contain the
PROCESS_INSTANCE field.

Note. When all instances of atemporary table are in use and the Continue runtime option on the Program
Properties dialog box Temp Table tab is selected, PeopleTools inserts rows into the base table using
PROCESS INSTANCE asakey. If you do not include PROCESS INSTANCE as akey field in atemporary
table, select the Abort Temp Table tab runtime option.

Temporary Table Performance Considerations

When you run batch processesin parallel, there isarisk of data contention and deadlocks on temporary
tables. To avoid this, Application Engine has a feature that enables you to dedicate specific instances of
temporary tables for each process. When Application Engine manages a dedicated temporary table instance, it
controls the locking of the table before use and the unlocking of the table after use.

When you decide on the number of instances for temporary tables for a process, you must take into
consideration the number of temporary tables that the process uses. The more instances you have the more
copies of the temporary tables you will have on your system. For example, if a process uses 25 temporary
tables and you have 10 instances for a process, you will have 250 temporary tables on your system.

On the other hand, if you are running a process in parallel and al of the dedicated temporary table instances
are in use, this slows down the performance of the process. So, you will need to find a balance that works for
your organization.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 159

Using Temporary Tables Chapter 9

If you need more temporary table instances after you have entered production, you must rebuild all of your
temporary tables so that the database reflects the proper inventory of instances. While the build process runs,
users cannot access the database. Because of this, spend time deriving adequate estimates as to the number of
temporary tables required.

A physical table within the database, named PS_AEONLINEINST, stores online temporary table instance
usage. If you notice performance issues related to online Application Engine program runs, enable the
Application Engine SQL and Timings trace.

If the following SQL command requires more time than normal to complete, thisisagood indication that not
enough online temporary instances are defined on the PeopleT ools Options page.

UPDATE PS_AEONLI NEI NST . ..

Defining Temporary Tables

To define atemporary table:

1. InApplication Designer, select File, New.

2. Select Record from the New Definition dialog box.

3. Select Insert, Field, and insert the PROCESS _INSTANCE field.
4

. Select the Record Type tab and select the Temporary Table option.

Setting the Number of Temporary Table Instances

160

Select PeopleTools, Utilities, Administration, PeopleTools Options to access the PeopleT ools Options page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

PeopleTools Options

Environment Long Name: | Environment Short Hame:
System Type:l Undefined Database ~|

Language Settings

Language Code: English *Sort Order Option: |Einar'_-.r8urting j
™ Translations Change Last Update

Background Disconnect Interval: 30 Temp Table Instances (Total): I_
I Multi-Company Organization T
¥ Multi-Currency Temp Table Instances (Online):
¥ Use Business Unit in nVision *Maximum Message Size: 10,000,000
V¥ Use Secure Rep Rgst in nVision
PST
I™ Multiple Jobs Allowed Base Time Zone: Q
' Allow DB Optimizer Trace Last Help Context # Used: 100222
¥ Grant Access *Data Field Length Checking: I Others vI
¥ Platform Compatibility Mode o Atta Chunk Si 28,000
I~ Allow NT batch when CCSID<>37 aximum Attachmen 1ze '
I Save Erroris Fatal Upgrade Project Commit Limit: a0
™ Set Focus on Save Button *Enable Switch User: All -
*Case Insensitive Searching: | 0n - CaseSensitive Default OfFf j Max rows in search results
300
Style Sheet Name: PSSTYLEDEF Q
Default rows in search results
Branding Application Package: | T—BRANDING 300
Branding Application Class: |BFE”““"§|BE'5E

Tree Manager Options

" Use Tree Update Reservation
Max Tree Inactivity Period,min: 20

F1 Help URL: |http:n'ad—5un‘IQ:EUU‘IJ’PSDUptBED_ﬁnaltest.l‘r‘lsearch.htm‘? :I
Ctri-F1 Help URL: | —
WSRP Display Mode | Display as Portlet -l

Database Encryption Algorithm |

PeopleTools Options page

The system determines the total available number of temporary table instances for a base table according to
the settings for total and online instances that you make on this page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 161

Using Temporary Tables Chapter 9

Temp TableInstances The difference between the total and online numbersis your EPM-managed
(Total)(temporary table tables. If you are not using PeopleSoft EPM, the total and online numbers should
instances [total]) be the same.

Temp TableInstances Enter the number of temporary table instances for Application Engine processes

(Online)(temporary table started online from the PeopleCode Call AppEngine function. In general, the

instances [online]) number you enter should be relatively small (less than 10), so that extrainstances
do not affect performance.

Application Engine uses this value to identify arange of temporary tables
devoted to programs called by the Call AppEngine function. A randomizing
agorithm balances the load for the online process that is assigned to atemporary
table devoted to online program execution.

Building Table Instances

The system builds temporary table instances at the same time it builds the base table for the record definition.
When the system builds atable (asin, Build, Current Object) and the record type is Temporary Table, it
determines the total number of instances of the temporary table based on the settings that you made on the
Peopl€eTools Options page.

The system creates a maximum of 99 temporary table instances, even if the sum exceeds 99 for a particular
temporary table.

The naming convention for the temporary table instancesis as follows: BaseTableName Number, where
Number is anumber between 1 and 99, asin PS TEST TMP23.

Note. Y ou can take advantage of database-specific features such as table spaces and segmentation. For
instance, you may want to use the Build process to generate a data definition language (DDL) script, and then
fine-tune the script before its execution, or you could place different sets of temporary tables on different
table spaces according to instance number.

Managing Temporary Table Instances

This section provides an overview of temporary table instance numbers and discusses how to:

» Assign temporary tables to programs.

» Adjust meta-SQL.

Understanding Temporary Table Instance Numbers
Y ou use the Temp Tables tab in the Program Properties dialog box to manage the number of different batch

or dedicated temporary tables required for each program definition and the number of instances of each. You
select al the necessary temporary table records to meet the needs of your program's logic.

162 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

Note. Y ou must set the instance count on the Temp Tables tab before building the tables in Application
Designer.

Regardless of the instance counts value in the Application Engine program properties or on the PeopleTools
Options page, make sure that you have the appropriate records assigned to the appropriate programs. Y ou also
need to ensure that the SQL inside your Application Engine program contains the correct usage of the %Table
construct.

The number of temporary table instances built for a specific temporary table record during the SQL Build
process is the value of the total temporary table instances from the PeopleT ools Options page added to the
sum of al the instance count values specified on the Temp Table tab for the Application Engine programs
that use that temporary table.

For example, assume that we have defined APPLTMPA as atemporary record type. If the number of total
temporary table instancesis set to 10, and APPLTMPA appears in the Temp Tables tab in the Program
Properties dialog box for two Application Engine programs. In one program, the instance count is set to 3,
and in the other, the instance count is set to 2. When you run the SQL Build process, PeopleTools builds a
total of 15 temporary table instances for APPLTMPA.

The total and online instance counts should be equal, unless your PeopleSoft application documentation
provides specific instructions on setting these values differently. When the values are equal, the Temp Table
Instances (Total) field controls the number of physical temporary table instances to be used by online
programs that Application Designer creates for atemporary table record definition. If the value for the Temp
Table Instances (Online) field isless than the value for the Temp Table Instances (Total) field, the difference
between the two numbers provides a pool of tables for backward compatibility for devel opers who took
advantage of the %Table(record_name, instance_number) approach for manually managing temporary table
locking, (such as PeopleSoft EPM).

Assigning Temporary Tables to Programs

Open an Application Engine program in Application Designer. Select File, Definition Properties. Select the
Temp Tablestab.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 163

Using Temporary Tables Chapter 9

164

Program Properties |
Generall State Becords Temp Tables |.-’-‘-.u:|vann::ed|
Qualify Search; — Selected:
I et List | Add | Eemayve |
Fecord List
MENU_LAMG_THP MEMNU_LANG_THP
— Runtime;
If non-zhared T ables cannat

[nztance Count: I 5 he assigned:

Insert Selected list into Project v &+ Caontinue
i~ Abort
] 4 |

Program Properties dialog box: Temp Tables tab

In the Record List box, include al the necessary temporary table records for this program.

In the Instance Count field, specify the number of copies of temporary tables for a program. Anytime you
change the instance counts, you need to rebuild the temporary tables to ensure that the right number of
instances get created and are available for your programs.

Note. The concept of dedicated temporary tablesisisolated to the Application Engine program run. The
locking, truncate/del ete from, and unlocking are designed to occur within the bounds of an Application
Engine program run. Therefore, the system does not keep atemporary table instance available after the
Application Engine program run is over.

Runtime Allocation of Temporary Tables

Online processes have their own set of dedicated temporary tables, defined globally on the PeopleTools
Options page. When you invoke a process online, PeopleTools randomly allocates a single temporary table
instance number to a program for al its dedicated temporary table needs. While the program runs, no other
program can use that instance number. Any other online process that happens to get the same instance value
waits for the first program to finish, so that the instance number is unlocked.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Using Temporary Tables

In contrast, batch processes are allocated temporary table instances on a record-by-record basis. The system
begins with the lowest instance number available for each temporary table until all of the temporary table
instances are in use. If there are not any temporary tables, available and you selected Continue for the If non-
shared Tables cannot be assigned group box, then the base table is used, with the process instance number as

akey.

When a program ends normally or is cancelled with Process Monitor, the system automatically releases the

assigned instances.

Condition

Online

Batch

Temporary tables are allocated
using meta-SQL.

%Table(temp-thl)

%Table(temp-thl)

Temporary tables are allocated at
runtime.

Psae.exe randomly assigns an
instance number from the number
range on your online temporary
table setting on the PeopleTools
Options page. Psae.exe uses that
number for all tables for that
program run.

Individually allocates an instance
number based on availability on a
record-by-record basis. Psae.exe
begins with the lowest instance
number available for each
temporary table, until all of the
instances are in use.

No temporary tables are free.

For a particular record, if the
instanceis currently in use and the
program is set to Continue, then the
psae.exe queues the program until
the assigned instance number
becomes free.

If the program is set to Continue,
the system uses a shared base table.

If the program is set to Abort, then
the system terminates the program.

Never queuesfor atable.

A temporary tableisinitially clear.

Y es, when program instance
becomes available,

Y es, when assigned.

An instance number is locked.

Thelock is on when the program is
loading into memory.

Thelock is on when the program is
loading into memory. For
restartable programs, the temporary
tables remain locked across restarts
until the program has compl eted
successfully or until the temporary
tables are manually released using
Process Monitor or the Manage
Abends page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

165

Using Temporary Tables Chapter 9

Condition Online Batch
An instance humber is unlocked. Temp tables unlocked on If restart is disabled, the temporary
completion of program. tables are unassigned automatically

in the event of a controlled

In the event of akill or acrash, the abnormal termination.

tables remain locked, and the tables

must be freed using Process If you cancel a process using
Monitor or the Manage Abends Process Monitor, Peopl€eTools frees
page. the temporary tables automatically.

When you use the Manage Abends
page, you must click the Temp
Tables button corresponding to the
correct process instance, and then
click the Release button on the
Temporary Tables tab of the
Application Engine program
properties.

Note. When you have manually released the temporary tables from their locked state, you lose any option to
restart the program run.

Sharing Temporary Table Data

Dedicated temporary tables do not remain locked across process instances. If sequential Application Engine
programs need to share data by way of temporary tables, a parent Application Engine program should call the
programs that share data.

Adjusting Meta-SQL

166

A critical step in implementing parallel processing isto make sure that you have included appropriate meta-
SQL within the code that your Application Engine program executes.

Referencing Temporary Tables

To reference a dedicated temporary table, you must use:
%labl e(record)

Y ou can reference any table with %Table, but only those records defined as temporary tables get replaced
with a dedicated instance table by Application Engine. When you are developing programs that take
advantage of %Table, choose temporary table indexes carefully. Depending on the use of the temporary table
in your program and your data profile, the system indexes may be sufficient. On the other hand, a custom
index may be needed instead, or perhaps no indexes are necessary at all. Consider these issues when
designing your application. Y ou want to define indexes and SQL that perform well in most situations, but
individual programs or environments may require additional performance tuning during implementation.

Note. The default table name refersto PS_recname, where PS_recnamel,2,... represents the dedicated
temporary tables.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

As Application Engine resolves any %Table, it checks an internal array to seeif atemporary table instance
has already been chosen for the current record. If so, then Application Engine substitutes the chosen table
name. If not, asin when arecord does not appear in the temp table list for the program, then Application
Engine uses the base table instance (PS_recname) by default. Regardless of whether %Tableisin PeopleCode
SQL or inan Application Engine SQL Action the program uses the same physical SQL table.

Populating the Temporary Table Process Instance with the Process Instance

All temporary tables should be keyed by process instance. If you use the Continue option when batch or
dedicated tables cannot be assigned, Process Instance is required as a key field. The current process instance
isautomatically put into the state record, but when you insert rows into your temporary tables, you must
supply that process instance. Use %Processl nstance or %Bind(PROCESS INSTANCE) meta-SQL to return
the numeric (unquoted) process instance.

The process instance value is always zero for programs initiated with the Call AppEngine function. hisis
because the program called with Call AppEngine runs in process; that is, it runs within the same unit of work
as the component with which it is associated.

If you are using dedicated tables and have elected to continue if dedicated tables cannot be assigned, then
SQL references to dedicated temporary tables must include PROCESS INSTANCE in the Where clause.

Clearing Temporary Tables

Y ou do not need to delete data from atemporary table manually. The temporary tables are truncated
automatically when they are assigned to your program. If the shared base table has been allocated, because no
dedicated instances were available, then Application Engine performs a delete by process instance instead of
performing atruncate. In such acase, PROCESS INSTANCE isrequired as ahigh-level key.

Y ou can perform additional deletes of temporary table results during the run, but you must include your own
SQL action that uses the % TruncateTable function. If the shared base table has been alocated because no
dedicated instances were available, then %TruncateTable is replaced with a delete by process instance instead
of atruncate.

Note. Y ou should always use %TruncateTable to perform a mass del ete on dedicated temporary tables,
especially if the Continue option isin effect.

Even if you have elected to terminate the program if a dedicated table cannot be alocated, you may still use
%TruncateT able meta-SQL with dedicated temporary tables. %TruncateTable resolves to either a Truncate or
a Delete by process instance, as needed.

The argument of %TruncateTableis atable nameinstead of arecord name. As aresult, you must code your
SQL as shown in this example:

%l runcat eTabl e(% abl e(recnane))

Note. Y ou should avoid hard-coded table names inside %TruncateTable, since they preclude the possibility of
concurrent processing.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 167

Using Temporary Tables Chapter 9

Making External Calls

168

When you call one Application Engine program from another, the assignment of dedicated tables for the
called, or child, program, occurs only if the calling, or parent, program isin a state where acommit can occur
immediately.

PeopleTools enables you to commit immediately, so that Application Engine can commit the update it
performsto lock the temporary table instance. Otherwise, no other parallel process could perform any
assignments. In general, this means that you should issue a commit just prior to the Call Section action.

While making external program calls, note the following:

« If the situation is suitable for a commit, then the temporary table assignment and the appropriate truncates
occur.

« |f the situation is not suitable for acommit, and the called program is set to continue if dedicated tables
cannot be allocated, then the base tables are used instead, and a delete by processinstance is performed.

« |f the situation is not suitable for acommit and the called program is set to terminate if dedicated tables
cannot be allocated, then program execution terminates.

This situation reflects an implementation flaw that you need to correct.

« |f the called Application Engine program shares temporary tables with the calling program, thisis
allowed.

Common temporary tables are the way you share data between the calling and called programs.
Application Engine locks only instances of temporary tables that have not already been used during the
current program run. Temporary tables that already have an assigned instance continue to use that
instance.

External Calls in Batch Mode

For batch runs, list in the program properties of the root program all of the temporary tables that any called
programs or sections use. This ensures that the tables get locked sooner and as a single unit. This approach
can improve performance, and it ensures that all the tables required by the program are ready before
execution starts.

External Calls in Online Mode

If the online program run is designed to use any temporary tables at any point during the Call AppEngine unit
of work, then the root program must have at least one temporary table specified in the Application Engine
program properties. Thisistrue even if the root program does not use temporary tables. Thisis required so
that the system locks the instance number early on to avoid an instance assignment failure after the process
has already started processing.

All temporary tables used by a specific program, library, or external section must be specified in that program
to ensure that the system issues truncates (del etes) for the tables being utilized.

If no temporary tables appear in the root program properties, and Application Engine encounters a %Table
reference for atemporary table record, an error appears.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Sample Implementation

Using Temporary Tables

The following scenario describes the runtime behavior of Application Engine and temporary tables.

Assume you have Program A and Program B, and three temporary table definitions: PS TMPA, PS TMPB,
and PS_TMPC. Vaues on the Temporary Tablestab in the Program Properties dialog box for each program

are as follows;

» Program A: PS_TMPA and PS_TMPB are specified as the dedicated temporary tables, and the instance

count is4.

» Program B: PS_ TMPB and PS_TMPC are specified as the dedicated temporary tables, and the instance

countis 3.

After you run the SQL Build processin Application Designer, the following inventory of temporary tables

appearsin the database.

For PS TMPA:
« PS TMPA1
« PS TMPA2
« PS_ TMPA3
« PS TMPA4

For PS_TMPB:

« PS TMPB1

PS TMPB2
. PS TMPB3
- PS TMPB4
- PS TMPB5
- PS TMPB6
« PS TMPB7
For PS_TMPC:
. PS TMPC1
« PS TMPC2
- PS TMPC3

Because the instance count for Program A is 4, the system builds four instances of PS TMPA and PS TMPB
for Program A to use. Because the instance count for Program B is 3, the system builds an additional three

instances of PS_ TMPB and three instances of PS_ TMPC for Program B to use.

169

Using Temporary Tables Chapter 9

Notice that because Program A and Program B are sharing PS_ TMPB, there are seven instances. The system
derivesthistotal by adding the instance count value from all the programs that share a particular temporary
table instance. In this case, the four from Program A and the three from Program B combine to require atotal
of seven instances of PS_ TMPB to be built.

Given that this collection of temporary tables exists in your database, let's say that you start Program A. At
runtime, Application Engine examines the list of temporary tables dedicated to Program A, and assigns the
first available instances to Program A. Then, assuming that no other programs are running, Application
Engine assigns PS TMPA1 and PS_ TMPB1 to Program A.

Suppose that shortly after you started Program A, another user started Program B. Again, Application Engine
examinesthe list of temporary tables dedicated to Program B and assigns the first available instances. In this
scenario, Application Engine assigns PS TMPB2 and PS_ TMPC1 to Program B. Because Program A is
already using PS_TMPBL1, the system assigns PS TMPB2 to Program B.

The system assigns records, such as TMPA, to programs. The base tables, such as PS TMPA, are also built,
by default, in addition to the dedicated temporary instances. If the Program Properties dialog box setting for
the Temp Tables tab is set to Continue when no instances are available, the system uses the base table instead
of the dedicated instance.

Viewing Temporary Table Usage

This section discusses how to:

« View temporary table usage by record.

» View temporary table settings by program.
» View online instance usage.

» Resolve the temporary table usage warning message.

Viewing Temporary Table Usage by Record

170

Select PeopleTools, Application Engine, Review Temp Table Usage to access the Temp Table Usage by
Record page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

Temp Table Usage by Record

Record (Table) Name:| Q Program Name: Q Refresh |

Lock Details

Record (Table) Name (I;:m"rtmn EFroaram Use Total Instances Ins tam:es :I:lnst;:neges View Programs
AEEXT_TAQ 1 0 \iew Programs
PSMSFTMPCOM 1 10 0 10 View Programs
PSMSFTMPIDS 1 10 0 10 \iew Programs
PSMSFTMPTBL 1 10 0 10 \iew Programs
PTPP_CPKFP_TMF 1 1 0 View Programs
QE_AEEXT_TAD 1 5 0 5 View Programs
QE_AETEST_TAOQ 2 10 0 10 View Programs

Temp Table Usage by Record page

If you implemented temporary tables for parallel Application Engine program runs, use this page and the
Temp Table Usage by Program page to find out how the system all ocates temporary tables to your programs.

Parallel processing is designed to be a performance enhancing option. However, if the demand for temporary
table instances consistently exceeds the current supply, performance suffers. Also, in other situations, your
inventory of temporary table instances may far outnumber demand. Here, you may consider reducing the
number of instances provided to conserve system resources.

This page shows you the following metrics for evaluating inventory and allocation of temporary tables.

Program Use Count Shows the instance count of listed program.

Total Instances Shows the total number of existing instances of atemporary table.

L ocked Instances Shows the current number of instances that they system has locked for program
runs.

Unused I nstances Shows the current number of instances that are available for use.

Viewing Temporary Table Settings by Program

Select PeopleTools, Application Engine, Review Temporary Table Usage, Temp Table Settings by Program
to access the Temp Table Settings by Program page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 171

Using Temporary Tables Chapter 9

Temp Table Settings by Program

Filter List by
Record (Table) Name: | Q Program Name: Q Refresh |

Settings Details
Program Hame Total Batch Abort | Disable View Records
Instances Oy Flag Restart

AETESTEXT 5 M M M View Records
PEMSFGENSED 10

FTFP_CPFRO. 1
QE_AERESTART 5
QE_AETESTEXT 5
QE_AETESTPRG 5

View Records
View Records
View Records
View Records

Z [Z S Z
= Z2 2 2 =
= =2 2 2 =

View Records

Temp Table Settings by Program page

If the Application Engine process was started in Process Monitor, you can select PeopleTools, Application
Engine, Manage Abends to access the Manage Abends page and then the Process Monitor.

Viewing Online Instance Usage

Select PeopleTools, Application Engine, Review Online Instance Usage.

Online Instance Usage _ResetCounts to0 |

Locks Issued by Instance

Temp Table Instance Humber of Locks lssued

0 0

2 o a2 o

1
2
3
4

Online Instance Usage page

Resolving the Temporary Table Usage Warning Message

172

If an Application Engine batch program is unable to get a dedicated temporary table because all instances are
locked, but it can use the base table, the system issues awarning. However, if the program has been set to
terminate when a dedicated instance is not available, then the program terminates even if the base table can be
used.

Y ou could see the warning message in two ways.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Using Temporary Tables

» A warning message appears in the standard output of the process.

When running from the command prompt, the message appears in that window. When the programis
running on a server through PeopleSoft Process Scheduler, the output is sent to the standard status file,
which you can access using Process Monitor.

« A warning message appearsin the AET trace fileif adedicated temporary table instance cannot be locked
because none are available.

This message appears in the trace file regardless of the trace settings you have selected.

If you see the warning regarding base temporary table usage, this means either there aren't enough temporary
table instances defined or some locked instances that must be released.

When arestartable process terminates abnormally, the temporary tables stay locked to enable a smooth

restart. However, if you do not want to restart the process, then the locked temporary tables must be released.
When you cancel the process using Process Monitor, the release of locked temporary tables occurs
automatically. If the process was not launched through PeopleSoft Process Scheduler, Process Monitor does
not track the process. Because of this, you must use the Manage Abends page to rel ease temporary tables used
by processes invoked outside of PeopleSoft Process Scheduler.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 173

Index

Numerics/Symbols

%ListBind
using 93
%ResolveM etaSQL meta-SQL function 87, 96

A

action
Call Section 33
actions
Do Select 38
Do Until 38
Do When 37, 69
Do While 38
execution order 33, 59
inserting 34
Setting properties 34
specifying call section 40
specifying Do 37
specifying log message 41
specifying PeopleCode 39
specifying SQL 36
specifying XSLT 42
understanding 6, 33
understanding call section 8
understanding Do 7
understanding implementation phase for
specifying 3
understanding log message 7
understanding PeopleCode 7
understanding SQL 7
active status 18
AESection class 64
APIs, caling PeopleTools 68
Application Designer 16
Application Engine 4, 5
caching the server 132
controlling abnormal terminations 129
enabling the Debugger 122
enabling traces 152
introducing See Application Engine
meta-SQL See Also meta-SQL, meta-SQL
PeopleCode PeopleCode
programs Application Engine programs
requests 117
reusing SQL 46
set processing 48
specifying actions 3
understanding xi, 1, 5
understanding implementation 2
Application Engine, understanding
implementation phase for setting up properties
2
Application Engine program elements 6, 8
application engine programs
tracing 143
Application Engine programs
accessing properties 23

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

adding sections 27
AEDAEMONMGR 9
gning temporary tables 163
caling from COBOL 135
calling PeopeTools APIs 68
copying/moving elements 21
creating, opening and renaming 19
creating process definitions 114
daemon 9
debugging 122
environment 61
executing manually viacommand line 114
executing online via PeopleCode 114
execution options 113
freeing locked temporary tables 133
including dynamic SQL 72
inserting actions 34
inserting sections 28
inserting steps 31
invoking viacommand line 119
invoking via PeopleCode 118
listing process definitions parameters 115
locating sections 29
making synchronous online calls to 64
managing 113
printing 19
restarting 127
running 113
Setting action properties 34
setting advanced properties 26
setting commits 45
setting general properties 23
setting section properties 30
setting state record properties 23
setting step properties 31
shared valuesin COBOL programs 66
specifying actions 32
specifying temporary tables 25
starting parallel processing 10
starting via Process Request page 116
testing 21
tracing 143
transform 10
types 8
understanding 6, 11
using CommitWork 69
using PeopleCode 57
using PeopleCode (examples) 69
variables 58
viewing 11

application library 27

application servers
enabling traces in configuration files 153
running batch programs 114

arrays 71

B

BEA Tuxedo 114
beginning 131

175

Index

176

behavior 109

filtering section 17
bind variables 75
built-ins

peoplecode 146
bulk insert 35, 48
Bulk Insert statement 48

C

cache
setting parameters 132
caching 132
caching, Application Engine server 132
cals
batch/online mode 168
calling COBOL modules 65
calling PeopeTools APIs 68
calling programs from COBOL 135
calling programs via PeopleCode 118
calling sectionsin other programs 44
making external calls 168
making synchronous online calls to programs
64
specifying call section actions 40
understanding call section actions 8
using RemoteCall 67, 119
call section references, finding 29
COBOL 111
adding copybooks to COBOL programs 135
assigning copybook values 137
calling modules 65
calling programs 135
handling errors 141
transferring data between COBOL and
Application Engine programs 136
command line
executing manual programs 114
invoking programs 119
options 120
restarting programs 130
starting PSDAEMON 9
tracing programs 152
command line syntax 9
comments
show 13
commits
calling COBOL modules 67
making external calls 168
setting commit levels for sections 30
setting commit levels for steps 31
setting commits for programs 45
understanding restarts 39, 127
using the CommitWork function 69
using variables 58
Commit statements 48
CommitWork 69
component variables
peoplecode 59
Configuration Manager
enabling/disabling restart 132
enabling the Application Engine Debugger 122
setting trace options 154
considerations
no rows setting 46
Considerations

database 110
constructs
%BINARY SORT 74
%Bind 74
%Dateln 81
%DateTimeln 82
%EffDtCheck 84
%Il nsertSelect 88
%Il nsertSel ectWithLongs 88
%Join 89
%L ike 90
%L ikeExact 90
%List 90
%L istBind 93
%ListEqual 94
%NoUpperCase 96
%NumToChar 96
%Select 100
%Selectinit 101
%SQL 102
%Table 104
%Test 104
%TextIn 105
%TimeAdd 105
%Timeln 105
%TimeOut 106
%TruncateTable 107
%UpdateStats 108
%Upper 112
understanding 57
copybooks
adding to COBOL programs 135
assigning values 137
creating 11
creating new programs 19
custom 17

D

daemon program 9
database 152
database function 109
database record 59
databases
database optimizer trace 149
improving performance 53
DB2 0S/390
tracing 151
using %UpdateStats 110, 111
DB2 UNIX
tracing 151
using %UpdateStats 109
debugger 122
debugging
enabling the Application Engine Debugger 122
programs 122
setting 123
debugging options
setting up 4
default 17
definition 15
jump to 15
Definition Filter dialog box 16
filtering section 17
Definition view
using 12

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

disabling
%updatestats 111

Do actions 37

Do Until action 38

E

errors
abnormal terminations 129
AEDAEMONMGR 9
bad restarts 131
calling PeopeTools APIs 68
handling COBOL errors 141
responding at the step level 32
specifying log message actions 41
triggering an error status 63
using SQL trace 147

existing programs
opening 20

F

file class 65

filtering
set processing 52
views 16

flows
printing definitions 19
program flow pop-up menu 14
using program flow view 13

functions
%Abs 72
%ClearCursor 76
%COALESCE 77
%DateAdd 80
%DateDiff 80
%DateOut 81
%DatePart 82
%DateTimeDiff 82
%DateTimeOut 83
%DecDiv 83
%DecMult 83
%DTTM 84
%Execute 84
%ExecuteEdits 85
%Next 95
%Previous 95
%Round 99
%RoundCurrency 99
%Substring 103
%TimePart 106
%TrimSubstr 106
%Truncate 107
%TruncateTable 107
CallAppEngine 61, 64, 114, 118
CommitWork 69
Exit 63
math 70
RemoteCall 65, 119
understanding 57

fundamentals
Application Engine 5

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Index

G

get list 25
global variables
peoplecode 59

implementation phases, understanding
implementation 2
Informix
command line options 120
tracing 151
using %UpdateStats 110, 111
insert
section into project 13
instance count 26
instances 159

J

jump
program flow 13

L

local variables
peoplecode 59
location
cache directory 132
logging
specifying log message actions 41
understanding log message actions 7
Log Message action 41
look option
example 126

M

MAIN 6
market 18, 30
math functions 70
menus
Definition view popup menu 12
Program Flow view popup menu 14
message set 27
meta-SQL
adjusting for temporary tables 166
constructs, functions, and meta-variables 72
understanding 5, 57
meta-SQL functions
%ResolveMetaSQL 87, 96
meta-variables
%AeProgram 73
%AeSection 73
%AeStep 73
%AsOfDate 73
%ASsOfDateOvr 73

177

Index

178

%Comma 78
%Concat 78
%CurrentDateln 78
%CurrentDateOut 79
%CurrentDateTimeln 79
%CurrentDateTimeOut 79
%CurrentTimeln 80
%CurrentTimeOut 80
%DateNull 81
%DateTimeNull 82
%FirstRows 87
%Jobl nstance 89
%L eftParen 89
%Processl nstance 96
%ReturnCode 98
%RightParen 99
%RunControl 100
%Space 102
%SQLRows 103
%TimeNull 105
understanding 57
methods section 146
Microsoft SQL Server See MS SQL Server
modify option
example 126
MS SQL Server
tracing 150
using %UpdateStats 110

N

new programs
creating 20
numbering, sequence 70

O

Online Instance Usage page 172
online mode
external calls 168
online programs 114
On Return 39
opening existing programs 19
optimizer trace
performance 152
option 126
options 123
debugging 4, 123
section filtering 17
Oracle
tracing 149
using %UpdateStats 109, 110
overview 1
overview of program types 8

P

parallel processing
adjusting meta-SQL 166
set processing 52
understanding 157
using PSDAEMON 10

PeopleCode 5
accessing state records 62
action execution order 59
AESection class 64
arrays 71
calling COBOL modules 65
deciding when to use 60
Do When actions 69
dynamic SQL 70
file class 65
invoking programs 118
making synchronous online calls 64
math functions 70
opening PeopleCode Editor 13, 14
PeopleCode sections in trace file 145
program environment 61
rowsets 70
sequence numbering 70
specifying actions 39
SQL class 71
understanding 58
understanding actions 7
using if/then logic 63
using in loops 63
using in programs (examples) 69
WINWORD 69
PeopleSoft Configuration Manager
See Configuration Manager
PeopleSoft Integration Broker 7
PeopleSoft Process Monitor See Process Monitor
PeopleSoft Process Scheduler Process Scheduler
PeopleTools APIs, calling 68
PeopleTools Options page 160
platforms
filtering views 18
set processing issues 55
Setting section properties 30
using database optimizer trace 149
pop-up Menus
Definition view 12
Program Flow view 14
printing program/flow definitions 19
Process & Definition page
definitions 114
Process Definition Options page
listing 115
Process Monitor
freeing locked temporary tables 133
locating program information 119
viewing batch timings 149
ProcessRequest 10
Process Request page
restarting programs 131
starting programs 116
process scheduler 114
Process Schedul er
enabling traces in configuration files 153
invoking BATTIMES.SQR 148
program execution options 113
restarting programs 131
running PSDAEMON 9
viewing batch timings 149
program
command line 130
Process Request page 131
program elements 6
program flow view
switching 15

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Program Flow view 13
program flow views 15
program properties
called sections 41
setting 22
Program Properties dialog box 163
programs
renaming 20
programs, Application Engine
See Application Engine programs
program type 10, 27
program types 9
list of 8
properties
setting up See Application Engine
property
do select type 39
dynamic 40
no rows 36
program ID 40
section name 40
PSDAEMON 9
ptpecobl program 65

Q

qualify search 25

R

record list 25
refreshing views 16
refresh views
reordering definition objects 13, 15
renaming programs 19
restart
using 128
Restartable option 46
restarting 9
restarting program
bad restart error 131
enabling/disabling 132
program-level 128
section-level 128, 129
starting programs from the beginning 131
understanding 130
restart program
understanding 127
ReUse 35, 47
rowsets 70
Run Request dialog box 21
runtime 26, 164

S

section 147
insert 13
section name 30
sections
execution order 28
finding 29
inserting 28

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Index

locating 29
section-level restarts 128
setting properties 30
understanding 6, 27, 28
section type 30
sequence numbering 70
set processing
avoiding row-by-row processing 51
examples 52
planning 49
platform issues 55
understanding 48
using 49
Show All Comments 14
SQL 5
expertise 49
including dynamic SQL 72
meta-SQL See Also meta-SQL
MS SQL Server MS SQL Server
opening SQL Editor 13, 14
reusing statements 46
set processing 48
setting the ReUse Statement property 35
specifying actions 36
trace file SQL counts section 144
tracing 147
understanding actions 7
understanding dynamic 70
using bulk insert 48
using the SQL class 71
validating meta-SQL constructs 72
SQL editor 13
SQR 6, 43
starting 10
starting a daemon program
procedure 9
statement
perform 7
select 7
state records
accessing with PeopleCode 62
called programs 41
choosing record types 45
Setting properties 23
sharing 44
understanding 8, 43
step/action
insert 13
steps
inserting 31
setting properties 31
step-level restarts 129
tracing 147
understanding 6, 30
subqueries 53
Sybase
command line options 120
using %UpdateStats 109
syntax and parameters 66

T

tables
Process Request page 117
set processing for denormalized tables 50
temporary See Also temporary tables

179

Index

180

techniques
avoiding 52

temporary table
instances 3
performance 159

temporary table instances
creating 3

temporary tables 25
adjusting meta-SQL 166
allocating runtime 164
assigning to programs 163
building instances 162
calling other programs 168
clearing 167
creating instances 159
defining 160
external calls in batch/online mode 168
flattening 52
freeing locked 133
improving database performance 53
key fields 159
keying by process instance 167
managing instances 162
referencing 166
resolving the usage warning 172
set processing 50
setting the number of instances 160
sharing data 166
understanding 157
understanding instance numbers 162
understanding instances 159
using 157
viewing online instance usage 172
viewing settings by program 171
viewing settings by record 170
viewing usage 170

terminations 129

testing programs 21

timings trace 147

tips
debugging 123

tracefile
sections 144

tracefiles 154

trace results
understanding 143

tracing
Application Engine programs 143
database optimizer 149
DB2 151
enabling 4
enabling Application Engine traces 152
environment information 147
Informix 151
locating files 154
MS SQL Server 150
Oracle 149

PeopleCode actions, built-ins and methods 145

program steps 147
setting command line options 152

setting options in Configuration Manager 154
setting parametersin configuration files 153

SQL 147

SQL counts and timings 144

statement timings 147

summary data 146
transforming program 10
Tuxedo 114

two-pass approach
using 52

U

understanding 113

set processing 49

state records 43
understanding actions 7
understanding fundamentals 5
understanding tracing 143
UNIX 151
using 112

%UpdateStats 111

V

variables
Application Engine program 58
defining global 62
meta-variables See Also meta-variables
setting the cache directory 132
view
menu 15
tabs 15
view contents
filtering 16
views
Definition 12
filtering 16
Program Flow 13
refreshing 16
switching between 15

W

watch option
example 126
work record 59

X

XSLT
specifying actions 42
viewing 13

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

	Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Engine
	Copyright
	Contents
	Preface: Application Engine Preface
	Application Engine

	Chapter 1: Getting Started With Application Engine
	Application Engine Overview
	Application Engine Implementation

	Chapter 2: Understanding Application Engine
	Application Engine Fundamentals
	Meta-SQL
	Application Engine Program Elements
	Sections
	Steps
	Actions
	State Records

	Application Engine Program Types
	Application Engine Program Types
	Daemon Program Type
	Transform Program Type

	Chapter 3: Creating Application Engine Programs
	Viewing Application Engine Programs
	Using Definition View
	Using Program Flow View
	Switching Between Definition and Program Flow Views
	Using the Refresh Option

	Filtering View Contents
	Printing Program and Flow Definitions
	Creating, Opening, and Renaming Programs
	Creating New Programs
	Opening Existing Programs
	Renaming Programs

	Copying or Moving Program Elements
	Testing Application Engine Programs
	Setting Program Properties
	Accessing Properties
	Setting General Properties
	Setting State Record Properties
	Specifying Temporary Tables
	Setting Advanced Properties

	Adding Sections
	Understanding Sections
	Inserting Sections
	Locating Sections
	Setting Section Properties

	Adding Steps
	Inserting Steps
	Setting Up Step Properties

	Specifying Actions
	Understanding Actions
	Inserting Actions
	Setting Action Properties
	Specifying SQL Actions
	Specifying Do Actions
	Specifying PeopleCode Actions
	Specifying Call Section Actions
	Specifying Log Message Actions
	Specifying XSLT Actions

	Chapter 4: Developing Efficient Programs
	Using State Records
	Understanding State Records
	Sharing State Records
	Choosing a Record Type for State Records

	Setting Commits
	Reusing Statements
	Using Bulk Insert
	Using Set Processing
	Understanding Set Processing
	Using Set Processing Effectively
	Avoiding Row-by-Row Processing
	Using Set Processing Examples

	Chapter 5: Using Meta-SQL and PeopleCode
	Understanding Application Engine Meta-SQL
	Using PeopleCode in Application Engine Programs
	Understanding PeopleCode and Application Engine Programs
	Deciding When to Use PeopleCode
	Considering the Program Environment
	Accessing State Records with PeopleCode
	Using If/Then Logic
	Using PeopleCode in Loops
	Using the AESection Class
	Making Synchronous Online Calls to Application Engine Programs
	Using the File Class
	Calling COBOL Modules
	Calling PeopleTools APIs
	Using the CommitWork Function
	Calling WINWORD Mail Merge
	Using PeopleCode Examples

	Including Dynamic SQL

	Chapter 6: Managing Application Engine Programs
	Running Application Engine Programs
	Understanding Program Execution Options
	Creating Process Definitions
	Listing Process Definition Parameters
	Starting Programs with the Application Engine Process Request Page
	Using PeopleCode to Invoke Application Engine Programs
	Using the Command Line to Invoke Application Engine Programs

	Debugging Application Engine Programs
	Enabling the Application Engine Debugger
	Setting Debugging Options

	Restarting Application Engine Programs
	Understanding Restart
	Determining When to Use Restart
	Controlling Abnormal Terminations
	Restarting Application Engine Programs
	Starting Application Engine Programs from the Beginning
	Enabling and Disabling Restart

	Caching the Application Engine Server
	Freeing Locked Temporary Tables

	Chapter 7: Calling Application Engine Programs from COBOL
	Adding Copybooks to COBOL Programs
	Assigning Copybook Values
	Handling COBOL Errors

	Chapter 8: Tracing Application Engine Programs
	Understanding Tracing Application Engine Programs
	Understanding Trace Results
	Trace File Sections
	Step Trace
	SQL Trace
	Statement Timings Trace
	Database Optimizer Trace

	Enabling Application Engine Tracing
	Setting Command Line Options
	Setting Parameters in Server Configuration Files
	Setting Options in PeopleSoft Configuration Manager

	Locating Trace Files

	Chapter 9: Using Temporary Tables
	Understanding Temporary Tables
	Creating Temporary Table Instances
	Understanding Temporary Table Instances
	Defining Temporary Tables
	Setting the Number of Temporary Table Instances
	Building Table Instances

	Managing Temporary Table Instances
	Understanding Temporary Table Instance Numbers
	Assigning Temporary Tables to Programs
	Adjusting Meta-SQL

	Making External Calls
	Viewing Temporary Table Usage
	Viewing Temporary Table Usage by Record
	Viewing Temporary Table Settings by Program
	Viewing Online Instance Usage
	Resolving the Temporary Table Usage Warning Message

	Index

