ORACLE’
PEOPLESOFT ENTERPRISE

Enterprise PeopleTools 8.50
PeopleBook: Integration Broker

September 2009

ORACLE

Enterprise PeopleTools 8.50 PeopleBook: Integration Broker
SKU pt850pbr0

Copyright © 1988, 2009, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracleisaregistered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under alicense agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhihit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

Theinformation contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to usin writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software” or "commercial technical data' pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in avariety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create arisk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Preface
PeopleSoft Integration BroKer Praface ...t XXi
PeopleSoft INtEGration BrOKEroouieeee et ettt st e ae et s be s reeane e ene e XXi
Chapter 1
Getting Started with PeopleSoft Integration BroKEr ...ttt ee e e e 1
PeopleSoft Integration BroKEr OVEINVIEW ..ottt sn i 1
Implementing PeopleSoft INtegration BrOKEr ..o e 1
Other SoUrceS Of INFOMMELTIONoveiiiiiiisie ettt st e bt benbe b e e e e enennas 4
Chapter 2
Under standing PeopleSoft Integration BroKEr ...ttt et 5
Introduction to PeopleSoft INtegration BrOKEroooiieie et 5
WD SEIVICES .ottt ettt et e e bttt e st e ee et e e aeemeeseeebeemeeeeeeeemeeneeseeneeneesseaseeneenseseesseensensennens 6
L1z sz (Lo gl T =7 OSSR 6
T pLe=e = o] I =1V T P 6
Integration Gateway ATChITECIUINEcco ittt sttt sre e e et e ne e e e seeeeas 7
ATChITECIUrE EIBIMENES ...ttt sttt b et et et e nenb e be st e e enenrens 7
(O0 0] 07 o (0] £ USRS 8
LT ST Y == . SR 9
LC T (T VS = V== 9
Integration ENGiNE ATCNITECIUIE ..ottt bbb 10
S S AV ST @ o= (0] R 11
S S AV Te X @ o= = (o g T 1Y 0= 12
(@07 = 1o g T Y/ 0= TSP USSR UP TP PSPSURPN 12
Inbound and OutbouNd REQUESE FIOWS ... s e e s sneesnee s 14
INDOUND REQUESE FIOW ...ttt st sttt et s re e e et e beenaeaestesreeneentens 14
OUBOUNT REGUESE FIOW ...ttt bt n e nn e 17

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ili

Contents

Chapter 3
UNAEerstanding MESSAGINGooveoueieeriirierieie ettt sttt e et b et e st s et e b e s e e e bt b e ne et e e e bt nb e b e s e e ene e 21
MESSAGING TYPES ...veeieitiiteeie et e et st e et et e teste s e e te s tesbeeasesbesteebeessesbesbeeaeessesbesaeeseetesaeeasesesbesteensestestenseensens 21
ASYNCHIONOUS MESSATING ueviterteeesieiesieste ettt st st e e et besae s e e st st st e s e e e e se e b e e bt sb e s e e e st nbe b e ne e s eneebenbente e 21
Brokers, Contractors and QUELES coceeiieiieiiesieeseeseeseestee s e e s e e s e e saeesreesaeessesstesstessreesaeessesssesssenssenses 21
MeSSagiNg SYSIEM SEIVEL PIOCESSES ccceeeeiieitieeeiteste st esaeste s e sae s e stesseestestesseessestessesssessestesseensensessens 22
DispatChers and HaNAIErS ..ottt 23
Asynchronous Service Operation PUDIICAIION cooiiiiieieee e e 24
Asynchronous Service Operation SUDSCIIPLION ccocuiiiiicieece e 28
SYNCNIONOUS MESSAGING -...evetiieeeeeiisteste ettt sttt ie bt h bt b e e e e st b e e b e b e e et e st et e b e e e e ebeenene e s enneneas 31
Synchronous Service Operation PUDIICEHION c.ooi i 31
Synchronous Service Operation SUDSCHPLION c.eociiiiecie e s sreene s 33

Chapter 4
Under standing PeopleSoft | ntegration Broker Metadatacccccceeeieieeiieie s 35
PeopleSoft Integration BroKer MEtaOalalcccevviiieeiesin ettt ee e 35
Order of Precedence for Creating Integration Metadataccccceoiieieeieieneeere e 36

Chapter 5
Understanding SUPPOrted M eSSage SEFUCLUINES ciuiiiirieieeeesie e nnens 39
Integration Broker MESSAgE SITUCIUIESccviiuecieiiiiticeeee et e ste et e et ste e et stesae et e besneenaestesreenaensesrenreas 39
Internal Message Format for REQUESE MESSAJES cveuiriiiiirieieeeiese ettt 39
Internal Message Format for RESPONSE MESSAZES ecieeiieieerecree e e see e e e et e e e sre e sre e s e sreesreenreens 49
[0 Tor= @0 0101 ==5 o] o IS 53
Accessing IBInfo Elements USiNg People@Code ... 54
PeopleSoft Rowset-Based MeSsage FOIMIEL ccceeiicieiieere et sie ettt ste e te e s re e e e sne e reenreeneeens 55
Understanding the PeopleSoft Rowset-Based Message FOrmat ocvceeveveieceese e 56
Rowset-Based MeSsage TEMPIAEE ..o 56
L= Lo IR 0= <o o o 57
RS o B = A o TSR PR PP 57
S O SRS 59
Identifying Changesto Field-Level ARITDULES cccoiiiiiciee et 61
PeopleSoft TIMESLAMP FOMMEL coiiiiieeeeeee bbb nes 62
CDATA and SPeCial CharallerScoooiiiiieieeeses et nre s 62
SChEMA RESITICHIONS ...ttt b e bbb et s bt e st et e neebesbe st e e eneenenren 62
Rowset-Based MeSSage EXAMPIE oiieeiicee ettt nne s 63
NONrowset-Based MESSAJE SITUCIUMNES ocuiieeieiieeieieie e ee e ee s seeeseestesaesne e eestesneeseseesseeneeneeseeereas 65

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

DAY =52 o -SSR 65
SOAP-COMPHBNT MESSAgES ..ottt sttt sttt ne et b e e b et b et e ne e et nb e b et e e s 66
T Y I T = 67
Using Nonrowset-Based Messages in Service Operations Exposed asWSDL ccoevvvvcveveveceeeen, 68
MESSAJE Palt SLIUCLUMNES ...ttt sttt b et b e bbbt s bt e e e se e e Rt e e e se e sb e e b e e e e nbenre e e e nne e 68
Understanding Message Part SITUCLUIES oeeeiieceeceesie ettt sne e e e 68
ROWSEL-Based MESSAGE PaITS cceiuieie ettt sttt e et s re e e stesbeeneeeesreereas 69
NONrOWSet-Based MESSAZE PAS c.occiiiiiiiieeeers e 72
M ESSA0E CONLAINEY SLIUCLUIES veceeeieeieeiteeteeeesee e eeetestestesseeeseesaeesneesntesneeeseesseesaeesneesnsesntesneesneesneesnsesnes 72
Example 1: XML Schema of a Container Message with Rowset-Based Message Partsccccceeueee 72
Example 2: XML Schema of a Container Message with Nonrowset-Based Message Parts 73
Chapter 6
YT = To T T Y =SS T =SS 75
Understanding Managing MESSAgES ccceriiriieeieeieeseesteesessesseesreestee s e e sressaessreesaeesaessaesssessaessaessseessesssenns 75
MESSAE DEFINITIONS ...t s e et s a e e esaesbeeseesesbeeteenaetesaeereeneenre e 75
Y Eeo Sz o L Y 0= SRR R URTOR 75
Naming Conventions for Message Metadataccccocvvveeiecsenie ettt 76
MESSAPE RECOIT SITUCIUMNE o.eieeeeiesieceieie ettt ettt ettt e st e st e et e et esbe s reesaentesaesreennessesneeneeeas 77
Underlying ReCOrd DEfINITIONS cciiiiieiie ettt et sre e e s e nesneeneas 77
Fields Defined @S UPPEICESE ...oocveeciieieiee et tee e te e e e s e ste e st e st e te e s te e sreesaeesaeesseesteesreesaeesneesnnenneas 77
Message Aliases and MESSA0E VEISIONScccuiiiiiieiieiieiteeeeste s e steetestesteeeestestesseessestesneesestesreessensessessens 77
Restrictions for Modifying MESSAgES ovviiierrreeiere ettt sttt sre e e et sneeeeneas 77
Adding Message DEfINITIONS cuecoiiii e sttt sbeere et e s besaeeneesresbesneennesras 78
Understanding Adding Message DEfINITIONScoviiiiiiere et 78
Adding aMessage DEFINITION cciiiiieee ettt e e e seesneeeeseeseeeneeeens 78
Managing ROWSEt-BaSEd MESSAGES cccuiiiiiieiiiie it ete et e e te et e st e st s teesaebesbeeaeetesbesnaenaeseesbeenaensesreernas 81
Understanding Managing ROWSEt-Based MESSAJES ccccvvieeerieiireeiee e sreeee e se s e sre e eae st eneneas 82
Viewing Rowset-Based MeSSage SITUCIUINES oieiirieieeeere ettt sne e e ene e e e 82
INSErting ROOL RECOIAS ecieiiiiiceete ettt st s b e e e et e e ae et e sbesbeeaeebesaesreeneensesneens 85
Inserting Child and PEEr RECOMTS ccuoiiiieiece ettt testeeseeaesaesseeneennesneens 86
SPECITYING RECOI ALIBSES ...ttt sttt st ae et et e st e e e stesseeneeneeseesneensenaeneeas 88
(D= T (ol o o < 88
Excluding FieldS from IMESSBgES oiuiiieieicieceese sttt st st eseeeestesneeneeseennas 89
SPeCIfying FIEld NaME ALIBSES ...oocieee e e e s re e sre e saeesneesneesneas 89
Managing XML Message Schemas for Rowset-Based MESSAJES ccocvveveeveeviesecve e 20
Enforcing Message Record and Field Aliasesin Generated WSDL oocovvviecerineccese e 92
Managing NONrOWSELt-BaSel MESSAZES cccceiverriirrieiiesieseesesseeseesaeesseesseesseesseesneesaeesaeesseesnessnessnsesnsesnenns 93
Understanding Managing Nonrowset-Based MESSBgES ccccvvveveeeerieiecieree e sre e sie e e sae e s 93
Adding XML Message Schemas to Nonrowset-Based MeSSageS ocvvvveereveviecee e 93
Editing Nonrowset-Based XIML SChEMAS ccoeriiiii et 94
Deleting Nonrowset-Based XML MeSSAgE SChEMASocveiiiriiniiieeiisesesie et 94

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. v

Contents

vi

MaNaging MESSAGE PAIS ociiicieie ettt ettt e et s b e e ae e teseesbeeae e besbeebeentesbesaeeneetesreeneenreseas 96
UNderstanding MESSA0E PartScocuoiieiriiienienieeeiesie sttt sttt e e s ene e s e ene s 96
Creating Part MESSAgESccoiiiiiieieieiete sttt b s e e st b e ne e s e e e st e b e s e e e e e neenesne s e n e e nnenrea 97
Distinguishing Blank from Zero in Rowset-Based Part MESSA0ESccccevevevieeeere st 97

Reusing ROWSEL-Based MESSAgE PaltScccioiriiiiiiiiniesieie ettt 97
Understanding Reusing Rowset-Based MeSSage PartScocooevieieiiieeese e 97
Reusing Rowset-Based Message Parts by REFEIENCE ..o 98

Managing CoONtAINEr IMESSAOES veueeueiuirieieieie sttt sttt b et b et s e e e st bt e b e e et e st e b sb e s b e e e st eb e e benee e e nneas 102
Understanding Managing ContaiNer MESSAZEScccvvvrriieriierieeeiiessrestestesneeeseesssesnsessesssessesnsesnsesnnes 102
Understanding Including Level 0 Rows for Message Partsin Container MeSsagesccovvvvevvvieceeenns 103
Adding Message Parts to ContaiNer MESSAJES couvvviriirieeeiriisiesiee et enesneas 105
Adding and Getting Container Messages AttHDULESccccvvrir it 108
Generating XML Message Schemas for Container MESSA0ES cccevvevierreeiesesieeeesie s eeeee e 112

Viewing Service Operations that REfErenCe MESSAgEScccivriririerieieeseses s 113

Resolving Inconsistencies in EXPorted WSDLcoov ittt et ettt e 113
Understanding Using Project Copy and EXPOrted WSDL ccoceeceveieceeese e sie e 114
Viewing Services Operations with Exported WSDL INCONSISIENCIEScoeieieeerinieneieeeee e 114
Clearing EXported WSDL SEAUS FIAQS ...ccvciiieieiecice ettt sttt st s ne b e snas 116

Renaming and Deleting Message DEfiNItIONS occciiiiiieneieinee e 117
Renaming Message DEfINITIONSooiociiiiiie e 118
Deleting Message DEfiNITIONSoccveieiiiiee ettt s sre e et s resre e 119

Deleting Messages DUNNG UPGrate oooieeiiinieiee ettt sttt 119

Chapter 7

Sending and RECEIVING M ESSAGES c.vcueririiriirieieesiesie ettt sttt a et ae st sttt be b et e e s s 121

Understanding Sending and RECEIVING MESSAJESccvveriirririiieeiriesiesee s 121
Prerequisites for Sending and RecailVing MESSA0ES ccvceeriiiiiiese et 121
MESSAQING PrOCESS FIOWS ...ttt sttt b e e 122

Understanding Integration PEOPIECOTEcoo ittt e e 123
Sending and RecaiVing PEOPIECOAE ooeeiie ettt 123
APPHCAITION CIBSSES ...ttt b ettt b b e et e st b e b e e e e e e e bt et et n e ens 125
010 1111 LY, = e L 125
MESSAQING MELNOUS ..o e et et e e e e st e st eeae et e s besaeeneestesneeneesrenrn 129
MeSSagiNG PEOPIECOUE ...ttt b b e ettt b et ae b nnenne e 136

Generating and SENAING MESSAJES ...vccvieiiiiiieeie e ere e s ee e e s te s te s te s ee s eesreesaeesneesaeesneesreesseesaeesneesaeesnes 137
Understanding Outbound MESSAQING ecveeeerieriiiieierie e eeeste e steeae e s re e e e resreeaestesreeaaesaesressaesenrens 137
Handling Outbound Asynchronous Message TranSMIiSSION cceoeeeenerienieneeesesesee e 138
Handling Outbound Synchronous TranNSaCtiONS cccccceeceerierriireriesie e eee e ee e s sseeseeseesneesnes 140
Reading Exceptions for Outbound Synchronous INtegrationsccccceeeeveveveseecese e 142
Overriding Synchronous Timeout IntervalSat RUNTIME ocveviiiiiiieieese e 143
[P00 T a0 T 0o (=SS 144
Setting and Overriding Target Connector PropertieSat RUNTIMEoocoveiiireneieeneseseeeeeseeseeseeeas 144

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Receiving and ProCeSSING MESSAJES cccveieiieiiieiesie e eee e ste st s e te st saeesae s tesbe e e e s testesreensesbesteeseenseseesreeneenns 148
Handling Inbound ASynchronous TranNSaCLIONS ccceoeeereririerieieesie s 149
Handling Inbound Synchronous TranSaCtioNS cccccoereiirineneneeees e 164
Simulating Receiving Messages from External NOUES covoiiiiieic et 167

Processing INBOUNG EITOIS ..ottt ettt e et n s 168
V2= o = 11 1o [5= - S 168
Using the EXit BUIlt-iN FUNCLION ooiiieece ettt st s n e 169

Using Message Object Functionality With Nonrowset-Based MESSAgES coverveierenirieneneeesiesiesieneenens 171
Using the SEEXMLDOC MEINOU ooiecieecee ettt et e e et re e e 171
Using the GEIXIMLDOC MENOU oooiei ettt st st nn et 171

GENEratiNg TESE IMESSATES ..oveieeeieeieetert ettt ettt b et e et b e s b b e et R b e b et e e e bt e b e ne e s e e e st e b e b e e e e ene e 172

Working With MEeSSage SEOMIENES ...cccveiieii et e ettt e et et e s e e sne e eneesneesneesneesnnesnnean 172
Understanding MESSage SEOMENLS ueciiiiiieiiieiee et ee e te et e st s te e te e sre e e e te s aeeaaestesbesneenseseenreenes 172
Understanding PeopleCode used to Work with Message SEgmeNtSccovvereierienenenieieeeseseeseeeas 172
Configuring Nodes to Handle Segmented MESSAgES occvvceriieirrie et see e s s 174
Creating MESSAgE SEOMENTS ...ovicieeeere ettt et e e te e e e e st e s teeseetesbesreese e sesaesaeensestesneensensenren 174
Deleting MESSag8 SEOIMENES eoiiiiiiiitereeet ettt ettt b e et b b s e e e st bt st e s e e e e e bt nenn e e 177
Sending and Receiving Segmented M essages between PeopleSoft Systems cccoceeeeeeveveceeciene, 178
Sending and Receiving Segmented Messages to/from Third-Party Systemsccoceeevvvinenecinenn 179
ACCESSING SEgMENES IN MESSATES eoveueeieeiieiest ettt se et ne s e e nn e renn e 181
Viewing Message SEGMENE DEIAcccccvieiieeierie et ee e sttt st sre e e e tesbeeneesaesresteensenrens 182
Using Restartable Processing for Publishing Large Messages in BatChcccocvcvvevineincncvcsieneees 182

Chapter 8

BUIlAINg M ESSAJE SCNEIMASccieiiiiiceciest ettt st te st e s ae e e te s ae e st e sestesneenaesaesresnnensenrens 185

Understanding the Message SChema BUIlder ..o 185
MESSAE SCHEIMAS ...ttt sttt e et e s besbe e e e besbeeseetestesaeeseseesteeneentens 185
Building, Importing, Modifying and Deleting Message SChemasccooveveerenineneseseseseeeee 186

Selecting and Viewing Datain the Message SchemaBuilder ..o 186
Selecting Datain the Message SChema BUIlder —..........cooeiii e 186
Viewing Message SCheMa DEAIS ccocoviiiiiireee e 188
Viewing XML MeESSaQe SCHEIMA occiiciiciece ettt ettt et et et eeneeenneeneeenes 190

Building Message Schemas for ROWSet-Based MESSAJES ocvvieieieieee ettt 190
Building a Message Schemafor a ROWSet-Based MESSAgEccccoveereriiriinieieeese st 191

Importing Message Schemas for Nonrowset-Based MESSA0ES ccccvvcvvirreerieesiensinseeseeseeseesessessneesnees 191
Importing a Message Schema for a Nonrowset-Based MeSSagecceevvevevececciese e 191

MOdifyiNg MESSAgE SCHEMES oiviieieiiitiitert ettt et b et b e s b nn e s 192
Modifying aMeSSAgE SCHEMEAcciveiieiiciecriee et e e e te et e e te e sre e be e reeee e eeeeeenes 192

Deleting MESSA0E SCHEMEBS ccceeciiiicecese et sttt a e e aeete s besae e e e seesteenaesaesresneennensens 193
Understanding Deleting Message SChemMESoociiiiiiiieeeee e 193
Using the Message Schema Builder Page to Delete Message Schemasoocvvvvev e 193

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. vii

Contents

viii

Chapter 9
MBNAGING SENVICES ...uiititiieieieeie sttt ettt b et e st b b e b et e st et b e s e e e e st e bt nE e b e e e ne e bt eb e nb e b et e s e b et e e s 195
Understanding Managing SEIVICES cciiiiiiieie ettt ee et te st s te e besbesre e s e besaeensesrestesneennesreees 195
Common Elements Used in ThiS Chapter ..ot 195
Accessing and Viewing Service DEfINITIONS cc.ooveiriiiieicieeresese e 197
ACCESSING SENVICE DEFINITIONS ...ceviieciecece et r e s re et sreereenne s 197
Viewing WSDL Documents Generated fOr SENVICES c.cvviiirieieieirenesee et 198
Viewing Service Operation INFOrMELIONccocooeeeieie e s 199
Viewing Messages Defined for Service OPErationSccccvceieeieeieiieeeree e eee et sae et sne s 199
Adding and Configuring Service DEfINITIONS cocoiiiiiiiiiirereee s 200
Adding Service Operationsto Service DEfiNItIONSccocoiiiieieie e 202
Understanding Adding Service Operations to Service DefinitionSccccccevieiivieeie s 202
Adding Existing Service OperationNSto SEIVICEScccciiiierieiririerieieesie st 202
Adding and Configuring New Service Operations for SEIVICEScccvvveevieerieenieeneesee s e e e e 203
Restricting and Enabling Write Access to Service DefiNitioNS ccccevvveiiece s 203
Understanding Restricting Write Access to Service DefiNitioNSccccvevereieienienesceeeeseseeens 204
Restricting Write Accessto Service DEfINITIONS ...t 204
Enabling Write Accessto Service DEfiNItiONSccceiiiiieii e 205
Renaming and Deleting Service DEfINITIONS c.ooviiiiiiiiieeene e 206
Renaming Service DEfINITIONScooiiiic et 206
Deleting Service DEfINITIONSccoiiiiiiireseee ettt ns 207
Activating and Deactivating ServiCeSin BUIK ..o 207
Chapter 10
Managing SErviCe OPEN GLIONScoiiiiriiieieteries ettt ettt se e s e b e b e e se b st e s e e esensesbesneneenenrea 209
Understanding Managing Service OPEraliONSccceiiieiieiieieiteseesesresteeee e stesreesestesaeeseestestesnseseseeses 209
SEIVICE OPEIEHIONS ...oviiiieeeiieieete ettt ettt b et e et ae et b et e e e bt eb e s e e b e e e st eae s b e sb e s e e e st eaeneenne e eneas 210
SErVICE OPEIEION TYPES ..ottt b b e et b e bt n s e e st b snen e e enenne e 210
Naming Conventions for Service Operation Metadatacccceeeveiieeeene s s e 210
SErVICE OPErationN AlIGSES oouiieieeieee bbbttt et 210
SErVICE OPErELiON VEISIONSocueiuiiiieieeeiisie sttt b e se e e s e bt b e sn e e e b s r e e s 211
MONItOring SErVIiCE OPErELIONSccceeieeiiiiteeiese st e e e e et e e este st e s re e e e stesteeaeenaesbesreeseesesreereeneenes 211
Accessing and Viewing Service Operation DEfiNItIONScccceerirereierinesesieeee e 211
Accessing Service Operation DEfINITIONS c.ccoiiiiiiee et ee s 212
Viewing Service Operation DEfiNITIONS ccociiiiieie e 213
Adding Service Operation DEfINITIONS ccoiiiiiieie e 216
Configuring Service Operation DEfiNItIONS ccccciiiiiiiie e s s sreesnes 216
Specifying General Service Operation INfFOrMationccccovvieieresiseere e 217
Defining Service Operation Version INFOrMation coeevireneneiesese e 217

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Adding Handlers to Service OPEralionNScccceieeieeieieceerie st esee st esre e testesreeseestesaeeneesresreans 220
Adding ROULING DEFINITIONS coueiiiiiiieieiserei ettt 220
Activating and Inactivating Routing DEfINItIONS cooiiiiiiireieeeere e 221
Setting Permissions to SErviCe OPEraliONS ccccieiieeeeie e ceete et e et e e et e e s e sresreebesbesreennennesreens 221
Understanding Setting Permission to Service OPErationScoevereeiererenienieesesieseeseeesie s 221
Setting Permission AcCess to Service OPEIralioNScccoeoeeieiererereesee e seeseesee e seeeeesee e sreeneeseesneens 221
Managing Service OPErationN VEISIONScccvciiiiiiiiieesie i eee et e e ste e sseestestesreeeestesaeesaesestesneesesresreenes 222
Creating Service OPEration VEISIONS ccccceeiiirieieieiisiesie ettt se e sb e s s ene e sne e 222
Using Non-Default Service Operation VEISIONS ccccieeieeieereeseeseeseeseeseesseesseessesssesssesssssssesssesssenss 223
Attaching Filesto SErvice OPEraliONS ccceiiiiieieeiie ettt ae e sre e e e tesbe e e e saesresneesenrens 223
Understanding Attaching Filesto Service OPErationNSccoooeoeiirinineneieeese e 223
Using the FTP Attachment ULHILY ...c.oooeece ettt s e 223
Sending Attachment Information with Service OPerationscccccvvvveeveieseeceere s 224
Processing Attachment Information Included in Service Operations cooeoeeeeieeieneneneeieseseneeas 225
Assigning Multiple Queues to Process Service OPEralionSccccvcveierieeiiessiesieesseeeseesneessesssesssesnsessenens 226
Understanding Assigning Multiple Queues to Process Service Operationsc.ccccevveeeveeneseeeennenns 227
Enabling Multi-Queue Service Operation PrOCESSINGccccrirererieiiresesiesieesesee e seenesnes 227
Specifying Multiple Queues to Process Service OPErationSccccccveeeeerenieeeeseese e esee e sre e see e 227
INVOKIiNg MUItiple ServiCe OPEIELIONScccoveiririerierieie sttt se e bbb e seeae st e e 228
Renaming and Deleting Service OPEralioNS cccooeieeiiriererieieeese st n e nnea 229
RENAMING SENVICE OPEIGLONScc.cceeieeiiiitieiese e etee et re e e e ste e reetesbesteeaeesbesaeeaeensestesneenneseears 230
Deleting SErVICE OPEIELIONSc..coeeuiruirieieeeiiriesest ettt st es ettt e et b b e b st b e st e b e e e e sbe b e ne e ene e 230
Chapter 11
Managing Service Operation QUEUEScccecceeiiiiieiieiesesteeieesestesteesaestesaeeeessessesseessessesseensessessesseesessens 233
Understanding Service Operation QUEUES coeoveerirreriinseieesiesresseseses s sse s e s s s e sse e ssesnesessesnes 233
Adding QUEUE DEFINITIONS ooiiiieiicie ettt e et e e et e s ae e e e ste s b e eas e tesreereensentesreeneenes 233
APPlYING QUEUE PartitiONiNg coeieeeieiiieriesieiee sttt s et b s e b e naens e e e e enenre s 235
Understanding QUEUE PartitiONiNgcccooeeeererieieerie e et e et e et eeseesseeneeseeseesseenseneens 236
Selecting PartitioniNg FIEIAS ocuooieii et ens 236
Renaming and DEleting QUEUES ..ottt n e 238
Renaming QUEeUE DEFINITIONSccci ittt et et e e e e e e e e e 239
Deleting QUEUE DEFINITIONSccuiiiiiiice ettt ettt e e et e s re e e e tesbesaeeeesresreeneentens 240
Deleting QUeUES DUINMNG UPGIatE ooiiiieieiie ettt ettt ne e 240
Chapter 12
Enabling Runtime Message Schema Validationccccveceiiienecce s 241
Understanding Message SChema Validation ..o 241
Message SChemMa Validalion ...ttt 241
Message Schema Validation and TransSformationSccccceceeviriieeieneseeeese e 241

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ix

Contents

Message Schema Validation and Part MESSAJEScceeveviiiieeiieiie ettt see ettt sre s snesras 242
Prerequisites for Validating MeSSage SCREMES coiiiiiiiiiriieirese e 242
SElECtiNg SErVICE OPEIELIONSc.eiuiriieeeeieieee ettt sr et s e e e e s e s e s e e e e e b e erenr e s e e enenneare e 242

SeleCting @ SErVICE OPEFELIONicveceieie ittt et re e e te s be e e e stesbeebeentesbesaeeneensenreens 242
Viewing Defined MESSAgE SCHEIMAS oviuiiiiieieises ettt 244

Viewing XML Schemas Defined for MESSAgEScoiiiiiriere ettt nee 244
Enabling Runtime Message Schema Validationccooi e 246

Using the Service Schema Validation Page to Enable Runtime Message Schema Validation 246

Using the Service Operations page to Enable Runtime Message SchemaValidationcccccceeuenee. 246
Chapter 13
Creating Component Interface-Based SErVICESccoiiiiiiiinineeee e 247
Understanding Creating Component Interface-Based SErVICES ccovvviieie v 247

Naming Conventions Integration Metadata Created ccocverireierienireseeeer e 247

User-Defined Method RESINCHIONS ooiiieiee ettt see e 248

Impact of Changing Component INtEIfaCeS ccvivieieii i e 249
PrEIEOUISITES ...ttt b e bt E £ e e e e Rt e bR e et e bt e bt b et e e n e b e n e 249
Selecting Component Interfaces to EXPOSE @S SEIVICES ..oiviiiiieiieiicree e ee e se st e se e eesre e e e saeesreesaeesreens 249
Selecting Component Interface Methods to Include as Service Operations ccccceeveveceeveve e eceeseeenenn, 251
Generating Component Interface-Baset SEIVICES ociiiirciiireseee e 253

Generating Services and Service Operations from Component Interface Methods ..o, 253

Adding Message Names and Descriptions to Generated Service Operationscccccevevvvreereseesrenne 254
Viewing Component Interface-Based Service DEfiNItioNS cccoeviviieieciniseeeeenes s 255
Chapter 14
Managing Service Operation HanAIEr'S ..o 259
Understanding Service Operation HaNAIErS ..ot s 259

Service Operation HanAIEr TYPESoviiieieieiirierieiees ettt bbb sne e 259

Handler Types and MeSSaging TYPEScceiiririeireiriisie et sn e nn e 260
Understanding Implementing HaNAIErSc.ooviiiiieece ettt s s 260
Adding Handlers to ServiCe OPEraLIONScooveeeuirierieeeieesie sttt st b s et nb b ee s 261

Understanding Adding Handler Definitionsto Service OPerationSccooevereieeenenereeseeesesenneeas 262

Adding aHandler t0 aService OPEratioNcccceeieiiieeieeie ettt sre e nre e 262

Specifying General Handler DELAIISccooiiiiiiriiieeeesese e 263
Implementing Handlers Using Application CIaSsSEScccoviiieieniiiecese e 264

Understanding Implementing Handlers Using Application Classesccccccvveeveieceeeese e e 264

Developing Application Classes for Implementing Handlers ... 265

Specifying Application Class Implementation DetailSccccceveeeviriie e 266
Implementing Handlers Using Application ENgiNg Programsccccceceiiieeeeviese e sie e 267

Understanding Implementing Handlers Using Application Engine Programsccccceeeneneneneenenn 267

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Specifying Application Engine Handler Implementation Detailscccocevvveeceve e, 268
Retrieving Service Operation Content from Application Engine Programs c.coeeeevveneneneeiennenns 268
Viewing SUBSCription CONLraCt SEBLUSccoerierieieiriesieriee e 269
Implementing Handlers Using Component INLEIfacESccceoeiiiieieie et 270
Understanding Implementing Handlers Using Component INterfacesccocvvevevevievvvceenesescecee e 270
Specifying Component Interface Handler Implementation DetailScoooeeeeieiiniieeenenc e 271
Implementing Handlers Using Bulk LOAd PrOCESSINGccceeveeiiiiieiieie ettt s sre s 272
Understanding Implementing Handlers Using the Bulk Load Handlerccccoovovveeiniiccceecesee, 272
Enabling Transactional ROIDACK ..o s 273
Specifying XML Record AHIDULE VEIUESc.ccueeieieieceee ettt s 275
Adding Data Structures for Nonrowset-Based MESSAJESccvveiereririnirieseeeesese e 276
Implementing Handlers Using Deprecated PeopleCode HandIerscocvveveevecveese e 277
Chapter 15
Managing Service Operation Routing DefiNitioNSccocoiiiiiieiere e 279
Understanding ROUtiNG DEfINITIONS ocuviuieie ettt s e e e st s resnnennens 279
ROULING DEFINITIONS ...ttt et s re et e e besseeneestesseenseseeseeeneensenseas 279
010 111 I 1Y - USSR 279
Defining RoUting DEfINITIONS ccviiuiieeee ettt re s e e nreenes 280
Methods for Generating and Defining Routing Definitions cccocoviiiecene e 281
Routing Definition Naming CONVENLIONS ociiiiriir et 282
Routing Definition EXIErNal ATIBSES ...cccccieie ettt sttt esaesreens 283
S AVITe =X @] o = = o o 1Y, F=o o oo [SRS 283
GraphiCal ROULINGS VIBW ...ttt st ettt st st s b e e te st e sbeentesbesaeene et e sbesaneneenras 283
FpL= e = 0] IS = 1 SO SR 284
Managing System-Generated Routing DefiNitioNScooeeieiiii e 284
Understanding Managing System-Generated Routing Definitionscccccevviieieeve s, 284
Viewing System-Generated Routing Definition SLAIUSc.cccevivieeiienienicieesis e 284
Initiating System-Generated Routing DefinitioNSccccooiiiiiene e 285
Regenerating System-Generated Routing Definitions ..o 287
Creating ROULING DEFINITIONS veciiiiceeeese sttt esae e sneeaestesreeneeteseeeneeneensenns 287
Understanding Creating Routing DEfiNItIONScccociiiiiiinie e e e 287
Adding Routing DEfINITIONSc.ooiiiiieiece e sttt ae e b s reere e e e 289
Defining General Routing INFOrMELION ceouiiiiieieies e eenne s 292
Defining Routing Parameters for Requests and RESPONSES ccccvverrerrierrerser e seesee e ses e sneesneens 295
Overriding Gateway and CONNECLOr PrOPEIES ccvciiiieeiee e 299
Defining ROULING PrOPEITIES ...oueiiiie ettt st et et estesteese e testesreeneessesneeneenennees 301
Using Introspection to Create Routing DEfINITIONSccooviiiiciecrecse et nee e 302
Understanding Using Introspection to Create Routing Definitions cccceevveveviveecese e 302
Prerequisites for Using Introspection to Create Routing Definitions ccocvveevenvvecccecenc e 302
Selecting Service Operations for Which to Create Routing Definitions cccccevvvivevieeciecceciecinens 303
Selecting NOAES tO INLIOSPECE ...e.eeeieceeeees ettt e st e st e saetesaesreenestesneeneaneas 304

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. Xi

Contents

Xii

Selecting Routing DefiNitioNST0 GENEIAIE coceceeiiiiececee et st pe e e eras 305
ViIieW INrOSPECLION RESUITS ...ttt ettt 307
Activating and Inactivating Routing DEfINITIONS oooiiiiiieeee s 308
Understanding Activating and Inactivating Routing Definitionscccoeveviiieveese e 308
Activating and Inactivating Routing Definitionsin the Routing Componentccceeveevereneeieeene. 308
Activating and Inactivating Routing Definitions in the Service Operations Component 309
Activating and Inactivating Routing Definitions in the Nodes Componentcccoceeveveveceecneenene, 309
Viewing Routing Definitionsin Graphical FOrMEatcoceoriiinineieeseeeesese e 309
Common Elements Used to View Routing Definitionsin Graphical Formatccccoeeevieevieeveennenne. 310
Viewing a Routing Definition in Graphical FOrmMatccccceviiieieiie s 311
Viewing Integration Status and Activating Integration Metadataccccooeverereieniineseseieeese e 313
Understanding Viewing Integration Status and Activating Integration Metadatacccceeeeeveeneennee. 313
Viewing Inactive Integration Metadatacccccecveieiiieciese e 313
Activating Integration Metadata Using the Integration StatuS Pageccceveereneneinene e 313
Retrieving Routing Properties ProgrammatiCallyccooueieeir e s 314
Searching for Duplicate External ROULING ATIBSEScccciiviiieiesie ettt e enes 315
Renaming and Deleting Routing DEfINITIONS ..ot 316
Renaming RoOUtiNG DEFINITIONScooieiiiiciee ettt st sre et e s ne e e sreeras 317
Deleting ROULING DEFINITIONSc.oiiiiiiiieicesie ettt b e sae b 318
Deleting Duplicate RoUting DEfINITIONSooiiiieiiiisee s 318
Chapter 16
Applying Filtering, Transformation and Translation ... 321
Understanding Filtering, Transformation, and Tranglationcccccceveeieieieeieese e 321
Understanding Transform PrOgraMScc.coeeiriierieieeieiesiesie s ss et s e sbe s nneneas 322
TranSfOrM PrOGraIMISoeiiiiiiiee ettt e e et n e e e s enis 322
Transformation Programming LANQUAGES ...c.ecueeeeeiieiieeieie e eteete e steeeesestesseeaesresreesaessestesseensessessesnnsnsenns 323
Third-Party CONSIAEIHONS coveiveeeieriiiterieeee sttt e bbbt ettt e b et e e e e enenbe b e nneneas 324
Defining Transform PrOgramS oocooeiiieeiee ettt ste et e stestesse e e e tesaeeneenseseesneeseseeseeenes 324
Understanding Defining Transform Programsccccccieeeeieie ettt 324
Defining @ TranSform PrOgram oooeeiiieee ettt b e nne e 325
Developing Transform Programs Using PeopleSoft Application ENgINe cccooivieienencniene e 327
Understanding Developing Transform Programs Using PeopleSoft Application Engine —................... 327
Inserting Steps and Actionsinto Transform Programsccceevereneieneneneseeeeesee e 328
Making Working Storage Data Available GIobally ..o 329
Preserving Record and FIeld AlBSES oceeciiiceces ettt st s 330
Tracing TranSfOrM PrOGIaMS ooiiiieieieieee sttt sttt e s e se b b nn e 331
Developing Transforms Using Oracle XSL MapPEr ...ooeeiii ettt 331
Understanding Oracle XSL MaPPEN .oooueeceiececieste ettt et e sttt s reeae e sae e e e saesreennennens 332
DevelopmeNt CONSIAEIELIONS coeiuiieeeeiiieiest ettt s et b e e s nn e 332
1 =0 TS (= U ST 332
INStAlliNG OraCle XSL IM@DPEN ..oeiieeeeeieet ettt sttt b et e e b e e ne b 333

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Specifying the Installation Path and Classpath for Oracle XSL Mapper —ccocevevevvcveve e 333
Launching OraCle XSL M PPEE ..ottt ettt e e b nas 335
Accessing Oracle JDeveloper Documentation and Onling RESOUICES cccevveeeerenienieneeeseseeseeeee 336
Navigating in Oracle XSL MapPEr ociiieee ettt st st s re e e e s tesreeaesaesreeaeetenreas 337
Mapping RECOrdS and FIEIAS cooiiiiiieee et 340
Deleting Record and Field MaPS coiiiieeieere ettt se et ee e neeeneeeen 341
VIieWiNg RAW XSLT COUE ..ooiiiiceece ettt st et be b e ena e b e sreeneennenre e 342
TESHING XSL IM@DS .ottt b bbb bbb b e e e h e e bt b e b e e e bt e nene e s e e ene s 342
Adding and Modifying XSL Map COUEooeeiiiie e s sneas 343
INVOKING TransfOrM PrOQIaIMScc.cieeieiiiiiicee e s e st et e ste e e e st e s te e e e besae s e e e e besaeenaeseestesseenseseesreeseensessens 344
Accessing Transform MESSAgE DEIA cceueruirieieiiisesiee ettt benn e 345
Renaming or Deleting Transform ProgramS cceoiicceeieeree e se e e esieesieesteesseestesseeeeessneeteeseeseseesnsesnnes 347
FIEENING IMESSAOES ...eiiiiticieiie ettt e e st e st e st e et e et et e s be e e e te st e eneenseseeeteensebesaeeneetesaeeneeeestennen 347
Understanding MeSsage FilTENNG oooieiiieeeeee e 347
PeopleCode Fltering EXAMPIE ..c.vooiceecee ettt te e st sre et e e e st e e sre e sneesaeenneenneeas 348
APPIYING TranSfOrMELIONSoccveiiiiciee et e st e s te s re e e e besresreensensesreeneeneens 349
Understanding TransformMBation coeoeeiieieeieesesese s nn e 349
Using XSLT for TransfOrmMationccceiiiiiiicii ettt s e et e e re st sre et ens 350
Applying Message Transformations at the Integration GalEWaY ccceeeeererereneienese e 351
Understanding Applying Message Transformations at the Integration Gatewaycccoceveeveeerereenne. 352
Developing and Implementing Gateway-Based Transformation Programs cccccvevevevevenecceesnene. 352
Setting Integration Gateway Properties for Gateway-Based Transformations —.........c.ccocevevveeneniennnes 353
Understanding LOGGEA EITOISocvoeiiiiereee et 354
Performing Data TranSIaHiON cceiieeeiiie ettt et e e s re e st e s ae e e tesbesae e e e sresteeneesaesresneensenrens 355
Understanding Data TranSlalion ccoeeeiiineneieese et 355
DefiNiNG COOESEL GIOUDS ..eveeieieerieeierie st eteetes e st et e seestesaeeseeseesaeeneetesaeeseenseasesseeneessesseensensessesseensensens 357
(D=] T o T @00 (=5 (S 358
DefiNiNg COOESEL VEIUBS ..ottt bttt 359
Importing and Exporting Codesets Between Databases ccccccvveveerenvenviee s see s e 361
(D Fc (g To @0 0 S = £ SRS 362
USiNg XSLT for Data TranSIation cccceirerieieeisesiesieseeeee s nn s 362
XSLT Trandation EXAMPIE veoeeee ettt te e te e e et e et et e et e e see e sne e neenae e reenreens 365
PeopleCode Tranglation EXAMPIE coeiviiieee ettt st ne s 367
Rejecting Transformation PrOgIaMScoeoeeeririerieeeese ettt b e e e e s e ss e ne e e e eneas 369
Terminating Transformation PrOgraMS cocveieiiiiie e rie et e te et et e e ae e re e e e naeenreenreeneeens 369
Chapter 17
Managing Error Handling, Logging, Tracing, and Debuggingcccccoeeieoerenencerene e 371
Understanding Error Handling, Logging, Tracing and DebugQiNgcccceoeerieririenieisesiesiesee e 371
Understanding Integration Gateway Error Handling ccoooveeeoeneninere e 371
Target Connector Error HANAIING ooeeeeiieeeee ettt s 371
Listening Connector Error HanAliNg oovooeeeeenenieerese et 372

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. Xiii

Contents

Xiv

Integration Gateway EXCEPtION TYPES ...occviiiiicece ettt st st s r e s b s re e 372
Managing Integration Gateway Message and Error LOGQiNGccceevererieieeeneriesenesesesie s 374
Understanding Message and Error LOGOING coveeeerererierieisiesiesseseee s sse e 374
Setting Up Message and Error LOGQING ..cveceiieieeriiiiieiee ettt s sre s sne e e sne b enesreenas 374
Viewing Non-English Charactersin Integration Gateway Log FileSccooeieiinininiienec e 374
Managing MESSAgE LOGOING .eeoveiueeieierieeieeiere sttt et et e e te e e e e tesae e e e seeseeeneeneeseesseeneenseseesneeneenes 375
Managing Error LOGOING ..oceoiei ettt st te st ae et st e st e e e tesneeseenestesneensesresreennentens 376
Managing Application Server Logging and TraCiNg cceoeeerireerieireneseeeeese s 377
(D= olUTe o 1T a0l L 1= o = 1Ko 1SR 378
Debugging Handler PEOPIECOOE cceeiiiiiieiese sttt st n et ne e sreens 378
HaNdIiNg COMIMON ISSUES ...ttt sttt bbbt n e b nn e 379
Chapter 18
PIOVIQING SENVICES ..ottt st b bbbt s b b et et e bt bt st e b et e bt s e e et e e e e e nenbeas 383
Understanding ProViding SENVICES ..ooiiiiicii s st e e te e e e s e e s e be e te e be e ae e ee e be e reereenteeneeneeens 383
Understanding the Provide Web Service Wizard ooeeoeii ettt s 383
Features of the Provide Web ServiCE WIzZalrdcccooiieiiinineseeeeees et 383
Operation TYPES SUPPOITEU veicieeieieiiecieeseecteeteeteeeeeste e teeteeeeeeeeseeeteete e seenseeseenseeseensessesnsennsenns 384
Requirements for Nonrowset-Based Message SChemas ... 384
Locations for Publishing WSDL DOCUMENES ccueiieiriiiiiesieeeesie e 384
UDDI Repositories and ENAPOINIS oueiieeiic e s s s ee s s esre s e s sreesneesneesnee s 385
WSDL URL FOIMMEES .uviiiiiiiieeiiiesiiesiee e steesiee e sieesie e st e steesaeesseesseesseesbeessesssessseesaeesnesssesssesssesssesssensnes 385
Provided WSDL DOCUMENES ooiiiieiiriesieesee st sie sttt te st eseesee s etestesseeneensesaesneensessesneenenseennes 386
PartNerLinKTYPE SUPPOIT ..oeeeeieiie ettt ettt sttt re e et et e e aeeteseesbeeneebesbeeaeessestesaeeneesrenns 395
WSDL DOCUMENE VEISIONIMNG ..eevieeeeieeiintistesseeeiesiestesee e sse e sse e esessesbesse s e e ssesbesbe s e e esessesseneeneenensens 397
PrerequiSiteS fOr ProVIAING SEIVICES ..ot 398
Common Elements Used in ThiS Chapter ...t 399
PrOVIGING SENVICES ...ttt h ettt b e b et st b s bt b et et e ae b ne e e et e b e b et e s 399
Understanding Using the Provide Web Service Wizard ocoooeeieiiecenee e 400
Step 1: SEleCt SErVICESTO ProVIdEocveeiee et sttt s e n e b ne e 400
SteP 2: SeleCt SErVICE OPEIALIONS ...o.eoeeiireirierieieesi ettt sb e b st se b e e sne e e nneneneas 401
SteP 3: VIiew WSDL DOCUMENLS ...coeiiiiieieieriesiesiie ettt eeee e seesteeeestesaeeneeeessesseeeeseesseeneeenseesseensensens 402
Step 4: Specify PUDIIShING OPLIONS ..o et 404
Step 5: View the WSDL GeNeration LOG ooeoeeeriniriiieeeisiesie et 407
Accessing Generated WSDL DOCUMENLS cociiieeiieiieseeseeseeseeseesteesteesteesseessessteesseesseenseensesssesssesssesnnes 407
Using WSDL URLs To Access Generated WSDL DOCUMENEScccveiieiieeeeriesieseeee et see e eseenens 408
Using the WSDL Repository to Access Generated WSDL DOCUMENTScoevverveeeerienierienieesesiesneees 408
Deleting WSDL DOCUIMENS oiiiiiiiiir e sieseesee s e seesee s ee s sseesnesssessstesneesneesneesneesneesntesnsesnsesnsesnsesnsesnses 409
Understanding Deleting WSDL DOCUMENESccuieieiiiiiicieiie sttt s eae e sae s sreenenne s 409
Deleting @WSDL DOCUMENToouiiiieieieiiiniesiee ettt s e nn e 410

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Chapter 19
CONSUMING SENVICES ...ttt sttt ettt s bbb e e e e e h e bt s b e s e e e R e e bt e b e s e e e et e b e b e ne e s e e e bt sb e b e e e e ene e 411
Understanding CONSUMING SEIVICES ...cueciuiitiiieeeiie it ceesie st teeeeste e s e esesbe e sae e sesbesaeesesrestesseessesresseensensens 411
Understanding the Consume Webh ServiCe WiIZard cc.oceeiririnieieenesesie st 411
Consume Web Service Wizard FEAUINES cooiivcieiiisieeeesese et 411
(@01c = 1o T Y 01T U oo =" S 411
Sources for Consuming WSDL DOCUMENT cuvvuirieiiiieieiesiesiesie s 412
Integration Metadata Created by the Consume Web Service Wizard cccceviiiiiecenenenee e 412
MUIIPIE FAUIT IMESSBgES cuviiiciecieeie sttt sttt st sttt s be e ae et e s besaeeseestesbesneesesresreeneententens 413
Multiple Root ElementSin MeSSage SCNEMES cccoiiiiiiniieseeeese et 413
Delivered QUEUES aNO NOUESccciieiiie et e ettt e s e e sre e s ae e s beeste e sreesreesneesreenreerens 413
Binding Style of Consumed WSDL DOCUMENES ocuecieieiieeeese ettt 414
Working with Asynchronous Request/Response Service OperationS ccoccoeeerereneneieseseesieneeeenes 414
Prerequisites for CONSUMING SEIVICES uiiiiiieiie e sieesseesee e ee s s seestestesseeseesneesneesneesneesneesneeeneesnsesnses 414
Common Elements Used in ThiS Chapterccoooieeeie et 414
Setting the PS_FILEDIR Environment Variable for Consuming WSDL from Filesccoovoviniicincns 416
Understanding Setting the PS_FILEDIR Environment Variable ..o 416
Setting PS_FILEDIR in Microsoft Windows ENVIFONMENEScccccevieieeiieneieeeese e see e sieeeennens 416
Setting PS_FILEDIR in UNIX ENVIFONMENTSooviiiiiiiiisieseeeesese e 417
Using the Consume Weh ServiCe WIZard oce ittt st 417
SLEP 1: SEIECE WSDL SOUICE ...ttt sttt sttt bbbttt nn e 417
SEEP 2 SEIECE SEIVICE ..ttt e et b e a e r e e e e rennenn e 419
SEEP 3: SEIECE SEIVICE POIS ...ttt st e st e s e tesaesaeeresbesneennesras 420
Step 4: SeleCt SErVICE OPEIALIONS ...o.eoeeieriirierieieiri ettt sttt b e e st sb e et ae b nneneneas 421
Step 5: Convert ASyNChronOUS OPEraliONS covieriereeirire st 421
Step 6: ReName OPEration MESSAGES ...cvccviiecie e cieeeese sttt st e et s b e s tesbeeeesbesaeeseesesbesaeennesees 423
Step 7: Select a Queue for ASynChronoUS OPEraLiONS cccereriereererinesesseseeesie e sse e sseeesens 425
Step 8: Select the RECEIVEN NOUE ooeie et seeeneeeens 426
Confirm and VIEW RESUITS ooueiiieieieisie ettt sttt et ne e 427
Accessing Integration Metadata for CONSUME SEIVICES ocvcieiiiriirieiesiese e 428
Chapter 20
Integrating with BPEL Process-Based SErVICESccccoiiiiriiiiinenisie et 431
Understanding Integrating With BPEL PrOCESSES oceereiiieeiere ettt see e saeeee e 431
Oracle BPEL ProCeSS MANAOENccccceeieeiiiiieiiesie st eeesteste e etestesaesaesaesteesaessestesteenaestesneeseensestesneensesees 431
PeopleSoft-Delivered Application Classes for BPEL INtegrationSccccoceveveieeieninenieneeieneseesieens 431
Monitoring BPEL Process-Based INtEQrationNSocce i iirier st e 432
Securing BPEL Process-Based INEQrationSccceivieieeie ettt s 432
Prerequisites for Integrating With BPEL PrOCESSES ccoeiiiiiiiieieinisieseee ettt 433

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. XV

Contents

Xvi

Configuring the PeopleSoft-Delivered BPEL NOGEccooviiieeiicecee et 434
Consuming BPEL ProCesS—Basad SEIVICES cooiieiieiiririe ettt e 435
Understanding Consuming BPEL Process-Based SEIVICEScoiriirerininieneesesiesiesee et 435
DePIOYIiNG BPEL PrOCESSEScoiiiiiiiiiieiiesiesieeetestestestestesseeseeseesntesntesntesneesneesneesntesnsesnsesnsesnsssnsesnes 436
Consuming WSDL Documents from BPEL PrOCESSES cccveeeieiiieiieiie e sieseese st stee e ste e se e 436
Consuming SynchronouS BPEL OPEralioNS cccooeriririrerieieisiesie et 436
Consuming Asynchronous Request/Response BPEL OPerationSccccecveveevieeriesnieeseeseeseeeseesneeens 438
Consuming Asynchronous Fire-and-Forget (One-Way) BPEL Operationsccccoceveeeveneveceeneeennn 441
Providing PeopleSoft Servicesto BPEL PrOCESSES cccoiiiriirieiiinisiesieeeese st 444
Understanding Providing PeopleSoft Servicesto BPEL ProCESSESccoccceeveeieereereeriessee e esee e 444
Providing Synchronous PeopleSoft Operationsto BPEL ProCESSES ccccevveieieceerieseseese e sreeeeniens 444
Providing Asynchronous PeopleSoft Request/Response Operationsto BPEL Processesc........ 448
Chapter 21
Integrating with Oracle ESB-Based SEIrVICEScc.ccciriiiriiicinieniesieeeesie et 451
Understanding Integrating with Oracle ESB-Based SErVICES ..ot 451
OFBEIEESB ...ttt bt b e et R bRtk R bt ne b e e e 451
SOFtWEAIE COMPONENTS ...ttt sttt b et e s e bt b et e e et e bt sb e s e e e e e bt b e nn e e e e ebesnennennes 451
Securing Oracle ESB-Based SENVICEScviecceiiiecece sttt sttt s ere et st s ne e 452
Prerequisites for Integrating with Oracle ESB—Basad SEIVICESccooeiiirinineiieenesesreeeese e 453
Consuming and Invoking Oracle ESB-Based SEIVICESccoceireririenieesisesie s 454
Understanding Consuming and Invoking Oracle ESB-Based SErVICEScccvvveeeereneecene e seeeenene 454
Providing Oracle ESB—Based Services for Consuming in PeopleSoftccocvevvinenineneiencnesieens 457
Consuming Oracle ESB-Based SENVICEScccvieeieiiiieceese s eee ettt eae st reeseestesresneesensesneens 457
Invoking Synchronous Oracle ESB-Based SEIVICES ..o 458
Invoking Asynchronous Oracle ESB-Based SENVICEScccecveiiiieeiieriee e eie e see e ses s s s 459
Providing and Invoking PeopleSoft Servicesin OraCcle ESB ..o oeeeie v 464
Understanding Providing and Invoking PeopleSoft Servicesin OraCcle ESB cccccoeoviieieiciniene, 464
Prerequisites for Providing and Invoking PeopleSoft Servicesin Oracle ESB ccocecevevececciene, 464
Providing PEOPIESOft SEIVICESociiiiiiiriirireee sttt 464
Invoking PeopleSoft ServiceSin OraCle ESBooiiiiiiiic e 465
Chapter 22
Using the Inbound File Loader ULIHITYcoccoooeiiiieese et st nae e 467
Understanding the Inbound File Loader ULHILY ccoovoiiiiiiieees e 467
L] o 0Ter =5 oo [PPSR 467
Understanding DevelopmeENt ACHIVITIES ccoiiiiierieieirese e 469
General DevelOPMENT ACHVITIESociceeie e e st re e e s aesreeneennens 469
Development Activities for PeopleSoft Integration Broker ProCeSSINGcooeveerierenieieeieneseseeeeiene 469

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Creating File Layout DEfINITIONSccoviiiiieiiii ettt st s a et s ere e s besne e srenras 470
Development Activities for Application ClassS PrOCESSINGcccovrerieririereniniesieesese e 471
Prerequisites for Using the Inbound File Loader ULHItY ocooveiiiiiieiceeseeeeese e 474
Setting Up Inbound File Loader Processing RUIEScccuoviiiiiieicceceee ettt 474
Understanding Setting Up Inbound File Loader Processing RUIEScccoovveeeenivenceeseseseee e 474
Setting Up Inbound File Loader Processing RUIES c.ooiiiiiieee e 474
INItIAtiNg FilE PrOCESSING ...c.viiiceiee ettt ettt et ettt st e st e eae e be s aeeaeeeestesneenaestesteeneentenrens 477
Understanding INitiating File PrOCESSINGccoeiriririiieieesiesiesie st 477
Initiating Inbound Flat File ProCESSING ..cceeiieiieiicricree e e s et e e e te s sre e e e e e reesre s sre e sreesneesneenneas 478
Testing INbouNd Flat FilE@ PrOCESSING .ocvvcceieiiecieie ettt ee st sttt st te et st s re e s be s ne e e e stesbesnaennenees 479
Chapter 23
Copying Integration Metadata between PeopleSoft Databasesccccccvvveeeccecicececce e, 481
Copying Integration M etadata Between PeopleSoft Databasesoccoeeviiinerieiinese e 481
Understanding Copying Integration M etadata Between PeopleSoft Databasescccoceeveveevecnenne, 481
Understanding Data Dependencies and Relationships for Copying Datacccccevvveeveveseeccieviesienne. 482
Using Data Mover Scriptsto Copy Message Schemaand WSDL Dataccocevevveeecienene e 484
Converting WSDL Documents and Message Schemas to Managed ODjectscccocvvvvivvin e e veeninne 485
Understanding Converting WSDL Documents and Message Schemato Managed Objects 485
Using the Metadata Convert/Schema CONVErt PagEccccovreiiiirieiiiineseseeseees e 486
Converting WSDL Documentsto Managed ODJECESoocvvviii v 486
Converting Message Schemas to Managed ODJECEScoviiriririeieninese e 487
Deleting Data from the Deprecated Data REPOSITONYccveeriiririereeineseseseeesese e 488
Managing Nodes Copied Between Databases and Upgraded from Earlier PeopleTools Releases 488
Appendix A
I gTa= o= R0 TS Tor= o o oL 491
Understanding INteQration SEIUD ecoeieeieiiiiieeeese s eeeeste s e et st s ae st e re e saesreeseessesaesseeneensesrennsessesees 491
Integrating with PeopleSoft Integration Broker SyStemS ooeeie e 496
Understanding ThiS SCENAMOccuiiiirieieisisieseie ettt sttt be b et e e e sbesaenseneas 496
Configuring the System for ThiSSCENAIOocvcieiiiicee e ens 497
Integrating with PeopleSoft Integration Broker Systems Through Firewallscccoooeiiiiieeieiinieee 498
Understanding THiS SCENAMOccuviiirieieieirieseeeeeie ettt sttt se st ns e e sbesaennenees 498
Configuring the System for ThiSSCENAIOvcveceiiiicese e ens 500
Integrating with PeopleSoft Integration Broker Systemsby Using HUDS ... 502
Understanding THiS SCENAMOcuviiirieieieiies ettt e e s st se e nesbesaenneneas 502
Understanding HUD ROULING TYPES .oveeiiiiiieiesie sttt sttt est et esae s sneeeeseesseenes 503
Configuring Generic-ROUtING HUDS ..o e 504
Configuring Sender-Specified ROULING HUDS ooiiiiiiiiieeerse e 507
Integrating With Third-Party SYSLEIMS cccvecieiiiiieere e eeeese st e s resseeaesaesreeneeneesrens 510

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. Xvii

Contents

Understanding ThiS SCENAIOccuvcieiiiicece sttt be b s re e e s tesreeneeseesreens 510
Configuring the System for ThiS SCENANOcuiiriiiirireseree e 511
Integrating with Third-Party Systems by Using Remote Gateway'Sccoeovrererereeienieneseneeeeese e 512
Understanding ThiS SCENAINOocueciieiiiecece sttt bbb s ae e et e s reenaeseesreenes 513
Sending Messages to Third-Party SYSEEMS c.ooiiiiiieieeree e 516
Receiving Messages from Third-Party SYStEMS ooeoieieie e 518
Integrating with PeopleTools 8.47 and Earlier PeopleTools 8.4X SYStEMSc..ocvvveveeve v 521
Understanding THiS SCENAMOcoviiuiiieieiiiieee ettt bt b sn et nb e nnenne e 521
Configuring the System for ThiS SCENAIMOcccuviirie e e 522
Integrating with PEOPIET00IS 8.1X SYSLEIMS ocueiiicieiice ettt et s resneenenre s 524
Understanding THiS SCENAMOcoiiiirieieiniriesiei ettt b e sr e b s e e b snenne e 524
Configuring the System for ThiS SCENAIMOcccuviir i e 525
Appendix B
Transformation Example: Integration Between Two PeopleSoft NOdeSccccovvneieieeienienenienene 527
Understanding ThiS APPENAIX ..c.viiuiiieiie ettt e st e saeese e besbe s e e tesresreennens 527
USING thE EXAMPIE ...ttt b e s et b e b nn e e et b e nnenn e 527
Integration Metadatafor ThiS EXAMPIEccoueeiieiicecsec et e e e nnes 528
Creating Message DEFINITIONSocuicieii ettt st e s b e e re e tesreeneennentesneens 528
Message Definition: PeopleSoft SCIM NOUEcciiiieiiiiiisiereee e 528
Message Definition: PeopleSoft CRM NOGEc.cccveiriiiiir ettt see e 529
SEtiNG UP the COUBSELS ovieieieiieieste ettt b et b ettt b b et nb bt e e 531
Setting Up the TransforMELioN oooeiiieeesese ettt 533
DG IRV T = 11 (o | o PSP 535
Transformation ProCESSING: FITSE PaSSccoiiiiiiiiiiieieieise ettt ene s 536
Transformation Processing: SECONT PSScccoiriiiiiieiieinesiesieseee st 539
Testing the TranSfOrMALIONccoiuiiieiec et st s e e te b e e et e s resae e s e seesreeneensesresreas 540
Appendix C
Understanding Migrated Integration Metadatacoceoereieiene e 541
Understanding Migrated Integration Metadalalcccceveriiieieeiie it 541
[N [@ o= £ RS PSR 541
ChanNEl ODJECLS ...ttt b et et be b s b et et e st s be s b et et e st e aenbenaeneeneas 542
=SS o TSN O o = ot PSSR 542
Node Transaction and Relationship OBDJECISoouiiieiiiiee e e 542
Understanding Migrated Integration PEOPIECOUEccceiiirinieinirese et 543
APPIICALTON CIBSSESeeiiiiieeeeiisie et ete sttt e sttt et e st e s re e s e e s besseeseeseesseeseeseesteeseeneessesteesaensessenneeneensenes 544
PeopICO0E MENOMS ...ttt te e e e aesae et e seesne e e e seeseas 544
BUITE-TN FUNCLIONS ...ttt bbbttt ettt 545
Other Migrated CONSITUCES coviiteieeeeiisiesiesse ettt st e e s bt e st b b e s e e e e sseabeneenneneeneas 545

Xviii Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

S oL o O == o (= =S 545
Correcting Integration PeopleCode That Did NOt MIQratec.cceeiireiieinineseeeeeese e 545
Understanding Integration PeopleCode That Did NOt Migratecccccoovrereieriineneseieeene e 545
Correcting Non-Migrated Integration PEOPIECOUEc.ccveeeeiiiiiicece e 546
T S 549

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. XiX

PeopleSoft Integration Broker Preface

This preface provides an overview of the PeopleSoft Integration Broker PeopleBook.

PeopleSoft Integration Broker

PeopleSoft Integration Broker facilitates integrations with PeopleSoft and third-party systems. It features a
services-oriented architecture that enables you to expose PeopleSoft business logic to PeopleSoft and third-
party systems as services. It aso alows you to consume and invoke services from other PeopleSoft and third-
party systems. The PeopleSoft Integration Broker services framework supports synchronous and
asynchronous messaging, and enables you to use a variety of communication protocols, while managing
message structure, message content, and transport disparities

This PeopleBook describes the procedures for using PeopleSoft Integration Broker to develop and administer
services. These procedures include defining services, service operations, messages, queues, routings, and
transformations. This PeopleBook also discusses devel oping the necessary PeopleCode to send, receive, and
route service operations. It also discusses how to develop PeopleCode and XSLT code to filter, transform,
and translate message content.

Other PeopleBooks discuss configuring and administering the integration system, monitoring integrations,
and testing integrations.

See Also
Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration
Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor

Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Testing Tools and Utilities

PeopleBooks and the Online PeopleSoft Library

A companion PeopleBook called PeopleBooks and the Online PeopleSoft Library contains general
information, including:

« Understanding the PeopleSoft online library and related documentation.
» How to send PeopleSoft documentation comments and suggestions to Oracle.

» How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

« Understanding PeopleBook structure.
« Typographical conventions and visual cues used in PeopleBooks.

» 1SO country codes and currency codes.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. XXi

Preface

XXii

PeopleBooks that are common across multiple applications.

Common elements used in PeopleBooks.

Navigating the PeopleBooks interface and searching the PeopleSoft online library.
Displaying and printing screen shots and graphics in PeopleBooks.

How to manage the PeopleSoft online library including full-text searching and configuring areverse
proxy server.

Understanding documentation integration and how to integrate customized documentation into the library.

Glossary of useful PeopleSoft terms that are used in PeopleBooks.

Y ou can find this companion PeopleBook in your PeopleSoft online library.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1

Getting Started with PeopleSoft
Integration Broker

This chapter provides an overview of PeopleSoft Integration Broker and discusses considerations for how to:

Plan the integration architecture.
Plan integrations.

Determine security.

Plan for support.

Assess staff skills.

PeopleSoft Integration Broker Overview

This PeopleBook describes using PeopleSoft Integration Broker to:

Perform asynchronous and synchronous messaging among internal systems and third-party systems.
Expose PeopleSoft business logic as web services to PeopleSoft and third-party systems.

Consume and invoke web services from third-party and PeopleSoft systems.

Implementing PeopleSoft Integration Broker

This section provides information to consider before you begin to use PeopleSoft Integration Broker.

Planning the Integration Architecture

The two major components of PeopleSoft Integration Broker are the integration gateway and the integration
engine. The integration gateway is a platform that manages the receipt and delivery of messages passed
among systems through PeopleSoft Integration Broker. The integration engine is an application server process
that routes messages to and from PeopleSoft applications as well as transforms the structure of messages and
tranglates data according to specifications that you define.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 1

Getting Started with PeopleSoft Integration Broker Chapter 1

When planning the integration architecture, evaluate historical integration data, current data, aswell as
expected growth and increased traffic. Consider the number of interfaces you have in production and how
much system resources they use. Also consider how many of the interfaces will be nightly batch file loads,
versus how many will be real-time service-based integrations. Devise simulated real-life integration scenarios
where you can estimate the volume and the size of the transactions to a certain degree. Then use this
information for benchmarking and stress testing—which should lead to performance tuning, hardware sizing,
and so on.

Planning Integrations

In planning the integrations to develop and execute, consider the following:

Real-time integrations or scheduled integrations.
Determineif your business needs are best served with real-time integration or scheduled integrations.
Scheduled batch processing and file loads are discussed in other PeopleBooks.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Process Scheduler, " Getting Started With
PeopleSoft Process Scheduler” and Enterprise PeopleTools 8.50 PeopleBook: Application Engine,
"Getting Started With Application Engine."

Inventory the integrations to develop.
Determine the systems and applications that will participate in each integration.

Consider dependencies on other systems owned by other groups having concurrent releases, and data
dependencies within the context of synchronizing data between systems. Also consider if you will need
permission from business owners to integrate with their systems.

Generic integrations.

Consider if you can develop generic integrations. Perhaps in your current environment only two systems
need to exchange information and they do so in a proprietary way. But consider that one day perhaps
additional systemsin your enterprise may also need to exchange that information with the source system.
Will you need to develop transformations for systems that will be integrating later on? Can you develop
the integration in away so that other systemswill be able to consume the service or subscribe to the
information without requiring complex transformations?

Determine the integrations that will require synchronous messaging and those that will asynchronous
messaging.

In PeopleSoft Integration Broker synchronous integrations, all processing stops until aresponseis
received. In PeopleSoft Integration Broker asynchronous integrations, each request is placed in a queue
and is processed as soon as the system can accommodate the request.

Perhaps you may need to stop the processing of fulfilling an order until the system verifies that all
requested items are available in inventory. In such a case, a synchronous integration is needed.

However the processing of support tickets probably should not stop if a system uses integration to add a
new ticket to a queue. In such a scenario, an asynchronous integration might be appropriate.

Prioritize integration development.

Plan to develop mission-critical integrations first, standard integrations next, and nice-to-have integrations
last.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1

Getting Started with PeopleSoft Integration Broker

« Determineif datawill need transformation or translation.
« Plan on using integration simulation tools.

Plan on using simulation tools such as PeopleSoft Send Master to simulate integrations with external
systems that are not under your control. Even when you do control all systemsthat are being integrated, if
you can't get the integration to work using Send Master, you definitely won't be able to get it working
from the external system. Test integrations using Send Master before spending hours debugging a system.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Testing Utilities and Tools, " Getting Started
with PeopleSoft Integration Testing Utilities and Tools."

Determining Security

Unlike a public web service on the internet that retrieves a stock quote for agiven ticker symbol, the web
services and integrations in your PeopleSoft applications can expose sensitive information such as financial
data. PeopleSoft Integration Broker facilitates transfer of information between systems; however, a security
analyst must eval uate security requirements for each individual integration.

For example, security requirements might differ when interfacing with credit card processing vendors, versus
publishing salary information out of human resources, versus synchronizing business units between
applications, and so on.

Perhaps certain information should be available to the public, including systems outside of your company,
such as how many inventory items are available for sale. Other information might be restricted to internal
employees only, internal application systems only, or perhaps only certain users of a particular application
system.

PeopleSoft Integration Broker allows you to secure each individual integration to the level of security
required, aswell as all integration data flowing over the wire.

Planning for Support

Develop a support plan for after "go-live." In doing so, consider the following:

» Determine who in your organization will support integration development and administration.

« Determine the type of error-notification and exception handling to implement to meet your support
requirements. Consider that while system administrators can resolve communication failure between
machines, they may not be able to resolve errors resulting from one system transmitting bad datato
another. Analyst intervention may be required to correct the data. Stronger validation at point of data
entry will result in fewer callsto afunctional analyst to resolve integration issues.

Assessing Staff Skills

Assess the skills of the people who will perform development and administrative functions.

Devel opers working on the implementation of PeopleSoft Integration Broker should have familiarity, training
or experience in the following Peopl eSoft areas:

« PeopleTools.
» PeopleCode.

« Application Engine.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Getting Started with PeopleSoft Integration Broker Chapter 1

In addition, devel opers should have an understanding and research capabilitiesin:
« Extensible Markup Language (XML).

+ XML schema.

« Simple Object Access Protocol (SOAP).

» Hypertext Transfer Protocol (HTTP).

» Web Services Description Language (WSDL).

» Universal Description, Discovery and Integration (UDDI) standard.

« Javaprogramming language.

Other Sources of Information

In addition to the implementation considerations presented in this chapter, take advantage of all PeopleSoft
sources of information, including the install ation guides, release notes, PeopleBooks, curriculum, and red

papers.

See Also

" Peopl eSoft | ntegration Broker Preface," page xxi

Enterprise PeopleTools 8.50 PeopleBook: Getting Sarted with PeopleTools

4 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding PeopleSoft Integration
Broker

This chapter provides overview information about PeopleSoft Integration Broker and discusses:
« Integration gateway architecture.

» Integration engine architecture.

» Services.

» Inbound and outbound request flows.

Important! PeopleSoft Integration Broker interacts with awide variety of third-party products. This
PeopleBook is not an authoritative source of information about any third-party product. Most third-party
products are delivered with their own documentation, which you should use as the primary source for
information about them. This PeopleBook provides guidance that enables you to determine the configuration
settings that PeopleSoft Integration Broker requires to work with third-party products. It does not address all
configuration permutations. Examples of settings and data relative to a third-party product may not be correct
for your particular situation. To properly configure PeopleSoft Integration Broker, you must apply your own
expertise and obtain the most accurate and current information about third-party products.

Introduction to PeopleSoft Integration Broker

PeopleSoft Integration Broker is a middleware technology that:

» Performs asynchronous and synchronous messaging among internal systems and third-party systems.
» Exposes PeopleSoft business logic as web services to PeopleSoft and third-party systems.
« Consumes and invokes web services from third-party and PeopleSoft systems.

PeopleSoft Integration Broker enables you to perform these integrations among internal systems and third-
party integration partners, while managing data structure, data format and transport disparities. Because of its
modular design, you can reuse many elements that you develop for integrations.

PeopleSoft Integration Broker consists of two subsystems: the integration gateway and the integration engine.
The integration gateway resides on a PeopleSoft web server, and the integration engineisinstalled on an
application server as part of the PeopleSoft application.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 5

Understanding PeopleSoft Integration Broker Chapter 2

Web Services

PeopleSoft Integration Broker enables you to provide web services to other PeopleSoft systems and external
integration partners by generating Web Services Description Language (WSDL) documents from integration
metadata. PeopleSoft supports providing WSDL documents to the PeopleSoft WSDL repository and
Universal Description, Discovery, and Integration (UDDI) repositories.

The system enables you to consume WSDL documents from other PeopleSoft and third-party systems, and
automatically creates integration metadata based on the consumed WSDL documents for processing
integrations. Y ou can consume WSDL documents from other PeopleSoft systems, UDDI repositories, WSDL
URLSs, and Web Services Inspection Language (WSIL) URLSs.

Integration Gateway

The integration gateway is a platform that manages the receipt and delivery of messages passed among
systems through PeopleSoft Integration Broker. It supports the leading TCP/IP application protocols used in
the marketplace today and provides extensible interfaces to develop new connectors for communication with
legacy, enterprise resource planning, and internet-based systems.

Additiona featuresinclude:

« Backward compatibility for Extensible Markup Language (XML) links and PeopleSoft Application
Messaging.

» Listening connectors and target connectors that transport messages between integration participants and
the integration engine.

Note. This feature also enables you to build your own connectors to complement those delivered with
PeopleSoft Integration Broker.

« Basiclogging information concerning message receipt, delivery, and errors.

» Connection persistence with continuous open feeds to external systems through connectors, with full
failover capabilities.

» Transport protocol and message format management so that when messages reach the integration engine,
they have a PeopleSoft-compatible message format.

See Also

Chapter 2, "Understanding PeopleSoft Integration Broker," |ntegration Gateway Architecture, page 7

Integration Engine

The integration engine runs on the PeopleSoft application server. Rather than communicating directly with
other applications, the integration engine sends and receives messages through one or more separately
installed integration gateways.

The integration engine:

6 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding PeopleSoft Integration Broker

» Usesamodular architecture, so it can treat gateways as black boxes and communicate with them using
standard connectors.

» Adapts elements of an existing integration to produce a new integration with only minor adjustments.

» Handles messages containing datain avariety of formats. Formats include the PeopleSoft rowset-based
message format, and nonrowset-based message structures including , XML document object model
messages, Simple Object Access Protocol (SOAP) messages, and non-XML files.

» Sends and receives messages asynchronously (like email) or synchronously (suspending activity to wait
for aresponse).

« Applies message transmission type and routing based on specifications that you define in a PeopleSoft
Pure Internet Architecture component.

» By developing and applying application engine transform programs, the application engine can transform
message structure and trand ate data content according to specifications that you define in PeopleSoft Pure
Internet Architecture components.
Y ou develop transform application engine programs in PeopleCode or Extensible Stylesheet Langauage
Transformation (XSLT) code.
These specifications can be reused for other integrations.

» Handles security features such as authentication, nonrepudiation, and cookies.

See Also

Chapter 2, "Understanding PeopleSoft Integration Broker," Integration Engine Architecture, page 10

Integration Gateway Architecture

This section discusses:

Architecture components.
Connectors.
Gateway manager.

Gateway services.

Architecture Elements

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Y ou use an integration gateway to receive and send messages among integration participant systems.

Listening connectors receive incoming messages and deliver the incoming requests to the gateway manager,
which is adispatcher for messages that flow through an integration gateway. The gateway manager
determines which target connector to use to properly deliver the messages to their intended recipients. The
target connector then delivers the messages to the intended recipients using the recipients' preferred protocols.

Understanding PeopleSoft Integration Broker Chapter 2

Listening Connectors

PeopleSoft PeopleSoft

Feopl fit HTTP)
eopleSo Services 8.1

JMS ASZ

Gateway Services

XML Integration Conngctor
Parsing Broker Objects Management

Gateway Manager

ws. | | Erer&Semee || eror | | message
Seacurity Logging Handling Validation

Target Connectors

FPeopleSoft IMS Simple

PeopleSoft|| HTTF 8.1 File

FTP AS2 SMTP

Integration gateway architecture

Connectors

Listening connectors and target connectors transport messages between integration participants and the
integration gateway. These connectors support asynchronous and synchronous message handling. Many
connectors are configurable at the integration gateway and system levels.

Listening Connectors

Listening connectors receive incoming data streams and perform services based on the content of the stream.
They are invoked externally by other PeopleSoft systems and third-party systems.

Target Connectors

Target connectors initiate communication with other PeopleSoft systems or third-party systems. A target
connector might not receive aresponse from the target system during each operation, but every transmission
requires alow-level acknowledgment.

PeopleSoft Integration Broker Connector SDK

The integration gateway provides afully extensible model for developing new connectors built to the
interface specification of the PeopleSoft Integration Broker software development kit (SDK) by PeopleSoft
customers, consultants, and application devel opers.

8 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Using Listening
Connectors and Target Connectors'

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft I ntegration Broker Administration, "Using the
Integration Broker Connector SDK"

Gateway Manager

The gateway manager processes every message that flows through an integration gateway and maintains links
to the other major integration gateway components, including target connectors, listening connectors, and
each of the gateway services.

Listening connectors invoke the gateway manager when they receive arequest. The gateway manager uses
the messaging objects IBRequest and | BResponse to determine how to route each request.

The gateway manager uses a number of the gateway services during this stage to perform operations such as
message validation. The gateway manager then invokes the appropriate target connector based on the content
of the message object and waits for areply from the target connector. When the reply is received, the gateway
manager forwards the reply to the calling listening connector.

If an error occurs, the gateway manager uses the error handling service and works with the service to prepare
an error reply for the listening connector.

Gateway Services

This section describes the gateway services that the gateway manager uses.

XML Parsing

Most IBReguest objects and | BResponse objects that are processed in the system contain a content section
that represents the actual business content sent.

Most of the time, these content sections contain XML data. Consequently, often connectors must parse and
traverse XML. The standard Java XML objects are cumbersome for manipulating XML, so the integration
gateway includes an XML parsing service consisting of objects that provide an intuitive interface for
manipulating XML objects. This service is delivered as a set of three classes: XmlDocument, XmINode and
XmiINodeList.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference

Integration Broker Objects

Two objects comprise the messaging objects service in the integration gateway:
« IBRequest

« IBResponse

These objects represent the request and response that enter and exit PeopleSoft Integration Broker.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 9

Understanding PeopleSoft Integration Broker Chapter 2

See Chapter 5, "Understanding Supported M essage Structures,” page 39.

Connector Management

The connector management service is a composite of several servicesthat manage connectors. The gateway
processes each | BReguest to determine the appropriate connector to call in each situation. Thisis primarily a
message routing function that has varying levels of complexity abstracted from the connectors. The connector
management service also processes the | BResponse returned by each connector.

WS-Security

WS-Security is an extension to the concept of the SOAP envelope header that enables applications to
construct secure SOAP message exchanges. It also provides a means for associating security tokens with

messages.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Setting Up
Secure Integration Environments,” Implementing Web Services Security.

Error and Service Operation Logging

Most components in the system use a standard error logging interface.

Each Peopl eSoft-delivered connector uses the logging API in the same fashion, ensuring that an administrator
can quickly drill down on problems or simply review the logs to see the IBRequest object, the IBResponse
object, and even the raw data exchanged with integration participants.

See Chapter 17, "Managing Error Handling, Logaing, Tracing, and Debugaing," page 371.

Error Handling

The integration gateway provides a standard error handling interface that is exposed to each connector. This
service provides error handling and error logging for most connectors delivered with PeopleSoft Integration
Broker.

Message Validation

Messages that pass into PeopleSoft Integration Broker must contain certain elements to be processed.
Because the integration gateway is the first component that processes messages sent to a Peopl eSoft

application, it performs basic validation—such as making sure that the message identifies its requestor and
service operation name—to ensure that the integration engine and the target application can process them.

Integration Engine Architecture

The integration engine uses a variety of PeopleTools elements to create, implement, manage, and enhance
integrations. Its modular architecture separates integration development activities from administrative
activities.

10 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

The integration engine is a combination of PeopleSoft Application Designer definitions, PeopleSoft Pure
Internet Architecture definitions, PeopleCode, and XSLT code, along with the underlying mechanisms that tie
all these elements together. The underlying mechanisms include the request handlers that process both
inbound and outbound messages according to the specifications in the devel opment and administrative
elements.

The integration engine resides on the PeopleSoft application server.

The following diagram shows the integration components that reside on the integration engine and the types
of processing it performs.

Application Server

Data Handling Event Handlers
PeopleCode Component | | Application
XML Doc SOAP Doc Rowsets Interface Class Bulk Load
Parts / Message Application
Containers Segments Engine
Security Integration Broker Events
MNode User Digital .
Authentication | | Authentication | | Certificates Ol B LR OnRequest
Nonrepudiation || Ws-Security || PeoPieSoft OnRoute | | OnAckReceive
Takens
Performance Throttling Transformation Engine
ultithreaded Load
err ocessing Balancing Master/Slave XSLT Codesets
Routing Management Error Handling and Monitoring
Clueue Management HTTR/HTTPS

Integration engine architecture

Service Operations

A service operation in the PeopleSoft system contains the processing logic for an integration and determines
if the integration is to be processed synchronously or asynchronously. A service operation definition contains
the following definitions:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 11

Understanding PeopleSoft Integration Broker Chapter 2

» Message. A message contains the payload of the integration.

» XML message schema. Message schemas provide the physical description of the datathat is being sent,
including descriptions of fields, field types, field lengths, and so on.

» Handler. A service operation handler contains the processing logic for the service operation.

« Routing. A routing definition specifies the direction of the integration (inbound or outbound), routing alias
names, transformations, and more.

Service Operation Types

PeopleSoft Integration Broker supports four types of service operations.

« Asynchronous one-way.
» Asynchronous request/response.
« Asynchronous to synchronous.

» Synchronous

Note. In this section the term transaction is used to describe the exchange of data between integration
partners.

When PeopleSoft Integration Broker sends a service operation, the receiving system returns a response back
to the sender. With asynchronous transactions, the response is automatically generated by the integration
gateway, and it serves only to notify the sending system of the transmission status of the request . It is
processed automatically by the application server, which uses that status information to update the Service
Operations Monitor. With synchronous transactions, however, the response includes the content that is
reguested by the sending system, and it must be generated and returned by the receiving system.

Operation Types

12

PeopleSoft Integration Broker supports the operation types listed in the table.

For any operation type, the application must invoke PeopleCode, a component interface or data mover script
to generate and send a service operation, or to receive and process a service operation.

Operation Type Routing Actions

Asynchronous — One Way. Outbound. 1. The application generates and sends a request.

2. One or more target system receives and processes the
request.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Understanding PeopleSoft Integration Broker

Operation Type

Routing

Actions

Asynchronous —
Request/Response.

Outbound.

The application generates and sends a reguest.
The target system receives and processes the request.

Sometime later the target system sends a response
which contains the transaction ID from the original
request. ThisID serves as the correlation ID.

The application processes the response using the
correlation 1D to map it back to the original request.
The message sent back is aresponsein the form of a
request.

Asynchronous to
Synchronous.

Outbound.

The application generates and sends a reguest.

A single target system receives and processes the
reguest, then generates and sends a response.

The application receives and processes the response.

Synchronous.

Outbound.

The application generates and sends a regquest.

The application suspends activity and waits for a
response.

A single target system receives and processes the
reguest, then generates and sends a response.

The application resumes its activity and receives and
processes the response.

Asynchronous — One way.

Inbound.

A source system generates and sends a regquest.

The application receives and processes the request.

Asynchronous —
Reguest/Response.

Inbound.

A source system generates and sends a regquest.
The application receives and processes the request.

Sometime |ater the application sends a response back
to the source system. The response includes a unique
identifier from the original request, which servesasa
correlation ID.

The source system processes the response using the
correlation 1D to map it back to the original request.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

13

Understanding PeopleSoft Integration Broker Chapter 2

Operation Type Routing Actions
Asynchronous to Inbound. 1. A source system generates and sends a request.
Synchronous.

2. The application receives and processes the request,
then generates and sends a response.

3. The source system receives and processes the
response.

Synchronous. Inbound. 1. A source system generates and sends a request.

2. The source system suspends activity and waits for a
response.

3. The application receives and processes the request,
then generates and sends a response.

4. The source system resumes its activity and receives
and processes the response.

See Also

Chapter 10, "Managing Service Operations,” Service Operation Types, page 210

Inbound and Outbound Request Flows

This section discusses how inbound and outbound service operation flow through the architecture
components of PeopleSoft Integration Broker.

The PeopleSoft messaging architecture is discussed in greater detail in the Understanding Messaging chapter
of this PeopleBook.

See Also

Chapter 3, "Understanding Messaging," page 21

Inbound Request Flow

This section describes the flow of atypical inbound request from an external system through PeopleSoft
Integration Broker.

14 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

Integration Gateway

JOLT
+——Fequest—r—i- — —
External Listening Pe_?;:gestﬂ" Request Application
System Connector Server
N Connector JOLT
M—Response - +Resp0nse_

Flow of an inbound request through PeopleSoft Integration Broker

After the incoming request has been received by the integration gateway, the flow through PeopleSoft
Integration Broker is the same, regardless of the listening connector used. With thisin mind, no specific
listening connector will be discussed here. The scenario is simple: arequest is sent into the gateway, which
then passesit on to the application server. The application server processes the request, and returns a
response.

Step 1: External System Sends a Request to PeopleSoft Integration Broker

Thefirst step is that an external system sends a request to PeopleSoft Integration Broker. The external system
can be another PeopleSoft system or athird-party system.

Step 2: Request is Received by the Listening Connector

When arequest isreceived by alistening connector, the first thing that the connector does is write the request
to the gateway log file. (The gateway's integration propertiesfile is used to set the logging level, which
controls what is actually written to the log. If messages are not being seen in the log file, check to ensure that
thelog level is set correctly.) The request iswritten exactly asit isreceived. Thisisvery useful in that it
presents exactly what was sent on the wire, before the connector normalizes the service operation for use by
the application server.

The connector then attempts to populate an internal request class with the particulars from the received
request.

A term often used in conjunction with listening connectors is credentials. Incoming requests are thought to
have two logical parts. the credentials and the body. The credentials can be thought of as the information
required by PeopleSoft Integration Broker to process and deliver the payload of the message. The payload is
located in the body. Since the credentials are separate from the body, the integration gateway does not need to
parse or otherwise examine the request body for information on how to route it.

A request without credentials cannot be processed. If the integration gateway receives such arequest an error
will occur and an error message will be returned to the requestor.

Step 3: Request is Processed by the PeopleSoft Target Connector

In order for arequest to be sent from the gateway to the application server, it must pass through the
PeopleSoft target connector. This connector has two major responsibilities: it serializes the request to a string,
and sends that string viaa JOL T connection to the application server.

All communication between the gateway and the application server is done via the use of Multipurpose
Internet Mail Extensions (MIME) messages. When the request is received by the connector, it buildsa MIME
message. Typically the MIME message will only have two sections. In the first, the credentials are stored in
an XML document in a specific format. The second section stores the body.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 15

Understanding PeopleSoft Integration Broker Chapter 2

16

At this point the request isin a standard format understood by both the gateway and the application server.
All requests must eventually resolve to this format before they can be sent to the application server for
processing. Thisformat effectively isolates the application server from the protocols supported by the
gateway; for the most part, there is no information present about what listening connector wasinitially
invoked by the external request.

One credential element that may be present is the one for cookies. Obviously if thisis set, the application
server would be right in assuming that the request came through the HTTP listening connector. However, as a
general rule the application server isisolated from the details of the protocol and the general broker code on
the server does not care what listening connector was used for a given regquest.

Once the MIME message has been built, it is written to the gateway log.

Finally, the connector looks up the JOLT connection properties from the integration properties file and
attempts to send the MIME to the application server. If these properties are not set up correctly, the gateway
will be unable to send requests. Thisis acommon source of error, so care should be taken when configuring
thisfile.

An important point to keep in mind is that even though the MIME request to the application server may
appear in the gateway log file, the actual request may not have made it to the application server, since the log
entry iswritten before the service operation is sent. If acommunication error occurs, the entry will still be
present in the log file. However, if this situation occurs an exception will be thrown and an error log entry
will aso be created.

Step 4: Request is Received by the Application Server

When the MIME request is received by the application server, the system parsesit into a request object. The
MIME structure is not propagated into the server.

Assuming the request parses without error, the application server pre-processes it.
Pre-processing involves:

« Authenticating the service operation, depending on the authentication scheme configured. If the request
fails authentication, an error is returned.

« Determining the direction of the service operation, by looking at the external alias on the routing
definition that is associated with the service operation.

« Determining the runtime handler to invoke. Currently, there are three handler types supported by the
integration broker: Ping, Synchronous, and Asynchronous. The service operation type determines the
handler code to invoke. Synchronous service operations are passed to sync-specific code, and
asynchronous service operations are passed to the publish/subscribe subsystem.

Once arequest has been passed to its respective handler, further processing is dictated by the data and
PeopleCode specific to aparticular system. Or in the case of hub configurations, the request may immediately
be routed to another external system.

Step 5: Response is Returned by the Application Server

Regardless of how the request is processed, a response must be returned by the application server to the
gateway in the same thread of execution. The connection between the gateway and the application server is
essentially synchronous, independent of the type of the service operation type. When the gateway sends a
reguest to the application server, it expects and must get a response.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

In the case of synchronous processing, the generation of the response is blocked by the processing of the
request. A response cannot be generated until the service operation runsto completion. There may be a
noticeable delay in receiving the response, depending on the processing required by the OnRequest method or
if the request is being sent out of the broker to an external system for additional processing.

Asynchronous requests behave differently. Unlike synchronous requests, there is no blocking. A responseis
generated for an asynchronous reguest as soon as the request is placed on the publication queue. Because of
this, aresponse generated for an asynchronous request is not a response in the strictest sense of the term. Such
responses should really be considered acknowledgments that the pub/sub system has received the request.
Receipt of such aresponse is not a guarantee that any applicable notification PeopleCode has been
successfully run.

Responses are converted to the MIME standard by the application server, and are returned to the gateway.

Step 6: Response is Received by the PeopleSoft Target Connector

As soon as the MIME response is received by the PeopleSoft target connector, it iswritten to the gateway log
file.

The MIME response is then parsed back into a gateway request abject, and is then returned to the listening
connector.
Step 7: Response is Received by the Listening Connector

The response object is returned to the listening connector, upon which the response is mapped to a response
suitable for the given protocol.

It should be emphasized that, from the viewpoint of the listening connector, the processing of requestsis done
synchronously. A request is received by alistening connector which then covertsit to a suitable format,
makes a blocking call to the gateway to handle the message, and ultimately gets a response back all in the
same thread of execution.

Outbound Request Flow

The following diagram shows an outgoing request through PeopleSoft Integration Broker.

Integration Gateway

HTTF .
icati REQUESF'—. PeopleSoft ™ Request—»
et Listening Target External
Server HTTP Connector Connector System
— —-Fesponse—
Response

Outgoing request through PeopleSoft Integration Broker to an external system

There are several scenarios that might result in arequest being sent out of the broker. Requests can be sent in
PeopleCode by using the Publish or SyncRequest methods of the Integration Broker class.

Regardless of how the request is created, the mechanism for sending it out of the broker isthe same, and the
flow is the same regardless of the specific outgoing target connector you invoke.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 17

Understanding PeopleSoft Integration Broker Chapter 2

18

Step 1: Application Server Generates Request

Once an outgoing request has been generated, the application server must perform some basic processing
before it can be sent out.

The application server |0oks at the request, and extracts the information about the node that it is being sent to.

If target connector information was not supplied via PeopleCode or as part of the routing, then the node name
is then used to look up the name of the gateway to use, the target connector to use on that gateway, aswell as
any specific connector properties that need to be passed to the connector in order to handle the request. If this
information is not found, an error will occur.

The application server maodifies the outgoing request with the appropriate connector information.

The request is then converted to the MIME standard format, and is sent to the gateway over an HTTP
connection.

The request must be sent to the PeopleSoft listening connector on the gateway. The application server uses
the value of the Gateway URL defined for the given gateway. If this URL is not valid or does not point to the
PeopleSoft listening connector, the application server will be unable to send the request.

Step 2: Request is Received by the PeopleSoft Listening Connector

When the MIME request is received by the PeopleSoft listening connector, it is written to the gateway log
file.

The request is converted from MIME format to a gateway request object.

The connector then examines the request to determine what target connector the request is to be sent to; that
target connector is then invoked.

Step 3: Request is Received by the Target Connector

The target connector validates the request. Each connector requires certain properties to be set, otherwise the
reguest cannot be sent. For example, the HTTP target connector requires that the PrimaryURL be set. If any
mandatory connector properties are missing or are invalid, an error will be thrown.

The target connector then converts the request into whatever format is required by the protocol.

The modified request is then written to the gateway log, and then sent out.

Step 4: Response is Received by the Target Connector

The response received by the target connector is written to the gateway 1og, and the response is used to build
a gateway response object, which is then returned to the PeopleSoft listening connector.

Step 5: Response is Received by the PeopleSoft Listening Connector

The response object is then converted to the MIME standard format by the connector.

The MIME response is then written to the gateway log file, and is then returned to the application server.

Interactions with the gateway are always synchronous. If arequest is sent to the gateway, a response should
be expected.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Understanding PeopleSoft Integration Broker

Step 2 isan HTTP POST request made of the gateway, and the response created herein Step 5isreturned in
response to that HTTP request. The HTTP connection is open for the duration of the processing for that

request.

The response object is returned to the listening connector, upon which the response is mapped to a response
suitable for the given protocol.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 19

Chapter 3

Understanding Messaging

This chapter discusses:
« Asynchronous messaging.
» Synchronous messaging.

Note. For compatibility with previous PeopleTools releases, the PeopleSoft Integration Broker services-
oriented architecture introduced in PeopleTools 8.48 overlays the messaging architecture from earlier
PeopleTools 8.4x releases.

Messaging Types
PeopleSoft Integration Broker supports asynchronous and synchronous messaging.

Synchronous Messaging |n synchronous messaging, a message is sent to a target system. The sending
system must receive a response from the target system before it continuesto
process additional messages.

Asynchronous In asynchronous messaging, a message is sent to atarget system. However, the

M essaging sending system does not need to receive aresponse from the target system before
it can continue processing messages. Thistype of messaging is also referred to as
fire-and-forget messaging.

The remainder of this chapter discusses the PeopleSoft Integration Broker architecture for these messaging
types.

Asynchronous Messaging

This section discusses the PeopleSoft Integration Broker asynchronous messaging architecture.

Brokers, Contractors and Queues
The publication broker, publication contractor, and subscription contractor services are the primary

application server elements required for asynchronous messaging. The publication broker service routes the
workload to both contractor server processes, asillustrated in the following diagram:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 21

Understanding Messaging

ssage
ueue

Fublication
Broker

ication —

S

Chapter 3

ication

tract
usue

Fublication
Contractor

cription
tract
uele

Subscription
Contractor

Application Server

Brokers, contractors, and queues

Publication broker

Publication contractor

Subscription contractor

Acts as the routing mechanism. When an asynchronous service operation arrives
in its queue, the publication broker service runs the defined routing rules. If the
service operation needs to be published to a remote node, it routes the service
operation to the publication contractor service. If the service operation is
subscribed to on the local node, then the publication broker routes the service
operation to the subscription contractor service. Routing involves submitting
either a subscription or publication contract to the appropriate contractor,
followed by an asynchronous call to the contractor service notifying it that work
iswaiting in the queue.

References the publication contract submitted by the publication broker service
and performs an HTTP post of the publication service operation to the integration
gateway. When the integration gateway sends areply indicating that it received
the publication service operation, the publication contractor service updates the
publication contract with the status of subscription processing (Done or Retry).

References the subscription contract submitted by the publication broker service
and runs the appropriate notification PeopleCode. Then it updates the
subscription contract concerning the status of the subscription processing.

Messaging System Server Processes

The application server offers six server processes to handle asynchronous service operations. They work in
pairs to provide three primary services:

22

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Understanding Messaging

Service Server Processes

Publication broker » Broker dispatcher (PSBRKDSP)

¢ Broker handler (PSBRKHND)

Publication contractor « Publication dispatcher (PSPUBDSP)

« Publication handler (PSPUBHND)

Subscription contractor Subscription dispatcher (PSSUBDSP)

e Subscription handler (PSSUBHND)

Dispatchers and Handlers

Copyright

Each of the publication broker, publication contractor, and subscription contractor is comprised of two
individual server processes that work together to handle incoming requests. One server process functions as a
dispatcher, while the other functions as a handler.

This relationship is analogous to the way that the application server handles workstation connections and
reguests. To handle the incoming client requests, the application server has alistener and a handler (or a pool
of handlers). The listener receives the incoming requests and then routes them to an available handler.

Typically, one listener serves many handlers. The relationship between the dispatcher and the handlersis
analogous to the relationship between the Jolt Server Listener (JSL) and the Jolt Server handler (JSH). In the
case of the application messaging server processes, the dispatcher functions as the listener, and the handler as
similar to the JSH.

For the services discussed in this section (publication contractor, subscription contractor, and publication
broker) there are at least two server processes. a single dispatcher and one or more handlers. The PSxxxDSP
server process is the dispatcher, and the PSxxHND server processisthe handler.

Note. The xxx represents BRK, PUB, or SUB. For example, in the case of the publication broker,
PSBRKDSP is the dispatcher and PSBRKHND isthe handler.

This diagram shows the messaging server processes grouped by their functions in the messaging architecture:

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 23

Understanding Messaging

Chapter 3

— | PSERKDSP | | PSERKHND ﬂ

PSPUBDSP

PSPUBHMD ﬂ

Dispatcher Handler(s) Dispatcher Handler(s)
— ’ip:t"" — |pssuepse | [PssuBHND

eue
Dispatcher Handler(s)

Application Server

Dispatchers and handlers

Asynchronous Service Operation Publication

This section discusses:

« Asynchronous publish of a service operation instance.

» Asynchronous publish of a publication contract.

Understanding Asynchronous Service Operation Publication

This section describes the flow of an asynchronous service operation publication through PeopleSoft
Integration Broker, as well as the status of the service operations as they appear in Service Operations

Monitor.

Asynchronous Publish of Service Operation Instances

This diagram shows an asynchronous publish of a service operation instance in the messaging system:

24 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Understanding Messaging

Business Event

Publish ()
age ication
ueue tract
ueue
A
O o

Publication Broker

Publication Contractor

Broker
Dispatcher
PSERKDSF

-o—

@D Publication
Dispatcher
. PSPUBDSP .
Broker Publication
Handler —@—l Handler
PSBREKHND 1 PSPUBHND

Asynchronous publication of an operation instance

The following table describes the processing steps of an asynchronous publication of a service operation
instance in PeopleSoft Integration Broker:

Step Process
1 The service operation is published and enters the message queue.
Theinstance is written to the PSAPM SGPUBHDR tabl e in the database, but is not yet dispatched.
The broker dispatcher process picks up the service operation instance from its queue.
During this stage, the service operation instance status in the Service Operations Monitor is New.
2 The broker dispatcher process passes the service operation instance to the broker handler process.
During this stage, the service operation instance status in the Service Operations Monitor is Sarted.
3 The broker handler process accepts the service operation instance, reads the data, and runs the

routing rules to determine where the publication needs to be delivered.

The broker handler process then writes a publication contract in the PSAPM SGPUBCON table and
notifies the publication contractor service that it has an item to process.

During this stage, the service operation instance status in the Service Operation Monitor is
Working.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

25

Understanding Messaging Chapter 3

Step Process

4 After the service operation is stored in the publication contact queue, the status of the publication
contract in the Service Operations Monitor is New, the service operation instance status is Done,
and the publication dispatcher process picks up the publication contract from its queue.

5 The publication dispatcher process passes the service operation instance to the publication handler
process.

During this stage, the publication contract status in the Service Operations Monitor is Sarted.

Y ou view service operation instance status information on the Operation Instances page of the Service
Operations Monitor. To access the page select PeopleTools, Integration Broker, Service Operations Monitor,
Monitor, Asynchronous Services, Operation I nstances.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Asynchronous Service Operations,” Monitoring Asynchronous Service Operation | nstances.

Asynchronous Publish of Publication Contracts

This diagram shows the flow of an asynchronous publication contract through the messaging system:

blication
ntract
ueue

Destination
Node

d) Available?

Publication Contractor f

¥ | |
Publication | @
| ¥

Dispatcher
PSPUBDSP

Publication

—@—P Handler
PSPUBHND “

O

v

Status
(Done, Error,
Retry, Timeout)

Integration
Gateway

@(l@

Asynchronous publish of a publication contract

The following table describes the processing steps of an asynchronous publish of a publication contract in
PeopleSoft Integration Broker:

26 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Understanding Messaging

Step Process

1 The publication dispatcher picks up the publication contract from the publication contract queue.

2 The publication contract is written to the PSAPM SGPUBCON table in the database, but is not yet
dispatched. The publication dispatcher process passes the publication contract to the publication
handler process.
At this stage the status of the publication contract in the Service Operation Monitor is Sarted.

3 The publication handler process accepts the publication contract and attempts to deliver the
service operation to the integration gateway.
At this stage, the status of the publication contract in the Service Operations Monitor is Working.

4 Theintegration gateway attempts to pass the publication contract to the destination node.

5 Theintegration gateway passes the status of the publication contract back to the publication
handler.

6 The publication handler updates the Service Operations Monitor with the status of the publication

contract. Thetypical statuses that displays in the Service Operations Monitor are:

« Done. The subscribing node successfully
received the contract.

e Timeout.
The system timed out before the
transaction processing was completed.

* Retry.
The system encountered and error.
Theretry is automatic.

When service operations have Retry status, the service operations are not resent until an
internal ping is successful. This ping is similar to a node ping. The publication Contract
dispatcher, as part of its on idle processing, pings anode that isin Retry status and verifies if
the connection is reestablished. When the ping is successful the publication Contract
dispatcher resends the service operation. The service operation goes back to the publication
handler process and returns to Working status.

Y ou can view the status information for the publication contract using the publication Contracts page in the
Service Operations Monitor. To access the page, select PeopleTools, Integration Broker, Service Operations
Monitor, Monitor, Asynchronous Services, Publication Contracts.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Asynchronous Service Operations,” Monitoring Publication Contracts.

The Service Operations Monitor may display statuses for publication contracts other than those discussed in

this section.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Asynchronous Service Operations,” Asynchronous Service Operation Statuses.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 27

Understanding Messaging Chapter 3

Asynchronous Service Operation Subscription

28

This section discusses:

« Asynchronous subscription of a service operation instance.

« Asynchronous subscription contracts.

Understanding Asynchronous Service Operation Subscription

This section describes the flow of an asynchronous service operation subscription through PeopleSoft
Integration Broker, as well as the service operation status at each stage of the process.
Asynchronous Subscription of Service Operation Instances

This diagram illustrates the flow of an asynchronous service operation subscription through PeopleSoft
Integration Broker:

Integration
Gateway

!

Integration
Engine

'

age
Ueue
r'y
@ 4
l Publication Broker Subscription Contractor
¥
Broker () Subscription
Dispatcher vy Dispatcher
PSBRKDSP . PSPUBDSP .
[Broker Subscription
Handler Handler
PSBREKHND PSPUBHND

Asynchronous subscription of a service operation instance

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Understanding Messaging

The following table describes the processing steps of an asynchronous subscription of a service operation
instance in PeopleSoft Integration Broker:

Step Process
1 The service operation enters the message queue. The instance is written to the database, but not
yet dispatched

The broker dispatcher process picks up the service operation instance from its queue.
During this stage, the status of the service operation instance in the Service Operations Monitor is

New.

2 The broker dispatcher process passes the service operation instance to the broker handler process.
During this stage, the status of the service operation instance in the Service Operations Monitor is
Sarted.

3 The broker handler process accepts the service operation instance, reads the data, and runs the

subscription routing rules to determine if the service operation needs to be processed locally.
During this stage, the status of the service operation instance in the Service Operations Monitor is

Working.

4 The broker handler process then writes a subscription contract in the PSAPM SGPUBCON table
(the subscription contract queue) and notifies the subscription contractor service that it has an item
to process.

During this stage, the status of the service operation instance in the Service Operations Monitor is
Working.
5 Once the service operation is stored in the subscription contact queue, the status of the service

operation instance in the Service Operations Monitor is Done.

Processing of the subscription contract begins as the subscription dispatcher process picks up the
subscription contract from its queue, and the status of the subscription contract in the Service
Operations Monitor is New.

In this example, at the point when the status of the asynchronous service operation instance is
Done, the subscription contract statusis New.

Asynchronous subscription contract processing is described in the next section.

Copyright

Y ou can view service operation instance status on the Operation Instances page of the Service Operations
Monitor. To access this page, select PeopleTools, Integration Broker, Service Operations Monitor, Monitor,
Asynchronous Services, Operation |nstances.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Asynchronous Service Operations,” Monitoring Asynchronous Service Operation Instances.

The Service Operations Monitor may display statuses for subscription instances other than those discussed in
this section.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Asynchronous Service Operations,” Asynchronous Service Operation Statuses.

Asynchronous Subscription Contract

This diagram shows the flow of an asynchronous subscription contract:

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 29

Understanding Messaging

30

cription
ontract
ueue

Q

Chapter 3

¢ Subscription Contractor

Subscription
Dispatcher
PSSUBDSP .
Subscription @_} Status
Handler {Done or Error)
PSPUBHND
A
@
I I L
INotification [#---z2z---]
Handler @ Application
Application |ffp======- »| Data Tables
Class J-

Asynchronous subscription contract

The following table describes the processing steps of an asynchronous subscription contract in PeopleSoft

Integration Broker:

Step Process

1 The subscription dispatchers picks up the contract from the subscription contract queue.

2 The subscription dispatcher process passes the subscription contract to the subscription handler
process.
At this stage the status of the subscription contract in the Service Operations Monitor is Started.

3 The subscription handler process accepts the subscription contract and runs the notification
PeopleCode.

4 In the example shown in the diagram, the natification PeopleCode then uses the service operation

data to update application data tables. However, the notification PeopleCode can use the service
operation data as input to look up information, create and publish another service operation, and
so forth.

At this stage, the status of the publication contract in the Service Operations Monitor is Working.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Understanding Messagin

g

Step

Process

The subscription handler passes the status of the subscription contract to the Service Operations
Monitor. The typical statuses that display in the Service Operations Monitor for an asynchronous
subscription contract are:

* Done. The notification PeopleCode ran successfully.

e Error. An error occurred.

To view status information for subscription contracts, use the Subscription Contracts page in the Services
Operation Monitor. To access the page select PeopleTools, Integration Broker, Service Operations Monitor,
Monitor, Asynchronous Services, Subscription Contracts.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Asynchronous Service Operations,” Monitoring Subscription Contracts.

The Service Operations Monitor may display statuses for subscription contracts other than those discussed in

this section.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Asynchronous Service Operations,” Asynchronous Service Operation Statuses.

Synchronous Messaging

This section discusses synchronous messaging in PeopleSoft Integration Broker.

Synchronous Service Operation Publication

This diagram illustrates using PeopleSoft Integration Broker to consume a synchronous service operation:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

31

Understanding Messaging Chapter 3

32

PSAPPSRY
Integration : Integration @
Broker Gateway

G) Logging Tables

¥
Status LOGHDR
(Done or Error)
.LDGDATA

Synchronous service operation publication

The following table describes the processing steps for a synchronous publication of a service operation in
PeopleSoft Integration Broker:

Step Process

1 The integration engine sends the service operation to the integration gateway.

2 Theintegration gateway attempts to deliver the service operation to the destination node.

3 Theintegration gateway sends back the status information to the integration engine

4 The integration engine updates the database tables as well as sends the status information to the

Service Operations Monitor.

The possible statuses in the Service Operations Monitor for a synchronous publication are:
» Done. Theintegration gateway was able to deliver the service operation to the destination node.

e Error. Theintegration gateway was not able to deliver the service operation to the destination
node.

Y ou can view the status information for the invocation in the Service Operations Monitor using the

Synchronous Services page. To access the page select PeopleToals, Integration Broker, Service Operations
Monitor, Monitor, Synchronous Services.

For status information for synchronous integrations to be available in the Service Operations Monitor, you
must set the Logging Level parameter in the routing definition for the service operation.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

See Also

Understanding Messaging

Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Synchronous Service Operations'

Synchronous Service Operation Subscription

This diagram illustrates providing a synchronous service operation through PeopleSoft Integration Broker:

OnRequest
FPeopleCode
Program(s)

Integration @
Gateway

Integration
Engine

PSAPPSRY

Application
Data Tables

Logging Tables

Status
(Done or Error)

Synchronous service operation subscription

The following table describes the processing steps of a synchronous service operation subscription in

PeopleSoft Integration Broker:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

33

Understanding Messaging Chapter 3

Step Process

1 Theintegration gateway passes an inbound synchronous service operation to the integration engine.
2 The integration engine runs an OnRequest PeopleCode event program.

3 The OnRequest PeopleCode program attempts to update the application data tables.

4 The integration engine updates the database tables as well as sends the status information to the

Service Operations Monitor.
The possible statuses in the Service Operations Monitor for a synchronous publication are:

» Done. Theintegration gateway was able to deliver the service operation to the destination node.

» Error. Theintegration gateway was not able to deliver the service operation to the destination
node.

For statusinformation for synchronous integrations to be available in the Service Operations Monitor, you
must set the Logging Level parameter in the routing definition for the service operation.

Y ou can view the status information for the publication in the Service Operations Monitor by using the
Synchronous Services page. Access this page by selecting PeopleTools, Integration Broker, Service
Operations Monitor, Monitor, Synchronous Services.

See Also

Chapter 15, "Managing Service Operation Routing Definitions," Defining General Routing Information, page
292

Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor, "Monitoring
Synchronous Service Operations'

34 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4

Understanding PeopleSoft Integration
Broker Metadata

This chapter provides a high-level overview of the integration metadata that you need to create to use
PeopleSoft Integration Broker. This chapter discusses:

» Integration metadata

« Order of precedence for creating integration metadata

PeopleSoft Integration Broker Metadata

Y ou use the following integration metadata to create and implement integrations using PeopleSoft | ntegration
Broker

Integration PeopleCode Y ou use integration PeopleCode to send and receive messages, route messages
and manipul ate message content.

I ntegr ation gateway This definition is an application's internal representation of an installed

definitions integration gateway. An application requires at least the local gateway, through
which it can send and receive messages. M ultiple nodes can share the same local
gateway, which might be the only gateway that you need for all of the
integrations.

M essage definitions Message definitions provide the physical description of the data that is being
sent, including fields, field types, and field lengths.

Node definitions Nodes represent any organization, application or system that will play apartin
integrations. For example, nodes can represent customers, business units,
suppliers, other trading partners, external or third-party software systems, and so
on.

Node definitions define the locations to or from which messages can be routed.

Because an application can send messages to itself, a default local node
definition that represents the application is delivered as part of the integration
engine. Each PeopleSoft installation must have one, and only one, default local
node

Queue definitions Queues group asynchronous services for processing. In addition, they can dictate
the order of processing of the asynchronous service operations .

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 35

Understanding PeopleSoft Integration Broker Metadata Chapter 4

Routing definitions

Service definitions
Service operation

definitions

Transformation
programs

Routing definitions determine the sender and receiver of an integration. Routing
definitions allow you to specify inbound and outbound transformations that
enable you to transform data structures into those that the sending or receiving
systems can understand.

Service definitions group service operations into logical groups or categories.

Service operations define the processing logic of an integration. They specify the
inbound, outbound and fault messages associated with an integration, the
integration PeopleCode to invoke, and the routing to use.

A transformation or transform program is atype of Application Engine program
that you develop and specify as part of arouting definition. PeopleSoft
Integration Broker supports the use of Extensible Stylesheet L anguage
Transformation (XSLT) code and PeopleCode for developing transform
programs.

Transform programs can transform, filter and trandlate data.

Order of Precedence for Creating Integration Metadata

36

Create integration metadata in the following order:

1. Integration gateway definition.

2. Node definition.

© © N o g bk~ w

Message definition.

Queue definition.

Service definition.

Routing definition.

Integration PeopleCode.

Transformation programs.

Service operation definition.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Understanding PeopleSoft Integration Broker Metadata

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Managing
Integration Gateways," Defining Integration Gateways

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Adding and
Configuring Nodes'

Chapter 6, "Managing Messages," page 75

Chapter 16, "Applying Filtering, Transformation and Trandation," page 321

Chapter 11, "Managing Service Operation Queues," page 233

Chapter 7, "Sending and Receiving Messages," page 121

Chapter 9, "Managing Services," page 195

Chapter 10, "Managing Service Operations,” page 209

Chapter 15, "Managing Service Operation Routing Definitions," page 279

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 37

Chapter 5

Understanding Supported Message
Structures

This chapter discusses the message structures used by PeopleSoft Integration Broker to exchange request and

response messages between the integration gateway and the application server, between other PeopleSoft
systems, and between third-party integration partners. This chapter discusses:

« Internal message format for request messages.
» Internal message format for response messages.
» Accessing |BInfo elements using PeopleCode.
» Rowset-based message structure.

« PSCAMA.

» ldentifying changesto field-level attributes.

» Nonrowset-based message structures.
XML DOM-Compliant messages.

» SOAP-Compliant messages.

* Non-XML messages.

» Message part structures.

+ Message container structures.

Integration Broker Message Structures

This section discusses the internal message formats for request messages and response messages, local
compression, and how to access IBInfo elements.

Internal Message Format for Request Messages

This section discusses the format used to exchange request messages between the integration gateway and the

application server. These messages are frequently referred to as |BRequest messages.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

39

Understanding Supported Message Structures Chapter 5

40

The Multipurpose Internet Mail Extension standard (MIME) is used as the basic structure for internal
messaging. MIME has severa advantages in that the standard is well-known and supported, and because it is
text-based, it is human readable and easily serializable.

Messages using the internal format display in the integration gateway log file. Since thelog fileisavaluable
tool for debugging, anyone reading the file will need to understand how the messages are structured.

Every request message contains three parts.

Headers Thefirst part of arequest message contains headers which describe the attributes
of the whole message.

I Blnfo (Integration The IBInfo (Integration Broker Information) section contains the credentials of

Broker Information) the request aswell as all other information required by the PeopleSoft Integration

Broker to process the message. The IBInfo for arequest has a specific XML
structure which is used for all request messages in the system, regardlessif the
message is being sent to the application server or to the integration gateway.

Content section The final section contains the message body of the original request. Thisisthe
payload and iswhat is ultimately delivered to the final destination.

The following is an example of arequest message in the PeopleSoft internal MIME format:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Message- | D <-123.123.123. 123@owhere >
M nme-Version: 1.0

Understanding Supported Message Structures

Content-Type: nultipart/rel ated; boundary="Integration_Server_ M ME Boundary"

Content-1D: Peopl eSoft-Internal -M ne- Message
Peopl eSof t - Tool sRel ease: 8. 50

--Integration_Server M ME Boundary
Content - Type: text/plain; charset=UTF-8
Cont ent - Transf er - Encodi ng: 8bi t
Content-1D: IBInfo

Content-Di sposition: inline

<?xm version="1.0" ?>
<| Bl nf 0>
<Transacti onl D>

<! [CDATA] caa3a040- bde5-11da-914c-ecaede80d83b]]>

</ Transacti onl D>
<Ext er nal Oper at i onNane>

<! [CDATA] QE_FLI GHTPLAN TRANSFORM VERSI ON_1]] >

</ Ext er nal Qper at i onNane>
<Qper ati onType>async</ Oper ati onType>
<Fronp
<Request i ngNode>
<![CDATA] QE_LOCAL]]>
</ Request i ngNode>
<Request i ngNodeDescri pti on>
<I[CDATA[]]1>
</ Requesti ngNodeDescri pti on>
<NodePasswor d>
<! [CDATA[password]]>
</ NodePasswor d>
<Ext er nal User Nane>
<I[CDATA[]]1>
</ Ext er nal User Nane>
<Ext er nal User Passwor d>
<I[CDATA[11>
</ Ext er nal User Passwor d>
<Aut hToken>

<! [CDATA[oWAAAAQDAgEBAAAAVAI AAAAAAAAS AAAABABTaGRy Ak4Ab Qo4 ACAAMY
AWABTFZConLEj JaPt R6v02o0advRU0Sq2 MAAAAFAFNK YXRhV3i ¢ HYhNDKk AWGERf EQ
sr FyFNOcZSaGz 8x At wAOdzug3y Zv53gMleVaMEs 11 V1I1EFNnZOysj BSv2bnD1n¥|
L3Dgt 4G ETHSHt QCs6cV\BMRy br 9f MBbPOLSQ==]] >

</ Aut hToken>
<WBA- Repl yTo>
<I[CDATA[]]1>
</ W5A- Repl yTo>
<NodeDN\>
<I[CDATA[11>
</ NodeDN>
<OrigUser>
<! [CDATA] QEDM]J] >
</ OrigUser>
<Ori gNode>
<![CDATA[QE_LOCAL]]>
</ Oi gNode>
<OrigProcess>
<I'[CDATA QE_FLI GHTDATA] | >
</ OrigProcess>

<Ori gTi meSt anp>2006- 03- 27T15: 02: 39. 280000- 0800</ Ori gTi neSt anp>

<Di r ect Gat ewayRequest />

<SyncServi ceTi neout />

<Ext er nal Messagel D>
<I[CDATA[]]1>

</ Ext er nal Messagel D>

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

41

Understanding Supported Message Structures Chapter 5

<Segnent sUnOr der >N</ Segnent sUnOr der >
<Conver sati onl D>
<I[CDATA[]]1>
</ Conver sati onl D>
<WBA- Messagel D>
<I[CDATA[11>
</ WBA- Messagel D>
<l nRepl yTol D>
<I[CDATA[]]1>
</ I nRepl yTol D>
<Dat aChunk>
<I[CDATA[11>
</ Dat aChunk>
<Dat aChunkCount >
<I[CDATA[]]1>
</ Dat aChunkCount >
</ Fronp
<W5- Security>
<WsTokenType>
<I[CDATA[11>
</ WETokenType>
</ W&- Security>
<To>
<Dest i nati onNode>
<! [CDATA] QE_I BTGI]] >
</ Dest i nati onNode>
<Fi nal Desti nati onNode>
<I[CDATA[]1>
</ Fi nal Desti nati onNode>
<AppSer ver Domai n>
<I[CDATA[11>
</ AppSer ver Dormai n>
</ To>
<Cooki es>
<I[CDATA[11>
</ Cooki es>
<Pat hl nf 0>
<I[CDATA[11>
</ Pat hl nf 0>
<Ht t pSessi on>
<Sessi onl D>
<I[CDATA[11>
</ Sessi onl D>
</ Ht t pSessi on>
<StrArgs />
<Cont ent Sect i ons>
<Cont ent Secti on>
<| D>Cont ent Secti on0</ | D>
<NonRepudi at i on>N</ NonRepudi ati on>
<Header s>
<versi on>
<! [CDATA[VERSION 1]]>
</ versi on>
<encodi ng>
<! [CDATA[base64(deflate)]]>
</ encodi ng>
<encodedl| engt h>
<! [CDATA[948(709)]]>
</ encodedl| engt h>

<l engt h>
<! [CDATA[2840]]>
</ | engt h>

</ Header s>
</ Cont ent Secti on>

42 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Understanding Supported Message Structures

</ Cont ent Secti ons>
<Publ i shNode>
<![CDATA] QE LOCAL]]>
</ Publ i shNode>
<Queue>
<! [CDATA[QE_FLI GHTPLAN _CHNL]] >
</ Queue>
<SubQueue>
<! [CDATA[¢9de8110- bde5-11da- be79- 846b4e717ebf]] >
</ SubQueue>
<Vi si t edNodes>
<![CDATA] QE_LOCAL|]]>
</ Vi si t edNodes>
<Connect or >
<Connect or Name>
<! [CDATA[PSFTTARCET]] >
</ Connect or Nane>
<Connect or Cl assNanme>
<! [CDATA[Peopl eSoft Tar get Connector]] >
</ Connect or Cl assNane>
<Renot eFr anewor kURL>
<I[CDATA[]1>
</ Renot eFr amewor KURL>
<Connect or Par anet er s>
<Connect or Par anp
<Nanme>
<! [CDATA[URL]]>
</ Nane>
<Val ue>
<I[CDATA[11>
</ Val ue>
</ Connect or Par an®
</ Connect or Par anet er s>
<Connect or Headers />
</ Connect or >
<At t achnent Secti on ResponseAsAttachnment="N' />
</ | Bl nf 0>

--Integration_Server M ME Boundary
Content - Type: text/plain; charset=UTF-8
Cont ent - Tr ansf er - Encodi ng: 8bi t
Content-1D: Content Section0
Content-Disposition: inline

edJydl | 1P2z AUhu8n7T+g/ gAKFdt 6UYXOHCe 1FHOgOLRWELUMIUI MTRRN27+f k7Spvwl t d/ F57¢
TvG+c5W/z9/ f 1 08uf hzf P46/ 1 ycn56Nr 1 Cnz8t r kl TVLRcd kBb4wCr guhGFoUj woP382/ 3w8b
t J+Ug4GT+6f 1ZnVbUZNOAMKT | hF18nt nXk76wWWraalz TRhOuxU7FS9hpopBxEbC51 SSuYegqTuU
seK/ g6hl yJhl | FY+f p8i wuE8Y CYk40VpXgZVCf em 0i 1eSN1l RTYw+l h1t wFDBG569KUUhU KK
gB@BHVAR37VCGUHDzVWOFI dt bx90K1JJAnnDsWOxntr i hZbf Bl xyv4FYKys2Y5YyAol HgVr DHsk
z4hMpQU+cJpYIRxb7REanilnnz8Dak EpoYSHWS 2i PakJCLbR7T1kl PaZnhEZvOy TSqQCnXcWI2Ei Z
al f LSQZOTNQGKPi JHQLR21 3pYFU3V5yTar WK/ yq7i i r zTI WCoS2bl h9esVAOb4McnB831BORI J
TW/ / 9q0JDg8Al Nnc2ghbzr M®BTFal nbuBocf | ZQ59S0yAvj z0C3J3hsHdA PQ XFkLhUZVKYKJ
1Q7nlzj GIbMs6g6heNgquSEMIN+Y2EnM69hCZ7 X/ bChQX s8yNf v67Rw ysnzf r +1f bWy5r Fnj +bT
7r 09t V/ H6B7CLUNBGpbhds Grp9e XHRa®i 3DVScz7f 371 ZueOBf v1z0DxwyQ4 9AGXRKPxh6BM wU
J7t egSyi RRAUR3se8TAgr ehi BKMXSh6GHT(5+PORLY ANQROI | h48ZHO YUy k XAaYCVKVg5AEohI 4L
mhAuUH AG HWQHCKVDj hcVAx4i JAWMPT Av4KCHOXO0/ 7PRRdw87ut f FUS3bp1X4K/ Mnw RDh5W.qFhy
CJaj Vz4+glLr 4SyEInFj ZhLeSWyqgPTx6KpgOh9k6D/ 9z/ 1gQLWv==
--Integration_Server_M ME_Boundary- -

IBRequest Header Section

Thefirst part of arequest message contains headers which describe the attributes of the whole message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 43

Understanding Supported Message Structures

44

Message- | D <-123.123.123. 123@owhere >
M nme-Version: 1.0

Chapter 5

Content-Type: nultipart/rel ated; boundary="Integration_Server_ M ME Boundary"

Content-1D: Peopl eSoft-Internal -M ne- Message
Peopl eSof t - Tool sRel ease: 8. 50

--Integration_Server M ME Boundary
Content - Type: text/plain; charset=UTF-8
Cont ent - Transf er - Encodi ng: 8bi t
Content-1D: IBInfo

Content-Di sposition: inline

IBRequest IBInfo Section

The following example shows an IBInfo section for a request message that was sent from the application

server to the integration gateway (formatted for easier reading):

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Understanding Supported Message Structures

<?xm version="1.0" ?>
<| Bl nf 0>

<Transacti onl D>
<! [CDATA] caa3a040-bde5-11da-914c-ecaede80d83b]]>

</ Transacti onl D>

<Ext er nal Oper at i onNane>

<! [CDATA[QE_FLI GHTPLAN_TRANSFORM VERSI ON _1]] >
</ Ext er nal Qper at i onNane>

<Qper ati onType>async</ Oper ati onType>

<Fr one

<Request i ngNode>
<![CDATA[QE_LOCAL]]>
</ Request i ngNode>
<Request i ngNodeDescri pti on>
<I[CDATA[]]1>
</ Requesti ngNodeDescri pti on>
<NodePasswor d>
<! [CDATA[password]]>
</ NodePasswor d>
<Ext er nal User Nane>
<I[CDATA[]1>
</ Ext er nal User Nanme>
<Ext er nal User Passwor d>
<I[CDATA[11>
</ Ext er nal User Passwor d>
<Aut hToken>
<! [CDATA[owAAAAQDAGEBAAAAV Al AAAAAAAAS AAAABABTaGRy Ak4Ab Qg4 ACAAMY
AWABTFZCQonLEj JaPt R6v02oadvRUoSq2 MAAAAFAFNK YXRhV3i ¢ HYhNDk AWGERF EQ
sr FyFNOcZSaGz 8x Amt wAOdzug3y Zv53gMleVaMEs 11 V1I1EFNnZOysj BSv2bnD1n¥|
L3Dgt 4G ETHSHt QCs6¢cVWBMy br 9f MBbPOLSQ==]] >
</ Aut hToken>
<WBA- Repl yTo>
<I[CDATA[]]1>
</ W5A- Repl yTo>
<NodeDN\>
<I[CDATA[11>
</ NodeDN>
<OrigUser>
<! [CDATA] QEDMJ] >
</ OrigUser>
<Ori gNode>
<![CDATA[QE_LOCAL]]>
</ Oi gNode>
<OrigProcess>
<I'[CDATA[QE _FLI GHTDATA]] >
</ OrigProcess>
<Ori gTi neSt anp>2006- 03- 27T15: 02: 39. 280000- 0800</ Ori gTi neSt anp>
<Di r ect Gat ewayRequest />
<SyncServi ceTi neout />
<Ext er nal Messagel D>
<I[CDATA[]]1>
</ Ext er nal Messagel D>
<Segnent sUnCOr der >N
</ Segment sUnOr der >
<Conver sati onl D>
<I[CDATA[]]1>
</ Conver sati onl D>
<WBA- Messagel D>
<I[CDATA[11>
</ WBA- Messagel D>
<l nRepl yTol D>
<I[CDATA[]]1>
</ I nRepl yTol D>
<Dat aChunk>

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

45

Understanding Supported Message Structures Chapter 5

46

<I[CDATA[]]>
</ Dat aChunk>
<Dat aChunkCount >
<I[CDATA[]1>
</ Dat aChunkCount >
</ Fronp
<W5- Security>
<WsTokenType>
<I[CDATA[]]1>
</ WETokenType>
</ W& Security>
<To>
<Dest i nat i onNode>
<! [CDATA] QE_I BTGI]] >
</ Dest i nati onNode>
<Fi nal Desti nati onNode>
<I[CDATA[11>
</ Fi nal Desti nati onNode>
<AppSer ver Donai n>
<I[CDATA[11>
</ AppSer ver Donai n>
</ To>
<Cooki es>
<I[CDATA[11>
</ Cooki es>
<Pat hl nf o>
<I[CDATA[]]1>
</ Pat hl nf o>
<Ht t pSessi on>
<Sessi onl D>
<I[CDATA[11>
</ Sessi onl D>
</ Ht t pSessi on>
<QStrArgs />
<Cont ent Sect i ons>
<Cont ent Secti on>
<| D>Cont ent Sect i on0</ | D>
<NonRepudi at i on>N</ NonRepudi ati on>
<Header s>
<versi on>
<! [CDATA[VERSION 1]]>
</ versi on>
<encodi ng>
<! [CDATA[base64(deflate)]]>
</ encodi ng>
<encodedl| engt h>
<! [CDATA[948(709)]]>
</ encoded| engt h>

<l engt h>
<! [CDATA[2840]]>
</l engt h>

</ Header s>

</ Cont ent Secti on>
</ Cont ent Secti ons>
<Publ i shNode>

<! [CDATA] QE LOCAL]]>
</ Publ i shNode>
<Queue>

<! [CDATA[QE_FLI GHTPLAN CHNL]] >
</ Queue>
<SubQueue>

<! [CDATA[¢9de8110- bde5-11da- be79- 846b4e717ebf]] >
</ SubQueue>
<Vi si t edNodes>

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

<![CDATA] QE_LOCAL|]]>
</ Vi si t edNodes>
<Connect or >
<Connect or Name>
<! [CDATA[PSFTTARCET]] >
</ Connect or Nane>
<Connect or G assNanme>
<! [CDATA[Peopl eSoft Tar get Connector]] >
</ Connect or Cl assNanme>
<Renot eFr anewor kURL>
<I[CDATA[11>
</ Renot eFr amewor KURL>
<Connect or Par anet er s>
<Connect or Par anp
<Nanme>
<I[CDATA[URL]]>
</ Nane>
<Val ue>
<I[CDATA[11>
</ Val ue>
</ Connect or Par ane
</ Connect or Par anet er s>
<Connect or Headers />
</ Connect or >
<At t achnent Secti on ResponseAsAttachnment="N' />
</ | Bl nf 0>

Understanding Supported Message Structures

While the basic structure is the same for al requests, not all elements are always required. An example of this
is the Connector section. The Connector XML is used to tell the integration gateway to route a message to the
named target connector. It also lists configuration parameters for the outbound request. This XML would only
be seen in requests sent from the application server to the integration gateway. For requests going in the other

direction, the section would be empty.

Note. The only element that is always required is External OperationName.

Thefollowing isalist of the most important elements that may appear in the IBInfo section:

Element Description

IBInfo / External OperationName

The name of the requested service operation.

IBInfo / Operation Type

(Optional.) Thisisthe type of service operation. The valid values are:
asynchronous, synchronous and ping.

IBInfo / TransactionlD

(Optional.) Thetransaction ID is used to uniquely identify arequest.

IBInfo / From / RequestingNode

(Optional.) The requesting node is the node that sent the request to the
current system.

IBInfo/ From / Password

(Optional.) Thisisthe password for the requesting node.

IBInfo/ From/ DN

(Optional.) For incoming requests, the DN gives the Distinguished Name
extracted from the certificate authentication process.

IBInfo / From / OrigNode

(Optional.) For requests that cross multiple nodes, OrigNode is used to
identify the node that initiated the request.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 47

Understanding Supported Message Structures

48

Chapter 5

Element

Description

IBInfo / From / OrigTimeStamp

(Optional.) Thistimestamp corresponds to the time that the request was
created. For requests that cross nodes, thisis the time that the first request
was created.

IBInfo/ To/ DestinationNode

(Optional.) Thisisthe node to which the request will be delivered.

IBInfo/ To/ Fina DestinationNode

(Optional.) In cases where the message will be passed across several
nodes, this value specifies the ultimate target of the message.

IBInfo/ QStrArgs

(Optional.) Specific to incoming HTTP requests. These are the query
string parameters found when the request was received by the HTTP
listening connector.

IBInfo / Cookies

(Optional.) Specific to incoming HTTP requests. Thisis cookie string
found when the request was received by the HTTP listening connector.

IBInfo / Pathinfo

(Optional.) Specific to incoming HTTP requests. Thisisthe path
information extracted from the request.

IBInfo / ContentSections / ContentSection

(Optional.) This node provides metadata about the text present in the
ContentSection.

IBInfo / ContentSections/ ContentSection
/1D

(Optional.) The index number of the content section.

IBInfo / ContentSections / ContentSection
/ NonRepudiation

(Optional.) Indicates as to whether nonrepudiation should be performed.

IBInfo / ContentSections/ ContentSection
/ Headers

(Optional.) Provides additional information about the data.

IBInfo / PublishingNode

(Optional.) The node that published the message.

IBInfo / Queue

(Optional.) The queue to which the service operation was published.

IBInfo/ InternalInfo/ AppMsg /
SubQueue

(Optional.) The subqueue to which the service operation was published.

IBInfo / InternalInfo / AppMsg /
VisitedNodes

(Optional.) Thelist of nodes that have already received this message.
Thisis useful when a message is being propagated across multiple nodes.

IBInfo/ InternalInfo/ AppMsg /
Publicationl D

(Optional.) The publication ID for this message.

IBInfo / Connector

(Optional.) Connector information instructs the gateway as to how to
process the request.

IBInfo / Connector / ConnectorName

(Optional.) Thisisthe proper name of the target connector to invoke to
send the message.

IBInfo / Connector / ConnectorClassName

(Optional.) Thisisthe class name of the target connector to invoke.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Understanding Supported Message Structures

Element Description

IBInfo / Connector / ConnectorParameters | (Optional.) Connector parameters are processing instructions for the
target connector to be invoked.

IBInfo / Connector / ConnectorHeaders (Optional.) Connector headers provide further metadata about the
contents of the message to be sent.

IBRequest Content Section

The content section of a request message features the message body.

--Integration_Server M ME Boundary

Content - Type: text/plain; charset=UTF-8

Cont ent - Transf er - Encodi ng: 8bi t

Content-1D: Content SectionO

Content-Di sposition: inline

eJydl | 1P2z AUnhu8n7T+g/ gAKFdt 6UYXxOHCe 1IFHOgOLRWELUMI Ui MTRRN27+f k7Spvwi t d/ F5
edydl | 1P2zAUhu8n7T+7c TvGrc5W/z9/ f | 08uf hZf P46/ 1 ycn56Nr | Cnz8t r kl TVLRcd kBb
4wCr guhGFoUj woP382/ 3w TvG+8bt J+Ug4GT+6f 1ZnMbUZNOANMKT | hF18nT nXk76wWWWIraaUz TRh
QuxU7FS9hpopBxEbC5Il SSuY6gqt J+Ug4GT+TUseK/ g6hl yJhl | FY+f p8i wuE8y CYk40VpXgzZVC

f em Oi 1eSN1I RTYw+l h1t wwDBG569KUuhU KKgB@BHVAR37VGe UHDz VO FI dt bx90K1JJANNDs WO
xneri hzbf Bl xyv4FYKys2Y5Yy Aol HgVr DHskz4hMpQU+cJpYJRxb7REanilinnz 8Dak Epo YSHWS 2i
PakJCLbR7T1kl PaZnhEZvOy TSqCnXcWI2z4hMpQUHEI Zal f LSQZOTNQGkPi JHQLR21 3pYFU3V5y
Tar WK/ yq7iirzTl WCoS2bl h9esVAOb4McnD831BORI JTW/ / 9q0JDg8Al Nnc2ghbzr M®BTFal nb
uBocf | ZQBISOyAvj z0C3J3hsHAA PQ XFkLhUZVKYKJ1Q7n1lzj GJbMs6g6heNgquSEMIN+Y2ENG9
hCZ7X/ bCbQ s8yNf v67Rwr ysnzf r +1f bWy5r Fnj 1Q7nlzj GJbMs6g6heNgqquSEMIN++bT

7r 09t V/ HEB7 CLUNBGpbds Grp9e XHRaMi 3DVScz7f 371 ZueOBf v1z0DxwgQ4 9AGXRKPxh6BM wU
J7t egSyi RRAUR3se8TAgr ehi BKMXSh6GHT(B+PORLY ANOI | b48ZH0OYUy k XAaYCMKVg5AEGCh

J7t egSyi RRAUR3se8TAgr ehi BKMXSh6GHTQE+! 4LmhAuH AG HWQHCKVD] hcVAX4i JAwPF Av4KCHOXO0
/ 7PRRIW87ut f FUS3bp1X4K/ M RDhSW.qFhy Claj Vz4+qLr 4SyEJnFj ZhLeSWyqPTx6KpgCh9k6D

/9z/ 1gQLWh==

Internal Message Format for Response Messages

The internal format for response messages parallels that for request messages, and has the same basic MIME

structure. These messages are frequently referred to as |BResponse messages.

There are three logical components to a MIME response message: the | BResponse header section, the IBInfo

section, and the Content section.

The following code shows an example of a response message:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

49

Understanding Supported Message Structures Chapter 5

Message- | D: <32004392. 1143500580241. JavaMai | . KCOLLI N2@°LE- KCOLLI N2>
Date: Mon, 27 Mar 2006 15:03:00 -0800 (PST)
M me-Version: 1.0
Content-Type: multipart/rel ated,

boundary="----=_Part_4 9069393. 1143500580221"
Content-1D: Peopl eSoft-Integration-Broker-Internal -M me- Message
Peopl eSof t - Tool sRel ease: 8.50

------ = Part_4_9069393. 1143500580221
Content - Type: text/plain; charset=UTF-8
Cont ent - Tr ansf er - Encodi ng: 8bi t
Content-Di sposition: inline

Content-1D: IBInfo

<?xm version="1.0"?><l| Bl nf 0><St at us><St at usCode>0</ St at usCode>
<MsgSet >158</ MsgSet >

<Msgl D>10000</ Msgl D><Def aul t Tit| e>l nt egrati on Broker Response
Message</Defaul tTitl e>

</ St at us><Cont ent Sect i ons><Cont ent Sect i on><| D>Cont ent Sect i on0</ | D>
<NonRepudi at i on>N</ NonRepudi at i on></ Cont ent Sect i on></ Cont ent Sect i ons></| Bl nf 0>
------ = Part_4_7210339. 1008355101202

IBResponse Header
Thefirst part of aresponse message contains headers which describe the attributes of the whole message.

Message- | D. <32004392. 1143500580241. JavaMai | . KCOLLI N2@PLE- KCOLLI N2>
Date: Mon, 27 Mar 2006 15:03: 00 -0800 (PST)
M ne-Version: 1.0
Content-Type: multipart/rel ated;

boundary="----= Part_4 9069393. 1143500580221"
Content-1D: Peopl eSoft-1ntegration-Broker-Internal -M me- Message
Peopl eSof t - Tool sRel ease: 8.50

IBResponse IBInfo Section

The format for the XML for the IBInfo for a response message is different than that for the request message.
The following is a sample (formatted for easier reading):

<?xm version="1.0"?>
<| Bl nf 0>
<St at us>
<St at usCode>0</ St at usCode>
<MsgSet >158</ MsgSet >
<Msgl D>10000</ Msgl D>
<Def aul t Msg>OK</ Def aul t Msg>
<DefaultTitl e>I ntegrati on Broker Response Message</Defaul tTitl e>
</ St at us>
<Cont ent Sect i ons>
<Cont ent Secti on>
<| D>Cont ent Sect i on0O</ | D>
<NonRepudi at i on>N</ NonRepudi ati on>
</ Cont ent Secti on>
</ Cont ent Secti ons>
</ | Bl nf 0>

Thefollowing isthe list of all the elements that may be present in the IBlInfo for aresponse:

50 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Understanding Supported Message Structures

Element

Description

IBInfo/ Status/ StatusCode

Describes the result of the request. The possible values are:
* 0 (zero). Request successfully processed.

e 10. Temporary error occurred. Request can be resent.

e 20. Fatal error occurred. Do not resend request.

» 30. Request message is a duplicate of a message previously received.

IBInfo / Status/ MsgSet

The MessageSetNumber for this message in the Message Catal og.
Message set number 158 is assigned to the PeopleSoft Integration Broker.

IBInfo/ Status/ MsglD

The Message Number for this message in the Message Catalog. If no
errors occurred during the processing of the request, the MsglD will be
set to the value 10000

IBInfo/ Status/ DefaultTitle

Used if the message catalog is unavailable. This value corresponds to the
"Message Text" for agiven entry in the message catal og.

IBInfo / Status / DefaultMsg

Used if the message catalog is unavailable. This value corresponds to the
"Explanation” for a given entry in the message catal og.

IBInfo / Status/ Parameters

Parameters may be used to provide additional information for error
responses.

IBInfo / ContentSection

A description of the content section returned with the response.

Note. Not all response messages will have a content section. The
structure of the content section and all child elementsis the same as was
seen in the request 1BInfo.

IBResponse Content Section

The content section of a response message features the message body only when working with SyncRequests

<?xm version="1.0"?7>

<Test Xm >This is a sanple response nessage. </ Test Xl >

Error Codes and Message Catalog Entries

A response message may contain data relating to the processing of the request message, or it may contain
error information if there were problems in fulfilling the request.

The status code describes the nature of the response message. The following table describes possible request

message status codes and their meaning.

Value Meaning

Description

0 Success

The message transport and processing were successful.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 51

Understanding Supported Message Structures Chapter 5

52

Value Meaning Description

10 Retry The transport was not successful. PeopleSoft Integration
Broker will perform itsretry logic and send the message
again.

20 Error An error occurred.

30 Duplicate message The transaction ID for the message has already been
received.

40 Acknowledgement error This statusis used for SOAP messages and indicates that
the contents of the datais not proper, but the transport was
successful.

50 Acknowledgement hold Used for asynchronous chunking of messages from
PeopleSoft to PeopleSoft nodes when sending multiple
message segments.

All PeopleSoft Integration Broker error messages are stored in the message catalog. A short and long
description for every error can be found there. Catalog entries are given a number, and this number isused in
the response messages.

Here is a sample error message:

Message- | D. <32004392. 1143500580241. JavaMai | . KCOLLI N2@PLE- KCOLLI N2>
Date: Mon, 27 Mar 2006 15:03:00 -0800 (PST)
M ne-Version: 1.0
Content-Type: multipart/rel ated,

boundary="----=_Part_4 9069393. 1143500580221"
Content-1D: Peopl eSoft-Integration-Broker-Internal-M nme-Message
Peopl eSof t - Tool sRel ease: 8.50

------ = Part_25_2235074.1008270392277
Cont ent - Type: text/plain; charset=UTF-8
Cont ent - Transf er - Encodi ng: 8bit
Content-Disposition: inline

Content-1D: IBInfo

<?xm version="1. 0" ?><I Bl nf 0><St at us><St at usCode>10</ St at usCode><MsgSet >158</ Msg=
Set >

<Msgl D>10721</ Msgl D><Par anet ers count =" 1" ><Par n»404</ Par n></ Par anet er s>
<DefaultTitle>Integration Gateway Error</Defaul tTitle></Status></I1BInfo>

------ = Part_25_2235074.1008270392277- -

All PeopleSoft Integration Broker errors use message set 158. The actual error seen hereis 10721. Going to
the message catal og, the description for message set 158, error 10721 is.

Message Text: Integration Gateway - External System Contact Error

Expl anation: Integrati on Gateway was not able to contact the external system
The network | ocation specified may be incorrect, or the site is permanently
or temporarily down.

Therefore this error was created by the integration gateway when it tried to send a request message to an
external system.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Understanding Supported Message Structures

Local Compression
This section provides an overview of local compression and discusses how to:
» Set local compression for asynchronous messages.
» Set local compression for synchronous messages.

« Overridelocal compression for synchronous messages.

Understanding Local Compression

The integration engine compresses and base64—encodes messages destined for the PeopleSoft listening
connector on itslocal integration gateway.

Setting Local Compression for Asynchronous Messages

Asynchronous messages are always compressed and base64 encoded when sent to the integration gateway.
There are no settings you need to make.

Setting Local Compression for Synchronous Messages

In PSAdmin you can set a threshold message size above which the system compresses synchronous messages.
The setting is shown here:

Val ues for config section - Integration Broker
M n Message Size For Conpressi on=10000

Do you want to change any values (y/n)? [n]:

The value is the message size in bytes; the default value is 10000 (10 kilobytes). Y ou can specify a setting of
0 to compress all messages.

To turn off compression, set the valueto -1.

Warning! Turning compression off can negatively impact system performance when transporting
synchronous messages greater than 1 MB. Asaresult, you should turn off compression only during
integration development and testing.

Note. This setting does not affect the compression of messages that the integration gateway sends using its
target connectors.

Overridding Local Compression for Synchronous Messages

Y ou can override the PSAdmin message compression setting for synchronous messages at the transaction
level. The following method on the IBInfo object in the Message class is provided for this purpose:

&VBG. | Bl nf 0. Conpr essi onQverri de

The valid parameters for this method are: %l ntBroker_Compress, %ol ntBroker_UnCompress, and
%IntBroker Compress Reset.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 53

Understanding Supported Message Structures Chapter 5

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Message Classes.”

See Also

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, " Setting Application Server
Domain Parameters'

Accessing IBInfo Elements Using PeopleCode

54

Y ou can use the PeopleCode M essage object to access IBRequest and IBResponse |BlInfo data.

The following example demonstrates reading target connector information on a notification method for a
rowset-based asynchronous message.

nmet hod OnNotify
/+ & M5G as Message +/
/+ Extends/inplenents PS PT:Integration:|NotificationHandl er. OnNotify +/
/* Variable Declaration */

i nteger & ;
string &strReturn;
rowset &RS;

For & = 1 To &\WBG | Bl nfo. | BConnect or | nf 0. Get Nunber O Connect or Properti es()
/* get Query argunents */

&strReturn = &VSG | Bl nfo. 1 BConnect or | nf 0. Get QueryStri ngAr gNanme(&i) ;
&strReturn = &VBG | Bl nfo. 1 BConnect or | nf o. Get QueryStri ngArgVal ue(&) ;
End- For ;

/* access the content data */
&RS = &MSG. Get Rowset () ;

end- net hod;

The following example demonstrates reading target connector information on notification method for a
nonrowset-based asynchronous message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Understanding Supported Message Structures

nmet hod OnNotify

/+ & MBG as Message +/

/+ Extends/inplenents PS PT:Integration:|NotificationHandl er. OnNotify +/
/* Variabl e Declaration */

i nteger & ;

string &&strReturn;

xm doc &xni doc;

For & = 1 To &WSG | Bl nfo. 1 BConnect or | nf 0. Get Nunber O Connect or Properti es()

&strReturn = &VBG | Bl nfo. | BConnect or | nfo. Get QueryStri ngArgNane(&i);
&strReturn = &VSG | Bl nfo. |1 BConnect or | nfo. Get QueryStri ngArgVal ue(&) ;
End- For ;

/* access the content data */

&m doc = &VBG Get Xm Doc() ;

end- net hod;

If an HTTP header is passed with adollar sign ($), PeopleSoft Integration Broker converts the dollar sign to
an underscore ().

PeopleSoft Rowset-Based Message Format

This section discusses the PeopleSoft rowset-based message format and discusses:

FieldTypes section of a rowset-based message.
MsgData section of arowset-based message.
PeopleSoft rowset-based message example.
PeopleSoft timestamp format.

CDATA and special characters.

Schema restrictions.

This section aso provides an example of a rowset-based message.

See Also

Chapter 5, "Understanding Supported Message Structures,” Message Part Structures, page 68

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 55

Understanding Supported Message Structures Chapter 5

Understanding the PeopleSoft Rowset-Based Message Format

To work with rowset-based messages—the PeopleSoft native format—you define a message in the
PeopleSoft Pure Internet Architecture, insert records into the message definition in a hierarchical structure,
and then popul ate the message and manipulate its contents by using the PeopleCode Rowset and Message
classes. Externally, the message is transmitted as XML with a prescribed PeopleSoft schema.

The PeopleSoft message schema includes a PSCAMA record, which PeopleTools adds to every level of the
message structure to convey basic information about the message and its data rows.

The Rowset and IntBroker classes are recommended for messaging between PeopleSoft applications. If a
message is popul ated with data from a PeopleSoft application's database or component buffer, the Message
classis best for handling that data.

Record and Field Aliases

Y ou can specify an alias for any record or field in a rowset-based message definition. Each node participating
in atransaction maintains its own independent definition of the message and its versions, including record
and field names and their aliases.

When you send a message with an alias defined and the message is converted to XML for sending, only the
alias appearsin the XML. If you don't specify an alias, the original name is used. If the service operation is
routed to multiple target nodes with different record or field naming schemes, you create for each target a
separate service operation version with its own aliases and send each version separately.

The only requirement for a successful transaction is that the record and field names in the XML match either
the original names or the aliases that are defined for that message and version at the node receiving the
message. This behavior applies to both request and synchronous response messages, but typically only the
source node applies aliases to accommaodate the target node's naming scheme in both directions.

In a synchronous transaction, the request and response messages can be completely different from each other.
Upon receiving a synchronous request, the target node generates and sends a response message. Upon
receiving the response, the source node uses its defined aliases to find and reapply its original record and field
names. The resulting inbound message contains the original names that were defined at the source node, not
the aliases. Therefore, both the sending and receiving PeopleCode at the source node should expect to work
with the source node's original record and field names.

See Also

Chapter 5, "Understanding Supported M essage Structures," PSCAMA., page 59
Chapter 7, "Sending and Receiving Messages,”" Understanding I ntegration PeopleCode, page 123

Chapter 16, "Applying Filtering, Transformation and Trandation," page 321

Rowset-Based Message Template

The following template shows the overall structure of a message in the PeopleSoft rowset-based message
format:

56 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Understanding Supported Message Structures

<?xm version="1.0"?>
<psft _nessage_nane>
<Fi el dTypes>

</FiéidTypes>
<MsgDat a>
<Tr ansacti on>

</ Transact i on>
</ MsgDat a>
</ psft_nessage_nanme>

Note. Psft_message name is the name of the message definition in the PeopleSoft database. Integration
Broker inserts this message content into a standard PeopleSoft XML message wrapper for transmission.

FieldTypes Section

Each PeopleSoft message includes field type information. Fieldtype information conveys the name of each
datarecord and its constituent fields, along with each field's data type. Y our receiving application can use this
information to validate data types. The field type information is contained in the FieldTypes section of the

message.
There are two FieldTypes tags:

» Each record tag consists of the name of arecord, followed by a class attribute with asingle valid value: R.
The record tag encloses that record's field tags.

« Eachfield tag consists of the name of afield, followed by atype attribute with three valid values: CHAR
for acharacter field, DATE for a date field, and NUMBER for a numeric field.

Following is asimple FieldTypes template.

<Fi el dTypes>
<recordnanmel cl ass="R'>
<fi el dnanel type="CHAR'/ >
<fi el dnane2 type="DATE"/ >
<fi el dname3 type="NUMBER'/ >
</ recordnanmel>
<recordname2 cl ass="R'>
<fi el dname4 type="NUVBER'/ >
</ recordnanme2>
<Fi el dTypes>

Note. Third-party sending applications must include a valid FieldTypes section in each message. The
PeopleSoft system expects fieldtype information for each record and field in the message.

MsgData Section

In addition to field type information, each PeopleSoft message contains data content in the MsgData section
of the message. Between the MsgData tags are one or more Transaction sections. Each transaction represents
onerow of data.

Between the Transaction tagsis arowset hierarchy of records and fields. The record tags at each level contain
the fields for that record, followed by any records at the next lower level.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 57

Understanding Supported Message Structures Chapter 5

The last record within atransaction is a fully specified PeopleSoft Common Application Message Attributes
(PSCAMA) record, which provides information about the entire transaction. Immediately following the
closing tag of every record below level 0isaPSCAMA record containing only the AUDIT_ACTN field that
specifies the action for that record.

Simple MsgData Template

Following is a simple MsgData templ ate.

Note. The PSCAMA PUBLISH_RULE_ID and MSGNODENAME fields (shown emphasized) are used
internally by certain PeopleSoft utilities, but third-party systems can generally ignore them and don't need to
include them in messages.

<MsgDat a>
<Transacti on>
<l evel Or ecnanmel cl ass="R'>
<fi el dnanel>val ue</fi el dnamel>
<fi el dnane2>val ue</fi el dnane2>
<l evel 1Irecnanel cl ass="R'>
<fi el dnane3>val ue</fi el dnane3>
<fi el dnaned4>val ue</fi el dnane4>
</ | evel 1r ecnanel>
<PSCAMA cl ass="R"'>
<AUDI T_ACTN>val ue</ AUDI T_ACTN>
</ PSCAVA>
<l evel 1recnane2 cl ass="R'>
<fi el dnane5>val ue</fi el dnane5>
</ | evel 1r ecnane2>
<PSCAMA cl ass="R"'>
<AUDI T_ACTN>val ue</ AUDI T_ACTN>
</ PSCAVA>
</l evel Or ecnanel>
<l evel Orecnane2 cl ass="R'>
<fi el dnane6>val ue</fi el dnanme6>
</ | evel Or ecnane2>
<PSCAMA cl ass="R"'>
<LANGUAGE_CD>val ue</ LANGUAGE_CD>
<AUDI T_ACTN>val ue</ AUDI T_ACTN>
<BASE_LANGUAGE CD>val ue</ BASE _LANGUAGE CD>
<MBG_SEQ FLG>val ue</ MSG_SEQ FLG
<PROCESS | NSTANCE>val ue</ PROCESS | NSTANCE>
<PUBLI SH RULE_| D>val ue</ PUBLI SH RULE_| D>
<MSGNODENAME>V al ue</ MNSGNODENANVE>
</ PSCANVA>
<Transacti on>
</ MsgDat a>

See Also

Chapter 5, "Understanding Supported M essage Structures,” PSCAMA, page 59

58 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

PSCAMA

Understanding Supported Message Structures

PeopleTools adds the PSCAMA record to every level of the message structure during processing. It isn't
accessible in the message definition, but you can reference it as part of the Message object in the sending and
receiving PeopleCode, and you can seeit in the Integration Broker Monitor. PeopleCode processes this record
the same way as any other record.

Note. PSCAMA records are automatically included in messages only if you insert database records to define
the message structure. Y ou can use the PeopleCode XmlDoc class to handle an inbound message containing
PSCAMA records, but the PeopleCode Message class is much better suited for this.

PSCAMA contains fields that are common to all messages. The <PSCAMA> tag repeats for each row in each
level of the transaction section of the message. The sender can set PSCAMA fields to provide basic
information about the message; for example, to indicate the message language or the type of transaction arow
represents. When receiving a message, your PeopleCode should inspect the PSCAMA records for this
information and respond accordingly.

PSCAMA Record Definition

The PSCAMA record definition includes the following fields:

LANGUAGE_CD

AUDIT_ACTN

BASE_LANGUAGE_C
D

MSG_SEQ FLG

PROCESS INSTANCE

PUBLISH_RULE_ID

Indicates the language in which the message is generated, so the receiving
application can take that information into account when processing the message.
When sending a message with component PeopleCode, the system sets thisfield
to the user's default language code.

Identifies each row of dataas an Add, Change, or Delete action.

(Optional.) Indicates the base language of the sending database. Thisis used by
generic, full-table subscription PeopleCode to help determine which tablesto
update.

(Optional.) Supports the transmission of large transactions that may span
multiple messages. Indicates whether the message is a header (H) or trailer (T) or
contains data (blank). The header and trailer messages don't contain message
data. The receiving system can use thisinformation to determine the start and end
of the set of messages and initiate processes accordingly. For example, the header
message might cause staging tables to be cleared, while the trailer might indicate
that al of the data has been received and an update job should be initiated.

(Optional.) Process instance of the batch job that created the message. Along
with the sending node and publication ID, the receiving node can use this to
identify a group of messages from the sending node.

(Optional.) Indicates the publish rule that is invoked to create the message. This
is used by routing PeopleCode to locate the appropriate chunking rule, which
then determines to which nodes the message should be sent. Third-party
applications can ignore thisfield.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 59

Understanding Supported Message Structures Chapter 5

60

MSGNODENAME (Optional.) The node to which the message should be sent. Thisfield is passed to
the Publish utility by the Application Engine program. Routing PeopleCode must
look for avaluein thisfield and return that value to the application server. Third-
party applications can ignore this field.

Language Codes
Each message can contain only one language code (the LANGUAGE_CD field) in the first PSCAMA record.

PeopleSoft language codes contain three characters and are mapped to corresponding I nternational
Organization for Standardization (1SO) locale codesin an external properties file. This mapping enables the
PeopleSoft Pure Internet Architecture to derive certain defaults from the | SO locales that are stored in a user's
browser settings. Y our PeopleSoft application is delivered with a set of predefined language codes; you can
define your own codes, as well.

Note. There can be only one language code for the entire message. To send messages in multiple languages,
send multiple messages.

See Enterprise PeopleTools 8.50 PeopleBook: Global Technology, "Controlling International Preferences.”

Audit Action Codes

A PSCAMA record appears following each row of the message. At aminimum, it contains an audit action
code (the AUDIT_ACTN field), denoting the action to be applied to the data row. The audit action is required
so that the receiving system knows how to process the incoming data.

Thevalid audit action codes match those that are used in the PeopleSoft audit trail processing: A,C,D,K,N,O,
and blank.

The audit action values are set by the system or by the sending PeopleCode to specify that arecord should be
added, changed, or deleted:

Audit Action Code | Description

A Add a noneffective or effective-dated row.
To add an effective-dated row, the value is A.

If you populate the row data by using the CopyRowsetDeltaOriginal method in the PeopleCode
Message class, an additional record is created with an audit action value of O, containing the
original values of the current effective-dated row.

C Change non-key valuesin arow.
D Delete arow.
K If you change at least one key value in arow (in addition to any non-key values) and then

populate the row data by using the CopyRowsetDeltaOriginal or CopyRowsetDelta methodsin
the Message class, an additional record is created with an audit action value of K, containing the
original values of the current effective-dated row.

N Change at least one key value in arow (in addition to any non-key values).

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Understanding Supported Message Structures

Audit Action Code | Description

@) If you change non-key valuesin arow and populate the row data by using the
CopyRowsetDeltaOriginal method in the Message class, an additional record is created with an
audit action value of O, containing the original values of the current effective-dated row.

Blank Default value.
If arow's content hasn't changed, the value is blank.

This audit action code is also used to tag the parents of rows that have changed.

Other PSCAMA Considerations

Y ou can update values on the PSCAMA record just like any other record in the message definition before
sending the message.

The receiving process can access the fields in thisrecord just like any other fields in the message.

The size of the PSCAMA record varies. In particular, notice a difference between the first PSCAMA record
and the ones that follow. The first record contains all of the fields, while the other PSCAMA records have
only the AUDIT_ACTN field, which isthe only field that can differ for each row of data.

Although the first PSCAMA record is always present, not all of the remaining PSCAMA records are sent in
the message. If a<PSCAMA> tag is not included for a specific row, you can assume that the row hasn't
changed. In addition, if the <AUDIT_ACTN> tag is blank or null, you can a so assume the row hasn't
changed.

If you're receiving a message that has incremental changes, only the rows that have changed and their parent
rows are present in the message.

Y ou can view an example of an outbound message with the PSCAMA records inserted by testing your
message definition using the Schema Tester.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Testing Utilities and Tools, "Using the Schema
Tester Utility."

Identifying Changes to Field-Level Attributes

Copyright

When sending and receiving messages, all blank data values get stripped. As aresult, you cannot determine if
afield valueis blank by definition, or if its value was stripped in the messaging process.

The PeopleCode CopyRowset functions CopyRowset, CopyRowsetDelta and CopyRowsetDeltaOriginal,
feature an 1sChanged attribute that automatically gets set to identify fields that have been changed. Any field
that has been changed displays the attribute | sChanged="Y".

Note. The IsChanged attribute applies only to rowset-based messages. For rowset-based message parts, use
the Message Part Default Indicator field to distinguish blanks from zeros in part messages. The IsChanged
attribute does not apply to nonrowset-based messages, including nonrowset-based container messages and
nonrowset-based part messages.

For example:

<QE_ACNUMBER | sChanged="Y">2</ QE_ ACNUVBER>

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 61

Understanding Supported Message Structures Chapter 5

Fields that had data and then were blanked contain the IsChanged attribute.

For example:

<DESCRLONG | sChanged="Y"/>

Fields that were always blank and thus were not changed do not feature this attribute. For example:
<QE_NAVDESC/ >

If you are writing subscription PeopleCode you reference the 1sChanged value of the field in the message
rowset, as aways. However, the blanks appear with the attribute |sChanged="Y".

See Also

Chapter 6, "Managing Messages," Distinguishing Blank from Zero in Rowset-Based Part M essages, page 97

PeopleSoft Timestamp Format

The PeopleSoft format for all timestampsis | SO-8601. If any message fields are type timestamp, the
following format is used:

CCYY- MMt DDTHH: MM SS. ssssss+/ - hhmm

Note. ThelSO format specifiesthat the +/ - hhnmparameter is optional, but PeopleSoft requiresit. All date
and time stamps in the header and the body of the message must include the Greenwich Mean Time (GMT)
offset as +/ - hhmm This ensures that the timestamp is correctly understood by the receiving application.

CDATA and Special Characters

Consider the following points regarding rowset-based messages:

» You cannot use CDATA in message XML if you plan to use GetRowSet to parse the message.

* When using the ampersand character (&) in astring, it must be URL-encoded. For example: &.
Passing only the ampersand character resultsin a PeopleCode error when you get the rowset values.

« Other specia characters are best passed encoded as well, such as > for "<" and &It ">."

Schema Restrictions

62

For stronger schema validation control, some PeopleSoft field types have certain implicit restrictions
regarding the format of field data that is acceptable in a runtime message. These restrictions appear in
message schema.

The restrictions apply to fields having the following formats.

« Mixed case.

« Name.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Understanding Supported Message Structures

» Phone number.
» Social security number.
» Uppercase.

« Zip code.

Note. These restrictions apply to rowset-based messages and rowset-based message parts.

Therestrictions for each are shown in the following example:

<xsd: si npl eType name="BASE_LANGUAGE CD TypeDef">
<xsd: annot at i on>
<xsd: docunent ati on>BASE LANGUAGE CD is a character of length 3.
Al l ows Uppercase characters including nunbers
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string">
<xsd: maxLengt h val ue="3"/>
<xsd: whi t eSpace val ue="preserve"/>
<xsd: pattern value="([A-Z]|[0-9]|\p{Z}|\p{P}|\p{Lu})*"/>
</ xsd:restriction>
</ xsd: si npl eType>

Rowset-Based Message Example

The message datais enclosed in a tag with the name of the message, and consists of one FieldTypes section
followed by one MsgData section. The FieldTypes section describes the records and fields that appear in the
MsgData section, which contains the actual data.

Note. The PSCAMA record requires field type information just like any other record.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 63

Understanding Supported Message Structures Chapter 5

64

<SDK_BUS_EXP_APPR_MSG>
<Fi el dTypes>
<SDK_BUS_EXP_PER cl ass="R'>
<SDK_EMPLI D type="CHAR'/ >
<SDK_EXP_PER DT type="DATE"/ >
<SDK_SUBM T_FLG type="CHAR"/ >
<SDK_| NTL_FLG type="CHAR'/ >
<SDK_APPR_STATUS t ype="CHAR"'/ >
<SDK_APPR_| NSTANCE t ype="NUMBER"/ >
<SDK_DESCR type="CHAR'/ >
<SDK_COWMENTS type="CHAR'/ >
</ SDK_BUS_EXP_PER>
<SDK_DERI VED cl ass="R">
<SDK_BUS_EXP_SUM t ype="NUMBER'/ >
</ SDK_DERI VED>
<SDK_BUS_EXP_DTL cl ass="R'>
<SDK_CHARGE_DT type="DATE"/ >
<SDK_EXPENSE_CD t ype="CHAR"'/ >
<SDK_EXPENSE_AMT t ype="NUMBER'/ >
<SDK_CURRENCY_CD t ype="CHAR'/ >
<SDK BUS PURPCSE t ype="CHAR'/ >
<SDK_DEPTI D type="CHAR'/ >
</ SDK_BUS_EXP_DTL>
<PSCAMA cl ass="R'>
<LANGUAGE_CD t ype="CHAR"'/ >
<AUDI T_ACTN type="CHAR"'/ >
<BASE_LANGUAGE_CD type="CHAR'/ >
<M5G_SEQ FLG type="CHAR"'/ >
<PROCESS_| NSTANCE t ype="NUMBER'/ >
</ PSCAMA>
</ Fi el dTypes>
<MsgDat a>
<Transacti on>
<SDK BUS EXP PER cl ass="R'>
<SDK_EMPLI D>8001</ SDK_EMPLI D>
<SDK_EXP_PER_DT>1998- 08- 22</ SDK_EXP_PER DT>
<SDK_SUBM T_FLG>N</ SDK_SUBM T_FLG>
<SDK_| NTL_FLG>N</ SDK_| NTL_FLG>
<SDK APPR STATUS>P</ SDK APPR STATUS>
<SDK_APPR_| NSTANCE>0</ SDK_APPR_| NSTANCE>
<SDK_DESCR>Regi onal Users Group Meeting</ SDK_DESCR>
<SDK_COMMENTS>At t endi ng Nort heast Regi onal Users G oup
Meeting and presented new rel ease functionality.
</ SDK_COMMVENTS>
<SDK_BUS_EXP_DTL cl ass="R'>
<SDK_CHARCGE_DT>1998- 08- 22</ SDK_CHARGE_DT>
<SDK_EXPENSE_CD>10</ SDK_EXPENSE_CD>
<SDK_EXPENSE_AMI>45. 690</ SDK_EXPENSE_AMr>
<SDK_CURRENCY_CD>USD</ SDK_CURRENCY_CD>
<SDK_BUS_PURPOSE>Drive to Meeting</ SDK_BUS PURPOSE>
<SDK DEPTI D>10100</ SDK_DEPTI D>
</ SDK_BUS_EXP_DTL>
<PSCAMA cl ass="R'>
<AUDI T_ACTN>A</ AUDI T_ACTN>
</ PSCAMVA>
<SDK_BUS_EXP_DTL cl ass="R'"'>
<SDK_CHARGE_DT>1998- 08- 22</ SDK_CHARGE DT>
<SDK_EXPENSE_CD>09</ SDK_EXPENSE_CD>
<SDK_EXPENSE_AMI>12. 440</ SDK_EXPENSE_AMr>
<SDK_CURRENCY_CD>USD</ SDK_CURRENCY_CD>
<SDK_BUS_PURPOSE>Ci ty Par ki ng</ SDK_BUS_PURPCSE>
<SDK_DEPTI D>10100</ SDK_DEPTI D>
</ SDK_BUS_EXP_DTL>
<PSCAMA cl ass="R'>

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5

Understanding Supported Message Structures

<AUDI T_ACTN>A</ AUDI T_ACTN>

</ PSCANVA>

</ SDK_BUS_EXP_PER>

<SDK_DERI VED cl ass="R">
<SDK BUS EXP_SUM>58. 13</ SDK_BUS EXP_SUM>

</ SDK_DERI VED>

<PSCAMA cl ass="R"'>
<LANGUAGE_CD>ENG</ LANGUAGE_CD>
<AUDI T_ACTN>A</ AUDI T_ACTN>
<BASE_LANGUAGE CD>ENG</ BASE_LANGUACGE CD>
<M5G_SEQ FLG></ M5G_SEQ FLG
<PROCESS | NSTANCE>0</ PROCESS | NSTANCE>

</ PSCANVA>

</ Transacti on>
</ MsgDat a>
</ SDK_BUS _EXP_APPR MSG>

Nonrowset-Based Message Structures

This section discusses nonrowset-based message structures that you can use with PeopleSoft Integration
Broker. This section discusses:

XML messages.
» SOAP-compliant messages.
* Non-XML files.

XML Messages

Copyright

The World Wide Web Consortium (W3C) has established a Document Object Model (DOM) for accessing
and manipulating structured data. The DOM specifies a standardized application programming interface

(API) that provides a consistent, familiar way to work with almost any XML data. This API—the XML
DOM—enables you to create, retrieve, navigate, and modify messages.

Y ou define an XML message in the PeopleSoft Pure Internet Architecture by either uploading an XML file or
entering an XML schema definition. The following example shows an XML message schema:

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 65

Understanding Supported Message Structures Chapter 5

<?xm version="1.0"?>
<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" t ar get Nanmespace=
“http://xm ns. oracl e. conf Conmon/ schemas/ COMPANY" xm ns="http://xm ns.
oracl e. com Conmon/ schemas/ COMPANY" el enent For mDef aul t =" qual i fi ed">
<xsd: el ement nane="Conpany" type="ConmpanyType"/>
<xsd: conpl exType nanme="ConpanyType" >
<xsd: sequence>
<xsd: el enent nane="Person" type="PersonType"/>
<xsd: el ement nane="Product" type="Product Type"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType nanme="PersonType" >
<xsd: sequence>
<xsd: el enrent nane="Nane" type="xsd:string"/>
<xsd: el ement nane="SSN' type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="Product Type" >
<xsd: sequence>
<xsd: el enrent nanme="Type" type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>

Then populate the message and manipulate its contents by using the PeopleCode XmIDoc class and built-in
functions, which reflect the XML DOM.

Note. Y ou can use the XmlDoc class to access inbound, rowset-based messages; however, the PeopleCode
Message and Rowset classes handle the PeopleSoft native format more easily.

Use the XmIDoc classif any of the following is true:

« The message structure doesn't fit the PeopleSoft rowset model.

« The message data doesn't come from PeopleSoft database records.

» Thethird-party source or target node requires non-XML message data.

Although you can use the XmlDoc class to generate or process messages that use the SOAP protocol, the
PeopleCode SoapDoc class is more efficient and is strongly recommended.

Note. Non-XML message data must be embedded in an XML wrapper, which you send and receive by using
the XmlIDoc class.

SOAP-Compliant Messages

66

The W3C SOAP specification defines synchronous transactions in a distributed web environment. SOAP is
appropriate for Universal Description, Discovery, and Integration (UDDI) interactions, or to interact with
SOAP-compliant servers.

Y ou define a message in PeopleSoft Application Designer without inserting any records to define its
structure, then populate the message and manipulate its contents by using the PeopleCode SoapDoc class and
built-in functions, which comply with the W3C SOAP specification. The SoapDoc class is well-suited for
messages that are populated with SOAP-compliant XML data.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Understanding Supported Message Structures

SoapDoc complies with the W3C XML DOM specification. The SoapDoc classis based on the PeopleCode
XmlIDoc class, with some identical methods and properties. To send and receive SoapDoc messages, you
must convert them to XmlDaoc objects and use the XMLDac built-in functions, SyncRegquestXmlDoc and
GetMessageXmiDoc. SoapDoc provides a property for handling the conversion easily.

Use the SoapDoc classif all of the following are true:
» Thethird-party source or target node requires SOA P-compliant messages.
» Thethird-party source or target node requires synchronous transactions.

« The message conforms to the SOAP specification.

See Also
Chapter 7, "Sending and Receiving Messages,” Generating and Sending Messages, page 137

Chapter 7, "Sending and Receiving Messages," Receiving and Processing M essages, page 148

Non-XML Files

To send non-XML files through PeopleSoft Integration Broker to their destination, you must wrap them in the
PeopleSoft non-XML message element, CDATA. However, when you send messages to third-party systems,
the recipient systems may not be able to interpret that element.

If you are using the Publish or SyncRequest methods to send data, you can use the built-in function
SetXMLDoc to remove the tags upon exiting the integration gateway or write atransformation to do so. If
you choose neither of these options, the data remains in the wrapper through to the destination.

The following code example shows anon-XML file wrapped in the PeopleSoft non-XML message element,
PsNonXmL, for transport through PeopleSoft I ntegration Broker:

Note. The element PSNonXml is not case-sensitive.

<?xm version="1.0"?>
<AsyncRequest >
<data PsNonXm ="Yes" >
<! [CDATA[<?xm version="1.0"?>101 123456789
12345678902 0510145 60094101Fi rst Bank First Bank 5200 University
000001 PPDDI RECT PAY020510020510000112345678000000162200000111 222
0000001000USA0000001 USA0000001 0000001110000001627123456
789131415511 0000001000 University 0123456780000
002 82000000020012345789000000001000000000001000 123456780000001
90000010000010000000200123457890000000010000000000010009999999999
999
999
999
999
999
999
11>
</ dat a>
</ AsyncRequest >

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 67

Understanding Supported Message Structures Chapter 5

The following example shows an aternative way to wrap anon-XML file in the PeopleSoft non-XML
message element for transport through PeopleSoft Integration Broker:

<?xm version="1.0"?>

<AsyncRequest PsNonXml = 'Yes'>

<!'[CDATA[<?xm version="1.0"?>101 123456789 12345678902

0510145 60094101First Bank First Bank 5200 University 000001 PPDDI RECT
PAY020510020510000112345678000000162200000111 222

0000001000USA0000001 USA0000001 0000001110000001627123456

789131415511 0000001000 University 0123456780000

002 82000000020012345789000000001000000000001000 123456780000001
900000100000100000002001234578900000000100000000000100099999999999999999
99
99
99
99
999
11>

</ AsyncRequest >

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft I ntegration Broker Administration, "Using Listening
Connectors and Target Connectors," Complying With Message Formatting and Transmission Requirements

Using Nonrowset-Based Messages in Service Operations Exposed as WSDL

If a nonrowset-based message is used in a service operation which will be exposed asaWSDL to third
parties, the schema cannot be empty. The schema has to have at least the header elements, as shown in the
following example:

<?xm version="1.0"?>
<xsd: schema xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schema" / >

Message Part Structures

This section discusses;

» Rowset-based message parts.
» Nonrowset-based message parts.

Understanding Message Part Structures

Message parts are rowset-based messages or nonrowset-based messages that you designate as a part message
on the message definition. Message parts are used in container messages

M essage parts can be re-used in multiple containers.

All partsin a container must be of the same type (Rowset-based or Nonrowset-based).

68 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Understanding Supported Message Structures

Y ou create messages using the Message Builder page in the PeopleSoft Pure Internet Architecture.

See Also

Chapter 5, "Understanding Supported Message Structures,”" PeopleSoft Rowset-Based M essage Format, page
55

Chapter 5, "Understanding Supported Message Structures,” Nonrowset-Based Message Structures, page 65

Chapter 6, "Managing Messages," page 75

Rowset-Based Message Parts

Rowset-based message parts provide all the ease of use of using rowsets, yet the generated XML messageis
industry standard and not PeopleSoft proprietary. Rowset-based message parts, like nonrowset-based parts,
can only be part of a container type message.

These are the benefits of using Rowset-based parts:

» The XML schema generated is standard XML and not the PeopleSoft message format. Rowset-based
message parts do not have a PSCAMA section, FieldTypes section, 1sChanged attributes, and so forth.

» The message API for rowset-based partsis simple to use and understand.

» XML seriaization and deserialization to and from part rowset is provided by Integration Broker
framework.

» You can use a CopyRowSet type method to popul ate the rowset from another rowset (component rowset).

The following example shows a sample schema from a rowset-based message part:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 69

Understanding Supported Message Structures Chapter 5

<?xm version="1.0"?>
<xsd: schema el enent For nDef aul t =" qual i fi ed" target Nanespace="http://xmn ns.
oracl e.com Enterprise/ Tool s/ schemas/ Part_1. V1" xm ns="http://xm ns. oracl e.
com Enterprise/ Tool s/ schemas/Part_1. V1" xm ns: xsd="http://ww.w3. or g/
2001/ XM.Schema" >
<xsd: el ement nane="Part_1" type="Part_1 TypeShape"/>
<xsd: conpl exType name="Part_1 TypeShape">
<xsd: sequence>
<xsd: el ement nane="First_Part" type="First_ Part MsgDat aRecord_TypeShape"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: conpl exType name="First_Part MsgDat aRecor d_TypeShape" >
<xsd: sequence>
<xsd: el enent nane="QE_ACNUMBER' type="QE ACNUMBER TypeDef"/>
<xsd: el ement nane="QE_WAYPO NT_NBR' type="QE_WAYPO NT_NBR TypeDef"/>
<xsd: el ement mi nCccurs="0" nanme="QE_BEARI NG' type="QE BEARI NG TypeDef"/>
<xsd: el ement mi nCccurs="0" name="QE RANGE" type="QE _RANGE TypeDef"/>
<xsd: el ement m nCccurs="0" name="QE _ALTI TUDE" type="QE_ALTI TUDE TypeDef"/>
<xsd: el ement m nCccurs="0" nanme="QE LATI TUDE" type="QE LATI TUDE TypeDef"/>
<xsd: el ement mi nCccurs="0" name="QE LONG TUDE" type="QE LONG TUDE TypeDef"/>
<xsd: el ement nane="QE_HEADI NG' type="QE_HEADI NG TypeDef"/ >
<xsd: el ement nane="QE_VELOCI TI ES" type="QE _VELOCI TlI ES_TypeDef"/>
<xsd: el ement mi nCccurs="0" name="QE_NAVDESC' type="QE NAVDESC TypeDef"/>
</ xsd: sequence>
<xsd:attribute fixed="R' name="cl ass" type="xsd:string" use="required"/>
</ xsd: conpl exType>
<xsd: si npl eType nane="QE_ACNUMBER_TypeDef ">
<xsd: annot ati on>
<xsd: docunent ati on>Qe_ ACNUMBER i s a nunber of length 10 with a deci nal
position of 0</xsd:docunentation>
</ xsd: annot ati on>
<xsd:restriction base="xsd:integer">
<xsd:total Digits val ue="10"/>
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType name="QE_WAYPO NT_NBR TypeDef" >
<xsd: annot at i on>
<xsd: docunent ati on>Qe_ WAYPO NT_NBR i s a nunber of length 3 with a deci nmal
position of 0</xsd:docunentation>
</ xsd: annot ati on>
<xsd:restriction base="xsd:integer">
<xsd:totalDigits val ue="3"/>
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType nane="QE_BEARI NG _TypeDef" >
<xsd: annot ati on>
<xsd: docunent ati on>QE_BEARING i s a character of |ength 10</xsd: =
docunent ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string">
<xsd: maxLengt h val ue="10"/>
<xsd: whi t eSpace val ue="preserve"/>
</xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType name="QE_RANGE TypeDef">
<xsd: annot at i on>
<xsd: docunent ati on>QE_RANCE i s a character of |ength 10</xsd: docunment ati on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string">
<xsd: maxLengt h val ue="10"/>
<xsd: whi t eSpace val ue="preserve"/>
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType nane="QE_ALTI TUDE TypeDef ">

70 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Understanding Supported Message Structures

<xsd: annot ati on>

<xsd: docunent ati on>QE_ALTI TUDE is a character of |ength 10</xsd: =
docunent ati on>
</ xsd: annot at i on>
<xsd:restriction base="xsd:string">
<xsd: maxLengt h val ue="10"/>
<xsd: whi t eSpace val ue="preserve"/>
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType nane="QE_LATI TUDE TypeDef ">
<xsd: annot at i on>
<xsd: docunent ati on>QE_LATI TUDE is a character of length 15
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string">
<xsd: maxLengt h val ue="15"/>
<xsd: whi t eSpace val ue="preserve"/>
</xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType nanme="QE_LONG TUDE TypeDef" >
<xsd: annot ati on>
<xsd: docunent ati on>QE_LONG TUDE is a character of length 15
</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd:restriction base="xsd:string">
<xsd: maxLengt h val ue="15"/>
<xsd: whi t eSpace val ue="preserve"/>
</xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType name="QE_HEADI NG TypeDef " >
<xsd: annot ati on>
<xsd: docunent ati on>Qe HEADING i s a character of length 4
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="NAG'/ >
<xsd: enuneration val ue="TRUE"/ >
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType nane="QE_VELOCI TI ES_TypeDef ">
<xsd: annot at i on>
<xsd: docunent ati on>Qe_ VELOCITIES is a character of length 4
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string">
<xsd: enuner ati on val ue="ADC"/ >
<xsd: enureration val ue="GPS"/ >
<xsd: enuner ati on val ue="INS"/ >
</ xsd:restriction>
</ xsd: si npl eType>
<xsd: si npl eType nane="QE_NAVDESC TypeDef" >
<xsd: annot ati on>
<xsd: docunent ati on>QE_NAVDESC i s a character of length 30
</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd:restriction base="xsd:string">
<xsd: maxLengt h val ue="30"/>
<xsd: whi t eSpace val ue="preserve"/>
</xsd:restriction>
</ xsd: si npl eType>
</ xsd: schema>

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 71

Understanding Supported Message Structures Chapter 5

Nonrowset-Based Message Parts

A nonrowset-based message part schemais similar to aregular nonrowset-based message, however a
nonrowset-based message part can be reused in multiple containers.

Message Container Structures

Message container structures hold rowset-based or nonrowset-based message part structures. All message
parts assigned to a container must of the same type, rowset-based or nonrowset-based.

A message container is always a nonrowset-based message.
Y ou create container messages using the Message Builder in the PeopleSoft Pure Internet Architecture.

See Also

Chapter 5, "Understanding Supported Message Structures,” Nonrowset-Based Message Structures, page 65

Chapter 6, "Managing Messages," page 75

Example 1: XML Schema of a Container Message with Rowset-Based Message
Parts

The following example shows a sample schema of a container message with three rowset-based message
parts:

72 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 5 Understanding Supported Message Structures

<?xm version="1.0"?>
<xsd: schema el enent For nDef aul t ="unqual i fi ed" target Nanespace="http://xmnl ns.
oracl e. com Ent er pri se/ Tool s/ schemas/ Part _Cont ai ner. V1"
xm ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schermas/ Part _Cont ai ner. V1"
xmns: Part_1.V1="http://xm ns. oracle.conl Enterprise/ Tool s/ schemas/ Part_1. V1"
xm ns: Part_2.V1="http://xm ns. oracl e. coml Ent erpri se/ Tool s/ schemas/ Part_2. V1"
xm ns: Part _3.V1="http://xnm ns. oracl e. com Ent erpri se/ Tool s/ schemas/ Part _3. V1"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena" >
<xsd:inport nanespace="http://xm ns.oracl e.con Enterprise/ Tool s/ schemas/
Part _1.V1" schenaLocation="http://kcollin2042803: 5000/ PSI GW Peopl eSof t
Ser vi ceLi st eni ngConnect or ?Oper at i on=Get Schema&anp; xsd=Part _1. V1"/>
<xsd:inmport nanespace="http://xm ns. oracl e. com Ent erpri se/ Tool s/ schemas/
Part 3.V1" schenmalLocation="http://kcollin2042803: 5000/ PSI GW Peopl eSof t
Servi ceLi st eni ngConnect or ?Qper at i on=Get Schema&anp; xsd=Part 3. V1"/>
<xsd:inport nanespace="http://xm ns.oracl e.con Enterprise/ Tool s/ schemas/
Part _2.V1" schenmalLocation="http://kcollin2042803: 5000/ PSI GW Peopl eSof t
Ser vi ceLi st eni ngConnect or ?Oper at i on=Get Schema&anp; xsd=Part _2. V1"/ >
<xsd: el ement nanme="Part_Contai ner" type="Part_Cont ai ner Type"/>
<xsd: conpl exType nanme="Part_Cont ai ner Type" >
<xsd: sequence>
<xsd: el ement maxCccur s="unbounded" m nCccurs="0" nane="Part_ 1" type="
Part _1.V1:Part_1_ TypeShape"/>
<xsd: el ement maxCccurs="10" nmi nOccurs="0" nanme="Part_3" type="Part_3. VI1:
Part _3_TypeShape"/>
<xsd: el emrent maxCccur s="unbounded" m nCccurs="0" nane="Part_ 2" type="
Part 2.V1:Part_2 TypeShape"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>

Example 2: XML Schema of a Container Message with Nonrowset-Based
Message Parts

The following example shows a sample schema from a container message that contains three nonrowset-
based parts:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 73

Understanding Supported Message Structures Chapter 5

74

<?xm version="1.0"?>
<xsd: schema el enent For nDef aul t ="unqual i fi ed" target Nanespace="http://xmnl ns.
oracl e. com Ent er pri se/ Tool s/ schermas/ NonRowSet Cont ai ner. v1"
xm ns="http://xm ns. oracl e. com Ent er pri se/ Tool s/ schermas/ NonRowSet Cont ai ner. v1"
xm ns: Part _One_NonRowset.v1="http://xm ns.oracle.conl Enterprise/ Tool s/
schemas/ Part _One. v1"
xm ns: Part _Three_NonRowset.vl1="http://xm ns.oracl e.com Enterprisel/ Tool s/
schemas/ Part _Two. v1"
xm ns: Part _Two_NonRowset . v1="http://xm ns. oracle.conl Enterprise/ Tool s/
schemas/ Part _Three. v1"
xm ns: xsd="htt p://ww. w3. or g/ 2001/ XM_Schenma" >
<xsd:inmport schemalLocation="http://kcollin2042803: 5000/ PSI GN Peopl eSof t
Servi celLi st eni ngConnect or ?Qper at i on=Get Schema&anp; xsd=Part _One_NonRowset .v1"/>
<xsd:inmport schenmalLocation="http://kcollin2042803: 5000/ PSI GV Peopl eSof t
Servi celLi st eni ngConnect or ?Qper at i on=Get Schena&anp; xsd=Part _Two_NonRowset . v1"/ >
<xsd:inmport schemalLocation="http://kcollin2042803: 5000/ PSI GW Peopl eSof t
Servi ceLi st eni ng Connect or ?COper at i on=Cet Schema&anp; xsd=Part _Thr ee_Non
Rowset . v1"/ >
<xsd: el enrent nane="NonRowSet Cont ai ner" type="NonRowSet Cont ai ner Type"/ >
<xsd: conpl exType name="NonRowSet Cont ai ner Type" >
<xsd: sequence>
<xsd: el ement maxCQccur s="unbounded" m nCccurs="0" nane="Part_One_NonRowset"
t ype="Part_One_NonRowset.vl: Part_One_TypeShape"/>
<xsd: el ement maxQCccur s="unbounded”" m nQccurs="0" nane="Part_Two_NonRowset"
type="Part _Two_NonRowset.vl: Part _Two_ TypeShape"/>
<xsd: el ement nmaxCQccur s="unbounded" m nCccurs="0" nane="Part_Three_NonRowset"
type="Part _Three NonRowset.vl:Part_ Three_ TypeShape"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: schema>

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Managing Messages

This chapter provides an overview of managing messages and discusses how to:
« Add message definitions.

» Manage rowset-based messages.

» Manage nonrowset-based messages.

+ Manage message parts.

* Reuse message parts.

+ Manage container messages.

« View service operations that reference a message.

» Resolveinconsistenciesin exported WSDL.

» Rename and delete message definitions.

» Delete messages during upgrade.

Understanding Managing Messages

This section provides an overview of messages.

Message Definitions

M essage definitions provide the physical description of the datathat is being sent, including fields, field
types, and field lengths. Y ou create message definitions in the PeopleSoft Internet Architecture.

Note. Messages are shapes that describe the contents of a service operation transaction. Unlike prior
PeopleTools rel eases, messages do not contain any processing logic. All processing logic is defined in service
operations, using service operation handlers.

Message Types

Four types of messages are available:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 75

Managing Messages

Rowset-based messages

Nonrowset-based
messages

Container messages

M essage parts

Chapter 6

For hierarchical datathat is based on PeopleSoft records, you create a message
definition by assembling records, organizing them into a hierarchy, and selecting
fields from those records to include in the message. The result is arowset that
doesn't need to match an existing rowset structure in the application. Use the
PeopleCode Rowset and operation classes to generate, send, receive, and process
these messages.

These messages can have virtually any structure and content. Y ou create a
message definition, but you do not insert any records. The message definition
serves as a placeholder for the actual message. Use the PeopleCode XmIDoc and
operation classes to generate, send, receive, and process these messages. If you're
handling Simple Object Access Protocol (SOAP) compliant data, you can also
use the SoapDoc class to generate and process these messages.

A container message is a nonrowset-based message that holds one or more part
messages.

A container message must contain all rowset-based messages or all nonrowset-
based message parts.

Message parts are rowset-based messages or nonrowset-based messages that you
designate as a part message, to be used in a container message.

The following table describes when to use a given message type:

Message Type

When to Use

Rowset-based message.

All PeopleSoft-to-PeopleSoft integrations.

Nonrowset-based message.

Integrations with third-party systems.

Container message with rowset-based message parts. Exposing PeopleSoft services to third-party systems.

Container message with nonrowset-based message parts. | Exposing PeopleSoft servicesto third-party systems and

need to provide nested parts.

Naming Conventions for Message Metadata

When naming the following message metadata, names cannot start with "xml," digits or special characters:

» Message names.
» Messagealiases.
* Record aliases.

« Field aiases.

76

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Message Record Structure

If a message handles PeopleSoft record data, that is, a rowset-based message, you must insert recordsin the
message definition in an appropriate hierarchical structure.

However, if the message data doesn't map to arecord hierarchy, do not insert any records. Y ou supply or
receive the data and its structure from an external source, using the PeopleCode XmlDoc or SoapDoc classes.

See Chapter 7, "Sending and Receiving Messages,”" page 121.

Underlying Record Definitions

Records that you insert in a message definition have live references to the original record definitions. Any
change that you make to an underlying record definition is automatically reflected by a changein the
corresponding record in the message definition.

Fields Defined as Uppercase

If amessage definition includes character fields that are defined as uppercase, then character data in those
fieldsis automatically converted to uppercase when the message is received. This happens when the receiving
PeopleCode inserts the message datain arowset, and it overrides any previous changes in the data, including
transformation and data translation.

Message Aliases and Message Versions

Message aliases are read-only once you save the message definition. As aresult, once you create a message
alias for amessage definition, any subsequent versions of the message that you create use the original alias.

Restrictions for Modifying Messages

This section lists the conditions under which a message may become restricted and read-only. Thislist applies
to all message types, including rowset-based messages, nonrowset-based messages, container messages, part
messages, and subpart messages.

Y ou cannot modify a message if one or more of the following conditions exists:
« The service to which amessage is contained in arestricted service.

« Themessageis used internally by the system. For example, the delivered IB_ GENERIC message is read-
only and is used internally by the system.

« The message isreferenced in the runtime tables.
To work around this, you must remove any entries in the runtime tables that reference the message.
» Themessageis used in a service operation where WSDL documents have been generated.

» Themessageis used in a service operation that has validation enabled.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 77

Managing Messages Chapter 6

Adding Message Definitions

This section discusses how to add a message definition to the system.

Understanding Adding Message Definitions

When you add a message definition to the system you first give the message a name and specify a message
version. After doing so, you can then define additional aspects of the message definition.

Adding a Message Definition

The following example shows the Message Builder page that you use to name a new message definition and
assign aversiontoit:

| [o aiew vaie |

Type: b

Message Hame:

Message Version:

Add

Message Builder - Add a New Value page

The following example shows the Message - Message Definition page that you use to configure a message
after you create the message definition:

Message Definition

Message: MOMROWSET_TEST_MSG

Schema Exists: Mo

Part Message
Version: W1

Alias:

Description;
Owner ID: &

Comments:

Message Type

Rowset-based
Nonrowset-based
Container

Message - Message Definition page when the message type is set to Nonrowset-based.

78 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Different options appear on the Message—M essage Definition page, depending on the type of message that
you are defining.

By default the message type is set to Nonrowset-based as shown in the previous example.

If you select a Rowset-based or Container message type, additional options appear on the page with which
you can work.

The following example shows the M essage—M essage Definition page when you sel ect Rowset-based as the
message type:

Message Definition

Message: ROWSET_TEST_MSG

Schema Exists: R [
Part Message
Version; W1

[] Exclude Descriptionin Schema
[] single Level 0 Row

Description;
[include Hamespace
Owner ID: hs] Suppress Empty XML Tags
Comments: Message Type
Rowset-based
Honrowset-based
Container
View Records Only View Included Fields Only Add Record to Root
Left | Right

[= ROWSET_TEST_MSG

Message - Message Definition page when the message type is set to Rowset-based.

In the previous example, notice the additional options that display on the upper right portion of the page.

When you define a container message, it, too, has its own unique options that you define, as shown in the
following example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

79

Managing Messages Chapter 6

Message Definition Schema

Schema Exists: Mo
Message: CONTAINER_TEST_MSG
Part Message
Version: W1
Alias: |
Description: |
Owner ID: b
Comments:
Rowset-based
Honrowset-based
Container
Add Parts

- =
Parts Customize | Find | View Al | B B8 First K0 4 or 1 I Lot
Minimum |(Maximum |*Unbound
Occurs Occurs Maximum

o 0 K I v| [=]

Meszage Hame Me=szage Version

Messages - Message Definition page when the message type is set to Container.

Note. For asynchronous integrations, define a single message. For synchronous integrations, define two
messages. one request message and one response message, unless the request and response have the same
shape.

To add a message definition:
1. Select PeopleTools, Integration Broker, Integration Setup, Messages.
2. Select the Add New Value tab.

3. From the Type drop-down list, select a message type to create. The options are:

» Container. Select this value to add a container message to the system.
» Nonrowset. Select this value to add a nonrowset-based message to the system.
« Part Nonrowset. Select this value to add a nonrowset-based message part to the system.
« Part Rowset. Select this value to add a rowset-based message part to the system.
» Rowset. Select this value to add a rowset-based message to the system.
4. Inthe Message Name field, enter a name for the message.

The message name cannot exceed 30 characters. Do not include any spaces in the message name.

80 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

10.

11.
12.

Managing Messages

Inthe Version field, enter aversion for the message.

The message version cannot exceed 30 characters. Do not include any spaces in the message version.
Accepted formats for the message version include:

» Version 1.

- V1

Click the Add button.

The Messages - Message Definition page appears.

(Optional) In the Aliasfield, enter the name that the external system is expecting, if different from the
value in the Message Name field.

Thisfield appears only when you are defining nonrowset-based or container messages.

(Optional) Select the Message Parts check box if the message will be used as a message part in a
container message definition.

(Optional) In the Description field, enter a description for the definition.
(Optional) From the Owner 1D drop-down list box, select an owner for the definition.

The owner ID helps to determine the application team that last made a change to the definition. The
valuesin the drop-down list box are trand ate table values that you can define in the OBJECTOWNERID
field record.

(Optional) In the Comment field, enter any pertinent comments about the definition.

The next steps to adding a message definition depend on the type of message definition that you are
creating:

» Rowset-Based Message or Message Part. Y ou must add aroot record to the definition before you can
saveit.

See Chapter 6, "Managing Messages," Managing Rowset-Based M essages, page 81.

» Nonrowset-Based Message or Message Part. The message definition is complete and you can click
the Save button to save the changes. Y ou can now add an XML message schema to the definition.

See Chapter 6, "Managing Messages," Managing Nonrowset-Based M essages, page 93.

« Container Message. You must add at |east one message part to the definition before you can save the
changes.

See Chapter 6, "Managing Messages," Managing Container Messages, page 102.

Managing Rowset-Based Messages

This section provides an overview of managing rowset-based message definitions and discusses how to:

View rowset-based message structures.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 81

Managing Messages Chapter 6

Insert root records.

» Insert child and peer records.

» Specify record aliases.

» Deleterecords.

« Exclude fields from messages.

» Specify field name aliases.

« Managing XML message schemas for rowset-based messages.
» Enforce message record and field aliases in generated WSDL .

Understanding Managing Rowset-Based Messages

This section provides overview information about managing rowset-based message definitions.

Root Records

When you create a rowset-based message, you must at a minimum insert aroot record (level 0) into the
definition.

Records and Record Fields

Y ou create and modify records and record fields in PeopleSoft Application Designer.

Note. Avoid using derived/work records in messages. Work records don't behave like regular records when
used with PeopleCode rowset methods. A good alternative is to use dynamic views.

Record and Record Field Aliases
Record and field aliases are optional parameters that are used for schemaand XML generation.

When record and field aliases are used, the receiver of a message sees the alias names instead of the actual
record and field names. The alias names are seen in the message definition, in message schemas, and on
generated runtime XML that is sent to the receiver.

Note that the sender still codes to the actual record and field name.

XML Schema for Rowset-Based Messages

When you create or make changes to a rowset-based message definition, the system automatically generates
message schema.

Viewing Rowset-Based Message Structures

This section discusses the three ways to view the structure of rowset-based message definitions. This section
discusses how to:

82 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

» View the entire structure of rowset-based message definitions.
« View only the records in rowset-based message definitions.
« View only included records fields in rowset-based message definitions.

Viewing the Entire Structure of Rowset-Based Message Definitions

Managing Messages

By default, when you open a rowset-based message definition PeopleSoft Integration Broker displaysthe
complete message definition structure. The following graphic shows the complete message definition

structure for the message QE_FLIGHTPLAN.

[= QE_FLIGHTPLAN

= & oF FLIGHTDATA

« QE ACHUMBER
« QE M3l SENSOR

o QE OFP

@ W QF

ACTYPE

¥ QF

CALLSIGH

@ QF

SOUADROM

@ W QF

C O bt 1

@ W QF

C o2

¥ QF

ECM
@ DESCRLONG
= & QF NAVIGATION

W
@
W
« i
W
@
W
& W
W
@

QE
LE

ACMHUMBER

WAYPOINT MNBR

QE
QE
QE
QE
QE
QE
QE
QE

BEARIMG
RAMNGE
ALTITUDE
LATITUDE
LOMGITUDE
HEADIMN G
YELOCITIES
MAYDESC

= & QF RADAR PRESET

= & QE ARMAMENT

Complete message structure for the message QE_FLIGHTPLAN

The system displays the definition in atree structure. Use the plus (+) and minus (-) buttons to expand and
collapse the tree to view al records, subrecords and fields (both included and excluded) in the definition.

Record fields that are included in the message definition have a check next to them. Record fields that are not
included in the message definition have a box next to them. In the previous graphic, QE_RANGE is the only

record field that is not included in the QE_FLIGHTPLAN message definition.
Y ou can view the record or field properties by clicking the record or field name.

To view the entire structure of a rowset-based message:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

83

Managing Messages Chapter 6

84

1. Select PeopleTooals, Integration Broker, Integration Setup, M essages.
2. Select amessage to view.

The Messages-Message Definitions page appears and the entire structure of the message appearsin atree
view.

3. Expand and collapse the tree to view the message structure.

Viewing Only the Records in Rowset-Based Message Definitions

Y ou can use the Records Only page (IB_MESSAGE_TR_SEC) to view the records and subrecordsin a
rowset-based message definition. The following graphic shows the Records Only page:

Records Only

Message: QE_FLIGHTPLARM Version: YERSION_1

= QE_FLIGHTPLAN
= & QE FLIGHTDATA
= & oE_MavIGATION
= & QFE_RADAR PRESET
= & QE_ARMAMENT
= & QE WPN_PRESETS
= & QE STAT COMNFIG

Records and subrecords for the QE_FLIGHTPLAN message displaying in the Records Only page

To view only the records in arowset-based message:
1. Select PeopleTooals, Integration Broker, Integration Setup, Messages.
2. Select amessage to view.
The Messages-Message Definitions page appears.
3. Just above the tree structure view of the message structure, click the View Records Only link.

The Records Only page appears and the records and subrecords in the message definition display in a
hierarchical view.

4. Click the Return button to return to the Messages-M essage Definitions page.

Viewing Only Included Record Fields in Rowset-Based Message Definitions

Y ou can use the Included Fields Only page (IB_MESSAGE_TR_SEC) to view the included records fields for
arowset-based message definition. The following graphic shows a sample of the records and their included
fields contained in the QE_FLIGHTPLAN message definition:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Included Fields Only

Message: QE_FLIGHTPLAR

Version:

VERSION_1

= QE_FLIGHTPLAN

= & QE FLIGHTDATA
& « QE_ACNUMBER
& « QE_MS|_SEMNSOR
@ « QE_OFF
& « QE_ACTYPE
& o QE_CALLSIGN
& « QE_SQUADRON
@ ¥ QE_COMMI
& « QE_COMMZ
& « QE_ECM
& « DESCRLONG
= & oE_NavIGATION

W v
P W
W@ v
@
W v
P W
W@ v

QE_ACHUMBER
QE_WAYPOINT_MBR
QE_BEARIMNG
LE_RAMGE
QE_ALTITUDE
QE_LATITUDE
QE_LOMNGITUDE

Managing Messages

Records and their included fields for the QE_FLIGHTPLAN message displaying in the Included Fields Only

page.

Included fields are denoted by a green icon in the shape of a check mark.
To view included record fields in a rowset-based message:

1. Select PeopleTooals, Integration Broker, Integration Setup, Messages.

2. Select amessage to view.

The Messages—M essage Definitions page appears.

3. Just above the tree structure view of the message structure, click the View Included Fields Only link.

The Included Fields Only page appears and included records fields contained in the message display.

4. Click the Return button to return to the Messages-M essage Definitions page.

Inserting Root Records

You insert aroot record into a rowset-based message definition using the Add New Record page
(IB_MESSAGE_TOP_SEC) shown in the following example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

85

Managing Messages Chapter 6

Add New Record

New Record Hame Q

Add New Record page

Note. There can only be one root record defined for each rowset-based message.

To insert aroot record into a definition:
1. Accessthe Add New Record page.

Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-M essage Definitions
page appears. Click the Add Record to Root link.

2. Inthe New Record Name field, enter the name of the record to add, or click the Lookup button to search
for and select one.

3. Click the OK button.

The root record appears in the tree structure. Click the plus button to expand the tree and view fields that are
associated with the record.

Y ou can exclude fields from the record and specify field name aliases. Steps for performing these actions are
described elsewhere in this chapter.

See Chapter 6, "Managing Messages," Excluding Fields from Messages, page 89.
See Chapter 6, "Managing Messages," Specifying Field Name Aliases, page 89.

Inserting Child and Peer Records

86

You insert child and peer records into a rowset-based message definition using the Message Record
Properties page (IB_ MESSAGE_REC_SEC) shown in the following example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages
Message Record Properties

Record: QFE_FLIGHTDATA
Alias Name: | QE_FLIGHTDATA

() Delete Record
) Add Record Hew Record Name: | Q
Peer Record
Child Record
~ Field List : Find B First B 110 0p10 B Last
Field Hame
QE_ACNUMBER |
QE_MSI_SENSOR |
QE_OFP |
QE_ACTYPE |
QE_CALLSIGN |
QE_SQUADRON |
QE_COMM1 |
QE_COMM2 |
QE_ECM |
DESCRLONG |

Message Record Properties page

To insert achild or peer record into a rowset-based message definition:
1. Accessthe Message Record Properties page.

(Select PeopleToals, Integration Broker, Integration Setup, Messages. The Messages-M essage Definitions
page appears. Click the linked record name to which to add a peer or child record.)

2. Inthe Action group box, select Add Record.

3. Inthe New Record Name field, enter the name of the record to add, or click the Lookup button to search
for and select a name.

4. Select whether to add the record as a peer record or achild record.
» Select Peer Record to add the record as a peer.
« Select Child Record to add the record as a child.

5. Click the OK button.

The Messages-Message Definitions page appears.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 87

Managing Messages Chapter 6

6. Click the Save button.

Specifying Record Aliases

Y ou can specify aliases of the root, peer, and child records that you insert into rowset-based messages using
the Message Record Properties page.

To specify arecord alias:
1. Accessthe Message Record Properties page.

(Select PeopleTools, Integration Broker, Integration Setup, Messages. The M essages-Message Definitions
page appears. Click the linked record name to which to specify an alias.)

2. Inthe Alias Name field, enter an alias name.
3. Click the OK button.
The Messages-M essage Definitions page appears.
4. Click the Save button.
See Also

Chapter 6, "Managing Messages," Message Aliases and Message Versions, page 77

Deleting Records

This section describes how to delete records from a rowset-based message.

Note. Deleting the root record deletes all records and their associated fields that are inserted into the
definition.

To delete arecord:
1. Accessthe Message Record Properties page.

(Select PeopleToals, Integration Broker, Integration Setup, Messages. The Messages-Message Definitions
page appears. Click the name of the record to delete.)

2. Inthe Action group box, select Delete Record.
3. Click the OK button.

The Messages-Message Definitions page appears.
4. Click the Save button.

88 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Excluding Fields from Messages

Y ou can exclude record fields from inclusion in a rowset-based message definition using the Message Field
Properties page.

After you exclude fields from records, the tree view of the message definition on the Message Definitions
page displays ared icon in the shape of box next to the excluded fields. The following example shows that the
field QE_ACNUMBER, has been excluded from the QE_FLIGHTDATA record.

[= TEST_ROWSET_MSG
E & QE FLIGHTDATA

< M QE ACNUMBER
& « QE_MS| SENSOR
& « QE OFP
“ « QOF ACTYPE
& « QE CALLSIGM
& « QE SQUADRON
& « QE COMMA
@ v QFE_COMMZ2
& « QF ECM

& « DESCRLONG

Fields excluded from the QE_FLIGHTDATA record

To excludefields:
1. Accessthe Message Field Properties page.

a. Select PeopleTools, Integration Broker, Integration Setup, Messages. The M essages-Message
Definitions page appears.

b. Click the plus button (+) to expand the record tree structure, and locate the field to exclude from the
definition.

c. Click the name of the field to exclude.

The Message Field Properties page appears.

2. Click the name of the field to exclude.

3. Clear the Include check box.
4. Click the OK button.

The Messages-Message Definitions page appears.
5. Click the Save button.

Specifying Field Name Aliases
Use the Message Field Properties page to specify field name aiases.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 89

Managing Messages Chapter 6

To specify afield name dlias:
1. Accessthe Message Field Properties page.

a. Select PeopleTools, Integration Broker, Integration Setup, Messages. The Messages-Message
Definitions page appears.

b. Click the plus button (+) to expand the record tree structure, and locate the field to exclude from the
definition.

c. Click the name of the field for which to specify afield name dias.
The Message Field Properties page appears.

2. IntheAlias Namefield, enter an aias name.

3. Click the OK button.
The Messages—M essage Definitions page appears.

4. Click the Save button.

Managing XML Message Schemas for Rowset-Based Messages

90

This section discusses how to:

* View XML message schemas for rowset-based messages.

» Exclude descriptionsin XML message schemas.

« Choose the number of level O rowsto include in generated XML message schema.
+ Include namespaces in generated XML message schemas.

» Suppress empty XML tagsin message schema.

Viewing XML Message Schemas for Rowset-Based Messages

PeopleSoft Integration Broker automatically generates message schema for rowset-based messages when you
save the message definition.

After you save a message definition on the Messages-M essage Definitions page, click the Schematab to view
the generated XML message schema.
Excluding Descriptions in XML Message Schemas

Message data that is used to define services can have actual database record and field namesin the generated
XML message schema. PeopleSoft Integration Broker provides an option where you can exclude descriptions
in generated message schemas so that sensitive information is not exposed.

The Messages—M essage Definitions page features an Exclude Descriptions in Schema box that enables you to
suppress descriptions in generated schema.

To exclude descriptionsin XML message schemas:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

1. Accessthe Messages—Message Definition page (PeopleTools, Integration Broker, Integration Setup,
Messages).

2. Select the Exclude Description in Schema box.
3. Savethe changes.

See Chapter 6, "Managing Messages," Managing XML Message Schemas for Rowset-Based M essages,
page 90.

Choosing the Number of Level 0 Rows to Include in Generated XML Message Schema

Y ou can choose to include asingle level 0 row in the generated schemaor all level 0 rowsin the generated
schema.

When you select the Single Level 0 Row check box, PeopleSoft Integration Broker includes asingle level 0
row in the XML message schema when you Save the definition. If this box is not selected, then the system
includes al level 0 rows in the message in the generated schema.

By default the Single Level 0 Row check box is not selected.

If you check the Single Level 0 Row check box to generate schema with one level 0 row, the level 0 row
included in the schemais the first level 0 row the system encountersin the message.

Including Namespaces in Generated XML Message Schemas

PeopleSoft Integration Broker enables you to include a namespace in XML message schemas that you
generate for rowset-based messages.

When working with a rowset-based message type, the M essages—M essage Definition page displays an
Include Namespace box. When the Include Namespace check box is selected, you can specify a namespace to
include in the generated schema on the M essages-Schema page.

The following example shows the Namespace field as it appears on the M essages—Schema page:

| [crena

Message: CIE_ASYMC_TEST

Version: VERSION_1
Namespace: | Nitpfxmins.oracle.comiEnterprise/Tools/schemas/QE_ASYNC_TEST.VER

Schema:

The Messages—Schema page with the default namespace from the Service Configuration page populating
the Namespace field.

By default the Namespace field is populated with the namespace defined on the Service Configuration page,
however you can change the namespace to use in the message schema as required.

To include a namespace in generated schema:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 91

Managing Messages Chapter 6

1. Accessthe Messages—Message Definition page (PeopleTools, Integration Broker, Integration Setup,
Messages).

2. Check the Include Namespace box.
3. Click the Schema tab.

The Messages—Schema page appears. By default the namespace as defined on the Service Configuration
page popul ates the Namespace field.

4. Inthe Namespace field enter the namespace to use in the generated XML message schema.
5. Click the Message Definition tab.
6. Saveyour changes.

The system generates the message schema and includes the namespace specified.

Suppressing Empty XML Tags in Message Schema

PeopleSoft Integration Broker enables you to suppress empty XML tags in message schema of rowset-based
messages.

The Messages-Message Definition page features a Suppress Empty XML Tags check box.

When you select this box, message schema generated for the message will not include any XML tags that
contain empty or Null values.

Enforcing Message Record and Field Aliases in Generated WSDL

92

PeopleSoft Integration Broker enables you to enforce record and field aliases in generated WSDL.

The Service Configuration page features aWSDL Generation Alias Check drop-down list that enables you to
set a system check level for aliases on message definition records and fields.

Y ou can set the following check levels:

Check Level Description

Error. If the system encounters a message definition without proper record and field
aliases, it displays an error and it will not generate aWSDL document.

None. Default. The system creates a WSDL document regardless of whether
message records and fields are aliased or not.

Warning. Asthe system creates a WSDL document it displays awarning it encounters
messages definitions that do not have complete aliasing for records and/or
fields. If the system encounters records or fields that do not have aliases
defined, you can continue to generate the WSDL document or terminate the
generation of the WSDL document.

To enforce message record and field aliases in generated WSDL :

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

1. Accessthe Service Configuration page (PeopleTooals, Integration Broker, Configuration, Service
Configuration).

2. Fromthe WSDL Generation Alias Check drop-down list, select avalue. The valid options are:

e FError.
« None.
» Warning.

Managing Nonrowset-Based Messages

This section provides an overview of managing nonrowset-based messages and discusses how to:

¢ Add XML message schemas to nonrowset-based messages.
« Edit nonrowset-based XML message schemas.

Understanding Managing Nonrowset-Based Messages
After you create a nonrowset-based message definition, you do not need to complete any additional
configuration steps for the definition, except to add an XML schema. The XML schema describes the datato
be sent, and includes the field names, data types, field lengths and so on.
Y ou may add or replace message schemas that are referenced by nonrowset-based messages in runtime tables.
However, once you change a message schema for a nonrowset-based message, you must adjust the message
for asuccessful integration.
See Also

Chapter 6, "Managing Messages," Adding Message Definitions, page 78

Adding XML Message Schemas to Nonrowset-Based Messages

To add an XML message schema to nonrowset-based messages:

Note. Y ou cannot regenerate message schemas for messages that are defined as part of arestricted service.

1. Select PeopleTools, Integration Broker, Integration Setup, M essages.

2. Select the nonrowset-based definition to which you want to add an XML schema.
The Messages - Message Definitions page appears.

3. Click the Schema tab.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 93

Managing Messages Chapter 6

Click the Add Schema button.
The Schema page appears.
Add the XML schemato the message.

Y ou can add the schemato the message in two ways:

« Click the Upload Schema From File button to browse for and upload a schemathat you have already
saved to afile.

« Enter the XML schemain the Schematext box that is provided.

6. Click the Save button.

If you define the message as a message part, you must supply a schemato save the message. All message
parts require aschemaat savetime.

Editing Nonrowset-Based XML Schemas

After an XML message schemais added to a nonrowset-based message, you can edit the schema using the
Schema page.

Note. Y ou cannot regenerate message schemas for messages that are defined as part of arestricted service.

To edit nonrowset-based XML message schemas:

1
2.

Select PeopleTools, Integration Broker, Integration Setup, Messages.

Select the nonrowset-based definition that contains the schema that you want to edit.

The Messages - Message Definitions page appears.

Click the Schema tab.

The Schema page appears and displays the existing XML message schemafor the definition.
Click the Edit Schema button.

In the Schema text box, make your changes and additions to the XML schema.

Click the Save button.

Deleting Nonrowset-Based XML Message Schemas

This section discusses how to:

94

Delete individual nonrowset-based XML message schemas.
Delete nonrowset-based XML message schemain bulk.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Deleting Individual Nonrowset-Based XML Message Schemas

Use the Messages-Schema page (IB_MESSAGE_BUILD?2) to delete individual nonrowset-based XML
message schema.

To delete an individua nonrowset-based XML message schema:

1. Select PeopleTooals, Integration Broker, Integration Setup, M essages.
The Messages-Message Definitions page appears.

2. Click the Schema tab.
The Messages-Schema page appears.

3. Click the Delete Schema button.

Deleting Nonrowset-Based XML Message Schemas in Bulk

To delete one or more nonrowset-based XML message schemas, use the Message Schemas page
(IB_HOME_PAGES®) in the Service Administration component (IB_HOME_PAGE). The following example
shows the Message Schemas page:

Senvice Operations Message Schemas

Service System Status: Development

Container, part, and rowset-based message schemas cannot be deleted.

Message Hame: |

Search

Messages with b=
i Customize | Find | View Al | 0] B8 First B 4 or 1 I Last

Schemas

Select Message Hame Version Results

Delete

Service Administration—-Message Schemas page

To delete nonrowset-based XML message schemasin bulk:
1. Select PeopleTooals, Integration Broker, Service Utilities, Service Administration.

2. Click the Message Schemas tab.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 95

Managing Messages

3. Choose the schema or schemas to delete.

Chapter 6

To delete an individua schema, in the Message Name field enter the name of the message that contains

the schemato delete.

To delete more than one schema, click the Search button to display all nonrowset-based message in the

system than contain schema.

The message or messages appear in the Messages with Schema grid.

4. Inthe Select column, check the box next to each message name that contain schema you want to delete.

If deleting multiple schemas, use the forward and backward arrows and/or the Last and First links to page

through the results and select schemasto delete.

5. Click the Delete button.

Managing Message Parts

This section discusses how to create message parts.

Understanding Message Parts

96

Message parts are individual message definitions that get used in container messages.

While message parts can be rowset-based or nonrowset-based, the advantage of using message parts comes
when working with rowset-based messages. By using nhonrowset-based message parts, you cannot take
advantage of PeopleSoft Integration Broker's framework for creating message definitions, use of PeopleCode,
serialization, porting, and so on. The following table highlights some of the advantages of using rowset-based

message parts:

Rowset-Based Message Parts

Nonrowset-Based Message Parts

Y ou can use the PeopleSoft Pure Internet Architecture to
build rowset-based message parts.

Y ou cannot use the PeopleSoft Pure Internet Architecture
to build nonrowset-based message parts.

Message schemais automatically generated for rowset-
based messages.

Y ou must generate message schema for nonrowset-based
message parts.

The mapping from XML to rowset is managed by the
framework.

Y ou must use the XMLDoc class to manipulate
nonrowset-based message content.

In addition, you must manually map the XML into
XMLDoc for the parts.

Container messages are aways honrowset-based. So, if you use a container message that contains rowset-
based part messages, the container messages sends XML that contains none of the standard PeopleSoft
message XML structures, such as PSCAMA, FieldTypes, and so on. However, you can use the rowset-based
classes and methods to populate and read the structure of each part message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Creating Part Messages

To create a part message, create a standard rowset-based or nonrowset-based message and click the Part
Message box on the Message Definition page.

When the service system statusis set to Production, once a message is used in a container message, you
cannot alter the message while it is associated with a container message.

Y ou must generate schemas for all part messages before you can save them.

Schemas for rowset-based messages are automatically built when the message is saved. Schemas for
nonrowset-based parts must be added in order to save the message.

See Also

Chapter 6, "Managing Messages," Adding Message Definitions, page 78

Chapter 6, "Managing Messages," Managing Container M essages, page 102

Distinguishing Blank from Zero in Rowset-Based Part Messages

The Message Definitions page features a Message Part Default Indicator field that appears when you select or
define a rowset-based message part.

When you check the box, XML that has a value of 0 (zero) passed in an integer field, when serialized to a
rowset, causes the IsChanged property flag on the field to set to True.

By default an integer field hasavalue of 0. So if a0 or <blank> is passed in afield, the end result isa 0 when
accessing the field via the rowset. However, if you check the Message Part Default Indicator box the
IsChanged property on such afield is set to True, meaning that a 0 (zero) was passed in the field.

Reusing Rowset-Based Message Parts

This section discusses how to:

» Reuse rowset-based message parts by reference.

» Reuse rowset-based message parts by copy.

Understanding Reusing Rowset-Based Message Parts

PeopleSoft Integration Broker enables you to reuse rowset-based message parts by referencing another
message part or by copying another message part.

Note. Y ou cannot reuse message parts at Level 0.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 97

Managing Messages Chapter 6

Referencing Message Parts

A reference to amessage part is read-only in the message part where it is referenced. To make changesto a
referenced message part, you must make the changes to the referenced message part directly. All changes are
then propagated to every message in which the message part is referenced.

Copying Message Parts

If you copy a message part, the system copies al records and fields and displays them at the record level. The
records and fields become permanent to the new message and you can edit all records and fields directly in
the message where the copied part exists. Changes you make to a copied message part are not propagated to
other copies of the message part that may exist. Y ou must make changes to a copied message part, you do so
manually to each message part that you want to change.

Reusing Rowset-Based Message Parts by Reference

98

This section discusses how to:

» Reuse amessage part by reference.

» Check for recursion.

» View referenced message part information.
« View where message parts are referenced.
« Modify referenced message parts.

« Délete referenced message parts

Reusing a Message Part by Reference

To reuse amessage part by reference:

1. Create arowset-based message part.

2. Add records to the message part per your requirements. At a minimum, you must add a Level 0 record.

3. Inthetreeview of the message part definition, click the name of the record off of which to add the reused
message part.

The Message Record Properties page appears.
4. Inthe Action box, click Add Part Reference.
5. ldentify if the message part is a peer part reference or achild part reference.

If you are working off the Level 0 record, these fields are read only and Child Part Reference is selected
by default.

6. Inthe Reference Message Version field, click the Lookup button to select the message that the system
should reference.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

7. Click the OK button.
The Messages-Message Definition page appears.

The reference part isidentifiable in the tree view for the message part definition by the highlighted color on
the root record of the referenced part. Since thisis areference, you can only view the reference part data
structure. To make any modifications to the referenced part, you must open the message part directly and
make your changes there. The system will propagate the changesto all messages that reference the message
part.

Checking for Recursion

By default, the system checks up to 20 levels for recursion to ensure that no message part references itself.
Y ou can modify this setting to check for recursion in as few as three levels of records and as many as 50
levels.

This parameter is set in the Service Operations Monitor on the System Setup Options page
(IB_SYSTEMSETUP). The following example shows the page:

System Setup Options

Rowset-hased message parts maximum recursion level check,

Message builder depth limit: I 20

Enahle runtime Frofile information far SynclAsync processing

" IB Profile Status On

System Setup Options page used to set the level of recursion checking for referenced message parts

To modify the recursion checking level:

1. Accessthe System Setup Options page (select PeopleTools, Integration Broker, Configuration, System
Setup Options)

2. Inthe Message Builder Depth Limit field, enter a value between 3 and 50.
3. Click the Save button.

Viewing Referenced Message Part Information

A referenced message part appears highlighted in the tree structure for a message. The following example
shows that the message record QE_ ARMAMENT is a referenced message part in the message FLIGHTDATA.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 99

Managing Messages Chapter 6

Message Definition Schema

Message: FLIGHTDATA

Schema Exists: Yes

Part Message
Version: 4 [Message Part Default Indicator
Alias: | [] Exclude Description in Schema
Description: |
. W
Owner 1Dz | [] suppress Empty XML Tags

Rowset-based
Nonrowset-based
Container
Part References
View Records Only View Included Fields Only Add Record to Root
Left | Right
[= FLIGHTDATA

= & QFE FLIGHTDATA- [FlightDatal
@ « QE ACNUMBER - [ACNumber]
& « QE WS SENSOR - [MSISensor]
& « QE OFP - [OFF]
& v QE ACTYPE - [ACType]
& « QE CALLSIGN - [CallSign]
& o QE SOUADRON -[Squadron]
& « QE COMM1-[Comm1]
« QE COMM2-[Comm?2]
W o QOE ECM-[ECM
& « DESCRLONG-[Desc]
= & QF NAVIGATION - [Navigation]
= & QF RADAR PRESET - [RADARPresef]
= 5% QE ARMAMENT - [Armament]

In this example, QE_ ARMAMENT is highlighted and is therefore a referenced message part in the
FLIGHTDATA message.

Note. Y ou can make changes to a message part that is referenced in another part or subpart, aslong as the
message part is not in the runtime tables, has not been exported as WSDL, or is arestricted message.

If you click areferenced message part, the Part Reference page (IB_MESSAGE_PARTS2) appears, as shown
in the following example:

100 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Part Reference
Message Name: ARMAMEMNT Message Version: W]

Record: QE_ARMAMERMT

Alias Name: Armarment view Definition
" Delete Part Reference

Part Reference page
Y ou can use the Part Reference page to view general information about the referenced message part aswell as
view the complete definition for the message part.

Y ou can aso use this page to del ete the reference to the message part. Deleting a part reference is discussed
elsewhere in this section.

See Chapter 6, "Managing Messages," Deleting Referenced M essage Parts, page 102.

To view the complete message definition for a referenced message part, on the Part References page click the
View Definition link. The Messages-M essage Definitions page for the referenced message part appears, like
the one shown in the following example:

Message Definition _

Schema Exists: Yes
Message: ARMAMENT
_ Part Message
Version: 1 [I Message Part Default Indicator
Alias: |[Armament [Exclude Description in Schema
Description:
. W
Owner ID: [] suppress Empty XML Tags
Comments: Message Type
Rowset-based
Honrowset-based
Container
Sub-part References
View Records Only Wiew Included Fields Qnly Add Record to Root
Left | Right
[= ARMAMENT

= & QF ARMAMENT - [Armament]

Message definition for the Armament message part.

Y ou can use the page to view details about the record structure, view the generated message schema, and so
on.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 101

Managing Messages Chapter 6

Modifying Referenced Message Parts

To make amodification to areferenced message part, you must make the modification in the message part
definition itself. Y ou cannot maodify areferenced message part from a message in which it is referenced.
Deleting Referenced Message Parts

Y ou delete a referenced message part in the message where the part is referenced.

To delete areferenced message part:

1. Open the message definition that contains the referenced message part to delete.

2. Inthetree structure view of the message definition, click the name of the referenced message part to
delete.

The Part Reference page appears.
3. Check the Delete Part Reference box.
4. Click the OK button.

Managing Container Messages

This section provides an overview of managing container messages and discusses how to:
» Add message parts to container messages.
« Add and get container message attributes.

» Generate XML message schemas for container messages.

Understanding Managing Container Messages

102

Container messages are used for those situations where you want to produce XML that contains none of the
standard PeopleSoft messaging XML structures, such as PSCAMA, FieldType, and so on, yet you want to use
PeopleSoft rowset-based classes and methods to populate and read the message structure.

Container messages.

« Hold one or more message parts.
» Areaways nonrowset-based messages.

The message parts you add to a container message must all be rowset-based message parts, or al nonrowset-
based message parts.

When working with container messages that contain rowset-based message, PeopleSoft Integration Broker
enables you to add attributes and attribute values to the container messages. Adding attributes to container
messages enables you to provide integration partners with data and information, without the need to modify
or provide the information in the container message definition or in any of the part message definitions.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Understanding Including Level 0 Rows for Message Parts in Container
Messages

When you are working with a container message that holds rowset-based message parts, you can specify the
minimum and the maximum number of level 0 rows for each message part.

When you are working with a container message, the Message Definition page, the Parts grid displays the
following fields:

Minimum Occurs The value you enter determines the minimum number of level O rowsin the
message part to include in the container message.

Maximum Occurs The value you enter in this field determines the maximum number of level O rows
in the message part to include in the contai ner message.

By default the Maximum Occursvalueis set to 1 to represent the single row of
data on the level O record defined on the part (typical for component processing).
However, for the case where more then one row of datais to be passed on the
level O record, for example there is a single record defined on the message part
and you want to send x number of rows of data, then increase the Maximum
Occurs value to the value of x (the number of rows of data you are sending) or
set the Unbounded Maximum fieldto Y.

Maximum Unbounded The value you select determinesif the system includes unlimited level O rows
from the message part in the container message. The valid values are:

» Y. The number of level O rows from the part message that the system includes
in the container messages is unlimited, or unbound. When you select this
option all rows from a part message are included in the container message.

» N. (Default) The number of level 0 rows from the part message that the
system includes in the container message is limited. Y ou must enter the
maximum number of rows from the part message to include in the container
message in the Maximum Occurs field.

Example: Message XML when Maximum Occurs is Set to a Non-Default Value

The section contains a example of a container message with three message parts. QE_ PART _1,QE PART 2,
and QE_PART_3.

Each part contains only one record (level O record).
As described earlier in this section, the Maximum Occurs valueis 1 by default.

In the following example QE_PART _1 is defined on the container with a Maximum Occurs value of 2 and
what is actually published in this case is two rows on the level 0 record for QE_PART 1, as shown in the
example.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 103

Managing Messages Chapter 6

<?xm version="1.0"?>
<QE_PARTS xm ns="http://xm ns. oracl e. conf Ent er pri se/ Tool s/ schemas/
QE_PARTS. VERSI ON_1">
<QE_PART_1>
<QE_NAVI GATI ON cl ass="R" xm ns="http://xm ns. oracl e.com Enterprise/
Tool s/ schenas/ QE_PART_1. VERSI ON_1" >
<QE_ACNUMBER>100</ QE_ ACNUVBER>
<QE_WAYPO NT_NBR>10</ QE_WAYPO NT_NBR>
<QE_BEARI NG >
<QE_RANGE/ >
<QE_ALTI TUDE/ >
<QE_LATI TUDE/ >
<QE_LONG TUDE/ >
<QE_HEADI NG >
<QE_VELOCI TI ES/ >
<QE_NAVDESC >
</ QE_NAVI GATI ON\>
</ QE_PART_1>
<QE_PART_1>
<QE_NAVI GATI ON cl ass="R' xm ns="http://xm ns. oracl e.conf Enterprise/
Tool s/ schenmas/ Q& PART 1. VERSI ON 1" >
<QE_ACNUMBER>100</ QE_ ACNUVBER>
<QE_WAYPQO NT_NBR>20</ QE_WAYPQO NT_NBR>
<QE_BEARI NG >
<QE_RANGE/ >
<QE_ALTI TUDE/ >
<QE_LATI TUDE/ >
<QE_LONG TUDE/ >
<QE_HEADI NG >
<QE_VELOCI Tl ES/ >
<QE_NAVDESC/ >
</ QE_NAVI GATI O\>
</ QE_PART_1>
<QE_PART _ 2>
<QE_RADAR PRESET cl ass="R' xm ns="http://xm ns. oracl e. conl Enterpri se/
Tool s/ schemas/ QE_PART 2. VERSI ON_1" >
<QE_ACNUMBER>2</ QE_ ACNUMBER>
<QE_RADAR _SELECTI ON>1</ QE_ RADAR_SELECTI ON>
<QE_RADARMODE>TWS</ QE_ RADARMODE>
<QE_RADAR_OPERMODE>N</ QE_RADAR_ OPERMODE>
<QE_BARSCAN>4B</ QE_ BARSCAN>
<QE_RADARRANGE>40</ QE_RADARRANGE>
<QE_TGTAGE>8</ QE_TGTAGE>
<QE_CHANNELSET>B</ QE_CHANNELSET>
<QE_AZI MUTH>80</ QE_AZI MUTH>
<QE_PRF>H</ QE_PRF>
</ QE_RADAR_PRESET>
</ QE_PART_2>
<QE_PART_3>
<QE_ARMAMENT cl ass="R' xm ns="http://xm ns. oracl e.conml Enterprise/ Tool s/
schemas/ QE_PART_3. VERSI ON 1" >
<QE_ACNUMBER>2</ QE_ ACNUVBER>
<QE_STATI ON_NBR>1</ QE_STATI ON_NBR>
<QE_AGMODE>CCI P</ QE_AGMODE>
<QE_BI T>SBI T</ QE_BI T>
<QE_WVEEAPONSPECS/ >
</ QE_ARVAMENT>
</ QE_PART_3>
</ QE_PARTS>

104 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Adding Message Parts to Container Messages
This section discusses how to add message parts to container messages.
Use the Messages - Message Definitions page to add message parts to a container message. To access the

page, select PeopleTaooals, Integration Broker, Integration Setup, Messages. The following example shows this
page:

Message Definition Schema

Schema Exists: M
Message: CONTAINER_MSG
Part Message
Version: W1
Alias: |
Description: |
Owner ID: b
Comments:
Rowset-based
Honrowset-based
Container

Add Pars

=i
Parts Customize | Find | View Al | (21| 58 First K 1 of 1 B Last

. Minimum (Maximum |*Unbound
el I [
Mezzage Hame Me=zzage Version Sequence ST— S Y— P —

o 0 K I v| [=]

Messages - Message Definitions page for a container message definition

When you click the Add Parts link to specify a message, version, and message type to add, the Add Parts
page (IB_MESSAGE_PARTS) appears as shown in the following example:

Add Parts

Message Name: |

Message Version: |

Show Rowset-based Parts
Show Nonrowset-based Parts

Add Parts page
For a message definition to be available for you to add to a container message, you must have selected the

Message Parts check box when you created the message definition. In addition, container messages can
contain only all rowset-based messages or al nonrowset-based messages.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 105

Managing Messages

106

Chapter 6

After you add message parts to a container message, the Messages - Message Definitions page displays and
the message parts that you have added to the message are listed in the Parts grid. The following examples
show of three message parts that are added to a container message:

Message Definition Schema

Schema Exists: [
Message: CONTAIMNER_MSG
Part Message
Version: W1
Alias: |
Description: |
Owner ID: b
Comments:
Rowset-based
Nonrowset-based
Container
Add Pars Container Aftributes

Parts

Mes=zage Name

QE PART 1 VERSION_1
QFE PART 2 VERSIOMN_1
QE PART 3 VERSION_1

Customize | Find |

Mezszage Version Sequence

TR L | e -

Minimum |(Maximum |*Unbound

Occurs Occurs Maximum

0 1 I v| [=]
o K N v| =]
0 1 ‘N v| [=]

A container message that contains three message parts

Click the name of any of the message parts that appear in the grid to open the individual message definition.
If the service system status is set to Production, when assigned to a container message, you cannot modify a
message definition. To modify the definition, you must delete it from the container message first. The

following example shows how the PART _1 message part displaysif you click the message name in the Parts

grid:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Message Definition

Managing Messages

Message: QE_PART_1
Version: VERSION_1
Alias:
Description;
Owner ID: b

Comments:

Part References
Wiew Records Only View Included Fields Only
Left | Right

[= QE_PART_1
= & oF NAVIGATION

The definitions for the part message QE_PART _1

Schema Exists: Yes

Part Message
[Imes sage Part Default Indicator
[] Exclude Description in Schema

[] suppress Empty XML Tags

Message Type

Rowset-based
Honrowset-based
Container

Add Record to Root

Clicking the Part References link displays all messages to which the message part is assigned.

Note. Before you add nonrowset-based message parts to a container message, you must upload XML
message schemas to each message part that you intend to include in the container message. Nonrowset-based

part messages cannot be saved without a schema.

To add a message part to a container message:

1. Select PeopleTooals, Integration Broker, Integration Setup, M essages.

2. Select a container message to which to add message parts.
The Messages - Message Definitions page appears.

3. Click the Add Parts link.
The Add Parts page appears.

4. Select amessage to add.

Y ou can use one of two methods to select a message to add:

a. Inthe Message Name and Message Version fields, enter the message name and version to add.

b. Select the Show Rowset-Based Parts option or the Show Nonrowset-Based Part option and click the

Search button to display all rowset-based or nonrowset-based messages that are designated as part

messages in the system.

Select one or more messages to include in the container message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

107

Managing Messages Chapter 6

5. Click the OK button.

The Messages - Message Definitions page appears, with the Parts grid popul ated with the message or
messages that you selected.

6. (Optional.) Inthe Parts grid, enter numeric values in the Sequence column to order message part
placement in the container message.

If you do not enter any values, the system sequences the messages in the order in which you add them to
the container message.

7. (Optional.) In the Minimum Occurs field, enter the number of minimum rows in the message part to
include in the container message.

8. Inthe Maximum Occurs field, enter the maximum number of level 0 rows from the part message to
include in the container message.

9. Inthe Unbound Maximum drop-down list, select whether to include all level O rows from the part in the
container message.

Note. If you select Y, note that the Maximum Occurs field no longer displays on the page, as all rows are
included in the container message.

The Minimum Occurs, Maximum Occurs and Unbound Maximum fields are described elsewhere in this
section.

See Chapter 6, "Managing Messages," Understanding Including Level 0 Rows for Message Parts in Container
M e 103.

Adding and Getting Container Messages Attributes

108

This section discusses how to:

« Add the language code of the message sender as an attribute to a container message.

» Add attribute names to a container message.

« Populate attribute values for container message attributes.

» Get attribute names and values from a container message.

This section aso provides a summary of PeopleCode that you can use to popul ate attribute values and get
attribute data from container messages.

Understanding Adding, Populating, and Getting Container Message Attributes

Y ou can add attributes to container messages that contain rowset-based message parts to provide integration
partners with data and information, without adding the information to the message definition.

To add attributes to a container message, you first define the attribute name, length, and required flag in the
container message definition in the PeopleSoft Pure Internet Architecture. Thisinformation appearsin
generated container message schema. At runtime the attributes appear at the root level of the generated XML.
Next you use PeopleCode to populate the attribute values using the IBInfo object. At runtime, PeopleSoft
Integration Broker validates the attribute values against the lengths you defined in the container message
definition.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

PeopleSoft provides a number of IBInfo object methods to get attributes from container messages.

Adding Language Codes of the Message Senders as Attributes to Container Messages

The language code of the user who executed the publish or sync request is a common attribute to add to a
container message. As such, PeopleSoft provides an Include Language Code attribute box, that when selected
automatically includes the information as an attribute name and value in the container message.

The Include Language Code attribute box appears on the Container Attributes page shown in the following
example:

Container Attributes

Message Hame: COMTAIMNER_MSG

Version: W1

Include Language Code

Container Attributes Customize | Find | view A1 | 0] B First B 12 0r2 B Last
*Attribute Name Length |Required

| O [=]
| O =]

Container Attributes page with the Include Language Code box selected.

To add the language code of the message sender as an attribute:

1. Accessthe Container Attributes page (PeopleTools, Integration Broker, Integration Setup, Messages and
click the Container Attributes link).

2. Select the Include Language Code box.
3. Click the OK bhutton.

4. The Messages—M essage Definitions page appears.

Adding Attribute Names to Container Messages

After you add one or more rowset-based message parts to a container message and save the message, a
Container Attributes link appears on the Messages-M essage Definition page under the Message Type group
box. When you click the Container Attributes link, the Container Attributes page
(IB_MESSAGE_ATT_SEC) shown in the following example appears:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 109

Managing Messages Chapter 6

110

Container Attributes

Message Name: CONTAIMNER_MSG

Version: W1

[linclude Language Code

- = |
Container Attributes Customize | Find | View Al | B | 28 First K 12 or 2 I Last

*Attribute Name Length |Required

|Messagelmpnnance

|Deve|nperID 7 =]

Container message with two attribute names defined: Messagelmportance, and DeveloperID.

To add an attribute name to a container message:

1. Accessthe Container Attributes page (PeopleTools, Integration Broker, Integration Setup, Messages and
click the Container Attributeslink).

In the Attribute Name field, enter aname for the attribute.
In the Length field, enter anumeric field length value.

(Optional.) Check the Required box if you want the attribute name to be required.

o W N

Click the OK button.

The Messages—M essage Definitions page appears.

Populating Attribute Values for Container Message Attributes

PeopleSoft provides severa |BInfo object methods within the Message object to populate container message
attributes.

Here is an example of how to populate attributes. The attribute values will be validated at runtime against the
defined lengths.

&VBG = Creat eMessage(Operati on. MY_SVC OPERATI ON) ;
& et = &VBG | Bl nf 0. AddCont ai ner Attri but e(" Messagel nportance", "Medium');
& et = &VBG | Bl nf 0. AddCont ai ner Attri but e(" Devel oper| D', "ndawson");

Additional IBInfo objects that you can use for working with container message attributes are described
elsewhere in this section.
Getting Attribute Names and Values from Container Messages

PeopleSoft provides severa IBInfo object methods within the Message object to Get attribute information
from container messages.

Note that if you attempt to read attributes within an Integration Broker event, such as OnNotify, OnRequest,
and so on, you must first Get a part rowset to load the attributes into the M essage object from the XML.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

The following code snippet shows one example of how to read attributes from a container message:

RowSet = &MSG CGet Part Rowset (1) ;
& ndex = &MBG | bi nf 0. Get Nunber O Cont ai ner Attri butes();
For & = 1 To & ndex

&attrName = &MSG. | bi nfo. Get Cont ai ner Attri but eNane(&i);
&attrVal ue = &VBG | bi nfo. Get Contai nerAttributeVal ue(&);

End- For ;

Additional |BInfo objects that you can use for working with container message attributes are described
elsewhere in this section.

Summary of PeopleCode Use for Working With Container Message Attributes

The following table summarizes the PeopleCode methods that you can use for working container message

attributes.

Method Description

GetNumberOfContai nerAttributes Gets the number of container attributes
Syntax:

&l nt eger = &VBG | Bl nf 0. Get Nunber Of >
Cont ai nerAttri butes();

GetContainerAttributeName Returns the name of the container attribute based on an index.
Syntax:

&String = &WBG | Bl nf 0. Get Cont ai ner >
AttributeNane(Ilnteger nlndex);

GetContainerAttributeVaue Returns the value of the container attribute based on an index.
Syntax:

&String = &WBG | Bl nf 0. Get Cont ai ner >
AttributeVal ue(l nteger nlndex);

AddContainerAttribute Add container attributes by passing in attribute name and
) value.
Syntax:

&Bool = &MVSG | Bl nf 0. AddCont ai ner >

Attribute(string nane, string>
val ue);

DeleteContai nerAttribute Delete a container attribute based on the attribute name.
Syntax:

&Bool = &MVSG | Bl nf 0. Del et eCont ai ner >
Attribute(string nane);

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 111

Managing Messages Chapter 6

Method Description
ClearContainerAttributes Deletes all container attributes in the IBInfo object.
Syntax:

&VSG. | Bl nf 0. d ear Cont ai ner =
Attributes();

Generating XML Message Schemas for Container Messages

XML message schemas for container messages re automatically generated when you save the definition. Y ou
can view the generated XML message schema on the Messages - Schema page. To access the page, select
PeopleTools, Integration Broker, Integration Setup, Messages and click the Schema tab.

The following example shows this page:

| Wessage Definition | Schema |

Message Name: TEST_M Updated: 1211372005 5:21:04PM
Version: Yersion_1
Name Space: http:ifzming.oracle comiEnterprise/Toolsfschemas/CONTAINTER_TE Wers
Schema:

=ml wersion="1.0"7=
=xsd:schema elementFormDefault="gualifled"
targethamespace="hitpikxmins.oracle.comfEnterprizelToolslschemasiCOMTAINTER_TE Mersion_1"
¥mins="http:Manins . oracle comiEnterprizefToalsischemasiCONTAINTER_TE Wersion_1"
¥mins: FIRST_MSG_PART Version_1="hitp.ifkmins.oracle.comiEnterprise/Toolsfschemas/FIRST_MSG_PART Yersion_1"
smins:SECOMND_MSG_PART Wersion_1="hitp:ixmins.oracle.comiEnterpriselToolsfschemasBECOMD_MSG_PART Versian_1"
#mins THIRD_MSG_PART Mersion_1="httpJfmins. oracle.com/EnterpriseiToanls/schemasTHIRD _MSG_PART Version_1"
s¥minsxsd="http M i3 oral 2001 EMLS chema™=
=xsdimport namespace="http:mins.oracle.comiEnterprisefToolsfschemas/FIRST_MSG_PART Mersian_1"
schemalocation="http pho-mdawsona peoplesoft.com/PSIGYWR eopleSoftServicelisteningConnector?
Qperation=GetSchema&xsd=FIRST_MSG_PART Version_1"f=
=xsdimport namespace="http:mins.oracle.comiEnterpriseToolsrfschemasiSECOND_MSG_PART Version_1"
schemalocation="http:fipho-mdawsona. peoplesoft.comiPSIGWWIPeopleSoftSenvicelisteningConnector?
Qperation=GetSchema&xsd=SECOND_MSG_PART Mersion_1"=
=xsdimport namespace="http:ixmins.oracle. comiEnterpriselToolsischemasMHIRD_MSG_PART Version_1"
schemalocation="httpfpho-mdawsona. peoplesoft.comiP SIGWIFeopleSofiServicelisteningConnectar?
Operation=GetSchema&xsd=THIRD_MSG_PART Mersion_1"r=
=wsdelement name="COMNTAINTER_TEST_MSG" type="CONTAINTER_TEST_MSGType"i=
=xsd.complexType name="COMNTAINTER_TEST_MSGType"=
=xsd:gequUence=
=xsd:element maxOccurs="unhounded" minQccurs="0" name="FIRST_MS3_PART"
type="FIRST_MSG_PART Version_1:FIRST_MSG_PART TypeShape"i=
=wsdelement maxOccurs="unbounded” minOcours="0" name="SECOMND_MSG_FPART"
type="SECOMND_MSG_PARTVersion_1:SECOMND_MSG_PART_TypeShape'i=
=xsd:element maxOccurs="unhounded" minQccurs="0" hame="THIRD_MSG_PART"
type="THIRD_MSG_PART Version_1.THIRD_MEG_PART_TypeShape"/=
=ksd sequences
=sd.complexTypes=

=fsd.schema=

System-generated XML message schema for container message with rowset-based message parts

112 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

The namespace that is used in the XML message schema becomes by default the value that is defined on the
Service Configuration page. To change the namespace, enter athe new namespace on the Schema page in the
Namespace field, the Message Definition tab, and save the change. The XML message schema s generated
again by means of the modified namespace value.

Viewing Service Operations that Reference Messages

Use the Service Operation References page (IB_MESSAGE_SO_SEC) to view alist of service operations
that contain a message. The Messages-M essage Definitions page provides alink to this page. To access the
page, select PeopleToals, Integration Broker, Integration Setup, Messages, and click the Service Operation
References link.

The following example shows the Service Operation References page:

Service Operation References

Message: |B_EX_MONROWSET_COMTAINER

Version: al

= - 1
Service Operations Customize | Find | E||] Firzt [4 1-2 of 2 na Last

service ration Service Operation Verzion |Validation
IB_EX_MP_MONROWSET_ASYMNC vl

IB_EX_MP_MONROWSET_SYMNC v

Service Operation References page show a list of service operations that contain the message
IB_EX_NONROWSET_CONTAINER

The following page elements appear on the Service Operation References page:

M essage Name of the message that is referenced in one or more service operations.
Version Version of the message that is reference in one or more service operations.
Service Operation Name of the service operation that contains the message.

Service Operation Version of the service operation that contains the message.

Version

Validation When the box is selected message schema has been generated for the message in

the service operation.

Resolving Inconsistencies in Exported WSDL

This section discusses how to:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 113

Managing Messages Chapter 6

» View service operations with exported WSDL inconsistencies.

» Clear exported WSDL status flags.

Understanding Using Project Copy and Exported WSDL

When you generate WSDL for a service operation, the system sets an internal flag on the service operation
that indicates that WSDL has been generated or exported for the specific service operation.

Y ou may later decided to use Project Copy to copy the service operation to a new database. But you may
decide not to or simply neglect to copy the exported WSDL to the new database.

Even though you have not copied the WSDL to the new database, the internal flag that says WSDL has been
generated is still set on the service operation. As aresult, the system expects WSDL to exist in the new
database, when it does not. When this condition exists, the system displays a status message on the message
definition(s) of messages referenced in the service operation.

When this condition exists, the options are:

» Clear theinternal WSDL exported flag on the service operation.
Information about how to perform this task is discussed in this section.

» UseProject Copy to copy the WSDL to the new database.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Lifecycle Management
Guide, "Copying Projects and Definitions.”

» Regenerate the WSDL on the new database using the Provide Web Service wizard.
See Chapter 18, "Providing Services," page 383.

Viewing Services Operations with Exported WSDL Inconsistencies

If the system detects aWSDL flag inconsistency, the following status message appears on the M essages-
M essage Definitions page for those message definitions referenced in the service operation for the WSDL in
guestion:

Exported WSDL flag i nconsi stency detected. WSDL does not exist.

The following graphic shows an example of the M essages-M essage Definitions page displaying the status
message:

114 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Message Definition Schema

M Status: Exported WSDL flag inconsistency detected. WSDL does not exist.
Exported WSDL Inconsistency

Schema Exists: Yes
Part Message

Message: FLIGHTFLAM
Version: w1
Alias: an
Description:

Owner 1D:
Comments: FlightPlan Container Message

Rowset-based
Nonrowset-based
Senvice Operation References Container
Add Pars Container Attributes

Parts Customize | Find | View | 1) B First BN 4 o4 B Last

. . *Unbound
Mess Name Mess Version Sequence |Minimum Occurs P T—

W1 1 0 ¥

FLIGHTDATA

Messages-Message Definitions page showing the "Exported WSDL flag inconsistency detected" status
message and the Exported WSDL Inconsistency link.

In addition, an Exported WSDL Inconsistency link appears on the M essages-M essage Definitions page. Click
thislink to view the Exported WSDL Inconsistencies page (IB_HOME_PAGE7_SEC). The following
graphic shows an example of the page:

Exported WSDL Inconsistencies

Senvice operations flagged as having exported WSDL need for that WSDL to existin the
repaositary. Ifthis is not the case, the data is inconsistent. This error is caused by impaorting a
senvice operation and not bringing along the related service or W3DOL object via project copy.

Message:

Senvice Admin
Exported WSDL Inconsistent
Operations
Service Operation Service Operation Version
FLIGHTFLAM V3

Customize | Find | view 41| 20| B8 First B0 4 op1 B Last

Exported WSDL Inconsistencies page

The page displays service operations that exist in the database that are flagged as having WSDL exported, yet
no WSDL existsin the database for them. The Exported WSDL Inconsistencies page features a Service
Admin link. Clicking the link opens the Service Administration-WSDL page (IB_HOME_PAGE?7). The
Service Administration-WSDL page provides a options to clear internal exported WSDL flag.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 115

Managing Messages Chapter 6

Clearing Exported WSDL Status Flags

The Clear WSDL Status page (IB_ HOME PAGE7_SEC) enables you to clear the internal exported WSDL
status flag for service operations that contain specific messages, or for all service operations in the database.

Note. Clearing the internal exported WSDL status flag on a service operation is one way to resolve aWSDL
flag inconsistency. Other options for resolving this condition are discussed elsewhere in this chapter.

See Chapter 6, "Managing Messages," Understanding Using Project Copy and Exported WSDL , page 114.
The following example shows the Clear WSDL Status page:

Clear WSDL export status

Operations flagged as exported but without W3DL.

o
Customize | Find | View Al | @I i First [4] 1of 1 [} Last

Version

FLIGHTPLAM v3

| Clear Export Status |

Clear WSDL Export Status page accessed from the Exported WSDL Inconsistencies page.

Up to this point, this section has demonstrated accessing the Clear WSDL Export Status page starting from
the Export WSDL Inconsistency link on a message definition, and then clicking on the Service Admin link
from the Exported WSDL Inconsistencies page. When you access the page using this navigation, only the
service operations that reference the message definition that you were originally viewing on the Messages-
Message Definitions page appear. Further, those service operations that appear are those that are flagged has
having WSDL exported, but for which there is none in the database.

Y ou can aso clear the WSDL export status flag for all service operationsin the database that are in the
inconsistent state of having been flagged as having WSDL generated, but no WSDL existsin the database for
them. Y ou can do so by accessing the Service Administration-WSDL page and clicking the Clear WSDL
Export Status link. The Clear WSDL Export Status page appears populated with all service operationsin the
database that have inconsistent WSDL.

The following example shows the Clear WSDL Export Status page accessed from the Clear Export Status
link on the Service Administration-WSDL page.

116 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

Clear WSDL export status

Qperations flagged as exported but without W3DL.

Customize | Find | View Al B0 88 First B0 110 o521 B Last
Version
GEMCOMPOMENTURL_SO vl
PRCS_FINDREQUESTS Tl
PRCS_GETPARAMS vl
PRCS_GETPROCESSMAMES Tl
PRCS_GETPROMPT vl
PRCS_GETREPORT Tl
PRCS_GETREQUEST vl
PRCS_SCHEDULE Tl
PRCS_UPDATEREQUEST vl
PT_SES_CREF_GET Tl
Clear Export Status

Clearing the WSDL export status flag for all service operations that are flagged as having WSDL exported but
for which there is none in the database.
To clear the WSDL exported status flag:

1. Accessthe WSDL Export Status page using one of the following methods:

» From amessage definition that displays the "Exported WSDL flag inconsistency” status message:
Click the Exported WSDL Inconsistency link. The Exported WSDL Inconsistencies page appears.
Click the Service Admin link.

« From the PeopleTools menu: Select PeopleToals, Integration Broker, Service Utilities, Service
Administration. The Service Administration page appears. Click the WSDL tab. Click the Clear
WSDL Export Status link.

2. Click the Clear Export Status button.

Renaming and Deleting Message Definitions

Y ou can rename and del ete messages using the Messages page (IB_HOME_PAGES) in the Services
Administration component (IB_ HOME_PAGE). The Message page contains two sections. a Delete section
that enables you to del ete message definitions and a Rename section that enables you to rename message
definitions.

To access the page, select PeopleTools, Integration Broker, Service Utilities, Service Administration, and
click the Messages tab.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 117

Managing Messages Chapter 6

When you first access the Messages page, all sections are collapsed. Click the section header arrow buttons to
expand and collapse each section.

The following example shows the M essages page with the Delete and Rename sections expanded:

WsDL Senices Senice Operations Messages Message Schemas Queues Routings [»

Service System Status: Development

Message Name: |

Search

Messages customize | Find | View A1 |) 8 First K 4 or 4 B Las
Select Message Name Version Description Results
]

Delete

Message Name: | Q Message Builder

New Name: |

Rename

Results:

Services Administration Messages page with the Delete and Rename sections expanded

At the top of the page, the Service System Status field displays the current setting. The service system status,
set on the Service Configuration page, affects the ability to rename and delete messages.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Configuring
PeopleSoft Integration Broker for Handling Services."

Renaming Message Definitions

118

To rename a message definition:

Note. Renaming a message definition renames all versions.

1

Access the Services Administration - Messages page.
Select PeopleToals, Integration Broker, Service Utilities, Service Administration. Click the Messages tab.
Click the arrow next to the Rename section header to expand the section.

In the Message Name field, enter the message definition to rename, or click the Lookup button to search
for and select the message to rename.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Managing Messages

4. (Optional.) Click the Message Builder link to view details about the selected message in the M essages -
Message Definitions page.

When you are done viewing the message details, click the Return button to return to the Services
Administration - Messages page.

5. Inthe New Namefield, enter the new name for the message definition.

6. Click the Rename button.

Deleting Message Definitions
When you del ete a message definition the system also deletes it's associated schema.
To delete a message definition:
1. Accessthe Services Administration - Messages page.
Select PeopleToals, Integration Broker, Service Utilities, Service Administration. Click the M essages tab.
2. Click the arrow next to the Delete section header to expand the section.
3. Inthe Message Name field, enter the name of the message to delete, and click the Search button.
Search results appear in the results grid.
4. Intheresults grid, select the check box next to the message or messages to del ete.
5. Click the Delete button.

Deleting Messages During Upgrade

To delete a message definition in an application upgrade project, you must first make sure that no live
instances of the message exist. Archive or delete any such messages in both the source and the target
database. Otherwise, you receive an error message during the copy process indicating that the object isin use.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 119

Chapter 7

Sending and Receiving Messages

This chapter discusses how to:

Generate and send messages.

Receive and process messages.

Process inbound errors.

Use Message object functionality with nonrowset-based messages.
Generate test messages.

Work with message segments.

Understanding Sending and Receiving Messages

To send and receive messages you use PeopleCode to:

Send request messages from PeopleSoft Integration Broker to other systems.
Receive response messages from other systems.
Route messages.

M ani pul ate message content.

Note. Y ou can also send messages directly to the integration gateway, thereby bypassing processing on the

integration engine.

Prerequisites for Sending and Receiving Messages

Before you can define PeopleCode to generate, send, receive, and process messages, you must define the

message in PeopleSoft Internet Architecture.

Note. Once you create PeopleCode, you must also define nodes, services and service operations to implement
a complete integration.

See Chapter 4, "Understanding PeopleSoft | ntegration Broker Metadata," page 35.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

121

Sending and Receiving Messages Chapter 7

Messaging Process Flows

122

The integration engine uses asynchronous request processes and synchronous request processes to manage
outbound and inbound messages. These processes examine the messaging elements that you create to
determine how to treat each message.

Outbound Message Processing Flow

This section discusses message processing flow for outbound messages. In this section, the term processis
used, and refers to either the integration engine's asynchronous request process or its synchronous request
process, depending on the type of integration you are preforming.

Outbound messages you send go through the following steps.

1
2.

The application triggers the sending PeopleCode that you devel oped.

The PeopleCode program populates and sends the message by using an asynchronous or synchronous
method.

The method that the PeopleCode uses to send the message triggers a request process in the application's
integration engine.

The process searches the outbound routings that are associated with that service operation to determine
the valid target nodes for the message.

The asynchronous process examines only asynchronous routings, and the synchronous process examines
only synchronous routings. If for synchronous processing, avalid single outbound routing cannot be
found, the sending method returns an error.

Note. Only active routings are considered for processing.

For each outbound routing that it finds, the process submits the message to the local gateway, along with
transaction information about the node and the target connector that should be used to send the message.

The local gateway transmits the message to the specified target node through the specified target
connector.

If thisis a synchronous message, the process waits for the target node to pass a response message back
through the gateway, then returnsit to the calling PeopleCode method.

Inbound Message Processing Flow

Each received message goes through the following steps:

1

The application's gateway receives a request message from a remote node or gateway, which specifies the
application asits target node.

The gateway submits the message to the application's integration engine, which searches for any inbound
reguest routing parameter which has the same alias hame as the external operation name passed in.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

3.

Sending and Receiving Messages

If amatching routing alias name isn't found, the integration engine returns an error message through the
gateway to the sending node.

If arouting alias name is found, the integration engine invokes either the asynchronous request process or
the synchronous request process, as appropriate, to handle the message.

Note. Any inbound routing alias that is found must have the proper permissions for that service operation
for the process to proceed.

The process accesses the service operation that matches the routing alias name and passes the message to
the service operation's handler associated with receiving PeopleCode.

« The asynchronous request process invokes the service operation's handler OnNotify event
PeopleCode.

« The synchronous request process invokes the service operation's handler OnRequest event
PeopleCode.

If thisis a synchronous transaction, the process waits for the receiving PeopleCode to generate and return
aresponse message, then passes it back to the sending node through the gateway.

Understanding Integration PeopleCode

This section discusses the PeopleCode used for integrations and describes:

Sending and receiving PeopleCode.
Integration application classes.

I ntegration methods.

M essaging methods.
Error-handling methods.

M essaging PeopleCode.

Sending and Receiving PeopleCode

This section discusses the PeopleCode you use for sending messages from PeopleSoft Integration Broker to
other systems, and the PeopleCode you use for receiving messages from other systems.

Sending PeopleCode

PeopleCode for sending messages can be located in PeopleCode events associated with records, record fields,
and components, and in application engine programs.

The PeopleCode method used to send messages is highlighted in the following table.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 123

Sending and Receiving Messages Chapter 7

Transmission Type Sending PeopleCode Comments

Synchronous SyncRequest method. The SyncRequest method belongs to the
IntBroker class.

Asynchronous Publish method. The Publish method belongs to the IntBroker
class.

To work with rowset-based messages in SOAP format, transform the SOAP documentsinto XML documents
and then use the IntBroker class SyncRequest or Publish methods. To work with nonrowset-based messages
in SOAP format use the SOAPDoc class.

Receiving PeopleCode

The PeopleCode that you use to receive a message must be associated with the message definition. The
transmission type of the message determines the location of the PeopleCode program.

Implement the OnReguest method for synchronous messages. |mplement the OnNotify method for
asynchronous messages. Both methods are located in the PS_PT application package, in the Integration sub-
package, in the IRequestHandler and INotificationHandler classes, respectively.

Transmission Message Structure Receiving PeopleCode Comments
Type
Synchronous Rowset-based Message is passed into the Implement the OnRequest method in
method. the IRequestHandler application
interface.
Synchronous Nonrowset-based Message is passed into the Implement the OnRequest method in
method. the IRequestHandler application
interface.
Asynchronous Rowset-based Message is passed into the Implement the OnNotify method in
method. the INotificationHandler application
interface.
Asynchronous Nonrowset-based Message is passed into the Implement the OnNotify method in
method. the INotificationHandler application
interface.

To get content data out of a request message, use the following guidelines.

Message PeopleCode Comments
Structure
Rowset-based GetRowSet method. None.

Nonrowset-based | GetXMLDoc method. Y ou can also use Message class functionality with nonrowset-based
messages.

See Chapter 7, "Sending and Receiving Messages," Using Message
Object Functionality With Nonrowset-Based Messages, page 171.

124 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

Application Classes

Sending and Receiving Messages

Application classes house the processing logic for asynchronous and synchronous messages. By
implementing the Integration Broker application classes, you can reuse code and access other benefits of

application classes.

The following application classes exist for PeopleSoft Integration Broker. See the individual applicable
application class interfaces for more information about the methods contained in an application class.

To access these application classes, in PeopleSoft Application Designer, open the PS_PT application package
and open the Integration subpackage.

Note. All of the Integration Broker application classes are defined as interfaces. This means that thereis no
native implementation of them: you must import them to your program and implement them if you want to

use them.

Application Class

Methods Contained in
Application Class

Comments

INotificationHandler

« OnNotify Thisinterface is the equivalent of the Subscription
Message event PeopleTools releases prior to
e OnError PeopleTools 8.48.
IReceiver e OnAckReceive Thisinterface is the equivalent of the OnAckReceive
Message event in PeopleTools releases prior to
e OnError PeopleTools 8.48.
IRequestHandler « OnRequest Thisinterface is the equivalent of the OnRequest
Message event in PeopleTools releases prior to
e OnError PeopleTools 8.48.
| Router « OnRouteSend Thisinterface is the equivalent of the OnRouteSend and
OnRouteReceive Message events in PeopleTools
« OnRouteReceive releases prior to PeopleTools 8.48.
e OnkError
1Send Thisinterface is the equivalent of the OnSend Message

e OnRequestSend

e OnError

event in PeopleTools releases prior to PeopleTools 8.48.

Each of the methods contained in these application classesis described in this section.

Routing Methods

Routing methods determine how a message is routed to or from PeopleSoft Integration Broker.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

125

Sending and Receiving Messages Chapter 7

126

OnRouteSend Method

Implement the OnRouteSend method for outbound synchronous and asynchronous service operations to
specify to what node PeopleSoft Integration Broker routes a message. The implementation of this method
enables you to apply PeopleCode that filters the destination nodes to which PeopleSoft Integration Broker
routes messages.

The OnRouteSend method is contained in the IRouter application class, which is contained in the PS_PT
application package, in the Integration subpackage.

When the application PeopleCode isinvoked to send a message, the routing definitionsin the local database
provide alist of target nodes to which PeopleSoft Integration Broker can route the message. The integration
engine's request handler invokes the service operation's OnRouteSend event. Y ou can implement the
OnRouteSend method in the application package associated with the handler for this service operation, which
enables you to apply additional PeopleCode that determines the final target nodes.

Y ou can use OnRouteSend to validate the outbound service operation's target node list, prevent the message
from transmitting, or redirect it to acompletely different set of targets.

Note the following PeopleCode built-in constants that you can use with the OnRouteSend method:
% IntBroker ROUTE_N Do not send this operation to any of the possible nodes.
ONE

% IntBroker ROUTE_S Send this operation to a selected list of nodes. The node list should be an array of
OME stringsin the property destinationNodes.

%IntBroker ROUTE_A Send this operation to al nodes that have a valid routing.
LL

OnRouteSend enables you to account for multiple synchronous targets. Only one target node at atime can
receive arequest message sent with a synchronous transaction. Even though you can define the same
outbound synchronous transaction for multiple nodes, you must make sure the transaction resolvesto asingle
target node or the transaction fails.

The following pseudo code shows an implementation of this class:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

i mport PS PT:Integration:|Router;

cl ass RoutingHandl er inplenments PS_PT:Integration: | Router
nmet hod Routi ngHandl er () ;
property array of any destinati onNodes;
met hod OnRout eSend(& MSG As Message) Returns integer
end- cl ass;

/* constructor */
nmet hod Routi ngHandl er
end- net hod;

nmet hod OnRout eSend
/+ & MBG as Message +/
/+ Returns |nteger +/
[+ Extends/inplenments PS_PT:Integration:|Router. OnRouteSend +/
/* Variabl e Declaration */
Local any &aNodeli st;
Local any &root Node;
Local any &xm Doc;

/* Check the nessage for the instructions on how to execute
t he OnRout eSend. */

&m Doc = & MBG. Get Xml Doc();
& oot Node = &xnl Doc. Docunent El enment ;
&aNodelLi st = &r oot Node. Get El enment sByTagNanme(" OnRout eSend") ;

I f (&aNodelList.Len <> 1) Then

/* No Nodes are in the list, therefore exit. */
Exit;
El se

/* check the value of the node to deternine the action to
take. */

Eval uat e &aNodelLi st [1] . NodeVal ue
When " True"
Return (9% nt Broker _ROUTE_ALL);
Br eak;
When "Fal se”
Return (9% nt Broker ROUTE_NONE) ;
Br eak;
When- O her

/* assume that this is to be routed to the node given */
Local array &nodeArray;

&nodeArray = CreateArray();

&nodeArray. Push(&NodeLi st [1]. NodeVal ue);

Local string &slBVariabl eTest = Get Current Type(&nodeArray);
Eval uat e &sl BVari abl eTest
VWhen "Array"
&dest i nati onNodes = &nodeArray. d one();
Ret urn % nt Br oker ROUTE_SOQVE;
When " Bool eanTr ue"
Ret urn % nt Br oker _ROUTE_ALL;
When " Bool eanFal se"
Ret urn % nt Br oker _ROUTE_NONE;
End- Eval uat e;
Br eak;

End- Eval uat e;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 127

Sending and Receiving Messages Chapter 7

128

End- I f;

end- net hod;

OnRouteReceive Method

Implement the OnRouteReceive method for inbound synchronous and asynchronous service operations to
apply PeopleCode that determines whether the default local node accepts inbound messages.

The OnRouteReceive method is contained in the IRouter application class, which is contained in the PS_PT
application package, in the Integration subpackage.

When the integration engine receives a message, the transaction definitions in the local database provide alist
of source nodes from which the application can accept the message. The integration engine's request handler
invokes the service operation's OnRouteReceive event. Y ou can implement the OnRouteReceive method in
the application package associated with the handler for this service operation, which enables you to apply
PeopleCode that determines whether the default local node accepts the inbound message. Y ou can employ
this event regardless of the message transmission type.

The following is an example implementation of this method:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

i mport PS PT:Integration: | Router

cl ass RoutingHandl er inplenments PS_PT:Integration: | Router
nmet hod Routi ngHandl er () ;
property array of any destinati onNodes;
nmet hod OnRout eRecei ve(& MSG As Message) Returns bool ean
end- cl ass;

/* constructor */
nmet hod Routi ngHandl er
end- net hod;

net hod OnRout eRecei ve
/+ & MBG as Message +/
/ + Returns Bool ean +/
/+ Extends/inplenents PS PT:|ntegration: | Router. OnRout eRecei ve +/
/* Variable Declaration */
Local any &aNodeli st;
Local any &root Node;
Local any &xm Doc;

/* Check the nessage for instructions on howto execute
t he OnRout eRecei ve. */

&m Doc = & MBG. Get Xml Doc();
& oot Node = &xnl Doc. Docunent El enment ;
&aNodelLi st = &r oot Node. CGet El enent sByTagNane(" OnRout eRecei ve") ;

I f (&aNodelList.Len <> 1) Then

/* A single node nust be present. */
Exit;
El se

/* check the value of the node to deternine the action to
take. */

Eval uat e &aNodelLi st [1] . NodeVal ue
When " True"
Return (True);
Br eak;
VWhen " Fal se"
Return (Fal se);
Br eak;
When- O her
/* don't recognize the value. */
Exit;
End- Eval uat e;

End- I f;

end- net hod;

Messaging Methods

This section describes methods used in messaging and the application classes in which they are contained.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 129

Sending and Receiving Messages Chapter 7

Outbound Messaging Methods

This section describes methods used on outbound messages from PeopleSoft to other systems.

130 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

OnRequestSend Implement for outbound synchronous and asynchronous service operations to
override connector properties before sending a message to the integration
gateway.

This method is contained in the 1Send application class.

The OnReguestSend method passes in a message to your derived application
class method. The returned value needs to be a message.

The following is an example implementation of this method.
i nport PS_PT:Integration:| Send;

cl ass SendHandl er inplements PS PT:Integration:| Send
met hod SendHandl er () ;
met hod OnRequest Send(& MSG As Message)
Ret ur ns Message;
end- cl ass;

/* constructor */
net hod SendHandl er
end- net hod,;

met hod OnRequest Send
/+ & MBG as Message +/
/+ Returns Message +/
/+ Extends/inplenents PS PT:Integration:|Send. +/
/+ OnRequest Send +/
/* Variable Declaration */
Local any &tenpNode;
Local any &r oot Node;
Local any &xm Doc;
Local any &nsg;

&nmsg = & MSG
&m Doc = &nsg. Get Xm Doc();

/* Add a node to the doc to prove that we can
edit it inthis event. */

& oot Node = &xml Doc. Docunent El enment ;

& enpNode = &r oot Node. AddEl enent (" OnSend") ;

&t enpNode. NodeVal ue = "If you see this, then
the Sync OnSend PCode has altered the message";
/[* and wite the data back into the nessage */
&nsg. Set Xm Doc(&m Doc) ;

Return (&nmsg);

end- net hod;

See Chapter 7, "Sending and Receiving Messages,” Setting and Overriding
Target Connector Properties at Runtime, page 144.

When using the | Send handler with message parts, specifically with rowset-based
message parts, the rowsets of the parts must be retrieved in the order that the
content data will be sent.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 131

Sending and Receiving Messages Chapter 7

Thefollowing is an example that can be used for | Send events that use rowset-
based parts (even for the cases where one is just overriding the connectors):

met hod OnRequest Send
[+ &VBG as Message +/
/ + Returns Message +/
/+ Extends/inplenents PS PT:Integration:|Send. +/
[/ + OnRequest Send +/
If (&G I sPartsStructured) Then
Local nunber & ;
Local Rowset &rs;
For & = 1 To &MBG Part Count
& s = &MVSG CGet Part Rowset (&) ;
End- For ;
End- I f;

Ret urn &MSG

end- net hod;

OnAckReceive Implement for outbound asynchronous service operations to access the body of a
message acknowledgement to check for SOAP faults.

This method is contained in the IReceiver application class.

The following is an example implementation of this method.
i mport PS _PT:Integration: | Receiver;

cl ass AckRecei veHandl er inpl enents PS PT:

I ntegration: >
| Recei ver
nmet hod AckRecei veHandl er () ;
met hod OnAckRecei ve(& MSG As Message) Returns
i nt eger;
end- cl ass;

/* constructor */
met hod AckRecei veHandl er
end- net hod;

met hod OnAckRecei ve
/+ & MBG as Message +/
/+ Returns Integer +/
/ + Extends/inplements PS_PT:Integration:+/
/| + | Recei ver. OnAck Receive +/
/* Variabl e Declaration */
/*
/* We return a hardcoded value. In this case, a
message error.*/

Return (% peration_Error);

end- net hod;

See Chapter 7, "Sending and Receiving Messages,” Handling Inbound
Asynchronous Transactions, page 149.

132 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Inbound Messaging Methods

This section describes methods used on inbound messages to PeopleSoft from other systems.

OnRequest Implement for inbound synchronous service operations.
This method is contained in the IRequestHandler application class.
The following is an example implementation of this method:

cl ass Request Handl er inplenments PS PT:Integration:
| Request Handl er
met hod Request Handl er () ;
met hod OnRequest (& MSG As Message) Returns
Message;
end- cl ass;

/* constructor */
met hod Request Handl er
end- net hod;

met hod OnRequest
[+ & M5G as Message +/
/[+ Returns Message +/
[+ Extends/inplenents PS PT:|ntegration:+/
/ + | Request Handl er . OnRequest +/
/* Variable Declaration */
Local any &t enpNode;
Local any &descNode;
Local any &r oot Node;
Local any &xm Doc;
Local any &xml dat a;
Local any &nsg;

&rsg = CreateMessage(Operation. QE | B_ SYNC RESP, % nt >
Br oker _response);

&m data = "<?xm version='"1.0"?>
<QE | B_Peopl eCode_Test =/ >";

&m Doc = CreateXm Doc(&xm dat a) ;
&r oot Node = &xni Doc. docunent el enent ;

&descNode = &root Node. AddEIl enent (" Descri ption");
&descNode. NodeVal ue = "Sync test of OnRouteSend.";

& enpNode = &r oot Node. addel enent (" OnRequest ") ;

&t enpNode. NodeVal ue = "If you see this,
then the On Request PCode created the response
nmessage";

&nsg. Set Xm Doc(&xm Doc) ;

Return &msg;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 133

Sending and Receiving Messages

134

OnNotify

Chapter 7

Implement for inbound asynchronous service operations. This method can be
used for code that does subscription processing, and for validating and loading
message data.

This method is contained in the INotificationHandler application class.
The following is an example implementation of this method:
import PS PT:Integration:INotificationHandl er;

class NotificationHandl er inplenments PS PT:Integration:=>
I NotificationHandl er

met hod NotificationHandl er();

met hod OnNoti fy(& MSG As Message) ;
end- cl ass;

/* constructor */
met hod Noti fi cati onHandl er
end- net hod;

met hod OnNoti fy
[+ & MBG as Message +/

/+ Extends/inplenents PS PT:Integration:|Notification=
Handl er. OnNoti fy +/

/* Variable Declaration */

Local Rowset &rs;

& s = &MBG CGet Rowset () ;

[* process data fromrowset */
end- et hod;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

OnResponse Implement for inbound response asynchronous service operations.

This method can be used for code that does response subscription processing.
This method is contained in the INotificationHandler application class.

The following is an example implementation of this method and shows how to
get the request TransactionlD.

i mport PS PT:Integration:INotificationHandl er
cl ass RESPONSE_NOTI FI CATI ON i npl enents PS_PT:
Integration: | NotificationHandl er
met hod RESPONSE_NOTI FI CATI ON() ;
met hod OnNoti fy(&VBG As Message) ;
end- cl ass;

/* constructor */
met hod RESPONSE_NOTI FI CATI ON

%Super = create PS PT:Integration:|NotificationHandl er=
ena—nethod;
met hod OnNoti fy
[+ &VBG as Message +/
[/ + Extends/inplenents PS PT:Integration: +/
[+ INotification Handl er. OnNotify +/
Local Rowset &rs;
Local bool ean &Ret;
Local string &Transactionl D
& s = &MSG. CGet Rowset () ;
I f &MSG | sSour ceNodeExt er nal Then
/* if the request came from an external non
Peopl eSoft System then you can get the
original TransactionlD fromthe WSA Messagel D
fromthe request nessage. */
&Transactionl D = &VSG | Bl nf 0. WEA_Messagel D
El se
/* if the request cane from a Peopl eSoft
System then get the original TransactionlD
fromthe nReplyTolD */
&Transactionl D = &VSG | Bl nf 0. | nRepl yTol D;
End- I f;

end- net hod;

Error-Handling Methods

Each application class contained in the Integration application subpackage contains an OnError method that
you can use for custom error handling.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 135

Sending and Receiving Messages Chapter 7

Custom error handling can include sending an email notification or entering datain alog when an error
occurs.

For the IRequestHandler application class, the OnError function returns a string. This enables you to send
back custom error messages, for example SOAP faults, to non-PeopleSoft consumers. If the message
consumed was a SOA P message and the custom error message is aready wrapped in SOAP, it will not be
modified and is sent as-is. However, if the OnError message is not SOAP, it iswrapped as a standard SOAP
fault and returned to the sender.

If the message consumer is another PeopleSoft system the message set/message |D framework applies.

If an error occurs the OnError method, if implemented, is automatically invoked. The type of exception can
be viewed by using the Message object to retrieve an Exception object populated with information about the
error, using the message class | BException property.

The following is an example of the OnError method implementation:

/[*On Error Inplenentation */
nmet hod OnError
/+ &VBG as Message +/
/+ Returns String +/
/+ Extends/inpl enents PS _PT:|ntegration: | Request Handl er. OnError +/
Local integer &MsgNunmber, &nMsgSet Number ;
Local string &sText;

&MsgNunber = &MSG | BExcept i on. MessageNunber ;
&MsgSet Nunber = &MSG | BExcept i on. MessageSet Nunber ;

rem &sText = &exception. Def aul t Text;
&sText = &VBG | BException. ToString();

/* ADD SPECI FI C ERROR | NFO HERE */
Return &sText;

end- net hod,;
See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Exception Class."

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Message Classes,” |BException.

Messaging PeopleCode

136

Messaging PeopleCode enables you to manipulate message content. The messaging PeopleCode classes you
can use for thisare:

M essage classes Use for rowset or nonrowset-based messages.
SOAPDaoc class Use for SOAP-compliant messages.
XMLDoc classes Use for XML messages.

XML and SOAP-compliant messages are nonrowset-based messages. Y ou can use their respective classes to
mani pul ate message content, or use the Message classes.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

See Also

Chapter 7, "Sending and Receiving Messages," Using Message Object Functionality With Nonrowset-Based
Messages, page 171

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Message Classes”
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "SOAPDoc Class'

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "XmlDoc Class'

Generating and Sending Messages

This section provides an overview of outbound messaging and discusses how to:
« Handle outbound asynchronous message transmission.

» Handle outbound synchronous message transmission.

» Read exceptions for outbound synchronous integrations.

« Handle cookies in messages.

Understanding Outbound Messaging
Successful outbound messaging relies on sending messages in the proper order and on testing the messages.
M essages containing non-XML data have special considerations.
Message Order

PeopleSoft Integration Broker guarantees that messages are delivered in the order in which you send them
and that they are single-threaded at the PeopleSoft receiving node. However, message order is not part of the
gueue definition. Y ou must send messages in the proper order.

Note. You can modify this behavior by using queue partitioning.

See Chapter 11, "Managing Service Operation Queues," Applying Queue Partitioning, page 235.

Message Testing
Make sure that you adequately unit-test and system-test your messages.

Unit-test a message by triggering the PeopleCode that sends the message and then view the message detailsin
Service Operations Monitor. From the Service Operations Monitor, you can view the contents of each field to
verify that the message datais formatted correctly.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor

Y ou can also test handler code using the Handler Tester utility.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 137

Sending and Receiving Messages Chapter 7

See Enterprise PeopleTools 8.50 PeopleBook: Integration Testing Utilities and Tools

Message Class Outbound PeopleCode
Use the record class SelectByK ey method whenever possible to get data that isn't in the component buffer.

If the record names are the same, use the standard record methods, such as SelectByK ey, Insert, and Update,
on the message records.

There are no automatic checks for message size. Y ou must do it programatically. Use the following code at
level O to control message size when dealing with multiple transactions:

If &Mbg. Size > %vbxMessageSi ze

Note. The OnRouteSend method enables you to apply PeopleCode that filters the destination nodes.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Record Class."

Non-XML Data

If you're generating a non-XML outbound message, it's up to you to insert the message content into a special
XML section containing a CDATA tag:

<xm psnonxm ="yes">
<! [CDATA[nonXM__nessage_data]] >

Handling Outbound Asynchronous Message Transmission
To send amessage asynchronously, use the IntBroker class Publish method in:

» A record field PeopleCode event.
« A component PeopleCode event.

When publishing from a component, publish messages only from the SavePostChange event, using the
deferred mode property.

« An Application Engine program.

« Animplementation of the OnNotify method.

« Animplementation of the OnReguest method .
The OnRequest service operation event is triggered only when an inbound transaction occurs. However,
when the receiving PeopleCode runs, the program can also send messages.

Message Class Outbound Asynchronous Example

The following example uses the Publish method in the PeopleCode IntBroker class:

138 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Local Message &NSG
Local Rowset &SALES ORDER, &RS;

/*CGet a pointer to the conmponent buffer rowset */

&SALES ORDER = Get Level 0();

/*Create an instance of the SALES ORDER _ASYNC nessage object */
&VBG = Creat eMessage(OPERATI ON. SALES ORDER_ASYNC) ;

/*Copy the rows fromthe rowset to the nessage object */

&NVBG. CopyRowset (&SALES ORDER) ;

/*Send the nessage */
% nt Br oker . Publ i sh(&V5G) ;

XmIDoc Class Outbound Asynchronous Example

The following example uses the Publish method:

Local Xm Doc &xm Request Doc;
Local Message &NVSG

/*Create an Xm Doc nject */
& m Request Doc = CreateXm Doc();

/* Parse a URL or input XML file into an Xm Doc */

&bool = & Request Doc. Par seXm From URL("C: \ pt\appserv\fil es\
i nput.xm");

/* Popul ate nmessage with XM. data */
&VBG = Cr eat eMessage(OPERATI ON. Xl Request) ;

&NVBG. Set Xnml Doc(& nl Request Doc) ;
/* Sent request */

% nt Br oker . Publ i sh(&VBG) ;

Identifying SOAP Faults

Y ou can implement the OnAckReceive method to access IBInfo data. This enables you to read the content of
acknowledgements returned by recipient systems of asynchronous SOAP messages. The ability to access
acknowledgement content is useful when sending SOAP messages, since although there may be no HTTP
protocol errors while sending them, SOAP faults may occur.

If the message is nonrowset-based, use the message class GetX mlDoc method to get the response data. This
returns an XmlDoc object.

If the message is rowset-based, use the message class GenX ML String method to get the response data. This
returns a string object which you can load into an XmlDoc object.

If SOAP faults are found, you can set the status equal to Error so that the errors appear in the Service
Operations Monitor for the publication contract.

The following code example shows how to use GetXmlDoc and GenX ML String in an implementation of the
OnAckReceive method. Valid status overrides are %Operation_Done, %Operation_Error, and
%Operation_Retry:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 139

Sending and Receiving Messages Chapter 7

i mport PS PT:Integration: | Receiver;

cl ass AckRecei veHandl er inplenments PS _PT:|ntegration:| Receiver
nmet hod AckRecei veHandl er () ;
nmet hod OnAckRecei ve(& MSG As Message) Returns integer
end- cl ass;

/* constructor */
net hod AckRecei veHandl er
end- net hod;
met hod OnAckRecei ve
/+ & MBG as Message +/
/+ Returns Integer +/
/+ Extends/inplenents PS PT:|ntegration: | Receiver. OnAckReceive +/
/* Variable Declaration */
If &VBG | sStructure Then

/* if message is rowset-based */
&str = &VBG GenXM.String();

El se
/* if message i s nonrowset-based */
&m doc = &MBG Get Xm Doc() ;
End- | f;
Return (% peration_Done);

end- net hod;

Y ou can also implement the OnAckReceive method to read response content data returned from third-party
systems when using the HT TP target connector.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "XmlDoc Class'

Handling Outbound Synchronous Transactions

140

Use the IntBroker class SyncRequest method for handling outbound synchronous transfers. To send a
message synchronously, you can employ SyncRequest in:

» Therecord field SavePreChange PeopleCode event.
» Therecord field SavePostChange PeopleCode event.
« Therecord field Workflow PeopleCode event.

« Therecord field FieldChange PeopleCode event.

+ Animplementation of the OnRequest method.

« Animplementation of the OnNotify method.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Note. The OnReguest and OnNotify events are triggered only when an inbound transaction occurs, however,
when the receiving PeopleCode runs, it can also send messages.

The response message that is returned from an outbound synchronous transaction is no different from an
inbound regquest message. Once you haveit in aMessage, XmlDoc, or SoapDoc object, it has the same
properties as any other object of that type and can, therefore, be treated exactly the same way.

See Chapter 7, "Sending and Receiving Messages," Receiving and Processing M essages, page 148.

Message Class Outbound Synchronous Example 1

The following example uses the IntBroker class SyncRequest method:

Local Message &\VBG &response;
Local Rowset &SALES_ORDER

&SALES_ORDER = Get Level 0():
&MBG = Cr eat eMessage(OPERATI ON. SALES_ORDER_SYNC) ;
&MBG. CopyRowset Del t a(&SALES_ORDER) ;

/* send the synchronous request; the return value is the response
nessage object */
& esponse = 9% nt Br oker. SyncRequest (&V5G) ;

/* check the response status; 0 neans K */
I f (& esponse. ResponseStatus = 0) Then

/* process the response */

MY_SALES ORDER SYNC. ORDER I D = &response. GCet Rowset () . Get Rowm(1)
. Get Recor d(Recor d. SO RESPONSE) . Get Fi el d(Fi el d. ORDER | D) . Val ue) ;
el se

/* do error handling */

End- | f;

Message Class Outbound Synchronous Example 2

The following example shows the use of CopyTo to get the data back from the response and into the
component buffer, and therefore the page:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 141

Sending and Receiving Messages Chapter 7

Local Message &nsgZi pRequest, &nsgZi pResponse;
Local Rowset &RS, &rsMessageRowset;

&RS = Get Level 0();

&nsgZi pRequest = Creat eMessage(OPERATI ON. ZI P_REQUEST) ;

&nsgZi pRequest . CopyRowset (&RS)

/* send the synchronous request; the return value is the response
nessage object */

&neQgZi pResponse = % nt Br oker . SyncRequest (&1sgZi pRequest,
Node. ZI PTOCI TYANDSTATE) ;

/* check the response status; 0 neans K */
I f (&nsgZi pResponse. ResponseStatus = 0) Then
/* process the response */
& sMessageRowset = &megZi pResponse. Get Rowset () ;
& sMessageRowset . CopyTo(&RS) ;
el se
/* do error handling */
End- | f;
XmlDoc Class Outbound Synchronous Example

The following example uses the IntBroker class SyncRequest method:
Local Message &\VBG &RESP_MSG

Local Xm Doc &fli ghtplan_xm doc, &xm docReturn

Local Xm Node &ac_nunber, &msi_sensor, &of p;

&f 1'i ght pl an_xm doc = Creat eXm Doc("");

&ac_nunber = &f i ghtplan_xm doc. Cr eat eDocunent El enent ("fl i ghtpl an");
&nmsi _sensor = &ac_nunber. AddEl enment (" nsi _sensor");
&nsi _sensor. NodevValue = "flir";

&of p = &ac_nunber . AddEl enent (" of p");

&of p. NodeVal ue = "8. 44";

&VBG = Creat eMessage(Message. SYNC REQUEST EXAMPLE)
&NVBG. Set Xml Doc(&f I i ght pl an_xml doc) ;

&RESP_MSG = &MSG. SyncRequest () ;

&M docRet urn = &RESP_MSG Get Xm Doc() ;

& eturn_data = &mnl docReturn. GenXm String();

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "XmlDoc Class'

Reading Exceptions for Outbound Synchronous Integrations

The Routing — Routings Definition page features a User Exception check box that enables you to capture
Integration Broker exceptions for outbound synchronous integrations using PeopleCode.

142 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Note. Do not use Try/Catch PeopleCode to attempt to read exceptions on outbound SyncRequest calls.

The following code example shows how to read captured exceptions:

&Ret urn_MBG = % nt Br oker . SyncRequest (&VSG) ;
I f &Return_MSG ResponseStatus = % B _Status_Success Then

/* process the response nessage */
&RS = &MSG Cet Part Rowset () ;

El se

/* evauate the error and either throw a Peopl eCode exception or continue=
processing */
&error_string = &Return_MSG | BException. ToString());
&nError MsgNunber = &Ret urn_MSG | BExcepti on. MessageNunber ;
&nError MsgSet Nunber = &Ret urn_MSG | BExcepti on. MessageSet Nunber ;

End- | f;
See Also

Chapter 15, "Managing Service Operation Routing Definitions," Defining General Routing Information, page
292

Overriding Synchronous Timeout Intervals at Runtime

For long-running outbound synchronous transactions, you can override the default timeout period the
transaction at runtime using the SyncServiceTimeout property. The default synchronous timeout period isfive
minutes.

The HTTP header file is modified to take this parameter. The value you set is sent to the integration gateway
whereit is used for the HTTP timeout.

The SyncServiceTimeout property takes atime (in seconds). The property is read-write.

The following code example shows how to use the property. To use this property, note that you must override
and setup the target connector properties for the transaction. As the example demonstrates, there are helper
methods that load properties based on node or transaction.

&NVBG. Set Xnml Doc(&l Req) ;

&VBG. | Bl nf 0. LoadConnect or Pr opFr omNode(Node. EAl) ;
&VBG. | Bl nf 0. SyncSer vi ceTi neout = 360000;

&NVSG. | Bl nf 0. Connect or Overri de = True;

&VBG Resp = 9% nt Br oker. SyncRequest (&VSG Node. EAl) ;
& m ResponseDoc = &VBG Resp. Get Xm Doc() ;

See Also

Chapter 7, "Sending and Receiving Messages,” Setting and Overriding Target Connector Properties at
Runtime, page 144

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "PeopleSoft Timeout Settings'

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 143

Sending and Receiving Messages Chapter 7

Handling Cookies

PeopleSoft Integration Broker provides basic cookie handling for exchanges that are initiated by your
PeopleSoft application. You can accept a synchronous response message containing cookies, save those
cookiesin aglobal variable, and later return them to the remote node in an outbound synchronous or
asynchronous request message. Thisisatypical application of cookiesin aweb interaction.

Cookies are implemented as an I1BInfo class property, Cookies. Y ou can access this property only in an
inbound synchronous response message or an outbound request message.

Receiving Cookies Example
The following example retains the cookies from a response message to a global variable:

Local Message &Sal esRequest, &Sal esResponse;
Local Rowset &SALES ORDER;
d obal string &Sal esCooki es;

&SALES ORDER = Get Level 0();
&Sal esRequest = Creat eMessage(OPERATI ON. SALES_ORDER _SYNQC) ;
&Sal esRequest . CopyRowset Del t a(&SALES ORDER) ;

/* Send the synchronous request; the return value is the response
nessage object */
&Sal esResponse = % nt Br oker. SyncRequest (&Sal esRequest) ;

/* Retrieve cookies fromthe response nmessage */
&Sal esCooki es = &Sal esResponse. | Bl nf 0. | BConnect or | nf 0. Cooki es;

Returning Cookies Example

The following example retrieves the previously retained cookies from the global variable and inserts them
into a new request message:

Local Message &Sal esRequest, &Sal esResponse;
Local Rowset &SALES ORDER
d obal string &Sal esCooki es;

&SALES ORDER = Get Level 0();
&Sal esRequest = Creat eMessage(OPERATI ON. SALES ORDER SYNO) ;
&Sal esRequest . CopyRowset Del t a(&SALES ORDER) ;

/* Insert the cookies in the request nessage */
&Sal esRequest . | Bl nf o. | BConnect or | nf 0. Cooki es = &Sal esCooki es;

/* Send t he asynchronous request */
% nt Br oker . Publ i sh(&Sal esRequest) ;

Setting and Overriding Target Connector Properties at Runtime

144

PeopleSoft Integration Broker enables you to dynamically override target connector properties at runtime that
have previously been set at the node, connector and transaction levels. To set or override target connectors at
runtime, use the PeopleCode IBInfo object, the Connector Info object and implement the OnRequestSend
method.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Note. Properties set at the PeopleCode level take precedence over those set at the node, connector and routing
level.

I Blnfo object An IBInfo object is instantiated from a message object.

Y ou can use this object in publishing or synchronous request PeopleCode. Y ou
can also useit in your implementation of the OnReguestSend method.

Connector I nfo object A ConnectorInfo object is instantiated from an IBInfo object. Use this object for
reading and writing connector name/value pair information to and from the
IBRequest.

Y ou can use this object in publishing or synchronous request PeopleCode. Y ou
can also useit in your implementation of the OnRegquestSend method.

OnRequestSend Method The OnRequestSend method is included in the | Send application class. Use your
implementation of this method to override target connector properties at runtime
for a subscribing node transaction.

This event associated with the service operation executes before any
transformations are processed.

Y ou can use this event for asynchronous and synchronous messages.

Since datais always carried with the message, you can use the IBInfo object, ConnectorInfo object and your
implementation of the OnRequestSend method to populate connector information in the publishing
PeopleCode and then override it for a specific node.

Setting and Overriding Target Connector Properties Using the OnRequestSend Event

Y ou can use implement the OnRequestSend method to override IBInfo and connector properties at runtime
for a subscribing node transaction.

Any content data that is changed on the message or XMLDoc is sent to the subscribing node or used within a
transformation.

To override the properties of atarget connector, you must set the following statement to true:

&NVBG. | Bl nf 0. Connect or Overri de=true

If apublication contract fails as aresult of using an implementation of the OnRequestSend method to
override connector properties at runtime, correct the PeopleCode in your implementation and resubmit the

message.

Example: Setting Target Connector Properties Using the OnRequestSend Method

The following example shows loading all connectors that exist for the node and adding one additional
property, Filename.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 145

Sending and Receiving Messages Chapter 7

i mport PS PT:Integration:| Send;

cl ass SendHandl er inplenents PS_PT:Integration:| Send

nmet hod SendHandl er () ;

nmet hod OnRequest Send(&vsg As Message) Returns Message;
end- cl ass;

/* constructor */
net hod SendHandl er
end- net hod;

met hod OnRequest Send
/+ &VBG as Message +/
/ + Returns Message +/
/ + Extends/inpl enents PS PT:Integration: | Send. OnRequest Send +/
/* Variable Declaration */
Local Any &Bo;
Local Message &Msg;

&Bo

&VBG. | Bl nf 0. LoadConnect or Pr opFr onNode(" nodenane") ;

&Bo &VBG. | Bl nf 0. | BConnect or | nf 0. AddConnect or Properties

("FILENAVE", "tenp", %°roperty);
&NVSG. | Bl nf 0. Connect or Overri de = True;
Return (&MsQ);

end- net hod;

Example: Overriding Connector Properties Using the OnRequestSend Method

The following example demonstrates overriding target connector properties using an implementation of the
OnReguestSend method for a rowset-based asynchronous message.

146 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

i mport PS PT:Integration:| Send;

cl ass SendHandl er inplenents PS_PT:Integration:| Send

nmet hod SendHandl er () ;

met hod OnRequest Send(&vsg As Message) Returns Message;
end- cl ass;

/* constructor */
net hod SendHandl er
end- net hod;

nmet hod OnRequest Send
/+ &VBG as Message +/
/ + Returns Message +/
[+ Extends/inplenents PS_PT:Integration:|Send. OnRequest Send +/
/* Variabl e Declaration */
Local Bool ean &bRet;

&b Ret = &VBG | Bl nf 0. LoadConnect or Prop(" FI LEQUTPUT") ;

&VBG | Bl nf 0. Connect or Override = True;

&Ret = &MBG. | Bl nf 0. | BConnect or | nf 0. AddConnect or Properti es
("sendUnconpressed", "Y', %leader);

&bRet = &VBG | Bl nf 0. | BConnect or | nf o. AddConnect or Properti es
("FilePath", "c:\temp", %roperty);

Return (&MsQ);
End- Met hod;

The following example demonstrates overriding target connector properties using an implementation of the
OnReguestSend method for a nonrowset-based asynchronous message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 147

Sending and Receiving Messages Chapter 7

i mport PS PT:Integration:| Send;

cl ass SendHandl er inplenents PS_PT:Integration:| Send

nmet hod SendHandl er () ;

nmet hod OnRequest Send(&vsg As Message) Returns Message;
end- cl ass;

/* constructor */
net hod SendHandl er
end- net hod;

met hod OnRequest Send
/+ &VBG as Message +/
/ + Returns Message +/
/ + Extends/inpl enents PS PT:Integration: | Send. OnRequest Send +/
/* Variabl e Declaration */

Local Xml Doc &xml doc;
Local Bool ean &bRet;

/1 if you have to access the content data for content based
/1 decisions, do this
&m doc = &VBG Get Xm Doc() ;

&bRet = &VBG | Bl nf 0. LoadConnect or Prop(" FI LEQUTPUT") ;

&VBG | Bl nf 0. Connect or Override = True;

&bRet = &VBG | Bl nf 0. | BConnect or | nf o. AddConnect or Properti es
("sendUnconpressed", "Y', %leader);

&bRet = &VBG | Bl nf 0. | BConnect or | nf 0. AddConnect or Properti es
("FilePath", "c:\tenmp", %roperty);

Return (&MSG ;

End- Met hod;
See Also
Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Message Classes,” IBInfo Class

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Message Classes," |1BConnectorinfo
Collection

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Message Classes'

Receiving and Processing Messages

This section discusses how to handle:

« Inbound asynchronous transactions.
» Inbound synchronous transactions.

« Simulating receiving messages from external nodes.

148 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Note. The OnRouteReceive method can be implemented to apply PeopleCode that determines whether the
default local node accepts the inbound message.

Handling Inbound Asynchronous Transactions

Implement the OnNotify method in the PS_PT application package, in the Integration sub-package, to handle
inbound asynchronous transactions. All the examplesin this section are assumed to be implementations of the
OnNotify method.

Message Class Inbound Asynchronous Example 1

The following example implements the OnNotify method.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 149

Sending and Receiving Messages

150

import PS PT:Integration:INotificationHandl er;

cl ass FLI GHTPROFI LE i npl enents PS PT:Integration:|NotificationHandl er

nmet hod FLI GHTPROFI LE() ;
met hod OnNoti fy(& MSG As Message);

end- cl ass;

/* constructor */

met hod FLI GHTPROFI LE
end- net hod;

met hod OnNoti fy

/+ & MBG as Message +/

/ + Extends/inplenents PS PT:Integration:|NotificationHandl er. +/
/+ OnNotify +/

/* Variable Declaration */

Local any &outstring;

Local any & ;

Local any &CRLF;

Local Message &NVSG
Local Rowset &rs, &rsli;
Local Record &FLI GHTDATA, &REC;

Local string &cnunber _val ue, &nsi _sensor_val ue, &ofp_val ue,
&actype_val ue, &callsign_val ue, &squadron_val ue, &omil_val ue,
&om®?_val ue, &ecm val ue;

Local Xm Doc &xm doc;
Local string & eturn_string_ val ue;
Local bool ean & eturn_bool val ue;

&CRLF = Char (13) | Char(10);
&MBG = & MSG

& s = &MSG Get Rowset () ;
&REC = &rs(1).QE_FLI GHTDATA;

&FLI GHTDATA = Creat eRecord(Record. QE_FLI GHTDATA) ;
&REC. CopyFi el dsTo(&-LI GHTDATA) ;

/* Parse out Message Data */

&acnunber val ue = &FLI GHTDATA. QE_ ACNUMBER. Val ue;
&nsi _sensor_val ue = &FLI GHTDATA. QE_MSI _SENSOR. Val ue;
&of p_val ue = &FLI GHTDATA. QE_CFP. Val ue;

&act ype_val ue = &FLI GHTDATA. QE_ACTYPE. Val ue;

&cal | si gn_val ue = &FLI GHTDATA. QE_CALLSI GN. Val ue;
&squadron_val ue = &FLI GHTDATA. QE_SQUADRON. Val ue;
&comml_val ue = &FLI GHTDATA. QE_COVML. Val ue;
&com®?_val ue = &FLI GHTDATA. QE_COVM2. Val ue;

&ecm val ue = &FLI GHTDATA. QE_ECM Val ue;

&outstring = "Send Async FLight test";

/* Construct Qutput String */

&outstring = &outstring | &cnunber _value | &CRLF |

&nsi _sensor_val ue |

&CRLF | &ofp_value | & CRLF | &actype_value | &CRLF |
&cal | si gn_val ue |

&CRLF | &squadron_value | &CRLF | &commil_val ue | &CRLF |
&com®_val ue |

&CRLF | &ecm val ue;

Chapter 7

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

/* Log Qutput String into page record */
&FLI GHTDATA. Get Fi el d(Fi el d. DESCRLONG) . Val ue = &outstri ng;

SQLExec(" DELETE FROM PS_QE_FLI GHTDATA") ;
&FLI GHTDATA. I nsert () ;

end- net hod;

Message Class Inbound Asynchronous Example 2

The following example shows notification PeopleCode that checks the PSCAMA to determine the audit
action code and that examines the language code to determine whether related language processing is needed:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 151

Sending and Receiving Messages

152

nmet hod OnNotify

|+

/*

&VBG as Message +/
Si npl e Peopl eCode Notifcation- - Check the PSCAVA*/

Local Rowset &MSG RS;

Local Record &REC NAVE PREFI X, &REC, &REC RL;

Local integer &l;

Local string &ACTI ON, &LNG &BASE LNG &RELLNG &KEY1l, &KEY2;

&VBG RS = &MBG Get Rowset () ;

For

& =1 To &VSG_RS. RowCount /* Loop through all transactions */

&REC = &MBG_RS. Get Row(&l) . Get Recor d(Recor d. NAME_PREFI X_TBL) ;
/* Get Audit Action for this transaction */

&ACTI ON = &MSG_RS. Get Row &l) . PSCAVA. AUDI T_ACTN. Val ue;

/* Get Language code for this transaction */

&LNG = &VBG RS. Get Row(&l) . PSCAMA. LANGUAGE _CD. Val ue;
&BASE_LNG = % anguage;

EV8.| uate &AC'I'IO\I /*****************************/
/******** Add a Record *******/

/*****************************/

VWhen " A"
/* Add the base | anguage record */
&REC NAME PREFI X = Creat eRecord(Record. NAME_PREFI X TBL) ;
&REC. CopyFi el dsTo(&REC _NAME_PREFI X) ;
&REC NAME PREFI X. Execut eEdi t s() ;
| f &REC NAME_PREFI X. | sEdi t Error Then
/* error handling */

El se

&REC NAME_PREFI X. I nsert ();

/* Need error handling here if insert fails */

I f &LNG <> % .anguage Then
/* add related | anguage record */
&RELLNG = &REC. Rel LangRecNane;
&REC RL = Creat eRecord(Record. NAME_PREFI X LNG) ;
&REC. CopyFi el dsTo(&REC RL);
&REC RL. LANGUAGE_CD. Val ue = &LNG
&REC RL. I nsert();

/* Need error handling here if insert fails */
End- | f;
End- | f;

/*****************************/

[***** Change a Record *****xx/
/*****************************/

/[**** Using record objects ***/

When " C'
/* Get the Record - insert it */
&KEY1 = &REC. Get Fi el d(Fi el d. NAVE_PREFI X) . Val ue;
&REC NAME_PREFI X = Cr eat eRecor d(Record. NAME_PREFI X _TBL) ;

&REC_NAME_PREFI X. NAME_PREFI X. Val ue = &REC. Cet Fi el d(Fi el d.
NAVE PREFI X) . Val ue;
I f &REC_NAME_PREFI X. Sel ect ByKey() Then

&REC. CopyFi el dsTo(&REC_NAME_PREFI X) ;

&REC NAME_PREFI X. Execut eEdi t s() ;

| f &REC NAME PREFI X. | sEditError Then
/* error handling */

El se

Chapter 7

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

&REC NAME_PREFI X. Updat e() ;
End- | f;
El se
&REC. CopyFi el dsTo(&REC_NAME_PREFI X) ;
&REC NAME_PREFI X. Execut eEdi t s() ;
I f &REC NAME PREFI X. 1 sedi t Error Then
/* error handling */
El se
&REC NAME_PREFI X. I nsert () ;
End- I f;
End- I f;

/*****************************/

[****** Delete a Record ***x**/

/*****************************/

/*** LJSIng SQ_EXEC ***********/

VWhen "D’
/* Get the Record using SQLExec- error */
&KEY1 = &REC. CGet Fi el d(Fi el d. NAME_PREFI X) . Val ue;
SQLExec(" Sel ect NAME_PREFI X from PS_NAME_PREFI X_TBL where
NAMVE_PREFI X = :=1", &KEY1l, &KEY2);
I f None(&EY2) Then
/* Send to error log */
El se

SQLExec("Del ete from PS_NAME PREFI X TBL where
NAVE PREFI X = : 1", &KEY1);

SQLExec("Del ete from PS_NAME _PREFI X LNG wher e
NAMVE _PREFI X = : 1", &KEY1);
End- | f;
End- Eval uat €;
End- For ;

end- net hod;

Message Class Inbound Asynchronous Example 3

The following example shows OnNotify PeopleCode with multiple transactions:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 153

Sending and Receiving Messages Chapter 7

nmet hod OnNotify
/+ &VBG as Message +/
Local Rowset &HDR RS, &LN RS;
Local Record &HDR REC, &hdr _rec_msg, &N REC, &LN REC MG
Local integer &, &J;

/*This notification peopl ecode processes nessages that may*/
/*contain multiple Header (MSR HDR I NV) transactions that may*/
/*have multiple line (DEMAND_INF_INV) transactions. The data */
/*is inserted into identically structured header/line tabl es*/
/*(MSR_HDR | NV2 and DEMAND | NF_I NvV2) */

/* Create record objects for the Header and Lines that will be */
/* inserted into */

&HDR REC = Creat eRecord(Record. MSR_HDR | NV2);
&N REC = Creat eRecord(Record. DEMAND | NF_I Nv2) ;

/* Create an App. Message Rowset that includes the
MSR_HDR I NV (Header) and DEMAND | NF_I NV (Line)*/
&HDR RS = &MBG Get Rowset () ;

/* Clear out all the Headers and Lines */
SQLExec(" DELETE FROM PS_NMSR HDR | NVv2 WHERE BUSI NESS UNI T =

" MD4AL' ")
SQLExec(" DELETE FROM PS_DEMAND_| NF_| N\V2 WHERE BUSI NESS_UNI T =
*MD4AL' ") :

/* Loop through all the headers in the nessage */
For & = 1 To &HDR RS. Acti veRowCount
/* Instantiate the row within the Header portion of the
/* App Message rowset to which data will be copied */
&hdr _rec_nsg = &HDR RS. Get Rowm &l) . Get Recor d(Record. MSR HDR | NV) ;

/* Copy data fromthe | evel O (Header portion) of
/* &STOCK_MSG nmessage structure into the Header record object */
&hdr _rec_nsg. CopyFi el dsTo(&HDR_REC) ;

&HDR_REC. I nsert ();

/* Create Rowset that includes the DEMAND | NF_I NV (Line)
portion of the App Message Rowset */

& N RS = &HDR RS(&l) . Get Rowset (1);

/* Loop through all the Iines within this header transaction */

For & = 1 To &LN RS. Acti veRowCount
/* Instantiate the rowwithin the Line portion of the
/* App Message rowset to which data will be copied */
&N REC MBG = &LN RS. Get Row(&J) . Get Recor d(Recor d.
DEMAND_I NF_I NV) ;
/* copy data into the Level 1 (Line portion) of &STOCK MsG/
/* object */
&N REC MSG CopyFi el dsTo(&N _REC) ;
&N REC. I nsert();
End- For ;
End- For ;
end- et hod;

154 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Message Class Inbound Asynchronous Example 4

There's apractical limit to how large a message can be, and this can be controlled by a system-wide variable
called %oMaxMessageSize. The system administrator can change this size in the PSOPTIONS settings. This
size can be set only for all messages, not for individual definitions.

PeopleCode that populates a M essage object should include code that is similar to the following example to
check the message size before inserting anew Level O row.

Note. Always code the %M axM essageSi ze checkpoint at the Level O record. A batch of transactions can be
split across multiple messages, but do not split a single transaction (logical unit of work) into multiple

messages.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 155

Sending and Receiving Messages Chapter 7

Local SQ. &hdr_sqgl, & n_sql;

Local Message &NSG

Local Rowset &hdr _rs, & n_rs;

Local Record &hdr_rec, & n_rec, &hdr_rec_msg, & n_rec_mnsg;

/* This Peopl eCode will publish nessages for a sinple Header/

Li ne record conbination. Miltiple Header/Lines are copied to the
nessage until the %baxMessageSi ze is exceeded at which point a
new nessage is built. This references MSR HDR I NV (Header) and
DEMAND | NF_I NV (Line) records */

/* Create an instance of the STOCK REQUEST message */
&VBG = Creat eMessage(OPERATI ON. STOCK REQUEST) ;

/* Create an App. Message Rowset that includes the
MSR_HDR I NV (Header) and DEMAND | NF_I NV (Line)*/
&hdr _rs = &VBG Get Rowset () ;

/* Create a SQL object to select the Header rows */
&hdr _sql = CreateSQ("Select * from PS _MSR HDR | NV
VWHERE BUSI NESS_UNI T=" MD4Al'
AND ORDER NO LI KE 'Z% ORDER BY BUSI NESS UNI T, ORDER NO');
&l = 1;

/* Create record objects for the Header and Lines */
& n_rec = CreateRecord(Record. DEMAND | NF_I NV) ;
&hdr_rec = CreateRecord(Record. MSR_HDR | NV);

/* Loop through each Header row that is fetched */

VWi | e &hdr_sql . Fet ch(&hdr _rec)
/* Publish the message if its size exceeds the MaxMessageSi ze
/* specified in Uilities/Use/PeopleTools Options */
If &VSG Size > %vbaxMessageSi ze Then
% nt Br oker . Publ i sh(&V5G) ;
&l = 1;
/* Create a new instance of the nmessage object */
&VBG = Creat eMessage(OPERATI ON. STOCK REQUEST) ;
&hdr _rs = &VBG Get Rowset () ;
End- | f;
If & > 1 Then
&hdr _rs.InsertRow(& - 1);
End- I f;
/* Instantiate the row within the Header portion of the
App Message rowset to which data will be copied */
&hdr _rec_nsg = &hdr _rs. Get Rowm &l). Get Recor d(Record. MSR HDR | NV) ;
/* Copy data into the I evel 0 (Header portion) of
/* &MVBG nessage structure */
&hdr _rec. CopyFi el dsTo(&dr_rec_nsg);

/* Publish the last nessage if it has been changed*/
I f &hdr_rec_nsg. | sChanged Then
% nt Br oker . Publ i sh(&VSG) ;
End- I f;
End- Whi | e;
Message Class Inbound Asynchronous Example 5

The following code example shows how to get data out of the IBInfo object for a rowset-based message.

156 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

Local
Local

Local
Local

Local
Local

&CRLF = Char (13) |

/* this is how one woul d access data from | Binfo and

Rowset &rs,

&rsi;

Record &FLI GHTDATA, &REC,

string &acnunber_val ue,

&act ype_val ue,
&com?_val ue,

Xm Doc &xmnl doc;
string &dat a;
bool ean &return_bool val ue;

&nsi _sensor _val ue,
&cal | si gn_val ue,
&ecm val ue, &dateti ne;

Char (10) ;

/* 1BConnectorl nfo objects*/

&r et urn_bool _val ue

For &i

&dat a
&dat a

End- For ;

&VBG. | Bl nf 0. | BConnect or | nf o. O ear Connect or Properties();

&dat a
&dat a
&dat a
&dat a
&dat a

For &i

&dat a
&dat a

(&)

&dat a

End- For ;

&VBG. | Bl nf 0. 1 BConnect or | nfo. C ear QueryStri ngArgs();

&dat a
&dat a
&dat a
&dat a
&dat a
&dat a
&dat a
&dat a
&dat a
&dat a
&dat a
&dat a
&dat a

&VBG. | Bl nf 0. Connect or Overri de;

&squadr on_val ue,

Sending and Receiving Messages

&of p_val ue,

&commil_val ue,

1 To &MSG | Bl nf 0. | BConnect or | nf 0. Get Nunber O Connect or
Properties()

&VBG. | Bl nf 0.
&VBG. | Bl nf 0.
&NVBG. | Bl nf 0.
&NVBG. | Bl nf o.
&NVBG. | Bl nf o.

=

&NVBG. | Bl nf 0.
&VBG. | Bl nf 0.
&VBG. | Bl nf 0.
&NMBG. | Bl nf o.
&NVBG. | Bl nf 0.
&NVBG. | Bl nf o.
&NVBG. | Bl nf 0.
&VBG. | Bl nf 0.
&VBG. | Bl nf o.
&NMBG. | Bl nf o.
&NVBG. | Bl nf o.
&NVBG. | Bl nf 0.
&NVBG. | Bl nf 0.

| BConnect or | nf 0. Connect or Nane;
| BConnect or | nf 0. Connect or C assNane;
| BConnect or | nf 0. Renot eFr amewor KURL;

| BConnect or | nf 0. Pat hl nf o;
| BConnect or | nf 0. Cooki es;

MessageType;
Request i ngNodeNane;
OigUser;

Ori gNode;

AppSer ver Donai n;
O i gProcess;

Qi gTi neSt anp;
Desti nati onNode;

Fi nal Dest i nati onNode;
Sour ceNode;
MessageNane;
MessageVer si on;

Vi si t edNodes;

/* get the content data fromthe nmessage rowset*/
& s = &VSG Get Rowset () ;
&REC = &rs(1). QE_FLI GHTDATA;

&FLI GHTDATA = Creat eRecord(Record. QE_FLI GHTDATA) ;
&REC. CopyFi el dsTo(&FLI GHTDATA) ;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

&VBG. | Bl nf o. | BConnect or | nfo. Get QueryStri ngArgNane(&i);
&VBG. | Bl nf 0. | BConnect or | nf 0. Get QueryStri ngArgVal ue(&) ;

To &VBG | Bl nf o. 1 BConnect or | nf 0. Get Nunber Of Quer yStri ngArgs()

&VBG. | Bl nf 0. | BConnect or | nf 0. Get Connect or Properti esNanme(&i);
&VBG. | Bl nf 0. | BConnect or | nf 0. Get Connect or Properti esVal ue

&VBG. | Bl nf 0. | BConnect or | nf 0. Get Connect or Properti esType(&i);

157

Sending and Receiving Messages Chapter 7

158

/* Parse out Message Data */

&acnunber val ue = &FLI GHTDATA. QE_ ACNUMBER. Val ue;
&nsi _sensor_val ue = &FLI GHTDATA. QE_MSI _SENSOR. Val ue;
&of p_val ue = &FLI GHTDATA. QE_CFP. Val ue;

&act ype_val ue = &FLI GHTDATA. QE_ACTYPE. Val ue;
&cal | si gn_val ue = &FLI GHTDATA. QE_CALLSI GN. Val ue;
&squadron_val ue = &FLI GHTDATA. QE_ SQUADRON. Val ue;
&comml_val ue = &FLI GHTDATA. QE_COVML. Val ue;
&com®?_val ue = &FLI GHTDATA. QE_COVM2. Val ue;

&ecm val ue = &FLI GHTDATA. QE_ECM Val ue;

&dat eti me = &FLI GHTDATA. ACTI ONDTTM Val ue;

&outstring = "Send Async FLight test";
/* Construct Qutput String */
&outstring = &outstring | &cnunmber _value | & CRLF | &nsi _sensor_val ue
| &CRLF | &ofp_value | & CRLF | &actype_value | &CRLF
| &callsign_value | & CRLF | &squadron_value | &CRLF
| &onml_value | & CRLF | &comm®?_value | &CRLF | &ecm val ue
&dat et i me;

/* Log Qutput String into page record */
&FL| GHTDATA. Cet Fi el d(Fi el d. DESCRLONG) . Val ue = &out stri ng;

SQ.Exec(" DELETE FROM PS_QE_FLI GHTDATA") ;
&FLI GHTDATA. I nsert () ;

Message Class Inbound Asynchronous Example 6

The following code example shows how to get data out of the IBInfo object for a nonrowset-based message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Local Xnml Doc &xni doc;

Local Xm Node &node, &root, &acct _id _node, &acct_nane_node,
&addr ess_node, &phone_node;

Local string &outstring, &CRLF;

Local Record &FLI GHT_DATA | NFO, &REC,

Local string &data;
Local bool ean & eturn_bool val ue;

/* this is how one wouild access data from | Bi nfo and
/* 1 BConnectorlnfo objects*/

& eturn_bool val ue = &VSG | Bl nf 0. Connect or Overri de;

For & = 1 To &MSG | Bl nfo. | BConnect or | nf 0. Get Number Of Connect or
Properties()

&data = &VSG | Bl nf o. | BConnect or | nf o. Get QueryStri ngArgNane(&) ;
&data = &VSG | Bl nfo. | BConnect or | nfo. Get QueryStri ngArgVal ue(&) ;
End- For ;

&VBG | Bl nf o. | BConnect or | nf 0. G ear Connect or Properties();

&dat a = &MSBG | Bl nf 0. | BConnect or | nf 0. Connect or Naneg;

&dat a = &MSG | Bl nf 0. | BConnect or | nf 0. Connect or Cl assNane;

&data = &MSG | Bl nf 0. | BConnect or | nf 0. Renot eFr anewor KURL;

&dat a = &NVBG | Bl nf 0. | BConnect or | nf 0. Pat hl nf o;

&dat a = &NVBG | Bl nf 0. | BConnect or | nf 0. Cooki es;

For & = 1 To &\VBG | Bl nfo. | BConnect or| nfo. Get Nunber O Quer yStri ngArgs()
&data = &VBG | Bl nf 0. | BConnect or | nf 0. Get Connect or Properti esName(&);
&data = &VBG | Bl nf o. | BConnect or | nf 0. Get Connect or Properti esVal ue

(&);
&data = &VBG | Bl nf 0. 1 BConnect or | nf 0. Get Connect or Properti esType(&i);

End- For ;

&VBG. | Bl nf 0. 1 BConnect or | nfo. O ear QueryStri ngArgs();

&data = &VSG | Bl nf 0. MessageType;

&dat a = &MVBG | Bl nf 0. Request i ngNodeNane;
&data = &VSG | Bl nfo. Ori gUser;

&data = &VSG | Bl nf 0. Ori gNode;

&data = &VSG | Bl nf 0. AppSer ver Domai n;
&data = &VBG | Bl nfo. Ori gProcess;

&data = &VBG | Bl nfo. Ori gTi neSt anp;
&data = &VBG | Bl nf 0. Desti nati onNode;
&data = &VBG | Bl nf 0. Fi nal Desti nati onNode;
&data = &VBG | Bl nf 0. Sour ceNode;

&data = &VBG | Bl nf 0. MessageNane;

&data = &VSG | Bl nf 0. MessageVer si on;
&data = &VBG | Bl nfo. Vi si t edNodes;

&m doc = &VBG Get Xm Doc() ;

&CRLF = Char (13) | Char(10);

&r oot &xm doc. Docunent El enent ;

/* Get values out of XM.Doc */
&node_array = &root. Get El ement sByTagNanme("act ype");

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 159

Sending and Receiving Messages Chapter 7

160

&ac_type _node = &node_array. Get(1);
&ac_type val ue = &ac_type_node. NodeVal ue;

&node_array = &root. Get El ement sByTagNanme(" nsi _sensor");
&nsi _sensor_node = &node_array. Get(1);
&nei _sensor _val ue = &nmsi _sensor_node. NodeVal ue;

&node_array = &root. Get El ement sByTagNane("cal |l sign");
&cal | si gn_node = &node_array. Get(1);
&cal | sign_val ue = &cal | si gn_node. NodeVal ue;

&node_array = &root. Get El ement sByTagNane(" of p");
&of p_node = &node_array. Get(1);
&of p_val ue &of p_node. NodeVal ue;

&out string = "GetDataout of xmdoc Test";

&outstring = &outstring | & RLF | &ac_type value | &CRLF |
&nsi _sensor_node
| &CRLF | &callsign_value | & CRLF | &of p_val ue;

/* Wite out the result string */

SQLExec(" DELETE FROM PS_QE_FLI GHT_DATA");

&FLI GHT_DATA | NFO = Creat eRecor d(Record. Qe_FLI GHT_DATA) ;

&FL| GHT_DATA | NFO. Get Fi el d(Fi el d. DESCRLONG) . Val ue = &out stri ng;
&FLI GHT_DATA INFO. I nsert();

Message Class Inbound Asynchronous Example 7

The following example show a natification that could be an implementation of the OnNotify method, using a
component interface in the notification. This example shows error trapping and has multilanguage support:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

Sending and Receiving Messages

Conponent string &PUBNODENANME;
/* save pubnodenane to prevent circular publishes */

Local
Local
Local
Local
Local
Local
Local
Local
Local

Message &NVSG

Rowset &MSG ROWSET, &cur_rowset;

Api Obj ect &oSessi on;

Api Obj ect &CONTACT_Cl ;

nunmber &l ;

string &KEY1;

Record &REC;

bool ean &BC CREATE, &ADD,

bool ean &TRANSACTI ON_ERROR, &MSG_ERROR;

/** Transaction/ Message Error Fl ags**/

Function errorHandl er ()
Local Api Obj ect & PSMessageCol | ;
Local Api Obj ect & PSMessage;
Local string &strErrMsgSet Num &strErrMsgNum &strErrMsgText,
&strErrType,;
&oPSMessageCol | = &oSessi on. PSMessages;

For

& =1 To &PSMessageCol | . Count
&oPSMessage = &oPSMessageCol | . Item(&l);
&strErr MsgSet Num = &oPSMessage. MessageSet Nunber ;
&strErr MsgNum = & PSMessage. MessageNunber ;
&strErrMsgText = & PSMessage. Text;
& ogFile. WiteLine(&strErrType | " (" | &strErrMsgSetNum| ","
| &strErrMsgNum | ") - " | &strErrMsgText);

End- For ;
rem***** Delete the Messages fromthe collection *****.
&oPSMessageCol | . Del eteAl | ();

End- Functi on;

Function DO _Cl _SUBSCRI BE()

&oSessi on = ¥Bessi on;

&CONTACT_Cl = &oSessi on. GETCOVPONENT(Conpl nt f ¢. CONTACT) ;
I'f (&ONTACT_Cl = Null) Then

/* Replace this nessage with Tools nessage set when avail able */
Error MsgCGet (91, 58, " Unable to get the Conponent Interface.");
Exit (1);

End- | f;

/** Set Conponent Interface Properties **/
&CONTACT _Cl . Get Hi storyltens = True;

&CONTACT_ClI . I nt eracti venode

Fal se; /** set this to True while

debuggi ng **/
rem Send messages to the PSMessage Col |l ecti on;
&oSessi on. PSMessagesMde = 1;

&VBG ERROR = Fal se;

For

& =1 To &VSG _ROASET. Act i veRowCount

/** Set Session Language Code Property **/

®Q ONALSETTI NGS = &oSessi on. Regi onal Setti ngs;

®Q ONALSETTI NGS. LanguageCd = &VBG ROWBET(&l) . PSCANA.
LANGUACE_CD. Val ue;

&TRANSACTI ON_ERRCR = Fal se;
&BC _CREATE = Fal se;

/** I nstantiate Conponent Interface **/
&KEY1 = &NMSG ROWSET(&l). CONTACT TBL. PERSON | D. Val ue;
&CONTACT _Cl . PERSON | D = &KEY1;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 161

Sending and Receiving Messages

162

Eval uat e &VBG ROANBET(&l) . PSCAMA. AUDI T_ACTN. Val ue
When = "A"
Wen = "N

&ADD = Tr ue;

/* Check if Keys already exist. */
&CONTACT_CI Col I = &CONTACT_CI . Fi nd();

/*1f None(&EXl STS) Then*/
| f &CONTACT _Cl Col I . Count = 0 Then
I f &CONTACT_Cl.Create() Then
&BC CREATE = True;
El se
/* Replace this nessage with Tools nmessage set
when avail able */
War ni ng MsgCet (18022, 56, "Error creating Conponent
Interface for transaction %", &l);
&TRANSACTI ON_ERROR = Tr ue;
End- | f;
El se
If Not &CONTACT_Cl.Get() Then
/* Replace this nessage with Tool s nessage set
when avail able */
War ni ng MsgGet (18022, 59, "Could not Get Conponent
Interface for transaction %", &l);
&TRANSACTI ON_ERROR = Tr ue;
End- I f;
End- | f;
Br eak
When = "C
&ADD = Fal se;
If Not &CONTACT_Cl.Get() Then
/* Replace this nessage with Tools nessage set when
avail abl e */
War ni ng MsgGet (18022, 59, "Could not Get Component
Interface for transaction %", &l);
&TRANSACTI ON_ERROR = Tr ue;
End- | f;
Br eak;
VWen = "D
VWhen = "K"
When- Ot her
/* delete and ol d key action codes not allowed at this
tinme */
&TRANSACTI ON_ERROR = Tr ue;
Warni ng MsgCet (18022, 61, "Audit Action 'D not allowed on
transaction %", &TRANSACTI ON);
Br eak
End- Eval uat e;

&CONTACT_Cl . CopyRowset (&VBG RONBET, &l)

I f Not &TRANSACTI ON_ERROR Then
I f Not &CONTACT Cl.save() Then
/* Replace this nessage with Tools nessage set when
avail abl e */
War ni ng MsgGet (18022, 57, "Error saving Conponent
Interface for transaction %", &TRANSACTI ON);
&TRANSACTI ON_ERROR = Tr ue;
End- | f;
End- | f;

/[** close the | ast Conponent Interface in preparation for

Chapter 7

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

getting the next **/
I f Not &CONTACT Cl. Cancel () Then

/* Replace this nessage with Tool s nessage set when

avai l abl e */

Sending and Receiving Messages

War ni ng MsgCet (18022, 58, "Error Canceling Conponent

Interface for transaction %", &TRANSACTI ON);
Exit (1);
End- | f;

/* Reset &TRANSACTI ON_ ERROR to "Fal se" for &BusConp. Save()

to execute if no

/* Transaction Error found in the next Transaction

&TRANSACTI ON_ERROR = Fal se;
End- For ;

| f &TRANSACTI ON_ERROR Then
&VBG _ERROR = True;
End- I f;

End- Functi on;

[**** Main Process ****/
&NVBG. Execut eEdi t s(%Edit _Required + %&dit_Transl at eTabl e) ;
I f &VBG | sEdit Error Then
&VSG_ERROR = Tr ue;
El se
&PUBNODENAME = &MSG. PubNodeNane;
&VEG RONBET = &MSG Get Rowset () ;
/* Do Conponent Interface subscribe */
DO _Cl _SUBSCRI BE() ;
End- | f;

| f &VBG ERROR Then
Exit (1);
End- | f;

XmIDoc Class Inbound Asynchronous Example

The following example uses the GetXmlDoc method.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

*/

163

Sending and Receiving Messages Chapter 7

Local Xml Doc &Docunent ;

Local Xml Node &node, &root;

Local string &outstring;

Local Rowset &LEVELO;

Local Record &SALES ORDER | NFO, &REC,

&CRLF = Char(13) | Char(10);
& Docunent = &VBG Get Xml Doc() ;

& oot = & Docunent. Docunent El ement ;
&chi | d_count = &root. Chil dNodeCount ;

/* Get values out of Xm Doc */

&node_array = &root. Cet El enent sByTagNane(" Qe _ACCT_ID");
&acct _id_node = &node_array. Get(2);

&account _id value = &acct i d_node. NodeVal ue;

&node_array = &root. Get El ement sByTagNane(" QE_ ACCOUNT _NAME") ;
&acct _nanme_node = &node_array. Get (2);
&account _nane_val ue = &acct_nane_node. NodeVal ue;

&node_array = &root. Cet El enent sByTagNane(" Qe_ADDRESS") ;
&addr ess_node = &node_array. Get (2);
&addr ess_val ue = &address_node. NodeVal ue;

&node_array &r oot . Get El ement sByTagName(" QE_PHONE") ;
&phone_node &node_array. Get (2);
&hone_val ue = &phone_node. NodeVal ue;

&out string = "Get MessageXnm Doc Test";
&outstring = &outstring | & RLF | &account id value | &CRLF
| &account _nane_val ue | &CRLF | &address _value | &CRLF |
&phone_val ue;

&SALES ORDER | NFO = Creat eRecor d(Record. QE_SALES CRDER) ;
&SALES _ORDER | NFO. Get Fi el d(Fi el d. GE_ACCT_I D). Val ue =
&account i d_val ue;

&SALES ORDER | NFO. Get Fi el d(Fi el d. DESCRLONG) . Val ue = &out stri ng;
&SALES ORDER | NFO. Updat e() ;

Handling Inbound Synchronous Transactions
Implement the OnRequest method in the PS_PT application package, in the Integration subpackage, to handle

inbound synchronous transactions. All the examplesin this section are assumed to be implementations of the
OnReguest method.

Message Class Inbound Synchronous Example

The following example implements both the OnRequest method and the OnError method

164 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

i mport PS PT:Integration: | Request Handl er;

cl ass Request Man i npl enents PS PT: | ntegration: | Request Handl er
nmet hod Request Man();
nmet hod OnRequest (&VSG As Message) Returns Message;
nmet hod OnError (&VSG As Message) Returns string;

end- cl ass;

/* constructor */
nmet hod Request Man

%Super = create PS_PT:Integration:| RequestHandl er();
end- met hod;

nmet hod OnRequest
/+ &VBG as Message +/
/+ Returns Message +/
Local Message &response;

& esponse = Creat eMessage(Operati on. SYNC REMOTE,
% nt Br oker _Response) ;

&r esponse. Get Rowset (). Get Row(1) . Get Recor d(Recor d. QE_FLI GHTDATA) .
GetField (Field. DESCRLONG) . Val ue = &VSG GenXM.String();

Return &response;
end- net hod,;
nmet hod OnError

/+ &VBG as Message +/

/+ Returns String +/

/ + Extends/inpl enents PS PT:|ntegration: | Request Handl er. OnError +/
Local integer &MsgNunber, &nMsgSet Nunber ;

Local string &sText;

&MsgNunber = &MSG | BExcept i on. MessageNunber ;

&MsgSet Nunber = &MSG | BExcept i on. MessageSet Nunber ;

rem &sText = &exception. Def aul t Text;
&sText = &MBG | BException. ToString();

/* ADD SPECI FI C ERROR | NFO HERE */
Return &sText;

end- net hod;

XmlDoc Class Inbound Synchronous Example

The following example uses the GetX mlDoc method:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 165

Sending and Receiving Messages Chapter 7

Local Xm Doc &xm Request Doc;

Local Xm Doc &xm ResponseDoc;

Local Xnl Node &sel ect;

Local Message &Return_NMSG

Local array of Xm Node &whereC ause;

Local string & ecordNaneg;

Local string &fiel dNane;

Local string &fiel dval ue;

Local Rowset &out put Rowset ;

Local bool ean &return_bool _val ue;

&m Request Doc = &MBG Get Xl Doc() ;
&sel ect = & Request Doc. Docurnent El enent ;

& ecordNane = &sel ect. Get Attri buteVal ue("record");
&out put Rowset = Creat eRowset (@ "Record." | &recordNane));

&wher eCl ause = &sel ect. Get El ement sByTagNanme(" where") ;
I f &whereC ause <> Null And
&wher e ause. Len <> 0 Then
&f i el dName = &whered ause. Get(1). Get Attri buteVval ue("field");
&f i el dval ue = &whered ause. Get (1). Get Attri buteVval ue("val ue");

&out put Rowset . Fil | ("WHERE " | &fieldName | "= :1", &fieldVal ue);
El se

&out put Rowset . Fi l | ();
End- | f;

&Ret urn_MSG = Cr eat eMessage(OPERATI ON. EXAMPLE, % nt =
Br oker _Response) ;

&m ResponseDoc = &Ret urn_MSG Get Xnml Doc();

& = &xm ResponseDoc. CopyRowset (&out put Rowset) ;

Ret urn &Ret ur n_NSG,

SoapDoc Class Inbound Synchronous Example

The following example uses the GetX mlDoc method.

Note. Because GetXmlDoc returns an XmlDoc object, you must receive the inbound request message as an
XmlDoc object, then convert it to a SoapDaoc object to process it with SOAP methods.

166 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

Sending and Receiving Messages

Local Xm Doc &request, &response;
Local string &strXnl;

Local SoapDocs &soapReq, &soapRes;
Local Message &Response_Message;

&soapReq = Creat eSoapDoc();

& equest = &MSG Get Xml Doc();
&soapReq. Xm Doc = &request;

&K = &soapReq. Val i dat eSoapDoc() ;
&parmN = &soapReq. Get Par mName(1) ;
&par nV = &soapReq. Get Par mval ue(1);

&Response_Message = Creat eMessage(OPERATI ON. SoapExanpl e,
% nt Br oker _Response) ;

& esponse = &Response_Message. Get Xnl Doc() ;
&soapRes = Creat eSoapDoc();

&soapRes. AddEnvel ope(0);

&soapRes. AddBody() ;

&soapRes. AddMet hod(" St ockPrice", 1);
&soapRes. AddPar m(&par mN, &par mv) ;

&soapRes. AddPar m("Price", "29");

&K = &soapRes. Val i dat eSoapDoc() ;

& esponse = &soapRes. Xn Doc;
Ret urn &Response_Message;

Simulating Receiving Messages from External Nodes

Copyright

Y ou can use PeopleCode to simulate receiving asynchronous messages from external nodes, including
running transformations.

Use can use the IntBroker class |nboundPublish method to work with rowset-based and nonrowset-based
messages.

The following example shows an inbound publish as part of an OnNotify method implementation with a
rowset-based message:

Local Message &VSG REMOTE;
Local Rowset &rs;

& s = &MSG Get Rowset () ;
/*create the nessage to be re-published froma sinmualted renote node*/

&VBG _REMOTE = Cr eat eMessage(OPERATI ON. QE_FLI GHTPLAN) ;

&VBG_REMOTE. | Bl nf 0. Request i ngNodeNane = "QE | BTGT";

&VBSG _REMOTE. | Bl nf 0. Ext er nal Oper ati onNane = &G REMOTE. Qper ati onNane | "."
&VBG_REMOTE. Qper at i onVer si on;

&VBG_REMOTE. CopyRowset (&rs) ;

&Ret = 9% nt Br oker. | nBoundPubl i sh(&5G_REMOTE) ;

The following example shows an inbound publish as part of an OnNotify implementation with a nonrowset-
based message:

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 167

Sending and Receiving Messages Chapter 7

Local Message &VSBG REMOTE;
Local Xm Doc &xnl doc;
Local Rowset &rs;

&m doc = &VBG Get Xm Doc() ;
/*create the nessage to be re-published froma sinmualted renote node*/

&VBG REMOTE = Cr eat eMessage(OPERATI ON. QE_FLI GHTPLAN) ;
/* popul ate the Renpte Message with data to be re-published*/

&VBG_REMOTE. Set X Doc(&ni doc) ;

% nt Br oker . | nBoundPubl i sh(&G =
REMOTE, Node. REMOTE_NCDE) ;

Processing Inbound Errors

This section discusses how to:
« Validate data
« Usethe Exit built-in function.

« Correct messaging errors.

Validating Data

Y ou validate data differently depending on the PeopleCode class that you're using to receive the message.

XMLDoc Class Validation

Y ou can validate incoming XML DOM-compliant messages by using the XmIDoc document type definition
(DTD) that is delivered with your PeopleSoft application.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "XmiDoc Class."

SoapDoc Class Validation

Y ou can validate SOAP-compliant messages by using the ValidateSoapDoc method in the PeopleCode
SoapDac class.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "SOAPDoc Class.”

Message Class Validation

Have a message receiving process validate incoming data by:

» Using the ExecuteEdits method in the code to invoke the definitional edits.

168 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

» Cadling PeopleCode validation built-in functions (if they already exist, for examplein a FUNCLIB record,
or if validation logic can be encapsulated within a small set of built-in functions) from within the
receiving PeopleCode.

« Cdling acomponent interface or Application Engine program from the receiving process (for complex
validation logic).

This enables you to reuse logic that is embedded in the component.

The ExecuteEdits method uses the definitional edits to validate the message. Y ou can specify the following
system variables alone or in combination. If you don't specify avariable, all of the edits are processed.

+ OEdit DateRange

» O%Edit OneZero

» O%Edit PromptTable

» %kEdit_Required

» O%Edit TrandateTable

.« %Edit_YesNo

The following example processes al edits for all levels of datain the message structure:
&WYMBG Execut eEdi t s() ;

The following example processes the Required Field and Prompt Table edits:

&RECPURCHASEORDER. Execut eEdi t s(%&Edit _Requi red +
%Edi t _Pronpt Tabl e) ;

ExecuteEdits uses set processing to validate data. Validation by using a component interface or a PeopleCode
built-in function is usually done with row-by-row processing. If a message contains a large number of rows
per rowset, consider writing the message to a staging table and calling an Application Engine program to do
set processing if you want additional error checking.

ExecuteEdits sets several properties on several objectsif there are any errors.

» |IsEditError is set on the Message, Rowset, Row, and Record objectsif any fields contain errors.
» EditError, MessageNumber, and MessageSetNumber are set on the Field object that contains the error.

If you don't want to use ExecuteEdits, you can set your own errors by using the field properties. Setting the
EditError property to True automatically sets the IsEditError message property to True. Y ou can also specify
your own message humber, message set number, and so on, for the field. If you use the Exit(1) built-in
function, the message status changes to Error when you finish setting the fields that arein error.

Using the Exit Built-in Function

Use the Exit built-in function to invoke a messaging error process when the application finds an error. This
works only when you use the PeopleCode M essage class to process inbound transactions. The same error
processing isinvoked automatically if PeopleTools finds an unexpected error, such as a Structured Query
Language (SQL) error. The Exit built-in function has an optional parameter that affects how the error is
handled.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 169

Sending and Receiving Messages Chapter 7

170

To handle error processing in application tables, use the Exit built-in function with no parameter, or just let
the notification process finish normally. This marks the message receipt as successful and commits the data.

To handle the error tracking and correction with PeopleSoft Integration Broker, use the Exit built-in function
with 1 as a parameter to log the errors, perform arollback, and stop processing.

Using the Exit Built-in Function Without Parameters

IntheExi t () form (that is, Exit without any parameters specified), all datais committed and the message
is marked as complete. Use this to indicate that everything processed correctly and to stop program
processing. Note, though, that the message status is set to Complete; therefore, you can't detect or access
errors in the Service Operations Monitor. If errors did occur, the subscription code should write them to a
staging table, and then you must handle all of the error processing.

The Exit built-in function:

» Setsthe message status in the application message queue for the subscription to Done.
» Commits the transaction.
» Stops processing.
Following is an example of using Exit without a parameter:
&NVBG. Execut eEdi ts();
If &VSG I sEditError then
App_Speci fic_Error_Processing();
Exit();
El se
Speci fic_Message Processing();
End-if;
Using the Exit Built-in Function with Parameters

When you supply a 1 as a parameter for the Exit built-in function, the function:

» Processes arollback.

« Setsthe message status in the message queue for the subscription to Error.
« Writesthe errors to the subscription contract error table.

» Stops processing.

You can view al errors that have occurred for this message in the Service Operations Monitor, even those
errors that are detected by ExecuteEdits.

Following is an example of using the Exit function with 1 as a parameter:

&NVBG. Execut eEdi t s();
If &G I sEditError then
Exit(1);
El se
Process_Message();
End-if;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

See Also

Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor

Using Message Object Functionality With Nonrowset-Based
Messages
Prior to the PeopleTools 8.44 release, there were two distinct paths for writing and executing PeopleCode for

PeopleSoft Integration Broker which were based on whether you were working with rowset-based XML
messages or nonrowset-based XML messages.

For rowset-based XML messages, you could use arowset and all the properties and methods associated with
the Message class. For nonrowset-based XML messages, you could not use the Message class, but instead
used built-in functions such as PublishXmlDoc and GetM essageXmlDoc. In addition, when working with
nonrowset-based messages and these built-in functions, you could only access content data.

Effective with the PeopleTools 8.44 release, when working with nonrowset-based XML messages you can
use all of the functionality of the Message object using two new methods, SetXMLDoc and GetXMLDoc.

SetXMLDoc Use this method to load and pass nonrowset-based data into the Message object.

GetXMLDoc Use this method to get nonrowset-based data out of the message object.

Using the SetXMLDoc Method

The following example shows how to use SetXMLDoc to use the Message object to publish a nonrowset-
based message.
/1 &M Doc hol ds t he nonrowset - based data as before.
/1l create an instance of the Message object
&VBG = Creat eMessage(OPERATI ON. QE_F18_ ASYNC XM.DQC) ;
/1 Load the Message object with the xnl doc data.
&\VBG. Set Xml Doc(&Xm Doc) ;

/1 performa publish for the nonrowset-based nessage
% nt Br oker . Publ i sh(&VSG) ;

Using the GetXMLDoc Method

The following code example shows how to use GetXMLDoc to get nonrowset-based XML out of the
M essage object.

Local XM.DOC &Xm Doc;

/1 get an xnl doc object |oaded with the content data.
&Xm Doc = &MBG Get Xm Doc() ;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 171

Sending and Receiving Messages Chapter 7

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Message Classes'

Generating Test Messages

Use the Handler Tester utility to generate test messages.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Testing Utilities and Tools

Working With Message Segments

This chapter provides an overview of message segments and discusses how to:
« Configure nodes to handle segmented messages.

« Create message segments.

» Delete message segments.

+ Send and receive segmented messages between PeopleSoft systems.

« Send and receive segmented messages to/from third-party systems.

» Access message segments.

+ View message segment data.

» Userestartable processing for publishing large messagesin batch.

Understanding Message Segments

When you create message segments, you can divide rowset-based and nonrowset-based messagesinto
multiple data containers, or segments, for sending. Depending on the order in which you send a message that
contains message segments, the receiving system can process the message as awhole, or process one segment
at atime while the others are compressed in memory or held in the application database.

As aresult creating message segments can enhance system performance and message exchange, especially
when you are working with large messages that exceed one gigabyte (1 GB).

To create and manage message segments, you use several methods and properties of the PeopleCode Message
class.

Understanding PeopleCode used to Work with Message Segments

This section discusses:

172 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

» Methods used with message segments.

« Properties used with message segments.

Methods Used with Message Segments

The following table lists the PeopleCode methods you can use when you work with message segments.

Method Class Description

CreateNextSegment Message Designates the end point of one segment and the
beginning of a new segment.

DeleteOrphanedSegments | IntBroker Used to delete segments that might have been orphaned if
yOu were processing message segments using a
PeopleSoft Application Engine program that had to be

restarted.

DeleteSegment Message Deletes a segment.

GetSegment Message Gets the segment specified by the passed value. The
passed value is the segment number.

UpdateSegment Message Use this method to update data within the current
segment.

Note. Use the DeleteSegment and UpdateSegment methods only when storing segments datain memory.
These methods do not function when segment data is stored in the database.

Properties Used with Message Segments

The following table lists PeopleCode properties that you can use when you work with message segments.

Property Class Description

CurrentSegment Message Returns a number, indicating which segment is the
current segment.

SegmentsUnOrder IBInfo Determines whether to process message segmentsin
order or unordered. This property pertainsto
asynchronous messages only.

Thevalues are;
* True: Process message segments unordered.

¢ False: Process message segments in order.
(Default.)

SegmentCount Message Returns the total number of segmentsin a message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 173

Sending and Receiving Messages Chapter 7

Property Class Description

SegmentsByDatabase Message Enables you to override where message segment data
is stored for a message.
The values are;

¢ True: Store message segments awaiting processing
in the application database.

» False: Store message segments awaiting
processing in memory. (Default.)

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference

Configuring Nodes to Handle Segmented Messages

This section describes how to configure nodes to handle segmented messages.

Understanding Configuring Nodes to Handle Segmented Messages

Before you can send segmented messages, you must configure the remote node defined on the local system to
handle segmented messages by setting the Segment Aware option on the Node Definitions page in the
PeopleSoft Pure Internet Architecture.

Warning! Do not set the Segment Aware option for remote PeopleSoft 8.45 or earlier nodes, or for third-
party systems. If you do so, the receiving system will consume only the first segment of the messages and
ignore any subsequent segments.

Configuring a Node to Handle Segmented Messages

To configure a node to handle segmented messages:

1
2.

Select PeopleTools, Integration Broker, Integration Setup, Node Definitions.
Select anode with which to work and click OK.

The Node Definitions page appears.

Select the Segment Aware box.

Click the Save button.

Creating Message Segments

This section provides an overview of creating message segments and message segment numbers and
discusses how to:

174

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

» Create message segments.

« Count the number of segmentsin messages.

« Store message segments awaiting processing.

« Override where to store message segment awaiting processing.
« Specify the order in which to process message segments.

» Chunk asynchronous segmented messages.

Understanding Creating Message Segments
By default every message has one segment.

To create multiple message segments use the CreateNextSegment method in the location in the message
where you want one segment to end and next segment to begin. Continue this process until you have created
the desired number of segments for the message.

Segments can contain any number of rowsets of data (rowset-based messages) or rows of data (nonrowset-
based messages).

Understanding Message Segment Numbers

When you create a message segment, PeopleSoft Integration Broker assigns a message segment number to the
segment.

The first message segment has a message segment number or 1, and message segment numbers are increment
by one sequentially thereafter. As an example, if you break a message into three segments, the first segment
number is 1, the second segment number is 2, and the third segment number is 3.

Creating Message Segments

The following example shows using the CreateNextSegment method to create three segments in the message
QE_FLIGHTPLAN, populating each segment with data from the component buffer.

&VBG = Creat eMessage(OPERATI ON. QE_FLI GHTPLAN) ;

&r s=&M5G Get Rowset () ;

/1 Now popul ate rowset

/1 End of first segnent. Begi nning of second segment.
&NVBG. Cr eat eNext Segnent () ;

& s=&M5G. Get Rowset () ;

/1 Now popul ate rowset

/1 End of second segnent. Begi nning of third segnent.
&VBG. Cr eat eNext Segnent () ;

& s=&MSG Get Rowset () ;
/1 Now popul ate rowset

% nt Br oker . Publ i sh(&VSG) ;

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 175

Sending and Receiving Messages Chapter 7

176

Counting the Number of Segments in Messages

Y ou might have the need to determine the number of segments in amessage. Use the SegmentCount property
to determine this information.

Storing Message Segments Awaiting Processing

By default, message segments awaiting processing are stored in memory until all segments are processed.
Once all segments are processed, PeopleSoft Integration Broker sends all data as one message.

Use the MessageSegmentFromDB parameter in PSAdmin to specify the number of segmentsto keep in
memory before writing segmented messages to the database. The default valueis 10.

For synchronous messages, if the number of segments sent for processing exceeds the set for the
M essageSegmentsFromDB parameter, an error occurs.
Overriding Where to Store Message Segments Awaiting Processing

Y ou can override the number of segments to keep in memory before writing segmented messages to the
database for a single message using the SegmentsByDatabase property of the Message class.

Storage Location Description

Memory When message segments are stored in memory, PeopleSoft Integration Broker
writes all segments as one message to the database when you send the
message.

To store message segment data in memory, set the SegmentsByDatabase
property to False. (Default.)

Application database When message segments are stored in the database, PeopleSoft Integration
Broker writes the segments to the database individually. When you store
message segments in the database you can have an infinite number of

segments in a message.

To store message segment data in the application database, set the
SegmentsByDatabase property to True.

When you store message segments in memory, the number of segmentsis limited by the value set in the
MessageSegmentFromDB parameter in PSAdmin in the Setting for PUB/SUB servers section of thefile.

When working with asynchronous messages, if you create more message segments then the value set, all
segments are written to the database automatically and the SegmentsByDatabase property will automatically
be set to True.

For synchronous messages, attempting to create more segments then the specified value will result in an error
message.
Specifying the Order in Which to Process Message Segments

When you work with segmented asynchronous messages you can specify that PeopleSoft Integration Broker
process the segments in order or unordered, using the SegmentsUnOrder property of the Message class.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7

Sending and Receiving Messages

Message Segment Processing Description

In order When Integration Broker processes message segmentsin order, it
decompresses all message segments sequentially and then processes the
message as awhole. In this situation, only one publication or subscription
contract is created.

To process message segment in order, set the SegmentsUnOrder property to
False.

Unordered When Integration Broker processes message segments unordered, it
decompresses and processes all segmentsin parallel. In this situation, the
system creates one publication or subscription contract for each message
segment.

To process message segment unordered, set the SegmentsUnOrder property
to True.

If you attempt to send ordered segmented messages to a node that is not segment aware an error message will
be created and can be viewed on the Message Errors tab on the Message Details page in Service Operations
Monitor.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor

Chunking Asynchronous Segmented Messages
Chunking asynchronous segmented messages sends message in blocks to the receiving node.

When using chunking, message instances display in Hold status in the Service Operations Monitor until all
chunks are received. Once al chunks are received, the message status switches to New.

Note. Chunking applies to ordered asynchronous messages only.

The number of segments to chunk for an asynchronous message is determined by the value you set for the
M essageSegmentByDatabase parameter in PSAdmin. The default value is 10.

Asan example, if amessage has 20 segments and you set MessageSegmentByDatabase to 5, PeopleSoft
Integration Broker will send four groups (array of messages) of segments to the integration gateway, and each
group will contain five segments.

Deleting Message Segments

Y ou can delete message segments in a message only before you publish the message.
Use the DeleteSegment method of the Message class to perform the action.
Y ou cannot delete the first segment in a message.

The following example demonstrates using the DeleteSegment method in an implementation of the
OnReguestSend method.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 177

Sending and Receiving Messages Chapter 7

i mport PS PT:Integration:| Send;

class Send inplenments PS PT:Integration:!| Send
nmet hod Send();
met hod OnRequest Send(&ressage As Message) Returns Message;
met hod OnError (&ressage As Message)

end- cl ass;

/* constructor */
nmet hod Send

%Super = create PS_PT:Integration:|Send();
end- met hod;

nmet hod OnRequest Send
/ + &ressage as Message +/
/+ Returns Message +/
[+ Extends/inplenents PS_PT:Integration: | Send. OnRequest Send +/
Local integer &segnent_nunber, & ;
Local Rowset &rs;

For & = 1 To &nessage. Segnent Count
&rs Nul | ;
&nressage. Get Segment (&) ;

& s = &nmessage. Get Rowset () ;

/* determ ne that segnent 3 needs to be deleted. */
&segnent _nunber = & ;

End- For ;
&nressage. Del et eSegnent (&egnent _numnber) ;
Return &mressage;
end- net hod,;
nmet hod OnError
/ + &ressage as Message +/

/+ Extends/inplenents PS PT:Integration:|Send. OnError +/

end- net hod;

Sending and Receiving Segmented Messages between PeopleSoft Systems

178

This section discusses how to:

» Send segmented messages to PeopleSoft systems.
» Receive segmented messages from PeopleSoft systems.

Sending Segmented Messages to PeopleSoft Systems
To send a segmented message, use sending PeopleCode and events as you would with any other message.
Use the PeopleSoft target connector when the receiving node is a PeopleSoft system. The PeopleSoft target

connector automatically handles message segments, and no additional configuration is required on the
connector.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Before sending a transaction with message segments, on the sending PeopleSoft system, be sure that the
Segment Aware box is selected for the remote node that represents the receiving system.
Receiving Segmented Messages from PeopleSoft Systems

To receive segmented message from PeopleSoft systems, use notification PeopleCode or implement the
OnReguest method.

Use the PeopleSoft listening connector to receive transactions that contain message segments from other
PeopleSoft systems. The PeopleSoft listening connector automatically handles message segments, and no
additional configuration is required on the connector.

Sending and Receiving Segmented Messages to/from Third-Party Systems
This section discusses how to:
» Send segmented messages to third-party systems.

» Receive segmented messages from third-party systems.

Understanding DataChunkCount and DataChunk Properties

PeopleSoft Integration Broker uses two properties to communicate to sending and receiving systems the
number of message segments that are contained in a transaction:

DataChunkCount Indicates the total number of data chunks or message segments contained in the
transaction.
DataChunk Indicates the number of the data chunk or message segment that you are sending.

For example, if there are atotal of seven data chunksin the transaction, and the
current segment is the third chunk, the DataChunk value for the current message
is3.

Note that when you are sending and receiving message segments between PeopleSoft systems these
properties are not used. The PeopleSoft target and listening connectors perform all necessary processing.
Sending Segmented Messages to Third-Party Systems

To send segmented messages from PeopleSoft systems to third-party system, use one of the following target
connectors:

« AS2target connector

HTTP target connector

JM S target connector

SMTP target connector

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 179

Sending and Receiving Messages Chapter 7

No additional target connector configuration is required to send segmented messages. These connectors read
the messaging PeopleCode on the integration gateway and determine the number of segments contained in the
transaction. They then populate the DataChunkCount and DataChunk parameters and include this information
with each outbound segment sent. All of these connectors except for the HTTP target connector send the
DataChunkCount and DataChunk information in the message header of each outbound message segment. The
HTTP target connector includes the DataChunkCount and DataChunk parameter information in the HTTP
header of each outbound message segment.

Before sending a transaction with message segments, on the PeopleSoft system, be sure that the Segment
Aware box is selected for the remote node that represents the third-party integration partner.

Receiving Segmented Messages from Third-Party Systems

At thistime, only the HTTP listening connector can be used to receive message segments from third-party
systems.

To receive segmented messages with third-party integration partners, the third-party must specify the
following DataChunkCount and DataChunk parameters in the HTTP properties, query arguments, or SOAP
header:

The receiving PeopleSoft system must use the HTTP listening connector as only this connector monitors
transactions for these parameters.

After the third party sendsin the first segment, the PeopleSoft system sends an acknowledgement to the third-
party system. The acknowledgment contains a transaction ID that the third-party integration partner must
include with all subsequent segments.

The following bullet points describe sample processing for athird-party integration partner sending a
transaction to a PeopleSoft system that contains three segments:

1. First segment processing:

a. Thethird-party integration partner prepares the first message/segment of the transaction. Inthe HTTP
properties, query string, or SOAP header, it sets the DataChunk equal to 1 indicating the first chunk,
and sets the DataChunkCount equal to 3 indicating total number of chunksto be sent for the
transaction.

b. When the request is received by the PeopleSoft system the data chunk is saved in the database as a
segment.

c. Inthe Service Operations Monitor the transaction displays a status of Hold.

d. The PeopleSoft system sends an acknowledgement to the third-party system, which includes a
transaction ID.

Note. The third-party integration partner must include the transaction ID as part of all subsequent
requests for the transaction. The PeopleSoft system uses the transaction ID to identify the segments
that belong to the transaction.

180 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

2. Second segment processing:

a. Thethird-party integration partner prepares the second message/segment of the transaction. In the
HTTP properties, query string, or SOAP header, it sets the DataChunk equal to 2 indicating that the
message is the second chunk, and sets the DataChunkCount equal to 3 indicating total number of
chunks to be sent for the transaction. It also specifies the transaction 1D sent by the PeopleSoft system
in the acknowledgement for the first segment.

b. When the request is received by the PeopleSoft system the data chunk is saved in the database as a
segment.

c. Inthe Service Operations Monitor the transaction displays a status of Hold.
3. Third segment processing:

a. Thethird-party integration partner prepares the third message/segment of the transaction. Inthe HTTP
properties, query string, or SOAP header, it sets the DataChunk egual to 3 indicating that the message
isthe third chunk, and sets the DataChunkCount equal to 3 indicating total number of chunksto be
sent for the transaction. It also specifies the transaction 1D sent by the PeopleSoft system in the
acknowledgement for the first segment.

b. When the request is received by the PeopleSoft system the data chunk is saved in the database as a
segment.

c. Since the PeopleSoft system has received all of the segments in the transaction, in the Service
Operations Monitor the transaction displays a status of New.

d. The PeopleSoft system processing the transaction like any other transaction at this point.

The PeopleCode to read the data chunks/segments is the Message Segment API.

Accessing Segments in Messages

After you receive a segmented message, use the GetSegment method of the Message class to access message
segment data.

After you access a message segment, use the Message class GetRowset or GetXmlDoc methods to work with
the contents of the segment.

Warning! You can access only one segment in a message at atime. When you access a message segment,
PeopleSoft Integration Broker removes the previously accessed message segment from memory.

When you access a message segment, set the existing rowset to null to eliminate storing multiple rowsetsin
the data cache.

The following example shows using the GetSegment method to access a message segment in the message
QE_FLIGHTDATA.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 181

Sending and Receiving Messages Chapter 7

For &i 1 To &MSG Segnent Count
&rs Null; //Null the rowset to renove it from nenory
&NVBG. CGet Segnent (&) ;

& s = &NMSG Get Rowset () ;
&REC = &rs(1).QE FLI GHTDATA,

&FLI GHTDATA = Creat eRecor d(Record. QE_FLI GHTDATA) ;
&REC. CopyFi el dsTo(&FLI GHTDATA) ;

/* Parse out Message Data */

&acnunber _val ue = &FLI GHTDATA. QE_ACNUMBER. Val ue;
&nsi _sensor _val ue = &FLI GHTDATA. QE_MSI _SENSOR. Val ue;
&of p_val ue = &FLI GHTDATA. QE_OFP. Val ue;

&actype_val ue = &FL| GHTDATA. QE_ACTYPE. Val ue;

&cal | sign_val ue = &FLI GHTDATA. QE_CALLSI GN. Val ue;
&squadron_val ue = &FLI GHTDATA. QE_ SQUADRON. Val ue;
&comml_val ue = &FLI GHTDATA. QE_COWL. Val ue;
&omm?_val ue = &FLI GHTDATA. QE_COWR. Val ue;

&ecm val ue = &FLI GHTDATA. QE_ECM Val ue;

&outstring = "Send Async Flight test";

/* Construct Qutput String */

&outstring = &outstring | &cnunber_value | &CRLF |

&nsi _sensor_value | & CRLF | &ofp_value | & CRLF | &actype_val ue |
&CRLF | &cal lsign_value | &RLF | &squadron_value | &CRLF |
&omml_val ue | & CRLF | &om?_value | &CRLF | &ecm val ue;

/* Log Qutput String into page record */
&FLI GHTDATA. Get Fi el d(Fi el d. DESCRLONG) . Val ue = &out stri ng;

SQ.Exec(" DELETE FROM PS_QE_FLI GHTDATA") ;
&FLI GHTDATA. I nsert () ;

End- For ;

Viewing Message Segment Data

The Service Operations Monitor Message Details page provides information about messages that contain
segments.

See Also

Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor

Using Restartable Processing for Publishing Large Messages in Batch

This section provides an overview, prerequisites and setup steps for using restartable processing for
publishing large asynchronous segmented messages in batch.

182 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Sending and Receiving Messages

Understanding Using Restartable Processing

PeopleSoft provides a PeopleSoft Application Engine library module, IB_SEGTEST, that you can use asa
template to create amodule to aid in processing large messages and messages in batch for outbound
asynchronous PeopleSoft Integration Broker segment data with restart capability.

With restart capability, if there is an abnormal program termination, you can correct any data errors and
continue processing from the point of the last commit without having to reload message segment data from
the beginning.

Understanding the IB_SEGTEST Application Engine Library Module

This section provides overview information for using the IB_SEGTEST

TheIB_SEGTEST library module consists of three sections:

« Section 1: Sectionl. The main processing section.
» Section 2: ABORT. Useto trigger a user abort of the running application engine program

» Section 3: CLEANSEG. An independent section you can call to clean up pending segment data that had
been committed to the database but is no longer to be used.

Prerequisites

To use the information provided in this section, you should have a thorough understanding of PeopleSoft
Application Engine.

Using the IB_SEGTEST Library Module

This section provides an overview of the high-level list of tasksto perform to set up a PeopleSoft Application
Engine program to perform restartable message processing.

1. Makeacopy of IB_SEGTEST, including all sections and PeopleCode.

From here on, the copy of the application engine library moduleisreferred to asIB_SEGTESTY, but you
can use any name you choose.

2. Inthe State Records tab of IB_ SEGTEST1, verify that PSIBSEGRSTR_AET isthe default state record.
Replace PT_EIP_ERR_AET with whatever state record is used in the main application engine program
that will be calling the Library module.

Notethat IB_SEGTEST1 isflagged as not restartable. Since database commits will be performed in the
middle of PeopleCode processing, the only way the commits can take effect isif the module is flagged as
not restartable.

3. The application engine program used to call IB_SEGTEST1 should be restartable.
Always issue acommit in the step prior to calling the library module IB_SEGTEST 1.

4. Inthe application engine program that will be calling IB_SEGTEST1, insert astepto call IB_SEGTEST],
section Sectionl. Insert the step at the point in time when you want to do the message publish. Y ou must
issue acommit prior to calling this section, otherwise there will be a'Unable to Process Commit' error
issued from within IB_SEGTEST 1.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 183

Sending and Receiving Messages Chapter 7

184

5. Add PSIBSEGRSTR_AET as an additional state record to the calling application engine program.

6. Since both programs now share state records, when IB_SEGTEST 1 iscaled, all state record values will
be passed on to the called module. Presumably all application values needed to extract application data
would be stored in the application state record.

7. Modify the PeopleCode in IB_SEGTEST1.Sectionl. Several comments have been added to the code to
aid in the modifications. Note the following:

Change &MBSG = Cr eat eMessage(OPERATI ON. QE_FLI GHTPLAN) to create whatever
message will be used.

SegmentsByDatabase should always be set to True.

The While loop is used to simulate application code processing large volumes of data. This can be
changed to meet application needs. However, pay close attention as to when commits are issued, when
state records are updated, when new segments are created, and finally, when the message publish is
executed. The order of these eventsis crucial to proper workability. In the sample program, also note
how to break out of the While loop.

Note the location where the application state record needs to be updated. A comment instructsin the
PeopleCode provides instructions on where to perform this task.

Do not remove the Exi t (1) from the end of the PeopleCode. Thisis hecessary to bypass the Abort
action that is coded into the same Step.

If in the middle of processing, the application code determines that an abort needs to be triggered, an
Exi t (0) can becoded. Thistriggersthe Abort step to be called, which will terminate application
engine processing. A restart could then be issued if processing needs to continue.

If you determine that a message no longer needs to be published, the calling application engine
program could then call the CLEANSEG step to get rid of al the pending data that has been saved in
the database. Alternatively, the Abort step could be modified to call CLEANSEG if on any abort, no
old datais to be kept.

See Also

Enterprise PeopleTools 8.50 PeopleBook: Application Engine

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Building Message Schemas

This chapter provides an overview of the message Schema Builder and describes how to:
« Select and view datain the message Schema Builder.

» Build message schemas for rowset-based messages.

+ Import message schemas for nonrowset-based messages.

» Modify message schemas.

» Delete message schemas.

Understanding the Message Schema Builder

The message Schema Builder enables you to build, import, modify and delete XML message schemas.

Note. The terms message schema, XML message schema, and schema are used interchangeably in this
chapter.

To test message schemas during devel opment, use the Schema Tester utility.

Use the Service Operations - General page to enable runtime validation for a service operation, or use the
Service Schema Validation page to enable validation for several service operations at atime.

See Also

Enterprise PeopleTools 8.50 PeopleBook: Integration Testing Utilities and Tools, "Using the Schema Tester
Utility"

Chapter 12, "Enabling Runtime Message Schema Validation," page 241

Message Schemas

An XML message schema describes a modd for the arrangement of tags and text in avalid XML document.
A schema provides a common vocabulary for a particular application that exchanges documents.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 185

Building Message Schemas Chapter 8

Building, Importing, Modifying and Deleting Message Schemas

Y ou can use the M essage Schema Builder to manage message schemas for rowset-based messages in the
application database.

Note. Y ou can also use the pages of the Message Builder component to manage rowset-based and nonrowset-
based schemas. However, the Message Builder enables you to work with only one message schema at atime,
whereas, the Message Schema Builder enables you to perform actions, such as building and deleting message
schemas, on multiple messages at atime.

Note. Y ou cannot use the Message Schema Builder to build schemas for message parts or container
messages. Y ou must use the Message Builder component to build schemas for these message types.

Rowset-Based Message Schemas

Use the Message Schema Builder to generate, regenerate, view or del ete rowset-based message schemas.

Y ou cannot regenerate or delete a rowset-based message schemathat is a message part. Part and container
schemas are automatically generated at save time so there's no need to explicitly regenerate or delete them.
Nonrowset-Based Message Schemas

Use the Message Schema Builder to import new nonrowset-based schemas into the database, modify existing
nonrowset-based message schemas, or delete them.

Schemas for nonrowset-based message parts can be deleted or modified, but message parts should never be
without a schema. After deleting a nonrowset-based message part, you should always import or enter a new
schema for the message.

Selecting and Viewing Data in the Message Schema Builder

This section discusses how to:
» Select datain the Message Schema Builder.
+ View message schema data details.

» View XML message schema code.

Selecting Data in the Message Schema Builder

186

When you access the M essage Schema Builder component (IB_SCHEMABUILD) the Schema Builder page
(IB_SCHEMABUILD) displays a search engine to use to search for messages and message schema data with
which to work and view.

To access the Schema Builder page, select PeopleTools, Integration Broker, Service Utilities, Message
Schema Builder.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Building Message Schemas

Message Schema Builder

Message Name: | Q

Owner ID: | i |

) Schema Exists (C) Rowset-based
) No Schema () Nonrowset-based
(® Both (%) Both
Search
¥ Select All Clear All Build Selected Schemas | Delete Selected Schemas

Schema Builder page

The Schema Builder page provides the following options for searching for data with which to work and view
in the application database.

M essage Name (Optional.) Click the Lookup button to locate a message definition with which to
work.

If you do not select a message name, the search will be based on all message
definitions in the application database.

Owner ID (Optional.) From the Owner ID drop-down list, select the owner ID for the
message definition.

The owner ID helps to determine the application team that last made a change to
amessage definition. The values in the drop-down list box are translate table
values that you can define in the OBJECTOWNERID field record.

Schema Select from the following options in the Schema group box:

» Schema Exists. Select this option to search message versions for which
schemas have been built.

» No Schema. Select this option to search message versions for which no
schemas have been built.

» Both. (Default.) Select this option to search all message versions.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 187

Building Message Schemas Chapter 8

Structure Select from the following optionsin the Structure group box:

» Rowset-based. Select this option to search for rowset-based message
versions.

» Nonrowset-based. Select this option to search for nonrowset-based message
Versions.

» Both. (Default.) Select this option to search for rowset-based and nonrowset-
based message versions.

Search Click the button to search the database based on the criteria selected.

Viewing Message Schema Details

When you search for data in the Schema Builder, message detail results appear in the Message Schemas grid.

188 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Building Message Schemas

Message Schema Builder

Message Criteria

Message Name: |QE_FLIGHTPLAN Q

OwneriD: |

() Schema Exists) Rowset-based
) No Schema) Nonrowset_based
= Both {(*) Both

Message Schemas

Message

a0 8 First B 17 or7 B Last

Exists |Updated on Build Results

[] QE FLIGHTPLAN VERSION_1 Yes Yes fg‘figgi;
[] QE FLIGHTPLAM ASYWCCOMBO VERSION_1 Mo Mo ngggfigg;
] QE FLIGHTPLAM SYWC VERSION_1 Yes Mo ngggﬁgi;
[] QE FLIGHTPLAN SYNCCOMBO VERSION_1 L No o imsom
[] QE FLIGHTPLAM TRAMSFORM VERSION_1 Yes Mo Eg?gﬁgg;
[] QE FLIGHTPLAM UNSTRUCT VERSION_1 Mo Mo Eg"‘rjgﬁggﬁn
(] QE FLIGHTPLAM UNSTRUCT SYMC VERSIOM_1 Mo Mo Eg?gﬁgg;
SelectAll [0 Clear Al Build Selected Schemas Delete Selected Schemas

Message schemas grid

M essage
Message Version

Rowset-based

Exists

Updated On

Message name returned from the search of the application database.
Version of the message returned from the search of the application database.

Indicates the structure of the message. The valid values are:
» Yes. Indicates that the message is a rowset-based message.

» No. Indicates that the message is a nonrowset-based message.

Indicates whether a schema has been built for the message. The valid values are:

e Yes. A schema has been built for the message.

« No. A schemahas not been built for the message.

Timestamp of the last update of the record. A new timestamp displays when a
schemais generated or deleted for a message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 189

Building Message Schemas Chapter 8

Build Results Displays the results of actions performed on a schema.
Build Selected Schemas Click the button to build schemas for the selected messages.

Delete Selected Schemas Click the button to delete schemas that exist for the selected messages.

Viewing XML Message Schema

If amessage schema exists for a message, click the message name in the Message Schema grid to view the
schema details in the Schema Viewer page (IB_SCHEMABUILD_SEC).

Message: QE_FLIGHTPLAN . VERSION_1

Schema:

=%xml version="1.0"7= i
=¥sd:schema xmins:xsd="hitp:fwww.w3.org/2001MLSchema™
=xsd:element name="QE_FLIGHTPLAMN" type="QE_FLIGHTPLAMN_TypeShape"=
=x¥sd:.complexType name="QE_FLIGHTFLAM_TypeShape™
=¥sd sequence=
=x¥sd:element name="FieldTypes" type="FieldTypes_TypeShape"/=
=xsd:element name="MsgData" type="MsgData_TypeShape=
=fsd:sequence=
=hsd.complexType=
=xsd.complexType name="FieldTypes_TypeShape™
=xsd:all=
=¥sd:element name="QE_FLIGHTDATA"
type="FieldTypesQE_FLIGHTDATA_TypeShape /= bl
£ >

Return

Schema details for version 1 of the QE_FLIGHTPLAN message definition

Note. For easier viewing, highlight the data with your cursor.

M essage schemas for rowset-based messages are read-only. Y ou can edit message schemas for nonrowset-
based messages.

Building Message Schemas for Rowset-Based Messages

This section discusses how to build message schemas for rowset-based messages.

190 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Building Message Schemas

Building a Message Schema for a Rowset-Based Message

To build a message schema for a rowset-based message:

1

3.
4.

Access the Schema Builder page (PeopleTools, Integration Broker, Service Utilities, Message Schema
Builder).

Search the application database for the message or messages for which to build schemas.

See Chapter 8, "Building Message Schemas," Selecting Data in the M essage Schema Builder, page 186.

Check the box next to the message or messages for which to build schemas.
Click the Build Selected Schemas button.

When the schemais built successfully, atimestamp appears in the Updated On field and the Build Results
field displays Quccessful Schema Insert.

Importing Message Schemas for Nonrowset-Based Messages

This section discusses how to import message schemas for nonrowset-based messages.

Importing a Message Schema for a Nonrowset-Based Message

To import schemas for nonrowset-based messages:

1.

Access the Schema Builder page (PeopleTools, Integration Broker, Service Utilities, Message Schema
Builder).

Use the Message Schema Builder search engine to locate the message for which you want to import a
schema.

See Chapter 8, "Building Message Schemas," Selecting Data in the M essage Schema Builder, page 186.

In the Message Schema grid, click the message name link for the message for which you want to import a
schema.

Import the schema.
» Import aschemafrom afile.

Y ou can import a schemafrom afile by using the Upload Schema from File button and selecting the
file to import. After you import the file, the contents displaysin the Schematext box.

Note. If you receive the error, "Error retrieving the file from database,”" verify that one of the variables
PS FILEDIR or PS_SERVDIR is defined in the system variables on your machine.

+ Direct dataentry.

Y ou can also enter the schema directly in the Schema text box.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 191

Building Message Schemas Chapter 8

5. Click the Save button.

The Schema Builder page appears.

A timestamp appears in the Updated On field and the Build Results field displays Successful Schema Insert.

Modifying Message Schemas

This section discusses how to modify message schemas.

Note. Y ou can modify the content of message schemas built for nonrowset-based messages only.

To modify a schema, you can edit it directly in the Message Schema Builder, or you can export to make
changes.

Modifying a Message Schema
To modify a message schema:
1. Select PeopleTooals, Integration Broker, Service Utilities, Message Schema Builder.
The Schema Builder search page appears.
2. Locate the message with which you want to work.

See Chapter 8, "Building Message Schemas,” Selecting Data in the M essage Schema Builder, page 186.

3. Inthe Message Schemagrid, click the message name link.
A new page displays with the message schema populated in a text box.
4. Modify the schema as needed.

» Modify the schemadirectly in the text box, or
« Modify the schemain the editor of your choice.

Use your cursor to highlight the contents of the text box and use the keyboard command CTRL + C to
copy the contents of the text box. Paste the contents into your editor using the keyboard command
CTRL + V. Modify the content as needed. Import the content back into the M essage Schema Builder
using the instructions described previously in this chapter for importing message schemas for
nonrowset-based messages.

See Chapter 8, "Building Message Schemas," Importing Message Schemas for Nonrowset-Based
Messages, page 191.

5. Click the Save button.

The Schema Builder page displays and the Updated On field displays the date and time of the modification,
and the Build Results field displays the results of the new schema build.

192 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Building Message Schemas

Deleting Message Schemas

This section discusses how to delete message schemas.

Understanding Deleting Message Schemas

Y ou can del ete message schemas using the M essage Schema Builder page in the Message Schema Builder
component (IB_SCHEMABUILD) or using the Message Schemas page in the Service Administration
component (IB_HOME_PAGE).

Note. The Message Schema Builder page provides more comprehensive capabilities for searching for
message schema.

Y ou cannot delete a message schema when the message on which the schemais based is:

» Referenced in a service operation.

» Referenced as a message part in a container message.
» A rowset-based message part.

« A container message.

» Referenced in aprovided WSDL document.

Using the Message Schema Builder Page to Delete Message Schemas

When deleting a schema using the M essage Schema Builder page use only the Delete Selected Schemas
button. Do not attempt to del ete message schemas by deleting content in the Schema text box in the schema
details view; if you save the changes, PeopleSoft Integration Broker will attempt to validate the blank schema
at runtime and the validation will fail.

Y ou cannot del ete message schemas when the service system statusis set to Production.
The service system status that is set on the Service Configuration page.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Configuring
PeopleSoft Integration Broker for Handling Services," Understanding Configuring PeopleSoft Integration
Broker for Handling Services.

To delete a message schema:

1. Accessthe Message Schema Builder page (PeopleToals, Integration Broker, Service Utilities, Message
Schema Builder).

The Schema Builder search page appears.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 193

Building Message Schemas Chapter 8

2. Locate the message with which you want to work.

See Chapter 8, "Building Message Schemas," Selecting Data in the M essage Schema Builder, page 186.

The Schema Builder page appears.

3. Inthe Message Schema section, check the boxes next to the message names that contain schemas you
want to delete.

4. Click the Delete Selected Schemas button.

194 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Managing Services

This chapter provides an overview of managing services and discusses how to:
« Access and view service definitions.

« Add service definitions.

» Configure service definitions.

» Restrict write access to service definitions.

« Rename and delete service definitions.

« Activate and deactivate servicesin bulk.

Note. Before you can provide or consume services in a PeopleSoft system, you must configure the system for
handling services.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Configuring
PeopleSoft Integration Broker for Handling Services'

Understanding Managing Services

Services are used to logically group a set of service operations.

For example, if you have a number of service operations that are related to customers, such as those
pertaining to customer information, adding customers, updating customers, deleting customers, and so on,
you can create a customer web service and then associate the related service operations with that service.

Warning! PeopleSoft delivers two services with PeopleSoft Integration Broker: IB_GENERIC and
IB_UTILITY. These services are used internally by the system. Do not delete or modify these services.

Common Elements Used in This Chapter

Comments (Optional.) Enter comments about the service or service definition.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 195

Managing Services

196

Description
Generate SOAP

Template

Link Existing
Operations

Object Owner ID

Operation Type

Provide Web Service

Schema Namespace

Service

Service Alias

Service Operation

Service Namespace and

Namespace

Chapter 9

Description of the service.

Click to open the Generate SOAP Template utility. The utility enablesyou to
generate SOAP documents for each service operation in aservice for testing
purposes.

Click to add service operations already defined in the system to a service.

(Optional.) Indicates the owner of the service.

The owner ID helps to determine the application team that last made a change to
a service definition. The valuesin the drop-down list box are trandlate table
values that you can define in the OBJECTOWNERID field record.

Specifies how the serviceis transmitted.

On the Service page this field defines the operation type of the service operation
added.

Click to launch the Provide Web Services component and export PeopleSoft
services as WSDL documents.

Provides qualification for attributes and elements within an XML schema
document (XSD).

The default is http: //xmins.oracle.com/Enter prise/ Tools/schemas.

The namespace on the message definition defaults to the schema namespace you
set as the default on the Service Configuration page.

Note. If you change the namespace, all future messages will have the new
namespace.

The name of the service.

(Optional.) Overrides the service name and will be the name of the service when
the WSDL is provided or exported. The alias enables you to use mixed casein
the name.

The name of the service operation to associate with the service.

On the Services page, use thisfield to add new service operations for the current
service.

The namespace field on the Service pages provides qualification for attributes
and elements within aWSDL document.

The value defined in the Service Namespace field in the Service Configuration
page is used as the default service namespace on the Services page. The default
value is http://xmin.oracle.com/enter prise/tool s/service.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Service System Status

Target Location

View WSDL

Managing Services

The status that is selected restricts rename, delete, and other administrative
actions that users can perform on integration metadata in the Services
Administration component.

Vaues are:

« Production.
» Development.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker
Administration, "Configuring PeopleSoft Integration Broker for Handling
Services," Understanding Configuring PeopleSoft Integration Broker for
Handling Services.

Specifies the URL to be used for service requests.
Y ou must define this |ocation before creating services and service schemas.

Click to view WSDL documents that were generated for the service in the WSDL
repository.

Accessing and Viewing Service Definitions

This section discusses how to.

o Access service definitions.

» View WSDL documents generated for services.

« View service operation information.

» View messages defined for services.

Accessing Service Definitions

Service definitions appear on the Services page (IB_SERVICEDEFN) in the Service component

(IB_SERVICEDEFN).

To access the Services page, select PeopleTools, Integration Broker, Integration Setup, Services. The
following example shows the Services page:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 197

Managing Services Chapter 9

Services
Service: IB_EXAMPLES
*DESCI'ipﬁﬂn: B EHElmpIEE.
Comments: This senvice contains the following IB examples:
1. XML examples:
a. OutsSync XML to 3rd party. K.
£ E
Service Alias: |
Object Owner ID: PeopleTools 3
*Namespace: |http:.frxmlns.nracle.cnrm’Enterprise!‘l’nnlsrserﬂcesﬂﬁ_
Link Existing Operations View WSDL Provide Web Service

Senvice Operations

Senvice Operation: |
Operation Type: | W | Add |
Existing Operations Customize | Find | view &1 | B0 88 First Bl 49 or 2 I Last
Operation Type

B EX MP MOMROWSET ASYMNC.W1 Msg parts nonrowset async. Asynch E|
IB EX MP MNOMROWSET SYMCuw1 Msg parts nonrowset sync. Synch E|
1B EX MP ROWSET ASYNCW1 Msg parts rowset async. Asynch E|
1B EX MP ROWSET SYMCwI Msg parts rowset sync. Synch E|
B EX SYNC SOAP w1 Sync SOAP. Synch [=]
IB EX SYNC SOAP TP.w1 Sync SOAF to 3rd party. Synch E|
B EX SYNC XML w1 Sync XML Synch (=]
B EX SYNC XML TPwi Sync XML to third party. Synch [=]

Services definition for the IB_EXAMPLES service

The top of the Service page displays general information about the service, including the name of the service,
its description, its alias name, and so on.

Viewing WSDL Documents Generated for Services

Click the View WSDL link to display the WSDL Repository page (IB_SERVICEDEFN_SEC). This page
provides asummary of al the WSDL documents that are generated for the service, aswell as the service
operations, request messages, response messages, and fault messages that are contained in each.

198 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Managing Services

Note. Service operations must exist for a service to view WSDL documents for the service.

WSDL Repository

Service: IB_EXAMPLES

Find Firs.tn 1of1 n Last

WSDL: 1B EXAMPLES] Default Last Upd DtTm: 07/06/2009 10:31:06AM
View WSDL
Exported Service Operations Customize | Find [View Al B0 38 First B 4 o1 B Laet

Operation Routing External Alias Request Message Response Message Fault Message

IB_EX_SYNC_SOAP1 IB_EX_SYNC_SOAP.v1 IB_EX_SYNC_SOAP_REQUEST.v1 IB_EX_SYNC_SOAP_RESPONSEw1

The WSDL Repository page shows that WSDL has been exported for one service operation in the
IB_EXAMPLES service.

Click the View WSDL link to view the contents of the document.

Click the Return button to return to the Services page.

Viewing Service Operation Information

The Existing Service Operations section of the Services page contains an Operation tab that displays service
operations and service operation versions that are associated with the service. It also displays descriptions of
the service operations, the type of operation, and whether the service operation is active.

When you click the name of a service operation, the operation opens on the Service Operations page, where
you can view and modify service operations information, work with the service operation handlers, routing
definitions, and do much more.

See Also

Chapter 10, "Managing Service Operations," page 209

Viewing Messages Defined for Service Operations

The Existing Service Operations section of the Services page contains a Messages Links tab that displaysthe
reguest and response messages defined for each service operation.

The following example shows the Message Links tab displaying request and response messages for the
service operation that is associated with the IB_EXAMPLES service:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 199

Managing Services Chapter 9

. . . A
Existing Operations Customize | Find | view A1 | 20| B Firet Bl 150r8 Il Last

—

Request Message.Version Response Message.\Version

B EX NONROWSET COMNTAINERMI (=]
1B EX NONMROWSET COMNTAINERM IB EX MOMROWSET COMNTAIMER W =]
IB EX ROWSET COMTAINER.W (=]
1B EX ROWSET COMTAINER.W IB EX ROWSET COMNTAINER W [=]
IB EX SYNC SOAP REQUESTM IB EX SYNC S0AP RESPOMSEW [=]
1B EX GEMERICM IB EX GEMERICW (=]
IB EX SYMNC XML.wv1 IB EX SYMC XML.w1 (=]
1B EX GEMERIC.M IB EX GEMERICM [=]

The request and response message for the IB_EXAMPLES service

Click the request or response message name to open the message in the Message Definitions page, where you
can view and modify message definition information, message schema information, and more.

See Also

Chapter 6, "Managing Messages," page 75

Adding and Configuring Service Definitions

To add a service definition to the system, use the Add a New Value tab on the Services search page. To
access this page, select PeopleTools, Integration Broker, Integration Setup, Services. Then select the Add a
New Vauetab.

Services

Eind an Existing Value Add a New Value

Senlioe:|

Add

Add a New Value tab on the Services Search page

200 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Managing Services

Note. Before you can add a service, you must configure PeopleSoft Integration Broker to handle services
using the Service Configuration page.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, " Configuring
PeopleSoft Integration Broker for Handling Services," Understanding Configuring PeopleSoft I ntegration
Broker for Handling Services.

After you add a service definition to the system, the Services page appears and you can configure the service
definition.

To configure a service, use the Services page (IB_SERVICEDEFN) in the Services component
(IB_SERVICEDEFN) in the PeopleSoft Pure Internet Architecture. The following example shows the
Services page:

Services

Service: TEST_SERVICE
*Description: |

Comments:

Service Alias: |
Object Owner ID: | b
*Namespace: |http Jdmins oracle comiEnterprise/Tools/senvices

Link Existing Operations Wiew WSDOL

Service Operations

Senvice Operation: |

Operation Type: | w Add

Save

Configuring a service definition

To add and configure a service definition:
1. Accessthe Services page (PeopleTools, Integration Broker, Integration Setup, Services).
2. Click the Add a New Vaue tab.
3. Inthe Servicefield, enter aname for the service.
4. Click the Add button.
The Services page appears.

5. Inthe Description field, enter adescription for the service.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 201

Managing Services Chapter 9

(Optional.) In the Comments field, enter comments about the service or the service.
(Optional.) In the Service Aliasfield, enter an alias name for the service.

(Optional.) From the Object Owner ID drop-down list box, select the owner of the service.

© © N o

Enter a namespace URI for the service.

The default value is the namespace that is declared in the Service Namespace field on the Service
Configuration page.

10. Click the Save button.
See Also

Chapter 9, "Managing Services," Adding Service Operations to Service Definitions, page 202

Adding Service Operations to Service Definitions

This section discusses how to:

» Add an existing service operation to a service definition.

» Define anew service operation for a service definition.

Understanding Adding Service Operations to Service Definitions

Y ou can add a service operation that already exists in the database to a service definition, or you can add and
configure a new service operation and then add it to a service.

Adding Existing Service Operations to Services
To add an existing service operation to a service:

1. Accessthe Add Existing Operations page (PeopleToals, Integration Broker, Integration Setup, Services.
Click the Link Existing Operations link).

The Add Existing Operations page appears.

202 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Managing Services

2. Select aservice operation to add to the service.

a. Inthe Service Operation field, enter the name of the service operation to add to the service and click
the Search button. The service operation appears in the Available Service Operations grid.

Check the box next to the service operation name.

b. Inthe Service Operation field, click the Lookup button. The Look Up Service Operation page appears.
Select a service operation from the list to add to the service.

c. Click the Search button to show alist of service operationsin the database.

Select one or more service operations to add to the service.

3. Onthe Adding Existing Operations page, click the Save button.

The Services page appears and the service operations that you added appear in the Existing Operations
grid.

4. On the Services page, click the Save button.

Adding and Configuring New Service Operations for Services
To add and configure a new service operation for a service:
1. Accessthe Add Existing Operations page (PeopleToals, Integration Broker, Integration Setup, Services).
The Services page appears.

2. Inthe Service Operations section, locate the Service Operation field and enter a name for the new service
operation.

3. From the Operation Type drop-down list, select the type of service operation you are adding.

See Chapter 10, "Managing Service Operations,”" Service Operation Types, page 210.

4. Click the Add button.
The Service Operations-Definitions page appears. Use the page to configure the service operation.

See Chapter 10, "Managing Service Operations," Configuring Service Operation Definitions, page 216.

Restricting and Enabling Write Access to Service Definitions

This section provides an overview of restricting access to services and discusses how to:

« Restrict write access to services.

« Enablewrite access to services.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 203

Managing Services

Chapter 9

Understanding Restricting Write Access to Service Definitions

When you restrict write access to a service, sensitive fields of the service definition and of associated service
operations appear in read-only mode. The following table lists the components and pages that contain fields
and data that are related to services and describes the impact that restricting access to services has to each of

them.
Restricted Component | Restriction Comments
or Page
Service All fields are read-only. NA
Service Operation All fields are read-only, with the following When a service isrestricted, you cannot
exceptions: regenerate routings.
e User Password Required.
* Non-Repudiation.
* Runtime Schema Validation.
Handlers All fields are read-only except. When a serviceisrestricted, you can still
] activate or inactivate handlers.
e The Status drop-down list box.
* Theplus button that is used to add new
handlers.
Routings All fields are read-only except: When a serviceis restricted, you can:

* Thelnactivate Selecting Routings and
Activate Selected Routings buttons.

e The Add button.

e Activate and deactivate routings of
service operations that are associated
with the service.

e Add new routings to service
operations that are associated with the
service.

Y ou cannot delete or rename arestricted service. In addition, you cannot change, rename or delete any service
operation that is defined as part of arestricted service.

Restricting Write Access to Service Definitions

204

Use the Restricted Service page (IB_SVCSETUP3) in the Service Configuration component
(IB_SVCSETUP) to restrict a service. The following example shows the Restricted Services page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Managing Services

Semnvice Configuration UDDI Configuration Restricted Services Exclude PSFT Auth Token

Service: | Q
[] Restricted Service

Search |

-]
Senvices Cuztomize | Find | View &l | IEI EH First 4 1 of 1 n Last

Restricted Service |Service Description

Restricted Services page

To restrict write access to services:

1

Select PeopleTools, Integration Broker, Service Configuration. Click the Restricted Servicestab. The
Restricted Services page appears.

In the Servicefield, enter a service name and click the Search button, or click the Lookup button to search
for aservice.

The service name or search results display in the Serviceslist.
Check the Restricted Service check box next to the service name to which you want to restrict access.

Click the Save button.

Enabling Write Access to Service Definitions

To enable write access to services that you previously restricted:

1

Select PeopleTooals, Integration Broker, Service Configuration. Click the Restricted Services tab.
The Restricted Services page appears.

Select the service to write-enable using one of the following methods:

« Inthe Servicefield, enter a service name and click the Search button.
» Click the Lookup button to search for a service.

» Check the Restricted Services check box, and click the Search button to display and select from all
currently restricted servicesin the system.

The service name or search results appear in the Services list.
Clear the check box next to the service name to write access enable.

Click the Save button.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 205

Managing Services

Chapter 9

Renaming and Deleting Service Definitions

Y ou can rename and del ete services using the Services tab in the Service Administration component
(IB_HOME_PAGE). The Services tab contains two sections. a Delete section that enables you to delete
services and a Rename section that enables you to rename services.

When you first access the Services tab, both sections are collapsed. Click the section header arrow buttons to

expand and collapse each section.

The following example shows the Services tab with both Delete and Rename sections expanded.

Services

Senvice Operations

Service System Status: Development

Message Schemas

Mote - Only services with no operations can be deleted.

Service: |

Search

Services

Select Service

Description

B
Customize | Find | View Al | (2| 8

Firzst n 1 of1 u Last

Results

Delete

Service: |
New Name: |
Rename
Results:

Services Administration — Services page with the Delete and Rename sections expanded

Renaming Service Definitions

The service system status that you set on the Services Configuration page affects the ability to rename

Services.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Configuring
PeopleSoft Integration Broker for Handling Services," Setting Service Configuration Properties.

To rename a service:

206

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Managing Services

1. Select PeopleToals, Integration Broker, Service Utilities. Click the Service tab.
The Service page displays.
2. Click the arrow next to the Rename section header to expand the section.

3. Inthe Servicefield, enter the service to rename, or click the Lookup button to search for and select the
service to rename.

4. |Inthe New Name field, enter the new name for the service.

5. Click the Rename button.

After you click the Rename button, the Results field displays a message that the action was successful or
displays awarning or error message with a description of the problem.

Deleting Service Definitions

Y ou can delete services only when the service has no service operations associated with it. When you search
for aservice to delete, only such services that have no service operations associated with them are retrieved
from the system.

To delete aservice:

1. Select PeopleToals, Integration Broker, Service Utilities. Click the Service tab.
The Service tab displays.

2. Click the arrow next to the Delete section header to expand the section.

3. Inthe Servicefield, enter the service name to delete, and click the Search button.
Search results display in the results grid.

4. Inthe results grid, check the check box next to the service or servicesto delete.

5. Click the Delete button.

Activating and Deactivating Services in Bulk

The Service Activate/Deactivate page (IB_HOME_PAGED9) in the Service Administration component enables
you to activate and deactivate servicesin bulk.

This page enables you to quickly activate or deactivate services. If any problems occur during activation, the
system displays a message indicating a problem activating a certain object, for example routing, handler, and
so on. If such a message occurs, you must look on the corresponding object definition to determine the
problem. This page is not intended to be used to debug activation problems or problems with integration
metadata definitions.

The following example shows the Service Activate/Deactivate page:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 207

Managing Services Chapter 9

208

El Routings Deprecated PeopleCode Senvice Activate/Deactivate Metadata WSDL/Schema Convert

Service: |

Search

Services Customize | Find | View Al T B First B0 4 or 1 I Last
Select Senvice Description Resulis
L]

Activate | Deactivate |

Bulk activating three service operations on the Service Activate/Deactivate page

When you activate one or more services, all of the default service operation associated with the services
become active. In addition, the handlers, routings and queues associated with the service operations become
active aswell.

When you deactivate one or more services, al selected services become deactivated. The default service
operations for the services become deactivated as well. In addition, the handlers, routings and queues
associated with the service operations become deactivated.

To activate or deactivate servicesin bulk:

1

o > w0 DN

Access the Service Activate/Deactivate page (PeopleTools, Integration Broker, Service Utilities, Service
Administration).

In the Servicefield, enter part or al of the service name you want to activate or deactivate.
Click the Search button.
Check the Select box next to each service to activate or deactivate.

Click the Activate button to activate the selected services; click the Deactivate button to deactivate the
selected services.

When the system has performed the selected action, the Results column displays Success for each service
you activated or deactivated.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

Managing Service Operations

This chapter provides an overview of managing service operations and discusses how to:

Access and view service operation definitions.

Add service operation definitions.

Configure service operation definitions.

Set permissionsto service operations.

Manage service operation versions.

Attach files to service operations.

Assign multiple queues to process inbound service operations.
Invoke multiple service operations.

Rename and del ete service operations.

Understanding Managing Service Operations

This section discusses:

Service operations.

Service operation types.

Naming conventions for service operation metadata.
Service operation aliases.

Service operation versions.

Monitoring service operations.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

209

Managing Service Operations Chapter 10

Service Operations

A service operation definition consists of general information about an operation, such as its name,
description, and so on. It also specifies an operation type, which determines how the operation isto be
processed, synchronously or asynchronously. In addition, it contains routings, which determine the direction,
inbound or outbound, of the service operation. A service operation has one or more handlers, which contain
and run the programming logic for sending or receiving the message, manipulating message content, and so
on.

Note. Beginning with the PeopleTools 8.48 rel ease, service operations house the processing logic found in
messages, transactions and relationships used in earlier versions of PeopleSoft Integration Broker.

Service Operation Types

Service operation types determine the type of message processing. There are four service operation types:

Asynchronous The sending system invokes a service operation asynchronously and processes

Request/Response the response from the receiving system asynchronously. Unlike a synchronous
operation type, the response is not processed on the same thread as the response,
and it is processed sometime in the future.

Asynchronousto The sending system's asynchronous process sends a synchronous request to a
Synchronous remote system.

The sending asynchronous system expects the receiving system to send a
synchronous response back. The sending asynchronous system transforms the
response and puts it back in the queue for asynchronous consumption.

Asynchronous— One The service operation is queued and sent in near real-time. Processing on the
Way sending system continues without a response from the receiving system.
Synchronous The service operation is processed in real-time. Processing on the sending

system does not continue until it receives a response from the receiving system.

Naming Conventions for Service Operation Metadata

When naming the following service operation metadata, names cannot start with "xml," digits or special
characters:

» Service operation names.

» Service operation aliases.

Service Operation Aliases

A service operation alias or operation aliasis the service operation name that displays for the service
operation when WSDL is provided.

210 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Managing Service Operations

Service operation aliases may be mixed case.

Duplicate service operation alias names within a service are not allowed.

Service Operation Versions

When you create a service operation, the operation that you create automatically becomes the default service
operation version.

If you add a new version to the operation, the newly added version automatically becomes the default. The
previous version of the service operation remains in the database as a non-default version and you still may
use that the non-default version.

See Chapter 10, "Managing Service Operations,” Using Non-Default Service Operation Versions, page 223.

Monitoring Service Operations

This section describes several options for monitoring service operation performance.

Monitoring Service Operations in the Integration Broker Service Operations Monitor

PeopleSoft provides an Integration Broker Service Operations Monitor that enables you to monitor
asynchronous and synchronous service operation information, node status, queue status, manage domains,
and more, from within the PeopleSoft Pure Internet Architecture.

See Enterprise PeopleTools 8.50 PeopleBook: Integration Broker Service Operations Monitor

Monitoring Service Operations in Performance Monitoring Tools Using Module and Action
Information

Severa system monitoring tools report metrics by capturing Module and Action information. On an Oracle
database, PeopleSoft provides service operation name and PeopleCode event name as Module name and
Action name respectively. On an IBM DB2 database, PeopleSoft provides service operationname as Module
name (no Action information is provided for DB2 systems). This information enables you to associate service
operations with database transactions for monitoring and troubleshooting.

To enable capturing service operation and PeopleCode event metrics you must set the EnableDBM onitoring
option in PSADMIN.

See Enterprise PeopleTools 8.50 PeopleBook: Data Management, "Administering PeopleSoft Databases on
Oracle," Monitoring PeopleSoft MODULE and ACTION Information; Enter prise PeopleTools 8.50
PeopleBook: Data Management, "Administering PeopleSoft Databases on DB2 UDB for zZ/OS," Associating
PeopleSoft Users with DB2 UDB Threads and Enterprise PeopleTools 8.50 PeopleBook: Data Management,
"Administering PeopleSoft Databases on DB2 UDB for Linux, UNIX, and Windows," Monitoring Module
Information.

Accessing and Viewing Service Operation Definitions

This section discusses how to:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 211

Managing Service Operations Chapter 10

» Access service operation definitions.

« View service operation definitions.

Accessing Service Operation Definitions

Use the pages in the Service Operations component (IB_SERVICE) to access and view service operation
definitions. The following example shows the General tab of the Service Operations component:

General Handlers Routings

Service Operation: QE_FLIGHTPLAM
Operation Type: Asynchronous - One Way
|QE_FLIGHTPLAN

*Operation Description:
Operation Comments: [JuseriPassword Required
*Seacurity Verification: Mone W
Object Owner 1Dz | 4 |
Operation Alias: | Service Operation Security
Default Service Operation Version
*\ersion: Default Active
Version Description: | Routing Status
Version Comments: Any-to-Local: Does not exist
Local-to-Local: Does not exist
Local-to-Atom: Does not exist.
F Non-Repudiation Routing Actions Upon Save
Introspection [JRuntime Schema Validation e
[] Generate Local-to-Local
Type: Request
Message.Version: \QE_FLIGHTPLAN.VERSION_1 Q, view Message
+Queue Name: |QE_FLIGHTPLAN_CHNL C, view Queue Add New Queue

Service Operations — General tab

To access a service operation definition:

1. Select PeopleToals, Integration Broker, Integration Setup, Service Operations.

The Find Service Operation search box appears.

212 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Managing Service Operations

2. Search for aservice operation definition to view.
Y ou can search for an operation in one of two ways:
» Click the Search button to display all service operation definitionsin the system.

« Enter search criteriain one or more of the following fields, and then click the Search button:

Service Enter the service name that contains the service operation that you want to
view, or click the Lookup button to search for and select a service name.

Service Operation Enter the name of the service operation to view, or click the Lookup button
to search for and select an operation.

Operation Type From the Operation Type drop-down list box, select an operation type.
Vauesare:

« Asynch Reguest/Response
« Asynch to Synch
« Asynchronous — One Way

» Synchronous

3. Click the name of the service operation to view.

The Service Operations — General tab appears with data for the service operation that you selected.

Viewing Service Operation Definitions

The Service Operations component includes three pages:

General Tab Features general-service and default-service operation information.

HandlersTab Provides summary information about handlers that have been added to an
operation. Service operation handlers contain the programming logic for sending
and receiving service operations and their contained messages, and for
manipul ating content.

Routings Tab Provides summary information about service operations routings. Routing
definition determine the direction—inbound, outbound or hub—of service
operations.

Viewing General Service Operation Information

When you access a service operation (PeopleTools, Integration Broker, Integration Setup, Service
Operations, the Service Operations - General page (IB_SERVICE) appears.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 213

Managing Service Operations Chapter 10

214

The top portion of this page contains basic information about a service operation, including its name,
description, and so on. The Service Operation Security link opens the permission list for the service. Note that
the Service Operation Security link appears only after a service operation definition is saved.

The Default Service Operation Version section displays service-operation version information, whether
nonrepudiation isin effect, and whether runtime schema validation is enabled. The Introspection link enables
you to access the Introspection and V alidation page.

The Routing Status group box showsiif any-to-local, local-to-local, or in the case of feeds, local-to-Atom,
routing definitions have been generated for the service operation. Click the Routings tab to view detailed
information about routing definitions that exist for a service operation.

The Routing Actions Upon Save group box shows the possible routings that the system can generate when the
service operation definition is saved.

The Message Information section displays the request message, response message information, and fault
message for the service operation. The View Message links in this section open the displayed message on the
Message Definition page, where you can view additional information about the message. For all operation
types other than Synchronous, the queue to which a message belongs also appears. Click the View Queue link
or the Add New Queue link to open the Queue Definition page to view additional queue definition
information or to add or change a queue to which a message belongs.

Viewing Handler Information

To view service operation handler information, click the Handler tab. Doing so displays the Service
Operations - Handlers page (IB_SERVICEHDLR) which lists summary information about handlers that have
been added to an operation.

(eI Handiers

Service Operation: QE_FLIGHTPLAM
Default Version: VERSION_A
Operation Type: Asynchronous - One Way

|
Customize | Find | View All | IE'| L First ll 1-3 of 3 ﬂ Last

Seguence | *Implementation *Status

GEN_UPG_HANDLER_18802 Onhotify 3 Application Class Active + | Details =]
GEN_UPG_HAMDLER_21703 OnMotify 1 Application Class Active w | Details E|
Test Handler On Notify 2 Application Class Active + | Details =]

Service Operations — Handlers page

The summary information includes the handler name, the handler type, and the implementation method for
the handler. The status of the handler, active or inactive, also appears.

Click the Details link to open the Handler Details page (IB_SERVICEHDLR_SEC) for the handler. The
following example shows the Handler Details page:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Managing Service Operations

Handler Details

Handler Hame: GEM_UPG_HAMDLER_18802
Handler Type: COnMotify
Description: | QE_FLIGHTPLAN

Comments:

Handler Owner: |

Handler Alias: GEMN_UPG_HAMDLER_12302

Application Class

~Package Name: \QE_FLIGHTPLAN Q,
*path: | Q
ClassID: [FLIGHTPROFILE Q
Method: | OnNotify v/

Handler Details page
The Handler Details page shows additional information about the handler, including the owner and
application class or component interface details.

Y ou can aso use this page to specify the handler details.

Viewing Routing Information

Click the Routing tab to open the Service Operations - Routings page (IB_SERVICERTNGS) to view a
summary of routing definitions for an operation.

General Handlers Routings

Service Operation: QE_FLIGHTPLAN
Default Version: VERSION_1

Add

Routing Name: |

Routing Definitions Customize | Find | View All | EI| i Firstn 1of1 a Last

Selected Name Version Operation Type |Sender Node Receiver Node Direction Results

(] ~GEN~UPG~24248 VERSION_1 Asynch QE_LOCAL QE_IBTGT Outbound Active [=]
Inactivate Selected Routings | Activate Selected Routings |

Service Operations—Routings page

The Routings Definition grid on the page lists summary information for routings that are defined for a service
operation. Summary information that is displayed includes the routing definition name, service operation
version, routing type, sending node, receiving node, direction of the routing and the routing status.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 215

Managing Service Operations Chapter 10

Click arouting definition name to open the routing in the Routing Definitions component, where you can
view additional information about the routing.

See Chapter 15, "Managing Service Operation Routing Definitions," Viewing Routing Definitionsin
Graphical Format, page 309.

Y ou can aso use this page to add routing definitions to a service operation and to activate or deactivate
routings for an operation.

See Chapter 10, "Managing Service Operations," Adding Routing Definitions, page 220 and Chapter 10,
"Managing Service Operations," Activating and Inactivating Routing Definitions, page 221.

Adding Service Operation Definitions

To add a service operation definition:

1. Select PeopleToals, Integration Broker, Integration Setup, Service Operations.
A search page appears.

2. Click the Add Service Operation tab.

3. Inthe Servicefield, enter the service name to which the new operation will belong or click the Lookup
button to search for a service name.

4. Inthe Service Operation field, enter a name for the service operation.

5. From the Operation Type drop-down list box, select an operation type. Values are:
» Asynchronous — One Way

» Synchronous
» Asynch Request/Response

« Asynchto Synch
6. Click the Add button.

The new definition appears on the General tab of the Service Operation component, and you can now define
the service operation.

Configuring Service Operation Definitions

After you add a service operation definition to the system, you can define the service operation.

This section discusses how to:

» Specify general service operation information.

« Define service-operations version information.

216 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

Managing Service Operations

Add handlers to service operations.
Add routing definitions.

Activate and inactivate routings.

Specifying General Service Operation Information

To specify general service operation information:

1

7.

Access the Service Operations-General page (PeopleTools, Integration Broker, Integration Setup, Service
Operations).

In the Operation Description field, enter a description for the operation.

(Optional.) Check the User I D/ Password Required check box to require a user 1D and password for
inbound service operations.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Setting Up
Secure Integration Environments,” Managing User Authentication.

From the Security Verification drop-down list, select the level of security with which inbound integrations
must be sent.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Integration Broker Administration, "Setting Up
Secure Integration Environments,” Validating Security on Inbound Integrations.

(Optional.) In the Operation Comments field, enter comments about the service operation.
(Optional.) From the Object Owner ID field, select the owner of the definition.

The owner ID helps to determine the application team that last made a change to a service definition. The
valuesin the drop-down list box are trand ate table values that you can define in the OBJECTOWNERID
field record.

(Optional.) In the Operation Aliasfield, enter an alias name for the service operation.

The general information section of this page includes a Service Operation Security link. Granting permissions
to service operations is discussed elsewhere in this chapter.

Before you can save the service operation definition, you specify messages for the service operation, as
described in the next section.

See Chapter 10, "Managing Service Operations,” Setting Permissions to Service Operations, page 221.

The following section continues to describe how to define a service operation and discusses how to assign
default versions to service operations.

Defining Service Operation Version Information

When you first create a service operation definition, the definition that you initially define is the default
version.

When the newly created service operation definition opens, the Default check box is enabled and is read-only.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 217

Managing Service Operations Chapter 10

218

Y ou can subsequently define additional service operation versions and assign them as the defaullt.

See Chapter 10, "Managing Service Operations," Managing Service Operation Versions, page 222.

Defining General Version Information
To define the service operation default version:

1. Accessthe Service Operations - General page (PeopleTools, Integration Broker, Integration Setup,
Service Operations).

2. IntheVersion field, enter aversion identifier.
The default isv1.
3. (Optional.) Inthe Version Description field, enter adescription for the operation version.

If you enter no information, the description by default is the name of the service operation when you save
the definition.

4. (Optional.) In the Version Comments box, enter comments about the version.
5. (Optional.) Check the Non-Repudiation check box to apply nonrepudiation to the message.

6. (Optional.) Check the Runtime Schema Validation check box to enable service schema validation at
runtime.

Y ou can click the Introspection link to employ introspection to generate point-to-point routings.

See Chapter 15, "Managing Service Operation Routing Definitions,” Using Introspection to Create Routing
Definitions, page 302.

Continue to the next section to specify messages for service operations. Y ou cannot save the service operation
definition until you define messages for it.

Specifying Messages for Service Operations

Y ou specify messages for service operations in the Message Information section of the Service Operations —
General page.

The messages that you specify define the structure of the data that is contained in the service operation.

The service operation type determines the number of messages and message types (request or response) that
you specify.

To specify messages for a service operation:
1. Locate the Message Information section on the Service Operations — General page.
2. Locate the Type field, and take note of the message type to define.

3. Inthe Message.Version field, enter the message name followed by a dot and version, or click the Lookup
button to search for one.

After you select the message, you can click the View Message link to view the message.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Managing Service Operations

4. Specify the queue for the message.

Note. If you are defining a message for a synchronous operation type, you do not need to define a queue.

Y our options are:

* Inthe Queue Name field, enter the queue name.
» Click the Lookup button to search for a queue.

» Click the Add Queue link to open the Queue Definitions page and define a new queue for the
message.

See Chapter 11, "Managing Service Operation Queues," Adding Queue Definitions, page 233.

» Click the Multi-Queues link to open the Queue List page and assign multiple queues to process the
message.

The Multi-Queue link appears only when you have enabled the multi-queue feature and when you are
working with asynchronous service operations.

See Chapter 10, "Managing Service Operations," Assigning Multiple Queues to Process Service
Operations, page 226.

5. Repeat steps 1 through 4 for each message type that appears in the Message Information section.
6. Click the Save button.

Specifying Fault Messages for Service Operations

Y ou can specify fault messages for service operations for error handling.
Note the following about fault messages:

* You cannot add fault messages to asynchronous service operations.

» Fault messages must be nonrowset-based messages or container messages. Fault messages cannot be
rowset-based messages.

Note.

To specify afault message:
1. Locatethe Default Service Operation Version section on the Service Operations — General tab.
2. Click the Add Fault Type button.
A new row appears in which to specify a message. Note that the Type field in the new row displays Fault.
3. Inthe Message.Version field, enter the message name, or click the Lookup button to search for one.
After you select the message, you can click the View Message link to view the message.
4. Click the Save button.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 219

Managing Service Operations Chapter 10

To delete afault message, in the Default Service Operation Version section, click the Delete Fault Type
button. Then click the Save button.
Generating Local-to-Local and Any-to-Local Routing Definitions

Use the Service Operations-General page to initiate generating local-to-local and any-to-local routing
definitions.

See Chapter 15, "Managing Service Operation Routing Definitions,” |nitiating System-Generated Routing
Definitions, page 285.

Adding Handlers to Service Operations

Adding handlersto service operationsis discussed el sewhere in this PeopleBook

See Chapter 14, "Managing Service Operation Handlers," page 259.

Adding Routing Definitions

220

This section describes how to create point-to-point service operation routing definitions from the Service
Operations — Routing page.

Note. Y ou can also create routings using the Routings component, the Introspection component, or the
Routings page in the Node Definitions component.

See Chapter 15, "Managing Service Operation Routing Definitions,” Creating Routing Definitions, page 287,
Chapter 15, "Managing Service Operation Routing Definitions," Using Introspection to Create Routing
Definitions, page 302 and Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft I ntegration Broker
Administration, "Adding and Configuring Nodes."

To add arouting to a service operation:

1. Accessthe Service Operations - Routings page (PeopleTaools, Integration Broker, Integration Setup,
Service Operations, click the Routings tab).

2. Inthe Routing Name field, enter a name for the routing.
3. Click the Add button.
The Routing Definition page appears.
Creating and defining arouting is discussed elsewhere in this PeopleBook.

See Chapter 15, "Managing Service Operation Routing Definitions," Creating Routing Definitions, page
287.

The next section describes how to activate routings.
See Also

Chapter 15, "Managing Service Operation Routing Definitions," page 279

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Managing Service Operations

Activating and Inactivating Routing Definitions
To activate or inactivate a routing:
1. On the Service Operations component, click the Routings tab.
The Routings page appears.

2. Check the box in the Select column next to the routing definition names that you want to activate or
inactivate.

3. Activate or inactivate the routing definition.
» Toactivate the routings, click the Activate Selected Routings button.
« Toinactivate the routings, click the Inactivate Selected Routings button.

4. Click the Save button.

Setting Permissions to Service Operations

This section describes how to use the Service Operations component to set permissions to access service
operations. Y ou can also set these permission in the Security component.

Understanding Setting Permission to Service Operations
Security operations are secured using permission lists.

When you select the User/Password Required check box on the Service Operations-General page, on inbound
integrations, your integration partners must supply avalid user 1D that is associated with the permission list
you specify to invoke service operations.

Setting Permission Access to Service Operations
To grant permissions to service operations:

1. Select PeopleToals, Integration Broker, Integration Setup, Service Operations, and select a service