ORACLE’
PEOPLESOFT ENTERPRISE

Enterprise PeopleTools 8.50
PeopleBook: SOR for PeopleSoft
Developers

September 2009

ORACLE

Enterprise PeopleTools 8.50 PeopleBook: SQR for PeopleSoft Developers
SKU pt850pbr0

Copyright © 1988, 2009, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracleisaregistered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under alicense agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhihit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

Theinformation contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to usin writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software” or "commercial technical data' pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazar dous Applications Notice

This software is developed for general use in avariety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create arisk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Contents

Preface
SQR for PeopleSoft DeVEIOPEr SPrefaCe ... Xiii
SQR for Peopl€S0ft DEVEIOPESoveieeieie ettt st s b e s ae e e e s besre e e e stesbeeneentesreereas Xiii
Chapter 1
Getting Started with SQR fOr PeOPIESOftccciiiiei e et e 1
SQR TOr PEOPIESOTT OVEIVIEIW ...ttt sttt b bt se b b e e et st bt e e e 1
SQR for Peopl€Soft IMPIEMENTALION ooeeiiiiiiesiee e e r e e ren e 1
Other SoUrceS Of INFOMMELTIONoveiiiiiiisie ettt st e bt benbe b e e e e enennas 2
Chapter 2
Introducing the Sample SQR Prograim ... secsee e seeseeseeseeseeste e s e s sreesreesaeessesssesssesssessaessansssns 3
USING WIth TRIS GUITE ...ttt b et b et e e e st ea bt e s nne s 3
Setting Up the Sample DataaSe ccooviiiiiieee et r e 5
ConSIAEratioNS FOr DBX ..ottt b e b a et b e be st e et e be s b et e e e e ne et 6
Understanding the Sample Program for Printing @ TeXt SIHNG cevvreveeerieeeeeesese s 6
Creating and Running a Sample SQR Programcocooeeoeiineeeene e see e eee et seeeseeseesne e eseeseesseeneeseesees 7
Creating an SOR PrOQIaIM ...oocvecieieceeeeeste sttt st e st s te s e te st e s aeeseesbesaesaaestesbesasesesteeseensessesreeneensensens 7
RUNNING @ SQR PrOGraM ..ottt b ettt e e 7
RV L= T a0 R O o1 | 8
Chapter 3
Creating HeadingS @nd FOOLINGS ..oc.eoceiiieeieiesie sttt teste e aesaesreeneetesnesneeneensenns 11
Understanding SQR PAgES ooueieiririiieie ettt ettt sttt st e b et ae st s e e et e nesaeneente e eneas 11
Creating Page Headings and FOOLINGScoiviieierrieeiee st et e ettt te s s e et sneeneeseesreens 11
Understanding the Heading and Footing Code EXample ..o 11
Adding Page HEBAINGS ..ottt bbb n e 12
AddiNg PAgE FOOLINGS ...veviieieiiitisiesiee ettt b et b b b s e bt bene e e e e neens 12

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ili

Contents

Chapter 4
Selecting Data from the DataDase ccocoeiriiinie ettt 15
Understanding the Sample Program for Listing and Printing Datacccceveviiiicieeie e 15
Creating SQR SElECt ParagraiS ocooiiiieiieeses ettt 16
Chapter 5
0L aTo I @Lo U a g I T =1 o] = O 19
Using aColumn Variable in @COoNAItION ooiiieiieiiiierieeesese e e 19
Changing the Column Variabl@ NAME c.oooiiiicece et st b e s reere e nre s 20
Chapter 6
L0 S ol === G o | o 21
UNderstanding Break LOGIC oooiieieieiiiiiiee sttt sttt sb e sttt 21
LS T @V 2] L SRS 22
SKipping LiNES BEWEEN GIOUDS ecveiveiiieieeiestecteeeesteste st e saestesteeaestesteeseesessesseesestessesssessestessesnsessessesnsenes 23
Arranging Multiple Break COIUMNS oouiiiiiic bt 24
Using Break Processing ENNANCEMENTSooi oottt s e et e e neeseeeseeneenaeseeas 25
Controlling Page Breaks and Calculating Subtotals and TOtalsS ccceveieeieve s 25
HaNAIiNG PAgE BrEaKS ..ottt ettt e e 27
PriNtiNG TNE DEE ...ocueeciece et e st e s e e s st e saeesneesatesneesneesneesneesneesnnesnnes 28
(@ o] 7=] o110 [1o)== SRS 28
UsSiNg HYphens and UNGEISCOIES oceeiiiiiiieeceeieste ettt 29
Setting Break Procedures with BEFORE and AFTER oovi it nte et ettt e ne e 29
Understanding the Order Of EVENEScoui ittt sttt s e ee e 30
Controlling Page Breaks with Multiple ON-BREAK COIUMNS ccoiiiiiiieiniserieeeeeesese s 33
Saving aVaue When aBreak OCCUIS ... et e te e e e e e sae e s ae e s re s sressreesaeesneesnnas 34
Using ON-BREAK on aHidden COlUMN o..ooiie ettt sttt 34
Performing Break Processing 0n NUMENC VAIUBS coiiiiiiiiiiiiiereeeees e 36
Chapter 7
Adding Declarations UsSiNg the SETUP SECHION ..o 39
Understanding the SETUP SECHION c.veoiiiiieiie e see e seeste e s e e s e e s e s sreesaeesseesseesseesaessseesaeesseessesssenns 39
Creating the SETUP SECLION ooieceeee ettt a e st e s re e et e sreeseetenaesneennenes 39
Using the DECLARE-LAY OUT COMMANG oiuiiiiieieiniisiesiee et sse et snenneneas 40

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

SAMPIE SETUP PrOGIraM ...ttt sttt st s teeae e besbeeae et e s besneenseseesbeeneentesreas 40

Defining the SQR PagE@ LaYOULccooiiiieiiiiicsierieeecr sttt et 41
Overriding the Default SEIINGS oeiiiiee e 41
Declaring the Page OriENtalioncccoeieeieii ettt s e s re st e aa et e s eeeseensesbesreennere e 42
Chapter 8
Creating Master and Detail REDOITS occiiiieiieieeie st te et et te st s teese e eesee e neete e seenteenneens 43
Understanding Master and Detail REPOIScooiiieiiririseseeeesie s 43
Understanding the Sample Program for Master and Detail REPOIMS oooeeviiiieene e 43
COrrelating SUDQUENTES viiiceeie sttt ettt st ettt e s et e s be st e e aeetesbesbeesaebesaeeneesestesneesestesreennentens 45

SaMPIE Program OULPULco.eieeieieiiriesieieest sttt sttt s e sb bt s e e st st e b e e e e eseebese e s enneneas 45
Chapter 9
Creating Cross-Tabular REPOIS ociiicice ettt st st st e st s re e e e testesneenesrenns 47
Understanding Cross-Tabular REPOIMSoouiiuiieieieeeesesie ettt e et see e eeeseesneeeeseeseeenes 47
(0L aTo = AN o - Y/ SRS 48
CIEALING BN ATTEY .ottt sttt a bt bt s e e e st e h e b e s e et e e e he e bt e b e e e e e st e b e e b e e e e s et e bt nb et et e e eneebe st e e 50
[T 0TN o N0 [o)V @1 =" (o 51
USING MUILTPIE ATTEYS ittt ettt e st et e e e be s hesae et e s besaeeseeseesseenseteseeeseensentesreeneensens 53
Chapter 10
Printing MailiNng LaDES ..ottt ettt ne e 57
Understanding Mailing Label Printing ccoccooeiieieiiieseese et st st saesre e e e 57
Understanding the Sample Program for Printing Mailing Labelsccooov i 57
Defining ColUMNS @NA ROWS oiiiciee ettt sttt ae e ae s besre e e e besneeneentesresneenneseas 58
Running the Print Mailing LaDEIS Program ..ot 59
Chapter 11
CreatiNg FOrM LEITEIS ..ottt ettt b bt et b e nb bt e e st bt n e 61
Understanding the DOCUMENT Paragraphi cc.ooioieie et s 61
Understanding the Sample Program for FOrmM LEErS ooviieieiececeee e 61

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. v

Contents

vi

Chapter 12

Exporting Data to Other APPIICALIONS cvoiiiieiieee e 65
Understanding the Sample Program for EXporting Data@ ccccccceeeeieiicecceeseceeeee et 65
Creating an EXPOIT FIIE ..ottt b ettt b e 66
Chapter 13

L0 LS T T T =T o] o= SR 69
Understanding the Sample Program for Simple Tabular REPOIMS ooiieeiiiniieeeerereceeese e 69
F o o [Tl € =] 1T o= R 70
Sharing IMages AMONG REPOIS ccuiiueieiiiierieee ettt b et be e s b ne s 72
PrNtING BaI COUESoviiiieieeiiiieie ettt b b et b e sb e e e et bt b e b e e e e e b e nennen e 75
Chapter 14

USING BUSINESS CRAITS ...ttt sttt bbbt b b e e et es b e n e 77
Understanding BUSINESS CRartS ccoiiiieiiiiie ettt este et ste st ae et st sae e e saesreena e tesresseensesbesreeneensenns 77
(O 1 oo =W O = PSSP S TSR PR P 78
= 1] 0T To I X ¢ = SR 81
LT o = = SRS 81
Running the Program to Create a Graphical REPOIM ccooviiiiriiieer e 82
Passing Datato the Chart cc.occeeie ettt e et e e ee e be e be et e et e e eeeneeenes 82
Chapter 15

ChaNGING FONTS ...t e et b e e et b s bt b e e et e bt e bt e b e s e e eseenenb e s enneneas 85
S 1] o o RS 85
POSITIONING TEXE .ottt b et b b b e h bbb et h b e s b e b e e et eb b st et e s e e b e ne e b e e ene e 85
L0 S T 0t TSV 7 AN @ o 1 o o 88
Chapter 16

Writing Printer-Independent REDOMScooiiiiiieieieesese s 89
Understanding Printer-Independent REPOMS ccoiiiiiieie ettt sttt s ene e 89
Reviewing the Sample Program for Selecting the Printer Type at RUntime ... 90

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Chapter 17

Using Dynamic SQL and Error CheCKing ..ot 93
USING VariablES 1N SOL .ottt sttt st sttt e s teeae et e s beeaeetesbesaeeneestesteeneentesbesreensenns 93
USING DYNAMIC SQL ooeieieieieiieie et et te sttt et s e s te s beese e testesteesa e aesseeseensessesneeseessesseensensessesseensensenrens 94
USING SQL ENTOr CRECKING ...ttt et n e n e e 96
Using SQL and SUbSLITUtION VariablES ocveciie ettt st s ne e 97
Chapter 18

Using Proceduresand Local Variablesand Passing Argumentsccccoccevieeveenecseeseesesseeseeeseeeseeeseeens 99
USING PIOCEAUIES ...ttt bbbt bbbt b et et b e b et e s et e bt st e b e neneas 99
L0 L= gTe l oo Y= = =S 99
[S o AN o [0 4= 1 SRS 100
Chapter 19

Creating Multiple Reportsfrom ONEProgram ...t seesee e see e see s s sneas 107
Understanding How to Create MUltiple REPOIMS oiviiieiiieciee ettt 107
Understanding the Sample Program for Multiple REPOMS cooiieieeeeeeereseee e 107
Defining Heading and FOOING SECLIONS cviiiiiiiieieeee sttt st s nne s 110
DefiniNg Program OULPULcoveiiirierieieieesie ettt e et s e ese st s e s e s e b st e s e e esenseabeneennenennens 110
Chapter 20

Using Additional SQL StatementSWith SQR ..o 111
Using SQL StAtementSin SQR ..ottt et s ae et e sesbesneeneeseesseeneesaeseeeneensensens 111
USING BEGIN-SOQL ..ottt b e et b e se et et e st be et e s b et et e b e e ae st e e e e ens 111
Chapter 21

WOrKINGWITN DBLES ooeeicee ettt e s e st e st e s ae e sae e sae e saeesneesneesneesneesneesnensneesnns 115
Understanding Dates and Date AFTNMELICcoooiiiiieiiireeese e 115
O T o N (= B (=] 4= 117
UsSiNg StiNG-t0-Date CONVEISIONS ...ocuecieiieiieitieiiestesteeee et esae e re e e e stesteeseestesbesresseestesseeseesestesneensessenrs 118
USiNg Date-tO-StriNG CONVEISIONS oouiiieieieiiitisieniee ettt se et e st b e s s e st st sbess et ese b e e e 118
Using Dates with the INPUT COMMEaNG oooieiiiieciec e esieerie e et te e se e et sne e et eeneeenneens 119

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. vii

Contents

viii

USING DAE EQIt MASKS ..ottt ettt sttt st e e e st e s beeaeesbesbeebeentesbesaeeseentesneenseseenrs 119
Declaring Date VariallES coooiiiiieeee bbbt 121
Chapter 22
Using National Language SUPPOMT ..ececeeeee ettt et e e s e st stestesreesaestesneenaesestesneensessenreenes 123
UNderstanding LOCBIES cc.oiiiiiiiieii et n e e e b n e 123
SEECHNG LOCAIES .ottt sttt sttt et e s te e he et e besaeeaeessesbeeaeeeesbeeseensenbesreennenseseeens 123
Defining @DEfAUIT LOCAIE oeoeiiieieeee ettt bttt nn e b 124
ST ot o g N oo =S 124
MOdifying LOCAIE PrEFEIENCES ooviieiceeee ettt st st st e s be e e saesreeneeaenrens 125
Specifying NUMBER, MONEY, and DATE K@YWOrdSccccoriiiniiieiieresieeeee e 125
Chapter 23
UsiNg INter Operability FEALUIEScoiiecie ettt sttt b e et estesneeneeneeneas 127
Calling SQR from Another APPlICALION oeeeeeeieeee ettt s eneesee e 127
Invoking an SQR Program by Usingthe SQR AP ..o s e 127
Invoking an External Application API by Using the UFUNC.C Interfaceccoovviniicincncncneeeee, 130
P (o T alo Jr= W0 £ = g o o (o) 130
Understanding the UFUNC.C FIlE ooiiie ettt sttt nne s 131
Adding @ FUNCLION ProtOLYPE ..ottt n s 131
Adding an Entry to the USERFUNCS TaDI€ occv i 131
Adding an Implementation COUE oviieie it e e e e re e e e 132
REINKING SQR .ot b bt e et b bt b e e e st b nb e e e e s e bt nr e e e 133
Using UFUNC in MicroSOft WINOQOWS cocueiiieiic st eeste et te ettt ene e e e s 134
Implementing New User Functions in Microsoft WIiNAOWS —ccooviiieeie e 134
Chapter 24
K= L aTe Jr=Ta Lo DT o T8 oo] oo TSP 135
USING tNE TESE FEAIUMNE eiieieieee sttt ettt ettt et e s aesteereeneesbesaeeseensesaeeneensensesseeneenseneeneen 135
Using the #DEBUG COMIMANG ...coueiiiieeieeie ittt sttt s e et s neeseeseesbesneeeeseeseeeneeneens 136
Using Compiler Directives for DEDUGGING ...c.coeiirieiriiirieieieeseste st 136
Avoiding Common Programming EITOIScooieieiiiiireseee e 137
Chapter 25
Increasing Performance and TUNING ...ccoceceeceiiieceese e e et sreeaensesnesseeneenes 139

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Understanding SQR Performance and SQL SEAEMENTS c.oceeieeiiieiiere ettt 139
Simplifying a Complex SeleCt Paragrapi cocoociiiiiireees e 139
Using LOAD-LOOKUP t0 SIMPHTY JOINS oiuiiiiieicesiiriesiesieesesr s 140
Improving SQL Performance with DynamiC SQL ..ot 141
Examining SQL CUISOr SEALUS oveueiuirierieieeieieste sttt se et ss ettt b e b s s b e e 142
Avoiding Temporary Dataase TabhlESooi it nee s 143
Understanding Temporary Database TAblEScccueciiiiieiisicee et 143
USING @NA SOMING ATTAYS .ueeueetiitiiteieeesese sttt e et b e e e s be st e be s e e e st ebess e b e s e st enenbennenneneas 143
0L Talo I aTe IS toTu (] g Lol o I B T - 147
Creating Multiple REPOrSin ONEPASS ccciiiiieese st e e e e e 149
TUNING SQR NUMETICS ...ttt e ettt b e e e e h b e e s e e e st bt bene e e e se e b e nb et e n e e ene s 149
Compiling SQR Programs and Using SQR EXECULE c.ccoeriiiii et s 150
SEtting ProCeSSING LIMILSeciiiicece ettt st et et ae et e s tesbeesa e besaeesaensesbesneennenes 150
BUFfErNG FEIChEA ROWS ...ttt b e st nn e 151
Running Programs oNn the Datalase SEIVEL ooi ettt st 151
Chapter 26
Compiling Programs and Using SQR EXECULEccue i 153
Understanding COMPITE FEALUINES ocuvieeiie ettt st e e e s re e ae s tesreeaesaesreeneeneens 153
Compiling and RuNNing an SQR Prograim ccooiiiieiineieseei et 154
Chapter 27
Printing With SQR ..ttt e et b b b e et a e b e ens 157
Specifying Output File Types by Using SOR Command-Line FHagsccccocvveviirice i 157
Using the DECLARE-PRINTER COMMANG ccoiiiiee ettt ne e 158
Chapter 28
Using the SQR COMMANT LiNE ...oouoiieieeieee sttt 161
Understanding the SQR COmMMEaNG LINE ...c.coiviiieeie ettt st saenes 161
Specifying Command-Ling ATQUIMENLSociiiriiiiieeeerie st eteeee e teeseeee s e saeeeessessesaeeseeseesseeeeseeseesneensens 162
Understanding Command-Line ArQUMENES ocueecieiiiieierie e seeree et ste et a et sae e ens 162
Retrieving the AFQUIMENES ..ottt ettt s estesne et e s tesneeeeseeseeeneensenrens 163
Specifying Arguments and ArgumMENt FilES oviie e e 163
USING @ ATQUMENTE FITE ettt enas 163
Using Other Approaches to Pass Command-Line ArQUMENES cccoveierenereneenesesese e 164
USING RESEIVED CharaClerS ooiiiceicice ettt sttt st e e re e et e s besaeeaeseesteeanetesrens 164
Creating an Argument File from @REPOIM ... 165
L0 L= g o == o 01V oo 165

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ix

Contents

Chapter 29
Generating and Publishing HTML from an SQR Program ... 167
Understanding SQR Capabilities That Are Available With HTMLccooiiieiiieeeee e, 167
GeNErating HTIML OULPUL ..ottt sttt bbbttt et b et ne e 168
Understanding HTIML OULPULooviiieiiiisiese et nnenne s 168
Producing HTML OQULPUL ooiiieececee ettt st st be st s e s e b saeesaestesbeenaesaesreeneennenrens 168
L LS e R o AN I ! T 169
Setting HTML Attributes Under -PRINTERIEH ..o 170
USING -PRINTERIHT ettt 172
BUISIING REPOMS .ottt b et e e st bt b et et bbb e e s 173
Setting Attributes With HTML ProCEAUIESooiueiiiiiee et see e e e e e e s e s e sneesneesnee s 173
Using Additional HTIML ProCEAUIEScceevevieiieiieie et eeesie s ste et sae st sne e s besresneentesnesneeneenes 174
Setting OULIPUL FITE TYPES ..ottt b e et b e 174
TESHNG HTIML OULPUL ...ttt e ettt nn e 174
Using HTML Proceduresin an SQR Programccociccieiiieieeie sttt s enne s 174
Understanding HTIML ProCEOUIES c.ooiiuiiiiieiieieieetiste ettt nne e 175
USING HTIML PrOCEAUIESooeiecee ettt st e s e sneesne e sneesneesneesneesneesneesneesnnesnnens 175
POSItIONING ODJECES ...viiiiece ettt st e st e b e e s testeebeeatesbesteeseentesresneeseerens 176
Displaying ReCOrds in TaDIES ..ot 177
L@ = (] Vol 1= o] o 178
HIGhIIGNEING TEXE .ot b ettt sttt be bt s e nns 178
CrEalinNg LINKS ..ottt s et b e e et R b e e e e R e R e nn e ene s 179
Tt U o [T Lol T 7= o == SR 180
DisPlaying TEXE IN LISES .oeieiiciiiiieieeieieri ettt sttt ettt nns 180
FOrmatting Paragrapis oocooiiiie e e 181
Incorporating Your OWN HTML TaOS .ocecceeeeiiceeie ettt sttt st et sre e ne e 182
Modifying an Existing SQR Program for HTIML ... 182
L0 TR T o JF= W L= oo o 184
01 TS g T pTo I W (= oo A 184
SUPPOITING OlOEN BIOWSEN'S ...ttt sttt b e e et eb e sb et e s e ese b e e e 185
Viewing aPublished REPOI oi ettt re e s ere e e 185
Publishing by Using an AUtOMEEd PrOCESS ccceccieiiiiiceciic ettt sttt st 185
Publishing by USING @ CGI SCHPL ..c.voeeiiiiiiieieeeeses ettt e 186
Chapter 30
Creating a TabIe Of CONTENTSooiiiiiec bbb e 189
Using the DECLARE-TOC COMMEBNG cooiiiiiiieieeieeeene e seeseestesteeeeseeseesseeeeseesseeneeseessesseeseseessesneensens 189
Using the TOC-ENTRY COMIMANG couoiiiiiirieie ettt sttt sbe b e 190
Adding a Table of Contents to the CUST.SQR Sample Program cccoeerinenenesieneseseesesese e 191

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Contents

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. Xi

SOR for PeopleSoft Developers Preface

This book discusses Structured Query Reports (SQR) for PeopleSoft.

SQR for PeopleSoft Developers

SQR isaspeciaized language for database processing and reporting. By working through the code examples
in this developer's guide, you will learn how to write SQR programs that select data from a database and
present it in areport.

This guide contains code examples and sample programs that you can copy to create SQR programs that are
relevant to your organization.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, "Understanding SQR for
Peopl eSoft"

PeopleBooks and the Online PeopleSoft Library

A companion PeopleBook called PeopleBooks and the Online PeopleSoft Library contains general
information, including:

Understanding the PeopleSoft online library and related documentation.
How to send Peopl eSoft documentation comments and suggestions to Oracle.

How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

Understanding PeopleBook structure.

Typographical conventions and visual cues used in PeopleBooks.

I SO country codes and currency codes.

PeopleBooks that are common across multiple applications.

Common elements used in PeopleBooks.

Navigating the PeopleBooks interface and searching the PeopleSoft online library.
Displaying and printing screen shots and graphics in PeopleBooks.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. Xiii

Preface

» How to manage the PeopleSoft online library including full-text searching and configuring areverse
proxy server.

» Understanding documentation integration and how to integrate customized documentation into the library.
» Glossary of useful PeopleSoft termsthat are used in PeopleBooks.
Y ou can find this companion PeopleBook in your PeopleSoft online library.

Xiv Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 1

Getting Started with SQR for PeopleSoft

This chapter discusses:

SQOR for PeopleSoft overview.
SQOR for PeopleSoft implementation.

Other sources of information.

SQR for PeopleSoft Overview

SQOR for PeopleSoft is both alanguage and a set of tools that enable you to create professional reports:

SQR is a programming language for accessing and manipulating data to create custom reports. SQR has
many advantages, including that it is portable across multiple platforms and relational database
management systems, and it supports the data manipul ation capabilities SQL. It is also a fourth-generation
language; it is closer to human languages and therefore more intuitive than first-, second-, or third-
generation languages. SQR for PeopleSoft enables you to design report layouts, generate a variety of
output types—including complex tabular reports, multiple page reports, form letters, mailing labels, and

more—and create HTML, PDF, or configured output for laser printers and phototypesetters.
SOR Execute enables you to run previously compiled SQR programs.
SQR Print enables you to configure reports for most printers.

SQR aso provides alibrary of sample programs and output that you can use both as alearning tool and as
abasisfor creating your own reports. These samples reside in the SQR for PeopleSoft directory
<PS HOME>\bin\sgr\<database platform>\SAMPLE (or SAMPLEW, for Windows).

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, "Understanding
SQR for PeopleSoft."

SOR for PeopleSoft Implementation

This section describes the prerequisites for implementing SQR for Peopl eSoft.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Y ou need a sound understanding of SQL and structured programming languages to use the SQR language.

Getting Started with SQR for PeopleSoft Chapter 1

Y ou do not need to carry out a separate installation procedure because SQR for PeopleSoft isinstalled
automatically when you install PeopleTools.

See PeopleTools 8.50 Installation Guides for your database platform.

Typically, you should use Application Engine to run background SQL processing programs. Y ou may
want to explore whether Application Engine can meet your needs before delving into SQR.

See Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Getting Started With Application
Engine."

Y ou can run SQR programs locally by using the SQR executable (for Microsoft Windows it's SQRW) and
through the PeopleSoft Process Scheduler. For the details on installing Process Scheduler:

See The PeopleTools 8.50 Installation guide for your database platform.
For the details on running SQRs using the Process Scheduler:

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Process Scheduler, " Submitting and
Scheduling Process Requests.”

Other Sources of Information

This section provides information to consider before you begin to use SQR for PeopleSoft.

In addition to implementation considerations presented in this section, take advantage of all PeopleSoft
sources of information, including the installation guides, release notes, PeopleBooks, red papers, the Updates
+ Fixes area of My Oracle Support, and the PeopleSoft curriculum courses.

See Also

"SOR for PeopleSoft Developers Preface,”" page Xiii

Enterprise PeopleTools 8.50 PeopleBook: Using PeopleSoft Applications, "Working With Browser-Based
Applications®

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2

Introducing the Sample SQR Program

This chapter discusses how to:

« Usethisguide..

» Set up the sample database.

« Understand the sample program for printing a text string.

« Create and run asample SQR (Structured Query Report) program.
* View SOQR output.

Using with This Guide

Initial sections of this guide teach the basic uses of SQR. Y ou learn how to:

» Create avariety of reports, such astabular, cross-tabular, and master and detail reports.
» Produce mailing labels, form letters, and envel opes.

» Enhance your reports with typeset-quality fonts and graphics.

» Produce graphs and charts that help you present data and trends visually.

Subsequent sections describe the advanced features and uses of SQR. Y ou learn how to:

» Create HTML output and publish reports on the internet, an intranet, or an extranet.

» Create reports that can be easily ported between different systems and databases and that support different
printer and display types.

» Create reports that format dates, numbers, and money according to local preferences.

» Integrate SQR with other software packages, such as front-end user interface tools and spreadsheets.
» Extend SQR with procedures and functions that are written in C.

» Test and debug programs.

» Tune programs for optimum performance.

The code examples demonstrate standard SQR programming style. Use this standard style to make your code
easier for other SQR programmers to understand.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 3

Introducing the Sample SQR Program Chapter 2

Y ou can run the program examples in this guide without modification against the Oracle, Sybase, and
Informix databases and run against other databases with minor modifications.

Audience

This guide was written for programmers who develop reports for relational databases. To use this guide
effectively, you need aworking knowledge of SQL and experience writing software programs. Y ou also must
be familiar with your particular database and operating system.

How to Use SQR for PeopleSoft Developers

Y ou can just read this book and study the sample programs. However, Oracle encourages you to try these
programs for yourself and to experiment with them. Make some changes to the sample programs and see how
they run.

To use the sample programs, you must first install SQR for PeopleSoft. SQR for PeopleSoft isinstalled
automatically when you install PeopleTools.

If you installed al of the program components, the sample programs are located in the TUTORIAL directory
underneath <PS_HOME>\bin\sgr\<database platform>.

Y ou can run the sample programs on any hardware platform, but you may find it somewhat easier to review
SQR program results from the Microsoft Windows platform by using the SQR Viewer or aweb browser to
verify your results.

Note. Y ou can set up the sample database, as described in amoment, and run the sample programs with any
username and password, athough you may want to use an account that does not hold important data.

Related Documents

In addition to this developer's guide, SQR for PeopleSoft includes SOR for PeopleSoft Language Reference, a
compl ete reference to SQR commands, arguments, and command-line flags.

For information about supported database platforms, see Supported Platforms on My Oracle Support. You
can also consult the PeopleTools Hardware and Software Requirements guide for a snapshot of current
reguirements.

Syntax Conventions

Syntax and code examples use the following conventions:

Convention Description
{} Braces enclose required items.
[1 Square brackets enclose optional items.

Ellipses indicate that the preceding parameter can be repeated.

4 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Introducing the Sample SQR Program

Convention Description

| A vertical bar separates alternatives within brackets, braces, or parentheses.

A single quote starts and ends aliteral text constant or any argument that has more than
one word.

Important! If you are copying code directly from the examplesin the PDF file, make
sure that you change the slanted quotes to regular quotes; otherwise, you will receive an
error message.

A comma separates multiple arguments.

O Parentheses must enclose an argument or element.

UPPERCASE SQR commands and arguments are uppercase within the text, but lowercase in the code
examples. (Note that these commands are case-insensitive.)

Variable Information and values that you must supply appear in variable style.
hyphen versus Many SQR commands, such as BEGIN-PROGRAM, use a hyphen, whereas procedure
underscore and variable names use an underscore. Procedure and variable names can contain either

ahyphen or underscores, but using underscoresin procedure and variable names to
distinguish them from SQR commands is best.

It also prevents confusion when you mix variable names and numbersin an expression,
where hyphens could be mistaken for minus signs.

Setting Up the Sample Database

To run the sample programsin this guide, you must create a sample database. To do so, run the loadall.sgr
program.

1. Changeto the SAMPLE (or SAMPLEW, for Microsoft Windows) directory under
<PS_HOME>\bin\sgr\<database platform>.

2. At the command line, enter:

sqr | oadal |l usernane/ password

If SQR isinstaled on Microsoft Windows, you can run loadall.sqgr by double-clicking the Loadall icon. If
your system does not display thisicon, run loadall.sgr from the SAMPLEW directory of SQR for PeopleSoft.

If an individual table already exists, you are prompted to enter:

« A: Abort the load.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 5

Introducing the Sample SQR Program Chapter 2

» S Skip the specified table.
» R Reload the specified table.
+ C:Reload all tables.

Y ou can aso run this as a batch program by entering the preferred option (A,SR, or C) at the command-line.
For example:

sqr | oadall usernane/ password a

Considerations for DBX

The following considerations apply for DB2 on AIX and DB2 on ZOS.

DB2 on AIX
The DB2CLI.INI file (on Windows with the DB2 ODBC connection) should have the following entry.

Thisfileistypicaly located in C:\Apps\DB\Db2 directory
[common] PATCH2=6DI SABLEKEYSETCURSOR=1

DB2 on ZOS

PSSQR.UNX or PSSQR.INI file should have the following line.
FORCESPACEAFTERCOMVA=TRUE

Understanding the Sample Program for Printing a Text String

The first sample program is the simplest SQR program. It prints atext string:

Program exla. sqr
begi n- program

print "Hello, World.' (1,1)
end- program

Note. For your convenience, all of the program examples and their output files are included with the
installation. As mentioned, these samples are in the SQR for PeopleSoft directory
<PS_HOM E>\bin\sgr\<database_platform>\SAMPLE (or SAMPLEW, for Microsoft Windows).

Take another look at the sample program. This program contains three lines of code, starting with BEGIN-
PROGRAM and ending with END-PROGRAM . These two commands and the code between them make up
the PROGRAM section, which is used to control the order of processing. The PROGRAM section is required,
and you can have only one. It typically goes at or near the top of the program.

The PROGRAM section contains a PRINT command, which in this case prints the text Hello, World. This
text is enclosed in single quotation marks ('), which are used in SQR to distinguish literal text from other
program elements.

6 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Introducing the Sample SQR Program

The last element of the PRINT command indicates the position on the output page. An output page can be
thought of asagrid of lines and columns. The (1,1) indicates line 1, column 1, which is the upper-left corner
of the page.

Note. In SQR, you must place each command on anew line. Y ou can indent SQR commands.

Creating and Running a Sample SQR Program

This section discusses how to:
« Create an SQR program.

* Runan SQR program.

Creating an SQR Program
To create an SQR program:

1. Open atext editor and enter the code in the sample program exactly as shown, or open the exla.sgr file
fromthe TUTORIAL directory.

2. If you are writing the sample program, save your code with the name exla.sqr.

SQOR programs usually have afile extension of .sqr.

Running an SQR Program
To run the sample program:

1. Changeto the directory in which you saved the program using the command that is appropriate to your
operating system.

2. Enter the appropriate SQR program command at the system command prompt (UNIX/Linux or Microsoft
Windows) or from within the SQR application's graphical user interface (GUI), where available
(Microsoft Windows only).

If you are using the command line, use SQR (UNIX/Linux) or SQRW (Microsoft Windows) to invoke
SOR. Enter sgr or sgrw, the SQR program name, and the connectivity string, all on oneline, by using this
syntax:

[sqr or sgrwj [progran] [connectivity] [flags ...] [args ...] [@ile ...]

In acommon configuration, you may be running SQR on Microsoft Windows against an Oracle database that
islocated on another machine in the network. Use this command format:

sgrw exla usernane/ passwor d@erver nane - KEEP

If you correctly replace username,password, and servername with the appropriate information, you should
have a command line like this:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 7

Introducing the Sample SQR Program Chapter 2

sqgrw exla sammy/ baker @ one - KEEP

To produce the output file for this exercise, the example uses the -KEEP flag, which is defined later in this
guide.

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft.

See Chapter 27, "Printing with SOR," Specifying Output File Types by Using SOR Command-Line Flags,
page 157.

Command Line Examples
Here are some examples for running SQR from the command line for different databases and platforms.
DB2 on Microsoft Windows

%S _HOVE% bi n\ sgr\ DB2\ Bl NW sqrw %°S_HOVE% sqr\ xr fwi n. sqr T846U10/ t est db2/t 3st db20
-oc:\'sqr_out\xrfwi n.out -i%S HOVE% sqr\; -zif%S_HOVE% sqr\ pssqr. i ni
-fc:\sqr_out\ T846UL0 T846UL0 952 VP1 testEngI i sh

Sybase on Micraosoft Windows

9%PS _HOVE% bi n\ sgr\ syb\ bi nwA sqrw %S _HOVE% sqr\ sysaudi t. sqr sa/sybase
-vPTSUN15_ANSI 12503 - dbT846A60 -tb -xp -oc:\sqr_out\sysaudit.| og

-i 9PS_HOMVE% sqr\ - ZI F%S_HOVE% sqr\ pssqr.ini -fc:\sqr_out\sysaudit. pdf
- PRI NTER: PD T846A60 254 VP1 PSTEST

Sybase on Unix

$PS HOVE/ bi n/ sqr/ SYB/ bi n/ sqr $PS _HOVE/ sqr/ xrfwi n t847a60/t847a60 -dbT847A60
-o/tmp/ x1. out -xb -xi -i$PS_HOVE/ sqr -zif$PS HOVE/ sqr/ pssqr.unx -f/tnmp/x1. htm
- PRI NTER: HT T847A60 1 VP1 TEST

Informix

%S HOVE% BI N\ SQR\ | NF\ Bl NW sgrw 9°S_HOMVE% sqr\ xr f wi n. sqr H890R33B/ h890r 33b=>

/ h890r 33b

-PB -oc:\sqgr_out\xrfw nx.out -i%S HOVE% sqgr _i fx\ -ZI F@S_HOVE% sqr _i f x\ pssqr.in
"-fc:\sqgr_out\xrfw nx. pdf" -PRI NTER: PD

Oracle on Unix
$PS HOVE/ bi n/ sqr/ ORA/ bi n/ sqr $PS _HOVE/ sqr/ xrfwi n.sqr T846U22/ T846U22@r846U22

- 0$PS_HOVE/ xr fwi n_689. out -i $PS_HOVE/ sqr/ -ZI F$PS_HOVE/ sqr/ pssqr . unx
"-f$PS_HOVE/ xrfwi n_689. pdf" -printer:pd T846U22 689 VP1 PJS

Microsoft SQL Server on Microsoft Windows
%°S_HOVE% bi n\ sgr\ M5S\ Bl NW sqr w %°S_HOVE% sqgr\ xr fwi n. sqr T846UL0/ t est db2/t 3st db20

-oc:\sqr_out\xrfw n.out -i %S HOVE% sqr\; -zif%S HOVE% sqr\ pssqr. i ni
-fc:\sqr_out\ T846U10 T846U10 952 VP1 testEngI i sh

Viewing SQR Output

SQR normally places the SQR program output files in the directory from which you run the program. The
output file has the same file name as the SQR file that created it, but the file extension is different.

8 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 2 Introducing the Sample SQR Program

The output files should appear as soon as your program has finished running. If you specified the -KEEP
argument, one output file isin SQR Portable Format (recognizable by its .spf extension). SQR Portable
Format is discussed later in this guide, but for now, you can view the sample program'’s .spf file output,
<filename>.spf, on Microsoft Windows platforms with the SQR Viewer GUI (sometimes referred to as an
SPF Viewer). Invoke the SQR Viewer by entering sqrw at the command line.

On Microsoft Windows and UNIX/Linux systems, the program aso produces an output file with an .lis
extension. Y ou can view this output file type from the command line with such commands as TY PE on
Microsoft Windows systems or CAT, MORE, and VI on UNIX/Linux systems. Use the command that is
appropriate to your system to view or print the .lisfile.

The output for the example program looks like this for al platforms:
Hel | o, World.

Y ou may also see acharacter such as”L or <FF> at the end of this output file. It isthe form-feed character
that gectsthe last page. This guide does not show the form-feed characters.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 9

Chapter 3

Creating Headings and Footings

This chapter provides an overview of SQR pages and discusses how to create page headings and footings.

Understanding SQR Pages

Typically, every page of areport has some information about the report itself, such as the title, the date, and
the page number. In SQR, the page can be subdivided into three logical areas:

« Thetop area of the pageisthe heading, which is where the report title and the date normally print.
« Themiddle part of the page is the body, where the report data prints.
« The bottom area of the page is the footing, where the page number normally prints.

The heading, body, and footing of the page each have independent line numbers. Y ou can print in each of
these page areas by using line numbers that are relative to the top corner of that area without being concerned
about the size of the other areas. That is, you can print to the first line of the body by using line number 1,
independent of the size of the heading.

Note. Any space that is reserved for the heading and footing is taken from the body area of the page. With
one line each in the heading and footing, the maximum possible size of the body of the report is reduced by
two lines. Note also that line 1 of the body is actually the first line after the heading.

Creating Page Headings and Footings

This section provides an overview of the heading and footing code example and discusses how to:
« Add page headings.
» Add page footings.

Understanding the Heading and Footing Code Example

Here is an example of the code that is required to add a page heading and footing to a program:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 11

Creating Headings and Footings Chapter 3

Program ex?2a. sqr
begi n- program
print '"Hello, Wrld.' (1,1)
end- program
begi n- heading 1
print 'Tutorial Report' (1) center
end- headi ng
begi n-footing 1
I print "Page n of nm in the footing
page- nunber (1,1) 'Page '
| ast - page () ' of '
end-f ooti ng

The output for the ex2a.sgr program is:

Tutorial Report
Hel l o, World.

Page 1 of 1

Note. The PRINT command places text in memory, not on paper. SOR for PeopleSoft always prepares a page
in memory before printing it to paper, creating the body first, then the HEADING and FOOTING sections. In
this example, Hello, World isrun first, then Tutorial Report and Page 1 of 1.

Adding Page Headings

Define the page heading in the HEADING section. Begin the section with BEGIN-HEADING and end it with
END-HEADING. Follow the BEGIN-HEADING command with a number that represents the number of
lines that are reserved for the heading. (In this example, the 1 indicates a heading of one line.)

In the heading and footing sample program, the heading uses exactly one line and contains the text Tutorial
Report. The CENTER argument ensures that the text is centered on the line.

Adding Page Footings

12

Define the page footing in the FOOTING section. Begin the section with BEGIN-FOOTING, and end it with
END-FOOTING. Follow the BEGIN-FOOTING command with a number that represents the number of lines
that are reserved for the footing. (In this example, the 1 indicates a footing of one line.) This line consists of
the text Page 1 of 1.

Adding Comments

Precede comments with an exclamation mark. The comment extends from the exclamation mark to the end of
theline.

In the heading and footing sample program, the first line in the FOOTING section is a comment.

To print an exclamation mark, enter it twice to indicate that it is not the beginning of a comment. For
example:

print "Hello, World!!" (1,1)

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3 Creating Headings and Footings

Adding Page Numbers

Use the PAGE-NUMBER command to print the text Page and the current page number. Use the LAST-
PAGE command to print the number of the last page, preceded by the word of, which is bracketed by spaces.

In the headings and footings code example, Page 1 of 1 appears because only one page exists.

Indicating the Print Position

Include numbers in parentheses following the PRINT, PAGE-NUMBER, and LAST-PAGE commands to
indicate the position for printing. Express a position in SQR language with three numbersin parentheses: line
number, column number (character position), and width of the text.

In many cases, a position contains only the line and column numbers. The width is normally omitted because
itis set by default to the width of the text that is being printed. If you also omit the line and column numbers,
the print position is set by default to the current position, which is the position following the last printed item.

In the heading and footing sample program, the LAST-PAGE command has the position (), so the current
position is the position following the page number.

The print position is a point within the area of the page, or more precisely, within the heading, body, or
footing. The position (1,1) in the heading is not the same as the position (1,1) in the body. Line 1 of the body
isthefirst line following the heading. In the program, the heading has only one line, so line 1 of the body is
actually the second line of the page. Similarly, line 1 of the footing is at the bottom of the page. It isthe first
line following the body.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 13

Chapter 4

Selecting Data from the Database

This chapter provides an overview of the sample program for listing and printing data and describes how to
create SQR select paragraphs.

Understanding the Sample Program for Listing and Printing Data

Here is a sample program that selects data from the database and printsit in columns:

Program ex3a. sqr
begi n- program
do list_customers
end- pr ogr am
begi n- headi ng 4
print 'Custoner Listing' (1) center
print 'Name' (3,1)
print "Gty (,32)
print 'State' (,49)
print 'Phone' (,55)
end- headi ng
begi n-footing 1
I Print "Page n of n in the footing
page- nunber (1,1) 'Page '
| ast - page () " of '
end-f oot i ng
begi n-procedure |ist_custoners
begi n-sel ect
name (, 1)
city (,32)
state (,49)
phone (, 55)
position (+1) ! Advance to the next |ine
from custoners
end- sel ect
end- procedure ! |ist_custoners

The output for the ex3a.sgr programis.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

15

Selecting Data from the Database Chapter 4

Custoner Listing

Nane Cty State Phone
Gregory Stonehaven Everretsville ™ 2165553109
John Conway New Yor k NY 2125552311
Eli ot Richards Queens NY 2125554285
| saiah J Schwartz and Conpany Zanesville H 5185559813
Harol d Al exander Fink Davenport IN 3015553645
Harriet Bail ey Mamar oneck NY 9145550144
Clair Butterfield Teaneck NJ 2015559901
Quentin Fields C evel and H 2165553341
Jerry's Junkyard Specialties Frogline NH 6125552877
Kate's Qut of Date Dress Shop New York NY 2125559000
Sam Johnson Bel | Har bor M 3135556732
Joe Smith and Conpany Big Falls NM 8085552124
Corks and Bottles, Inc. New Yor k NY 2125550021
Harry's Landmark Di ner M ningville I'N 3175550948
Page 1 of 1

The PROGRAM section contains a single DO command, which invokes the list_customer s procedure.

In SQR language, a procedure is a group of commands that are performed one after the other, like a procedure
(or subroutine) in other programming languages. A DO command invokes a procedure.

Break your program logic into procedures and keep the PROGRAM section small. It should normally contain
afew DO commands for the main components of your report.

The HEADING section creates headings for the report columns. In this example, four lines are reserved for
the heading:

begi n- headi ng 4
print 'Custoner Listing' (1) center
print 'Name' (3,1)
print "Gty (,32)
print 'State' (,49)
print 'Phone' (,55)
end- headi ng

The Customer Listing titleis printed on line 1. Line 2 isleft blank. The first column heading, Name, is
positioned at line 3 of the heading, in character position 1. The rest of the column heading commands omit
the line numbersin their positions and are set by default to the current line. Line 4 of the heading is |eft blank.

In this sample program, the footing is the same as the one in the previous sample program.

Creating SQR Select Paragraphs

The BEGIN-SELECT command is the principal method of retrieving data from the database and printing it in
areport. Look again at the sample program for listing and printing data, in which the list_customers
procedure starts with BEGIN-PROCEDURE and ends with END-PROCEDURE.

Note the comment following the END-PROCEDURE command. It indicates that the procedure is being
ended, which is helpful when you have a program with many procedures. (Y ou can also omit the exclamation
point, for example, END-PROCEDURE main.)

The procedure itself contains a select paragraph, which starts with BEGIN-SELECT and ends with END-
SELECT.

16 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 4 Selecting Data from the Database

The select paragraph is unique. It combines an SQL SELECT statement with SQR processing in a seamless
way. The actual SQL statement is:

SELECT NAME, CITY, STATE, PHONE
FROM CUSTOVERS

Syntax of the Select Paragraph

In an SQR select paragraph, the SQL statement SELECT is omitted, and no commas are between the column
names. Instead, each column ison its own line. Y ou can also place SQR commands between the column
names, and these commands are run for every record that the select fetches.

Note. Y ou must name each individual column in atable—the SQL SELECT * FROMstatement is not
alowed in SQR.

SQR distinguishes column names from SQR commands in a select paragraph by their indentation. Column
names must be placed at the beginning of aline. SQR commands must be indented at least one space. In the
following example, the POSITION command isindented to prevent it from being taken as a column name.
The word From must be the first word in aline. The rest of the SQR select paragraph is then written freely,
after SQL syntax.

Think of the select paragraph as aloop. The SQR commands, including printing of columns, are run in aloop,
once for each record that Select returns. The loop ends after the last record is returned.

Positioning Data

In aselect paragraph, you see positioning after each column name. This positioning impliesa PRINT
command for that column. Omitting the line number in the position causes it to be set by default to the current
line.

begi n-sel ect
nane (,1)
city (,32)
state (,49)
phone (, 55)
position (+1) ! Advance to the next |ine
from custoners
end- sel ect

Theimplied PRINT command is a special SQR feature that is designed to save you coding time. It works
only inside a select paragraph.

After the last columnisa POSITION command: POSITION(+1). The plus sign (or minus sign) indicates
relative positioning in SQR. A plus sign moves the print position forward from the current position, and a
minus sign moves it back. The +1 in the sample program specifies one line down from the current line. This
command advances the current print position to the next line.

Note. When you indicate print positions by using plus or minus signs, be sure that your numbers do not
specify a position outside of the page boundaries.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 17

Chapter 5

Using Column Variables

This chapter discusses how to:

e Useacolumn variablein a condition.

» Change the column variable name.

Using a Column Variable in a Condition

Y ou can name database columns with variables and use their values in conditions and commands.

When you select columns from the database in a select paragraph, you can immediately print them by using a
position. For example:

begi n-sel ect
phone (, 1)
position (+1)
from customers
end- sel ect

This example shows how to use the value of phone for another purpose, for example, in a condition:

begi n- program
do list_custoners
end- program
begi n-procedure |ist_custoners
begi n-sel ect

phone
if &phone ="'
print 'No phone' (,1)
el se
print &phone (, 1)
end-if

position (+1)
from custoners
end- sel ect
end- procedure ! |ist_custoners

The phone column is a SQR column variable. Precede column variables with an ampersand (&).

Unlike other program variables, column variables are read-only. Y ou can use their existing value, but you
cannot assign a new value to a column variable.

In the sample program, & phone is a column variable that you can use in SQR commands asiif it were a string,
date, or numeric variable, depending on its contents. In the condition, & phoneiscomparedto' ', whichisan
empty string. If & phone is an empty string, the program prints No phone instead.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 19

Using Column Variables Chapter 5

Changing the Column Variable Name

20

Note that the & phone column variable illustrated in the previous section inherited its name from the phone
column. Thisisthe default, but you can change it, as the following example demonstrates:

begi n-sel ect
phone &cust_phone
i f &cust phone ="'
print 'No phone' (,1)
el se
print &cust_phone (, 1)
end-if
position (+1)
from custoners
end- sel ect

One reason for changing the name of the column variable is to use a selected column in an expression that has
no name. For example:

begi n-sel ect
count (nane) &cust_cnt (,1)
if &cust _cnt < 100
print 'Less than 100 customers’
end-if
position (+1)
from custoners
group by city, state
end- sel ect

In this example, the expression COUNT (name) is selected. In the program, you store this expression in the
&cust_cnt column variable and refer to it afterwards by that name.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Using Break Logic

This chapter provides an overview of break logic and discusses how to:
* Use ON-BREAK.

» Skip lines between groups.

« Arrange multiple break columns.

» Use break processing enhancements.

» Set break procedures with BEFORE and AFTER.

» Control page breaks with multiple ON-BREAK columns.

« Saveavauewhen abreak occurs.

» Use ON-BREAK on ahidden column.

« Perform break processing on numeric values.

Understanding Break Logic
A break is a change in the value of a column or variable. Records with the same value—for example, records
with the same value for state—logically belong to a group. When a break occurs, a new group begins.
Use break logic in areport to:
« Add white space to reports.
» Avoid printing redundant data.
» Perform conditional processing on variables that change.
+ Print subtotals.

For example, you can use break logic to prepare a sales report with records that are grouped by product,
region, or salesperson (or all three). Break logic also enables you to print column headings, count records,
subtotal a column, and perform additional processing on the count or subtotal.

Here isthe sample program without break logic:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 21

Using Break Logic

Program ex5a. sqr
begi n- program
do list_custoners
end- program
begi n- headi ng 2
print 'State' (1,1)
print "Gty (1,7)
print 'Name' (1, 24)
print 'Phone' (1,55)
end- headi ng
begi n- procedure |ist_custoners
begi n-sel ect
state (,1)
city (,7)
name (, 24)
phone (, 55)
position (+1) | Advance to the next line
from custoners
order by state, city, nane
end- sel ect
end- procedure ! list_custoners

The output for the exda.sgr programiis:

State City Nane

I'N Davenpor t Harol d Al exander Fi nk

IN M ningville Harry's Landmark Di ner

M Bel | Har bor Sam Johnson

NH Frogline Jerry's Junkyard Specialties
NJ Teaneck Clair Butterfield

NM Big Falls Joe Smith and Conpany

NY Mamar oneck Harriet Bail ey

NY New Yor k John Conway

NY New Yor k Corks and Bottles, Inc

NY New Yor k Kate's Qut of Date Dress Shop
NY Queens Eli ot Richards

™ C evel and Quentin Fields

H Everretsville G egory Stonehaven

™H Zanesville | saiah J Schwartz and Conpany

Phone

3015553645
3175550948
3135556732
6125552877
2015559901
8085552124
9145550144
2125552311
2125550021
2125559000
2125554285
2165553341
2165553109
5185559813

Chapter 6

When you sort the output by state, city, and name (note the ORDER BY clause in the BEGIN-SELECT), the

records are grouped by state. To make the grouping more apparent, you can add a break.

Using ON-BREAK

22

In the following program, the ON-BREAK option of the PRINT command accomplishes two related tasks: it
starts a new group each time the value of state changes, and it prints state only when its value changes. Note
that ON-BREAK works aswell for implicit as for explicit PRINT commands, such asin the following

example, where state, city, name, and phone are implicitly printed as part of the select paragraph.

The sample program hereisidentical to ex5a.sqr except for the line that prints the state column, which

appears like this:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Pr ogr am ex5b. sqr
begi n- program
do list_custoners
end- program
begi n- headi ng 2
print 'State' (1,1)
print "Gty (1,7)
print 'Name' (1, 24)
print 'Phone' (1,55)
end- headi ng
begi n- procedure |ist_custoners
begi n-sel ect
state (,1) on-break
city (,7)
nane (, 24)
phone (, 55)
position (+1) ! Advance to the next |ine
from custoners
order by state, city, name
end- sel ect
end- procedure ! list_custoners

The output for the ex5b.sgr program is:
State City Nane
Har ol d Al exander Fink

Harry's Landmark Di ner
Sam Johnson

I N Davenpor t

M ningville
M Bel | Har bor
NH Frogline
NJ Teaneck Clair Butterfield
NM Big Falls Joe Smith and Conpany

NY Mamar oneck Harriet Bail ey
New Yor k John Conway
New Yor k Corks and Bottles, Inc

New Yor k
Queens Eli ot Richards

H C evel and Quentin Fields
Everretsville Gregory Stonehaven
Zanesville

Jerry's Junkyard Specialties

Kate's Qut of Date Dress Shop

| saiah J Schwartz and Conpany

Phone

3015553645
3175550948
3135556732
6125552877
2015559901
8085552124
9145550144
2125552311
2125550021
2125559000
2125554285
2165553341
2165553109
5185559813

With break processing, the state abbreviation is printed only once for each group.

Using Break Logic

Skipping Lines Between Groups

Y ou can further enhance the visual effect of break processing by inserting one or more lines between groups.
To do so, use the SKIPLINES qualifier with ON-BREAK. Hereisthelist_customers procedure from

ex5b.sgr, with the modified line shown likethis:

begi n-sel ect
state (,1) on-break skiplines=1
city (,7)
name (, 24)
phone (, 55)
position (+1) | Advance to the next |ine
from custoners
order by state, city, nane
end- sel ect

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

23

Using Break Logic Chapter 6

The output for the modified ex5b.sgr programis:

State Cty Nane Phone

I'N Davenport Har ol d Al exander Fink 3015553645
M ningville Harry's Landmark Diner 3175550948

M Bel | Har bor Sam Johnson 3135556732

NH Frogline Jerry's Junkyard Specialties 6125552877

Arranging Multiple Break Columns

24

Asyou can seein the previous example, you can aso have multiple customers within acity. You can apply
the same break concept to the city column to make this grouping of customers more apparent. Add another
ON-BREAK to the program so that city is also printed only when its value changes.

When you have multiple breaks, you must arrange them in a hierarchy. In the sample program, the breaks are
for geographical units, so arranging them according to sizeislogical: first state, then city. This sort of
arrangement is called nesting, and the breaks are considered nested.

To ensure that the breaks are properly nested, use the LEVEL keyword. This argument numbers breaks by
level and specifies that the columns are printed in order of increasing break levels, from left to right. Number
breaks in the same order in which they are sorted in the ORDER BY clause.

See Chapter 6, "Using Break Logic," Understanding the Order of Events, page 30.

The LEVEL argument enables you to control the order in which you call break procedures. The next sample
program isidentical to ex5a.sgr except for the two lines that print the state and city columns, which are shown
likethis:

Program ex5c. sqr
begi n- program

do list_custoners
end- pr ogram
begi n- headi ng 2

print 'State' (1,1)

print "Gty (1,7)

print 'Name' (1, 24)

print 'Phone' (1,55)
end- headi ng
begi n-procedure |ist_custoners
begi n-sel ect
state (,1) on-break |evel =1
city (,7) on-break |evel =2
name (, 24)
phone (, 55)

position (+1) ! Advance to the next |ine
from custoners
order by state, city, nane
end- sel ect
end- procedure ! |ist_custoners

The output for the ex5¢.sgr program is.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

State City

I N Davenpor t

M ningville
M Bel I Har bor
NH Frogline
NJ Teaneck

NM Big Falls

NY Mamar oneck
New Yor k
Queens

CH Cl evel and
Everretsville
Zanesville

Name

Har ol d Al exander Fi nk

Harry's Landmark Di ner

Sam Johnson

Jerry's Junkyard Specialties
Clair Butterfield

Joe Smith and Conpany

Harriet Bail ey

John Conway

Corks and Bottles, Inc.
Kate's Qut of Date Dress Shop
Eli ot Richards

Quentin Fields

Gregory Stonehaven

| saiah J Schwartz and Conpany

Phone

3015553645
3175550948
3135556732
6125552877
2015559901
8085552124
9145550144
2125552311
2125550021
2125559000
2125554285
2165553341
2165553109
5185559813

Using Break Logic

Asyou can seg, three customers arein New Y ork, so the city name for the second and third customersis | eft

blank.

Using Break Processing Enhancements

This section discusses how to:

» Control page breaks and calculate subtotals and totals.

» Handle page breaks.
» Print the date.

e Obtain totals.

» Use hyphens and underscores.

Controlling Page Breaks and Calculating Subtotals and Totals

When you use break logic, you may want to enhance your report by controlling page breaks or calculating
subtotals and totals for the ON-BREAK column. The following example illustrates these techniques.

The sample program selects the customer's name, address, and tel ephone number from the database. The
break processing is performed on the state column:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

25

Using Break Logic

26

Pr ogr am ex5d. sqr
begi n- program
do list_custoners
end- program
begi n- heading 4
print 'Customers Listed by State' (1) center
print $current-date (1,1) Edit ' DD Mon- YYYY
print 'State' (3,1)
print 'Custonmer Nane, Address and Phone Nunmber' (, 11)

print '-' (4,1,9) fill
print '-' (4,11,40) fill
end- headi ng

begi n-footing 2
I print "Page n of ni
page- nunber (1,1) 'Page
| ast - page () " of '

end-f oot i ng

begi n- procedure state_tot

print ' Total Custoners for State: ' (+1,1)
print #state total () edit 999, 999

position (+3,1) I Leave 2 bl ank |ines.

| et #cust _total = #cust_total + #state tota

let #state_ total =0
end- procedure ! state_tot
begi n-procedure |ist_custoners
| et #state total = 0
| et #cust total =0
begi n-sel ect
I The 'state' field will only be printed when it
I changes. The procedure 'state tot' will also be
I executed only when the value of 'state' changes.

state (,1) on-break print=change/top-page after=state_tot
name (,11)

addr 1 (+1, 11) I continue on second |ine

addr 2 (+1,11) I continue on third line

city (+1,11) I continue on fourth |ine

phone (,+2) edit (xxx)bxxx-xxxx ! Edit for easy readi ng

I Skip 1 line between |istings.
I Since each listing takes 4 lines, we specify 'need=4' to

I prevent a customer's data from being broken across two pages.

next-listing skiplines=1 need=4

l et #state total = #state total + 1
from custoners
order by state, nane

end- sel ect
i f #cust _total > 0
print ' Total Custoners: ' (+3,1)

print #cust_total () edit 999,999 ! Total custoners printed.
el se

print 'No custoners.' (1,1)
end-if
end- procedure ! |ist_custoners

The output for the ex5d.sgr programis:

Chapter 6

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Using Break Logic

29- Apr - 2004

Custoners Listed by State

State Cust oner Nanme, Address and Phone Nunber
I N Har ol d Al exander Fi nk

32077 Cedar Street

West End

Davenport (301) 555-3645

Harry's Landmark Di ner
17043 Silverfish Road

Sout h Par k

Mningville (317) 555-0948

Total Custoners for State: 2

M Sam Johnson
37 C eaver Street
Sandy Acres
Bel | Harbor (313) 555-6732

Total Customers for State: 1
NH Jerry's Junkyard Specialties
Crazy Lakes Cottages

Rural Delivery #27
Frogline (612) 555-2877

Total Custoners for State: 1

Take acloselook at the code. The datais printed by using a select paragraph in the list_customer procedure.
The state and the customer name are printed on the first line. The customer's address and phone number are
printed on the next three lines.

The program also uses the argument AFTER=STATE_TOT. This argument calls the state tot procedure
after each change in the value of state.

See Chapter 6, "Using Break Logic," Setting Break Procedures with BEFORE and AFTER, page 29.

Handling Page Breaks

If apage break occurs within a group, you may want to reprint headings and the value of the break column at
the top of the new page.

To control the printing of the value, use PRINT=CHANGE/TOP-PAGE. With this qualiifier, the value of the
ON-BREAK column is printed when it changes and after every page break. In this example, the value of state
is printed not only when it changes, but whenever the report starts a new page.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 27

Using Break Logic Chapter 6

To format records, use the NEXT-LISTING command. This command serves two purposes. The
SKIPLINES=1 argument skips one line between records, then renumbers the current line asline 1. The
NEED=4 argument prevents alisting from being split over two pages by specifying the minimum number of
lines that are needed to write a new listing on the current page. In this case, if fewer than four lines are left on
apage, SQR starts a new page.

Printing the Date

In the HEADING section, the reserved variable $current-date prints the date and the time. Thisvariableis
initialized with the date and time of the client machine when the program starts to run. SQR provides
predefined, or reserved, variables for avariety of uses.

In this example, the complete command isPRI NT $current-date (1,1) ED T ' DD/ Mon/ YYYY' .
It prints the date and time at position 1,1 of the heading. The EDIT argument specifies an edit mask, or
format, for printing the date. SQR provides avariety of edit masks for use in formatting numbers, dates, and
strings.

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," PRINT.

Note that the PRINT command for the report title precedes the command for the $current-date reserved
variable, even though the date is on the left and the title is on the right. SQR always assembles apagein
memory before printing, so the order of these commands does not matter if you use the correct print position
qualifiers.

The last two commands in the HEADING section print a string of hyphens under the column headings. Note
the use of the FILL option with the PRINT command. Thistells SQR to fill the specified width with this
pattern, which is auseful method to print aline.

The FOOTING section prints the Page n of masin earlier examples.
See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR for PeopleSoft Developers

Obtaining Totals

28

The ex5d.sgr program also prints two totals: a subtotal of customers in each state and a grand total of all
customers. These cal culations are performed with two numeric variables, one for the subtotals and one for the
grand totals. These variables are:

« #state total
« #cust_total

SQOR for PeopleSoft has a small set of variable types. The most common types are numeric variables and
string variables. All numeric variablesin SQR are preceded by a pound sign (#) and all string variables are
preceded by adollar sign ($). An additional SQR variable typeisthe date variable.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6

Using Break Logic

In SOR for PeopleSoft, numeric and string variables are not explicitly declared. Instead, they are implicitly
defined by their first use. All numeric variables start out as zero and all string variables start out as null, so
they do not need to beinitialized. The string variables are of varying length and can hold long strings of
characters and short ones. Assigning a new value to a string variable automatically adjustsits length.

Inthelist_customers procedure, #state total and #cust_total are set to zero at the beginning of the procedure.
Thisinitialization is optional and is done for clarity only. The #state total variable isincremented by 1 for
every row that is selected.

When the value of state changes, the program calls the state tot procedure and prints the value of
#state total. Notetheuse of the EDI T 999, 999 edit mask, which formats the number.

This procedure also employsthe LET command. LET is the assignment command in SQR, for building
complex expressions. Here, LET adds the value of #state total to #cust_total. At the end of the procedure,
#state total is reset to zero.

Thelist_customer s procedure contains an example of the SQR if-then-else logic. The condition starts with |F
followed by an expression. If the expression evaluates to true or to a number other than zero, the subsequent
commands are run. Otherwise, if thereis an EL SE part to the IF, those commands are run. |F commands
always end with an END-IF.

In ex5d.sgr, the value of #cust_total is examined. If it is greater than zero, the query has returned rows of
data, and the program prints the string Total Customers. and the value of #cust_total.

If #cust_total is zero, the query has not returned any data. In that case, the program prints the string No
customers.

Using Hyphens and Underscores

Many SQR commands, such as BEGIN-PROGRAM and BEGIN-SELECT, use a hyphen, whereas procedure
and variable names use an underscore.

Procedure and variable names can contain either a hyphen or underscore, but it's best to use underscoresin
procedure and variable names to distinguish them from SQR commands. It also prevents confusion when you
mix variable names and numbers in an expression, where hyphens could be mistaken for minus signs.

Setti

Copyright

ng Break Procedures with BEFORE and AFTER

When you print variables with ON-BREAK, you can automatically call procedures before and after each
break in a column. The BEFORE and AFTER qualifiers provide this capability. For example:

begi n-sel ect
state (,1) on-break before=state_headi ng after=state_tot

The BEFORE qualifier automatically callsthe state_heading procedure to print headings before each group
of records of the same state. Similarly, the AFTER qualifier automatically calls the state tot procedureto
print totals after each group of records.

All BEFORE procedures are automatically invoked before each break, including the first: that is, before the
select paragraph is even processed. Similarly, all AFTER procedures are invoked after each break, including
the last group: that is, upon completion of the select paragraph.

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 29

Using Break Logic Chapter 6

Understanding the Order of Events

30

Y ou can define a hierarchy of break columns by using the LEVEL qualifier of ON-BREAK. In the ex5c.sgr
sample program, for example, state was defined as LEVEL=1 and city as LEVEL=2.

When a break occurs at one level, it also forces breaks on variables with higher LEVEL qualifiers. In the
sample program, a break on state also means a break on city.

A break on avariable can initiate many other events. The value can be printed, lines can be skipped,
procedures can be called automatically, and the old value can be saved. Knowing the order of eventsis
important, particularly where multiple ON-BREAK columns exist.

The following select paragraph has breaks on three levels:

begi n-sel ect

state (,1) on-break | evel =1 after=state_tot ski pl i nes=2
city (,7) on- break | evel =2 after=city_tot skiplines=1
zip (,45) on- break | evel =3 after=zi p_tot

from custoners

order by state, city, zip

end- sel ect

The breaks are processed in the following way:

1. When zip breaks, the city_tot procedureisrun.

2. When city breaks, first the zip_tot procedureis run, then the city_tot procedureisrun, and onelineis
skipped (SKIPLINES=1).

Both city and zip are printed in the next record.
3. When state breaks, the zip_tot, city_tot, and state_tot procedures are processed in that order.

Onelineis skipped after the city_tot procedureisrun, and two lines are skipped after the state tot
procedureisrun. All three columns—state, city, and zip—are printed in the next record.

The following program (ex5e.sqr) demonstrates the order of eventsin break processing. It has three ON-

BREAK columns, each with a LEVEL argument and a BEFORE and AFTER procedure. The BEFORE and
AFTER procedures print strings to indicate the order of processing.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Using Break Logic

Program ex5e. sqr
begi n-set up
decl ar e- Layout
def aul t
end- decl are
end- set up
begi n- program
do main
end- program
begi n- procedure a
print 'AFTER Procedure for state LEVEL 1' (+1, 40)
end- procedure
begi n-procedure b
print ' AFTER Procedure city LEVEL 2' (+1,40)
end- procedur e
begi n- procedure c¢
print ' AFTER Procedure zip LEVEL 3' (+1, 40)
end- procedure
begi n- procedure aa
print 'BEFORE Procedure state LEVEL 1' (+1, 40)
end- procedur e
begi n- procedure bb
print 'BEFORE Procedure city LEVEL 2' (+1, 40)
end- procedure
begi n- procedure cc
print 'BEFORE Procedure zip LEVEL 3' (+1,40)
end- procedur e
begi n- procedure main | oca
begi n-sel ect
add 1 to #count
print 'Retrieved row # (+1,40)
print #count (,+10)Edit 9999
position (+1)
state (3,1) On-Break Level =1 after=a before=aa
city (3,10) On-Break Level =2 after=b before=bb
zip (3,25) On-Break Level =3 after=c before=cc Edit Xxxxxx
next-listing Need=10
from custoners
order by state,city,zip
end- sel ect
end- procedur e
begi n- headi ng 3
print $current-date (1,1) edit ' DD MV YYYY'
page- nunber (1, 60) 'Page
| ast-page () ' of '
print 'STATE (3,1)
print 'CITY (3,10)

print 'ZIP (3, 25)
print 'Break Processing sequence' (3,40)
end- headi ng

The output for the exSe.sgr program is:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 31

Using Break Logic

Chapter 6

Page 1 of 3

Break Processing sequence

BEFORE Procedure state LEVEL 1

02- 05- 2004
STATE aTYy ZI P
I N Davenpor t 62130

Retri eved row #2
M ningville 40622

Retri eved row #3

M Bel | Har bor 40674
Retri eved row #4

NH Frogline 04821

NJ Teaneck 00355

NM Big Falls 87893

02- 05- 2004

STATE caTY ZI P
Retri eved row #7

NY Manar oneck 10833

32

BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

Retri eved row #1

AFTER Procedure zip LEVEL 3

AFTER Procedure city LEVEL 2
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

Retri eved row #5

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

Retri eved row #6

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2
BEFORE Procedure zip LEVEL 3

Page 2 of 3

Break Processing sequence

AFTER Procedure zip LEVEL 3
AFTER Procedure city LEVEL 2
AFTER Procedure for state LEVEL 1
BEFORE Procedure state LEVEL 1
BEFORE Procedure city LEVEL 2

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Using Break Logic

BEFORE Procedure zip LEVEL 3

The following steps explain the order of processing in detail:
1. Process BEFORE procedures.

BEFORE procedures are processed in ascending order by LEVEL before the first row of the query is
retrieved. If no datais selected, BEFORE procedures are not run.

2. Select thefirst row of data.

3. Select subsequent rows of data.

Processing of the select paragraph continues. When a break occurs on any column, it also initiates breaks

on columns at the same or higher levels. Events occur in the following order:

a. AFTER procedures are processed in descending order from the highest level to the level of the current

ON-BREAK column.
b. SAVE variables are set with the value of the previous ON-BREAK column.
c. BEFORE procedures are processed in ascending order from the current level to the highest level.
d. If SKIPLINES was specified, the current line position is advanced.
e. Thevaue of the new group is printed (unless PRINT=NEVER is specified).

4. Process AFTER procedures.

After the select paragraph is complete, if any rows were selected, AFTER procedures are processed in
descending order by LEVEL.

See Chapter 6, "Using Break Logic," Saving a Value When a Break Occurs, page 34.

Controlling Page Breaks with Multiple ON-BREAK Columns

Where multiple columns have ON-BREAK, page breaks need careful planning. While having a page break
within a group, you probably would not want to have one within arecord.

Y ou can prevent page breaks within arecord by following four smple rules:

« Place ON-BREAK columns ahead of other columns in the select paragraph.

» Placethe lower-level ON-BREAK columns ahead of the higher-level ON-BREAK columnsin the select
paragraph.

» Usethe sameline positions for all ON-BREAK columns.

« Avoid using WRAP and ON-BREAK together on one column.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

33

Using Break Logic Chapter 6

Saving a Value When a Break Occurs

In ex5d.sgr, the state_tot procedure prints the total number of customers per state. Becauseit is called with
the AFTER argument, this procedure is run only after the value of the ON-BREAK column, state, has
changed.

Sometimes, however, you may want to print the previous value of the ON-BREAK columnin the AFTER
procedure. For example, you may want to print the state name and the totals for each state. Printing the value
of state will not work because its value will have changed by the time the AFTER procedure is called.

The solution isto save the previous break value in a string variable. To do this, use the SAVE qualifier of
ON-BREAK. For example:

begi n-sel ect
state (,1) on-break after=state tot save=$old _state

Y ou can then print the value of $old_state in the state_tot procedure.

Using ON-BREAK on a Hidden Column

34

In some reports, you may want to use the features of break processing without printing the ON-BREAK
option. For example, you may want to incorporate the ON-BREAK option into a subheading. This format
might make your report more readable. It is aso useful when you want to leave room on the page for
additional columns.

To create such areport, you can hide the break option using the PRINT=NEVER qualifier and printitina
heading procedure that is called by BEFORE.

The following code is based on the ex5b.sgr program, with the key lines shown likethis:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Using Break Logic

Program ex5f. sqr

begi n- progr am
do list_custoners
end- pr ogr am
begi n-procedure |ist_custoners
begi n-sel ect
state () on-break before=state_headi ng print=never |evel=1
city (,1) on-break Ievel =2
nane (, 18)
phone (, 49)
position (+1) ! Advance to the next |ine
from custoners
order by state, city, name
end- sel ect

end- procedure ! |ist_custoners

begi n- procedure state_heading
print 'State: ' (+1,1) bold I Advance a line and print 'State:'
print &state (,8) bold I Print the state columm here
print "Gty (+1,1) bold I Advance a line and print 'City

print 'Nanme' (,18) bold

print ' Phone' (,49) bold

print '-' (+1,1,58) fill

position (+1) I Advance to the next |ine
end- procedure ! state_heading

Note. This program has no HEADING section. Instead, a procedure prints column headings for each state
rather than at the top of each page. The & state variable can be referenced throughout the program, even
though the state column was not printed as part of the break.

Examine the following line in the program from the select paragraph:

state () on-break before=state_heading print=never |evel=1

Thisline defines the break processing for state. The BEFORE qualifier specifiesthat the state_heading
procedure is automatically called when the state changes. In this program, the break is set to LEVEL=1.

The PRINT=NEVER qualifier hides the state column and specifiesthat it is not printed as part of the select
paragraph. Instead, it is printed in the state_heading procedure. In this procedure, the state column is referred
to as the & state column variable.

The city column isassigned a LEVEL=2 break.

The output for the ex5f.sgr program is:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 35

Using Break Logic

State: IN
Cty
Davenpor t

M ningville

Har ol d Al exander Fi nk
Harry's Landmark Di ner

3015553645
3175550948

Clair Butterfield

Harriet Bailey
John Conway
Corks and Bottles, Inc.

Kate's Qut of Date Dress Shop

Eli ot Ri chards

9145550144
2125552311
2125550021
2125559000
2125554285

State: M
Cty

Bel | Har bor
State: NH
Cty
Frogline
State: NJ
Cty
Teaneck
State: NM
Cty

Big Falls
State: NY
Cty

Manar oneck
New Yor k
Queens
State: OH
Cty

Cl evel and

Everretsville

Zanesville

Quentin Fields
Gregory Stonehaven

| saiah J Schwartz and Conpany

2165553341
2165553109
5185559813

Chapter 6

Performing Break Processing on Numeric Values

36

Y ou cannot use ON-BREAK with SQR numeric variables. To perform break processing on a numeric

variable, you must first move its value to a string variable and then set ON-BREAK on that. For example:

begi n- sel ect

anmount _recei ved &anount
nove &anount to $anount $$9, 999. 99

print $anount

(+1,1) on-break

from cash_receipts
order by anmpunt _received

end- sel ect

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 6 Using Break Logic

The maximum number of ON-BREAK levelsis determined by the ON-BREAK setting in the [Processing-

Limits] section of the PSSQR.INI file. The default is 30, but you can increase this setting. Its maximum value
is64K-1 (65,535).

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 37

Chapter 7

Adding Declarations Using the SETUP

Section

This chapter provides an overview of the SETUP section and discusses how to:

« Create the SETUP section.
e Usethe DECLARE-LAYOUT command.
« Overide the default settings.

» Declare the page orientation.

Understanding the SETUP Section

The SETUP section of the program is where you place al of the declarations. Declarations define certain
report characteristics and the source and attributes of various report components, such as charts and images.
The SETUP section is evaluated when you compile the program, before you run the program. A program

doesn't have to have a SETUP section, but it can be useful.

Creating the SETUP Section

Place the SETUP section, if present, at the beginning of the program before the PROGRAM section. Begin

with BEGIN-SETUP and end with END-SETUP.

Use the following commands in the SETUP section:

Command

Comments

ALTER-LOCALE

Can also appear in a procedure.

ASK

Allowed only in a SETUP section.

BEGIN-SQL

Can also appear in a procedure. Processed when a
runtime file (with .SQT extension) is |oaded.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

39

Adding Declarations Using the SETUP Section

Chapter 7

Command

Comments

CREATE-ARRAY

Can also appear in aprocedure.

DECLARE-CHART NA
DECLARE-IMAGE NA
DECLARE-LAYOUT NA
DECLARE-PRINTER NA
DECLARE-PROCEDURE NA
DECLARE-REPORT NA
DECLARE-TOC NA
DECLARE-VARIABLE Can also appear in alocal procedure.

LOAD-LOOKUP

Can also appear in aprocedure.

USE

Sybase only.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Using the DECLARE-LAYOUT Command

Sample SETUP Program

40

Hereisatypical SETUP section:

Usethe DECLARE-LAYOUT command to set the page layout and include important options, such asthe
paper size and margins.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 7 Adding Declarations Using the SETUP Section

begi n-set up
I Declare the default |ayout for this report
decl are-1ayout default
paper - si ze=(8. 5, 11)
| ef t-margi n=1 ri ght-margin=1

t op- mar gi n=1 bott om mar gi n=1
end-decl are
end- set up

In the preceding example, the DECLARE-LAY OUT command sets the paper sizeto 8 1/2 by 11 inches, with
al marginsat 1 inch.

In SQR for PeopleSoft, data is positioned on the page using line and character position coordinates. Think of
the page as a grid where each cell holds one character. With such agrid, in a position qualifier consisting of
(line, column, width),column and width are numbers that denote characters and spaces.

Defining the SQR Page Layout
The main attributes of the DECLARE-LAYOUT command affect the structure of the page.

The PAPER-SIZE argument defines the dimensions of the entire page, including the margins. The TOP-
MARGIN, LEFT-MARGIN, BOTTOM-MARGIN, and RIGHT-MARGIN arguments define the margins. In
SQR, you cannot print in the margins.

In the preceding sample program, the left margin uses 10 spaces and the top margin uses 6 lines. The page
width accommodates 65 characters (without the margins) and 54 lines.

The default mapping of characters and lines to inchesis 10 characters per inch (CPI) and six lines per inch
(LPI). This means that each character cell is 1/10 inch wide and 1/6 inch high. These settings are used when a
program does not contain a DECLARE-LAY OUT command.

Overriding the Default Settings

Override the default settings by using the LINE-HEIGHT and CHAR-WIDTH argumentsin the DECLARE-
LAYOUT command. These arguments adjust the dimensions of the grid, which implies achange in the
meaning of column and line. If the DECLARE-LAY OUT paragraph includes the LINE-HEIGHT=1 and
CHAR-WIDTH=1 arguments, the cellsin the grid measure one point by one point (one point is /72 inch or
approximately 0.35 millimeters). In that case, column is adimension given in points. The length of a string,
however, is still given in characters.

Alternatively, you can use the MAX-LINES and MAX-COLUMNS arguments of the DECLARE-LAYOUT
command to specify the number of lines on the page and the number of charactersto fit across the page. SOR
calculates the line height and character width based on these settings and the size of the page and margins.

Specify coordinates in terms of lines and character positions. Thefirst line from the top is 1 and the first
column (from the left) is 1. No coordinate O exists.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 41

Adding Declarations Using the SETUP Section Chapter 7

Declaring the Page Orientation

Use the DECLARE-LAYOUT command to declare the page orientation. Note that this declaration does not
affect how SQR uses position coordinates. Line and character positions are not transposed when page
orientation is switched. The only effect of the ORIENTATION option of the DECLARE-LAYOUT command
isthat SQR switches the printer to the specified orientation: portrait or landscape. The default mode is

portrait.

42 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8

Creating Master and Detail Reports

This chapter provides overviews of master and detail reports and the sample program for master and detail
reports and discusses how to correlate subqueries:

Understanding Master and Detail Reports

Master and detail reports show hierarchical information. The information is normally retrieved from multiple
tables that have a one-to-many relationship, such as customers and orders. The customer information is the
master and the orders are the detail.

Often, you can obtain such information with a single SQR select paragraph. In such a program, the data from
the master table is joined with data from the detail table. Y ou can implement break logic to group the detail
records for each master record. This type of report has one major disadvantage: if a master record has no
associated detail records, it is not displayed. If you need to show all master records, whether they have detail
records or not, this type of report will not meet your needs.

See Chapter 6, "Using Break Logic," page 21.

To show all master records, whether or not they have detail records, create a master and detail report with one
SELECT statement that retrieves records from the master table, followed by separate SELECT statements
that retrieve the detail records that are associated with each master record.

The sample program in this chapter produces just such areport. In the example, one BEGIN-SELECT returns
the names of customers. For each customer, two additional BEGIN-SELECT commands are run—one to
retrieve order information and another to retrieve payment information.

When one query returns master information and another query returns detail information, the detail query is
nested within the master query.

Understanding the Sample Program for Master and Detail Reports

In the sample program, the nested queries are invoked once for each customer, each one retrieving records
that correspond to the current customer. A bind variable correlates the subgueries in the WHERE clause. This
variable correlates the customer number (cust_num) with the current customer record.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 43

Creating Master and Detail Reports

44

Program ex7a. sqr
begi n- program
do main
end- program
begi n- procedure main
begi n-sel ect
Print 'Custonmer Information' (,1)
Print '-' (+1,1,45) Fil
name (+1, 1, 25)
city (,+1, 16)
state (,+1,2)
cust _num
do cash_recei pts(&ust_nun)
do orders(&cust _num
position (+2,1)
from custoners
end- sel ect
end- procedure ! main
begi n- procedure cash_recei pts (#cust_nun)
let #any = 0
begi n-sel ect
i f not #any
print 'Cash Received (+2,10)
print "------------- ' (+1,10)
let #any = 1
end-if
dat e_received (+1,10,20) edit ' DD MON YY'
anount _received (,+1,13) Edit $$$$, $$0. 99
from cash_receipts a
where a.cust_num = #cust_num
end- sel ect
end- procedure ! cash_receipts
begi n- procedure orders (#cust_num

let #any = 0
begi n-sel ect
i f not #any
print 'Orders Booked' (+2,10)
print "------------- " (+1,10)
let #any =1
end-if
a.order_num
order _date (+1,10,20) Edit ' DD MON- YY'
description (,+1, 20)
c.price * b.quantity (,+1,13) Edit $$3$3, $3$0. 99

from orders a, ordlines b, products c
where a.order_num = b. order_num
and b. product _code = c. product _code
and a.cust_num = #cust_num
end- sel ect
end- procedure ! orders
begi n- headi ng 3
print $current-date (1,1) Edit ' DD MON YYYY
page- nunber (1, 69) 'Page
end- headi ng

Chapter 8

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 8 Creating Master and Detail Reports

Correlating Subqueries

The ex7a.sgr sample program contains three procedures—main, cash_receipts, and orders—which correspond
to the three queries. The main procedure is the master. It retrieves the customer names. For each customer, we
the program invokes the cash_receipts procedure to list the cash receipts, if any, and ordersto list the
customer's orders, if any.

The procedures take the cust_num variable as an argument. Asyou can see, cash_receipts and orders are
called many times, once for each customer. Each time, the procedures perform the same query with a
different value for the cust_num variable in the WHERE clause.

Note the use of the IF command and the #any numeric variable in these procedures. When the BEGIN-
SELECT command returns no records, SQR does not process the following PRINT commands. Thus, the
headings for these procedures are displayed only for those customers who have records in the detail tables.

The orders procedure demonstrates the use of an expression in the BEGIN-SELECT. The expression is
c.price * b.quantity.

Note. Examine the format of the dollar amount with the argument EDI T $$$$, $$0. 99. Thisformat uses
a"floating-to-the-right" money symbol. If fewer digits are used than the six that we specified here, the dollar
sign floats to the right and remains close to the number.

See Chapter 18, "Using Procedures and Local Variables and Passing Arguments,” page 99.

Sample Program Output

The following is the output for for program ex7a.sqr.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 45

Creating Master and Detail Reports

46

6- APR- 2004

Cust oner I nformation

Gregory Stonehaven Everretsville ™H
Cash Recei ved
01-FEB-03 $130. 00
Custoner | nformation
John Conway ~ NewYork NY
Cash Recei ved
01-MAR 03 $140. 00
Cust oner | nformation
Eliot Rchards Qeens Y
Cash Recei ved
16-JAN-03 $220. 12
17- JAN- 03 $260. 00
Or ders Booked
02-MAY-03 Vihi 1 ybobs
02- MAY- 03 Cani sters
Custoner | nformation
Isaiah J Schwartz and Com Zamesville oH
Cash Recei ved
18-JAN-03 $190. 00
02- JAN- 03 $1, 100. 00

Orders Booked

02- VAY- 03
02- VAY- 03

Custoner I nformation

Har ol d Al exander Fi nk

Cash Recei ved

01- FEB- 03
01- MAR- 03

Order s Booked

19- MAY- 03
19- MAY- 03

Hop scotch kits
Wre rings

Davenpor t I N

$1, 200. 00
$1, 300. 00

G nger snaps
Model i ng cl ay

Page 1

$239. 19
$3, 980. 25

$6, 902. 00
$19, 872. 90

$44. 28
$517. 05

Chapter 8

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Creating Cross-Tabular Reports

This chapter provides an overview of cross-tabular reports and discusses how to:
« Useanarray.

+ Createan array.

» Group by category.

e Usemultiple arrays.

Understanding Cross-Tabular Reports

Cross-tabular reports are matrix-like or spreadsheet-like reports. These reports are useful for presenting
summary numeric data. Cross-tabular reports vary in format. The following example shows sales revenue
summarized by product by sales channel:

Revenue by product by sal es channe

Pr oduct Direct Sales Resellers Miil O der Tot a

A 2,100 1, 209 0 3, 309
B 120 311 519 950
C 2 0 924 926
Tot al 2,222 1,520 1, 443 5,185

Thisreport is based on many sales records. The three middle columns correspond to sales channel categories.
Each row corresponds to a product. The records fall into nine groups: three products sold through three sales

channels. Some groups have no sales (such as mail order for product A).

Each category can be a discrete value of some database column or a set of values. For example, Resellers can

be domestic resellers plus international distributors.

A category can also represent arange, as demonstrated in this example:

Orders by Product by O der Size

Pr oduct

Cat egory Less than 10 10 to 100 More than 100 Tot al
Dur abl e 200 120 0 320
Nondur abl e 122 311 924 1876
Tot al 322 431 1443 2196

In this example, the rows correspond to the categories durable or nondurable. The columns represent ranges
of order size.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

47

Creating Cross-Tabular Reports Chapter 9

For each record that is selected, the program must determine the range to which it belongs and add 1 to the
count for that category. The numbersin the cells are counts, but they could be sums, averages, or any other
expression.

Of course, other types of cross-tabular reports exist. These reports become more complex when the number of
columnsis not predefined and when more columns exist than can fit across the page.

Using an Array

48

Often, the program must process all of the records before it can begin to print the data. During processing, the
program must keep the data in a buffer where it can accumulate the numbers. This can be donein an SQR

array.

An array isaunit of storage that contains rows and columns. An array is similar to a database table, but it
existsonly in memory.

The sample program specifies an array called order_gty to hold the sum of the quantity of ordersin agiven
month. Y ou could program this specific example without an array, but using one can be beneficial. Data that
you retrieve once and store in an array can be presented in many ways without additional database queries.
The data can even be presented in a chart.

The sample program also demonstrates an SQR feature called athree-dimensional array. Thistype of array
has fields (columns) and rows, and it also has repeating fields (the third dimension). In the order_qty array,
thefirst field is the product description. The second field isthe order quantity of each month. The example
includes three months; therefore, this field repeats three times.

SQOR references arraysin expressionssuch asar ray_nane. fi el d(subl[, sub2]). Thefirst
subscript, subl, istherow number. The row count starts with zero. The second subscript, sub2, is
specified when the field repeats. Repeating fields are also numbered starting with zero. The subscript can be a
literal or an SQR numeric variable.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Creating Cross-Tabular Reports

program ex8a. sqr

#def i ne max_products 100
begi n-set up
create-array

nane=or der _qty si ze={ max_pr oduct s}
fiel d=product: char fiel d=nont h_qgty: nunmber: 3
end- set up

begi n- progr am
do sel ect_data
do print_array
end- pr ogr am
begi n-procedure print_array
| et #entry cnt = #i
let #i =0
while #i <= #entry_cnt
| et $product order_qty. product (#i)

[et #jan = order_qty. nonth_qty(#i,0)
| et #feb = order_qty.nonth_qty(#i,1)
| et #nar = order_qty.nonth_qty(#i, 2)

| et #prod_tot #jan + #feb + #mar
print $product (, 1, 30)

print #jan (,32,9) edit 9,999,999
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999
print #prod tot (,62,9) edit 9,999, 999

position (+1)
l et #j an_total
| et #feb_total
| et #mar _total
let # =# + 1

#jan_total + #jan
#feb_total + #feb
#mar _total + #nmar

end-whi | e
| et #grand total = #jan_total + #feb total + #mar tota
print 'Totals' (+2,1)

print #jan_total (,32,9) edit 9,999,999
print #feb_total (,42,9) edit 9,999,999
print #mar_total (,52,9) edit 9,999,999
print #grand total (,62,9) edit 9,999, 999
end- procedure print_array
begi n- procedure sel ect _data
begi n-sel ect
order _date
I The quantity for this order
gquantity
I the product for this order
description
if #i = 0 and order_qty. product (#i) =
| et order_qty.product(#i) = &description
end-if
if order_qty.product(#i) != &description
let #i = #i + 1
if #i >= {max_product s}
di splay 'Error: There are nore than {max_products} products'

stop
end-if
| et order_qty. product (#i) = &description
end-if
let #j = to_nunber(datetostr(&order_date,' M)) - 1
if # <3

let order_qty.nmonth_qty(#i,#) =
order _qty.nonth_qty(#i,#) + &uantity
end-if
from orders a, ordlines b, products c
where a.order_num = b. order_num

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 49

Creating Cross-Tabular Reports

and b. product _code

order by description

end- sel ect

end- procedure ! sele

begi n- heading 4
print $current-dat
print 'O der Quant
page- nunber (1, 64)

print 'Product’
print ' January'
print ' February'
print ' Mar ch'
print ' Total'
print '-'

end- headi ng

Chapter 9

= c. product _code

ct _data

e (1,1)
ity by Product by Month' (1, 18)
' Page '

(3, 1)

’ 32)
, 42)
) 52)
) 62)

(
(
E
(4,1,70) Fill

The following output is the output for program ex8a.sgr.

11- JUN- 04 O der

Pr oduct

Cani sters
Curtain rods
G nger snaps
Hangi ng plants
Hookup wire
Hop scotch kits
Model i ng cl ay
New car

Thi mbl e

Thi ngangj i gs

W dget s

Wre rings
Total s

Quantity by Product by Mnth Page 1
January February Mar ch Tot a
3 0 0 3

2 8 18 28

1 10 0 11

1 20 0 21

16 15 0 31

2 0 0 2

5 0 0 5

1 9 0 10

7 20 0 27

17 0 120 137

4 0 12 16

1 0 0 1

60 82 150 292

See Chapter 14, "Using Business Charts," page 77.

Creating an Array

Y ou must define the size of an array when you create it. The sample program creates the order_qty array with

asize of 100.

The #DEFINE MAX_PRODUCTS 100 command defines the max_products constant as a substitution
variable. The sample program uses this constant to define the size of the array. Using #DEFINE is a good
practice because it displays the limit at the top of the program source. Otherwise, it would be hidden in the

code.

The SETUP section creates the array by using the CREATE-ARRAY command. All SQR arrays are created
before the program begins running. Their size must be known at compile time. If you do not know exactly
how many rows you have, you must overallocate and specify an upper bound. In the example, the array has
100 rows, even though the program uses only 12 rows to process the sample data.

50

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Creating Cross-Tabular Reports

The preceding program has two procedures: select_data and print_array.Select_data performs the database
guery, as its name suggests. While the database records are being processed, nothing prints, and the data
accumulates in the array. When the processing is complete, the print_array procedure does two things: the
procedure loops through the array and prints the data, and it also adds the month totals and prints them at the
bottom.

The report summarizes the product order quantities for each month, which are the records ordered by the
product description. The procedure then fillsthe array one product at atime. For each record that is selected,
the procedure checks to see whether it isanew product; if it is, the array isincremented by row subscript #i .
The procedure also adds the quantity to the corresponding entry in the array based on the month.

This program has one complication: how to obtain the month. Date manipulation can vary among databases,
and to write truly portable code requires careful planning.

The key is the datetostr function in the following command:
let #j = to_nunber(datetostr(&order_date, '"M)) - 1

This function converts the order_date column into a string. (The 'MM' edit mask specifies that only the month
part be converted.) The resulting string is then converted to a number; if it islessthan 3, it represents January,
February, or March and is added to the array.

Grouping by Category

The following output is a cross-tabular report that groups the products by price range. This grouping cannot
be done by using a SQL GROUP BY clause. Moreover, to process the records in order of price category, the
program would have to sort the table by price. The sample program shows how to do it without sorting the
data.

The sample program uses an SQR EVALUATE command to determine the price category and assign the
array subscript #i to 0, 1, or 2. Then it adds the order quantity to the array cell that corresponds to the price
category (row) and the month (column).

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 51

Creating Cross-Tabular Reports Chapter 9

Pr ogr am ex8b. sqr

#defi ne nax_categories 3
begi n-set up
create-array

nane=or der _qty si ze={ max_cat egori es}
field=category:char field=nonth_qgty: nunmber:3
end- set up

begi n- progr am
do sel ect_data
do print_array
end- pr ogr am
begi n-procedure print_array
let #i =0
while #i < {max_categori es}
l et $category = order_qty.category(#i)

[et #jan = order_qty. nonth_qty(#i,0)
| et #feb = order_qty.nonth_qty(#i, 1)
| et #mar = order_qty.nonth_qty(#i, 2)

| et #category tot = #jan + #feb + #nmar
print $category (,1,31)

print #an (,32,9) edit 9,999,999
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999
print #category tot (,62,9) edit 9,999, 999
position (+1)

l et #j an_total

| et #feb_total

| et #mar _total
let # =# + 1

#jan_total + #jan
#feb_total + #feb
#mar _total + #mar

end-whi | e
| et #grand_ total = #jan_total + #feb total + #mar _tota
print 'Totals' (+2,1)

print #an_total (,32,9) edit 9,999,999
print #feb_total (,42,9) edit 9,999,999
print #mar_total (,52,9) edit 9,999,999
print #grand total (,62,9) edit 9,999, 999
end- procedure print_array
begi n- procedure sel ect _data

l et order _qty.category(0) = '$0-%$4.99
| et order_qty.category(1l) = '$5.00-$100. 00
let order_qty.category(2) = 'Over $100

begi n-sel ect
order date
I the price / price category for the order
C.price &price
nove &price to #price_num
eval uate #price_num
when < 5.0
let #i =0
br eak
when <= 100.0
let #i =1
br eak
when- ot her
let #i = 2
br eak
end- eval uat e
I The quantity for this order
guantity
et #j = to_nunber(datetostr(&order _date,' M)) - 1
if # <3
let order_qty.month_qty(#i,#)) =
order_qty.month_qty(#i,#j) + &quantity

52 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9 Creating Cross-Tabular Reports

end-if
from orders a, ordlines b, products c
where a.order_num = b. order_num
and b. product _code = c. product _code
end- sel ect
end- procedure ! sel ect_dat abegi n- headi ng 5
print $current-date (1,1)
page- nunber (1, 64) 'Page
print 'Order Quantity by Product Price Category by Mnth' (2,11)
print 'Product Price Category' (4,1)
print ' January' (, 32)
print ' February' (,42)

print ' March' (,52)

print ' Total' (,62)

print '-' (5,1,70) Fill
end- headi ng

The following is the output for program ex8b.sqr.

11- JUN- 04 Page 1
Order Quantity by Product Price Category by Mnth

Product Price Category January February Mar ch Tot a

0-4.99 28 45 12 85

5. 00- 100. 00 25 28 138 191

Over 100 7 9 0 16

Total s 60 82 150 292

Using Multiple Arrays

Using SOR arrays to buffer the data offers severa advantages. In the previous example, it eliminated the need
to sort the data. Another advantage is that you can combine the two sample reports into one. With one pass on
the data, you can fill the two arrays and then print the two parts of the report.

The following sample program performs the work that is done by the first two programs. The SETUP section
specifies two arrays. one to summarize monthly orders by product, and another to summarize monthly orders
by price range.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 53

Creating Cross-Tabular Reports

54

Program ex8c. sqr

#def i ne nmax_cat egori es
#def i ne max_products 1
begi n-set up
create-array
nanme=or der_qty
fiel d=product: cha
create-array
nane=or der _qty2
fi el d=category:ch
end- set up
begi n- program
do sel ect_data
do print_array
print '-' (+2,1,70)
position (+1)
do print_array?2
end- pr ogr am
begi n- procedure print
let #entry_cnt = #i
let #i =0
while #i <= #entry_c
| et $product
| et #jan
let #feb
[et #mar
| et #prod_tot
print $product
print # an
print #feb
print #mar
print #prod_tot
position (+1)
let # = # + 1
end-whil e
end- procedure ! print_
begi n- procedure print_
let #i =0
while #i < {max_cate
| et $category
[et #jan
let #feb
| et #mar
| et #category to
print $category
print #jan
print #feb
print #mar
print #category
position (+1)
l et #j an_total
l et #feb total
| et #mar _total
let # =# + 1
end-whi | e
let #grand_total = #
print 'Totals' (
print #jan_total (
print #feb_total (
print #mar_total (
print #grand total (

3
00

Chapter 9

si ze={ max_pr oduct s}
r fiel d=nont h_qty: number: 3

si ze={ max_cat egori es}
ar field=nonth_qgty: nunber:3

fill

_array

nt

order _qty. product (#i)

order_qty.nmonth_qty(#i, 0)
order _qty.nmonth_qty(#i, 1)
order_qty.nonth_qty(#i, 2)

#jan + #feb
(,1,30)

(,32,9) edit
(,42,9) edit
(,52,9) edit
(,62,9) edit

array
array?2

gori es}

+ #mar

9, 999, 999
9, 999, 999
9, 999, 999
9, 999, 999

order _qty2.category(#i)
order _qty2.mont h_qty(#i, 0)
order_qty2.month_qty(#i, 1)
order_qty2.month_qty(#i, 2)
t = #an + #feb + #mar

(,1,31)
(,32,9)
(,42,9)
(,52,9)
tot (,62,9)
#j an_t ot al
#feb tota
#mar _t ot al

jan_total +
+2,1)

,32,9) edit
,42,9) edit
,52,9) edit
,62,9) edit

end-procedure ! print_array?2

begi n- procedure sel ect

_data

edit 9,999,999
edit 9,999,999
edit 9,999, 999
edit 9,999, 999

+ #j an
+ #feb
+ #mar

#feb total + #mar _tota
9, 999, 999
9, 999, 999

9, 999, 999
9, 999, 999

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 9

Copyright

| et order _gty2.category(0)="$0-%$4.99
| et order_qgty2.category(1l)="$5.00-%$100. 00
| et order_qgty2.category(2)="Over $100
begi n-sel ect
order date
I the price / price category for the order
c.price &price
nove &price to #price_num
eval uate #price_num

when < 5.0
let #x = O
br eak

when <= 100.0
let #x = 1
br eak

when- ot her
let #x = 2
br eak

end- eval uat e
I The quantity for this order
quantity

let #j = to_nunber(datetostr(&order_date,' MM))

if # <3
l et order_qty2.nonth_qty(#x,#j) =

order_qty2.month_qty(#x,#j) + &uantity

end-if
I the product for this order
description
if #i = 0 and order_qty. product(#i) =
| et order_qty. product(#i) = &description
end-if
if order_qty.product(#i) != &description
let #i = #i + 1
if #i >= {max_product s}

Creating Cross-Tabular Reports

display 'Error: There are nore than {max_products} products'

stop
end-if
| et order_qty.product (#i) = &description
end-if
if # <3
let order_qty.nmonth_qty(#i,#) =

order_qty.month_qty(#i,#) + &quantity

end-if
from orders a, ordlines b, products c
where a.order_num = b. order_num
and b. product _code = c. product _code
order by description
end- sel ect
end- procedure ! select _data
begi n- headi ng 5
print $current-date (1,1)

page- nunber (1, 64) 'Page

print '
print 'Product / Price Category' (4,1)
print ' January' (,32)
print ' February' (,42)
print ' March' (, 52)
print ' Total' (,62)
print '-' (5,1,70) Fill
end- headi ng

The following is the output for program ex8c.sqr.

© 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Order Quantity by Product and Price Category by Mnth' (2,10)

55

Creating Cross-Tabular Reports Chapter 9

11- JUN- 04 Page 1
Order Quantity by Product and Price Category by Month
Product / Price Category January February Mar ch Tot al
Cani sters 3 0 0 3
Curtain rods 2 8 18 28
G nger snaps 1 10 0 11
Hangi ng plants 1 20 0 21
Hookup wire 16 15 0 31
Hop scotch kits 2 0 0 2
Model i ng cl ay 5 0 0 5
New car 1 9 0 10
Thi mbl e 7 20 0 27
Thi ngamaj i gs 17 0 120 137
W dget s 4 0 12 16
Wre rings 1 0 0 1
0-4.99 28 45 12 85
5. 00- 100. 00 25 28 138 191
Over 100 7 9 0 16
Total s 60 82 150 292

SQR arrays are also advantageous in programs that produce charts. With the data for the chart aready in the
array, presenting this cross-tabular report as abar chart is easy.

See Chapter 14, "Using Business Charts," page 77.

56 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10

Printing Mailing Labels

This chapter provides overviews of mailing label printing and the sample program for printing mailing labels
and discusses how to:

+ Define columns and rows.

* Run the print mailing labels program.

Understanding Mailing Label Printing

An SOQR select paragraph retrieves the addresses and prints them on the page.

Sometimes you need to print labelsin multiple columns. The page then becomes a matrix of rows and
columns of labels. SQR enables you to print in column format with the COLUMNS and NEXT-COLUMN
commands in conjunction with NEXT-LISTING.

Understanding the Sample Program for Printing Mailing Labels

The following sample program prints mailing labelsin aformat of 3 columns by 10 rows. It aso counts the
number of labels that are printed and prints that number on the last sheet of the report.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 57

Printing Mailing Labels Chapter 10

Program ex9a. sqr
#define MAX_LABEL_LI NES 10
#def i ne LI NES BETWEEN LABELS 3
begi n-set up
decl are-1ayout default
paper -si ze=(10, 11) | ef t - mar gi n=0. 33
end-decl are
end- set up
begi n- progr am
do mailing_Il abels
end- program
begi n- procedure mailing_| abel s
| et #l abel _count = 0
| et #l abel lines = 0
colums 1 29 57 ! enable colums
alter-printer font=5 point-size=10
begi n-sel ect

nane (1,1, 30)
addr 1 (2,1, 30)
city
state
zip
move &zip to $zip XXXXX- XXXX
let $last _line = &city || ', ' || &state || ' ' || $zip

print $last_line (3,1, 30)
next-col um at - end=new i ne
add 1 to #l abel _count
if #current-colum =1
add 1 to #l abel _lines
if #label lines = { MAX_ LABEL_LI NES}
new page
| et #l abel lines = 0
el se
next-1isting no-advance skiplines={LI NES BETVWEEN LABELS}
end-if
end-if
from custoners
end- sel ect
use-columm 0 ! disable col ums
new page
print 'Labels printed on ' (,1)
print $current-date ()
print 'Total labels printed ="' (+1,1)
print #l abel count () edit 9,999, 999
end- procedure ! mailing_|abels

Defining Columns and Rows

58

The COLUMNS 1 29 57 command defines the starting position for three columns. The first column starts at
character position 1, the second at character position 29, and the third at character position 57.

The ex9a.sgr program writes the first address into the first column, the second address into the second, and
the third address into the third. The fourth address is written into the second row of the first column,
following the first label. When ten lines of labels are complete, a new page starts. After the last page of 1abels
has been printed, the program prints a summary page showing the number of labels that have been printed.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 10 Printing Mailing Labels

Note the technique for composing the last line of the label. The city, state, and zip columns are moved to
string variables. Thecommand LET $l ast_line = &city || ', " || &state || ' ' ||
$zi p combines the city, state, and zip code, plus appropriate punctuation and spacing, into a string, which it
storesin the $last_line variable. In thisway, city, state, and zip code are printed without unnecessary gaps.

The program defines two counters: #label_count and #label_lines. Thefirst counter, #label_count, counts the
total number of labels and printsit on the summary page. The second counter, #label _lines, counts the
number of rows of labels that were printed. When the program has printed the number of linesthat are
defined by { MAX_LABEL_LI NES}, it starts a new page and resets the #label_lines counter.

After each row of labels, the NEXT-LISTING command redefines the print position for the next row of labels
asline 1. NEXT-LISTING skips the specified number of lines (SKIPLINES) from the last line that was
printed (NO-ADVANCE) and sets the new position asline 1.

Note the use of the ALTER-PRINTER command. This command changes the font in which the report is
printed.

The sample program prints the labels in 10-point Times Roman, which is a proportionally spaced font. In
Microsoft Windows, you can use proportionally spaced fonts with any printer that supports fonts or graphics.
On other platforms, SQR directly supports HP LaserJet printers and PostScript printers.

In the sample program, the DECLARE-LAYOUT command defines a page width of 10 inches. Thiswidth
accommodates the printing of the third column, which contains 30 characters and begins at character position
57. SOR assumes a default character grid of 10 characters per inch, which would cause the third column to
print beyond the paper edge if this report used the default font. The 10-point Times Roman that is used here,
however, condenses the text so that it fits on the page. The page width is set at 10 inchesto prevent SQR from
treating the third-column print position as an error.

See Chapter 15, "Changing Fonts," page 85 and Chapter 27, "Printing with SOR," page 157.

Running the Print Mailing Labels Program

When you print with a proportionally spaced font, you must use a dightly different technique for running the
program and viewing the output. If you are using a platform such as UNIX/Linux, specify the printer type
with the -PRINTER:xx flag. If you are using an HP LaserJet, enter -PRINTER:HP (or -printer:hp). If you are
using a PostScript printer, enter -PRINTER:PS (or -printer:ps) on the command line.

For example:
sqr ex9a username/ password -printer:hp

Y ou can aso use the -K EEP command-line flag to produce output in the SQR Portable File format (SPF) and
print it by using SQR Print. You still need to use the -PRINTER:xx flag when printing.

See Chapter 27, "Printing with SOR," page 157.

The report produces the output in three columns corresponding to the dimensions of a sheet of mailing |abel
stock. In the preceding example, the report prints the labels from left to right, filling each row of labels before
moving down the page.

Y ou can aso print the labels from the top down, filling each column before moving to the next column of
labels. The code to do thisis shown next. The differences between this code and the previous one are shown
likethis. The output is not printed here, but you can run the file and view it by using the same procedure that
you used for the previous example.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 59

Printing Mailing Labels Chapter 10

Pr ogr am ex9b. sqr
#define MAX_LABEL_LI NES 10
#def i ne LI NES BETWEEN LABELS 3
begi n-set up
decl are-1ayout default
paper -si ze=(10, 11) | ef t - mar gi n=0. 33
end- decl are
end- set up
begi n- progr am
do mailing_Il abels
end- program
begi n- procedure mailing_| abel s
| et #Label Count = 0
| et #Label Lines = 0
colums 1 29 57 ! enable colums
alter-printer font=5 point-size=10
begi n-sel ect

nane (0, 1, 30)
addr 1 (+1, 1, 30)
city
state
zip
nove &zip to $zip XXXXX- XXXX
let $last line = &city || ', ' || &state || ' ' || $zip

print $last_line (+1,1, 30)
add 1 to #l abel count
add 1 to #l abel |ines
i f #label lines = { MAX LABEL_LI NES}
next - col uiMm got o-t op=1 at - end=newpage
l et #l abel lines =0
el se
position (+1)
position (+{LI NES_BETWEEN LABELS})
end-if
from custoners
end- sel ect
use-colum 0 ! disable col ums
new page
print 'Labels printed on ' (,1)
print $current-date ()
print 'Total labels printed ="' (+1,1)
print #l abel _count () edit 9,999, 999
end- procedure ! mmiling_|abels

60 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11

Creating Form Letters

This chapter provides an overview of the document paragraph and the sample program for form letters.

Understanding the DOCUMENT Paragraph

To create form letters, use a document paragraph. It starts with aBEGIN-DOCUMENT command and ends
with an END-DOCUMENT command. Between these commands, lay out the letter and insert variables where
you want data from the database to be inserted. SQR inserts the value of the variable when the document
prints. To leave blank linesin aletter, you must explicitly mark them with .b (see the sample program).

Document markers provide another way to add data to the letter. They are specia variables whose names
begin with the @ sign. They mark alocation in the document where you place data from areas external to the
document paragraph. Document markers defined in document paragraphs can be referenced in the POSITION
command outside the document paragraph to establish the next printing position.

The sample program demonstrates the use of variables and document markers. SQR prints the contents of the
variable in the position where it is placed in the document paragraph. For example, in the sample program,
the customer's name is printed on the first line.

Using a document marker gives you more flexibility in positioning the contents of variables. The sample
program uses a document marker to position the city, state, and zip code because the city name variesin
length and thus affects the position of the state name and zip code.

Understanding the Sample Program for Form Letters

The following simple form letter program, ex10a.sqr, demonstrates the use of document markers:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 61

Creating Form Letters Chapter 11

Program ex10a. sqr
begi n- program

do main
end- program
begi n- procedure main
begi n-sel ect
name
addr 1
addr 2
city
state
zip

do wite letter
from custoners
order by nane
end- sel ect
end- procedure ! main
begi n-procedure wite letter
begi n-docunent (1,1)
&name
&addr 1
&addr 2
@ity_state_zip
.b

.b
$current -date
Dear Sir or Madam

.b
Thank you for your recent purchases from ACME Inc. W would |ike
to tell you about our limted-tine offer
During this month, our entire inventory is marked down by 25%
Yes, you can buy your favorite merchandi se and save too.
To place an order sinply dial 800-555- ACVE
Delivery is free too, so don't wait.
.b
.b
Si ncerely,
Clark Axelotle
ACME | nc.

end- docunent

position () @ity_state_zip
print &ity ()
print ', ' O
print &state ()
print ' ' O
print &zip O
new page
end-procedure ! wite_letter

edi t XXXXX-XXXX

First, SQR performs the main procedure and the select paragraph. Next, it performsthe write letter
procedure and the document paragraph. The POSITION command sets the position to the appropriate line,
which is given by the @city_state zip marker. The program prints the city, then continues printing the other
elements to the current position. The state name and zip code automatically print in the correct positions with
appropriate punctuation.

The following is the output for program ex10a.sqr.

62 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 11

John Conway

2837 East Third Street
G eenw ch Vill age

New Yor k, NY 10002-1001

10- MAY- 2004

Dear Sir or Madam

Creating Form Letters

Thank you for your recent purchases fromACME Inc. W would like to tell you

about our limted-tine offer.

During this nmonth, our entire inventory is marked down by 25% Yes,

you can

buy your favorite nerchandi se and save too. To place an order sinply dial

800- 555- ACME. Delivery is free too, so don't wait.

Si ncerely,
Clark Axelotle
ACME | nc.

See Chapter 13, "Using Graphics," page 69.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

63

Chapter 12

Exporting Data to Other Applications

This chapter provides an overview of the sample program for exporting data and discusses how to create an
export file.

Understanding the Sample Program for Exporting Data

The following sample program creates an export file that you can load into a document such as a spreadsheet
or word processing file. The tabs create columnsin your spreadsheet or word processing document that
correspond to the columns in your database table.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 65

Exporting Data to Other Applications Chapter 12

Program exl11a. sqr
begi n-set up
I' No nmargins, w de enough for the w dest record
I and no page breaks
decl are-1ayout default
| ef t - margi n=0 t op- mar gi n=0
max_col ums=160 fornf eed=no
end-decl are
end- set up
begi n- progr am
do main
end- pr ogr am
begi n- procedure nmain
encode '<009>' into $sep ! Separator character is TAB
| et $cust _num = ' Cust oner Nunber'
[et $nane = 'Customer Nane'
let $addrl = ' Address Line 1'
| et $addr2 = ' Address Line 2'
let $city = "City'
let $state = 'State
let $zip = 'Zip Code'
| et $phone = ' Phone Nunber'
et $tot = 'Total'
string $cust_num $nane $addrl $addr2
$city $state $zip $phone $tot by $sep into $col _hds
print $col _hds (1,1)
new page
begi n-sel ect
cust_num
nane
addr1
addr 2
city
state
zip
phone
t ot
string &ust_num &nane &addr1 &addr 2
&city &state &zip &phone & ot by $sep into $db_cols
print $db_cols ()
new page
from custoners
end- sel ect
end- procedure ! main

Creating an Export File

66

The ENCODE command stores the code for the tab character in the $sep variable. The code <009> is
enclosed within angle brackets to indicate that it is a character that is not displayed. SQR treatsit asa
character code and sets the variable accordingly. ENCODE is a useful way to place nonal phabetical and
nonnumeric charactersinto variables.

The LET command creates variables for the text strings that are used as column headings in the export file.
The STRING command combines these variables in the $col _hds variable, with each heading separated by a
tab.

The select paragraph uses the STRING command again, this time to combine the records (named as column
variables) in the $db_cols variable, with each record similarly separated by atab.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 12 Exporting Data to Other Applications

The NEW-PAGE command is used in this example in an unusual way. It causes anew line and carriage
return at the end of each record, with the line number reset to 1. The page is not gected because of the
FORMFEED=NO argument in the DECLARE-LAY OUT command. Remember that this report is for
exporting, not printing.

Y ou can now load the output file (ex11alis) into a spreadsheet or other application.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 67

Chapter 13
Using Graphics

This chapter provides an overview of the sample program for simple tabular reports and discusses how to:
« Add graphics.
» Shareimages among reports.

¢ Print bar codes.

Understanding the Sample Program for Simple Tabular Reports

The following sample program produces a simple tabular report, similar to the one in the chapter " Selecting
Data from the Database":

Program ex12a. sqr
begi n- set up
decl are-1 ayout default
end-decl are
end- set up
begi n- progr am
do main
end- program
begi n- procedure nain
begi n-sel ect
nane (, 1, 30)
city (,+1,16)
state (,+1,5)
t ot (,+1,11) edit 99999999. 99
next-listing no-advance need=1
| et #grand total = #grand total + &tot
from custoners
end- sel ect
print '-' (,55,11) fill
print 'Grand Total' (+1,40)
print #grand total (,55,11) edit 99999999. 99
end- procedure ! main
begi n- headi ng 5
print $current-date (1,1) Edit ' DD MON YYYY
page- nunber (1, 60) 'Page
print ' Nane' (3,1

print "CGty' (,32)
print 'State' (,49)
print 'Total' (,61)
print '-' (4,1,65) fill

end- headi ng

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

69

Using Graphics Chapter 13

The SETUP section contains a DECLARE-LAY OUT command that specifies the default layout without
defining any options. The purpose of specifying the default layout isto use its margin settings, which are
defined as 1/2 inch. Without DECLARE-LAY OUT, the report would have no margins.

Note the PRINT command with the FILL option. This command produces dashed lines, which isasimple
way to draw linesfor areport that is printed on aline printer. On agraphical printer, however, you can draw
solid lines.

The following is the output for program ex12a.sqr.

06- JUN- 04 Page 1
Nane Cty State Tot al
Gregory Stonehaven Everretsville H 39.00
John Conway New Yor k NY 42.00
Eli ot Richards Queens NY 30. 00
| saiah J Schwartz and Conpany Zanesville H 33.00
Harol d Al exander Fi nk Davenpor t I'N 36. 00
Harriet Bailey Mamar oneck NY 21.00
Clair Butterfield Teaneck NJ 24.00
Quentin Fields C evel and CH 27.00
Jerry's Junkyard Specialties Frogline NH 12. 00
Kate's Qut of Date Dress Shop New York NY 15. 00
Sam Johnson Bel | Har bor M 18. 00
Joe Smith and Comnpany Big Falls NM 3.00
Corks and Bottles, Inc. New Yor k NY 6. 00
Harry's Landmark Di ner M ningville I'N 9. 00

Grand Tot al 315. 00

See Chapter 4, "Selecting Data from the Database," page 15 and Chapter 13, "Using Graphics," Adding
Graphics, page 70.

Adding Graphics

The following sample program includes graphical features: alogo, solid lines, and a change of font in the
heading:

70 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 13 Using Graphics

Pr ogram ex12b. sqr
begi n-set up
decl are-1ayout default
end-decl are
end- set up
begi n- program
do main
end- pr ogr am
begi n- procedure main
begi n-sel ect
nane (, 1, 30)
city (,+1,16)
state (,+1,5)
t ot (,+1,11) edit 99999999. 99
next-listing no-advance need=1
l et #grand_total = #grand_total + &tot
from custoners
end- sel ect
graphic (,55,12) horz-line 20
print 'Gand Total' (+2,40)
print #grand_total (,55,11) Edit 99999999. 99
end- procedure ! main
begi n- headi ng 11
print $current-date (1,1)
page- nunber (1, 60) 'Page
alter-printer point-size=14 font=4 ! switch font
print ' Name' (9,1) bold
print 'Gty' (,32) bold
print 'State' (,49) bold
print 'Total' (,61) bold
alter-printer point-size=12 font=3 ! restore font
graphic (9,1,66) horz-line 20
print-inmage (1, 23)
type=bnp-file
i mage-si ze=(21, 5)
sour ce=" acnel ogo. bnp’
end- headi ng

The GRAPHIC command draws solid lines with the HORZ-LINE argument. The lineis positioned by using a
normal SQR position specifier. Note that the third number in the position specifier is the length of the line,
which is given in characters. (The actual width of a character cell is determined by the CHAR-WIDTH or
MAX-COLUMNS arguments of DECLARE-LAYOUT.)

The HORZ-LINE argument of the GRAPHIC HORZ-LINE command is the thickness of the line, specified in
decipoints (an inch has 720 decipoints). For example, thegr aphi ¢ (10, 1, 66) horz-1i ne 20
command specifies a horizontal line following line 10 in the report, starting with position 1 (the left side of
the report) and stretching for 66 character positions (at 10 characters per inch, thisis 6.6 inches). The
thickness of the lineis 20 decipoints, which is 1/36 of an inch (about 0.7 mm).

Y ou can aso use the GRAPHIC command to draw vertical lines, boxes, and shaded boxes. See the
sgrlaser.sqr program in the SAMPLE (or SAMPLEW) subdirectory for an example.

The ALTER-PRINTER command in ex12b.sgr changes the font for the heading. When used a second time, it
restores the normal font for the rest of the report. The FONT option selects a font (typeface) that is supported
by the printer. The font is specified by number, but the number is printer-specific. On a PostScript printer, for
example, font 3 is Courier, font 4 is Helvetica, and font 5 is Times Roman.

The POINT-SIZE option specifies type size in points. Y ou can use awhole number or even afraction (for
example, POINT-SIZE=10.5). The following command changes the font to 14-point Helvetica:

alter-printer point-size=14 font=4 ! switch font

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 71

Using Graphics Chapter 13

The PRINT-IMAGE command inserts the logo. PRINT-IMAGE isfollowed by a print position corresponding
to the upper-left corner of the image (line 1, column 19 in the sample program). The TY PE option specifies
the image file type. In the example, the image is stored in Microsoft Windows bitmap format (bmp-file). The
size of the image is specified in terms of columns (width) and lines (height). In the example, the image is 30
characters wide (3 inches) and 7 lines high (1-1/6 inches).

In SQR, images are aways stored in external files. The format of the image must match that of the printer that
you are using. These formats are:

» Microsoft Windows. bmp file images.

» PostScript printer or view: epsfile.

« HP LaserJet:hpgl fileimages.

e HTML output: GIF or JPEG formats (gif file or jpeg file).

The SOURCE option specifies the file name of the image file. In the example, the fileis Acmelogo.bmp. The
fileis assumed to reside in the current directory or in the directory in which SQR isinstalled (you can place
the logo file in either of these places). Thefile can reside in any directory, however, aslong as you specify a
full path name for the image file.

The output file now contains graphic language commands. SQR can produce output that is suitable for HP
LaserJet printersin afile format that uses the HP PCL language or output that is suitable for PostScript
printersin afile format that uses the PostScript language. SQR can a so produce printer-independent output
filesin aspecia format called SQR Portable Format (SPF).

SQR can create a printer-specific output file (an .lisfile) or create the output in portable format (SPF). When
you create an .spf file, the name of theimage fileis copied into it, and the image is processed at print time,
when printer-specific output is generated. When you use .spf files, a change in the contents of the image file
isreflected in the report the next time that you print it or view it. Y ou can create printer-specific output by
using SQR or SQR Executeto directly generate an .lisfile or by using SOR Print to generate an .lisfile from
an .gpf file.

See Chapter 7, "Adding Declarations Using the SETUP Section," page 39 and Chapter 27, "Printing with
SQR." page 157.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Sharing Images Among Reports

72

Y ou can place logos and other imagesin areport by using only the PRINT-IMAGE command. However, the
DECLARE-IMAGE command is useful if you want several programs to share the definition of an image.

The ex12c.sgr program prints asimple form letter. It shows how to print alogo by using the DECLARE-
IMAGE and PRINT-IMAGE commands and how to print a signature by using only PRINT-IMAGE.

Because the image is shared among several reports, the DECLARE-IMAGE command is contained in the
acme.incfile:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 13 Using Graphics

File acne.inc

decl are-i mage acne_| ogo
type=bnp-file
i mage-si ze=(30, 7)
sour ce=' acrnel ogo. brp'

end- decl are

Thisfile declares an image with acme-logo as the name. It specifies the logo that is used in the previous
sample program. The declaration includes the type and source file for the image. When the image is printed,
you do not need to respecify these attributes.

Multiple programs can share the declaration and include the acme.inc file. If you later need to change an
attribute, such as the source, you need to change it in only one place. The image size is specified and provides
the default.

To change the size of animage in a particular report, use the IMAGE-SIZE argument of the PRINT-IMAGE
command. It overrides the image size that is specified in DECLARE-IMAGE.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 73

Using Graphics Chapter 13

Program ex12c. sqr
begi n-set up
#i ncl ude 'acne.inc'
end- set up
begi n- program

do main
end- pr ogr am
begi n- procedure nain
begi n-sel ect
nane
addr 1
addr 2
city
state
zip
phone

do wite letter
from custoners
order by nane
end- sel ect
end- procedure ! main
begi n-procedure wite letter
move &city to $csz

concat ', ' with $csz
concat &state with $csz
concat ' ' with $csz

move &zip to $zip XXXXX-XXXX
concat $zip with $csz
nove &phone to $phone_no (xxx) bxxx-Xxxx I Edit phone nunber.
begi n-docunent (1,1, 0)
&name @ ogo
&addr 1
&addr 2
$csz
.b
.b
.b
$current-date
Dear &name

.b

Thank you for your inquiry regardi ng Encore, Maestro!!, our revolutionary
teaching system for piano and organ. If you've always wanted to play an
instrunment but felt you could never naster one, Encore, Maestro!! is made for
you.
.b

Now anyone who can hum a tune can play one too. Encore, Mestro!! begins
with a step-by-step approach to sone of America's favorite songs. You'll learn
the correct keyboardi ng while hearing the sounds you nake through the
headphones provided with the Encore, Maestro!! system Fromthere, you'l
advance to intricate conpositions with dazzling nelodic runs. Encore, Maestrol!
can even teach you to inprovise your own sol os.

.b
Wet her you like classical, jazz, pop, or blues, Encore, Mestro!! is the
musi ¢ teacher for you.
.b
A local representative will be calling you at $phone_no
to set up an in-house denobnstration, so get ready to play your favorite tunes!!
.b
Si ncerely,
@i gnature
.b
.b

Clark Axelotle
end- docunent

74 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 13 Using Graphics

position () @ogo
print-imge acme-1ogo ()
i mage-si ze=(16, 4)
position () @ignature
print-imge ()
type=bnp-file
i mage-si ze=(12, 3)
source='cl ark. bnp'
new page
end-procedure ! wite letter

The #INCLUDE command, which is performed at compile time, gets text from another file. In this program,
the #AINCLUDE 'acme.inc' command includes the code from the acme.inc file.

The document paragraph begins with aBEGIN-DOCUMENT command and ends with an END-
DOCUMENT command. It uses variables and document markers to print inside the letter. The program uses
variables for the name and address, the date, and the phone number. It uses document markers for the logo
and signature.

Document markers are placeholdersin the letter. The program uses the @logo and @signature document
markersin a POSITION command before printing each image. The document markers make unnecessary
specifying the position of these itemsin the PRINT-IMAGE command. Instead, you print to the current
position.

The date is prepared with the $current-date reserved variable. It is printed directly in the document paragraph
without issuing a PRINT command.

The program uses the CONCAT command to put together the city, state, and zip code. In the document
paragraph, variables retain their predefined sizes. A column variable, for example, remains the width of the
column as defined in the database. Y ou can print the date and phone number directly, however, because they
occur at the end of aline, without any following text.

Printing Bar Codes

SQR supports awide variety of bar code types, which you can include in an SQR report.

To create a bar code, use the PRINT-BAR-CODE command. Specify the position of the bar codein an
ordinary position qualifier. In separate arguments, specify the bar code type, height, text to be encoded,
caption, and optional check sum. For example:

print-bar-code (1,1)

type=1

hei ght =0. 5

text="'01234567890

caption="0 12345 67890’
Arguments to PRINT-BAR-CODE can be variables or literals.
See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 75

Chapter 14

Using Business Charts

This chapter provides an overview of business charts and discusses how to:
+ Createachart.

« Defineachart.

e Print achart.

» Run the program to create a graphical report.

« Passdatato the chart.

Understanding Business Charts

Business charts are useful tools for presenting summary data. SQR provides two commands for creating
charts— DECLARE-CHART and PRINT-CHART—and avaried set of chart types, including:

« Line

- Pie

e Bar

» Stacked bar

» 100 percent bar

» Overlapped bar

» Floating bar
« Histogram

e« Area

+ Stacked area

» 100 percent area
« XY scatter plot

« High-low close

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Using Business Charts Chapter 14

Y ou can configure many attributes of SOR charts by activating three-dimensional effects or setting titles and
legends. SQR charts are also portable: you can move them from one hardware platform to another.

Y ou can prepare a business chart by using datathat is held in an array, just as you would for a cross-tabular
report. If you have already written a cross-tabular report, you need to take just one additional step to create a
chart using the data that is already collected in the array.

See Chapter 9, "Creating Cross-Tabular Reports,” page 47.

Creating a Chart

78

The following sample program builds on the report that you created in the chapter " Creating Cross-Tabular
Reports’ (ex8c.sqr). That sample program combined the two reports in one program. The following sample
program produces two charts corresponding to the two cross-tabs.

Here isthe code, with the lines that were changed or added shown like this:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 14

Program ex13a. sqr
#def i ne nax-categories 3
#def i ne max-products 100
begi n-set up
create-array
nane=or der _qty si ze={ max- pr oduct s}

fiel d=product: char fiel d=nont h_qgty: nunmber: 3

create-array
name=or der_qty2 si ze={ max- cat egori es}

fiel d=category:char field=nonth_qty: nunmber: 3

decl are-chart orders-stacked-bar
chart-si ze=(70, 30)
title="Order Quantity’
| egend-titl e=" Month'
t ype=st acked- bar
end-decl are ! orders-stacked- bar
end- set up
begi n- program
do sel ect_data
do print_array
print '"-'" (+2,1,70) fill
position (+1)
do print_array?
new page

et $done = 'YES' ! Don't need headi ng any nore

do print_the charts
end- program
begi n-procedure print_array
et #entry_cnt = #i
let #i =0
while #i <= #entry_cnt
| et $product order_qty. product (#i)

l et #jan = order_qty.nonth_qty(#i,0)
| et #feb = order_qty.nonth_qty(#i,1)
| et #mar = order_qty.nonth_qty(#i, 2)

| et #prod_tot #)an + #feb + #mar
print $product (,1,30)

print # an (,32,9) edit 9,999,999
print #feb (,42,9) edit 9,999,999
print #mar (,52,9) edit 9,999,999
print #prod tot (,62,9) edit 9,999, 999

position (+1)
let # =# + 1
end-whi | e
end- procedure ! print_array
begi n- procedure print_array2
let #i =0
while #i < {max_categori es}
I et $category = order_qty2. category(#i)

| et #jan = order_qty2.nmonth_qty(#i, 0)
let #feb = order_qty2.month_qty(#i, 1)
et #mar = order_qty2. nonth_qty(#i, 2)
| et #category tot = #jan + #feb + #mar
print $category (,1,31)

print #an (,32,9) edit 9,999,999
print #feb (,42,9) edit 9,999, 999
print #mar (,52,9) edit 9,999,999
print #category_tot (,62,9) edit 9,999, 999

position (+1)

| et #jan_total

| et #feb_total

| et #nar _total

let #i =# + 1
end-whi | e

#jan_total + #jan
#feb total + #feb
#mar _total + #nmar

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Using Business Charts

79

Using Business Charts

80

| et #grand_ total = #jan_tota

print 'Totals'
print #jan_total
print #feb_total
print #mar_t ot al
print #grand_tota

begi n- procedure sel ect _data

(+2,1)

(,32,9)
42, 9)

(1
(,52,9)
(l

62, 9)
end- procedure ! print_array2

edit
edit
edit
edit

Chapter 14

+ #feb total + #mar _tota

9, 999, 999
9, 999, 999
9, 999, 999
9, 999, 999

| et order_qty2.category(0)="$0-%$4.99
| et order_qty2.category(1l)="$5.00-%$100. 00
l et order_qty2.category(2)="Over $100

begi n-sel ect
order date

I the price / price category for the order

C.price &price

nove &price to #price_num
eval uate #price_num

when < 5.0
let #x = 0
br eak

when <= 100.0
let #x = 1
br eak

when- ot her
let #x = 2
br eak

end- eval uat e

I The quantity for this order

guantity

let #j = to_nunber(datetostr(&order_date," M)) - 1

if # <3

| et order_qty2.nonth_qty(#x,#j) =
order _qty2.month_qty(#x,#j) + &uantity

end-if

I the product for this order

description

if #i = 0 and order_qty.product(#i) ="

| et order_qty. product (#i)

end-if
i f order_qty. produc
let # = # + 1

if #i >= {max_product s}

di splay '"Err
stop
end-if
| et order_qty. product (#i)
end-if
if # <3

t(#i)

&description

I = &description

or: There are nore than {nmax_products} products

= &description

let order_qty.nmonth _qty(#i,#) =
order _qty.nmonth_qty(#i,#) + &quantity

end-if

from orders a, ordlines b, products ¢
where a.order_num = b.order_num
= c. product _code

and b. product _code
order by description
end- sel ect

end-procedure ! sel ect_data

begi n- headi ng 5

if not ($done = 'VYES')
print $current-date (1,1)

page- nunber (1, 64)

' Page

print 'Order Quantity by Product and Price Category by Month' (2, 10)
print 'Product / Price Category' (4,1)

print January'

(,32)

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 14 Using Business Charts

print ' February' (,42)
print ' March' (, 52)
print ' Total' (,62)
Print '-' (5,1,70) Fill
end-if
end- headi ng

begi n-procedure print_the charts
print-chart orders-stacked-bar (+2,1)
dat a- array=order_qty
dat a- array-r ow count =12
dat a- arr ay- col umm- count =4
dat a-array-col um-1| abel s=('Jan',"' Feb',"' Mar')
sub-title="By Product By Mnth'
new page
print-chart orders-stacked-bar (+2,1)
dat a- array=order _qty2
dat a- array-row count =3
dat a- arr ay- col umm- count =4
dat a- array- col um- 1| abel s=(' Jan',"' Feb',' Mar")
sub-title="By Price Category By Month'
end- procedure ! print_the_charts

Defining a Chart

The two chart sections in the ex13a.sgr program are specified with the DECLARE-CHART command in the
SETUP section and are named orders-stacked-bar. The width and height of the charts are specified in terms of
character cells. The charts that are generated by this program are 70 characters wide, which is 7 incheson a
default layout. The height of the chartsis 30 lines, which tranglatesto 5 inches at 6 lines per inch. These
dimensions define a rectangle that contains the chart. The box that surrounds the chart is drawn by default,
but you can disable it by using the qualifier BORDER=NO.

Thetitle is centered at the top of the chart. The text that is generated by LEGEND-TITLE must fit in the
small legend box preceding the categories, so keep this description short. Generally, charts ook best when the
text items are short. Here isthe DECLARE-CHART command:

decl are-chart orders-stacked-bar
chart-size=(70, 30)
title="Oder Quantity'
| egend-title=" Mnth'
t ype=st acked- bar
end-decl are ! orders-stacked-bar

The heading is printed on the first page only.

Printing a Chart

The PRINT-CHART commands are based on the orders-stacked-bar chart that was declared in the preceding
section.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 81

Using Business Charts Chapter 14

print-chart orders-stacked-bar (+2,1)
dat a-array=order_qty
dat a- array-row count =12
dat a- arr ay- col unm- count =4
dat a- array- col um- 1| abel s=('Jan',"' Feb',' Mar"')
sub-title="By Product By Mnth'
new page
print-chart orders-stacked-bar (+2,1)
dat a- array=order _qty2
dat a- array- r ow count =3
dat a- arr ay- col umm- count =4
dat a- array- col um- 1| abel s=('Jan',' Feb',' Mar")
sub-title="By Price Category By Mnth'

The data source is specified by using the DATA-ARRAY option. The named array has a structure that is
specified by the TY PE option. For a stacked-bar chart, the first field in the array gives the names of the
categories for the bars. The rest of the fields are series of numbers. In this case, each series correspondsto a
month.

The subtitle follows the title and can be used as a second line of thetitle. A legend labels the series. The
DATA-ARRAY-COLUMN-LABELS argument passes these |abels. The DATA-ARRAY -ROW-COUNT
argument is the number of rows (bars) to chart and DATA-ARRAY-COLUMN-COUNT is the number of
fieldsin the array that the chart uses. The array has four fields: the product (or price category) field and the
series that specifies three months.

Running the Program to Create a Graphical Report

When you create a graphical report, you must use a dightly different technique for running the program and
viewing the output:

» If you are using a platform such as UNIX/Linux, specify the printer type with the -PRINTER:xx flag.
« |If you areusing an HP LaserJet, enter -PRINTER:HP (or -printer:hp).
« |If you are using a PostScript printer, enter -PRINTER:PS (or -printer:ps) on the command line.

For example:

sqr test username/password -printer:hp

Y ou can also use the -KEEP command-line flag to produce output in the SQR Portable File format (SPF) and
print it by using SQR Print. Y ou still must use the -PRINTER:xx flag when printing.

See Chapter 27, "Printing with SOR," page 157.

Passing Data to the Chart

82

To pass the data to the chart, use the first field for the descriptions of bars (or lines or areas), and then use one
or more additional fields with series of numbers. This procedure is common to many chart types, including
line, bar, stacked-bar, 100 percent bar, overlapped bar, histogram, area, stacked-area, and 100 percent area.

Y ou can omit the first field and SQR uses cardinal numbers (1, 2, 3, and so on) for the bars. Only text fields
are used for these options.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 14 Using Business Charts

For pie charts, only one seriesis alowed. Pie charts are also a special case because you can specify which
segments to explode, or pull away, from the center of the pie. By using athird field in the array, you can have
aseriesof Y and N values that indicate whether to explode the segment. If Y isthe value in the first row of the
array, the pie segment that correspondsto the first row is exploded. With pie charts, you cannot omit the first
field with the descriptions. Pie charts cannot have more than 12 segments.

Pie charts display the numeric value next to each segment. The description is displayed in the legend. In
addition, SQR displays the percentage next to the value. Y ou can disable this feature by using the qualifier
PIE-SEGMENT-PERCENT-DISPLAY=NO.

When data is passed to an xy scatter plot or afloating-bar chart, the series are paired. A pair in afloating-bar
chart represents the base and height of the bars. A pair in an xy-scatter plot represents x and y coordinates. In
an xy-scatter plot, the first field does not have descriptions. In afloating-bar chart, the first field may have
descriptions for the bars. For both types, you can have one or more pairs of series.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 83

Chapter 15

Changing Fonts

This chapter discusses how to:
« Setfonts.
« Position text.

» Usethe WRAP option.

Setting Fonts

To select afont in SQR for PeopleSoft, use the DECLARE-PRINTER and ALTER-PRINTER commands.
The DECLARE-PRINTER command sets the default font for the entire report. The ALTER-PRINTER
command changes the font anywhere in the report and the change remains in effect until the next ALTER-
PRINTER.

To set afont for the entire report, use ALTER-PRINTER, which is not printer-specific, at the beginning of
the program. If you are writing a printer-independent report, the attributes that you set with DECLARE-
PRINTER take effect only when you print your report with the printer that you specify with the TY PE
argument. To specify aprinter at print time, use the -PRINTER:xx command-line flag.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, " SQR Command
Reference," ALTER-PRINTER

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, " SQR Command
Reference," DECLARE-PRINTER

Positioning Text

In SQR for PeopleSoft, you position text according to agrid. That grid is set by default to 10 characters per
inch and 6 lines per inch, but you can give it another definition by altering the CHAR-WIDTH and LINE-
HEIGHT parameters of the DECLARE-LAY OUT command.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Changing Fonts Chapter 15

86

Note, however, that character grid and character size function independently of one another. Fonts print in the
sizethat is set by DECLARE-PRINTER or ALTER-PRINTER, not the size that is defined by the grid. A
character grid is best used for positioning the first character in a string. It can express the width of astring
only in terms of the number of charactersthat it contains, not in an actual linear measurement, such asinches
or picas.

When you use a proportionally spaced font, the number of letters that you print may no longer match the
number of character cellsthat the text actually fills. For example, in the following sample code, the word
Proportionally fillsonly 9 cells, although it contains 14 letters.

When you print consecutive text strings, the actual position at the end of a string may differ from the position
that SQR assumes according to the grid. For this reason, concatenate consecutive pieces of text and print
them as one.

For example, don't write code like this:

alter-printer font=5 I select a proportional font
print & irst_nane () I print first nane

print ' " () I print a space

print & ast_nane () I print the last nane
alter-printer font=3 | restore the font

Instead, write code like this:

alter-printer font=5 I select a proportional font
I concatenate the nane

let $full_nanme = &first_name || ' ' || & ast_nane
print $full_name () I print the name
alter-printer font=3 I restore the font

The WRAP and CENTER options of the PRINT command also require special consideration when used with
proportional fonts. They both cal culate the text length based on the character count in the grid, which is not
the same as its dimensional width.

Look at the sample program. It contains alist of reminders from the reminderstable. It is printed in amix of
fonts: Times Roman in two different sizes, plus Helvetica bold.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 15 Changing Fonts

Program ex14a. sqr
begi n-set up
decl are-1ayout default
paper - si ze=(10, 11)
end- decl are
end- set up
begi n- program
do main
end- program
begi n- procedure main
I Set Tines Roman as the font for the report
alter-printer font=5 point-size=12
begi n-sel ect
rem nd_date (,1,20) edit 'DD MON-YY
rem nder (,+1) wap 60 5
position (+2)
fromremn nders
end- sel ect
end- procedure ! main
begi n-heading 7
print $current-date (1,1) Edit ' DD MON YYYY
page- nunber (1, 60) 'Page
I Use large font for the title
alter-printer font=5 point-size=24
print 'Rem nder List' (3,25)
I Use Helvetica for the col um headi ngs
alter-printer font=4 point-size=12
print 'Date' (6,1) bold
print 'Rem nder' (6,22) bold
graphic (6,1,66) horz-line
| Restore the font
alter-printer font=5 point-size=12
end- headi ng

The report uses the default layout grid of 10 characters per inch and 6 lines per inch, both for positioning the
text and for setting the length of the solid line.

Thefont is set at the beginning of the main procedure to font 5, which is Times Roman. The point sizeis set
to 12. Inthe HEADING section, itssize is set to 24 pointsto print the title.

The column headings are set to 12-point Helveticawith the ALTER-PRINTER FONT=4 POINT-SIZE=12
command. The BOLD option of the PRINT command specifies that they are printed in bold.

A solid lineis under the column headings. Note that it is positioned at line 6, the same as the column
headings. SQR draws the solid line as an underline. At the end the HEADING section, the font is restored to
Times Roman.

In an SQR program, the report heading is performed after the body. A font change in the heading does not
affect the font that is used in the body of the current page, although it changes the font that is used in the body
of subsequent pages. Keep track of your font changes and return fontsto their original settings in the same
section in which you change them.

Positioning the title requires careful coding. The CENTER option of the PRINT command does not work
because it does not account for the actual size of the text. Instead, position thetitle by estimating its length. In
this case, the title should start 2 1/2 inches from the left margin. The character coordinates are (3,25), which
areline 3, character position 25. Remember that the character grid that is used for positioning assumes 10
characters per inch. Therefore, 25 charactersis 2 1/2 inches.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 87

Changing Fonts Chapter 15

Using the WRAP Option

88

The WRAP option of the PRINT command prints the text of the reminder column. This option wraps text
based on a given width, which is 60 characters in the sample program.

The WRAP option works only on the basis of the width that is given in the character grid. It does not depend
on the font.

Text that is printed in Times Roman takes about 30-50 percent less space than the same text in Courier (the
default font, which is afixed-size font). This means that a column with a nominal width of 44 characters (the
width of the reminder column) can actually hold as many as 66 letterswhen it is printed in the Times Roman
font. To be conservative, specify awidth of 60.

The other argument of the WRAP option is the maximum number of lines. Because the reminder column in
the database is 240 characters wide, at 60 characters per line, no more than five lines are needed. Remember,
this setting specifies only the maximum number of lines. SQR does not use more lines than necessary.

SQOR calculates the maximum number of characters on aline by using the page dimensions in the DECLARE-
LAYOUT command (the default is 8 1/2 inches wide). In the sample program, 8 1/2 inches minus the inch
that isused in the marginsis 7 1/2 inches, or 75 characters at 10 characters per inch (CPI). Printing 60
characters starting from position 22 could exceed this maximum and cause an error or undesirable output. To
avoid this error, define the page as wider than it actually is. This definition is given by the argument PAPER-
SIZE=(10,11) in the DECLARE-LAYOUT command.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16

Writing Printer-Independent Reports

This chapter provides an overview of printer-independent reports and discusses the sample program for
selecting the printer type at runtime.

Understanding Printer-Independent Reports

To create a printer-independent report, you must write a program that avoids using any characteristics that are
unique to a specific printer. Although complete printer independence may be too restrictive, make your report
as printer-independent as you can by following these guidelines:

« Your program should be free of the following commands:

+ GRAPHIC FONT (use ALTER-PRINTER instead).

* PRINTER-INIT, PRINTER-DEINIT, and USE-PRINTER-TY PE (except for using this command to
select aprinter at runtime, as demonstrated in the sample program that follows).

+ CODE-PRINTER and CODE qualifiers of the PRINT command.
+ DECLARE-PRINTER and PRINT-DIRECT.
e The SYMBOL-SET argument of the ALTER-PRINTER command.

« Thereport should be readable if printed on aline printer. Graphics or solid lines printed with the graphic
command are not printed on aline printer. Test your graphical report on aline printer.

« Useonly asmall set of fonts. Font numbers 3, 4, and 5 and their boldface versions are the same regardless
of the type of printer that you use (except for aline printer). Font 3 is Courier, font 4 is Helvetica, and
font 5 is Times Roman. Note that on some HP printers, Helvetica may not be available. This reduces the
common fonts to fonts 3 and 5 only.

+ Beaware of certain limitations. EPS-file images can be printed only on PostScript printers. HPGL-file
images can be printed only on HP LaserJet Series 3 or higher or printers that emulate HP PCL at that
level. BMP-file images can be printed using Microsoft Windows only. Gl F-file and JPEG-file images are
suitable only for HTML output. PRINT-IMAGE and PRINT-CHART may not work with old printers that
use PostScript Level 1 or HP LaserJet Series||.

If your report is printer-neutral and does not specify a printer, you can specify the printer at runtime in two
ways.

Thefirst method is to use the -PRINTER:xx command-line flag, which specifies the output type for your
report. Use the following commands:

» -PRINTER:LP for line-printer output.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 89

Writing Printer-Independent Reports Chapter 16

-PRINTER:PS for PostScript output.

-PRINTER:HP for HP LaserJet output.

-PRINTER:WP for Microsoft Windows output.
+ -PRINTER:HT for HTML output.
If you are using the system shell, enter this command on the command line:

sqr test username/ password -printer:ps

Note. Currently, PRINTER:WP sends output to the default Microsoft Windows printer. To specify a
nondefault Microsoft Windows printer, enter the following command: - PRI NTER: WP: { Pri nt er Name}
. The{Printer Name} isthe name assigned to your printer. For example, to send output to a Microsoft
Windows printer named NewPrinter, you would use - PRI NTER: WP: NewPr i nt er . If your printer name
has spaces, enclose the entire command in double quotes.

The second method of specifying the printer type is by using the USE-PRINTER-TY PE command.

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, " SQR Command
Reference," USE-PRINTER-TY PE.

Reviewing the Sample Program for Selecting the Printer Type at
Runtime

90

In the following example, the PROGRAM section prompts the user to select the printer type at runtime. The
relevant lines are shown like this:

begi n- progr am

input $p 'Printer type' I Pronpt user for printer type
let $p = | ower ($p) I Convert type to |owercase
eval uate $p I Case statenent
when = ' hp'
when = ' hpl aserjet'’ I HP Laser Jet
use-printer-type hp
br eak
when = 'I|p’
when = 'lineprinter’ I Line Printer
use-printer-type Ip
br eak
when = ' ps'
when = ' postscript’ I Post Scri pt
use-printer-type ps
br eak
when- ot her
display 'Invalid printer type.'
stop

end- eval uat e
do list_customers
end- pr ogr am

In this code, the INPUT command prompts the user to enter the printer type. Because the USE-PRINTER-
TY PE command does not accept a variable as an argument, the EVALUATE command is used to test for the
six possible values and set the printer type accordingly.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 16 Writing Printer-Independent Reports

The EVALUATE command is similar to a switch statement in the C language. It compares avariable to
multiple constants and carries out the appropriate code.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 91

Chapter 17

Using Dynamic SQL and Error Checking

This chapter discusses how to:
» Usevariablesin SQL.

» Usedynamic SQL.

» Use SQL error checking.

» Use SQL and substitution variables.

Using Variables in SQL

SQL supports the use of variables. A SQL statement containing variables is considered static. When SQR
runs this statement several times, it runs the same statement, even if the values of the variables change.
Because SQL allows variables only in places where literals are allowed (such asin a WHERE clause or
INSERT statement), the database can parse the statement before the values for the variables are given.

The ex16a.sgr sample program selects customers from a state that the user specifies:

Program ex16a. sqr
begi n- program
do list _custoners for_state
end- program
begi n-procedure list_custoners_for_state
i nput $state maxl en=2 type=char 'Enter state abbreviation'
l et $state = upper ($state)
begi n-sel ect
nane (,1)
position (+1)
from custoners
where state = $state
end- sel ect
end-procedure ! list _custonmers_for_state

Note the use of the $state variable in the select paragraph. When you use avariablein a SQL statement in
SOR for PeopleSoft, the SQL statement that is sent to the database contains that variable. SQR binds the
variable before the SQL is run. In many cases, the database needs to parse the SQL statement only once. The
only item that changes between runs of the select paragraph is the value of the variable. Thisisthe most
common example of varying a select paragraph.

In the sample program, the INPUT command prompts the user to enter the value of state. The MAXLEN and
TY PE arguments verify the input, ensuring that the user enters a string of no more than two characters. If the
entry isincorrect, INPUT reprompts.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 93

Using Dynamic SQL and Error Checking Chapter 17

The sample program converts the contents of the $state variable to uppercase, which enables the user to enter
the state without worrying about the case. In the example, state is uppercase in the database. The sample
program shows the LET command that is used with the SQR upper function.

Y ou can let the SQL perform the conversion to uppercase by usingwher e st at e = upper ($st at e)

if you are using an Oracle or Sybase database or by usingwher e state = ucase($state) ifyouare
using another database. However, SQR enables you to write database-independent code by moving the use of
such SQL extensionsto the SQR code.

When you run this program, you must specify one of the states that isincluded in the sample data for the
program to return any records. At the prompt, enter IN, MI, NH, NJ, NM, NY, or OH. If you enter NY (the
state where most of the customersin the sample data reside), SQR generates the following output:

Qut put for program exl6a. sqr
John Conway

Eli ot Richards

Harriet Bail ey

Kate's Qut of Date Dress Shop
Corks and Bottles, Inc.

Using Dynamic SQL

You may find it too restrictive that you can use variables only where literals are alowed. In the following
example, the ordering of the records changes based on the user's selection. The program runs the select
statement twice. The first time, the first column is called name and the second column is called city, and the
program sorts the records by name with a secondary sort by city. The second time, the first column is the city
and the second is name, and the program sorts by city with a secondary sort by name. Thisisthe first select

paragraph:
sel ect nane, city

from custoners
order by nanme, city

Thisisthe second select paragraph:
sel ect city, nane

from custoners

order by city, nane

These statements are different. SQR constructs the statement each time before running it. Thistechniqueis
called dynamic SQL, and it isillustrated in the following sample program. To take full advantage of the error-
handling procedure, run it with the -CB command-line flag.

94 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 17 Using Dynamic SQL and Error Checking

Pr ogr am ex16b. sqr
begi n- program
let $coll = 'nane
let $col 2 "city'
| et #pos = 32
do list_custonmers _for_state
position (+1)
let $col 1 "city'
let $col2 = 'nane
| et #pos = 18
do list_custonmers_for_state
end- pr ogr am
begi n- procedure gi ve_warni ng
di spl ay ' Dat abase error occurred
di spl ay $sql -error
end- procedure ! give_warning
begi n-procedure list_custoners_for_state
let $ny_order = $coll || '," || $col 2
begi n-sel ect on-error=gi ve_war ni ng
[$col 1] &col umil=char (, 1)
[$col 2] &col um2=char (, #pos)
position (+1)
from custoners
order by [$ny_order]
end- sel ect
end-procedure ! list_customers_for_state

When you use variablesin an SQL statement in SQR to replace literals and more, you make them dynamic
variables by enclosing them in square brackets. For example, when you use the [$my_order] dynamic
variable in the ORDER BY clause of the select paragraph, SQR places the text from the $my_order variable
in that statement. Each time the statement isrun, if the text changes, a new statement is compiled and run.

Note. The z/OS operating system does not support square brackets for dynamic variables. Use slashes (/)
instead.

Other dynamic variables are [$col 1] and [$col2]. They substitute the names of the columnsin the select
paragraph. The & columnl and & column?2 variables are column variables.

Y ou can use dynamic variables to produce reports like this one. The datain the first half of the report is sorted
differently from the datain the second half. Also note the give war ning error-handling procedure, discussed
next.

The following is the output for Program ex16b.sqr:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 95

Using Dynamic SQL and Error Checking

John Conway New Yor k
Clair Butterfield Teaneck

Corks and Bottles, Inc. New Yor k

Eli ot Richards Queens
Gregory Stonehaven Everretsville
Har ol d Al exander Fink Davenport

Harriet Bail ey
Harry's Landmark Di ner
| saiah J Schwartz and Conpany

Mamar oneck
M ningville
Zanesville

Chapter 17

Jerry's Junkyard Specialties Frogline
Joe Smith and Conpany Big Falls
Kate's Qut of Date Dress Shop New York
Quentin Fields C evel and
Sam Johnson Bel | Har bor

Bel | Har bor Sam Johnson

Big Falls Joe Smith and Conpany

C evel and Quentin Fields

Davenport Harol d Al exander Fink
Everretsville Gregory Stonehaven

Frogline Jerry's Junkyard Specialties
Mamar oneck Harriet Bailey

M ningville Harry's Landmark Di ner

New Yor k John Conway

New Yor k Corks and Bottles, Inc.

New Yor k Kate's Qut of Date Dress Shop
Queens Eli ot Ri chards

Teaneck Clair Butterfield

Zanesvill e | saiah J Schwartz and Conpany

Using SQL Error Checking

96

SQOR for PeopleSoft checks and reports database errors for SQL statements. When an SQR program is
compiled, SQR checks the syntax of the SELECT, UPDATE, INSERT, and DELETE SQL statementsin the
program. Any SQL syntax error is detected and reported at compile time, before the report is run.

When you use dynamic SQL, SQR cannot check the syntax until runtime. In that case, the content of the
dynamic variable is used to construct the SQL statement, which can allow syntax errors to occur in runtime.
Errors could occur if the dynamic variables that are selected or used in aWHERE or ORDER BY clause are
incorrect.

SQR traps any runtime error, reports the error, and ends the program. To change this default behavior, use the
ON-ERROR option of the BEGIN-SELECT or BEGIN-SQL paragraphs.

begi n-sel ect on-error=gi ve_war ni ng

[$col 1] &col uml=char (, 1)

[$col 2] &col um2=char (, #pos)
position (+1)

from custoners

order by [$my_order]

end- sel ect

In this sample program, if a database error occurs, SQR invokes a procedure called give war ning instead of
reporting the problem and ending. Write this procedure like this:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 17 Using Dynamic SQL and Error Checking

begi n- procedure gi ve_warni ng
di spl ay ' Dat abase error occurred
di spl ay $sql -error

end- procedure ! give_warning

This procedure displays the error message but does not stop running the program. Instead, the program
continues at the statement immediately following the SQL or SELECT paragraph. Note the use of the $sql-
error variable, which is a special SQR-reserved variable. It contains the error message text from the database
and is automatically set by SQR after a database error occurs.

SQR has anumber of reserved, or predefined, variables. For example, the $sqr-program variable has the
name of the program that is running. The$username variable has the user name that was used to sign in to the
database. The #page-count variable has the page number for the current page.

Using SQL and Substitution Variables

SOR uses the value of a substitution variable to complete the select paragraph at compile time. Because the
select paragraph is complete at compile time, SQR can check its syntax before running the program. From
this point on, the value of {my_order} cannot change and the SQL statement is considered static.

In the following program, the ASK command in the SETUP section prompts the user at compile time. The
value that the user entersis placed in a specia kind of variable called a substitution variable. This variable
can be used to substitute any command, argument, or part of a SQL statement at compile time. This example
isless common, but it demonstrates the difference between compile-time and runtime substitutions.

Program ex16c. sqr
begi n-set up

ask my_order 'Enter the colum nanme to sort by (nane or city)
end- set up
begi n- progr am

do list_custonmers _for _state
end- pr ogr am
begi n- procedure gi ve_warni ng

di spl ay ' Dat abase error occurred

di spl ay $sql -error
end- procedure ! give_warning
begi n-procedure list_custoners_for_state
begi n-sel ect on-error=gi ve_war ni ng
nane (,1)
city (,32)

position (+1)

from custoners
order by {ny_order}
end- sel ect
end-procedure ! list_customers_for_state

In this case, the ASK command prompts the user for the value of the {my_order} substitution variable, which
is used to sort the output. If the argument is passed on the command line, no prompt appears. When you run
this program, enter name, city, or both (in either order and separated by a comma). The program produces a
report that is sorted accordingly.

Y ou can use the ASK command only in the SETUP section. SQR processes ASK commands at compile time
before running the program. Therefore, all ASK commands are run before any INPUT command.

INPUT ismore flexible than ASK. Y ou can use INPUT inside loops. Y ou can validate the length and type of
datainput and reprompt if it isnot valid. The sample program at the beginning of this chapter contains an
example of reprompting .

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 97

Using Dynamic SQL and Error Checking Chapter 17

98

ASK can be more powerful. Substitution variables that are set in an ASK command enable you to modify
commands that are normally quite restrictive. The following code shows this technique:

begi n-set up

ask hlines 'Nunmber of l|ines for heading'
end- set up
begi n- progr am

print "Hello, World!!" (1,1)
end- pr ogr am
begi n- headi ng {hli nes}

print 'Report Title' () center
end- headi ng

In this example, the {hlines} substitution variable defines the number of lines that the heading will occupy.
The BEGIN-HEADING command normally expects aliteral and does not alow aruntime variable. When a
substitution variable is used with this command, its value is modified at compile time.

See Chapter 26, "Compiling Programs and Using SOR Execute," page 153.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 18

Using Procedures and Local Variables
and Passing Arguments

This chapter discusses how to:
» Useprocedures.
e Uselocal variables.

e Passarguments.

Using Procedures

The code example in this section shows a procedure that spells out a number. The sample program for
printing checks uses this procedure. When printing checks, you normally need to spell out the dollar amount.

In the spell.inc code example, the assumption is that the checks are preprinted and that the program hasto
print only items such as the date, name, and amount.

SOR procedures that contain variables that are visible throughout the program are called global procedures.
These procedures can also directly reference any program variable.

In contrast, procedures that take arguments, such as the spell_number procedure in this section’'s check-
printing sample program, are local procedures. In SQR for PeopleSoft, any procedure that takes argumentsis
automatically considered local.

Variables that are introduced in alocal procedure are readable only inside the spell.inc procedure. This useful
feature avoids name collisions. The spell_number procedureisin an include file because other reports may
also want to useit.

Using Local Variables

When you create library procedures that can be used in many programs, make them local. Then, if a program
has a variable with the same name as a variable that is used in the procedure, a collision will not occur. SQR
treats the two variables as separate.

Declare aprocedure as local even if it does not take any arguments. To do this, place the LOCAL keyword
following the procedure name in the BEGIN-PROCEDURE command.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 99

Using Procedures and Local Variables and Passing Arguments Chapter 18

To reference aglobal variable from alocal procedure, insert an underscore between the prefix character (#, $,
or &) and the variable name. Use the same technique to reference reserved variables, such as#current-line.
These variables are always global so that you can reference them from alocal procedure.

SOR supports recursive procedure calls, but it maintains only one copy of alocal variable. A procedure does
not allocate new instances of the local variables on a stack, as C or Pascal would.

Passing Arguments

100

Procedure arguments are treated as local variables. Arguments can be numeric, date, or text variables or
strings. If an argument is preceded with a colon, its value is passed back to the calling procedure.

In the following code example, spel | _nunber takestwo arguments. The first argument is the check
amount. This argument is a number, and the program passes it to the procedure. The procedure does not need
to passit back.

The second argument is the result that the procedure passes back to the calling program. We precede this
variable with a colon, which means that the value of this argument is copied back at the end of the procedure.
The colon is used only when the argument is declared in the BEGIN-PROCEDURE command.

Look at the following sample program. It is not a complete program, but it is the spell_number procedure,
which is stored in the spell.inc file. The check-printing sample program includes this code by using an
#INCLUDE command.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 18
File spell.inc
begi n- procedure spel |l _nunber (#num : $str)

let $str ="'

I break the nunber to it's 3-digit parts

fl oor (#num / 1000000000000)
nmod(fl oor (#num / 1000000000), 1000)
nod(fl oor (#num / 1000000), 1000)
nod(fl oor (#num / 1000), 1000)

nmod(f | oor (#numj, 1000)

let #trillions
let #billions
let #mllions
| et #thousands
| et #ones =
I spell each 3-digit part

do spell _3digit(#trillions, trillion', $str)
do spell _3digit(#billions, " billion', $str)
do spell _3digit(#mllions,"mllion', $str)
do spel | 3digit(#thousands,'thousand', $str)

do spell 3digit(#ones,'"',6 $str)
end- procedure ! spell _nunber

begi n- procedure spel | _3di gi t (#num $part _nane, : $str)

| et #hundreds
| et #rest
i f #hundreds
do spel |l _digit(#hundreds, $str)
concat 'hundred ' with $str
end-if
i f #rest
do spell _2digit(#rest, $str)
end-if
i f #hundreds or #rest
if $part_name !'= "'
concat $part_name with $str
concat ' ' with $str
end-if
end-if
end- procedure ! spell _3digit
begi n- procedure spell_2digit(#num: $str)
| et #tens = floor(#num/ 10)
| et #ones = nmod(#num 10)
i f #num < 20 and #num > 9
eval uate #num
when = 10
concat 'ten ' with $str
br eak
when = 11
concat 'eleven ' with $str
br eak
when = 12
concat 'twelve ' with $str
br eak
when = 13
concat 'thirteen ' with $str
br eak
when = 14
concat 'fourteen
br eak
when = 15
concat 'fifteen ' with $str
br eak
when = 16
concat 'sixteen ' with $str
br eak
when = 17
concat 'seventeen ' with $str
br eak
when = 18
concat 'eighteen ' with $str

floor (#num/ 100)
nod(#num 100)

""with $str

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Using Procedures and Local Variables and Passing Arguments

101

Using Procedures and Local Variables and Passing Arguments

br eak
when = 19
concat 'nineteen ' with $str
br eak
end- eval uat e
el se
eval uate #tens
when = 2
concat 'twenty' with $str
br eak
when = 3
concat 'thirty' with $str
br eak
when = 4
concat 'forty' with $str
br eak
when = 5
concat 'fifty' with $str
br eak
when = 6
concat 'sixty' with $str
br eak
when = 7
concat 'seventy' with $str
br eak
when = 8
concat 'eighty' with $str
br eak
when = 9
concat 'ninety' with $str
br eak
end- eval uat e
i f #num > 20
i f #ones
concat '-' with $str
el se
concat ' ' with $str
end-if
end-if
i f #ones
do spel |l _digit (#ones, $str)
end-if
end-if

end- procedure ! spell _2digit
begi n- procedure spell _digit(#num: $str)
eval uate #num

when = 1
concat
br eak

when = 2
concat 'two ' with $str
br eak

when = 3
concat 'three ' with $str
br eak

when = 4
concat ' four
br eak

when = 5
concat 'five ' with $str
br eak

when = 6
concat
br eak

one ' with $str

"with $str

SiXx ' wWith $str

Chapter 18

102 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 18 Using Procedures and Local Variables and Passing Arguments

when = 7
concat 'seven ' with $str

br eak

when = 8
concat 'eight ' with $str

br eak

when = 9
concat 'nine ' with $str

br eak

end- eval uat e

end-procedure ! spell_digit

The result argument is reset in the procedure because the program begins with an empty string and keeps
concatenating the parts of the number to it. The program supports numbers up to 999 trillion only.

The number is divided into its three-digit parts: trillions, billions, millions, thousands, and ones. Another
procedure spells out the three-digit numbers such as one hundred twelve. Note that the word and is inserted
only between dollars and cents, but not between three-digit parts. Thisformat is common for check printing
in dollars.

Note the use of math functions, such asfloor and mod. SQR for PeopleSoft has alarge set of functions that
can be used in expressions. These functions are listed and described under the LET command.

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," LET.

The series of EVALUATE commands in the number-spelling procedures are used to correlate the numbers
that are stored in the variables with the strings that are used to spell them out.

Thisis the sample program that prints the checks:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 103

Using Procedures and Local Variables and Passing Arguments

Program ex17a. sqr
#i nclude 'spell.inc'
begi n-set up
decl are-1ayout default
end- decl are
end- set up
begi n- program
do main
end- program
begi n- procedure main
alter-printer font=5 point-size=15
begi n-sel ect
name &name
sunm(d. price * c.quantity) * 0.10 &r ef und
do print_check(&refund)
from custonmers a, orders b
ordlines ¢, products d
where a.cust_num = b. cust_num
and b. order _num = c. order_num
and c. product _code = d. product _code
group by nane
havi ng sum(d. price * c.quantity) * 0.10 >= 0.01
end- sel ect
end- procedure ! main
begi n- procedure print_check(#anount)
print $_current-date (3,45) edit 'DD Mn-YYYY
print & name (8,12)
nove #anmount to $di splay_amt 9,999, 990. 99
I enclose nunber with asterisks for security
let $display_ant = '**' || ltrinm($display_ant,' ') || '**
print $display_ant (8,58)
i f #amount < 1.00

l et $spelled_amount = 'Zero dollars

el se
do spel |l _nunber (#anmount, $spel | ed_anount)
let #l en = I engt h($spel | ed_anount)

I Change the first letter to uppercase

| et $spell ed_anount = upper(substr($spelled amunt, 1, 1))
|| substr($spelled _anmpunt, 2, #l en - 1)

concat 'dollars ' with $spell ed_amunt

end-if
| et #cents = round(nod(#anount, 1) * 100, 0)
l et $cents_amount = "and ' || edit(#cents,"'00') || ' cents'

concat $cents_anpbunt with $spell ed_anpunt
print $spelled_anount (12, 12)
print 'Rebate' (16, 12)
print ' " (20)
next-listing need=20
end- procedure ! print_check

Chapter 18

The main procedure starts by setting the font to 15-point Times Roman. The select paragraph isajoin of
severad tables. (A join is created when you select data from more than one database table in the same select
paragraph.) The customers table has the customer's name. The program joinsit with the orders and ordlines

tables to get the customer's order details. It also joins with the products table for the price.

The following expression adds up all of the customer's purchases and calculates a 10 percent rebate:

sum(d. price * c.quantity) * 0.10

The statement groups the records by the customer name, one check per customer. Thisis done with the

following clause:

104 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 18 Using Procedures and Local Variables and Passing Arguments
group by nane
havi ng sum(d.price * c.quantity) * 0.10 >= 0.01
The having clause eliminates checks for less than 1 cent.

The print_check procedureisaloca procedure. Note the way that it references the date and customer name
with & _current-date and & name, respectively.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 105

Chapter 19

Creating Multiple Reports from One
Program

This chapter provides overviews of how to create multiple reports and the sample program for multiple
reports and discusses how to:

» Define heading and footing sections.

« Define program output.

Understanding How to Create Multiple Reports

Y ou can create multiple reports based on common data, selecting the database records only once and creating

different reports simultaneously. The aternative—writing separate programs for the different reports—would
require you to perform a separate database query for each report. Repeated queries are costly because
database operations are often the most resource-consuming or time-consuming part of creating areport.
Creating multiple reports from one program can save a significant amount of processing time.

Understanding the Sample Program for Multiple Reports

The following sample program, ex18a.sqr, shows how SQR for PeopleSoft enables you to write multiple
reports with different layouts and different heading and footing sections. The sample program prints three
reports: the labels from the chapter "Printing Mailing Labels,”" the form letter from "Creating Form L etters"
and the listing report from " Selecting Data from the Database." All three reports are based on the same data.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 107

Creating Multiple Reports from One Program Chapter 19

Program ex18a. sqr
#defi ne MAX_LABEL_LI NES 10
#def i ne LI NES BETWEEN LABELS 3
begi n-set up
decl are-1ayout | abels
paper -si ze=(10, 11) | ef t - mar gi n=0. 33
end-decl are
decl are-layout formletter
end-decl are
decl are-1ayout I|isting
end- decl are
decl are-report | abels
| ayout =l abel s
end-decl are
decl are-report formletter
| ayout =form | etter
end- decl are
decl are-report listing
| ayout =l i sting
end-decl are
end- set up
begi n- progr am
do main
end- pr ogr am
begi n- procedure main
do init_nmmiling_|abels
begi n-sel ect
name
addr 1
addr 2
city
state
zip
move &zip to $zip XXXXX-XXXX
phone
do print_| abel
do print_letter
do print _listing
from custoners
end- sel ect
do end_nwmiling_I| abel s
end- procedure ! main
begi n-procedure init_nailing | abels

| et #l abel _count = 0

l et #l abel lines =0

use-report |abels

colums 1 29 57 | enable col ums

alter-printer font=5 point-size=10
end-procedure ! init_mmiling_|abels

begi n- procedure print_| abe
use-report |abels
print &name (1,1, 30)
print &ddrl (2,1, 30)
let $last _line = &city || ', ' || &state || ' ' || $zip
print $last_line (3,1, 30)
next-col um at - end=new i ne
add 1 to #l abel _count
if #current-colum =1
add 1 to #l abel |ines
if #label _lines = { MAX_ LABEL_LI NES}
new page
| et #l abel lines = 0
el se
next-1isting no-advance skiplines={LI NES BETVWEEN LABELS}

108 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 19

end-if
end-if
end-procedure ! print_| abel
begi n- procedure end_nuailing_I| abel s
use-report |abels
use-colum 0 ! disable col ums
new page
print 'Labels printed on ' (,1)
print $current-date ()
print 'Total |abels printed ="' (+1,1)
print #l abel _count () edit 9,999,999
end- procedure ! end_nmailing_I| abels
begi n-procedure print_letter
use-report formletter
begi n-docunent (1, 1)
&nane
&addr 1
&addr 2

@ity state zip
.b
.b

Creating Multiple Reports from One Program

$current -date

Dear Sir or Madam
.b
Thank you for your recent purchases from ACME I nc.

W& woul d

like to tell you about our limted time offer. During this nonth,
our entire inventory is marked down by 25% Yes, you can buy your

favorite nerchandi se and save too.
To place an order sinply dial 800-555-ACMVE
Delivery is free too, so don't wait.
.b
.b
Si ncerely,
Cark Axelotle
ACME | nc.
end- docunent
position () @ity state zip
print &ity (
print ', ' (
(
(
$
(

print &state
print ' '
nove &zip to
print $zip
new page
end-procedure ! print_letter
begi n-heading 4 for-reports=(listing)
print 'Custonmer Listing' (1) center

print 'Name' (3,1)

print "Gty (,32)

print 'State' (,49)

print 'Phone' (,55)
end- headi ng
begi n-footing 1 for-reports=(listing)

I Print "Page n of m in the footing

page- nunber (1,1) 'Page '

| ast - page () " of '
end-footing
begi n- procedure print_listing

use-report listing

print &name (,1)

print &ity (,32)

print &state (,49)

print &phone (,55)

position (+1)

P XXXXX- XXXX

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

109

Creating Multiple Reports from One Program Chapter 19

end-procedure ! print_listing

The SETUP section defines three layouts and three different reports that use these layouts. The labels report
requires alayout that is different from the default. The other two reports use alayout that isidentical to the
default layout. You can save the last layout declaration and use the form-letter layout for the listing. However,
unless alogical reason exists why the two layouts should be the same, you should keep separate layouts. The
name of the layout indicates which report usesiit.

The main procedure performs the Select. It is performed only once and includes all of the columns for all of
the reports. The phone column is used only in the listing report, and the addr2 column is used only in the
form-letter report. The other columns are used in more than one report.

For each record that is selected, three procedures are run. Each procedure processes one record for its
corresponding report. The print_label procedure prints one label, print_letter prints one letter, and
print_listing prints one line in the listing report. Each procedure begins by setting the SQR printing context
to its corresponding report. SQR sets the printing context with the USE-REPORT command.

Defining Heading and Footing Sections

SQR enables you to define HEADING and FOOTING sections for each report. This sample program defines
only the heading and footing for the listing report because the other two reports do not use them. The FOR-
REPORTS option of the BEGIN-HEADING and BEGIN-FOOTING commands specifies the report name.
The parentheses are required. The USE-REPORT command is not needed in the heading or footing. The
report isimplied by the FOR-REPORTS option.

Defining Program Output

110

Most of the code for ex18a.sqr is taken from ex9a.sqr, ex10a.sqr, and ex3a.sgr. Because this program creates
output with proportional fonts, you must run it with the -KEEP or -PRINTER:xx command-line flags.

When you run ex18a.sqr, you get three output files that match the output files for ex9a, ex10a, and ex3a,
respectively. These output files have the names ex18allis (labels), ex18a.l01 (form letter), and ex18a.102
(customer listing). If you specify -KEEP, the output files are named ex18a.spf, ex18a.501, and ex18a.502,
respectively.

See Also

Chapter 4, "Selecting Data from the Database,” page 15

Chapter 10, "Printing Mailing L abels," page 57

Chapter 11, "Creating Form L etters," page 61

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 20

Using Additional SQL Statements with
SOR

This chapter discusses how to:

» Use SQL statementsin SQR.
+ UseBEGIN-SQL.

Using SQL Statements in SQR

Although SELECT may be the most common SQL statement, you can also perform other SQL commandsin
SQR. Here are afew examples:

» If the program prints important documents such as checks, tickets, or invoices, you may need to update
the database to indicate that the document was printed.

Y ou can do thisin SQR with a SQL UPDATE statement.
» You can use SQR to load datainto the database.

SOR can read and write external files and construct records. SQR can also insert these records into the
database by using a SQL INSERT statement.

« Tohold intermediate results in atemporary database table, you can create two SQL paragraphsin the
SQR program (CREATE TABLE and DROP TABLE) to create this table at the beginning of the program
and drop the table at the end.

These are only afew examples. SQR can perform any SQL statement, and this feature is used often.

Using BEGIN-SQL

A SQL statement other than a select statement must use the BEGIN-SQL paragraph.
The following sample program loads data from an external file into the database. It demonstrates two

important features of SQR: handling external files and performing database inserts. This sample program
loads the tab-delimited file that is created by the program ex1la.sqr:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 111

Using Additional SQL Statements with SQR Chapter 20

112

Program ex19a. sqr
begi n-set up
begi n-sql on-error=skip ! table nmay al ready exi st
create table custonmers_ext (

cust_numint not null,
nane varchar (30),
addr 1 var char (30),
addr 2 varchar (30),

city var char (16),
state var char (2),
zip varchar (10),
phone varchar (10),
t ot i nt
end- sql
end- set upbegi n- program
do main
end- progr anbegi n- procedure mai n#i f {sqr-database} = 'Sybase
begi n-sq
begi n transaction
end- sql

#endi f
encode ' <009>' into $sep
open 'ex1lla.lis' as 1 for-reading record=160:vary
read 1 into $rec:160 ! skip the first record, colum headi ngs
while 1
read 1 into $rec: 160
if #end-file
br eak
end-if
unstring $rec by $sep into $cust_num $nane
$addr1l $addr2 $city $state $zi p $phone $t ot
nove $cust_num to #cust_num
nove $tot to #tot
begi n-sql
insert into customers_ext (cust_num nane,
addrl, addr2, city, state, zip, phone, tot)
val ues
(#cust _num $nane, $addrl, $addr2, $city,
$state, $zip, $phone, #tot)
end- sql
end-whil e
#i f {sqr-database} = ' Sybase’
begi n-sq
comit transaction
end- sql
#el se
#if {sqr-database} <> 'Informx
begi n-sq
commi t
end- sql
#endi f
#endi f
close 1
end- procedure ! main

The sample program begins by creating the customers_ext table. If the table already exists, you receive an
error message. To ignore this error message, use the ON-ERROR=SKIP option.

The program reads the records from the file and inserts each record into the database by using an insert
statement inside a BEGIN-SQL paragraph. Theinput file format is one record per line, with each field
separated by the separator character. When the end of the file is encountered (if #end-file), the program
branches out of the loop. Note that #end-file is an SQR reserved variable.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 20 Using Additional SQL Statements with SQR

Thefinal step isto commit the changes to the database and close the file. Y ou do thiswith a SQL COMMIT
statement inside a BEGIN-SQL paragraph. Alternatively, you can use the SQR COMMIT command. For
Oracle databases, use the SQR COMMIT command.

The code may be database-specific. If you are using Informix, for example, and your database was created
with transaction logging, you must add aBEGIN WORK and a COMMIT WORK, much like the Sybase
example of BEGIN TRANSACTION and COMMIT TRANSACTION.

See Chapter 17, "Using Dynamic SQL and Error Checking," page 93.

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 113

Chapter 21

Working with Dates

This chapter provides an overview of dates and date arithmetic and discusses how to:

e Useliteral date formats.

» Use string-to-date conversions.

» Usedate-to-string conversions.

» Usedates with the INPUT command.
« Usedate edit masks.

« Declare date variables.

Understanding Dates and Date Arithmetic

SQR has powerful capabilitiesin date arithmetic, editing, and manipulation. A date can be represented as a
character string or in an internal format by using the SQR date data type.

The date data type enables you to store dates in the range of January 1, 4712 BC to December 31, 9999 AD. It
also stores the time of day with the precision of amicrosecond. The internal date representation always keeps
the year as afour-digit value. Keep dates with four-digit year values (instead of truncating to two digits) to
avoid date problems at the turn of the century.

Y ou can obtain date values:
+ By selecting a date column from the database.
« By using INPUT to get adate from the user.

« By referencing or printing the $current-date reserved variable.

By using the SQR date functions dateadd, datediff, datenow, or strtodate.
» By declaring adate variable using the DECLARE-VARIABLE command.

For most applications, you do not need to declare date variables. Date variables are discussed later in the
section.

Many applications require date calculations. Y ou may need to add or subtract a number of days from agiven
date, subtract one date from another to find atime difference, or compare dates to determine whether one date
islater, earlier, or the same as another date. SQR enables you to perform these calculations in your program.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 115

Working with Dates Chapter 21

Many databases enable you to perform date calculationsin SQL, but that can be difficult if you are trying to
write portable code because the syntax varies between databases. I nstead, perform those calculations in

SQR—your programs will be portable because they won't rely on a particular SQL syntax.

The dateadd function adds or subtracts a number of specified time units from a given date. The datediff
function returns the difference between two specified dates in the time units that you specify—years, quarters,
months, weeks, days, hours, minutes, or seconds. Fractions are allowed—you can add 2.5 daysto a given
date. Conversion between time units is also allowed—you can add, subtract, or compare dates by using days
and state the difference by using weeks.

The datenow function returns the current local date and time. In addition, SQR provides areserved date
variable, $current-date, which is automatically initialized with the local date and time at the beginning of the
program.

Y ou can compare dates by using the usual operators (<, =, or >) in an expression. The datetostr function
converts a date to a string. The strtodate function converts a string to a date.

The following sample program uses functions to add 30 days to the invoice date and compare it to the current
date:

begi n-sel ect
order_num (,1)
i nvoi ce_date
i f dat eadd(& nvoi ce_date, ' day', 30) < datenow()
print 'Past Due Oder' (,12)

el se
print 'Current Order' (,12)
end-if
position (+1)
end- sel ect

This code example uses the dateadd and datenow functions to compare dates. The dateadd function adds 30
daystotheinvoicedate (& nvoi ce_dat e) . Theresulting date is then compared with the current date,
which isreturned by datenow. If the invoiceis older than 30 days, the program prints the Past Due Order
string. If the invoiceis 30 days old or less, the program prints the Current Order string.

To subtract a given number of days from a date, use the dateadd function with a negative argument. This
technique is demonstrated in the next code example. In this example, the IF condition compares the invoice
date with the date of 30 days before today. The condition is equivalent to that of the previous code example.

if & nvoice date < dateadd(datenow(),' day', -30)

Y ou can also write this condition as follows by using the datediff function. Note that the comparison is now a
simple numeric comparison, not a date comparison:

i f datediff(datenow(), & nvoi ce_date,'day') > 30
All three |F statements are equivalent, and they demonstrate the flexibility that is provided by these functions.

Here is another technique for comparing dates:

116 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 21 Working with Dates

begi n-sel ect
order date
if &rder_date > strtodate('3/1/2004"',"' dd/ miyyyy')
print 'Current Order' ()
el se
print 'Past Due Order' ()
end-if
from orders
end- sel ect

The |F statement has a date column on the left side and the strtodate function on the right side. The strtodate
function returns a date type, which is compared with the & order_date column. When the order dateis later
than January 3, 2004, the condition is satisfied. If the date includes the time of day, the comparison is
satisfied for orders of January 3, 2004, with atime of day greater than 00:00.

In the next code example, the date is truncated to remove the time-of-day portion of a date:

i f strtodate(datetostr(&order_date,’' dd/ nm yyyy')," ' dd/ myyyy') >
strtodate('3/1/2004', "' dd/ mm yyyy')

In this code example, the datetostr function converts the order date to a string that stores the day, month, and
year only. The strtodate function then converts this value back into a date. With these two conversions, the
time-of-day portion of the order date is omitted. Now when it is compared with January 3, 2004, only dates
that are of January 4 or later satisfy the condition.

Using Literal Date Formats

SOR enables you to specify date constants and date valuesin a special format that is recognized without the
use of an edit mask. Thisis called the literal date format. For example, you can use avaluein thisformat in
the strtodate function without the use of an edit mask. Thisformat is independent of any specific database or
language preference.

Theliteral date format isSYYYYMMDD[HH24[MI[SSINNNNNN]]]]. Thefirst Sin this format represents
an optional minus sign. If preceded with a minus sign, the string represents a BC date. The digits that follow
represent year, month, day, hours, minutes, seconds, and microseconds.

Note. Thelitera date format assumes a 24-hour clock.

Y ou can omit one or more time elements from the right part of the format. A default is assumed for the
missing elements. Here are some code examples:

et $a
et $a

strtodat e(' 20040409')
strtodat e(' 20040409152000')

Thefirst LET statement assigns the date of April 9, 2004 to the $a variable. The default time portion is 00:00.
The second LET statement assigns 3:20 in the afternoon of April 9, 2004 to $a. The outputs (when printed
with the' DD-MON-YYYY HH:MI AM' edit mask) are, respectively:

09- APR- 2004 12: 00 AM
09- APR- 2004 03: 20 PM

Y ou can also specify adate format with the SQR_DB_DATE_FORMAT environment variable. Y ou can
specify this as an environment variable or in the pssgr.ini file.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 117

Working with Dates Chapter 21

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, "Using the PSSQR.INI
File and the PSSQR Command Line"

Using String-to-Date Conversions

If you convert a string variable or constant to a date variable without specifying an edit mask that identifies
the format of the string, SQR applies a date format. Thisimplicit conversion takes place with these
commands:

+ MOVE.

« The strtodate function.

« TheDISPLAY, PRINT, or SHOW commands, when used to format a string variable as a date.
SOR attempts to apply date formats in this order:

1. Theformat specified in SQR_DB_DATE_FORMAT.

2. The database-dependent format.

3. TheSYYYYMMDD[HH24[MI[SSINNNNNN]]]] literal date format.

Using Date-to-String Conversions

118

If you convert adate variable to a string without specifying an edit mask, SQR applies a date format. The
conversion takes place with these commands:

« MOVE.

» The datetostr function.

» TheDISPLAY, PRINT, or SHOW commands, when used to output a date variable.
SOR attempts to apply date formats in this order:

1. Theformat specifiedin SQR_DB_DATE_FORMAT.

2. The database-dependent format.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 21 Working with Dates

Using Dates with the INPUT Command
The INPUT command also supports dates. Y ou can load a date into a date or string variable. For string
variables, use the TYPE=DATE qualifier. Specify aformat for the date. Here is a code example:
i nput $start_date 'Enter starting date' type=date format="dd/ miyyyy'

In this example, the user is prompted with Enter starting date: (the colon is automatically added). The user
then enters the value, which is validated as a date by using the dd/mm/yyyy format. The valueisloaded into
the $start_date variable.

Using Date Edit Masks

When you print dates, you can format them with an edit mask. For example:
print &order_date () edit 'Month dd, YYvy

This command prints the order date in the specified format. The name of the order date month is printed,
followed by the day of the month, a comma, and four-digit year. SQR for PeopleSoft provides an extensive
set of date edit masks.

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft, "SQR Command
Reference," PRINT.

If the value of the date value being edited is March 14, 2004 at 9:35 in the morning, the edit masks produce
the following results:

Edit Mask Result Notes

dd/mm/yyyy 14/03/2004 NA

DD-MON-YYYY 14-MAR-2004 NA

‘Monthdd, YYYY. March 14, 2004. An edit mask containing blank
space must be enclosed in single
quotes.

MONTH-YYYY MARCH-2004 The name of themonth in
uppercase, followed by the 4-digit
year.

HH:MI 09:35 NA

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 119

Working with Dates

Chapter 21

Edit Mask Result Notes

'HH:MI AM' 09:35 AM Meridian indicators. An edit mask
containing blank space must be
enclosed in single quotes.

YYYYMMDD 20040314 NA

DD.MM.YY 14.03.99 NA

Mon Mar The abbreviated name of the month.

Day Thursday The day of the week.

DY THU An abbreviation for the day of the
week.

Q 1 Quarter.

WwW 11 The week of the year.

w 2 The week of the month.

DDD 74 The day of the year.

DD 14 The day of the month (1-31).

D 3 The day of the week (Sunday is 1).

EY Please see below The Japanese imperia era (Méeiji,
Taisho, Showa, Heisai).

ER 16 The year in Japanese imperial era.

Theresult for EY is:

+ Bl

Japanese Imperial Era

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 21 Working with Dates

Note. The MON, MONTH, DAY, DY, AM, PM, BC, AD, ER, EY, and RM masks are case-sensitive and
follow the case of the mask that is entered. For example, if the month is January, the Mon mask yields Jan
and MON vyields JAN. All other masks are case-insensitive and can be entered in either uppercase or
lowercase.

If the edit mask contains other text, it is also printed. For example:

print &order_date () edit 'As of Month dd, YYYY

This command prints the As of March 14, 2004 string if the order date is March 14, 2004. Because the words
As of are not recognized as date mask elements, they are printed.

A backdash forces the character that follows into the output. This technique is useful to print text that would

otherwise be recognized as a date mask element. For example, a mask of The \mo\nth is Month resultsin The
month is March as an output string. Without the backslashes, the output string would be The march is March.
The second backslash is needed because n isavalid date edit mask element.

In some cases, combining date edit mask elements can result in ambiguity. One example isthe 'DDDD' mask,
which could be interpreted as various combinations of DDD (day of year), DD (day of month), and D (day of
week). To resolve such ambiguity, use avertical bar as adelimiter between format elements. For example,
DDD followed by D can be written as DDD|D.

In addition, national language support is provided for the following masks: MON, MONTH, DAY, DY, AM,
PM, BC, and AD.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Declaring Date Variables

To hold date values in your program, use date variables. Like string variables, date variables are prefixed with
adollar sign ($). You must explicitly declare date variables by using the DECLARE-VARIABLE command.

Date variables are useful for holding results of date calculations. For example:
begi n- set up
decl are-vari abl e
date $c
end-decl are
end- set up

let $c = strtodate(’ March 1, 2004 12:00',' Month dd, yyyy hh:mi')
print $c () edit 'dd/ myyyy'

In this code example, $c is declared as adate variable. Later, it is assigned the value of noon on March 1,
2004. The $c variable is then printed with the dd/mm/yyyy edit mask, which yields 01/03/2004.

Date variables can be initialized with date literals as shown in this example:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 121

Working with Dates Chapter 21

begi n-set up
decl are-vari abl e
date $c
end- decl are
end- set up

let $c = ' 20040409152000'

The LET statement assigns 3:20 in the afternoon of April 9, 2004 to $c.

122 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 22

Using National Language Support

This chapter provides an overview of locales and discusses how to:
» Select locales.

« Defineadefault locale.

« Switchlocales.

« Modify locale preferences.

« Specify NUMBER, MONEY, and DATE keywords.

Understanding Locales

National Language Support (NLS) is provided through the concept of locales. A localeis aset of local
preferences for language, currency, and the presentation of dates and numbers. For example, one locale may
use English, dollar currency, dates in dd/mm/yy format, numbers with commas separating the thousands, and
aperiod for the decimal place.

A locde contains:

» Default edit masks for number, money, and date.

Use these edit masks to specify the NUMBER, MONEY (for currency), and DATE keywords,
respectively. Y ou can specify these keywordsin the INPUT, MOVE, DISPLAY, SHOW, and PRINT
commands.

» Settings for currency symbol, thousands separator, decimal separator, date separator, and time separator.
» Settingsfor not applicable (NA), am., p.m., BC, and AD in the language of the locale.
» Settings for names of the days of the week and names of the monthsin the language of the locale.

» Settings for how to process lowercase and uppercase editing of day and month names.

Selecting Locales

SOR provides predefined locales such as US-English, UK-English, German, French, and Spanish. Y ou can
define additional locales by editing any .ini file.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 123

Using National Language Support Chapter 22

With the ALTER-LOCALE command, you can select alocale at the beginning of the program or anywhere
else. Different parts of the program can use different locales.

Select alocale with acommand such as this:

alter-locale |ocale = ' Gernan'

Defining a Default Locale

Y ou can define adefault localein any .ini file. Most or all of your programs can use the same locale, and
specifying the default locale makes specifying the locale in every program unnecessary.

When you install SQR, the default locale is set to the reserved locale called System. System is not an actual
locale. It defines the behavior of older versions of SQR, before NL S was added. The preferencesin the
system locale are hard-coded in the product and cannot be set or defined in the pssgr.ini; however, you can
alter system settings at runtime by using ALTER-LOCALE. The date preferences depend on the database that
you are using. Therefore, date format preferences in the system locale are different for every database that
you use with SQR.

Note. If you are running SQR outside of the PeopleSoft Process Scheduler, the PS HOME environment
variable must be set to a proper PeopleSoft installation.

Different sites can have different locales as the default. For example, an office in Paris might use the French
locale, and an office in London might use the UK-English locale. To adapt a program to any location, use the
default locale. The program automatically uses the local preferences, which are specified in the pssgr.ini file
of the machine on which it isrun. For example, you can print the number 5120 by using the following
command:

print #invoice total () edit '9,999,999.99

The setting of the default locale in the pssgr.ini file controls the format. In London, the result might be
5,120.00, and in Paris it might be 5.120,00. The delimiters for thousands and the decimal—the comma and
the period—are switched automatically according to the preferences of the locale.

Note. Changing the settings of the default locale can change the behavior of existing programs. For example,
if you change the default locale to French, programs that used to print dates in English can now print them in
French. Be sure that you review and test existing programs when making a change to the default locale.

Switching Locales

124

Y ou can switch from one locale to another any number of times while the program is running. This technique
is useful for writing reports that use multiple currencies, or reports that have different sections for different
locales.

To switch to another locale, use the ALTER-LOCALE command. For example, to switch to the Spanish
locale:

alter-local e | ocale = ' Spanish'

From this point in the program, the locale is Spanish.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 22 Using National Language Support

Consider this code example:

begi n-procedure print_data_i n_spanish
I Save the current |ocale
let $old_|ocale = $sqr-Ilocale
I Change the locale to "Spanish"
alter-local e |locale ="' Spanish'
I Print the data
do print_data
I restore the locale to the previous setting
alter-locale locale = $old _|ocale
end- procedur e

In this code example, the locale is switched to Spanish and later restored to the previous locale before it was
switched. To do that, the locale setting before it is changed is read in the$sgr-local e reserved variable and
stored in $old_locale. The value of $old_locale is then used in the ALTER-LOCALE command at the end of
the procedure.

Modifying Locale Preferences
With the ALTER-LOCALE command, you can modify any individual preferencein alocale. The ALTER-
LOCALE command affects only the current program. It does not modify the pssgr.ini file.

Hereis a code example of how you can modify default preferencesin alocale:

alter-local e
dat e- edi t - mask
noney- edi t - mask

' Mon- DD- YYYY
' $%, $$%, $$9. 99

To restore modified locale preferences to their defaults, reselect the modified locale. For example, suppose
that the locale was US-English and the date and money edit masks were modified by using the preceding
code. The following code resets the changed date and money edit masks:

alter-locale locale = 'US-English’

Specifying NUMBER, MONEY, and DATE Keywords

The DISPLAY, MOVE, PRINT, and SHOW commands enable you to specify the NUMBER, MONEY and
DATE keywordsin place of an explicit number or date edit mask. These keywords can be useful in two
cases.

The first case is when you want to write programs that automatically adapt to the default locale. By using the
NUMBER,MONEY and DATE keywords, you instruct SQR to take these edit masks from the default locale
Settings.

The second case is when you want to specify number, money, and date formats once at the top of the program
and use these formats throughout the report. In this case, you define these formats with an ALTER-LOCALE
command at the top of the program. When you use the NUMBER,MONEY ,and DATE keywords later in the
program, they format number, money, and date outputs with the masks that you defined in the ALTER-
LOCALE command.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 125

Using National Language Support

126

Chapter 22

Whether you set the locale in the pssgr.ini file or in the program, these keywords have the same effect. In the
following code example, these keywords are used with the PRINT command to produce output for the US-
English and French locales:

| et #num var = 123456

| et #noney_ var

| et $date_var =
I set
alter-locale locale = 'US-English’

pri
pri
pri
pri
pri
pri
pri

ALTER-

pri
pri
pri
pri
pri
pri
pri

nt
nt
nt
nt
nt
nt
nt

nt
nt
nt
nt
nt
nt
nt

locale to

"US- English | ocal e

123456

st rt odat e(' 20040520152000")

US- Engl i sh

(1, 1)

"Wth NUMBER keyword ' (+1,1)
#num var (,22) NUMBER
"Wth MONEY keyword
(,22) MONEY

#nmoney_var

'Wth DATE keyword '

$dat e_var

"French | ocal €'

(,22) DATE!

(+1,1)
(+1,1)

set locale to French
LOCALE | ocal e = ' French'

(+2,1)

"Wth NUMBER keyword ' (+1,1)
#num var (, 22) NUMBER
'"Wth MONEY keyword

(,22) MONEY

#nmoney_var

'"Wth DATE keyword '

$dat e_var

(,22) DATE

Here is the program output:

US- Engl i sh | ocal e

Wth NUVBER keyword
Wth MONEY keyword $ 123, 456. 00
Wth DATE keyword

French | ocal e

Wth NUVBER keywor d
Wth MONEY keyword

Wth DATE keyword 20 Ma

See Also

(+1,1)
(+1,1)

123, 456. 00

May 20, 2004

123. 456, 00
123. 456,00 F

2004

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 23

Using Interoperability Features

Applications can run SQR programs by using the SQR application program interface (API). An SQR program
can also cal an external application's API.

This chapter discusses how to:

« Cal SQR from another application.

» Invoke an SQR program by using the SQR API.

« Invoke an external application API by using the ufunc.c interface.
+ Add auser function.

* Use UFUNC in Microsoft Windows.

* Implement new user functions in Microsoft Windows.

Calling SQR from Another Application

To invoke an SQR program from another application, use:

» The SQR command line

The application initiates a process for running SQR. The SQR command includes all of the necessary
parameters.

« TheSQRAPI
The application makes a call to the SQR API. This method is covered in the next section.
See Chapter 28, "Using the SOR Command Line," page 161.

Invoking an SQR Program by Using the SQR API

The SQR AP is provided in Microsoft Windows through a Dynamic Link Library (dIl). You can use the SQR
API from any application that is capable of calling dil functions. For C and C++ applications, a header file
(sgrapi.h) and an import library (sgrwin.lib) are provided. SQR requires the following .dll filesto run for
Microsoft Windows: sgrw.dll, bclw32.dll, libsti32.dll, and stimages.dil. These dIl files are located in the
BINW directory.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 127

Using Interoperability Features Chapter 23

On platforms other than Microsoft Windows, the SQR API is provided as astatic library (sgr.aor sgr.lib). For
C and C++ applications, a header file (SQRAPI.H or sgrapi.h) is provided. Be sure to include the SQR API
library and your database library when you link your C or C++ application. Two additional libraries are
required: bcl.aand libsti.a.

The following table describes the API functions that are defined for calling SQR:

Function Description

int sgr(char *) Runs an SQR program. Passes the address of anull
terminated string containing an SQR command line,
including program name, connectivity information,
flags, and arguments. Thisis asynchronous call. It
returns when the SQR program has finished. This
function returns zero if it is successful.

void sgrcancel (void) Cancels arunning SQR program. The program may not
stop immediately because SQR waits for any currently
pending database operations to finish.

Because the SQR function does not return until the SOR
program has finished, sgrcancel is called by using
another thread or some similar asynchronous method.

int sgrend(void) Releases memory and closes cursors. Cursors can be left
open to speed up repeated running of the same SQR
program. Call this function after the last program has
run or optionally between SQR program runs.

This function always returns zero.

For the benefit of C and C++ programmers, the APIs are declared in the sgrapi.h file. Include this header file
in your source code:

#i ncl ude 'sqgrapi.h'

When you call SQR from a program, the most recently run SQR program is saved in memory. If the same
SQR program is run again with either the same or different arguments, the program is not scanned again and
the SQL statements are not parsed again. This feature provides a significant improvement in processing time.

To force SQR to release its memory and database cursors, call sgrend() at any time.

Although memory is automatically released when the program exits, you must call sgrend before the calling
program quits to ensure that SQR properly cleans up any database resources such as database cursors and
temporary stored procedures.

Torelink SQR on all UNIX/Linux platforms, use the sgrmake and makefile filesthat are located in
$SQRDIR/../lib. After you invoke sgrmake and optionally select the specific database version to link with, the
SOR executables are re-created.

Check which cc command line gets created and invoked for SQR, and adapt it to your program. Each
UNIX/Linux platform and database has its own requirements. Consult your operating system and database
product documentation for specific information.

Y ou may see the following output when you relink with Sybase CT-LIB under Sun/Solaris:

128 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 23

cc -o {user progrant {user objects} {user
$SQRDIR/ . ./lib/sgr.a $SQROIR/ . ./1ib/bcl.a
$SQRDIR/ . ./lib/pdf.a $SQROIR/ .. /1ib/libsti
-L$ (SYBASE) /lib -Bstatic -I -lecs -ltcl

ct
-lintl -Bdynamic -Im-Insl -1dl

Using Interoperability Features

libraries} \
\

a

-1 comm \

Check the make files or link scripts that are supplied with SQR for details. Y ou may want to copy and modify

thoseto link in your program.

To cal SQR, call sgr() and pass a command line. For example, in C:

status = sqgr("nyprog samy/ baker argl arg2 arg3");

if (status != 0)
...error occurred...

The following table describes error values that are returned by SQR, both standal one and callable:

Error Value Reason

0 Normal exit

1 Error exit

2 Cannot process SQRERR.DAT

3 Command-line flag in error

4 Problem creating the .SQT file

5 Program did not compile

6 Problem with the .SQR/.SQT file (open/read)
7 Problem with the .L1S file (create/write)

8 Problem with the .ERR file (create/write)

9 Problem with the .LOG file (create/write)

10 Problem with the POSTSCRI.STR file (open/read)
11 Cannot call SQR recursively

12 Problem with Microsoft Windows

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

129

Using Interoperability Features Chapter 23

Error Value Reason
13 Internal error occurred

14 Problem with SQRWIN.DLL
15 Problem with -ZCF file

The error codes 9 and 12 are applicable to the Microsoft Windows release only.
For more information about linking with SQR, see your installation guide.

See PeopleTools 8.50 Installation Guide for your database platform.

Invoking an External Application API by Using the UFUNC.C
Interface

The SQR language can be extended by adding user functions that are written in standard languages, such as
C. Thisfeature enables you to integrate your own code and third-party librariesinto SQR. For example,
suppose that you had alibrary for communication over aserial line, with functions for initiating the
connection and sending and receiving data. SQR enables you to call these functions from SQR programs.

To extend SQR in thisway, you must prepare the functions, specify them to SQR, and then link the objects
(and libraries) with the SQR objects and libraries to form a new SQR executable. The new SQR executable
then recognizes the new functions as if they were standard SOR functions.

One exampl e of such an extension would be an initcap function. Oracle users are familiar with this function.
The initcap function changes the first letter of every word to uppercase and changes the rest of the letters to
lowercase. The result value in the following code example would be Mr. Joseph Jefferson:

let $a = initcap(' MR JOSEPH JEFFERSON)

Adding a User Function

This section provides an overview of the ufunc.c file and discusses how to:
« Add afunction prototype.

« Add an entry to the USERFUNCS table.

» Add an implementation code.

+ Relink SQR.

130 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 23 Using Interoperability Features

Understanding the UFUNC.C File

The code examples in the following sections demonstrate how to extend SQR with an initcap function.

The key to this processis an SQR source file called ufunc.c. Thisfile contains the list of user-defined
functions. It also contains comments with a description of the process of adding a function to SQR. Ufunc.cis
in the lib subdirectory (LIBW in Microsoft Windows).

To add initcap to SQR, you must add it to aglobal array called userfuncs in ufunc.c.

Adding a Function Prototype

Begin by adding afunction prototype to the function declaration list:

static void max CC ARGS((int, double *[], double *));
static void split CC ARGS((int, char *[], double *));
static void printarray CC ARGS((int, char*[], double *));
static void initcap CC ARGS((int, char *[], char *, int));

The preceding code segment is taken from the file ufunc.c. The first three lines are part of the original
ufunc.c. The line that adds the initcap function is shown like this. The modified version of ufunc.cisin the
LIBW (Microsoft Windows) or LIB (UNIX) directory under <PS _HOME>\bin\sgr\<database platform>.

This code defines a prototype for a C function called initcap. The prototypeis required by the C compiler.
The name of the C function does not have to be the same as the name of the SQR function. The SQR name
for the function is defined in the next step.

The CC_ARGS macro makes the code portabl e between compilers that expect full prototyping and compilers
in which the argument prototype is omitted. Y ou could also write:

static void initcap();

Note also that the STATIC keyword means that the code for initcap will be added in the file ufunc.c. If you
have the code in a separate file, remove the STATIC keyword.

The first argument of the C function is the argument count of the corresponding SQR function. In the case of
initcap, this argument count should be 1 because initcap takes exactly one argument.

The second argument of the C function is an array of pointers. Thisarray isthe argument list. In this case,
because initcap takes only one argument, only the first pointer is actually used.

The third argument of the C function is a pointer to the result buffer. Because initcap returnsastring, it is
defined as char*.

The last argument sets the maximum length of the result string. The length of this string is the size of the

result buffer, which you must not overflow. Y ou cannot return a value that is longer than the maximum
length. The maximum length is typically around 2000 bytes, depending on the platform.

Adding an Entry to the USERFUNCS Table

The next step is to define the initcap function to SQR. As stated before, this table exists in the ufunc.c file.
Here is the modified code:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 131

Using Interoperability Features Chapter 23

} userfuncs[] =

/* (2) Define functions in userfuncs table:

Nurber of
Name Return_type Arguments Arg_Types Function
e e e e e e e e e e e e M e e e e e e e e e e e e e e m - * [
"max", ‘n', 0, “n", PVR nax,
"split", 'n', 0, "C, PVR split,
"printarray", 'n', 4, "cnnc", PVR printarray,
"initcap", ‘¢, 1, "c", PVR initcap
/* Last entry must be NULL do not change */
"ty "\0", 0, "", O

b

The userfuncstableis an array of structures. The added line is shown like this, and it initializes one structure
in the array. The line contains five arguments, which correspond to the five fields of the structure.

The first argument is the name of the SQR function that is being added. Thisis the name that you will usein
the LET, IF, and WHILE commands. The second argument is the return type, which 'c' (enclosed in single
guotation marks) indicates is a character string. The third argument is the number of arguments that initcap
will take. Set it to 1.

The fourth argument is a string representing the types of the arguments. Because initcap has only one
argument, the string contains one character enclosed in double quotation marks, "c". This character indicates
that the argument for initcap isastring. The last argument is a pointer to a C function that implements the
SOR function that you are adding. This argument is the initcap function for which we have provided a
prototype in the previous step. Note that the PV R macro provides proper cast for the pointer.

Adding an Implementation Code

132

The next step is to add the implementation code for initcap. Y ou can insert it into the file ufunc.c.

Note. To put the code in a separate file, you must remove the STATIC keyword from the prototype. Y ou may
also need to include standard C header files, such as CTY PE.H.

Hereisthe code that isinserted at the end of ufunc.c:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 23 Using Interoperability Features

static void initcap CC ARG ((argc, argv, result, maxl en))
CC ARG i nt, argc) /* Nunber of actual argunents */
CC ARG char*, argv[]) /* Pointers to argunments: */
CC_AR(E char*, result) /* Where to store result */
CC_LAREi nt, maxl en) /* Result's maxi mum | ength */
{

int flag = 1;

char *ptr;

char *p;

ptr = argv[O0];
p =result;
while (*ptr) {
if (ptr - argv[0] >= maxlen) break; /* don't exceed naxlen */
if (isalnun(*ptr)) {
if (flag) *p = islower(*ptr)?toupper(*ptr):*ptr
el se *p = isupper(*ptr)?tol ower(*ptr): *ptr
flag = 0;
} else {
flag = 1;
*p — *ptr;
p++; ptr++;
='"\0';
turn;

}

Note the use of the CC_ARGL, CC_ARG, and CC_L ARG macros. Y ou can also write the code as follows
(only thefirst five lines are shown):

static void initcap(argc, argv, result, maxl en)

int argc; /* Nunber of actual argunents */

char* argv|[]; /* Pointers to arguments: */

char* result; /* Where to store result */

i nt maxl en; /* Result's maxi numlength */
Relinking SQR

After you have modified ufunc.c, you must relink SQR. Use the make file that is provided in the LIB (or
LIBW) subdirectory of SQR. This step is very specific to the operating system and database. SQR islinked
with the database libraries, whose names and locations may vary. Y ou may have to modify the make file for
your system.

See PeopleTools 8.50 Installation Guide for your database platform.
After SQR isrelinked, you are ready to test. Try the following program:
begi n- program

let $a = initcap(' MR JOSEPH JEFFERSON)

print $a ()
end- program
The result in the output file should be:
M. Joseph Jefferson

See the ufunc.c file for further information about argument types in user-defined functions.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 133

Using Interoperability Features Chapter 23

Using UFUNC in Microsoft Windows

In Microsoft Windows, ufunc resides in sgrext.dll. Y ou can rebuild sgrext.dll by using any language or tool,
as long as the appropriate calling protocol is maintained. The source code for sgrext.dll isincluded in the
shipped package (extufunc.c).

When sgrw.dll and sgrwt.dll are loaded, they ook for sgrext.dll in the same directory and for any .dlisthat are
specified in the SQR Extension section in pssgr.ini. If sgrw.dll and sgrwt.dll find sgrext.dll and the .dlls that
are specified in the pssgr.ini file, they make the following callsin al of the .dlls, passing the instance handle
(of the calling module) and three function pointers:

voi d I ni t SQREXt ensi on (
HI NSTANCE hl nst ance,
FARPRQOC | pf nUFuncRegi st er,
FARPRQC | pf nConsol e,
FARPRQOC | pf nErr or

)

Implementing New User Functions in Microsoft Windows

134

Y ou can implement new user functionsin sgrext.dll or any other extension .dll. All of the extension .dlls must
have the InitSQREXxtension() function exported. If you implement user functionsin sgrext.dll, you should
rebuild the .dll by using the supplied make file, sgrext.mak. If new extension .dlls containing new user
functions are to be used, they must be listed in the SQR Extension section in pssgr.ini in the system directory.

For any ufunc, you must register it by making the following call in InitSQRExtension():
| pf nUFuncRegi st er (struct ufnns* ufunc);

The function pointer, IpfnUFuncRegister, is passed in from the calling module. Refer to extufunc.c for the
definition of struct ufnns and the sample user functions.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 24

Testing and Debugging

This chapter discusses how to:

¢ Usethetest feature.

+ Usethe#DEBUG command.

« Use compiler directives for debugging.

« Avoid common programming errors.

Using the Test Feature

When developing an SQR program, you frequently test it by running it and examining its output. Often, you
areinterested only in the first few pages of the report.

To speed up the cycle of running and viewing afew pages, use the -T command-line flag. The -T flag enables
reports to finish more quickly because all BEGIN-SELECT ORDER BY clauses are ignored. The database
does not sort the data, and the first set of records are selected sooner. Enter the appropriate number of test
pages following the -T flag. For example, -T6 causes the program to stop after six pages of output have been
created.

Note. If the program contains break logic, the breaks can occur in unexpected locations because the ORDER
BY clauseisignored.

To test areport file called customer.sgr, enter the following command:
sqr custoner usernane/ password -T3
The -T3 flag specifies that the program stops running after three pages have been produced.

When the test finishes successfully, check it by displaying the output file on the screen or by printing it. The
default name of the output file is the same as the program file with the .LIS extension. For example, if the
report is named customer.sgr, the output file is named customer.lis.

When you finish developing the program, run it without the -T flag. The program processes all ORDER BY
clauses and runs to completion. If the program creates more than one report, the - T flag restriction applies
only to the first report.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 135

Testing and Debugging Chapter 24

Using the #DEBUG Command

When debugging a program, you should:

» Display data or show when a procedure or query runs by using temporary SHOW or DISPLAY
commands in key placesin the program.

» |solate problem areas by temporarily skipping the parts of the program that work correctly.
« Temporarily cause additional behavior in questionable areas of the program.
For example, display or modify variables that you suspect are causing a problem.

SOR provides the #DEBUG command to help you make temporary changes to the code. Use the #DEBUG
command to conditionally process portions of the program.

Precede the command with #DEBUG, as shown in the following example:
#debug di spl ay $s

When the #DEBUG precedes a command, that command is processed only if the -DEBUG flag is specified
on the SQR command line. In this example, the value of $sis displayed only when you run the program with
-DEBUG.

Y ou can obtain multiple debug commands by using up to 10 letters or digits to differentiate between them.
Indicate which command is to be debugged on the -DEBUG flag, as shown in the following example:

sqr nmyreport usernane/ password - DEBUGabc

In this example, commands that are preceded by #DEBUG, #DEBUGa, #DEBUGD, or #DEBUGC are
compiled when the program is run. Commands that are preceded with #DEBUGd are not compiled because d
was not specified in the -DEBUG command-line flag.

Using Compiler Directives for Debugging

Y ou can conditionally compile entire sections of a program by using the five compiler directives:

« H#HF

o #ELSE

* #END-IF or #ENDIF
» H#IFDEF

* H#IFNDEF

Use the value of a substitution variable, declared by a #DEFINE command, to activate or deactivate a set of
statements, as shown in the following example:

136 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 24 Testing and Debugging

#def i ne DEBUG_SESSI ON Y
#if DEBUG SESSION = 'Y
begi n- procedure dunp_array
let #i =0
while #i < #counter
I Get data fromthe array
get $state $Scity $name $phone from custoner_array(#i)
print $state (,1)
print $city (,7)
print $nane (,24)
print $phone (, 55)
position (+1)
add 1 to #i
end-whi | e
end- procedure ! dunp_array
#end-i f

The dump_array procedure is used only for debugging. Because DEBUG_SESSION isdefined as 'Y, the
dump_array procedure is included in the program. Later, you can change DEBUG_SESSION to N and
exclude the dump_array procedure from the program.

Avoiding Common Programming Errors

The most common programming error when you are using SQR is misspelling variable names. Because SQR
does not require variablesto be declared, it does not issue an error message when variable names are
misspelled. Instead, SQR considers the misspelled variable asiif it is another variable.

For example:

| et #customer _access_code = 55
print #customer_acess_code ()

This example does not print 55 because the variable name is misspelled. One cin accessin the PRINT
command is missing.

A related problem involves global versuslocal variables. If you refer to aglobal variable in alocal procedure
without preceding it with an underscore, SQR does not issue an error message. Instead, it is taken asanew
local variable name. For example:

begi n- procedure mnain
let $area = 'North'
do proc
end- procedure ! main
begi n- procedure proc | oca
print $area () ! Should be $_area
end- procedur e

In this example, the proc local procedure prints the value of the local $area variable and not the global
$area variable. It prints nothing because the local $area variable did not receive avalue. To refer to the
global variable, use $_area.

Such small errors are difficult to detect because SQR considers #customer_acess code as just another
variable with avalue of zero.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 137

Chapter 25

Increasing Performance and Tuning

This chapter provides an overview of SQR performance and SQL statements and discusses how to:
« Simplify acomplex select paragraph.

» Use LOAD-LOOKUPto simplify joins.

« Improve SQL performance with dynamic SQL.
» Examine SQL cursor status.

« Avoid temporary database tables.

» Create multiple reports in one pass.

* Tune SOR numerics.

» Compile SQR programs and use SQR Execute.
« Set processing limits.

« Buffer fetched rows.

* Run programs on the database server.

Understanding SQR Performance and SQL Statements

Whenever a program contains a BEGIN-SELECT, BEGIN-SQL, or EXECUTE command, it performs a SQL
statement. Processing SQL statements typically consumes significant computing resources. Tuning SQL
statements typically yields higher performance gains than tuning any other part of the program.

General tuning of SQL is outside the scope of this book. Tuning SQL is often specific to the type of database

that you are using—tuning SQL statements for an Oracle database may be different from tuning SQL
statements for DB2. This chapter focuses on SQR tools for ssimplifying SQL statements and reducing the
number of times SQL isrun.

Simplifying a Complex Select Paragraph

With relational database design, information is often normalized by storing data entities in separate tables. To
display the normalized information, you must write a select paragraph that joins these tables together. With
many database systems, performance suffers when you join more than three or four tables in one select

paragraph.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 139

Increasing Performance and Tuning Chapter 25

With SQR, you can perform multiple select paragraphs and nest them. In thisway, you can break alargejoin
into several ssimpler selects. For example, you can break a select paragraph that joins the orders and the
products tables into two selects. The first select retrieves the orders that you want. For each order that is
retrieved, a second select retrieves the products that were ordered. The second select is correlated to the first
select by having a condition such as:

wher e order_num = &order _num
This condition specifies that the second select retrieves only products for the current order.

Similarly, if the report is based on products that were ordered, you can make the first select retrieve the
products and make the second select retrieve the orders for each product.

This method improves performance in many cases, but not all. To achieve the best performance, you may
need to experiment with the different alternatives.

Y ou can use master and detail reports to perform multiple select paragraphs and nest them.

See Chapter 17, "Using Dynamic SQL and Error Checking," page 93.

Using LOAD-LOOKUP to Simplify Joins

Database tables often contain key columns, such as a product code or customer number. To retrieve a certain
piece of information, you join two or more tables that contain the same column. For example, to obtain a
product description, you can join the orderlines table with the products table by using the product_code
column asthe key.

With LOAD-LOOKUP, you can reduce the number of tablesthat are joined in one select. Use this command
with LOOKUP commands.

The LOAD-LOOKUP command defines an array containing a set of keys and values and loads it into
memory. The LOOKUP command looks up akey in the array and returns the associated value. In some
programs, this technique performs better than a conventional tablejoin.

Y ou can use LOAD-LOOKUP in the SETUP section or in a procedure. If used in the SETUP section, it is
processed only once. If used in a procedure, it is processed each time that it is encountered.

LOAD-LOOKUP retrieves two fields from the database: the KEY field and the RETURN_VALUE field.
Rows are ordered by KEY and stored in an array. The KEY field must be unique and contain no null values.

When the LOOKUP command is used, the array is searched (by using abinary search) to find the
RETURN_VALUE field corresponding to the KEY that is referenced in the lookup.

The following code exampleillustrates LOAD-LOOKUP and LOOKUP:

140 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 25 Increasing Performance and Tuning

begi n-set up
| oad- | ookup
nanme=pr ods
t abl e=pr oduct s
key=pr oduct _code
return_val ue=descri ption
end- set up

begi n-sel ect

order_num (+1, 1)

product _code
| ookup prods &product _code $desc
print $desc (,15)

from orderlines

end- sel ect

In this code example, the LOAD-LOOKUP command loads an array with the product_code and description
columns from the products table. The lookup array is named prods. The product_code column is the key and
the description column isthe return value. In the select paragraph, a LOOKUP on the prods array retrieves the
description for each product_code. This technique eliminates the need to join the products table in the select.

If the orderlines and products tables were joined in the select (without LOAD-LOOKUP), the code would
look like this:

begi n-sel ect

order _num (+1, 1)

ordl i nes. product _code

description (,15)

fromordlines, products

where ordlines. product _code = products. product_code
end- sel ect

Whether a database join or LOAD-LOOKUP is faster depends on the program. LOAD-LOOKUP improves
performance when:

» Itisused with multiple select paragraphs.
» |t keeps the number of tables being joined from exceeding three or four.

« The number of entriesin the LOAD-LOOKUP table is small compared with the number of rowsin the
select, and they are used often.

« Most entriesin the LOAD-LOOKUP table are used.

Note. Y ou can concatenate columns if you want RETURN_VALUE to return more than one column. The
concatenation symbol is database-specific.

Improving SQL Performance with Dynamic SQL

Y ou can use dynamic SQL in some situations to simplify a SQL statement and gain performance:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 141

Increasing Performance and Tuning Chapter 25

begi n-sel ect
order _num
from orders, custoners
wher e order.customer_num = cust omers. cust oner _num
and ($state = 'CA and order_date > $start_date

or $state != 'CA'" and ship_date > $start_date)
end- sel ect

In thisexample, agiven value of $st at e, order _dat e, or shi p_dat e iscompared with
$start _dat e. The OR operator in the condition makes such multiple comparisons possible. With most
databases, an OR operator slows processing. It can cause the database to perform more work than necessary.

However, the same work can be done with asimpler select. For example, if $st at e is'CA," the following
select works:

begi n-sel ect

order _num

fromorders, custoners

wher e order. custoner_num = cust oners. cust omer _num
and order date > $start _date

end- sel ect

Dynamic SQL enables you to check the value of $st at e and create the simpler condition:

if $state = 'CA
| et $dat ecol
el se
| et $dat ecol
end-if
begi n-sel ect
order _num
fromorders, custoners
wher e order.custoner_num = custonmers. cust oner_num
and [$datecol] > $start_date
end- sel ect

'order_date'

"ship_date'

The [$datecol] substitution variable substitutes the name of the column to be compared with
$start _dat e. Theseectissimpler and no longer uses an OR operator. In most cases, this use of dynamic
SQL improves performance.

See Chapter 17, "Using Dynamic SQL and Error Checking," page 93.

Examining SQL Cursor Status

142

Because SQR programs select and manipulate data from a SQL database, you should understand how SQR
processes SQL statements and queries.

SQR programs can perform multiple SQL statements. Moreover, they can run the same SQL statement
multiple times.

When a program runs, a pool of SQL statement handles, called cursors, is maintained. A cursor is a storage
location for one SQL statement—for example, SELECT, INSERT, or UPDATE. Every SQL statement uses a
cursor for processing. A cursor holds the context for the execution of a SQL statement.

The cursor pool contains 30 cursors, and you cannot change its size. When a SQL statement is rerun, its
cursor can be immediately reused if it is still in the cursor pool. When an SQR program runs more than 30
different SQL statements, cursors in the pool are reassigned.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 25 Increasing Performance and Tuning

To examine how cursors are managed, use the -S command-line flag. This flag displays cursor status
information at the end of arun.

The following information appears for each cursor:

Cur sor #nn:

SQ = <SQ st atenent >
Conpiles = nn
Executes = nn

Rows = nn

The listing also includes the number of compiles, which vary according to the database and the complexity of
the query. With Oracle, for example, asimple query is compiled only once. With Sybase, a SQL statement is
compiled before it isfirst run and recompiled for the purpose of validation during the SQR compile phase.
Therefore, you may see two compiles for a SQL statement. Later, when the SQL isrerun, if its cursor isfound
in the cursor pooal, it can proceed without recompiling.

Avoiding Temporary Database Tables

This section provides an overview of temporary database tables and discusses how to:

» Useand sort arrays.

« Useand sort flat files.

Understanding Temporary Database Tables

Programs often use temporary database tables to hold intermediate results. Creating, updating, and deleting
temporary tablesis aresource-consuming task, however, and can slow the program'’s performance. SQR
provides two aternatives to using temporary database tables:

« Storeintermediate resultsin an SQR array.
« Storeintermediate resultsin aloca flat file.

Both techniques can yield a significant performance gain. Use the SQR language to manipul ate the data that
isstored in an array or aflat file.

Using and Sorting Arrays

An SOQR array can hold as many records as can fit in memory. During the first pass, when records are
retrieved from the database, you can store them in the array. Subsequent passes on the data can be made
without additional database access.

The following code example retrieves records, prints them, and saves them into an array hamed
customer_array:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 143

Increasing Performance and Tuning Chapter 25

create-array name=custoner_array size=1000
fiel d=state: char field=city:char
fi el d=name: char fi el d=phone: char

l et #counter = 0

begi n-sel ect

state (,1)

city (,7)

nane (, 24)

phone (, 55)
position (+1)
put &state &city &nane &phone into custoner_array(#counter)
add 1 to #counter

from custoners

end- sel ect

The customer_array array has four fields that correspond to the four columns that are selected from the
customers table, and it can hold up to 1,000 rows. If the customers table had more than 1,000 rows, you
would need to create alarger array.

The select paragraph prints the data. The PUT command then stores the data in the array. Y ou could use the
LET command to assign values to array fields; however, the PUT command performs the same work, with
fewer lines of code. With PUT, you can assign al four fields in one command.

The #counter variable serves as the array subscript. It starts with zero and maintains the subscript of the next
available entry. At the end of the select paragraph, the value of #counter is the number of recordsin the array.

The next code example retrieves the data from customer_array and printsit:

let #i =0
whil e #i < #counter
get $state $city $name $phone from custoner_array(#i)
print $state (,1)
print $city (,7)
print $nane (,24)
print $phone (,55)
position (+1)
add 1 to #i
end-whi | e

In this code example, # goes from 0 to #counter— 1. The fields from each record are moved into the
corresponding variables: $name, $city,$state, and $phone. These values are then printed.
Sorting Arrays

In many cases, intermediate results must be sorted by a different field. The following sample program
indicates how to sort customer_array by name. The sample program uses a well-known sorting algorithm
called QuickSort. Y ou can copy this code into your program, make appropriate changes, and use it to sort
your array:

144 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 25

Increasing Performance and Tuning

Program ex24a. sqr

#def i ne MAX_ROAS 1000

begi n-set up

create-array nanme=custoner_array size={ MAX_ROA5}

fiel d=state: char field=city:char
fi el d=name: char fi el d=phone: char

Create a helper array that is used in the sort

i:reat e-array nanme=QSort size={ MAX_ RO\E}

fiel d=n: nunmber fiel d=j: nunmber

end- set up
begi n- program

do main

end- program
begi n- procedure main
| et #counter = 0

Print custonmers sorted by state

begi n-sel ect
state (,1)
city (,7)
nane (, 24)
phone (, 55)

position (+1)

I Put data in the array

put &state &city &nane &phone into custoner_array(#counter)
add 1 to #counter

from custoners
order by state
end- sel ect
position (+2)

|

Sort customer_array by nane

| et #l ast_row = #counter - 1
do QuickSort(0, 0, #last_row)
|

Print customers (which are now sorted by nane)

let #i = 0
whil e #i < #counter

I Get data fromthe array

get $state $city $nane $phone from custoner_array(#i)
print $state (,1)

print $city (,7)

print $nane (,24)

print $phone (, 55)

position (+1)

add 1 to #i

end-whil e
end- procedure ! main

Qui ckSor t

Pur pose: Sort custoner_array by name.

This is a recursive function. Since SQR does not allocate
| ocal variables on a stack (they are all static), this
procedure uses a hel per array.

#l evel - Recursion level (used as a subscript to the hel per
array)
#m - The "ni argunent of the classical QuickSort

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 145

Increasing Performance and Tuning

146

I #n

!

begi n-
i f

- The "n" argunent of the classical QuickSort

procedure QuickSort (#l evel, #m #n)
#m < #n
| et #i #m
| et #] #n + 1
I Sort key is "nane"
| et $key = custoner_array. nane(#n
while 1
add 1 to #i
while #i <= #] and customer_array. nane(#i) < $key
add 1 to #i
end-whi | e
subtract 1 from #
while #j >= 0 and custoner_array. nane(#j) > $key
subtract 1 from #]
end-whil e
if #i < #
do QSort Swap(#i, #j)
el se
br eak
end-if
end-whil e
do QSort Swap(#m #j)
add 1 to #l evel
I Save #j and #n
let Sort.j(#l evel - 1)
et QSort.n(#l evel - 1)
subtract 1 from #]
do QuickSort (#l evel, #m #j)
| restore #j and #n
let #j = QSort.j (#l evel - 1)
let #n = QSort.n(#l evel - 1)
add 1 to #
do Qui ckSort (#l evel, #j, #n)
subtract 1 from #l evel

#]
#n

end-if

end- pr

I
[
I QSor
!
!

ocedure ! QuickSort

t Swap

Pur pose: Swaps records #i and # of custonmer_array

!
I #i
I #
!
begi n-
get
| et
| et
| et
| et
put

- Array subscri pt
- Array subscri pt

procedure QSort Swap(#i, #j)

$state $city $nanme $phone from custoner_array(#i)
customer _array. state(#i) customer _array.state(#j)
customer _array.city(#i) customer _array.city(#j)
cust omer _array. name(#i) cust omer _array. name(#j)
cust omer _array. phone(#i) customer _array. phone(#j)
$state $city $nanme $phone into custoner_array(#j)

end- procedure ! QSort Swap

Chapter 25

The QuickSort algorithm uses a recursive procedure, which means that it calls itself. SQR maintains only one
copy of the procedure's local variables. In QuickSort, the # and #n variables are overwritten when QuickSort
calsitself.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 25 Increasing Performance and Tuning

For the algorithm to work properly, the program must save the values of these two variables before making
the recursive call, and then restore those values when the call finishes. QuickSort can call itself recursively
many times, so the program may need to save many copies of # and #n. To have the program do this, add a
#level variable that maintains the depth of recursion. In this example, ahelper array, Qsort, is used to hold
multiple values of # and #n.

The QuickSort procedure takes three arguments. Thefirst is the recursion level (or depth), which is#level, as
previously described. The second and third arguments are the beginning and end of the range of rowsto be
sorted. Each time QuickSort callsitself, the range gets smaller. The main procedure starts QuickSort by
calling it with the full range of rows.

The QSortSwap procedure swaps two rowsin customer_array. Typicaly, rowswith alower key value are
moved up.

The QuickSort and QSortSwap proceduresin ex24a.sgr refer to customer_array and itsfields. If you plan to
use these procedures to sort an array in your applications, you must change these references to the applicable
array and fields. The QuickSort procedure sorts in ascending order.

SQR and Language Sensitive Sorting

SQR does not natively support National Language Sensitive sorting. SQR compares characters based on
Unicode codepoint, and sorting based on Unicode codepoint does not correctly sort order language-sensitive
data.

See Enterprise PeopleTools 8.50 PeopleBook: Glabal Technology, "Sorting in PeopleTools."

The QuickSort procedure does not support National Language Sensitive character string sort. The
comparisons are simple string comparisons based on Unicode codepoint used internally in SQR to represent
string data. For instance, the following code lines from the preceding code sample would sort datain Unicode
codepoint order. Unicode codepoints are not ordered to make a correct sorting order of any language.

while #i <= #j and custoner_array. name(#i) < $key
and
while # >= 0 and customer_array. nane(#j) > $key

If you want to sort string datain SQR, you may need to write a National Language Sensitive character string
comparison and add that to SQR. The QuickSort procedure will then be modified in the following way:

while #i <= #j and NLS_STRI NG_COVPARE(cust oner _array. nane(#i), $key)
while # >= 0 and NLS_STRI NG_COVPARE($key, cust ormer _array. name(#j))

Using and Sorting Flat Files

An dternative to an array is aflat file. You can use aflat file when the required array size exceeds the
available memory.

The code example in the previous section can be rewritten to use afile instead of an array. The advantage of
using afileisthat the program is not constrained by the amount of memory that is available. The
disadvantage of using afileisthat the program performs more input and output (I/O). However, it may still
be faster than performing another SQL statement to retrieve the same data.

This program uses the UNIX/Linux sort utility to sort the file by name. This example can be extended to
include other operating systems.

The following code example is rewritten to use the cust.dat file instead of the array:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 147

Increasing Performance and Tuning Chapter 25

148

Pr ogr am ex24b. sqr
begi n- program

do main
end- program
begi n- procedure main
I

I Open cust. dat
I
open 'cust.dat' as 1 for-witing record=80:vary
begi n-sel ect
state (,1)
city (,7)
nane (, 24)
phone (, 55)
position (+1)
I Put data in the file
wite 1 from &iane: 30 &state: 2 &city: 16 &phone: 10
from custoners
order by state
end- sel ect
position (+2)
I

! Gl ose cust. dat
close 1
I Sort cust.dat by nane
!
call systemusing 'sort cust.dat > cust2.dat' #status
if #status <> 0
display '"Error in sort
stop
end-if
!
I Print custoners (which are now sorted by nane)
I
open 'cust2.dat' as 1 for-reading record=80:vary
while 1 ! [oop until break
I Get data fromthe file
read 1 into $nane: 30 $state: 2 $city: 16 $phone: 10

if #end-file

br eak I End of file reached
end-if
print $state

, , (1)
print $city (,7)
print $name (,24
print $phone (,55
position (+1)

end-whil e

|

I cl ose cust 2. dat

close 1

end- procedure ! main

The program starts by opening a cust.dat file:

open 'cust.dat' as 1 for-writing record=80:vary

The OPEN command opens the file for writing and assigns it file number 1. Y ou can open as many as 12 files
in one SQR program. Thefileis set to support records of varying lengths with a maximum of 80 bytes
(characters). For this example, you can also use fixed-length records.

Asthe program selects records from the database and prints them, it writes them to cust.dat:

wite 1 from &iane: 30 &state:2 &city: 16 &phone: 10

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 25 Increasing Performance and Tuning

The WRITE command writes the four columnsinto file number 1, the currently open cust.dat. It writes the
name first, which simplifies sorting the file by name. The program writes fixed-length fields. For example,
&name: 30 specifies that the name column uses exactly 30 characters. If the actual name is shorter, it is
padded with blanks. When the program has finished writing data to thefile, it closes the file by using the
CLOSE command.

Thefileis sorted with the UNIX sort utility:
call systemusing 'sort cust.dat > cust2.dat' #status

Thesort cust.dat > cust 2. dat commandissenttothe UNIX system. It invokesthe UNIX sort
command to sort cust.dat and direct the output to cust2.dat. The completion statusis saved in #st at us; a
status of 0 indicates success. Because name is at the beginning of each record, the file is sorted by name.

Next, open cust2.dat for reading. The following command reads one record from the file and places the first
30 charactersin $nane:

read 1 into $nane: 30 $state: 2 $city: 16 $phone: 10

The next two characters are placed in $st at e, and so on. When the end of the file is encountered, the #end-
filereserved variable is automatically set to 1 (true). The program checks for #end-file and breaks out of the
loop when the end of thefileisreached. Finaly, the program closes the file by using the CLOSE command.

Creating Multiple Reports in One Pass

Sometimes you must create multiple reports that are based on the same data. In many cases, these reports are
similar, with only adifference in layout or summary. Typically, you can create multiple programs and even
reuse code. However, if each program is run separately, the database has to repeat the query. Such repeated
processing is often unnecessary.

With SQR, one program can create multiple reports simultaneously. In this method, a single program creates
multiple reports, making just one pass on the data and reducing the amount of database processing.

See Chapter 19, "Creating Multiple Reports from One Program," page 107.

Tuning SQR Numerics

SQR for PeopleSoft provides three types of numeric values:
« Machinefloating point numbers

+ Decimal numbers

* Integers

Machine floating point numbers are the default. They use the floating point arithmetic that is provided by the
hardware. This method is very fast. It uses binary floating point and normally holds up to 15 digits of
precision.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 149

Increasing Performance and Tuning Chapter 25

Some accuracy can be lost when you are converting decimal fractions to binary floating point numbers. To
overcome thisloss of accuracy, you can sometimes use the ROUND option of commands such as ADD,
SUBTRACT, MULTIPLY, and DIVIDE. Y ou can aso use the round function of LET or numeric edit masks
that round the results to the needed precision.

Decimal numbers provide exact math and precision of up to 38 digits. Math is performed in the software. This
is the most accurate method, but also the slowest.

Y ou can use integers for numbers that are known to be integers. Using integersis beneficial because they:

« Enforce the integer type by not allowing fractions.
« Adhereto integer rules when dividing numbers.
Integer math is also the fastest method, typically faster than floating point numbers.

If you use the DECLARE-VARIABLE command, the -DNT command-line flag, or the DEFAULT-
NUMERIC entry in the Default-Settings section of the PSSQR.INI file, you can select the type of numbers
that SQR uses. Moreover, you can select the type for individual variables in the program with the
DECLARE-VARIABLE command. When you select decimal numbers, you can also specify the needed
precision.

Selecting the numeric type for variables enables you to fine-tune the precision of numbersin your program.
For most applications, however, this type of tuning does not yield a significant performance improvement, so
selecting decimal is best. The default is machine floating point to provide compatibility with older rel eases of
the product.

Compiling SQR Programs and Using SQR Execute

Compiling an SQR program can improve its performance. The compiled program is stored in aruntime
(.SQT) file. You can then run it with SQR Execute. Y our program runs faster because it bypasses the compile
phase.

See Chapter 26, "Compiling Programs and Using SQOR Execute," page 153.

Setting Processing Limits

150

Use a startup file and the Processing-Limits section of pssgr.ini to define the sizes and limitations of some of
theinternal structures that SQR uses. An -M command-line flag can specify a startup file whose entries
override those in pssgr.ini. If you use the -Mb command-line flag, then corresponding sections of the file are
not processed. Many of these settings have a direct effect on memory requirements.

Tuning of memory requirements used to be a factor with older, 16-bit operating systems, such as Microsoft
Windows 3.1. Today, most operating systems use virtual memory, and tuning memory requirements normally
do not affect performance in any significant way. The only case in which you might need to be concerned
with processing limit settings is with large SQR programs that exceed default processing limit settings. In
such cases you must increase the corresponding settings.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 25 Increasing Performance and Tuning

Buffering Fetched Rows

When you run a BEGIN-SELECT command, SOR fetches records from the database server. For better
performance, SQR fetches them in groups rather than one at atime—by default in groups of 10 records. SOR
buffers the records, and a program processes these records one at atime. SQR therefore performs a database
fetch operation after every 10 records, instead of after every single record—a substantial performance gain. If
the database server is on another computer, network traffic is also significantly reduced.

Modify the number of records to fetch together by using the -B command-line flag or, for an individual
BEGIN-SELECT command, by using its -B option. In both cases, specify the number of records to be fetched
together. For example -B100 specifies that records be fetched in groups of 100. This means that the number
of database fetch operationsis further reduced.

Thisfeatureis currently available with SQR for Oracle or Sybase databases and SQR for ODBC.

Running Programs on the Database Server

To reduce network traffic and improve performance, run SQR programs directly on the database server
machine. The SQR server is available on many server platforms including Microsoft Windows and
UNIX/Linux.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 151

Chapter 26

Compiling Programs and Using SQR
Execute

This chapter provides an overview of compile features and discusses how to compile and run an SQR
program.

Understanding Compile Features

The following table lists SQR features that apply at compile time and their possible runtime equivalents. In
some cases, no equivalent exists and you must work around the limitation. For example, you may have to use
substitution variables with commands that require a constant and do not allow avariable. The chapter
"Writing Printer-lndependent Reports® includes an example that works around the limitation of the USE-
PRINTER-TY PE command, which does not accept a variable as an argument.

See Chapter 16, "Writing Printer-1ndependent Reports," page 89.

Compile Time Runtime

Substitution variables Use regular SQR variables. If you are substituting parts
of an SQL statement, use dynamic SQL instead.

See Chapter 17, "Using Dynamic SQL and Error
Checking," page 93.

ASK INPUT
#DEFINE LET

#F IF

INCLUDE No equivalent
DECLARE-LAYOUT, margins No equivalent
Number of heading or footing lines No equivalent

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 153

Compiling Programs and Using SQR Execute Chapter 26

Compile Time Runtime
DECLARE-CHART PRINT-CHART
DECLARE-IMAGE PRINT-IMAGE
DECLARE-PROCEDURE USE-PROCEDURE
DECLARE-PRINTER ALTER-PRINTER (where possible)
USE (Sybase only) -DB command-line flag

Compiling and Running an SQR Program

154

For the user, running an SQR program is a one-step process. For SQR, however, two steps are involved:
compiling the program and running it. When compiling a program, SQR:

« Reads, interprets, and validates the program.

» Preprocesses substitution variables and certain commands. ASK, #DEFINE, #INCLUDE, #/F, and
#FDEF.

» Validates SQL statements.
o Performsthe SETUP section.

Note. Make sure that SQRBIN (defined in pspres.cfg) is pointing to the correct location
(PS_HOME/bin/SQR/<DB>/bin for Unix and PS_HOM E/bin/sqrw/<DB>/BINW for Microsoft Windows)
before executing an SQR program.

SQR enables you to save the compiled version of a program and use it when you rerun areport. That way,
you perform the compile step only once and bypassit in subsequent runs. SQR does not compile the program
into machine language. SQR creates a ready-to-run version of the program that is already compiled and
validated. Thisfileis portable between different hardware platforms and between some databases.

Run the SQR executable (SQR for UNIX/Linux or SQRW for Microsoft Windows) against the SQR program
file and include the -RS command-line flag to save the runtime file. SQR creates afile with afile name
extension of .sqt. Y ou should enter something like this:

sgrw exla.sqr samy/ baker @onme - RS

Run the SQR executable with the -RT command-line flag to run the .sqt file. It runs faster because the
program is already compiled. Hereis an example:

sqrw exla. sqt samy/ baker @ ome -RT

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 26 Compiling Programs and Using SQR Execute

The SQR product distribution includes SQR Execute (the SQRT program). SQR Execute can run .sat files,
but does not include the code that compiles an SQR program. (This program is equivalent to running SQR
with -RT.) Here is an example of running SQR Execute from the command line:

sgrwt exla.sqt sammy/ baker @ one

After you save the runtime (.sqt) file, SQR no longer performs any compile-time steps such as running #1 F,
#INCLUDE, or ASK commands or performing the SETUP section. These were aready performed when the
program was compiled and the runtime file was saved.

Y ou must make aclear distinction between what is performed at compile time and what is performed at
runtime. Think of compile-time steps as defining what the report is. Commands such as#F or ASK enable
you to adapt your report at compile time. For runtime adaptation, use commands such as IF and INPUT.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 155

Chapter 27
Printing with SQR

This chapter discusses how to:

» Specify output file types by using SQR command-line flags.
+ Usethe DECLARE-PRINTER command.

Specifying Output File Types by Using SQR Command-Line Flags

Except on the Microsoft Windows platform, SQR does not actually print areport. SQR creates an output file
that contains the report, but does not print it directly. The output file can be a printer-specific file or an SQR
portable file (SPF). SQR portable files have a default extension of .spf or .snn (for multiple reports).

The following table summarizes SQR command-line flags and the types of output that they produce:

Command-Line Flag Output File Extension File Format Suitable Usage
-PRINTER:EH .htm Enhanced HTML Intranet or internet
-PRINTER:HP lis PCL HP LaserJet printer
-PRINTER:HT .htm HTML Intranet and internet
-PRINTER:LP lis USASCII Line printer
-PRINTER:PS lis PostScript PostScript printer
-PRINTER:WP None. Not applicable Microsoft Windows

Output goes directly to

the default printer without

being saved to afile. You

can set the default printer

by using the Microsoft

Windows Control Panel.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 157

Printing with SQR Chapter 27

Command-Line Flag Output File Extension File Format Suitable Usage

-NOLIS .spf or .snn SOR Portablefile SOR Print and SOQR
Viewer can print thisfile
to different printers.

-KEEP .spf or .snn (in addition to SOR Portable file and the SOR Print and SOR
the lisfilethat is format of the .lisfile Viewer can print this .spf
normally created) file to different printers.
No flag lis USASCII, PCL, or Line printer, HP LaserJet,
PostScript or PostScript,
respectively

Note. When no flags are specified, SQR produces aline printer output unlessit is otherwise set in the SQR
program with DECLARE-PRINTER, USE-PRINTER-TY PE, or the PRINTER-TY PE option of DECLARE-
REPORT.

SPF is a printer-independent file format that supports all of the SQR graphical features, including fonts, lines,
boxes, shaded areas, charts, bar codes, and images.

Thisfile format is useful for saving the output of areport. SPFs can be distributed electronically and read
with the SOR Viewer. Producing SPF output also enables you to decide later where to print it. Use SQR
Viewer or SQR Print to print an SPF.

Using the DECLARE-PRINTER Command

158

The DECLARE-PRINTER command specifies printer-specific settings for the output file types that SQR
supports: line printer, PostScript, HP LaserJet, and HTML. The DECLARE-PRINTER command itself does
not cause the report to be produced for a specific printer. To specify a specific format, use one of these three
methods:

» The-PRINTER:xx command-line flag.

For example -PRINTER:PS produces PostScript output. If the program creates multiple reports, such as
the sample program ex18a.sgr, the -PRINTER:xx flag produces the same output format for al of the
reports.

e TheUSE-PRINTER-TY PEcommand.

Y ou must use this command before you print because SQR cannot switch the printer type in the middle of
aprogram. USE-PRINTER-TYPE PS, for example, produces PostScript output.

« The PRINTER-TY PE option of the DECLARE-REPORT command.
The DECLARE-REPORT command is normally used when a program generates more than one report.

For example, the following code example produces PostScript output for the labels report:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 27 Printing with SQR

decl are-report | abels
| ayout =l abel s
printer-type=ps
end-decl are

The DECLARE-PRINTER command defines settings for line printers, PostScript, or HP LaserJet printers.
Specify the type of printer by using the type option of the DECLARE-PRINTER command or one of the
predefined printers: DEFAULT-LP, DEFAULT-PS, DEFAULT-HP, and DEFAULT-HT.

A program can have more than one DECLARE-PRINTER command if you define settings for each of the
printer types. The settings for a particular printer take effect only when output is produced for that printer.
When the program generates multiple reports, you can define settings for each printer for each report. To
make a DECLARE-PRINTER command apply to a specific report, use the FOR-REPORTS option.

The output file normally has the same name as the program, but with a different file extension. The default
file extensionis .lisfor PostScript (PS), HP LaserJet (HP), or Line Printer (LP). If you are generating an SPF,
the default extension is .spf. If you want SQR to use another name for the output file (including a user-
defined file extension), use the -F option on the command line. For example, to use chapterl.out as the output
of the sample program exla.sgr, use this command to run SQR:

sqr exla username/ password -fchapterl. out
When a program creates more than one report, you can name the output file by using multiple -F flags:
sqr ex20a usernane/ password -flabel.lis -fletter.lis -flisting.lis

Y ou cannot directly name .spf files. Y ou can still use the -F command-line flag to name the file, but you
cannot control the file name extension. For example:

sqr ex20a usernane/ password -flabel.lis -fletter.lis -flisting.lis -nolis

The -NOLIS command-line flag causes SQR to produce .spf filesinstead of .lisfiles. The actual file names
are label .spf, letter.s01, and listing.s02. The second .spf fileis named .s01 and the third is named .s02. SQR
supplies file extensions such as these when a program generates multiple reports.

Different operating systems require different techniques for printing the output. On platforms other than
Microsoft Windows, if the output isin SPF format, you first use SQR Print to create the printer-specific file.
For example, the following command invokes SQR Print to create a PostScript file named myreport.lis from
the output file named myreport.spf:

sqrp myreport.spf -printer:ps

Thisisaone-way conversion—an .spf file can be converted to an .lisfile, but an .lisfile cannot be converted
to an .spf file.

The following table summarizes the commands and command-line options that you can use on different
systems to send areport output to the printer. Consult your operating system documentation for details.

Operating System Command Command-Line Options
UNIX Ip myreport.lis Use -D for printer destination. Y ou can
use the UNIX at command to schedule the

Ip myreport.lis-d ... printing time.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 159

Printing with SQR

160

Chapter 27

Operating System

Command

Command-Line Options

Microsoft Windows

SQR prints directly. You can also use

SQR Viewer.

Use the Print Setup dialog box in SQR
Print or the SQR Viewer to select a printer
destination. Use SQR Print to print
multiple copies.

Y ou can aso use the File Manager Copy
command to copy the file to the printer
destination (for example, Iptl).

Check with your systems administrator about other procedures or commands that are applicable to printing

output files at your site.

See Also

Chapter 19, "Creating Multiple Reports from One Program,” page 107

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 28

Using the SQR Command Line

This chapter provides an overview of the SQR command line and discusses how to:

» Specify command-line arguments.

e Use batch mode.

Understanding the SQR Command Line

Y ou can use the SQR command line to specify flags and to pass arguments to modify your program at
runtime.

Y ou can enter command-line flags such as -Bnn, -KEEP, or -S on the command line to modify some aspect of
program processing or output. Command-line arguments are typically answers to requests (done in the SQR
program by ASK or INPUT commands) for user input.

The following code example and table describes the syntax of the SQR command line:

SQR [progran] [connectivity] [flags ...] [args ...] [@ile ...]

Argument Description

program The name of the program. The default file type or extension is .sqr. If the
parameterentered as a question mark (?) or omitted, SQR prompts you for the program
name. On UNIX/Linux-based systems, if your shell uses the question mark as awildcard
character, you must precede it with a backslash (\).

connectivity Oracle:Use [Username]/[Password] @Data-base]] as your username and password for
the database. Y ou can also specify the connection string for the database (for example,
@B:ORASERVER).

The information that SQR needs to connect to the database. If the parameter is entered as
aquestion mark or omitted, SQR prompts you for it. The information you enter depends
on the database you're using:

DB2:Use Ssname and SQL.id for the subsystem name and SQL authorization ID.
Informix:Use Database as the name of the database.

ODBC:Use Data_Source_Name/[Username]/[Password] as the name of the ODBC
driver when you set up the driver and your username and password for the database.

Sybase:Use Username/[Password] as your username and password for the database.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 161

Using the SQR Command Line Chapter 28

Argument Description

flags Any of the flagsthat are listed in the SQR Language Reference. Begin command-line
flags with a hyphen. When aflag has an argument, enter the argument directly following
the flag with no intervening space.

See Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft,
"Understanding SQR for PeopleSoft," SQR Command-Line Flags.

args... Arguments that are used by SQR while the program is running. Arguments that are listed
here are used by the ASK and INPUT commands rather than prompting the user.
Arguments must be entered on the command line in the same sequence that they are
expected by the program: first all ASK argumentsin order and then INPUT argumentsin
order.

@file... File containing program arguments, one argument per line. Arguments listed in thefile
are processed one at atime. Y ou can specify the command-line arguments program,
connectivity, and argsin thisfile.

Specifying Command-Line Arguments

This section provides an overview of command-line arguments and discusses how to:

» Retrieve the arguments.

» Specify arguments and argument files.

* Usean argument file.

» Use other approaches to pass command-line arguments.
e Usereserved characters.

» Create an argument file from areport.

Understanding Command-Line Arguments

Y ou can pass an almost unlimited number of command-line argumentsto SQR at runtime. On some
platforms, the operating system imposes a limit on the number of arguments or the total size of the command
line. Passing argumentsis especially useful in automated reports, such as those that are invoked by scripts or
menu-driven applications.

Y ou can pass arguments to SQR on the command line, in files, or with the SQRFLAGS environment variable.
When you pass argumentsin afile, reference the file name on the command line and put one argument on
each line of thefile. Thisavoids any limits that are imposed by the operating system.

To reference afile on the command line, precede its name with the @ sign as shown in the following code
example:

sqr myreport sammy/ baker argl arg2 @il e. dat

162 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 28 Using the SQR Command Line

In this example, argl and arg2 are passed to SOR, followed by thefile.dat file. Each linein file.dat has an
additional argument.

Retrieving the Arguments

When the ASK and INPUT commands run, SQR determines whether you entered any arguments on the
command line or whether an argument file has been opened. If either has happened, SQR uses this input
instead of prompting the user. After the available arguments are used, subsequent ASK or INPUT commands
prompt the user for input. If you use the INPUT command with the BATCH-MODE argument, SQR does not
prompt the user, but instead returns a status meaning No mor e arguments.

SQR processes all ASK commands before INPUT commands.

Note. If you compiled the SQR program into an .SQT file, ASK commands will have already been processed.
Use INPUT instead.

Specifying Arguments and Argument Files

Y ou can mix argument files with simple arguments, as shown in the following code example:
sqr rep2 sammy/ baker 18 @rgfilel.dat "OH' @rgfile2.dat "New York"

This command line passes SQR the number 18, the contents of argfilel.dat, the value OH, the contents of
argfile2.dat, and the value New Y ork, in that order.

The OH argument isin quotes to ensure that SQR uses uppercase OH. When a command-line argument is
case-sensitive or contains spaces, you must enclose it within quotes. Arguments that are stored in files do not
require quotes and cannot contain them; the actual strings with uppercase characters and any spaces are
passed to SQR.

Using an Argument File

To print the same report on different printers with different characteristics, you can save values for the
different page sizes, printer initializations, and fonts in separate files and use a command-line argument to
specify which file to use. For example, the following command line code example passes the value 18 to

SOR:
sqr nyreport sammy/ baker 18
An #INCLUDE command in the report file selects the printer18.dat file based on the command-line

argument:
begi n-set up
ask num I Printer nunber.
#include '"printer{nun}.dat' ! Contains #DEFI NE comrands for

I printer and paper width and | ength
decl are-1ayout report
paper-si ze =({paper_wi dt h} {paper_|I| ength})
end-decl are
end- set up

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 163

Using the SQR Command Line Chapter 28

In this example, the ASK command assigns the value 18 to the num variable; 18 is a compile-time argument.
The #INCLUDE command then uses the value of num to include the printer18.dat file, which could include
commands like this:

I Printerl18.dat-definitions for printer in Bldg 4.
#def i ne paper _length 11

#def i ne paper_width 8.5

#defi ne bold font LS12755

#define |ight_font LS13377

#define init HWMJ73011

Using Other Approaches to Pass Command-Line Arguments

SQR examines an argument file for a program name, username, or password if none is provided on the
command line. The following command line omits the program name, username, and password:

sqr @rgfile. dat

The first two lines of the argument file for this code example contain the program name and the username and
password:

nyreport
sammy/ baker
18

oH

If you do not want to specify the report name, username, or password on the command line or in an argument
file, use the question mark (?). SQR prompts the user to supply these. For example:
sqr myreport ? @rgfile. dat

In this example, the program prompts the user for the username and password instead of taking them from the
first line in the argument file.

Y ou can use more than one question mark on the command line, as shown in the following code example:
sqr ? ? @rgfile.dat

In this example, the program prompts the user for the program name and the username and password.

Note. SQR for Microsoft Windows does not accept the SQR program name and database connectivity to be
part of the argument file.

Using Reserved Characters

164

The hyphen (-) and @ sign characters have special meanings on the command line. The hyphen precedes an
SOR flag, and the @ sign precedes an argument file name. To use either of these characters asthe first
character of acommand-line argument, enter the character twice to indicate that it is aliteral hyphen or @
sign, as shown in the following code example:

sqr myreport ? --17 @rgfile.dat @X2H44

In this example, the double hyphen and double @ sign are interpreted as single literal characters.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 28 Using the SQR Command Line

Creating an Argument File from a Report

Y ou can create an argument file for one program from the output of another program. For example, you can
print alist of account numbers to the acctlist.dat file, then run a second report with the following command:

sqr nyreport sammy/ baker @cctli st. dat
End acctlist.dat with aflag such as END, as shown in the following code example:

123344
134455
156664
END

An SQR program can use the numbers in acctlist.dat with an INPUT command, as shown in the following
code example:

begi n- procedur e get _conpany
next :
i nput $account bat ch- rode status = #status
if #status = 3
got o end_proc
end-if
begi n-sel ect
cust_num co_nane, contact, addr, city, state, zip
do print-page I Print page with
I conpl ete conpany data
from custoners
wher e cust_num = $account
end- sel ect
got o next I Get next account nunber
end_proc:
end- procedure ! get conpany

Using Batch Mode

SQOR enables you to run reportsin batch mode in:
« UNIX/Linux.
» Microsoft Windows.

Y ou can create UNIX/Linux shell scripts or MS-DOS batch (.bat) files to run SQR. Include the SQR
command linein the file as you enter it.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 165

Chapter 29

Generating and Publishing HTML from an
SQR Program

This chapter provides an overview of SQR capabilities that are available with HTML and discusses how to:
« Generate HTML output.

» UseHTML proceduresin an SQR program.

« Modify an existing SQR program for HTML.

« Publish areport.

Understanding SQR Capabilities That Are Available with HTML

The SQR language has arich set of features, but some of these features are not available for HTML output
due to the limitations of that format.

The SQR features that are supported for HTML include:
* Images.
« Font sizing.

The SQR language specifies font sizesin points. HTML specifies font sizesin avaluefrom 1t0 6. A
point size that is specified in an SQR program is mapped to an appropriate HTML font size.

« Font styles.
The bold and underline font styles are supported.
» Centering.
The SQR features that are not currently supported for HTML output include:
+ Font selection.
e Bar codes.

« Linesand boxes (using -PRINTER:HT).

Note. Y ou can generate professional quality HTML report files with SQR without having to be an HTML
expert. However, if you want to adapt HTML output by using SQR's HTML procedures, you may want to
learn more about HTML.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 167

Generating and Publishing HTML from an SQR Program Chapter 29

Generating HTML Output

This section provides an overview of HTML output and discusses how to:
* Produce HTML output.

e Use-PRINTER:EH.

» Set HTML attributes under -PRINTER:EH.

e Use-PRINTER:HT.

« Burst reports.

« Set attributes with HTML procedures.

» Useadditional HTML procedures.

« Setoutput file types.

* Test HTML Output.

Understanding HTML Output

When an SQR program generates HTML output, that output contains HTML tags. An HTML tagisa
character sequence that defines how information appearsin aweb browser.

Typicaly, HTML output looks like this:
<HTML><HEAD><TI TLE>nyr eport. | i s</ TI TLE></ HEAD><BODY>

This code is only a portion of the HTML output that SQR generates. The tags that it contains indicate the start
and end points of HTML formatting.

For example, in the code example, the <HTML> tag identifies the output that follows as HTML output. The
<TITLE> and </TITLE> tags enclose the report title, in this case, myreport.lis. The <BODY > tag indicates
that the information following it makes up the body of the report.

Producing HTML Output

168

Y ou can produce HTML output from an SQR program by using one of four methods, each of which provides
adifferent level of HTML features:

« Running an unmodified SQR program with the -PRINTER:EH command-line flag makesthe HTML 3.0
or 3.2 output viewable in aweb browser.

* Running an unmodified SQR program with the -PRINTER:HT command-line flag makesthe HTML 2.0
output viewable in aweb browser.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

» Using two HTML procedures, html_set_head tags and html_set body_attributes, enables you to define a
title and background image for the HTML output.

With this method, you must till use the -PRINTER:HT command-line flag.

» Using additional HTML procedures produces output with afull set of HTML features, including lists,
tables, and links.

With this method, you must still use the -PRINTER:HT command-line flag.

The procedures that are used in the last two options are contained in afile called html.inc. Touse HTML
procedures, the SQR program must include this command:

#include 'htnl.inc'

The HTML.INC fileislocated in the SAMPLE (or SAMPLEW) directory. Use the -I command-line flag to
specify its path.

Using -PRINTER:EH

Y ou can generate enhanced HTML output from an SQR program by using the -PRINTER:EH command-line
flag. This produces output that contains HTML formatting tags. All output is displayed as fully formatted
HTML 3.0 or 3.2 text. Y ou can generate high-quality HTML from SQR programs by using -PRINTER:EH to
issue acommand likethis:

sqrw myreport.sqgr sammy/ baker @ one - PRI NTER: EH

Y ou can control the version of HTML that is used by editing the FUlHTML enhanced HTML parameter in
the PSSQR.INI file. Set FUllHTML to be equal to TRUE for HTML 3.2 or FALSE for HTML 3.0. Adjust this
based on the level of HTML that your web browser supports. The -PRINTER:EH default output isHTML
3.0.

If you have existing .spf files for which you want to generate enhanced HTML output, you do not need to
rerun your SQR program. Y ou can invoke SQR Print (with SQRP or SQRWP, depending on your platform)
to generate enhanced HTML from .spf files by using acommand like this:

sqgrwp nyreport.spf -PRI NTER EH

From within the SQR Viewer, you can aso generate this same, high-quality HTML by selecting File, Save as
HTML. The HTML level output from the SQR Viewer is aso determined by the PSSQR.INI file settings and
has the same default value.

Y ou can also generate enhanced HTML files with precompiled SQR program files (.sqt files). Run the .sqt
file against SQR Execute with a command like this:

sgrwt nyreport.sqt samy/baker @ome - PRI NTER EH

Asistrue when running any .sqt file, you can run it against SQR (or sgrw, on Microsoft Windows platforms)
by including the -RT flag. To generate enhanced HTML, use the -PRINTER:EH flag in the command:

sqrw myreport.sqgr sammy/ baker @one -RT - PRI NTER EH

The sample program ex7a.sgr produces a simple master and detail report. By running it with -PRINTER:EH,
you can produce HTML output. A left frame is produced with links to each page of the report. The right
frame al so features a navigation bar that appears at the top of every page in the report. The navigation bar
enables you to moveto the first or last page or to move one page forward or back from your relative page-
viewing position.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 169

Generating and Publishing HTML from an SQR Program Chapter 29

With -PRINTER:EH, you can also use additional flags to modify the output, such as:
« -EH_Csv

This creates an additional output file in Comma Separated Vaue (CSV) format.
. -EH_CSvVile

This associates the CSV icon with the specified file.
« -EH_Icons.dir

This specifies the directory in which the HTML should find the referenced icons.
« -EH_Scae{nn}

This sets the scaling factor from 50 to 200.

These flags work only with -PRINTER:EH.

Setting HTML Attributes Under -PRINTER:EH

170

In certain cases, you may want additional control over the enhanced HTML code that is generated with -
PRINTER:EH. SQR supports extensions that enable you to control the generated HTML, specifying titles,
background colors and images, links, text colors, and more.

Specifying HTML Titles

The HTML page title normally appears on the caption bar of the browser window and is also used when you
are creating a bookmark for the page. It is placed between the <TITLE> and </TITLE> HTML tags. Specify
the title of the HTML page by using the %%Title extension at the beginning of the SQR program by entering:

Print-Direct Printer=html "'%4litle Monthly Sal es’

Specifying Background Colors

Specify abackground color for the pages that are generated with -PRINTER:EH by using the %%Body-
BgColor extension. Enter code like this at the beginning of the program:

Print-Direct Printer=htm ' %®ody- BgCol or #0000FF'

To set the background color for the navigation bar, enter code like this:
Print-Direct Printer=htm ' 9%Nav- Body-BgCol or #0000FF
See "Specifying HTML Colors' subsequently.

Specifying Background Images

To use abackground image for the report pages that the enhanced HTML generates, insert the
%%Background extension at the beginning of the program:

Print-Direct Printer=htm ' %®Background tile.gif'

To set the background image for the navigation bar, enter code like this:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Print-Direct Printer=htm ' %MNav-Background D:\j pegdir\ house. | pg

The background attribute can be any valid Uniform Resource Locator (URL). If you do not specify the
%%Nav-Background extension while specifying the body background, the background image that you
specify for the body is used both in the body and in the navigation bar. If you do not want an image to appear
in the navigation bar, use code like this:

Print-Direct printer=htm '%MNav-Background EMPTY

Specifying Links

The %%Href extension specifies alink in the report. This extension enables you to make a text, number,
image, or chart object into alink. The object can be the item that you click to activate the link or it can be the
location on the page where the link takes you. Specify the latter by using the %%Anchor extension. For
example:

Print-Direct Printer=htnml ' %4 ef #section2
Print ' ABC ()

b}fnt-D'rect Printer=htm ' %#Anchor section2'
Print 'XYzZ' ()

In this example, clicking the ABC text on the page jumps to the XY Z text. When using frames or multiple
browser windows, you can control which frame displays the target of the link by using the target option of the
%%Href extension. For example, specify on oneline:

Print-Direct Printer=htm ' %4ref target="_top" http://ww. peopl esoft. con

Specifying Text Colors

Use the %%Color and %%ResetColor extensions to change the color of text. The following code example
demonstrates this capability:

I f &Salary > 100000

Print-Direct Printer=htnm ' %ol or #FF000O0'
End- | f

Print &Salary ()

If &Salary > 100000

Print-Direct Printer=htm ' % &Reset Col or'
End- | f

In this example, when the value of the column is over 100000, it printsin red. The %%Color extension affects
all text (and number) printing from this point on. Thisis similar to the behavior of the ALTER-PRINTER
command. A subsequent invocation of %%Color with a different color value sets the current color to the new
color. To restore the color back to the default (normally, black) use the %%ResetColor extension.

Specifying HTML Colors

Specifying color as ared-green-blue (RGB) hexadecimal value isthe only way to designate color in SQR.

Y our browser documentation should contain alisting of supported colors and their hexadecimal values. To
specify color as an RGB hexadecimal value, enter a# character followed by six hexadecimal digits. Thefirst
two digits specify the intensity of the red, the next two specify the green, and the last two specify the blue.
For example, green is #00FFQ0.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 171

Generating and Publishing HTML from an SQR Program Chapter 29

Including Your Own HTML Tags

Enhanced HTML extensions enable you to include your own HTML tagsin the output. These tags are passed
through to the output without change. Use this feature to include advanced HTML capabilities such as
JavaScript and <APPLET> tags.

SQR PRINT with CODE-PRINTER=HT enables you to inject any text into the HTML output. SQR does not
check the text that you are printing. This text can contain anything that your browser understands. Do not use
this method for formatting, because your formatting may conflict with -PRINTER:EH enhanced HTML
formatting. -PRINTER:EH enhanced HTML uses HTML tables extensively. To fully control the formatting,
use the HTML procedures that are defined in html.inc and that are documented in this section. By invoking
the html_on procedure, you instruct the enhanced HTML to perform no formatting. Specify all formatting by
using the HTML proceduresin html.inc or by using SQR PRINT with CODE-PRINTER=HT to insert HTML
codes. When you use SOR PRINT with CODE-PRINTER=HT, the enhanced HTML does not trandlate
special symbolsthat are used in HTML tags, suchas<, >, and &.

See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Using -PRINTER:HT

172

Another method for generating HTML output from an SQR program is running a program with the
command-line flag -PRINTER:HT. Alternatively, you can make some simple modifications to the program.
Add either DECLARE-PRINTER with the TYPE=HT argument or USE-PRINTER-TY PE HT.

With these methods, HTML output is generated in the following way:

« All output appears as preformatted text by using the <PRE> and </PRE> HTML tags.

« Text appears on the page at the position coordinates that are specified in the SQR program.
« Text appearsin afixed-width font, such as Courier.

« Font sizesmap to HTML font sizes.

« HTML reserved characters map to the corresponding HTML sequence.

The<, >, &, and " characters map to the &It;, >, &, and & quot;, character sequences,
respectively. This prevents the web browser from mistaking such output as an HTML sequence.

The sample program ex7a.sgr produces a simple master and detail report. By running it with -PRINTER:HT,
you can produce HTML output. A left frame is produced with links to each page of the report. The right
frame al so features a navigation bar that appears at the top of every page in the report. The navigation bar
enables you to moveto the first or last page or to move one page forward or back from your relative page
viewing position.

See Chapter 8, "Creating Master and Detail Reports,” page 43.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Bursting Reports

With SQR, you can generate HTML format reports by using -PRINTER:EH or -PRINTER:HT command-line
flags. If you want HTML filesto be smaller in size for faster in load time or to be divided on the basis of
report page ranges, or if you want to preview areport's table of contentsin your web browser without
generating an entire report, use -BURST :{ xx} with -PRINTER:EH or -PRINTER:HT.

By using -BURST:P (or BURST:P1) with -PRINTER:EH, or by using -BURST:P1 with -PRINTER:HT, you
can generate HTML output files that are burst by report page numbers, one report page per .htm file. (Thisis
frequently referred to as demand paging.) So a 25-page report would be divided into 25 separate .htm output
files. By using -PRINTER:HT, you can also specify the report page ranges that you want within an HTML
file. For example, -BURST:P0,1,3-5 generates an HTML file containing only report page numbers 1, 3, 4,
and 5. Y ou can then focus on information that is truly of interest.

Similarly, if you specify -PRINTER:HT with -BURST:T, only the table of contentsfile is generated. And if
you specify -PRINTER:HT with -BURST:S, report output is generated according to symboalic table of
contents entries. By using -BURST:S, you can specify the numeric level to burst on (for example, -
BURST:S2 burstson level 2). If you have used DECLARE-TOC and TOC-ENTRY commandsin the SQR
program, the table of contents provides more detailed information than just page number links, asillustrated
in the following code example.

To use DECLARE-TOC and TOC-ENTRY to improve the information that is available in generated HTML
output, this example adds the following code example to the beginning of the sample program ex7a.sqr:

begi n-set up

decl are-toc conmon
for-reports=(all)
dot - | eader =yes
i ndent ati on=2

end- decl are

end- set up

The code exampl e also adds this code to the body of the program, in the main procedure immediately
following the begin-select and Print ‘Customer Information' (,1):

toc-entry text = &nane

Setting Attributes with HTML Procedures

Use the SQR HTML procedures html_set_head_tags and html_set_body_attributes to define atitle and
background image for areport. To use these procedures, the SQR program must include the html.inc file. You
must also run the program by using the -PRINTER:HT command-line flag.

These procedures must be called at the start of the program. For example:

do html _set_head_tags(' <TI TLE>Mont hly Report</TI TLE>")
do htm _set body_attributes(' BACKGROUND="/i mages/ nyl ogo. gi f"")

The first line of this code example displays the Monthly Report title. Specifically, the entire
'<TITLE>Monthly Report</TITLE>' sequence is passed as an argument to the html_set_head tags procedure.
The argument is enclosed in single quotes.

The second line displays the mylogo.gif background image for the web page. Again, an argument is passed to
the procedure. The entire argument is enclosed in single quotes, and the file name and path are enclosed in
double quotes.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 173

Generating and Publishing HTML from an SQR Program Chapter 29

Together, these two lines of code generate the following HTML output:

<HTML><HEAD><T| TLE>Mbnt hl y Report </ Tl TLE></ HEAD>
<BODY BACKGROUND="/i mages/ nyl ogo. gi f">

Using Additional HTML Procedures
Using additional HTML procedures in the SQR program provides enhanced capabilities, including:
» Highlighting,, including HTML physical tags and logical markup tags.

HTML physical tags include subscript, superscript, and strikethrough. HTML logical markup tags include
citation, code, keyboard, and sample.

« Headings.

« Links.

« Lists, including ordered lists, unordered lists, definition lists, directory lists, and menus.
» Paragraph formatting, including paragraph breaks, line breaks, and horizontal dividers.

« Tables, including captions, rows, columns, and column headings.

Setting Output File Types

An SQR report named myreport.sqr creates a FRAME file (myreport.htm) and report output files. The
OUTPUT-FILE-MODE entry in the Default-Setting section of the PSSQR.INI file controls the report output
file extensions. When this entry is set to SHORT, the report output files use the form myreport.hzz, and when
set to LONG, the files use the form myreport_zz.htm. The value of zz ranges from 00 to 99 and reflects the
report number.

The FRAME file displays alist (links) of report pagesin one frame and the report text in another frame. Each
report output file contains alist of pages (links) at the end of the file. If myreport.sqr created multiple reports,
then the FRAME file contains a link to each report output file. In addition, each report output file contains
links to the other report output files that were created during the program run.

Testing HTML Output

When an SQR program produces HTML output, you can preview it on alocal system. Thisisagood way to
test the output before you publish it on awebsite.

To test the output of the program, open the file in the web browser. If your web browser supportsthe HTML
FRAME construct, open the FRAME file (myreport_frm.htm); otherwise, open the report output file
(myreport.h00, myreport_00.htm).

Using HTML Procedures in an SQR Program

This section provides an overview of HTML procedures and discusses how to:

174 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

» UseHTML procedures.

« Position objects.

» Digplay recordsin tables.
» Create headings.

« Highlight text.

« Createlinks.

» Includeimages.

« Display textinlists.

« Format paragraphs.

« Incorporate your own HTML tags.
See Also

Enterprise PeopleTools 8.50 PeopleBook: SQR Language Reference for PeopleSoft

Understanding HTML Procedures
To enhance the appearance of the HTML output, use HTML procedures in an SQR program.

An SQR program with these procedures generates output as described previously in "Using PRINTER:HT,"
with these exceptions:

» The<PRE> and </PRE> HTML tags are not used.
« Textisdisplayed in aproportional font, such as Arial.
« Positioning values that are specified in the SQR program are ignored.

Text, HTML tags, and other information are placed in the HTML output in the order in which they are
generated by the SQR program.

« White space, such as spaces between PRINT commands, is removed.

Using HTML Procedures

When using the HTML procedures, include the html.inc file. As before, you must run the SQR program with
the -PRINTER:HT command-line flag.

The SQR program must also call the html_on procedure at the start of the program. The command that calls
this procedureis:

do htm _on

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 175

Generating and Publishing HTML from an SQR Program Chapter 29

Additionally, the program must specify alarge page length to prevent page breaks. SOR automatically inserts
the page navigation links and an <HR> HTML tag at a page break. If a page break occurs in the middle of an
HTML construct, such as atable, the output can appear incorrectly. Use the DECLARE-LAYOUT command
with alarge MAX-LINES setting to prevent page breaks from occurring.

Positioning Objects

176

When HTML procedures are activated:

« HTML output is generated without the <PRE> and </PRE> tags.

» All position qualifiersin the SQR program are ignored, and program output and HTML tags are placed in
the output file in the order in which they are generated, regardless of their position qualifiers.

» Thetext that is printed in aBEGIN-HEADING section does not appear at the top of the page.
Because no positioning is done, text in the heading appears at the bottom.

» White space, such as spaces between PRINT commands, is removed.

Thus, the HTML procedures must be used to format the report.

The following code example does not use the HTML procedures to format the output:

print 'Report sunmary:' (1,1)
print 'Amount billed:" (3,1)
print #anount _anount (3, 20)
print 'Total billed:' (4,1)
print #total anmount (4, 20)

Inthis case, al of the text appears on the same line with no spaces between the data.
With the HTML procedures for line breaks and a table, the output can be formatted properly.

The following code example uses the html_br procedure to separate the first two lines of text. The html_table,
html_tr, html_td, and html_table end procedures display the totalsin atabular format. An empty string is
passed to each procedure asit is caled. Thisempty string isrequired if no other argument is passed.

print 'Report summary:' (1,1)
do htm _br(2,'")

do htm table('")

do htm _tr('")

do htm _td(' WDTH=300")
print 'Amount billed:" (3,1)
do htm _td("'")

print #anount _anount (3, 20)
do htm _tr('")

do htnl _td(' WDTH=300")
print 'Total billed:' (4,1)
do htm _td('")

print #total anmount (4, 20)
do htm _table_end

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Displaying Records in Tables

When the HTML procedures are activated, all positioning valuesin the SQR program are ignored. Thus, the
position values cannot be used to display recordsin atabular format. To display recordsin atabular format,
use the following procedures:

Description Beginning Procedure End Procedure
Create atable html_table html_table end
Create acaption. Theend istypically | html_caption html_caption_end

implied and html_caption_end is not
required, but you can useit for
completeness.

Createrows. Theend istypicaly html_tr html_tr_end
implied and html_tr_end is not
required, but you can useit for
completeness.

Create column headings. Theend is html_th html_th end
typically implied and html_th_end is
not required, but you can useit for
completeness.

Create columns. Theend istypically | html_td html_td_end
implied and html_td end is not
required, but you can useit for
completeness.

The following sample program uses these table procedures to display information in a tabular format:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 177

Generating and Publishing HTML from an SQR Program Chapter 29

Program ex28a. sqr
#include 'htm .inc'
begi n- progr am
do main

end- pr ogr am
I set a large page length to prevent page breaks
begi n-set up

decl are-1 ayout default

max- | i nes=750

end-decl are
end- set up
begi n- procedure main
I turn on HTM. procedures

do htm _on
I start the table and display the col utm headi ngs
do htm _table(' border')
do htm _caption('")
print 'Custoner Records' (1,1)
do htm _tr('")
do htm _th("'")
print 'Cust No' (+1,1)
do html _th('")
print ' Name' (,10)
I display each record
begi n-sel ect

do htm _tr('")
do htm _td("'")

cust _num (1,1,6) edit 099999
do htm _td('")

nane (1, 10, 25)

next-listing skiplines=1 need=1
from custoners
end- sel ect
I end the table
do htnl table_end
end- procedure

Creating Headings

The heading procedures display text by using heading levels like those in a book. The avail able heading
levelsrange from 1 to 6; afirst-level heading is the highest. To use the heading procedures, call the
appropriate heading procedure before the text is generated. After the text is generated, call the corresponding
end procedure.

The following code example displays text as a second-level heading:
do htnml _h2('")

print 'A Level 2 Heading' (1,1)
do htm _h2_end

Highlighting Text

178

The highlighting procedures enable you to display text in the various HTML highlighting styles. Highlighting
isalso caled logical markup.

To use the highlighting procedures, call the appropriate highlighting procedure before the text is generated.
After thetext is generated, call the corresponding end procedure.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29

The following highlighting procedures are available:

Generating and Publishing HTML from an SQR Program

Type of Highlighting Beginning Procedure End Procedure
Blink html_blink html_blink_end
Citation html_cite html_cite end
Code html_code html_code_end
Keyboard html_kbd html_kbd_end
Sample html_sample html_sample_end
Strike html_strike html_strike end
Subscript html_sub html_sub_end
Superscript html_sup html_sup_end

The following code example displays text in the subscript style:

print "Here is ' (1,1)
do htm _sub('")

print 'subscript' ()
do htm _sub_end

print ' text' ()

Creating Links

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

The link procedures enable you to create links and link anchors. When the user clicks the link, the web
browser switches to the top of the specified HTML document, to a point within the specified document, or to
alink anchor within the same document. A link can point to the home page of awebsite, for example.

Toinsert alink, use the html_a procedure to format the information that is to become the link, and use the
html_a end procedure to mark the end of the link. Two useful attributes for the html_a procedure are the
HREF and NAME attributes:

» Usethe HREF attribute to specify the location to which the link points.
» Usethe NAME attribute to specify an anchor to which alink can point.
These attributes are passed as arguments to the html_a procedure.

The following code example creates an anchor and two links. The anchor is positioned at the top of the
document. Thefirst link points to the HTML home.html document. The second link points to the anchor
named TOP in the current document. Note the # sign in the argument, which indicates that the named anchor
is apoint within a document. The third link points to an anchor named POINT1 in the mydoc.html document.

179

Generating and Publishing HTML from an SQR Program

do htm _a(' HREF=hone. htmi ')
print 'Goto hone page' ()
do htm _a_end

do html _a(' NAME=TOP')
do htnl _a _end

print '"At the top of docunent' ()
do htm _br (40,

print 'At the bottom of docunment' ()
do htm _p('")

do htnml _a(' HREF=#TOP')
print 'Goto top of docunent' ()
do htm _a_end

do htm _a (' HREF=nydoc. ht M #PO NT1')
print 'Goto pointl in mydoc.htm' ()
do htm _a_end

Including Images

Y ou can include an imagein an HTML output with the PRINT-IMAGE command or the html_img
procedure. Both of these produce the HTML tag.

Chapter 29

The PRINT-IMAGE command displays images for all printer types but enables you to specify only the image
type and source. The html_img procedure displaysimages only for the HTML printer type, but it enables you
to specify any of the attributes that are available for an HTML tag.

For HTML output, you can use only Graphics Interchange Format (GIF) or JPEG files. With PRINT-IMAGE,

use the TYPE=GIF-FILE or TY PE=JPEG-FILE argument, respectively.

Displaying Text in Lists

180

Thelist procedures display lists. To use these procedures, call the appropriate procedure beforethe list is
generated. After thelist is generated, call the corresponding end procedure.

The following list procedures are available:

List Type Beginning Procedure End Procedure
Definition (terms and their html_dl html_dl_end
definitions)

Directory html_dir html_dir_end
Menus html_menu html_menu_end
Ordered (numbered or |ettered) html_ol html_ol_end
Unordered (bulleted) html_ul html_ul_end

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

To display alist, except for the definition list, call the appropriate list procedure before starting the outpui.
Call html_li to identify each item in the list; you can also call html_li_end for completeness. After specifying
the output, call the corresponding end procedure.

The following code example displays an ordered list:

do htm _ol ('")

do htm _li("")

print "First itemin list' (1,1)
do htm _Ii_end

do htm _Ii("")

print 'Second itemin list' (+1,1)
do htm _|i_end

do htm _li("")

print 'Last itemin list' (+1,1)
do htm _Ii_end

do htm ol end

To display adefinition list, call html_dl before starting the output. Call html_dt to identify aterm and
html_dd to identify a definition. After specifying the output, call html_dl_end. You can also call html_dd end
and html_dt_end for completeness.

The following code example displays a definition list:

do html _dl ('")

do htm _dt('")

print 'A daisy' (1,1)

do htnm _dt_end

do htm _dd('")

print 'A sweet and innocent flower' (+1,1)
do htm _dd_end

do html _dt('")

print 'A rose' (+1,1)

do htnm _dt_end

do htm _dd('")

print 'A very passionate flower' (+1,1)
do htm _dd_end

do htm _ol _end

Formatting Paragraphs

The HTML procedures provide various paragraph-formatting capabilities. To use these procedures, call the
appropriate paragraph procedure before the list is created.

The following procedures are available:

Formatting Type Beginning Procedure End Procedure

Paragraph breaks html_p html_p_end

Many HTML constructsimply an end
of paragraph; thus, the html_th_end
procedure is not needed, but you can
useit for completeness.

Line breaks html_br NA

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 181

Generating and Publishing HTML from an SQR Program Chapter 29

Formatting Type Beginning Procedure End Procedure
Horizontal dividers (usuadly a html_hr NA

sculpted line)

Prevent text wrapping html_nobr html_nobr_end

The following code exampl e uses the paragraph-formatting procedures to format text into paragraphs:

print '"Here is some nornmal text' (1,1)

do htm _p(' ALI GN=RI GHT')

print "Here is right aligned text' (+1,1)

do htm _br(1,'")

print "and a line break' (+1,1)

do htm _p_end

do htm _hr('")

do htm _nobr('")

print "Avery long line of text that cannot be wrapped (+1,1)
do htm _nobr_end

Incorporating Your Own HTML Tags

Y ou can incorporate your own HTML tags into the HTML output. To do so, use the PRINT command with
the CODE-PRINTER=HT argument.

Text that is printed with this argument is placed only in the HTML output that is generated when the HTML
printer typeis specified. With all other printer types, the text is not placed in the output. In addition, the
specified text is placed directly in the HTML output without any modifications, such as the mapping of
reserved characters.

The following code example uses the HTML tag to print bold text:
print ' () code-printer=ht

print 'Bold text' ()
print ' () code-printer=ht

Modifying an Existing SQR Program for HTML

In this section, an existing sample program, ex12a.sqr, is modified to use HTML procedures. The modified
program is named program ex28b.sgr. First, examine the output from ex12a.sqr when this program is run
without modifications by using the -PRINTER:HT command-line flag. Three HTML files are generated:
ex12a.htm, ex12a frm.htm, and ex12a_toc.htm.

182 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29

Pr ogr am ex28b. sqr
#include 'htm .inc'
begi n-set up
decl are-1ayout default
max- | i nes=10000
end- decl are
end- set up
begi n- program
do main
end- pr ogram
begi n- procedure main
do htnl _on
print $current-date (1,1) edit
do htm _p('")
do htm _tabl e(' BORDER)
do htm _tr('")
do htm _th(' WDTH=250")
print ' Nane' (3,1)
do htm _th(' WDTH=120")
print "Gty (,32)
do html _th(' WDTH=60")
print 'State' (,49)
do htm _th(' WDTH=90")
print 'Total' (,61)
begi n-sel ect
do htm _tr('")
do htm _td("'")
name (, 1, 30)
do htm _td('")
city (,+1,16)
do htm _td('")
state (,+1,5)
do htm _td(' ALI GN=RI GHT')

tot (,+1,11) edit 99999999. 99

' DD- MON- YYYY'

next-1isting no-advance need=1
| et #grand_total = #grand_total + &tot

from custoners
end- sel ect
do htm _tr('")
do htm _tr("'

do html _td(' COLSPAN=3 ALI GN=RI GHT')

print 'Gand Total' (+1,40)
do htm _td(' ALI GN=RI GHT")

print #grand total (,55,11) edit 99999999. 99

do htm _table _end
end- procedure ! main

Generating and Publishing HTML from an SQR Program

In this code example, aDECLARE-LAYOUT command with alarge page length setting that is specified in

the MAX-LINES argument is issued to prevent page breaks.

The html_on procedure activates the HTML procedures.

The html_table, html_tr, html_td, and html_th procedures position the information in a tabular format. Note
the arguments that are passed to the HTML procedures:

+ BORDER produces the sculpted border.

« WIDTH defines the width of the columns.

» ALIGN right-aligns the text in the Total column.

» COLSPAN causes the Grand Total label to be spanned beneath three columns of data.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

183

Generating and Publishing HTML from an SQR Program Chapter 29

Instead of using a HEADING section, use the html_tr and html_th procedures to display column headings.

See Chapter 29, "Generating and Publishing HTML from an SOR Program," Displaying Recordsin Tables,
page 177.

Publishing a Report

This section discusses how to:

« Publish areport.

» Support older browsers.

« View apublished report.

» Publish by using an automated process.

» Publish by using a Common Gateway |nterface (CGI) script.

Publishing a Report

Y ou can publish an SQR report on awebsite, and then anyone with aweb browser can view the report over
the internet or an intranet by specifying its URL.

To publish areport:
1. Runthe SQR program.
2. Determine where the report output will be stored on the web server.

The directory must be one that is referenced by a URL on the server. See your webmaster for more details
on creating aURL.

3. Copy the generated HTML output files to the selected directory on the web server.

I the output is generated on a client workstation, use a utility such as FTP to transfer the HTML output
files to the web server.

Note. If you select the zip file option, azip fileis created for the generated HTML output in addition to
the files being placed in the file system.

4. Create links on a home page or other website that point to the report files so that users browsing the
network can navigate to the report and view it.

184 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29 Generating and Publishing HTML from an SQR Program

Supporting Older Browsers

To support older web browsers that do not support the HTML FRAME construct, create two separate links:
one pointing to the FRAME file (.htm) and labeled to indicate the frame version, and another pointing to the
report output file and labeled to indicate the nonframe version. If the report was created with HTML
procedures, however, it should contain only asingle page. In that case, alisting of report pages that are
contained in the FRAME file is not needed. Only the report output file is required for publication on a
website.

Viewing a Published Report

Use aweb browser to view areport that is published on awebsite. To do this, specify a URL in your web
browser, for example: http://www.myserver.com/myreport.htm.

Publishing by Using an Automated Process

The webmaster can create a program that automates the publishing process. The program should run the SQR
program and copy the output to the appropriate location. Y ou can start the program by using a scheduling
utility to automatically run the program and publish it on the website at specified times.

The sample Bourne shell program:

» Setsthe necessary environment variables.

» Runsthe/usr2/reports/myreport.sqr program and generates the /usr2/reports/myreport.htm and
fusr2/reports/myreport.h00 output files.

» Specifies/dev/null as the source of standard input to prevent the program from stopping if it requires
input.

» Redirects the standard output to /usr2/reports/myreport.out to capture any status messages.
Y ou can view the output file at alater time to diagnose any problems.

» Copiesthe generated report files to the /usr2/web/docs directory to publish it on the web server.
(Use the directory name that is appropriate for your server.)

Here isthe code example:

#!' [/ bin/sh
set the appropriate environnent val ues
ORACLE_SI D=or acl e7; export ORACLE SID
ORACLE_HOMVE=/ usr 2/ or acl e7; export ORACLE_HOVE
SQRDI R=/ usr 2/ sqr/ bi n; export SQRDI R
invoke the SQR program
sqr /usr2/reports/ myreport.sqr orauser/orapasswd \
-PRINTER ht -1$SQRDI R \
> [fusr2/reports/ myreport.out 2>&1 < /dev/null
copy over the output
cp /usr2/reports/ nyreport.htm/usr2/web/docs
cp /usr2/reports/myreport.h00 /usr2/ web/docs

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 185

Generating and Publishing HTML from an SQR Program Chapter 29

Note. Y ou must adjust the environment variables and the file names to fit your particular environment. See
the documentation of your scheduling software for more details.

Publishing by Using a CGI Script

186

If you use the CGlI script method, any user with aweb browser can run an SQR and view the output. Y ou can
enable the user to run an SQR by providing aform to fill out.

When a user runs an SOR report through awebsite:

1. Theuser navigatesto aform.

2. The user entersinformation on the form and clicks a button to invoke the CGI script.
3. The CGI script runs the SQR program.

4. The CGlI script copies the report output file to the standard output.

5

. The user views the report.
This process requires:
e Theform
» The CGl script
e The SQR program

Creating the Form
Create an HTML form to enable the user to enter some values and start the request.

The following HTML code example defines aform with three radio buttons and a submit button. The radio
buttons enable the user to specify the sorting criteria. The Submit button invokes the CGI script.

Hereisthe HTML code:

<HTM.>

<TI TLE>Vi ew Cust oner | nformation</TI TLE>

<FORM METHOD=POST ACTI ON="/ cgi - bi n/ myreport.sh">

Sel ect the Field to Sort By<P><Dl R>

<I NPUT TYPE="radi 0" NAME="rbl" VALUE="cust_num' CHECKED> Nunber

<I NPUT TYPE="radi 0" NAMVE="rbl" VALUE="nane"> Nane

<I NPUT TYPE="radi 0" NAME="rbl" VALUE="city"> City

<P><I NPUT TYPE="submit" NAME="run" VALUE="Run Report"></Dl R>

</ FORM>

</ HTML>

The FORM METHOD tag specifies that the /cgi-bin/myreport.sh CGI script is invoked when the Submit
button is pressed. Adjust the URL of the CGI script to fit your particular environment.

In the INPUT tags, the TYPE="radio" attribute defines aradio button. The VALUE attribute of the selected
radio button is passed by the CGlI script to the SQR program.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 29

Generating and Publishing HTML from an SQR Program

Creating the CGI Script

The CGI script is started when a user makes areguest from aform. A CGI script can be any executable
program. Don't call SQR directly asa CGl script—a PERL script, ashell script, or a C program all provide
simpler routines for processing as a CGI script.

The CGI script:

1

Reads the contents of the standard input stream and parses them to obtain the values that were entered on
the form.

If the form has no input fields, this step is not required.

I dentifies the output as being in HTML format by sending the Content-type: text/html string and an extra
empty line to the standard output stream.

Invokes the SQR program.

Vaues that the user entered on the form are passed to the SQR program by the CGI script and the
command line.

Sends the generated .lisfile to the standard output stream.
The .htm file is not used because it pointsto the .lisfile with arelative URL.

Therelative URL does not specify to the web browser where to find the .lisfile. Y ou should make
provisions within your SQR program to send an error message.

The following Bourne shell is an example of a CGI script:

#!

/ bi n/ sh

set the appropriate environnent val ues

ORACLE_SI D=or acl e7; export ORACLE SID

ORACLE HOVE=/ usr 2/ oracl e7; export ORACLE HOVE

SQRDI R=/ usr 2/ sqr/ bi n; export SQRDI R

identify the output as being HTM. fornat

echo "Content-type: text/htm"

echo ""

get values fromfill-out formusing the POST net hod
read TEMPSTR

SORTBY="echo $TEMPSTR | sed "s;.*rbl=;;

s; & *; ;"

invoke the SQR program

sqr7 /usr2/reports/ nyreport.sqr orauser/orapasswd \

i f

-PRINTER ht -f/tnp/ nmyreport$$.lis -1$SQRDI R "$SORTBY" \
> /tp/ nyreport $$. out 2>&1 < /dev/null

[$? -eq 0]; then

display the output

cat /tnp/ nmyreport$$.1is

el se

error occurred, display the error
echo " <HTM.><BODY><PRE>"

echo "FAILED TO RUN SQR PROGRAM'
cat /tnp/ nyreport$$. out

echo "</ PRE></ BODY></ HTM.>"

fi# renove temp files
rm/tnp/ nyreport $$. *

The script performs the following tasks:

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 187

Generating and Publishing HTML from an SQR Program Chapter 29

1. Setsthe necessary environment variables. Then it sends the Content-type: text/html string and an extra
empty line to the standard output stream to identify the text as being HTML format.

2. Retrievesthe value of the selected radio button into the SORTBY variable. The script passes the value to
the SQR program on the command line.

3. Runsthe SQR program. The script uses the /usr2/reports/myreport.sgr report file and generates the
/tmp/myreport$$.lisfile. In addition, the script redirects the standard input from /dev/null to prevent the
program from stopping if the program requires any input. It also redirects the standard output to
/tmp/myreport$$.out to capture any status messages. The 3 is the process ID of the program and is used
asaunigue identifier to prevent any multiuser problems.

4. Copiesthe generated report file to the standard output stream. If an error occurs, the script generates the
status message file instead to enable the user to view the status messages. It then deletes any temporary
files.

Passing Arguments to the SQR Program
Y ou must modify the SQR program to accept values that the user enters on the form.

The following code example is the main procedure from sample program ex28b.sgr. It has been modified to
use the SORT BY value that is passed from the CGI script. The $sortby variable is obtained from the
command line with an INPUT command and is used as dynamic variables in the ORDER BY clause. The
modified lines are shown like this:

begi n- procedure main
i nput $sortby 'Sort by' type=char
do htm _on
do htm _table('")
do htm _tr('")
do htm _th('")
print ' Nanme' (3,1)
do html _th('")
print 'Gty'
do htm _th('")
print 'State' (,49)
begi n-sel ect
do htm _tr("'
do htm _td(""'
nane (, 1, 30)
do htm _td(''
city (,+1,16)
do htm _td("'
state (,+1,5)
next-listing no-advance need=1
l et #grand_total = #grand_total + &tot
from custoners
order by [$sortby]
end- sel ect

(,32)

~— N~ NN

188 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 30

Creating a Table of Contents

This chapter discusses how to:
¢ Usethe DECLARE-TOC command.
e Usethe TOC-ENTRY command.

« Add atable of contents to the cust.sqr sample program.

Using the DECLARE-TOC Command

Use DECLARE-TOC to define atable of contents and its attributes. When generating multiple reports and
tables of contents from one SQR program, you can aso use the TOC argument of the DECLARE-REPORT
command.

Y ou must issue the DECLARE-TOC command in the SETUP section of the program. For example:

begi n-set up
decl are-toc toc_nane
for-reports = (all)
dot - | eader = yes
i ndentation = 2
end- decl are

end—sét up

Following the DECLARE-TOC command, specify atable of contents name. Use the FOR-REPORTS
argument to specify the reports within the SQR program that use this table of contents. Use (all) if you want
all of the reportsto use one table of contents. Y ou need to specify individual report names only if you are
generating multiple reports with different tables of contents from one program. Use DOT-LEADER to
specify whether adot leader precedes the page number. The default setting is NO and the dot leader is
suppressed in all HTML output except when you also specify -BURST: T with -PRINTER:HT. Use
INDENTATION to specify the number of spaces by which each level isindented. (The default setting is4.)

DECLARE-TOC also supports procedures that are frequently used for setup and initialization purposes:

Procedure Usage

BEFORE-TOC Specify a procedure to be run before the table of contents
is generated. If no table of contentsis generated, the
procedure does not run.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 189

Creating a Table of Contents Chapter 30

Procedure Usage

AFTER-TOC Specify a procedure to be run after the table of contentsis
generated. If no table of contentsis generated, the
procedure does not run.

BEFORE-PAGE Specify a procedure to be run at the start of each page.

AFTER-PAGE Specify a procedure to be run at the end of each page.

Using the TOC-ENTRY Command

190

Use TOC-ENTRY to place an entry into the table of contents and take the mandatory TEXT argument, which
specifies the text to be placed in the table of contents. Legal text includes text literals, variables, and columns.
Toinclude levelsin atable of contents, use the LEVEL argument, which specifies the level at which to place
the text. If you do not specify this argument, the value of the previous leve is used.

If you are writing programs that generate multiple reports, you can:

+ Usethe FOR-REPORTS argument of the DECLARE-TOC command to identify the reports to which the
DECLARE-TOC applies.

* Usethe TOC argument of the DECLARE-REPORT command to specify the name of the table of contents
for the report.

A program can have multiple DECLARE-TOC statements and multiple DECLARE-REPORT statements.
However, you must include the FOR-TOCS argument in the DECLARE-TOC statements or the TOC
argument in the DECLARE-REPORT statements.

To specify the name of the table of contents for a given report by using the TOC argument of the DECLARE-
REPORT command, include code in the SETUP section of the program. For example:

begi n-set up
decl are-report
toc = toc_nane
end- decl are

end- set up

Earlier, we modified the sample program ex7a.sgr to use the DECLARE-TOC and TOC-ENTRY commands.
Then, we generated HTML output from the modified program by using the -PRINTER:EH and -
PRINTER:HT command-line flags. In HTML, the table of contentsfileisalinked point of navigation for the
online report.

However, you may also want to generate output files for printing reports on paper. The table of contents
features can aso perform thistask. To test this, run the modified version of the sample program ex7a.sgr and
print it from an .lisfile (or use -PRINTER:WP in Microsoft Windows). The table of contents output contains
the traditional dot |eaders and necessary page numbers relating to a hard-copy report.

See Chapter 27, "Printing with SOR," page 157.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 30 Creating a Table of Contents

Adding a Table of Contents to the CUST.SQR Sample Program

The following program is based on cust.sgr, which islocated in the SAMPLE (or SAMPLEW) directory. The
program identifies the table of contents with the specific name of cust_toc. The dot |eader is turned on.
Indentation is set to 3. One table of contentslevel is set by using the LEVEL =1 argument or the TOC-
ENTRY command. The BEFORE-PAGE and AFTER-TOC arguments of the DECLARE-TOC command are
used to print simple messages here.

Table of Contents Sample Program 1

Consider this sample program:

begi n-set up
decl are-toc cust_toc
for-reports=(all)
dot - | eader =yes
i ndent ati on=3
after-toc=after_toc
bef or e- page=bef or e_page
end-decl are
end- set up
begi n- progr am
do main
end- pr ogr am
begi n-procedure after_toc
position (+1,1)
print 'After TOC () bold
position (+1,1)
end- procedure
begi n- procedur e before_page
position (+1,1)
print 'Before Page' () bold
position (+1,1)
end- procedur e
begi n- procedure main
begi n-sel ect

print 'Custoner Info' ()
print '-' (+1,1,62) Fill
name (+1, 1, 25)
toc-entry text = &ane level =1
cust _num (, 35, 30)
city (+1, 1, 16)
state (,17,2)
phone (+1,1,15) edit (xxX)bxxx-xxXxx

position (+2,1)

from custoners

order by name

end- sel ect

end- pr ocedure | main

begi n- headi ng 3
print $current-date (1,1) Edit ' DD MON YYYY
page- nunber (1, 69) 'Page

end- headi ng

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 191

Creating a Table of Contents Chapter 30

192

Table of Contents Sample Program 2

The following program is also based on cust.sqr. It is similar to the previous program but declares two table
of contents levels. This program also creates headings and footings that are specific to the table of contents.
The FOR-TOCS argument of the BEGIN-HEADING and BEGIN-FOOTING commands enables you to
specify, by name, the table of contents to which the particular heading or footing section applies. So if the
program is generating multiple reports with multiple tables of contents, you can apply unique or common
headings and footings to different reports and tables of contents. The table of contents heading of this
program prints Table of Contents and the page number. The page numbersin the table of contents print as
roman numerals. The table of contents footing prints Company Confidential.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 30 Creating a Table of Contents

begi n-set up
decl are-report cust
end-decl are
decl are-toc cust_toc
for-reports=(cust)
dot - | eader =yes
i ndent ati on=3
after-toc=after_toc
bef or e- page=bef or e_page
end-decl are
decl are-vari abl e
i nteger #num_toc
i nt eger #num page
end-decl are
end- set up
begi n- progr am
use-report cust
do main
end- pr ogr am
begi n- procedure after_toc
position (+1,1)
print 'After TOC () bold
position (+1,1)
end- procedure
begi n- procedure before_page
position (+1,1)
print 'Before Page' () bold
position (+1,1)
end- procedur e
begi n- procedure main
begi n-sel ect
print 'Custoner Info' ()

print '-' (+1,1,62) Fill
name (+1, 1, 25)
toc-entry text = &name level =1
cust _num (, 35, 30)
city (+1, 1, 16)
state (,17,2)
phone (+1,1,15) edit (xxx)bxxx-xxxx

position (+2,1)
do orders(&cust_num
position (+2,1)
from custoners
order by nane
end- sel ect
end- procedure ! main
begi n- procedure orders (#cust_num
let #any = 0
begi n-sel ect
i f not #any
print ' Orders Booked' (+2,10)
print "------------- " (+1, 10)
let #any =1
end-if
b. order _num
b. product _code
order_date (+1, 10,20) Edit ' DD MON YYYY'
description (, +1, 20)
toc-entry text = &description |evel=2c.price * b.quantity
(,+1,13) Edit $$$$, $$0. 99
from orders a, ordlines b, products c
where a.order_num = b.order_num
and b. product _code = c. product_code
and a.cust_num = #cust _num

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 193

Creating a Table of Contents

194

order by b.order_num b. product_code

end- sel ect

end- procedure ! orders
begi n-footing 3
for-tocs=(cust_toc)

Chapter 30

print ' Conpany Confidential' (1,1,0) center

print $current-date (1,1) Edit
end-footi ng

begi n- headi ng 3
for-tocs=(cust_toc)

' DD- MON- YYYY'

print 'Table of Contents' (1,1) bold center

| et $page = roman(#page-count)
print 'Page ' (1,69)
print $page ()

end- headi ng

begi n- headi ng 3

print $current-date (1,1) Edit
page- nunber (1, 69) 'Page

end- headi ng

' DD- MON- YYYY'

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Index

Numerics/Symbols

_ character 29
| character 12
printing 12
$current-date
obtaining date values with 115
using with PRINT command 28
$old-locale reserved variable 125
$sql-error reserved variable 97
$sgr-locale reserved variable 125
$sgr-program reserved variable 97
$username reserved variable 97

\ character, in edit masks 121

& character 19

character 28

#DEBUG command 136

#EL SE compiler directive 136
#ENDIF compiler directive 136
#F compiler directive 136
#FDEF compiler directive 136
#IFNDEF compiler directive 136
#INCLUDE command 75
#page-count reserved variable 97
<APPLET> tags 172

A

AFTER-PAGE procedure 190
AFTER procedure
order of processing 33
using with ON-BREAK 29
AFTER-TOC procedure 190
ALIGN argument 183
ALTER-LOCALE command 124, 125
ALTER-PRINTER command 59
selecting fonts 85
API See See application programming interface
Application Engine 2
application programming interface
functions for calling SQR 128
invoking an SQR program using the SQR
API 127
invoking for an external application 130
SOR 127
argument files 163
creating from reports 165
using 163
arguments 163

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

command-line 162

passing 100, 188

used with ASK or INPUT command 163
arrays 48

creating 50

multiple 53

performance issues 143

sorting 143

three-dimensional 48
ASK command 163

B

background colors, HTML 170
background images, HTML 170
bar codes 75
batch mode 165
BATCH-MODE argument 163
bat files 165
bcl.a128
bclw32.dll 127
BEFORE-PAGE procedure 190
BEFORE procedure
order of processing 33
using with ON-BREAK 29
BEFORE-TOC procedure 189
BEGIN-DOCUMENT command 61
BEGIN-FOOTING command 12, 192
BEGIN-HEADING command 12, 192
BEGIN-PROCEDURE command 16
BEGIN-PROGRAM command 6
BEGIN-SELECT command 16
HAVING clause 105
ORDER BY clause with 22
BEGIN-SQL paragraph 111
blank lines 61
bmp files 72
body, of SQR page 11
BORDER argument 183
BOTTOM-MARGIN argument 41
boxes, drawing 71
break logic 21, 22
multiple breaks 24
nesting breaks 24
order of events 30
-T command-line flag and 135
understanding 21
break procedures, with BEFORE and AFTER 29
break values, saving 34
browser support 185
buffering
records 151
rows 151

-BURST
{xx} 173

195

Index

P173
S173
T173

bursting reports 173
business charts 77

C

C, extending SQR with 130
categories, grouping by in cross-tabular reports 51
CENTER argument, PRINT command 12, 86
CGl scripts

creating 187

publishing with 186

- character 29

character grid 7, 41, 59, 85
character size 86
charts
available types 77
business 77
creating 78
defining 81
passing data to 82
printing 81
CHAR-WIDTH argument
DECLARE-LAYOUT command 85
CHAR-WIDTH argument, DECLARE-LAYOUT
command 41
CODE argument, PRINT command 89
CODE-PRINTER=HT 172, 182
CODE-PRINTER argument, PRINT command 89
colors, HTML 171
COLSPAN argument 183
columns
calculating totals 28
calculating totals with ON-BREAK 25
calling procedures before and after breaks 29
choosing not to print ON-BREAK 34
defining 58
nesting multiple 24
printing multiple 57
reprinting values on a new page 27
with multiple breaks 33
COLUMNS command 57, 58
column variables 19
changing the name 20
using in a condition 19
command line
arguments 162, 164
reserved characters 164

196

special characters 164
SQR 127, 161
command-line flags 7
-F 159
-KEEP 158
-NOLI1S 158, 159
output files 157
-PRINTER:EH 157, 168
-PRINTER:HP 157
-PRINTER:HT 157, 168
-PRINTER:LP 157
-PRINTER:PS 157
-PRINTER:WP 157
-PRINTER:xx 158
-RS 154
-RT 154
syntax 162
-T 135
comments 12
COMMIT statement 113
compile time 155
compile time features 153
compiling SQR programs 150
CONCAT command 75
conditional processing 21
connectivity 7
counters 59
CREATE-ARRAY command 50
CREATE TABLE, SQL statement 111
cross-tabular reports
creating 47
grouping by categoriesin 51
cursor status, SQL 142

D

data
avoiding redundant 21
exporting 65
listing 15
passing to charts 82
printing 15
selecting from database 15, 16
DATA-ARRAY-COLUMN-COUNT argument,
PRINT-CHART command 82
DATA-ARRAY-COLUMN-LABELS argument,
PRINT-CHART command 82
DATA-ARRAY option, PRINT-CHART command
82
DATA-ARRAY-ROW-COUNT argument, PRINT-
CHART command 82
database platforms supported 4
database server, running programs on 151
dateadd function 116
date arithmetic 115
date data type 115
datediff function 116
date edit masks
case sensitivity 121
table of 119
using 119
date formats, literal 117
DATE keyword 125
datenow function 116
dates 11
converting from strings 115, 118

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

converting to strings 115, 118
edit masks 119
entering with INPUT command 119
performing arithmetic with 115
printing 28
variables 121

datetostr function 51, 116, 118

date variables 28

DB2 161

-DEBUG flag 136

debugging SQR programs
using #DEBUG 136
using compiler directives 136
decimal numbers, performance issues 149
declarations
adding with SETUP 39
understanding 39
DECLARE-CHART command
LEGEND-TITLE option 81
understanding 77
DECLARE-IMAGE command 72
DECLARE-LAYOUT command 40
CHAR-WIDTH argument 41, 85
defining page width with 59
LINE-HEIGHT argument 41, 85
MAX-COLUMNS argument 41
MAX-LINES argument 41
ORIENTATION argument 42
setting margins with 41, 70
setting paper size with 41
DECLARE-PRINTER command 89, 158
FOR-REPORTS option 159
selecting fonts 85
type option 159
DECLARE-REPORT command
PRINTER-TY PE option 158
using 158
DECLARE-TOC command 189
DECLARE-VARIABLE command 115, 121
demand paging 173
DISPLAY command 118
DO command 16
document markers 61, 75
document paragraph 61
DROP TABLE, SQL statement 111
dynamic SQL
checking syntax 96
performance issues 141
understanding 94
dynamic variables 95
in z/0OS 95

E

edit masks 28, 119
and literal date formats 117

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

case sensitivity 121

default 123
EL SE command 29
ENCODE command 66
END-DOCUMENT command 61
END-FOOTING command 12
END-HEADING command 12
END-IF command 29
END-PROCEDURE command 16
END-PROGRAM command 6
END-SELECT command 16
enhanced HTML 169
epsfiles 72
error checking 96
error values, SQR 129
EVALUATE command 51, 91
event order, in ON-BREAK processing 30
exclamation mark 12

printing 12
export file, creating 66
exporting data 65
extufunc.c 134

-F command-line flag 159

F

FILL option, PRINT command 28, 70
flags See Also command-line flags
flat files
performance issues 147
sorting 147
FONT option, ALTER-PRINTER command 71
fonts
changing 70
defaults 85
for printer-independent reports 89
setting 85
footings 11
adding 12
adding comments 12
adding page numbers 13
defining for multiple reports 110
designating number of linesfor 12
indicating the print position 13
sample program 11
FOOTING section 12
FORMFEED argument 67
form-feed characters 9
form letters
creating 61
sample program 61
FOR-REPORTS option
BEGIN-FOOTING command 110
BEGIN-HEADING command 110
DECLARE-PRINTER command 159
FRAME file 174
FullHTML, enhanced HTML parameter 169
functions 103
application programming interface 128
user 130, 131, 134

Index

197

Index

198

G

gif files 72
GIF format 180
global procedures 99
global variables 100
graphical reports, creating 82
GRAPHIC command 71
GRAPHIC FONT command 89
graphics
adding 70
using 69
grid 7, 41, 59
for positioning text 85
groups
creating new with break logic 21
inserting lines between 23
starting new 22

H

having clause, BEGIN-SELECT command 105
headings 11
adding 12
defining for multiple reports 110
designating number of linesfor 12
HTML 174, 178
reprinting on anew page 27
sample program 11
HEADING section 12, 16
highlighting, HTML text 174, 178
HORZ-LINE argument, GRAPHIC command 71
hpgl files 72
HP LaserJet printers 59
HTML
adding your own tags 182
background colors 170
background images 170
bursting files 173
centering 167
colors 171
enhanced 169
extensions 172
font sizing 167
font styles 167
formatting paragraphs 181
forms 186
FRAME construct 185
headings 174
highlighting 174
images 167, 180
links 171, 174
lists 174, 180
modifying existing SQR program for 182
paragraph formatting 174
procedures 175
producing output 168, 172
reserved characters 172
setting attributes 170
SQR features supported 167
tables 174
tags 168
testing output 174
text colors 171
titles 170

html_br HTML procedure 181

html_hr HTML procedure 182

html_img HTML procedure 180

html_nobr HTML procedure 182

html_on HTML procedure 175

html_p HTML procedure 181

html_set_body_attributes HTML procedure
169, 173

html_set_head tagsHTML procedure 169, 173

HTML.INC 169

hyphens, using with commands 29

IF command 29
if-then-else logic 29
images
HTML 180
sharing 72
supported file formats 72
IMAGE-SIZE argument, PRINT-IMAGE command
73
implementation codes, adding to ufunc.c 132
Informix 161
InitSQRExtension() function 134
INPUT command 163
and dates 119
INSERT, SQL statement 111
installing SQR 2, 4
integers, performance issues 149

J

JavaScript tags 172
joins
defining 104
simplifying 140
jpeg files 72
JPEG format 180

K

-KEEP flag 59, 82, 158

L

landscape orientation 42
LAST-PAGE command 13
LEFT-MARGIN argument 41
LEGEND-TITLE option, DECLARE-CHART
command 81
LET command 29
using functionsin 131
using to create export file 66
LEVEL argument, using with ON-BREAK 24, 30
libsti.a 128
libsti32.dll 127
LINE-HEIGHT argument, DECLARE-LAYOUT
command 41, 85

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

line numbers 11
lines
adding 70
blank 61
specifying thickness 71
link anchors 179
links 171, 174, 179
lisfiles9, 72
listing data, sample program 15
lists, HTML 174, 180
literal date formats 117
literal text 6
loadall.sqr, loading sample database with 5
LOAD-LOOKUP command 140
locales
default 124
modifying preferences 125
restoring defaults 125
selecting 123
switching 124
System 124
understanding 123
local procedures 99
local variables 99
logos
adding 70, 72
sharing 72
supported file formats 72
LOOKUP command 140

M

machine floating point numbers, performance
issues 149
mailing labels 57
printing 57
running the program for printing 59
sample program 57
makefile file 128
margins 41, 70
margins, setting with DECLARE-LAYOUT
command 40
master and detail reports 43
correlating subqueriesin 45
one-to-many relationships 43
sample program 43
MONEY keyword 125
MOVE command 118
multiple reports, creating 149
myreport.sgr 174

N

national language support 123

for date edit masks 121
NEED qualifier, using with ON-BREAK 27
NEVER qualifier, using with ON-BREAK 34
NEW-PAGE command 67
NEXT-COLUMN command 57
NEXT-LISTING command 28
NLS See national language support
NO-ADVANCE option 59

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Index

-NOLIS command-line flag 158, 159

NUMBER keyword 125
numeric variables
and ON-BREAK 36
understanding 28

O

ODBC 161
ON-BREAK 21
and WRAP argument 33
BEFORE and AFTER procedures 29
calculating column totals 25
choosing not to print columns 34
controlling page breaks 25
controlling page bresks with multiple
columns 33
LEVEL argument 24, 30
limitations 36
maximum levels 37
NEED qualifier 27
NEVER qualifier 34
numeric variables and 36
order of events 30
PRINT command 22
reprinting column values on a new page 27
reprinting headings on a new page 27
SAVE qualifier 34
SKIPLINES qudlifier 23, 27
one-to-many relationships, in master and detail
reports 43
Oracle 161
ORDER BY clause, with BEGIN-SELECT
command 22
ORIENTATION argument 42
output
file names 8
files 110
file types 157
printer-independent files 72
printer-specific files 72
types availablein SQR 1
viewing SOR 8

P

page body 11
page breaks
controlling with multiple ON-BREAK
columns 33
controlling with ON-BREAK 25
handling 27
preventing 33
page footings 11
adding 12

199

Index

200

adding comments 12
adding page numbers 13
indicating the print position 13
sample program 11
page headings 11
adding 12
sample program 11
page layout
overriding the defaults 41
setting with DECLARE-LAYOUT command
40
PAGE-NUMBER command 13
page numbers 11, 13
page orientation 42
page setup 11
paper size, setting with DECLARE-LAYOUT
command 40
paragraphs
formatting with HTML 174, 181
select 16, 17
performance issues 139
POINT-SIZE option, ALTER-PRINTER command
71
portrait orientation 42
position, print 7, 13, 17, 41
POSITION command 17
positioning objects, using HTML procedures 176
PostScript printers 59
PRINT-BAR-CODE command 75
PRINT-CHART command 77, 81
PRINT command 6, 12, 13, 118
CENTER argument 86
choosing not to print ON-BREAK columns 34
FILL option 28, 70
implied in select paragraphs 17
ON-BREAK option with 22
using with $current-date 28
WRAP argument 86, 88
PRINT-DIRECT command 89
PRINTER-DEINIT command 89

-PRINTER flags
EH 157, 168, 169, 170
HP 82, 90, 157
HT 90, 157, 168, 172
LP 89, 157
PS 59, 82, 90, 157
WP 90, 157
xx 158

printer-independent output files 72
printer-independent reports

commands to avoid in 89

understanding 89
PRINTER-INIT command 89
printers 59

selecting at runtime 89, 90
printer-specific output files 72
PRINTER-TY PE option 158
PRINT-IMAGE command 72, 180

printing
data, sample program for 15
DECLARE-PRINTER command 158
specifying output file types 157
text strings 6
procedures 99
arguments 100
calling before and after column breaks 29
global 99
local 99
naming 29
recursive 146
Process Scheduler 2
program output
output files 110
programs
creating 7
running 7
PROGRAM section 6
pssar.ini 117, 124
modifying with ALTER-LOCALE command
125
Processing-Limits section 150
publishing
automated 185
reports 184
using CGlI scripts 186

Q

queries
correlating subqueries 45
detail 43
master 43
nested 43
QuickSort algorithm 144

R

records
buffering 151
displaying in tables 177
performance issues 151
recursive procedures 146
relinking SQR 133
report dates 11
reports
bursting 173
cross-tabular 47
graphical 82
master and detail 43
multiple 107, 149
printer-independent 89
publishing 184
sample program for creating multiple 107
viewing published 185
report titles 11
reserved characters
HTML 172
using on command line 164
reserved variables 28, 97, 100
RIGHT-MARGIN argument 41
rows
buffering 151

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

defining 58
performance issues 151

-RS command-line flag 154
-RT command-line flag 154

running SQR programs
in Microsoft Windows 7
in UNIX/Linux 7
runtime 155
arguments 163
features 153
files 154

S

sampl e database, setting up 5
sample programs 1
locating 4
reviewing results 4
SAVE qudifier, using with ON-BREAK 34
SAVE variables 33
script files 165
selecting data 15
select paragraphs
creating 16
defining 16
indentation 17
naming columns 17
simplifying 139
syntax 17
SETUP section 39
commands used in 39
creating 39
understanding 39
with multiple reports 110
shell scripts 165
SHOW command 118
SKIPLINES qualifier 59
using 33
using with ON-BREAK 23, 27
SOURCE option, PRINT-IMAGE command 72
spf files 9, 72, 82, 157, 158, 159
SPF Viewer 8
spreadsheets, exporting to 65
SQL 4
COMMIT statement 113
CREATE TABLE statement 111
cursor status 142
DELETE statement 96
DROP TABLE statement 111
dynamic 94, 141
entering with BEGIN-SQL paragraph 111
error checking 96
INSERT statement 96, 111
SELECT statement 17, 96
statements, and SQR performance 139
substitution variables 97

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

UPDATE statement 96, 111
using in SQR 111
variables 93
SQR
API 127
calling from another application 127
command line 127, 161
command-line arguments 162
compiling programs 154
creating programs 7
designating print position 13
error values 129
extending with user functions 130
functions 103
HTML support 167
if-then-else logic 29
implementation 1
installing 2, 4
integrating third-party libraries with 130
invoking using the SQR API 127
numerics 149
output types 1
overview 1
portable file format 9, 82
programming language 1
relinking 133
running programs 154
sample programs 1, 4
SQL statementsin 111
testing programs 135
viewing output 8
SQR_DB_DATE_FORMAT 117
sqr.al28
sor.lib 128
sgrapi.h 127
sgrend 128
SQR executable 2
SQR Execute 1, 150, 155
sgrext.dil 134
sgrext.mak 134
sgrmake file 128
SQR Print 1, 158
SQR PRINT, with CODE-PRINTER=HT 172
SQR Viewer 4, 158
sqrw.dll 127, 134
SQRW executable 2, 7
sgrwin.lib 127
sgrwt.dll 134
sat files 154
STATIC keyword 131
stimages.dll 127
STRING command 66
strings
converting from dates 118
converting to dates 118
string variables 28
strtodate function 116, 118
subqueries, correlating 45
substitution variables 97
subtotals
calculating for ON-BREAK column 25
printing 21
Sybase 161
SYMBOL-SET argument, ALTER-PRINTER
command 89
syntax conventions 4
System locale 124

Index

201

Index

202

T

tab-delimited file 65

table of contents
adding entries 190
defining 189

tables
displaying recordsin 177
using multiple 43
withHTML 174

tabular reports, sample program 69

-T command-line flag 135

temporary database tables
aternativesto 143
performance issues 143
testing SQR programs 135
text
highlighting with HTML 178
literal 6
positioning 85
printing strings 6
specifying colorsin HTML 171
text editors 7
three-dimensional arrays 48
times, printing 28
titles 11
titles, HTML 170
TOC-ENTRY command 190
TOP-MARGIN argument 41
totals
calculating 28
calculating for ON-BREAK column 25
tuning issues 139
type option
DECLARE-PRINTER command 159
PRINT-IMAGE command 72

U

ufunc.c
adding an implementation code to 132
adding user-defined functions to 130
adding user function prototypes to 131
understanding 131
USERFUNCS tablein 131
using in Windows 134

using to invoke an external application API

130

underscores, using with procedure and variable

names 29
Unicode 147
UPDATE, SQL statement 111
USE-PRINTER-TY PE command 89, 158
USERFUNCS table, adding entriesto 131

user functions 131
adding prototype 131
adding to ufunc.c 130
implementing in Microsoft Windows 134

V

variables
adding nonal phabetical and nonnumeric
characters 66
column 19
conditional processing of 21
date 28, 121
dynamic 95
for positioning 61
global 100
global versuslocal 137
initializing 29
local 99
misspelling names 137
naming 29
numeric 28
numeric and ON-BREAK 36
predefined 28
reserved 28, 97, 100
string 28
substitution 97
understanding 28
using in SQL 93

W

white space, adding 21
WIDTH argument 183
word processing files, exporting to 65
WRAP argument
and ON-BREAK 33
PRINT command 86, 88

Z

Z/OS, dynamic variablesin 95

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

	Enterprise PeopleTools 8.50 PeopleBook: SQR for PeopleSoft Developers
	Copyright
	Contents
	Preface: SQR for PeopleSoft Developers Preface
	SQR for PeopleSoft Developers

	Chapter 1: Getting Started with SQR for PeopleSoft
	SQR for PeopleSoft Overview
	SQR for PeopleSoft Implementation
	Other Sources of Information

	Chapter 2: Introducing the Sample SQR Program
	Using with This Guide
	Setting Up the Sample Database
	Considerations for DBX
	Understanding the Sample Program for Printing a Text String
	Creating and Running a Sample SQR Program
	Creating an SQR Program
	Running an SQR Program

	Viewing SQR Output

	Chapter 3: Creating Headings and Footings
	Understanding SQR Pages
	Creating Page Headings and Footings
	Understanding the Heading and Footing Code Example
	Adding Page Headings
	Adding Page Footings

	Chapter 4: Selecting Data from the Database
	Understanding the Sample Program for Listing and Printing Data
	Creating SQR Select Paragraphs

	Chapter 5: Using Column Variables
	Using a Column Variable in a Condition
	Changing the Column Variable Name

	Chapter 6: Using Break Logic
	Understanding Break Logic
	Using ON-BREAK
	Skipping Lines Between Groups
	Arranging Multiple Break Columns
	Using Break Processing Enhancements
	Controlling Page Breaks and Calculating Subtotals and Totals
	Handling Page Breaks
	Printing the Date
	Obtaining Totals
	Using Hyphens and Underscores

	Setting Break Procedures with BEFORE and AFTER
	Understanding the Order of Events

	Controlling Page Breaks with Multiple ON-BREAK Columns
	Saving a Value When a Break Occurs
	Using ON-BREAK on a Hidden Column
	Performing Break Processing on Numeric Values

	Chapter 7: Adding Declarations Using the SETUP Section
	Understanding the SETUP Section
	Creating the SETUP Section
	Using the DECLARE-LAYOUT Command
	Sample SETUP Program
	Defining the SQR Page Layout

	Overriding the Default Settings
	Declaring the Page Orientation

	Chapter 8: Creating Master and Detail Reports
	Understanding Master and Detail Reports
	Understanding the Sample Program for Master and Detail Reports
	Correlating Subqueries
	Sample Program Output

	Chapter 9: Creating Cross-Tabular Reports
	Understanding Cross-Tabular Reports
	Using an Array
	Creating an Array
	Grouping by Category
	Using Multiple Arrays

	Chapter 10: Printing Mailing Labels
	Understanding Mailing Label Printing
	Understanding the Sample Program for Printing Mailing Labels
	Defining Columns and Rows
	Running the Print Mailing Labels Program

	Chapter 11: Creating Form Letters
	Understanding the DOCUMENT Paragraph
	Understanding the Sample Program for Form Letters

	Chapter 12: Exporting Data to Other Applications
	Understanding the Sample Program for Exporting Data
	Creating an Export File

	Chapter 13: Using Graphics
	Understanding the Sample Program for Simple Tabular Reports
	Adding Graphics
	Sharing Images Among Reports
	Printing Bar Codes

	Chapter 14: Using Business Charts
	Understanding Business Charts
	Creating a Chart
	Defining a Chart
	Printing a Chart
	Running the Program to Create a Graphical Report
	Passing Data to the Chart

	Chapter 15: Changing Fonts
	Setting Fonts
	Positioning Text
	Using the WRAP Option

	Chapter 16: Writing Printer-Independent Reports
	Understanding Printer-Independent Reports
	Reviewing the Sample Program for Selecting the Printer Type at Runtime

	Chapter 17: Using Dynamic SQL and Error Checking
	Using Variables in SQL
	Using Dynamic SQL
	Using SQL Error Checking
	Using SQL and Substitution Variables

	Chapter 18: Using Procedures and Local Variables and Passing Arguments
	Using Procedures
	Using Local Variables
	Passing Arguments

	Chapter 19: Creating Multiple Reports from One Program
	Understanding How to Create Multiple Reports
	Understanding the Sample Program for Multiple Reports
	Defining Heading and Footing Sections
	Defining Program Output

	Chapter 20: Using Additional SQL Statements with SQR
	Using SQL Statements in SQR
	Using BEGIN-SQL

	Chapter 21: Working with Dates
	Understanding Dates and Date Arithmetic
	Using Literal Date Formats
	Using String-to-Date Conversions
	Using Date-to-String Conversions
	Using Dates with the INPUT Command
	Using Date Edit Masks
	Declaring Date Variables

	Chapter 22: Using National Language Support
	Understanding Locales
	Selecting Locales
	Defining a Default Locale
	Switching Locales
	Modifying Locale Preferences
	Specifying NUMBER, MONEY, and DATE Keywords

	Chapter 23: Using Interoperability Features
	Calling SQR from Another Application
	Invoking an SQR Program by Using the SQR API
	Invoking an External Application API by Using the UFUNC.C Interface
	Adding a User Function
	Understanding the UFUNC.C File
	Adding a Function Prototype
	Adding an Entry to the USERFUNCS Table
	Adding an Implementation Code
	Relinking SQR

	Using UFUNC in Microsoft Windows
	Implementing New User Functions in Microsoft Windows

	Chapter 24: Testing and Debugging
	Using the Test Feature
	Using the #DEBUG Command
	Using Compiler Directives for Debugging
	Avoiding Common Programming Errors

	Chapter 25: Increasing Performance and Tuning
	Understanding SQR Performance and SQL Statements
	Simplifying a Complex Select Paragraph
	Using LOAD-LOOKUP to Simplify Joins
	Improving SQL Performance with Dynamic SQL
	Examining SQL Cursor Status
	Avoiding Temporary Database Tables
	Understanding Temporary Database Tables
	Using and Sorting Arrays
	Using and Sorting Flat Files

	Creating Multiple Reports in One Pass
	Tuning SQR Numerics
	Compiling SQR Programs and Using SQR Execute
	Setting Processing Limits
	Buffering Fetched Rows
	Running Programs on the Database Server

	Chapter 26: Compiling Programs and Using SQR Execute
	Understanding Compile Features
	Compiling and Running an SQR Program

	Chapter 27: Printing with SQR
	Specifying Output File Types by Using SQR Command-Line Flags
	Using the DECLARE-PRINTER Command

	Chapter 28: Using the SQR Command Line
	Understanding the SQR Command Line
	Specifying Command-Line Arguments
	Understanding Command-Line Arguments
	Retrieving the Arguments
	Specifying Arguments and Argument Files
	Using an Argument File
	Using Other Approaches to Pass Command-Line Arguments
	Using Reserved Characters
	Creating an Argument File from a Report

	Using Batch Mode

	Chapter 29: Generating and Publishing HTML from an SQR Program
	Understanding SQR Capabilities That Are Available with HTML
	Generating HTML Output
	Understanding HTML Output
	Producing HTML Output
	Using -PRINTER:EH
	Setting HTML Attributes Under -PRINTER:EH
	Using -PRINTER:HT
	Bursting Reports
	Setting Attributes with HTML Procedures
	Using Additional HTML Procedures
	Setting Output File Types
	Testing HTML Output

	Using HTML Procedures in an SQR Program
	Understanding HTML Procedures
	Using HTML Procedures
	Positioning Objects
	Displaying Records in Tables
	Creating Headings
	Highlighting Text
	Creating Links
	Including Images
	Displaying Text in Lists
	Formatting Paragraphs
	Incorporating Your Own HTML Tags

	Modifying an Existing SQR Program for HTML
	Publishing a Report
	Publishing a Report
	Supporting Older Browsers
	Viewing a Published Report
	Publishing by Using an Automated Process
	Publishing by Using a CGI Script

	Chapter 30: Creating a Table of Contents
	Using the DECLARE-TOC Command
	Using the TOC-ENTRY Command
	Adding a Table of Contents to the CUST.SQR Sample Program

	Index

