
Enterprise PeopleTools 8.50
PeopleBook: PeopleSoft Analytic
Calculation Engine

September 2009

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Analytic Calculation Engine
SKU pt850pbr0

Copyright © 1988, 2009, Oracle and/or its affiliates. All rights reserved.

Trademark Notice

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their
respective owners.

License Restrictions Warranty/Consequential Damages Disclaimer

This software and related documentation are provided under a license agreement containing restrictions on use and
disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or
allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit,
perform, publish or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation
of this software, unless required by law for interoperability, is prohibited.

Warranty Disclaimer

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find
any errors, please report them to us in writing.

Restricted Rights Notice

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS

Programs, software, databases, and related documentation and technical data delivered to U.S. Government
customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the
applicable Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007).
Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

Hazardous Applications Notice

This software is developed for general use in a variety of information management applications. It is not developed or
intended for use in any inherently dangerous applications, including applications which may create a risk of personal
injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe,
backup, redundancy and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Third Party Content, Products, and Services Disclaimer

This software and documentation may provide access to or information on content, products and services from third
parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind
with respect to third party content, products and services. Oracle Corporation and its affiliates will not be responsible for
any loss, costs, or damages incurred due to your access to or use of third party content, products or services.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. iii

Contents

Preface

Analytic Calculation Engine Preface ... xv

Understanding Analytic Calculation Engine .. xv
Common Elements Used in This PeopleBook .. xvi

Part 1

Getting Started with Analytic Calculation Engine

Chapter 1

Getting Started with Oracle's PeopleSoft Analytic Calculation Engine ... 3

Understanding Analytic Calculation Engine ... 3
Analytic Calculation Engine Implementation ... 3

Part 2

Designing and Editing Analytic Models

Chapter 2

Understanding Oracle's PeopleSoft Analytic Calculation Engine .. 7

Analytic Calculation Engine Components .. 7
Analytic Calculation Engine Architecture .. 10
Analytic Calculation Engine Development Process ... 11

Development Process Without Existing Record Structures ... 12
Development Process Using Existing Record Structures .. 13

Analytic Calculation Engine Security ... 14

Contents

iv Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Chapter 3

Understanding Analytic Models ... 15

Analytic Models .. 15
Relationship of Parts ... 15

Data Cubes and Dimensions ... 16
Formulas and User Functions .. 18
Cube Collections ... 19
Organizers .. 19

Tools ... 20
PeopleSoft Application Designer Window Components for Creating Analytic Model Definitions 20
Behavior of Bars ... 22
Menu Bar .. 22
Part Browser ... 25

Chapter 4

Creating Analytic Model Definitions ... 27

Understanding the Analytic Model Definition Creation Process .. 27
Understanding Conventions for Naming Analytic Models and Parts ... 28
Creating a New Analytic Model Definition .. 29
Opening an Analytic Model Definition .. 29
Creating Organizers .. 30
Entering Notes for an Analytic Model Definition's Parts ... 30
Finding Parts ... 31
Validating Analytic Models .. 31

Chapter 5

Creating Data Cubes .. 33

Understanding Data Cubes .. 33
Definition of a Data Cube .. 33
Input Data Cubes .. 35
Calculation Data Cubes .. 35
Association Data Cubes ... 35
Virtual Data Cubes ... 37

Understanding the Relationship Between Field Definition Attributes and Data Cube Formats 40
Creating Input Data Cubes .. 41
Creating Calculation Data Cubes .. 41
Creating Association Data Cubes ... 42

Contents

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. v

Creating Virtual Data Cubes ... 42
Defining Data Cube Properties .. 43

Defining General Data Cube Properties ... 43
Selecting Aggregate Functions for Attached Dimensions ... 45

Auditing Data Cubes at Design Time ... 46
Understanding Causes and Inputs .. 47
Understanding Effects .. 47
Displaying Causes and Inputs .. 48
Displaying Effects .. 48
Using the Causes and Effects Tool .. 49

Chapter 6

Creating Dimensions .. 51

Understanding Dimensions ... 51
Creating a New Dimension ... 52
Defining Dimension Properties ... 52
Attaching a Dimension to a Data Cube ... 55
Changing the Order of Dimensions in the Part Browser .. 55

Chapter 7

Creating Cube Collections .. 57

Understanding Cube Collections .. 57
Understanding Types of Cube Collections .. 58

Read/Write Cube Collections ... 58
Intermediate/Calculation Cube Collections ... 59
Presentation Cube Collections ... 60
Example: Creating Two Cube Collections ... 61

Creating Cube Collections .. 61
Defining Cube Collection Properties .. 62

Mapping a Cube Collection to Main and Aggregate Records ... 62
Mapping Data Cubes and Dimensions to Fields .. 63
Defining Additional Cube Collection Dimension Properties .. 65

Chapter 8

Creating Explicit Dimension Sets ... 69

Understanding Explicit Dimension Sets ... 69
Understanding Implicit Tuples and Explicit Tuples ... 72
Defining Explicit Dimension Sets ... 74

Contents

vi Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Viewing Explicit Dimension Set Properties ... 74
Editing or Adding New Explicit Dimension Sets .. 75

Chapter 9

Creating Hierarchies ... 77

Understanding the Relationship of PeopleSoft Trees to Analytic Models .. 77
Purpose of PeopleSoft Trees and Analytic Model Hierarchies .. 77
PeopleCode Usage with PeopleSoft Trees and Analytic Models ... 78

Understanding BAM Model Total Members .. 79
Understanding Dimension Members ... 79

Types of Dimension Members ... 79
Purpose of Node Levels in Creating Hierarchies ... 82
Creation of New Members at Runtime .. 84

Understanding the Calculation of Aggregate Data ... 84
Dimension Order Impact on Calculation ... 85
Logic for Determining the Order of Members ... 85

Understanding the Persistence of Aggregate Data ... 86
Persistence of Aggregate and Detail Data .. 86
Aggregate Record Properties ... 87
Pushed Down Data ... 87
Data Type Considerations .. 88

Working with Overrides .. 88
Understanding Default Aggregation .. 89
Understanding Override Order of Precedence ... 89
Understanding the PSACETREEOVRD Subrecord .. 91
Example: Using Default Aggregation .. 92
Example: Creating Overrides ... 100
Example: Creating a Hierarchy with Mixed Aggregate and Detail Members 118

Chapter 10

Creating Rules, Formulas, and User Functions .. 121

Understanding Rules, Formulas, and User Functions .. 121
Common Elements Used in This Chapter ... 121
Rules, Formulas, and User Functions .. 122
Filter User Functions .. 123
Rule Bar Display .. 124

Understanding Design Time Rule Error Messages ... 124
Defining and Editing Data Cube Formulas ... 129
Defining and Editing User Functions ... 130
Working with the Elements of Rules ... 131

Contents

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. vii

Understanding the Elements of Rules .. 131
Inserting a Built-in Function into a Rule .. 139
Inserting a User Function into a Rule ... 140
Inserting a Numeric Value or Text Value into a Rule .. 140
Inserting a Data Cube Reference into a Rule ... 141
Inserting a Dimension Reference into a Rule ... 141
Inserting a Dimension Member Reference into a Rule .. 142
Inserting a Blank Line into a Rule ... 143
Inserting a Comment into a Rule .. 143

Performing Exceptions to the Rule ... 143
Understanding Exceptions to the Rule .. 144
Create Different Calculations for Different Members ... 144
Creating Different Calculations for Different Groups of Members ... 146

Working with Circular Formulas and Circular Systems .. 147
Understanding Circular Formulas .. 148
Understanding Circular Systems and Recursive Systems .. 148
Understanding Recursive System Resolution .. 149
Understanding Circular System Resolution ... 149
Changing Circular Formula and Circular System Options .. 150

Chapter 11

Using Built-in Functions in Analytic Models ... 153

Built-in Function Reference ... 153
ABS .. 153
ACOS ... 154
ARGUMENTS Declaration ... 154
ASC .. 155
ASIN ... 155
AT ... 156
ATAN ... 158
BREAK .. 159
CASE .. 159
CHANGE ... 160
CHILDCOUNT .. 161
CHR .. 161
CONSOL .. 162
COS .. 162
CUBEID ... 163
CUMAVG .. 164
CUMSUM .. 164
DAVG .. 165
DAY ... 166

Contents

viii Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

DCOUNT ... 167
DDB ... 168
DEC .. 169
DLOOKUP ... 169
DMAX .. 170
DMIN ... 171
DSUM .. 172
E ... 173
FIND ... 173
FIRST ... 174
FOR .. 174
FORCHILDREN .. 175
FORMEMBERS ... 176
FV ... 177
GROUPAVG .. 178
GROUPBY ... 179
GROUPMAX ... 180
GROUPMIN ... 181
GROUPSUM .. 182
GROW .. 183
IF .. 184
INC ... 184
INCDATE .. 185
INPUT .. 186
INSUBTREE .. 186
ISINPUT ... 187
INTERCEPT .. 188
IRR ... 188
LN ... 189
LEFT .. 190
LEN .. 190
LOWER .. 191
MATCH ... 191
MAX ... 192
MBR2TEXT ... 193
MEDIAN .. 194
MEMBER ... 194
MID .. 195
MIN .. 196
MOD ... 197
MONTH ... 197
NEXT ... 198
NPER .. 199
NPV .. 200
NUM2TEXT .. 201

Contents

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. ix

NUMMEMBERS ... 201
OPRID .. 202
PARENT .. 204
PCT ... 204
PERCENTILE .. 205
PI .. 206
PMT .. 206
PREV .. 207
PREVSELF .. 208
PV ... 209
QUARTILE .. 210
RAND ... 211
RATE ... 211
REPLACE .. 212
RETURN .. 212
RIGHT .. 213
ROUND .. 213
SELF ... 214
SET ... 215
SIN ... 215
SLN .. 216
SLOPE .. 216
SQRT .. 219
STDEV ... 219
SYD .. 220
TAN .. 221
TEXT2MBR ... 222
TEXT2NUM .. 222
THIS ... 223
THISCUBE .. 224
TRUNC .. 224
UPPER ... 225
VAR ... 225
WHILE ... 226
YEAR ... 226

Contents

x Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Part 3

Working with Analytic Types

Chapter 12

Understanding the Relationship of Analytic Types to Analytic Models ... 231

Purpose of Analytic Type Definitions .. 231
Example: Working with an Analytic Type and an Analytic Model ... 232

Relationship of Record Attributes to Data Caching Behavior .. 235
Synchronization Order .. 238

Part 4

Working with Analytic Grids

Chapter 13

Creating Analytic Grids ... 241

Understanding Analytic Grid Design .. 241
Components for Working with Analytic Grids .. 243

Inserting and Resizing Analytic Grid Controls ... 245
Setting Analytic Grid Analytic Properties .. 246
Setting Analytic Grid Label Properties ... 249
Setting Analytic Grid Use Properties .. 252
Setting Analytic Grid General Properties ... 255
Inserting and Manipulating Analytic Grid Columns .. 257

Inserting Analytic Grid Columns ... 258
Deleting Analytic Grid Columns .. 258
Moving Analytic Grid Columns on the Layout Tab .. 259
Moving Analytic Grid Columns on the Order Tab .. 259
Resizing Analytic Grids ... 260

Setting Column Properties for Analytic Grids .. 260
Manipulating the Analytic Grid at Runtime ... 260

Contents

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. xi

Part 5

Debugging Analytic Models

Chapter 14

Viewing and Debugging Analytic Models ... 265

Understanding the Analytic Model Viewer .. 265
Viewing Analytic Model Properties ... 266

Understanding Analytic Model Properties ... 266
Pages Used to View Analytic Model Properties ... 268
Viewing Analytic Models .. 269
Viewing and Debugging Cube Collection Properties ... 270
Viewing and Debugging Data Cube Properties .. 274
Viewing Cell Properties ... 277
Viewing Dimension Properties .. 279
Viewing User Function Properties ... 280
Viewing Organizer Properties .. 281

Using Analytic Model Viewer Alongside PeopleSoft Application Designer ... 282
Using the Application Log Fence ... 283

Chapter 15

Capturing Analytic Instances ... 285

Understanding the Analytic Instance Capture Utility ... 285
Capturing Analytic Instance Data .. 285

Pages Used to Export Analytic Instances .. 286
Exporting Analytic Instances ... 286

Importing Analytic Instance Data .. 288
Pages Used to Import Analytic Instances .. 288
Importing Analytic Instances ... 289

Contents

xii Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Part 6

Converting Analytic Models

Chapter 16

Converting BAM 8.8 Models to Analytic Models ... 293

Understanding the Conversion Process ... 293
Understanding Part Conversion Details .. 296
Exporting BAM 8.8 Models ... 303
Running the PTAEACECONV Application Engine Program .. 304

Running PTAEACECONV from PeopleSoft Application Designer ... 304
Running PTAEACECONV from a PeopleSoft Pure Internet Architecture Page 305

Examining the PTAEACECONV Log File .. 305

Part 7

ACE Administration

Chapter 17

Managing Analytic Servers .. 309

Understanding the Analytic Server Framework .. 309
Analytic Server Framework Overview .. 309
Analytic Server Process Flow and Behavior .. 312

Understanding Batch Processing of Analytic Instances ... 314
Configuring and Starting Analytic Servers .. 315

Enabling PSANALYTICSRV .. 315
Specifying Analytic Server Instance Quantities ... 315
Starting PSANALYTICSRV .. 316

Administering Analytic Servers ... 317
Administering Analytic Server Domains ... 317
Administering Analytic Server Instances ... 318

Administering Analytic Tables .. 321
Purging Delete Tables .. 321
Synchronizing Table Versions ... 322

Creating, Deleting, and Copying Analytic Instances .. 323
Pages Used to Create, Delete, and Copy Analytic Instances .. 323

Contents

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. xiii

Creating Analytic Instances ... 323
Deleting Analytic Instances ... 325
Copying Analytic Instances ... 326

Loading and Unloading Analytic Instances .. 328
Loading and Unloading Analytic Instances ... 328

Index .. 333

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. xv

Analytic Calculation Engine Preface

This chapter provides an overview of the Analytic Calculation Engine and lists common elements.

Understanding Analytic Calculation Engine

This PeopleBook is written for application developers working with PeopleSoft applications and provides a
foundation for developing and administering analytic models, which calculate and send data to PeopleSoft
applications for the purposes of multidimensional reporting, analysis, and data entry.

PeopleBooks and the Online PeopleSoft Library

A companion PeopleBook called PeopleBooks and the Online PeopleSoft Library contains general
information, including:

• Understanding the PeopleSoft online library and related documentation.

• How to send PeopleSoft documentation comments and suggestions to Oracle.

• How to access hosted PeopleBooks, downloadable HTML PeopleBooks, and downloadable PDF
PeopleBooks as well as documentation updates.

• Understanding PeopleBook structure.

• Typographical conventions and visual cues used in PeopleBooks.

• ISO country codes and currency codes.

• PeopleBooks that are common across multiple applications.

• Common elements used in PeopleBooks.

• Navigating the PeopleBooks interface and searching the PeopleSoft online library.

• Displaying and printing screen shots and graphics in PeopleBooks.

• How to manage the PeopleSoft online library including full-text searching and configuring a reverse
proxy server.

• Understanding documentation integration and how to integrate customized documentation into the library.

• Glossary of useful PeopleSoft terms that are used in PeopleBooks.

You can find this companion PeopleBook in your PeopleSoft online library.

Preface

xvi Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Common Elements Used in This PeopleBook

Click the New Cube Collection icon to create a new cube collection.

Click the New Cube icon to create a new data cube.

Click the Attach Cubes icon to add existing data cubes to the selected cube
collection.

Click the New Dimension icon to create a new dimension.

Click the Attach Dimension icon to attach one or more dimensions to the selected
data cube.

Click the Detach Dimension icon to detach one or more dimensions from the
selected data cube.

Click the Validate Model icon to validate the analytic model.

Click the Find Part icon to find all of the locations of the selected part in the
analytic model.

Click the Causes and Effects Tool icon to browse through the cube collections
and data cubes of your analytic model to view the causes, effects, and inputs of
data cubes.

Click the Direct Causes icon to display the direct causes of the selected data
cube.

Click the Direct Effects icon to display the direct effects of the selected data
cube.

Click the Accept Changes icon to accept the changes you made to the rule.

Click the Cancel Changes icon to cancel the changes you made to the rule.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 1

Part 1

Getting Started with Analytic Calculation
Engine

Chapter 1
Getting Started with Oracle's PeopleSoft Analytic Calculation Engine

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 3

Chapter 1

Getting Started with Oracle's PeopleSoft
Analytic Calculation Engine

This chapter provides an overview of Oracle's PeopleSoft Analytic Calculation Engine and discusses Analytic
Calculation Engine implementation.

Understanding Analytic Calculation Engine

Analytic Calculation Engine comprises a calculation engine plus several PeopleTools features that enable
application developers to define both the calculation rules and the display of calculated data within
PeopleSoft applications for the purposes of multidimensional reporting, data editing, and analysis.

Specifically, application developers create analytic models to define the rules that are used to calculate data.
Application developers also create PeopleSoft Pure Internet Architecture pages with analytic grids to display
the data within PeopleSoft applications. Within the application, a PeopleSoft Pure Internet Architecture page
with an analytic grid may be referred to as an interactive report. End users view, analyze, and make changes
to analytic model data. When end users save their changes, Analytic Calculation Engine recalculates the data
and sends the calculated data to the application database.

Analytic Calculation Engine Implementation

The functionality to create your own analytic models is delivered as part of standard PeopleSoft PeopleTools
that are provided with all PeopleSoft products. However, you must complete these activities before you can
create analytic models:

Step Reference

Install PeopleTools. See Enterprise PeopleTools Installation Guide for your
database platform.

Install the database that you want to use with your
application.

See the installation documentation for your database
platform.

Configure the application server. See Enterprise PeopleTools 8.50 PeopleBook: System and
Server Administration, "Using the PSADMIN Utility."

Enable the appropriate number of analytic server
instances.

See Chapter 17, "Managing Analytic Servers,"
Configuring and Starting Analytic Servers, page 315.

Getting Started with Oracle's PeopleSoft Analytic Calculation Engine Chapter 1

4 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Step Reference

Establish a user profile that gives you access to
PeopleSoft Application Designer and any other processes
that you will use.

See Enterprise PeopleTools 8.50 PeopleBook: Security
Administration.

Configure the application for which you are creating or
changing an analytic model.

The appropriate PeopleBook for your application.

See Also

Chapter 2, "Understanding Oracle's PeopleSoft Analytic Calculation Engine," page 7

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 5

Part 2

Designing and Editing Analytic Models

Chapter 2
Understanding Oracle's PeopleSoft Analytic Calculation Engine

Chapter 3
Understanding Analytic Models

Chapter 4
Creating Analytic Model Definitions

Chapter 5
Creating Data Cubes

Chapter 6
Creating Dimensions

Chapter 7
Creating Cube Collections

Chapter 8
Creating Explicit Dimension Sets

Chapter 9
Creating Hierarchies

Chapter 10
Creating Rules, Formulas, and User Functions

Chapter 11
Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 7

Chapter 2

Understanding Oracle's PeopleSoft
Analytic Calculation Engine

This chapter discusses:

• Analytic Calculation Engine components.

• Analytic Calculation Engine architecture.

• Analytic Calculation Engine development process.

• Analytic Calculation Engine security.

Analytic Calculation Engine Components

This section discusses these Analytic Calculation Engine components:

• Analytic model.

• Analytic type.

• Analytic instances.

• Analytic calculation engines.

• Analytic server instances.

• Analytic Calculation Engine classes.

• Analytic Calculation Engine Metadata classes.

• AnalyticType classes.

• AnalyticGrid classes.

• PeopleSoft Pure Internet Architecture pages with analytic grids.

• Analytic Model Viewer.

• Analytic Instance Capture Utility.

• PeopleSoft Performance Monitor.

Understanding Oracle's PeopleSoft Analytic Calculation Engine Chapter 2

8 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic Model

Use PeopleSoft Application Designer to create an analytic model. When you create an analytic model, you:

• Define data cubes, dimensions, cube collections, and other parts that are used to organize and calculate
individual fields of data.

• Map records to cube collections within the analytic model.

• Map individual record fields to data cubes and dimensions within the cube collections.

Analytic Type

Both Analytic Calculation Engine and PeopleSoft Optimization Framework use analytic types. Use
PeopleSoft Application Designer to create an analytic type definition, which defines the caching behavior of
the records that the analytic model uses, specifies the records that are accessible by all end users, and
specifies the records that are only accessible by certain users for what-if scenario forecasting.

See Chapter 12, "Understanding the Relationship of Analytic Types to Analytic Models," Purpose of Analytic
Type Definitions, page 231 and Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization
Framework, "Designing Analytic Type Definitions."

Analytic Instances

Analytic instances are runtime instances of analytic types that are loaded into analytic server instances by
means of the AnalyticInstance class Load method. The AnalyticInstance class is one of the Analytic
Calculation Engine classes. To view and edit analytic model data, an end user selects an analytic instance ID
within an application's PeopleSoft Pure Internet Architecture pages.

Analytic Calculation Engines

Analytic calculation engines run inside analytic server instances. They calculate analytic instance data by
using the relationships and rules that are defined in the analytic model.

Analytic Server Instances

When used with Analytic Calculation Engine, analytic server instances are processes in the application server
domain that contain and run analytic instances and analytic calculation engines. When a user selects an
analytic instance ID within an application, the system generates one analytic calculation engine and one
analytic server instance.One analytic server instance can contain one and only one analytic instance, and one
and only one analytic calculation engine. All three of these components, plus the application server, exist in
one application server domain. An application server can communicate only with analytic server instances
that exist in the same application server domain as the application server. For this reason, a PeopleSoft
application that exists in one application server domain cannot communicate with an analytic model that
exists in a different application server domain.

The PSANALYTICREG table contains a row that provides information about each analytic server instance
that is running within an application server domain. You administer analytic server instances by using the
Summary and Servers pages that display the data from the PSANALYTICREG table.

See Chapter 17, "Managing Analytic Servers," Administering Analytic Servers, page 317.

Chapter 2 Understanding Oracle's PeopleSoft Analytic Calculation Engine

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 9

Analytic Calculation Engine Classes

You use the Analytic Calculation Engine classes for all runtime operations between PeopleSoft applications
and analytic calculation engines. Use the Analytic Calculation Engine classes to either retrieve or specify data
in an instance of an analytic model loaded into the system, and also to calculate (or recalculate) data cube
values. The Analytic Calculation Engine classes run on the application server and use Tuxedo service
requests to communicate with analytic server instances.

The Analytic Calculation Engine classes contain the AnalyticInstance classes, which are used by Analytic
Calculation Engine and PeopleSoft Optimization Framework to manipulate analytic instance definitions with
PeopleCode. Use the AnalyticInstance classes to manipulate analytic instance definitions at runtime.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes."

Analytic Calculation Engine Metadata Classes

The Analytic Calculation Engine Metadata classes are application classes that PeopleSoft applications use to
create and change analytic model metadata. For example, using the Analytic Calculation Engine Metadata
classes you could modify a calculation rule. Applications can use the Analytic Calculation Engine Metadata
classes to perform all of the analytic model-related actions that are available in PeopleSoft Application
Designer.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Metadata Classes."

AnalyticType Classes

The AnalyticType classes are PeopleCode application classes that PeopleSoft applications use to manipulate
analytic type definitions. Use the AnalyticType classes at runtime to perform all of the analytic type
definition-related actions that are available in PeopleSoft Application Designer.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Metadata Classes."

AnalyticGrid Classes

Analytic Calculation Engine uses the AnalyticGrid classes to manipulate analytic grids using PeopleCode.
Use the AnalyticGrid classes to manipulate the display or data of analytic grids at runtime.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Grid Classes."

PeopleSoft Pure Internet Architecture Pages with Analytic Grids

Use PeopleSoft Application Designer to create PeopleSoft Pure Internet Architecture pages with analytic
grids. Pages with analytic grids display Analytic Calculation Engine data and application data within
PeopleSoft applications. Within the application, a PeopleSoft Pure Internet Architecture page with an analytic
grid may be referred to as an interactive report. Analytic grids provide drag-and-drop functionality so end
users can view their data in different ways.

See Chapter 13, "Creating Analytic Grids," page 241.

Understanding Oracle's PeopleSoft Analytic Calculation Engine Chapter 2

10 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic Model Viewer

The Analytic Model Viewer helps developers debug and analyze analytic models by enabling them to view an
analytic model's parts and to view and edit an analytic model's application data.

See Chapter 14, "Viewing and Debugging Analytic Models," page 265.

Analytic Instance Capture Utility

When experiencing problems with an application that uses an analytic model, customers can use the Analytic
Instance Capture Utility to package analytic model data and metadata to send to PeopleSoft support for
analysis.

See Chapter 15, "Capturing Analytic Instances," page 285.

PeopleSoft Performance Monitor

PeopleSoft Performance Monitor enables you to monitor Analytic Calculation Engine and view real-time and
historical performance data. PeopleSoft Performance Monitor provides the information that you need to solve
immediate performance issues as well as to analyze trends in system performance.

Analytic Calculation Engine Architecture

This diagram illustrates how the various Analytic Calculation Engine architecture components work together:

Chapter 2 Understanding Oracle's PeopleSoft Analytic Calculation Engine

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 11

Analytic Calculation Engine architecture

Analytic Calculation Engine Development Process

You should follow the development process outlined here for your PeopleSoft application to correctly employ
the features of Analytic Calculation Engine.

Understanding Oracle's PeopleSoft Analytic Calculation Engine Chapter 2

12 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Development Process Without Existing Record Structures

If you do not have existing record structures on which to base your analytic model, perform this iterative
process:

• Create the record definitions while creating the analytic model's cube collections.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide,
"Creating Record Definitions" and Chapter 7, "Creating Cube Collections," page 57.

• Create the rest of the analytic model.

See Chapter 4, "Creating Analytic Model Definitions," page 27.

• Define application data security.

See Enterprise PeopleTools 8.50 PeopleBook: Security Administration, "Understanding PeopleSoft
Security," Application Data Security.

• Create an analytic type definition.

At the appropriate step in this process, you must attach the analytic type to the analytic model.

• Attach the analytic type to the analytic model.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic
Type Definitions," Creating Analytic Type Definitions and Chapter 4, "Creating Analytic Model
Definitions," page 27.

• Create PeopleSoft Pure Internet Architecture pages with analytic grids.

Note. Within the application, a PeopleSoft Pure Internet Architecture page with an analytic grid may be
referred to as an interactive report.

See Chapter 13, "Creating Analytic Grids," page 241.

• As needed, create pages and any required PeopleCode to administer analytic instances.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide,
"Creating Page Definitions" and Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference,
"Analytic Type Classes."

• As needed, write PeopleCode programs using the appropriate classes (Analytic Calculation Engine,
Analytic Calculation Engine Metadata, AnalyticGrid, AnalyticType) to manipulate the analytic model, its
data, and its display as necessary for your application.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference.

• As needed, write Application Engine programs for batch calculations.

See Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Creating Application Engine
Programs."

Chapter 2 Understanding Oracle's PeopleSoft Analytic Calculation Engine

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 13

• As needed, write application pages that enable end users to load analytic instances.

Note. You can also embed analytic instance loading functionality into PeopleSoft Pure Internet
Architecture pages with analytic grids.

Development Process Using Existing Record Structures

If you have existing record structures on which the analytic model should be based, perform this iterative
process:

• Create a new analytic model.

At the appropriate step in this process, create the analytic model's cube collections to retrieve data from
the records.

See Chapter 7, "Creating Cube Collections," page 57.

• Create an analytic type definition.

• Attach the analytic type to the analytic model.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic
Type Definitions," Creating Analytic Type Definitions and Chapter 4, "Creating Analytic Model
Definitions," page 27.

• Create PeopleSoft Pure Internet Architecture pages with analytic grids.

Note. Within the application, a PeopleSoft Pure Internet Architecture page with an analytic grid may be
referred to as an interactive report.

See Chapter 13, "Creating Analytic Grids," page 241.

• As needed, create pages and any required PeopleCode to administer analytic instances.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide,
"Creating Page Definitions" and Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference,
"Analytic Type Classes."

• As needed, write PeopleCode programs using the appropriate classes (Analytic Calculation Engine,
Analytic Calculation Engine Metadata, AnalyticGrid, AnalyticType) to manipulate the analytic model, its
data, and its display as necessary for the application.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Type Classes."

• As needed, write Application Engine programs for batch calculations.

See Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Creating Application Engine
Programs."

• As needed, write application pages that enable end users to load analytic instances.

Note. You can also embed this functionality into PeopleSoft Pure Internet Architecture pages with
analytic grids.

Understanding Oracle's PeopleSoft Analytic Calculation Engine Chapter 2

14 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic Calculation Engine Security

Analytic Calculation Engine does not provide additional data security features beyond what is already
available in PeopleTools. You define analytic model data security within the application that uses the analytic
model by creating a view for each read/write cube collection.Additionally, you can:

• Create filter functions to restrict the data that appears in the analytic grid.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Filter User Functions, page 123.

• Create filter functions that filter data by user ID.

See Chapter 11, "Using Built-in Functions in Analytic Models," OPRID, page 202.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 15

Chapter 3

Understanding Analytic Models

This chapter discusses:

• Analytic models.

• Relationship of parts.

• Tools.

Analytic Models

An analytic model is an information workshop. Just like an ordinary workshop, it contains parts that you use
to build your projects and tools to put the parts together. But instead of building a cabinet or a chair, you
organize data by building analytic models of information. This analytic model imitates the structure and
relationships of information in the real world.

You can think of an analytic model as a collection of various kinds of information that are held together by a
common purpose. For example, you can create an analytic model of an entire business, with information
about revenues, employee expenses, accounts receivable, assets, liabilities, equity, and so on. You can also
create an analytic model of a particular part of a business—such as employee expenses—and include more
detail than you would in a more general analytic model of a business. The focus can be wide or narrow, but
all the information about the area of interest goes into a single analytic model.

Because of an analytic model's multidimensional capabilities, end users analyze data from different angles to
gain insight into their data. This data can range from a small table of values to a very large table containing
hundreds of kinds of data about thousands of people, places, or things.

Relationship of Parts

This section discusses:

• Data cubes and dimensions.

• Formulas and user functions.

• Cube collections.

• Organizers.

Understanding Analytic Models Chapter 3

16 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Data Cubes and Dimensions

The primary parts in an analytic model are data cubes (cubes) and dimensions:

• A data cube is like a sheet of paper that contains one and only one kind of data.

When you build an analytic model, you create a data cube for each kind of information in the analytic
model. For example, an analytic model of a business might contain a data cube for sales, a data cube for
rent, a data cube for salary, and so on.

• A dimension contains a list of one kind of data that can span various contexts.

For example, an analytic model of a business might contain the PRODUCT_CODES dimension and the
MONTHS dimension. These two dimensions can be used in both a SALES cube collection and a
COST_OF_GOODS cube collection to track the products sales and costs over a period of months.

• A dimension member (member) is one list item within a dimension.

Maximum Length of Dimension member is 30. Many different kinds of dimension members exist. For
example, the 010 product code is a detail member of the PRODUCT_CODES dimension. Western Europe
is an aggregate member of the REGIONS dimension.

See Chapter 9, "Creating Hierarchies," Types of Dimension Members, page 79.

Note. You do not create dimension members in the analytic model definition. Instead, dimension
members are dynamically created during runtime.

See Chapter 9, "Creating Hierarchies," Creation of New Members at Runtime, page 84.

Note. The maximum number of dimensions attached to a data cube is 31. The aggregation routines fail if the
attached dimensions are greater than 31.

Data cubes and dimensions work together to create the structure of the analytic model. To see how this works,
imagine writing SALES at the top of a blank sheet of paper. This is the equivalent of creating a new data cube.

You could write only a single value in the SALES cube, but a cube with only one value is not useful. So your
next action is to write a list of months across the top of the cube and a list of product codes down the side of
the cube. This is an example of this image:

Chapter 3 Understanding Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 17

SALES data cube with attached PRODUCT_CODES and MONTHS dimensions

The SALES cube now contains a value for every month and product code because you attached two
dimensions to the cube.

Dimensions are separate objects that can be used independently of data cubes. For this reason, even though
you originally created the MONTHS and PRODUCTS dimensions for the SALES cube, you can reuse these
dimensions with other data cubes. For example, imagine taking a new sheet of paper and writing
COST_OF_GOODS at the top of the page, and then attaching the existing dimensions to the new sheet. This
is an example of this image:

Attaching the PRODUCT_CODES and MONTHS dimensions to the COST_OF_GOODS data cube

It is tempting to think that the dimensions attached to the COST_OF_GOODS cube are copies of the
dimensions on the SALES cube. This might be true on paper, but an analytic model works differently. The
dimensions are independent objects that you attach to the data cubes. For this reason, the MONTHS
dimension that is attached to the COST_OF_GOODS cube is the same dimension as the MONTHS
dimension that is attached to the SALES cube. Therefore, any change that an application makes in a
dimension is reflected on all data cubes that use that dimension.

For example, suppose the application adds a product code called 090 to the PRODUCT_CODES dimension
on the SALES cube. The analytic model adds 090 to the PRODUCTS dimension on the COST_OF_GOODS
cube. This is an example of this image:

Understanding Analytic Models Chapter 3

18 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Adding the 090 product code to the PRODUCT_CODES dimension on the SALES cube

When updating an analytic model, you can use a combination of existing and new dimensions when you
define a data cube. For example, suppose you create a cube called SALARY. You want to track monthly data,
so you attach the existing MONTHS dimension to the data cube. You also want to track the salary for each
employee, so you create a new EMPLOYEES dimension and attach it to the SALARY cube. This is an
example of this image:

SALARY data cube with attached MONTHS dimension and new EMPLOYEES dimension

Formulas and User Functions

You create formulas to define the relationships among the data cubes in an analytic model. For example, this
formula for the GROSS_MARGIN data cube defines the relationship between GROSS_MARGIN and other
data cubes called SALES and COST_OF_GOODS:

SALES - COST_OF_GOODS

Chapter 3 Understanding Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 19

The analytic calculation engine recalculates the values in the GROSS_MARGIN data cube whenever the end
user changes the values in the SALES or COST_OF_GOODS data cubes and saves those changes.

Formulas refer to kinds of information as defined by data cubes. Formulas do not refer to specific values. The
relationship between GROSS_MARGIN, SALES, and COST_OF_GOODS remains true regardless of the
specific data contained in these data cubes. You can attach new products or months to the data cubes without
changing or copying the formula because the relationships between the data cubes have not changed.

User functions serve several purposes. You can create a user function that contains all or part of a formula
and apply this user function to calculate multiple data cubes. You can also create user functions to define
filter functions and rules for aggregating dimension members.

See Chapter 10, "Creating Rules, Formulas, and User Functions," page 121 and Chapter 9, "Creating
Hierarchies," Understanding Dimension Members, page 79.

Cube Collections

A cube collection is a collection of related data cubes. You create cube collections to load data from the
database into the analytic model, save data back to the database, and display calculated data to the end user at
runtime. Some cube collections contain data cubes that receive user input, and other cube collections
calculate data cubes and display calculated data to the end user.

See Chapter 7, "Creating Cube Collections," page 57.

Organizers

You can use organizers to arrange an analytic model's parts for more convenient viewing and editing. Within
an analytic model, you can place any of the following parts in as many different organizers as you want:

• Cube collections.

• Data cubes.

• Dimensions.

• User functions.

• Organizers.

You can drag and drop parts into and between organizers, place suborganizers into organizers, and drag
and drop organizers and suborganizers to arrange their positions in the Organizers branch of the part
browser.

See Also

Chapter 4, "Creating Analytic Model Definitions," Creating Organizers, page 30

Understanding Analytic Models Chapter 3

20 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Tools

This section discusses:

• PeopleSoft Application Designer window components for creating analytic model definitions.

• Behavior of bars.

• Menu bar.

• Part browser.

PeopleSoft Application Designer Window Components for Creating Analytic
Model Definitions

You use the areas labeled in this example to create analytic model definitions (select Start, Programs,
PeopleTools 8.5x, Application Designer):

Chapter 3 Understanding Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 21

PeopleSoft Application Designer interface for creating analytic model definitions

Menu Bar Provides access to commands and features that you use to create analytic model
definitions.

See Chapter 3, "Understanding Analytic Models," Menu Bar, page 22.

Tool Bar Contains buttons that you use to perform common commands and edit the parts
of an analytic model definition.

Formula Bar Contains buttons that you use to define formulas for data cubes and user
functions.

Rule Bar Displays the rules for data cubes and user functions.

Note. The type of information that appears in the rule bar depends on the part
that is currently selected.

Part Browser Contains hierarchies that you use to view, organize, and edit an analytic model
definition's parts.

See Chapter 3, "Understanding Analytic Models," Part Browser, page 25.

Understanding Analytic Models Chapter 3

22 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Part Property Editor Contains dialog boxes that you use to edit the parts of an analytic model
definition.

Notes Bar Enables you to enter notes about the different parts of the analytic model
definition.

Output Window Contains the output text from PeopleSoft Application Designer operations, such
as Build (SQL Create and Alter), Find Definition References, Upgrade, Results,
Validate, and PeopleCode Log.

Status Bar Contains descriptions of buttons and menu commands.

Behavior of Bars

All of the bars—except for the menu bar and status bar—are dockable. You can drag the bars to the top,
bottom, left, or right sides of the PeopleSoft Application Designer interface.

To float the bars, drag them away from the edges of the PeopleSoft Application Designer interface. You can
then resize them vertically and horizontally.

Menu Bar

This section reviews PeopleSoft Application Designer menu commands that you use to create analytic model
definitions.

Note. This section does not review all of PeopleSoft Application Designer menu commands.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Using
PeopleSoft Application Designer," Using the PeopleSoft Application Designer Window Components.

This table shows the analytic model definition specific commands in the Edit menu:

Edit Menu Commands Usage Quick Keys

Paste Function Select to insert a built-in function and
its arguments into a rule.

Ctrl+Shift+F

Paste Cube Name Select to insert a reference to the data
cube into a rule.

Ctrl+Shift+N

Chapter 3 Understanding Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 23

Edit Menu Commands Usage Quick Keys

Paste Member Ref... Insert a reference to a dimension into a
rule. After Analytic Calculation Engine
inserts the dimension reference,
complete the syntax for a member
reference.

See Chapter 10, "Creating Rules,
Formulas, and User Functions,"
Inserting a Dimension Member
Reference into a Rule, page 142.

Ctrl+Shift+M

Paste Dimension Insert a reference to a dimension into a
rule.

None

Paste User Function Insert a reference to a user function into
a rule.

None

This table shows the analytic model definition specific commands in the View menu:

View Menu Commands Usage

Notes Bar Active and deactivate the notes bar.

Rule Bar Active and deactivate the rule bar.

This table shows the analytic model definition specific commands in the Part menu. You can access the same
Part menu commands by right-clicking the part or subbranch that you want to add to or edit:

Part Menu
Commands

Secondary Menu
Commands

Usage Quick Keys

New Cube Collection Create a new cube
collection.

Ctrl+L

New Data Cube Create a new data cube. Ctrl+D

New Dimension Create a new dimension. Ctrl+E

New User Function Create a new user function. Ctrl+U

New Organizer Create a new organizer. None

Understanding Analytic Models Chapter 3

24 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Part Menu
Commands

Secondary Menu
Commands

Usage Quick Keys

Attach Data Cubes... Attach one or more
existing data cubes to the
selected cube collection.

Ctrl+S+D

Attach Dimensions... Attach one or more
existing dimensions to the
selected data cube.

Ctrl+Shift+E

Move Up Move the selected part one
position up in the part
browser.

Alt+Up

Move Down Move the selected part one
position down in the part
browser.

Alt+Down

Clone Part None Make a copy of the
selected part.

None

Detach Data Cubes... Detach one or more data
cubes from the selected
cube collection.

None

Detach Dimensions... Detach one or more
dimensions from the
selected data cube.

None

Delete Part None Delete the selected parts. None

This table shows the analytic model definition specific commands in the Tools menu:

Tools Menu
Commands

Secondary Menu
Commands

Tertiary Menu
Commands

Usage Quick Keys

Analytic Model Validate None Validate the
analytic model.

None

Analytic Model Find Part... None Find where the
current part is used
by other parts in
the analytic model.

None

Chapter 3 Understanding Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 25

Tools Menu
Commands

Secondary Menu
Commands

Tertiary Menu
Commands

Usage Quick Keys

Analytic Model Causes and Effects
Tool...

None Launch the Causes
and Effects Tool.

None

Analytic Model Causes Direct Causes Display the direct
causes of the
selected data
cubes.

Alt + <

Analytic Model Causes All Causes Display all causes
of the selected data
cubes.

None

Analytic Model Causes All Inputs Display all of the
input data cubes
that directly or
indirectly affect
the selected data
cubes.

None

Analytic Model Effects Direct Effects Display the direct
effects of the
selected data
cubes.

Alt + >

Analytic Model Effects All Effects Display all effects
of the selected data
cubes.

None

Analytic Model Circular Formulas Show Circular
System

Show the data
cubes involved in
the circular
system.

None

Part Browser

The part browser is a treelike structure whose main branch is the analytic model itself. The main branch
contains several subbranches, as described in this table:

Understanding Analytic Models Chapter 3

26 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Branch Description

Cube Collections Contains a subbranch for each cube collection in the analytic model.
Double-click a cube collection to edit the cube collection's properties.
Expand a cube collection to view all of the dimensions and data cubes in a
cube collection. Click a dimension or data cube to edit its properties.

Cubes Contains a subbranch for each data cube in the analytic model. Click a data
cube to edit its properties. Expand a data cube view all of the dimensions
that are attached to the data cube. Click a dimension to edit its properties.

Dimensions Displays each dimension in the analytic model. Click a dimension to edit its
properties.

User Functions Displays each user function in the analytic model. Click a user function to
edit its properties.

Organizers Contains a subbranch for each organizer in the model. Expand the
organizers to view the parts within the organizers.

Dragging and Dropping Parts in the Part Browser

You can drag and drop parts in the part browser to:

• Add new data cubes to cube collections.

• Attach data cubes to dimensions.

• Rearrange the order of dimensions.

• Rearrange the hierarchy of organizers.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 27

Chapter 4

Creating Analytic Model Definitions

This chapter provides overviews of the analytic model definition creation process and the conventions for
naming analytic models and parts and discusses how to:

• Create a new analytic model definition.

• Open an analytic model definition.

• Create organizers.

• Enter notes for an analytic model definition's parts.

• Find parts.

• Validate analytic models.

Understanding the Analytic Model Definition Creation Process

You create analytic model definitions to define the rules that are used to calculate application data in the
Analytic Calculation Engine. This section provides a high-level discussion of the steps for creating a new
analytic model definition assuming that you already have record structures on which to base your analytic
model.

To create an analytic model:

1. Create a new analytic model definition.

See Chapter 4, "Creating Analytic Model Definitions," Creating a New Analytic Model Definition, page
29.

Creating Analytic Model Definitions Chapter 4

28 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

2. Perform these tasks in whatever order is appropriate to your own development needs:

• Create the analytic model definition's dimensions.

See Chapter 6, "Creating Dimensions," page 51.

• Create the analytic model definition's data cubes and set the properties of the data cubes.

Consider the kinds of information that the end user should analyze. These kinds of information should
be your data cubes.

See Chapter 5, "Creating Data Cubes," page 33.

• Define formulas and user functions to calculate the data cubes.

Define a formula for each data cube that you want to calculate. If you want to reuse the formula in
more than one data cube, create a user function and reference the user function in the formula for each
of the data cubes.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Defining and Editing Data Cube
Formulas, page 129.

• Attach dimensions to the data cubes.

Attach the dimensions to the data cubes after you have created the dimensions and data cubes.

See Chapter 6, "Creating Dimensions," Attaching a Dimension to a Data Cube, page 55.

• Define the analytic model's cube collections.

See Chapter 7, "Creating Cube Collections," page 57.

• Define the analytic model definition's filter functions.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Filter User Functions, page 123.

• Define the analytic model definition's organizers.

See Chapter 4, "Creating Analytic Model Definitions," Creating Organizers, page 30.

3. Save the analytic model definition.

Understanding Conventions for Naming Analytic Models and Parts

You must adhere to these rules when naming analytic models and all analytic model parts:

• Names must consist only of letters, numbers, and underscores (_).

Other than underscores, do not use nonalphanumeric characters.

• All letters must be uppercase.

• The first character in a name must consist of a letter.

Do not use a number or underscore as the first character in a name.

Chapter 4 Creating Analytic Model Definitions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 29

• Blank spaces are not allowed in names.

Use underscores instead of blank spaces.

• Names must not exceed 30 characters.

See Also

Chapter 16, "Converting BAM 8.8 Models to Analytic Models," Understanding Part Conversion Details, page
296

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Metadata Classes," AnalyticModelDefn Class

Creating a New Analytic Model Definition

To open a new analytic model definition:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access Oracle's PeopleSoft Application
Designer.

2. Select File, Open after signing in to the PeopleSoft Application Designer.

The New Definition dialog box appears.

3. Select the Analytic Model option.

4. Click the OK button.

The new analytic model definition appears.

Opening an Analytic Model Definition

To open an analytic model definition:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. Select File, Open after signing in to the PeopleSoft Application Designer.

The Open Definition dialog box appears.

3. Select the Analytic Model option in the Definition drop-down list box.

4. Provide selection criteria.

Enter an analytic model definition name or description (or the beginning characters of either), or select a
project.

Creating Analytic Model Definitions Chapter 4

30 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

5. Click the Open button or press Enter to display analytic model definitions matching the selection criteria
that you entered.

To clear the current selection criteria and start over, click the New Search button. To change how the
search list appears, perform one of these actions:

• Click the List button to view only the names of the analytic model definitions.

• Click the Details button to view the names and descriptions.

By default, both the names and descriptions appear in the search list.

6. Double-click the analytic model definition that you want to open in the definition workspace, or highlight
the analytic model definition and click the Open button.

You can also press Shift+Left Click to select more than one definition to open in a single action, or right-
click to view a pop-up menu from which you can open, print, rename, or delete the selected analytic
model definition.

Creating Organizers

To create an organizer:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, in the analytic model, select the Organizers
branch in the part browser.

3. Select Part, New, Organizer.

The Edit Part Name dialog box appears.

4. Enter a name for the organizer.

5. Click the OK button.

See Also

Chapter 3, "Understanding Analytic Models," Cube Collections, page 19

Entering Notes for an Analytic Model Definition's Parts

Use the notes bar to create notes for the analytic model definition or its parts. To create a note:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, in the part browser, select the analytic model
definition or the part for which you want to create a note.

Chapter 4 Creating Analytic Model Definitions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 31

3. Click the notes bar.

4. Enter the note.

You can also:

• Press the Enter key to create multiple paragraphs.

• Click the Cancel Changes button to cancel the changes you made to the note.

5. Click the Accept Changes button to accept the changes you made to the note.

Finding Parts

You can select one or more parts and find all of the locations in the analytic model where the parts are used.

Note. The Find Part feature does not operate on organizers.

To find a part:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, select one or more parts in the part browser.

3. Select Tools, Analytic Model, Find Part.

The locations of the parts are listed in the output window.

Validating Analytic Models

An important part of the analytic model creation process involves periodically validating the analytic model.
The validate utility runs a series of tests on the analytic model and sends its results to the Validate tab in the
output window. If errors are found, they are listed on this tab.

To validate an analytic model:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. Select Tools, Analytic Model, Validate after signing in to the PeopleSoft Application Designer.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 33

Chapter 5

Creating Data Cubes

This chapter provides overviews of data cubes and the relationship between field definition attributes and data
cube formats and discusses how to:

• Create input data cubes.

• Create calculation data cubes.

• Create association data cubes.

• Create virtual data cubes.

• Define data cube properties.

• Audit data cubes at design time.

Understanding Data Cubes

This section discusses:

• Definition of a data cube.

• Input data cubes.

• Calculation data cubes.

• Association data cubes.

• Virtual data cubes.

Definition of a Data Cube

A data cube is a container for one kind of data that you use in cube collections.

You can place the same data cube in more than one cube collection. For example, you can place the
EMPLOYEE_EXPENSE data cube in both an EMPLOYEE_ANALYSIS cube collection and an
INCOME_STATEMENT cube collection. To populate the data cubes with data from the database, you map
fields to the data cubes within the cube collection's properties.

See Chapter 7, "Creating Cube Collections," Mapping Data Cubes and Dimensions to Fields, page 63.

Within PeopleSoft Pure Internet Architecture pages with analytic grids, end users view cube collections and
drag and drop data cubes to view their relationships to other data cubes.

Creating Data Cubes Chapter 5

34 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

You create four different types of data cubes that you use within an analytic model:

• Input data cubes.

• Calculation data cubes.

• Association data cubes.

• Virtual data cubes.

The four types of data cubes are not mutually exclusive, but certain combinational restrictions apply. For
example, consider that all calculation data cubes contain formulas, and association data cubes may or may not
contain formulas. When an association data cube does contain a formula, it is considered to be a type of
calculation data cube. Similarly, when an input data cube contains a formula, it is also considered to be a type
of calculation data cube. Any of these data cubes may also be considered virtual data cubes if their values are
not stored in the database.

This table lists each type of data cube and specifies whether the data cube can contain a formula, whether the
data cube can lack a formula, whether the data cube can be virtual, and whether the data cube can be
nonvirtual:

Data Cube Type Formula
Allowed?

No Formula
Allowed?

Can Be Virtual? Can Be Nonvirtual?

Input Yes

Note. When input
data cubes contain
formulas, they
must use the
INPUT built-in
function.

Yes No Yes

Calculation Yes No Yes Yes

Association Yes Yes Yes Yes

Virtual Yes No Yes No

Example: Working with Data Cubes and Dimensions

To be useful, a data cube must work with one or more dimensions. For example, suppose that you want to
track the sales of multiple products in multiple regions. First, create an input data cube called SALES and
dimensions called PRODUCTS and REGIONS. Next, attach the PRODUCTS dimension and REGIONS
dimension to the SALES data cube.

Note. When a cube collection is mapped to either a Writable-only record or a record with the Readable and
Writable attributes, all data cubes in the cube collection should share the same set of dimensions.

The combined string of all the attached dimension names should not exceed 256 characters.

Chapter 5 Creating Data Cubes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 35

See Also

Chapter 6, "Creating Dimensions," page 51

Chapter 3, "Understanding Analytic Models," Data Cubes and Dimensions, page 16

Input Data Cubes

Input data cubes receive their data from either the end user in the application or tables and views in the
database. Input data cubes can exist in all types of cube collections, although they do not serve a purpose in
intermediate/calculation cube collections. Use the INPUT built-in function to work with input cube data.

Note. Even though an input cube that uses either the INPUT built-in function is considered to be a type of
calculation data cube, it would not serve a purpose in an intermediate/calculation cube collection.

See Chapter 11, "Using Built-in Functions in Analytic Models," INPUT, page 186.

See Also

Chapter 5, "Creating Data Cubes," Creating Input Data Cubes, page 41

Chapter 7, "Creating Cube Collections," Understanding Types of Cube Collections, page 58

Calculation Data Cubes

Calculation data cubes contain formulas that calculate data based on the data of other cubes. Calculation data
cubes can exist in all types of cube collections.

Note. Even though an input cube that uses the INPUT built-in function is considered to be a type of
calculation data cube, it would not serve a purpose in an intermediate/calculation cube collection.

See Also

Chapter 5, "Creating Data Cubes," Creating Calculation Data Cubes, page 41

Chapter 7, "Creating Cube Collections," Understanding Types of Cube Collections, page 58

Association Data Cubes

An association data cube is a data cube that is formatted as a member of a dimension and has one or more
attached dimensions. An association data cube associates two dimensions, enabling the end user to group
members of one dimension into categories that are defined by the members of a different dimension. When an
association data cube receives its values from dimension members, it can be considered to be a type of input
data cube. When an association data cube receives its values from a calculation formula, it can be considered
to be a type of calculation data cube.

Creating Data Cubes Chapter 5

36 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Association data cubes can exist in all types of cube collections.

Example: Creating the DEPT_TO_REGION Association Data Cube

This example associates the DEPTID dimension with the REGION dimension. The following table lists the
members that are included in each dimension:

DEPTID Dimension Members

Note. In the application, the end users group or
categorize these members by categories that are
defined by the members of the REGION
dimension.

REGION Dimension Members

Note. In the application, the end users select
members from this dimension to group members
of the DEPTID dimension.

AUS01 APAC

AUS02 LATAM

BRA01 NAMER

CAN01 EUROP

EUR01 NA

GBR01 NA

JAP01 NA

JAP02 NA

MEX01 NA

USA01 NA

USA02 NA

This association enables the end user to group the members of the DEPTID dimension into categories that are
defined by the members of the REGION dimension.

To create the DEPT_TO_REGION association data cube:

1. Create a new data cube named DEPT_TO_REGION.

2. Format the data cube as a member of the REGION dimension.

This dimension contains the categories that the end user will use to group the members of the DEPTID
dimension. These members appear in the right-hand column of the data cube's data. The end user can
select these members from a drop-down list box.

3. Attach the DEPTID dimension to the DEPT_TO_REGION association data cube.

This dimension contains the members that the end user will group or categorize. These members appear in
the left-hand column of the data cube's data.

Chapter 5 Creating Data Cubes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 37

This example shows an association data cube and its drop-down list box in an analytic grid:

DEPT_TO_REGION association data cube in the Analytic Model Viewer

See Also

Chapter 5, "Creating Data Cubes," Creating Association Data Cubes, page 42

Chapter 7, "Creating Cube Collections," Understanding Types of Cube Collections, page 58

Virtual Data Cubes

A virtual data cube is a type of calculation data cube whose values are not saved to the database. Virtual data
cubes can exist in intermediate/calculation and presentation cube collections.

This table describes the characteristics of virtual data cubes and the resulting benefits to the analytic model:

Characteristic Benefit

Value data of virtual data cube is not stored in the database. Reduces:

• Size of the database.

• Time to load data from the database.

Creating Data Cubes Chapter 5

38 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Characteristic Benefit

The analytic calculation engine does not recalculate the virtual
data cube unless the virtual data cube has nonvirtual dependents.

Reduces recalculation time.

The analytic calculation engine neither allocates memory nor
calculates virtual data cubes until it receives a request for
recalculation of the virtual data cube.

Reduces memory consumption and
recalculation time.

See Chapter 5, "Creating Data Cubes," Defining General Data Cube Properties, page 43.

When an end user loads an analytic instance, the underlying analytic model's virtual data cubes do not contain
data. However, as soon as the analytic calculation engine receives a request for a virtual cube's data, the
analytic calculation engine calculates the entire cube and places the totals and all nonzero values in a
temporary storage area. After this point, if the application requires the data, the analytic calculation engine
retrieves the data from the temporary storage area.

Virtual cube data is recalculated for these circumstances:

• The virtual data cube's data is displayed in an analytic grid.

• The virtual data cube is used during a step of a recalculation.

• The virtual data cube is accessed by a user function, even if the cube's data does not appear in the
application.

• An application uses a PeopleCode program to request data from the virtual data cube.

Note. Whenever a circumstance requires a recalculation of all the data in an analytic model (for example,
when the application adds a member to a dimension), the temporary storage for all virtual data cubes is
discarded. This storage is created again as needed.

Virtual data cubes have the following two restrictions. Otherwise, you can use virtual data cubes in the way
you use nonvirtual data cubes.

• Because a virtual data cube does not permanently store data, it must contain a formula to generate its data.

Note. Deleting the formula for a virtual data cube results in an invalid analytic model.

Chapter 5 Creating Data Cubes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 39

• A virtual data cube cannot participate in recursive or circular systems because a virtual data cube's
formula cannot refer to itself, either directly or indirectly.

This restriction applies because the first time a virtual cube's data is requested, the analytic calculation
engine calculates and stores the data for the entire virtual data cube. In recursive or circular systems, the
analytic calculation engine cannot calculate all of the data at the same time for any given data cube.

Note. If a virtual cube is part of a recursive or circular system, the analytic calculation engine generates an
error value for all of the cube's values. Use the Recalculate function in the Analytic Calculation Engine
classes to determine whether you violated this restriction. The Recalculate function returns a VIRTUAL
error for the data cube cells that are affected.

PeopleSoft recommends that you create virtual data cubes when you expect the cubes to be large, sparse,
and output-only, especially when a relatively small slice of the ordinary cubes is used in any given
analytic instance ID. The analytic calculation engine takes a long time to recalculate nonvirtual cubes that
are large, sparse, and output-only. When you make these cubes into virtual cubes, you eliminate them
from the recalculation process and drastically reduce memory requirements. If an analytic instance uses
only a small slice of the cube, the cube calculates on demand quickly and requires less memory because
of the sparsity compression.

Virtual cubes are also useful for intermediate calculations that do not require permanent storage
permanently, especially if these cubes would normally be large and sparse.

Note. You cannot use virtual cubes for intermediate calculations that are part of a recursive or circular
system.

Do not create virtual cubes out of large, dense cubes that are displayed frequently and take a long time to
recalculate. Such virtual cubes cause delays when an application requests data. To be certain of
recalculation time, PeopleSoft recommends that you test whether using a virtual cube causes a significant
delay in the generation of data.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Understanding Circular Systems and
Recursive Systems, page 148 and Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference,
"Analytic Calculation Engine Classes," Recalculate.

Intermediate virtual cubes can count as output-only cubes, as long as they do not have nonvirtual dependents.
For example, you can create formulas such as the following for output-only virtual cubes:

• This formula is for the SALARY_BY_EMPLOYEE data cube:

GROUPSUM(RCD JOB, SALARY, BUDGET_PERIOD, BUS_UNIT, EMPID, LEDGER, VERSION)

• This formula is for the BENEFITS_BY_EMPLOYEE data cube:

GROUPSUM(RCD JOB, BENEFITS, BUDGET_PERIOD, BUS_UNIT, EMPID, LEDGER, VERSION)

• This formula is for the SALARY_AND_BENEFITS_BY_EMPLOYEE data cube:

SALARY_BY_EMPLOYEE + BENEFITS_BY_EMPLOYEE

Even though SALARY_BY_EMPLOYEE and BENEFITS_BY_EMPLOYEE are used by another virtual
cube, they are not recalculated by the analytic calculation engine if there are no nonvirtual dependents. For
this reason, you must write the final formula for the SALARY_AND_BENEFITS_BY_EMPLOYEE data
cube in this way:

GROUPSUM(RCD_JOB, SALARY, BUDGET_PERIOD, BUS_UNIT, EMPID, LEDGER, VERSION) +
 GROUPSUM(RCD JOB, Benefits, Budget Period, Bus Unit, EmpID, Ledger, Version)

Creating Data Cubes Chapter 5

40 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 5, "Creating Data Cubes," Creating Virtual Data Cubes, page 42

Chapter 7, "Creating Cube Collections," Understanding Types of Cube Collections, page 58

Understanding the Relationship Between Field Definition Attributes
and Data Cube Formats

Because data cubes receive data from fields, it is important to correctly set both the attributes of field
definitions and the formats of data cubes to ensure compatibility.

The following table describes compatibilities between field definition attributes and data cube formats. Cells
marked Yes indicate compatibility. Cells marked No indicate incompatibility. Cells marked Warn indicate
potential compatibility and yield a warning during design time. During runtime, the analytic calculation
engine generates an error if it determines that the mapping is not compatible.

Field Definition
Attributes

Data Cube Format:
Number

Data Cube Format: Date Data Cube
Format: Member

Data Cube
Format: Text

Char Warn Warn Yes Yes

Number Yes No Yes Yes

Signed Number Yes No Yes Yes

Date No Yes Yes Yes

Time No No No No

Date Time No Warn

Note. When a date-
formatted data cube is
mapped to a field with a
Date Time attribute, time-
specific data is truncated
in the data cube data.

Yes Yes

Image No No No No

Long Char No No No No

Chapter 5 Creating Data Cubes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 41

See Also

Chapter 5, "Creating Data Cubes," Defining General Data Cube Properties, page 43

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
Field Definitions"

Creating Input Data Cubes

To create an input data cube:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, with an analytic model definition opens, select
Part, New, Data Cube.

The Edit Part Name dialog box appears.

3. Enter the data cube name.

4. Click the OK button.

Note. Do not create formulas for input data cubes.

See Also

Chapter 5, "Creating Data Cubes," Input Data Cubes, page 35

Creating Calculation Data Cubes

To create a calculation data cube:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, with an analytic model definition opens, select
Part, New, Data Cube.

The Edit Part Name dialog box appears.

3. Enter the data cube name.

4. Click the OK button.

Creating Data Cubes Chapter 5

42 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

5. Create a formula for the calculation data cube.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Defining and Editing Data Cube
Formulas, page 129.

See Also

Chapter 5, "Creating Data Cubes," Calculation Data Cubes, page 35

Creating Association Data Cubes

To create an association data cube:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, with an analytic model definition opens, select
Part, New, Data Cube.

The Edit Part Name dialog box appears.

3. Enter the data cube name.

4. Click the OK button.

5. Format the data cube as a member of a dimension.

This dimension contains the members that the end user will group or categorize. In the application, these
members appear in the left-hand column of the data cube's data.

See Chapter 5, "Creating Data Cubes," Defining General Data Cube Properties, page 43.

6. Attach a different dimension to the data cube.

This dimension contains the categories by which the end user will group the members of the X dimension.
These members appear in the right-hand column of the data cube's data. The end user can select these
members from a drop-down list box.

See Chapter 6, "Creating Dimensions," Attaching a Dimension to a Data Cube, page 55.

See Also

Chapter 5, "Creating Data Cubes," Association Data Cubes, page 35

Creating Virtual Data Cubes

To create a virtual data cube:

Chapter 5 Creating Data Cubes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 43

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, with an analytic model definition opens, select
Part, New, Data Cube.

The Edit Part Name dialog box appears.

3. Enter the name of the data cube.

4. Click the OK button.

5. On the General tab of the data cube's properties, select the Virtual Cube (doesn't store data) check box.

See Also

Chapter 5, "Creating Data Cubes," Virtual Data Cubes, page 37

Defining Data Cube Properties

This section discusses how to:

• Define general data cube properties.

• Select aggregate functions for attached dimensions.

Defining General Data Cube Properties

To define general data cube properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose properties you want to define, and then select the General tab.

This is an example of the General tab in PeopleSoft Application Designer–Analytic Model:

Creating Data Cubes Chapter 5

44 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example of the General tab in PeopleSoft Application Designer–Analytic Model

Data Cube Displays the name of the data cube.

Format Number: Select to format the data cube's values as numbers.

Date: Select to format the data cube's values as a date in the format YYYY-MM-
DD. For example, 2004/03/18 for March 18, 2004.

Note. Although the values are saved in the database using this date format, end
users can use My Personalizations to select a different display format in
PeopleSoft Pure Internet Architecture.

See Enterprise PeopleTools 8.50 PeopleBook: Using PeopleSoft Applications,
"Setting User Preferences," Defining Your User Personalizations.

Member: Select to format the data cube's values as members of a specified
dimension, as part of creating an association data cube.

See Chapter 5, "Creating Data Cubes," Association Data Cubes, page 35.

When you select the Member check box, the Dimension drop-down list box
appears. Select a dimension for which you want to format the data cube's values
as members. For example, you can format a CUSTOMER_ID data cube as a
member of the CUSTID dimension.

Note. In the analytic grid, data cubes formatted as members should have a field
type of Edit Box.

Text: Select to format the data cube's values as text. This option is useful for
entering names, addresses, and other textual data.

Chapter 5 Creating Data Cubes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 45

Virtual Cube (doesn't
store data)

Select to set the data cube as a virtual data cube.

Clear to set the data cube as a nonvirtual data cube.

See Chapter 5, "Creating Data Cubes," Virtual Data Cubes, page 37.

Note. A virtual data cube must contain a formula. Selecting this option without
entering and accepting a formula for a virtual data cube results in an invalid
analytic model.

Calculate Aggregate Select to enable calculation of the data cube's aggregates.

Note. If Calculate Aggregate is selected for the data cube, the analytic calculation
engine initially retrieves the aggregate data from the aggregate record when the
analytic instance is loaded, but overwrites this data upon recalculation. If this
check box is cleared, values from the aggregate record still load when the
analytic instance is loaded; however, these values are not recalculated.

Clear this check box to disable calculation of all of the data cube's aggregates,
regardless of specified overrides.

Note. Disabling aggregate calculation for data cubes disables all aggregate
calculations, including the default sum aggregation.

See Chapter 9, "Creating Hierarchies," Understanding Override Order of
Precedence, page 89.

See Also

Chapter 5, "Creating Data Cubes," Understanding the Relationship Between Field Definition Attributes and
Data Cube Formats, page 40

Selecting Aggregate Functions for Attached Dimensions

To select an aggregate function for attached dimensions:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube for which you want to select an aggregate function, and then select the Dimensions
tab.

This is an example of the Dimensions tab in PeopleSoft Application Designer–Analytic Model:

Creating Data Cubes Chapter 5

46 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example of the Dimensions tab in PeopleSoft Application Designer–Analytic Model

Name Displays the names of the dimensions that are attached to the data cube.

See Chapter 6, "Creating Dimensions," Attaching a Dimension to a Data Cube,
page 55.

Aggregate Function Select a cube dimension override user function to calculate the aggregates for the
dimension as it is attached to the data cube.

See Chapter 9, "Creating Hierarchies," Understanding Override Order of
Precedence, page 89.

Auditing Data Cubes at Design Time

This section provides overviews of causes and inputs and of effects and discusses how to:

• Display causes and inputs.

• Display effects.

• Use the Causes and Effects tool.

Chapter 5 Creating Data Cubes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 47

Note. This section discusses auditing data cubes in design time. Use the Analytic Model Viewer to audit cube
collections and data cubes in runtime.

See Chapter 14, "Viewing and Debugging Analytic Models," Viewing and Debugging Cube Collection
Properties, page 270.

Understanding Causes and Inputs

Any data cube that affects another data cube is a cause or precedent of that data cube. A data cube can be a
direct cause or an indirect cause of another data cube. A direct cause is used in the data cube's formula. An
indirect cause is not used in the formula, but it appears somewhere in the chain of formulas that ultimately
affect the data cube.

For example, suppose the GROSS_MARGIN and NET_INCOME data cubes contain these formulas:

• Formula for the GROSS_MARGIN data cube:

SALES - COST_OF_GOODS

• Formula for the NET_INCOME data cube:

GROSS_MARGIN - TOTAL_EXPENSE

In this example, SALES is a direct cause of GROSS_MARGIN because it is used in GROSS_MARGIN's
formula. SALES is an indirect cause of NET_INCOME because it affects GROSS_MARGIN, which in turn
affects NET_INCOME.

You can display the causes of a data cube to view the assumptions behind a result or to find a formula that is
not working properly.

Using the All Inputs option, you can also display all of the input data cubes that affect a data cube, either
directly or indirectly.

See Chapter 5, "Creating Data Cubes," Displaying Causes and Inputs, page 48.

Understanding Effects

Any data cube that is affected by another data cube is an effect or dependent of that data cube. A data cube
can be a direct effect or an indirect effect of another data cube. A direct effect uses the data cube in its
formula. An indirect effect does not use the data cube in its formula, but it is part of the chain of calculations
that are affected by the data cube.

Again, suppose the GROSS_MARGIN and NET_INCOME data cubes contain these formulas:

• Formula for the GROSS_MARGIN data cube:

SALES - COST_OF_GOODS

• Formula for the NET_INCOME data cube:

GROSS_MARGIN - TOTAL_EXPENSE

GROSS_MARGIN is a direct effect of SALES because it uses SALES in its formula. NET_INCOME is an
indirect effect of SALES because it is affected by GROSS_MARGIN, which in turn is affected by SALES.

Creating Data Cubes Chapter 5

48 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

You can display either the direct or direct plus indirect effects of a data cube to view the consequences of a
data cube's values.

See Chapter 5, "Creating Data Cubes," Displaying Effects, page 48.

Displaying Causes and Inputs

To display the causes or inputs of a data cube:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select a data cube whose causes or inputs you want to display.

• To select several consecutive data cubes, hold down the Shift key and select the data cubes.

• To select a series of nonconsecutive data cubes, hold down the Ctrl key and select the data cubes.

4. Select Tools, Analytic Model, Causes.

5. Select one of these options:

• Direct Causes.

• All Causes.

• All Inputs.

When applicable, the Causes and Effects dialog box displays the causes or inputs of the data cube.
You expand any of the data cubes in the dialog box to view their attached dimensions.

Note. The All Inputs option does not display the INPUT built-in function.

6. Click the Close button when you have finished viewing the causes or inputs.

Note. You can also display causes and inputs by selecting Tools, Analytic Model, Causes and Effects Tool.

See Also

Chapter 5, "Creating Data Cubes," Using the Causes and Effects Tool, page 49

Displaying Effects

To display the effects of a data cube:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

Chapter 5 Creating Data Cubes

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 49

3. Select a data cube whose effects you want to display.

To select several data cubes, hold down the Ctrl key and select the data cubes.

4. Select Tools, Analytic Model, Effects.

5. Select one of these options:

• Direct Effects.

• All Effects.

The Causes and Effects dialog box displays either the direct effects or all (direct and indirect) effects
of the data cube. You expand any of the data cubes in the dialog box to view their attached
dimensions.

6. Click the OK button when you have finished viewing the effects.

Note. You can also display effects by selecting Tools, Analytic Model, Causes and Effects Tool.

See Also

Chapter 5, "Creating Data Cubes," Using the Causes and Effects Tool, page 49

Using the Causes and Effects Tool

To use the Causes and Effects Tool option:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select Tools, Analytic Model, Causes and Effects Tool to browse through the cube collections and data
cubes of your analytic model to view the causes, effects, and inputs of data cubes.

This is an example of the Causes and Effects Tool dialog box:

Creating Data Cubes Chapter 5

50 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example of the Causes and Effects Tool dialog box

Cube Collection Select the cube collection to display a list of its data cubes.

Note. You can also select <All Cubes> to display a list of all data cubes in the
analytic model.

Cubes Displays the names of the data cubes in the selected cube collection or the
analytic model.

Select a data cube to view its causes, inputs, or effects.

To select several data cubes, hold down the Ctrl key and select the data cubes.

Note. You can also audit individual data cubes by selecting the data cube, and then selecting Tools, Analytic
Model and the desired audit option from the menu bar.

See Chapter 5, "Creating Data Cubes," Displaying Causes and Inputs, page 48 and Chapter 5, "Creating Data
Cubes," Displaying Effects, page 48.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 51

Chapter 6

Creating Dimensions

This chapter provides an overview of dimensions and discusses how to:

• Create a new dimension.

• Define dimension properties.

• Attach a dimension to a data cube.

• Change the order of dimensions in the part browser.

Understanding Dimensions

A dimension is a collection of people, places, events, or things for which you want to keep data. Each
member of the dimension is called a dimension member.

See Chapter 9, "Creating Hierarchies," Understanding Dimension Members, page 79.

To keep data for each member of the dimension, attach the dimension to one or more data cubes. For
example, to keep sales data for multiple products, attach a PRODUCTS dimension to a SALES data cube. To
track the cost of goods for each product, attach the PRODUCTS dimension to a COST_OF_GOODS data
cube.

Note. When a cube collection is mapped to either a Writable-only record or a record with the Readable and
Writable attributes, all data cubes in the cube collection should share the same set of dimensions.

Because dimensions receive data from fields, it is important to correctly set the attributes of field definitions
to ensure compatibility. You can map fields with the following attributes to dimensions:

• Char

• Number

• Signed Number

• Date

• Date Time

Note. The limit on total number of dimensions in a model is 99.

Creating Dimensions Chapter 6

52 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 3, "Understanding Analytic Models," Data Cubes and Dimensions, page 16

Creating a New Dimension

To create a new dimension:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select Part, New, Dimension.

The Edit Part Name dialog box appears.

4. Enter the dimension name.

5. Click the OK button.

Defining Dimension Properties

To define dimension properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the dimension whose properties you want to define.

This is an example of the dimension properties:

Chapter 6 Creating Dimensions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 53

Example of defining dimension properties

Total Member Name This field performs different functions depending upon whether you have entered
a value into the Total Member Name field, whether the dimension belongs to an
analytic model that was converted from a BAM 8.8 model, and whether a tree is
attached to the dimension.

See Chapter 6, "Creating Dimensions," Interpreting the Total Member Name
Field, page 53.

Aggregate Function Select a dimension override function to calculate the dimension's aggregate
fields. The analytic calculation engine uses this aggregate function to calculate all
of a dimension's aggregates.

Note. This aggregate function does not apply to leaf members or detail members.

See Chapter 9, "Creating Hierarchies," Understanding Override Order of
Precedence, page 89 and Chapter 9, "Creating Hierarchies," Example: Creating
a Hierarchy with Mixed Aggregate and Detail Members, page 118.

Interpreting the Total Member Name Field

This table describes the state of the dimension based upon whether:

• A tree is attached to the dimension.

Creating Dimensions Chapter 6

54 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• The Total Member Name field has a value.

Values for the Total Member Name field come from either the value that you entered into the Total
Member Name field of the dimension's properties, a converted BAM 8.8 model, or a PeopleCode
command using the Analytic Calculation Engine Metadata Classes.

Tree Attached to Dimension? Has Value? Resulting State of Dimension

Yes No If you select the Calculate Aggregates
check box, the value of hierarchy root
member appears to the end user and
to the analytic calculation engine.

No Yes Analytic Calculation Engine creates a
basic, one-node hierarchy for the
dimension. By default, the Show
Hierarchy method is used on the
analytic model, and both the one-node
hierarchy and the name that you enter
into the Total Member Name field
appear to the end user.

Note. For the actual value of the
hierarchy to appear to the end user,
you must select the Calculate
Aggregates check box. If you do not
select this check box, the value of 0
appears to the end user.

Yes Yes One of these resulting states applies:

• If you apply an aggregate
function to this dimension, the
value that you enter into the Total
Member Name field serves as an
alias to the hierarchy root
member.

This alias only appears to the user
functions within the analytic
model; the actual value of the
hierarchy root member appears to
the end user.

• If you do not apply an aggregate
function to this dimension and
select the Calculate Aggregates
check box, the aggregate value of
the hierarchy root member
appears to the end user.

No No Analytic Calculation Engine does not
create a hierarchy for the dimension.

Chapter 6 Creating Dimensions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 55

Attaching a Dimension to a Data Cube

To be useful, a dimension must work with one or more data cubes.

Note. When a cube collection is mapped to either a Writable-only record or a record with the Readable and
Writable attributes, all data cubes in the cube collection should share the same set of dimensions.

To attach a dimension to a data cube:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Right-click the data cube to which you want to attach the dimension.

4. Select the Attach Dimensions option.

The Attach Dimension(s) to Selected Cube(s) dialog box appears.

5. Select one or more dimensions.

• Press the Ctrl key and click the left mouse button to select multiple dimensions.

• Click the Select All button to select all of the dimensions.

• Click the Unselect All button to clear all of the dimensions.

• Click the OKbutton.

See Also

Chapter 3, "Understanding Analytic Models," Data Cubes and Dimensions, page 16

Changing the Order of Dimensions in the Part Browser

To change the order of dimensions in the part browser:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select one dimension that you want to move up or down in relationship to the other dimensions in the part
browser.

Creating Dimensions Chapter 6

56 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

4. Perform one of these steps:

• Right-click the dimension member and select the Move Up or the Move Down option.

• Hold down the left mouse button, drag the dimension to the desired location, and release the left
mouse button.

5. Perform steps 1 and 2 until all of the dimensions appear in the desired order in the part browser.

See Also

Chapter 9, "Creating Hierarchies," Dimension Order Impact on Calculation, page 85

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 57

Chapter 7

Creating Cube Collections

This chapter provides overviews of cube collections and types of cube collections and discusses how to:

• Create cube collections.

• Define cube collection properties.

Understanding Cube Collections

A cube collection is a collection of related data cubes. You create cube collections to load data from the
database into the analytic model, receive user input, persist data back to the database, and display calculated
data to the end user at runtime.

When the end user loads an analytic instance, Analytic Calculation Engine loads the data from the database
into the data cubes of the analytic model. These data cubes exist within cube collections. You map the main
record from the database to the cube collection, and the main record's fields to the data cubes and dimensions
within the cube collection.

After loading an analytic instance, the end user has access to one or more cube collections within the
application. These cube collections which are displayed in PeopleSoft Pure Internet Architecture pages with
analytic grids contain the data that end users can view or edit. You create these pages in PeopleSoft
Application Designer.

See Chapter 13, "Creating Analytic Grids," page 241.

Note. The analytic model may contain cube collections that are not visible to the end user.

For each record that you want to work with in the analytic model, you generally create read/write cube
collection to load data into the analytic model, and a presentation cube collection for end user input, reporting
and forecasting. The presentation cube collection calculates the data from the read/write cube collection's data
cubes and displays the calculated data to the end user. Presentation cube collections may also receive end user
input.

You can also create an intermediate/calculation cube collection to organize data cubes and create calculations
whose results are not displayed to the end user.

In the General tab of the cube collection's properties, you map the main record, which stores the fact data that
you want to load and persist. For a read/write cube collection, select one of the records that you selected in
the analytic type definition that corresponds to the analytic model. For a presentation cube collection, select a
derived/work record from the list of available records.

Creating Cube Collections Chapter 7

58 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Note. Do not map intermediate/calculation cube collections to any records.

In the analytic type definition, you do not have to select the derived/work records that you want to map to
presentation cube collections. However, the analytic type definition must include all derived/work records
that are mapped to cube collections on which you use the NetChanges parameter of the GetData
CubeCollection class method.

When a cube collection is mapped to either a Writable-only record or a record with the Readable and
Writable attributes, all data cubes in the cube collection should share the same set of dimensions.

If desired, you can also use the General tab (in PeopleSoft Application Designer–Cube Collections) to map
the cube collection to an aggregate record to persist the cube collection's aggregate data.

After you map the cube collection to the main and aggregate records, use the Field Map tab (in PeopleSoft
Application Designer–Cube Collections) to map the cube collection's data cubes and dimensions to the fields
of the main and aggregate records.

Note. You can map a data cube or dimension to one field within one record. After you have mapped a data
cube or dimension to a particular record field, you cannot use that record field in another mapping. You can,
however, reuse the same field if that field is from a different record.

Use the Dimensions tab (in PeopleSoft Application Designer–Cube Collections) to define these additional
attributes for the dimensions in the cube collection:

• How much aggregate data is saved.

• Sort order.

• Filter user function.

Understanding Types of Cube Collections

You create three different types of cube collections in an analytic model. This section discusses:

• Read/write cube collections.

• Intermediate/calculation cube collections.

Note. Intermediate/calculation cube collections are optional.

• Presentation cube collections.

Read/Write Cube Collections

Use read/write cube collections to load data from the database, receive user input, and persist data back to the
database. For the main record, you can select any record type except derived/work records.

Note. The analytic type that you use with the analytic model must contain the records that you map to
read/write cube collections.

Chapter 7 Creating Cube Collections

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 59

See Chapter 12, "Understanding the Relationship of Analytic Types to Analytic Models," page 231.

This table indicates which data cube types are allowed in a read/write cube collection:

Data Cube Type Allowed in Read/Write
Cube Collection?

Input data cubes

See Chapter 5, "Creating Data Cubes," Input Data Cubes,
page 35.

Yes

Calculation data cubes

See Chapter 5, "Creating Data Cubes," Input Data Cubes,
page 35.

Yes

Note. Initial data values for calculation data cubes are
loaded from the database. Calculated values are written
back to the database.

Association data cubes

See Chapter 5, "Creating Data Cubes," Association Data
Cubes, page 35.

Yes

Virtual data cubes

See Chapter 5, "Creating Data Cubes," Virtual Data
Cubes, page 37.

No

Intermediate/Calculation Cube Collections

Use intermediate/calculation cube collections to organize data cubes and create intermediate calculations in
an analytic model. These intermediate values are neither displayed to the end user nor persisted to the
database. For this reason, do not map a main record to an intermediate/calculation cube collection. You can
view intermediate/calculation cube collections in the Analytic Model Viewer.

Note. Intermediate/calculation cube collections are optional.

This table indicates which data cube types are allowed in an intermediate/calculation cube collection:

Data Cube Type Allowed in Intermediate/Calculation
Cube Collection?

Input data cubes

See Chapter 5, "Creating Data Cubes," Input Data Cubes,
page 35.

Yes

Note. Although input data cubes are allowed in
calculation cube collections, their data is not updated. For
this reason, input data cubes serve no purpose in
intermediate/calculation cube collections.

Calculation data cubes

See Chapter 5, "Creating Data Cubes," Input Data Cubes,
page 35.

Yes

Creating Cube Collections Chapter 7

60 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Data Cube Type Allowed in Intermediate/Calculation
Cube Collection?

Association data cubes

See Chapter 5, "Creating Data Cubes," Association Data
Cubes, page 35.

Yes

Virtual data cubes

See Chapter 5, "Creating Data Cubes," Virtual Data
Cubes, page 37.

Yes

Presentation Cube Collections

Use presentation cube collections to present data to the end user for the purposes of reporting and forecasting.
For forecasting purposes, end users may also enter data into presentation cube collections. You can select
only a derived/work record as the main record of a presentation cube collection. If you select any other type
of record, you will not be able to select the cube collection on the Analytics tab of the analytic grid.

Note. You must create the derived/work record before selecting it as the main record.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
Record Definitions," Creating a New Record.

Use the GetData and SetData methods to transfer data between presentation cube collections and the
application server.

This table indicates which data cube types are allowed in a presentation cube collection:

Data Cube Type Allowed in Presentation
Cube Collection?

Input data cubes

See Chapter 5, "Creating Data Cubes," Input Data Cubes,
page 35.

Yes

Calculation data cubes

See Chapter 5, "Creating Data Cubes," Input Data Cubes,
page 35.

Yes

Association data cubes

See Chapter 5, "Creating Data Cubes," Association Data
Cubes, page 35.

Yes

Virtual data cubes

See Chapter 5, "Creating Data Cubes," Virtual Data
Cubes, page 37.

Yes

Chapter 7 Creating Cube Collections

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 61

Example: Creating Two Cube Collections

Suppose you want to work with sales data in an analytic model. Create these cube collections:

• SALES_RW read/write cube collection.

On the General tab, map this cube collection to the SALES main record to receive and persist raw sales
data. This record must exist in the analytic type definition. This cube collection contains these data cubes:

• UNIT_COST data cube.

Map this data cube to the UNIT_COST field.

• UNIT_SOLD data cube.

Map this data cube to the UNIT_SOLD field.

• SALES_PRES presentation cube collection.

Map this cube collection to the SALES_WK derived/work record to calculate sales data and display the
calculated data to the end user at runtime. This cube collection contains the TOTAL_SALES data cube,
which is mapped to the TOTAL_SALES_WK field. The TOTAL_SALES data cube contains this
formula:

UNIT_COST * UNIT_SOLD

This diagram provides a visual representation of these cube collections:

SALES_IN and SALES_WK cube collections

Creating Cube Collections

To create a cube collection:

Creating Cube Collections Chapter 7

62 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select Part, New, Cube Collection.

The Edit Part Name dialog box appears.

4. Enter the name of the cube collection.

5. Click the OK button.

You can now drag and drop the desired data cubes and dimensions into the cube collection.

See Also

Chapter 7, "Creating Cube Collections," Understanding Types of Cube Collections, page 58

Defining Cube Collection Properties

This section discusses how to:

• Map a cube collection to main and aggregate records.

• Map data cubes and dimensions to fields.

• Define additional cube collection dimension properties.

Mapping a Cube Collection to Main and Aggregate Records

To map a cube collection to Main and Aggregate records:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the cube collection that contains the main and aggregate records that you want to map, and then
select the General tab.

This is an example of the Cube Collections - General tab:

Chapter 7 Creating Cube Collections

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 63

Cube Collections - General tab in PeopleSoft Application Designer

Cube Collection Displays the name of the cube collection.

Description Enter a more detailed description of the cube collection.

Main Record Select a main record to map to the cube collection.

For a cube collection that is used for user input and data retrieval, select one of
the records that you selected in the analytic type definition to use in the analytic
model. For a cube collection that is used to calculate data and display the
calculated data to the end user at runtime, select a derived/work record.

Aggregate Record Select a record to store the cube collection's aggregate data.

Records that are used as aggregate records should be read after records that are
used as main records.

See Chapter 12, "Understanding the Relationship of Analytic Types to Analytic
Models," Synchronization Order, page 238.

Mapping Data Cubes and Dimensions to Fields

To map data cubes and dimensions to fields:

Creating Cube Collections Chapter 7

64 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the cube collection that contains the data cubes and dimensions that you want to map, and then
select the Field Map tab.

This is an example of the Cube Collections - Field Map tab:

Cube Collections - Field Map tab in PeopleSoft Application Designer

Part Name Displays the name of the data cube or dimension to which you map fields.

Note. You can map a field to only one data cube or dimension.

Part Type Displays whether the part to which you map fields is a data cube or dimension.

Chapter 7 Creating Cube Collections

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 65

Main Field Select a main field to map to the data cube or dimension.

Note. You can map a data cube or dimension to one field within one record.
After you have mapped a data cube or dimension to a particular record field, you
cannot use that record field in another mapping. You can, however, reuse the
same field if that field is from a different record.

When mapping dimensions and data cubes, you may want to map dimensions to
the key fields in the main record and data cubes to the non-key fields in the main
record. The PeopleSoft system, however, does enable you to map dimensions to
non-key and data cubes to key fields. To perform the most appropriate mapping,
you must have a deeper understanding of the relationship between data cubes and
dimensions.

See Chapter 3, "Understanding Analytic Models," Data Cubes and Dimensions,
page 16.

Aggregate Field Select a field to store the cube collection's aggregate data.

Defining Additional Cube Collection Dimension Properties

This section discusses how to:

• Set additional cube collection dimension properties.

• View additional cube collection dimension properties.

Setting Additional Cube Collection Dimension Properties

To set additional cube collection dimension properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the cube collection that contains the dimensions whose properties you want to set, and then select
the Dimensions tab.

4. Double-click any of the cells in the row of a dimension to access the Edit Cube Collection Dimension
dialog box.

This is an example of the Edit Cube Collection Dimension dialog box:

Creating Cube Collections Chapter 7

66 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Cube Collections - Edit Cube Collection Dimension dialog box

Persist Aggregate Select whether to persist the dimension's aggregate values to the database.

Aggregate data is persisted to the aggregate record that you select on the General
tab.

ALL: Select to persist all of the dimension member aggregate values to the
database.

NONE: Select to persist none of the dimension member aggregate values to the
database.

ROOT: Select to persist only the value of the hierarchy root member to the
database.

See Chapter 9, "Creating Hierarchies," Understanding the Persistence of
Aggregate Data, page 86.

Filter User Function Select a filter user function to apply to the dimension.

Select None if you do not want to apply a filter user function to the dimension.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Rules,
Formulas, and User Functions, page 122.

Sort Type By Name: Select to sort the dimension member values by name.

By Key: Select to sort the dimension member values by data cube values.

Note. You can only select from the fields that are mapped to data cubes.

Chapter 7 Creating Cube Collections

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 67

Sort Key #1 If the By Key option is selected, select the first data cube name by which you
would like to sort the dimension member values. Select to sort the dimension's
key values in ascending or descending order.

Sort Key #2 If the By Key option is selected, select the second data cube name by which you
would like to sort the dimension member values. Select to sort the dimension's
key values in ascending or descending order.

Sort Key #3 If the By Key option is selected, select the third data cube name by which you
would like to sort the dimension member values. Select to sort the dimension's
key values in ascending or descending order.

Viewing Additional Cube Collection Dimension Properties

The Dimensions tab displays additional properties that you have set for the dimensions in a cube collection.

To view additional cube collection dimension properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the cube collection that contains the dimensions whose properties you want to view, and then select
the Dimensions tab.

This is an example of the Cube Collections - Dimensions tab:

Cube Collections - Dimensions tab in PeopleSoft Application Designer

Dimension Displays the name of the dimension.

Persist Aggregate Displays any aggregates that are persisted for the dimension.

Creating Cube Collections Chapter 7

68 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Filter Displays the filter formula that is applied to the dimension.

Sort Type Displays the sort type that is applied to the dimension's values.

Sort #1 If the dimension values are sorted by key, displays the first key field by which
the dimension member values are sorted.

Sort #1 Order If the dimension member values are sorted by the first key, displays whether the
sort is by ascending or descending order.

Sort #2 If the dimension member values are sorted by key, displays the second key field
by which the dimension member values are sorted.

Sort #2 Order If the dimension member values are sorted by a second key, displays whether the
sort is by ascending or descending order.

Sort #3 If the dimension member values are sorted by key, displays the third key field by
which the dimension member values are sorted.

Sort #3 Order If the dimension member values are sorted by key, displays whether the sort is by
ascending or descending order.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 69

Chapter 8

Creating Explicit Dimension Sets

This chapter provides overviews of explicit dimension sets, and implicit tuples and explicit tuples, and
discusses how to define explicit dimension sets.

See Also

Chapter 9, "Creating Hierarchies," Understanding the Calculation of Aggregate Data, page 84

Understanding Explicit Dimension Sets

You create an explicit dimension set to form a distinct group of an analytic model's dimensions. Explicit
dimension sets improve the calculation efficiency of multidimensional data cubes. You can create one or
more explicit dimension sets within an analytic model. Explicit dimension sets may contain completely
different or some of the same dimensions as one another. The analytic calculation set instantiates valid
combinations of members called explicit tuples from explicit dimension sets.

See Chapter 8, "Creating Explicit Dimension Sets," Understanding Implicit Tuples and Explicit Tuples, page
72.

A model can contain explicit dimension supersets and explicit dimension subsets. An explicit dimension
superset is a set of dimensions that contains the same dimensions as its subset; however, the superset contains
one or more dimensions than its subset. A subset is the inverse of a superset: it contains the same dimensions
as its superset; however, the subset contains one or more fewer dimensions than its superset. An analytic
model can contain multiple supersets and subsets.

Explicit dimension sets are applied to individual data cubes when calculating data, and are also used for
exporting data. To determine which explicit dimension set it uses on a data cube, the analytic calculation
engine first reads which dimensions are attached to the data cube, and then analyzes and iterates through the
explicit dimension sets in priority order. The set at the lowest numbered row in the Explicit Dimension Sets
dialog box receives the highest priority.

See Chapter 8, "Creating Explicit Dimension Sets," Editing or Adding New Explicit Dimension Sets, page
75.

Note. Explicit dimension subsets must exist at a lower priority than their supersets. However, it is not
necessary for an explicit dimension subset to exist in the row directly beneath its superset. For example,
suppose that a superset exists in row 1. Its subset can be in row 3; it does not have to be in row 2. The explicit
dimension set in row 2 can contain dimensions that are not included in other explicit dimension sets.

Creating Explicit Dimension Sets Chapter 8

70 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Using the priority order, the analytic calculation engine matches the first explicit dimension set that has either
the same or fewer dimensions as are attached to the data cube, and then continues down the priority order for
the remaining dimensions. The analytic calculation engine uses single dimensions if any of these dimensions
remain unmatched after it has iterated through all explicit dimension sets.

For example, suppose these dimensions are attached to the OVERHEAD_COSTS data cube:

• CHANNELS

• CUSTOMERS

• TAXES

• EXPENSES

• MONTHS

• PRODUCTS

• REGIONS

The analytic model contains these explicit dimension sets:

• SET_1: MONTHS, REGIONS (first priority)

• SET_2: TAXES, PRODUCTS (second priority)

• SET_3: CHANNELS, CUSTOMERS, PRODUCTS (third priority)

• SET_4: CHANNELS, CUSTOMERS (fourth priority)

• SET_5: TAXES, EXPENSES (fifth priority)

The analytic calculation engine iterates through the explicit dimension sets, beginning with SET_1, and then
continues down the priority order for the remaining dimensions, matching the following:

• SET_1: MONTHS, REGIONS (first priority)

• SET_2: TAXES, PRODUCTS (second priority)

• SET_4: CHANNELS, CUSTOMERS (fourth priority)

Example 1: Explicit Dimension Sets

This table lists an analytic model's data cubes and their attached dimensions:

Data Cubes Data Cube Formula (if any) Attached Dimensions

SALES UNIT_SALES * UNIT_PRICE • PRODUCTS

• REGIONS

• MONTHS

Chapter 8 Creating Explicit Dimension Sets

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 71

Data Cubes Data Cube Formula (if any) Attached Dimensions

UNIT_SALES None (input cube) • PRODUCTS

• REGIONS

• MONTHS

UNIT_PRICE None (input cube) • PRODUCTS

• REGIONS

• MONTHS

The company:

• Sells the hamburgers product in both the Africa and Asia regions during all months of the year.

• Sells the french fries product in the Africa region only during the summer months.

• Never sells the french fries product in the Asia region.

If you do not create an explicit dimension set to calculate these data cubes, the analytic calculation engine
calculates the sales for all products in all regions during all months, even if some of these combinations are
not valid. In other words, the analytic calculation engine calculates the sales for french fries for all months in
Asia, even though the company does not sell french fries in Asia. Additionally, the analytic calculation engine
calculates the sales for french fries during all months in Africa, even though the company only sells french
fries in Africa during the summer.

In total, without using an explicit dimension set, the analytic calculation engine performs 48 calculations for
the SALES data cube:

 (2 PRODUCTS * 2 REGIONS * 12 MONTHS)

The analytic calculation engine generates the value of 0 for each invalid member combination, taking
valuable time to do so. These invalid member values are:

• Not saved to the main record.

• Not displayed to end users in the application.

End users view invalid member combinations as blank cells.

To prevent this unneeded calculation of data, you should create an explicit dimension set consisting of the
PRODUCTS, REGIONS, and MONTHS dimensions. The analytic calculation engine uses this explicit
dimension set, plus the UNIT_SALES and UNIT_PRICE input data cubes, to determine the explicit tuples.
Using these tuples, the analytic calculation engine calculates only the necessary values.

Note. The analytic calculation engine uses the input cubes that comprise the relevant data cube's formula to
instantiate the explicit tuples that it uses to calculate the data cube.

In total, the analytic calculation engine performs 27 calculations for the SALES data cube:

(1 PRODUCT * 2 REGIONS * 12 MONTHS) + (1 PRODUCT * 1 REGIONS * 3 MONTHS)

Creating Explicit Dimension Sets Chapter 8

72 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example 2: Explicit Dimension Supersets and Subsets

An analytic model contains the SALES data cube. These dimensions are attached to this data cube:

• PRODUCTS

• REGIONS

• ORDER_ID

• BUSINESS_UNIT

• DEPT_ID

• EMPL_ID

You have defined these explicit dimension sets:

• SET_1: PRODUCTS, REGIONS, ORDER_ID (Priority 1).

• SET_2: PRODUCTS, REGIONS (Priority 2).

• SET_3: REGIONS, ORDER_ID (Priority 3).

• SET_4: DEPT_ID, EMPL_ID (Priority 4).

The explicit dimension subset (PRODUCTS, REGIONS) exists at a lower priority than its superset
(PRODUCTS, REGIONS, ORDER_ID). The subset is in row 2; the superset is in row 1. The analytic
calculation engine takes the cross product of the following to instantiate the valid combinations of dimension
members for the SALES data cube:

• SET_1: PRODUCTS, REGIONS, ORDER_ID.

• SET_4: DEPT_ID, EMPL_ID.

• BUSINESS_UNIT dimension.

Understanding Implicit Tuples and Explicit Tuples

Implicit tuples are the combinations of members that are used to calculate a single data cube but do not
comprise an explicit dimension set.

Explicit tuples are the valid combinations of members that are instantiated from an explicit dimension set and
are instantiated from these sources:

• Data loaded from the database.

• Data loaded by using the SetData method.

• Other explicit tuples in explicit dimension supersets.

Chapter 8 Creating Explicit Dimension Sets

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 73

Example: Implicit Tuples

This table lists the field to which the BUSINESS_UNIT dimension is mapped. Empty cells indicate null
values:

BUSINESS_UNIT field

US001

US002

This table lists the field to which the DEPARTMENT dimension is mapped:

DEPARTMENT field

DEPT1000

DEPT2000

DEPT3000

DEPT4000

In this example, departments 1000 and 2000 exist only in business unit US001, and departments 3000 and
4000 exist only in business unit US002.

If the BUSINESS_UNIT and DEPARTMENT dimensions do not comprise an explicit dimension set and both
dimensions are attached to the SALES data cube, the analytic calculation engine uses these implicit tuples to
calculate the SALES data cube:

(US001, DEPT1000),
(US001, DEPT2000),
(US001, DEPT3000),
(US001, DEPT4000),
(US002, DEPT1000),
(US002, DEPT2000),
(US002, DEPT3000),
(US002, DEPT4000)

Example: Explicit Tuples

This example uses the same fields as the implicit tuples example.

If you create an explicit dimension set that includes the BUSINESS_UNIT and DEPARTMENT dimensions,
the analytic calculation engine uses these explicit tuples to calculate the SALES data cube:

(US001, DEPT1000),
(US001, DEPT2000),
(US002, DEPT3000),
(US002, DEPT4000)

Creating Explicit Dimension Sets Chapter 8

74 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Note. The analytic calculation engine also uses the input cubes that comprise the relevant data cube's formula
to instantiate the explicit tuples that it uses to calculate the data cube.

Defining Explicit Dimension Sets

This section discusses how to:

• View explicit dimension set properties.

• Edit or add new explicit dimension sets.

Viewing Explicit Dimension Set Properties

To view explicit dimension set properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Double-click the Parts branch in the part browser, and then select the Explicit Dimension Set tab.

This is an example of the Explicit Dimension Set tab:

Chapter 8 Creating Explicit Dimension Sets

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 75

Explicit Dimension Set tab

Explicit Dimension Set Displays the name of the explicit dimension set.

Dimensions Displays the dimensions that are included in the explicit dimension set.

Editing or Adding New Explicit Dimension Sets

To edit or add new explicit dimension sets, perform one of these actions:

• To edit a preexisting explicit dimension set, double-click the name of the explicit dimension set on the
Explicit Dimension Set tab.

• To add a new explicit dimension set to an analytic model that does not yet contain any explicit dimension
sets, right-click the area at the bottom portion of the Explicit Dimension Set tab and select the Add
Dimension Set option.

In either case, the Edit Explicit Dimension Set dialog box appears, as shown:

Creating Explicit Dimension Sets Chapter 8

76 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Edit Explicit Dimension Set dialog box

Explicit Dimension Set Enter or edit the name of the explicit dimension set.

Dimensions Displays the dimensions in the explicit dimension set.

Add If a row is currently selected, click this button to add a blank row beneath the
currently selected row. You can then click the blank row to select a new
dimension to add to the set.

If a row is not currently selected, click this button to add a blank row to the
bottom of the set. You can then click the blank row to add a new dimension from
the resulting drop-down list box.

Note. Explicit dimension subsets must exist at a lower priority than their
supersets. However, it is not necessary for an explicit dimension subset to exist in
the row directly beneath its superset. For example, if a superset exists in row 1,
its subset can be in row 3 (it does not have to be in row 2). The explicit
dimension set in row 2 can contain dimensions that are not included in other
explicit dimension sets.

Delete Delete a blank row or dimension from the explicit dimension set.

Note. You must select a row before clicking the Delete button.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 77

Chapter 9

Creating Hierarchies

This chapter provides overviews of the relationship of PeopleSoft trees to analytic models, Business Analysis
Modeler (BAM) total members, dimension members, the calculation of aggregate data, and the persistence of
aggregate data, and discusses how to work with overrides.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Tree Manager

Understanding the Relationship of PeopleSoft Trees to Analytic
Models

This section discusses:

• The purpose of PeopleSoft trees and analytic model hierarchies.

• PeopleCode usage with PeopleSoft trees and analytic models.

Purpose of PeopleSoft Trees and Analytic Model Hierarchies

Analytic Calculation Engine uses trees to establish hierarchies of a dimension's parent-child relationships.
Analytic Calculation Engine uses these hierarchies to:

• Calculate and display aggregated data to end users.

• Enable end users to navigate through data by performing such actions as expanding and collapsing nodes.

• Enable end users to drill down and drill up through data.

It is important to understand that PeopleSoft trees and hierarchies differ in the following manner: You create
one tree for each dimension that requires a hierarchy; the analytic model uses that tree to create one hierarchy
for one dimension.

Before loading the analytic model into the analytic server, the application uses the AttachTree method to
attach the tree to its corresponding dimension. Next, the analytic model creates its own hierarchy by reading
the parent-child relationships that are defined by that tree. During the remainder of the user session, the
analytic model uses its own hierarchy, and no longer uses the original tree. For this reason, when the
application adds a new dimension member during runtime, the member is actually added to the analytic
model's hierarchy; the original tree is not modified.

Creating Hierarchies Chapter 9

78 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Note. If a tree is not attached to a dimension, you can create a basic hierarchy for that dimension by
specifying a total member name for the dimension.

See Chapter 6, "Creating Dimensions," Defining Dimension Properties, page 52.

You can use the Analytic Model Viewer to view the properties of the trees that you are using with your
analytic model.

See Chapter 14, "Viewing and Debugging Analytic Models," Viewing Dimension Properties, page 279.

PeopleCode Usage with PeopleSoft Trees and Analytic Models

Use the AttachTree and DetachTree methods to work with PeopleSoft trees and analytic models.

AttachTree Method

Use the AttachTree method to:

• Attach a tree to its corresponding dimension.

Analytic Calculation Engine attaches the tree to the dimension and then creates and displays the
hierarchy.

• Make changes to the tree.

• Create a record that uses PSACETREEOVRD as a subrecord, then attach the new record to the dimension
members to associate the member override function with the hierarchy.

Be aware of these restrictions:

• Because the AttachTree method attaches a specific tree to an analytic model, the system throws an error if
the tree's name, setID, or effective date is incorrect.

• You can attach only one tree to a dimension.

• If the analytic model is already loaded into an analytic server, the tree is not attached until the next time
that the analytic model is reloaded.

DetachTree Method

Use the DetachTree method to detach the tree from the dimension.

Note. If the application loads the analytic model after the tree is detached, the analytic model does not create
a hierarchy for the dimension.

If the analytic model is already loaded into an analytic server, the DetachTree method is not applied to the
tree until the next time the application loads the analytic model.

Updating a Tree at Runtime

To update a tree at runtime, perform these steps:

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 79

1. Unload the analytic model.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," Unload.

2. Use the DetachTree method to detach the tree from the analytic model.

3. Use the AttachTree method's parameters to update the tree with the changes.

Note. Be aware of the details start level and tree discard level before making any changes to the tree.

See Chapter 9, "Creating Hierarchies," Purpose of Node Levels in Creating Hierarchies, page 82.

4. Reload the analytic model.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," AttachTree

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," DetachTree

Understanding BAM Model Total Members

PeopleSoft BAM models often contain total members. A dimension in a BAM model may contain a total
member to provide a simple aggregation of the other members of that dimension.

If you want to convert a BAM 8.8 model into an analytic model, you must understand how Analytic
Calculation Engine handles the total members from BAM models, and the relationship between BAM total
members and the hierarchies and dimension members of analytic models.

See Chapter 6, "Creating Dimensions," Defining Dimension Properties, page 52.

Understanding Dimension Members

This section discusses:

• Types of dimension members.

• Purpose of node levels in creating hierarchies.

• Creation of new members at runtime.

Types of Dimension Members

Analytic Calculation Engine contains many different types of dimension members. The type of member that
exists within a dimension is determined by:

Creating Hierarchies Chapter 9

80 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• Whether a tree is attached to the dimension.

• The types of leaves or nodes that are mapped to the dimension members.

Note. Two dimension members should never share the same name unless one member is a detail member and
one member is an aggregate member.

Detail Members and Leaf Members

If a tree is not attached to a dimension, Analytic Calculation Engine creates detail members for each value of
the field to which the dimension is mapped.

If a tree is attached to a dimension, Analytic Calculation Engine creates detail members out of the tree's detail
values to establish a dimension's parent and child relationships (in a tree, detail values can serve as children
and parents).

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Tree Manager, "Introduction to PeopleSoft Tree
Manager," Using Detail Values (Leaves).

Note. When detail values serve as parents, they are also referred to as detail nodes because they do not
display aggregated data. Instead, detail nodes usually display the key values of regular transactional tables.

When detail members serve as parents, they do not display aggregated data. Rather, they enable end users to
navigate through the hierarchy.

Be aware of these characteristics of detail members' relationship to the main record:

• Detail member names are either read from the main record or generated from the tree's data.

• Navigation related functions such as PREV, NEXT, and PREVSELF operate on detail member names that
are persisted in the main record.

These functions do not use trees to determine the order of members.

See Chapter 11, "Using Built-in Functions in Analytic Models," PREV, page 207; Chapter 11, "Using
Built-in Functions in Analytic Models," NEXT, page 198 and Chapter 11, "Using Built-in Functions in
Analytic Models," PREVSELF, page 208.

A leaf member is a special type of detail member that does not have children.

For example, suppose an end user enters 20040101 as a new detail value. Analytic Calculation Engine
generates a new 20040101 leaf member. This is a leaf member because its corresponding detail value does
not have any children.

Aggregate Members

Aggregate members are mapped to the nodes of a tree that have either children or leaf ranges. Aggregate
members display a grouping of data, rather than a specific discrete value.

For example, suppose an analytic model's DATE dimension is mapped to a tree that contains 20040101 as a
leaf node and Q12004 as a branch node. Analytic Calculation Engine generates the Q12004 aggregate
member out of the branch node.

The analytic calculation engine creates aggregate members out of any tree elements that remain after it
creates the hierarchy's detail members.

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 81

Hierarchy Root Member

You can map the hierarchy root member to any node that you want to serve as the root of the hierarchy. All
sibling nodes or nodes at a higher level of the tree are not used to create the hierarchy. You map the hierarchy
root member by using the NodeName parameter of the AttachTree method.

Note. Only one hierarchy root member can exist per dimension.

Consider this example of a tree's parent-child relationships:

Example of a tree's parent-child relationships

Even though the highest level node is GBL, which is the root node of the tree, you can select the India node to
serve as the hierarchy root member for this dimension. When you create the hierarchy root member out of the
India node, only the children of India exist in the hierarchy.

Creating Hierarchies Chapter 9

82 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

If you have not attached a tree to the dimension, a hierarchy root member still exists for that dimension if you
specified a root member name for that dimension. If you have not attached a tree to the dimension and you
have not entered a value in the Total Member Name field, neither a hierarchy root member nor a hierarchy
exists for that dimension.

See Chapter 6, "Creating Dimensions," Defining Dimension Properties, page 52.

Orphan Members

An orphan member is any member that does not map to a child of a parent node in the tree.

For each orphan member, Analytic Calculation Engine:

• Adds each orphan member to the hierarchy root member.

• Adds each orphan member's value to the hierarchy root value's member.

• Generates a message with the ID of 123 and stores it in the Messages property for the analytic instance.

You must write PeopleCode to iterate over the messages in the analytic instance and search for message
123, and then take any necessary further action.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," Error Handling.

Blank Members

A blank member is a member that has no value. Blank members are created out of either an empty detail in a
tree or a null cell in the main record. To create blank members:

• When the analytic model learns of a new empty detail in the tree, it adds the blank member to the
appropriate parent member.

• When the analytic model learns of a null cell in the main record, it adds the blank member as a child of
the hierarchy root.

• When the AddMember method adds a member with a blank member name (), a blank member is added
as a child of the hierarchy root.

Note. When blank members are mapped to date fields, they are written to the database as values of 1/1/1900.

See Also

Chapter 10, "Creating Rules, Formulas, and User Functions," Understanding the Elements of Rules, page 131

Purpose of Node Levels in Creating Hierarchies

Use node levels to create leaf, detail, and aggregate members out of tree nodes and leaves. Use the parameters
of the AttachTree method to set the node levels.

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 83

Details Start Level

The details start level determines the type of dimension members that Analytic Calculation Engine creates out
of the nodes and leaves of a tree. Use either the parameters of the AttachTree method or the Analytic Instance
Load/Unload page to set the details start level. The details start level is a required parameter. The default
value is 0. The root level is 1.

See Chapter 17, "Managing Analytic Servers," Loading and Unloading Analytic Instances, page 328.

Note. If you specify a nonzero details start level, you must specify the strictly enforced method to the tree in
PeopleSoft Tree Manager. The strictly enforced method ensures that all members that are created out of one
level are created as the same member type.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Tree Manager, "Creating Trees," Defining Basic
Attributes.

This table describes the members that Analytic Calculation Engine creates, depending on whether the details
start level is specified:

Details Start Level
Specified?

Leaf Members Detail Members Aggregate Members

Value > 0 Analytic Calculation
Engine creates leaf
members out of any detail
values that are at the far
right of the tree.

Analytic Calculation
Engine creates detail
members out of any detail
values or nodes that are
located either within the
specified details start level,
or within a level that is
lower (higher number) than
the details start level.

If you specify the root level
as the details start level,
Analytic Calculation
Engine creates detail
members out of all nodes in
the tree.

Note. Analytic Calculation
Engine cannot create detail
members out of detail
values that are at a higher
level than the details start
level.

Do not specify a details
start level that is equal to
lower than the tree discard
level.

Analytic Calculation
Engine creates aggregate
members out of any
aggregate nodes that are
located within a level that is
higher than the details start
level.

Note. Analytic Calculation
Engine cannot create
aggregate members out of
nodes that are at a lower
level than the details start
level.

Value = 0

Note. When the value = 0,
the details start level is not
specified.

Analytic Calculation
Engine creates leaf
members out of the detail
values that are located at
the far right of the tree.

Analytic Calculation
Engine creates detail
members out of all leaf
members.

Analytic Calculation
Engine creates aggregate
members out of any nodes
from which it has not
created leaf members.

Creating Hierarchies Chapter 9

84 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Tree Discard Level

The tree discard level determines the level from which Analytic Calculation Engine does not attach any more
of the tree to the dimension. Use either the parameters of the AttachTree method or the Analytic Instance
Load/Unload page to set the tree discard level.

See Chapter 17, "Managing Analytic Servers," Loading and Unloading Analytic Instances, page 328.

 Analytic Calculation Engine does not create members out of nodes or leaves that are either at this level or
lower than this level. You must specify a details start level to every tree for which you want to specify a tree
discard level. The default value is 0. If the tree discard level is anything other than Level 0, then the tree
discard level must be at a lower level than the details start level.

The analytic calculation engine ignores the tree discard level if:

• The details start level is 0.

• The tree discard level is either equal to or higher than the details start level.

Creation of New Members at Runtime

Analytic Calculation Engine can create new dimension members during runtime by using:

• Data from the main record.

• Application data that is added at runtime.

Relationship of Leaf Ranges to New Members

If you map a dimension to a tree that includes leaf ranges, Analytic Calculation Engine adds a new dimension
member to the appropriate parent in the hierarchy when the application adds a new leaf that falls within a leaf
range of the tree. Use the AddMember method to add new members to the dimension.

Note. Analytic Calculation Engine ignores any new leaves that do not fall within the values of a leaf range.

For example, suppose a tree contains a node called 2003Q1 that includes a leaf range of 2003-01-01 to 2003-
03-31. During runtime, Analytic Calculation Engine reads the main record data and recognizes that the
application has added 20030204 as a new leaf that exists within the 2003Q1 leaf range. Analytic Calculation
Engine creates the 20030204 member and adds it as a child to the 2003Q1 member.

Understanding the Calculation of Aggregate Data

This section discusses:

• Dimension order impact on calculation.

• Logic for determining the order of members.

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 85

See Also

Chapter 9, "Creating Hierarchies," Understanding Override Order of Precedence, page 89

Dimension Order Impact on Calculation

The order of dimensions in the analytic model determines which member the analytic calculation engine uses
to calculate the data cube aggregate value that exists at an intersection of two or more aggregate members.
When evaluating the data cube's value at this intersection, the analytic calculation engine uses the aggregate
member of the dimension that appears as first in the order of dimensions in the part browser.

See Chapter 9, "Creating Hierarchies," Example: Creating Overrides, page 100.

See Also

Chapter 6, "Creating Dimensions," Changing the Order of Dimensions in the Part Browser, page 55

Logic for Determining the Order of Members

User functions often refer to dimension members to calculate data cubes. For this reason, you must
understand the factors that affect the way in which the analytic calculation engine orders dimension members:

Note. This section describes the member order as it exists within the analytic calculation engine. This internal
order may differ from the member order that is ultimately displayed to the end user.

Creating Hierarchies Chapter 9

86 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• If the dimension is mapped to a tree, the analytic calculation engine first determines the member order by
the order of the detail values in the tree.

Next, the analytic calculation engine determines the member order from the order of the values as they
exist in the database.

For example, suppose a dimension is attached to a GBL tree and uses the United Kingdom node as its
hierarchy root member. This node contains detail values in this order: Cardiff, Liverpool, London,
Manchester. This dimension is also mapped to the UNITED_KINGDOM field in the database, which
contains the Edinburgh and Glasgow values. The analytic calculation engine creates this member order in
the hierarchy:

1. Cardiff

2. Liverpool

3. London

4. Manchester

5. Edinburgh

6. Glasgow

Note. The next time the analytic calculation engine creates these members (for example, when the
application loads the analytic model), the analytic calculation engine employs the existing member
order, even if it recognizes a new database value that matches the name of an existing member.

For example, suppose the analytic model has already established the above hierarchy before the
application adds the Manchester value to the UNITED_KINGDOM field. When the application
reloads the analytic model, the member order in this hierarchy remains; for this reason, Manchester
retains its fourth member position.

• If the dimension is not mapped to a tree, the member order is determined by the order of the members'
values as they exist in the field that is mapped to the dimension.

Understanding the Persistence of Aggregate Data

This section discusses:

• Persistence of aggregate and detail data.

• Aggregate record properties.

• Pushed down data.

• Data type considerations.

Persistence of Aggregate and Detail Data

Assuming that you selected a main record and aggregate record in the cube collection, Analytic Calculation
Engine uses these records to persist aggregate data and detail data:

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 87

• Tree data.

Tree data includes:

• Aggregate data:

Analytic Calculation Engine persists aggregate data in the aggregate record.

See Chapter 9, "Creating Hierarchies," Understanding the Persistence of Aggregate Data, page 86.

Note. Records that are used as aggregate records should be read after records that are used as main
records.

See Chapter 12, "Understanding the Relationship of Analytic Types to Analytic Models,"
Synchronization Order, page 238.

• Pushed down data.

Analytic Calculation Engine creates detail data out of pushed down aggregate data. For this reason,
Analytic Calculation Engine persists this data in the main record.

See Chapter 9, "Creating Hierarchies," Pushed Down Data, page 87.

• Detail data.

Detail data is data that cannot be broken down any further. Analytic Calculation Engine persists detail
data to the main record.

A detail member is generated out of one value of detail data in the database.

Aggregate Record Properties

On a case-by-case basis, you must determine which aggregates you want to save for each dimension in the
cube collection. You can select either ALL,NONE, or ROOT in the Persist Aggregate field of the Edit Cube
Collection Dimension dialog box. Here are explanations for these selections:

• ALL: Select to persist all of the dimension member aggregate values to the database.

• NONE: Select to persist none of the dimension member aggregate values to the database.

• ROOT: Select to persist only the value of the hierarchy root member to the database.

See Chapter 7, "Creating Cube Collections," Defining Additional Cube Collection Dimension Properties,
page 65.

Pushed Down Data

Sometimes a parent member in a hierarchy may contain aggregate data that is not derived by aggregating the
parent member's children. When this is the case, you may want to break down the parent member's value to
generate the detail data for the parent member's children. You create user functions that employ the PARENT,
CHILDCOUNT, and FORCHILDREN built-in functions to push down aggregate data.

These user function examples push down parent member data:

Creating Hierarchies Chapter 9

88 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

AT (DIMENSION, Parent(DIMENSION), THISCUBE() * 0.2)

And:

AT (DIMENSION, Parent(DIMENSION), THISCUBE() / CHILDCOUNT(DIMENSION, #DIRECT))

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," PARENT, page 204

Chapter 11, "Using Built-in Functions in Analytic Models," CHILDCOUNT, page 161

Chapter 11, "Using Built-in Functions in Analytic Models," FORCHILDREN, page 175

Data Type Considerations

Aggregate members can have different data types than their child detail members, even though they both
display data for the same dimension. When this is the case, you must reconcile the situation if you want to
persist aggregates.

For example, suppose the PRODUCTS dimension is mapped to a numeric field in the main record and
contains members from this tree:

ALL_PRODUCTS
 Release Less than 8
 <Leaf Range (Low = 0, High= 799)
 Release 8
 <Leaf Range (Low = 800, High= 899)

Notice that the Release 8 member is not totally numeric; instead, it is a string that contains letters and a
number. If the detail value 846 is added to the tree, the member 846 (which is numeric) is added to the parent
member Release 8 (which is a string). To reconcile this situation, you should persist the aggregates for this
dimension to a field with a data type of String and a length of at least 20.

Note. It is not necessary for the main record's fields to have the same data types as the aggregate record's
fields.

Working with Overrides

This section provides overviews of default aggregation, override order of precedence, and the
PSACETREEOVRD subrecord and discusses how to:

• Use default aggregation.

• Create overrides.

• Create a hierarchy with mixed aggregate and detail members.

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 89

Understanding Default Aggregation

By default, Analytic Calculation Engine sums all of the values of a parent member's direct children to
calculate the value of the parent member. Analytic Calculation Engine executes this default aggregation by
iterating over all child members and applying the plus operator. The default aggregation operates on all
children, even if the child member itself is an aggregate value.

Note. This default aggregation is not used if you specified a cube dimension override user function, a member
override user function, a dimension override user function, or do not have any aggregates in the relevant part
of the analytic model.

This is an example of Analytic Calculation Engine's default aggregation:

2003 (170)
 Q1 (80)
 Jan (10)
 Feb (20)
 Mar (50)
 Q2 (90)
 Apr (20)
 May (30)
 Jun (40)

In this example, 2003, Q1, and Q2 are nonleaf members—that is, aggregates. The numbers in parentheses to
the right of the aggregate members represent their aggregate values. The numbers in parentheses to the right
of the nonaggregate members represent their nonaggregated values.

Understanding Override Order of Precedence

You must understand default aggregation and the order of precedence that the analytic calculation engine uses
to override the default aggregation. When calculating aggregate members, Analytic Calculation Engine
begins with the most specific override available, and then proceeds to more general overrides. The analytic
calculation engine uses this order of precedence to evaluate aggregate members:

1. If the dimension does not contain any aggregate members, use the data cube's formula.

If the dimension does contain aggregate members, perform one of these actions:

• If aggregate calculation is not enabled for the data cube, do not perform any more calculation of
aggregates.

Note. The analytic calculation engine generates an error when the analytic model is loaded.

• If the Calculate Aggregates option is selected for the data cube, perform step 2.

Creating Hierarchies Chapter 9

90 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

2. Perform one of these actions:

Note. In either of these cases, the analytic calculation engine loads initial values from the aggregate
record when the analytic model is loaded, but overwrites the initial values upon recalculation.

• Use the cube dimension override user function if it exists.

This override operates on all of a dimension's aggregate members for the dimension as it is attached to
a specific data cube.

For example, you can create one cube dimension user function to operate on the PRODUCTS
dimension when it is attached to the SALES data cube, and another cube dimension user function to
operate on the PRODUCTS dimension when it is attached to the COST_OF_GOODS data cube.

To set a cube dimension override user function, create a user function in the analytic model, and then
select the user function in the Aggregate Rule column in the Dimensions tab of the data cube's
properties.

• If the cube dimension user function does not exist, perform step 3.

3. Perform one of these actions:

• Use the member override user function.

This override operates on specific members of a dimension. You create the member override user
function in the analytic model. However, because members are often instantiated at runtime, you use
the PSACETREEOVRD subrecord to assign the member override user function to the dimension
rather than assign the member override user function to specific members within the analytic model.

For example, if the end user enters aggregate data, you can write a member override function that uses
the INPUT built-in function to capture the user input, and use the PARENT and CHILDCOUNT
built-in functions to push down the aggregate data and create new members. Then you can assign the
member override user function to the appropriate dimension in the PSACETREEORRD subrecord.

Note. If the member override user function does not contain a value, Analytic Calculation Engine
applies the default aggregation (the plus operator) to the dimension members.

• If the member override function does not exist, perform step 4.

4. Perform one of these actions:

• Use the dimension override function.

The analytic calculation engine uses this override user function to calculate all of a dimension's
aggregates as they apply to all dimensions.

For example, suppose you create a dimension override function for the PRODUCTS dimension. If this
dimension is attached to both the SALES and COST_OF_GOODS dimensions, the dimension
override function applies to the aggregates for both data cubes.

To set a dimension override user function, create a user function and select the user function in the
Aggregate Function field of the dimension's properties.

Note. This override function does not apply to leaf members or detail members.

• If the dimension override function does not exist, perform step 5.

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 91

5. Aggregate the values of the child members by using the operators that are attached to each child.

The analytic calculation engine iterates over each value to evaluate the aggregate.

The default operator for each member is the plus operator.

You set the operators in the OPERATION field of the PSACETREEOVRD subrecord. When the default
sum operator is used, the actual value in the OPERATION field is null.

If you do not want to use the default sum aggregation, you can populate the OPERATION field with one
of these values:

• MIN.

Use this value for the analytic calculation engine to use subtraction aggregation. The analytic
calculation engine iterates over each member and applies the subtraction operator to each iteration.
The aggregate value is the resulting value after the final iteration.

• IGN.

Use this value for the analytic calculation engine to ignore the OPERATION field.

See Also

Chapter 9, "Creating Hierarchies," Example: Using Default Aggregation, page 92

Chapter 9, "Creating Hierarchies," Example: Creating a Hierarchy with Mixed Aggregate and Detail
Members, page 118

Understanding the PSACETREEOVRD Subrecord

You use the PSACETREEOVRD subrecord to assign an override to a tree. To use the subrecord, you must
first create a record definition. This record definition can contain additional fields. After you create the record
definition, insert the PSACETREEOVRD subrecord into the record definition.

To attach the PSACETREEOVRD subrecord to a tree, specify the name of the override record as the
RecordName parameter of the AttachTree method.

This table describes the PSACETREEOVRD subrecord:

Field Name Description Possible Values

TREE_NAME The name of the tree that contains the
node to override.

DEPT_TREE

SET_ID The setID of the tree. 123

EFFDT The effective date of the tree. 12/1/03

TREE_NODE The name of the dimension member
on which the override should operate.

GBL

Creating Hierarchies Chapter 9

92 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Field Name Description Possible Values

ACERULEID The name of the user function to
apply as an override. This field can be
null because it can be reused.

USER_FUNCTION_NAME

OPERATION Add, subtract, or ignore this entry
when aggregating a parent member.

MIN, IGN

Note. The default value in the
OPERATION field is null, causing
the analytic calculation engine to use
the sum operator for aggregating
members. Other possible values in the
table are MIN for subtraction
aggregation and IGN for ignore.

Note. The PSACETREEOVRD subrecord must contain a value in either or both of the OPERATION or
ACERULEID fields. If both of these fields are null, the analytic calculation engine ignores the row.

Example: Using Default Aggregation

This section provides an example of how to create an analytic model that uses default aggregation.

Requirements for Analytic Model

This table provides an example of a table named MainData, which you specified as the main record of a cube
collection:

DEPT field
Data Type: Number

SOMEDATE field
Data type: Date

NUM_SALES field
Data Type: Number

PRICE_PER_UNIT field
Data Type: Number

101 20040101 1 10

102 20040102 2 14

103 20040101 4 15

201 20040101 8 20

202 20040201 16 23

You want the analytic model to:

• Calculate aggregates for the NUM_SALES field.

• Save the aggregates for the NUM_SALES field.

• Establish hierarchies for the DEPT and SOMEDATE dimensions.

• Refrain from calculating aggregates for the PRICE_PER_UNIT field.

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 93

• Save all aggregates for the DEPT dimension.

• Refrain from saving aggregates for the SOMEDATE dimension.

Creating the Aggregates

To fulfill the requirements of the analytic model, perform these steps:

1. Create these dimensions:

• DEPARTMENT

• DATE

2. Create these data cubes:

• SALES

• PRICE_PER_UNIT

3. Enable the Calculate Aggregates field for the SALES data cube, because you want to calculate aggregates
for this data cube.

4. Ensure that the Calculate Aggregates field is disabled for the PRICE_PER_UNIT data cube, because you
do not want to calculate aggregates for this data cube.

5. Create a cube collection called SALES.

6. Select MainData as the main record for the SALES cube collection.

7. Map the data cubes and dimensions within the SALES cube collection to fields in the main record.

This table provides the mappings:

Data Cube or Dimension to Map Field in Main Record

DEPARTMENT dimension DEPARTMENT field

Data type: Number

SOMEDATE dimension SOMEDATE field

Data type: Date

SALES data cube NUM_SALES field

Data type: Number

PRICE_PER_UNIT data cube PRICE_PER_UNIT field

Data type: Number

Creating Hierarchies Chapter 9

94 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

8. Select the AGGRDATE record as the aggregate record.

The AGGRDATE database record currently contains no data. This table describes the fields within the
record:

Field Name Data Type

DEPARTMENT String

TREE_DATE String

NUM_SALES Number

Notice that even though the DEPARTMENT and TREE_DATE fields are of the String data type, none of
the main record's fields are of this same data type. The DEPARTMENT and TREE_DATE fields are of
the String data type because the hierarchy's members display strings, not dates or numbers. The data types
of the aggregate record's fields must match the data types and lengths of the hierarchy's aggregate
members. However, the data types of the aggregate record's fields do not need to match the data types of
the main record's fields.

Note. If you design a tree's nodes so that the fields of the nodes are of the same data type as the fields of
the detail members, you can use the same data type for both the dimension's aggregate record fields and
main record fields.

9. Map dimensions and data cubes to fields in the aggregate record.

This table provides the mappings:

Data Cube or Dimension to Map Field in Aggregate Record

DEPARTMENT dimension DEPARTMENT field

SOMEDATE dimension TREE_DATE field

SALES data cube NUM_SALES field

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 95

10. Use PeopleSoft Tree manager to create two trees:

Note. In the two tables, italicized children represent detail values. Remember, Analytic Calculation
Engine creates detail members out of the tree's detail values to establish a dimension's parent-child
relationships (in a tree, detail values can serve as children and parents).

• DEPT_TREE

Parents Children

(no parent root) GBL

GBL US

GBL LAT AM

US 101

US 102

US 103

LAT AM 201

LAT AM 202

• DATE_TREE

Parents Children

(no parent root) CAL2004

CAL2004 JAN

CAL2004 FEB

JAN 20040101

JAN 20040102

FEB 20040201

Creating Hierarchies Chapter 9

96 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

11. Consider these scenarios for default sum aggregation:

• If you select to persist all aggregates of both dimensions on the Dimensions tab of the cube
collection's properties, the following rows are persisted in the aggregate record:

Note. Italicized values are the actual persisted aggregate members. Zero (0) values in this table are not
persisted. The Fully Qualified Member Name field is not a database value.

Fully Qualified Member Name DEPARTMENT TREE_DATE NUM_SALES

GBL

CAL2004.JAN. 20040101

GBL 20040101 13

GBL

CAL2004.JAN.20040102

GBL 20040102 2

GBL

CAL2004.FEB.20040201

GBL 20040201 16

GBL.US

CAL2004.JAN.20040101

US 20040101 5

GBL.US

CAL2004.JAN.20040102

US 20040102 2

GBL.US

CAL2004.FEB.20040201

US 20040201 0

GBL.LAT AM

CAL2004.JAN.20040101

LAT AM 20040101 8

GBL.LAT AM

CAL2004.JAN.20040102

LAT AM 20040102 0

GBL.LAT AM

CAL2004.FEB.20040201

LAT AM 20040201 16

GBL.US.101

CAL2004

101 CAL2004 1

GBL.US.102

CAL2004

102 CAL2004 2

GBL.US.103

CAL2004

103 CAL2004 4

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 97

Fully Qualified Member Name DEPARTMENT TREE_DATE NUM_SALES

GBL LAT AM.201

CAL2004

201 CAL2004 8

GBL LAT AM.202

CAL2004

202 CAL2004 16

GBL.US.101

CAL2004.JAN

101 JAN 1

GBL.US.102

CAL2004.JAN

102 JAN 2

GBL.US.103

CAL2004.JAN

103 JAN 4

GBL.LAT AM.201

CAL2004.JAN

201 JAN 8

GBL.LAT AM.202

CAL2004.JAN

202 JAN 0

GBL.US.101

CAL2004.FEB

101 FEB 0

GBL.US.102

CAL2004.FEB

102 FEB 0

GBL.US.103

CAL2004.FEB

103 FEB 0

GBL. LAT AM.202

CAL2004.FEB

201 FEB 0

GBL. LAT AM.203

CAL2004.FEB

202 FEB 16

GBL

CAL2004

GBL CAL2004 31

GBL

CAL2004.JAN

GBL JAN 15

GBL

CAL2004.FEB

GBL FEB 16

Creating Hierarchies Chapter 9

98 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Fully Qualified Member Name DEPARTMENT TREE_DATE NUM_SALES

GBL.US

CAL2004

US CAL2004 7

GBL.US

CAL2004. JAN

US JAN 7

GBL.US

CAL2004.FEB

US FEB 0

GBL.LAT AM

CAL2004

LAT AM CAL2004 24

GBL.LAT AM

CAL2004.JAN

LAT AM JAN 8

GBL. LAT AM

CAL2004.FEB

LAT AM FEB 16

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 99

• If you select to persist all aggregates of the DEPT_TREE dimension and to persist none of the
aggregates of the DATE_TREE dimension on the Dimensions tab of the cube collection's properties,
the following rows are persisted in the aggregate record:

Note. Italicized values are the actual persisted aggregate members. Zero (0) values in this table not
persisted. The Fully Qualified Member Name field is not a database value.

Fully Qualified Member Name DEPARTMENT TREE_DATE NUM_SALES

GBL

CAL2004.JAN. 20040101

GBL 20040101 13

GBL

CAL2004.JAN.20040102

GBL 20040102 2

GBL

CAL2004.FEB.20040201

GBL 20040201 16

GBL.US

CAL2004.JAN.20040101

US 20040101 5

GBL.US

CAL2004.JAN.20040102

US 20040102 2

GBL.US

CAL2004.FEB.20040201

US 20040201 0

GBL.LAT AM

CAL2004.JAN.20040102

LAT AM 20040102 8

GBL.LAT AM

CAL2004.JAN.20040102

LAT AM 20040102 0

GBL.LAT AM

20040201

LAT AM 20040201 16

Creating Hierarchies Chapter 9

100 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• If you select to persist only the root aggregations of the DEPT_TREE dimension and to persist none
of the aggregates of the DATE_TREE dimension on the Dimensions tab of the cube collection's
properties, the following rows are persisted in the aggregate record:

Note. Italicized values are the actual persisted aggregate members. The Fully Qualified Member
Name field is not a database value.

Fully Qualified Member Name DEPARTMENT TREE_DATE NUM_SALES

GBL

CAL2004.JAN. 20040101

GBL 20040101 13

GBL

20040102

GBL 20040102 2

GBL

20040201

GBL 20040201 16

Example: Creating Overrides

This section provides an example of creating overrides and discusses the affect of dimension order on
calculation.

The following table describes the three dimensions used in this example. The first column lists the names of
the dimensions. The second column lists the dimension order, which determines calculation priority. The
third column lists the dimension override functions that are used if member override functions do not exist for
the children of the parents in the dimension:

Dimension Dimension Order/Priority Dimension Override User Function

ACCT 1 <ACCT_DIM_DEFAULT_FORMU
LA>

TRANS_DATE 2 <NONE>

DEPT 3 <DEPT_DIM_DEFAULT_FORMUL
A>

The following table describes the hierarchy of the ACCT dimension that is associated with the AcctTree tree.
The first column lists the parents in the hierarchy. The second column lists the children of the parents. The
third column lists the member override user functions that are performed on each child:

Note. Overrides are not performed on cells denoted (leaf) or <none>.

Parent Child Member Override User Function

100 110 <SALES_ACCT_SUM>

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 101

Parent Child Member Override User Function

100 110 <DIRECTOR_ACCT_SUM>

100 120 <none>

110 111 (leaf)

110 112 (leaf)

120 121 (leaf)

The following table describes the hierarchy of the TRANS_DATE dimension that is associated with the
QrtrlyTree tree. The first column lists the parents in the hierarchy. The second column lists the children of the
parents. The third column lists the member override user functions that are performed on each child:

Note. Overrides are not performed on cells denoted (leaf) or <none>.

Parent Child Member Override User Function

Q1 Q1 <none>

Q1 Jan (leaf)

Q1 Feb (leaf)

Q1 Mar (leaf)

The following table describes the hierarchy of the DEPT dimension that is created from the DeptTree tree.
The first column lists the parents in the hierarchy. The second column lists the children of the parents. The
third column lists the member override user functions that are performed on each child:

Note. Overrides are not performed on cells denoted (leaf) or <none>.

This example uses the <RED_HERRING> child node override as incorrect data. Leaf nodes do not have
aggregations.

Parent Child Member Override User Function

GBL GBL <SOME_DEPT_AVG>

GBL USA <none>

GBL EUR <none>

USA CA (leaf)

USA GA (leaf)

USA NY (leaf)

Creating Hierarchies Chapter 9

102 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Parent Child Member Override User Function

USA TX <RED_HERRING>

USA IL (leaf)

Assume that a SALES data cube exists in the cube collection, and the three dimensions of this example are
attached to this data cube.

Read the instructions carefully before analyzing the following table; the table describes two methods that the
analytic calculation engine can use to calculate hierarchies.

• When you analyze only the first four columns of the table (ignore the fifth column), the basic analytic
model does not contain any cube dimension overrides.

The first column displays the row numbers. The second, third, and fourth columns list the members of
each of the three dimensions.

• When you analyze all five rows of the table, the basic analytic model does contain cube dimension
overrides.

The first column displays the row numbers. The second, third, and fourth columns list the members of
each of the three dimensions. The fifth column—where it applies—lists the override that the analytic
calculation engine uses to calculate the row.

For example, if the developer applies the SALES_CUBE_OVERRIDE cube dimension override to the
TRANS_DATE dimension as it is attached to the SALES data cube, the Cube Dimension Override User
Function column indicates where the override is applied.

Italicized values in the table indicate aggregate members. A row may contain more than one aggregate
member. If a row contains one or more aggregate members, the table denotes the winning aggregate member
along with the method that the analytic calculation engine uses to calculate the member. If a row does not
contain any aggregate members, the analytic calculation engine uses the data cube's rule to calculate values.

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

1 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Q1 USA NA

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 103

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

2 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Q1 CA NA

3 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Q1 NY NA

4 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Q1 TX NA

5 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Jan USA NA

6 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Jan CA NA

Creating Hierarchies Chapter 9

104 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

7 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Jan NY NA

8 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Jan TX NA

9 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Feb USA NA

10 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Feb CA NA

11 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Feb NY NA

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 105

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

12 Winning aggregate:

100

Use member override
user function:

USA
<SALES_ACCT_SU
M>

Feb TX NA

13 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Q1 USA NA

14 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Q1 CA NA

15 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Q1 NY NA

16 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Q1 TX NA

17 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Jan USA NA

Creating Hierarchies Chapter 9

106 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

18 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Jan CA NA

19 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Jan NY NA

20 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Jan TX NA

21 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Feb USA NA

22 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Feb CA NA

23 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Feb NY NA

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 107

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

24 Winning aggregate:

110

Use member override
user function:

<DIRECTOR_ACCT_
SUM>

Feb TX NA

25 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Q1 USA NA

26 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Q1 CA NA

27 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Q1 NY NA

Creating Hierarchies Chapter 9

108 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

28 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Q1 TX NA

29 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Jan USA NA

30 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Jan CA NA

31 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Jan NY NA

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 109

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

32 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Jan TX NA

33 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Feb USA NA

34 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Feb CA NA

35 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Feb NY NA

Creating Hierarchies Chapter 9

110 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

36 Winning aggregate:

120

Use the
<ACCT_DIM_DEFA
ULT_FORMULA>
dimension override
user function because
a member override
user function does not
exist for this member.

Feb TX NA

37 111 Winning aggregate:

Q1

Use default sum
aggregation because
neither a member
override user function
exists for this member,
nor a dimension
override user function
exists for this
dimension.

USA <SALES_CUBE
_OVERRIDE>

38 111 Winning aggregate:

Q1

Use default sum
aggregation because
neither a member
override user function
exists for this member,
nor a dimension
override user function
exists for this
dimension.

CA <SALES_CUBE
_OVERRIDE>

39 111 Winning aggregate:

Q1

Use default sum
aggregation because
neither a member
override user function
exists for this member,
nor a dimension
override user function
exists for this
dimension.

NY <SALES_CUBE
_OVERRIDE>

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 111

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

40 111 Winning aggregate:

Q1

Use default sum
aggregation because
neither a member
override user function
exists for this member,
nor a dimension
override user function
exists for this
dimension.

TX <SALES_CUBE
_OVERRIDE>

41 111 Jan Winning aggregate:

USA

Use the dimension
override user function
<DEPT_DIM_DEFA
ULT_FORMULA>
because a member
override user function
does not exist for this
member.

NA

42

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

111 Jan CA NA

43

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

111 Jan NY NA

Creating Hierarchies Chapter 9

112 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

44

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

111 Jan TX NA

45 111 Feb Winning aggregate:

USA

Use the dimension
override user function
<DEPT_DIM_DEFA
ULT_FORMULA>
because a member
override user function
does not exist for this
member.

NA

46

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

111 Feb CA NA

47

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

111 Feb NY NA

48

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

111 Feb TX NA

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 113

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

49 112 Winning aggregate:

Q1

Use default sum
aggregation because a
member override user
function does not exist
for this member.

USA <SALES_CUBE
_OVERRIDE>

50 112 Winning aggregate:

Q1

Use default sum
aggregation because a
member override user
function does not exist
for this member.

CA <SALES_CUBE
_OVERRIDE>

51 112 Winning aggregate:

Q1

Use default sum
aggregation because a
member override user
function does not exist
for this member.

NY <SALES_CUBE
_OVERRIDE>

52 112 Winning aggregate:

Q1

Use default sum
aggregation because a
member override user
function does not exist
for this member.

TX <SALES_CUBE
_OVERRIDE>

53 112 Jan Winning aggregate:

USA

Use the dimension
override user function
<DEPT_DIM_DEFA
ULT_FORMULA>
because a member
override user function
does not exist for this
member.

NA

Creating Hierarchies Chapter 9

114 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

54

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

112 Jan CA NA

55

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

112 Jan NY NA

56

No winning aggregate.
Because this row does
not contain any
aggregates, use the
data cube's rule for
calculating values.

112 Jan TX NA

57 112 Feb Winning aggregate:

USA

Use the dimension
override user function
<DEPT_DIM_DEFA
ULT_FORMULA>
because a member
override user function
does not exist for this
member.

NA

58

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

112 Feb CA NA

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 115

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

59

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

112 Feb NY NA

60

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

112 Feb TX NA

61 121 Winning aggregate:

Q1

Use default sum
aggregation.

USA <SALES_CUBE
_OVERRIDE>

62 121 Winning aggregate:

Q1

Use default sum
aggregation.

CA <SALES_CUBE
_OVERRIDE>

63 121 Winning aggregate:

Q1

Use default sum
aggregation.

NY <SALES_CUBE
_OVERRIDE>

64 121 Winning aggregate:

Q1

Use default sum
aggregation.

TX <SALES_CUBE
_OVERRIDE>

Creating Hierarchies Chapter 9

116 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

65 121 Jan Winning aggregate:

USA

Use the dimension
override user function
<DEPT_DIM_DEFA
ULT_FORMULA>
because a member
override user function
does not exist for this
member.

NA

66

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

121 Jan CA NA

67

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

121 Jan NY NA

68

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

121 Jan TX NA

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 117

Row ACCT Dimension
Member
Priority 1

TRANS_DATE
Dimension Members
Priority 2

DEPT Dimension
Members
Priority 3

Cube
Dimension
Override User
Function

69 121 Feb Winning aggregate:

USA

Use the dimension
override user function
<DEPT_DIM_DEFA
ULT_FORMULA>
because a member
override user function
does not exist for this
member.

NA

70

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

121 Feb CA NA

71

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

121 Feb NY NA

72

Note. No winning
aggregate. Because
this row does not
contain any
aggregates, use the
data cube's rule for
calculating values.

121 Feb TX NA

The analytic calculation engine used this logic to determine which cell of the row it finally used to calculate
the aggregate:

Creating Hierarchies Chapter 9

118 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• Aggregation for row 25:

The analytic calculation engine used the 120 value from the TRANS_DATE dimension because this
dimension was the only dimension that contained an aggregate member. Understand that if either of the
two other dimensions contained an aggregate member, the analytic calculation engine would still select
the 120 value because the TRANS_DATE dimension is first in priority. The analytic calculation engine
used the <ACCT_DIM_DEFAULT_FORMULA> dimension override because neither a cube dimension
user function nor a member override user function existed for this member.

• Aggregation for row 37:

The analytic calculation engine used the Q1 value from the TRANS_DATE dimension because this was
the only dimension that contained an aggregate member. The analytic calculation engine used the default
sum aggregation because neither a member override user function existed for this member nor a
dimension override user function existed for this dimension.

• Aggregation for row 41:

The analytic calculation engine used the USA value from the DEPT dimension because this was the only
dimension that contained an aggregate member. The analytic calculation engine used
<DEPT_DIM_DEFAULT_FORMULA> because neither a cube dimension user function nor a member
override user function existed for this member.

Example: Creating a Hierarchy with Mixed Aggregate and Detail Members

In this example, the analytic model contains a BONUS cube collection that calculates the bonus for a group
of employees. The BONUS cube collection uses the main record, as described in this table:

Employee Bonus (in thousands)

VP 300

D1 200

D2 100

M1 40

M2 10

M3 20

This example uses the following tree, named BUS1:

VP - Vice president
 D1 - Director 1
 M1 - Manager 1
 D2 - Director 2
 M2 - Manger 2
 M3 - Manager 3

The hierarchical relationships in the BUS1 tree are:

• D1 and D2 are directors who report to VP.

Chapter 9 Creating Hierarchies

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 119

• M1 is a manager who reports to D1.

• M2 and M3 are managers who report to D2.

The BONUS cube collection contains a data cube called EMPLOYEE_BONUS, to which the EMPLOYEE
dimension is attached.

You do not want to calculate the vice president's bonus by summing the bonuses of all of the vice president's
children. The VP node should not exist as an aggregate member of the hierarchy; it should exist instead as a
detail member. For this reason, do not calculate aggregates for the EMPLOYEE_BONUS data cube.

To create the correct members to the nodes of this tree, specify the details start level as level two (because the
root level is level one). With this specification, detail members are created out of every tree node at the VP
level and any level lower than the VP level. End users use the hierarchy for navigating throughout the tree.
Remember that you can create hierarchies that are only used for navigation.

Make this data available to the end user:

• The bonus for every employee.

• The total bonuses for each employee, plus the total bonuses for each employee who reports to him or her.

To achieve these results, perform these steps:

1. Create a data cube called TOTAL_BONUS.

2. Attach the EMPLOYEE_BONUS dimension to the TOTAL_BONUS data cube.

3. Add the TOTAL_BONUS data cube to the BONUS cube collection.

In this example's hierarchy, all the members are detail members except for the hierarchy root member.
Because aggregate user functions are only used to calculate aggregate members, you should create a regular
formula for the TOTAL_BONUS data cube to calculate its aggregates. Use the FORCHILDREN built-in
function to sum the value of the EMPLOYEE_BONUS data cube plus all of the children of the member. For
example:

FORCHILDREN(DIMENSION, MEMBER, EXPRESSION)

Because you specified level two as the details start level, the root member is calculated as an aggregate. The
analytic calculation engine calculates both the TOTAL_BONUS and EMPLOYEE_BONUS data cubes by
using the sum default, because you did not create and select an aggregate function for this purpose.

This table displays the calculation results of all members that are attached to the EMPLOYEE_BONUS data
cube:

Full Path to Employee in
Hierarchy

Employee (Dimension
Member)

Employee Bonus (in
thousands)

Total Bonus (in
thousands)

BUS1 BUS 300 670

BUS1.VP VP 300 670

BUS1.VP.D1 D1 200 240

BUS1.VP.D2 D2 100 130

Creating Hierarchies Chapter 9

120 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Full Path to Employee in
Hierarchy

Employee (Dimension
Member)

Employee Bonus (in
thousands)

Total Bonus (in
thousands)

BUS1.VP.D1.M1 M1 40 40

BUS1.VP.D2.M2 M2 10 10

BUS1.VP.D2.M3 M3 20 20

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 121

Chapter 10

Creating Rules, Formulas, and User
Functions

This chapter provides overviews of rules, formulas, and user functions, and design time rule error messages,
and discusses how to:

• Define and edit data cube formulas.

• Define and edit user functions.

• Work with the elements of rules.

• Perform exceptions to the rule.

• Work with circular formulas and circular systems.

Understanding Rules, Formulas, and User Functions

This section lists common elements and discusses rules, formulas, and user functions, filter user functions,
and the rule bar display.

Common Elements Used in This Chapter

Click the Plus icon to insert a plus symbol into the rule.

Click the Minus icon to insert a minus symbol into the rule.

Click the Multiply icon to insert a multiplication symbol into the rule.

Click the Divide icon insert a division symbol into the rule.

Click the Exponent icon to insert an exponent symbol into the rule.

Click the Left Parenthesis icon to insert a left parenthesis into the rule.

Click the Right Parenthesis icon to insert a right parenthesis into the rule.

Click the Less Than icon to insert a less than symbol into the rule.

Creating Rules, Formulas, and User Functions Chapter 10

122 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Click the Greater Than icon to insert a greater than symbol into the rule.

Click the Equals icon to insert an equal symbol into the rule.

Click the AND Operator icon to insert an AND operator into the rule.

Click the OR Operator icon to insert an OR operator into the rule.

Click the NOT Operator icon to insert a NOT operator into the rule.

Click the Paste Build-in Function icon to paste a built-in function and its
arguments into the rule.

Click the Paste Cube icon to paste a data cube name into the rule.

Click the Paste Dimension icon to paste a dimension name into the rule.

Click the Paste Member Reference icon to paste a member reference into the
rule.

Click the User Function icon to paste a user function into the rule.

Click the Exit Formula Mode icon to exit the formula without canceling the
changes or validating the formula.

Rules, Formulas, and User Functions

In Analytic Calculation Engine, you use the rule bar to create rules that define the calculation of data. You
use rules within formulas and user functions.

Formulas define the calculation of data cubes. You enter the formula within the rule bar of the data cube that
you want to calculate.

You can create a formula and save it as a user function, which can be reused with various data cubes by
entering the name of the user function in the rule bar of the relevant data cube. You also create user functions
to create filters and to define the calculation of aggregates.

Analytic Calculation Engine enables you to create rules that contain references to other parts. When the
values of these other parts change, the analytic calculation engine recalculates the rule and stores the results in
the field mapped to the calculated part. These kinds of rules can be useful for working with assumption data.
When end users work with analytic instance data within an application, they can enter assumption values into
one data cube, and then view the results of those assumptions in the values of other calculated data cubes.

For example, suppose an analytic model contains three data cubes called PROFIT, INCOME, and EXPENSE.
The PROFIT data cube contains this formula:

INCOME - EXPENSE

When an end user changes a value that is tied to the INCOME or EXPENSE data cube, the analytic
calculation engine recalculates the formula and stores the result in the field that is mapped to the PROFIT
data cube.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 123

Filter User Functions

You apply a filter user function to a specific dimension, on the Dimensions tab of the cube collection's
properties.

See Chapter 7, "Creating Cube Collections," Defining Additional Cube Collection Dimension Properties,
page 65.

This section discusses:

• Data filters.

• Dimension member filters.

Data Filters

You can create filter user functions to display only the dimension members whose values meet a certain
condition. For example, this is the formula for the FILTER_PROD_OVER_2000 filter user function, which is
applied to the PRODUCTS dimension:

IF (SALES > 2000, RETURN(1), RETURN(0))

In the analytic model, only the PRODUCTS dimension is attached to the SALES data cube. In the analytic
grid, the end user views the SALES data cube but has access only to the products that have sold over 2,000
units.

Here is the formula for the FILTER_RED_PRODUCTS filter user function, which is applied to the
PRODUCTS dimension:

IF(PRODUCT_COLOR = "RED", RETURN(1), RETURN(0))

In this example, the end user has access only to the products whose members have the red attribute.

When a filter user function is applied to a dimension that is attached to a multidimensional data cube, the end
user has access to a different set of members depending on whether the filtered dimension is in the column
axis/row axis or slice bar.

Using the first filter user function example, the PRODUCTS, MONTHS, and REGIONS dimensions are
attached to the SALES data cube. When only the PRODUCTS dimension is in the column or row axis—and
the other dimensions are in the slice bar—the end user has access to only the PRODUCTS members that have
sold over 2,000 units in the currently selected region and month in the slice bar. If the end user changes the
region or month selection in the slice bar, the filter is reapplied and the analytic grid may display a different
set of PRODUCTS members.

However, when the PRODUCTS dimension plus one or more dimensions are in the slice bar, the end user has
access to a different set of dimension members. For example:

• If the PRODUCTS dimension is in the slice bar, the end user has access to all PRODUCTS members that
have sold over 2,000 units in all regions over the course of all months, regardless of where these
dimensions are displayed in the grid.

• If the PRODUCTS dimension is in the row headings, the MONTHS dimension is in the column headings
and the REGION dimension is in the slice bar, the end user has access to all PRODUCTS members that
have sold over 2,000 units in the currently selected region in the slice bar, over the course of all months.

Creating Rules, Formulas, and User Functions Chapter 10

124 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• If the PRODUCTS and MONTHS dimensions are in the row headings—and the MONTHS dimension is
indented below the PRODUCTS dimension—plus the REGION dimension is in the slice bar, the end user
has access to all PRODUCTS members that have sold over 2,000 units in the currently selected region in
the slice bar, for the month under which the products are displayed.

This means that the analytic grid may display a different set of products for each month.

Dimension Member Filters

You can create filter user functions to display only the dimension members that are referenced in the filter
function. For example, this is the formula for the FILTER_DIGITAL_CAMERAS filter user function, which
is applied to the PRODUCTS dimension:

IF(MEMBER(PRODUCTS) = [PRODUCTS:Digital Cameras], RETURN(1), RETURN(0))

In this example, the end user only has access to the Digital Cameras member of the PRODUCTS dimension.

You can also create filter functions that filter data by user ID by using the OPRID built-in function.

See Chapter 11, "Using Built-in Functions in Analytic Models," OPRID, page 202.

Rule Bar Display

The information that is displayed in the rule bar depends on the selected part. This table lists the parts and the
resulting rule bar display:

Selected Part Rule Bar Display

Data cube The data cube's formula (if any).

User function The user function's rule.

All other parts Remains blank.

No selected part Remains blank.

To edit a formula or user function, click in the rule bar. The rule bar displays buttons that enable you to edit
rules.

Understanding Design Time Rule Error Messages

When creating an analytic model, it is important that you create rules that follow certain guidelines. For
example, a multiplication symbol needs a value or expression on both sides of the symbol; therefore, if you
create a rule such as 3 + 5 *, the analytic calculation engine cannot interpret the rule.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 125

When you either click the Accept Changes button to accept a rule or you select Tools, Validate Project, the
analytic calculation engine examines the analytic model's rules for errors. All error messages for rules appear
in the Output window. When you click an error message, the cursor moves to the part or rule in the analytic
model definition that caused the error message. At this time, you can edit the rule in question and fix the
error.

The following table describes Analytic Calculation Engine's rule error messages and how to resolve them:

Note. When %1 or %2 appears in this table, it denotes that the actual error message includes context-specific
information. For example, the Invalid Dimension %1 error message would yield the error Invalid dimension
PRODUCTS in the Output window if a rule referred to a nonexistent PRODUCTS dimension.

Error Message Description

A dimension argument cannot be used here. An invalid argument was passed to the function. The function
does not take a dimension as an argument. Please check the
number and argument types for the function in question.

Analytic model with name %1 not found. The analytic model was not found in the PeopleSoft database.
Please make sure that the model is saved before the validate is
called.

All dimension arguments must be declared before
any expression arguments are declared.

All the dimension arguments must be declared before
expression arguments are declared. Dimension arguments are
declared with a prefix of $, and expression arguments are
declared with a prefix of @. For example:

ARGUMENTS($DIM, @ExprToLookup, @Condition,
 @Direction := #FORWARD);

All required arguments must be declared before any
optional arguments are declared.

Optional arguments should be placed at the end of the
declaration. If there are two or more optional arguments, place
the most optional argument last. For example:

ARGUMENTS($Dim, @ExprToLookup, @Condition,
 @Direction := #FORWARD);

In this example, @Direction is an optional argument and is
placed after the non-optional @Condition argument.

Note. Optional arguments should have a default value.

Circular reference. See the Circular Reference section below.

Comment is not terminated. The comment in a rule was not terminated with the symbols >>.

See Chapter 10, "Creating Rules, Formulas, and User
Functions," Inserting a Blank Line into a Rule, page 143.

Data cube name is not terminated by a single quote. The data cube reference in a rule contained a starting single
quote but was not terminated with a single quote. Valid syntax
for a data cube reference is either of these:

• DATA_CUBE

• 'Data Cube'

Creating Rules, Formulas, and User Functions Chapter 10

126 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Error Message Description

Duplicate argument name %1. The argument mentioned in the error is a duplicate. Another
argument with the same name is used in the context. Please
check the formula in question.

Duplicate dimensions in member references. Two or more member references in a data cube slice use the
same dimension. A data cube slice can refer to only one
member from each dimension. For this reason, you must remove
one of the clashing member references.

See Enterprise PeopleTools 8.50 PeopleBook: Using PeopleSoft
Applications, "Working With Scroll Areas and Grids," Slicing
Analytic Grid Data.

Error in ARGUMENTS of user function %1. The analytic calculation engine encountered an error while
parsing the ARGUMENTS section of the user function. Please
check this section to make sure that it conforms to the following
syntax:

 ARGUMENTS(argument1, argument2...argumentN)

Dimension arguments should be declared with a prefix of $, and
expression arguments should be declared with a prefix of @.

The following error occurred while preprocessing
user function %1 %2.

This error occurred while processing the user function, which
was referred to in another rule or user function.

Function not allowed in this context. You used a function that is not allowed in the current context.

Functions are nested too deeply. Functions are nested when one function is used inside another
function. For example, the SIN function is nested inside the
ABS function in the expression ABS(SIN(A)). The nesting
depth refers to the number of levels of functions within
functions. For example, the expression ABS(SIN(MAX(A,
B))) has a depth of three, while MAX(ABS(A), SIN(B))
has a depth of two, because the SIN function is not used inside
the ABS function. Functions can be nested up to 32 levels deep.
This error message appears when you try to nest functions
beyond this limit.

Internal error. Uncompiled user function reference
made in the formula.

The analytic calculation engine encountered an internal error
while compiling rules. Please analyze and correct the user
function in question.

Invalid constant. The rule contains an invalid constant reference. Please refer to
the valid constants that are supported by Analytic Calculation
Engine.

See Chapter 10, "Creating Rules, Formulas, and User
Functions," Understanding the Elements of Rules, page 131.

Invalid dimension %1. A function is referring to a dimension that does not exist. Make
sure that all of the dimension names in the rule are spelled
correctly.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 127

Error Message Description

Invalid function %1. The rule contains a user function or built-in function name that
the analytic calculation engine does not recognize. The analytic
calculation engine reads a name as a function when it is
followed by an opening parenthesis. For example, the
expression A + BLOOPER(X) generates this error because
Analytic Calculation Engine does not contain a function called
BLOOPER.

Invalid member reference. You incorrectly entered a member reference. When this error
message occurs, check for one of these problems:

• The dimension name in the member reference is not spelled
correctly.

• The member name in the member reference is not spelled
correctly.

Invalid member reference syntax. Valid syntax is
[DIMENSION:Member].

A member reference uses invalid syntax. When referring to
members in rules, please make sure that the member is fully
qualified with a dimension name. The valid syntax is
[DIMENSION_NAME: Member Name]. The brackets ([])
are required.

Invalid number. The current rule contains an invalid number. When this is the
case, verify that:

• The number does not contain any commas.

• The number does not contain more than one decimal point.

• If the number is negative, the minus sign precedes the
number.

Syntax error. See the Syntax Error section below.

Text not terminated by quote. The rule contains a text value that does not have a closing quote.
Text values must be enclosed within quotes.

The ARGUMENTS declaration must appear at the
beginning of a user function.

The ARGUMENTS function should be placed at the starting
block of the body of the user function. Please check the syntax
of the ARGUMENTS function.

See Chapter 11, "Using Built-in Functions in Analytic Models,"
ARGUMENTS Declaration, page 154.

This argument has not been declared in the
ARGUMENTS section.

You used an argument to a user function, in the body of the user
function, before declaring it in the ARGUMENTS section.
Please check the syntax of the ARGUMENTS function and
ensure that all arguments are declared before they are used.

Unbalanced parentheses. The rule does not contain a closing parenthesis for every
opening parenthesis. For example, the expression A + (B *
C generates this error because there should be a closing
parenthesis following C.

Creating Rules, Formulas, and User Functions Chapter 10

128 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Error Message Description

Could not find the user function with the name %1. The user function was referred to in a rule but was not found in
the analytic model.

Could not find the user function rule with the name
%1.

The user function that is referenced in the rule was not found in
the analytic model. Please check the body of the user function.

Undefined data cube %1. You referred to a nonexistent data cube in a formula or user
function. You must create the data cube before referring to it.

Circular Reference

If a data cube's formula refers directly or indirectly to a current value of the same data cube, the analytic
calculation engine generates a circular reference error. Following are some examples of circular references:

Case 1:

A = A + B

When the analytic calculation engine evaluates the formula A + B, the analytic calculation engine changes the
value of A. Then, the analytic calculation engine must evaluate the formula again, using the new value of A,
consequently changing the value of A again. For this reason, the analytic calculation engine must evaluate the
formula again, and so on. Because the analytic calculation engine does not contain a method to exit this cycle,
it refuses to accept a formula that contains a circular reference.

This formula contains a direct circular reference because A refers to itself in its own formula.

Case 2:

A = B + C
B = A + D

This case is slightly more complex, but is a result of the same issue presented in Case 1. When the analytic
calculation engine evaluates the formula B + C, the analytic calculation engine changes the value of A. The
analytic calculation engine must then evaluate the formula A + D, using the new value of A, consequently
changing the value of B. For this reason, the analytic calculation engine must reevaluate B + C, consequently
changing the value of A. For this reason, the analytic calculation engine must reevaluate A + D, and so on.
These two formulas create an endless circle.

 These formulas contain an indirect circular reference because neither A nor B refers to itself in its own
formula. Instead, the circularity is created by the two formulas working together. The following statement
describes this circularity: A depends on B, which depends on A.

Case 3:

A = B + C
B = D + E
D = F + G
F = A + H

In this case, A depends on B, which depends on D, which depends on F, which depends on A.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 129

The analytic calculation engine traps all circular errors and does not allow you to inadvertently create circular
references. Though this is the case, you may have to rethink the logic of the analytic model to ensure proper
calculation. A circular reference is often the result of a logical error, which is an attempt to define something
in terms of itself. If you encounter a circular reference error, you may need to step through the formulas in the
analytic model definition to discover where the thinking is circular. After you find this answer, you must
rework the logic to remove the circularity.

A circular reference error occurs when a data cube directly or indirectly refers to a current value of itself. On
the other hand, if a data cube refers to a previous value of itself, the formula is not only valid but useful.

See Chapter 11, "Using Built-in Functions in Analytic Models," PREVSELF, page 208.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Working with Circular Formulas and
Circular Systems, page 147.

Syntax Error

When you receive a syntax error, the current rule does not follow the basic guidelines for a rule. This is often
the result of a typographical error. Possible violations of the rule guidelines include:

• An arithmetic operator does not have a value on both sides.

For example, the expression A+B+ generates a syntax error because the second plus operator does not
have a value on both sides.

• Two values exist without an operator between the values.

For example, the expression Profit 0.50 generates a syntax error because there is no operator
between the data cube reference and the number.

• The rule contains a symbol that the analytic calculation engine does not recognize.

For example, a dollar sign ($) generates a syntax error.

• Either a function does not contain the correct number of arguments, or it contains an argument of the
wrong type.

If the syntax error occurs within a function, you may need to check the entry for that function in the built-
in function reference.

See Chapter 11, "Using Built-in Functions in Analytic Models," Built-in Function Reference, page 153.

• The rule contains too many closing parentheses.

For example, the expression A * (B + C)) generates a syntax error because there is an extra closing
parenthesis.

Note. If there are too few closing parentheses, you receive the error Unbalanced parentheses.

Defining and Editing Data Cube Formulas

To define or edit a data cube formula:

Creating Rules, Formulas, and User Functions Chapter 10

130 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define or edit.

4. Click inside the rule bar.

5. Enter a new rule or edit the existing rule.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Working with the Elements of Rules,
page 131.

6. Perform one of these actions:

• Click the Accept Changes button to accept the changes.

• Click the Exit Formula Mode button to keep the changes without validating the formula.

• Click the Cancel Changes button to cancel the changes.

Defining and Editing User Functions

To define or edit a user function:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Perform one of these actions:

• To define a new user function, select Part, New, User Function.

The Edit Part Name dialog box appears. Enter the name for the user function and click the OK button.

• To edit an existing user function, select the user function whose formula you want to edit.

4. Click inside the rule bar.

5. Enter a new rule or edit the existing rule.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Working with the Elements of Rules,
page 131.

6. Perform one of these actions:

• Click the Accept Changes button to accept the changes.

• Click the Exit Formula Mode button to keep the changes without validating the formula.

• Click the Cancel Changes button to cancel the changes.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 131

Working with the Elements of Rules

This section provides an overview of the elements of rules and discusses how to:

• Insert a built-in function into a rule.

• Insert a user function into a rule.

• Insert a numeric value or text value into a rule.

• Insert a data cube reference into a rule.

• Insert a dimension reference into a rule.

• Insert a dimension member reference into a rule.

• Insert a blank line into a rule.

• Insert a comment into a rule.

Understanding the Elements of Rules

This section discusses the various elements that are included in rules.

Built-in Functions

Many useful calculations are difficult or impossible to perform with simple arithmetic. You can perform
many such calculations by using Analytic Calculation Engine's built-in functions.

Most functions have one or more arguments that supply the information that the function needs to perform the
calculation. Arguments are enclosed within parentheses after a function name.

When a function contains more than one argument, the arguments are always separated by commas. For
example, the following formula uses the MIN function to calculate the minimum of CASH_NEEDED and
CREDIT_AVAILABLE to determine the values of the CASH_ADVANCE data cube:

MIN(CASH_NEEDED, CREDIT_AVAILABLE)

Some functions do not take any arguments because they do not require additional information to calculate a
result. For example, the PI function returns the mathematical constant pi. Because this function does not
require any information, it does not take any arguments. Nevertheless, you must still follow the function
name with parentheses. For example, the following formula calculates the circumference of a circle using the
PI function:

PI() * DIAMTER_OF_CIRCLE

The parentheses following PI indicate that the name is a function rather than a data cube reference.

Many functions have one or more optional arguments. If you leave out an optional argument, the analytic
calculation engine supplies a default value for the argument. For example, the CHANGE function calculates
the change between members of a dimension and takes these arguments in order:

1. The dimension for which you want to calculate the change.

Creating Rules, Formulas, and User Functions Chapter 10

132 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

2. The information for which you want to calculate the change.

3. How many members back to look.

Note. The third argument is optional; if you do not include it, the analytic calculation engine assumes you
want to calculate the change from only the previous member.

For example, suppose you want to calculate the monthly change in sales. You can use the CHANGE function
and leave out the third argument, as shown in the following formula:

CHANGE(MONTHS, SALES)

For each month, the analytic calculation engine calculates the change in sales from the previous month.

Now suppose you want to calculate the yearly change in sales. You can use the CHANGE function and
supply 12 as the third argument, as shown in the following formula:

CHANGE(MONTHS, SALES, 12)

For each month, the analytic calculation engine calculates the change in sales from 12 previous months. To
summarize:

• You must always place parentheses after a function name.

• If a function contains arguments, place the arguments inside the parentheses.

• If a function contains more than one argument, separate the arguments with commas.

• You can leave out an optional argument if the default value for the argument is satisfactory.

See Chapter 11, "Using Built-in Functions in Analytic Models," CHANGE, page 160.

Conditions and Conditional Formulas

A condition is an expression that evaluates as true or false. A conditional formula returns different values for
different conditions. The most simple conditional formula returns one value if a specified condition is true,
and a different value if the condition is false. A complex conditional formula may return many different
values based on many different conditions. These are types of conditions and conditional formulas:

• Comparison operators.

• Truth functions.

• Compound conditions.

See the Comparison Operators, Order of Precedence, and Compound Condition sections for more
information.

Comparison Operators

You can compare the values of two expressions using one of Analytic Calculation Engine's comparison
operators.

A comparison returns either a True value (1) or a False value (0), depending on the values of the two
expressions.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 133

Note. The analytic calculation engine always interprets a nonzero value as True and a zero value as False.

The expressions in a comparison can contain mathematical operators, parentheses, and functions, as well as
data cubes and numbers. The analytic calculation engine evaluates the expressions on both sides of the
comparison operator before it evaluates the truth of the comparison. Following are some examples of
comparisons:

ADVERTISING >= 10000

ADVERTISING + PROMOTION < 0.5 * (MARKETING_EXPENSE - MARKETING_SALARIES)

The following table describes Analytic Calculation Engine's comparison operators:

Comparison Operator Example of Comparison Meaning of Comparison

= A = B A is equal to B.

<> A <> B A is not equal to B.

> A > B A is greater than B.

< A < B A is less than B.

>= A >= B A is greater than or equal to B.

<= A <= B A is less than or equal to B.

Truth Functions

A truth function is a function that returns 1 (True) or 0 (False), depending on whether the arguments of the
function satisfy a condition. The analytic calculation engine uses truth functions to evaluate conditions that
are too complex to express easily with comparison operators.

For example:

IF(FIRST(MONTH), 0, SET(&RunningTotal , &RunningTotal + THISCUBE())

In this example, if the current month that is calculated is the first month, the function returns 0. If the current
month that is calculated is not the first month, the function returns the running total.

See Chapter 11, "Using Built-in Functions in Analytic Models," FIRST, page 174 and Chapter 11, "Using
Built-in Functions in Analytic Models," MATCH, page 191.

Logical Operators

A logical operator determines whether a condition is true. This table describes the logical operators:

Creating Rules, Formulas, and User Functions Chapter 10

134 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Logical Operator Meaning Syntax

.NOT. Condition is not True. .NOT.Condition

.AND. Condition1 is True and
Condition2 is True.

Condition1.AND.Condition2

.OR. Condition1 is True or
Condition2 is True.

Condition1.OR.Condition2

Compound Conditions

A compound condition tests whether some combination of conditions is true by combining two or more
comparisons or truth functions using logical operators.

The analytic calculation engine evaluates the .NOT. operator before the .AND. and .OR. operators, and
evaluates the .AND. and .OR. operators from left to right. You can override the precedence of the logical
operators with parentheses, just as you can with the mathematical operators. This table provides some
examples of compound conditions:

Example of Compound Condition Meaning of Compound Condition

SALES > 50000 .AND. ADVERTISING <
 10000

Returns True if SALES is greater than 50000 and
ADVERTISING is less than 10000.

CASH_REMAINING < 1000 .OR.
 PROJECT_DONE

Returns True if CASH_REMAINING is less than 1000 or if
PROJECT_DONE is True.

.NOT. IS_FIRST .AND. .NOT. IS_LAST Returns True if IS_FIRST is not True and IS_LAST is not
True.

.NOT. (IS_FIRST .OR. IS_LAST) Returns True if the condition (IS_FIRST or IS_LAST) is not
True.

Note. This condition has the same effect as the previous
condition.

Predefined Constants

Analytic Calculation Engine provides several predefined constants that you can use in rules. You can use
constants in the same way that you use numbers in rules. For example, you can test whether a data cube
equals the constant, or you can return the constant as a result.

This table describes predefined constants:

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 135

Predefined Constant Definition

#ALL Use this predefined constant as the last argument of the CHILDCOUNT or
FORCHILDREN functions to return all of a dimension member's children,
including grandchildren. If you do not specify a dimension member, this constant
returns all of the children and grandchildren of the dimension member that is
attached to the data cube that is currently being calculated.

Note. You can also use the #DETAILS or #DIRECT predefined constants as the
last argument for the CHILDCOUNT or FORCHILDREN functions.

See Chapter 11, "Using Built-in Functions in Analytic Models," CHILDCOUNT,
page 161 and Chapter 11, "Using Built-in Functions in Analytic Models,"
FORCHILDREN, page 175.

#BLANK A blank value.

Use this constant to test whether a value in a data cube is blank or to return a
blank value as a result.

#DETAILS Use this predefined constant with trees as the last argument of the
CHILDCOUNT or FORCHILDREN functions to return only the dimension
members that are details. If you do not specify a dimension member, this constant
returns only the details of the dimension member that is attached to the data cube
that is currently being calculated.

Note. You can also use the #ALL or #DIRECT predefined constants as the last
argument for the CHILDCOUNT or FORCHILDREN functions.

See Chapter 11, "Using Built-in Functions in Analytic Models," CHILDCOUNT,
page 161 and Chapter 11, "Using Built-in Functions in Analytic Models,"
FORCHILDREN, page 175.

#DEFAULT Use this predefined constant as the last condition in a CASE function to return a
default result when all other conditions are false. For example:

CASE(Condition 1 : Result 1, Condition 2 : Result 2,
 #DEFAULT : Default Result)

See Chapter 11, "Using Built-in Functions in Analytic Models," CASE, page 159.

#DIRECT Use this predefined constant with trees as the last argument of the
CHILDCOUNT or FORCHILDREN functions to return a dimension member's
direct children only. If you do not specify a dimension member, this constant
returns only the direct children of the dimension member that is attached to the
data cube that is currently being calculated.

Note. You can also use the #ALL or #DETAILS predefined constants as the last
argument for the CHILDCOUNT or FORCHILDREN functions.

See Chapter 11, "Using Built-in Functions in Analytic Models," CHILDCOUNT,
page 161 and Chapter 11, "Using Built-in Functions in Analytic Models,"
FORCHILDREN, page 175.

#E The value of e (2.7182818285), which is the base of natural logarithms.

Creating Rules, Formulas, and User Functions Chapter 10

136 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Predefined Constant Definition

#FALSE A false value.

Use this constant to test whether a data cube is false or to return a false value as a
result.

#FORWARD Use this predefined constant as the second argument in the FORMEMBERS
function to loop through the dimension members in a forward direction.

See Chapter 11, "Using Built-in Functions in Analytic Models,"
FORMEMBERS, page 176.

#N/A Use this predefined constant to test whether a value in a data cube is not
available, or to return N/A as a result.

#PI The value of (3.1415926536), which is the ratio of a circle's circumference to its
diameter.

#REVERSE Use this predefined constant as the second argument in the FORMEMBERS
function to loop through the dimension members in a reverse direction.

See Chapter 11, "Using Built-in Functions in Analytic Models,"
FORMEMBERS, page 176.

#TRUE A true value.

Use this predefined constant to test whether a data cube is true or to return a true
value as a result.

Mathematical Operators

This table describes Analytic Calculation Engine's operators and their order of execution:

Symbol Mathematical Operation Order of Execution

^ Exponentiation 1

* Multiplication 2

/ Division 3

+ Addition 4

- Subtraction 5

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 137

Order of Precedence

If you use more than one kind of operator in a rule, you must understand the precedence that the analytic
calculation engine follows with the operators. Precedence refers to the order in which the different operators
are evaluated.

For an example of precedence, the rule 3 + 2 * 4 evaluates as 11, not as 20. The analytic calculation
engine performs the multiplication of 2 and 4 before it adds the number 3 because multiplication has a higher
precedence than addition.

You can use parentheses to override the precedence of operators. For example, the rule (3 + 2) * 4
evaluates as 20, because the analytic calculation engine first evaluates the operation within parentheses. You
can nest parentheses to exercise more control of precedence; the operations within the inner sets of
parentheses are evaluated first. For example, the analytic calculation engine calculates the rule (8 + (3 +
2) * 4) * (6 + 7) in the order described in this table:

Order of Execution Operation Resulting Value

1 3 + 2 = 5

2 5 * 4 = 20

3 8 + 20 = 28

4 6 + 7 = 13

5 28 * 13 = 364

The analytic calculation engine performs the multiplication of 5 * 4 before the addition of 8. The analytic
calculation engine performs multiplication before addition unless you override this order of execution with
parentheses.

Note. If you use parentheses, you must balance each opening parenthesis with a closing parenthesis. If you do
not balance the parentheses, the analytic calculation engine generates an Unbalanced parentheses error. When
this situation occurs, you must correct the rule.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Understanding Design Time Rule Error
Messages, page 124.

Values

A value is a number or a text string. For example, the NET_PRESENT_VALUE data cube contains this rule:
NPV(MONTHS, ANNUAL_DISCOUNT_RATE / 12, NET_REVENUE_BY_PRODUCT). In this rule, the
value is 12.

Creating Rules, Formulas, and User Functions Chapter 10

138 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Data Cube References

Use a data cube reference to refer to a specific data cube. For example, you can use data cube references to
multiply the values of two data cubes and place the calculation totals in a result data cube. Using this
example, the PROD_SALES data cube contains the following rule: UNIT_COST * UNITS_SOLD.

Member References

Use a member reference to refer to a dimension member to access its data or to perform a calculation. Use the
following syntax to refer to a member:

[DIMENSION_NAME:Member]

For example, you could use this member reference to refer to the Hard Drives member from the PRODUCTS
dimension:

[PRODUCTS:Hard Drives]

If an aggregate member and detail or leaf member share the same name, use the following syntax to reference
the desired member:

• [DIMENSION_NAME:NODE.Member]

Access an aggregate member.

• [DIMENSION_NAME:DETAIL.Member]

Access a detail or leaf member.

Note. Navigation related functions such as PREV, NEXT, and PREVSELF operate on detail member names
that are persisted in the main record. These functions do not use trees to determine the order of members.

See Chapter 9, "Creating Hierarchies," Understanding Dimension Members, page 79 and Chapter 9,
"Creating Hierarchies," Logic for Determining the Order of Members, page 85.

Blank Member References

You reference blank members in user functions by using the MBR2TEXT or TEXT2MBR built-in function
with this string: " " (two quotation marks). Do not include spaces between the quotation marks. For example:

AT(Product, TXT2MBR(""), SALES)

Or

IF(MBR2TXT(Product) = "", X, Y)

Note. When blank members are mapped to date fields, they are written to the database as values of 1/1/1900.

See Chapter 9, "Creating Hierarchies," Types of Dimension Members, page 79.

Variables

When referencing variables in rules, you must always begin the variable reference with the & symbol,
followed by the variable name.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 139

Note. The variable name can only contain letters or numbers; it cannot contain spaces.

To set a value to a variable, use the following:

&Index := 1

The following formula sets the first character of an account number to a variable, and then uses that variable
to set the account category:

&AcctCode := LEFT(MBR2TEXT(ACCOUNTS), 1);
 CASE(&AcctCode = "1" : [ACCT_CAT:Assets],
 &AcctCode = "2" : [ACCT_CAT:Liabilities],
 &AcctCode = "3" : [ACCT_CAT:Income],
 #DEFAULT : [ACCT_CAT: Expense]
)

Setting the value to a variable makes it unnecessary to repeat the expression for each condition of the CASE
function, or to create an intermediate cube to hold the account code.

You can increment or decrement a variable with the INC statement:

INC(&Index);
DEC(&Index);
INC(&Profit, REVENUE);
DEC(&Profit, EXPENSE)

The lifetime of a variable is a single evaluation of the rule; the value of a variable is not preserved across
multiple evaluations.

Inserting a Built-in Function into a Rule

To insert a built-in function into a rule:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define or edit.

4. Select the place in the rule where you want to add the function.

5. Click the Paste Built-in Function button.

The Choose Built-in Function drop-down list box appears.

6. Use the scroll bar to scroll through the list of built-in functions.

7. Click the desired built-in function.

Analytic Calculation Engine pastes the built-in function and argument names into the rule bar.

8. For each argument:

a. Highlight the argument.

b. Replace the highlighted argument with the argument value.

Creating Rules, Formulas, and User Functions Chapter 10

140 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

9. Complete your work on the rule, and then:

• Click the Accept Changes button to accept the changes.

• Click the Exit Formula Mode button to keep the changes without validating the rule.

• Click the Cancel Changes button to cancel the changes.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," Built-in Function Reference, page 153

Inserting a User Function into a Rule

To insert a user function into a rule:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define or edit.

4. Select the place in the rule where you want to add the user function.

5. Click the name of the user function in the part browser.

Analytic Calculation Engine pastes the user function into the rule bar.

Note. If you enter a user function name that does not exist, the analytic calculation engine returns an error
when validating the analytic model.

Inserting a Numeric Value or Text Value into a Rule

To insert a numeric or a text value into a rule:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define or edit.

4. To insert a numeric value in a rule, enter the value (for example, 12).

To use a text value in a rule, enter the value and enclose it in double quotes (for example, "Smith").

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 141

Note. PeopleSoft recommends that you do not enter an assumption directly into a rule. Instead, you should
create a data cube for the assumption and refer to the data cube in the formula. For example, do not calculate
TAXES by multiplying INCOME by 0.38. Instead, create a data cube called TAX_RATE and enter 0.38 as
its value. Then calculate TAXES by multiplying INCOME by TAX_RATE. Performing the procedure in this
fashion simplifies the process of changing the assumptions and makes the analytic model easier to understand
and audit.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Inserting a Data Cube Reference into a
Rule, page 141.

Inserting a Data Cube Reference into a Rule

To insert a data cube reference into a rule:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define or edit.

4. Place the cursor at the location of the rule into which you want to insert the data cube reference.

5. Perform one of these actions:

a. In the part browser, click on the data cube to which you want to refer.

b. Enter the name of the data cube.

Note. If you enter a data cube reference for a data cube that does not exist, the analytic calculation
engine returns an error when validating the analytic model.

c. Select Edit, Paste Cube Name and click on the data cube to which you want to refer.

Inserting a Dimension Reference into a Rule

To insert a dimension reference into a rule:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define or edit.

4. Place the cursor at the location of the rule into which you want to insert the dimension reference.

Creating Rules, Formulas, and User Functions Chapter 10

142 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

5. Perform one of these actions:

a. In the part browser, click the dimension to which you want to refer.

b. Enter the name of the dimension.

Note. If you enter a dimension reference for a dimension that does not exist, the analytic calculation
engine returns an error when validating the analytic model.

c. Select Edit, Paste Dimension and click on the dimension to which you want to refer.

Inserting a Dimension Member Reference into a Rule

This section discusses how to:

• Enter a member reference into a rule.

• Refer to one slice of a data cube.

Entering a Member Reference into a Rule

To enter a member reference into a rule:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define or edit.

4. Place the cursor at the position in the rule where you want to enter a member reference.

5. Select Edit, Paste Member Ref...

The Choose Member Reference dialog box appears.

6. Click the dimension for which you want to enter a member reference.

The dimension and a generic member reference appears in the rule bar.

7. Highlight the word member.

8. Replace the word member with the name of the dimension member.

Referring to One Slice of a Data Cube

When you want to access particular values within a data cube, use member references to refer to a slice of the
data cube.

To refer to one slice of a data cube:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 143

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define or edit.

4. Enter the data cube in the rule.

For example, SALES, which uses the MONTHS, PRODUCTS, and REGIONS dimensions.

5. Enter a member reference.

For example, the East region from the REGIONS dimension.

The rule bar now displays SALES [REGIONS.East]. This rule returns SALES for the East region for
all PRODUCTS and all MONTHS.

6. Repeat step 3 to make the slice as small as you want.

A single value from the data cube is the smallest possible slice.

For example, to access SALES for the East region for the Hard Drives product for 2004/03, use the
following rule:

SALES [REGIONS.East] [PRODUCTS.Hard Drives] [MONTHS.2004/03]

See Also

Enterprise PeopleTools 8.50 PeopleBook: Using PeopleSoft Applications, "Working With Scroll Areas and
Grids," Slicing Analytic Grid Data

Inserting a Blank Line into a Rule

You can insert a blank line into a rule to enhance legibility. To insert a blank line into a rule, press Ctrl +
Enter.

Inserting a Comment into a Rule

To insert a comment into a rule, use the symbols << and >>. This is an example of a comment in a rule:

<< Loop through all products >>

Performing Exceptions to the Rule

This section provides an overview of exceptions to the rule and discusses how to:

• Create different calculations for different dimension members.

• Create different calculations for different groups of members.

Creating Rules, Formulas, and User Functions Chapter 10

144 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Understanding Exceptions to the Rule

A typical rule contains a formula for an entire data cube that the analytic calculation engine uses to calculate
every value in the data cube. If you want some values of a data cube to calculate in a different manner than
other values, you must create an exception to the rule. You can create exceptions to:

• Perform different calculations for different members.

• Perform different calculations for different groups of members.

Create Different Calculations for Different Members

This section provides an overview of the calculation of only one member and the calculation of more than one
member and discusses how to:

• Create a calculation for only one member.

• Create a calculation for more than one member.

Understanding the Calculation of Only One Member

The following example describes the reason for and process of creating a special calculation for one member.

 Suppose your company must allocate the Administration department's expense equally to all of the other
departments. To ensure proper allocation, the Administration department requires a different calculation than
the other departments. To create this allocation, you must back out the expense for Administration and divide
that expense equally among the other departments.

You company's analytic model contains data cubes called EXPENSE and ADMIN_ALLOCATION. The
DEPARTMENTS dimension is attached to both data cubes. Create the following formula to calculate
ADMIN_ALLOCATION:

IF([DEPARTMENTS:Administration], - EXPENSE, EXPENSE[DEPARTMENTS:Administration] /
(NUMMEMBERS(DEPARTMENTS) - 1))

The formula uses the IF function to calculate one result if a condition is true, and another result if the
condition is false. Here is how the formula works:

The analytic calculation engine uses the [DEPARTMENTS:Administration] member reference to
check whether Administration is the department that is being calculated.

• If Administration is the department that is being calculated, the formula returns minus EXPENSE,
backing out the expense for Administration.

• If Administration is not the department that is being calculated, the formula returns the expense for
Administration divided by the number of departments minus one.

In other words, the formula divides the Administration expense equally among the other departments.

Note. The formula uses the data cube slice EXPENSE[DEPARTMENTS:Administration] to refer to
the expense for Administration. The NUMMEMBERS function returns the number of members in the
specified dimension.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 145

Understanding the Calculation of More Than One Member

The following formula provides an example of a calculation for more than one member. The formula returns
one result for Administration, another result for Data Processing, and a third result for all other departments:

CASE([DEPARTMENTS:Administration] : ADMINISTRATION_RESULT, [DEPARTMENTS:Data
 Processing] : DATA_PROCESSING_RESULT, #DEFAULT : RESULT_FOR_ALL_OTHER_DEPARTMENTS)

Creating a Calculation for Only One Member

To create a calculation for only one member:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the data cube whose formula you want to define.

4. Define a formula for the result data cube.

5. Enter IF and an opening parenthesis.

You are using the IF function to return different results, depending on a condition.

See Chapter 11, "Using Built-in Functions in Analytic Models," IF, page 184.

6. Insert the member reference for the exceptional member.

Note. When you use a member reference as a condition, it returns True if the analytic calculation engine
is calculating values for that member; otherwise, it returns False.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Inserting a Dimension Member
Reference into a Rule, page 142.

7. Enter a comma, and then enter the result that should be returned if the exceptional member is being
calculated.

8. Enter another comma, and then enter the result that should be returned if one of the nonexceptional
members is being calculated.

9. Enter a closing parenthesis.

Note. To perform the same calculation for several members, combine two or more member references
with .OR. operators. For example: [DEPARTMENTS:Administration] .OR.
[DEPARTMENTS:Data Processing].

Creating a Calculation for More Than One Member

To create a calculation for more than one member:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

Creating Rules, Formulas, and User Functions Chapter 10

146 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

3. Select the data cube whose formula you want to define.

4. Define a formula for the result data cube.

5. Enter CASE and an opening parenthesis.

You are using the CASE function to evaluate a Condition:Result pair for each special case.

See Chapter 11, "Using Built-in Functions in Analytic Models," CASE, page 159.

6. Enter a Condition:Result pair for each special calculation:

a. Insert a member reference for one of the members in the dimension.

For example: [DEPARTMENTS:Administration].

This condition tests whether results are being calculated for the specified member.

b. Enter a colon to separate the condition from the result.

c. Enter the appropriate result for the specified member.

d. Enter a comma.

7. Perform these steps to enter a final Condition:Result pair to return a result for all other members in the
dimension:

a. Enter #DEFAULT as the condition.

#DEFAULT instructs the function to return the final result for all other members.

b. Enter a colon to separate the condition from the result.

c. Enter the result for all other members in the dimension.

d. Enter a closing parenthesis.

Creating Different Calculations for Different Groups of Members

You may want to calculate a data cube in different ways for different groups of members. To perform
different calculations for different groups of members:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Create an association data cube that associates each member with a group.

See Chapter 5, "Creating Data Cubes," Creating Association Data Cubes, page 42.

4. Define a formula for the result data cube.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 147

5. Use the CASE function to evaluate two or more Condition:Result pairs.

Perform the following steps for each Condition:Result pair:

See Chapter 11, "Using Built-in Functions in Analytic Models," CASE, page 159.

a. Use a member reference to compare the association data cube to one of the members in the group
dimension.

This example is a formula for the INVEST_TYPE data cube:

[TYPES:Stock]

See Chapter 10, "Creating Rules, Formulas, and User Functions," Inserting a Dimension Member
Reference into a Rule, page 142.

b. Enter a colon to separate the condition and result.

c. Enter the appropriate result for that group.

d. To add another Condition:Result pair, enter a comma; otherwise, enter a closing parenthesis.

Example: Creating Different Calculations for Different Groups of Members

Suppose that you create an analytic model to track your investments in stocks, bonds, and rental properties,
and you want to know your monthly income. Because the income for stocks, bonds, and rental properties is
calculated differently, you need to perform different calculations for different groups of these investments.

Create a data cube that associates each investment with an investment type. Suppose the dimension of
investment types is called TYPES, and the association data cube is called INVEST_TYPE. You can calculate
the investment income for each investment as follows:

CASE(INVEST_TYPE = [TYPES:Stock] : NUMBER_OF_SHARES * DIVIDENDS_PER_SHARE, INVEST_
TYPE = [TYPES:Bond] : BOND_RATE * BOND_AMOUNT / 12, INVEST_TYPE = [TYPES:Rent] :
 MONTHLY_RENT)

See Chapter 5, "Creating Data Cubes," Creating Association Data Cubes, page 42.

The CASE function evaluates multiple conditions and returns the result for the first true condition. Each
Condition:Result pair is separated by a comma.

See Chapter 11, "Using Built-in Functions in Analytic Models," CASE, page 159.

In the preceding formula, the CASE function compares the invest type for an investment to each member in
the TYPES dimension. The formula uses a member reference (for example, [TYPES:Stock]) to refer to
each member. When the CASE function finds the matching member from the TYPES dimension, it returns
the corresponding result. For example, if the invest type for an investment is Bond, the formula returns
BOND_RATE * BOND_AMOUNT / 12.

Working with Circular Formulas and Circular Systems

This section provides overviews of circular formulas, circular systems and recursive systems, recursive
system resolution, and circular system resolution, and discusses how to change circular formula and circular
system options.

Creating Rules, Formulas, and User Functions Chapter 10

148 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Circular Reference, page 128.

Understanding Circular Formulas

When a data cube's formula refers either directly or indirectly to that same data cube, it is considered to be a
circular formula.

Note. The analytic calculation engine determines—on the data cube level—whether formulas are circular.
However, the analytic calculation engine resolves circular systems and recursive systems on the cell level.

Direct Circular Formulas

This is an example of a direct circular formula for the SALES data cube:

SALES + SALES_GROWTH

This formula states that sales equals sales plus the sales growth.

It is a direct circular formula because the data cube's formula refers directly to that same data cube.

Indirect Circular Formulas

In an indirect circular formula, a data cube's formula refers indirectly to that same data cube, as in this
example:

• Formula for BONUS data cube:

BONUS_PERCENTAGE * NET_INCOME

• Formula for EXPENSE data cube:

SALARY + BONUS

• Formula for NET_INCOME data cube:

INCOME - EXPENSE

In this example, none of the data cubes refer directly to themselves. However, each data cube refers indirectly
to itself by means of the other data cubes:

• BONUS refers to NET_INCOME.

• NET_INCOME refers to EXPENSE.

• EXPENSE refers to BONUS.

Understanding Circular Systems and Recursive Systems

When the analytic calculation engine determines—on the data cube level—that a circular formula exists, it
analyzes the calculation conditions of the cells within the circular formula to determine whether the cells are
dependent on those same cells for their values. If so, these cells either create a recursive system or a circular
system.

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 149

In a recursive system, the values of the cells are not dependent on the values of those same cells.

In a circular system, the values of the cells are dependent the values of those same cells.

Understanding Recursive System Resolution

The analytic calculation engine resolves recursive systems immediately without using the process of iteration.

To understand the process of how the analytic calculation engine determines and resolves recursive systems,
consider the following formula for the SALES data cube:

PREVSELF(MONTHS) + SALES_GROWTH

The analytic calculation engine determines that this is a recursive system by performing the following steps:

1. The analytic calculation engine determines that this is a circular formula because the PREVSELF built-in
function, which refers to the SALES data cube, exists within the formula.

2. The analytic calculation engine analyzes the calculation conditions of the cells within this formula and
determines that these cells create a recursive system, because the cells within this formula are not
dependent on the values of those same cells.

The analytic engine then resolves this recursive system immediately without iteration.

Understanding Circular System Resolution

The analytic calculation engine uses the process of iteration to attempt to resolve all of an analytic model's
circular systems. You set the iteration parameters by using the General tab of the analytic model's properties.
If the cells converge on a solution within the iteration parameters, the circular system is resolved. If the cells
do not converge on a solution within the iteration parameters, the analytic calculation engine returns an error.
All cells within the circular system remain unresolved.

Note. Because you enable or disable iteration for all circular systems, you cannot enable or disable iteration
for a particular circular system.

When you enable the resolution of circular systems through iteration, you must select one of the following
iteration options:

• Maximum number of iterations

When the values of the cells have not changed more than the specified maximum amount, the circular
system is considered to be resolved.

• Maximum change in values

When the analytic calculation engine has calculated the cells within the circular system for the specified
maximum number of times, the circular system is considered to be resolved.

Example of Resolving a Circular System

In this example, an analytic model contains the following formulas (for simplicity, assume that each data cube
contains only a single cell):

Creating Rules, Formulas, and User Functions Chapter 10

150 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• Formula for BONUS data cube:

BONUS_PERCENTAGE * NET_INCOME

• Formula for EXPENSE data cube:

SALARY + BONUS

• Formula for NET_INCOME data cube:

INCOME - EXPENSE

First, the analytic calculation engine determines that this is an indirect circular formula because the data
cubes' formulas refer indirectly to those same data cubes.

Next, the analytic calculation engine analyzes the calculation conditions of the cells within this indirect
circular formula and determines that these cells create a circular system. This is because the cells within this
formula are dependent on the same values of those same cells.

Assuming that the value for the BONUS_PERCENTAGE cell = 5, the value for the INCOME cell = 10000,
and the value for the SALARY cell = 6000, then the circular system is resolved when the analytic calculation
engine iterates until it returns these solutions:

• Cell for BONUS = 190.48.

• Cell EXPENSE = 6,190.48.

• Cell for NET_INCOME = 3,809.52.

If you plug these values into the preceding formulas, each formula is true: the left side of the formula is
(almost) equal to the right side of the formula. Once this occurs, the circular system is considered to be
resolved.

Changing Circular Formula and Circular System Options

To change circular formula and circular system options:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open an analytic model definition.

3. Select the name of the analytic model in the part browser.

The Analytic Model - General tab appears.

This is an example of the Analytic Model - General tab:

Chapter 10 Creating Rules, Formulas, and User Functions

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 151

Analytic Model - General tab

Description Enter a description of the analytic model.

Note. This field pertains to the analytic model as a whole, not to circular formula
options.

Resolve circular system
through iteration

Select to attempt to resolve all of an analytic model's circular systems through
iteration. By default, this option is disabled.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Changing
Circular Formula and Circular System Options, page 150.

Maximum number of
iterations

Enter the number of iterations in which the analytic calculation engine is to
resolve circular systems. By default, the maximum number of iterations is 100.

If the analytic calculation engine cannot resolve a circular system during this
number of iterations, the analytic calculation engine returns an error.

Note. You must select the Resolve circular system through iteration check box to
activate this option.

Maximum change in
values

Enter the maximum change in values. By default, the maximum change in values
is 0.001000.

A circular system is considered to be resolved when the values of its cells do not
change more than the specified maximum change. If you enter a smaller value,
the solution is more accurate but may require a longer calculation time. If you
enter a larger value, the solution not as accurate but requires a shorter calculation
time.

Note. You must enable the Resolve circular system through iteration check box
to activate this option.

Creating Rules, Formulas, and User Functions Chapter 10

152 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Warn about circular
formulas

Every time a circular formula is defined: Select for the analytic calculation
engine to provide a circular formula warning every time a circular formula is
defined.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 153

Chapter 11

Using Built-in Functions in Analytic
Models

This chapter provides reference information about the functions that are delivered with Analytic Calculation
Engine.

Built-in Function Reference

Use the following built-in functions in an analytic model's rules and user functions:

ABS

Syntax

ABS (Data)

Description

The ABS function returns the absolute (positive) value of Data.

Returns

The absolute (positive) value of Data.

Example

The following examples employ the ABS built-in function:

• ABS(5) returns 5.

• ABS(-5) returns 5.

• ABS(0) returns 0.

Using Built-in Functions in Analytic Models Chapter 11

154 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

ACOS

Syntax

ACOS (Data)

Description

The ACOS function returns the arc-cosine of Data. The result is the angle (in radians) whose cosine equals
Data.

The value of Data must fall between 1 and 1; otherwise, ACOS returns an error value.

To convert from radians to degrees, multiply by 180 / PI(). (The PI function returns the value of PI.)

Returns

The arc-cosine of Data.

Example

The following examples employ the ACOS built-in function:

• ACOS(0.5) returns 1.0471975512 (angle in radians).

• ACOS(0.5) * 180 / PI() returns 60 (angle in degrees).

• ACOS(SQRT(2) / 2) returns 0.7853981634 (angle in radians).

• ACOS(SQRT(2) / 2) * 180 / PI() returns 45 (angle in degrees).

ARGUMENTS Declaration

Syntax

ARGUMENTS(argument1), argument2... argumentN

Description

The ARGUMENTS declaration passes values to functions within a user function.

Use the following guidelines to make user functions more powerful by giving them arguments:

• Enter an ARGUMENTS declaration at the beginning of the rule, followed by an opening parenthesis.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 155

• Enter any dimension arguments next, separated by commas.

A dimension argument always begins with a $, as in $Dim. Unlike the built-in functions, which never
have more than one dimension argument, user functions can have multiple dimension arguments.

• Include any expression arguments next, separated by commas.

An expression argument always begins with a @, as in @Expr. To give the argument a default value,
follow it with := and any valid expression.

Note. All optional arguments (that is, those with default values) must appear after all required arguments.

• Enter a closing parenthesis and a semicolon.

Example

ARGUMENTS($Dim, @ExprToLookup, @Condition, @Direction := #FORWARD);
FORMEMBERS($Dim, @Direction,
 IF(@Condition, RETURN(@ExprToLookup))
);
RETURN(0)

ASC

Syntax

ASC(Text)

Description

The ASC function returns the first character of the Text argument to its ASCII equivalent number (for
example, a number between 0-255). Use this function to convert a character into its ASCII value.

Returns

The first character of the Text argument to its ASCII equivalent number.

Example

For a cube formatted as a number, ASC("ABC") returns the 65.

ASIN

Syntax

ASIN(Data)

Using Built-in Functions in Analytic Models Chapter 11

156 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Description

The ASIN function returns the arc-sine of Data. The result is the angle (in radians) whose sine equals Data.

The value of Data must fall between 1 and 1; otherwise, ASIN returns an error value.

To convert from radians to degrees, multiply by 180 / PI(). (The PI function returns the value of PI.)

Returns

The arc-sine of Data.

Example

The following examples employ the ASIN built-in function:

• ASIN(0.5) returns 0.5235987756 (angle in radians).

• ASIN(0.5) * 180 / PI() returns 30 (angle in degrees).

• ASIN(SQRT(2) / 2) returns 0.7853981634 (angle in radians).

• ASIN(SQRT(2) / 2) * 180 / PI() returns 45 (angle in degrees).

AT

Syntax

AT(Dimension, Member, Data)

Description

The AT function looks up the value of Data for a particular member in a dimension.

You can use the AT function in the following ways:

• You can look up a value at a particular position in the dimension.

• You can look up a value for a particular member by name.

• You can associate members in one dimension with members in another dimension, and then look up an
associated value for each member in the first dimension.

For example, you can associate each employee with a job, and then look up the job salary for each
employee.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 157

Looking Up a Value at a Position

To look up a value at a particular position, use the position number for the member argument. You can also
use an expression that returns the position number.

For example, to look up the value of SALES for the first member in the PRODUCTS dimension, use the
following formula:

AT(PRODUCTS, 1, SALES)

To look up the value of SALES for the last member in the PRODUCTS dimension, use the following
formula:

AT(PRODUCTS, NUMMEMBERS(PRODUCTS), SALES)

This formula works because the NUMMEMBERS function returns the number of members in the Products
dimension, which is the position of the last member.

See Chapter 11, "Using Built-in Functions in Analytic Models," NUMMEMBERS, page 201.

Looking Up a Value for a Member by Name

To look up a value for a particular member by name, use a member reference for the member argument.

For example, the following formula returns UNIT_COST divided by UNIT_PRICE for the Monitors product:

AT(PRODUCTS, [PRODUCTS:Monitors], UNIT_COST / UNIT_PRICE)

You can achieve the same result using member references after the data cube names, as follows:

UNIT_COST [PRODUCTS:Monitors] / UNIT_PRICE [PRODUCTS:Monitors]

To evaluate a complex expression for a single member, the AT function is more concise because you are not
required to repeat the member reference for every data cube.

Looking Up an Associated Value

You can associate members in one dimension with members in another dimension, and then look up an
associated value for each member in the first dimension. For example, suppose that you want to associate
each employee with a job, and then look up the job salary for each employee. To do this, perform the
following:

1. Create a dimension called JOBS.

2. Create a data cube called EMPLOYEE_JOB.

Format this data cube as a member of the JOBS dimension.

3. Create a dimension called EMPLOYEE.

Attach this dimension to the EMPLOYEE_JOB data cube.

4. Create a data cube called SALARY_BY_JOB, which contains the salary for each job.

Using Built-in Functions in Analytic Models Chapter 11

158 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

5. Create a data cube called EMPLOYEE_SALARY.

Create the following formula for this data cube:

Note. You can look up the salary for each employee by using the name of the association data cube as the
member argument.

AT(JOBS, EMPLOYEE_JOB, SALARY_BY_JOB)

For each employee, the formula looks up the number in SALARY_BY_JOB that is at the member
indicated by EMPLOYEE_JOB.

Pushing Down Parent Member Data

The following are examples of user functions that push down parent member data:

• AT (DIMENSION, Parent(DIMENSION), THISCUBE() * 0.2)

• AT (DIMENSION, Parent(DIMENSION), THISCUBE() / CHILDCOUNT(DIMENSION,
#DIRECT))

ATAN

Syntax

ATAN(Data)

Description

The ATAN function returns the arc-tangent of Data. The result is the angle (in radians) whose tangent equals
Data.

To convert from radians to degrees, multiply by 180 / PI(). The PI function returns the value of PI.

Returns

The arc-tangent of Data.

Example

The following examples employ the ATAN built-in function:

• ATAN(0.5) returns 0.463647609 (angle in radians).

• ATAN(0.5) * 180 / PI() returns 26.5650511771 (angle in degrees).

• ATAN(1) returns 0.7853981634 (angle in radians).

• ATAN(1) * 180 / PI() returns 45 (angle in degrees).

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 159

BREAK

Syntax

BREAK()

Description

The BREAK function causes an immediate break out of the current loop.

Example

SET(&Value, 1);
WHILE(&Value < THE_ABSOLUTE_MAXIMUM,
 SET(&Value, &Value * 2);
 IF(&Value = ENOUGH_ALREADY, BREAK());
 INC(&Value)
);
IF(&Value > ENOUGH_ALREADY, "More than enough", "Just right")

You normally use the BREAK function within an IF function to break out of a loop when a specified
condition is achieved. To return Just right from the formula, ENOUGH_ALREADY must contain a value
from the sequence 2, 6, 14, 30, and so on.

CASE

Syntax

CASE(Condition A : Result A, Condition B : Result B {,...})

Description

The CASE function returns the Result that corresponds to the first true Condition, if none of the conditions is
true, it returns zero.

Returns

The Result that corresponds to the first true Condition; if none of the conditions is true, it returns zero.

Example

Suppose a company awards its salespeople the following commissions:

• A 10 percent commission if their sales are at least 50,000 USD.

Using Built-in Functions in Analytic Models Chapter 11

160 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• An 8 percent commission if their sales are at least 30,000 USD.

• A 5 percent commission if their sales are at least 15,000 USD.

You can calculate the commission rate for a salesperson with the following formula:

CASE(SALES >= 50000 : 0.10, SALES >= 30000 : 0.08, SALES >= 15000 : 0.05)

If SALES is 45000, this formula returns 0.08. Notice that the CASE function returns the result for the first
true condition, even if some of the remaining conditions are true.

The above formula returns zero if SALES is less than 15000. Suppose that the company awards a 3 percent
commission on all sales under 15,000 USD. You can model this with the following formula:

CASE(SALES >= 50000 : 0.10, SALES >= 30000 : 0.08, SALES >= 15000 : 0.05, #DEFAULT
 : 0.03)

The last condition (#DEFAULT) is always equivalent to TRUE, so the CASE function returns 0.03 if SALES
is less than 15000. If you want the CASE function to return a default value other than zero, use #DEFAULT
as the last condition.

CHANGE

Syntax

CHANGE(Dimension, Data, {Count})

Description

The CHANGE function returns the difference between the value of Data for the member being calculated and
the value of Data for Count members back. If Count is omitted, it is assumed to be 1.

Example

Suppose you wish to calculate the monthly and yearly change in a data cube called SALES. If SALES uses a
dimension called MONTHS, use the following formula to calculate the MONTHLY_CHANGE data cube:

CHANGE(MONTHS, SALES)

Because the Count argument is omitted, the program assumes it to be 1. Consequently, the program calculates
the change in SALES from the previous month to the month being calculated.

Calculate the YEARLY_CHANGE data cube by using 12 for the third argument:

CHANGE(MONTHS, SALES, 12)

This formula calculates the change in SALES from 12 months ago to the month being calculated.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 161

CHILDCOUNT

Syntax

CHILDCOUNT(Dimension, {#DIRECT/#ALL/#DETAILS, {Parent Member}})

Description

The CHILDCOUNT function returns the number of a Parent member's children. This function takes the
following one required argument and two optional arguments:

• Dimension: The dimension to use.

• For the second optional argument, select from these predefined constants:

• #DIRECT

• #ALL

• #DETAILS

See Chapter 10, "Creating Rules, Formulas, and User Functions," Understanding the Elements of
Rules, page 131.

• Parent Member: This is an optional argument.

If you do not use this optional argument, the function applies to the member that is currently being
evaluated.

Returns

The number of a parent member's children.

Example

CHILDCOUNT (Region, #DIRECT, [Region:All_regions])

See Also

Chapter 9, "Creating Hierarchies," Pushed Down Data, page 87

CHR

Syntax

CHR(Number)

Using Built-in Functions in Analytic Models Chapter 11

162 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Description

The CHR function returns the equivalent ASCII character of the number argument. The number must be in
range from 0 to 255; otherwise, an invalid type error with be thrown.

Returns

The equivalent ASCII character of the number argument.

Example

For a cube formatted as text, CHR(65) returns the character A.

CONSOL

Syntax

CONSOL(Dimension, Data)

Description

The CONSOL function returns the value of Data for the total member of Dimension.

Returns

The value of Data for the total member of Dimension.

Example

Suppose an analytic model contains a data cube called SALES that uses a dimension called PRODUCTS. Use
the following formula to calculate each product's sales as a percentage of total sales:

SALES / CONSOL(PRODUCTS, SALES)

This formula divides each product's sales by the consolidated value for SALES.

COS

Syntax

COS(Data)

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 163

Description

The COS function returns the cosine of Data, where Data represents an angle in radians.

To convert from degrees to radians, multiply by PI() / 180. The PI function returns the value of PI.

Example

The following examples employ the COS built-in function:

• COS(PI() / 3) returns 0.5 (cosine of PI / 3 radians).

• COS(PI() / 2) returns 0 (cosine of PI / 2 radians).

• COS(45 * PI() / 180) returns 0.7071067812 (cosine of 45 degrees).

CUBEID

Syntax

CUBEID(Cube)

Description

The CUBEID function returns the internal ID of the cube in the analytic calculation engine. Note that the
actual ID for the cube may vary in the analytic calculation engine when the model has been changed. For
example, when a part is added or deleted. Do not use absolute numbers to compare the return of the CUBEID
function. The CUBEID function may be useful if you have a generic user function and you want to pass
different data cubes as expression arguments.

Returns

The internal ID of the cube in the analytic calculation engine.

Example

IF(CUBEID(@MyCube) = CUBEID(REVENUE), SPECIAL_CONDITION_CALCULATION, DEFAULT_
CALCULATION)

This is an example of incorrect usage of the CUBEID function:

IF(CUBEID(@MYCUBE) = 512, SPECIAL_CONDITION, DEFAULT_CONDITION)

Using Built-in Functions in Analytic Models Chapter 11

164 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

CUMAVG

Syntax

CUMAVG(Dimension, Data, {Count})

Description

The CUMAVG function returns the cumulative average of Data for the last Count members of Dimension. If
Count is omitted, CUMAVG returns the cumulative average of all members up to the member being
calculated.

Example

The following examples provide uses of the CUMAVG function:

Example 1

Suppose an analytic model contains a data cube called SCORES that uses a dimension called TESTS. Use the
following formula to compute the average of all test scores up to the test being calculated:

CUMAVG(TESTS, SCORES)

This formula calculates Cum_Avg_Score for Test 2 by averaging the scores for Test 1 and Test 2; it
calculates Cum_Avg_Score for Test 3 by averaging the scores for Test 1, 2, and 3; and so on. Because the
third argument is omitted, the function averages the scores for all tests up to the test being calculated.

Example 2

Suppose an analytic model contains a data cube called SALES that uses a dimension called MONTHS.
Compute the average sales for the last six months as follows:

CUMAVG(MONTHS, SALES, 6)

Note that for the first five months, the CUMAVG function cannot look back six months, because this would
go back before the first month in the MONTHS dimension. The program solves this problem by averaging the
sales for all months up to the month being calculated. After the first five months, the function averages the
sales for the six months up to the month being calculated.

CUMSUM

Syntax

CUMSUM(Dimension, Data, {Count})

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 165

Description

The CUMSUM function returns the cumulative sum of Data for the last Count members of Dimension. If
Count is omitted, CUMSUM returns the cumulative sum of all members up to the member being calculated.

Returns

The cumulative sum of Data for the last Count members of Dimension.

If Count is omitted, CUMSUM returns the cumulative sum of all members up to the member being
calculated.

Example

Suppose an analytic model contains a data cube called PROFIT that uses a dimension called MONTHS. Use
the following formula to calculate the cumulative profit for all months up to the month being calculated:

CUMSUM(MONTHS, PROFIT)

Use the following formula to calculate the cumulative profit for the three months up to the month being
calculated:

CUMSUM(MONTHS, PROFIT, 3)

DAVG

Syntax

DAVG(Dimension, {Data}, {Condition})

Description

The DAVG function returns the average of Data for the members in Dimension where Condition is True. If
Condition is omitted, DAVG returns the average of Data for all members in Dimension. If Data is omitted,
DAVG returns the average of the data cube being calculated, for all members up to the current member in
Dimension.

Example

The following examples provide uses of the DAVG function:

Example 1

Suppose an analytic model contains a data cube called ADVERTISING_BY_PRODUCT and a data cube called
UNITS_SOLD. Both data cubes use a dimension called PRODUCTS. Use the following formula to calculate
the average units sold for all products:

Using Built-in Functions in Analytic Models Chapter 11

166 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

DAVG(PRODUCTS, UNITS_SOLD)

The DAVG function does not include a condition, so the function averages UNITS_SOLD for all members in
the PRODUCTS dimension. Use the following formula to calculate the average units sold for all products
with advertising of at least USD 10,000:

AVG(PRODUCTS, UNITS_SOLD, ADVERTISING_BY_PRODUCT >= 10000)

In this case, the function averages UNITS_SOLD only for the products where
ADVERTISING_BY_PRODUCT is greater than or equal to 10000.

Example 2

You can make the analysis more flexible by creating a dimension called RANGES and attaching it to
AVG_UNITS_SOLD. Define a new data cube called AD_COST_MIN that uses the RANGES dimension. Each
number in AD_COST_MIN defines the minimum value for the range, while the next number defines the
upper limit for the range. Calculate the average units sold for each range as follows:

DAVG(PRODUCTS, UNITS_SOLD, ADVERTISING_BY_PRODUCT >= AD_COST_MIN .AND. ADVERTISING_

BY_PRODUCT < NEXT(RANGES, AD_COST_MIN))

For each range, the formula averages only those products whose advertising cost is greater than or equal to
the current AD_COST_MIN and less than the next AD_COST_MIN. (The NEXT function returns
AD_COST_MIN for the next member in the RANGES dimension.)

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," NEXT, page 198

DAY

Syntax

DAY({Date})

Description

The DAY function returns the day of the specified date. If Date is omitted, DAY returns the day of the
calculation date.

Example

If A = 2004/03/15 and B = 2005/06/22, then DAY(A) returns 15 and DAY(B) returns 22.

Now suppose an analytic model contains a data cube called DAY_EXAMPLE that uses a dimension called
DAYS, and contains the formula DAY_EXAMPLE = DAY(). Because the argument is omitted, DAY returns
the day for each date in the DAYS dimension.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 167

Following is a more useful example of the DAY function: suppose you define a data cube called
DAILY_RECEIPTS that uses a dimension called DAYS. You want to calculate the average receipts for each
day of the month. In other words, you want to know the average receipts for the first day of each month, the
average receipts for the second day of each month, and so on. To do this, create a dimension called
DAY_NUM that contains members numbered 1 to 31. Then define a data cube called
AVG_RECEIPTS_BY_DAY that uses the DAY_NUM dimension. Finally, enter the following formula for the
AVG_RECEIPTS_BY_DAY data cube:

DAVG(DAYS, DAILY_RECEIPTS, DAY() = MEMBER(DAY_NUM))

For each DAY_NUM member in AVG_RECEIPTS_BY_DAY, the formula averages all DAILY_RECEIPTS
where the day of the month equals the index of the DAY_NUM member. Thus, if the program is calculating
the fifth DAY_NUM member for AVG_RECEIPTS_BY_DAY, it averages the receipts for the dates
2005/01/05, 2005/02/05, 2005/03/05, 2005/04/05, and so on, because these are the dates where the DAY()
function returns 5.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," DAVG, page 165 and Chapter 11, "Using Built-
in Functions in Analytic Models," MEMBER, page 194

DCOUNT

Syntax

DCOUNT(Dimension, {Condition})

Description

The DCOUNT function returns the number of members in Dimension for which Condition is true. If
Condition is omitted, DCOUNT returns the number of members in Dimension.

Returns

The number of members in Dimension for which Condition is true. If Condition is omitted, DCOUNT returns
the number of members in Dimension.

Example

Suppose an analytic model contains a data cube called UNITS_SOLD that uses a dimension called
PRODUCTS. Use the following formula to find the number of products that sold more than 5000 units:

DCOUNT(PRODUCTS, UNITS_SOLD > 5000)

For an example of how to tabulate data for a series of ranges, see the entry for the DAVG function.

Using Built-in Functions in Analytic Models Chapter 11

168 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," DAVG, page 165

DDB

Syntax

DDB(Cost, Salvage, Life, Period)

Description

The DDB function returns the depreciation on an asset using the Double Declining Balance method. This is
an accelerated depreciation method.

Parameters

Parameter Description

Cost The cost of the asset.

Salvage The worth of the asset at the end of its useful life.

Life The number of periods in the asset's useful life.

Period The period for which you wish to determine the depreciation.

Returns

The depreciation on an asset using the Double Declining Balance method.

Example

Suppose you purchase a machine for USD 6000, and you plan to sell it for USD 500 after 5 years. You can
calculate the depreciation for each year as follows:

• DDB(6000, 500, 5, 1) = 2400

• DDB(6000, 500, 5, 2) = 1440

• DDB(6000, 500, 5, 3) = 864

• DDB(6000, 500, 5, 4) = 518

• DDB(6000, 500, 5, 5) = 278

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 169

DEC

Syntax

DEC(Number Original Value, Number Amount to Decrement)

Description

The DEC function returns an decremented value based on an original value and the amount to increment.

Returns

An decremented value based on an original value and the amount to increment.

Example

DEC(&NumMonths, &EndMonth - &StartMonth - 1)

 This formula subtracts the months between the start and end month to the variable &NumMonths. DEC
function is useful in FOR or WHILE functions to decrement loop variables.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," FOR, page 174 and Chapter 11, "Using Built-in
Functions in Analytic Models," WHILE, page 226

DLOOKUP

Syntax

DLOOKUP(Dimension, Data, Condition, {Direction})

Description

The DLOOKUP function returns Data for the first Member in Dimension where Condition is true. If
Direction is omitted or zero, the function scans forward from the first member. If Direction is nonzero, the
function scans backward from the last member. If no member in Dimension fulfills the Condition, the
function returns zero.

Using Built-in Functions in Analytic Models Chapter 11

170 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Returns

Data for the first member in Dimension where Condition is true. If Direction is omitted or zero, the function
scans forward from the first member. If Direction is nonzero, the function scans backward from the last
member. If no member in Dimension fulfills the Condition, the function returns zero.

Example

Suppose that a company awards its salespeople a 10 percent commission if their sales are at least USD 50000,
an 8 percent commission if their sales are at least USD 30000, a 5 percent commission if their sales are at
least USD 15000, and a 1 percent commission if their sales are less than USD 15000. One way to calculate
the commission is to create a lookup table. Define a dimension called RANGES and attach it to data cubes
called SALES_MINIMUM and LOOKUP_RATE. Each number in SALES_MINIMUM defines the minimum
value for the sales range, while the next number defines the upper limit for the range. LOOKUP_RATE holds
the commission rate for each range. Use the following formula to calculate the commission rate:

DLOOKUP(RANGES, LOOLUP_RATE, SALES >= SALES_MINIMUM, 1)

Because the last argument of DLOOKUP is 1, the function starts with the last member of RANGES and scans
backwards until SALES is greater than or equal to SALES_MINIMUM. It is important to scan backwards to
find the highest lookup rate for which the condition is true. Otherwise, the formula returns the lowest lookup
rate no matter how high the value of SALES is.

DMAX

Syntax

DMAX(Dimension, Data, {Condition})

Description

The DMAX function returns the maximum of Data for the members in Dimension where Condition is True.
If Condition is omitted, DMAX returns the maximum of Data for all members in Dimension. If Data is
omitted, DMAX returns the maximum of the data cube being calculated, for all members up to the current
member in Dimension.

Returns

The maximum of Data for the members in Dimension where Condition is True. If Condition is omitted,
DMAX returns the maximum of Data for all members in Dimension. If Data is omitted, DMAX returns the
maximum of the data cube being calculated, for all members up to the current member in Dimension.

Example

Suppose that an analytic model contains a data cube called ADVERTISING_BY_PRODUCT and a data cube
called UNITS_SOLD. Both data cubes use a dimension called PRODUCTS. Use the following formula to
calculate the maximum units sold for all products:

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 171

MAX(PRODUCTS, UNITS_SOLD)

The DMAX function does not include a condition, so the function finds the maximum of UNITS_SOLD for
all members in the PRODUCTS dimension. Use the following formula to calculate the maximum units sold
for all products with advertising under USD 10000:

DMAX(PRODUCTS, UNITS_SOLD, ADVERTISING_BY_PRODUCT < 10000)

In this case, the function finds the maximum units sold only for the products where
ADVERTISING_BY_PRODUCT is less than 10000.

For an example of how to tabulate data for a series of ranges, see the entry for the DAVG function.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," DAVG, page 165

DMIN

Syntax

DMIN(Dimension, Data, {Condition})

Description

The DMIN function returns the minimum of Data for the members in Dimension where Condition is True. If
Condition is omitted, DMIN returns the minimum of Data for all members in Dimension. If Data is omitted,
DMIN returns the minimum of the data cube being calculated, for all members up to the current member in
Dimension.

Returns

The minimum of Data for the members in Dimension where Condition is True. If Condition is omitted,
DMIN returns the minimum of Data for all members in Dimension. If Data is omitted, DMIN returns the
minimum of the data cube being calculated, for all members up to the current member in Dimension.

Example

Suppose that an analytic model contains a data cube called ADVERTISING_BY_PRODUCT and a data cube
called UNITS_SOLD. Both data cubes use a dimension called PRODUCTS. Use the following formula to
calculate the minimum units sold for all products:

DMIN(PRODUCTS, UNITS_SOLD)

The DMIN function does not include a condition, so the function finds the minimum of UNITS_SOLD for all
members in the PRODUCTS dimension. Use the following formula to calculate the minimum units sold for
all products with advertising of at least 10000 USD:

MIN(PRODUCTS, UNITS_SOLD, ADVERTISING_BY_PRODUCT >= 10000)

Using Built-in Functions in Analytic Models Chapter 11

172 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

In this case, the function finds the minimum units sold only for the products where
ADVERTISING_BY_PRODUCT is greater than or equal to 10000.

For an example of how to tabulate data for a series of ranges, see the entry for the DAVG function.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," DAVG, page 165

DSUM

Syntax

DSUM(Dimension, {Data}, {Condition})

Description

The DSUM function returns the sum of Data for the members in Dimension where Condition is True. If
Condition is omitted, DSUM returns the sum of Data for all members in Dimension. If Data is omitted,
DSUM returns the sum of the data cube being calculated for all members up to the current member in
Dimension.

Example

Suppose that an analytic model contains a data cube called ADVERTISING_BY_PRODUCT and a data cube
called UNITS_SOLD. Both data cubes use a dimension called PRODUCTS. Use the following formula to
calculate the total units sold for all products:

DSUM(PRODUCTS, UNITS_SOLD)

The DSUM function does not include a condition, so the function computes the sum of UNITS_SOLD for all
members in the PRODUCTS dimension. Use the following formula to calculate the sum of units sold for all
products with advertising of at least 10000 USD:

DSUM(PRODUCTS, UNITS_SOLD, ADVERTISING_BY_PRODUCT >= 10000)

In this case, the function finds the sum of UNITS_SOLD only for the products where
ADVERTISING_BY_PRODUCT is greater than or equal to 10000.

For an example of how to tabulate data for a series of ranges, see the entry for the DAVG function.

You can use the DSUM function without the Data argument to exercise complete control over the calculation
of dimension totals for a particular data cube.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," DAVG, page 165

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 173

E

Syntax

E()

Description

Use the E function to return the value of e, which is the base of natural logarithms.

Returns

The value of e.

Example

These examples employ the E built-in function:

• E() returns 2.7182818285.

• E() ^ 5 returns 148.4131591026 (e raised to the 5th power).

FIND

Syntax

FIND(Text Original String, Text Sub String, Number Starting Position)

Description

Use the FIND function to find a substring in the original string passed in starting from a specified start
position in the original string.

Parameters

Parameter Description

Text Original String The text of the original string.

Text Sub String The substring text to find.

Number Starting Position The start position in the original string.

Using Built-in Functions in Analytic Models Chapter 11

174 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Returns

The position of the substring in the original string. The index is 1-based.

Example

The following formula finds the account name that begins with Expense:

IF(FIND(ACCOUNT_NAME, "Expense", 1) = 1, #TRUE, #FALSE)

FIRST

Syntax

FIRST(Dimension)

Description

Use the FIRST function to test for special cases that occur when the first member of a dimension is being
calculated.

Parameters

Parameter Description

Dimension The dimension to test.

Returns

The FIRST function returns the first detail member regardless if the detail member is created out of a tree that
is attached to the dimension. The FIRST function also returns True if the first member of Dimension is being
calculated; otherwise, it returns False.

FOR

Syntax

FOR(Index, Start, Finish, Loop Body)

Description

The FOR function loops through a series of values.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 175

Parameters

Parameter Description

Index The name of the variable that holds the index number.

Start The index value at which to start the loop.

Finish The index value at which to finish the loop.

Loop Body The action to take at the current index.

Example

The following formula raises a base to an integral exponent without using the ^ operator:

IF(EXPONENT <> TRUNC(EXPONENT), RETURN(0.0));
SET(&Result, 1);
FOR(&Index, 1, ABS(EXPONENT),
 SET(&Result, &Result * BASE)
);
IF(EXPONENT >= 0, &Result, 1 / &Result)

In this formula, the FOR function sets the specified variable to each value at the beginning of the loop,
counting up if Finish is greater than Start, and counting down if Start is greater than Finish.

FORCHILDREN

Syntax

FORCHILDREN(Dimension, Expression, {#DIRECT/#ALL/#DETAILS, {Parent Member}})

Note. The third and fourth arguments are optional.

Description

The FORCHILDREN function loops through all child members of a dimension's parent member, unless you
interrupt the FORCHILDREN function with a BREAK function.

Parameters

The FORCHILDREN function takes two required arguments and two optional arguments. The first and
second arguments are required. The third and fourth arguments are optional.

Using Built-in Functions in Analytic Models Chapter 11

176 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Parameter Description

Dimension The dimension to use.

Expression The expression to evaluate for each iteration.

#DIRECT, #ALL, #DETAILS This argument is optional. Select from one of these predefined constants.

Note. #DIRECT is the default constant.

Parent Member This argument is optional. If you do not use this argument, the function applies to
the member that is currently being evaluated.

Example

FORCHILDREN(Region,
 IF(Sales > & MaxSales,
 &MaxSales := Sales;
 &Region:= Member;
),
 #DIRECT,
 [Region:USA]
);
 &Region;

See Also

Chapter 9, "Creating Hierarchies," Pushed Down Data, page 87

FORMEMBERS

Syntax

FORMEMBERS(Dimension, Direction, Expression)

Description

The FORMEMBERS function loops through all of the members of a dimension (unless you interrupt it with
the BREAK function).

Parameters

Parameter Description

Dimension The dimension to use.

Direction The direction to loop through the members (#FORWARD or #REVERSE).

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 177

Parameter Description

Expression The expression to evaluate for each iteration.

Example

Consider the following formula that uses DLOOKUP:

DLOOKUP(RANGES, COMMISSION_RATE, SALES >= SALES_LEVEL, #REVERSE)

You could achieve the same thing with the FORMEMBERS function:

FORMEMBERS(RANGES, #REVERSE,
 IF(SALES >= SALES_LEVEL, RETURN(COMMISSION_RATE))
);
RETURN(0)

Of course, in this case it is simpler just to use the DLOOKUP function, but the FORMEMBERS function
makes it possible to perform more sophisticated lookups and tabulations. For example, the following formula
returns the product that has the highest sales:

FORMEMBERS(PRODUCTS, #FORWARD,
 IF(SALES > &MaxSales,
 SET(&MaxSales, SALES);
 SET(&Product, MEMBER(PRODUCTS))
)
);
&Product

Following is how you would have to do it without procedural logic:

DLOOKUP(PRODUCTS, MEMBER(PRODUCTS), SALES = DMAX(PRODUCTS, SALES))

The above version is shorter, but it is much less efficient than the version that uses procedural logic, because
it calculates the DMAX repeatedly for every product.

You could eliminate some of the redundancy by using an expression block and a variable:

SET(&MaxSales, DMAX(PRODUCTS, SALES));
DLOOKUP(PRODUCTS, MEMBER(PRODUCTS), SALES = &MaxSales)

The previous version is more effective than the version that does not use procedural logic, but it is not as
effective as the version that uses procedural logic. This is because in the version that does not use procedural
logic, the FORMEMBERS function only loops through the products once. In the previous version, it loops
through them twice—once for the DMAX and once for the DLOOKUP—although the DLOOKUP stops
when it finds the right product.

FV

Syntax

FV(Rate, NPer, Pmt, PV, {Type})

Using Built-in Functions in Analytic Models Chapter 11

178 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Description

The FV function returns the Future Value of an investment with a present value of PV, where Pmt is invested
for NPer periods at Rate per period. If Type is omitted or zero, FV assumes the investment is an ordinary
annuity. If Type is nonzero, FV assumes the investment is an annuity due.

Note. Enter negative amounts for money out of your pocket, or positive amounts for money coming to you.

Example

Suppose that you deposit USD 1000 at the end of each year in a savings account that earns 6 percent per year.
To determine the value of the account after 8 years, use the following formula:

FV(0.06, 8, -1000, 0) = 9897

If you deposit the USD 1000 at the start of each year, use the following formula for the VALUE_OF_ACCT
data cube. The 1 for the Type argument indicates an annuity due:

FV(0.06, 8, -1000, 0, 1) = 10491

If the account already has USD 3000 in it at the start of the 8 years, use the following formula:

FV(0.06, 8, -1000, -3000, 1) = 15273

GROUPAVG

Syntax

GROUPAVG(Dimension to Group, Expression, Association 1, {Association 2 ...})

Description

Use the GROUPAVG function to average information by group. Expression contains the data to sum. The
Assocation(s) indicate for which group(s) to average.

Example

Suppose that you want to average employee salaries by department. Create an analytic model definition that
contains the following data cubes:

1. EMPLOYEE_SALARY, which uses a dimension called EMPLOYEES.

This data cube contains the salary for each employee.

2. AVERAGE_DEPARTMENT_SALARY, which uses a dimension called DEPARTMENTS.

This data cube contains the average salaries for each department.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 179

3. An association data cube called EMPLOYEE_DEPT by performing the following:

• Create the EMPLOYEE_DEPT data cube.

• Format the EMPLOYEE_DEPT data cube as a member of the DEPARTMENTS dimension.

• Attach the EMPLOYEES dimension to the EMPLOYEE_DEPT data cube.

Calculate Department Salary with the following formula:

GROUPAVG(EMPLOYEES, EMPLOYEE_SALARY, EMPLOYEE_DEPT)

You can read this formula as follows: Average the employees' salaries by department.

To calculate group averages of all members that meet a condition, use an IF function as the expression, with
#N/A as the third argument. For example, to calculate average officer salaries by department, you could use
IF(IS_OFFICER, EMPLOYEE_SALARY, #N/A) instead of EMPLOYEE_SALARY in the formula
above.

GROUPBY

Syntax

GROUPBY(Association)

Description

Use the GROUPBY function in a condition to group detail members by summary members (for example,
employees by department). The argument must be an association data cube; otherwise, the function returns an
error.

Example

Suppose that an analytic model contains an association data cube called DEPARTMENTS, which associates
each employee with a particular department. The following formula for the EMPLOYEES_IN_DEPT cube
uses DCOUNT and GROUPBY to calculate the number of employees in each department:

DCOUNT(EMPLOYEES, GROUPBY(DEPARTMENTS))

The following formula for the AVG_SALARY_BY_DEPT data cube uses DAVG and GROUPBY to
calculate the average salary for each department:

DAVG(EMPLOYEES, EMPLOYEE_SALARY, GROUPBY(DEPARTMENTS))

You can combine the GROUPBY function with other conditions. For example, the following formula for the
OFFICER_SALARIES_BY_DEPT cube uses the DSUM function to calculate the total officer salaries in
each department. By combining IS_OFFICER with the GROUPBY function, the formula ensures that only
officers are included in the sum:

DSUM(EMPLOYEES, EMPLOYEE_SALARY, GROUPBY(DEPARTMENTS) .AND. IS_OFFICER)

Using Built-in Functions in Analytic Models Chapter 11

180 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Note that DSUM(EMPLOYEES, EMPLOYEE_SALARY, GROUPBY(DEPARTMENTS)) is equivalent to
GROUPSUM(EMPLOYEES, EMPLOYEE_SALARY, DEPARTMENTS). Using DSUM with GROUPBY is
more flexible, because you can include other conditions, as shown in the formula above. On the other hand,
the GROUPSUM function calculates significantly faster. For this reason, if you want to sum by group and
you do not need to include other conditions, use the GROUPSUM function.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," DCOUNT, page 167; Chapter 11, "Using Built-in
Functions in Analytic Models," DAVG, page 165; Chapter 11, "Using Built-in Functions in Analytic
Models," DSUM, page 172 and Chapter 11, "Using Built-in Functions in Analytic Models," GROUPSUM,
page 182

GROUPMAX

Syntax

GROUPMAX(Dimension to Group, Expression, Association 1, {Association 2 ...})

Description

Use the GROUPMAX function to maximize information by group. Expression contains the data to maximize.
The Association(s) indicate for which group(s) to maximize.

Example

Suppose that you want to maximize sales information by product. Create an analytic model definition that
contains the following dimensions:

1. TRANSACTIONS, which contains a series of sales transactions.

2. PRODUCTS, which contains a dimension of products.

Define the following data cubes:

1. SALE_AMOUNT, which uses the TRANSACTIONS dimension. This data cube contains the amount of
each sale.

2. An association data cube called PRODUCT_SOLD, which associates TRANSACTIONS with
PRODUCTS.

See Chapter 5, "Creating Data Cubes," Creating Association Data Cubes, page 42.

3. MAXIMUM_SALES_BY_PRODUCT, which uses the PRODUCTS dimension.

Calculate this data cube with the following formula:

GROUPMAX(TRANSACTIONS, SALE_AMOUNT, PRODUCT_SOLD)

You can read this formula as follows: Find the maximum transactions' sale amounts by product.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 181

To calculate group maximums of all members that meet a condition, use an IF function as the expression,
with #N/A as the third argument. For example, use IF(VALID, SALE_AMOUNT, #N/A) instead of
SALE_AMOUNT in the formula above.

GROUPMIN

Syntax

GROUPMIN(Dimension to Group, Expression, Association 1, {Association 2 ...})

Description

Use the GROUPMIN function to minimize information by group. Expression contains the data to minimize.
The Association(s) indicate for which group(s) to minimize.

Example

Suppose that you want to minimize sales information by product. Create an analytic model definition that
contains the following dimensions:

1. TRANSACTIONS, which contains a series of sales transactions.

2. PRODUCTS, which contains a series of products.

Define the following data cubes:

1. SALE_AMOUNT, which uses the TRANSACTIONS dimension.

This data cube contains the amount of each sale.

2. An association data cube called PRODUCT_SOLD, which associates TRANSACTIONS with
PRODUCTS.

See Chapter 5, "Creating Data Cubes," Creating Association Data Cubes, page 42.

3. MINIMUM_SALES_BY_PRODUCT, which uses the PRODUCTS dimension. Calculate this data cube
with the following formula:

GROUPMAX(TRANSACTIONS, SALE_AMOUNT, PRODUCT_SOLD)

You can read this formula as follows: Find the maximum transactions' sale amounts by product.

To calculate group maximums of all members that meet a condition, use an IF function as the expression,
with #N/A as the third argument. For example, use IF(VALID, SALE_AMOUNT, #N/A) instead of
SALE_AMOUNT in the formula above.

Using Built-in Functions in Analytic Models Chapter 11

182 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

GROUPSUM

Syntax

GROUPSUM(Dimension to Group, Expression, Association 1, {Association 2 ...})

Description

Use the GROUPSUM function to sum information by group. Expression contains the data to sum. The
Association(s) indicate what group(s) to sum by.

Example

The following examples provide uses of the GROUPSUM function:

Example 1

For example, suppose you want to sum employee salaries by department. Create an analytic model definition
that contains the following data cubes:

1. EMPLOYEE_SALARY, which uses a dimension called EMPLOYEES.

This data cube contains the salary for each employee.

2. DEPARTMENT_SALARY, which uses a dimension called DEPARTMENTS.

This data cube contains the total salaries for each department.

3. An association data cube called EMPLOYEE_DEPT, which associates each employee with a particular
department.

Calculate DEPARTMENT_SALARY with the following formula:

GROUPSUM(EMPLOYEES, EMPLOYEE_SALARY, EMPLOYEE_DEPT)

You can read this formula as follows: Sum the employees' salaries by department.

Example 2

The GROUPSUM function can also perform more complex groupings. For example, suppose you want to
sum employee salaries by branch and department. To do this, perform the following additional steps:

1. Create a dimension called BRANCHES, which contains a dimension of the branches.

2. Create an association data cube called EMPLOYEE_BRANCH, which associates the EMPLOYEES
dimension with the BRANCHES dimension.

3. Define a data cube called SALARY_BY_BRANCH_AND_DEPT, which uses both the BRANCHES and
DEPARTMENTS dimensions. Calculate this data cube with the following formula:

GROUPSUM(EMPLOYEES, EMPLOYEE_SALARY, EMPLOYEE_BRANCH, EMPLOYEE_DEPT)

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 183

You can read this formula as follows: Sum the employees' salaries by branch and department.

As this example demonstrates, you can summarize detail information for a combination of dimensions by
using an association for each dimension.

Example 3

In many cases, it is useful to summarize information by date. In these cases, use a data cube with a Date
format instead of an association.

For example, suppose you want to summarize sales information by product and month. Create an analytic
model definition that contains the following dimensions:

1. TRANSACTIONS, which contains a series of sales transactions.

2. PRODUCTS, which contains a dimension of products.

3. MONTHS, which contains a series of months.

Define the following data cubes:

1. SALE_AMOUNT, which uses the TRANSACTIONS dimension.

This data cube contains the amount of each sale.

2. An association data cube called PRODUCT_SOLD, which associates TRANSACTIONS with
PRODUCTS.

3. SALE_DATE, which uses the TRANSACTIONS dimension and the YYYY/MM/DD format. This data
cube contains the date for each transaction.

4. MONTHLY_SALES, which uses the PRODUCTS and MONTHS dimension. Calculate this data cube
with the following formula:

GROUPSUM(TRANSACTIONS, SALE_AMOUNT, PRODUCT_SOLD, SALE_DATE)

You can read this formula as follows: Sum the transactions' sale amounts by product and sale date. Because
SALE_DATE is Date formatted (YYYY/MM/DD), the GROUPSUM function knows to sum by date.

To calculate group sums of all members which meet a condition, use an IF function as the expression, with
#N/A as the third argument. For example, use IF(Valid, SALE_AMOUNT, #N/A) instead of
SALE_AMOUNT in the MONTHLY_SALES formula above.

GROW

Syntax

GROW(Dimension, Start Value, Growth Rate)

Description

The GROW function returns a number representing the specified Growth Rate per Member from Start Value.
This is a straight line growth function.

Using Built-in Functions in Analytic Models Chapter 11

184 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example

Suppose that an analytic model contains single value data cubes called SALES_START and
ANNUAL_GROWTH. You can project the monthly sales with the following formula:

GROW(MONTHS, SALES_START, ANNUAL_GROWTH / 12)

Note that you must divide ANNUAL_GROWTH by 12, because the GROW function expects a growth rate
per member, and the members in this case are months.

Note. For the GROW function to return meaningful results, the Start Value and Growth Rate arguments
should not use the dimension indicated by the dimension argument. For example, if you are calculating
monthly values, the Start Value and Growth Rate arguments should not use the MONTHS dimension.

IF

Syntax

IF(Condition, Result if True, Result if False)

Description

The IF function returns Result if True if Condition is true; otherwise, the function returns Result if False.

Returns

Result if True if Condition is true; otherwise, the function returns Result if False.

Example

For example, suppose a company awards its salespeople a 10 percent commission on sales of at least USD
20000, and a 5 percent commission on sales under USD 20000. You create a COMMISSION cube and can
compute the commission for each person as follows:

IF(SALES >= 20000, 0.1 * SALES, 0.05 * SALES)

The IF function in this formula tests whether SALES is greater than or equal to 20000. If so, the function
returns 10 percent of SALES; otherwise, the function returns 5 percent of SALES.

INC

Syntax

INC(Original Value, Amount to Increment)

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 185

Description

The INC function returns an incremental value based on an original value and the amount to increment.

Returns

An incremental value based on an original value and the amount to increment.

Example

INC(&NumMonths, &EndMonth - &StartMonth - 1)

This formula adds the months between the start and end month to the variable &NumMonths.

INCDATE

Syntax

INCDATE(Date, Months, Years)

Description

The INCDATE returns the value of Date incremented by Months and Years.

Returns

The value of Date incremented by Months and Years.

Example

If Date contains the date 2001/04/18, INCDATE(Date, 3, 2) returns the date 2003/07/18.

If Date falls on the last day of a month, INCDATE returns a date that falls on the last day of a month, even if
it has to change the day. For example, if Date contains the date 2003/04/30, then INCDATE(Date, 3, 2)
returns the date 2005/07/31 rather than 2005/07/30. Because Date contains the last day of April, INCDATE
returns the last day of July.

Suppose that an analytic model contains a data cube called HIRE_DATE that uses a dimension called
EMPLOYEES. Company policy starts benefits for an employee three months after the hire date. The
following formula calculates the benefits date for each employee as follows:

INCDATE(HIRE_DATE, 3, 0)

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," IF, page 184

Using Built-in Functions in Analytic Models Chapter 11

186 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

INPUT

Syntax

INPUT()

Description

The INPUT function returns the value that an end user has entered into a cell, and supports both calculated
cells and input cells in a single data cube.

Returns

The value that an end user has entered into a cell.

Example

You can use the INPUT function in both an IF function and a CASE function. For example:

IF([SCENARIOS:Actual], INPUT(), FORECAST_REVENUE_CALCULATION)

This formula returns 88 if the Scenario value is Actual and the end user enters 88. This formula causes all
cells for the Actual dimension member to become input cells, leaving the remaining cells to be calculated.

When a formula uses the INPUT function, the analytic calculation engine evaluates the formula for a
particular cell to determine whether it should be an input cell. As long as the input condition in the formula
refers to input cubes and member references, no recalculation is necessary to ensure that the correct cells are
treated as input cells.

The INPUT function works a lot like the RETURN function; it causes the analytic calculation engine to stop
evaluating the formula and to immediately return a value, which in this case is the current value of the cell.
The INPUT function works like RETURN(SELF()), and additionally makes the cell editable.

See Also

Chapter 5, "Creating Data Cubes," Input Data Cubes, page 35 and Chapter 11, "Using Built-in Functions in
Analytic Models," ISINPUT, page 187

INSUBTREE

Syntax

INSUBTREE(Dimension, Parent Member, {Child Member})

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 187

Description

The INSUBTREE function returns a boolean value identifying whether a child member is in a sub-tree that
contains a parent member as its root.

Parameters

The INSUBTREE function takes two required arguments and one optional argument. The first and second
arguments are required. The third argument is optional.

Parameter Description

Dimension The dimension to use.

Parent Member The parent member to use.

Child Member This optional argument tests whether the child member lies within a sub-tree that
contains the parent member (as supplied in the second argument) as its root.

Example

INSUBTREE(Region, [Region:USA], [Region:Oakland]);

ISINPUT

Syntax

ISINPUT(Cube)

Description

The ISINPUT function returns True if the user has entered the current value of the cube.

Example

ISINPUT(Cube with no formula) returns True.

ISINPUT(Cube with formula) returns False.

The ISINPUT function provides an easy way to filter tables so that they show input cells. The ISINPUT
function takes a single argument, which must be a cube.

Using Built-in Functions in Analytic Models Chapter 11

188 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

To work well with filter functions, the function maps totals to the first member of the dimension if a first
member exists. Because the row filters are not aware of members in the columns—and vice versa—the
analytic calculation engine usually evaluates totals in formulas. The analytic calculation engine already bends
the total mapping rules for filters for this reason; the behavior of ISINPUT is just an extension of this
behavior.

INTERCEPT

Syntax

INTERCEPT(Dimension, Y, X, {Condition})

Description

The INTERCEPT function returns the Y-intercept of the line that has the closest fit to the points represented
by Y and X. (The Y-intercept is the point at which the line crosses the Y axis.) If Condition is omitted, the
function fits the line to all of the members in Dimension. If Condition is included, the function fits the line
only to those members that meet the condition.

Use the INTERCEPT function together with the SLOPE function to find the line with the closest fit to a set of
points. You can use these functions to analyze a historical trend, and then use the trend to make forecasts. For
interesting examples of how to use these functions, see the entry for the SLOPE function.

Returns

The Y-intercept of the line that has the closest fit to the points represented by Y and X. (The Y-intercept is the
point at which the line crosses the Y axis.) If Condition is omitted, the function fits the line to all of the
members in Dimension. If Condition is included, the function fits the line only to those members that meet the
condition.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," SLOPE, page 216

IRR

Syntax

IRR(Dimension, Cash Flow, {Guess}, {Condition})

Description

The IRR function returns the Internal Rate of Return for Cash Flow.Guess can be omitted (or zero) in most
cases. If IRR is unable to find the Internal Rate of Return, it returns an error value. In such cases, you can use
a nonzero Guess to nudge IRR toward the correct answer.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 189

Note. Some cash flows have no valid Internal Rate of Return, in which case IRR returns an error value for
any Guess.

If Condition is omitted, the function uses all values of Cash Flow. If Condition is included, the function uses
only those values of Cash Flow for which Condition is True.

The initial values in the cash flow should be negative to represent a cash outflow. The remaining values may
be all positive (representing cash inflows) or a combination of positive and negative.

Returns

The Internal Rate of Return for Cash Flow.Guess can be omitted (or zero) in most cases. If IRR is unable to
find the Internal Rate of Return, it returns an error value. In such cases, you can use a nonzero Guess to nudge
IRR toward the correct answer.

Example

You can calculate the internal rate of return for a data cube called IRR_OF_CASH_FLOW with this formula:

IRR(MONTHS, CASH_FLOW)

You can calculate the internal rate of return for the first 12 months for a data cube called
RR_FOR_1ST_12_MONTHS with this formula:

RR(MONTHS, CASH_FLOW, 0, MEMBER(MONTHS) <= 12)

The Condition ensures that the IRR function uses only those values for which the month index is 12 or less.

LN

Syntax

LN(Data)

Description

The LN function returns the natural logarithm of Data. The value of Data must be greater than zero;
otherwise, LN returns an error value.

Example

These examples employ the LN built-in function:

• LN(7)returns 1.9459101491.

• LN(E() ^ 5) returns 5.

• LN(25) / LN(5) returns 2.

Using Built-in Functions in Analytic Models Chapter 11

190 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• LN(-7)returns an error.

LEFT

Syntax

LEFT(Text, Count)

Description

The LEFT function returns the first Count characters of Text.

Returns

The first Count characters of Text.

Example

LEFT("StringFun", 6) returns String.

LEN

Syntax

LEN(Text)

Description

The LEN FUNCTION returns the number of characters in text string.

Returns

The number of characters in text string.

Example

LEN("StringFun") returns 9.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 191

LOWER

Syntax

LOWER(Text)

Description

The LOWER FUNCTION returns text converted to lower case.

Returns

Text converted to lower case.

Example

LOWER("StringFun") returns stringfun.

MATCH

Syntax

MATCH(Text Expression or Text Cube, Pattern, {Case Sensitive}, {Match Type}})

Description

The MATCH function returns True if Text Expression or Text Cube matches Pattern.

Pattern can be any of the following:

• A text value in quotes (for example, "hello").

• A data cube with a Text format.

• The VALUE function, as in VALUE("Name").

If Case Sensitive is omitted or zero, the function ignores case. If Case Sensitive is nonzero, the function
performs a case sensitive match.

Match Type can be one of these values:

• 0: Text contains Pattern.

• 1: Text matches Pattern exactly.

• 2: Text begins with Pattern.

Using Built-in Functions in Analytic Models Chapter 11

192 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• 3: Text ends with Pattern.

If the Match Type argument is omitted, it is assumed to be zero (text contains Pattern).

Returns

True if Text Expression or Text Cube matches Pattern.

Example

Suppose that Title = "A Quick Brown Fox" and Pattern = "brown." These results occur:

• MATCH(Title, "A quick brown fox") returns True. (Case Sensitive argument is omitted, so
the case does not have to match.)

• MATCH(Title, "a quick brown fox", 1) returns False. (Case Sensitive argument is 1, and
the case does not match.)

• MATCH(Title, "A Quick Brown", 1, 1) returns False. (Match Type argument is 1, and the
pattern does not match exactly.)

• MATCH(Title, "brown") returns True. (Title contains Brown.)

• MATCH(Title, Pattern) returns True. (Pattern equals brown, and Title contains the word Brown.)

• MATCH(Title, "a quick", 0, 2) returns True. (Title begins with A Quick.)

• MATCH(Title, "fox", 0, 2) returns False. (Title does not begin with fox.)

• MATCH(Title, "fox", 0, 3) returns True. (Title ends with Fox.)

• MATCH(LEFT(Title, 6), "Brown Fox", 1, 2) returns False (Title does not begin with
Brown Fox.)

• MATCH(MID(Title, 0, 7), "A Quick", 1) returns True (Title contains A Quick.)

• MATCH(RIGHT(Title, 9), "Brown Fox", 1, 3) returns True (Title ends with Brown Fox.)

MAX

Syntax

MAX(arg1, arg2, . . . arg16)

Description

The MAX Function returns the maximum of a series of values. The MAX Function accepts up to 16
arguments.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 193

Example

Given A = 4, B = 3, C = 2, D = 1

MAX(A, B, C, D) returns A.

You can sometimes simplify formulas by using the MAX function instead of the IF function. For example,
suppose an analytic model contains data cubes called CASH_BALANCE and CASH_MINIMUM. You might
be tempted to calculate the CASH_NEEDED cube by using the following formula:

IF(CASH_BALANCE < CASH_MINIMUM,CASH_MINIMUM - CASH_BALANCE, 0)

In other words, if CASH_BALANCE is less than CASH_MINIMUM, return the amount required to attain the
minimum cash level; otherwise, return zero. Although the IF function does the job, it is simpler to use the
MAX function:

MAX(CASH_MINIMUM - CASH_BALANCE, 0)

If CASH_BALANCE is greater than CASH_MINIMUM, the first argument is negative, so the formula
returns zero for CASH_NEEDED. If CASH_BALANCE is less than CASH_MINIMUM, the first argument
is positive, so the formula returns the amount required to attain the minimum cash level.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," IF, page 184 and Chapter 11, "Using Built-in
Functions in Analytic Models," MIN, page 196

MBR2TEXT

Syntax

MBR2TEXT(Dimension, {Member})

Description

The MBR2TEXT function converts a member to text by returning its name. The Member argument can be an
association data cube, a member reference, a member index, or a function or expression that returns a
member. If Member is omitted, the function returns the name of the current member in Dimension. In other
words, it is equivalent to:

MBR2TEXT(DIMENSION, MEMBER(DIMENSION))

Example

MBR2TEXT(MONTH) returns January.

Using Built-in Functions in Analytic Models Chapter 11

194 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

MEDIAN

Syntax

MEDIAN(Dimension, Values, {Condition})

Description

The MEDIAN function returns the median of Values. If Condition is omitted, the function uses all Values. If
Condition is included, the function uses only those Values for which Condition is true.

Returns

The median of Values. If Condition is omitted, the function uses all Values. If Condition is included, the
function uses only those Values for which Condition is true.

Example

Suppose that a cube collection contains a data cube called SALES that uses dimensions called PEOPLE and
MONTHS. It also contains a data cube called MEDIAN_OF_SALES that contains the following formula for
calculating the median over time for each person:

MEDIAN(MONTHS, SALES)

The cube collection also contains a data cube called MEDIAN_OF_SALES_IN_FIRST_6_MONTHS that
contains this formula:

MEDIAN(MONTHS, SALES, MEMBER(MONTHS) <= 6)

MEMBER

Syntax

MEMBER(Dimension)

Description

The MEMBER function returns the Member being calculated.

Returns

The member being calculated.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 195

Example

The following examples employ the MEMBER function:

Example 1

You can perform different calculations for different ranges of members by comparing the MEMBER function
to a number. For example, to perform a special calculation for the first six months, use the MEMBER
function with the IF function:

IF(MEMBER(MONTHS) <= 6, EXPR_FOR_1ST_6_MONTHS, EXPR_FOR_OTHER_MONTHS)

Example 2

You can perform special calculations for a particular member in a dimension by comparing the MEMBER
function to a member reference. For example, suppose that your company allocates the Administration
department's expense equally to all of the other departments. Your analytic model contains a
DEPARTMENTS dimension, of which Admin is a member. Your analytic model also contains a data cube,
TOTAL_EXPENSE, that contains the total expense for each department. The following formula describes
how you would calculate the administration allocation for each department in a data cube called
ADMIN_ALLOCATION:

IF(MEMBER(DEPARTMENTS) = [DEPARTMENTS:Admin], -TOTAL_EXPENSE, TOTAL_EXPENSE
[DEPARTMENTS:Admin] / (NUMMEMBERS(DEPARTMENTS) - 1))

The NUMMEMBERS function returns the number of members in a dimension. The key to this formula is that
the allocation for each department is the same except for Admin. The IF function checks which department is
being calculated. If the department is Admin, the result is minus Total Expense so that it backs out the
expense for the Admin department. If the department is not Admin, the result is Total Expense for Admin—
notice the data cube slice—divided by the number of departments other than Admin.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," IF, page 184 and Chapter 11, "Using Built-in
Functions in Analytic Models," NUMMEMBERS, page 201

MID

Syntax

MID(Text, Start, {Count})

Description

The MID function returns Count characters from text, beginning with Start. If Count is omitted, returns all
characters to the end of text.

Using Built-in Functions in Analytic Models Chapter 11

196 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example

MID("StringFun", 6, 3) returns Fun.

MIN

Syntax

MIN(X, Y)

MIN(arg1, arg2, . . . arg16)

Description

The MIN function returns the minimum of a series of values. It accepts up to 16 arguments.

Example

Given A = 4, B = 3, C = 2, D = 1.

MIN(A, B, C, D) returns D.

You can sometimes simplify formulas by using the MIN function instead of the IF function. For example,
suppose that an analytic model contains data cubes called CASH_NEEDED, CREDIT_BALANCE, and
MAX_CREDIT. You might be tempted to calculate the CREDIT_DRAW by using the following formula:

IF(CASH_NEEDED <= MAX_CREDIT - CREDIT_BALANCE, CASH_NEEDED, MAX_CREDIT - CREDIT_
BALANCE)

In other words, if CASH_NEEDED is less than or equal to the available credit, draw the full
CASH_NEEDED; otherwise, draw the available credit. Although the IF function does the job, the MIN
function is simpler:

MIN(CASH_NEEDED, MAX_CREDIT - CREDIT_BALANCE)

If CASH_NEEDED is less than the available credit, the formula returns CASH_NEEDED; otherwise, the
formula returns the available credit.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," IF, page 184 and Chapter 11, "Using Built-in
Functions in Analytic Models," MAX, page 192

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 197

MOD

Syntax

MOD(X, Y)

Description

The MOD function returns the remainder of X divided by Y. If Y is zero, MOD returns an error value.

Returns

The remainder of X divided by Y. If Y is zero, MOD returns an error value.

Example

The following examples employ the MOD built-in function:

• MOD(10, 4) returns 2.

• MOD(15, 10) returns 5.

• MOD(15, 5) returns 0.

• MOD(15, 0) returns an error value.

MONTH

Syntax

MONTH({Date})

Description

The MONTH function returns the month of Date. If Date is omitted, the function returns the month of the
calculation date.

Returns

The month of Date. If Date is omitted, the function returns the month of the calculation date.

Using Built-in Functions in Analytic Models Chapter 11

198 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example

If A = 2004/03/15 and B = 2005/06/22, MONTH(A) returns 3 and MONTH(B) returns 6.

Now suppose that an analytic model contains a data cube called MONTH_EXAMPLE that uses a dimension
called MONTHS and has the formula MONTH_EXAMPLE = MONTH(). Because the argument is omitted,
MONTH returns the month for each date in the MONTHS dimension.

Following is a useful example of the MONTH function. Suppose that you define a data cube called
MONTHLY_SALES that uses a dimension called MONTHS. You want to calculate the average sales for
each month of the year. In other words, you want to know the average sales for the first month of each year,
the average sales for the second month of each year, and so on. To do this, create a dimension called
MONTH_NUM that contains members numbered 1 to 12. Then define a data cube called
AVG_SALES_BY_MONTH that uses the MONTH_NUM dimension. Finally, enter the following formula
for the AVG_SALES_BY_MONTH cube:

DAVG(MONTHS, MONTHLY_SALES, MONTH() = MEMBER(MONTH_NUM))

See the entries for DAVG and MEMBER if you are unfamiliar with these functions. For each
MONTH_NUM member in AVG_SALES_BY_MONTH, the formula averages all Monthly Sales for which
the month of the year equals the index of the MONTH_NUM member. Thus, if the analytic calculation
engine calculates the fifth MONTH_NUM member for AVG_SALES_BY_MONTH, it averages the sales for
the dates 2004/05/03, 2004/05/04, and 2004/05/05, because these are the dates for which the MONTH()
function returns 5.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," DAVG, page 165 and Chapter 11, "Using Built-
in Functions in Analytic Models," MEMBER, page 194

NEXT

Syntax

NEXT(Dimension, Data, {Count})

Description

The NEXT function returns the value of Data from Count members forward in Dimension. If Count is
omitted, it is assumed to be 1.

Note. The NEXT function operates on detail member names that are persisted in the main record. This
function does not use trees to determine the order of members.

Returns

The value of Data from Count members forward in Dimension. If Count is omitted, it is assumed to be 1.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 199

Example

To refer to the next month's sales in a rule, use NEXT(MONTHS, SALES).

The NEXT function can be used together with the CUMAVG function to calculate a centered moving
average, such as the average sales for the six months before and after a given month. The centered moving
average gives a sense of the normal monthly value for the year surrounding a particular month. You can then
compare the actual monthly value to the normal monthly value to see how seasonality affected the sales.
Thus, if the actual monthly value for August is higher than the normal monthly value for the year surrounding
August, this may indicate that sales tend to be higher than average in August.

Suppose that the actual monthly sales are stored in a data cube called ACTUAL_SALES. Calculate the
CENTERED_AVG_SALES cube as follows:

NEXT(MONTHS, CUMAVG(MONTHS, ACTUAL_SALES, 13), 6)

This formula looks six months ahead (NEXT(MONTHS, ..., 6)), and then calculates the cumulative
average of the 13 months of sales preceding that time (CUMAVG(MONTHS, ACTUAL_SALES, 13)). For
example, when the analytic calculation engine calculates CENTERED_AVG_SALES for 2005/03, it looks
ahead six months to 2005/09, and then calculates the average sales for the 13 months preceding 2005/09.
Thus, the analytic calculation engine calculates the average sales for 2004/09 to 2005/09, which is the year
surrounding 2005/03.

Actually, this formula is not quite complete. You cannot calculate accurate results for the first six months or
the last six months of the analytic model because the analytic calculation engine is unable to look six months
back and six months ahead during those months. Therefore, the formula should return zero for those months:

IF(MEMBER(MONTHS) > 6 .AND. MEMBER(MONTHS) <= NUMMEMBERS(MONTHS) - 6, NEXT(MONTHS,
 CUMAVG(MONTHS, ACTUAL_SALES, 13), 6), 0)

The condition of the IF statement ensures that the month being calculated is after the first six months and
before the last six months of the analytic model. If the condition is true, the IF function returns the centered
moving average calculated by the second argument; otherwise, the IF function returns zero.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," DAVG, page 165; Chapter 11, "Using Built-in
Functions in Analytic Models," MEMBER, page 194 and Chapter 11, "Using Built-in Functions in Analytic
Models," NUMMEMBERS, page 201

NPER

Syntax

NPER(Rate, Pmt, PV, FV, {Type})

Using Built-in Functions in Analytic Models Chapter 11

200 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Description

The NPER function returns the number of payment periods required to accumulate a future value of FV when
the present value is PV, the payment is Pmt, and the rate is Rate. If Type is omitted or zero, NPER assumes
that the investment is an ordinary annuity. If Type is nonzero, NPER assumes that the investment is an
annuity due.

Note. Enter negative amounts for money out of your pocket, or positive amounts for money coming to you.

Example

Suppose that you deposit 1000 USD at the end of each year in a savings account that earns 6 percent per year.
To determine how many years it takes before the account is worth 20000 USD , use the following formula for
the YEARS_REQUIRED cube:

NPER(0.06, -1000, 0, 20000) = 13.53

Note. The decimal part of the answer is not particularly meaningful; you cannot be sure of getting the 20000
USD until the end of the 14th year.

If you deposit the 1000 USD at the start of each year, use the following formula. The 1 for the Type argument
indicates an annuity due:

NPER(0.06, -1000, 0, 20000, 1) = 12.99

If the account already has 5000 USD in it at the start, use the following formula:

NPER(0.06, -1000, -5000, 20000, 1) = 8.72

NPV

Syntax

NPV(Dimension, Rate, Cash Flow, {Type},{Condition})

Description

The NPV function returns the Net Present Value for Cash Flow, where Rate is the rate per period. If Type is
zero or omitted, NPV treats the investment as an ordinary annuity; otherwise, NPV treats the investment as an
annuity due. If Condition is omitted, the function uses all values of Cash Flow. If Condition is included, the
function uses only those values of Cash Flow for which Condition is true.

The initial values in the cash flow should be negative to represent a cash outflow. The remaining values may
be all positive (representing cash inflows), or a combination of positive and negative values.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 201

Example

You can create a data cube called NET_PRESENT_VALUE and calculate the net present value for a data
cube called CASH_FLOW with the following formula:

NPV(MONTHS, ANNUAL_RATE / 12, CASH_FLOW)

You can calculate the net present value for the first 12 months with the following formula:

NPV(MONTHS, ANNUAL_RATE / 12, CASH_FLOW, 0, MEMBER(MONTHS) <= 12)

The Condition ensures that the NPV function uses only those values for which the month index is 12 or less.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," MEMBER, page 194

NUM2TEXT

Syntax

NUM2TEXT(Number, {Decimal Places})

Description

The NUM2TEXT function converts Number to Text. Decimal Places specifies the number of decimal places
that are used to convert the number to text.

Example

NUM2TEXT(SALESPRICE, 3) for SALESPRICE's value of 10.23457 as the string 10.234.

NUMMEMBERS

Syntax

NUMMEMBERS(Dimension)

Description

The NUMMEMBERS function returns the number of members in Dimension.

Using Built-in Functions in Analytic Models Chapter 11

202 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Returns

Returns the number of members in Dimension.

Example

If a dimension called PRODUCTS contains eight members; NUMMEMBERS(Products) returns 8.

OPRID

Syntax

OPRID()

Description

The OPRID function returns the user ID of the user who currently has the analytic instance checked out.

Use the OPRID function within a filter user function whose purpose is to limit user ID access to only certain
rows of data.

Example

IF(AT(USERID, TXT2MBR(USERID, OPERID()), DEPT_CUBE) = MEMBER(DEPT_DIM),RETURN(1),
 RETURN(0))

This filter user function restricts user access to bonus amount data. Each user ID has access to only the bonus
amount that pertains to them. The filter user function contains these data cubes and dimensions:

• USERID dimension, which is mapped to the USERID field.

The USERID field contains the user IDs of the users that currently have the analytic instance loaded.

• DEPT_CUBE data cube, which is mapped to the DEPT_CUBE field.

This data cube is formatted as a member of the DEPT_DIM dimension.

• DEPT_DIM dimension, which is mapped to the DEPT_DIM field.

Note. The filter user function is applied to this dimension.

• BONUS_AMT data cube, which is mapped to the BONUS_AMT field.

These are the values of the fields that are mapped to the USERID dimension and DEPT_CUBE data cube:

USERID DEPT_CUBE

Juan Doc

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 203

USERID DEPT_CUBE

Albert Dev

Nigel PM

These are the values of the fields that are mapped to the DEPT_DIM dimension and BONUS_AMT data
cube:

DEPT_DIM BONUS_AMT

Dev 5000

Doc 4000

PM 7000

The analytic calculation engine performs these steps to calculate the filter user function:

1. The OPRID function returns the user ID of the current user in text format.

2. The TXT2MBR function compares the user ID with the member in the USERID dimension to determine
if they match.

If the user ID matches the member in the USERID dimension, the AT function searches for the
coordinates of the user ID member that is returned by TXT2MBR and returns the corresponding value of
DEPT_CUBE.

On the right-hand side of the equation, the MEMBER function returns the corresponding member of
DEPT_DIM.

3. The analytic calculation performs one of these actions:

• If the value returned from DEPT_CUBE matches the member returned from DEPT_DIM, the user ID
can see the bonus amount.

For example, the Dev value returned from DEPT_CUBE matches the Dev member returned from
DEPT_DIM. For this reason, Albert can see his bonus amount of 5000.

• If the value returned from DEPT_CUBE does not match the member returned from DEPT_DIM, the
user ID cannot see the bonus amount.

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," AT, page 156; Chapter 11, "Using Built-in
Functions in Analytic Models," MEMBER, page 194; Chapter 11, "Using Built-in Functions in Analytic
Models," TEXT2MBR, page 222 and Chapter 10, "Creating Rules, Formulas, and User Functions," Filter
User Functions, page 123

Using Built-in Functions in Analytic Models Chapter 11

204 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

PARENT

Syntax

PARENT(Dimension, {Child Member})

Description

The PARENT function returns the member reference to the parent of the specified member.

Parameters

The PARENT function takes one required argument and one optional argument. The first argument is
required. The second argument is optional.

Parameter Description

Dimension The dimension to use.

Child Member If this optional argument is not supplied, use the current calculated member for
this dimension.

Note. If the child member is the root, this function returns 1.

Returns

The member reference to the parent of the specified member.

Example

PARENT (Region, [Region:West]) returns a reference to the parent of [Region:West], which is
[Region:USA].

See Also

Chapter 9, "Creating Hierarchies," Pushed Down Data, page 87

PCT

Syntax

PCT(Dimension, Data, {Count})

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 205

Description

The PCT function returns the percentage change between the value of Data for the Member being calculated
and the value of Data for Count members back. If Count is omitted, it is assumed to be 1.

Returns

The percentage change between the value of Data for the Member being calculated and the value of Data for
Count members back. If Count is omitted, it is assumed to be 1.

Example

Suppose that you wish to calculate the monthly and yearly percentage change in a data cube called SALES. If
SALES uses a dimension called MONTHS, use the following formula:

PCT(MONTHS, SALES)

Because the Count argument is omitted, the program assumes it to be 1. Thus, the program calculates the
percentage change in sales from the previous month to the month being calculated. Calculate the
YEARLY_PERCENT_CHANGE cube by using 12 for the third argument:

PCT(MONTHS, SALES, 12)

This formula calculates the percentage change in SALES from 12 months ago to the month being calculated.

PERCENTILE

Syntax

PERCENTILE(Dimension, Values, Percentile, {Type}, {Condition})

Description

The PERCENTILE function returns a percentile of Values. The Percentile argument sets which percentile is
calculated. If Type is zero or omitted, PERCENTILE calculates a population percentile; otherwise,
PERCENTILE calculates a sample percentile. If Condition is omitted, the function uses all Values. If
Condition is included, the function uses only those Values for whichCondition is true.

Example

Suppose that an analytic model contains a data cube called SCORES that uses dimensions called STUDENTS
and TESTS.

The following formula calculates the 90th percentile of the scores for each test:

PERCENTILE(STUDENTS, SCORES, 90%)

The following formula calculates the 50th percentile of the first 10 students:

Using Built-in Functions in Analytic Models Chapter 11

206 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

PERCENTILE(STUDENTS, SCORES, 50%, MEMBER(STUDENTS) <= 10)

This formula calculates the 50th percentile (also knows as median) of the first 10 students for each test.

PI

Syntax

PI()

Description

The PI function returns the value of PI (3.1415926536), the ratio of a circle's circumference to its diameter.

The following formula calculates the area of a circle:

PI() * RADIUS ^ 2

Returns

The value of PI (3.1415926536), the ratio of a circle's circumference to its diameter.

Example

The following examples employ the PI function:

Example 1

PI() * 7 = 21.99 (circumference of a circle with a diameter of 7).

Example 2

PI() * 36 ^ 2 = 4071.50 (area of a circle with a radius of 36).

PMT

Syntax

PMT(Rate, NPer, PV, FV, {Type})

Description

The PMT function returns the payment required to repay a loan of PV, at an interest rate of Rate, where there
are NPer payments and an ending balance of FV. If Type is omitted or zero, PMT assumes that the loan is an
ordinary annuity. If Type is nonzero, PMT assumes that the loan is an annuity due.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 207

Note. Enter negative amounts for money out of your pocket, or positive amounts for money coming to you.

Returns

The payment required to repay a loan of PV, at an interest rate of Rate, where there are NPer payments and an
ending balance of FV. If Type is omitted or zero, PMT assumes that the loan is an ordinary annuity. If Type is
nonzero, PMT assumes that the loan is an annuity due.

Note. Enter negative amounts for money out of your pocket, or positive amounts for money coming to you.

Example

If you take out a loan for 50000 USD at a rate of 14 percent per year and 120 monthly payments, you can
create a PAYMENT cube and compute the payment required to repay the loan as follows:

PMT(0.14 / 12, 120, 50000, 0) = -776.33

If the loan has a balloon payment of 30000 USD at the end of the 120 months, compute the payment as
follows:

PMT(0.14 / 12, 120, 50000, -30000) = -660.53

If the payments are made at the start of the month rather than the end of the month, use the following formula:

PMT(0.14 / 12, 120, 50000, -30000, 1) = -652.92

PREV

Syntax

PREV(Dimension, Data, {Count})

Description

The PREV function returns the value of Data from Count members back in Dimension. If Count is omitted, it
is assumed to be 1.

Note. The PREV function operates on detail member names that are persisted in the main record. This
function does not use trees to determine the order of members.

Returns

The PREV function returns the value of Data from Count members back in Dimension. If Count is omitted, it
is assumed to be 1.

Using Built-in Functions in Analytic Models Chapter 11

208 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example

To refer to the previous month's sales in a formula, use PREV(MONTHS, SALES).

Suppose that you want to forecast the total monthly receipts for a company, assuming that some of each
month's sales are received immediately, some are received in one month, some are received in two months,
and some are received in three months. First, define data cubes that contain the estimated percentage of sales
received for each time period: PCT_RECV_IMMEDIATELY, PCT_RECV_IN_1_MONTH,
PCT_RECV_IN_2_MONTHS, PCT_RECV_IN_3_MONTHS. Next, define a monthly data cube called
SALES that contains the sales forecast for each month. Calculate the TOTAL_MONTHLY_RECEIPTS data
cube with these formulas:

• RECV_IMMEDIATELY data cube formula:

PCT_RECV_IMMEDIATELY * SALES

• RECV_IN_1_MONTH data cube formula:

PCT_RECV_IN_1_MONTH * PREV(MONTHS, SALES)

• RECV_IN_2_MONTHS data cube formula:

PCT_RECV_IN_2_MONTHS * PREV(MONTHS, SALES, 2)

• RECV_IN_3_MONTHS data cube formula:

PCT_RECV_IN_2_MONTHS * PREV(MONTHS, SALES, 3)

• TOTAL_MONTHLY_RECEIPTS data cube formula:

RECV_IMMEDIATELY + RECV_IN_1_MONTH + RECV_IN_2_MONTHS + RECV_IN_3_MONTHS

RECV_IMMEDIATELY contains the amount received from the current month's sales,
RECV_IN_1_MONTH contains the amount received from the previous month's sales, and so on. Add all of
these amounts together to calculate the total receipts for the month.

PREVSELF

Syntax

PREVSELF(Dimension, {Start Value}, {Count})

Description

The PREVSELF function returns the value of the current data cube from Count members back in Dimension.
When the program is calculating the first Count members of Dimension, PREVSELF returns Start Value. If
Start Value is omitted, it is assumed to be 0. If Count is omitted, it is assumed to be 1.

Note. The PREVSELF function operates on detail member names that are persisted in the main record. This
function does not use trees to determine the order of members.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 209

Returns

The PREVSELF function returns the value of the current data cube from Count members back in Dimension.
When the program is calculating the first Count members of Dimension, PREVSELF returns Start Value. If
Start Value is omitted, it is assumed to be 0. If Count is omitted, it is assumed to be 1.

Example

Suppose that you want to forecast sales. For each month, you want to add an estimated Sales Growth to the
previous month's sales. When calculating the first month, you want to add sales growth to starting sales. You
can do this with the following formula for the SALES cube:

PREVSELF(MONTHS, STARTING_SALES) + SALES_GROWTH

For the first month, this formula returns the starting sales plus sales growth. For every other month, the
formula returns the previous month's sales plus sales growth.

The PREVSELF function is useful for keeping a running balance of transactions. For example, suppose that
an analytic model contains monthly data cubes called DEPOSITS, WITHDRAWALS, and BALANCE, and a
single value data cube called START_BALANCE. You can calculate the BALANCE cube with the following
formula:

PREVSELF(MONTHS, START_BALANCE) + DEPOSITS - WITHDRAWALS

This formula calculates the ending balance for each month by adding DEPOSITS and subtracting
WITHDRAWALS from the ending balance for the previous month. Because no previous balance is available
for the first month, the PREVSELF function returns the value of Start Balance.

PV

Syntax

PV(Rate, NPer, Pmt, FV, {Type})

Description

The PV function returns the Present Value of an investment with a future value of FV, where Pmt is received
for NPer periods and is discounted at the rate of Rate per period. If Type is omitted or zero, PV assumes that
the investment is an ordinary annuity. If Type is nonzero, PV assumes that the investment is an annuity due.

Note. Enter negative amounts for money out of your pocket, or positive amounts for money coming to you.

Example

Suppose that a machine that sells for 80000 USD saves your company 11000 USD a year for 10 years.
Assuming that the money saved could be invested at 8 percent per year, you can calculate the
PRESENT_VALUE cube as follows:

Using Built-in Functions in Analytic Models Chapter 11

210 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

PV(0.08, 10, 11000, 0) = -73811

The present value of the machine is 73811 USD, indicating that you might be better off investing the 80000
USD in another way. But suppose that you can sell the machine for 30000 USD at the end of the 10 years.
You can calculate the PRESENT_VALUE cube as follows:

PV(0.08, 10, 11000, 30000) = -87707

In this case, the present value is higher than the cost of the machine, indicating a profitable investment.

QUARTILE

Syntax

QUARTILE(Dimension, Values, Quartile, {Type}, {Condition})

Description

The QUARTILE function returns a quartile of Values.

The Quartile argument sets which quartile (0, 1 ,2 , 3, or 4) is calculated. If Type is zero or omitted,
QUARTILE calculates a population quartile; otherwise, QUARTILE calculates a sample quartile. If
Condition is omitted, the function uses all Values. If Condition is included, the function uses only those
Values for which Condition is true.

Returns

The QUARTILE function returns a quartile of Values. The Quartile argument sets the quartile (0, 1 ,2 , 3, or
4) that is calculated. If Type is zero or omitted, QUARTILE calculates a population quartile; otherwise,
QUARTILE calculates a sample quartile. If Condition is omitted, the function uses all Values. If Condition is
included, the function uses only those Values for which Condition is true.

Example

For example, suppose that an analytic model contains a data cube called SCORES that uses dimensions called
STUDENTS and TESTS.

The following formula calculates the third quartile of the scores for each test.

QUARTILE(STUDENTS, SCORES, 3)

The following formula calculates the second quartile (also known as the median) of the first ten students:

QUARTILE(STUDENTS, SCORES, 2, MEMBER(STUDENTS) <= 10)

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 211

RAND

Syntax

RAND()

Description

The RAND function returns a random decimal number greater than or equal to zero and less than one.

The RAND function uses an industrial strength random number generator with an extremely long period.
Thus, it is suitable for use in statistical simulation.

The Analytic Calculation Engine RAND function does not cause a cube to be calculated during every
recalculation, unlike in Microsoft Excel. Formulas that use RAND typically refer to some other data in the
analytic model, and the analytic calculation engine recalculates the cube only when the other data changes. If
you use the RAND function to populate a cube with data for demos or testing and you do not refer to other
cubes the data in the cube does not change unless you edit the formula or calculate the data cube.

Returns

A random decimal number greater than or equal to zero and less than one.

Example

RAND() returns 0.938119738.

RATE

Syntax

RATE(NPer, Pmt, PV, FV, {Type})

Description

The RATE function returns the rate required to accumulate a future value of FV when the present value is PV,
the number of periods is NPer, and the payment is Pmt. If Type is omitted or zero, RATE assumes that the
investment is an ordinary annuity. If Type is nonzero, RATE assumes that the investment is an annuity due.

Note. Enter negative amounts for money out of your pocket, or positive amounts for money coming to you.

Using Built-in Functions in Analytic Models Chapter 11

212 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Returns

The RATE function returns the rate required to accumulate a future value of FV when the present value is PV,
the number of periods is NPer, and the payment is Pmt. If Type is omitted or zero, RATE assumes that the
investment is an ordinary annuity. If Type is nonzero, RATE assumes that the investment is an annuity due.

Note. Enter negative amounts for money out of your pocket, or positive amounts for money coming to you.

Example

Suppose that you wish to invest 5000 USD at the end of each year for 10 years. You can create a data cube
called RATE_REQUIRED and calculate the rate of return required to earn 100000 USD as follows:

RATE(10, -5000, 0, 100000) = 14.69%

Now suppose that you initially invest 15000 USD in addition to the yearly payments. Use the following
formula:

RATE(10, -5000, -15000, 100000) = 7.23%

Finally, suppose that you make the payments at the start of the year. You can use the following formula:

RATE(10, -5000, -15000, 100000, 1) = 6.50%

REPLACE

Syntax

REPLACE (Text, Old, New)

Description

The REPLACE function replaces all occurrences of Old with New in text and returns the result.

Example

REPLACE("StringFun", "Fun", "Number") returns StringNumber.

RETURN

Description

The RETURN function stops the evaluation of a rule and returns the value of the RETURN function's
argument.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 213

Example

WHILE(&Balance < TARGET_BALANCE,
 IF(&Month > NUMMEMBERS(MONTHS), RETURN(#N/A));
 INC(&Month);
 INC(&Balance, AT(MONTHS, &Month, CASH_FLOW))
);
RETURN(&Month)

This formula calculates the number of months required to accumulate a target balance, but returns an error
value if the maximum number of months is exceeded. This makes it unnecessary to repeat the condition at the
end of the formula.

Note. The RETURN at the end of the formula is not necessary; however, you can use it for clarity.

RIGHT

Description

The RIGHT function returns the right most Count characters of Text.

Returns

The right most Count characters of Text.

Example

RIGHT("StringFun", 3) returns Fun.

ROUND

Syntax

ROUND(Data, Integer)

Note. The Integer argument is optional.

Description

The ROUND function, when you use only the first argument, returns the value of Data rounded to the nearest
whole number. If you use the optional second argument, the ROUND function returns the value of Data
rounded to the number of decimal places that you specify with the Integer argument.

The default value for the Integer argument is zero.

Using Built-in Functions in Analytic Models Chapter 11

214 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example

The following examples employ the ROUND built-in function:

• ROUND(14) returns 14.

• ROUND(14.3) returns 14.

• ROUND(14, 0) returns 14.

• ROUND(14.3, 0) returns 14.

• ROUND(14.5, 0) returns 15.

• ROUND(14.7, 0) returns 15.

• ROUND(34.56789, 4) returns 34.5679.

SELF

Syntax

SELF()

Description

The SELF function returns the current value of the data cube that is being calculated. The SELF function
recalculates the data cube only if a certain condition is true; otherwise, the data cube retains its current value.

Returns

The current value of the data cube being calculated.

Example

Suppose that you would like to update your sales forecast on a monthly basis, but you also would like to save
the original forecast. If the current forecast is stored in a data cube called SALES_FORECAST, you can
calculate the ORIGINAL_SALES_FORECAST cube as follows:

IF(UPDATE_ORIGINAL, SALES_FORECAST, SELF())

(See the entry for the IF built-in function if you are unfamiliar with this function.) UPDATE_ORIGINAL is a
single value data cube that contains either a true or false value. If UPDATE_ORIGINAL is false, the SELF
function returns the current value of ORIGINAL_SALES_FORECAST, thereby leaving the original forecast
unchanged. If UPDATE_ORIGINAL is true, the IF function returns the value of SALES_FORECAST,
thereby updating the original forecast.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 215

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," IF, page 184

SET

Syntax

SET(VariableExpression)

Note. The second argument of the SET function can be any valid expression.

Description

The SET function sets a value to a variable.

Example

The following formula sets the &Index variable to 1.

SET(&Index, 1)

SIN

Syntax

SIN(Data)

Description

The SIN function returns the sine of Data, where Data represents an angle in radians.

To convert from degrees to radians, multiply by PI() / 180. (The PI function returns the value of PI.)

Returns

The sine of Data, where Data represents an angle in radians.

Example

The following examples employ the SIN built-in function:

• SIN(PI() / 6) returns 0.5 (sine of PI / 6 radians).

Using Built-in Functions in Analytic Models Chapter 11

216 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• SIN(PI() / 2) returns 1 (sine of PI / 2 radians).

• SIN(45 * PI() / 180) returns 0.7071067812 (sine of 45 degrees).

SLN

Syntax

SLN(Cost, Salvage, Life)

Description

The SLN function returns the depreciation on an asset by using the straight line method, which is a single
programming statement. This function returns the same depreciation for each period.

Parameters

Parameter Description

Cost The cost of the asset.

Salvage The worth of the asset at the end of its useful life.

Life The number of periods in the asset's useful life.

Returns

The depreciation on an asset using the Straight Line method. This function returns the same depreciation for
each period.

Example

Suppose that you purchase a machine for 6000 USD, and you plan to sell it for 500 USD after five years. You
can calculate the depreciation for each year as follows:

SLN(6000, 500, 5) = 1100

SLOPE

Syntax

SLOPE(Dimension, Y, X, {Condition})

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 217

Description

The SLOPE function returns the slope of the line that has the closest fit to the points represented by Y and X.
(The slope is the change in Y divided by the change in X.) If Condition is omitted, the function fits the line to
all of the members in Dimension. If Condition is included, the function fits the line only to those members
that meet the condition.

Use the SLOPE function together with the INTERCEPT function to find the line with the closest fit to a set of
points. You can use these functions to analyze a historical trend, and then use the trend to make forecasts.
You can also use these functions to analyze the relationship between different variables, such as sales and
travel expense.

Analyzing a Historical Trend

To analyze a historical trend:

1. Calculate the slope for the trend line with this formula for the TREND_SLOPE cube:

SLOPE(DATE_DIMENSION, HISTORICAL_DATA, MEMBER(DATE_DIMENSION), MEMBER(MONTHS) <=
 LAST_ACTUAL_DATE)

HISTORICAL_DATA is the data cube that you want to analyze. DATE_DIMENSION is the dimension
used by the data cube, which is normally a date dimension. Because you want to know how
HISTORICAL_DATA is affected by time, use the date indexMEMBER(DATE_DIMENSION)as the
independent (X) argument. LAST_ACTUAL_DATE is a data cube containing the last date that you want
to analyze. If you want to analyze all of the dates in DATE_DIMENSION, you may omit the condition.

See Chapter 11, "Using Built-in Functions in Analytic Models," MEMBER, page 194.

2. Calculate the intercept for the trend line with the following formula for the TREND_START cube:

INTERCEPT(DATE_DIMENSION, HISTORICAL_DATA, MEMBER(DATE_DIMENSION), MEMBER(MONTHS)
 <= LAST_ACTUAL_DATE)

3. You can now calculate the values for the trend line with the following formula for the TREND_VALUES
cube:

TREND_START + TREND_SLOPE * MEMBER(DATE_DIMENSION)

Analyzing the Relationship Between Two Data Cubes

To analyze the relationship between two data cubes:

1. Calculate the slope for the relationship line with this formula for the RELATION_SLOPE cube:

SLOPE(DIMENSION, DEPENDENT_VARIABLE, INDEPENDENT_VARIABLE)

DEPENDENT_VARIABLE is the variable whose values are influenced by INDEPENDENT_VARIABLE.
For example, if you want to know how sales are influenced by advertising, SALES is the dependent
variable and ADVERTISING is the independent variable. If necessary, you may restrict the analysis to
selected members of DIMENSION by using a condition for the fourth argument.

Using Built-in Functions in Analytic Models Chapter 11

218 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

2. Calculate the intercept for the relationship line with this formula for the RELATION_START cube:

INTERCEPT(DIMENSION, DEPENDENT_VARIABLE, INDEPENDENT_VARIABLE)

If you included a condition in the formula for RELATION_SLOPE, be sure to include it in this formula as
well.

3. Given an independent variable, you can now estimate a corresponding dependent value with this formula
for the DEPENDENT_VALUE cube:

RELATION_START + INDEPENDENT_VALUE * RELATION_SLOPE

Returns

The slope of the line that has the closest fit to the points represented by Y and X. (The slope is the change in Y
divided by the change in X.) If Condition is omitted, the function fits the line to all of the members in
Dimension. If Condition is included, the function fits the line only to those members that meet the condition.

Example

The following sections provide examples of analyzing a historical trend and analyzing a relationship between
data cubes.

Example 1: Analyzing a Historical Trend

Suppose that you want to analyze the trend in historical sales to forecast future sales. The historical sales are
stored in a data cube called ACTUAL_SALES that uses a dimension called MONTHS. The date of the last
actual value is stored in a data cube called LAST_ACTUAL_DATE. Calculate the sales trend with the
following formulas:

• TREND_SLOPE data cube formula:

SLOPE(MONTHS, ACTUAL_SALES, MEMBER(MONTHS), MEMBER(MONTHS) <= LAST_ACTUAL_DATE)

• TREND_START data cube formula:

INTERCEPT(MONTHS, ACTUAL_SALES, MEMBER(MONTHS), MEMBER(MONTHS) <= LAST_ACTUAL-DATE)

• SALES_TREND data cube formula:

TREND_START + TREND_SLOPE * MEMBER(MONTHS)

Note. TREND_SLOPE and TREND_START do not use the MONTHS dimension.

Example 2: Analyzing the Relationship Between Data Cubes

Suppose that you want to analyze how UNITS_SOLD has affected SUPPORT_COSTS. Both of these data
cubes use a dimension called MONTHS. The date of the last actual value is stored in a data cube called
LAST_ACTUAL_DATE. Enter the estimates for future unit sales in a data cube called SALES_FORECAST,
and then calculate the resulting SUPPORT_FORECAST data cube as follows:

• RELATION_SLOPE data cube formula:

SLOPE(MONTHS, SUPPORT_COSTS, UNITS_SOLD, MEMBER(MONTHS) <= LAST_ACTUAL_DATE)

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 219

• RELATION_START data cube formula:

INTERCEPT(MONTHS, SUPPORT_COSTS, UNITS_SOLD, MEMBER(MONTHS) <= LAST_ACTUAL_DATE)

• SUPPORT_FORECAST data cube formula:

IF(DATE() > LAST_ACTUAL_DATE, RELATION_START + SALES_FORECAST * RELATION_SLOPE, 0)

Notice that this example uses a different approach than the previous example. In the first example, you
analyzed how sales were affected by time, and then used the results to predict future sales based on the
passage of time. In this example, you analyzed how support was affected by sales, and then used the results to
predict future support costs based on future sales.

SQRT

Syntax

SQRT(Data)

Description

The SQRT function returns the square root of Data. If the value of Data is negative, SQRT returns an error
value.

Returns

The square root of Data. If the value of Data is negative, SQRT returns an error value.

Example

These examples employ the SQRT built-in function:

• SQRT(25) returns 5.

• SQRT(2) returns 1.4142135624.

• SQRT(-25) returns an error value.

STDEV

Syntax

STDEV(Dimension, Values, {Type}, {Condition})

Using Built-in Functions in Analytic Models Chapter 11

220 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Description

The STDEV function returns the standard deviation of Values. If Type is zero or omitted, STDEV calculates a
population standard deviation; otherwise, STDEV calculates a sample standard deviation. If Condition is
omitted, the function uses all Values. If Condition is included, the function uses only those Values where
Condition is true.

Example

Suppose that an analytic model contains a data cube called SALES that uses dimensions called PEOPLE and
MONTHS.

Use this formula to calculate the standard deviation over time for each person:

STDEV(MONTHS, SALES, 0)

Use this formula to calculate the standard deviation of sales over 5000 for each month:

STDEV(PEOPLE, SALES, 0, SALES > 5000)

SYD

Syntax

SYD(Cost, Salvage, Life, Period)

Description

The SYD function returns the depreciation on an asset using the Sum-of-the-Years'-Digits method, an
accelerated depreciation method. The SYD function takes these arguments:

Parameters

Parameter Description

Cost The cost of the asset.

Salvage The worth of the asset at the end of its useful life.

Life The number of periods in the asset's useful life.

Period The period for which you wish to determine the depreciation.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 221

Example

Suppose that you purchase a machine for 6000 USD , and you plan to sell it for 500 USD after five years.
You can calculate the depreciation for each year as follows:

• SYD(6000, 500, 5, 1) = 1833

• SYD(6000, 500, 5, 2) = 1467

• SYD(6000, 500, 5, 3) = 1100

• SYD(6000, 500, 5, 4) = 733

• SYD(6000, 500, 5, 5) = 367

TAN

Syntax

TAN(Data)

Description

The TAN function returns the tangent of Data, where Data represents an angle in radians.

To convert from degrees to radians, multiply by PI() / 180. (The PI function returns the value of PI.)

Returns

Returns the tangent of Data, where Data represents an angle in radians.

Example

These examples employ the TAN built-in function:

• TAN(PI()) returns 0 (tangent of p radians).

• TAN(PI() / 4) returns 1 (tangent of p / 4 radians).

• TAN(45 * PI() / 180) returns 1 (tangent of 45 degrees).

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," PI, page 206

Using Built-in Functions in Analytic Models Chapter 11

222 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

TEXT2MBR

Syntax

TEXT2MBR(Dimension, Text)

Description

Converts text to the member with that name in Dimension. If there is no member with that name, returns 0.

Note. This is essentially a linear lookup function, so be careful when using it with dimensions that have a lot
of members.

Example

TEXT2MBR(MONTHS, "January") returns a new member, January, in the MONTHS dimension.

TEXT2NUM

Syntax

TEXT2NUM (Text)

Description

Converts Text to a number. This performs a forgiving conversion. For example, dollar signs and commas are
ignored, parentheses or a minus sign make the number negative, and % causes the number to be converted as
a percentage. If there is no number in the text, the function returns 0.

Example

These examples employ the TEXT2NUM built-in function:

• TEXT2NUM("TEN") returns 10.

• TEXT2NUM("$TEN") returns 10.

• TEXT2NUM("-TEN") returns -10.

• TEXT2NUM("100,000") returns 100000.

• TEXT2NUM("10%") returns 10%.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 223

THIS

Syntax

THIS(Expression)

Description

The THIS function returns the value of Expression for the members being calculated, even if Expression is
used in a database function. This function enables you to perform complex calculations that relate other
members in a dimension to the member being calculated.

To understand the THIS function, you need to understand how database functions work. A database function
scans the members in a dimension to calculate a result. For example, suppose that you define the following
formula:

DAVG(PRODUCTS, ADVERTISING, SALES > 50000)

This formula calculates the average advertising for products with sales over 50000 USD. The DAVG function
scans the PRODUCTS dimension and evaluates the condition SALES > 50000 for each product. If the
condition is true, the DAVG function includes the Advertising for that product in the average. The important
point here is that the DAVG function evaluates the condition (SALES > 50000) and the expression
(Advertising) for the product being scanned.

Now suppose that you want to calculate the following result for each product: the average advertising for
products whose sales are greater than the product being calculated.

Create a data cube called AVG_ADVERTISING_FOR_BETTER_PERFORMERS that uses the PRODUCTS
dimension. Its formula should look similar to:

DAVG(PRODUCTS, ADVERTISING, SALES > "Sales for the product being calculated")

To get the sales for the product being calculated, remember that the DAVG function uses the sales for the
product being scanned. The solution is to use the THIS function:

DAVG(PRODUCTS, ADVERTISING, SALES > THIS(SALES))

The THIS function forces the DAVG function to use the sales for the product being calculated. Thus, the
condition compares the sales for the product being scanned to the sales for the product being calculated. If the
condition is true, the DAVG function includes the Advertising for the product being scanned.

Returns

The value of Expression for the members being calculated, even if Expression is used in a database function.

Using Built-in Functions in Analytic Models Chapter 11

224 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

THISCUBE

Syntax

THISCUBE()

Description

The THISCUBE function returns a reference to the current calculating data cube in a user function.

Returns

A reference to the current calculating data cube in a user function.

Example

CHANGE(MONTHS, THISCUBE())

The user function in this example calculates the monthly change for each data cube and is used inside an
aggregate override user function that affects the SALES, COST_OF_GOODS, and GROSS_MARGIN data
cubes.

In this example, the analytic calculation engine performs the same as if you entered these three functions:

• CHANGE(MONTHS, SALES)

• CHANGE(MONTHS, COST_OF_GOODS)

• CHANGE(MONTHS, GROSS_MARGIN)

TRUNC

Syntax

TRUNC(Data)

Description

The TRUNC function returns the value of Data with the decimals truncated.

Returns

The value of Data with the decimals truncated.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 225

Example

The following examples employ the TRUNC built-in function:

• TRUNC(14) returns 14.

• TRUNC(14.3) returns 14.

• TRUNC(14.7) returns 14.

UPPER

Syntax

UPPER(Text)

Description

The UPPER function returns Text converted to uppercase.

Returns

Text converted to upper case.

Example

UPPER("StringFun") returns STRINGFUN.

VAR

Syntax

VAR(Dimension, Values, {Type}, {Condition})

Description

The VAR function returns the variance of Values. If Type is zero or omitted, VAR calculates a population
variance; otherwise, VAR calculates a sample variance. If Condition is omitted, the function uses all Values.
If Condition is included, the function uses only those Values where Condition is true.

Using Built-in Functions in Analytic Models Chapter 11

226 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example

Suppose that an analytic model contains a data cube called SCORES that uses dimensions called STUDENTS
and TESTS.

Use the following formula to calculate the variance of the tests for each student:

VAR(TESTS, SCORES)

Use the following formula to calculate the variance of scores over 75 percent for each test:

VAR(STUDENTS, SCORES, 0, SCORES > 0.75)

WHILE

Syntax

WHILE(Condition, Expression)

Description

The WHILE function supports looping and takes two arguments: a condition that determines whether to
continue looping and an expression to evaluate for each iteration.

Example

WHILE(&Balance < TARGET_BALANCE .AND. &Month < NUMMEMBERS(MONTHS),
 INC(&Month);
 INC(&Balance, AT(MONTHS, &Month, CA)));
IF(&Month <= NUMMEMBERS(MONTHS), &Month, #N/A)

This formula calculates the number of months required to accumulate a target balance.

The IF function returns the value of &Month, or an error code if the target balance is not achieved. Notice that
it is not necessary to initialize &Balance and &Month because they are initialized to zero before the formula
is evaluated.

YEAR

Syntax

YEAR({Date})

Description

The YEAR function returns the year of Date. If Date is omitted, the function returns the year of the
calculation date.

Chapter 11 Using Built-in Functions in Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 227

Example

Suppose that an analytic model contains a data cube called YEAR_EXAMPLE that uses a dimension called
MONTHS, and has the following formula: YEAR(). Because the argument is omitted, YEAR returns the
year for each date in the MONTHS dimension.

Now suppose that you plan to build a new building in 2006, and you want to spread the building costs over
the quarters of that year. On the other hand, you do not want to allocate the building costs to any other years.
If the year and building costs are stored in data cubes called BUILDING_YEAR and
TOTAL_BUILDING_COSTS, you can calculate the QTRLY_BUILDING_COSTS data cube as follows:

IF(YEAR() = BUILDING_YEAR, TOTAL_BUILDING_COSTS / 4, 0)

See Also

Chapter 11, "Using Built-in Functions in Analytic Models," IF, page 184

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 229

Part 3

Working with Analytic Types

Chapter 12
Understanding the Relationship of Analytic Types to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 231

Chapter 12

Understanding the Relationship of
Analytic Types to Analytic Models

This chapter discusses:

• Purpose of analytic type definitions.

• Relationship of record attributes to data caching behavior.

• Synchronization order.

Purpose of Analytic Type Definitions

You create analytic type definitions for use with PeopleSoft Optimization Framework and Analytic
Calculation Engine. In PeopleSoft Optimization Framework, you create analytic type definitions to group
optimization records, optimization transactions, and optimization plug-ins together as one entity.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic
Type Definitions," Creating Analytic Type Definitions.

In Analytic Calculation Engine, you create analytic type definitions to group records and an analytic model
together as one entity. You follow the same procedure to create analytic type definitions for both PeopleSoft
Optimization Framework and Analytic Calculation Engine.

When creating a new analytic model definition, you create the analytic type definition in this developmental
sequence:

1. Create and save an analytic model definition.

See Chapter 4, "Creating Analytic Model Definitions," Understanding the Analytic Model Definition
Creation Process, page 27.

2. Create an analytic type definition and define records.

See Chapter 12, "Understanding the Relationship of Analytic Types to Analytic Models," Example:
Working with an Analytic Type and an Analytic Model, page 232 and Enterprise PeopleTools 8.50
PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating Record Definitions."

3. Associate the analytic model with the analytic type.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic
Type Definitions," Creating Analytic Type Definitions.

Understanding the Relationship of Analytic Types to Analytic Models Chapter 12

232 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

4. In the cube collection properties, map a main record in the analytic type to the cube collection.

You can also map an aggregate record in the analytic type to the cube collection.

See Chapter 7, "Creating Cube Collections," Mapping a Cube Collection to Main and Aggregate Records,
page 62.

5. In the cube collection properties, map the fields in the record to data cubes and dimensions.

See Chapter 7, "Creating Cube Collections," Mapping Data Cubes and Dimensions to Fields, page 63.

When updating an analytic model definition, create an analytic type definition during this developmental
sequence:

1. Update the records in the analytic type definition.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic
Type Definitions," Configuring Analytic Type Records.

2. Create a new cube collection in the analytic model definition.

See Chapter 7, "Creating Cube Collections," page 57.

3. In the cube collection properties, map one of the updated records to the cube collection.

See Chapter 7, "Creating Cube Collections," Mapping a Cube Collection to Main and Aggregate Records,
page 62.

4. In the cube collection properties, map fields of the updated record to data cubes and dimensions.

See Chapter 7, "Creating Cube Collections," Mapping Data Cubes and Dimensions to Fields, page 63.

Example: Working with an Analytic Type and an Analytic Model

This example illustrates the typical process for creating an analytic type definition to be used with a new
analytic model.

Note. For simplicity, this example maps only one cube collection to a main record, although the analytic
model definition in this example contains several records which would be used with several cube collections.
The record used in this example is mapped to a read/write cube collection for loading data from the database,
receiving end user input, and persisting data back to the database.

See Chapter 7, "Creating Cube Collections," Understanding Cube Collections, page 57.

You create an analytic type definition called QE_ACE_DGCPROB and define the records that are used in the
analytic model. You insert all of these records (except derived/work records) into the analytic type definition
and set the attributes of the records, as shown in this example:

Chapter 12 Understanding the Relationship of Analytic Types to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 233

Example of defining the records within the QE_ACE_DBCPROB analytic type definition

Next, you create an analytic model definition called QE_ACE_DGCMODEL, with data cubes and
dimensions that are related in this manner:

Data Cube Attached Dimensions

SALARY input data cube These dimensions are attached to the SALARY data cube:

• BUSINESS_UNIT

• DEPTID

• EMPLID

• JOBCODE

EXPENSE input data cube These dimensions are attached to the EXPENSE data cube:

• BUSINESS_UNIT

• DEPTID

• EMPLID

• JOBCODE

BONUS_PERCENT input data cube These dimensions are attached to the BONUS_PERCENT
data cube:

• BUSINESS_UNIT

• DEPTID

• EMPLID

• JOBCODE

Note. At this step in the process, you do not create the analytic model definition's cube collections.

On the Models tab, you associate the analytic type with the QE_ACE_DGCMODEL analytic model, as
shown in this example:

Understanding the Relationship of Analytic Types to Analytic Models Chapter 12

234 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example of associating the QE_ACE_DBCPROB analytic type to the QE_ACE_DGCMODEL analytic model

Next, you open the analytic model definition and create a read/write cube collection called
QE_ACE_EMPLOYEE1_IN. On the General tab of the cube collection's properties, you map the cube
collection to the QE_ACE_EMPL1 main record, as shown in this example:

Example of mapping the QE_ACE_EMPLOYEE1_IN cube collection to the QE_ACE_EMPL1 main record

Note. This cube collection does not use an aggregate record.

On the Field Map tab, you map the fields in the QE_ACE_EMPL1 record to the data cubes and dimensions,
as shown in this example:

Example of mapping data cubes and dimensions to the fields of the QE_ACE_EMPL1 record

Chapter 12 Understanding the Relationship of Analytic Types to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 235

When mapping dimensions and data cubes, you may want to map dimensions to the key fields in the main
record and data cubes to the non-key fields in the main record. The PeopleSoft system, however, does enable
you to map dimensions to non-key and data cubes to key fields. To perform the most appropriate mapping,
you must have a deeper understanding of the relationship between data cubes and dimensions.

See Chapter 3, "Understanding Analytic Models," Data Cubes and Dimensions, page 16.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic Type
Definitions"

Relationship of Record Attributes to Data Caching Behavior

When you create an analytic type definition, how you set the record attributes determines the caching
behavior of the data that is used in the analytic model. This section describes analytic type definition record
attributes and their effects on data caching.

Read Once

When you map a cube collection to a record that contains a Read Once attribute in the analytic type, the
application data is read only once during analytic model load time. Map cube collections to Read Once
records to load data that the user should not change during the analytic model's life cycle. You can specify the
Read Once attribute for these record types:

• SQL tables.

• SQL views.

• Dynamic views.

• Query views.

Note. Data cubes that exist in a cube collection that is mapped to a main record with a Read Once attribute
cannot exist in any other cube collection that is mapped to a main record with the Read Once attribute.

Readable

When you map a cube collection to a record that contains a Readable attribute in the analytic type, the
application data is read during analytic instance load time and is updated with new data after:

• Each analytic model recalculation.

You recalculate an analytic model by using the AnalyticModel class Recalculate method. The
AnalyticModel class is one of the Analytic Calculation Engine classes.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," Recalculate.

• Each Save action that is triggered by a PeopleSoft Pure Internet Architecture page with an analytic grid.

Understanding the Relationship of Analytic Types to Analytic Models Chapter 12

236 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• Each time data is updated using the CubeCollection class SetData method.

The CubeCollection class is one of the Analytic Calculation Engine classes.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," SetData.

Map cube collections to Readable records to load data that should be refreshed more than once during the
analytic model's life cycle.

You can specify the Readable attribute for the SQL table record type.

Note. Data cubes that exist in a cube collection that is mapped to a main record with the Readable attribute
cannot exist in any other cube collection that is mapped to a main record with the Readable or Read Once
attributes.

When a cube collection is mapped to either a Writable-only record or a record with the Readable and
Writable attributes, all data cubes in the cube collection should share the same set of dimensions.

Writable

When you map a cube collection to a record that contains a Writable attribute in the analytic type, the data in
the cube collection is written back to the application database after:

• Each analytic model recalculation.

You recalculate an analytic model by using the AnalyticModel class Recalculate method. The
AnalyticModel class is one of the Analytic Calculation Engine classes.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," Recalculate.

• Each Save action that is triggered by a PeopleSoft Pure Internet Architecture page with an analytic grid.

• Each time data is updated using the CubeCollection class SetData method.

The CubeCollection class is one of the Analytic Calculation Engine classes.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," SetData.

You can specify the Read Once attribute for the SQL table record type.

If the analytic type contains a writable-only record that uses a primary key field, you must set up the
application to clear the data in the database for the writable record before recalculating the analytic instance.

Note. After the data is written back to the database, the data cubes that are mapped to the writable-only record
are cleared from the analytic instance, resulting in 0 or empty values in the analytic grid.

When a cube collection is mapped to either a Writable-only record or a record with the Readable and
Writable attributes, all data cubes in the cube collection should share the same set of dimensions.

Chapter 12 Understanding the Relationship of Analytic Types to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 237

Scen. Mgd (Scenario Managed)

Use the Scenario Managed attribute to indicate that the record pertains to multiple analytic instances. A
scenario managed record is read from and written back to the database according to the other attributes that
are specified for the record.

Typically, one user views and edits one analytic instance, although Analytic Calculation Engine supports
multiple users per analytic instance.

Records that contain the scenario managed attribute must have a PROBINST key field. The PROBINST key
field is used to segment the data of scenario managed records, resulting in a different data set loaded for each
analytic instance. This is an example of a record with a PROBINST key field:

PROBINST key field ACCT field TRANS_DATE field REGION field

BUDGET01 100 January EUROPE

BUDGET01 100 Feb EUROPE

BUDGET02 110 Feb ASIA

BUDGET02 110 March ASIA

BUDGET03 120 March USA

In this example:

• The users of the BUDGET01 analytic instance can access only the first and second rows of this record.

• The users of the BUDGET02 analytic instance can access only the third and fourth rows of this record.

• The users of the BUDGET03 analytic instance can access only the fifth row of this record.

Note. Data cubes that exist in a cube collection that is mapped to a main record with the Scenario Managed
attribute cannot exist in any other cube collection that is mapped to a derived/work main record.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic
Type Definitions," Scenario Management.

Records based on dynamic views can be Scenario Managed. For these records, the associated SQL must
contain a meta string for qualifying the analytic instance.

The following example shows a Dynamic View record:

SELECT PROBINST, QE_BAM_MONTH_FLD, QE_BAM_REGION_FLD, QE_BAM_PRODUCT_FLD,
QE_BAM_UNIT_FLD, QE_BAM_SALES_FLD, QE_BAM_PRDSALES_FL FROM PS_QE_BAM_FACT_TBL

WHERE PROBINST = %ProbInst

If a Union clause is present the WHERE PROBINST= %ProbInst must be added to the individual clauses
making up the SQL Union. In addition all the fields that are part of the dynamic view must be selected in the
analytic type definition. This is enforced by PeopleSoft Application Designer.

Understanding the Relationship of Analytic Types to Analytic Models Chapter 12

238 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Type Classes"

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic Type
Definitions," Configuring Analytic Type Records

Synchronization Order

In Analytic Calculation Engine, the synchronization order indicates the order in which the analytic calculation
engine reads the records in the analytic type definition. Records that are used as aggregate records should
have a higher synchronization order than records that are used as main records.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 239

Part 4

Working with Analytic Grids

Chapter 13
Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 241

Chapter 13

Creating Analytic Grids

This chapter provides an overview of analytic grid design and discusses how to:

• Insert and resize analytic grid controls.

• Set analytic grid analytic properties.

• Set analytic grid label properties.

• Set analytic grid use properties.

• Set analytic grid general properties.

• Insert and manipulate analytic grid columns.

• Set column properties for analytic grids.

• Manipulate the analytic grid at runtime.

Understanding Analytic Grid Design

The analytic grid retrieves data from the analytic server and displays it in a grid format on a PeopleSoft Pure
Internet Architecture page. This grid is the centerpiece for the Analytic Calculation Engine user interface,
enabling end users to view, edit, and drag and drop data from an analytic model's cube collection.

Note. Within an application, a PeopleSoft Pure Internet Architecture page that contains an analytic grid may
be referred to as an interactive report. Interactive reports are typically read only, but in some cases may also
be editable.

Constructing a PeopleSoft Pure Internet Architecture pages that contain an analytic grid consists of these
basic steps:

1. In PeopleSoft Application Designer, create an analytic model.

See Chapter 4, "Creating Analytic Model Definitions," Understanding the Analytic Model Definition
Creation Process, page 27.

2. Use PeopleSoft Application Designer to design the page that contains the analytic grid.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide,
"Developing and Customizing PeopleSoft Applications."

Creating Analytic Grids Chapter 13

242 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

3. Insert the analytic grid into the page and associate the grid with the analytic model by using the Analytics
tab in the Analytic Grid Properties dialog box.

See Chapter 13, "Creating Analytic Grids," Setting Analytic Grid Analytic Properties, page 246.

4. Define the initial layout and characteristics of the analytic grid.

Producing an analytic grid involves many of the same tasks as generating a regular grid. These include
inserting and resizing grid controls, inserting and manipulating grid columns, and setting column
properties. In addition, you set certain analytic grid properties by using the Analytics tab, Use tab, Label
tab, and General tab in the Analytic Grid Properties dialog box.

See Chapter 13, "Creating Analytic Grids," Setting Column Properties for Analytic Grids, page 260.

See Chapter 13, "Creating Analytic Grids," Setting Analytic Grid Label Properties, page 249.

See Chapter 13, "Creating Analytic Grids," Setting Analytic Grid Use Properties, page 252.

See Chapter 13, "Creating Analytic Grids," Setting Analytic Grid General Properties, page 255.

You can also control the analytic grid layout programmatically using analytic grid APIs.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," GetLayout.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Grid Classes,"
SetLayout.

You can populate the grid with data in two ways: use the PeopleCode analytic grid classes or have the system
populate the analytic grid with data automatically.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Grid Classes."

To populate the analytic grid data automatically:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, create or open a page definition.

3. Insert into the page any control from which you can obtain analytic instance values—for example, an edit
box.

4. Set this control's properties to the analytic instance (select the appropriate record and field name on the
Record tab).

This will be the analytic instance field you select in the Analytics tab of the Analytic Grid Properties
dialog box.

5. Drag the appropriate record onto the grid.

Although the developer determines the initial layout of the analytic grid using PeopleSoft Application
Designer, one of the primary advantages of the analytic grid is that end users can also modify the layout of
the grid at runtime. Among other things, end users can use the analytic grid to:

• Pivot data—for example, swap row and column orientations.

• Perform hierarchy-related actions such as expanding, collapsing, drilling in, and drilling out in the data.

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 243

• Slice data, for example, view a subset of a multidimensional array.

• Hide non-dimensional fields.

• Modify data.

• Save the current view settings.

• Restore the defaults as specified by the application.

See Enterprise PeopleTools 8.50 PeopleBook: Using PeopleSoft Applications, "Working With Scroll Areas
and Grids," Working with Analytic Grids.

Components for Working with Analytic Grids

You design analytic grids using PeopleSoft Application Designer. In addition, you may need to work with
analytic grids in the runtime environment.

You use these PeopleSoft Application Designer areas to create analytic grids:

Creating Analytic Grids Chapter 13

244 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic grid in PeopleSoft Application Designer

Analytic Grid button Select and then drag to insert an analytic grid into the page.

Analytic grid Contains the grid itself. You can modify the grid's properties by double-clicking
to display the Analytic Grid Properties dialog box. (Click anywhere except the
column headings.) You can also double-click a grid column to display the
properties box for modifying the column. In addition, you can change the order
of columns on either the Layout or Order tab.

See Chapter 13, "Creating Analytic Grids," Inserting and Manipulating Analytic
Grid Columns, page 257.

You use these areas to modify analytic grids in runtime:

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 245

Analytic grid at runtime

Navigation Bar Enables end users to navigate through the displayed data set. Also contains a link
to drag and drop instructional text.

Slice Bar Enables end users to view selected portions, or slices, of the data, for instance,
the sales of one category of product or the sales from a single region.

Column Axis Displays the designated cubes or dimensions across the top of the analytic grid.
Also contains icons for expanding or collapsing items.

Note. Dimension on Column Axis can be expanded up to only four levels.

Row Axis Displays the designated cubes or dimensions along the left-hand side of the
analytic grid.

Data Set Displays the data from the loaded analytic instance.

See Enterprise PeopleTools 8.50 PeopleBook: Using PeopleSoft Applications, "Working With Scroll Areas
and Grids," Understanding Analytic Grids.

Inserting and Resizing Analytic Grid Controls

To insert an analytic grid on a page:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open a page definition.

3. Select Insert, Analytic Grid.

4. Drag to place the grid on the page.

Creating Analytic Grids Chapter 13

246 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

5. If you need to adjust the grid width, drag the horizontal or vertical control handles.

The grid width should be roughly equivalent to the columns that you insert into the grid. Otherwise, the
grid might appear too wide or narrow at runtime.

Note. The grid height depends on the data contained in the grid.

Note. These steps insert an analytic grid control on the page, but so far you have not associated this analytic
grid with the relevant model or record definition. You establish this association by means of the Analytic Grid
Properties dialog box.

Setting Analytic Grid Analytic Properties

To set analytic grid Analytic properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open a page definition.

3. Select Insert, Analytic Grid to add a analytic grid.

4. Access the Analytic Grid Properties dialog box by double-clicking anywhere on the analytic grid other
than on the column headings.

5. Use the Analytics tab to set analytic model association and axis display properties.

This is an example of the Analytic Grid Properties - Analytics tab in PeopleSoft Application Designer:

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 247

Analytic Grid Properties dialog box, Analytics tab

Freeze Column Mode Select this check box if you want to freeze the columns of the grid when it's
displayed to the end user. If you select this check box, the only enabled field in
the dialog box is the Record Namefield.

Model Name Select the analytic model that you want to associate with the current analytic
grid. You can select from any of the analytic models in the database.

Cube Collection Name Select a cube collection from the analytic model.

Note. This drop-down list box only displays presentation cube collections, which
have work/derived records associated with them. Any other cube collections do
not appear.

See Chapter 7, "Creating Cube Collections," Presentation Cube Collections, page
60.

Creating Analytic Grids Chapter 13

248 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Record Name Select either a main record or an aggregate record from the cube collection. The
aggregate record is selected by default, if applicable. If there's no aggregate
record, this field is populated with the main record. If you've selected the Freeze
Column Mode check box, only work/derived records are displayed.

Analytic Instance Specify the page field containing the analytic instance ID—that is, the instance of
the analytic model that is displayed in this analytic grid.

Non-Dimensional Fields Select Slicer Axis to set the non-dimensional fields axis to the slicer axis.

Select Column Axis to set the non-dimensional fields axis to the column axis.

Select Row Axis to set the non-dimensional fields axis to the row axis.

Warning! All fields that are mapped to dimensions are considered dimensional
fields. All fields that are mapped to data cubes are considered non-dimensional
fields. The non-dimensional fields referred to within this dialog box are mapped
to data cubes. However, any field that is not mapped to anything is also
considered a non-dimensional field. If the application developer wants to include
such non-dimensional fields (those not mapped to anything) with the analytic
grid, he or she must populate them using the RowInit method or their value will
be zero.

Note. If a field is designated as invisible, that property is sometimes honored and
sometimes not honored within the analytic grid. If the field is a dimension on the
slicer axis, the property is honored. If the field is a dimension on the row or
column axis, the invisible property is not honored. If the field is a cube, the
invisible property is honored on the column but not the row axis.

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 249

Dimensional Fields Use the Slicer Axis option to set which dimensional fields are used for the slice
bar.

Dimensions that have filter functions applied will behave differently depending
on whether they reside on the column axis/row axis or the slice bar. See the
following for details.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Filter User
Functions, page 123.

Use the Column Axis option to set which dimensional fields are used for the
column axis.

Use the Row Axis option to set which dimensional fields are used for the row
axis.

You can select any dimensional field and move it from one list box to another by
using the appropriate arrow keys. (The arrow keys are grayed out if you do not
have a field selected.) The order of the fields on any particular axis—as end users
will see it—is determined by the order in which their columns appear in the
analytic grid, not by their order in the analytic model. You can change the
column order by using drag and drop. By default, all but the last dimension
appear on the slice bar axis; the last dimension appears on the row axis, and the
data cubes appear on the column axis.

See Chapter 13, "Creating Analytic Grids," Inserting and Manipulating Analytic
Grid Columns, page 257.

Setting Analytic Grid Label Properties

To set analytic grid Label properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open a page definition.

3. Select Insert, Analytic Grid to add an analytic grid.

4. Access the Analytic Grid Properties dialog box by double-clicking anywhere on the analytic grid other
than on the column headings.

5. From the Analytic Grid Properties - Analytics tab, select the Label tab.

This is an example of the Analytic Grid Properties - Label tab:

Creating Analytic Grids Chapter 13

250 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic Grid Properties dialog box, Label tab

Display Header Select if you want to display preferences and the link to download to Excel to the
end user in the header.

Title Enter a title that displays in the upper-left corner of the analytic grid.

Note. You can also modify this title at runtime by using the AnalyticGrid classes.

Display Navigation Bar Select if you want to display navigational elements for the grid in the header,
such as First, Last, View All, and so on. Preferences and the link to download to
Excel still display to the end user.

Display Slice Bar Select for the slice bar to appear in the analytic grid. By default, this check box is
selected. This item is not available if the Freeze Column Mode check box is
selected in the Analytics tab.

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 251

Default Initial View to
Expanded State

Select to have the slice bar appear expanded to the end user initially. Clear to
have the slice bar initially appear collapsed to the end user. This item is not
available if the Freeze Column Mode check box is selected in the Analytics tab.

Note. The slice bar is expanded by default.

Show Grid Lines Select to display grid lines to the end user.

Display Footer Select if you want to display preferences and the link to download to Excel to the
end user in the footer. No navigational elements are displayed in the footer.

Summary Enables you to provide a brief description of the functionality and content of the
grid area. This property is pertinent for users who access the application by using
screen readers.

Setting Analytic Grid Label Properties

Access the Summary Properties dialog box (click the Properties button on the Analytic Grid Properties -
Label dialog box).

Summary Properties dialog box

Default to Title Select this option to have the summary property the same as the grid title.

Clear this option to activate the Text and Message Catalog options.

Text Select this option to enter up to 254 characters in the Summary Text field.
Selecting this option disables all Message Catalog option related fields.

Creating Analytic Grids Chapter 13

252 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Message Catalog Select this option to choose a message stored in the Message Catalog. Selecting
this option disables all Text option related fields. Select one of these two options:

• Text: Select this option to use only the message text from the message
catalog.

• Explanation: Select this option to use only the message explanation from the
message catalog.

Summary Text The default summary text value is the same as the Title of the grid area. You can
also enter static text or use the Message Catalog to store the summary
information.

To change the summary properties:

1. Open the grid area.

2. Access the Label tab.

3. Click the Properties button located in the Summary group box.

The Summary Properties dialog box appears.

4. Clear the Default to Title option to activate the other Summary options.

5. Enter static text or enter a Message Set and Number to retrieve information from the Message Catalog.

Setting Analytic Grid Use Properties

To set analytic grid Use properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open a page definition.

3. Select Insert, Analytic Grid to add a analytic grid.

4. Access the Analytic Grid Properties dialog box by double-clicking anywhere on the analytic grid other
than on the column headings.

5. Select the Use tab.

The Analytic Grid Properties - Use tab appears.

This is an example of the Analytic Grid Properties - Use tab:

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 253

Analytic Grid Properties dialog box, Use tab

No Auto Select Select to suppress the system from automatically retrieving data from the analytic
calculation engine. If you select the No Auto Select check box, you must use the
LoadData method to load the analytic grid with data.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference,
"Analytic Grid Classes," LoadData.

This item is not available if the Freeze Column Mode check box is selected in the
Analytics tab.

Creating Analytic Grids Chapter 13

254 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

No Auto Load/Unload
Analytic Instance

Determines whether and how you load the analytic instance for the analytic grid.

• If you do not select this option, you can supply an analytic instance ID on the
Analytics tab to have the analytic grid automatically load that analytic
instance. If the analytic grid auto loads the analytic instance, it uses the
default timeout setting and also recalculates the model. The analytic instance
is unloaded when the user navigates out of the component.

Another option for supplying the analytic instance ID is to use the Analytic
Grid Class SetAnalyticInstance method.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference,
"Analytic Grid Classes," SetAnalyticInstance.

• If you select this option, the analytic instance is not loaded automatically. In
this case, use the PeopleCode analytic instance classes to load the analytic
instance into the grid. If you do not use a PeopleCode program to load the
data, no analytic instance is loaded.

This item is not available if the Freeze Column Mode check box is selected in the
Analytics tab.

Sort Order This check box is enabled only if the Freeze Column Mode check box is selected
in the Analytics tab. Selecting this option enables the end user to sort the data in
the frozen columns.

Display Only In some cases, you might design grids that enable end users to view but not
change information. Select this check box if you do not want the end user to enter
data into the fields in any of the rows. End users can still manipulate the grid to
display a new view of their data, but they cannot update the actual data displayed
in the analytic grid.

If the grid is display only, obviously all the fields within the grid are display
only. However, if the grid is not display only, there are several possibilities:

• If fields are display only, the analytic grid honors that.

• If fields are not display only, they are editable as long as they are
nonaggregate values.

• If fields are dimensions, they are display only unless the dimension is on the
slicer axis.

Inactive The analytic grid does not display to end users and no data is loaded into the
analytic grid data, thus no data is available to the application developer using
PeopleCode.

Wrap Column Label Select whether column labels wrap if they are too long to fit within the column at
its current width. If you do not select this option, columns widen as needed to
accommodate long column labels.

Collapsible Data Area Select this option so that the data area for your analytic grid can be collapsed into
a header bar with an icon that the end user must click to expand it. Selecting the
Collapsible Data Area option activates the Default Initial View to Expanded State
check box.

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 255

Default Initial View to
Expanded State

Select whether the initial view of the grid is expanded or collapsed. It is
expanded by default.

Note. This check box is available only if the Collapsible Data Area option is
selected.

No Drag and Drop Specify whether the end user can drag and drop cubes, dimensions, and so on at
runtime. This item is not available if the Freeze Column Mode check box is
selected in the Analytics tab.

Setting Analytic Grid General Properties

To set analytic grid General properties:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open a page definition.

3. Select Insert, Analytic Grid to add a analytic grid.

4. Access the Analytic Grid Properties dialog box by double-clicking anywhere on the analytic grid other
than on the column headings.

5. Select the General tab.

The Analytic Grid Properties - General tab appears.

This is an example of the Analytic Grid Properties - General tab:

Creating Analytic Grids Chapter 13

256 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic Grid Properties dialog box, General tab

Page Field Name Specify a grid name consisting of any combination of uppercase letters, digits,
and the symbols #, $, @, and _. The default is the name of the main record
for the analytic grid; however, you can rename the grid as long as you use a
unique name for the page or component. This name is used by the PeopleCode
GetAnalyticGrid function to create a grid definition.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference,
"PeopleCode Built-in Functions," GetAnalyticGrid.

Occurs Count (rows) Determines the vertical page size—that is, how many rows of data are displayed
initially at runtime. The occurs count is set to 1 by default. If you set the occurs
count to 30 rows, for example, the end user sees 30 rows of data at a time.

Max Visible Row Count
(maximum visible row
count)

Specify the maximum number of visible rows. This item is only available if the
Freeze Column Mode option is selected in the Analytics tab.

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 257

Unlimited Occurs Count
(rows)

Sets the occurs count to unlimited, which means that the end user sees all rows of
data. Selecting this check box disables the Occurs Count option because it is no
longer applicable.

In addition to setting an occurs count, the developer can set a threshold by using
ACEGRDROWS in PeopleSoft Personalizations to limit how many rows of data
are displayed in the grid. (The analytic grid supports a minimum of 2 rows: one
for column axis and one for data; and it supports a maximum of 101 rows: one
for column axis and 100 for data.) This threshold works with the View All link in
the grid. If the number of rows of data returned is less than the threshold, this link
reads View All and, when the end user clicks it, all records appear. However, if
the number of rows of data returned is more than the threshold, the View All link
changes to View X, where X is the value of the threshold. (This link is a toggle:
clicking it switches between displaying the occurs count specified in the
properties dialog box and the threshold specified in user personalizations.) If the
occurs count is greater than or equal to the threshold, the threshold takes
precedence.

See Enterprise PeopleTools 8.50 PeopleBook: Security Administration,
"Managing PeopleSoft Personalizations," Working with Personalization Options.

Enable as Page Anchor Select to apply an anchor tag to serve as a jump destination on the page.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer
Developer's Guide, "Using Page Controls," Specifying Type Properties for Push
Buttons or Links.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer
Developer's Guide, "Creating Page Definitions," Setting General Properties.

Inserting and Manipulating Analytic Grid Columns

This section discusses how to:

• Insert analytic grid columns.

• Delete analytic grid columns.

• Move analytic grid columns on the Layout tab.

• Move analytic grid columns on the Order tab.

Creating Analytic Grids Chapter 13

258 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• Resize analytic grid columns.

Note. The analytic grid supports a minimum of 2 columns: one for row axis and one for data; and it also
supports a maximum of 101 columns: one for column axis and 100 for data. The default maximum
number of columns is 41. You can also use the ACEGRDCOLS option in PeopleSoft Personalizations to
set the number of columns displayed in the analytic grid. If necessary, the analytic grid provides a scroll
bar that enables end users to scroll through all columns.

When the Freeze Column Mode check box is selected in the Analytic Grid Properties - Analytics tab, all
columns in the analytic grid are displayed. No threshold is placed on the maximum number of columns.
The user profile setting ACEGRDCOLS, has no affect if the Freeze Column Mode check box is selected.
The analytic grid provides a horizontal scroll bar to scroll through all the columns in the grid. The size of
the analytic grid at runtime is a factor of the design time size of the analytic grid and the actual browser
page width. The browser width is used only when the page is generated, so the size of the grid does not
change as the user resizes the browser window. It does change on the next server trip when the page is
regenerated.

See Enterprise PeopleTools 8.50 PeopleBook: Security Administration, "Managing PeopleSoft
Personalizations," Working with Personalization Options.

Note. The order of the dimensions in the analytic grid does not need to match the order of dimensions in
the analytic model. The order in the model is for the purposes of calculation, whereas the order of
columns in the analytic grid determines the order that displays to the end user.

Inserting Analytic Grid Columns

Use one of the following methods to insert an analytic grid column:

• Select a page control from the Insert menu and click the analytic grid.

Note. You can insert these page controls within analytic grids: edit boxes, long edit boxes, images, push
buttons, and check boxes.

A cube formatted as dimension member should have field type of edit box.

• Drag a page field from within the current page, or from another page, into the analytic grid.

• Copy and paste a page field or record field.

• Drag a definition (such as a record field definition, a page field definition, or an entire record definition)
from the project workspace to the analytic grid.

The Analytic grid columns should all be bound to the same record definition to which the underlying cube
collection is attached; the only exception is the columns used for related display/related edit. All the fields in
the record definition that are mapped to either a dimension or a field should have a representative column in
the analytic grid.

Deleting Analytic Grid Columns

To delete an analytic grid column:

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 259

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open a page definition.

3. Select a column by clicking the column heading of the analytic grid.

Be sure that you select only the column and not the analytic grid as a whole; otherwise, you might delete
the entire grid instead of just the column. The column is selected when it turns black. The whole analytic
grid is selected when control boxes appear around the edges of the grid.

4. Press the Delete key.

Moving Analytic Grid Columns on the Layout Tab

To move analytic grid columns on the Layout tab:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open a page definition and access the Layout tab.

3. Click to select a column heading of the analytic grid.

4. Drag the column to its new location.

5. Release the mouse button over the column that is to the left of the new location.

Note. The order of columns here determines the order in which they display to end users. However, to
determine the axis on which fields appear, you use the Analytics tab in the Analytic Grid Properties dialog
box. All non-dimensional fields can appear on one axis only.

Moving Analytic Grid Columns on the Order Tab

To move analytic grid columns on the Order tab:

1. Select Start, Programs, PeopleTools 8.5x, Application Designer to access PeopleSoft Application
Designer.

2. After signing in to the PeopleSoft Application Designer, open a page definition and access the Order tab.

3. Select the column row by clicking the row number.

The analytic grid is identified as such in the Type column and appears in green. All columns in the
analytic grid are directly below this analytic grid row and appear in a lighter green.

4. Drag the row to the new position in the grid.

A red line indicates the new position of the column before you release it.

Note. You cannot move a column outside of the grid when working on the Order tab. Similarly, you
cannot move an existing page control from elsewhere on the page into the grid. You can perform both of
these operations on the Layout tab.

Creating Analytic Grids Chapter 13

260 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Resizing Analytic Grids

You can resize analytic grids in PeopleSoft Application Designer by dragging the right border of the grid. The
size of individual columns is determined by the data they contain. The height of the analytic grid is
determined by the number of rows it contains. If the number of columns extends beyond the maximum width
of the page, a scroll bar is introduced to enable end users to scroll through the columns.

Note. When designing analytic grids, keep in mind that the row header, which you do not see in PeopleSoft
Application Designer, takes up some of the width of the analytic grid that is displayed to end users.

Setting Column Properties for Analytic Grids

After you insert the page control or field into your grid, you can set the properties for that field as you would
set properties for any other page control. Access the field properties by double-clicking the column heading.
This properties dialog box behaves much as it does for ordinary grids.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
Page Definitions," Setting Page Field Properties for Controls.

Note. Settings that you select in the properties dialog, which comes up when you click an individual column
in the analytic grid, override the settings that you select in the Analytic Grid Properties dialog box.

In addition, related display fields and related edit fields behave the same for analytic grids as they do for
ordinary grids.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide, "Creating
Page Definitions," Creating Display Control and Related Fields.

Manipulating the Analytic Grid at Runtime

Your job as an application developer is not finished at design time. You can perform several tasks at runtime
to ensure that the analytic grid works as desired:

• All data for the analytic grid can be accessed using the PeopleCode RowSet class, as with the regular grid.

You can write business logic to manipulate this data.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Developer's Guide, "Accessing the Data
Buffer."

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Grid Classes,"
Using the Analytic Grid in PeopleCode.

Chapter 13 Creating Analytic Grids

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 261

• If necessary, use the RowInit event to populate data for application data fields.

The record definition associated with a cube collection—and, therefore, with the analytic grid—can have
fields that are not mapped to the cube collection's cubes or dimensions. These extra application data fields
are treated as non-dimensional fields. They are not populated automatically by the Analytic Calculation
Engine. The RowInit event is fired for each row as it is retrieved from the database, and provides the
opportunity for the application to populate these application fields with the appropriate data.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Developer's Guide, "PeopleCode and the
Component Processor," RowInit Event.

• Use PeopleCode to manipulate the analytic model and analytic grid data, as well as change the display of
the analytic grid.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Grid Classes."

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 263

Part 5

Debugging Analytic Models

Chapter 14
 Viewing and Debugging Analytic Models

Chapter 15
Capturing Analytic Instances

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 265

Chapter 14

 Viewing and Debugging Analytic Models

This chapter provides an overview of the Analytic Model Viewer and discusses how to:

• View analytic model properties.

• Use Analytic Model Viewer alongside PeopleSoft Application Designer.

• Use the application log fence to provide additional debugging information.

Understanding the Analytic Model Viewer

The Analytic Model Viewer is a debugging tool with which you can view intermediate results from
calculations and modify data when testing calculations. This tool is provided in the runtime environment
through the PeopleSoft Pure Internet Architecture (PeopleSoft PIA). Using the Analytic Model Viewer, you
can view metadata (such as virtual data cubes) that may not appear to the end user, and edit analytic model
data to see how your results would then change.

Even though you create analytic model definitions in PeopleSoft Application Designer, you need to view an
analytic instance of the analytic model during runtime to determine whether the analytic calculation engine is
performing its calculations as intended. Simply viewing an analytic instance within the application during
runtime is not sufficient, because some parts and data of the analytic model may not be visible to end users.
Using the Analytic Model Viewer you can view, analyze, and debug all cube collections in the model. The
Analytic Model Viewer operates during runtime because it depends on the analytic calculation engine (for
calculation) and the analytic server (for data transformation). In the Analytic Model Viewer, you view a
specific analytic instance of the analytic model.

Although you can modify data from within the Analytic Model Viewer, you cannot change metadata,
including rules, from this environment. Conversely, from within the analytic model in PeopleSoft Application
Designer, you can change metadata but cannot change the data itself. The ideal solution is to simultaneously
view the design time analytic model, in PeopleSoft Application Designer, and the runtime analytic model, in
the Analytic Model Viewer. This arrangement enables you to compare calculation results, and to change
either data or metadata, based upon your needs.

After you load an analytic instance for use in the Analytic Model Viewer, closing the viewer does not
automatically unload the analytic instance. You must do that manually from the Analytic Instance
Load/Unload page.

Viewing and Debugging Analytic Models Chapter 14

266 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Note. You can view causes, effects, and inputs in both PeopleSoft Application Designer and the Analytic
Model Viewer. PeopleSoft Application Designer displays the causes, effects, and inputs of data cubes and
cube collections. The Analytic Model Viewer displays not only causes, effects, inputs, but also displays
overrides (which are determined during runtime), thus providing a more detailed display of causes, effects,
and inputs.

The Analytic Model Viewer utility is available only to system administrators. You cannot change its security
settings to make it available to other users.

Viewing Analytic Model Properties

This section provides an overview of the Analytic Model Viewer and discusses how to :

• View analytic models.

• View and debug cube collection properties.

• View and debug data cube properties.

• View cell properties.

• View dimension properties.

• View user function properties.

• View organizer properties.

Understanding Analytic Model Properties

If you have already created an analytic instance and do not need to change any of its settings, you can use the
Analytic Model Viewer to search for, load, and open the analytic instance. (If the instance is not loaded,
clicking its name both loads and opens it; if it is loaded, clicking its name opens the instance.) When you
open an analytic instance, the Analytic Model Viewer opens to a Properties tab, which displays the parts,
properties, and data of the current analytic instance.

See Chapter 17, "Managing Analytic Servers," Creating, Deleting, and Copying Analytic Instances, page 323.

See Chapter 17, "Managing Analytic Servers," Loading and Unloading Analytic Instances, page 328.

This example shows the Properties tab of the Analytic Model Viewer:

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 267

Analytic Model Viewer, Properties tab

Part browser Contains hierarchies that you use to view and debug the parts of the current
analytic instance. This part browser is similar to the one in PeopleSoft
Application Designer. For example, if you drill into a cube collection it expands
to display the specific cube collections in the current analytic instance. You can
then expand each cube collection further into data cubes and dimensions. When
you click the name of any part, its associated properties appear on the right side
of the page, in the Part Property dialog.

See Chapter 3, "Understanding Analytic Models," PeopleSoft Application
Designer Window Components for Creating Analytic Model Definitions, page 20
.

Part Properties dialog Displays the properties of the selected part of the current analytic instance.

Viewing and Debugging Analytic Models Chapter 14

268 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic grid Displays the data for the part selected in the Part browser. For example, if you
select the Product Sales data cube, an analytic grid displaying Product Sales data
appears. You can update the data in the analytic grid and recalculate the analytic
instance. This analytic grid looks and feels like the analytic grid that you add to
PeopleSoft pages to display data from the analytic server. You can use it to view,
edit, and drag and drop data from an analytic model.

See Chapter 13, "Creating Analytic Grids," page 241.

See Enterprise PeopleTools 8.50 PeopleBook: Using PeopleSoft Applications,
"Working With Scroll Areas and Grids," Working with Analytic Grids.

Debugging tab Contains options that enable you to audit the selected data cube, or from one to
three data cubes from the selected cube collection. You can use this feature to
view All Causes, All Effects, All Inputs, Circular System, Direct Causes, and
Direct Effects. Like the Properties tab, the Debugging tab includes a Part
browser, a Part Property dialog, and an analytic grid. In addition, it displays an
audit grid that displays the audited data when you click the View button.

Pages Used to View Analytic Model Properties

Page Name Definition Name Navigation Usage

Analytic Model Viewer PTATSRCHPG2 PeopleTools, Utilities,
Administration, Analytic
Model Viewer

Search for existing analytic
models.

Analytic Model Viewer -
Properties

PTACEMDLVWR PeopleTools, Utilities,
Administration, Analytic
Model Viewer

Enables you to view the
properties and data of the
selected part.

Analytic Model Viewer -
Debugging

PTACEMDLVWRDBG PeopleTools, Utilities,
Administration, Analytic
Model Viewer, Debugging
tab

Enables you to perform
debugging tasks related to
the selected data cube or
cube collection.

Filter/Sort Criteria PTACEDIMPROP_SEC PeopleTools, Utilities,
Administration, Analytic
Model Viewer, Filter/Sort
Criteria

Enables you to filter and
sort the contents of the cube
collection based on a
specified dimension.

Cell Properties PTACECELLPROP_SEC PeopleTools, Utilities,
Administration, Analytic
Model Viewer, Cell
Properties

Enables you to view cell
properties for designated
member of the selected
dimension.

Tree Properties PTACETREE_SEC PeopleTools, Utilities,
Administration, Analytic
Model Viewer. Select to
view a dimension with a
tree attached, choose Tree
Properties

View the properties of the
tree attached to the selected
dimension.

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 269

Viewing Analytic Models

To view an analytic model through the PeopleSoft Pure Internet Architecture:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

The Analytic Model Viewer page appears.

2. Select the name of an analytic instance.

The Analytic Model Viewer - Properties page appears.

This is an example of the Analytic Model Viewer - Properties page:

Analytic Model Viewer - Properties page

Resolve circular
formulas

Indicates whether circular formulas will be resolved.

See Chapter 10, "Creating Rules, Formulas, and User Functions," Working with
Circular Formulas and Circular Systems, page 147.

Maximum iteration in
value

Indicates maximum iteration in value.

Maximum change in
value

Indicates maximum change in value.

Viewing and Debugging Analytic Models Chapter 14

270 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Warning circular
formulas

Specifies whether the model contains circular formulas.

Notes Lists notes related to this analytic model that the developer entered when creating
the model.

See Chapter 4, "Creating Analytic Model Definitions," Entering Notes for an
Analytic Model Definition's Parts, page 30.

Reload Model Reloads the analytic model.

PeopleSoft recommends that you reload the analytic model after you update the
analytic model definition so that you can view the resulting changes.

Viewing and Debugging Cube Collection Properties

This section discusses how to:

• View cube collections and cube collection properties.

• Debug cube collections.

• Sort and filter cube collections.

See Chapter 12, "Understanding the Relationship of Analytic Types to Analytic Models," page 231.

Viewing Cube Collections and Cube Collection Properties

To view cube collections and cube collection properties:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select a cube collection whose properties you want to view.

A Cube Collection Properties panel appears showing the properties of the selected cube collection.

Note. The analytic grid underneath the Cube Collection Properties panel displays the cube collection data
itself. You can drag and drop data cubes and dimensions within this grid; or view selected slices of your
data by choosing from the slice bar.

See Chapter 13, "Creating Analytic Grids," page 241.

This is an example of the Cube Collection Properties panel within the Analytic Model Viewer - Properties
page:

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 271

Analytic Model Viewer - Properties page, Cube Collection Properties panel

Dimensions Lists all of the dimensions that are attached to the data cubes within the cube
collection.

Main Record Lists the main record to which the cube collection is mapped.

Aggregate Record Lists the aggregate record that stores the cube collection's aggregate data, if
applicable.

Notes Lists notes related to this cube collection that the developer entered when
creating the model.

See Chapter 4, "Creating Analytic Model Definitions," Entering Notes for an
Analytic Model Definition's Parts, page 30.

Filter/Sort Criteria Click to displays a secondary window enabling you to filter and/or sort a selected
dimension within the cube collection.

Cell Properties Click to displays a secondary window from which you can view the properties of
a specified cell. You can view cell properties for data cubes and cube collections.

See Chapter 14, "Viewing and Debugging Analytic Models," Viewing Cell
Properties, page 277.

Save Recalculate Click to recalculates the results of your analytic instance, if you modified it.

Viewing and Debugging Analytic Models Chapter 14

272 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Debugging Cube Collections

To debug a cube collection:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select a cube collection whose properties you want to view.

3. Select the Debugging tab.

The part browser, filtering and sorting features, and main grid on the Debugging tab work like those
features on the Properties tab. However, this tab also enables you to audit the data.

This is an example of the Analytic Model Viewer - Debugging page:

Analytic Model Viewer - Debugging page, Cube Collections

Select up to 3 cubes for
comparison

Select from one to three cubes in the cube collection to audit.

Audit Type Select from one of the audit types: all causes, all effects, all inputs, circular
system, direct causes, direct effects.

View Click to displays the results of the audit in an audit grid below the analytic grid.

See Chapter 5, "Creating Data Cubes," Auditing Data Cubes at Design Time, page 46.

Sorting and Filtering Cube Collections

To sort and filter cube collections:

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 273

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select a cube collection whose properties you want to view.

3. Click the Filter/Sort Criteria button.

This is an example of the Analytic Model Viewer - Filter/Sort Criteria page:

Analytic Model Viewer - Filter/Sort Criteria page

Members are only filtered when the filter condition is met. In addition, if an aggregate member is filtered, all
its children are also filtered.

Select Dimension Select the dimension upon which you want to base the filter or sort.

Select Filter Select the filter.

Apply Filter Click to apply the selected filter.

Clear Filter Click to clear the selected filter.

Sort Select whether to sort by key, by name, or by neither. When you elect to sort by
key, you can choose from one to three keys upon which to sort, and can choose to
sort each one of those keys either ascending or descending. When you sort by
name, you can choose to sort either ascending or descending.

Apply Sort Click to apply the selected sort.

Viewing and Debugging Analytic Models Chapter 14

274 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Clear Sort Click to clear the selected sort.

Return Click to go back to the main page.

Viewing and Debugging Data Cube Properties

This section discusses how to:

• View data cubes and data cube properties.

• Debug data cubes.

See Chapter 5, "Creating Data Cubes," page 33.

Viewing Data Cubes and Data Cube Properties

To view data cubes and data cube properties:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select a data cube whose properties you want to view.

The analytic grid underneath the Cube Properties panel appears showing the data cube's values. As with
cube collections, you can use drag and drop to manipulate the analytic grid. You can also view slices of
your data by choosing from the drop-down lists of dimensions.

This is an example of the Analytic Model Viewer - Properties page, Cube Properties panel:

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 275

Analytic Model Viewer - Properties page, Cube Properties panel

Format Type Displays the format type of the data cube—such as Number, Char, Date, and so
on. These format types are attributes of the cube and are defined within
PeopleSoft Application Designer.

See Chapter 5, "Creating Data Cubes," Understanding the Relationship Between
Field Definition Attributes and Data Cube Formats, page 40.

Virtual Cube Indicates whether the selected data cube is a virtual cube.

See Chapter 5, "Creating Data Cubes," Virtual Data Cubes, page 37.

Dimensions Lists the dimensions that are attached to the selected data cube.

Calculation Aggregate Indicates whether the analytic calculation engine calculates aggregates for the
data cube.

Rule Displays any rules that the analytic calculation engine uses to calculate the
current data cube.

Notes Lists notes related to this data cube that the developer entered when creating the
model.

See Chapter 4, "Creating Analytic Model Definitions," Entering Notes for an
Analytic Model Definition's Parts, page 30.

Viewing and Debugging Analytic Models Chapter 14

276 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Cell Properties Click to displays a secondary window from which you can view the properties of
a specified cell. You can view cell properties for data cubes and cube collections.

See Chapter 14, "Viewing and Debugging Analytic Models," Viewing Cell
Properties, page 277.

Save Recalculate Click to recalculates the results of your analytic instance if you modified it.

Debugging Data Cubes

To debug a data cube:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select a data cube whose properties you want to view.

3. Select the Debugging tab.

Note. You can also audit data cubes at design time.

See Chapter 5, "Creating Data Cubes," Auditing Data Cubes at Design Time, page 46.

This is an example of the Analytic Model Viewer - Debugging page, Data Cubes panel:

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 277

Analytic Model Viewer - Debugging page, Data Cube panel

Cell Properties Click to displays a secondary window from which you can view the properties of
a specified cell. You can view cell properties for data cubes and cube collections.

Audit Type Select from one of the audit types: all causes, all effects, all inputs, circular
system, direct causes, direct effects.

View Displays the results of the audit in an audit grid below the analytic grid.

See Chapter 5, "Creating Data Cubes," Auditing Data Cubes at Design Time, page 46.

Viewing Cell Properties

To view cell properties:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select a data cube whose properties you want to view.

3. Select the Debugging tab.

4. Click the Cell Properties button.

Viewing and Debugging Analytic Models Chapter 14

278 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

This is an example of the Analytic Model Viewer - Cell Properties page:

Analytic Model Viewer - Cell Properties page

Select Cube Choose which data cube in the selected cube collection you want to view.

Note. The Select Cube option is enabled only if you activated the Analytic Model
Viewer - Cell Properties page while viewing a cube collection.

Dimension Name Displays the names of dimensions attached to the selected cube.

Member Enter the member in the selected dimension whose properties you want to view.

Display Properties Click to displays the properties—including cell type, calculation, calculation
dimensions, reason for calculation choice, and rule—of the selected cell.

Return Click to go back to the main page.

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 279

Viewing Dimension Properties

This section discusses how to view dimension properties.

See Chapter 6, "Creating Dimensions," page 51.

To view dimension properties:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select a dimension whose properties you want to view.

After you select a dimension in the part browser, a Dimension Properties panel appears showing the
properties of the selected dimension.

This is an example of the Analytic Model Viewer - Properties page, Dimension Properties panel:

Analytic Model Viewer — Properties page, Dimension Properties panel

Total Member Name Displays a different value depending on a fairly complex set of factors.

See Chapter 6, "Creating Dimensions," Defining Dimension Properties, page 52.

Aggregate Rule Displays the user function that calculates the dimension's aggregate fields, if
applicable.

See Chapter 6, "Creating Dimensions," Defining Dimension Properties, page 52.

See Chapter 9, "Creating Hierarchies," Working with Overrides, page 88.

Viewing and Debugging Analytic Models Chapter 14

280 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Notes Lists notes related to this dimension that the developer entered when creating the
model.

See Chapter 4, "Creating Analytic Model Definitions," Entering Notes for an
Analytic Model Definition's Parts, page 30.

Dimension Members Underneath the Dimension Properties panel are the dimension members. In many
cases, you see a simple list of dimension members. In some cases, however, a
hierarchy has been created for the dimension and you see a tree-like structure. In
this case, you open and close each branch and leaf, and see each member of this
hierarchy.

Tree Properties Click to display a secondary page that displays additional properties of the
selected tree, including:

• Tree name

• Node name

• Start level

• Discard level

• SetID

• Record name

• Effective date

Viewing User Function Properties

This section discusses how to view user functions.

See Chapter 10, "Creating Rules, Formulas, and User Functions," page 121.

To view user function properties:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select a user function whose properties you want to view.

The Analytic Model Viewer - Properties page, User Function Properties panel appears.

This is an example of the Analytic Model Viewer - Properties page, User Function Properties panel:

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 281

Analytic Model Viewer - Properties page, User Function Properties panel

Rule Displays the user function's rule.

Notes Lists notes related to this user function that the developer entered when creating
the model.

See Chapter 4, "Creating Analytic Model Definitions," Entering Notes for an
Analytic Model Definition's Parts, page 30.

Viewing Organizer Properties

This section discusses how to view organizer properties.

See Chapter 3, "Understanding Analytic Models," Organizers, page 19.

See Chapter 4, "Creating Analytic Model Definitions," Creating Organizers, page 30.

To view organizer properties:

1. Select PeopleTools, Utilities, Administration, Analytic Model Viewer.

2. Select an organizer whose properties you want to view.

The Analytic Model Viewer - Properties page, Organizer Properties panel appears.

This is an example of the Analytic Model Viewer - Properties page, Organizer Properties panel:

Viewing and Debugging Analytic Models Chapter 14

282 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic Model Viewer - Properties page, Organizer Properties panel

Using Analytic Model Viewer Alongside PeopleSoft Application
Designer

It can be profitable to use the Analytic Model Viewer side by side with PeopleSoft Application Designer.
This approach enables you to update the analytic model within PeopleSoft Application Designer and then
quickly see the results of those updates by reloading the analytic instance within the Analytic Model Viewer.
This approach enables you to change both the data and metadata for your model at the same time.

To use the Analytic Model Viewer alongside PeopleSoft Application Designer:

1. Create an analytic model.

See Chapter 4, "Creating Analytic Model Definitions," page 27.

2. Specify what analytic model works with what analytic type definition.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "Designing Analytic
Type Definitions," Defining an Analytic Type.

3. Access the Create Analytic Instance page, and create an analytic instance based upon the analytic type
definition.

See Chapter 17, "Managing Analytic Servers," Creating, Deleting, and Copying Analytic Instances, page
323.

4. Access the Analytic Model Viewer, and open the analytic instance you created.

See Chapter 14, "Viewing and Debugging Analytic Models," Viewing Analytic Model Properties, page
266.

5. From within PeopleSoft Application Designer, modify the analytic model.

6. From within the Analytic Model Viewer, click the Reload Model button.

Chapter 14 Viewing and Debugging Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 283

Using the Application Log Fence

In addition to the model viewer, you can also use the application log fence settings to cause error messages
created on the analytic server to be written to the analytic server log file.

If you set the application log fence to 3 or above, all the detailed messages created on the analytic server to be
sent back to the application server are also logged in the analytic server log file.

In addition, if you set the application log fence to 4 or above, all tracing information is logged to the analytic
server log file.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Developer's Guide, "Debugging Your Application,"
Using Application Logging

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 285

Chapter 15

Capturing Analytic Instances

This chapter provides an overview of the Analytic Instance Capture Utility and discusses how to:

• Capture analytic instance data.

• Import analytic instance data.

Understanding the Analytic Instance Capture Utility

When customers report a problem in an application that uses Analytic Calculation Engine or PeopleSoft
Optimization Framework, they often need to send the relevant data and metadata to PeopleSoft engineers who
can then review the problem. Using the Analytic Instance Capture Utility, customers can package the data and
metadata in a form that they can send to PeopleSoft for analysis and debugging. PeopleSoft developers then
employ the Analytic Instance Capture Utility to unpackage (import) the data for analysis.

The Analytic Instance Capture Utility works across platforms. For example, there should be no problem if a
customer exports data from an Oracle database and then PeopleSoft user support imports it into Microsoft
SQL Server. The same is true if the data is exported, for instance, from a UNIX platform and imported into
Windows.

Note. The machines being used to import and export data must be on identical versions of PeopleTools.

The Analytic Instance Capture Utility is not intended to handle major problems, such as crashes. Instead, it
focuses on data problems—for example, when customers discover incorrectly calculated application data and
want PeopleSoft developers to help determine the source of these calculations errors.

Note. Before using the Analytic Instance Capture Utility to communicate with PeopleSoft support, you
should attempt to diagnose the problem by using the Analytic Model Viewer.

See Chapter 14, "Viewing and Debugging Analytic Models," page 265.

Capturing Analytic Instance Data

You need to capture the relevant data and metadata before sending it to PeopleSoft support for diagnosis. You
can capture the data by loading an analytic instance and then exporting it with the Analytic Instance Capture
Utility.

Capturing Analytic Instances Chapter 15

286 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

By default, the Analytic Instance Capture Utility exports the analytic instance to a directory that it creates
entitled <PS_HOME>\appserv\<domain>\LOGS\<analytic instance><timestamp>. For example, if you
export an analytic instance named ACEINST, the resulting export directory is named something like
<PS_HOME>\appserv\<domain>\LOGS\ACEINST_20041113_015912. A valid export directory will by
default include the following files. If not, the export was not successful:

• The utility registration file items.reg.

• One or more data cache files named data_1.bin, data_2.bin, and so forth.

• Two .txt files, exportResults.txt and importDirections.txt.

The exportResults.txt file contains explicit details on how to export your metadata to a project. The
importDirections.txt file contains details on how to import this particular analytic instance.

See Chapter 17, "Managing Analytic Servers," Loading and Unloading Analytic Instances, page 328.

Pages Used to Export Analytic Instances

Page Name Definition Name Navigation Usage

Analytic Instance
Load/Unload

PTACEMDLLOAD PeopleTools, Utilities,
Administration, Analytic
Instance Load/Unload

Load or unload an analytic
instance.

Export Instance PTATEXPORT PeopleTools, Utilities,
Administration, Analytic
Server Administration.
Click the Export Instance
tab

Export an analytic instance.

Exporting Analytic Instances

To access the Export Instance page in PeopleSoft Pure Internet Architecture:

1. Select PeopleTools, Utilities, Administration, Analytic Server Administration.

The Analytic Domain Summary page appears.

2. Select the Export Instance tab.

The Export Instance page appears.

This is an example of the Export Instance page:

Chapter 15 Capturing Analytic Instances

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 287

Export Instance page

To export an analytic instance:

1. Load the analytic instance.

See Chapter 17, "Managing Analytic Servers," Loading and Unloading Analytic Instances, page 328.

2. In PeopleSoft Pure Internet Architecture, select PeopleTools, Utilities, Administration, Analytic Server
Administration.

3. Select the Export Instance tab.

4. (Optional) Select whether to filter the loaded analytic instances, either by analytic type or by model name.

5. Click the Search button to display the designated loaded analytic instances.

6. Click the option button to the left of the analytic instance that you want to export.

Although you can load multiple analytic instances, you can export only one at a time.

Capturing Analytic Instances Chapter 15

288 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

7. Click the Export Instance button.

The Export Result text box displays the status of the export operation. This message lists:

• The instance name and whether it was exported successfully.

• The export machine.

• The export directory.

• A message about the exportResults.txt file.

8. Retrieve the exportResults.txt file for specific details on how to export this analytic instance.

9. In PeopleSoft Application Designer, create a project that has the same name as the export directory that
was created during the export procedure.

Remember, the export process creates a directory whose name consists of the analytic instance name
followed by the date and timestamp. For example, if the analytic instance is named ACEINST, the
directory might be named ACEINST_20041113_015912.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Application Designer Developer's Guide,
"Working With Projects."

10. Select Insert, Definitions into Project and insert the items listed in the exportResults.txt file into the
project.

11. Save the project.

12. Select Tools, Copy Project, To File.

13. Select <PS_HOME>\appserv\<domain>\LOGS\<analytic instance><timestamp> as the export directory
and then click the Copy button.

14. Zip the contents of <PS_HOME>\appserv\<domain>\LOGS\<analytic instance><timestamp> and send
it to PeopleSoft user support.

Importing Analytic Instance Data

After the customer packages the analytic instance and sends it to PeopleSoft user support, user support must
import that data to diagnose the customer issue.

Pages Used to Import Analytic Instances

Page Name Definition Name Navigation Usage

Create Analytic Instance PTACECRTINST PeopleTools, Utilities,
Administration, Analytic
Inst. Create/Del/Copy

Create an analytic instance.

Chapter 15 Capturing Analytic Instances

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 289

Page Name Definition Name Navigation Usage

Analytic Instance
Load/Unload

PTACEMDLLOAD PeopleTools, Utilities,
Administration, Analytic
Instance Load/Unload

Load or unload an analytic
instance.

Importing Analytic Instances

To import an analytic instance:

1. Unzip the packaged analytic instance into the directory of your choice—for example, c:\TEMP.

2. Read the importDirections.txt file for explicit details about how to import this analytic instance.

3. In PeopleSoft Application Designer, select Tools, Copy Project, From File.

4. Search for the project named <analytic instance><timestamp>.

This project, which is the result of the export functionality, should be located in the c:\TEMP\<analytic
instance> directory. For example, if the analytic instance is named ACEINST, the directory would be
named something like c:\TEMP\ACEINST_20041113_015912.

5. Access the Create Analytic Instance page and create an analytic instance named <analytic instance>—for
example, ACEINST.

See Chapter 17, "Managing Analytic Servers," Creating, Deleting, and Copying Analytic Instances, page
323.

6. Access the Analytic Instance Load/Unload page and perform these steps:

See Chapter 17, "Managing Analytic Servers," Loading and Unloading Analytic Instances, page 328.

a. Select the name of the directory you just created.

b. Select the Import From File check box.

c. Enter the import directory name in the File Directory text box.

d. Click the Load Analytic Instance button.

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 291

Part 6

Converting Analytic Models

Chapter 16
Converting BAM 8.8 Models to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 293

Chapter 16

Converting BAM 8.8 Models to Analytic
Models

This chapter provides overviews of the conversion process and part conversion details and discusses how to:

• Export BAM 8.8 models.

• Run the PTAEACECONV Application Engine Program.

• Examine the PTAEACECONV log file.

Understanding the Conversion Process

PeopleSoft Business Analysis Modeler (BAM) is a standalone application that enables developers to create
multidimensional models for the purposes of reporting and analysis. BAM models are not integrated into the
PeopleTools framework. Integrating BAM models with PeopleSoft applications takes many steps and a
significant amount of time.

Analytic Calculation Engine analytic models are integrated into the PeopleTools framework and include
much of the same functionality and many of the same parts as BAM models. You may want to convert
existing BAM 8.8 models into Analytic Calculation Engine analytic models to reduce the extra steps and time
needed to integrate these models with PeopleSoft applications. You use the PTAEACECONV Application
Engine program for this purpose.

Because PTAEACECONV does not convert all BAM 8.8 model parts, you must manually complete the
analytic model after conversion.

Note. The PTAEACECONV Application Engine program does not convert application data. Application
developers are responsible for converting application data.

Converting BAM 8.8 models into analytic models involves these steps:

Converting BAM 8.8 Models to Analytic Models Chapter 16

294 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

1. Analyze the BAM 8.8 model.

If the existing model contains rules that use the TEXT2MBR function, you must hard-code the function's
second argument (Text) if the use of the function meets both of these conditions:

• The TEXT2MBR function's second argument (Text) is not hard-coded.

• The second argument matches the name of any dimension or data cube in the model.

Note. If the second argument matches the name of a dimension member reference—for example,
[COUNTRY:Belgium]—you do not need to hard-code the second argument of this instance of the
TEXT2MBR function.

2. Export the BAM 8.8 model.

See Chapter 16, "Converting BAM 8.8 Models to Analytic Models," Exporting BAM 8.8 Models, page
303.

3. Run the PTAEACECONV Application Engine program.

See Chapter 16, "Converting BAM 8.8 Models to Analytic Models," Running the PTAEACECONV
Application Engine Program, page 304.

4. Examine the Application Engine log file.

See Chapter 16, "Converting BAM 8.8 Models to Analytic Models," Examining the PTAEACECONV
Log File, page 305.

5. Map the new analytic model to main and aggregate records that hold the application and aggregation data.

See Chapter 7, "Creating Cube Collections," Mapping a Cube Collection to Main and Aggregate Records,
page 62.

6. Map data cubes and dimensions to fields in the main and aggregate records.

See Chapter 7, "Creating Cube Collections," Mapping Data Cubes and Dimensions to Fields, page 63.

7. Create PeopleSoft Pure Internet Architecture pages with analytic grids.

See Chapter 13, "Creating Analytic Grids," page 241.

8. View the new analytic model in PeopleSoft Pure Internet Architecture.

See Chapter 14, "Viewing and Debugging Analytic Models," page 265.

The PTAEACECONV Application Engine program converts most parts and circular formula options into
analytic models.

BAM 8.8 Parts That Can Be Converted

These BAM 8.8 parts can be converted into analytic models:

• Data cubes

• Dimensions

• User functions

Chapter 16 Converting BAM 8.8 Models to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 295

• Expression modifiers

• Table views

• Import maps

• Organizers

BAM 8.8 Parts That Cannot Be Converted

These BAM 8.8 parts cannot be converted into analytic models:

• Prefix modifiers

• Styles

• Option lists

Note. References to option lists within the code of data cube rules; user functions and expression
modifiers, however, are converted.

See Chapter 16, "Converting BAM 8.8 Models to Analytic Models," Understanding Part Conversion
Details, page 296.

• Timelines

• Roles

• Chart views

BAM 8.8 Circular Formula Options That Can Be Converted

These BAM 8.8 circular formula options can be converted into analytic models:

• Resolve circular formulas through iteration.

• Maximum number of iterations.

• Maximum change in values.

• Warn about circular formulas every time a circular formula is defined.

BAM 8.8 Circular Formula Options That Cannot Be Converted

The Only if iteration is not enabled BAM 8.8 circular formula option cannot be converted into an analytic
model.

See Also

Chapter 16, "Converting BAM 8.8 Models to Analytic Models," Understanding Part Conversion Details, page
296

Converting BAM 8.8 Models to Analytic Models Chapter 16

296 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Understanding Part Conversion Details

This section provides more detailed information about the conversion of BAM 8.8 parts.

Part Names Conversion Method

PTAEACECONV Application Engine program converts the names for each part that will be included in the
analytic model.

This table describes BAM 8.8 part name attributes and the changes that PTAEACECONV makes to these
attributes:

BAM 8.8 Part Name Attribute Attribute Change Upon Conversion

Lower case alphanumeric characters All lower case alphanumeric characters are converted to upper case
alphanumeric characters.

For example: Products converts to PRODUCTS.

White spaces All white spaces are converted to underscores.

For example: Actual Sales converts to ACTUAL_SALES.

Hyphens All hyphens are converted to underscore characters.

For example: Gross-Margin converts to GROSS_MARGIN.

Non alphanumeric characters Non alphanumeric characters are removed from the part name.

For example: Cost$ of delivery converts to COST_OF_DELIVERY.

Part names with more than 27 characters Characters exceeding the 27 character limit are truncated.

For example: Moving STD by Country and Group converts to
MOVING_STD_BY_COUNTRY_AND_G

Duplicate part names Numeric values are appended to duplicate part names.

For example, if the BAM 8.8 model contains the Actual Sales and
Actual_Sales part names, PTAEACECONV creates two new part
names: ACTUAL_SALES and ACTUAL_SALES1.

Note. Converted names of expression modifiers include the prefix EXP_.

Additionally, for each part that is converted, the original part name is converted into the new part's
description.

Filter user functions that are referenced by dimensions that exist in table views are converted to user
functions. The user function names include the prefix DR_ plus the converted dimension name.

Chapter 16 Converting BAM 8.8 Models to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 297

Code in Data Cube Rules, User Functions, and Expression Modifiers

PTAEACECONV uses the following order of execution when converting code in data cube rules, user
functions, and expression modifiers:

1. Replace all references to part names with resolved part names.

During conversion, PTAEACECONV searches through the code in data cube rules, user functions, and
expression modifiers for all part names and replaces these part names with new, converted part names.
For example, the EmployeeNetMonthlyIncome user function contains the following code:

Monthly Salary - Monthly Deductions

PTAEACECONV changes the user function's code to:

MONTHLY_SALARY - MONTHLY_DEDUCTION

2. Replace all references to option lists with a literal string.

Because analytic models do not support option lists, PTAEACECONV converts references to option lists
within the code of data cube rules, user functions, and expression modifiers. For example, the
RevenueMethod option list exists in the following user function code:

&RevenueMethod := GetRevenueMethod();
CASE(
&RevenueMethod = \Revenue Method\Data Entry\ :
 Do_Something;

&RevenueMethod = \Revenue Method\Repeat Value\ :
 Do_Something_ELSE;
)

The PTAEACECONV Application Engine program converts the user function's code to:

&RevenueMethod := GetRevenueMethod();
CASE(&RevenueMethod = "Data Entry":
 Do_Something;

&RevenueMethod = "Repeat Value":
 Do_Something_ELSE;
)

3. Replace all references to original dimension names with converted dimension names.

4. Replace all references to original data cube names with converted data cube names.

Note. If a dimension name and data cube name share the same name in the original model and one or both
names contain more than 30 characters, the dimension name retains the original part name in the
converted analytic model. If the BAM model contains rules or user functions that reference data cubes
that share the same names as dimensions, the converted rules and user functions reference the dimensions
instead. Developers must resolve these issues. The PTAEACECONV conversion log file indicates all data
cubes and dimensions that fall into this category.

5. Replace all references to the original user function names with converted user function names.

Data Cubes

The PTAEACECONV Application Engine program converts all data cubes and most data cube attributes.

Converting BAM 8.8 Models to Analytic Models Chapter 16

298 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Note. Data cube values are not converted. Application developers are responsible for converting data cube
values.

The following data cube attributes are unaffected by the conversion:

• These data cube formats:

• Text

Note. The Width property is not converted.

• Number

Note. Digit and Decimal properties are not converted.

• Member

• Date

Note. The Dimension Name property is not converted.

• These virtual data cube properties:

• Is virtual

• Is not virtual

• Note

• Attachments to dimensions

The following data cube attributes are changed during conversion:

• These data cube formats:

• General

The General format is converted to the Text format.

• Currency

The Currency format is converted to the Number format.

• Option List

The Option List format is converted to the Text format.

• Percent

The Percent format is converted to the Number format.

Note. Digit and Decimal properties are not converted.

• Yes/No

The Yes/No format is converted to Text format.

Chapter 16 Converting BAM 8.8 Models to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 299

• Code in data cube rules.

For more information, see the Expression Modifiers section below.

• Data cube names:

• Original data cube names are converted into new data cube names using the part names conversion
method.

For more information, see the

• Original data cube names are also converted into new data cube descriptions.

These data cube attributes are not converted:

• All methods for combining periods, including:

• Summing Values

• Averaging Values

• Last in Period

• Using Formula

• Blank

• All methods for splitting periods, including:

• Dividing Value

• Interpolating

• Repeating Value

• Using Formula

• Blank

• All methods for justification, including:

• Default

• Left

• Center

• Right

• Formatting function names.

Dimensions

PTAEACECONV converts all dimensions and most dimension attributes.

The conversion does not change the notes for dimensions.

These dimension attributes are converted but are changed during the conversion process:

Converting BAM 8.8 Models to Analytic Models Chapter 16

300 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• Dimension names:

• Original dimension names are converted into new dimension names using the part names conversion
method.

For more information, see the Part Names Conversion Method section.

• Original dimension names are also converted into new dimension descriptions.

• Total member names.

If a dimension contains a Total member, the name of the Total member is converted to an alias of the root
node used in the analytic model.

These dimension attributes are not converted:

• Dimension members.

• Default Alias Function property.

User Functions

PTAEACECONV converts all user functions.

These user function attributes are unaffected by conversion:

• Rules that have been defined to use within user functions.

• References to user functions from other parts.

For more information, see the Expression Modifiers section below.

These user function attributes are changed during the conversion process:

• User function names:

• Original user function names are converted into new user function names using the part names
conversion method.

For more information, see the Part Names Conversion Method section.

• Original user function names are also converted into new user function descriptions.

• Code used in user functions.

For more information, see the Expression Modifiers section.

PTAEACECONV does not convert these user function categories:

• Calculation Function.

• Alias Function.

• Formatting Function.

Chapter 16 Converting BAM 8.8 Models to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 301

Expression Modifiers

PTAEACECONV converts all expression modifiers. Converted expression modifiers exist as user functions
in the analytic model.

PTAEACECONV does not affect rules that are defined for expression modifiers.

These expression modifier attributes are converted but are changed during the conversion process.

• Expression modifier names:

• Original expression modifier names are converted into new expression modifier names using the part
names conversion method.

For more information, see the Part Names Conversion Method section.

• Converted names of expression modifiers include the prefix EXP_.

• Original expression modifier names are also converted into new expression modifier descriptions.

• Code used in expression modifiers.

For more information, see the Expression Modifiers section.

PTAEACECONV does not convert references to the original expression modifiers.

Table Views

PTAEACECONV converts all table views into cube collections. Note that BAM 8.8 table views lack
important information needed to complete cube collections, including:

• Main and aggregate records.

• Field mapping between dimensions and data cubes to fields in the main and aggregate records.

See Chapter 7, "Creating Cube Collections," Mapping Data Cubes and Dimensions to Fields, page 63.

For this reason, you must provide this information in the converted analytic model.

These table view attributes are unaffected by conversion:

• All references to data cubes.

• All references to dimensions.

• Notes.

PTAEACECONV changes table view names in the following manner:

• Original table view names are converted into new cube collection names using the part names conversion
method.

For more information, see the Part Names Conversion Method section.

• Original table view names are also converted into new cube collection descriptions.

These table view attributes are not converted:

Converting BAM 8.8 Models to Analytic Models Chapter 16

302 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• All references to timelines

• All references to expression modifiers

• Prefix modifiers

• All table view-related properties, including:

• Coordinates

• Positions of dimensions in table views

• Table header cells

• Sections of table views

• Table data

Import Maps

 PTAEACECONV converts all import maps into cube collections. Note that BAM 8.8 import maps lack
important information needed to complete cube collections, including:

• Mapping between cube collections to main and aggregate records.

• Field mapping between dimensions and data cubes to fields in the main and aggregate records.

See Chapter 7, "Creating Cube Collections," Mapping Data Cubes and Dimensions to Fields, page 63.

For this reason, it is necessary for application developers to provide this information in the converted analytic
model.

These import map attributes are unaffected by conversion:

• All references to dimensions

• All references to data cubes

• Notes

PTAEACECONV converts import map names but changes the names in the following manner:

• Original import map names are converted into new cube collection names using the part names
conversion method.

For more information, see the Part Names Conversion Method section.

• Original import map names are also converted into new cube collection descriptions.

PTAEACECONV does not convert all table view-related properties, including:

• Coordinates.

• Positions of dimensions in import maps.

Chapter 16 Converting BAM 8.8 Models to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 303

Organizers

PTAEACECONV converts all organizers.

These organizer attributes are unaffected by conversion:

• Hierarchies within organizers (for example, folders within folders).

• Notes.

• References to all parts except:

• Expression modifiers

• Prefix modifiers

• Styles

PTAEACECONV converts organizer names but changes them in the following manner:

• Original organizer names are converted into new organizer names using the part names conversion
method.

For more information, see the Part Names Conversion Method section.

• Original organizer names are also converted into new organizer descriptions.

PTAEACECONV does not convert organizer references to these parts:

• Expression modifiers

• Prefix modifiers

• Styles

• Chart views

Exporting BAM 8.8 Models

When you export a BAM 8.8 model, you create an XML file of the model. To export the BAM 8.8 model:

1. Launch PeopleSoft 9.1 Business Analysis Modeler.

2. Select File, Open to open an analytic model.

The Open dialog box appears.

3. Select the model that you want to convert.

4. Click the Open button.

The model appears in the Model Designer.

Converting BAM 8.8 Models to Analytic Models Chapter 16

304 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

5. Select File, XML, Export Schema.

The Export XML dialog box appears.

6. Select the location to which you want to export the model schema.

7. Enter a filename for the schema.

8. Click the Save button.

Running the PTAEACECONV Application Engine Program

This section discusses how to:

• Run PTAEACECONV from PeopleSoft Application Designer.

• Run PTAEACECONV from a PeopleSoft Pure Internet Architecture page.

See Also

Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Managing Application Engine Programs,"
Using the Command Line to Invoke Application Engine Programs

Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Managing Application Engine Programs,"
Starting Programs with the Application Engine Process Request Page

Running PTAEACECONV from PeopleSoft Application Designer

Before running PTAEACECONV from PeopleSoft Application Designer, you must customize the program to
find the location and file name of the correct XML file. In PeopleSoft Application Designer, open the
PTAEACECONV Application Engine program definition and view the PeopleCode in Step01. Scroll down to
the following PeopleCode:

If (&modelName = "") Then
 &modelName = "TEST";
End-If;

If (&xmlFilePath = "") Then
 &xmlFilePath = "C:\PeopleSoft\text.xml";
End-If;

Replace the TEST variable with the XML filename of the exported BAM 8.8 model.

Replace the C:\PeopleSoft\text.xml variable with the full path to the XML file of the exported BAM 8.8
model.

Note. The path must include the full name and extension of the XML file, for example:
C:\User\employment\employment.xml.

When completing the run request, select to output a log to a file. Either use the default path
c:\temp\PTAEACECONV.logor create your own path.

Chapter 16 Converting BAM 8.8 Models to Analytic Models

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 305

See Also

Enterprise PeopleTools 8.50 PeopleBook: Application Engine, "Managing Application Engine Programs,"
Using PeopleCode to Invoke Application Engine Programs

Running PTAEACECONV from a PeopleSoft Pure Internet Architecture Page

You use PeopleSoft Application Designer to create a PeopleSoft Pure Internet Architecture page that can run
the PTAEACECONV Application Engine program. This page must contain the following PeopleCode event:

Local Record &staterec = CreateRecord(Record.PTACECONV_AET);
&staterec.ACEXMLFILEPATH.Value = <ACEXMLFILEPATH>;
&staterec.ACEMODELID.Value = <model_name>;
CallAppEngine("PTAEACECONV", &staterec);

Both the <ACEXMLFILEPATH> and <model_name> variables should be replaced by user input.

For example, you would enter C:\User\employment\employment.xml for the <ACEXMLFILEPATH>
variable, and Employment for the <model_name> variable.

Examining the PTAEACECONV Log File

Use the log file to determine whether the BAM model successfully converted to an analytic model, or
whether there are conversion errors that you must resolve.

If the BAM model converted successfully to an analytic model, the message Application Engine program
PTAEACECONV ended normally appears at the bottom of the PTAEACECONV log file.

The PTAEACECONV log file contains detailed information about:

• All parts that were successfully converted.

• All parts that were not converted for either of these reasons:

• Conversion failure.

• Parts were not available in Analytic Calculation Engine.

• All part names that were changed using the part name conversion method.

• All user functions and rules that contained changed part names.

• All expression modifiers that were converted to user functions.

• All part name conflicts, such as shared names between dimensions and data cubes.

This example shows the PTAEACECONV log file:

Converting BAM 8.8 Models to Analytic Models Chapter 16

306 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Example of a PTAEACECONV log file

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 307

Part 7

ACE Administration

Chapter 17
Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 309

Chapter 17

Managing Analytic Servers

This chapter provides an overview of the analytic server framework and batch processing of analytic
instances and discusses how to:

• Configure and start analytic servers.

• Administer analytic servers.

• Administer analytic tables.

• Create, delete, and copy analytic instances.

• Load and unload analytic instances.

Understanding the Analytic Server Framework

This section discusses:

• Analytic server framework overview.

• Analytic server process flow and behavior.

Analytic Server Framework Overview

When a program doesn't "maintain state" or when the infrastructure of a system prevents a program from
maintaining state, it's known as a stateless program or system. It can't take information about the last session
into the next session, such as settings the user makes or conditions that arise during processing.

For example, the HTTP protocol is stateless. Additional schemes, such as cookies, are necessary to maintain
state in the HTTP (web) environment.

PeopleTools is architected primarily around a stateless model of client/server connectivity. This model
enables users' application sessions to be preserved even if servers are shut down or rebooted. All session state
is maintained by the client and is transferred to the server with each request. As long as an application server
is up and running, a user's session remains active and functional, and any application server can perform
requested transactions.

However, with some products, such as Analytic Calculation Engine or PeopleSoft Optimization Framework,
running a calculation on a multi-dimensional model is likely to produce far more data than is reasonable to
shuttle between a client and server to maintain a stateless connection. For performance reasons, the
calculations are performed completely in memory. If these calculations were to be synchronized and stored in
the database so that a stateless connection could be maintained, performance would suffer significantly.

Managing Analytic Servers Chapter 17

310 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

The analytic server framework provided by PeopleSoft is a general server infrastructure designed to meet the
needs of PeopleSoft products that process large amounts of data in memory. It provides a stateful model of
client/server connectivity that these products require to be part of the PeopleTools system, by keeping track of
configuration settings, transaction information, and other data for a session.

For example, client software could request that an analytic model or optimization model be recalculated in
one transaction, then retrieve the results of the calculation on that model at a later time. A server process
handles these requests, and maintains the model state and calculated data in memory between the requests.
Additional transactions can then modify the model and perform recalculations on it without shuffling all of
the data between the client and the server or dumping all the data to a database, thus preserving in-memory
performance.

A large model might take a long time to load. In the event that a user's session times out and is terminated, the
loading and calculation of the model continues, and enables the user to return to the model at a later time in a
new session.

The elements of the analytic server framework are:

• PSANALYTICSRV server.

PSANALYTICSRV is a Tuxedo managed PeopleSoft application server process, like PSAPPSRV. It
contains both the analytic calculation engine and the optimization engine. Multiple instances of
PSANALYTICSRV can run in an application server domain. The current condition of each
PSANALYTICSRV instance is tracked in system tables.

• Analytic server administration pages.

The Analytic Domain Summary page provides current information about the application server domains
with PSANALYTICSRV running that are attached to the current database.

The Analytic Servers page enables you to inspect the individual analytic server instances within the
running domains, with information about their analytic types and analytic instances, operations, and
timeout intervals. You can also halt processes individually on this page.

• Analytic table administration pages.

The Purge Delete Tables page displays the names of delete tables relevant to an analytic type or analytic
instance, and enables you to clear the data from the tables.

The Synchronize Table Versions page enables you to resynchronize versions of analytic type or analytic
instance data and the PSOPTSYNC table that are out of synchronization after you use PeopleSoft Data
Mover to move data from one database to another.

• Pages for creating, deleting, and copying analytic instances.

The Create Analytic Instance, Delete Analytic Instance, and Copy Analytic Instance pages enable you to
define and manage analytic instances that you can then load to inspect and debug your analytic models.

• The Analytic Instance Load/Unload page.

The Analytic Instance Load/Unload page enables you to load analytic instances so you can view them
within the Analytic Model Viewer, then unload the analytic instances that you no longer need.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 311

• Various supporting enhancements in several PeopleTools products.

These products include Analytic Calculation Engine, PeopleSoft Optimization Framework, Crystal
Reports, PeopleSoft Performance Monitor, PeopleSoft Process Scheduler, PeopleSoft Application Engine,
PSADMIN, and PeopleCode.

Note. Information about the role that the analytic server framework plays in these products can be found
in the documentation for each product.

Analytic Server Terms

The following terms are useful in understanding analytic server technology:

Analytic type A description of a data set to be loaded and the calculations to be performed on
the data set in the analytic server framework.

Multiple calculation engines such as the analytic calculation engine or the
optimization engine can be associated with an analytic type.

Analytic instance One instance of an analytic type. You can create multiple instances of the same
analytic type.

Analytic server The primary functional element of the analytic server framework, called
PSANALYTICSRV. Each application server domain can include zero or more
analytic servers.

Analytic server instance One running instance of an analytic server. You can run multiple instances of
PSANALYTICSRV for a given domain. Each running analytic server instance
can hold one analytic instance.

Analytic engine The portion of the analytic server framework that's responsible for managing
analytic instances.

Analytic engine type One of the following:

• Analytic Server.

• Application Engine Server.

• Application Engine.

Analytic Server Features

The analytic server framework has the following features:

• It's dedicated to the storage and management of large models.

• It's supported on all PeopleTools application server platforms.

• It runs PSANALYTICSRV as a Tuxedo managed server.

• You can configure the minimum and maximum number of analytic server instances per domain that are
running at one time.

Managing Analytic Servers Chapter 17

312 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

• You can specify a timeout for a loaded analytic instance. If the analytic instance isn't referenced within
the timeout interval, it's discarded.

• Multiple domain environments are supported, in which an analytic instance can be loaded in one Tuxedo
domain, and a user can access the analytic instance from another domain.

• You install, configure, and administer analytic servers using the same facilities as with other servers.

• You can shut down an analytic server and discard any loaded analytic instances.

• You use the standard PeopleTools mechanisms to troubleshoot, trace, log and debug analytic servers.

See Also

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using the PSADMIN Utility,"
Using the Quick-Configure Menu

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Setting Application Server
Domain Parameters"

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "PeopleSoft Optimization
Framework Preface"

Enterprise PeopleTools 8.50 PeopleBook: Performance Monitor, "Performance Monitor Preface"

Analytic Server Process Flow and Behavior

PeopleSoft session activity, such as a user action, a component interface operation, or a message subscription,
launches PeopleCode that requires the application server to invoke the analytic calculation engine or the
optimization engine to process an analytic instance.

The database maintains a list of all the available PSANALYTICSRV (analytic server) instances, their status,
and any analytic instances currently loaded, so it can properly select analytic server instances for new analytic
instances, and direct subsequent requests to the proper analytic server instance. When an analytic server
instance starts, the database is updated.

When a running program requests the creation of an analytic instance, the analytic server framework
considers all available PSANALYTICSRV instances in the same application server domain and allocates one
of them from the pool of idle server instances to handle this particular analytic instance. Any further load or
recalculate operations requested by the application for this analytic instance are directed back to the same
analytic server instance for processing.

Note. If there are no idle server instances, the analytic server framework can spawn additional server
instances up to a maximum limit that you can define in the application server domain configuration. If this
maximum is reached, the system attempts to allocate a server instance from a running analytic server in
another domain.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 313

Analytic server architecture

After an analytic server instance takes over processing the analytic instance, that processing becomes
independent of the status of the application server. The core functionality provided by the analytic server
framework is the ability to host analytic instances for an indeterminate amount of time in an environment
where that data can persist across multiple sessions, and where that data can be accessed without requiring its
entire content to be transferred from server to client and back.

Analytic Instance Access

Access to the analytic instances maintained by the analytic server environments is supported only through
PeopleCode programs. The environments in which PeopleCode can run include:

• The application server (PSAPPSRV).

• PeopleSoft Application Engine accessed by PeopleSoft Process Scheduler (PSAESRV or psae)

• PeopleSoft Application Engine run from the command line (psae).

An allocated server instance doesn't need to be running in the same Tuxedo domain or on the same server
machine as the application server. Once it's allocated, the initiating user is redirected to an application server
that's running on the same domain and server machine as the analytic server.

PeopleCode that's running in any PSAPPSRV process can access analytic instances that were loaded by any
other PSAPPSRV process, regardless of the Tuxedo domain in which it's running. When the program requests
access to such an analytic instance, the running PeopleCode program is restarted and the web server is
notified to redirect the request back to an application server within the Tuxedo domain where the analytic
instance is loaded. This application server is then able to directly contact the PSANALYTICSRV server with
the loaded analytic instance.

Note. PeopleCode that's running in a given Application Engine environment can access only analytic
instances that were loaded in the same process.

Managing Analytic Servers Chapter 17

314 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Secondary Database Connection

A secondary database connection is used to prevent unexpected table locks when you run an analytic
calculation. The secondary connection isn't opened until an analytic instance is referenced in a PeopleCode
program. A secondary connection is required regardless of whether the analytic calculation is run by an
application engine program as a batch process or directly by an online application.

By default, the secondary connection is persistent for improved performance. If you find that the persistent
connection imposes too much overhead, you can change it to an on-demand connection by setting bit eight of
the DbFlags application server and process scheduler domain parameter.

Note. A non-persistent connection can significantly affect system performance, so consider this setting
carefully.

You can use DbFlags bit four to disable the secondary connection altogether, but analytic instance processing
requires it, so ensure that DbFlags does not have bit four set.

Errors and Abnormal Process Termination

Any errors that occur while processing an analytic server request result in the PeopleCode program returning
an error code or throwing a PeopleCode exception.

If an analytic server instance that's hosting an analytic instance terminates unexpectedly, the loaded analytic
instance is lost and unrecoverable. However, the analytic instance status still appears on the Analytic Server
Administration pages. The domain monitor (PSMONITORSRV) discovers the unexpected termination and
cleans up the status information.

See Also

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Setting Application Server
Domain Parameters," DbFlags

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," Load

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Process Scheduler, "PeopleSoft Process Scheduler
Preface"

Understanding Batch Processing of Analytic Instances

The analytic server framework integrates with and works with PeopleSoft Process Scheduler using
PeopleSoft Application Engine, because PeopleSoft Application Engine can access the analytic calculation
engine and the optimization engine directly.

When PeopleSoft Process Scheduler launches an Application Engine job to process an analytic instance,
PeopleSoft Application Engine handles the entire job directly by loading the analytic engine within its own
process rather than using a server.

This is true whether PeopleSoft Process Scheduler submits the job to the PSAESRV process, or launches
PeopleSoft Application Engine using the psae command.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 315

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization Framework, "PeopleSoft Optimization
Framework Preface"

Configuring and Starting Analytic Servers

This section discusses how to:

• Enable PSANALYTICSRV.

• Specify analytic server instance quantities.

• Start PSANALYTICSRV.

You can specify whether an application server domain includes the PSANALYTICSRV Tuxedo managed
application server process, and specify the maximum number of analytic server instances that you want the
domain to support. You use the Quick-Configure menu of the PSADMIN utility to enable, configure, and
start analytic server instances.

Enabling PSANALYTICSRV

You access the Quick-Configure menu of PSADMIN by selecting Configure This Domain from the Domain
Administration menu.

On the Quick-Configure menu, enter the menu item number for Analytic Servers to toggle the setting for that
entry to Yes, so the domain will include instances of PSANALYTICSRV when it boots.

See Also

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using the PSADMIN Utility,"
Using the Quick-Configure Menu

Specifying Analytic Server Instance Quantities

Before you boot the application server domain, specify the appropriate minimum and maximum number of
allowed analytic server instances. The values you specify depend on your assessment of how many users you
expect to be using applications that process analytic instances.

Consider the typical number of analytic instances in a domain that are being processed at any given moment
as your minimum, and the possible total number of analytic instances that might simultaneously require
processing as your maximum. The most appropriate values produce the fastest system response without
unused server instances consuming memory unnecessarily.

To specify analytic server instances:

Managing Analytic Servers Chapter 17

316 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

1. On the Quick-Configure menu for the domain, enter the menu number for Custom Configuration.

The Custom Configuration environment launches, and prompts you to indicate whether you want to
change any configuration values.

2. Enter y to indicate that you want to change configuration values.

Custom Configuration prompts you to decide whether to change any values for each configuration item in
turn.

3. Press Enter to accept the default answer for each item presented, until the following entry appears:

Values for config section - PSANALYTICSRV

4. Enter y to change the values for PSANALYTICSRV.

You're prompted for each value in turn.

5. Specify the minimum number of instances.

This defines the number of analytic server instances that start when you boot the application server
domain. There are always at least this number of instances running. The default value of this parameter is
3.

6. Specify the maximum number of instances.

This defines the maximum number of analytic server instances that can result from spawning new
processes. The default value of this parameter is 3.

7. Press Enter to accept the default answer for each subsequent item presented. When you respond to the last
item, PSADMIN loads the new configuration and the PeopleSoft Domain Administration Menu appears.

You now can boot the domain normally.

See Also

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Using the PSADMIN Utility,"
Using the Quick-Configure Menu

Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration, "Setting Application Server
Domain Parameters," PSANALYTICSRV Options

Starting PSANALYTICSRV

If you enabled analytic servers on the Quick-Configure menu, when you boot the application server domain,
the PSANALYTICSRV process starts with the minimum number of instances that you specified.

When an application running under this domain requests an analytic instance, the analytic server framework
allocates an available idle analytic server instance for that analytic instance. If no idle server instance is
available, the framework spawns and allocates an additional server instance, up to the maximum that you
defined.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 317

Administering Analytic Servers

This section discusses how to:

• Administer analytic server domains.

• Administer analytic server instances.

Administering Analytic Server Domains

In a browser, select PeopleTools, Utilities, Administration, Analytic Server Administration to access the
Analytic Server Administration - Analytic Domain Summary page.

Analytic Server Administration - Analytic Domain Summary page

This page displays the current status of the application server domains with PSANALYTICSRV running that
are attached to the current database. Each active domain is listed, along with the following information:

Machine Name Displays the network name of the computer on which the listed domain is
running.

Domain Displays the name of each active domain.

Note. If a domain has been unexpectedly terminated, it might still be listed here.
You can click the Clear button to remove the outdated information from the
display.

Available Displays the total number of analytic server instances running in the domain.

Loading Displays the number of available analytic server instances in the domain that are
currently being loaded.

Idle Displays the number of available analytic server instances in the domain that are
allocated to analytic instances, but aren't actively processing them.

Executing Displays the number of available analytic server instances in the domain that are
allocated to analytic instances, and are actively processing them.

Managing Analytic Servers Chapter 17

318 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Terminating Displays the number of analytic server instances in the domain that are marked as
terminated, but haven't yet been shut down.

Click a domain's Clear button to remove that row from the display when the domain has been unexpectedly
terminated.

Warning! Use the Clear button with caution, and only if you're certain that the domain has been
unexpectedly terminated. Clearing the domain information for servers that are still running produces errors in
those servers.

Click the Refresh button to retrieve information about any newly started domains that have
PSANALYTICSRV running.

Administering Analytic Server Instances

In a browser, select PeopleTools, Utilities, Administration, Analytic Server Administration, Analytic Servers
to access the Analytic Server Administration - Analytic Servers page.

Analytic Server Administration - Analytic Servers page (1 of 3)

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 319

Analytic Server Administration - Analytic Servers page (2 of 3)

Analytic Server Administration - Analytic Servers page (3 of 3)

Click the Search button to retrieve status information about all analytic server instances that are running in
application server domains that are attached to the current database. You can use the Search Criteria section
to limit the information returned based on various criteria.

Search Criteria

Domain Select the name of an active application server domain for which you want to
retrieve information.

State Select a server state to limit the search to analytic server instances with the
selected state. You can select from the following states:

• Available

• Registered

• Loading

• Idle

• Executing

• Terminate

Analytic Type Select an analytic type from the set of analytic types defined in the current
database. This limits the search to analytic server instances that have analytic
instances of the selected analytic type loaded.

Managing Analytic Servers Chapter 17

320 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Analytic Instance Select an analytic instance from the set of analytic instances defined in the
current database. This limits the search to analytic server instances that have the
selected analytic instance loaded.

Analytic Engine Type Specify the process types for which you want to get status information. Select
one or more of the following:

• Analytic Server

• Application Engine Server

• Application Engine

All three types are selected by default.

Analytic Servers

This section displays a row of status information retrieved for each analytic server instance that's returned by
the search. In addition to the fields documented in the previous section, each row displays the following
information:

Machine Name Displays the network name of the computer on which the listed analytic server
instance is running.

Process Identifier Displays the operating system process ID for the listed analytic server instance.

Registration Date and
Time

• Analytic server type:

Displays the date and time that this analytic server booted.

• Application Engine types:

Displays the date and time that the application engine process loaded this
analytic instance.

Loaded by User ID Displays the user ID of the user whose activity resulted in the allocation of this
analytic server instance.

Time Loaded Displays the date and time that this analytic server instance loaded its analytic
instance.

Latest Operation Identifies the last operation that was applied to this analytic instance.

Latest Operation By
User ID

Displays the user ID of the last user to access this analytic instance.

Latest Operation Start
Time

Displays the date and time that the last operation on this analytic instance started.

Latest Operation End
Time

Displays the date and time that the last operation on this analytic instance
completed.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 321

Timeout Displays the timeout interval in minutes that's specified for this analytic instance.
Timeout values are defined for analytic instances by the TimeOut parameter of
the PeopleCode AnalyticInstance class Load method. A value of 0 indicates an
unlimited lifespan for this analytic instance.

Terminate Click to indicate that the server instance should be shut down.

Administering Analytic Tables

This section discusses how to:

• Purge delete tables.

• Synchronize table versions.

Purging Delete Tables

In a browser, select PeopleTools, Utilities, Administration, Analytic Server Administration, Purge Delete
Tables to access the Analytic Server Administration - Purge Delete Tables page.

Note. Shut down all running analytic server processes before using this page.

Analytic Server Administration - Purge Delete Tables page

Delete tables contain rows that have been deleted from analytic instance working data. These tables
accumulate data when you use triggers for database level auditing, and they're not always cleaned up after the
deletes have been completed. You use this page to accomplish the cleanup manually.

Managing Analytic Servers Chapter 17

322 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Select Analytic Type -
Or- Select Analytic
Instance

These drop-down lists are mutually exclusive. Select either an analytic type or an
analytic instance for which you want to purge delete tables.

Delete Table Name Displays the names of the delete tables relevant to the analytic type or analytic
instance that you selected.

Purge Delete Tables Click to clear the data from the displayed delete tables.

See Also

Enterprise PeopleTools 8.50 PeopleBook: Data Management, "Employing Database Level Auditing"

Synchronizing Table Versions

In a browser, select PeopleTools, Utilities, Administration, Analytic Server Administration, Synchronize
Table Versions to access the Analytic Server Administration - Synchronize Table Versions page.

Note. Shut down all running analytic server processes before using this page.

Analytic Server Administration - Synchronize Table Versions page

Some scenario-managed optimization tables used with an analytic type have a version number field. The
analytic server framework maintains a list of the tables and their version numbers. After an upgrade, the
version numbers in the upgraded tables might not match the version numbers on this list. You use this page to
update the list so the version numbers match.

Select Analytic Type -
Or- Select Analytic
Instance

These drop-down lists are mutually exclusive. Select either an analytic type or an
analytic instance for which you want to synchronize table versions.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 323

Synchronize Table
Versions

When you use PeopleSoft Data Mover to move data from one database to
another, it's often the case that the versions of analytic type or analytic instance
data and the PSOPTSYNC table are out of synchronization. Click this button to
synchronize the PSOPTSYNC table with the analytic instance tables.

Creating, Deleting, and Copying Analytic Instances

This section discusses how to:

• Create analytic instances.

• Delete analytic instances.

• Copy analytic instances.

Note. You can create, delete and copy analytic instances for use with both Analytic Calculation Engine
and PeopleSoft Optimization Framework.

Pages Used to Create, Delete, and Copy Analytic Instances

Page Name Definition Name Navigation Usage

Create Analytic Instance PTACECRTINST PeopleTools, Utilities,
Administration, Analytic
Inst. Create/Del/Copy.

Create an analytic instance.

Delete Analytic Instance PTACEDELINST PeopleTools, Utilities,
Administration, Analytic
Inst. Create/Del/Copy,
Delete Analytic Instance.

Delete an analytic instance.

Copy Analytic Instance PTACECPYINST PeopleTools, Utilities,
Administration, Analytic
Inst. Create/Del/Copy,
Copy Analytic Instance.

Copy an analytic instance.

Creating Analytic Instances

Use the Create Analytic Instance page to create an analytic instance that you can then load and view within
the Analytic Model Viewer to inspect and debug your analytic model.

Access the Create Analytic Instance page (PeopleTools, Utilities, Administration, Analytic Inst.
Create/Del/Copy).

Managing Analytic Servers Chapter 17

324 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Create Analytic Instance page

Analytic Type Select an analytic type from the drop-down list.

See Working with Analytic Types.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Optimization
Framework, "Designing Analytic Type Definitions," Creating Analytic Type
Definitions.

Analytic Instance Enter a name for the analytic instance.

Analytic instance names should consist of alphanumeric characters, can be up to
20 characters long, and cannot include spaces.

App Package Path and
App Class Method

The App Package Path field displays the full name of an application class
(application package name, subpackage names if applicable, and class name)
that's used to execute logic before loading the analytic instance.

The App Class Method field displays the name of the method in the displayed
class that's called at creation time to populate the new analytic instance with data.

You establish the application package class and method to use when you define
the analytic type.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode Language Reference,
"PeopleCode Built-in Functions," CreateAnalyticInstance.

Record with Parameters Look up and select parameters to be passed to the application class method. Click
the lookup button to display a list of records. Selecting any record generates a
standalone record.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 325

Populate Record Fields Displays a secondary page that lets you populate the fields of the standalone
record; the values of these fields will serve as parameters passed into the App
Class Method.

Create Analytic Instance Create the analytic instance. After the analytic instance has been successfully
created, you receive a notification to that effect.

Deleting Analytic Instances

Access the Delete Analytic Instance page (PeopleTools, Utilities, Administration, Analytic Inst.
Create/Del/Copy, Delete Analytic Instance.)

Delete Analytic Instance page

You can specify search criteria to filter the display of returned analytic instances based on a combination of
analytic type, model name, and server state.

Analytic Type Look up and select the analytic type upon which the analytic instance is based.

Model Name Look up and select the analytic model upon which the analytic instance is based.

Managing Analytic Servers Chapter 17

326 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Server State Select one of the following:

• Idle

• Loading

• Executing

• Terminating

See Chapter 17, "Managing Analytic Servers," Administering Analytic Servers,
page 317.

Clear Search Criteria Click to delete any current search criteria so you can begin a search from scratch.

Search Click to display all analytic instances that meet the specified search criteria.

Select one of the displayed analytic instances to delete.

Record with Parameters Look up and select parameters to be passed to the application class method. Click
the lookup button to display a list of records. Select a record, the first row of
which will consist of parameters that you want to pass to the application class
method. Selecting any record generates a populated, standalone record.

Populate Record Fields Displays a secondary page that lets you populate the fields of the standalone
record; the values of these fields will serve as parameters passed into the App
Class Method.

Delete Analytic Instance Unload the selected analytic instance and delete the data associated with it.

Copying Analytic Instances

Access the Copy Analytic Instance page (PeopleTools, Utilities, Administration, Analytic Inst.
Create/Del/Copy, Copy Analytic Instance.)

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 327

Copy Analytic Instance page

You can specify search criteria to filter the display of returned analytic instances based on a combination of
analytic type, model name, and server state.

Analytic Type Look up and select the analytic type upon which the analytic instance is based.

Model Name Look up and select the analytic model upon which the analytic instance is based.

Server State Select one of the following:

• Idle

• Loading

• Executing

• Terminating

See Chapter 17, "Managing Analytic Servers," Administering Analytic Servers,
page 317.

Managing Analytic Servers Chapter 17

328 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Clear Search Criteria Click to delete any current search criteria so you can begin a search from scratch.

Search Click to display all analytic instances that meet the specified search criteria.

Select one of the displayed analytic instances as the source instance to copy.

New Analytic Instance
ID

Enter a name for the new analytic instance; this analytic instance will be a copy
of the selected source instance.

Record with Parameters Look up and select parameters to be passed to the application class method that
will copy the source analytic instance. Click the lookup button to display a list of
records. Select a record, the first row of which will consist of parameters that you
want to pass to the application class copy method. Selecting any record generates
a populated standalone record.

Populate Record Fields Displays a secondary page that lets you populate the fields of the standalone
record; the values of these fields will serve as parameters passed into the
application class copy method.

Copy Analytic Instance Copy the selected analytic instance and its associated data. If a tree is attached to
the selected analytic instance, all tree data is also copied to the new analytic
instance, if all of the following are true:

Note. The analytic instance data and tree data are copied only if the record with
parameters that you specified is populated with the source analytic instance ID.

Loading and Unloading Analytic Instances

This section discusses how to load and unload analytic instances:

Note. You can load and unload analytic instances for use with both the Analytic Calculation Engine and
PeopleSoft Optimization Framework.

Loading and Unloading Analytic Instances

To use the Analytic Model Viewer, you must load an analytic instance of the analytic model that you want to
view or debug. You load analytic instances by using:

• The Analytic Instance Load/Unload page.

• The Analytic Model Viewer.

You unload instances by using the Analytic Instance Load/Unload page (PTACEMDLLOAD).

It is quicker to load an analytic instance by going through the Analytic Model Viewer: This approach allows
you to simultaneously load and view the analytic instance. However, you can use the Analytic Instance
Load/Unload page if you need to modify the timeout value or attach or detach a tree. You need to attach a tree
before loading an analytic instance if you want to see the tree structure while reviewing this analytic instance
within the Analytic Model Viewer.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 329

See Chapter 14, "Viewing and Debugging Analytic Models," Understanding Analytic Model Properties, page
266.

See Chapter 9, "Creating Hierarchies," page 77.

Note. You can only load one analytic instance per analytic server.

You can also load and unload analytic instances by means of PeopleCode, using the AnalyticInstance class
Load or Unload methods.

See Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," AnalyticInstance Class Methods.

Access the Analytic Instance Load/Unload page (PTACEMDLLOAD) by selecting PeopleTools, Utilities,
Administration, Analytic Instance Load/Unload; and selecting the desired analytic instance on the search
results page.

Analytic Instance Load/Unload page

Note. If you don't see the desired analytic instance, you need to create it as described earlier.

If you selected a PeopleSoft Optimization Framework analytic instance, you won't see the Attach/Detach Tree
portion of the Analytic Instance Load/Unload page.

See Chapter 17, "Managing Analytic Servers," Creating, Deleting, and Copying Analytic Instances, page 323.

Managing Analytic Servers Chapter 17

330 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

Attach/Detach Tree

Dimension Lists the dimensions in the selected analytic instance.

Select Click to select a tree to attach to the dimension. A secondary page appears from
which you can select a tree.

Clear Click to disassociate a selected tree from the dimension.

SetID Displays the SetID associated with the tree, if applicable.

Set Control Value Displays the Set Control Value associated with the tree, if applicable.

Tree Name Displays the name of the selected tree.

Effective Date Displays the effective date associated with the tree.

Tree Node Specify a node from the selected tree.

Record Name Displays the name of a record containing override rules or functions.

See Chapter 9, "Creating Hierarchies," Understanding the Relationship of
PeopleSoft Trees to Analytic Models, page 77.

Start Level Enter a number to specify the type of dimension members that Analytic
Calculation Engine creates out of the nodes and leaves of a tree. The default
value of this field is 0. The root level is 1.

Note. If you specify a nonzero start level, you must specify the strictly enforced
method to the tree in PeopleSoft Tree Manager. The strictly enforced method
ensures that all members that are created out of one level are created as the same
data type.

See Chapter 9, "Creating Hierarchies," Purpose of Node Levels in Creating
Hierarchies, page 82.

Discard Level Enter a number to specify the level from which Analytic Calculation Engine does
not attach any more of the tree to the dimension. Analytic Calculation Engine
does not create members out of nodes or leaves that are either at this level or
lower than this level.

You must specify a start level to every tree for which you want to specify a
discard level. The default value of this field is 0. If you specify any other value,
then it must be at a lower level (a higher number) than the start level.

See Chapter 9, "Creating Hierarchies," Purpose of Node Levels in Creating
Hierarchies, page 82.

Save Tree Information Click to save the dimension tree information that you've selected. The updated
tree information takes effect the next time you load the analytic instance.

Chapter 17 Managing Analytic Servers

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 331

Analytic Instance Load/Unload

Message Name Specify an application message that should be sent if the analytic instance can't
be unloaded successfully and is terminated prematurely. This can happen if the
analytic server crashes while the analytic instance is loaded.

Note. The message is sent when the analytic server process restarts itself after
crashing. The long edit box in this section of the page displays the content of
detailed messages.

Load Asynchronously Select to indicate that the analytic instance should be run asynchronously.

Time Out Enter the number of minutes of inactivity before the analytic instance times out.
The default time out is the value specified for the Analytic Instance Idle Timeout
domain parameter.

See Enterprise PeopleTools 8.50 PeopleBook: System and Server Administration,
"Setting Application Server Domain Parameters," Analytic Instance Idle
Timeout.

Note. After an instance times out, you must reload it to continue working with it.

Import from File Import an analytic instance from a file. You use this option to import an analytic
instance that you've captured with the Analytic Instance Capture Utility.

See Chapter 15, "Capturing Analytic Instances," page 285.

File Directory Specify the directory from which you want to retrieve the analytic instance that
you are importing from file.

Load Analytic Instance Click to load the selected analytic instance. Analytic Calculation Engine displays
a confirmation message after it successfully loads the analytic instance:

Unload Analytic
Instance

Click to unload the selected analytic instance. Analytic Calculation Engine
displays a confirmation message after it successfully unloads the analytic
instance. You must unload analytic instances once you're done working with
them.

See Also

Enterprise PeopleTools 8.50 PeopleBook: PeopleCode API Reference, "Analytic Calculation Engine
Classes," Load

Index

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 333

Numerics/Symbols
#ALL predefined constant 135
#BLANK predefined constant 135
#DEFAULT predefined constant 135
#DETAILS predefined constant 135
#DIRECT predefined constant 135
#E predefined constant 135
#FALSE predefined constant 136
#FORWARD predefined constant 136
#N/A predefined constant 136
#PI predefined constant 136
#REVERSE predefined constant 136
#TRUE predefined constant 136

A
ABS function 153
ACE See PeopleSoft Analytic Calculation Engine
ACOS function 154
addition (operator) 136
A dimension argument cannot be used here (error

message) 125
aggregate data

pushing down 87
understanding the calculation of 84
understanding the persistence of 86

aggregate functions
selecting for dimensions on data cubes 45
understanding 53

aggregate members
creating 83
data types of 88
dimension order impact on 85
understanding 80

aggregate records
mapping to cube collections 62
properties of 87

aggregates
calculating 45
persisting 66

aggregation
example of default 92
understanding default 89

ALL, selecting 87
All Causes command 25
All dimension arguments must be declared before

any expression arguments are declared (error
message) 125

All Effects command 25
All Inputs command 25
All required arguments must be declared before

any optional arguments are declared (error
message) 125

analytical properties 246
Analytic Calculation Engine classes 9
Analytic Calculation Engine Metadata classes 9
analytic calculation engines 8
Analytic Domain Summary page 317

analytic engine type
of analytic server instances 320

AnalyticGrid classes 9
analytic grids

components for working with 243
creating 241
defining general properties of 255
deleting columns in 258
displaying data in 268
inserting columns in 258
inserting controls in 245
manipulating at runtime 260
manipulating columns in 257
manipulating with AnalyticGrid classes 9
modifying layout in 242
moving columns on Layout tab 259
moving columns on Order tab 259
ordering fields in 249
populating with data 242
resizing 260
resizing controls in 245
setting analytical properties in 246
setting column properties in 260
setting label properties in 249
setting use properties in 252
understanding 241

Analytic Instance Capture Utility 285
AnalyticInstance classes 9
Analytic Instance Load/Unload page 328
analytic instances

accessing 313
capturing 285
clearing data before recalculating 236
clearing trees from dimensions 330
copying 323, 326
copying by analytic type 327
copying by model name 327
copying by server state 327
creating 323
deleting 323, 325
deleting by analytic type 325
deleting by model name 325
deleting by server state 326
dimensions for attaching/detaching trees 330
exporting 286
identifying delete tables 322
identifying the tree effective date 330
identifying the tree name 330
identifying the tree override record 330
identifying the tree set control value 330
identifying the tree set ID 330
importing 289
importing from a file 331
loading 57
loading and unloading 328
loading asynchronously 331
saving tree information 330
selecting trees to attach 330
specifying import file directory 331
specifying load or unload message name 331
specifying load or unload time out 331
specifying quantities 315
specifying search criteria for copying 328

Index

334 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

specifying search criteria for deleting 326
specifying the tree discard level 330
specifying the tree node 330
specifying the tree start level 330
understanding 8
understanding batch processing 314
using secondary database connection 314
viewing 265

analytic model definitions See Also analytic models
creating 29
entering notes for 30
opening 29
understanding the process of creating 27

analytic model properties 266
analytic models See Also analytic model definitions

converting BAM models to 293
editing data in Analytic Model Viewer 265
entering descriptions of 151
naming conventions for 28
understanding relationship to analytic types

231
validating 31
viewing properties with Analytic Model

Viewer 266
viewing with Analytic Model Viewer 269

Analytic Model Viewer 328
diagnosing problems with 285
part browser 267
part properties dialog box 267
security 266
understanding 265
using alongside PeopleSoft Application

Designer 282
viewing tree properties with 78

Analytic model with name %1 not found (error
message) 125

analytic server
using log fence settings 283

analytic server domains
administering 317
identifying active analytic server instances 317
identifying analytic server instances being

loaded 317
identifying analytic server instances marked as

terminated 318
identifying available analytic server instances

317
identifying idle analytic server instances 317
identifying machine name 317
viewing active domain name 317

analytic server instances
administering 318
enabling during implementation 3
identifying last user operation 320
identifying latest operation 320
identifying machine name 320
identifying process identifier 320
identifying registration date and time 320
identifying the end time of latest operation 320
identifying the start time of latest operation

320
identifying time loaded 320
identifying user ID 320
relationship to analytic calculation engines 8
relationship to analytic instances 8
search criteria 319
shutting down 321
terminating 321

understanding 8
viewing 8
viewing by analytic engine type 320
viewing by analytic type 319
viewing by loaded analytic instance 319
viewing by server state 319

analytic servers
abnormal process termination 314
accessing analytic instances 313
administering domains 317
administering instances 318
analytic engine 311
analytic engine type 311
analytic instance 311
analytic server instance 311
analytic type 311
configuring and starting 315
enabling PSANALYTICSRV 315
error handling behavior 314
managing 309
specifying instance quantities 315
starting PSANALYTICSRV 316
understanding 311
understanding features 311
understanding process flow and behavior 312
understanding the framework 309
understanding the terms 311
using secondary database connection 314

Analytic Servers page 318
analytic tables

purging delete tables 321
synchronizing versions 322

analytic type
identifying delete tables 322
of analytic instances 325, 327
of analytic server instances 319
specifying for an analytic instance 324

AnalyticType classes 9
analytic types

developmental sequence of creating 231
understanding 8
understanding relationship to analytic models

231
understanding the process of creating 232

application class method
used with an analytic type 324

Application Designer
See PeopleSoft Application Designer

application package
used with an analytic type 324

application server domains 8
architecture 10
ARGUMENTS declaration 154
ASC function 155
ASIN function 155
associated values, looking up 157
association data cubes

creating 42
example of creating 36
understanding 35

ATAN function 158
AT function 156
Attach, Data Cubes command 24
Attach, Dimensions command 24
attach/detach trees

clearing for analytic instance dimensions 330
identifying the override record 330
saving tree information 330

Index

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 335

selecting for analytic instance dimensions
330

specifying the discard level 330
specifying the start level 330
specifying the tree node 330
viewing dimensions 330
viewing the effective date 330
viewing the set control value 330
viewing the set ID 330
viewing the tree name 330

AttachTree method
NodeName parameter of 81
setting node levels with 82
setting tree discard level with 84
understanding 78

B
BAM models

convertible parts of 294
converting 293
exporting 303
nonconvertible parts of 295

BAM total members
creating names for 53
relationship to dimension members 79
relationship to hierarchies 79
understanding 79

bars
docking 22
floating 22
resizing 22
understanding the behavior of 22

blank lines, inserting into rules 143
blank member references 138
blank members

creating 82
understanding 82

blank spaces in names 29
BREAK function 159
built-in functions

ABS 153
ACOS 154
ARGUMENTS declaration 154
ASC 155
ASIN 155
AT 156
ATAN 158
BREAK 159
CASE 159
CHANGE 160
CHILDCOUNT 161
CHR 161
CONSOL 162
COS 162
CUBEID 163
CUMAVG 164
CUMSUM 164
DAVG 165
DAY 166
DCOUNT 167
DDB 168
DEC 169
DLOOKUP 169
DMAX 170
DMIN 171

DSUM 172
E 173
FIND 173
FIRST 174
FOR 174
FORCHILDREN 175
FORMEMBERS 176
FV 177
GROUPAVG 178
GROUPBY 179
GROUPMAX 180
GROUPMIN 181
GROUPSUM 182
GROW 183
IF 184
INC 184
INCDATE 185
INPUT 186
inserting into rules 139
INSUBTREE 186
INTERCEPT 188
IRR 188
ISINPUT 187
LEFT 190
LEN 190
LN 189
LOWER 191
MATCH 191
MAX 192
MBR2TEXT 193
MEDIAN 194
MEMBER 194
MID 195
MIN 196
MOD 197
MONTH 197
NEXT 198
NPER 199
NPV 200
NUM2TEXT 201
NUMMEMBERS 201
OPRID 202
PARENT 204
PCT 204
PERCENTILE 205
PI 206
PMT 206
PREV 207
PREVSELF 208
PV 209
QUARTILE 210
RAND 211
RATE 211
REPLACE 212
RETURN 212
RIGHT 213
ROUND 213
SELF 214
SET 215
SIN 215
SLN 216
SLOPE 216
SQRT 219
STDEV 219
SYD 220
TAN 221
TEXT2MBR 222
TEXT2NUM 222

Index

336 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

THIS 223
THISCUBE 224
TRUNC 224
understanding 131
understanding arguments of 131
UPPER 225
VAR 225
WHILE 226
YEAR 226

C
calculating aggregates 45
calculation data cubes

creating 41
understanding 35

calculations
creating for groups of members 146
creating for members 144

CASE function 159
causes See Also Causes and Effects Tool

displaying 48
viewing with Analytic Model Viewer 266

Causes and Effects tool See Also causes
cells, viewing properties of 277
centered moving averages, creating 199
CHANGE function 160
CHILDCOUNT function 161
CHR function 161
circular formulas

changing options for handling 150
convertible options 295
nonconvertible options 295
understanding 148

Circular reference (error message) 125
circular references

direct 128
indirect 128
understanding 128

circular systems
changing options of 150
understanding 148
understanding the resolution of 149

Clone Part command 24
columns, manipulating in analytic grids 257
Comment is not terminated (error message) 125
comments, inserting into rules 143
comparison operators 132
compound conditions 134
conditional formulas 132
conditions 132
CONSOL function 162
Copy Analytic Instance page 326
COS function 162
Could not find the user function rule with the name

%1 (error message) 128
Could not find the user function with the name %1

(error message) 128
Create Analytic Instance Page 323
cube collections

See Also read/write cube collections,
intermediate/calculation cube collections,
presentation cube collections

creating 61
debugging with Analytic Model Viewer 272
defining properties of 62

dimension properties of 58
entering notes for 30
example of 61
finding 31
mapping to records 62
naming conventions for 28
relationship to data cubes 57
setting dimension properties of 65
sorting and filtering with Analytic Model

Viewer 272
viewing dimension properties of 67
viewing in part browser 26
viewing with Analytic Model Viewer 270

CUBEID function 163
cubes See data cubes
CUMAVG function 164
CUMSUM function 164

D
database, installing during implementation 3
data cache

behavior of 235
clearing before recalculating 236

Data cube name is not terminated by a single quote
(error message) 125

data cubes
See Also input data cubes, calculation data cubes,
association data cubes, virtual data cubes

analyzing the relationship between 217
attaching dimensions to 55
auditing at design time 46
converting 297
Date format 44
debugging with Analytic Model Viewer 276
defining 33
defining formulas for 129
defining general properties of 43
editing formulas for 129
entering notes for 30
example of working with dimensions 34
finding 31
formats and field definition attributes 40
formatting 44
mapping to fields 63
Member format 44
naming conventions for 28
Number format 44
populating with data 33
referring to in rules 141
referring to one slice of 142
relationship to cube collections 57
Text format 44
understanding references of 138
using in cube collections 33
viewing in part browser 26
viewing with Analytic Model Viewer 274

data types of aggregate members 88
Date format 44
DAVG function 165
DAY function 166
DCOUNT function 167
DDB function 168
Debugging tab 268
DEC function 169
default aggregation

Index

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 337

example of 92
understanding 89

Delete Analytic Instance page 325
Delete Part command 24
delete tables

purging 321
viewing for analytic types and instances 322

dependents See effects
descriptions

entering for analytic models 151
entering for cube collections 63

Detach, Data Cubes command 24
Detach, Dimensions command 24
DetachTree method 78
detail data, persistence of 86
detail members

creating 83
understanding 80

detail nodes 80
details start level 83
development process 11
dimensional fields 248
dimension member references 142
dimension members

aggregate 80
blank 82
blank references of 138
creating at runtime 84
creating calculations for 144
creating calculations for groups of 146
creating from trees 83
detail 80
determining order of 85
hierarchy root 81
leaf 80
looking up values of 157
orphan 82
pushing down parent data 158
referring to in rules 142
types of 79
understanding 16, 51
understanding references of 138
understanding types of 79

dimensions
attaching to data cubes 55
changing order in part browser 55
converting 299
creating 52
defining properties of 52
editing properties in cube collections 65
entering notes for 30
example of working with data cubes 34
finding 31
mapping to fields 63
naming conventions for 28
order impact on calculation 85
referring to in rules 141
understanding 51
viewing in part browser 26
viewing names of 46
viewing properties in cube collections 67
viewing properties with Analytic Model

Viewer 279
direct causes, understanding 47
Direct Causes command 25
direct circular formulas, understanding 148
direct circular references 128
direct effects

displaying 48
understanding 47

Direct Effects command 25
division (operator) 136
DLOOKUP function 169
DMAX function 170
DMIN function 171
drag and drop

in analytic grids 9
of bars 22
of parts 26

DSUM function 172
Duplicate argument name %1 (error message) 126
Duplicate dimensions in member references (error

message) 126

E
Edit menu commands 22
effects See Also Causes and Effects Tool

displaying 48
viewing with Analytic Model Viewer 266

E function 173
Error in ARGUMENTS of user function %1

(error message) 126
error messages 124, 125
explicit dimension sets

creating and editing 75
understanding 69
viewing properties of 74

explicit dimension subsets 69
explicit dimension supersets 69
explicit tuples 72
exponentiation (operator) 136
export directory 286
exportResults.txt 286
expression modifiers

converting 301
converting code in 297

F
field definition attributes, relationship to data cube

formats 40
fields See Also key fields

mapping to data cubes and dimensions 63
ordering in analytic grid 249

filtering
of data 123
of dimension members 124

filter user functions
selecting 66
understanding 123

FIND function 173
Find Part command 24
FIRST function 174
FORCHILDREN function 175
forecasting, using presentation cube collections

for 60
FOR function 174
FORMEMBERS function 176
formula bar 21
formulas See Also rules

absence in virtual data cubes 45

Index

338 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

defining 129
editing 129
in calculation data cubes 35

Function not allowed in this context (error message)
126

functions
See user functions, filter user functions, built-in
functions, truth functions

Functions are nested too deeply (error message) 126
FV function 177

G
general properties 255
GetData method 60
GROUPAVG function 178
GROUPBY function 179
GROUPMAX function 180
GROUPMIN function 181
GROUPSUM function 182
GROW function 183

H
hierarchies

creating 77
default 78
example of creating with aggregate and detail

members 118
relationship to PeopleSoft trees 77
understanding 77

hierarchy root members 81
historical trends, analyzing 217

I
IF function 184
implicit tuples 72
importDirections.txt 286
import maps, converting 302
INCDATE function 185
INC function 184
indirect causes, understanding 47
indirect circular formulas, understanding 148
indirect circular references 128
indirect effects

displaying 48
understanding 47

input data cubes
and formulas 41
creating 41
understanding 35

INPUT function 186
inputs

displaying 48
understanding 47
viewing with Analytic Model Viewer 266

INSUBTREE function 186
interactive reports 241
INTERCEPT function 188
intermediate/calculation cube collections

data cube types allowed in 59

understanding 59
Internal error. Uncompiled user function reference

made in the formula. (error message) 126
Invalid constant (error message) 126
Invalid dimension %1 (error message) 126
Invalid function %1 (error message) 127
Invalid member reference (error message) 127
Invalid member reference syntax. Valid syntax is

[DIMENSION:Member]. (error message) 127
Invalid number (error message) 127
invisible fields 248
IRR function 188
ISINPUT function 187
iterations

specifying the maximum number of 151
understanding 149

K
key fields, suggestions for mapping 65

L
label properties, setting 249
latest operation

viewing for analytic server instances 320
latest operation start time

viewing for analytic server instances 320
Layout tab, moving columns on 259
leaf members

creating 83
understanding 80

leaf ranges, relationship to new members 84
LEFT function 190
LEN function 190
levels 83
LN function 189
loading and unloading 328
Load method 8
log fence

PeopleSoft Analytic Calculation Engine 283
log file 305
logical operators 133
LOWER function 191

M
machine name

for analytic server domains 317
viewing for analytic server instances 320

main records, mapping to cube collections 62
MATCH function 191
mathematical operators 136
MAX function 192
MBR2TEXT function

referencing blank members with 138
understanding 193

MEDIAN function 194
Member format 44
MEMBER function 194
members See dimension members
menu bar 21, 22

Index

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 339

metadata
changing using PeopleCode 9
viewing with Analytic Model Viewer 265

Metadata classes 9
MID function 195
MIN function 196
model name

of analytic instances 325, 327
Model Viewer See Analytic Model Viewer
MOD function 197
MONTH function 197
Move, Down command 24
Move, Up command 24
multiplication (operator) 136

N
names

blank spaces in 29
of total members 53
underscores in 29
viewing for dimensions 46

naming conventions 28
New, Cube Collection command 23
New, Data Cube command 23
New, Dimension command 23
New, Organizer command 23
New, User Function command 23
NEXT function 198
node levels 82
NodeName parameter 81
nonalphanumeric characters 28
non-dimensional fields 248
NONE, selecting 87
non-key fields, mapping 65
notes, entering 30
notes bar

understanding 22
using 30

Notes Bar command 23
NPER function 199
NPV function 200
NUM2TEXT function 201
Number format 44
NUMMEMBERS function 201

O
operators

comparison 132
execution order of 137
logical 133
mathematical 136

OPRID function 202
order of precedence 137
Order tab, moving columns on 259
organizers

converting 303
creating 30
entering notes for 30
naming conventions for 28
understanding 19
viewing in part browser 26
viewing properties with Analytic Model

Viewer 281
orphan members 82
output window 22
overrides

assigning to trees 91
example of creating 100
understanding 88
understanding order of precedence in 89
viewing with Analytic Model Viewer 266

P
parameter record fields

populating for copying an analytic instance
328

populating for creating an analytic instance
325

populating for deleting an analytic instance
326

PARENT function 204
parent member data, pushing down 158
part browser

changing order of dimensions in 55
in Analytic Model Viewer 267
in PeopleSoft Application Designer 25

Part menu commands 23
part properties dialog box 267
part property editor 21
parts

converting names of 296
dragging and dropping 26
entering notes for 30
finding 31
naming conventions for 28
understanding 15

Paste Cube Name command 22
Paste Dimension command 23
Paste Function command 22
Paste Member Ref command 23
Paste User Function command 23
PCT function 204
PeopleSoft Analytic Calculation Engine

See Also Analytic Calculation Engine classes
components of 7
development process using existing record

structures 13
development process without existing record

structures 12
implementing 3
security 14
tools for creating analytic models 20
understanding the architecture of 10
using log fence settings 283

PeopleSoft Application Designer
running PTAEACECONV from 304
using alongside Analytic Model Viewer 282

PeopleSoft Application Engine, running
PTAEACECONV 304

PeopleSoft Application Server, configuring during
implementation 3

PeopleSoft Optimization Framework 9
PeopleSoft Performance Monitor 10
PeopleSoft Process Scheduler

working with analytic server framework 314
PeopleSoft Pure Internet Architecture

creating pages containing analytic grids 241

Index

340 Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved.

running PTAEACECONV from 305
PeopleSoft trees

attaching to dimensions 78
detaching from dimensions 78
relationship to hierarchies 77
updating at runtime 78
viewing properties with Analytic Model

Viewer 280
PeopleTools, installing during implementation 3
PERCENTILE function 205
Performance Monitor

See PeopleSoft Performance Monitor
PIA PeopleSoft Pure Internet Architecture
PI function 206
PMT function 206
positions, looking up values at 157
precedence 137
precedents See causes
predefined constants 134
presentation cube collections

data cube types allowed in 60
understanding 60

PREV function 207
PREVSELF function 208
PROBINST key field 237
process identifier

viewing for analytic server instances 320
PSACETREEOVRD subrecord 91
PSANALYTICREG table, viewing analytic server

instances with 8
PSANALYTICSRV

administering domains 317
enabling 315
starting 316

PTAEACECONV
examining the log file for 305
running 304

Purge Delete Tables page 321
pushed down data 87
PV function 209

Q
QUARTILE function 210

R
RAND function 211
RATE function 211
read/write cube collections

creating views for 14
data cube types allowed in 59
understanding 58

Readable record attribute 235
Read Once record attribute 235
Recalculate function 39
recalculating virtual data cubes 38
records See Also main records

relationship of attributes to data caching
behavior 235

setting reading order of 238
record with parameters

specifying for copying an analytic instance 328
specifying for creating an analytic instance 324

specifying for deleting an analytic instance 326
recursive systems

resolving 149
understanding 148

references
inserting for dimension members 142
inserting for dimensions 141
of blank members 138
of data cubes 138
of dimension members 138

registration date and time
viewing for analytic server instance 320
viewing for analytic server instances 320

REPLACE function 212
reporting, using cube collections for 60
RETURN function 212
right-click menus 23
RIGHT function 213
ROOT, selecting 87
ROUND function 213
rule bar

display behavior of 124
understanding 21

Rule Bar command 23
rules See Also formulas

converting code in 297
entering member references into 142
inserting blank lines into 143
inserting built-in functions into 139
inserting comments into 143
inserting user functions into 140
performing exceptions to 143
referring to data cubes in 141
referring to dimension members in 142
referring to dimensions in 141
understanding elements of 131
understanding error messages for 124
using predefined constants in 134
using values in 140

S
Scenario Managed record attribute 237
security 14
SELF function 214
servers

analytic server features 311
analytic server terms 311
managing analytic servers 309
understanding the framework 309

Servers page 8
server state

of analytic instances 326, 327
of analytic server instances 319

SetData method 60
SET function 215
Show Circular System command 25
SIN function 215
slices, referring to 142
SLN function 216
SLOPE function 216
SmartViews See interactive reports
sorting

with Analytic Model Viewer 272
with PeopleSoft Application Designer 66

spaces in names 29

Index

Copyright © 1988, 2009, Oracle and/or its affiliates. All Rights Reserved. 341

SQRT function 219
status bar 22
STDEV function 219
strictly enforced method 83
sub-organizers 19
subtraction (operator) 136
Summary page 8
SYD function 220
synchronization order, setting 238
Synchronize Table Versions page 322
Syntax error (error message) 127
syntax errors, understanding 129

T
table views, converting 301
TAN function 221
terminating analytic server instances 321
TEXT2MBR function

referencing blank members with 138
understanding 222

TEXT2NUM function 222
Text format 44
Text not terminated by quote (error message) 127
The ARGUMENTS declaration must appear at the

beginning of a user function (error message)
127

The following error occurred while preprocessing
user function %1 %2 (error message) 126

This argument has not been declared in the
ARGUMENTS section (error message) 127

THISCUBE function 224
THIS function 223
time loaded

viewing for analytic server instances 320
tool bar 21
Tools menu commands 24
Total Member Name field 53
total members See BAM total members
tree discard level 84
trees See PeopleSoft trees
TRUNC function 224
truth functions 133

U
Unbalanced parentheses (error message) 127
Undefined data cube %1 (error message) 128
underscores in names 29
uppercase letters 28
UPPER function 225
use properties 252
user functions See Also rules

converting 300
converting code in 297
defining 130
editing 130
entering notes for 30
finding 31
inserting into rules 140
naming conventions for 28
viewing in part browser 26
viewing properties with Analytic Model

Viewer 280

user ID
viewing for analytic server instances 320

user operation
viewing for analytic server instances 320

user profiles, establishing during implementation
4

V
Validate command 24
values

looking up associated 157
looking up at a position 157
looking up for members by name 157
persisting aggregates 66
understanding 137
using in rules 140

VAR function 225
variables

decrementing 169
incremeting 184
naming 139
referencing 138

View menu commands 23
views, creating for read/write cube collections 14
virtual data cubes

creating 42
disabling 45
enabling 45
recalculating 38
restrictions of 38
understanding 37

W
WHILE function 226
Writable record attribute 236

Y
YEAR function 226

	Enterprise PeopleTools 8.50 PeopleBook: PeopleSoft Analytic Calculation Engine
	Copyright
	Contents
	Preface: Analytic Calculation Engine Preface
	Understanding Analytic Calculation Engine
	Common Elements Used in This PeopleBook

	Part 1: Getting Started with Analytic Calculation Engine
	Chapter 1: Getting Started with Oracle's PeopleSoft Analytic Calculation Engine
	Understanding Analytic Calculation Engine
	Analytic Calculation Engine Implementation

	Part 2: Designing and Editing Analytic Models
	Chapter 2: Understanding Oracle's PeopleSoft Analytic Calculation Engine
	Analytic Calculation Engine Components
	Analytic Calculation Engine Architecture
	Analytic Calculation Engine Development Process
	Development Process Without Existing Record Structures
	Development Process Using Existing Record Structures

	Analytic Calculation Engine Security

	Chapter 3: Understanding Analytic Models
	Analytic Models
	Relationship of Parts
	Data Cubes and Dimensions
	Formulas and User Functions
	Cube Collections
	Organizers

	Tools
	PeopleSoft Application Designer Window Components for Creating Analytic Model Definitions
	Behavior of Bars
	Menu Bar
	Part Browser

	Chapter 4: Creating Analytic Model Definitions
	Understanding the Analytic Model Definition Creation Process
	Understanding Conventions for Naming Analytic Models and Parts
	Creating a New Analytic Model Definition
	Opening an Analytic Model Definition
	Creating Organizers
	Entering Notes for an Analytic Model Definition's Parts
	Finding Parts
	Validating Analytic Models

	Chapter 5: Creating Data Cubes
	Understanding Data Cubes
	Definition of a Data Cube
	Input Data Cubes
	Calculation Data Cubes
	Association Data Cubes
	Virtual Data Cubes

	Understanding the Relationship Between Field Definition Attributes and Data Cube Formats
	Creating Input Data Cubes
	Creating Calculation Data Cubes
	Creating Association Data Cubes
	Creating Virtual Data Cubes
	Defining Data Cube Properties
	Defining General Data Cube Properties
	Selecting Aggregate Functions for Attached Dimensions

	Auditing Data Cubes at Design Time
	Understanding Causes and Inputs
	Understanding Effects
	Displaying Causes and Inputs
	Displaying Effects
	Using the Causes and Effects Tool

	Chapter 6: Creating Dimensions
	Understanding Dimensions
	Creating a New Dimension
	Defining Dimension Properties
	Attaching a Dimension to a Data Cube
	Changing the Order of Dimensions in the Part Browser

	Chapter 7: Creating Cube Collections
	Understanding Cube Collections
	Understanding Types of Cube Collections
	Read/Write Cube Collections
	Intermediate/Calculation Cube Collections
	Presentation Cube Collections
	Example: Creating Two Cube Collections

	Creating Cube Collections
	Defining Cube Collection Properties
	Mapping a Cube Collection to Main and Aggregate Records
	Mapping Data Cubes and Dimensions to Fields
	Defining Additional Cube Collection Dimension Properties

	Chapter 8: Creating Explicit Dimension Sets
	Understanding Explicit Dimension Sets
	Understanding Implicit Tuples and Explicit Tuples
	Defining Explicit Dimension Sets
	Viewing Explicit Dimension Set Properties
	Editing or Adding New Explicit Dimension Sets

	Chapter 9: Creating Hierarchies
	Understanding the Relationship of PeopleSoft Trees to Analytic Models
	Purpose of PeopleSoft Trees and Analytic Model Hierarchies
	PeopleCode Usage with PeopleSoft Trees and Analytic Models

	Understanding BAM Model Total Members
	Understanding Dimension Members
	Types of Dimension Members
	Purpose of Node Levels in Creating Hierarchies
	Creation of New Members at Runtime

	Understanding the Calculation of Aggregate Data
	Dimension Order Impact on Calculation
	Logic for Determining the Order of Members

	Understanding the Persistence of Aggregate Data
	Persistence of Aggregate and Detail Data
	Aggregate Record Properties
	Pushed Down Data
	Data Type Considerations

	Working with Overrides
	Understanding Default Aggregation
	Understanding Override Order of Precedence
	Understanding the PSACETREEOVRD Subrecord
	Example: Using Default Aggregation
	Example: Creating Overrides
	Example: Creating a Hierarchy with Mixed Aggregate and Detail Members

	Chapter 10: Creating Rules, Formulas, and User Functions
	Understanding Rules, Formulas, and User Functions
	Common Elements Used in This Chapter
	Rules, Formulas, and User Functions
	Filter User Functions
	Rule Bar Display

	Understanding Design Time Rule Error Messages
	Defining and Editing Data Cube Formulas
	Defining and Editing User Functions
	Working with the Elements of Rules
	Understanding the Elements of Rules
	Inserting a Built-in Function into a Rule
	Inserting a User Function into a Rule
	Inserting a Numeric Value or Text Value into a Rule
	Inserting a Data Cube Reference into a Rule
	Inserting a Dimension Reference into a Rule
	Inserting a Dimension Member Reference into a Rule
	Inserting a Blank Line into a Rule
	Inserting a Comment into a Rule

	Performing Exceptions to the Rule
	Understanding Exceptions to the Rule
	Create Different Calculations for Different Members
	Creating Different Calculations for Different Groups of Members

	Working with Circular Formulas and Circular Systems
	Understanding Circular Formulas
	Understanding Circular Systems and Recursive Systems
	Understanding Recursive System Resolution
	Understanding Circular System Resolution
	Changing Circular Formula and Circular System Options

	Chapter 11: Using Built-in Functions in Analytic Models

	Part 3: Working with Analytic Types
	Chapter 12: Understanding the Relationship of Analytic Types to Analytic Models
	Purpose of Analytic Type Definitions
	Example: Working with an Analytic Type and an Analytic Model

	Relationship of Record Attributes to Data Caching Behavior
	Synchronization Order

	Part 4: Working with Analytic Grids
	Chapter 13: Creating Analytic Grids
	Understanding Analytic Grid Design
	Components for Working with Analytic Grids

	Inserting and Resizing Analytic Grid Controls
	Setting Analytic Grid Analytic Properties
	Setting Analytic Grid Label Properties
	Setting Analytic Grid Use Properties
	Setting Analytic Grid General Properties
	Inserting and Manipulating Analytic Grid Columns
	Inserting Analytic Grid Columns
	Deleting Analytic Grid Columns
	Moving Analytic Grid Columns on the Layout Tab
	Moving Analytic Grid Columns on the Order Tab
	Resizing Analytic Grids

	Setting Column Properties for Analytic Grids
	Manipulating the Analytic Grid at Runtime

	Part 5: Debugging Analytic Models
	Chapter 14: Viewing and Debugging Analytic Models
	Understanding the Analytic Model Viewer
	Viewing Analytic Model Properties
	Understanding Analytic Model Properties
	Pages Used to View Analytic Model Properties
	Viewing Analytic Models
	Viewing and Debugging Cube Collection Properties
	Viewing and Debugging Data Cube Properties
	Viewing Cell Properties
	Viewing Dimension Properties
	Viewing User Function Properties
	Viewing Organizer Properties

	Using Analytic Model Viewer Alongside PeopleSoft Application Designer
	Using the Application Log Fence

	Chapter 15: Capturing Analytic Instances
	Understanding the Analytic Instance Capture Utility
	Capturing Analytic Instance Data
	Pages Used to Export Analytic Instances
	Exporting Analytic Instances

	Importing Analytic Instance Data
	Pages Used to Import Analytic Instances
	Importing Analytic Instances

	Part 6: Converting Analytic Models
	Chapter 16: Converting BAM 8.8 Models to Analytic Models
	Understanding the Conversion Process
	Understanding Part Conversion Details
	Exporting BAM 8.8 Models
	Running the PTAEACECONV Application Engine Program
	Running PTAEACECONV from PeopleSoft Application Designer
	Running PTAEACECONV from a PeopleSoft Pure Internet Architecture Page

	Examining the PTAEACECONV Log File

	Part 7: ACE Administration
	Chapter 17: Managing Analytic Servers
	Understanding the Analytic Server Framework
	Analytic Server Framework Overview
	Analytic Server Process Flow and Behavior

	Understanding Batch Processing of Analytic Instances
	Configuring and Starting Analytic Servers
	Enabling PSANALYTICSRV
	Specifying Analytic Server Instance Quantities
	Starting PSANALYTICSRV

	Administering Analytic Servers
	Administering Analytic Server Domains
	Administering Analytic Server Instances

	Administering Analytic Tables
	Purging Delete Tables
	Synchronizing Table Versions

	Creating, Deleting, and Copying Analytic Instances
	Pages Used to Create, Delete, and Copy Analytic Instances
	Creating Analytic Instances
	Deleting Analytic Instances
	Copying Analytic Instances

	Loading and Unloading Analytic Instances
	Loading and Unloading Analytic Instances

	Index

