

Oracle® Retail Accelerators for WebLogic Server
11g
Micro-Applications Development Tutorial

October 2010

Note: The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described for Oracle's products remains at
the sole discretion of Oracle.

iii

Contents

1 Introduction

How to Use this Document... 1-2
Creating a Regular Item in RMS ... 1-3
About the Create Regular Item Micro-Application ... 1-3
Accessing the Sample JDeveloper Project... 1-4

Using the Sample JDeveloper Project.. 1-4

2 Creating the Create Regular Item Micro-Application

Creating a new ADF application ... 2-1
Creating Model Layer Objects ... 2-4

Creating the Department View Object.. 2-5
Setting Up the DepartmentRVO View Object for LOV .. 2-7

Setting Up the View Criteria ... 2-8
Setting Up the DepartmentID Attribute as an LOV .. 2-9

Creating the Class View Object... 2-13
Internationalization of Labels .. 2-14
Adding View Objects to the Application Module.. 2-18
Creating SQL Object Types in Java ... 2-21
Creating the User Interface.. 2-24

Creating a Page Fragment.. 2-24
Constructing the User Interface .. 2-26
Setting Up a Managed Bean .. 2-28

Calling X API in the Micro-Application ... 2-31
Creating a Business Service User Interface Button .. 2-34
PL/SQL Wrapper for Item Sequence Generator in RMS ... 2-37
Creating an ADF Task Flow .. 2-41
Packaging the Application .. 2-43
Subclass View Object ... A-1
SystemOptions View Object ... A-2
Supplier View Object ... A-2
Supplier Site View Object ... A-3
Supplier Country View Object ... A-3
Item Number Type View Object .. A-3
Cost Zone Group View Object.. A-4
Retail Price Zone Group View Object... A-4

iv

Standard Unit of Measure View Object.. A-5

Introduction 1-1

1
Introduction

Oracle Retail Micro-Applications are ADF taskflows that are designed to carry out a
single or multiple activities of an Oracle Retail application from outside the
application. Micro-Applications can be packaged in an ADF JAR library. Once
packaged in an ADF JAR library, they can be easily incorporated in dashboards or
workspaces. They can also be designed to use the business services or PL/SQL
procedures defined by an application to complete a task.

This tutorial describes how you can create a Micro-Application for the Creating a
Regular Item task in the Retail Merchandising System (RMS) application using Oracle
JDeveloper and ADF. To complete the task, the Micro-Application will be designed to
use the same APIs and RIB objects used by RMS.

This document includes the following topics:

■ Chapter 1, "Introduction" – This chapter introduces you to the concept of
Micro-Applications and business process illustrated in this tutorial.

■ Chapter 2, "Creating the Create Regular Item Micro-Application" – This chapter
describes how you can create the Create Regular Item Micro-Application.

■ Appendix A, "View Objects" – This appendix provides information on the
read-only view objects defined in the Create Regular Item Micro-Application.

Before proceeding, ensure that you have Oracle JDeveloper 11g (Release 11.1.1.3.0)
installed on your system. Oracle JDeveloper is available for download on Oracle
Technology Network. You must also have access to an Oracle Retail Merchandising
System Release 13.1 environment.

Audience
This document is intended for application integrators and implementation personnel
who are familiar with the Oracle Application Development Framework (ADF),
specifically ADF Faces, ADF Business Components, and ADF Task Flows. Knowledge
of Oracle Retail Merchandising System (RMS) and Retail Integration Bus (RIB),
specifically X APIs and RIB objects, is also required.

Additional Reference Documentation
■ To get acquainted with the X APIs and RIB objects used in this document, refer to

the Oracle Retail Merchandising System Operations Guide, Release 13.1 (Volume 2 –
Message Publication and Subscription Designs). Specifically, refer to the section
Subscription Designs Item Subscription API.

■ To get acquainted with the RMS database schema used in this document, refer to
the Oracle Retail Merchandising System Data Model (Release 13.1). The Data Model is
available on My Oracle Support with the Note ID 945584.1.

How to Use this Document

1-2 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

■ To integrate the Micro-Applications with Oracle WebCenter Spaces and customize
WebCenter Spaces to include custom developed content, refer to the My Oracle
Support Note ID 1189403.1 – Oracle Retail Accelerators Guide for WebCenter 11g.

About Business Services in RMS (X API)
As business services, RMS provides PL/SQL procedures, called as X APIs, that
provide an interface for external applications to initiate business processes such as
creating an item, creating purchase orders, and so on. Micro-Applications use these
PL/SQL procedures to carry out a specific task. These PL/SQL procedures take SQL
objects, called RIB objects, as parameters. These RIB objects encapsulate and provide
the user inputs to the procedure.

About Oracle Retail Accelerators Guide for WebCenter 11g
Oracle Retail Accelerators Guide for WebCenter 11g enables you to leverage the Oracle
WebCenter infrastructure to create and modify workspaces specific to your business
need. Apart from the capabilities that are available out-of-the-box, this document
enables you to create, customize, and deploy expanded functionality by combining
assets from the Oracle Fusion Middleware suite.

How to Use this Document
This document is a tutorial that will enable you to create a Micro-Application. A
typical Micro-Application consists of several different components such as view
objects, application module, page fragments, managed beans, and so on.

This document attempts to teach the concepts behind creating these components. All
important components are illustrated in detail with examples. Once you know all the
information and procedures to create a particular type of component, you can
similarly create rest of the components. The document also includes hints that will
guide you through the steps.

This document is also accompanied by a JDeveloper project with sample code for the
CreateRegularItem Micro-Application. The JDeveloper project and components
included follow the structure mentioned in this document. If you follow the same
packaging structure as mentioned in this document, you can then choose to copy the
source code from the relevant files in the same JDeveloper project. It is recommended
that you create all the components mentioned in this document. This ensures that all
the required directory structure are created automatically in your working project. You
can then easily copy the source code to your working project. For more information on
accessing the sample JDeveloper project, see Accessing the Sample JDeveloper Project.

Important: The accompanied JDeveloper project with the sample
code for the CreateRegularItem Micro-Application is available for
illustration purposes only.

The code snippets or screenshots included in this document may not
match the sample code included in the JDeveloper project. Since the
sample code was intended for illustration purposes only, it was not
constructed as production code and is not robust enough to validate
all inputs or handle all exceptions.

About the Create Regular Item Micro-Application

Introduction 1-3

Creating a Regular Item in RMS
In RMS items are categorized in a hierarchy structure. At the top-most level of the
hierarchy is Department, followed by Class, Subclass, and at the lowest level is the
item (Department > Class > Subclass > Item). Also, each item in RMS contains a lot of
other mandatory information.

To create a new item in RMS, all the mandatory information about the item must be
provided. You must first define the hierarchy structure for the item. This can be done
by selecting an existing Department in RMS. You must then select a Class within the
selected department, followed by a Subclass in the selected Class. This becomes the
hierarchy of the newly created item. Once the hierarchy is defined, you must set up the
other mandatory information. Each item must have a Supplier or a Supplier site that
exists in RMS. This Supplier must have a specific Country of sourcing for the item.
Unit cost for the item must be associated with a Cost Zone and a Retail Price Zone
Group. A Unit of measure must be defined for the item along with a Conversion
factor. Further, each item in RMS has a unique code. This code can be of different
types and is generated automatically by RMS, except when the code type is manual in
which case users will enter the code manually. Therefore, the Item number code type
from code types available in RMS must be set for the item. To get a better
understanding of these Item properties in RMS, you can refer to the Oracle Retail
Merchandising System Data Model.

About the Create Regular Item Micro-Application
In this tutorial, you will create a Create Regular Item Micro-Application that will be
used to create a regular item in RMS. Users will then be able to provide the
information for the item in a user interface outside of RMS which will call the RMS
Business Service to create the item.

Figure 1–1 Create Regular Item Micro-Application Screen

Accessing the Sample JDeveloper Project

1-4 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

The figure above illustrates the Create Regular Item Micro-Application. Users can
enter values specific to the new item being created directly in the user interface. The
form is divided in two parts. The upper half consists of values that the users must
provide each time they create a new item. The lower half of the form, under the
Advanced section, contains fields that have default values which the users may choose
to edit (or use as is). Once the users enter all the relevant values, they can press the
Create Item button at the bottom of the screen to create the item. When the button is
pressed, all the values entered by the users are submitted to the server, and the RMS
business service to create a new item is called. The result of the business service call is
returned to the user as a message on screen.

Accessing the Sample JDeveloper Project
Although this tutorial includes all the information you need to create a
Micro-Application, a JDeveloper project with sample code is also available on My
Oracle Support with the patch ID 10149374 for reference purposes.

To access the sample JDeveloper project:

1. In a Web browser, open the following URL:

https://support.oracle.com/

The My Oracle Support Web page appears.

2. Select a language and sign on to the Web site by clicking Sign In.

Once signed in, the My Oracle Support | Dashboard screen appears.

3. Click the Patches & Updates tab.

4. On the Patch & Updates screen, under Patch Search, click Patch ID or Number.

5. In the Patch ID or Number is field, enter 10149374.

6. Optionally, you can also choose a platform from the Platform is drop-down list.

7. Click Search. The Patch Search Results screen appears.

8. In the Patch Search Results screen, under Patch ID, click the relevant patch.

9. On the next screen, click Download (appears on the left side of the screen).

10. Unpack the ZIP file to your working directory.

Using the Sample JDeveloper Project
To use the sample JDeveloper project:

1. In JDeveloper, from the File menu, click Open.

2. Navigate to your working directory where you extracted the contents of the ZIP
file.

3. Select the MicroApps.jws file, and click Open. The JDeveloper project opens in
JDeveloper.

Note: On the Patch Search Results screen, you can also select the row
that matches the patch description, and then click Download on the
toolbar that appears under the selected row.

Accessing the Sample JDeveloper Project

Introduction 1-5

Before you can use the project, you must first set up the RMS database connection for
the project. To set up the RMS database connection:

1. From the Applications Navigator, expand Application Resources navigator.

2. Expand Connections, and then expand Database.

3. Right-click on RMS_DB, and then click Properties. The Edit Database
Connection window appears.

4. Enter relevant information in the Edit Database Connection window, and then
click OK.

Accessing the Sample JDeveloper Project

1-6 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Creating the Create Regular Item Micro-Application 2-1

2
Creating the Create Regular Item

Micro-Application

This chapter describes how you can create the Create Regular Item Micro-Application.
To create the Create Regular Item Micro-Application, you must complete the following
steps:

1. Creating a new ADF application

2. Creating Model Layer Objects

3. Internationalization of Labels

4. Adding View Objects to the Application Module

5. Creating SQL Object Types in Java

6. Creating the User Interface

7. Calling X API in the Micro-Application

8. Creating a Business Service User Interface Button

9. PL/SQL Wrapper for Item Sequence Generator in RMS

10. Creating an ADF Task Flow

11. Packaging the Application

Creating a new ADF application
You must first start by creating a ADF-based application and a project that is based on
the ADF-based technologies. To create a new ADF-based application:

1. In JDeveloper, from the File menu, click New. The New Gallery wizard appears.

2. In the New Gallery wizard, under General, click Applications.

3. In the Items area, click Generic Application, and then click OK. The Create
Generic Application wizard appears.

Creating a new ADF application

2-2 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–1 Create Generic Application Wizard – Name your application Screen

4. On the Name your application screen, enter MicroApps in the Application Name
field.

5. In the Directory field, select a working directory for the application.

6. In the Application Package Prefix field, enter a relevant package prefix. For
example, oracle.retail.merch20.microApps.

7. Ensure that Generic Application is selected in the Application Template area, and
then click Next. The Name your project screen appears.

Figure 2–2 Create Generic Application Wizard – Name your project Screen

8. On the Name your project screen, enter CreateRegularItem in the Project Name
field.

Creating a new ADF application

Creating the Create Regular Item Micro-Application 2-3

9. On the Project Technologies tab, select ADF Business Components, ADF Faces,
ADF Page Flow, HTML, Java, JSF, JSP and Servlets, and XML, and move them to
the Selected area.

10. Click Next. The Configure Java settings screen appears.

Figure 2–3 Create Generic Application Wizard – Configure Java settings Screen

11. In the Default Package field, append the application package prefix name with the
project name. For example, oracle.retail.merch20.microApps.createRegItem.

12. Click Finish. The Application Navigator appears with the MicroApps application
and the CreateRegularItem project.

Note: By default, the Directory field displays the working directory
you set in the previous screen along with the project sub folder.

Creating Model Layer Objects

2-4 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–4 MicroApps Overview Tab in the Editor Window

Creating Model Layer Objects
The Create Regular Item Micro-Application will contain several View objects (View
objects of the ADF Business Component). These View objects will be used to read data
from the relevant database tables in the RMS database schema and display the data in
the user interface. Since these objects will be used only to read data, they will need to
be set up as "read-only" view objects. The following View objects are used in this
application:

Note: An ADF Web-based application typically has the following
projects:

■ Model – intended to provide the Model layer with Business
components.

■ ViewController – intended to provide the View layer with ADF
Faces.

This is a recommended practice to keep the Model layer separate from
the View layer. Since the Micro-Applications are very small
applications, this practice is not needed.

The Model and View layer are merged automatically in a single
project when you selected all the required technologies. This way each
project represents a single Micro-Application and all
Micro-Applications reside in a single ADF application called
MicroApps.

View Object name
Related table in RMS
schema Description

DepartmentRVO deps Department for the item.

Creating Model Layer Objects

Creating the Create Regular Item Micro-Application 2-5

The following steps provide you an example of how you can declare a read-only view
object in JDeveloper using the Department and Class view object:

■ Creating the Department View Object

■ Setting Up the DepartmentRVO View Object for LOV

■ Creating the Class View Object

Creating the Department View Object
In RMS, all items are categorized in a Department, Class, and then Subclass hierarchy.
Consider a scenario where a user needs to search through all departments in the RMS
database schema, and then select an item. This can be achieved by defining a View
object for Department in the following manner:

1. In the Application Navigator, right-click on the CreateRegularItem project, and
then click New. The New Gallery wizard appears.

2. In the Current Project Technologies tab, under Business Tier, click ADF Business
Components.

3. From the Items area, click View Object, and then click OK. The Initialize
Business Components Project window appears.

The Initialize Business Components Project window enables you to set up a
database connection to the RMS database schema.

4. Click the Plus (+) button. The Create Database Connection window appears.

ClassRVO class Class for the item.

SubclassRVO subclass Subclass for the item.

SystemOptionsRVO system_options System options for the RMS
installation.

SupplierRVO sups Supplier for the item.

SupplierSiteRVO sups Supplier site.

SupplierCountryRVO country Supplier's country of sourcing
for the item.

ItemNumberTypeRVO code_detail Item number sequence type.

CostZoneGroupRVO cost_zone_group Cost zone group for item.

RetailPriceZoneGroupRVO rpm_zone_group Retail price zone group for
item.

StandardUomRVO uom_class Standard unit of measure.

Note: For more information on the RMS database tables listed above,
refer to the Oracle Retail Merchandising System Data Model.

View Object name
Related table in RMS
schema Description

Creating Model Layer Objects

2-6 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–5 Create Database Connection Window

5. In the Create Database Connection window, enter a database connection name
(for example, RMS_DB), user name, password, host name, JDBC port, and SID for
the RMS database schema.

Click Test Connection to ensure that a database connection is established.

6. Click OK. The Create View Object wizard appears.

Figure 2–6 Create View Object Wizard – Name Screen

7. On the Create View Object wizard, enter the following information:

Creating Model Layer Objects

Creating the Create Regular Item Micro-Application 2-7

■ Enter or select oracle.retail.merch20.microApps.createRegItem.vo in the
Package field.

■ Enter DepartmentRVO in the Name field. DepartmentRVO is the View
Object name where RVO indicates that this is a read-only view object.

■ Under Select the data source type you want to use as the basis for this view
object, select the Read-only access through SQL query option.

8. Click Next. The Query screen appears.

Figure 2–7 Create View Object Wizard – Query Screen

9. On the Query screen, under Query Statement, enter the following statement:

SELECT dept AS DEPARTMENT_ID
 dept name AS DEPARTMENT_NAME,
 concat(concat(dept,'-'),dept_name) AS DEPARTMENT_SEARCH
 FROM deps

10. Click Next. The Bind Variables screen appears.

11. On the Bind Variables screen, click Next. The Attribute Mappings screen appears.

12. On the Attributes screen, click Finish.

The DepartmentRVO.xml configuration tab appears in the Editor window.

Setting Up the DepartmentRVO View Object for LOV
Once the DepartmentRVO view object is created, you can proceed ahead to configure
the DepartmentId attribute from the DepartmentRVO view object as a List of Values
(LOV) component in the user interface. Once you define the attribute as an LOV, you
can then use the attribute on a JSF page as an "ADF LOV Input" component (for more
information, see the section Creating User Interface). Once implemented, such
components are rendered as an input text field with a Search icon. Users can click the
Search icon to view a list of attribute values and select a relevant value.

Creating Model Layer Objects

2-8 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

This section describes how you can set up a DepartmentId attribute in the
DepartmentRVO View Object as an LOV. It includes the following tasks:

■ Setting Up the View Criteria

■ Setting Up the DepartmentID Attribute as an LOV

Setting Up the View Criteria
Before you set up the DepartmentID attribute as an LOV, you must first define the
View criteria for the view object. View criteria is used to filter out relevant rows from
the result set of the View object query.

To set up the View criteria:

1. Open the DepartmentRVO view object configuration tab:

a. In the Application Navigator, under CreateRegularItem, expand Application
Sources.

b. Under Application Sources, expand oracle.retail.merch20, microApps,
createRegItem, and then DepartmentRVO.

c. Under DepartmentRVO, double-click DepartmentRVO.xml.

OR

In case it was already opened before, in the Editor window, click the
DepartmentRVO.xml configuration tab.

2. On the DepartmentRVO.xml tab, click Query. The Query page appears.

Figure 2–8 DepartmentRVO.xml Tab – Query Page

3. On the Query page, under View Criteria, click the Plus (+) button. The Create
View Criteria window appears.

Creating Model Layer Objects

Creating the Create Regular Item Micro-Application 2-9

Figure 2–9 Create View Criteria Window

4. On the Create View Criteria window, in the Criteria Definition tab, select the
default criteria (DepartmentRVOCriteria) in the View Criteria section, and then
click Add Item.

5. In the Criteria Item section, enter the following information:

■ In the Attribute field, select DepartmentSearch.

■ In the Operator field, select Contains.

■ In the Operand field, select Literal.

■ Select the Ignore Case check box.

6. Click OK.

The DepartmentRVOCriteria view criteria is added to the DepartmentRVO view
object.

Setting Up the DepartmentID Attribute as an LOV
To set up the DepartmentID Attribute as an LOV:

1. On the DepartmentRVO.xml tab, click Attributes. The Attributes page appears.

Creating Model Layer Objects

2-10 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–10 DepartmentRVO.xml Configuration Tab – Attributes Page

2. On the Attributes page, select the DepartmentId attribute, and then click the Plus
(+) button in the List of Values: DepartmentId section. The Create List of Values
window appears.

Figure 2–11 Create List of Values Window

3. In the Create List of Values window, under the Configuration tab, click the Plus
(+) button next to the List Data Sources field. The View Accessors window
appears.

Creating Model Layer Objects

Creating the Create Regular Item Micro-Application 2-11

Figure 2–12 View Accessors Window

4. In the View Accessors window, select DepartmentRVO from the Available View
Objects section, and move it to the View Accessors section under
DepartmentRVO.

5. Click OK. The Create List of Values window appears.

Figure 2–13 Create List of Values Window

6. In the Create List of Values window, select DepartmentId in the List Attribute
field.

7. On the UI Hints tab, move DepartmentId and DepartmentName from the
Available list to the Selected list.

Creating Model Layer Objects

2-12 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–14 Create List of Values Window

8. In the List Search section, select Use DepartmentRVOCriteria in the Include
Search Region field.

Figure 2–15 Create List of Values Window

Creating Model Layer Objects

Creating the Create Regular Item Micro-Application 2-13

9. Select the Query List Automatically check box.

10. Click OK.

Figure 2–16 DepartmentRVO.xml Configuration Tab – Attributes Page

Creating the Class View Object
Consider a scenario where a user needs to also select a Class from a list of values and
only the classes relevant to the selected Department must be included in the list. This
can be achieved by defining a view object for the class in a similar manner as the
Department view object (see Creating the Department View Object), but with the
following differences:

■ Create a read-only view object ClassRVO in the
oracle.retail.merch20.microApps.createRegItem.vo package.

■ Set up the following query for the view object:

SELECT class AS CLASS_ID,
 class_name AS CLASS_NAME,
 concat(concat(class,'-'), class_name) AS CLASS_SEARCH
 FROM class
 WHERE dept =:BindVarDeptID
 UNION
 SELECT null as CLASS_ID,
 null as CLASS_NAME,
 null as CLASS_SEARCH
 FROM class

■ On the Query page, click the Plus (+) button in the Bind Variable section. The
Bind Variable window appears.

Note: The BindVarDeptID bind variable provides the department ID
at run time.

Internationalization of Labels

2-14 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–17 Bind Variable Window

a. In the Bind Variable window, under the Variable tab, enter the bind variable
name as the same name used in the query (BindVarDeptID).

b. Select Integer in the Type field.

c. Select the Expression option in the Value Type field.

d. Enter adf.context.viewScope.deptID in the Value field.

e. Click OK.

■ In the ClassRVO view object, set up the classId attribute for LOV similar to the
departmentId attribute in the DepartmentRVO view object.

The bind variable used in this view object supplies values at run time. This value
comes from the adf.context.viewScope.deptID expression. This expression returns
a deptID parameter set in a view scope object. This parameter will be set in the
user interface managed bean when the user selects the department ID. For more
information, see Creating the User Interface.

Internationalization of Labels
The departmentId attribute in the DepartmentRVO view object and classId attribute in
the ClassRVO view object will be used in the user interface as described in the
following sections. Before using them in the user interface, you must first set up labels
for these in the view object itself. This way these labels are used in the user interface
when ever the view object is used.

This section describes how you can set up a label for the DepartmentRVO view object
and also internationalize it using the declarative way available in JDeveloper. You can
follow the same instructions to set up labels for the ClassRVO view object and all other
view objects in the application.

Note: The view objects discussed above are for illustration purposes
only. You can now create the rest of the view objects referring to these
examples. Guidelines and hints to create all other view objects used in
this application are provided in the appendix below. For more
information, see View Objects.

Internationalization of Labels

Creating the Create Regular Item Micro-Application 2-15

To set up a label for the DepartmentRVO view object and internationalize it:

1. In the Application Navigator, right-click on the CreateRegularItem project, and
click Project Properties.

2. In the Project Properties window, select Resource Bundle in the left navigation
pane.

Figure 2–18 Project Properties Window

3. In the Basic Configuration tab, enter the following information:

■ Select the One Bundle Per Project option.

■ Enter
oracle.retail.merch20.microApps.createregItem.i18n.CreateRegularItemBun
dle in the Default Project Bundle Name field.

■ Select Xliff Resource Bundle in the Resource Bundle Type field.

4. Click OK.

5. Open the DepartmentRVO view object (DepartmentRVO.xml tab).

6. On the DepartmentRVO.xml tab, click Attributes.

Note: The package name includes i18n to indicate the location where
the bundle is created.

Internationalization of Labels

2-16 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–19 DepartmentRVO.xml Configuration Tab – Attributes Page

7. On the Attributes page, select the DepartmentId attribute, and then click the Edit
(Pencil) button. The Edit Attribute window appears.

Figure 2–20 Edit Attribute: DepartmentId Window

8. In the Edit Attribute window, click Control Hints in the left navigation pane.

9. Click the Browse button next to the Label Text field. The Select Text Resource
window appears.

Internationalization of Labels

Creating the Create Regular Item Micro-Application 2-17

Figure 2–21 Select Text Resource Window

10. In the Select Text Resource window, enter a relevant label name in the Display
Value field. A corresponding entry will be added in the resource bundle
automatically.

11. Click Select. The Edit Attribute window appears. Notice that the Label Text field
now displays the label you set up.

Figure 2–22 Edit Attribute: DepartmentId Window

Adding View Objects to the Application Module

2-18 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

12. Enter a relevant width (for example, 20) in the Display Width field. This will be
used for the width of the corresponding user interface component.

13. Click Apply, and then click OK.

The oracle.retail.merch20.microApps.createRegItem.i18n package now includes a
CreateRegularItem.xlf resource bundle file.

To view an illustration of this resource bundle file, refer to the sample code available
along with this tutorial. For more information, see Accessing the Sample JDeveloper
Project.

Adding View Objects to the Application Module
The application module represents a collection of all view objects and services that are
used together to complete a unit of work. This section describes how you can create an
application module and include all the view objects created for the project.

To create an application module and add view objects to the application module:

1. In the Application Navigator, expand CreateRegularItem.

2. Under CreateRegularItem, right-click on the Application Sources folder, and click
New. The New Gallery wizard appears.

Figure 2–23 New Gallery Wizard

3. In the New Gallery wizard, click ADF Business Components under Business
Tier in the left navigation pane.

4. Under Items area, click Application Module, and then click OK. The Create
Application Module wizard appears.

Adding View Objects to the Application Module

Creating the Create Regular Item Micro-Application 2-19

Figure 2–24 Create Application Module Wizard – Name Screen

5. On the Name screen, enter the following information:

■ Enter oracle.retail.merch20.microApps.createRegItem.am in the Package
field.

■ Enter CreateRegularItem in the Name field.

■ Leave other fields As Is.

6. Click Next. The Data Model screen appears.

Figure 2–25 Create Application Module Wizard – Data Model Screen

Adding View Objects to the Application Module

2-20 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

7. On the Data Model screen, select all the view objects listed in the Available View
Objects section and move them to the Data Model section. If by now you have
created all the required view objects, they will be available in the Available View
Objects list. You can complete this step after creating the application module.

8. Click Next. The Application Modules screen appears.

Figure 2–26 Create Application Module Wizard – Application Modules Screen

9. Leave this screen As Is and click Next. The Java screen appears.

Figure 2–27 Create Application Module Wizard – Java Screen

10. On the Java screen, select the Generate Application Module Class check box.

Creating SQL Object Types in Java

Creating the Create Regular Item Micro-Application 2-21

11. Click Finish.

Creating SQL Object Types in Java
X APIs are PL/SQL packages that are used to initiate and complete a business process
in RMS by external applications. These PL/SQL packages take in SQL objects, called as
RIB objects, as parameters. These SQL objects are defined as types in RMS database
schema. Before calling the X API in Java, you must first have the corresponding Java
objects for these SQL objects. This section describes how you can create such a SQL
object type for the Create Regular Item Micro-Application.

To create a SQL object type:

1. In JDeveloper, open the Database Navigator (From the View menu, point to
Database, and then click Database Navigator).

2. Under MicroApps, open/expand the RMS database connection (RMS_DB).

3. Under RMS_DB, expand Types.

Figure 2–28 Database Navigator Pane

Note: We chose to generate the application module class because this
is the place where we will call the PL/SQL package for the business
process. An application module implementation class has access to the
database connection object which is used to call the PL/SQL
procedure. For more information, see Calling X API in the
Micro-Application.

Creating SQL Object Types in Java

2-22 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

4. Under Types, search for RIB_XItem_Desc_REC. This is the RIB object that is
required to be passed as the parameter to the X API for creating an item. It is
composed of several other SQL types.

5. Right-click on this type, and click Generate Java.

Figure 2–29 Generate Java Option in Database Navigator

The JPublisher wizard appears.

6. In the JPublisher wizard, ensure that the selected project is the current project.

Creating SQL Object Types in Java

Creating the Create Regular Item Micro-Application 2-23

Figure 2–30 JPublisher Wizard

7. Enter oracle.retail.merch20.microApps.createRegItem.ribtypes in the Package
field.

8. Click OK. This may take a few minutes to complete. Once complete, you will be
able to see all the related objects formed in the package you specified.

Figure 2–31 Application Navigator with SQL Objects

Note: In the JPublisher wizard, select the Omit Schema Names
option if you do not want the generated class files to contain the
schema name. This option will work only when you are connected to
the database as the user who owns the RIB schema.

Note: It requires a functional knowledge of RMS to be able to
identify the RIB Object used in the procedure call. For more
information, refer to the Oracle Retail Merchandising System
Operations Guide, Release 13.1 (Volume 2 – Message Publication and
Subscription Designs). Once the top level object is identified, all
objects referenced by it would be automatically generated as Java.

Creating the User Interface

2-24 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Creating the User Interface
This section describes how you can create the user interface using ADF Faces. The user
interface will include a Form where the user will enter all the required information to
create an item. This user interface will also include code that will capture the values
entered by the user. The user interface will be created as a JSF page fragment. This
page fragment will then be used to create the ADF Task Flow. To create the user
interface, you must complete the following tasks:

1. Creating a Page Fragment

2. Constructing the User Interface

3. Setting Up a Managed Bean

Creating a Page Fragment
To create a page fragment:

1. In the Application Navigator, expand the CreateRegularItem project.

2. Right-click on the Web Content folder, and click New. The New Gallery wizard
appears.

Figure 2–32 New Gallery Wizard

3. In the New Gallery wizard, click JSF under Web Tier in the left navigation pane.

Note: This user interface form will contain several user interface
components. For illustration purposes, this section covers the usage of
the Department LOV and Class LOV input fields. To view an
illustration of this page fragment along with the corresponding
backing bean and page definition file, refer to the sample code
available along with this tutorial. For more information, see Accessing
the Sample JDeveloper Project.

Creating the User Interface

Creating the Create Regular Item Micro-Application 2-25

4. Under Items area, click JSF Page Fragment, and then click OK. The Create New
JSF Page Fragment window appears.

Figure 2–33 Create New JSF Page Fragment Window

5. In the Create New JSF Page Fragment window, enter createRegularItem.jsff in
the File Name field.

6. Expand the Page Implementation section, and select the Automatically Expose UI
Components in a New Managed Bean check box.

7. Click OK.

A new page fragment is created in the Web Content directory. The corresponding
backing bean is created in the
oracle.retail.merch20.microApps.createRegItem.backing package under the
Application Sources for the project.

Creating the User Interface

2-26 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–34 Application Navigator Pane

Constructing the User Interface
Once the page fragment is created, you can now open the page to construct the user
interface.

To construct the user interface:

1. Under the Component Palette, from the ADF Faces, drag and drop the Panel
Form Layout to the Design view of the Editor window for the
createRegularItem.jsff file.

Figure 2–35 Component Palette Pane

Note: Backing bean is useful to define any custom user interface
functionality that you may require. It is a good practice to have one
backing bean per page.

Creating the User Interface

Creating the Create Regular Item Micro-Application 2-27

2. From the Application Navigator, expand Data Controls navigator.

3. In the Data Controls navigator, expand CreateRegularItemDataControl.

4. Under CreateRegularItemDataControl, expand the DepartmentRVO1 view object
instance.

5. Drag and drop the DepartmentID attribute to the Panel Form Layout you added
in the step 1. A menu appears as soon as you drop the attribute to the page.

6. On the menu, point to List of Values, and then click ADF LOV Input. An input
box will appear on the page with a Search icon on the right.

7. Right-click anywhere on the page and click Go to Page Definition.

In the Binding and Executables tab of the page definition, observe that the
DepartmentID binding is created along with a DepartmentRVO1Iterator
executable.

8. In a similar manner, drag and drop the ClassId attribute from the ClassRVO1
view object to the Panel Form Layout.

Repeat this process for all the input components needed in the user interface. To view
or copy an illustration of this page along with the corresponding backing bean and
page definition file, refer to the sample code available along with this tutorial. For
more information, see Accessing the Sample JDeveloper Project.

If you choose to copy the code, your page will look like the figure below.

Figure 2–36 createRegularItem.jsff Page in the Editor Window

Creating the User Interface

2-28 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Setting Up a Managed Bean
Before proceeding further with the page, you must define a managed bean in the
application. This managed bean will be used to set and store the values that the user
will enter in the user interface components on the page. For example, as the user
selects the department ID for the item using the ADF LOV input component create
above, the value for the department ID will be captured in this managed bean.

To set up a managed bean:

1. Create a new Java class:

a. From the Application Navigator, right-click on the CreateRegularItem
project, and click New. The New Gallery wizard appears.

b. In the New Gallery wizard, click General in the left navigation pane.

c. Under the Items area, click Java Class, and then click OK. The Create Java
Class window appears.

d. In the Create Java Class window, enter the following information:

– Enter oracle.retail.merch20.microApps.createRegItem.managed in the
Package field.

– Enter Item in the Name field.

e. Click OK.

2. Define a field as private String departmentID in the class.

3. Generate the getter and setter method for the departmentID field.

This field will be used to capture and store the value of the department ID as
entered in the user interface. Similarly, you must define fields corresponding to all
input components on the page whose value you want to capture. The following
code snippet illustrates how you can capture the department ID value when
entered by the user. To view the full source code for this class, refer to the sample
code available along with this tutorial. For more information, see Accessing the
Sample JDeveloper Project.

//String field to store department value.
private String departmentID;
// … other fields

/*Setter method for departmentID.
 This method will get called when user enters some value in the ADF LOV input
component for Department ID.
 The entered value will be available as the method argument "departmentID".
 This method sets the value of the department ID in the View scope object
 to be used by the bind variable used in the "class" view object.
 Then this method gets hold of the "class" view object iterator from the page
definition,
 and execute the query on the class view object iterator.
*/

public void setDepartmentID(String departmentID) {

 //retriving the value entered for departmentID
 this.departmentID = departmentID;
 //setting the value in a view scope object
 ADFContext.getCurrent().getViewScope().put("deptID",new
 Integer(this.departmentID));
 //getting the Class view object iterator

Creating the User Interface

Creating the Create Regular Item Micro-Application 2-29

 DCIteratorBinding dcib = findIterator("ClassRVO1Iterator");
 //executing the query associated with the view object
 dcib.executeQuery();

}

/*Getter method for departmentID.
*/

public String getDepartmentID() {
 return departmentID;
}

/*This is a utility method that returns the iterator instance from the binding
context
 Whose name is provided as the parameter.
*/

private DCIteratorBinding findIterator (String iteratorNameInPageBinding){

//getting binding container object
 FacesContext facesContext = FacesContext.getCurrentInstance();
 Application app = facesContext.getApplication();
 ExpressionFactory elFactory = app.getExpressionFactory();
 ELContext elContext = facesContext.getELContext();
 ValueExpression valueExp =
 elFactory.createValueExpression(elContext, "#{bindings}",
 Object.class);
 DCBindingContainer dcBindingContainer =
 (DCBindingContainer)valueExp.getValue(elContext);

 //getting iterator binding from the binding container object
 DCIteratorBinding iter =
 dcBindingContainer.findIteratorBinding(iteratorNameInPageBinding);
 return iter;
}

4. In the Application Navigator, under Web Content, expand the WEB-INF folder.

5. Open the adfc-config.xml file.

6. In the Overview tab of the adfc-config.xml file, click Managed Beans.

7. On the Managed Beans page, define a managed bean by clicking the Plus (+) icon
and enter the following information:

■ Under the Name column, enter ItemBean.

■ Under the Class column, enter
oracle.retail.merch20.microApps.createRegItem.managed.Item.

■ Under the Scope column, select Request.

Creating the User Interface

2-30 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–37 adfc-config.xml Configuration Tab – Managed Beans Page

8. Save the file.

9. Open the page fragment (createRegularItem.jsff) you created above.

10. In the Property Inspector, clear the Value property for the DepartmentID ADF
LOV Input Component.

11. Bind this Value property to the departmentID field defined above in the
ItemBean managed bean using the EL expression #{ItemBean.departmentID}.

12. In the Property Inspector for the component above, set the AutoSubmit property
value to true.

Figure 2–38 Property Inspector Pane

Note: Now that the Java Class file is declared as a managed bean, all
the fields defined in our bean can be retrieved using EL expressions
during run time.

Calling X API in the Micro-Application

Creating the Create Regular Item Micro-Application 2-31

Once you complete these steps, there will be two "ADF LOV Input Text" components
in the Panel Form Layout (Department and Class). If the user selects a value for the
department ID using the "DepartmentID ADF LOV Input Component", the setter
method "setDepartmentID" will be called, which will execute the custom code show
above. This code will set the "deptID" property in the view scope, from where it will be
provided to the Bind Variable used in the ClassRVO view object. Executing the query
of the ClassRVO view object, you will be able to display the list of all classes in the
selected department.

You will need to construct input UI elements for the other view objects using the same
logic as above, if the bind variable dependency exists between two view objects. As the
user enters the value, it will be retrieved in the ItemBean managed bean and stored for
calling the business process. Once all input elements are created in the user interface,
the next step is to provide a button to initiate the item creation process.

Calling X API in the Micro-Application
In the sections above, you have created the base for the application user interface. You
can now form a user interface where the users can see the data from the RMS database
schema and enter data by selecting from lists. You must now provide the business
service call for creating the regular item in RMS. This section describes how you can
set up this service call.

The real business functionality is provided by a PL/SQL procedure in the RMS
database schema (X API called xitemcre). You must call this procedure from Java. Since
you have already created an application module implementation class, this is the place
where you will call the procedure.

To set up the service call in the Micro-Application:

1. In the Application Navigator, expand the Application Sources folder under the
CreateRegularItem project.

2. Under Application Sources, expand oracle.retail.merch20, microApps,
createRegItem, and then am.

3. Under am, expand CreateRegularItem.

Figure 2–39 CreateRegularItemImpl Java File in the Application Navigator

Note: Setting the AutoSubmit property to true ensures that the value
entered for the department ID will be available to the server in the
same request cycle without explicitly submitting the page (partial
page submit).

Calling X API in the Micro-Application

2-32 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

4. Open the CreateRegularItemImpl Java Class and add the following method in
this class:

/**
* This is the custom method which will be exposed to the client through
DataControl.
* This method calls the business service in RMS to create an item in RMS
schema.
* The business service used is a PL/SQL procedure 'RMSSUB_XITEM.CONSUME' in RMS
schema.
* @param inputValuesForItemCre Map -Contains all parameters required for the
business service.
* @return String -Status of the business service call.
*/
public String createRegularItem(Map inputValuesForItemCre){

 CallableStatement callableStmt = null;
 String rmsUser = getDBTransaction().getConnectionMetadata().getUserName();
 String callableStatement = "begin "+rmsUser+".RMSSUB_XITEM.CONSUME(?,?,?,?);
end;";
 try{
 callableStmt =
getDBTransaction().createCallableStatement(callableStatement,0);
 callableStmt.registerOutParameter(1, Types.VARCHAR);
 callableStmt.registerOutParameter(2, Types.VARCHAR);
 callableStmt.setString(1, "");
 callableStmt.setString(2, "");
 callableStmt.setObject(3,
getSqlObjForRegularItemCreation(inputValuesForItemCre));
 callableStmt.setString(4, "xitemcre");
 callableStmt.executeUpdate();
 String status = "";
 if(callableStmt.getString(1).equals("S")){
 status = "<big>SUCCESS</big>";
 }else{
 status = "<big>ERROR</big> : "+callableStmt.getString(2);
 }
 getDBTransaction().commit();
 return status;
 }catch(SQLException e){
 throw new JboException(e);
 }finally{
 try{
 callableStmt.close();
 }catch(SQLException e){
 throw new RuntimeException(e);
 }
 }
 }
/**This method returns the RIB Object required for "xitemcre" X API.
 The RIB object has to be populated with the user input and passed to
 PL/SQL (X API) procedure.
**/
private Object getSqlObjForRegularItemCreation(Map inputValuesForItemCre){
 //Code for this method is not included here for clarity.
 //The code has intentional syntax error.
}

Calling X API in the Micro-Application

Creating the Create Regular Item Micro-Application 2-33

5. Double-click the CreateRegularItem application module to open it in the Editor
window.

6. On the CreateRegularItem.xml tab, click Java.

7. On the Java page, click the Edit (Pencil) button next to the Client Interface
section. The Edit Client Interface window appears.

Figure 2–40 Edit Client Interface Window

In the Edit Client Interface window, the createRegularItem method appears in
the Available list.

8. Move the createRegularItem method under the Selected list, and then click OK.

9. In the Data Control Navigator, expand CreateRegularItemDataControl. You will
be able to see the method added above.

Note: To view an illustration of the CreateRegularItemImpl Java
Class, refer to the sample code available along with this tutorial. For
more information, see Accessing the Sample JDeveloper Project.

Note: Once you complete this step, this method will be available in
the application module data control. You can drag it to the user
interface as a command button.

Creating a Business Service User Interface Button

2-34 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–41 Data Controls Navigator Pane

10. You can drag and drop this method control as a command button on the JSF page
fragment createRegularItem.jsff created above. This is illustrated in detailed in
the section below.

Creating a Business Service User Interface Button
In the section above, the createRegularItem method of CreateRegularItemImpl class
was exposed in the data control. This method takes in java.util.Map as a parameter
and supplies as key value pairs, all the parameters required to create the item. This key
value pair contract is defined in the class itself as String constants. For example,
DEPARTMENT_ID key should be present in the map with the value equal to the
department id for the item to be created. Whenever this method is called, the Map
parameter passed should contain all the keys defined in the contract with proper
values. The keys required in the Map are listed below.

To create a business service user interface button, you can simply drag and drop this
method from the data control to the JSF page as a button.

Before you create this button, you must complete the following steps:

1. From the oracle.retail.merch20.microApps.createRegItem.managed package in
the Application Navigator, open the Item Java Class file. This class file must have
the following fields, each corresponding to an input field in the user interface:

 private String itemDesc;
 private String departmentID;
 private String classID;
 private String subclassID;
 private String supplierID;
 private String supplierSiteID;
 private String supplierCountryOfSourcing;

Creating a Business Service User Interface Button

Creating the Create Regular Item Micro-Application 2-35

 private String unitCost;
 private String itemNoTypeCode;
 private String itemNoManual;
 private String costZoneID;
 private String retailPriceZoneGrpID;
 private String unitOfMeasure;
 private String unitOfMeasureConversionFactor;

2. Add a new field private Map formInputValues. This field will be used to pass the
Map parameter to the business service method you create in the previous section.

3. Add the following getter method for the formInputValues:

 public Map getFormInputValues() {
 //putting all UI values in the form
 formInputValues.put("ITEM_DESC", itemDesc);
 formInputValues.put("DEPARTMENT_ID", departmentID);
 formInputValues.put("CLASS_ID", classID);
 formInputValues.put("SUBCLASS_ID", subclassID);
 formInputValues.put("SUPPLIER_ID", supplierID);
 formInputValues.put("SUPPLIER_SITE_ID", supplierSiteID);
 formInputValues.put("SUPPLIER_COUNTRY_OF_SOURCING",
supplierCountryOfSourcing);
 formInputValues.put("UNIT_COST", unitCost);
 formInputValues.put("ITEM_NO_TYPE_CODE", itemNoTypeCode);
 formInputValues.put("ITEM_NO_MANUAL", itemNoManual);
 formInputValues.put("COST_ZONE_ID", costZoneID);
 formInputValues.put("RETAIL_PRICE_ZONE_GRP_ID", retailPriceZoneGrpID);
 formInputValues.put("UNIT_OF_MEASURE", unitOfMeasure);
 formInputValues.put("UOM_CONVERSION_FACTOR",
unitOfMeasureConversionFactor);
 return formInputValues;
 }

4. Open the createRegularItem.jsff page.

5. In the Data Control Navigator, expand CreateRegularItemDataControl, and then
drag and drop the exposed method CreateRegularItem(Map) to the page as an
ADF Button. The Edit Action Binding window appears.

Note: If you have used the code listed for this page from the sample
code, the business service button will already be present.

Creating a Business Service User Interface Button

2-36 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–42 Edit Action Binding Window

As this method requires an input parameter, you will need to provide an EL
expression to retrieve the parameter.

6. In the Edit Action Binding window, under Parameters, select Show EL
Expression Builder under the Value column. The Variables window appears.

Figure 2–43 Variables Window

7. In the Variables window, enter #{ItemBean.formInputValues} in the Expression
field.

8. Click OK to go back to the Edit Action Binding window.

9. Click OK on the Edit Action Binding window.

PL/SQL Wrapper for Item Sequence Generator in RMS

Creating the Create Regular Item Micro-Application 2-37

Observe that a button is created in the page. Whenever the user will click this button,
the business service method in the CreateRegularItemImpl class will get called. The
ItemBean managed bean's formInputValues field will be passed as the method
parameter. This Map object will have all the required values for item creation as key
value pairs following the agreed contract for keys.

PL/SQL Wrapper for Item Sequence Generator in RMS
As illustrated above, each item in RMS has a unique code. These codes can be of
different types. These codes can be generated automatically by a PL/SQL procedure
call in RMS. This procedure takes in the code type as argument and returns the unique
code of that type. This procedure has the following form in the RMS database schema:

FUNCTION GET_NEXT(O_error_message IN OUT VARCHAR2,
 IO_item_no IN OUT ITEM_MASTER.ITEM%TYPE,
 I_item_type IN ITEM_MASTER.ITEM_NUMBER_TYPE%TYPE)
return BOOLEAN;

This procedure cannot be called directly from Java code due to the lack of support in
the Oracle JDBC implementation for the BOOLEAN type returned from the procedure.
As a work around, you can write a PL/SQL wrapper function that will take in the
"item code type" as argument, calls the above PL/SQL procedure, retrieve the item
code generated, and return the item code to the caller. This eliminates the BOOLEAN
used in the original procedure. This wrapper procedure definition is as follows:

create or replace
PROCEDURE NEXT_ITEM_NUMBER (O_item_number IN OUT ITEM_MASTER.ITEM%TYPE,
I_item_type IN VARCHAR2,
O_error_message IN OUT VARCHAR2) IS

L_status BOOLEAN;

BEGIN
L_status := item_number_type_sql.get_next(O_error_message,
O_item_number,
I_item_type);

EXCEPTION
WHEN OTHERS THEN
O_error_message := SQLERRM || ' from NEXT_ITEM_NO proc.';
END NEXT_ITEM_NUMBER;
/

This procedure must be present in the RMS database schema for the application to run.
The following steps illustrates this scenario:

1. In JDeveloper, open the Database Navigator (From the View menu, point to
Database, and then click Database Navigator).

2. Under MicroApps, open/expand the RMS database connection (RMS_DB).

3. Right-click on RMS_DB and click Open SQL Worksheet.

PL/SQL Wrapper for Item Sequence Generator in RMS

2-38 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–44 Open SQL Worksheet Option in the Database Navigator

4. Copy the wrapper procedure definition provided above and paste it in the SQL
Worksheet.

Figure 2–45 SQL Worksheet with the Run Script Option

5. Click Run Script (or press the F5 key).

Ensure that the procedure is successfully compiled.

PL/SQL Wrapper for Item Sequence Generator in RMS

Creating the Create Regular Item Micro-Application 2-39

Figure 2–46 SQL Worksheet with the Script Output

6. Expand the procedure section in the Database Navigator under RMS_DB.

Figure 2–47 Database Navigator Pane with Listed Procedures

Observe that the compiled procedure is present in the schema now.

PL/SQL Wrapper for Item Sequence Generator in RMS

2-40 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–48 Compiled Procedures in the Database Navigator

This procedure will be called from the CreateRegularItemImpl class created above.
The Java method that calls this procedure is listed below. Refer to the sample code
available along with this tutorial for full code listing for this class. For more
information, see Accessing the Sample JDeveloper Project.

/**
* This method generates sequence number for a new item in RMS.
* It calls the PL/SQL procedure 'NEXT_ITEM_NUMBER' in RMS to generate the
sequence.
* NOTE: 'NEXT_ITEM_NUMBER' is a custom PL/SQL procedure not present in RMS by
default.
* It acts as a wrapper function for calling 'NEXT_ITEM_NUMBER_SQL.GET_NEXT'
procedure in RMS.
* @return String Sequence number generated for Item in RMS.
*/
private String getNextItemNumber(String itemNumberType){
 CallableStatement callableStmt = null;
 String rmsUser = getDBTransaction().getConnectionMetadata().getUserName();
 String callableStatement = "begin "+rmsUser+".NEXT_ITEM_NUMBER(?,?,?); end;";
 try{
 callableStmt = getDBTransaction().createCallableStatement(callableStatement,0);
 callableStmt.registerOutParameter(1, Types.VARCHAR);
 callableStmt.registerOutParameter(3, Types.VARCHAR);
 callableStmt.setString(1, "");
 callableStmt.setString(2, itemNumberType); //passing item number type
 callableStmt.setString(3, "");
 callableStmt.executeUpdate();
 String itemSeq = callableStmt.getString(1);
 return itemSeq;
 }catch(SQLException e){
 throw new JboException(e);
 } finally{
 try{
 callableStmt.close();
 }catch(SQLException e){
 throw new RuntimeException(e);
 }
 }
 }

Creating an ADF Task Flow

Creating the Create Regular Item Micro-Application 2-41

Creating an ADF Task Flow
The user interface created above is a JSF page fragment. It cannot run independently
unless it is included as a region in a JSF page. This section describes how you can use
this page fragment to define a task flow. Once the task flow is defined, it can be
included as a region in a JSF page.

To create an ADF task flow:

1. In the Application Navigator, under Web Content, right-click the WEB-INF
folder, and click New. The New Gallery wizard appears.

2. In the New Gallery wizard, select JSF under Web Tier in the left navigation pane.

Figure 2–49 New Gallery Wizard

3. Under the Items area, click ADF Task Flow, and click OK. The Create Task Flow
window appears.

Creating an ADF Task Flow

2-42 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–50 Create Task Flow Window

4. In the Create Task Flow window, enter createRegularItem.xml in the File Name
field.

5. Click OK. A task flow definition file is created in the folder.

6. Open the task flow definition file.

7. Drag and drop the page fragment you create above in to the task flow diagram.

Figure 2–51 Task Flow Definition File with a Page Fragment

8. Ensure that the default activity is set to createRegularItem1.

9. Save all files.

10. Now, create a new JSF page.

11. Drag and drop the task flow definition file on to the JSF file as a region.

Packaging the Application

Creating the Create Regular Item Micro-Application 2-43

12. Run the JSF page.

The project will deploy in the built-in WebLogic server and the page will appear in a
Web browser.

Packaging the Application
Now that you have created the application, you must package it. This application
includes an ADF task flow. This task flow can be included in any ADF application as a
region. This section describes how you can package the application in an ADF JAR
library. This task flow will then be available in the ADF JAR library for future use.

To package the application:

1. In the Application Navigator, right-click on the CreateRegularItem project.

2. In the right-click menu, point to Deploy, and then click New Deployment Profile.
The New Gallery wizard appears.

Figure 2–52 New Gallery Wizard

3. In the New Gallery wizard, select Deployment Profiles under General in the left
navigation pane.

4. Under the Items area, click ADF Library JAR File, and then click OK. The Create
Deployment Profile window appears.

Packaging the Application

2-44 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Figure 2–53 Create Deployment Profile – ADF Library JAR File Window

5. In the Create Deployment Profile window, enter CreateRegularItemADFLibJAR
in the Deployment Profile Name field.

6. Click OK. The Edit ADF Library JAR Deployment Profile Properties window
appears.

Figure 2–54 Edit ADF Library JAR Deployment Profile Properties Window

7. Click OK. The Project Properties window appears. You can now view the
deployment profile properties and edit it at any point.

Packaging the Application

Creating the Create Regular Item Micro-Application 2-45

Figure 2–55 Project Properties Window

8. Click OK and save the project.

9. Right-click on the project again, point to Deploy, and then click
CreateRegularItemADFLibJar.

10. In the Deploy CreateRegularItemADFLibJar window, click Finish to deploy the
application.

11. Once the deployment finishes, go to the project directory in the file system. You
will find an ADF library JAR file inside the Deploy folder.

Packaging the Application

2-46 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

A

View Objects A-1

AView Objects

There are several read only view objects used in this application. All these view objects
are based on RMS database schema. For illustration purposes, Department and Class
view objects are already explained in details in the sections above. For the rest of the
view objects, all required information is provided in this appendix.

This appendix provides information on the following view objects:

■ Subclass View Object

■ SystemOptions View Object

■ Supplier View Object

■ Supplier Site View Object

■ Supplier Country View Object

■ Item Number Type View Object

■ Cost Zone Group View Object

■ Retail Price Zone Group View Object

■ Standard Unit of Measure View Object

Subclass View Object
Name: SubclassRVO

Category: Read only view object

Related table in RMS: SUBCLASS

Query used:

select subclass as SUBCLASS_ID,
 sub_name as SUBCLASS_NAME,
 concat(concat(subclass, '-'), sub_name) as SUBCLASS_SEARCH
 from subclass
 where dept=:BindVarDeptID and class=:BindVarClassID
 Union
 select null as SUBCLASS_ID,
 null as SUBCLASS_NAME,
 null as SUBCLASS_SEARCH
 from subclass

SystemOptions View Object

A-2 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Bind variables used:

■ BindVarDeptID: This bind variable provides the department ID selected at
runtime to the Subclass view object. Process for defining the bind variable is
similar to that explained in the ClassRVO creation steps.

■ BindVarClassID: This bind variable provides the class ID selected at runtime to the
Subclass view object. Process for defining the bind variable is similar to that
explained in the ClassRVO creation steps.

Attributes to be used in UI:

■ SubclassId: It is intended to be used as ADF LOV input component in UI. This
requires the attribute to be configured for LOV as explained in DepartmentRVO
creation for DepartmentId attribute.

SystemOptions View Object
Name: SystemOptionsRVO

Category: Read only view object

Related table in RMS: SYSTEM_OPTIONS

Query used:

select SystemOptions.SUPPLIER_SITES_IND as SUPPLIER_ID,
 from SYSTEM_OPTIONS SystemOptions

Bind variables used:

■ None

Attributes to be used in UI:

■ None

Supplier View Object
Name: SupplierRVO

Category: Read only view object

Related table in RMS: SUPS

Query used:

select supplier as SUPPLIER_ID,
 sup_name as SUPPLIER_NAME,
 concat(concat(supplier, '-'), sup_name) as SUPPLIER_SEARCH
 from sups
 where supplier_parent is null

Note: SUPPLIER_SITES_IND attribute is intended to be exposed in
the page definition file createRegularItemPageDef as an attribute
values binding. Once exposed in the page definition, it is used to
determine if the RMS installation uses Suppliers or SupplierSite
configuration for an item.

See the usage in the createRegularItem.jsff page fragment file present
in the zipped code for Supplier and SupplierSite input LOV
component. See the rendered property value for these components.

Item Number Type View Object

View Objects A-3

Bind variables used:

■ None

Attributes to be used in UI:

■ SupplierId: It is intended to be used as ADF LOV input component in UI. This
requires the attribute to be configured for LOV as explained in DepartmentRVO
creation for DepartmentId attribute.

Supplier Site View Object
Name: SupplierSiteRVO

Category: Read only view object

Related table in RMS: SUPS

Query used:

select supplier as SUPPLIER_ID,
 sup_name as SUPPLIER_NAME,
 concat(concat(supplier,'-'), sup_name) as SUPPLIER_SEARCH
 from sups
 where supplier_parent is not null

Bind variables used:

■ None

Attributes to be used in UI:

■ SupplierId: It is intended to be used as ADF LOV input component in UI. This
requires the attribute to be configured for LOV as explained in DepartmentRVO
creation for DepartmentId attribute.

Supplier Country View Object
Name: SupplierCountryRVO

Category: Read only view object

Related table in RMS: COUNTRY

Query used:

select country_id as COUNTRY_ID,
 country_desc as COUNTRY_DESC,
 concat(concat(country_id, '-'), country_desc) as COUNTRY_SEARCH
 from country

Bind variables used:

■ None.

Attributes to be used in UI:

■ CountryId: It is intended to be used as ADF LOV input component in UI. This
requires the attribute to be configured for LOV as explained for DepartmentRVO
creation for DepartmentId attribute.

Item Number Type View Object
Name: ItemNumberTypeRVO

Cost Zone Group View Object

A-4 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Category: Read only view object

Related table in RMS: CODE_DETAIL

Query used:

select code as ITEM_NO_TYPE_CODE,
 code_seq as ITEM_NO_CODE_SEQ,
 code_desc as ITEM_NO_CODE_DESC
 from code_detail where code_type='UPCT'
 order by code_seq

Bind variables used:

■ None.

Attributes to be used in UI:

■ ItemNoTypeCode: It is intended to be used as ADF LOV input component in UI.
This requires the attribute to be configured for LOV as explained for
DepartmentRVO creation for DepartmentId attribute.

Cost Zone Group View Object
Name: CostZoneGroupRVO

Category: Read only view object

Related table in RMS: COST_ZONE_GROUP

Query used:

select zone_group_id as ZONE_GROUP_ID,
 description as ZONE_DESCRIPTION,
 concat(concat(zone_group_id, '-'),description) as ZONE_SEARCH
 from cost_zone_group

Bind variables used:

■ None.

Attributes to be used in UI:

■ ZoneGroupId: It is intended to be used as ADF LOV input component in UI. This
requires the attribute to be configured for LOV as explained for DepartmentRVO
creation for DepartmentId attribute.

Retail Price Zone Group View Object
Name: RetailPriceZoneGroupRVO

Category: Read only view object

Related table in RMS: RPM_ZONE_GROUP

Query used:

select zone_group_id as RETAIL_PRICE_ZONE_GRP_ID,
 name as RETAIL_PRICE_ZONE_NAME,
 concat(concat(zone_group_id,'-'),name) as RETAIL_PRICE_ZONE_SEARCH
 from rpm_zone_group

Bind variables used:

■ None.

Standard Unit of Measure View Object

View Objects A-5

Attributes to be used in UI:

■ RetailPriceZoneGrpId: It is intended to be used as ADF LOV input component in
UI. This requires the attribute to be configured for LOV as explained for
DepartmentRVO creation for DepartmentId attribute.

Standard Unit of Measure View Object
Name: StandardUomRVO

Category: Read only view object

Related table in RMS: UOM_CLASS

Query used:

select uom as UOM_ID,
 uom_desc as UOM_DESC,
 concat(concat(uom, '-'), uom_desc) as UOM_SEARCH
 from uom_class

Bind variables used:

■ None.

Attributes to be used in UI:

■ UomId: It is intended to be used as ADF LOV input component in UI. This
requires the attribute to be configured for LOV as explained for DepartmentRVO
creation for DepartmentId attribute.

Standard Unit of Measure View Object

A-6 Oracle Retail Accelerators for WebLogic Server 11g Micro-Applications Development Tutorial

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2008, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

	Contents
	1 Introduction
	How to Use this Document
	Creating a Regular Item in RMS
	About the Create Regular Item Micro-Application
	Accessing the Sample JDeveloper Project
	Using the Sample JDeveloper Project

	2 Creating the Create Regular Item Micro-Application
	Creating a new ADF application
	Creating Model Layer Objects
	Creating the Department View Object
	Setting Up the DepartmentRVO View Object for LOV
	Setting Up the View Criteria
	Setting Up the DepartmentID Attribute as an LOV

	Creating the Class View Object

	Internationalization of Labels
	Adding View Objects to the Application Module
	Creating SQL Object Types in Java
	Creating the User Interface
	Creating a Page Fragment
	Constructing the User Interface
	Setting Up a Managed Bean

	Calling X API in the Micro-Application
	Creating a Business Service User Interface Button
	PL/SQL Wrapper for Item Sequence Generator in RMS
	Creating an ADF Task Flow
	Packaging the Application

	A View Objects
	Subclass View Object
	SystemOptions View Object
	Supplier View Object
	Supplier Site View Object
	Supplier Country View Object
	Item Number Type View Object
	Cost Zone Group View Object
	Retail Price Zone Group View Object
	Standard Unit of Measure View Object

