

Oracle® Retail Workspace Retail Library
Reference Guide

Release 13.1

January 2011

Note: The following is intended to outline our general product direction. It is intended for information
purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any
material, code, or functionality, and should not be relied upon in making purchasing decisions. The
development, release, and timing of any features or functionality described for Oracle's products remains at
the sole discretion of Oracle.

iii

Contents

1 Introduction

Pre-Requisites ... 1-2
Accessing the Workspace Retail Library.. 1-2

Configuring an RMS Data Source.. 1-3

2 Create Regular Item

Functional Design .. 2-1
Technical Design .. 2-2

Overview ... 2-2
Generating Java Objects for RIB types .. 2-2
Creating Business Components ... 2-2
User Interface Design .. 2-4
Validations .. 2-5
Calling the RMS API.. 2-5

Using the Create Regular Item Micro Application .. 2-5
Limitations... 2-6
Additional Customizations .. 2-6

3 Create Purchase Order

Functional Design .. 3-1
Technical Design .. 3-2

Overview ... 3-2
Generating Java Objects for RIB Types ... 3-2
Creating Business Components ... 3-3
User Interface Design .. 3-5
Passing Input Parameters to the Application .. 3-6
Validations .. 3-6
Calling the RMS API.. 3-6

Using the Application ... 3-7
Limitations... 3-7
Additional Customizations .. 3-8

4 Cancel Purchase Order

Functional Design .. 4-1
Technical design ... 4-2

iv

Overview ... 4-2
Generating Java Objects for RIB types .. 4-2
Creating Business Components ... 4-3
User Interface Design .. 4-4
Passing Input Parameters to the Application .. 4-4
Validations .. 4-5
Calling the RMS API.. 4-5

Using the Application ... 4-5
Limitations... 4-6
Additional Customizations .. 4-6

5 Item Transfer

Functional Design .. 5-1
Technical design ... 5-2

Overview ... 5-2
Generating Java Objects for RIB types .. 5-2
Creating Business Components ... 5-3
User Interface Design .. 5-5
Passing Input Parameters to the Application .. 5-5
Validations .. 5-6
Calling the RMS API.. 5-6

Using the Application ... 5-7
Limitations... 5-7
Additional Customizations .. 5-7

6 Update Vendor

Functional Design .. 6-1
Technical design ... 6-2

Overview ... 6-2
Generating Java Objects for RIB Types ... 6-2
Creating Business Components ... 6-4
User Interface Design .. 6-4
Passing Input Parameters to the Application .. 6-4
Validations .. 6-5
Calling the RMS API.. 6-5

Using the Application ... 6-6
Limitations... 6-6
Additional Customizations .. 6-6

7 Bulk Cancellation/Approval of Purchase Orders

Functional Design .. 7-2
Technical Design .. 7-2

Overview ... 7-2
Generating Java Objects for RIB Types ... 7-3
Creating Business Components ... 7-4
User Interface Design .. 7-5

v

Validations .. 7-6
Calling the RMS API.. 7-6

Application Usage .. 7-6
Limitations... 7-7
Additional Customizations .. 7-7

8 Maps

Functional Design .. 8-1
Technical Design .. 8-2

Components of the Sample Base Application.. 8-2
RMS Database Table for the Maps Micro Application ... 8-3

DDL for the Database Table .. 8-3
Sample Data for the Database Table .. 8-4

Run the Micro Application ... 8-4
Validations .. 8-6

Using the Application ... 8-6
Limitations... 8-7
Additional Customizations .. 8-7

Creating a View Object.. 8-8
Exposing the View Object for the User Interface... 8-8
Adding the Theme to the Base Map .. 8-9
Setting Up the Theme Using a Configuration File .. 8-9

vi

Introduction 1-1

1
Introduction

Oracle Retail Workspace Retail Library Release 13.1 provides a set of Micro
Applications that can be used to perform some of the operations of Oracle Retail
Merchandising System (RMS) from outside the application. These Micro Applications
have evolved from the thought of providing simple, intelligent, and rich interfaces to
the users of the Retail applications. The Micro Applications act like widgets and can be
deployed on Oracle Retail Workspace (ORW).

Based on your business need, you can choose to make all or some available in the
workspaces for users. This document describes the functional and technical design
details of the Micro Applications available in this release. It includes the following:

■ Create Regular Item

■ Create Purchase Order

■ Cancel Purchase Order

■ Item Transfer

■ Update Vendor

■ Bulk Cancellation/Approval of Purchase Orders

■ Maps

Each Micro Application is used to perform a specific retail business operation. They
can be used as a stand-alone application or be launched from other Web-based
applications. When launched from another application, you have the flexibility of
passing input parameters to the Micro Application that was launched. Passing
parameters between the application pages enhances the usability of the applications.
There are many parameters on each application page. When an application page is
launched from another page, the value for one or many of the parameters present on
the called page can be passed.

For example, a user is on a page that displays all the items present in a store. If the
user wants to place a purchase order for one of the items, user selects the specific item
and launches a Create Purchase Order page. The location and item value parameters
are then passed from the current application page to the Create Purchase Order page.
When the Create Purchase Order page is rendered, the location and item values are
assigned to the relevant form fields automatically. The user then just has to select the
supplier value manually and create a purchase order.

Pre-Requisites

1-2 Oracle Retail Workspace Retail Library Reference Guide

Pre-Requisites
Before proceeding, you must take the following into consideration:

■ Information included in this document is for reference-purposes only.

■ This document is intended for application integrators and implementation
personnel who are familiar with the Oracle Application Development Framework
(ADF), specifically ADF Faces, ADF Business Components, and ADF Task Flows.
Knowledge of Oracle Retail Merchandising System (RMS) and Retail Integration
Bus (RIB), specifically X APIs and RIB objects, is also required.

■ It includes information that will help you create your own version of the Micro
Application based on your business need. It is your responsibility to ensure that
the application meets all the business requirements.

■ You may need to make additional customizations, for the application work with
your business workflows.

■ The Micro Applications available in this release do not include any in-built
security features. It is recommended that you implement any relevant security
features required and used by your business.

Accessing the Workspace Retail Library
The Workspace Retail Library package is available on My Oracle Support with the
patch ID 10632792.

To access the Workspace Retail Library package:

1. In a Web browser, open the following URL:

https://support.oracle.com/

The My Oracle Support Web page appears.

2. Select a language and sign on to the Web site by clicking Sign In.

Once signed in, the My Oracle Support | Dashboard screen appears.

3. Click the Patches & Updates tab.

4. On the Patch & Updates screen, under Patch Search, click Patch ID or Number.

5. In the Patch ID or Number is field, enter 10632792.

6. Optionally, you can also choose a platform from the Platform is drop-down list.

7. Click Search. The Patch Search Results screen appears.

8. In the Patch Search Results screen, under Patch ID, click the relevant patch.

9. On the next screen, click Download (appears on the left side of the screen).

10. Unpack the ZIP file to your working directory.

Note: On the Patch Search Results screen, you can also select the row
that matches the patch description, and then click Download on the
toolbar that appears under the selected row.

Accessing the Workspace Retail Library

Introduction 1-3

Configuring an RMS Data Source
Micro Applications are packaged as ADF JAR libraries. They can be included in any
ADF-based Web application. All Micro Applications are based on RMS data source
that you must define before any of these JAR libraries are deployed.

You must create a data source pointing to an RMS schema with the following JNDI
name in the application server where the final application will be deployed:

jdbc/RMSDataSource

Accessing the Workspace Retail Library

1-4 Oracle Retail Workspace Retail Library Reference Guide

Create Regular Item 2-1

2
Create Regular Item

Creating an item is one of the most widely performed actions in RMS and new items
are added to the database frequently. The Create Regular Item Micro Application is a
simple and efficient application that can be used to create items instantly, especially
when there is a demand to create them quickly. It takes only a few mandatory
attributes of the item, creates the item in RMS, and inserts them in the RMS database
quickly. It interacts with the RMS database to fetch the required data and commit the
changes made by the user. If the users want to add more details to the same item, they
can later edit the item in the RMS application.

This chapter provides information you need to start using or implementing this Micro
Application. It includes the following sections:

■ Functional Design

■ Technical Design

■ Using the Create Regular Item Micro Application

■ Limitations

■ Additional Customizations

Functional Design
The Create Regular Item Micro Application enables the users to create a regular item
without accessing the RMS application. It communicates synchronously with RMS
through the external APIs exposed by the RMS application. It sends the item details
through the API. The API in RMS does validations and then creates the item with a
new item number and inserts the item, in the Worksheet (W) status, in the RMS
database.

This solution does not modify any code in RMS. It uses the existing APIs to perform
the operations. The Create Regular Item Micro Application takes the item details
entered by the user and passes them as arguments to the external API with the
Worksheet (W) status.

Note: API does not perform all the validations or operations as they
were performed when item is created using the RMS application. You
may need to make the necessary changes to meet your business
requirements.

Note: The external APIs provide a limited functionality.

Technical Design

2-2 Oracle Retail Workspace Retail Library Reference Guide

The RMS application then processes the message sent by the application and inserts
the item in the RMS database tables. The processing done on the RMS side is not in
scope of this solution. You may need to modify the RMS processes to achieve the
desired results.

Technical Design
This section highlights the technical design of the Create Regular Item Micro
Application. It also provides an overview of the components that were set up for the
Micro Application. It includes the following topics:

■ Overview

■ Generating Java Objects for RIB types

■ Creating Business Components

■ User Interface Design

■ Validations

■ Calling the RMS API

Overview
The Create Regular Item Micro Application provides an user interface where the
minimum required details to create an item are captured. The application then calls the
RMS APIs to create an item with the details specified by the user. However, the RMS
APIs require the RIB objects as input parameters. Based on the RIB-Type Objects,
Application builds the corresponding Java objects and populates the objects, with the
information gathered from the user interface and RMS database. A JDBC call is then
made to the RMS API, passing the Java object as a parameter. The RMS API is then
executed on the RMS database schema, which updates the corresponding tables in the
database.

Generating Java Objects for RIB types
To create an item, the RIB_XItemDesc_REC RIB object is passed to the RMS X API. The
application uses this RIB object to create the Java objects. This automatically generates
the relevant Java objects for all the inner objects.

For more information on the structure of the RIB object, refer to the RIB XSDs.

Creating Business Components
The following SQL-based business components have been used to create the Micro
Application:

■ DepartmentVO

To fetch the list of departments:

SELECT dept AS DEPARTMENT_ID,
 dept_name AS DEPARTMENT_NAME,
 concat(concat(dept, '-'), dept_name) AS DEPARTMENT_SEARCH
FROM deps

■ ClassVO

To populate the list of classes under the selected department:

Technical Design

Create Regular Item 2-3

SELECT class AS CLASS_ID,
 class_name AS CLASS_NAME,
 concat(concat(class, '-'), class_name) AS CLASS_SEARCH
FROM class
WHERE dept=:BindVarDeptID

■ SubclassVO

To populate the list of subclasses corresponding to the department and class
selected:

SELECT subclass AS SUBCLASS_ID,
 sub_name AS SUBCLASS_NAME,
 concat(concat(subclass, '-'), sub_name) AS SUBCLASS_SEARCH
FROM subclass
WHERE dept=:BindVarDeptID AND class=:BindVarClassID

■ SupplierVO

To populate the list of suppliers:

SELECT supplier AS SUPPLIER_ID,
 sup_name AS SUPPLIER_NAME,
 concat(concat(supplier, '-'), sup_name) AS SUPPLIER_SEARCH
FROM sups WHERE supplier_parent IS NULL
AND status = 'A'

■ SupplierSiteVO

To populate the list of supplier sites:

SELECT supplier AS SUPPLIER_ID,
 sup_name AS SUPPLIER_NAME,
 concat(concat(supplier, '-'), sup_name) AS SUPPLIER_SEARCH
FROM sups WHERE supplier_parent IS NOT NULL
AND status = 'A'

■ SystemOptionsVO

This VO is used to fetch the value of supplier_sites_ind from system_options table:

SELECT SystemOptions.SUPPLIER_SITES_IND
FROM SYSTEM_OPTIONS SystemOptions

■ CountryVO

To populate the list of countries:

SELECT country_id AS COUNTRY_ID,
country_desc AS COUNTRY_DESC,
concat(concat(country_id, '-'), country_desc) AS COUNTRY_SEARCH
FROM country

■ ItemNumberTypeVO

To populate the types of item numbers:

SELECT code AS ITEM_NO_TYPE_CODE,
 code_seq AS ITEM_NO_CODE_SEQ,
 code_desc AS ITEM_NO_CODE_DESC
FROM code_detail WHERE code_type='UPCT'
ORDER BY code_seq

■ RetailPriceZoneGroupVO

Technical Design

2-4 Oracle Retail Workspace Retail Library Reference Guide

To populate the list of retail price zone groups:

SELECT zone_group_id AS RETAIL_PRICE_ZONE_GRP_ID,
 name AS RETAIL_PRICE_ZONE_NAME,
 concat(concat(zone_group_id,'-'),name) AS RETAIL_PRICE_ZONE_SEARCH
FROM rpm_zone_group

■ CostZoneGroupVO

To populate the list of cost zone groups:

SELECT zone_group_id AS ZONE_GROUP_ID,
 description AS ZONE_DESCRIPTION,
 concat(concat(zone_group_id, '-'),description) AS ZONE_SEARCH
FROM cost_zone_group

■ StandardUomVO

To populate the list of unit of measures available:

SELECT uom AS UOM_ID,
 uom_desc AS UOM_DESC,
 concat(concat(uom, '-'), uom_desc) AS UOM_SEARCH
FROM uom_class

User Interface Design
The following figure displays the user interface for the Micro Application:

Figure 2–1 User Interface for the Create Regular Item Micro Application

Using the Create Regular Item Micro Application

Create Regular Item 2-5

Validations
The following validations are implemented in the application:

■ Depending on the supplier sites indicator, the page displays the supplier or
supplier site.

■ Users can only select valid class and subclass values.

■ Only approved suppliers or supplier sites can be selected.

■ All validations imposed by RMS will be executed on the RMS side.

Calling the RMS API
Once the item details entered by the user is captured, the application uses it to build
the required type of the RIB object (RIB_XItemDesc_REC) and call the RMS API
passing the RIB object as the parameter when the Create Item button is pressed.

Signature of the API used to create an item is as follows:

RMSSUB_XITEM.CONSUME(O_STATUS_CODE,
 O_ERROR_MESSAGE,
 L_RIB_XITEMDESC_REC,
 I_MESSAGE_TYPE);

Where,

■ O_STATUS_CODE is an IN OUT parameter which holds the status of the
transaction.

– O_STATUS_CODE = 'S' indicates that the transaction was successful.

– O_STATUS_CODE = 'E' indicates that an error had occurred during the
transaction.

■ O_ERROR_MESSAGE is an IN OUT parameter that holds the error message.

■ L_RIB_XITEMDESC_REC is an IN parameter that holds the item details.

■ I_MESSAGE_TYPE is the message type. To create an item, message type to be
passed is 'xitemcre'.

Using the Create Regular Item Micro Application
To use the Create Regular Item Micro Application:

1. In the Item Description field, enter the item name or description.

2. In the Department field, select the department it belongs to.

3. In the Class and Subclass fields, select the relevant class and subclass of the item.

4. In the Supplier Site field, select the primary supplier of the item.

5. In the Country field, select the supplier country.

6. In the Unit Cost field, enter unit cost of the item.

7. Fields in the advanced section are assigned default values. If those values need to
be edited, check the Edit Advanced Field check box.

8. In the Item Number Type Code field, select the item number type.

Limitations

2-6 Oracle Retail Workspace Retail Library Reference Guide

9. The item number is automatically populated for all the item number types, except
for the manual type. If item type is manual, enter the item number in the Item
Number (Manual) field.

10. In the Retail Price Zone Group ID and Cost Zone Group fields, select the retail
price zone and cost zone group values.

11. In the Standard Unit o Measure field, select the standard unit of measure (UOM)
for the item.

12. If the selected UOM is not EACH, enter the conversion factor for the UOM in the
UOM Conversion Factor field.

13. Click the Create button to create the item.

If the transaction needs to be cancelled or the page needs to be reset, click the
Cancel button.

New item is created and inserted into the RMS database. A confirmation message is
printed at the bottom of the page with the item number created.

Limitations
The following limitations apply to this Micro Application:

■ Only simple and regular items can be created using the application.

■ Only one supplier-country-loc combination can be attached to the item and this
combination is taken as the primary detail by default.

■ Indicators like Sellable, Orderable, Inventory, and Forecast-able default to the
value 'Y'.

■ Items with transaction level as 'Line' can only be created.

■ Locations cannot be added to the item through this application. Use the RMS
application to enter the location information.

■ Only the parameters present on the page are passed to the RMS API. RMS
application has to be used to add more parameter values to the item.

■ Application supports limited functionality that can be achieved using the
parameters on the user interface.

■ Application does not check the privileges of the user to create items.

■ Security is not implemented in the application.

Additional Customizations
You may need to implement any additional customization that is not handled through
the RMS API, but required by the business process.

Create Purchase Order 3-1

3
Create Purchase Order

Creating a purchase order requires the user to log on to the RMS application, navigate
to the Order screen, select the Create Order option, fill all the required details, add
items and location to the order, and then submit it. The Create Purchase Order (PO)
Micro Application is a simple and efficient application that simplifies this process. It
interacts with the RMS database to fetch the required data and commit the changes
made by the user.

Users can use this Micro Application to create a purchase order by providing the
minimum required details on a single screen. They just need to launch the Micro
Application from Workspace, enter the location, supplier, and item details, and then
click the Create Order button.

This chapter provides information you need to start using or implementing this Micro
Application. It includes the following sections:

■ Functional Design

■ Technical Design

■ Using the Application

■ Limitations

■ Additional Customizations

Functional Design
The Create Purchase Order Micro Application enables the users to create a purchase
order without accessing the RMS application. It communicates synchronously with
RMS through the external APIs exposed by the RMS application. It sends the order
details through the API. The API in RMS does validations and then creates the order
with a new order number and inserts the order, in the Worksheet (W) status, in the
RMS database.

This solution does not modify any code in RMS. It uses the existing APIs to perform
the operations. The Create Purchase Order Micro Application takes the order details
entered by the user and passes them as arguments to the external API with the
Worksheet (W) status.

Note: API does not perform all the validations or operations as they
were performed when item is created using the RMS application. You
may need to make the necessary changes to meet your business
requirements.

Technical Design

3-2 Oracle Retail Workspace Retail Library Reference Guide

The RMS application then processes the message sent by the application and inserts
the item in the RMS database tables. The processing done on the RMS side is not in
scope of this solution. You may need to modify the RMS processes to achieve the
desired results.

Technical Design
This section highlights the technical design of the Create Purchase Order Micro
Application. It also provides an overview of the components that were set up for the
Micro Application. It includes the following topics:

■ Overview

■ Generating Java Objects for RIB Types

■ Creating Business Components

■ User Interface Design

■ Passing Input Parameters to the Application

■ Validations

■ Calling the RMS API

Overview
The Create Purchase Order Micro Application provides an user interface where the
minimum required details to create an order are captured. The application then calls
the RMS APIs to create an order with the details specified by the user. However, the
RMS APIs require the RIB objects as input parameters. Based on the RIB-Type Objects,
Application builds the corresponding Java objects and populates the objects, with the
information gathered from the user interface and RMS database. A JDBC call is then
made to the RMS API, passing the Java object as a parameter. The RMS API is then
executed on the RMS database schema, which updates the corresponding tables in the
database.

Generating Java Objects for RIB Types
To create a purchase order, the RIB_XOrderDesc_REC RIB object is passed to the RMS X
API. This object contains a collection of RIB_XOrderDtl_REC objects. The application
uses the RIB_XOrderDesc_REC RIB object to create the Java objects. This automatically
generates the relevant Java objects for the RIB_XOrderDtl_REC object.

Structure of the RIB_XOrderDesc_REC object:

order_no varchar2(10),
supplier varchar2(10),
currency_code varchar2(3),
terms varchar2(15),
not_before_date date,
not_after_date date,
otb_eow_date date,
dept number(4),
status varchar2(1),
exchange_rate number(20,10),
include_on_ord_ind varchar2(1),

Note: The external APIs provide a limited functionality.

Technical Design

Create Purchase Order 3-3

written_date date,
XOrderDtl_TBL "RIB_XOrderDtl_TBL",
orig_ind varchar2(1),
edi_po_ind varchar2(1),
pre_mark_ind varchar2(1),
user_id varchar2(30),
comment_desc varchar2(2000),
ExtOfXOrderDesc_TBL "RIB_ExtOfXOrderDesc_TBL"

Structure of RIB_XOrderDtl_REC:

item varchar2(25),
location number(10),
unit_cost number(20,4),
ref_item varchar2(25),
origin_country_id varchar2(3),
supp_pack_size number(12,4),
qty_ordered number(12,4),
location_type varchar2(1),
cancel_ind varchar2(1),
reinstate_ind varchar2(1),
ExtOfXOrderDtl_TBL "RIB_ExtOfXOrderDtl_TBL"

Creating Business Components
The following SQL-based business components have been used to create the Micro
Application:

■ LocationVO

To populate the LOV for location where order needs to be created:

SELECT distinct s.store Location,
 s.store_name LocName,
 'S' LocType,
 concat(concat(s.store,'-'),s.store_name) AS Location_Search,
 s.org_unit_id OrgUnitIdb
FROM v_STORE s,
 PARTNER_ORG_UNIT pou,
 SYSTEM_OPTIONS so
WHERE s.stockholding_ind = 'Y'
AND s.store_type = 'C'
AND (get_vdate < (s.store_close_date-s.stop_order_days)
OR s.store_close_date IS NULL)
AND ((so.supplier_sites_ind = 'N'
AND pou.partner_type = 'S'
AND pou.partner = NVL(:ParamSupp,pou.partner)
AND s.org_unit_id = pou.org_unit_id)
OR (so.supplier_sites_ind = 'Y'
AND pou.partner_type = 'U'
AND pou.partner = NVL(:ParamSupp,pou.partner)
AND s.org_unit_id = pou.org_unit_id))

UNION ALL

SELECT distinct wh.wh Location,
 wh.wh_name LocName,
 'W' LocType,
 concat(concat(wh.wh,'-'),wh.wh_name) AS Location_Search,
 wh.org_unit_id OrgUnitIdb

Technical Design

3-4 Oracle Retail Workspace Retail Library Reference Guide

FROM v_WH wh,
 PARTNER_ORG_UNIT pou,
 SYSTEM_OPTIONS so
WHERE wh.stockholding_ind = 'Y'
AND ((so.supplier_sites_ind = 'N'
AND pou.partner_type = 'S'
AND pou.partner = NVL(:ParamSupp,pou.partner)
AND wh.org_unit_id = pou.org_unit_id)
OR (so.supplier_sites_ind = 'Y'
AND pou.partner_type = 'U'
and pou.partner = NVL(:ParamSupp,pou.partner)
AND wh.org_unit_id = pou.org_unit_id))
ORDER BY LocName

■ VSupMsobYVO

To select the supplier for the order:

SELECT distinct sups.supplier Supplier,
 sups.SUP_NAME SupplierName,
 concat(concat(sups.supplier, '-'), sups.SUP_NAME) AS Supplier_Search
FROM SYSTEM_OPTIONS so,
 V_SUPS sups,
 PARTNER_ORG_UNIT pou,
 STORE,
 WH,
 ITEM_SUPPLIER
WHERE sups.sup_status = 'A'
AND pou.partner = sups.supplier
AND ITEM_SUPPLIER.item = NVL(:ParamItem,ITEM_SUPPLIER.item)
AND sups.supplier = DECODE(:ParamItem,NULL,sups.supplier,ITEM_
SUPPLIER.supplier)
AND NVL(:ParamLoc,1) = DECODE(:ParamLocType,'S',STORE.store,'W',WH.wh,1)
AND pou.org_unit_id = DECODE(:ParamLocType,'S',STORE.org_unit_id,'W',WH.org_
unit_id,NVL(:OrgUnitID,pou.org_unit_id))
AND ((so.supplier_sites_ind = 'Y'
AND supplier_parent IS NOT NULL
AND pou.PARTNER_TYPE = 'U')
OR (so.supplier_sites_ind = 'N'
AND supplier_parent IS NULL
AND pou.partner_type = 'S'))
ORDER BY 2

■ ItemsVO

To select the items associated with the supplier and also to get the details of a
particular item:

SELECT VItemMaster.ITEM,
 VItemMaster.ITEM_DESC,
 ItemSuppCountry.ORIGIN_COUNTRY_ID,
 ItemSuppCountry.ITEM AS ITEM1,
 ItemSuppCountry.SUPPLIER,
 ItemSuppCountry.UNIT_COST
FROM ITEM_SUPP_COUNTRY ItemSuppCountry,
 V_ITEM_MASTER VItemMaster
WHERE VItemMaster.ITEM = ItemSuppCountry.ITEM
 AND ItemSuppCountry.supplier = NVL(:bindSupplier, ItemSuppCountry.supplier)
 AND ItemSuppCountry.primary_country_ind = 'Y'
 AND ItemSuppCountry.unit_cost > 0
 AND VItemMaster.status = 'A'
 AND VItemMaster.orderable_ind = 'Y'

Technical Design

Create Purchase Order 3-5

 AND NVL(VItemMaster.deposit_item_type, 'X') != 'A'
 AND (VItemMaster.item_level = VItemMaster.tran_level
 OR (VItemMaster.item_level + 1 = VItemMaster.tran_level
 AND EXISTS
 (SELECT 'x'
 FROM diff_group_head
 WHERE VItemMaster.diff_1 = diff_group_id
 OR VItemMaster.diff_2 = diff_group_id
)))
AND NOT EXISTS
 (SELECT 'x'
 FROM packitem,
 pack_tmpl_head
 WHERE pack_tmpl_head.fash_prepack_ind = 'Y'
 AND packitem.pack_tmpl_id = pack_tmpl_head.pack_tmpl_id
 AND packitem.pack_no = VItemMaster.item
)
AND VItemMaster.item= NVL(:ParamItem,VItemMaster.item)

■ OrderedItemsVO

This is a view object that is populated programmatically at run time with the
details of the item the user has selected with an editable field to enter the quantity
of the item required.

■ SystemOptionsVO

This view object is used to fetch the values of the indicators, supplier_sites_ind,
and multiple_set_of_books_ind, from system_options table.

SELECT SystemOptions.FINANCIAL_AP,
 SystemOptions.MULTIPLE_SET_OF_BOOKS_IND,
 SystemOptions.SUPPLIER_SITES_IND
FROM SYSTEM_OPTIONS SystemOptions

User Interface Design
The following figure displays the user interface for the Micro Application:

Figure 3–1 User Interface for the Create Purchase Order Micro Application

Technical Design

3-6 Oracle Retail Workspace Retail Library Reference Guide

Passing Input Parameters to the Application
The Create Purchase Order Micro Application is used to place an order to procure
items at specified locations. The application takes Supplier, Location, and Item as
parameters. The user can pass these parameters in any combination to the Create
Purchase Order Micro Application.

The application that calls the Micro Application can pass values for any of the
following parameters:

■ location and locationType – Both values need to be passed together. locationType
takes S or W as input values and location takes the Location ID as the input value.

■ supplier – takes Supplier ID as the input value.

■ item – takes Item ID as the input value.

The application must use the exact names, as specified above, to pass the parameter
values. None of the parameters are mandatory. If no values are passed, application
works like a stand-alone application. Limitation of the functionality is that only one
item can be passed as parameter to the application, even though an order can contain
multiple items.

Validations
The following validations are implemented in the application:

■ Entering values for location, supplier and item fields is mandatory.

■ Both location and supplier have to belong to the same organization.

■ Only stock holding and open stores/warehouses can be selected for location.

■ If supplier sites are used by the retailer, only supplier sites can be selected on the
page. Otherwise, only suppliers can be selected.

■ Only valid items that belong to the selected supplier can be added to the order.

■ Order quantity of an item has to be a positive integer value.

■ All validations imposed by RMS will be executed on the RMS side.

Calling the RMS API
Once the location, supplier, and item details entered by the user is captured, the
application uses it to build the required type of the RIB object (RIB_XOrderDesc_REC)
and call the RMS API passing the RIB object as the parameter when the Create Order
button is pressed.

Signature of the API used to create the order is as follows:

RMSSUB_XORDER.CONSUME(O_STATUS_CODE,
 O_ERROR_MESSAGE,
 L_RIB_XORDERDESC_REC,
 I_MESSAGE_TYPE);

Where,

Note: It is assumed that the values passed for the parameters are
correct. There is no explicit check in the application to validate the
values passed.

Limitations

Create Purchase Order 3-7

■ O_STATUS_CODE is an IN OUT parameter which holds the status of the
transaction.

– O_STATUS_CODE = 'S', indicates that the transaction was successful.

– O_STATUS_CODE = 'E', indicates that an error had occurred during the
transaction.

■ O_ERROR_MESSAGE is an IN OUT parameter that holds the error message.

■ L_RIB_XORDERDESC_REC is an IN parameter that holds that RIB Object for
purchase order.

■ I_MESSAGE_TYPE is the message type. To create a purchase order, message type
to be passed is 'xordercre' (Message sets the status of the order to worksheet).

■ Display the status of the transaction after the completion of the operation.

Using the Application
To use the Create Purchase Order Micro Application:

1. In the Location ID field, select the location number from the List of Values (LOV).

2. In the Supplier Site field, select the supplier from LOV.

3. Select the items to be ordered by clicking on the Plus sign, selecting the item
needed, and then click OK.

4. Enter the required quantity of item selected.

5. Review the order details and then click the Create Order button.

Application calls the RMS API and executes the transaction. Status of the
transaction is printed at the bottom of the page.

In case you want to delete the items you added before clicking the Create Order
button, you can select the item and then click the Cross Mark button.

In case you want to cancel the operation before clicking the Create Order button,
click the Cancel button. It resets the page without making any changes to the
selected order.

You can select the supplier first, then select a location and add the items. You can
also select the supplier, enter the items, and then select a location.

Limitations
The following limitations apply to this Micro Application:

■ Order can be created for only one location.

■ No check for minimum orderable quantity of a supplier.

■ Order can only be created in worksheet status.

■ Only the parameters present on the page are passed to the RMS API. RMS
application has to be used to add more parameter values to the order.

■ The application supports limited functionality that can be achieved using the
parameters on the user interface.

■ The application does not check the privileges of the user to create orders.

■ Security is not implemented in the application.

Additional Customizations

3-8 Oracle Retail Workspace Retail Library Reference Guide

Additional Customizations
You may need to implement any additional customization that is not handled through
the RMS API, but required by the business process.

Cancel Purchase Order 4-1

4
Cancel Purchase Order

Cancelling items in a purchase order requires the users to log on to the RMS
application, navigate to the Edit Order screen, select the order number, navigate to the
Options menu, click Cancel All Items option, confirm the operation, select the reason
for cancellation, and then exit from the screen. The Cancel Purchase Order (PO) Micro
Application is a simple and efficient application that simplifies this process. It interacts
with the RMS database to fetch the required data and commit the changes made by the
user.

This Micro Application enables users to cancel an order that already exists in the
Approved status. Users just need to launch the Micro Application from the Workspace,
enter the order number to be cancelled, and click the Cancel button.

This chapter provides information you need to start using or implementing this Micro
Application. It includes the following sections:

■ Functional Design

■ Technical design

■ Using the Application

■ Limitations

■ Additional Customizations

Functional Design
The Cancel Purchase Order Micro Application enables the users to cancel a purchase
order without accessing the RMS application. It communicates synchronously with
RMS through the external APIs exposed by the RMS application. It sends the order
cancellation information through the API. The API in RMS does validations and then
updates the order with the Cancelled (C) status, in the RMS database.

This solution does not modify any code in RMS. It uses the existing APIs to perform
the operations. The Cancel Purchase Order Micro Application takes the order number
entered by the user and passes them as arguments to the external API with the
Cancelled (C) status.

Note: API does not perform all the validations or operations as they
were performed when item is created using the RMS application. You
may need to make the necessary changes to meet your business
requirements.

Technical design

4-2 Oracle Retail Workspace Retail Library Reference Guide

The RMS application then processes the message sent by the application and inserts
the item in the RMS database tables. The processing done on the RMS side is not in
scope of this solution. You may need to modify the RMS processes to achieve the
desired results.

Technical design
This section highlights the technical design of the Cancel Purchase Order Micro
Application. It also provides an overview of the components that were set up for the
Micro Application. It includes the following topics:

■ Overview

■ Generating Java Objects for RIB types

■ Creating Business Components

■ User Interface Design

■ Passing Input Parameters to the Application

■ Validations

■ Calling the RMS API

Overview
The Cancel Purchase Order Micro Application provides an user interface where the
order number to be cancelled are captured. The application then calls the RMS APIs to
cancel the selected order. However, the RMS APIs require the RIB objects as input
parameters. Based on the RIB-Type Objects, Application builds the corresponding Java
objects and populates the objects, with the information gathered from the user
interface and RMS database. A JDBC call is then made to the RMS API, passing the
Java object as a parameter. The RMS API is then executed on the RMS database
schema, which updates the corresponding tables in the database.

Generating Java Objects for RIB types
To cancel a purchase order, the RIB_XOrderDesc_REC RIB object is passed to the RMS
X API. This object contains a collection of RIB_XOrderDtl_REC objects. The application
uses the RIB_XOrderDesc_REC RIB object to create the Java objects. This automatically
generates the relevant Java objects for the RIB_XOrderDtl_REC object.

Structure of the RIB_XOrderDesc_REC object:

order_no varchar2(10),
supplier varchar2(10),
currency_code varchar2(3),
terms varchar2(15),
not_before_date date,
not_after_date date,
otb_eow_date date,
dept number(4),
status varchar2(1),
exchange_rate number(20,10),
include_on_ord_ind varchar2(1),
written_date date,

Note: The external APIs provide a limited functionality.

Technical design

Cancel Purchase Order 4-3

XOrderDtl_TBL "RIB_XOrderDtl_TBL",
orig_ind varchar2(1),
edi_po_ind varchar2(1),
pre_mark_ind varchar2(1),
user_id varchar2(30),
comment_desc varchar2(2000),
ExtOfXOrderDesc_TBL "RIB_ExtOfXOrderDesc_TBL"

Structure of RIB_XOrderDtl_REC:

item varchar2(25),
location number(10),
unit_cost number(20,4),
ref_item varchar2(25),
origin_country_id varchar2(3),
supp_pack_size number(12,4),
qty_ordered number(12,4),
location_type varchar2(1),
cancel_ind varchar2(1),
reinstate_ind varchar2(1),
ExtOfXOrderDtl_TBL "RIB_ExtOfXOrderDtl_TBL"

Creating Business Components
The following SQL-based business components have been used to create the Micro
Application:

■ SelectOrderVO

To populate the LOV for orders to be cancelled:

Select oh.order_no, oh.supplier,s.sup_name , concat(concat(oh.order_
no,'-'),concat(concat(oh.supplier, '-'), s.sup_name)) AS ORDER_SEARCH from
ordhead oh,sups s where status = 'A' and oh.supplier=s.supplier order by 1

■ OrdLocVO

To populate the details of the selected order:

SELECT DISTINCT DECODE(ol.loc_type,'S','Store','W','Warehouse') AS location_
Type,
 oh.supplier,
 oh.supplier | |' - ' || s.sup_name AS supplier_name,
 oh.dept ,
 oh.terms ,
 oh.terms || ' - ' ||th.terms_desc AS terms_desc,
 oh.status ,
 DECODE(oh.status,'A','Approved','W','Worksheet') AS status_desc,
 ol.order_no ,
 ol.item ,
 im.item_desc ,
 ol.qty_ordered ,
 ol.location ,
 DECODE(ol.loc_type,'S',store.store_name,'W',wh.wh_name) AS location_name ,
 ol.loc_type
FROM store store,
 wh wh ,
 ordloc ol ,
 item_master im,
 ordhead oh,
 sups s ,

Technical design

4-4 Oracle Retail Workspace Retail Library Reference Guide

 terms_head th
WHERE ol.order_no=:order_no
and ol.order_no = oh.order_no
AND ol.item =im.item
AND s.supplier = oh.supplier
AND oh.terms =th.terms
AND (store.store=ol.location
OR wh.wh =ol.location)
ORDER BY ol.item

User Interface Design
The following figure displays the user interface for the Micro Application:

Figure 4–1 User Interface for the Cancel Purchase Order Micro Application

Passing Input Parameters to the Application
The Cancel Purchase Order Micro Application is used to cancel an order. The
application takes the Order Number as the parameter.

The application that calls the Micro Application can pass values for any of the
following parameters:

■ orderNo – takes Order ID as the input value.

The application must use the exact name, as specified above, to pass the parameter
value. Order Number parameter is not mandatory. If no values are passed, application
works like a stand-alone application.

Note: It is assumed that the values passed for the parameters are
correct. There is no explicit check in the application to validate the
values passed.

Using the Application

Cancel Purchase Order 4-5

If the order number is passed to the application, the application page appears with the
details of the order number. Users can review the order details, and then click the
Cancel Order button to cancel the order.

Validations
The following validations are implemented in the application:

■ Only orders in Approved status can be cancelled.

■ Selecting an order number is mandatory.

■ It is not possible to enter an invalid order number and execute the operation.

■ All validations imposed by RMS will be executed on the RMS side.

Calling the RMS API
Once the order number entered by the user is captured, the application uses it to build
the required type of the RIB object (RIB_XOrderDesc_REC) and call the RMS API
passing the RIB object as the parameter when the Cancel Order button is pressed.

Signature of the API used to create the order is as follows:

RMSSUB_XORDER.CONSUME(O_STATUS_CODE,
 O_ERROR_MESSAGE,
 L_RIB_XORDERDESC_REC,
 I_MESSAGE_TYPE);

Where,

■ O_STATUS_CODE is an IN OUT parameter which holds the status of the
transaction.

– O_STATUS_CODE = 'S', indicates that the transaction was successful.

– O_STATUS_CODE = 'E', indicates that an error had occurred during the
transaction.

■ O_ERROR_MESSAGE is an IN OUT parameter that holds the error message.

■ L_RIB_XORDERDESC_REC is an IN parameter that holds that RIB Object for
purchase order.

■ I_MESSAGE_TYPE is the message type. To cancel a purchase order, message type
to be passed is 'xordermod' (Message sets the status of the order to
cancelled/Closed).

■ Display the status of the transaction after the completion of the operation.

Using the Application
To use the Cancel Purchase Order Micro Application:

1. In the Order No field, select the order number from the List of Values (LOV).

All other details on the screen appear when the order is selected.

2. Review the order details, and then click the Cancel Order button.

3. Application calls the RMS API and executes the transaction. Status of the
transaction is printed at the bottom of the page.

Limitations

4-6 Oracle Retail Workspace Retail Library Reference Guide

In case you want to cancel the operation before clicking the Cancel Order button, click
the Cancel button. It resets the page without making any changes to the selected order.

Limitations
The following limitations apply to this Micro Application:

■ The application does not check the privileges of the user to cancel orders.

■ Security is not implemented in the application.

■ The application only sends an order modify message to RMS with Cancelled
status. Processing of the message in RMS is not in the scope of this application.

Additional Customizations
To replicate the Cancel Order functionality in RMS, some additional customizations
are recommended for the Micro Application.

Allocations, shipments, and deals associated with the order being cancelled are not
handled when the Cancel Purchase Order Micro Application is used. It is
recommended that you call the relevant package that handles all these transactions in
the RMS API.

You may need to implement any additional customization that is not handled through
the RMS API, but required by the business process.

Item Transfer 5-1

5
Item Transfer

Transferring items in the RMS application requires the users to fill many fields. The
Item Transfer Micro Application is a simple and efficient application that simplifies
this process. It interacts with the RMS database to fetch the required data and commit
the changes made by the user.

Users just need to launch the Micro Application from the Workspace, select the source
location, destination location, items to be transferred, transfer quantity, and then click
the Transfer button.

This chapter provides information you need to start using or implementing this Micro
Application. It includes the following sections:

■ Functional Design

■ Technical design

■ Using the Application

■ Limitations

■ Additional Customizations

Functional Design
The Item Transfer Micro Application enables the users to create an item transfer
without accessing the RMS application. It communicates synchronously with RMS
through the external APIs exposed by the RMS application. It sends the item transfer
information through the API. The API in RMS does validations and then transfers the
items.

This solution does not modify any code in RMS. It uses the existing APIs to perform
the operations. The Item Transfer Micro Application takes the location and item details
for the transfer entered by the user and passes them as arguments to the external API
with the Approved (A) status. Items can be transferred from a store to warehouse,
warehouse to store, and between two stores or two warehouses.

Note: API does not perform all the validations or operations as they
were performed when item is created using the RMS application. You
may need to make the necessary changes to meet your business
requirements.

Note: The external APIs provide a limited functionality.

Technical design

5-2 Oracle Retail Workspace Retail Library Reference Guide

The RMS application then processes the message sent by the application and inserts
the new transfer in the RMS database tables. The processing done on the RMS side is
not in scope of this solution. You may need to modify the RMS processes to achieve the
desired results.

Technical design
This section highlights the technical design of the Item Transfer Micro Application. It
also provides an overview of the components that were set up for the Micro
Application. It includes the following topics:

■ Overview

■ Generating Java Objects for RIB types

■ Creating Business Components

■ User Interface Design

■ Passing Input Parameters to the Application

■ Validations

■ Calling the RMS API

Overview
The Item Transfer Micro Application provides an user interface where the location and
item details are captured. The application then calls the RMS APIs to transfer the
selected items with the relevant transfer quantities. However, the RMS APIs require
the RIB objects as input parameters. Based on the RIB-Type Objects, Application builds
the corresponding Java objects and populates the objects, with the information
gathered from the user interface and RMS database. A JDBC call is then made to the
RMS API, passing the Java object as a parameter. The RMS API is then executed on the
RMS database schema, which updates the corresponding tables in the database.

Generating Java Objects for RIB types
To transfer an item, the RIB_XTsfDesc_REC RIB object is passed to the RMS X API. This
object contains a collection of RIB_XTsfDtl_REC objects. The application uses the RIB_
XTsfDesc_REC RIB object to create the Java objects. This automatically generates the
relevant Java objects for the RIB_XTsfDtl_REC object.

Structure of the RIB_XTsfDesc_REC object:

tsf_no number(10),
from_loc_type varchar2(1),
from_loc varchar2(10),
to_loc_type varchar2(1),
to_loc varchar2(10),
delivery_date date,
dept number(4),
routing_code varchar2(1),
freight_code varchar2(1),
tsf_type varchar2(6),
XTsfDtl_TBL "RIB_XTsfDtl_TBL",
status varchar2(1),
user_id varchar2(30),
comment_desc varchar2(2000),
ExtOfXTsfDesc_TBL "RIB_ExtOfXTsfDesc_TBL"

Technical design

Item Transfer 5-3

Structure of the RIB_XTsfDtl_REC object:

item varchar2(25),
tsf_qty number(12,4),
supp_pack_size number(12,4),
inv_status number(2),
unit_cost number(20,4),
ExtOfXTsfDtl_TBL "RIB_ExtOfXTsfDtl_TBL"

Creating Business Components
The following SQL-based business components have been used to create the Micro
Application:

■ SrcLocationVO

To populate the LOV for selecting the source location for the transfer.

SELECT distinct s1.store AS Location,
 s1.store_name AS Loc_name,
 'S' AS Loc_type,
 concat(concat(s1.store,'-'),s1.store_name) AS LOCATION_SEARCH
FROM store s1, store s2, item_loc_soh ils
WHERE s1.stockholding_ind ='Y'
AND DECODE(ils.loc_type,'S',ils.loc,s1.store) = DECODE(ils.loc_
 type,'S',s1.store,ils.loc)
AND ils.item = NVL(:ParamItem,ils.item)
AND ils.stock_on_hand > 0
AND ((NVL(:to_loc_type,'S') ='S'
AND s2.store = NVL(:to_loc,s2.store)
AND s1.transfer_zone = NVL(s2.transfer_zone,s1.transfer_zone)
AND s1.store <> NVL(:to_loc,-1))
OR NVL(:to_loc_type,'W') ='W')

UNION

SELECT wh AS Location,
 wh_name AS Loc_name,
 'W' AS Loc_type,
 concat(concat(wh,'-'),wh_name) AS LOCATION_SEARCH
FROM wh, item_loc_soh ils
WHERE stockholding_ind = 'Y'
AND DECODE(ils.loc_type,'W',ils.loc,wh.wh) = DECODE(ils.loc_
 type,'W',wh.wh,ils.loc)
AND ils.item = NVL(:ParamItem,ils.item)
AND ils.stock_on_hand > 0
AND wh <> NVL(:to_loc,-1)

■ DestLocationVO

To populate the LOV for selecting the destination location for the transfer:

SELECT distinct s1.store AS Location,
 s1.store_name AS Loc_name,
 'S' AS Loc_type,
 concat(concat(s1.store,'-'),s1.store_name) AS LOCATION_SEARCH
FROM store s1, store s2
WHERE s1.stockholding_ind ='Y'
AND ((NVL(:from_loc_type,'S') ='S'
AND s2.store = NVL(:from_loc,s2.store)
AND s1.transfer_zone = NVL(s2.transfer_zone,s1.transfer_zone)

Technical design

5-4 Oracle Retail Workspace Retail Library Reference Guide

AND s1.store <> NVL(:from_loc,-1))
OR NVL(:from_loc_type,'W') ='W')

UNION

SELECT wh AS Location,
 wh_name AS Loc_name,
 'W' AS Loc_type,
 concat(concat(wh,'-'),wh_name) AS LOCATION_SEARCH
FROM wh
WHERE stockholding_ind= 'Y'
AND wh <> NVL(:from_loc,-1)

■ DepartmentVO

To populate the LOV for selecting the department for the transfer:

SELECT dept,dept_name FROM deps

■ ItemVO

To populate the pop up for selecting the items for the transfer:

SELECT distinct im.item, im.item_desc, ils.stock_on_hand
FROM item_loc il, item_loc_soh ils, item_master im
WHERE im.dept = NVL(:dept,im.dept)
AND il.item = im.item
AND ils.item = im.item
AND il.loc = NVL(:from_loc,il.loc)
AND il.loc_type = NVL(:from_loc_type,il.loc_type)
AND ils.loc = NVL(:from_loc,ils.loc)
AND ils.loc_type = NVL(:from_loc_type,ils.loc_type)
AND im.status = 'A'
AND im.item_level = im.tran_level
AND im.inventory_ind = 'Y'
AND ils.stock_on_hand > 0
AND ((im.pack_ind = 'Y'
AND NVL(:from_loc_type,'W') = 'W'
AND NVL(il.receive_as_type,'P') = 'P')
OR im.pack_ind = 'N')
ORDER BY 1

■ SystemOptionsVO

For checking the indicator of dep_level_transfers to enable the Department LOV.

SELECT SystemOptions.dept_level_transfers FROM SYSTEM_OPTIONS SystemOptions

■ TransferItemsVO

This view object is populated with rows programmatically, not based on a query,
from the ItemVO.

Technical design

Item Transfer 5-5

User Interface Design
The following figure displays the user interface for the Micro Application:

Figure 5–1 User Interface for the Item Transfer Micro Application

Passing Input Parameters to the Application
The Item Transfer Micro Application is used to create a transfer of items between two
specified locations. The application takes Source Location, Destination Location, and
Item as parameters. The user can pass these parameters in any combination to the Item
Transfer Micro Application.

The application that calls the Micro Application can pass values for any of the
following parameters:

■ sourceLocationType and sourceLocation – Both values need to be passed together.
sourceLocationType takes S or W as input values and sourceLocation takes the
Location ID as the input value.

■ destinationLocationType and destinationLocation – Both values need to be passed
together. destinationLocationType takes S or W as input values and
destinationLocation takes the Location ID as the input value.

■ Item – takes Item ID as the input value.

The application must use the exact names, as specified above, to pass the parameter
values. None of the parameters are mandatory. To pass a value for source location, the
calling application has to assign values for both sourceLocationType and

Note: It is assumed that the values passed for the parameters are
correct. There is no explicit check in the application to validate the
values passed.

Technical design

5-6 Oracle Retail Workspace Retail Library Reference Guide

sourceLocation variables. The same process must be followed for the destination
location. If no values are passed, application works like a stand-alone application.
Limitation of the functionality is that only one item can be passed as parameter to the
application, even though a transfer can contain multiple items.

Validations
The following validations are implemented in the application:

■ Values for source location, destination location, item, and transfer quantity are
mandatory

■ Transfer quantity is less than or equal to the available quantity.

■ Only a positive integer value can be entered for transfer quantity.

■ Source and destination locations should lie in the same transfer zone, if the
locations are stores.

■ Transferred item should have stock on hand greater than zero at a location for that
location to be selected as source for the transfer.

■ Only valid items that belong to the selected source location can be added to the
transfer.

■ All validations imposed by RMS will be executed on the RMS side.

Calling the RMS API
Once the transfer number generated by the NEXT_TRANSFER_NUMBER procedure,
the application uses it to build the required type of the RIB object (RIB_XTsfDesc_REC)
and call the RMS API passing the RIB object as the parameter when the Create Order
button is pressed.

Signature of the API used to create the order is as follows:

RMSSUB_XTSF.CONSUME(O_STATUS_CODE,
 O_ERROR_MESSAGE,
 L_RIB_XTSFDESC_REC,
 I_MESSAGE_TYPE);

Where,

■ O_STATUS_CODE is an IN OUT parameter which holds the status of the
transaction.

– O_STATUS_CODE = 'S', indicates that the transaction was successful.

– O_STATUS_CODE = 'E', indicates that an error had occurred during the
transaction.

■ O_ERROR_MESSAGE is an IN OUT parameter that holds the error message.

■ L_RIB_XTSFDESC_REC is an IN parameter that holds that RIB Object for item
transfer.

■ I_MESSAGE_TYPE is the message type. To create a transfer, message type to be
passed is 'xtsfcre'.

■ Display the status of the transaction after the completion of the operation.

Additional Customizations

Item Transfer 5-7

Using the Application
To use the Item Transfer Micro Application:

1. In the Source Location field, select the source location from the List of Values
(LOV).

2. In the Destination Location field, select the destination location from the LOV.

3. Click the Plus sign to select the items you want to transfer.

All other item details automatically appear on the screen when items are selected.

4. In the Transfer Qty. field, enter the transfer quantity for each of the items selected.

5. Review the transfer details, and then click the Transfer button.

6. Application calls the RMS API and executes the transaction. Status of the
transaction is printed at the bottom of the page.

To delete the items from the table, select the items, and click the Cross Mark
button.

In case you want to cancel the operation before clicking the Transfer button, click
the Cancel button. It resets the page.

Limitations
The following limitations apply to this Micro Application:

■ Only simple case of item transfer is handled.

■ Only stores or warehouses can be entered for source and destination locations.

■ Use of external finishers or internal finishers is not supported.

■ The application supports limited functionality that can be achieved using the
parameters on the user interface.

■ The application does not check the privileges of the user to create transfer.

■ Security is not implemented in the application.

Additional Customizations
You may need to implement any additional customization that is not handled through
the RMS API, but required by the business process.

Additional Customizations

5-8 Oracle Retail Workspace Retail Library Reference Guide

Update Vendor 6-1

6
Update Vendor

The Update Vendor Micro Application is used to access the supplier contact
information and modify them easily. The Micro Application takes the supplier number
as input and displays the contact information of that supplier. The supplier
information is fetched from the RMS database. Once the supplier contact information
on the page are modified and submitted, values are committed to the corresponding
tables in the RMS database.

This chapter provides information you need to start using or implementing this Micro
Application. It includes the following sections:

■ Functional Design

■ Technical design

■ Using the Application

■ Limitations

■ Additional Customizations

Functional Design
The Update Vendor Micro Application enables the users to update the contact
information of a supplier without accessing the RMS application. It communicates
synchronously with RMS through the external APIs exposed by the RMS application.
It sends the updated supplier information through the API. The API in RMS does
validations and then updates the supplier database tables with the new values in the
RMS database.

This solution does not modify any code in RMS. It uses the existing APIs to perform
the operations. The Update Vendor Micro Application takes the order number entered
by the user and passes them as arguments to the external API.

The RMS application then processes the message sent by the application and updates
the supplier information in the RMS database tables. The processing done on the RMS

Note: API does not perform all the validations or operations as they
were performed when item is created using the RMS application. You
may need to make the necessary changes to meet your business
requirements.

Note: The external APIs provide a limited functionality.

Technical design

6-2 Oracle Retail Workspace Retail Library Reference Guide

side is not in scope of this solution. You may need to modify the RMS processes to
achieve the desired results.

Technical design
This section highlights the technical design of the Create Purchase Order Micro
Application. It also provides an overview of the components that were set up for the
Micro Application. It includes the following topics:

■ Overview

■ Generating Java Objects for RIB Types

■ Creating Business Components

■ User Interface Design

■ Passing Input Parameters to the Application

■ Validations

■ Calling the RMS API

Overview
The Update Vendor Micro Application provides an user interface where the vendor
number is captured to update the contact information. The application then calls the
RMS APIs to update the contact information of the selected vendor. However, the RMS
APIs require the RIB objects as input parameters. Based on the RIB-Type Objects, the
application builds the corresponding Java objects and populates the objects, with the
information gathered from user interface and RMS database. A JDBC call is then made
to the RMS API, passing the Java object as a parameter. The RMS API is then executed
on the RMS database schema, which updates the corresponding tables in the database.

Generating Java Objects for RIB Types
To update the vendor information, the RIB_SupplierColDesc_REC RIB object is passed
to the RMS X API. The Java object for RIB_SupplierColRef_REC object contains a
collection of RIB_SupplierDesc_REC object. The RIB_SupplierDesc_REC object further
contains the collection of RIB_SupAttr_REC object.

The application uses the RIB_SupplierColRef_REC RIB object to create the Java objects
for this RIB object and all child objects. This automatically generate the relevant Java
objects for the RIB_SupplierDesc_REC RIB-Type object and RIB_SupAttr_REC.

Structure of RIB_SupplierColDesc_REC RIB Object:

SupplierDesc_TBL "RIB_SupplierDesc_TBL ",
ExtOfSupplierColDesc_TBL " RIB_ExtOfSupplierColDesc_TBL "

Structure of RIB_SupplierDesc_REC RIB Object:

supplier_id number(10),
SupAttr "RIB_SupAttr_REC",
SupSite_TBL "RIB_SupSite_TBL",
ExtOfSupplierDesc_TBL "RIB_ExtOfSupplierDesc_TBL"

Structure of RIB_SupAttr_REC RIB Object:

sup_name varchar2(240),
sup_name_secondary varchar2(240),
contact_name varchar2(120),

Technical design

Update Vendor 6-3

contact_phone varchar2(20),
contact_fax varchar2(20),
contact_pager varchar2(20),
sup_status varchar2(1),
qc_ind varchar2(1),
qc_pct number(12,4),
qc_freq varchar2(2),
vc_ind varchar2(1),
vc_pct number(12,4),
vc_freq number(2),
currency_code varchar2(3),
lang number(6),
terms varchar2(15),
freight_terms varchar2(30),
ret_allow_ind varchar2(1),
ret_auth_req varchar2(1),
ret_min_dol_amt number(20,4),
ret_courier varchar2(250),
handling_pct number(12,4),
edi_po_ind varchar2(1),
edi_po_chg varchar2(1),
edi_po_confirm varchar2(1),
edi_asn varchar2(1),
edi_sales_rpt_freq varchar2(1),
edi_supp_available_ind varchar2(1),
edi_contract_ind varchar2(1),
edi_invc_ind varchar2(1),
edi_channel_ind number(4),
cost_chg_pct_var number(12,4),
cost_chg_amt_var number(20,4),
replen_approval_ind varchar2(1),
ship_method varchar2(6),
payment_method varchar2(6),
contact_telex varchar2(20),
contact_email varchar2(100),
settlement_code varchar2(1),
pre_mark_ind varchar2(1),
auto_appr_invc_ind varchar2(1),
dbt_memo_code varchar2(1),
freight_charge_ind varchar2(1),
auto_appr_dbt_memo_ind varchar2(1),
prepay_invc_ind varchar2(1),
backorder_ind varchar2(1),
vat_region number(4),
inv_mgmt_lvl varchar2(6),
service_perf_req_ind varchar2(1),
invc_pay_loc varchar2(6),
invc_receive_loc varchar2(6),
addinvc_gross_net varchar2(6),
delivery_policy varchar2(6),
comment_desc varchar2(2000),
default_item_lead_time number(4),
duns_number varchar2(9),
duns_loc varchar2(4),
bracket_costing_ind varchar2(1),
vmi_order_status varchar2(6),
dsd_ind varchar2(1),
scale_aip_orders varchar2(1),
sup_qty_level varchar2(6),
ExtOfSupAttr_TBL "RIB_ExtOfSupAttr_TBL"

Technical design

6-4 Oracle Retail Workspace Retail Library Reference Guide

Creating Business Components
The following SQL-based business components have been used to create the Micro
Application:

■ SupplierVO

To populate the LOV (List of values) object for list of suppliers available:

select supplier, sup_name ,concat(concat(supplier, '-'), sup_name) AS
SUPPLIER_SEARCH from sups

■ SupplierDetailsVO

To populate the contact details of the selected supplier:

Select SUPPLIER,
 SUP_NAME,
 CONTACT_NAME,
 CONTACT_PHONE,
 CONTACT_EMAIL,
 COMMENT_DESC,
 TERMS,
 freight_terms,
 currency_code
From SUPS
Where supplier=:supplierID

User Interface Design
The following figure displays the user interface for the Micro Application:

Figure 6–1 User Interface for the Update Vendor Micro Application

Passing Input Parameters to the Application
The Update Vendor Micro Application is used to modify the contact details of an
vendor. The application takes the Vendor Number as the parameter.

Note: It is assumed that the values passed for the parameters are
correct. There is no explicit check in the application to validate the
values passed.

Technical design

Update Vendor 6-5

The application that calls the Micro Application can pass values for any of the
following parameters:

■ vendorId – takes Vendor ID as the input value.

The application must use the exact name, as specified above, to pass the parameter
value. Vendor Number parameter is not mandatory. If no values are passed,
application works like a stand-alone application.

If the vendor number is passed to the application, the application page appears with
the details of the vendor. Users can then modify details and click the Update button to
commit the changes.

Validations
The following validations are implemented in the application:

■ Selecting Supplier is mandatory.

■ It is not possible to enter an invalid Supplier number and execute the operation.

■ Contact Name and Contact Phone are mandatory and these cannot be empty or
contain only spaces.

■ All validations imposed by RMS will be executed on the RMS side.

Calling the RMS API
Once the supplier number selected or entered by the user is captured, the application
uses it to build the required type of the RIB object (RIB_SupplierColRef_REC) and call
the RMS API passing the RIB object as the parameter when the Update button is
pressed.

Signature of the API used to create the order is as follows:

RMSAIASUB_SUPPLIER.CONSUME(O_STATUS_CODE,
 O_ERROR_MESSAGE,
 O_OUTPUTOBJECT,
 I_INPUTOBJECT,
 I_INPUTOBJECT_TYPE);

Where,

■ O_STATUS_CODE is an IN OUT parameter which holds the status of the
transaction.

– O_STATUS_CODE = 'S', indicates that the transaction was successful.

– O_STATUS_CODE = 'E', indicates that an error had occurred during the
transaction.

■ O_ERROR_MESSAGE is an IN OUT parameter that holds the error message.

■ O_OUTPUTOBJECT is an IN OUT parameter that holds the RIB Object of type
RIB_SupplierColRef_REC for additional information to be passed.

■ I_INPUTOBJECT is an IN parameter that holds that RIB Object RIB_
SupplierColDesc_REC containing selected vendor details.

■ I_INPUTOBJECT_TYPE is an IN parameter. It is meant to carry a message type to
be passed to the RIB object to indicate the operation. To Update the Vendor
information, message type has to be passed as 'suppmod' (Message modifies the
vendor information).

Using the Application

6-6 Oracle Retail Workspace Retail Library Reference Guide

The application uses the O_STATUS_CODE returned value to display the status of the
transaction after the completion of the operation.

Using the Application
To use the Update Vendor Micro Application:

1. In the Supplier field, select the supplier from the List of Values (LOV).
Alternatively, you can enter the supplier number in the Supplier field.

All other details of the supplier appear on the screen automatically.

2. Review the supplier contact details and then click the Update button.

3. The application calls the RMS API and executes the transaction. Status of the
transaction is printed at the bottom of the page.

In case you want to cancel the operation before clicking Update button, click the
Cancel button. It resets the page without making any changes to the selected Supplier.

Limitations
The following limitations apply to this Micro Application:

■ The modified contact details will only be committed to the RMS database and they
do not flow to any other applications that hold supplier information.

■ The application does not check the privileges of the user to update the supplier
details.

■ Security is not implemented in the application.

■ The application only sends the supplier modify message to RMS with the relevant
changed contact details. Processing of the message in RMS is not in the scope of
this application.

Additional Customizations
You may need to implement any additional customization that is not handled through
the RMS API, but required by the business process.

Bulk Cancellation/Approval of Purchase Orders 7-1

7
Bulk Cancellation/Approval of Purchase

Orders

Cancelling items in a purchase order requires the users to log on to the RMS
application, navigate to the Edit Order screen, select the order number, navigate to the
Options menu, click Cancel All Items option, confirm the operation, select the reason
for cancellation, and then exit from the screen. Similarly, approving items in a
purchase order requires the users to log on to the RMS application, navigate to the Edit
Order screen, select the order number, navigate to the Options menu, and click Submit.
Once submitted, click the Approve option from the Options menu, confirm the
operation, and then exit from the screen. This is a time consuming process and the
RMS application does not provide an option to cancel or approve multiple orders at
the same time.

The Bulk Approval/Cancellation of Orders Micro Application is a simple and efficient
application that simplifies the process of cancelling or approving an order and
provides the users with an option to approve or cancel multiple orders at the same
time. It interacts with the RMS database to fetch the required data and commit the
changes made by the user. This Micro Application is designed to cancel or approve
multiple orders that are eligible for cancellation or approval. Users can launch the
Micro Application from the relevant workspace, select the relevant action (approval or
cancellation), select the orders that need to be cancelled or approved, and then click
the Cancel or Approve button on the page.

This chapter provides information you need to start using or implementing this Micro
Application. It includes the following sections:

■ Functional Design

■ Technical Design

■ Application Usage

■ Limitations

■ Additional Customizations

Functional Design

7-2 Oracle Retail Workspace Retail Library Reference Guide

Functional Design
The Bulk Approval/Cancellation of Orders Micro Application enables users to
approve or cancel multiple purchase orders at the same time without logging on to the
RMS application. It communicates synchronously with RMS through the external APIs
exposed by the RMS application.

It sends the order approval or cancellation information through the API. The RMS API
performs the validations and then updates the order with the relevant status based on
the action taken (approval or cancellation) in the RMS database.

This solution does not modify any code in RMS. It uses the existing APIs to perform
the operations. The Micro Application takes the action (approval/cancellation) and the
order numbers selected by the user, and passes it as argument to the external API with
Cancelled (C) or Approved (A) status based on the action selected.

The RMS application then processes the message sent by the application and updates
the order status in the RMS database tables. The processing done on the RMS side is
not in scope of this solution. You may need to modify the RMS processes to achieve the
desired results.

Technical Design
This section highlights the technical design of the Bulk Approval/Cancellation
Purchase Order Micro Application. It also provides an overview of the components
that were set up for the Micro Application. It includes the following topics:

■ Overview

■ Generating Java Objects for RIB Types

■ Creating Business Components

■ User Interface Design

■ Validations

■ Calling the RMS API

Overview
The Bulk Approval/Cancellation of Purchase Order Micro Application provides a user
interface where the user's choice of action (Approve or Cancel) is captured first. Based
on the action, the table gets populated with the relevant orders. The application then
calls the RMS API to approve or cancel the selected orders. However, the RMS APIs
require the RIB objects as input parameters. Based on the RIB-Type Objects,
Application builds the corresponding Java objects and populates the objects, with the
information gathered from the user interface and RMS database. A JDBC call is then
made to the RMS API, passing the Java object as a parameter. The RMS API is then

Note: The API does not perform all the validations/operations as
they were performed when the approval or cancellation is done using
the RMS application. Ensure that you make the necessary changes to
the solution to meet your business requirements.

Note: The external APIs provide a limited functionality.

Technical Design

Bulk Cancellation/Approval of Purchase Orders 7-3

executed on the RMS database schema, which updates the corresponding tables in the
database.

Generating Java Objects for RIB Types
To approve or cancel a purchase order, the RIB_XOrderDesc_REC RIB object is passed
to the RMS X API. This object contains a collection of RIB_XOrderDtl_REC objects.

The application uses the RIB_XOrderDesc_REC RIB object to create the Java objects.
This automatically generates the relevant Java objects for the RIB_XOrderDtl_REC
object.

Structure of RIB_XOrderDesc_REC:

order_no varchar2(10),
supplier varchar2(10),
 currency_code varchar2(3),
 terms varchar2(15),
 not_before_date date,
 not_after_date date,
 otb_eow_date date,
 dept number(4),
 status varchar2(1),
 exchange_rate number(20,10),
 include_on_ord_ind varchar2(1),
 written_date date,
 XOrderDtl_TBL "RIB_XOrderDtl_TBL",
 orig_ind varchar2(1),
 edi_po_ind varchar2(1),
 pre_mark_ind varchar2(1),
 user_id varchar2(30),
 comment_desc varchar2(2000),
 ExtOfXOrderDesc_TBL "RIB_ExtOfXOrderDesc_TBL"

Structure of RIB_XOrderDtl_REC:

item varchar2(25),
location number(10),
 unit_cost number(20,4),
 ref_item varchar2(25),
 origin_country_id varchar2(3),
 supp_pack_size number(12,4),
 qty_ordered number(12,4),
 location_type varchar2(1),
 cancel_ind varchar2(1),
 reinstate_ind varchar2(1),
 ExtOfXOrderDtl_TBL "RIB_ExtOfXOrderDtl_TBL"

Technical Design

7-4 Oracle Retail Workspace Retail Library Reference Guide

Creating Business Components
The following SQL-based business components have been used to create the Micro
Application:

■ OrdersVO

To populate the table with the orders eligible for cancellation or approval:

SELECT DISTINCT oh.order_no, oh.supplier,s.sup_name,
concat(concat(oh.order_no,'-'),concat(concat(oh.supplier, '-'), s.sup_name))
AS ORDER_SEARCH
FROM ordhead oh,sups s
WHERE status = :statusID and oh.supplier=s.supplier
ORDER BY 1

■ OrderDetailsVO

To populate the details of the selected order:

SELECT DISTINCT DECODE(ol.loc_type,'S','Store','W','Warehouse')
AS location_Type,
 oh.supplier | |' - ' || s.sup_name AS supplier_name,
 oh.dept ,
 oh.terms ,
 oh.terms || ' - ' ||th.terms_desc AS terms_desc,
 oh.status ,
 DECODE(oh.status,'A','Approved','W','Worksheet') AS status_desc,
 ol.order_no ,
 ol.item ,
 im.item_desc ,
 ol.qty_ordered ,
 ol.location ,
 DECODE(ol.loc_type,'S',store.store_name,'W',wh.wh_name) AS location_name ,
 ol.loc_type
 FROM store store,
 wh wh ,
 ordloc ol ,
 item_master im,
 ordhead oh,
 sups s ,
 terms_head th
 WHERE ol.order_no=:order_no
 and ol.order_no = oh.order_no
AND ol.item =im.item
AND s.supplier = oh.supplier
AND oh.terms =th.terms
AND (store.store=ol.location
OR wh.wh =ol.location)
ORDER BY ol.item

Technical Design

Bulk Cancellation/Approval of Purchase Orders 7-5

User Interface Design
The following figure displays the user interface that appears when users select the
Approve Order option:

Figure 7–1 User Interface for the Approve Order Option

The following figure displays the user interface that appears when users select the
Cancel Order option:

Figure 7–2 User Interface for the Cancel Order Option

Application Usage

7-6 Oracle Retail Workspace Retail Library Reference Guide

Validations
The following validations are implemented in the application:

■ Only the orders in the Approved status can be cancelled.

■ Only the orders in the Worksheet status are eligible for the approval operation.

■ All validations imposed by RMS will be executed on the RMS side.

Calling the RMS API
Once the order numbers selected by the user is captured, the application uses it to
build the required type of the RIB object (RIB_XOrderDesc_REC) and call the RMS API
passing the RIB object as the parameter when the Cancel Order or Approve Order
button is pressed.

Signature of the API used to create the order is as follows:

RMSSUB_XORDER.CONSUME(O_STATUS_CODE,
 O_ERROR_MESSAGE,
 L_RIB_XORDERDESC_REC,
 I_MESSAGE_TYPE);

Where,

■ O_STATUS_CODE is an IN OUT parameter which holds the status of the
transaction.

– O_STATUS_CODE = 'S', indicates that the transaction was successful.

– O_STATUS_CODE = 'E', indicates that an error had occurred during the
transaction.

■ O_ERROR_MESSAGE is an IN OUT parameter that holds the error message.

■ L_RIB_XORDERDESC_REC is an IN parameter that holds that RIB Object for
purchase order.

■ I_MESSAGE_TYPE is the message type. To approve or cancel a purchase order,
message type to be passed is 'xordermod' (Message sets the status of the order to
cancelled/approved).

■ Display the status of the transaction after the completion of the operation.

Application Usage
To use the Bulk Approval/Cancellation of Purchase Orders Micro Application:

1. Under Action, select one of the following options:

■ Approve Order

■ Cancel Order

Based on the option you select, the eligible orders appear in the table below.

Additional Customizations

Bulk Cancellation/Approval of Purchase Orders 7-7

Figure 7–3 Bulk Approval/Cancellation of Purchase Orders User Interface

2. Review the order details by clicking the Plus sign (+).

3. Select the orders you want to approve or cancel.

4. Based on the option you selected in Step 1, the Approve Order or Cancel Order
button appears. Select the Approve Order or Cancel Order button.

5. Application calls the RMS API and executes the transaction. Status of the
transaction is printed in a pop up for the selected orders.

Limitations
The following limitations apply to this Micro Application:

■ The application does not check the privileges of the user to cancel orders.

■ Security is not implemented in the application.

■ The application only sends an order modify message to RMS with
Cancelled/Approved status. Processing of the message in RMS is not in the scope
of this application.

Additional Customizations
To replicate the Modify Order functionality in RMS, some additional customizations
are recommended for the Micro Application.

Allocations, shipments, and deals associated with the order being approved or
cancelled are not handled when the Micro Application is used. It is recommended that
you call the relevant package that handles all these transactions in the RMS API.

You may need to implement any additional customization that is not handled through
the RMS API, but required by the business process.

Additional Customizations

7-8 Oracle Retail Workspace Retail Library Reference Guide

8

Maps 8-1

8Maps

In the Oracle Retail Merchandising System (RMS) application, data is displayed in a
plain Oracle Forms-based format. It is represented in the same format without
considering the type of data, location the data corresponds to, or how critical the data
is. The Maps Micro Application provides users with a rich interface that will help
them in managing stores located around the world by a simple click of a button. The
Maps Micro Application is designed to provide a sense of business intelligence to the
user by highlighting the data based on the location it corresponds to, how crucial it is,
and what it represents. This in turn will help users in managing the stores better.

This chapter provides information you need to start using or implementing this Micro
Application. It includes the following sections:

■ Functional Design

■ Technical Design

■ Using the Application

■ Limitations

■ Additional Customizations

Functional Design
The Maps Micro Application provides a rich interface to the user and provides ways to
highlight the data based on its type, value, and so on. It also provides means to take
the right action on the right data at the right location required for the business with a
simple click of a button.

The features of this Micro application are based on how you customize the application.
You can customize it to include the features that best suit your business need. For
example, a sales company may customize the application to manage the sales of items
around the world, whereas another company that is in charge of monitoring the
inventory may be interested in managing the stock of items located around the world.

The Maps Micro Application uses the concept of themes to display business data over
a geographical map in a form that is most suitable to the business. This gives users a
quick insight of the data relevant to the location. Users can customize the theme for the
map to suit their business needs. Customizations include setting the data to be
displayed as per the business requirements, and eventually facilitate the business
process. As part of this Micro application, a base application framework is provided
that is capable of accepting user-defined themes and provide the features mentioned
above out of the box. It also includes several sample themes.

Technical Design

8-2 Oracle Retail Workspace Retail Library Reference Guide

Technical Design
This section highlights the technical design of the Maps Micro Application. It also
provides an overview of the components that were set up for the Micro Application. It
includes the following topics:

Components of the Sample Base Application
The sample base application already includes the functionality of displaying a
geographical map using a pre-defined configuration file. The sample base application
enables you to focus on creating new themes without having to set up a new
application in Oracle JDeveloper, new project, or processing the configuration file for
new themes. To access the sample base application:

■ In Oracle JDeveloper, open the Workspace Retail Library package
(MicroApplications.jws) you downloaded before. For more information, see
Accessing the Workspace Retail Library. The sample base application opens in
Oracle JDeveloper.

The following figure illustrates the basic application folder structure (all folders
expanded) of the sample application in the application explorer:

Figure 8–1 Basic Application Folder Structure of the Sample Application

The following table describes the important files and folders in the folder structure
illustrated above. Any file or folder not included in the following table are
automatically generated by Oracle JDeveloper:

Technical Design

Maps 8-3

RMS Database Table for the Maps Micro Application
The Point Theme in the Maps Micro Application requires the longitude and latitude of
every retail store and warehouse. The Micro Application does not support the
Geo-coder service/point theme. To store this information, you will need to create a
new database table in the RMS database. This section provides the DDL used for the
table and the relevant sample data. Appropriate longitude and latitude data must be
stored for every store and warehouses.

DDL for the Database Table
This section provides the following SQL statement used to create the database table
that stores the latitude and longitude information of every store and warehouse:

Folder Name File Name Usage of the File/Folder

Am MapData.xml Application Module exposing the view
objects as business components.

Config Jaxb.properties
MapConfig.java
mapConfig.xsd
MapConfigReader.java
ObjectFactory.java
package-info.java

Files generated by JaxB API to read and
process main configuration file
(sampleMapConfig.xml).

Managed MapManager.java
InContextAppDispatcher.java
MapModelDispatcher.java

Managed bean and associated helper
classes: Having the logic/algorithm to
prepare themes dynamically and to
implements the change listeners.

Views ItemSales.xml Sample theme provided in the base
application for reference. This theme
shows the total sales of particular item
at a store location on a map.

Views ItemTransactions.xml Sample theme provided in the base
application for reference. This theme
shows the item transactions of a
particular item at a store location on a
map.

Resources/config mapConfig.xml Main configuration file for the themes
related data.

Web Content Map.jsff JSF Page Fragment having Map control.

Web Content testMap.JSF Test JSF page incorporating Map.jsff JSF
page fragment.

Note: The RMS database contains an ADDR database table that
allows to capture the store and warehouse addresses. The map can
then be set to use a Geo-Coder service to convert an address to the
corresponding latitude-longitude pair. However, this approach
requires a Geo-coder point theme to be supported in the map. At
present Geo-Coder point theme is not supported.

Note: The following SQL statement includes placeholders for the
database user and table space name (highlighted in between <>).
Ensure that you replace the placeholders with relevant values before
running this statement on your database instance.

Technical Design

8-4 Oracle Retail Workspace Retail Library Reference Guide

CREATE TABLE "<Database User>"."STORE_GEOMETRY"
 (
 "STORE" NUMBER(10,0) NOT NULL ENABLE,
 "STORE_TYPE" VARCHAR2(2 BYTE) NOT NULL ENABLE,
 "STORE_NAME" VARCHAR2(150 BYTE),
 "LATITUDE" NUMBER(20,10),
 "LOGITUDE" NUMBER(20,10),
 CONSTRAINT "STORE_GEOMETRY_PK" PRIMARY KEY ("STORE", "STORE_TYPE") USING INDEX
 PCTFREE 10 INITRANS 2 MAXTRANS 255 COMPUTE STATISTICS STORAGE(INITIAL 65536
 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0 FREELISTS 1
 FREELIST GROUPS 1 BUFFER_POOL DEFAULT) TABLESPACE "<Table Space Name>" ENABLE
)
 PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING STORAGE
 (
 INITIAL 65536 NEXT 1048576 MINEXTENTS 1 MAXEXTENTS 2147483645 PCTINCREASE 0
 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT
)
 TABLESPACE "<Table Space Name>" ;

Sample Data for the Database Table
The following table provides the sample data for the database table:

The table includes the following columns:

■ STORE – This column contains the identification number of the stores as present in
the RMS schema in the Stores table.

■ STORE _TYPE – This column specifies the store type, store (S) or warehouse (W).

■ STORE_NAME – This column specifies the name or location of the store.

■ LATITUDE – This column specifies latitude where the store is located.

■ LOGITUDE – This column specifies the longitude where the store is located.

Run the Micro Application
To run the Micro Application in a Web browser:

1. Create a JSPX page.

2. Drag and drop the task flow (map-flow) created for the Maps Micro Application.

3. Run the page you created by selecting the Run option from the right-click menu.
This action compiles the application and the relevant dependent projects, starts the
default WebLogic Server domain, and deploys the application. It will also launch
the application in the default Web browser for viewing and testing purposes.

The Web browser displays the geographical map with the two themes already present.
Stores will be represented on the map by the colored pegs/pins/markings. Users can

STORE STORE_TYPE STORE_NAME LATITUDE LOGITUDE

3212 S Ottawa 45.4235 -75.6979

1131 S Jacksonville 30.3322 -81.6557

5111 S Sydney* 27.9634 -82.2073

5141 S Melbourne 28.0836 -80.6081

Technical Design

Maps 8-5

click on the pins to view the item related information. Users can right-click on the pins
to view the list of applications to be opened.

The following figures illustrate the application screens:

Figure 8–2 Application Screen When You Run the Application

Figure 8–3 Item Related Information that Appears When You Click a Pin

Using the Application

8-6 Oracle Retail Workspace Retail Library Reference Guide

Figure 8–4 List of Applications that Appear When You Right-click on a Pin

Figure 8–5 Launching the Transfer Item Micro Application

Validations
No Validations are done as part of this Micro Application. This application is used to
launch other Micro Applications which may perform their own validation.

Using the Application
To use the Maps Micro Application:

1. In the map, click on any of the location to view the stock of items at that location.

2. Right-click on the location to view the list of Micro Applications that can be
launched.

3. Select the relevant Micro Application. The Micro Application window appears.

4. Enter relevant details in the Micro Application.

Additional Customizations

Maps 8-7

The application then calls the RMS API of the corresponding application and
executes the transaction. Status of the transaction appears in a pop-up window for
the application.

Limitations
The following limitations apply to this Micro Application:

■ The application does not check the privileges of the user to cancel orders.

■ Security is not implemented in the application.

■ The application can only perform the functionality that is available via the external
API of the RMS application, which may not necessarily be the same when
compared to the actual functionality in the RMS application.

Additional Customizations
You can customize the Maps Micro Application by adding new themes. This section
describes how you can create and add a new theme. Creating a new theme involves
the following steps:

1. Creating a View Object

2. Exposing the View Object for the User Interface

3. Adding the Theme to the Base Map

4. Setting Up the Theme Using a Configuration File

Overview
Currently the Maps Micro Application supports the following types of themes:

■ Bar Graph Theme – In this type of theme, the map includes a bar graph at points
that represent data values associated with those locations. For example, this tag
may be used to display a bar graph at warehouse locations to show inventory
levels at each warehouse. Or, you can build a map that includes a bar chart
indicating the sales figure for each state.

Figure 8–6 Bar Graph Theme

■ Pie Graph Theme – In this type of theme, the map includes a pie graph for each of
the region in the underlying data as shown in figure below. The Pie Graph Theme
tag is used to provide the ability to show statistics related to given locations on a
map. This theme displays a pie graph at points that represent data values
associated with those locations. For example, this theme may be used to display a
pie graph at store locations indicating the sales values for a number of products at
each store.

Note: This is not the only usage of the application, you may
customize the application to match your specific business needs.

Additional Customizations

8-8 Oracle Retail Workspace Retail Library Reference Guide

Figure 8–7 Pie Graph Theme

■ Point Theme – In this type of theme, the map includes an image or an HTML tag
for each point in the underlying data as shown in figure below. The Point Theme
provides the ability to specify different behaviors when the users click or hover the
mouse pointer over a point on the map.

Figure 8–8 Point Theme

Creating a View Object
In the package oracle.retail.microapps.map.view, create a read-only view object using the
following SQL statement:

SELECT ils.item, ils.stock_on_hand, ils.loc, ils.loc_type, s.store_name,
sg.latitude, sg.logitude
FROM item_loc_soh ils, store_geometry sg, store s
WHERE s.store = ils.loc and s.store = sg.store
 and ils.item = :itemParam

Bind Variables
Name: ItemParam

Value: adf.context.viewScope.itemID

The variable itemID is present as an input parameter to the Map task flow. If the users
of the task flow set this parameter, it will be available to the model layer in the view
scope. It can then be used in user queries.

The view object must have a unique attribute defined as Key. This attribute will be
used in the theme to uniquely identify the data point user clicks on.

Add the view object to the application module MapData in the package
oracle.retail.microapps.map.am. Now this view object will be available for use in the user
interface through DataControl.

Exposing the View Object for the User Interface
To expose the view object for the user interface:

1. From the oracle.retail.microapps.map.pageDefs package, open the MapPageDef
page definition file.

Additional Customizations

Maps 8-9

2. In the Executable section, create a new iterator. Select data collection as the view
object just created. Take note of the iterator ID that is created. This iterator ID will
be used while configuring map configuration file.

Adding the Theme to the Base Map
To add a theme to the base map:

1. In Oracle JDeveloper, open the Map.jsff JSF page fragment from the web content
folder.

2. Click the Source tab.

3. Locate the base map tag <dvt:map id="m1" …>.

4. Paste the following code inside the dvt:map tag as its child:

<dvt:mapPointTheme id="%ID%"
 value="#{pageFlowScope.MapManager.themesMap['%ID%']}"
 rightClickBehavior="Popup"
 builtInImage="PushPin_Red"
 rendered="#{pageFlowScope.MapManager.renderTheme['%ID%']}"
 clickListener="#{pageFlowScope.MapManager.clickListener}"/>

Setting Up the Theme Using a Configuration File
This framework enables you to add your own theme that represents your business
data. While details for creating a new theme is covered in the sections above, this
section provides details for the configuration file that you must use to set up the
details of your theme. For the theme configured above, this section also provides a
sample XML snippet.

The following table describes the parameters to be set in the configuration file:

Note: Ensure that you replace the placeholder %ID% by an unique
identification code. This will be used to configure the theme
properties in the Map configuration file. You may choose a different
builtInImage attribute for each theme using the Oracle JDeveloper’s
Property Inspector.

Sl No Element Parent Element Attributes Element Description

1 MapConfig – xmlns - used to avoid element
name conflicts

–

2 StartingXCoordinate MapConfig – X co-ordinate of the map that
must be displayed when the
map is rendered initially.

3 StartingYCoordinate MapConfig – Y co-ordinate of the map that
must be displayed when the
map is rendered initially.

4 ZoomLevel MapConfig – Initial zoom level of the map.

5 Themes MapConfig – –

Additional Customizations

8-10 Oracle Retail Workspace Retail Library Reference Guide

6 Theme Themes Type - Valid values are POINT_
THEME, BAR_THEME, and
PIE_THEME. This refers to the
type of theme configured on
the base map.

Id - This is used to identify a
specific theme. No two themes
can have the same ID.

Name - This specifies a name to
the theme. Used for display in
the user interface.

Rendered - This can be set to
true or false, based on which
the theme will be displayed or
hidden when the map is
initially rendered.

A theme is used to provide the
ability to show statistics related
to given locations on a map.

9 IteratorName Theme – The iterator on which the
theme is based.This must be of
the same name as specified in
page definition file for Map.jsff.
It is used to iterate over the
data in the database that is
retrieved via a view object.

10 SpatialDataMapping Theme – This specifies the geometrical
position where the data points
must be displayed in any
theme.

11 Latitude SpatialDataMapping – This specifies the attribute in
the view object providing
latitude for the data point.

12 Longitude SpatialDataMapping – This specifies the attribute in
the view object providing
longitude for the data point.

13 Label SpatialDataMapping – This specifies the attribute in
the view object indicating a
name or label of the data point.

– Key SpatialDataMapping – This specifies the attribute in
the view object marked as key
attribute.

14 BusinessDataMapping Theme – This specifies the data to be
displayed at the data point.

15 Data BusinessDataMapping IterAttr - This specifies the
attribute in the view object
providing the numeric data for
the data point.

Label - Label for the data point.

–

16 LaunchableApps Theme – It is used to specify the
applications that can be
launched from this theme.
These applications are
packaged along with the Maps
application, along with the
corresponding task flow ids
mentioned in the
InContextAppDispatcher.java
file.

17 App LaunchableApps Name - Name of the
application that can be
launched.

Id - Identification number of
the application that can be
launched.

This specifies the details of
application that can be
launched from this theme.

Sl No Element Parent Element Attributes Element Description

Additional Customizations

Maps 8-11

For the Point theme (configured in the sections above) to use the services of the
framework, enter the following code as a child element to the themes XML element in
the mapConfig.xml file (available in the resource folder):

<Theme type="POINT_THEME" id="IVT_1" name="Inventory Theme" rendered="true">
 <IteratorName>InventoryLevel1Iterator</IteratorName>
 <SpatialDataMapping>
 <Latitude>Latitude</Latitude>
 <Longitude>Logitude</Longitude>
 <Label>StoreName</Label>
 <Key>Loc</Key>
 </SpatialDataMapping>
 <BusinessDataMapping>
 <Data iterAttr="StockOnHand" label="Stock in hand"/>
 </BusinessDataMapping>
 <LaunchableApps>
 <App name="Create new Item" id="CREATE_ITEM"/>
 <App name="Transfer Item" id="TRANSFER_ITEM">
 <Parameter iterAttr ="Loc" defaultValue="1231" dest="LOCATION"/>
 </App>
 </LaunchableApps>
</Theme>

Passing Parameters to the Micro Applications
When you launch a Micro Application from the Maps Micro Application, you can
choose to pass variables for location selected in the map to the relevant Micro
Application. Location selected in the map is available as the :#{viewScope.LOCATION}
EL Expression. In this case, the name of the variable LOCATION is the same as the
value set for the dest attribute in the Parameter element.

From the code example above,

 <LaunchableApps>
 <App name="Create new Item" id="CREATE_ITEM"/>
 <App name="Transfer Item" id="TRANSFER_ITEM">
 <Parameter iterAttr ="Loc" defaultValue="1231" dest="LOCATION"/>
 </App>
 </LaunchableApps>

18 Parameter App IteAttr - Name of the iterator
column which will provide the
value for the parameter that the
application accepts.

dest - This specifies the name
with which this parameter
value will be set in the ADF
view scope, from where the
Micro Application will retrieve
its value.

This is used when the
application can be called with
some of its attributes initially
set. The values for these
attributes are specified via
parameters.

Sl No Element Parent Element Attributes Element Description

Additional Customizations

8-12 Oracle Retail Workspace Retail Library Reference Guide

Oracle Corporation
World Headquarters
500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
oracle.com

Copyright © 2011, Oracle. All rights reserved.
This document is provided for information purposes only and the
contents hereof are subject to change without notice.
This document is not warranted to be error-free, nor subject to any
other warranties or conditions, whether expressed orally or implied
in law, including implied warranties and conditions of merchantability
or fitness for a particular purpose. We specifically disclaim any
liability with respect to this document and no contractual obligations
are formed either directly or indirectly by this document. This document
may not be reproduced or transmitted in any form or by any means,
electronic or mechanical, for any purpose, without our prior written permission.
Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle
Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

	Contents
	1 Introduction
	Pre-Requisites
	Accessing the Workspace Retail Library
	Configuring an RMS Data Source

	2 Create Regular Item
	Functional Design
	Technical Design
	Overview
	Generating Java Objects for RIB types
	Creating Business Components
	User Interface Design
	Validations
	Calling the RMS API

	Using the Create Regular Item Micro Application
	Limitations
	Additional Customizations

	3 Create Purchase Order
	Functional Design
	Technical Design
	Overview
	Generating Java Objects for RIB Types
	Creating Business Components
	User Interface Design
	Passing Input Parameters to the Application
	Validations
	Calling the RMS API

	Using the Application
	Limitations
	Additional Customizations

	4 Cancel Purchase Order
	Functional Design
	Technical design
	Overview
	Generating Java Objects for RIB types
	Creating Business Components
	User Interface Design
	Passing Input Parameters to the Application
	Validations
	Calling the RMS API

	Using the Application
	Limitations
	Additional Customizations

	5 Item Transfer
	Functional Design
	Technical design
	Overview
	Generating Java Objects for RIB types
	Creating Business Components
	User Interface Design
	Passing Input Parameters to the Application
	Validations
	Calling the RMS API

	Using the Application
	Limitations
	Additional Customizations

	6 Update Vendor
	Functional Design
	Technical design
	Overview
	Generating Java Objects for RIB Types
	Creating Business Components
	User Interface Design
	Passing Input Parameters to the Application
	Validations
	Calling the RMS API

	Using the Application
	Limitations
	Additional Customizations

	7 Bulk Cancellation/Approval of Purchase Orders
	Functional Design
	Technical Design
	Overview
	Generating Java Objects for RIB Types
	Creating Business Components
	User Interface Design
	Validations
	Calling the RMS API

	Application Usage
	Limitations
	Additional Customizations

	8 Maps
	Functional Design
	Technical Design
	Components of the Sample Base Application
	RMS Database Table for the Maps Micro Application
	DDL for the Database Table
	Sample Data for the Database Table

	Run the Micro Application
	Validations

	Using the Application
	Limitations
	Additional Customizations
	Creating a View Object
	Exposing the View Object for the User Interface
	Adding the Theme to the Base Map
	Setting Up the Theme Using a Configuration File

