
Oracle® Retail Strategic Store Solutions
Implementation Guide
Oracle Retail Strategic Store Solutions to Merchandising
Operations Management Integration

Release 12.0

September 2007

Oracle Retail Strategic Store Solutions Implementation Guide, Release 12.0

Copyright © 2007, Oracle. All rights reserved.

Primary Author: Graham Fredrickson

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies Inc. of
Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive Application Server -
Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item Planning, Oracle Retail
Merchandise Financial Planning, Oracle Retail Advanced Inventory Planning and Oracle Retail Demand
Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail Data
Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa Clara,
California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of Kirkland,
Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports Professional
licensed by Business Objects Software Limited ("Business Objects") and imbedded in Oracle Retail Store
Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, and
imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of San Jose,
California, and imbedded in Oracle Retail Promotion Planning & Optimization application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft Technology
Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(ix) the software component known as i-net Crystal-Clear™ developed and licensed by I-NET Software Inc.
of Berlin, Germany, to Oracle and imbedded in the Oracle Retail Central Office and Oracle Retail Back Office
applications.

(x) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc. of San Jose,
California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration application.

(xi) the software component known as DataBeacon™ developed and licensed by Cognos Incorporated of
Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

v

Contents

List of FiguresList of TablesList of Examples

Preface ... xiii

Audience... xiii
Related Documents ... xiii
Customer Support ... xiii
Review Patch Documentation ... xiii
Oracle Retail Documentation on the Oracle Technology Network ... xiv
Conventions ... xiv

1 Integration Overview

Product Release Versions .. 1-1
Data Import from Oracle Retail Merchandising System and Oracle Retail Price Management......
1-1

Generic Data Import Flow .. 1-3
Feed Methods.. 1-4
System Dependency... 1-5

Oracle Retail Price Management to Oracle Retail Strategic Store Solutions Integration Overview
1-5
Oracle Retail Merchandising System to Oracle Retail Strategic Store Solutions Integration
Overview .. 1-7
Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit Overview 1-9

Preconditions ... 1-10
System Flow Description ... 1-11

Existing Functionality Gaps .. 1-11
Oracle Retail Price Management... 1-11
Oracle Retail Merchandising System ... 1-13
Discount Rule... 1-15
Store Coupon ... 1-15
Data Import Field Width Maximums... 1-16

2 Integration Architecture

Strategic Store Solutions to Oracle Retail Sales Audit Integration Architecture 2-1
RTLog Batch Generator ... 2-1

Sleep Interval ... 2-2
Maximum Transactions ... 2-2

vi

Oracle Retail Sales Audit ... 2-2
Data Import.. 2-2

Error Handling ... 2-3
Import Status Logging... 2-3

The Logic .. 2-4
Reprocessing a Bundle ... 2-4

Exception Flow ... 2-5
Logging.. 2-6

RTLog Mapping and Translation .. 2-7

3 Implementation Configuration

Data Import Spring Configurations ... 3-1
spring.properties .. 3-3
dimplogger.properties... 3-4

Archive File Format.. 3-4
Oracle Retail Merchandising System Configuration .. 3-8
Oracle Retail Price Management Configuration .. 3-9
Data Requirements – Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit .. 3-10

4 Capacity Planning

5 Customization Notes

Data Import Extension Points and Development .. 5-1
Import Adapter and Translator.. 5-3

SAXParserGenerator... 5-3
Manually Editing Generated Code .. 5-3

Metadata .. 5-5
ImportControllerIfc.. 5-6

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development ... 5-6
Adding Data Elements to the RTLog Format .. 5-6
Creating a New Fixed Length Export Record Format .. 5-7
Exporting a Non-Fixed-Length Record Format... 5-8
Object Factories... 5-8

StoreServerConduit.xml... 5-8
DomainObjectFactory... 5-9
ExtractorObjectFactory.. 5-10
EntityMappingObjectFactory... 5-10
RTLogMappingConfig.xml .. 5-10
RecordFormatObjectFactory .. 5-11

Configuration... 5-11
The Store Server Conduit File .. 5-11
The Export Format Configuration file .. 5-12
The Entity Reader Configuration File ... 5-13
The Mapping Configuration File ... 5-13

Development and Testing Tools ... 5-14
Classes ... 5-14

vii

Executables in the bin Directory .. 5-15

6 Known Issues and Troubleshooting

 DepartmentDefaultTaxGroup... 6-1
Character Restrictions for UOMs .. 6-1
POSlog .. 6-1
Preload Section of ItemImport .. 6-1
 UTF-8.. 6-1
Third-party Tax and Employee Information .. 6-2

viii

ix

List of Figures

1–1 Integration Overview Including Strategic Store Solutions and Merchandising Operations
Management Products 1-2

1–2 Strategic Store Solutions to Oracle Retail Price Management Integration 1-6
1–3 Strategic Store Solutions and Oracle Retail Merchandising System Integration............... 1-8
1–4 High-Level Model for Oracle Retail Strategic Store Solutions-Oracle Retail Sales Audit

Integration 1-10
2–1 Data Import Tables Logical Data Mode... 2-5
3–1 Adding Files To a Jar .. 3-6
3–2 Adding Files To A WinZip Archive ... 3-7
5–1 Employee Data Import Static Model.. 5-2

x

List of Tables

1–1 Functionality Gaps for Promotion Data Import .. 1-11
1–2 Functionality Gaps for Price Change Data Import ... 1-12
1–3 Functionality Gaps for Discount Rule Data Import.. 1-12
1–4 Functionality Gaps for Item Data Import... 1-13
1–5 Functionality Gaps for Merchandise Hierarchy Data Import ... 1-14
1–6 Functionality Gaps for Store Hierarchy Data Import ... 1-15
1–7 Affected XML Elements ... 1-16
2–1 TransactionType (TRAT) ... 2-7
2–2 ReasonCode (REAC)... 2-8
2–3 OverrideReasonCodes (ORRC)... 2-9
2–4 ReturnReasonCodes (SARR) .. 2-10
2–5 SADT.. 2-10
2–6 TaxCode (TAXC).. 2-10
2–7 TenderTypes (TENT)... 2-10
2–8 TenderType ID (POS_TENDER_TYPE_HEAD).. 2-11
2–9 CCEM... 2-12
2–10 Unit of Measure.. 2-12
2–11 Total ID for TOTAL type transactions .. 2-12
3–1 Spring Bean IDs Used For Each Of The Pluggable Components... 3-1
3–2 Additional Spring Bean IDs Used For Each Of The Pluggable Components 3-2
3–3 Oracle Retail Merchandising System Default Values in the Back Office Item Maintenance

Screen 3-8
3–4 Oracle Retail Price Management Default Values .. 3-10
4–1 File Sizes ... 4-1
4–2 Bundle Size... 4-2
4–3 Hard Drive Capacity .. 4-2
4–4 Item Import Data Volumes.. 4-2
5–1 Store Server Conduit File ... 5-9
5–2 EntityMappingObjectFactory Classes... 5-10
5–3 RecordFormatObjectFactory Classes .. 5-11
5–4 Store Server Conduit File .. 5-11
5–5 Exportfile Utility Classes .. 5-15
5–6 bin Directory BAT Files... 5-16

 Beta Draft xi

List of Examples

2–1 Sample JMX Configuration.. 2-6
2–2 Message Bean Definition.. 2-6
5–1 SAXParserGenerator utility command prompt.. 5-3
5–2 EmployeeAccessHandler Process DTO Before Children.. 5-4
5–3 EmployeeImportHandler Process DTO During Start.. 5-4
6–1 Tax File XML Schema Definition .. 6-2
6–2 Employee File XML Schema Definition... 6-5

xii Beta Draft

xiii

Preface

Audience
The Implementation Guide is intended for the Oracle Retail Point-of-Service
integrators and implementation staff, as well as the retailer’s IT personnel.

Related Documents
For more information, see the following documents:

■ Oracle Retail Strategic Store Solutions Configuration Guide

■ Oracle Retail Strategic Store Solutions Licensing Information

■ Oracle Retail Strategic Store Solutions Relational Integrity Diagrams

■ Oracle Retail Back Office documentation set

■ Oracle Retail Labels and Tags documentation set

■ Oracle Retail Central Office documentation set

■ Oracle Retail Point-of-Service documentation set

■ Oracle Retail Mobile Point-of-Service documentation set

Customer Support
■ https://metalink.oracle.com

When contacting Customer Support, please provide:

■ Product version and program/module name

■ Functional and technical description of the problem (include business impact)

■ Detailed step-by-step instructions to recreate

■ Exact error message received

■ Screen shots of each step you take

Review Patch Documentation
For a base release (".0" release, such as 12.0), Oracle Retail strongly recommends that
you read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on
new information and code changes that have been made since the base release.

https://metalink.oracle.com/

xiv

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level),
all Oracle Retail documentation is available on the following Web site:

http://www.oracle.com/technology/documentation/oracle_
retail.html

Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technology/documentation/oracle_retail.html
http://www.oracle.com/technology/documentation/oracle_retail.html
http://www.oracle.com/technology/documentation/oracle_retail.html

Integration Overview 1-1

1
Integration Overview

Product Release Versions
The following are the product release versions for this implementation:

■ Oracle Retail Point-of-Service 12.0

■ Oracle Retail Back Office 12.0

■ Oracle Retail Central Office 12.0

■ Oracle Retail Merchandising System 12.0.5

■ Oracle Retail Price Management 12.0.5

■ Oracle Retail Sales Audit 12.0.5

Data Import from Oracle Retail Merchandising System and Oracle Retail
Price Management

The following is an overview diagram of an integration of Strategic Store Solutions
and Merchandising Operations Management products, including a Data Import logical
flow:

Data Import from Oracle Retail Merchandising System and Oracle Retail Price Management

1-2 Oracle Retail Strategic Store Solutions Implementation Guide

Figure 1–1 Integration Overview Including Strategic Store Solutions and Merchandising
Operations Management Products

Seed data such as item, price and tax must be updated on an ongoing basis in the Store
database (SDB) as well as Operational Data Store (ODS) to enable daily store
operations. Typically the system of truth for such data is an enterprise system, such as
Oracle Retail Merchandising System, Oracle Retail Price Management or a third-party
product. The frequency and size of the data feeds varies from customer to customer.
Imports are scheduled to be picked up by stores on a nightly basis. This interval is
adjustable. See "spring.properties".

Data Import from Oracle Retail Merchandising System and Oracle Retail Price Management

Integration Overview 1-3

Generic Data Import Flow
The following describes the flow of a generic data import:

1. The flow begins with the Quartz Scheduler configured in Spring invoking the
ImportIOAdapter of the DIMP Controller module.

2. The DIMP Controller picks up the import bundle, which is a compressed archive,
and invokes the DIMP Translator.

3. The XML files are processed as input streams in order by DIMP translators: one for
each import type.

4. The implementation of the ImportTranslatorIfc (as configured by Spring) retrieves
an instance of an ImportControllerIfc from Spring and creates a new ImportBatch.

5. The translator begins to parse its document and calls initializeImport onto the
controller.

6. The translator sets the batch size based upon its configuration.

7. The translator then loops through the elements in the document, creating a Data
Transfer Object (DTO) for each complex element. The entity DTOs are processed
one at a time in the order they are placed into the ImportBatch, with all Delete
DTOs processing first, all Add DTOs second, then all Update DTOs last.

8. The controller retrieves an instance of the specified Data Access Object (DAO)
from Spring based upon the key passed to it and calls initializeImport() on the
DAO.

9. The translator then loops through the elements in the document, creating a Data
Transfer Object (DTO) as each complex element. The entity DTOs are processed
one at a time by placing them into the batch.

10. Each batch is processed as a transaction. Any data errors roll back that transaction.
The import proceeds with the next batch.

11. The translator gives the ImportController a signal to process the batch after adding
each DTO by calling processBatch().

12. If the batch size has been reached, the controller sends the batch to the DAO to be
persisted.

Note: DIMP is not the system of record for data correctness. All data
coming into the data import module is assumed to be correct. This
applies at two levels:

■ First, the data must conform to the published XSDs.

■ In addition, the database does not enforce referential integrity on
the imported data, so the external system is responsible for not
sending data that would create orphaned records in the database.

For example, there is no foreign key constraint enforced between the
employee and store entities. A Kill And Fill import of the store
hierarchy can result in a new set of stores that does not include a store
for some existing employees. The external system that creates this
import data must ensure that this type of situation does not occur.

Note: The base DIMP application supports parsing XML files only.

Data Import from Oracle Retail Merchandising System and Oracle Retail Price Management

1-4 Oracle Retail Strategic Store Solutions Implementation Guide

13. The ImportDAOIfc loops through each DTO and delegates its data operation to a
subordinate DAO.

14. Once the document parsing is complete, the translator notifies the controller,
which processes the batch if there are any DTOs left over.

15. Finally, the controller calls completeImport() on the DAO, giving it the
opportunity to copy data from temporary to production tables and drop
temporary tables in case of a Kill And Fill, or release JDBC resources, and so forth.

Feed Methods
There are three feed methods:

Kill And Fill
Temporary tables are created at the beginning of a file’s processing. Batches are written
to the temporary tables. If the entire file is processed without error (all batches), the
temporary table data replaces the production data and the temporary tables are
dropped. If an error occurs, it is logged and the entire file import is aborted.

Full Incremental
Full Incremental is a fill type that performs adds, updates, or deletes expecting that all
data attributes for a particular record are included in the file. Any missing attributes
are provided default values.

For Full Incremental imports, each import XML data element must include all values.
If some values are omitted from the import file, then the Data Import still updates the
records in question, but uses default values for the omitted elements or attributes.
Usually the default value chosen is null, zero or false unless otherwise specified in the
XSD.

Delta Incremental
Delta Incremental is a fill type that produces dynamic update statements that allow for
only those data attributes which are included in the file to be updated, leaving existing
data attributes intact.

Note: If you choose to retain any existing Oracle Retail Back Office or
Oracle Retail Point-of-Service item-related functionality that creates or
changes data types that are imported from Oracle Retail
Merchandising System or any third party merchandising systems, you
are responsible for handling and addressing any data overwrites
performed by the import process.

Note: All columns for a row must be present in the import data.

Note: Only those fields being updated are required in the import
data.

Oracle Retail Price Management to Oracle Retail Strategic Store Solutions Integration Overview

Integration Overview 1-5

System Dependency
Because some foreign key constraints are not being used, some dependencies might
not actually exist. However, the logical dependencies are as follows:

■ Tax depends on nothing

■ Store Hierarchy/Stores depends on Tax (GeoCode)

■ Employee depends on Store Hierarchy/Stores

■ Merchandise Hierarchy depends on nothing

■ Item depends on Tax and Merchandise Hierarchy

■ Pricing depends on Item

Oracle Retail Price Management to Oracle Retail Strategic Store Solutions
Integration Overview

Oracle Retail Price Management is a strategy-based pricing solution that suggests and
assists with pricing decisions, yielding a more predictable and profitable outcome.
Oracle Retail Price Management evaluates prices within a broad business context with
real-time access to the following:

■ Competitive and market data

■ Projected sales impact

■ Margin

■ Pricing-based costs

■ Current and projected inventory positions

■ Markdown budgets

Oracle Retail Price Management provides a well-defined and efficient price change
process that allows for aggregated permanent and clearance price change execution.
Oracle Retail Price Management enables retailers to automate and streamline pricing
strategies across the organization. Oracle Retail Price Management provides decision
support to all pricing-focused business information to validate and approve pricing
and markdown suggestions.

The following figure shows a high level overview of the integration.

Note: This integration is one-way only. Oracle Retail Strategic Store
Solutions changes are not communicated back up to Oracle Retail
Price Management.

Oracle Retail Price Management to Oracle Retail Strategic Store Solutions Integration Overview

1-6 Oracle Retail Strategic Store Solutions Implementation Guide

Figure 1–2 Strategic Store Solutions to Oracle Retail Price Management Integration

Oracle Retail Merchandising System to Oracle Retail Strategic Store Solutions Integration Overview

Integration Overview 1-7

Oracle Retail Merchandising System to Oracle Retail Strategic Store
Solutions Integration Overview

Oracle Retail Merchandising System provides for core merchandising activities,
including inventory replenishment, purchasing, and vendor management, in a global
environment, across multiple retail channels. The solution incorporates three
functional areas:

■ Business foundation management

■ Merchandise management

■ Merchandise financial tracking

These functional areas enable retailers to streamline their business systems and unify
business practices across their organization.

Oracle Retail Merchandising System is the main application for item, item location,
merchandise hierarchy, stores and store (organizational) hierarchy data. This data is
necessary for store operations and must be updated in the stores on an ongoing basis.
Further, this data, particularly item data, can range in size from small incremental
updates to large batch loads. The frequency and size of data feeds varies widely from
customer to customer.

The following figure shows a high level overview of the integration.

Note: This integration is one-way only. Oracle Retail Strategic Store
Solutions changes are not communicated back up to Oracle Retail
Merchandising System.

Note: There are some conditions required on data in order to filter
out the Oracle Retail Merchandising System data being extracted to
the XML files. This is required mainly because Oracle Retail
Point-of-Service has these limitations on data types. Some of these
conditions are:

■ Store value length is less than or equal to 5

■ Chain value length is less than or equal to 4

■ Item value length is less than or equal to 14

■ UOM length is less than or equal to 2

■ Diff_1 length is less than or equal to 20

■ Diff_2 length is less than or equal to 6

■ Unit retail is less than or equal to 999999.99

Oracle Retail Merchandising System to Oracle Retail Strategic Store Solutions Integration Overview

1-8 Oracle Retail Strategic Store Solutions Implementation Guide

Figure 1–3 Strategic Store Solutions and Oracle Retail Merchandising System
Integration

Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit Overview

Integration Overview 1-9

Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit
Overview

The integration of the Oracle Retail Strategic Store Solutions products with the Oracle
Retail Sales Audit (ReSA) application involves the following components:

Oracle Retail Strategic Store Solutions
The Oracle Retail Strategic Store Solutions logical component is comprised of Oracle
Retail Point-of-Service, Back Office, and Central Office. RTLog data is created from
Point-of-Service.

Oracle Retail Strategic Store Solutions RTLog Files
The RTLog file is the communication mechanism for providing data from the Oracle
Retail Strategic Store Solutions to Oracle Retail Sales Audit. The RTLog is a transaction
log file that is formatted specifically for Oracle Retail Sales Audit. Raw transaction
data in the RTLog file is meant to update other Merchandise Operations Management
applications, and is populated from Oracle Retail Strategic Store Solutions. The file is
written to the physical file system by Oracle Retail Strategic Store Solutions for
consumption by the transportation middleware.

Oracle Retail Strategic Store Solutions is responsible for writing the RTLog files to a
configurable physical directory on the Store Server.

Integration Middleware
The integration middleware is a component that is responsible for polling the RTLog
file produced by the Oracle Retail Strategic Store Solutions. This component has the
following responsibilities:

■ Polling the physical file system at a specified directory.

■ Writing the RTLog file to a location that Oracle Retail Sales Audit expects.

■ Cleaning and archiving the RTLog file once Oracle Retail Sales Audit has
consumed the RTLog file.

■ Error notification if the RTLog file is not able to be extracted successfully from a
physical directory.

Oracle Retail Sales Audit
Oracle Retail Sales Audit is the gateway for transaction data updates to merchandising
and inventory systems. The Oracle Retail Sales Audit consumes the RTLog file written
to a specific directory by the integration middleware. Oracle Retail Sales Audit also
sends audited data files to other Merchandise Operations Management applications
for consumption.

The following figure depicts the two domains that are involved when integrating
transaction data within the Oracle Retail suite.

Note: RTLog files are encrypted. See Oracle® Retail Merchandising
System Operations Guide - Batch Overviews and Designs - Volume 1
Release 12.0.5.

Note: The integration middleware is provided by the
implementation team.

Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit Overview

1-10 Oracle Retail Strategic Store Solutions Implementation Guide

Figure 1–4 High-Level Model for Oracle Retail Strategic Store Solutions-Oracle Retail
Sales Audit Integration

Preconditions
The following preconditions must be observed for the system flow to function
correctly:

1. Transport middleware requires read and write access to the physical file system to
which Oracle Retail Strategic Store Solutions writes the RTLog file.

2. Transport middleware requires read and write access to the physical file system
from which Oracle Retail Sales Audit reads the RTLog files.

3. Oracle Retail Strategic Store Solutions requires access to a physical file system to
produce the RTLog file.

Existing Functionality Gaps

Integration Overview 1-11

System Flow Description
The Point-of-Service client application generates transaction data and sends the
transaction object structure to the Point-of-Service store server. The Point-of-Service
store server populates the JDBC statement type and commits the transaction data to
the store database. The Point-of-Service store server also populates the RTLog
structure with the appropriate data extracted from the transaction object tree. The time
increment at which data is sent to Oracle Retail Sales Audit is dictated by the retailer. If
the RTLog is not successfully created due to unsupported mappings, the transaction
identifier and exceptional condition is logged in detail on the Point-of-Service store
server.

The overall flow shown in Figure 1–4 is summarized in the following sequence:

1. Oracle Retail Strategic Store Solutions creates RTLog files.

2. Transport middleware scans directory that Oracle Retail Strategic Store Solutions
writes the RTLog file to and reads in unprocessed RTLog files.

3. Transport middleware moves the RTLog file from the physical directory written to
by Oracle Retail Strategic Store Solutions to a physical directory on an enterprise
server defined by Oracle Retail Sales Audit.

4. Oracle Retail Sales Audit consumes the RTLog file written to a pre-defined
directory by the transport middleware and executes data cleansing operations to
produce audited transaction data.

5. Oracle Retail Sales Audit outputs audited RTLog-formatted transaction batch files
and places the files into directories accessible by Merchandise Operations
Management applications.

Existing Functionality Gaps
For this release, there are certain functionality gaps that exist that are not remedied at
this time. This section describes theses functional gaps, and the suggested resolution.

Oracle Retail Price Management
Table 1–1 is a list of functionality gaps that exist for the Promotion data import.

Table 1–1 Functionality Gaps for Promotion Data Import

Identified Functionality Gap Suggested Resolution

Oracle Retail Price Management does not download a
start time.

Assume a start time of 00:00:00.

Oracle Retail Price Management does not download an
end time.

Assume an end time of 23:59:59.

Oracle Retail Price Management supports a larger field
(Change Value - Number) than does Strategic Store
Solutions. This field is the amount, either monetary or
percent, to be used to change or replace the current
selling price for a sale unit of an item. Could result in
loss of data in case of a very large discount amount

Gap to remain unchanged for this release.

Existing Functionality Gaps

1-12 Oracle Retail Strategic Store Solutions Implementation Guide

Table 1–2 is a list of functionality gaps that exist for the Price Change data import.

Table 1–3 is a list of functionality gaps that exist for the Discount Rule data import.

In Oracle Retail Price Management, all applicable price
promotions are applied. In Point-of-Service, if price
promotion and discount rule apply to the same item,
then the best deal is applied. If price change and
discount rule or price promo apply to the same item,
then both price change and promo or discount rule are
applied.

Oracle Retail Price Management turns off overlapping
promotions. This ensures that only one promotion is
applied to an item or location at a time.

The Item Number field is larger in Oracle Retail Price
Management than Strategic Store Solutions.

Strategic Store Solutions logs an error if the database
field is exceeded.

Field for Promotion Price attribute is larger in Oracle
Retail Price Management.

Multiple promotions can be applied, and the selling
price represents the results of each promotion applied
in the "Apply Order." One record is downloaded for
each promotion applied, and each has the same selling
price. The stores system only applies the best deal, and
it does so at the time the transaction is rung up.

In addition to the multiple promotions, Oracle Retail
Price Management can also apply "price guides", which
might specify the price ends in .99, for example. These
price guides are not included in the download file.

The selling price is ignored by Point-of-Service. This
results in a possible problem if Point-of-Service does
not calculate the same price that Oracle Retail Price
Management sends as selling price. This discrepancy
can result from rounding, price guides, and so forth.

Oracle Retail Price Management turns off overlapping
promotions. This ensures that only one promotion is
applied to an item or location at a time.

Table 1–2 Functionality Gaps for Price Change Data Import

Identified Functionality Gap Suggested Resolution

Oracle Retail Price Management supports a longer field
(Selling Retail) and more precision.

Gap to remain unchanged for this release.

Oracle Retail Price Management Item field is longer. Item ID length remains the same in Strategic Store
Solutions and Oracle Retail Price Management. If the
item ID is too long in the download file, the record is
logged and discarded.

Oracle Retail Price Management does not support
description field in download file.

Optional Description field is not populated.

Table 1–3 Functionality Gaps for Discount Rule Data Import

Identified Functionality Gap Suggested Resolution

Oracle Retail Price Management Item field length is
longer.

Item ID length remains the same in Strategic Store
Solutions and Oracle Retail Price Management. If the
item ID is too long in the download file, the record is
logged and discarded.

Oracle Retail Price Management field (Threshold Value)
is longer and supports more precision.

Field length remains the same in Oracle Retail Price
Management and Strategic Store Solutions. If the
threshold is a decimal value, it is logged and discarded.

Oracle Retail Price Management Item field length is
longer.

Item ID length remains the same in Strategic Store
Solutions and Oracle Retail Price Management.

Table 1–1 Functionality Gaps for Promotion Data Import

Identified Functionality Gap Suggested Resolution

Existing Functionality Gaps

Integration Overview 1-13

Oracle Retail Merchandising System
Table 1–4 is a list of functionality gaps that exist for the Item import.

Oracle Retail Price Management supports larger values
and more precision than stores. Meaning of value (%, $,
or new price) is defined by Change Type.

Field length remains the same in Oracle Retail Price
Management and Strategic Store Solutions.

Oracle Retail Price Management does not download a
start time.

Assume a start time of 00:00:00.

Oracle Retail Price Management does not download an
end time.

Assume an end time of 23:59:59.

Oracle Retail Price Management does not support
threshold or limit.

Assume no threshold

Oracle Retail Price Management does not support the
Number of Times per transaction field.

Assume -1, which means no limit to the number of times
the promotion can be applied to a transaction.

Oracle Retail Price Management does not support the
Accounting Method field.

Assume the discount.

Oracle Retail Price Management does not directly
support the Allow Source to Repeat field.

Allow source to repeat.

Oracle Retail Price Management does not directly
support the Deal Distribution field.

Assume target only.

Target Quantity field is not supported in Oracle Retail
Price Management.

Assume target quantity of 1.

Table 1–4 Functionality Gaps for Item Data Import

Strategic Store Solutions Attribute Identified Functionality Gap Suggested Resolution

Cost Cost data is not included in the
Point-of-Service download file, but
Oracle Retail Merchandising System
has this data. However,
Point-of-Service does not access item
cost data from manufacturer.

Gap to remain unchanged for this
release.

Sign/Label This is not maintained by Oracle
Retail Merchandising System.

Gap to remain unchanged for this
release.

Manufacturer Not included in the Point-of-Service
download, but Oracle Retail
Merchandising System has this data.

This value is null.

Planogram Not maintained by Oracle Retail
Merchandising System. Oracle Retail
Merchandising System has a generic
attribute that could be used for this
purpose.

Gap to remain unchanged for this
release.

Serialized Not maintained by Oracle Retail
Merchandising System.
Point-of-Service uses this to prompt
for serial number during order
pickup.

Default to false for Oracle Retail
Merchandising System imports.

Restocking Fee Not maintained by Oracle Retail
Merchandising System.
Point-of-Service uses this to prompt
for a restocking fee during returns.

Default to false for Oracle Retail
Merchandising System imports.

Table 1–3 Functionality Gaps for Discount Rule Data Import

Identified Functionality Gap Suggested Resolution

Existing Functionality Gaps

1-14 Oracle Retail Strategic Store Solutions Implementation Guide

Table 1–5 is a list of functionality gaps that exist for the Merchandise Hierarchy import.

Table 1–6 is a list of functionality gaps that exist for the Store Hierarchy import.

Activation Required Not maintained by Oracle Retail
Merchandising System.

No attribute in Oracle Retail
Merchandising System. Not used
by Point-of-Service.

Registry Eligible Not maintained by Oracle Retail
Merchandising System.

No attribute in Oracle Retail
Merchandising System. Not used
by Point-of-Service.

Special Order Eligible Prevents certain items from being
placed on a special order. Not
maintained by Oracle Retail
Merchandising System.

Default to false for Oracle Retail
Merchandising System imports.

Employee Discount Eligible Identifies an item as eligible for an
employee discount. Not maintained
by Oracle Retail Merchandising
System.

Default to true for Oracle Retail
Merchandising System imports.

Damage Discount Eligible Identifies an item as eligible for
damage discount. Not maintained by
Oracle Retail Merchandising System.

Default to true for Oracle Retail
Merchandising System imports.

Size Entry Required Not maintained by Oracle Retail
Merchandising System.
Point-of-Service uses this attribute
during a sale or return to prompt for
item size.

Default to false for Oracle Retail
Merchandising System imports.

Itemizing Strategic Store Solutions assumes
item data is interpreted as local time.
File creation has the local Oracle
Retail Merchandising System time,
but no timezone info.

Assume all Timestamps are relative
to GMT.

Localization Oracle Retail Merchandising System
data file does not contain localized
data for a store.

Accepts one localized text from
Oracle Retail Merchandising
System and use as all three: stores,
user, customer.

Table 1–5 Functionality Gaps for Merchandise Hierarchy Data Import

Strategic Store Solutions
Attribute Identified Functionality Gap Suggested Resolution

Merchant ID Oracle Retail Merchandising System
does not specify a merchant ID with any
of the merchandise classification records
sent with the Merchandise Hierarchy
download.

Gap to remain unchanged for this
release.

Table 1–4 Functionality Gaps for Item Data Import

Strategic Store Solutions Attribute Identified Functionality Gap Suggested Resolution

Existing Functionality Gaps

Integration Overview 1-15

Discount Rule
A discount rule that allows the customer to choose from a group of items is not
functioning correctly in an Oracle Retail environment that is integrated with Oracle
Retail Merchandising System.

Scenario: A promotion for "Buy X Get %/$ off Y," where X or Y (or both) is from a
group of items. For example, buy any pair of jeans get 10% off a t-shirt. The
expectation for this discount is that the customer purchases ONE item from the jeans
(department) to get 10% off ONE t-shirt from the t-shirt (department).

Oracle Retail Point-of-Service Behavior: Oracle Retail Point-of-Service interprets the
"any pair of jeans" as "all pairs of jeans" and the "any t-shirt" as "all t-shirts" before the
rule is invoked and the discount is applied to the transaction.

Issue: The current integration does not support the concept of a coupon at the class or
department level. The integration communicates the department or class as the
individual items in that group. When the store system receives all the coupon records
it converts them to a buy one of each versus buy one from a list of items.

Fix: A fix is in development for Oracle Retail Point-of-Service and Oracle Retail Retail
Merchandising System.

Store Coupon
Scenario: A store coupon for $10 off the purchase of a single pair of jeans is applied to
merchandise class that has 8 different pair of jeans. The expectation is that the coupon
is applied against any one pair of jeans and the shopper would save $10 of the
purchase price.

Oracle Retail Point-of-Service Behavior: Oracle Retail Point-of-Service expects the
shopper to purchase 8 different pair of jeans to receive the $10 savings.

Issue: Oracle Retail Price Management supports the concept of a coupon at the class or
department level but the integration approach is not working correctly. Oracle Retail
Price Management sends down a coupon record for every item in the class. When the
store system receives all the coupon records it converts them to a "buy one of each"
versus "buy one from a list of items."

Fix: A fix is in development for Oracle Retail Point-of-Service and Oracle Retail Retail
Price Management.

Table 1–6 Functionality Gaps for Store Hierarchy Data Import

Strategic Store Solutions
Attributes Identified Functionality Gap Suggested Resolution

Store Class Strategic Store Solutions does not accept
class.

Gap to remain unchanged for this
release.

Store Class Description Strategic Store Solutions does not accept
class description.

Gap to remain unchanged for this
release.

Store Format Strategic Store Solutions does not accept
format as part of the data import.

Gap to remain unchanged for this
release.

Format Name Store does not accept format name as
part of the data import.

Gap to remain unchanged for this
release.

Existing Functionality Gaps

1-16 Oracle Retail Strategic Store Solutions Implementation Guide

Data Import Field Width Maximums
Some fields can potentially overflow at the database level because the fields are not
specifically limited in length by the Data Import XSDs. The following table lists the
XML elements that are affected.

Table 1–7 Affected XML Elements

Import Elements
Maximum Column
Size

Employee Import Employee > EmployeeFullName VARCHAR(150)

Employee > EmployeeLastName VARCHAR(50)

Employee > EmployeeFirstName VARCHAR(50)

Employee > EmployeeMiddleName VARCHAR(50)

Item Import Item > RetailStoreItem > POSIdentity
@SupplierID

VARCHAR(20)

Merchandise
Hierarchy Import

PreloadData > MerchandiseGroup >
Description

VARCHAR(255)

PreloadData > POSDepartment >
POSDepartmentID

VARCHAR(14)

PreloadData > POSDepartment >
ParentPOSDepartmentID

VARCHAR(14)

HierarchyList > Hierarchy@Name VARCHAR(14)

HierarchyList > Hierarchy > LevelList
> Level@Name

VARCHAR(120)

HierarchyList > Hierarchy > NodeList
> Node@ParentNodeID

VARCHAR(14)

ierarchyList > Hierarchy > NodeList >
Node@ID

VARCHAR(14)

Pricing Import PricingImport > PriceChange @ID VARCHAR(20)

PricingImport > PriceChange > Item
@ID

VARCHAR(14)

PricingImport > PriceChange > Item
@TemplateType

VARCHAR(8)

PricingImport > PriceChange
@TemplateType

VARCHAR(8)

PricingImport > PricePromotion @ID VARCHAR(20)

PricingImport > PricePromotion
@TemplateType

VARCHAR(8)

PricingImport > PricePromotion
@TemplateType

VARCHAR(8)

DiscountRule > Sources > Source @ID VARCHAR(14)

DiscountRule > Targets > Target @ID VARCHAR(14)

DiscountRule > Sources > Source @ID VARCHAR(14)

DiscountRule > Sources > Source @ID VARCHAR(10)

Existing Functionality Gaps

Integration Overview 1-17

Store Hierarchy Import PreloadData > StoreRegion > RegionID VARCHAR(14)

PreloadData > StoreRegion >
RegionName

VARCHAR(120)

PreloadData > StoreDistrict >
DistrictID

VARCHAR(14)

PreloadData > StoreDistrict >
RegionID

VARCHAR(14)

PreloadData > RetailStore > GeoCode VARCHAR(10)

PreloadData > StoreDistrict >
DistrictName

VARCHAR(120)

PreloadData > RetailStore >
LocationName

VARCHAR(150)

PreloadData > RetailStore > DistrictID VARCHAR(14)

PreloadData > RetailStore > RegionID VARCHAR(14)

PreloadData > RetailStore > GeoCode VARCHAR(10)

PreloadData > RetailStore > Address >
AddressLine1

VARCHAR(30)

PreloadData > RetailStore > Address >
AddressLine2

VARCHAR(30)

PreloadData > RetailStore > Address >
AddressLine3

VARCHAR(30)

PreloadData > RetailStore > Address >
City

VARCHAR(30)

PreloadData > RetailStore > Address >
State

VARCHAR(30)

PreloadData > RetailStore > Address >
PostalCode

VARCHAR(30)

PreloadData > RetailStore > Address >
Territory

VARCHAR(30)

PreloadData > RetailStore > Address >
Country

VARCHAR(30)

PreloadData > RetailStore > Address >
TelephoneCountryCode

VARCHAR(30)

PreloadData > RetailStore > Address >
TelephoneAreaCode

VARCHAR(30)

PreloadData > RetailStore > Address >
TelephoneLocalNumber

VARCHAR(30)

HierarchyList > Hierarchy@Name VARCHAR(120)

HierarchyList > Hierarchy > LevelList
> Level@Name

VARCHAR(120)

HierarchyList > Hierarchy > NodeList
> Node@Name

VARCHAR(120)

HierarchyList > Hierarchy > NodeList
> Node@Descripton

VARCHAR(255)

Table 1–7 (Cont.) Affected XML Elements

Import Elements
Maximum Column
Size

Existing Functionality Gaps

1-18 Oracle Retail Strategic Store Solutions Implementation Guide

Tax Import GEOCode > GeoCodeID VARCHAR(10)

GEOCode > TaxJurisdictionName VARCHAR(50)

GEOTaxJurisdiction > GeoCodeID VARCHAR(10)

TaxAuthority > TaxAuthorityName VARCHAR(40)

TaxAuthority > GeoCodeID VARCHAR(10)

TaxableGroup > TaxGroupName VARCHAR(120)

TaxableGroup > TaxGroupDescription VARCHAR(255)

TaxAuthority > AddressLine VARCHAR(30)

TaxAuthority > City VARCHAR(30)

TaxAuthority > State VARCHAR(30)

TaxAuthority > PostalCode VARCHAR(30)

TaxAuthority > CountryCode VARCHAR(30)

TaxGroupRule > TaxTypeName VARCHAR(30)

TaxGroupRule > TaxRuleName VARCHAR(40)

TaxGroupRule > TaxRuleDescription VARCHAR(255)

Table 1–7 (Cont.) Affected XML Elements

Import Elements
Maximum Column
Size

Integration Architecture 2-1

2
Integration Architecture

Strategic Store Solutions to Oracle Retail Sales Audit Integration
Architecture

The Point-of-Service terminal is the platform that the Point-of-Service client
application resides on. The cashier and the store manager interact with the
Point-of-Service client application, which generates transaction data. The
Point-of-Service client application sends a serialized object structure representing the
sales transaction to the Point-of-Service store server residing on the In-Store-Processor
(ISP). The ISP is responsible for logging the raw transaction data to the store database.

The major components of the Strategic Store Solutions to Oracle Retail Sales Audit
integration are:

■ RTLog Export Daemon Technician

Processes configuration settings from the Store Sever Conduit XML file; settings
include sleep interval, maximum number of transactions per batch, export
directory name, object factory class names, and export configuration files names.

Starts the RTLog Export Daemon Thread.

■ RTLog Export Daemon Thread

Starts the export process on a periodic basis based on the configured sleep
interval. Calls the RTLog Batch Generator.

■ RTLog Batch Generator

Creates a list of transactions ready for export and calls the Export File Generator.

■ Export File Generator

Reads the transactions in the list and formats the export data based on the export
configuration files.

In this integration, the Point-of-Service store server also maps the transaction object
structure to RTLog format and places the RTLog-formatted transaction into a file. The
individual components that comprise the RTLog generation are described in the
following subsections.

RTLog Batch Generator
The RTLog Batch Generator is a Java class that reads transactions from the store
database and creates a physical RTLog file. The file format follows the standards
outlined in Oracle Retail Merchandising System Operations Guide - Batch Overviews and
Designs - Volume 1 Release 12.0.5.

Data Import

2-2 Oracle Retail Strategic Store Solutions Implementation Guide

The RTLog Batch Generator consumes a configuration file that has the settings
outlined in the following sections.

Sleep Interval
The RTLog batch generator runs in a daemon mode, which periodically outputs
RTLog files created by pulling transactions from the database. In this configuration,
Oracle Retail Sales Audit processes one or more RTLog files from any given store.

Maximum Transactions
The Maximum Transactions setting puts a cap on the number of RTLog transactions
read from the store database during a processing cycle. If the number of transaction
available is less than the maximum transactions setting, the RTLog Batch Generator
reads the number of transactions available.

If Maximum Transactions is set to -1, then there is no limit to the number of RTLog
transactions.

Oracle Retail Sales Audit
The Oracle Retail Sales Audit system is responsible for sales audit functionality at the
store and at the corporate level. Store operations make use of Oracle Retail Sales
Audit’s functionality to determine over/short situations in stores, and make the
necessary adjustments to raw transaction data in order to ensure integrity of data
being sent to backend merchandising and store inventory systems.

Oracle Retail Sales Audit consumes unaudited transaction data in RTLog batch format.
It then subjects the transaction data to numerous checks, and indicates exceptional
conditions leading to out-of-balance situations. The Oracle Retail Sales Audit system
outputs cleansed or audited RTLog data to be consumed by Oracle Retail
Merchandising System (RMS), Oracle Retail Price Management (RPM), and Oracle
Retail Store Inventory Management (SIM).

Data Import
The Data Import (DIMP) utility is the application that enables the import of data from
both Oracle Retail Merchandising System and Oracle Retail Price Management to
Point-of-Service.

The Data Import (DIMP) subsystem and components are designed to enable external
systems to send large volumes of data to the Oracle Retail Strategic Store Solutions
applications. The primary intent of this functionality is to allow for initial data seeding
or routine data loading (and optional purging) to occur for such types of data as:

■ Taxation

■ Merchandise Hierarchy

■ Store Hierarchy

■ Employee

■ Item

Note: When discussing Data Import, functionality applies to both
Oracle Retail Merchandising System and Oracle Retail Price
Management.

Data Import

Integration Architecture 2-3

■ Pricing

Error Handling
Strategic Store Solutions applications are not the system of record for data correctness.
Error handling is limited to logging errors during the import and performing a retry in
certain cases. Because the data imports can be interdependent, a failure in one file
import results in an abort of the import of the rest of the files in the order.

There were no changes made to the base data model to support the new data import
subsystem. However, a few tables have been added to take care of data import error
handling and to support any recovery or retry mechanism that can be put place in
future (that may be custom developed).

For the current implementation, all Kill And Fill imports are applied into temporary
tables. Once the import of the complete bundle is successful, the data is written onto
the main tables. If any data operation fails, the entire file import is aborted. A
FAILURE status message is logged for each of those files.

Incremental file imports continue even if a data operation fails. In that case, the error is
logged and it is the customer’s responsibility to decide how to handle the failed
operations.

The act of aborting the import is configurable and can be changed based on
implementation requirements.

Import Status Logging
■ In case of failure in opening the bundle or reading a file in the bundle, the status in

the tables is MA_STS_BNDL_IMP – FAILED.

No other status is logged in any other table.

■ In case of failure in parsing a file, the statuses are:

– MA_STS_BNDL_IMP – PROCESSED

Note: For ItemImport.xml, refer to the xsd. Some attributes are
labeled required. All attributes listed as required in the xsd must be
included in the ItemImport.xml file. See "Archive File Format" in
Chapter 3 for more information about ItemImport.xml.

Note: When an item is imported without a POSDepartmentID, that
particular item not associated with a POSDepartment. When the item
is viewed in Back Office, the POSDepartment list defaults its selection
to the first department in the list.

Note: Taxation and Employee information are not provided by
Oracle Retail Merchandising System or Oracle Retail Price
Management. The Taxation and Employee information comes from
third-party systems.

For more information, see “Third-party Tax and Employee
Information” in Chapter 6.

Data Import

2-4 Oracle Retail Strategic Store Solutions Implementation Guide

– MA_STS_FL_IMP – FAILED for that file and all other files that are
dependent on that file.

– MA_FL_IMP_FLRS – Failure exception details of the file.

■ In case of failure while persisting a batch:

– If Kill and Fill then:

MA_STS_BNDL_IMP – PROCESSED
MA_STS_FL_IMP – FAILED for that file and all other files that are dependent on that
file.
MA_FL_IMP_FLRS – Failure exception details of the file that has failed.

– If Full Incremental or Delta Incremental then:

MA_STS_BNDL_IMP – PROCESSED
MA_STS_FL_IMP – PARTIALLY PROCESSED for that file only.
MA_FL_IMP_FLRS – Failure exception details of the files that have failed.

The Logic

MA_STS_BNDL_IMP
This is the Bundle Import Status, which has the processing status at the bundle level.
In a case where an input/output error occurs, such as unable to open the bundle or
read a file from the bundle, the status is logged as FAILED. In all other cases where
there is no input/output error, the status is PROCESSED. This is because a bundle can
contain more than one file, and it is, from a performance standpoint, degenerative to
keep track of how many files there are in the bundle and how many of them have
succeeded and how many have failed. Therefore, unless an input/output error is
encountered, the status PROCESSED is logged into the table.

MA_STS_FL_IMP
File Import Status maintains the processing status of each file in a bundle. The status
FAILED for a file indicates that there is a parsing exception, or there is a failure while
persisting a Kill And Fill file (as complete processing is aborted in case of Kill And
Fill). If a failure is logged in this table for a file, then all other files in the bundle that
are dependent on the failed file also have a FAILED status.

The status PARTIALY PROCESSED for a Full Incremental or Delta Incremental import
indicates there is a failure in persisting a batch. This status is irrespective of the
number of records in the file. In an incremental type of import, a batch of records with
no exceptions is persisted to the database and committed. Therefore, to note a FAILED
status we must know how many records there are in the file, how many batches do
these records form and the processing status of each of the batch. Performance wise
this is not advisable.

Also, if a bundle is re-processed, a FAILED status on an incremental file causes the file
to be processed again, generating more exceptions.

MA_FL_IMP_FLRS
Any failures encountered are logged in this table.

Reprocessing a Bundle
This facility is provided to reprocess any file that failed, that is, has a FAILED status in
MA_STS_FL_IMP. No change is needed in the bundle to process a file again. If the
same bundle is reprocessed, all the files with a status FAILED in MA_STS_FL_IMP are
reprocessed. Therefore, if an incremental file has already crossed the point of parsing,

Data Import

Integration Architecture 2-5

(an exception while persisting) then the status for that file must never be logged as
FAILED, as some of the batches might have been persisted and reprocessing the file
generates more errors.

Exception Flow
■ If there is a failure in any insert operation for a file of the Kill And Fill variety, the

exception is logged and the complete file is aborted. Import of any subsequent file
in the sequence that depends upon the failed/aborted file is also aborted. This is
done to ensure that partial data inserts from the file are not performed,
compromising the integrity of the data in the database. Import of files that do not
depend on this particular file is not impacted.

■ If an operation (insert, update, delete) fails during the processing of an
incremental file, delta or full, the current batch is aborted and subsequent batches
are processed. The errors are logged for the failed batch and processing continues,
starting with the next batch of the data in the file.

The figure below shows the logical data model for the tables being used in error
handling in Data import.

Figure 2–1 Data Import Tables Logical Data Mode

Data Import

2-6 Oracle Retail Strategic Store Solutions Implementation Guide

The archive file status is logged as CONSISTENT or INCONSISTENT in the table
ImportBundleStatus, with the BundleID of the archive.

If an exception is encountered during the import of a file, the record where the
problem is encountered is logged in the table ImportRecordStatus.

The exception is then sent up to the Data Import Controller where a FAILED status is
logged on to the table ImportFileStatus. If the import has been successful for a file, a
status of SUCCESS is inserted in the table.

Instrumentation for application monitoring can be provided by exposing beans to JMX
through Spring, which orchestrates the process of creating JMX management interfaces
for beans, and removes the need to compile them to the JMX API.

The following example must be configured in the Spring PersistenceContext.xml file.

Example 2–1 Sample JMX Configuration

 <bean id="mbeanServer"
class="org.springframework.jmx.support.MBeanServerFactoryBean"/>

 <bean id="exporter" class="org.springframework.jmx.export.MBeanExporter">
 <property name="beans">
 <map>
 <entry key="bean:name=EmployeeImportDAOKey"
value-ref="EmployeeImportDAO"/>
 </map>
 </property>
 <property name="server" ref="mbeanServer"/>
 </bean>

 <bean id="EmployeeImportDAO"
 class="com._
360commerce.commerceservices.employee.importdata.dao.EmployeeImportDAO"/>

Logging
At various points in the import process, exceptions such as SQLException and
SAXException might be generated. They are generally rethrown as ImportExceptions
and passed up the chain to the DIMP Controller, as well as logged for error tracking
and resolution.

DIMP introduces a new Spring-based logging object to provide message consistency
and allow retailer customization of messages. The underlying logging uses Apache
Commons logging as the interface, and Log4j for the logging implementation. A
MessageLogger is retrieved from the Spring service context. The logger gets message
templates from a property file. Customers can define the layout of these messages to
suit their needs, using the following format, where {x} is a placeholder for input data
from the calling program:

Message from {0} with {1} information.

The Spring bean ID used for the pluggable message logger component is shown in
Table 3–1, "Spring Bean IDs Used For Each Of The Pluggable Components". The
mapping is shown below.

Example 2–2 Message Bean Definition

 <bean id="service_MessageBuilder" class="com._
360commerce.commerceservices.importdata.MessageBuilder" singleton="true"
lazy-init="true">

RTLog Mapping and Translation

Integration Architecture 2-7

 <property name="prefix"><value>${dimp.prefix}</value></property>
 <property name="texts">
 <list>
 <value>${dimp.text1}</value>
 <value>${dimp.text2}</value>
 <value>${dimp.text3}</value>
 </list>
 </property>
 </bean>

RTLog Mapping and Translation
The following tables identify the changes to the RTLog codemapping that enables
Oracle Retail Sales Audit to consume RTLogs generated by Strategic Store Solutions
applications.

For more RTLog information, see the Oracle® Retail Merchandising System Operations
Guide - Batch Overviews and Designs - Volume 1 Release 12.0.5.

Note: New Oracle Retail Sales Audit code is highlighted with italics.

New Point-of-Service code is highlighted in bold.

Table 2–1 TransactionType (TRAT)

TransactionType TRAT (Static)
TRAS (Static)
Sub-Transaction Type

(1) Sale SALE SALE

(2) Return RETURN RETURN

(3) Void PVOID VOID

(4) NoSale NOSALE NOSALE

(1) Sale where an even exchange is made EEXCH EXCH

(6) OpenStore OPEN OSTORE

(7) CloseStore DCLOSE DSTORE

(8) OpenRegister OPEN OREG

(9) CloseRegister CLOSE CRGRC

(10) OpenTill OPEN OTILL

(11) CloseTill CLOSE

TOTAL

CTILL

CTILLT

(12) LoanTill LOAN LOTILL

(13) PickupTill PULL PUTILL

(14) SuspendTill NOSALE STILL

(15) ResumeTill NOSALE RTILL

(16) PayinTill PAIDIN PITILL

(17) PayoutTill PAIDOU POTILL

(18) HousePayment PAIDIN HOUSE

(19) LayawayInitiate PAIDIN LAYINT

RTLog Mapping and Translation

2-8 Oracle Retail Strategic Store Solutions Implementation Guide

(20) LayawayComplete SALE LAYCMP

(21) LayawayPayment PAIDIN LAYPAY

(22) LayawayDelete PAIDOU LAYDEL

(23) OrderInitiate PAIDIN ORDINT

(24) OrderComplete SALE ORDCMP

(25) OrderCancel PAIDOU ORDCAN

(26) OrderPartial SALE ORDPAR

(27) BankDepositStore NOSALE BANK

(35) Instant Credit Enrollment NOSALE INSCRE

(36) Redeem RETURN REDEEM

(37) Enter Training Mode NOSALE NTRAIN

(38) Exit Training Mode NOSALE XTRAIN

(40) Payroll Payout PAIDOU PAYOUT

(41) Enter Transaction Reentry NOSALE NTRENT

(42) Exit Transaction Reentry NOSALE XTRENT

Any transaction where Transaction.TransactionStatusCode
= (3) Canceled

VOID CANCEL

Any transaction where Transaction.TrainingMode= 'ON NOSALE TRAIN

Any transaction where Transaction.TransactionStatusCode
= (4) Suspend Transaction

Note: (4) Suspend Transactions get sent in the RTLog.
Subsequent resume or cancel actions simply change the
transaction status code to (6) Resume Transaction or (7)
Canceled Suspended Transaction. A new transaction is not
created, hence no subsequent RTLog record, except if the
Suspended Transaction is Resumed then SOLD, upon which
a SALE transaction is created.

NOSALE SUSPND

Table 2–2 ReasonCode (REAC)

Reason entered by cashier for some
transaction types. Required for Paid
In and Paid out transaction types,
but can also be used for voids,
returns, and so forth. REAC Description

Till.TillPayInReasonCodes (53)
BadCheckPayment

NSF NSF Check Payment

Till.TillPayInReasonCodes(54)
VendingMachineRevenue

TPIVMR TillPayIn VendingMachineRevenue

Till.TillPayInReasonCodes(55)
Miscellaneous

TPIMSC TillPayIn Miscellaneous

Till.TillPayrollPayOutReasonCodes (1)
PayrollAdvance

PAYRL Payroll Payout

Till.TillPayrollPayOutReasonCodes (2)
FinalPay

PAYRL Payroll Payout

Table 2–1 TransactionType (TRAT)

TransactionType TRAT (Static)
TRAS (Static)
Sub-Transaction Type

RTLog Mapping and Translation

Integration Architecture 2-9

Till.TillPayOutReasonCodes (56)
Postage

TPOP TillPayOut Postage

Till.TillPayOutReasonCodes (57)
Supplies

TPOS TillPayOut Supplies

Till.TillPayOutReasonCodes (58)
Entertainment

TPOE TillPayOut Entertainment

Sale.NoSaleReasonCodes(1)
CustomerChange

NSCC NoSale CustomerChange

 Sale.NoSaleReasonCodes(2)
ChangeForRegister

NSCFR NoSale ChangeForRegister

Sale.PostVoidReasonCodes(1)
IncorrectPrice

PVIP PostVoid IncorrectPrice

 Sale.PostVoidReasonCodes(2)
DiscountIncorrect

PVDI PostVoid DiscountIncorrect

Sale.PostVoidReasonCodes(3)
CustomerChangedMind

PVCCM PostVoid CustomerChangedMind

Sale.PostVoidReasonCodes(4)
AssociateError

PVAE PostVoid AssociateError

Sale.PostVoidReasonCodes(5)
OtherFormPayment

PVOFP PostVoid OtherFormPayment

Sale.PostVoidReasonCodes(6) Other PVO PostVoid Other

Where transaction type = (18) House
Payment

HOUSE House Payment

Where transaction type = (19)
Layaway Initiate

LAYINT Layaway Initiate

Where transaction type = (21)
Layaway Payment

LAYPAY Layaway Payment

Where transaction type = (23) Order
Initiate

ORDINT Order Initiate

Where transaction type = (22)
Layaway Delete

LAYDEL Layaway Delete

Where transaction type = (25) Order
Cancel

ORDCAN Order Cancel

Table 2–3 OverrideReasonCodes (ORRC)

Reason an item price is overridden at
the Point-of-Service. ORRC Dynamic

(3) Defective D Damaged Goods

(5) SignageError S Incorrect Signage

(2) CompetitionPrice CP CompetitionPrice

(1) AdPrice AP AdPrice

(4) ManagersSpecial MS ManagersSpecial

Table 2–2 ReasonCode (REAC)

Reason entered by cashier for some
transaction types. Required for Paid
In and Paid out transaction types,
but can also be used for voids,
returns, and so forth. REAC Description

RTLog Mapping and Translation

2-10 Oracle Retail Strategic Store Solutions Implementation Guide

Table 2–4 ReturnReasonCodes (SARR)

The reason an item is returned. SARR Dynamic

(33) Defective 01 Damaged

(33) Defective 02 Defective

(11) WrongColor 06 Color Not As Shown

(45) CustomerChangedMind 19 CustomerChangedMind

(55) PriceAdjustment 20 PriceAdjustment

Table 2–5 SADT

The type of discount within a promotion. SADT Dynamic

(2402,2006,2303,2105) Saturday Morning Special SATSPL Saturday Morning Special

(2410,2014,2311,2113) Senior Citizen SENCIT Senior Citizen

(2428,2022,2329,2121) Competition Special CMPSPL Competition Special

(2436,2030,2337,2139) Store Coupon SCOUP Store Coupon

Table 2–6 TaxCode (TAXC)

Tax code to represent whether it is a
state tax type, provincial tax, and so
forth. TAXC Dynamic

TOTTAX TOTTAX Aggregate total of tax excluding VAT

Table 2–7 TenderTypes (TENT)

High-level grouping of tender types. TENT Static

CASH Cash CASH Cash

CRDT Credit Card CCARD Credit Card

CHCK Check CHECK Personal Check

ECHK E-Check CHECK Personal Check

TRAV Travelers Check CHECK Personal Check

MBCK Mail Bank Check CHECK Personal Check

QPON Manufacturers Coupon COUPON Coupon

DBIT Debit Card DCARD Debit Card

MNYO Money Order MORDER Money Order

GCRD Gift Card VOUCH Voucher (gift cert. or credit)

GICT Gift Certificate VOUCH Voucher (gift cert. or credit)

STCR Store Credit VOUCH Voucher (gift cert. or credit)

MACT Mall Certificate VOUCH Voucher (gift cert. or credit)

PRCH Purchase Order VOUCH Voucher (gift cert. or credit)

VOUCH Voucher VOUCH Voucher (gift cert. or credit)

RTLog Mapping and Translation

Integration Architecture 2-11

Table 2–8 TenderType ID (POS_TENDER_TYPE_HEAD)

Tender Type ID. Low level grouping of tender
types.

POS_TENDER_TYPE_
HEAD Notes

CASH Cash 1000 CASH Cash - primary
currency

CHCK Check 2000 CHECK Personal
Check

TRAV Travelers Check 2020 CHECK Traveler
Check

QPON Manufacturers Coupon 5000 COUPON
Manufacturers Coupons

DBIT Debit Card 8000 DCARD Debit Card

MNYO Money Order 6000 MORDER Money
Orders

GICT Gift Certificate 4030 VOUCH Gift
Certificate

GCRD Gift Card 4040 VOUCH Gift Card

STCR Store Credit 4050 VOUCH Store Credit

MACT Mall Certificate 4060 VOUCH Mall Certificate

PRCH Purchase Order 4070 VOUCH Purchase Order

VOUCH Voucher 4080 VOUCH PrePaid Use for Orders and Layaways

ECHK E-Check 2030 CHECK E-Check

MBCK Mail Bank Check 2040 CHECK Mail Bank
Check

Visa 3000 CCARD Visa

MasterCard 3010 CCARD Mastercard

AmEx 3020 CCARD American
Express

Discover 3030 CCARD Discover

DinersClub 3040 CCARD Diners Club -
N. America

HouseCard 3120 CCARD House Card

JCB 3130 CCARD JCB

CASH Cash Alternate Currency 1010 CASH Cash Alternate
Currency

CHCK Check Alternate Currency 2050 CHECK Personal Check
Alternate Currency

TRAV Travelers Check Alternate Currency 2060 CHECK Travelers Check
Alternate Currency

STCR Store Credit Alternate Currency 4090 VOUCH Store Credit
Alternate Currency

GICT Gift Certificate 4100 VOUCH Gift Certificate
Alternate Currency

RTLog Mapping and Translation

2-12 Oracle Retail Strategic Store Solutions Implementation Guide

Table 2–9 CCEM

Credit card input type CCEM Dynamic

Manual T Terminal Used

MSR MSR Magnetic Strip Read

Table 2–10 Unit of Measure

Unit of Measure

'LF' 'linear feet' 'LF' 'linear feet'

'LM' 'linear meters' 'LM' 'linear meters'

'PN' 'pounds net' 'LBS' 'POUNDS'

'KG' 'kilograms' 'KG' 'KILOGRAM'

'UN' 'units' 'EA' 'EACH'

Table 2–11 Total ID for TOTAL type transactions

Total ID (Reference Number 1) for TOTAL type transactions.

1000 CASH Cash - primary currency CASH

2000 CHECK Personal Check CHCK

2020 CHECK Traveler Check TRAVCHK

5000 COUPON Manufacturers Coupons QPON

8000 DCARD Debit Card DEBITCARD

6000 MORDER Money Orders MNYORDER

4030 VOUCH Gift Certificate GIFTCERT

4040 VOUCH Gift Card GIFTCARD

4050 VOUCH Store Credit STCREDIT

4060 VOUCH Mall Certificate MALLCERT

4070 VOUCH Purchase Order PRCHORDER

2030 CHECK E-Check ECHECK

2040 CHECK Mail Bank Check MBCHECK

3000 CCARD Visa CCARDVisa

3010 CCARD Mastercard CCARDMCard

3020 CCARD American Express CCARDAmEx

3030 CCARD Discover CCARDDisc

3040 CCARD Diners Club - N. America CCARDDiner

3120 CCARD House Card CCARDHCard

3130 CCARD JCB CCARDJCB

1010 CASH Cash Alternate Currency CASHAC

2050 CHECK Personal Check Alternate Currency PCHECKAC

2060 CHECK Alternate Currency TCHECKAC

4090 VOUCH Store Credit Alternate Currency STCRDTAC

4100 VOUCH Gift Certificate Alternate Currency GIFTCERTAC

Implementation Configuration 3-1

3
Implementation Configuration

Data Import Spring Configurations
The system has been designed to support a pluggable model. The DIMP Controller,
ImportTranslator, ImportController, ImportDAO, MessageLogger and scheduler are all
designed to be configurable at deployment time. This is accomplished through the use
of Spring as a deployment framework. Each of these classes is only accessed through
their interface. Therefore, any new implementations only need to support the
interfaces to be used by the subsystem. Introducing an alternate implementation is
done through updates to the Spring configuration file. No additional code changes are
necessary.

Table 3–1 includes the set of Spring bean IDs used for each of the pluggable
components.

Table 3–1 Spring Bean IDs Used For Each Of The Pluggable Components

Spring bean ID Provided implementation Additional configuration

service_
MerchandiseHierarchyImportTra
nslator

com._
360commerce.commerceservices.ite
m.hierarchy.importdata.Merchandise
HierarchyImportTranslator

batchSize=1000

service_
StoreHierarchyImportTranslator

com._
360commerce.commerceservices.stor
e.hierarchy.importdata.StoreHierarch
yImportTranslator

batchSize=1000

service_TaxImportTranslator com._
360commerce.commerceservices.tax.i
mportdata.TaxImportTranslator

batchSize=1000

service_
EmployeeImportTranslator

com._
360commerce.commerceservices.em
ployee.importdata.EmployeeImport
Translator

batchSize=1000

service_MessageLogger com._
360commerce.commerceservices.com
mon.importdata.MessageLogger

messages=messageSource

Data Import Spring Configurations

3-2 Oracle Retail Strategic Store Solutions Implementation Guide

These setting can be found in the ServiceContext.xml file packaged in the
config.jar under the /config/context package.

The web.xml in WEB-INF directory has the following configuration under the
web-app section.

<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>/WEB-INF/schedulingContext-quartz.xml</param-value>
</context-param>

The following servlet should also be configured to start up automatically. The servlet
loads the context configuration files. Because the schedulingContext-quartz.xml file is
configured in the context, this file is loaded by the servlet. SchedulerFactoryBean is
configured to start on load; hence it is invoked and starts the scheduler timer.

<servlet>
<servlet-name>context</servlet-name>
<servlet-class>org.springframework.web.context.ContextLoaderServlet</servlet-class
>
<load-on-startup>1</load-on-startup>
</servlet>

Table 3–2 includes additional sets of Spring bean IDs used for each of the pluggable
components.

service_ImportJobTrigger org.springframework.scheduling.qu
artz.SimpleTriggerBean

JobDetail=service_
ImportOrchestratorStartDelay=10000Re
peatInterval=10000

service_ImportOrchestrator org.springframework.scheduling.qu
artz.JobDetailBean

com._
360commerce.commerceservices.import
data.ImportOrchestratorJob

DIMP_Scheduler org.springframework.scheduling.qu
artz.SchedulerFactoryBean

triggers=service_
ImportJobTriggerAutoStartup=trueAppl
icationContextSchedulerContextKey=ap
plicationContextWaitForJobsToComplete
OnShutdown=true

Table 3–2 Additional Spring Bean IDs Used For Each Of The Pluggable Components

Spring bean ID Provided implementation Additional configuration

persistence_ImportController com._
360commerce.commerceservices.impo
rtdata.ImportController

batchSize=1000

persistence_
MerchandiseHierarchyImportDA
OTarget

com._
360commerce.commerceservices.item.
hierarchy.importdata.dao.Merchandis
eHierarchyImportDAO

dataSource=persistence_dataSource

Table 3–1 Spring Bean IDs Used For Each Of The Pluggable Components

Spring bean ID Provided implementation Additional configuration

Data Import Spring Configurations

Implementation Configuration 3-3

These settings can be found in the PersistenceContext.xml file packaged in the
config.jar under the /config/context package.

By default, the ImportController’s batch size is set to 1000 and all the translators are
also using the same. However, each individual translator can be configured separately
to optimize the import per the size of the data operation. Spring sets the batch size
value onto the translator when instantiated. It is the responsibility of the translator to
call setBatchSize(int) with that value onto the ImportController.

Notice that the ID of the DAO beans end with Target. This is because the ID that is
actually used by the application returns a Proxy Bean configured to intercept method
calls to the DAO and associate transactions with them. Upon ImportExceptions
thrown by those methods, the transaction is rolled back.

Several configuration files exist containing settings specific to DIMP. Properties are
read when the server starts, so any changes require a server restart before they take
effect.

spring.properties
##
Global settings (applicable to OC4J and WAS)
##

directory in which incoming data import bundles arrive
importdata.file.path=C:/temp/dataimport/incoming

directory in which dimp bundles are archived after processing
importdata.archive.path=C:/temp/dataimport/archive

true/false whether data import scheduler should scan importdata.file.path
execute.import=false

the delay in milliseconds to start the import and price change triggers (900000
= 15 minutes)
import.scheduler.startdelay=60000
pricechange.scheduler.startdelay=120000

the delay between import and price change scheduler executions (86400000 = 24
hours)
import.scheduler.repeatinterval=86400000
pricechange.scheduler.repeatinterval=3600000

name of the DIMP logger config file

persistence_
StoreHierarchyImportDAOTarget

com._
360commerce.commerceservices.store.
hierarchy.importdata.dao.StoreHierarc
hyImportDAO

dataSource=persistence_dataSource

persistence_TaxImportDAOTarget com._
360commerce.commerceservices.tax.i
mportdata.dao.TaxImportDAO

dataSource=persistence_dataSource

persistence_
EmployeeImportDAOTarget

com._
360commerce.commerceservices.empl
oyee.importdata.dao.EmployeeImport
DAO

dataSource=persistence_dataSource

Table 3–2 Additional Spring Bean IDs Used For Each Of The Pluggable Components

Spring bean ID Provided implementation Additional configuration

Archive File Format

3-4 Oracle Retail Strategic Store Solutions Implementation Guide

logger.filename=dimplogger

importdata.file.path and importdata.archive.path are file-system dependent. Windows
systems would use paths such as:

C:/temp/dataimport/incoming

Linux systems would use paths such as:

/tmp/dataimport/incoming

execute.import determines whether or not data imports execute in the
environment. Its default is false.

import.scheduler.startdelay is a value, in milliseconds, that determines the
interval from when the Quartz scheduler starts and the import process is executed for
the first time. For example, a value of 60000 means that the scheduler is delayed for
one minute.

import.scheduler.repeatinterval is a value, in milliseconds, that determines
how often the import process is run.

pricechange.scheduler.startdelay and
pricechange.scheduler.repeatinterval are used by Back Office only. They
are the Quartz scheduler settings for the process that applies imported price changes
when they are about to go into effect or expire.

logger.filename points to another properties file containing the string values that
can be customized for DIMP messages.

dimplogger.properties
This is the file referred to by the value, logger.filename, in spring.properties. It
contains text values that can be customized to make DIMP messages easily
distinguishable in the oracleretail log file.

Every DIMP message appears with the dimp. prefix. dimp.text1, dimp.text2 and
dimp.text3 are used depending on how much information is supplied by the
underlying system.

Archive File Format
The Archive File is of the following format:

META-INF
 MANIFEST.MF
ItemImport-12345-20032-007.xml
PriceImport-12345-20032-007.xml
StoreHierarchy.xml
…..

The suggested file naming convention for the archive is as follows:

[arbitrary_portion]-[store_id]-[YYYYMMDD]-[NNN].jar

Where [arbitrary_portion] can be used by the implementation team for any
value, and [NNN] is the batch ID in the range of 0 through 2^32-1, or 2,147,483,647
(because of the limitations of the XSD int datatype). This is a sequential number that is
used to determine the processing order for archives, if more than one exists on the
server at a time. The date is only available for visual reference. If the file name is not

Archive File Format

Implementation Configuration 3-5

formatted as above, the values in the manifest are used instead. However, if both the
archive file name and the file names within the manifest contain a batch ID, the value
in the archive file name takes precedence.

There is no restriction on the file names and they can be in any format. But the exact
file names have to be listed in the MANIFEST.MF.

The format of the MANIFEST.MF is as follows

Manifest-Version: 1.0

This manifest describes the contents of an archive referred to as a
bundle. The following two values list the ID of the batch that
produced this bundle and the ID of the destination store to receive
it. The BatchID should be numeric less than 2^32-1.

BatchID: <N>
StoreID: <NNNNN>

The following section lists the files contained in this bundle archive.
Each key should begin with "FileN" without quotes and N being a number.
The value of the key consists of a bundle entry file name followed
by hard brackets containing a list of files that should be processed
before it.
#
e.g. File1: ItemImport.xml[TaxImport.xml,StoreHierarchyImport.xml]
#
The order of the files or their dependency list is not important.

File1: <filname1>[<optional dependencies>]
...
FileN: <filnameN>[<optional dependencies>]

With the exception of manifest.mf, path names should not be used when creating the
manifest. In the figure below, note that the path column is empty except for meta-inf,
the path for manifest.mf.

Note: Although WinZip cannot be used to create a bundle, it can be
used to inspect the bundle, as well as add, delete, or modify the XML
contents. Use the following Jar command line utility to create a
bundle:

C:\temp\dataimport\archive>%JAVA_HOME%\bin\jar -cvfm test_
coupon3.jar manifest_details.txt
PricingImportSample_addCouponDiscount.xml ItemImportSample_
addCoupon.xml

Archive File Format

3-6 Oracle Retail Strategic Store Solutions Implementation Guide

Figure 3–1 Adding Files To a Jar

In the following screen shot of the dialog box for adding files to a WinZip archive, note
that the Save full path info option at the bottom is unchecked.

Archive File Format

Implementation Configuration 3-7

Figure 3–2 Adding Files To A WinZip Archive

Here is an example of a manifest file

Oracle Retail Merchandising System Configuration

3-8 Oracle Retail Strategic Store Solutions Implementation Guide

Manifest-Version: 1.0

This manifest describes the contents of an archive referred to as a
bundle. The following two values list the ID of the batch that
produced this bundle and the ID of the destination store to receive
it. The BatchID should be numeric less than 2^32-1.

BatchID: 1
StoreID: 04241
File1: ItemImportSample_addCoupon.xml[]
File2: PricingImportSample_addCouponDiscount.xml[ItemImportSample_addCoupon.xml]

The following section lists the files contained in this bundle archive.
Each key should begin with "FileN" without quotes and N being a number.
The value of the key consists of a bundle entry file name followed
by hard brackets containing a list of files that should be processed
before it.
#
e.g. File1: ItemImport.xml[TaxImport.xml,StoreHierarchyImport.xml]
#
The order of the files or their dependency list is not important.

File1: TaxImport.xml[]
File2: MerchandiseHierarchyImport.xml[]
File3:
ItemImport.xml[TaxImport.xml,MerchandiseHierarchyImport.xml,StoreHierarchyImport.x
ml]
File4: ItemImport2.xml[ItemImport.xml]
File5: PriceImport.xml[ItemImport2.xml]
File6: StoreHierarchyImport.xml[]
File7: EmployeeImport.xml[StoreHierarchyImport.xml]

Oracle Retail Merchandising System Configuration
If the retailer is integrating with Oracle Retail Merchandising System, it is assumed
that the retailer is setting up items within Oracle Retail Merchandising System, and
not using this feature in Back Office. If the retailer chooses to add or edit an item
within Back Office, then that item data might be overridden by the next download
from Oracle Retail Merchandising System.

Some data fields are defaulted to the values shown in Table 3–3.

Table 3–3 Oracle Retail Merchandising System Default Values in the Back Office Item
Maintenance Screen

Back Office Data Field
Default Value when integrating with Oracle Retail
Merchandising System or Limitation

Cost 0

Class Items belong to one class only

Manufacturer Null

Planogram Null

Labels/Tags Template Type Default

Serialized FALSE

Restocking Fee FALSE

Activation Required No

Registry Eligible No

Oracle Retail Price Management Configuration

Implementation Configuration 3-9

Service items (non-merchandise items that are non-inventory) need to be loaded
separate from the download process.

In Oracle Retail Merchandising System, differentiators 1 through 4 are sent as values
and are mapped to STYLE, COLOR, SIZE and NULL in Point-of-Service.

Oracle Retail Price Management Configuration
If the retailer is integrating with Oracle Retail Price Management, it is assumed that
the retailer is setting up items within Oracle Retail Price Management, and not using
this feature in Back Office. If the retailer chooses to add or edit an item within Back
Office, that item data might be overridden by the next download from Oracle Retail
Price Management.

In the first phase of the integration, some data fields are defaulted to the values shown
in Table 3–4.

Special Order Eligible No

Employee Discount Eligible Yes

Damage Discount Eligible Yes

Size Entry Required No

Authorized for Sale Active

Item Department The first department in the drop down list.

If no Item Department is specified, then the value is defaulted to
the first value in the drop down list.

Note: You must edit the Data Definition Language (DDL) before
building the store's database when integrating with Oracle Retail Price
Management.

In the files CreateTableTemporaryPriceChangeItem.sql and
CreateTablePriceDerivationRule.sql there are the following
two lines:

-- Uncomment and use this index for Oracle Retail Price Management
(RPM) integrations
-- CREATE UNIQUE INDEX ITM_TMP_PRM_IDX ON MA_ITM_TMP_PRC_CHN (ID_
PRM, ID_PRM_CMP, ID_PRM_CMP_DTL);

Remove the dashes that start the second line so that when the
database is built, these three columns (that contain Oracle Retail Price
Management IDs) create a unique index.

Table 3–3 Oracle Retail Merchandising System Default Values in the Back Office Item
Maintenance Screen

Back Office Data Field
Default Value when integrating with Oracle Retail
Merchandising System or Limitation

Data Requirements – Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit

3-10 Oracle Retail Strategic Store Solutions Implementation Guide

Service items (non-merchandise items that are non-inventory) need to be loaded
separate from the download process.

Data Requirements – Oracle Retail Strategic Store Solutions to Oracle
Retail Sales Audit

For Point-of-Service there are two types of data that must be provided for the
Point-of-Service to start, and before the task of ringing up items begins:

■ Base Data – the basic configuration data. This includes:

– currency

– password policy

– user role

– work group information

This information is provided with the application.

■ Store and Application Data (Seed Data) – this is data that differentiates one store
from another. This information includes:

– item

– employee

Table 3–4 Oracle Retail Price Management Default Values

Back Office Screen Back Office Data Field

Default Value when integrating
with Oracle Retail Price
Management or Limitation

Discount Rule Start Time 0:00

Discount Rule End Time 23:59:59

Discount Rule Source Promotions defined at Item Level
only

Discount Rule Target Promotions defined at Item Level
only

Discount Rule Source Threshold None

Discount Rule Source Limit None

Discount Rule Target Threshold None

Discount Rule Target Limit None

Discount Rule Number of Times Per Transaction -1

Discount Rule Accounting Method Discount

Discount Rule Allow Source to Repeat Yes

Discount Rule Deal Distribution Target

Discount Rule Target Quantity 1

Price Maintenance Start Time 0:00

Price Maintenance End Time 23:59:59

Price Maintenance Status Back Office gets status from effective
date and record descriptors

Price Maintenance Template Type Default

Data Requirements – Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit

Implementation Configuration 3-11

– pricing rules

– tax rule

Examples of Base Data insert statements can be found in the build at
<root>\modules\utility\deploy\360common\db\sql\Base and in the
Point-of-Service installation at
\OracleRetailStore\Server\360common\db\sql\Base.

Examples of Seed Data insert statements can be found in the build at
<root>\modules\utility\deploy\360common\db\sql\Seed and in the
Point-of-Service installation at
\OracleRetailStore\Server\360common\db\sql\Seed.

Loading base data and Merchandise Operations Management bundles into the Store
level database does not provide enough data for the Point-of-Service to initiate. This
combination is missing some required data, such as the store’s tax geocode and
employees to log into the application. In order to provide a minimum amount of
information, combine a small number of files from the Seed Data with all the files from
Base Data. The additional files are:

■ InsertTableCodeList.sql – data used in Point-of-Service drop down lists for
pay-in/out, Tax overrides and so forth.

■ InsertTableEmployee.sql – employee information.

■ InsertTableEmployeeHierarchyAssociation.sql – employee information.

■ InsertTableStoreSafeTender.sql – tenders used in the store.

■ InsertTableZTaxTables.sql – base tax information, store geocode.

■ InsertTablePriceDerivationRuleType.sql – price derivation rule types.

Data Requirements – Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit

3-12 Oracle Retail Strategic Store Solutions Implementation Guide

Capacity Planning 4-1

4
Capacity Planning

This section lists the approximate hard drive sizes that are required at each store to be
able to support the Data Import project.

The following assumptions were made to arrive at an approximate capacity:

■ The archival period is one week.

■ The frequency is one file per day.

■ The TAX Import file is not part of the Import Bundle.

■ Peak Load for the EMPLOYEE Import is 30 employees per file.

■ The Peak Load Capacity of each file is taken into consideration for the estimation.

■ The average compression ratio in creating a jar file is considered to be 60%.

■ As the frequency is one bundle per day, and the archival period is one week,
therefore the maximum number of files on the disk is eight.

■ A footprint on the DDI (Data Distribution Interface) on the Store Server is
considered to be the size of one bundle and added to the final estimate. The
footprint on the DDI is not part of the scope of the DIMP.

■ Because the peak load size for Merchandise Hierarchy is not defined, a load of
5000 records is estimated.

Table 4–1 identifies the file sizes for components in the data import at a store.

Total Size of Files
15,567,092,000.00 Bytes

Table 4–2 identifies the sizes of data import bundles.

Table 4–1 File Sizes

Type of Import
One-Record Size in
Bytes

Peak Load (Number of
Records) Peak File Size in Bytes

Item 950.00 15,000,000.00 14,250,000,000.00

Pricing 1,600.00 820,000.00 1,312,000,000.00

Store 710.00 5,000.00 3,550,000.00

Merchandise 300.00 5,000.00 1,500,000.00

Employee 1,400.00 30.00 42,000.00

4-2 Oracle Retail Strategic Store Solutions Implementation Guide

Table 4–3 identifies the required hard-drive capacities to enable a data import.

Required Hard Drive Capacity (Approximate)
80.00 GB

Pricing Import Data Volumes
Data Volumes: 800000 price changes per day per store.

Table 4–2 Bundle Size

Bundle Size (jar Size) Assuming 60%
Compression Ratio
in creating a jar

9,340,255,200.00 Bytes

Approximate Bundle Size

8,900.00 MB

8.69 GB

Table 4–3 Hard Drive Capacity

Seven files in Archive + One File in
current

71,200.00 MB

69.53 GB

Approximate Hard Drive Size to retain
the Bundles

70.00 GB

Footprint on DDI Store Server (the
DDI reamins the responsibility of the
implementation team to implement) -
assuming size of one Bundle

78.69 GB

Table 4–4 Item Import Data Volumes

Data Volumes

Item 800,000 – 1.5 million for peak season 1.5 million

5000 – 15,000 for delta

Item Location See Item See Item

Item (Merchandise) Hierarchy number of departments number of departments

groups number of groups

number of hierarchies number of hierarchies

Organizational (Store) Hierarchy 5000 stores, 6 levels 5000 stores, 6 levels

number of regions

number of districts per region

number of stores per district.

Tax data See Item (since any tax info is limited to
item related attributes such as tax group
ID)

*Tax info does not come from Oracle Retail
Merchandising System

See Item (since any tax info is
limited to item related attributes
such as tax group ID)

*Tax info does not come from
Oracle Retail Merchandising
System

Customization Notes 5-1

5
Customization Notes

Data Import Extension Points and Development
Oracle Store Solutions has provided not only extension points for enhancing or
modifying the capabilities of the existing data imports, but there are also tools
provided for jump-starting an altogether new data import. Do the following to create a
new data import module:

1. Compose XSD that the import data conforms to.

2. Generate sample XML based on the XSD. This can be done using the Eclipse EMF
plug-in. See http://www.eclipse.org/

3. Map the XSD to the Data Model.

4. Create a Message Driven Bean and update the appropriate deployment
descriptors.

5. Use SAXParserGenerator with XSD.

6. Use DAOGenerator to generate data access objects (DAO) for tables mapped to.

7. Rename DAO classes to match logical names of tables.

8. Delete duplicate DTOs or DAOs that might exist in other packages and that can be
reused.

9. Update DAOIfc method parameters to pass actual DTO objects.

10. Remove column names from UPDATE_SQL that are not updated during update
procedure from DAO and SQLIfc.

11. Update DAO get*Statement() methods to map DTO fields to PreparedStatement
buckets.

12. Create a test that reads the XML and sends it to translator. How the XML is created
or read is not important at this time, nor is using Spring or JUnit or AppServer.

The following sections discuss these steps in more detail. Where these steps overlap
with steps for enhancement (as opposed to steps for creating new imports), the
enhancement steps are identified.

First, extension points are identified, and techniques for enhancing existing data
imports are described. Each of the previously mentioned DIMP modules (Taxation,
Merchandise Hierarchy, Store Hierarchy, and Employee) follow the same patterns of
implementation and vary in minor details only. We concentrate on Employee.

The following diagram is the Employee Data Import Static Model.

Data Import Extension Points and Development

5-2 Oracle Retail Strategic Store Solutions Implementation Guide

Figure 5–1 Employee Data Import Static Model

Data Import Extension Points and Development

Customization Notes 5-3

Import Adapter and Translator
The entry point for data imports is the ImportIOAdapterIfc. It is configured through a
Spring context as either EEImportIOAdapter, for JCA implementations, or
FileImportIOAdapter for direct file I/O implementations. The IO Adapter retrieves the
bundles from the file system, determines the processing order, and passes the XML
stream data to the ImportInitiator, which determines the import type from the payload
and passes the string to a translator. The ImportInitiator (as the BeanLocator) provides
an ImportTranslatorIfc from the service context by passing the key
EmployeeImportTranslator.IMPORT_TRANSLATOR_BEAN_KEY, for example.

The following example shows the EEImportIOAdapter implementation in use:

 <!-- Import IO Adapter Implements com._
360commerce.commerceservices.importdata.ImportIOAdapterIfc -->
 <bean id="service_ImportIOAdapter" class="com._
360commerce.commerceservices.importdata.EEImportIOAdapter">
 </bean>
 <!--<bean id="service_ImportIOAdapter" class="com._
360commerce.commerceservices.importdata.FileImportIOAdapter">

SAXParserGenerator
If creating a new data import module and starting with a defined XSD, a simple utility
can be run to generate code for a Translator, SAX handlers, simple DTO, and a skeleton
Import DAO. The following is an example of how to run this utility.

Example 5–1 SAXParserGenerator utility command prompt

<root>\modules\utility>java
com._360commerce.codegen.importtranslator.SAXParserGenerator "C:\Data
Import\Design\Employee\EmployeeImport.xsd"
com._360commerce.commerceservices.employee.importdata
../../commerceservices/employee/src

This command line example shows that the utility program is Java-based and takes
three arguments:

■ The location of the XSD file.

■ The desired package name for the generated source code.

■ The directory in which to place new source code files.

This utility can be configured as an executable target in your favorite Integrated
Development Environment (IDE) so this utility can be run again as changes continue
to be made to the XSD which defines the format of the new data input.

The code generation uses the Java-based Velocity templates and APIs. See
http://jakarta.apache.org/velocity. The templates can be found at
<root>/modules/utility/templates/.

Manually Editing Generated Code
The generated code requires additional manual editing before it can be used. For
example, the ImportDAO has only the barest of implementations in its methods. Add
code to pass various DTOs to the correct DAO that can handle it.

Appropriate DTOs might already exist in the codebase. Examine the attributes of the
pre-existing DTO to see if it or the generated DTO should be used. In some cases,
additional code might need to be added. For example, if you consider that a
single-entity DTO usually represents a single record in the database, the SAX handlers

Data Import Extension Points and Development

5-4 Oracle Retail Strategic Store Solutions Implementation Guide

are coded to not process child DTOs passed to the SAX handlers until the DTO that a
SAX Handler creates is successfully processed.

Example 5–2 EmployeeAccessHandler Process DTO Before Children

/**
 * End handling this element. Calls {@link
 * ImportHandlerIfc#processEntity(java.io.Serializable)}
 * @throws SAXException
 */
 public void end() throws SAXException
 {
 try
 {
 // process this first
 parent.processEntity(employeeAccessDTO);

 // process all its children
 Iterator iter = children.iterator();
 while (iter.hasNext())
 {
 Serializable child = (Serializable)iter.next();
 parent.processEntity(child);
 }
 }
 catch (ImportException e)
 {
 logger.error("Could not end element " + getText(), e);
 throw new SAXException("Could not end element " + getText(), e);
 }
 }

However, in some cases, such as when there are important attributes that are needed
to fill the DTOs, and which need to be persisted immediately, the call to
parent.processEntity(Serializable) can be commented out of the end() method and
added to the start(Attributes) method. The start(Attributes) method is called when
parsing the beginning of the XML element. Notice in the following example, the value
for "Incremental" defaults to true if it does not exist.

Example 5–3 EmployeeImportHandler Process DTO During Start

/**
 * Start handling this element by inspecting its attributes, if any.
 * @param attributes the attributes given.
 * @throws SAXException
 */
 public void start(Attributes attributes) throws SAXException
 {
 String incremental = attributes.getValue("Incremental");
 Boolean bIncremental = (incremental != null)? Boolean.valueOf(incremental)
: Boolean.TRUE;

employeeImportDTO.setEmployeeImportIncrementalAttribute(bIncremental.booleanValue(
));

 try
 {
 // process this first
 parent.processEntity(employeeImportDTO);
 }

Data Import Extension Points and Development

Customization Notes 5-5

 catch (ImportException e)
 {
 logger.error("Error starting import" + employeeImportDTO, e);
 throw new SAXException("Error starting import" + employeeImportDTO,
e);
 }
 }

There also might be a scenario where parent XML element values, such as IDs, are
required for child DTO objects. These attributes might have to be added manually to
the DTOs and set by the handlers. See the Merchandise Import DTO, LevelDTO as an
example, and the handlers that call its set methods.

If it seems that the SAX handlers or the DTOs are missing attributes for defined XML
elements, there might be errors in the XSD that the SAXParserGenerator cannot
decipher. Ensure that your XSD validates properly based upon the schema at
http://www.w3.org/2001/XMLSchema.

Metadata
The top-level element of each import includes metadata pertaining to the import
bundle. Among other possible uses, this data is included in import bundle tracking
and error logging. The following is an example XML fragment. Consult the
development team for the status of data import schemas beyond this release.

<ItemImport
 Priority="0"
 FillType="FullIncremental"
 Version="1.0"
 Batch="1"
 CreationDate="2001-12-17T09:30:47.0Z"
 ExpirationDate="2007-12-17T09:30:47.0Z"
 xsi:noNamespaceSchemaLocation="ItemImport.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
. . .

The metadata attributes are defined as follows:

Priority
An integer specifying the order, from lowest to highest, in which multiple files of one
type in a bundle should be processed.

FillType
The feed method: Kill And Fill, Delta Incremental, or Full Incremental. The XSD
specifies which of these are allowed for an import type. For example, Tax allows only
Kill And Fill, while Item allows all three.

Version
The version of the application processing the data.

Batch
An integer sequence number, corresponding to the ID of the process that created the
file.

CreationDate
A timestamp identifying the file’s creation time.

ExpirationDate
A timestamp beyond which a file has become stale and should not be processed.

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

5-6 Oracle Retail Strategic Store Solutions Implementation Guide

ImportControllerIfc
The current implementation of the ImportControllerIfc operates well in most
circumstances. However, there might be circumstances that call for a different version
of the controller to be plugged in. For example, a new controller might put a parsed
batch onto one of many secondary queues instead of passing it synchronously to a
DAO, then returning control to the translator to continue parsing the import.

The secondary queue is another thread that takes the incoming batch and passes it to
an instance of the import DAO. This enables multiple batches to be processed at once.

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points
and Development

There are three distinct situations in which a implementation team would need to
extend the functionality in the Export File Generator:

■ Adding data elements to the RTLog Format.

■ Creating an entirely new fixed length export format.

■ Creating an entirely new export format which is not fixed length.

Adding Data Elements to the RTLog Format
To add VAT information added to the one or more of the reference fields in the
Transaction Item record to the RTLog a implementation team takes the following steps:

1. Define the format of the VAT data.

2. Depending on the outcome of step 1, it might be advantageous to modify the
definition of a Reference field in the Transaction Item record. This cause the
creation of Acme-specific Export Format Configuration file. If this is desirable,
copy RTLogFormat.xml to AcmeRTLogFormat.xml and make the modifications in
this file.

3. Define how the columns in the table TR_LTM_SLS_RTN_TX map to the format
defined in step 1.

4. Write a FieldMapper class called AcmeItemVATTax.java to perform the mapping.

5. Copy RTLogMappingConfig.xml to AcmeRTLogMappingConfig.xml and make
the following change to the new file:

<TABLE table="TR_LTM_SLS_RTN_TX">
 <MAP column="MO_TX_RTN_SLS" record="TransactionTax" field="TaxAmount"

fieldMapper="com.acme.exportfile.RTLog.fieldmappers.AcmeItemVATTax "/>
</TABLE>

6. Modify StoreServerConduit.xml to use AcmeRTLogMappingConfig.xml and
AcmeRTLogFormat.xml instead of RTLogMappingConfig.xml and
RTLogFormat.xml.

If the Reference field is partitioned correctly, and the values coming from the database
to these new fields do not requires manipulation, then it is possible that the
FieldMapper class is not required.

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

Customization Notes 5-7

Creating a New Fixed Length Export Record Format
Currently, Oracle Retail has only one way to send transactional data to a customer’s
back end systems: POSLog. However, it is expensive and time consuming to extend
POSLog, to explain it to customers and to develop the code that loads it into the
customer back end.

It might be faster and cheaper to use the Export File Generator to generate the
transaction log format that the customer is already consuming.

The generation of all three current formats (DTM for Central Office, POSLog for the
customer backend, and RTLog for Oracle Retail Sales Audit) simultaneously has been
tested in the development environment.

Here are the steps to create transaction log export code for "Acme", a generic customer:

1. Work with Acme developers to create a mapping document that describes the
relationship between the Oracle database and the current Acme back end
system/transaction log format. A mapping exercise of this type must be done even
if the customer eventually chooses to use the POSLog to transfer the data.
Understanding the customer’s current transaction log can provide valuable insight
into the data requirements.

2. Construct an Acme-specific Export Format Configuration file which describes all
the records in the Acme transaction log; call this file AcmeTLogFormatConfig.xml.

3. Create an Acme-specific Mapping configuration file; call this file
AcmeTLogMappingConfig.xml.

4. Create an Acme-specific Entity Reader configuration file; call this file
AcmeTLogExtractConfig.xml.

5. If Acme exports the RTLog for Oracle Retail Sales Audit, the
RTLogExportDaemonTechnician and RTLogExportDaemonThread can still be
used to export the Acme Tlog formatted data. Just create another entry in
StoreServerConduit.xml with a different technician and daemon name. This entry
looks like the following:

<TECHNICIAN name="AcmeTLogExportDaemonTechnician"
 class="RTLogExportDaemonTechnician"
 package="com.extendyourstore.domain.manager.RTLog"
 export="Y">
 <PROPERTY propname="daemonClassName"

propvalue="com.extendyourstore.domain.manager.RTLog.RTLogExportDaemonThread"/>
 <PROPERTY propname="daemonName"
 propvalue="AcmeTLogExportDaemon"/>
 .
 .
 .
</TECHNICIAN>

6. Modify StoreServerConduit.xml to use AcmeTLogExtractConfig.xml,
AcmeTLogFormatConfig.xml and AcmeTLogMappingConfig.xml when exporting
the Acme TLog.

7. Determine the batch ID column to use for this process. By convention, DTM uses
TR_TRN. ID_TLOG_BTCH, POSLog uses TR_TRN.ID_BTCH_ARCH, and RTLog
uses ID_RTLOG_BTCH. If your system exports RTLog, you must override
RTLogExportBatchGenerator.retrieveTransactionList() and
RTLogDatabaseAdapter.postResults() to change the column your application uses.

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

5-8 Oracle Retail Strategic Store Solutions Implementation Guide

8. Over the course of development add table names to AcmeTLogExtractConfig.xml,
mapping information to AcmeTLogMappingConfig.xml. Write Acme-specific
FieldMapperIfc and AccessorIfc classes.

9. It is necessary to create an Acme-specific implementation for the
MappingResultIfc interface to hold the Acme transactional information. Call this
class AcmeTLogMappingResult. This necessitates the creation of an Acme-specific
EntityMappingObjectFactoryIfc class. Call this class
AcmeEntityMappingObjectFactory.

10. It is necessary to create an Acme-specific implementation for the
RecordFormatContentBuilderIfc to assemble the Acme-specific export records.
Call this class AcmeTLogRecordFormatContentBuilder. This necessitates the
creation of an Acme specific RecordFormatObjectFactoryIfc class called
AcmeRecordFormatObjectFactory.

11. Modify StoreServerConduit.xml to use the AcmeEntityMappingObjectFactory and
the AcmeRecordFormatObjectFactory when exporting the Acme TLog.

Exporting a Non-Fixed-Length Record Format
There are other styles of text besides fixed record length which have been used to
transfer transactional information to the enterprise. For example: comma delimited,
and tag and value. To support either of these you must complete all the steps in the
previous section, as well as the following:

1. It is likely that you need additional information about the export file format. As a
result you must add information to the Export Format Configuration file, and
create an Acme-specific implementation of the RecordFormatConfiguratorIfc
interface; call this class AcmeRecordFormatConfigurator.

2. The FieldFormat class formats its data based on the data type and generates a
fixed length field. When all the fields in a record are aggregated, this creates a
fixed length record. This class must be replaced by an Acme-specific
implementation; call this class AcmeCommaDelimitedFieldFomat. It might also be
necessary to create an Acme-specific implementation of RecordFormatIfc; call this
class AcmeCommaDelimitedRecordFomat.

3. Modify AcmeRecordFormatObjectFactory to return
AcmeRecordFormatConfigurator, AcmeCommaDelimitedFieldFomat, and
AcmeCommaDelimitedRecordFomat.

Object Factories
Object factories provide system implementers with the means to replace base product
implementations with classes that are more appropriate to their needs. The object
factory classes appear as entries in configuration files, and often times a configuration
file functions as an object factory. This section discusses the object factory aspects and
the configuration aspects of the configuration files.

StoreServerConduit.xml
The Store Server Conduit file (<root>\applications\pos\config\conduit\
StoreServerConduit.xml) defines at runtime the classes and configuration files that
make up the managers and technicians in the Point-of-Service Store Server. One of the
technicians it defines is the RTLogExportDaemonTechnician. Following are the classes
the Store Server Conduit file defines for use when exporting the RTLog:

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

Customization Notes 5-9

DomainObjectFactory
The DomainObjectFactory instantiates the RTLogExportBatchGeneratorIfc class. The
RTLogExportBatchGenerator builds the WorkUnit (the list of transactions to export)
and calls the WorkUnitController (ExportFileGenerator).

RTLogExportBatchGenerator also instantiates the ExportFileGeneratorIfc and the
WorkUnitIfc. If you need a different implementation of either class, create a new
implementation of RTLogExportBatchGenerator.

Table 5–1 Store Server Conduit File

Class Name Interface Name Description

RTLogExportDaemonTechnician
(com.extendyourstore.domain.man
ager.rtlog)

RTLogExportDaemonTechnicianIfc
(com.extendyourstore.domain.man
ager.rtlog)

Sets up the RTLog Export Process. The
Dispatcher instantiates this class and
then sets all the other parameters this
object. It is also responsible for
managing the batch regeneration
process.

RTLogExportDaemonThread
(com.extendyourstore.domain.
manager.rtlog)

RTLogExportDaemonThreadIfc
(com.extendyourstore.domain.
manager.rtlog)

Sleeps for a configurable amount of
time, then wakes up and initiates the
export process.

RTLogDatabaseAdapter
(com.extendyourstore.domain.man
ager.rtlog)

DatabaseEntityAdapterIfc
(oracle.retail.stores.exportfile)

Provides access to the database for
reading each transaction Entity. This
particular implementation uses the
DataManager/ DataTechnician to
retrieve this information.

RTLogEncryptingOutputAdapter
(oracle.retail.stores.exportfile.rtlog)

OutputAdapterIfc
(oracle.retail.stores.exportfile)

Writes the RTLog file to the configured
directory. This particular adapter
encrypts the file as it writes the file to
disk. There is another adapter,
RTLogOutputAdapter, which writes
the file in clear text.

RTLogEncryptionAdapter
(com.extendyourstore.domain.man
ager.rtlog)

EncryptionAdapterIfc
(oracle.retail.stores.exportfile)

Provides access to the mechanisms for
decrypting values which are encrypted
in the database.

ExportFileConfiguration
(oracle.retail.stores.exportfile)

ExportFileConfigurationIfc
(oracle.retail.stores.exportfile)

Contains much the of configuration
information in the
RTLogExportDaemonTechnician; the
technician passes this object to the
daemon, which passes it to the batch
generator which passes it to the export
file generator.

RTLogExportFileResultAuditLog
(com.extendyourstore.domain.man
ager.rtlog)

ExportFileResultAuditLogIfc
(oracle.retail.stores.exportfile)

Formats the export result information
for logging.

EntityMappingObjectFactory
(oracle.retail.stores.exportfile)

EntityMappingObjectFactoryIfc
(oracle.retail.stores.exportfile)

Instantiates the classes used to map the
database Entity to the export file
format.

RecordFormatObjectFactory
(oracle.retail.stores.exportfile)

RecordFormatObjectFactoryIfc
(oracle.retail.stores.exportfile)

Instantiates the classes used to setup
and generate the export the file format.

ExtractorObjectFactory
(com.oracle.xmlreplication)

ExtractorObjectFactoryIfc
(com.oracle.xmlreplication)

Instantiates the classes used to
generate the database Entity.

RTLogCurrencyAdapter
(com.extendyourstore.domain.man
ager.rtlog)

CurrencyAdapterIfc
(oracle.retail.stores.exportfile)

Provides currency services.

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

5-10 Oracle Retail Strategic Store Solutions Implementation Guide

ExtractorObjectFactory
The ExtractorObjectFactory instantiates the classes that generate the database Entity
class.

One item of note is that the application gains access to this factory through a singleton
called ReplicationObjectFactoryContainer. All changes made to these classes must
work for both DTM and Export File generation.

EntityMappingObjectFactory
The following table is a list of the classes this factory instantiates:

RTLogMappingConfig.xml
This configuration file is a factory for FieldMapperIfc and AccessorIfc classes.

The simplest mapping occurs when a value goes directly from a column to a field.
However, many times the mapping between a column and a field is more complex. If
code is required, the configuration file calls out a FieldMapperIfc class to perform this
mapping task. A FieldMapperIfc is associated with a particular table/column
record/field mapping.

The values in a particular record are built up by processing of each individual
ColumnMapIfc objects. There is no guarantee that all the data for a particular export
record resides in a single row in the database. In fact it is unlikely. For example, a row
from the Tender Line Item Table supplies the tender amount, but a row from the Credit
Debit Tender Line Item Table supplies authorization information. Much processing can
take place in between the time that the application has access to each of these rows.

Table 5–2 EntityMappingObjectFactory Classes

Class Name Interface Name Description

MappingCatalogConfigurator
(oracle.retail.stores.exportfile.mapper)

MappingCatalogConfiguratorIfc
(oracle.retail.stores.exportfile.mapper)

Reads the mapping
configuration file and builds an
EntityMappingCatalogIfc object.

EntityMappingCatalog
(oracle.retail.stores.exportfile.mapper)

EntityMappingCatalogIfc
(oracle.retail.stores.exportfile.mapper)

Holds the information that
describes the relationship
between the tables and columns
in the database to the records
and fields in the export file. It
contains a list of TableMaps and
a map of Accessors.

TableMap
(oracle.retail.stores.exportfile.mapper)

TableMapIfc
(oracle.retail.stores.exportfile.mapper)

Contains a list of ColumnMaps
associated with a table.

ColumnMap
(oracle.retail.stores.exportfile.mapper)

ColumnMapIfc
(oracle.retail.stores.exportfile.mapper)

Describes the relationship
between a column and a field in
a specific export record. It can
contain a ValueMapping
Hashmap and/or FieldMapper
class to perform more complex
mapping actions.

EntityMapper
(oracle.retail.stores.exportfile.mapper)

EntityMapperIfc
(oracle.retail.stores.exportfile.mapper)

Controls the mapping process. It
stores the result in the
MappingResultIfc object.

RTLogMappingResult
(oracle.retail.stores.exportfile.rtlog)

MappingResultIfc
(oracle.retail.stores.exportfile.mapper)

Contains the result of Mapping
an Entity to the Export File
Format.

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

Customization Notes 5-11

An AccessorIfc object knows how to locate a particular existing “working” export
record in the MappingResultIfc object. If a record is not available, the AccessorIfc
creates a new one and store it in the MappingResultIfc object.

RecordFormatObjectFactory
Following is a list of the classes this factory instantiates:

Configuration
Each of the configuration files used by this feature (Store Server Conduit, Entity
Reader Configuration, Mapping Configuration, and Record Format Configuration) has
already been referred to in this document. This section describes them in more detail.

The Store Server Conduit File
The Store Server Conduit file (<root>\applications\pos\config\conduit\
StoreServerConduit.xml) defines the following settings for the RTLog Export process.

Table 5–3 RecordFormatObjectFactory Classes

Class Name Interface Name Description

FieldFormat
(oracle.retail.stores.exportfile.formater)

FieldFormatIfc
(oracle.retail.stores.exportfile.formater)

Contains the attributes
associated with a field
including name, value,
starting index, length, and
data type.

RecordFormat
(oracle.retail.stores.exportfile.formater)

RecordFormatIfc
(oracle.retail.stores.exportfile.formater)

Contains a list of
FieldFormatIfc objects.

RecordFormatCatalog
(oracle.retail.stores.exportfile.formater)

RecordFormatCatalogIfc
(oracle.retail.stores.exportfile.formater)

Contains a list of
RecordFormatIfc objects.

RecordFormatConfigurator
(oracle.retail.stores.exportfile.formater)

RecordFormatConfiguratorIfc
(oracle.retail.stores.exportfile.formater)

Reads the format
configuration file and builds
a RecordFormatCatalogIfc
object.

RTLogRecordFormatContentBuilder
(oracle.retail.stores.exportfile.rtlog)

RecordFormatContentBuilderIfc
(oracle.retail.stores.exportfile.formater)

Converts MappingResultsIfc
object into the text that is
written to the export file.

RTLogItemContainedRecords
(oracle.retail.stores.exportfile.rtlog)

ContainedRecordsIfc
(oracle.retail.stores.exportfile.formater)

A list of records, such as
discounts, that are a part of
the item information.

RTLogTransactionContainedRecords
(oracle.retail.stores.exportfile.rtlog)

ContainedRecordsIfc
(oracle.retail.stores.exportfile.formater)

A list of records, such as
header total records, that are
part of a transaction.

Table 5–4 Store Server Conduit File

Setting Name Installed Product Value Description

sleepInterval 600 (seconds) The length of time between each
execution of the RTLog export
process.

exportDirectoryName POSLog The directory where the RTLog is
placed.

formatConfigurationFileName ../config/rtlog/RTLogForma
t.xml

The relative or absolute path of
the Export Format configuration
file.

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

5-12 Oracle Retail Strategic Store Solutions Implementation Guide

The Export Format Configuration file
The export format configuration file describes each of the export record types. For
example, the RTLog specifies the following records:

■ File Header

■ File Tail

■ Transaction Header

■ Transaction Tail

■ Transaction Item

■ Item Discount

■ Transaction Tax

■ Transaction Tender

The following is a snippet from RTLogFormat.xml:

<?xml version="1.0"?>
<RECORD_FORMATS ... >
 <COMMENT>This file defines the format of the Oracle Retail Sales Audit
RTLOG</COMMENT>
 <RECORD_FORMAT_VERSION version="V.12.0.5"/>
 <RECORD_FORMAT name="FileHeader">
 <FIELD_FORMAT name="FileRecordDesciptor" type="char" length="5"
value="FHEAD"/>
 <FIELD_FORMAT name="FileLineIdentifier" type="integer"
length="10"/>
 <FIELD_FORMAT name="FileType" type="char" length="4" value="RTLG"/>
 <FIELD_FORMAT name="FileCreateDate" type="datetime" length="14"/>
 <FIELD_FORMAT name="BusinessDate" type="date" length="8"/>
 <FIELD_FORMAT name="LocationNumber" type="char" length="10"/>
 <FIELD_FORMAT name="ReferenceNumber" type="char" length="30"
value=" "/>
 </RECORD_FORMAT>
 .
 .
 .
</RECORD_FORMATS>

This snippet shows one Record definition (the File Header) composed of seven fields
of various types, lengths and default values.

entityReaderConfigurationFileName ../config/rtlog/RTLogExtra
ctConfig.xml

The relative or absolute path of
the Entity Reader configuration
file.

entityMappingConfigurationFileName ../config/rtlog/RTLogMappi
ngConfig.xml

The relative or absolute path of
the Mapping configuration file.

maximumTransactionsToExport -1 The maximum number of
transactions that should exported
to single RTLog file. The value -1
indicates there is not limit on the
maximum number.

Table 5–4 Store Server Conduit File

Setting Name Installed Product Value Description

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

Customization Notes 5-13

The Entity Reader Configuration File
This file defines tables that Entity Reader reads.

The Mapping Configuration File
This file describes the relationship between the tables and columns in the database and
the records and fields in the export format. The following is a snippet from
RTLogMappingConfig.xml:

<?xml version="1.0"?>
<ENTITY_MAPPER ... >
 <COMMENT>This is a configuration file for the Point-of-Service Transaction to
RTLog Mapping</COMMENT>
 <TABLE table="TR_TRN">
 <MAP column="DC_DY_BSN" record="FileHeader" field="BusinessDate"

fieldMapper="oracle.retail.stores.exportfile.rtlog.fieldmappers.BusinessDateMapper
"/>
 <MAP column="ID_STR_RT" record="FileHeader" field="LocationNumber"

fieldMapper="oracle.retail.stores.exportfile.rtlog.fieldmappers.StoreNumberMapper"
/>
 <MAP column="TS_TRN_END" record="TransactionHeader"
field="RegisterTransactionDate"

fieldMapper="oracle.retail.stores.exportfile.rtlog.fieldmappers.DateTimeMapper"/>
.
.
.
 <MAP column="TY_TRN" record="TransactionHeader" field="TransactionType"
 mappingStrategyOrder="FieldMapperThenValueMapping"

fieldMapper="oracle.retail.stores.exportfile.rtlog.fieldmappers.ExportItemsAndTaxS
tatusMapper">
 <VALUE_MAPPINGS handleNotFound="error">
 <VALUE_MAPPING DatabaseValue="1" RecordValue="SALE"/>
 <VALUE_MAPPING DatabaseValue="2" RecordValue="RETURN"/>
 <VALUE_MAPPING DatabaseValue="3" RecordValue="PVOID"/>
 .
 .
 .
 </VALUE_MAPPINGS>
 </MAP>
.
.
.
 </TABLE>
.
.
.
 <ACCESSOR record="FileHeader"

class="oracle.retail.stores.exportfile.rtlog.accessors.AccessFileHeader"/>
 <ACCESSOR record="TransactionHeader"

class="oracle.retail.stores.exportfile.rtlog.accessors.AccessTransactionHeader"/>
.
.
.
</ENTITY_MAPPER>

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

5-14 Oracle Retail Strategic Store Solutions Implementation Guide

Looking at this snippet, it is easy to see that the column TR_TRN.DC_DY_BSN maps
to the BusinessDate field in the FileHeader record using the
BusinessDateMapper class to format the data.

Also note that application uses a VALUE_MAPPINGS element to transform the value
from the column TR_TRN.TY_TRN to equivalent value in the TransactionType field in
the TransactionHeader record.

Development and Testing Tools
There are a number of tools that were developed during the course of this project that
are helpful when extending this subsystem.

Classes
The following classes are all located at <root>\modules\exportfile\src\oracle\
retail\stores\exportfile\utility:

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

Customization Notes 5-15

Executables in the bin Directory
The following BAT files are all located at <root>\modules\exportfile\bin:

Table 5–5 Exportfile Utility Classes

Class Name Description

ExportTestDriver This class is a test harness that can be used to develop the
configuration files, FieldMapperIfc and AccessorIfc classes
in isolation from the reset of the application. It uses the
classes DatabaseEntityAdapterTest, EncryptionAdapterTest,
CurrencyAdapterTest, OutputAdapterTest and
ExportFileResultAutditLogTest to emulate system specific
adapters.

An Eclipse-run configuration for this class should run out of
the exportfile project. The classpath should the domain,
foundation-client, foundation-server, common, utility,
foundation-shared, clientinterfaces, datareplication projects
and
/thirdparty/apache-ant-1.6.2/lib/xml-apis.ja
r, /thirdparty/
apache-ant-1.6.2/lib/xercesImpl.jar, and
/thirdparty/apache/log4j-1.2.8.jar. It should
also include the JDBC jar(s) for the database you are using.

You most likely have to modify this class to use the
appropriate JDBC driver, username, password and
transaction IDs.

FileDecryptionUtility By default the application (not the test harness) generates
encrypted files. This class reads all the encrypted files from
a target directory, decrypt them, and write them to a single
target file. The main() method has three command line
parameters:

■ EncryptedDirectoryName - the pathname of the
directory of *.ENC files

■ DecryptedFileName - the pathname of the decrypted
file

■ EncryptionKey - the optional encryption key (uses
default if not entered)

RTLOGReportDriver This class reads an export format configuration file and an
export log file then generates a report file (rtlog_rpt.txt) to
the current directory. This saves a lot effort when trying to
determine if an export file has the correct data in it. The
main() method has two command line parameters:

■ ExportFileName - full/relative path pathname of the
export file.

■ XMLFormatFileName - full/relative path pathname of
the format file.

Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development

5-16 Oracle Retail Strategic Store Solutions Implementation Guide

Table 5–6 bin Directory BAT Files

Class Name Description

setenv.bat Sets up the classpath

RTLogFileDecryption.bat Executes FileDecryptionUtility.class; it points at the
bin\POSLog directory in the default installation, writes the
decrypted records to RTLOG.DEC, and uses the default
encryption key.

RTLogReport.bat Executes RTLOGReportDriver.class; it reads RTLOG.DEC,
and uses to the export format file
..\config\RTLogFormat.xml.

Known Issues and Troubleshooting 6-1

6
Known Issues and Troubleshooting

 DepartmentDefaultTaxGroup
When integrated with Oracle Retail Merchandising System, the PreloadData >
POSDepartment > DepartmentDefaultTaxGroup field in the
MerchandiseHierarchyImport is defaulted to 0 (zero). It is the responsibility of the
implementation team to update this value in the bundle with a real TaxGroup ID for
the items in question before the bundle reaches Strategic Store Solutions. Otherwise, a
primary key violation might occur if zero is not an actual TaxGroup ID in the UDM.

Character Restrictions for UOMs
Retailers are restricted to only creating and using items with 2 character UOMs (Unit
of Measure) as part of this integration.

Merchandise Operations Management transforms EA (Each) to UN (Unit) for the UOM
in Item extracts to Strategic Store Solutions.

Strategic Store Solutions does not transform any other UOM in RTLogs to
Merchandise Operations Management.

Oracle Retail Point-of-Service translates UN back to EA for the RTLog.

POSlog
For more information about the POSlog, see "POSlog Import Service" in the Oracle
Retail Central Office Operations Guide Release and in the Oracle Retail Back Office
Operations Guide Release.

Preload Section of ItemImport
Data in the Preload section of ItemImport is treated as an UPS which stands for Upsert.
DIMP tries to Update data and if fails to update, then it Inserts data.

 UTF-8
UTF-8 is a required character set for the database. DIMP supports multi-byte
characters in the XML and puts this data into the database as UTF-8 character set.

Third-party Tax and Employee Information

6-2 Oracle Retail Strategic Store Solutions Implementation Guide

Third-party Tax and Employee Information
Currently, all third-party Tax and Employee information must be presented in a
specific file format for consumption by Central Office.

Implementation team need to be aware of this file format.

Tax and Employee files each have an XML Schema Definition just like other DIMPs:

Example 6–1 Tax File XML Schema Definition

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:element name="TaxImport" type="TaxImport">
<xs:annotation>
<xs:documentation>
 Copyright (c) 2006, Oracle. All Rights Reserved.
 XML Schema for data import of Tax Information. For Oracle Retail
Store and Enterprise Applications.
 Contains Tax Authorities, Taxable Groups, Tax Rules and Rates
data.
 </xs:documentation>
</xs:annotation>
</xs:element>
<xs:complexType name="TaxImport">
<xs:sequence>
<xs:element name="GEOCode" type="GEOCode" minOccurs="0" maxOccurs="unbounded"/>
<xs:element name="GEOTaxJurisdiction" type="GEOTaxJurisdiction" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="TaxAuthority" type="TaxAuthority" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="TaxableGroup" type="TaxableGroup" minOccurs="0"
maxOccurs="unbounded"/>
<xs:element name="TaxGroupRule" type="TaxGroupRule" minOccurs="0"
maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="FillType" type="FillType" use="required" fixed="KillAndFill"/>
<xs:attribute name="CreationDate" type="xs:dateTime"/>
<xs:attribute name="ExpirationDate" type="xs:dateTime"/>
<xs:attribute name="Version" type="xs:string"/>
<xs:attribute name="Priority" type="xs:int"/>
<xs:attribute name="Batch" type="xs:int"/>
</xs:complexType>
<xs:complexType name="TaxAuthority">
<xs:sequence>
<xs:element name="TaxAuthorityID" type="xs:integer"/>
<xs:element name="TaxAuthorityName" type="xs:string"/>
<xs:element name="RoundingCode">
<xs:simpleType>
<xs:restriction base="xs:integer">
<xs:minInclusive value="1"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="RoundingDigitsQuantity" type="xs:integer" minOccurs="0"/>
<xs:element name="AddressLine" type="xs:string"/>
<xs:element name="City" type="xs:string"/>
<xs:element name="State" type="xs:string"/>
<xs:element name="PostalCode" type="xs:string"/>
<xs:element name="CountryCode" type="xs:string"/>
<xs:element name="GeoCodeID" type="xs:string" maxOccurs="unbounded"/>

Third-party Tax and Employee Information

Known Issues and Troubleshooting 6-3

</xs:sequence>
</xs:complexType>
<xs:complexType name="TaxableGroup">
<xs:sequence>
<xs:element name="TaxGroupID" type="xs:integer"/>
<xs:element name="TaxGroupName" type="xs:string" minOccurs="1" maxOccurs="1"/>
<xs:element name="TaxGroupDescription" type="xs:string"/>
<xs:element name="ReceiptPrintCode" type="xs:integer" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="TaxGroupRule">
<xs:sequence>
<xs:element name="TaxAuthorityID" type="xs:integer"/>
<xs:element name="TaxGroupID" type="xs:string"/>
<xs:element name="TaxTypeID" type="xs:integer"/>
<xs:element name="TaxTypeName" type="xs:string" minOccurs="0"/>
<xs:element name="TaxHolidayFlag" type="xs:boolean"/>
<xs:element name="TaxRuleName" type="xs:string"/>
<xs:element name="TaxRuleDescription" type="xs:string"/>
<xs:element name="CompoundRateSequenceNumber" type="xs:integer" minOccurs="0"/>
<xs:element name="TaxOnGrossAmountFlag" type="xs:boolean" minOccurs="0"/>
<xs:element name="CalculationMethodCode" minOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="LineItem"/>
<xs:enumeration value="Transaction"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="TaxRateRuleUsageCode">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="PercentageOrAmount"/>
<xs:enumeration value="DeriveFromTaxTable"/>
<xs:enumeration value="UseThresholdAmount"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
 <xs:element name="InclusiveTaxFlag" type="xs:boolean"/>
<xs:element name="TaxRateRule" type="TaxRateRule" maxOccurs="unbounded"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="TaxRateRule">
<xs:sequence>
<xs:element name="RateTypeCode" minOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="Percentage"/>
<xs:enumeration value="Amount"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:choice>
<xs:element name="TaxAmount" type="Currency"/>
<xs:element name="TaxPercentageRate">
<xs:simpleType>
<xs:restriction base="xs:decimal">
<xs:fractionDigits value="5"/>
</xs:restriction>
</xs:simpleType>

Third-party Tax and Employee Information

6-4 Oracle Retail Strategic Store Solutions Implementation Guide

</xs:element>
</xs:choice>
<xs:element name="TaxAboveThresholdAmountFlag" minOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:NMTOKEN">
<xs:enumeration value="TaxAboveThresholdAmount"/>
<xs:enumeration value="TaxEntireAmount"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
<xs:element name="ThresholdAmount" type="Currency" minOccurs="0"/>
<xs:element name="TaxRateEffectiveTimestamp" type="xs:dateTime" minOccurs="0"/>
<xs:element name="TaxRateExpirationTimestamp" type="xs:dateTime" minOccurs="0"/>
<xs:element name="MinimumTaxableAmount" type="Currency" minOccurs="0"/>
<xs:element name="MaximumTaxableAmount" minOccurs="0">
<xs:simpleType>
<xs:restriction base="xs:decimal">
<xs:fractionDigits value="2"/>
</xs:restriction>
</xs:simpleType>
</xs:element>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GEOCode">
<xs:sequence>
<xs:element name="GeoCodeID" type="xs:string"/>
<xs:element name="TaxJurisdictionName" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:complexType name="GEOTaxJurisdiction">
<xs:sequence>
<xs:element name="GeoCodeID" type="xs:string"/>
<xs:element name="PostalCode" type="xs:string"/>
</xs:sequence>
</xs:complexType>
<xs:simpleType name="Currency">
<xs:restriction base="xs:decimal">
<xs:fractionDigits value="2"/>
</xs:restriction>
</xs:simpleType>
<xs:simpleType name="FillType">
<xs:restriction base="xs:string">
<xs:enumeration value="KillAndFill"/>
</xs:restriction>
</xs:simpleType>
</xs:schema>

Third-party Tax and Employee Information

Known Issues and Troubleshooting 6-5

Example 6–2 Employee File XML Schema Definition

<?xml version="1.0" encoding="windows-1252" ?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

 <!-- $Log:$ -->

 <xs:annotation><xs:documentation>
 Employee Import Schema. Copyright 2006 Oracle. All rights reserved.
 </xs:documentation></xs:annotation>

 <xs:element name="EmployeeImport" type="EmployeeImport">
 <xs:annotation><xs:documentation>
 Top-level element holding a collection of Employee elements.
 </xs:documentation></xs:annotation>
 </xs:element>

 <xs:complexType name="EmployeeImport">
 <xs:sequence>
 <xs:element name="Employee" type="EmployeeType" minOccurs="1"
maxOccurs="unbounded" />
 </xs:sequence>
 <xs:attribute name="FillType" type="FillType" use="required"/>
<xs:attribute name="CreationDate" type="xs:dateTime"/>
<xs:attribute name="ExpirationDate" type="xs:dateTime"/>
<xs:attribute name="Version" type="xs:string"/>
<xs:attribute name="Priority" type="xs:int"/>
<xs:attribute name="Batch" type="xs:int"/>
 </xs:complexType>

 <xs:complexType name="EmployeeType">
 <xs:annotation><xs:documentation>
 Represents a single employee's information.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="ChangeType" type="ChangeType" default="ADD"
minOccurs="1" maxOccurs="1" />
 <xs:element name="EmployeeID" type="ID" minOccurs="1" maxOccurs="1" />
 <xs:element name="EmployeeFirstName" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="EmployeeLastName" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="EmployeeMiddleName" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="EmployeeFullName" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="EmployeeSSN" type="SSN" minOccurs="0" maxOccurs="1"
/>
 <xs:element name="EmployeeRole" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="PartyID" type="xs:int" minOccurs="0" maxOccurs="1"
/>
 <xs:element name="StatusCode" type="StatusCode" minOccurs="0"
maxOccurs="1" />
 <xs:element name="Locale" type="ID" minOccurs="0" maxOccurs="1" />
 <xs:element name="EmployeeAccess" type="EmployeeAccess" minOccurs="0"
maxOccurs="1" />
 <xs:element name="EmployeeType" type="StatusCode">
 <xs:annotation><xs:documentation>
 0 means 'Standard' employee, 1 means Temporary employee

Third-party Tax and Employee Information

6-6 Oracle Retail Strategic Store Solutions Implementation Guide

 </xs:documentation></xs:annotation>
 </xs:element>
 <xs:element name="NumberDaysValid" type="xs:int" minOccurs="0"
maxOccurs="1">
 <xs:annotation><xs:documentation>
 Only applies to temporary employee
 </xs:documentation></xs:annotation>
 </xs:element>
 <xs:element name="TempEmployeeExpirationDate" type="xs:date"
minOccurs="0" maxOccurs="1">
 <xs:annotation><xs:documentation>
 Only applies to temporary employee
 </xs:documentation></xs:annotation>
 </xs:element>
 <xs:element name="EmployeeStoreOrHierarchyAssn"
type="EmployeeStoreOrHierarchyAssn" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="ID">
 <xs:restriction base="xs:string">
 <xs:maxLength value="10" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="SSN">
 <xs:restriction base="xs:string">
 <xs:maxLength value="9" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="StatusCode">
 <xs:restriction base="xs:string">
 <xs:enumeration value="0" />
 <xs:enumeration value="1" />
 </xs:restriction>
 </xs:simpleType>

 <xs:complexType name="EmployeeAccess">
 <xs:annotation><xs:documentation>
 Holds all information regarding access to the system.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="EmployeeLoginID" type="xs:string" />
 <xs:element name="AccessPassword" type="xs:string" />
 <xs:element name="WorkGroupID" type="xs:int" />
 <xs:element name="EmployeeAltID" type="xs:string" minOccurs="0"
maxOccurs="1" />
 <xs:element name="NewPasswordRequired" type="xs:boolean" />
 <xs:element name="PasswordCreationDate" type="xs:dateTime" />
 <xs:element name="PasswordHistory" type="PasswordHistory"
minOccurs="0" maxOccurs="1">
 </xs:element>
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="PasswordHistory">
 <xs:sequence>
 <xs:element name="PasswordHistoryEntry" type="PasswordHistoryEntry"
minOccurs="1" maxOccurs="unbounded" />

Third-party Tax and Employee Information

Known Issues and Troubleshooting 6-7

 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="PasswordHistoryEntry">
 <xs:annotation><xs:documentation>
 Holds a single password history entry.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="PasswordCreationDate" type="xs:dateTime" />
 <xs:element name="AccessPassword" type="xs:string" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="EmployeeStoreOrHierarchyAssn">
 <xs:annotation><xs:documentation>
 Holds an employee association to a store and/or a hierarchy node.
Generally, only one of the
 enclosed elements is provided; however, there may be cases where an
employee needs both a store
 association and a hierarchy association, so a sequence with optional
elements is used instead of
 a choice.
 </xs:documentation></xs:annotation>
 <xs:sequence>
 <xs:element name="EmployeeStoreID" type="RetailStoreId" minOccurs="0"
maxOccurs="1" />
 <xs:element name="EmployeeHierarchyAssn" type="EmployeeHierarchyAssn"
minOccurs="0" maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>

 <xs:complexType name="EmployeeHierarchyAssn">
 <xs:sequence>
 <xs:element name="NodeID" type="xs:string" minOccurs="1"
maxOccurs="1" />
 <xs:element name="NodeType" type="xs:string" minOccurs="1"
maxOccurs="1" />
 <xs:element name="StoreGroupFunctionID" type="xs:int" minOccurs="1"
maxOccurs="1" />
 </xs:sequence>
 </xs:complexType>

 <xs:simpleType name="ChangeType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="ADD" />
 <xs:enumeration value="UPD" />
 <xs:enumeration value="DEL" />
 </xs:restriction>
 </xs:simpleType>

 <xs:simpleType name="RetailStoreId">
 <xs:annotation><xs:documentation>
 Store Id's can only be five characters long and preferably only
 numerals.
 </xs:documentation></xs:annotation>
 <xs:restriction base="xs:string">
 <xs:minLength value="1"></xs:minLength>
 <xs:maxLength value="5"></xs:maxLength>
 </xs:restriction>
 </xs:simpleType>

Third-party Tax and Employee Information

6-8 Oracle Retail Strategic Store Solutions Implementation Guide

 <xs:simpleType name="FillType">
 <xs:restriction base="xs:string">
 <xs:enumeration value="KillAndFill"/>
 <xs:enumeration value="FullIncremental"/>
 </xs:restriction>
 </xs:simpleType>

</xs:schema>

Glossary-1

Glossary

Batch

A collection of data operations that are processed at one time. The size is determined
by a configurable parameter.

Bundle

A collection of import files, one file per data type, stored as a compressed file
containing a manifest. It is expected that the retailer or implementation team is
responsible for packaging and delivering to the Store the bundle along with manifest
for all data feeds to the Store

Corporate

Used interchangeably with enterprise. The enterprise environment of the retailer where
enterprise applications are deployed. Oracle Retail Central Office is deployed in the
enterprise.

Data Access Object (DAO)

A class that can retrieve and persist data to and from a data source.

Data Distribution Infrastructure (DDI)

The infrastructure and application components that are responsible for distributing
seed data from enterprise applications to Store applications, ODS at Corporate (or
enterprise), and Store Database at the stores.

Data Transfer Object (DTO)

A class that contains data records from a received payload. The DTO’s attributes are
populated with the parsed data.

DIMP

Data Import

Incremental

There are two types of update operation, full incremental and delta incremental. Full
incremental assumes that all the fields for a data type are supplied in the XML. A delta
incremental import contains only the fields that are being changed.

ISP

In-Store-Processor

J2EE

Glossary-2

J2EE

Java 2 Enterprise Edition is a set of APIs designed to support tier 1 type business
models.

Java Database Connectivity (JDBC)

An API used to communicate with relational databases.

Kill And Fill

Kill And Fill refers to a data operation where all the existing data in a table is deleted
(kill) and then replaced with new data (fill).

Manifest

A file within a bundle that lists the data files in the bundle and their
interdependencies.

Operational Data Store (ODS)

The corporate data repository that services Oracle Retail Central Office.

ORBO

Oracle Retail Back Office

ORCO

Oracle Retail Central Office

ORLT

Oracle Retail Labels and Tags

ORMPOS

Oracle Retail Mobile Point of Service

ORPOS

Oracle Retail Point of Service

ORRM

Oracle Retail Returns Management

ReSA

Oracle Retail Sales Audit

RMS

Oracle Retail Merchandising System

RPM

Oracle Retail Price Management

RTLog

Retail Transaction Log

Seed Data

Seed Data is defined as data that must be supplied by our customers in order for our
applications to fully use all features and functions which the customer decided to
enable.

Strategic Store Solutions

Glossary-3

SIM

Oracle Retail Store Inventory Management

Store Applications

Oracle Retail applications that run in the store environment. This includes:

■ Oracle Retail Back Office

■ Oracle Retail Point-of-Service

■ Oracle Retail Mobile Point-of-Service

■ Oracle Retail Strategic Store Solutions

■ Oracle Retail Labels and Tags

■ Oracle Retail Store Inventory Management

■ Oracle Retail Central Office

■ Oracle Retail Returns Management.

It must be noted that even though Oracle Retail Central Office runs in the corporate
environment, it is classified as a store application.

Store Database

The data repository for store applications.

Strategic Store Solutions

The Oracle Retail business unit that assumes responsibility for applications running in
the Store environment.

Strategic Store Solutions

Glossary-4

	Contents
	List of Figures
	List of Tables
	List of Examples
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	1 Integration Overview
	Product Release Versions
	Data Import from Oracle Retail Merchandising System and Oracle Retail Price Management
	Generic Data Import Flow
	Feed Methods
	System Dependency

	Oracle Retail Price Management to Oracle Retail Strategic Store Solutions Integration Overview
	Oracle Retail Merchandising System to Oracle Retail Strategic Store Solutions Integration Overview
	Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit Overview
	Preconditions
	System Flow Description

	Existing Functionality Gaps
	Oracle Retail Price Management
	Oracle Retail Merchandising System
	Discount Rule
	Store Coupon
	Data Import Field Width Maximums

	2 Integration Architecture
	Strategic Store Solutions to Oracle Retail Sales Audit Integration Architecture
	RTLog Batch Generator
	Sleep Interval
	Maximum Transactions
	Oracle Retail Sales Audit

	Data Import
	Error Handling
	Import Status Logging
	The Logic
	Reprocessing a Bundle

	Exception Flow
	Logging

	RTLog Mapping and Translation

	3 Implementation Configuration
	Data Import Spring Configurations
	spring.properties
	dimplogger.properties

	Archive File Format
	Oracle Retail Merchandising System Configuration
	Oracle Retail Price Management Configuration
	Data Requirements - Oracle Retail Strategic Store Solutions to Oracle Retail Sales Audit

	4 Capacity Planning
	5 Customization Notes
	Data Import Extension Points and Development
	Import Adapter and Translator
	SAXParserGenerator
	Manually Editing Generated Code

	Metadata
	ImportControllerIfc

	Strategic Store Solutions to Oracle Retail Sales Audit Extension Points and Development
	Adding Data Elements to the RTLog Format
	Creating a New Fixed Length Export Record Format
	Exporting a Non-Fixed-Length Record Format
	Object Factories
	StoreServerConduit.xml
	DomainObjectFactory
	ExtractorObjectFactory
	EntityMappingObjectFactory
	RTLogMappingConfig.xml
	RecordFormatObjectFactory

	Configuration
	The Store Server Conduit File
	The Export Format Configuration file
	The Entity Reader Configuration File
	The Mapping Configuration File

	Development and Testing Tools
	Classes
	Executables in the bin Directory

	6 Known Issues and Troubleshooting
	DepartmentDefaultTaxGroup
	Character Restrictions for UOMs
	POSlog
	Preload Section of ItemImport
	UTF-8
	Third-party Tax and Employee Information

	Glossary

