

Oracle® Retail Design

Configuration Guide
Release 12.0

May 2006

Copyright © 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are
provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood
City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

 Configuration Guide iii

Contents
Preface.. vii

Audience ... vii
Related Documents ... vii
Customer Support ... vii

1 Introduction.. 1
General User View Management ...2
Tab Layout Definition..3

Spectrum Utility..3
Product Information Administration...3

Server Side Reporting Template Administration ...4
2 General User View Configuration... 7

Style File Tab Definition ...8
Style File Tab Configurable Attributes...8

Configuration of the Oracle Retail Design to Oracle Retail Webtrack Project Integration10
Functional Description of the “Projects” Parameter Group..10
Project Interface Configuration ..12
Parameters ..13

Enabling of the Comments Entry Capability ...17
Comments Entry Definition Files ...17
Comments Entry Configurable Attributes ..20

Server Side Reporting Definition...21
Scope Definition ..23

3 Tab Layout Configuration... 25
Spectrum Utility...25
Product Information Administration..25
Getting Started ...26
Field Elements ...27
Sample XML File ..28
Elements and Attributes...30

Identifying Statement..30
SpecSheets ..30
SpecSheet..31
Page ..34
Matrix ...35
cellattrs..36
Column ...37
ColumnSet ..37
Heading...38
RowSet..39
Cell ...39
CellChoice ..40
CalcSet..41
Form ...41
itemattrs ..43
Defaults...45
Common Initial Value ..45
Simple Item Types – TextField and IntField ..45
FloatField..45
TextArea ...46
Icon ...46
Checkbox ..47

iv

Label ...47
MultiLabel ..47
DateField ..48
Custom..48
Parameter ..48
SubForm ...49
Choice...50
Option ...50
Image ..51
Calc...51

4 XFO Templates .. 53
XFO Introduction...54
XFO Operation ..54
Basic Structure...54
Expressions and Attributes ..54

Example: ...54
SF Processing Elements...55

sf:str ..55
sf:int ..55
sf:float...55
sf:date..55
sf:set..56
sf:update..56
sf:func ...57
sf:if..57
sf:for ...57
sf:macro ..58
sf:call ..58

Builtin Values and Functions...58
array(n) ...58
geticon(string)...59
getprop(prop) or getprop(prop, deflt) ...59
valuekey(v) ...59
hasmorevalues(set) ...59

XFO and Styles..60
Values ...60

Functions..66
Standard Properties ..69
Configuring XFO Objective Sheet Output...69
Configuring XFO Client Printing in Oracle Retail Design ..69

 Configuration Guide v

5 Spreadsheet Expression Syntax .. 71
Data Types ...71
Lists..72
Arrays ..72

Array items ...72
Object Values ...73
Variable Names ..73
Function Calls...73
Expressions...74
Built-in Functions ...77

Style Linkages..84
Style Custom Spec Sheet Fields...87

Retailer Status...87
Supplier Status ..87
Colour List ..87
Size Range ..88
Documents ..88
Images...89
Product Type and ELC Type ..89
Comment Display ...89

A Appendix: designconfig.dtd ... 91

B Appendix: specsheet.dtd.. 97

 Configuration Guide vii

Preface
The purpose of this Oracle Retail Design Configuration Guide is to provide a reference
for enterprise administrators who develop XML and XFO-based forms.

Audience
Anyone with an interest in developing a deeper understanding of the configuration
capabilities surrounding Oracle Retail Design will find valuable information in this guide.

Related Documents
If you wish to find further information, see the following applicable Oracle Retail
documents:
 Oracle Retail Design Online Help
 Oracle Retail Design User Guide
 Oracle Retail Design Operations Guide
 Oracle Retail Design Release Notes
 Oracle WebTrack Release Notes
 Oracle WebTrack Online Help
 Oracle WebTrack User Guide
 Oracle WebTrack Configuration Guide
 Oracle Retail Retail Server Installation Guide
 Oracle Retail Retail Server Data Model

Customer Support
 https://metalink.oracle.com

When contacting Customer Support, please provide:
 Product version and program/module name.
 Functional and technical description of the problem (include business impact).
 Detailed step-by-step instructions to recreate.
 Exact error message received.
 Screen shots of each step you take.

https://metalink.oracle.com/

 Configuration Guide 1

1
Introduction

Oracle Retail Design is a collaborative product development solution that provides
retailers considerable flexibility in order to meet their business requirements. In addition
to the configuration available via the standard options with the Design Administration
Console, the administrator can define a specific format or definition for use within the
application in the following three areas:
 General User View Management
 Tab Layout Definition
 Server Side Reporting Templates

Each of these areas requires a definition to be created and uploaded within Oracle Retail
Design. The general user view management is controlled by uploading an XML-based
file via the Configurations option within the Oracle Retail Design administration console.
Oracle Retail Design administrators leverage the Spectrum utility or Product Information
administration to upload XML-based files to support the tab layout definition. Finally, the
server side reporting templates can be uploaded via a specific URL accessed from the
Oracle Retail Design administration console. Server side reporting templates can be
defined in an XFO-based file.
The purpose of this document is to provide a reference for enterprise administrators who
develop the XML and XFO-based forms. Oracle Retail assumes that they will have
access to the following resources:
 Administrator access to Oracle Retail Design and Spectrum
 The designconfig.dtd file, which defines the data types used in developing the XML-

based forms for the general user view configuration.
 The specsheet.dtd file, which defines the data types used in developing the XML-

based forms for tab layout definition.
 Oracle Retail Design User Guide
 Oracle Retail Design Operations Guide

Oracle Retail also assumes that client administrators have a high-level understanding of
XML and XFO file structures.

Introduction

2

General User View Management
The Configurations option on the Oracle Retail Design administration console is used to
control features of the Oracle Retail Design user view. The primary purpose of the
configuration management is to control which tabs are present for a particular scope. In
addition, it is used to set various configurable enterprise parameters including the Oracle
Retail Webtrack project integration rules, comments entry, and which server side printing
format files are available in the client printing function within Oracle Retail Design. In
order for the user to define the configuration, the administrator needs to upload the .xml-
based form within Oracle Retail Design. Once the configuration is uploaded, the
administrator has the flexibility to further define the scope that the configuration should
support. Once the configuration files have been uploaded, there are supporting format
files and specification files that may need to be uploaded.

Configuration Management Window in Oracle Retail Design

The actual development of the XML files can be performed in any text editor. A text
editor that supports XML would be most efficient and is recommended. The primary
functions supported within the XML files are highlighted in the chapter “General User
View Configuration.”

The elements, attributes, and syntax requirements of this file have been defined in the
designconfig.dtd available in “Appendix A – designconfig.dtd” and by browsing to the
following URL:
 http://www.retail.com/import/dtds/designconfig.dtd.

Oracle Retail Design 12.0

 Configuration Guide 3

Tab Layout Definition
Oracle Retail Design is a collaborative product development solution that provides
retailers flexibility to capture key product information by product type. Specifically,
retailers have the ability to configure the Specification, Bid, and Estimated Landed Cost
(ELC) tabs within Oracle Retail Design according to the different types of products that
they will be developing with Oracle Retail Design. In addition, they have the ability to
configure new tabs to appear within a style file in Oracle Retail Design.
In order to design the user interface and define the field and validation rules used within a
configured tab, XML-based forms need to be created, uploaded into Oracle Retail
Design, and assigned to specific product types defined by the retailer’s administrator. The
XML tag language works with the application logic to generate and display specified
forms within the configurable tabs. In addition to displaying a configurable form with
data fields, images, and icons, the application allows data fields to be linked, calculated,
and exported within the configurable tabs.

Spectrum Utility
The Spectrum utility is used to support the development and display of the configurable
forms. It is a separate application that appears only for Oracle Retail Design
administrators dedicated to supporting the development and display of configurable tab
layout sheets. This service is organized to allow the administrator to upload and view
specification, bid, estimated landed cost and general tabs during development. In
addition, the administrator has the ability to manage the icons that may be configured to
appear within a specific configurable form. Specific details of how to navigate through
Spectrum are included in the Oracle Retail Design User Guide.

Product Information Administration
The Product Information option on the Oracle Retail Design administration console is
where the configurable XML files are uploaded and linked to a specific product or ELC
type within Oracle Retail Design. In order for the user to view and test all functionality
included with the configurable forms, the user needs to upload the form within Oracle
Retail Design and assign it to the appropriate types via Product Administration. Once
XML files are uploaded and linked to a specific type within Oracle Retail Design, the
user is able to see the type and select it within the product file. The specific product type
that is selected within a product file in Oracle Retail Design determines what is populated
within the Specification and Bid tabs. Similarly, the specific ELC type that is selected
within Oracle Retail Design determines what appears in the ELC tab. The Product
Information option is only designed to support the specification, bid and ELC
configurations. Other general tab definitions need to be managed within Spectrum.

Introduction

4

Product Information Window in Oracle Retail Design

The actual development of the XML files can be done in any text editor. A text editor that
supports XML would be most efficient and is recommended. The tags and attributes that
are used within the development of the XML files are defined in the specsheet.dtd and
have been annotated in the chapter “Tab Layout Configuration.” A copy of the
specsheet.dtd is available in “Appendix B – specsheet.dtd” and by browsing to the
following url:
 http://www.retail.com/import/dtds/specsheet.dtd

Server Side Reporting Template Administration
Oracle Retail Design supports the generation of printable output on the client and server
side. The client side printing is generated based on specified rules within the code. If
users are expecting an exact format, they may not choose to leverage the client side print.
The server side printing leverages specific format files that have been defined and
uploaded within Oracle Retail Design. The server side printing is available from within
the client side printing option dialog box and is also used during the technical
specification export process supported by Oracle Retail Integrator. Format files can be
developed using XFO technology and can be uploaded by browsing to the following
URL from within the Oracle Retail Design Administration Console:
 https://www.retail.com/applications/design/template.jsp

The administrator is prompted to browse and upload the template file, define the format
that it uses and identify a mode that will be used to cross-reference the configuration file.
The template mode is a free-form text field and the value input is used to cross-reference
the uploaded file in other configuration administration steps. Specifically, the mode is
used within the general user view configuration file to identify a format that can be used
by the server side printing options available to the user. In addition, the mode can be
referenced within Oracle Retail Integrator as the ObjectiveSheetType during the setup of
the run type used to support the technical specification export process.

Note: Although the objective sheet template upload process
continues to support the upload of .xmf files, Oracle Retail
recommends that xfo formats be used.

Oracle Retail Design 12.0

 Configuration Guide 5

Print Template Upload Window in Oracle Retail Design

The actual development of the XFO files can be done in any text editor. A text editor that
supports XML would be most efficient and is recommended. The primary functions
supported within the development of the XFO files are highlighted in chapter “XFO
Templates.”

 Configuration Guide 7

2
General User View Configuration

The Configurations option on the Oracle Retail Design administration console is used to
control features of the Oracle Retail Design user view. The configuration file has the
following primary purposes:
 Style file tab definition

Within the configuration file, the administrator can identify the tabs that will appear
with in a style file. These tabs can be a mixture of standard tabs and new-user defined
tabs.

 Configuration of the Oracle Retail Design to Oracle Retail WebTrack project
integration
There are a number of aspects of the project integration that can be configured within
the configuration file. For example, the administrator has the ability to create projects
by style or by style/color, identify specific field mapping that should occur during
project integration, and identify fields that should be allowed to be updated by the
integration. These options are all supported within the configuration definition file.

 Enabling of the comments entry capability
Because the comments dialog box that appears within Oracle Retail Design is
configurable, there are setup steps required to enable the standard comments
functionality within Oracle Retail Design. The configuration file includes the
reference to the comments dialog layout definition file and includes the layout used
to support the printing of comments. Once the configuration file is updated and
uploaded, the administrator uploads the comments dialog layout definition within
Spectrum.

 Server side reporting definition
As mentioned in the previous chapter, Oracle Retail Design supports the generation
of printable output on the client using pre-defined format files. The server side
reporting option is available from within the client side printing option dialog box
and leverages specific format files that have been defined and uploaded within Oracle
Retail Design. During the upload of the format files, a mode is assigned to that
format. To enable this user to select this format within the printing option dialog box,
the mode needs to be assigned to a user-friendly option name within the general user
view configuration.

Each of these features can be defined at an enterprise level, or the configuration file can
define these options for a particular scope, based on the season or department/division of
a style. This ability allows the administrator to define the features differently for different
departments or divisions, or support changes to the features for a new season. Oracle
Retail recommends that enterprise-specific features be defined early in the form followed
by scope-specific settings, allowing you to define all user view configuration options
within one definition file. The ability to upload multiple definition files and set the scope
outside of the definition file is also supported.
This chapter highlights the functional areas supported by user view configuration file and
discusses how to enable these functions using the XML definition file. The elements,
attributes, and syntax requirements of the XML definition file have been defined in
“Appendix A – designconfig.dtd” and by browsing to the following URL:
 http://www.retail.com/import/dtds/designconfig.dtd

General User View Configuration

8

Style File Tab Definition
There are two required definition files that must be updated to support the configurable
style file tab definition. First, the ‘user view’ configuration file needs to be updated to
identify the tabs that should appear within a style file. Once this definition is completed,
it must be uploaded via the Oracle Retail Design Administration – Configurations option.
See the Oracle Retail Design User Guide for information about how to upload a file
within the Configurations option. Once the configuration file is updated, the
administrator must upload the supporting tab layout definition referenced within the
configuration file via Spectrum. Specifically, the Oracle Retail Design administrator
opens the “Design general tab sheets” application within the Spectrum and uploads the
.xml file that defines the new tab layout. For more information on defining the tab
layouts, please see the chapter “Tab Layout Configuration.” Once all of these steps have
been completed, the user should be able to see the new tabs within Oracle Retail Design.

Style File Tab Configurable Attributes
Within the configuration file, the administrator can identify the tabs that should appear
within a style file. In addition to the standard Summary screen, the following three types
of tabs can be configured within the definition file to appear in the style files:
 One type of tab represents the standard tabs (other than the Summary screen) that

already exist within Oracle Retail Design.
 The two other types of tabs represent new tabs that could be defined and set up to

appear within a style file.
The resulting configuration could be a combination of the standard Summary tab, new
tabs, and a subset of standard tabs that already exist within a style file today.
A reference to a builtin tab corresponds to the standard tabs other than the Summary
screen that exist within a standard style file. The existence of a builtin tab indicates that
the referenced standard tab should be present within the new configuration of the style
file. Examples of builtin tabs include: volumes, price, bom, cost, specification, bid, elc,
and labels. A specific builtin tab cannot be referenced more than once within a
configuration. Because the configuration has priority over the view security settings
within Oracle Retail Design, a standard tab must be included within the configuration to
appear within the style file. The user permissions of each tab will still be supported by the
Oracle Retail Design administration – Security option.
The new tabs that can be configured to appear are defined within the configuration file as
either spec or custom tabs. Spec tabs represent tabs that can have their layout configured
by the administrator and uploaded within Spectrum. There are additional attributes of the
spec tab including user permissions, the name that should appear on the tab, and the sheet
type number that corresponds to the XML definition uploaded within Spectrum. Custom
tabs reference tabs that are defined by a Java class name without configurable definition
files. In the case of the custom tabs, they are supported by custom-written Java code and
cannot easily be changed. The majority of administrators leverage the spec tabs when
creating user-defined tabs to appear within a style file. Custom tabs are not supported on
a www.retail.com deployment of Oracle Retail Design.
Within the configuration, if the standard Summary screen is used, it must be the first tab
that appears within the list. The administrator does have the ability to configure a new
summary screen using the new user-defined spec tab option.

Oracle Retail Design 12.0

 Configuration Guide 9

Below is an example excerpt of a configuration file that leverages the standard Summary
screen and references two new user-defined spec tabs:
 <Configuration name="Default+Comments+Calendar">
 <Details>
 <Tabs>
 <Summary/>
 <Builtin type="volumes"/>
 <Builtin type="elc"/>
 <Builtin type="specification"/>
 <Builtin type="bid"/>
 <Builtin type="labels"/>
 <Spec key="comms" type="301">
 <TabLabel>Comments</TabLabel>
 </Spec>
 <Spec key="timeandaction" type="1000">
 <TabLabel>Calendar</TabLabel>
 </Spec>
 </Tabs>
 </Details>
 </Configuration>

In this example, the Comments and Calendar tabs are configured to appear within the
style file. To complete the setup and ensure the layout exists, the administrator uploads
the corresponding XML files with sheet types of 301 and 1000 via the Design general tab
sheets option within Spectrum.
Below is an example excerpt of a configuration file that replaces the standard Summary
screen within a configuration summary screen and supports the remaining standard tabs:
 <Configuration name="Configurable Summary Screen">
 <Details>

 <Tabs>
 <Spec key="configsumm" type="1">
 <TabLabel>Summary</TabLabel>
 </Spec>
 <Builtin type="volumes"/>
 <Builtin type="price"/>
 <Builtin type="bom"/>
 <Builtin type="cost"/>
 <Builtin type="elc"/>
 <Builtin type="specification"/>
 <Builtin type="bid"/>
 <Builtin type="labels"/>

 </Tabs>

 </Details>

 </Configuration>

To complete the setup and ensure that the layout exists, the administrator uploads the
corresponding XML files with a sheet type of 1 via the Design general tab sheets option
within Spectrum.
Additional parameters can be used to support the user-defined tabs. For example, specific
user permissions using the perm attribute could be defined to identify which users have
the ability to edit the tab.
In addition, the Conditions feature could be used to identify which fields need to be
entered before the Save button is enabled. This feature is especially useful to support the
configurable summary screen tab because it allows you to identify any required fields on
the style file.

General User View Configuration

10

As explained earlier, the set of tabs can be defined for a particular scope. For more
information, see the section, ‘Scope Definition’ included within this chapter.

Configuration of the Oracle Retail Design to Oracle Retail
Webtrack Project Integration

There are a number of aspects of the project integration that can be configured within
Oracle Retail Design including the ability to specify field mapping that should occur, the
ability to create projects by style or by style/color, and the ability to identify fields that
should be allowed to be updated by the integration. These options are all supported
within the configuration definition file supported by the designconfig.dtd.

Functional Description of the “Projects” Parameter Group
Integration Mapping
Oracle Retail Design and Oracle Retail WebTrack contain built-in mappings of Design
style elements to WebTrack project information. These mapping rules can be changed by
definitions within the “projects” parameter group in a configuration. As with all
parameter groups, it may appear within a single configuration, or be placed at the end of
the file and shared amongst several configurations using “ref” and “id” attributes.

Default Configuration
The elements below are currently assigned as defaults from Oracle Retail Design to
Oracle Retail WebTrack. If the configuration does not include a “projects” group, these
default assignments remain unchanged. If there is a “projects” group, the mappings it
contains replace the default assignments.

Design Element Corresponding WebTrack Element

Short Name Project Name (required for project creation)

Department Department

Order Required By Date Completion Date (required for project creation)

Style/Color Project Number (required for project creation)

Sell price * Quantity Value

Unique Id Style Id

Project Created by User Comment

Oracle Retail Design 12.0

 Configuration Guide 11

Email Notification
If the XML produces any errors during the WebTrack project creation or update, an
applicable email is sent to the administrator.

Ongoing Updates
The design configuration file provides an option to allow subsequent changes to
individual data elements within Oracle Retail Design to impact/update their mapped
counterparts in Oracle Retail Webtrack.
If a data element within Oracle Retail Design is configured to allow updates to the
mapped data elements within Oracle Retail WebTrack, all projects, tracks and events
associated with that unique style/color are automatically updated accordingly. For
example, if the Short Name is changed in Oracle Retail Design, the project name reflects
those changes in the Oracle Retail WebTrack project and tracks records associated to that
project.
When a style is edited within Oracle Retail Design, all elements that are eligible for
update from Oracle Retail Design to Oracle Retail WebTrack are updated in Oracle
Retail WebTrack accordingly. Specifically, if there are five elements flagged for update
from Oracle Retail Design to Oracle Retail WebTrack and only one of those elements is
actually changed, all five elements are updated. Any manual changes made (to those
elements within Oracle Retail WebTrack that can be modified) are overridden by the
subsequent update within Oracle Retail Design.
Updates are made to all style/color combinations within Oracle Retail WebTrack for the
style that is being updated in Oracle Retail Design. If the style is configured to group all
colors under one project, that project alone is affected by the updates made within Oracle
Retail Design. If a color is added to Oracle Retail Design for a style that is associated
with existing Oracle Retail WebTrack projects at the style/color level, an applicable
style/color project is also added to Oracle Retail WebTrack. Other style/color
combinations for the style are not affected.
If the style has been copied or retrieved in Oracle Retail Design, resulting in new Oracle
Retail WebTrack entries with the same project name and/or design ID, only the new
Oracle Retail WebTrack project created from the updated (that is, copied or retrieved)
style is updated in Oracle Retail WebTrack.

‘Required by Dates’
If the ‘Required by Date’ is changed in Oracle Retail Design, and this element is
configured to update the final event within a track for the style, all previous planned dates
for uncompleted events are updated based on the lead times.
The final event date in Oracle Retail WebTrack is only changed if the final event date in
Oracle Retail WebTrack is the same as the ‘Required by Date’ in Oracle Retail Design.

General User View Configuration

12

Delete Functionality
The administrator has the ability to set a business rule that states whether or not a style or
color that is deleted in Oracle Retail Design results in corresponding projects and tracks’
being deleted in Oracle Retail WebTrack. In order for a delete to occur in Oracle Retail
WebTrack, the style is required to be in an applicable workflow status. If no
configuration is provided for this option, the default setting is ‘off,’ and deletes do not
take place in Oracle Retail WebTrack.
Note that a project is not re-created in Oracle Retail WebTrack in the following scenario:
 When a style-level Oracle Retail WebTrack project that was created from Oracle

Retail Design is deleted manually using the Oracle Retail WebTrack program, and a
change is then made to the style in Oracle Retail Design.

Multiple and Split Tracks
If a Oracle Retail WebTrack project maps to multiple tracks, all tracks for that project are
updated accordingly.
In the event that a track is split and subsequently the project name is changed through
Oracle Retail Design, only that portion of the split track name that matches the original
name is changed to the new name.
For example, if a track name is ‘Cat Sweaters,’ and you split the track, selecting Forest
Green for the color, the new track name is ‘Cat Sweaters/Forest Green (1).’ Changing the
project name in Oracle Retail Design to ‘Cat Warmers’ results in the following:
 The original track is renamed to ‘Cat Warmers.’
 The split track is renamed ‘Cat Warmers/Forest Green (1).’

Diary Entries
Diary entries are made for any changes made to a style in Oracle Retail Design that result
in changes made to a track name within Oracle Retail WebTrack.

Project Interface Configuration
This configuration is accomplished by adding a “projects” ParameterGroup to the Details
section of a Oracle Retail Design configuration. If you want different project setups for
different scopes, add a separate projects section to each configuration. Alternately, you
can have a common projects group at the end and refer to it with the ref/id attributes, as
in the following:
 <Details>
 <!-- Tab, etc details -->
 <ParameterGroup ref="commonprojects"/>
 </Details>
</Configuration>
<!-- Shared parameters -->
<ParameterGroup id=”commonprojects” name=”projects”>
 … project configuration …
</ParameterGroup>

If a projects parameter group is absent from the configuration, the current built-in
mappings and rules are used.
If a projects parameter group is present, none of the built-in mappings are used. All the
required mappings and update rules must be specified.

Oracle Retail Design 12.0

 Configuration Guide 13

Parameters
The project interface recognizes the following parameters in the projects parameter
group:
projectlevel: This parameter controls whether projects are created at the style or color
level. The value of the parameter should be ‘style’, ‘colour’ or ‘color’. If omitted,
projects are created at color level, as in the original implementation.

For example:
<Parameter name=”projectlevel”>style</Parameter>

deleteprojects: This parameter controls whether projects and tracks are deleted when
colors are removed from a style (if the project level is color) or when the style is deleted.
The value should be ‘true’, ‘false’, ‘yes’ or ‘no’. The default is false; projects are not
deleted.

For example:
<Parameter name=”deleteprojects”>yes</Parameter>

mappings: This parameter is compulsory because it is where all the mappings and update
rules are defined. The parameter’s value is a multi-line Java properties file. The following
is a complete example:

 <Parameter name="mappings">

 # Functions

 func.vatify = $1 * 1.175

 # Basic project data

 projectname = style$shortname
 projectnumber = style$stylenumber || '/' || colourname
 duedate = style$orderby
 value = vatify(style$price)
 comments = 'Created from style file by ' || user
 information = style$agent

 # Validity check

 valid = isset(style$supplier) & isset(style$theme)

 # Some attributes

 attr.1.name = Theme
 attr.1.value = style$theme
 attr.1.required = true

 attr.2.name = ELC target
 attr.2.value = style$elctarget
 attr.2.type = f

 # Extras

 extra.1 = ifset(style$supplier, 'No supplier!')
 extra.2 = style$buyer

 # Name and number can be updated

 update.projectname = true
 update.projectnumber = true
 update.duedate = true

General User View Configuration

14

 update.extras = true

 </Parameter>

The following types of information are defined by the properties:
1. Functions

Property names starting with func. are used to define functions which can be used in
expressions. The example above shows a simple function which multiplies by 1.175
to apply Value Added Tax (VAT) at the standard rate for the United Kingdom.

2. Basic mappings
These basic mappings define the values for basic project data. The property names
are the following:

Property name Meaning Required?

projectname Project name Yes

projectnumber Project number Yes

duedate Project due date Yes

value Project value No

comments Project comments No

information ‘Order’ information string No

valid Validity flag no
The value of each property is an expression in the standard syntax. It can refer to the
style$ link values which are available in spec sheets, along with these special names:

Name Meaning

user Name of current user

userenterprise Name of current user’s enterprise

useremail Current user’s email address

true or yes 1

false or no 0

colourname Color name

colourcode Color code

colourvolume Quantity for color from volume sheet

Note: Please see the Style Linkages section within the
chapter “Spreadsheet Expression Syntax.”

Oracle Retail Design 12.0

 Configuration Guide 15

The three color-related names are not available if projects are created at style level.

Mappings for the first three items are required; the configuration is rejected if any are
absent. If the expression evaluates to undefined or empty values, no project creation
or updating takes place.

The special name ‘valid’ can be used as an additional control on whether projects
should be created or updated. If the expression evaluates to undefined or zero, no
project creation takes place.

3. Attributes
Attributes are arbitrary items attached to the project (strictly to the project’s pseudo-
order item) which can be displayed by the Details button on a track.
The project interface always creates two standard attributes listing the style ID and
supplier; using attr. properties, additional attributes can be added to the project.

Attribute properties start with attr.N where N are consecutive integers starting at
one. The interface scans for attr.1.name, attr.2.name, and so on, stopping when a
property is not found.

Each attribute is defined by a name, which is the display string shown in the GUI,
and a value, which is an expression using the same rules as for other mappings. As
shown below, an attribute can have a format attribute which defines the type of the
value and how it is displayed:

Format string Meaning

t Text (this is the default)

i Integer

fN Floating point value displayed with N decimal places

d Date

If the format is not t, the value is treated as a number.

4. Extra values
Project ‘extra’ values are numbered values which are stored in a specific area of the
database. The track list can be configured to display these values in the same way as
‘misc’ values are handled in the Oracle Retail Design style list. Currently, the tracks
list handles up to ten extras.
An ‘extra’ value is defined by a property named extra.N where N is the extra
number (1-10).

Here is an example mapping the style supplier to a track list field called ‘Style
Vendor,’ then displaying it in the tracks list screen. In the ‘projects’ parameter group,
the following line would create the mapping:

 # Extras
 extra.1 = style$supplier

Then the webtrak administrator would configure the Webtrak ‘Lists’ as below,
mapping extra.1 to a field called ‘Style Vendor.’

General User View Configuration

16

WebTrack Standard Track List Configuration

5. Update flags
‘Update’ properties are flags that control whether project fields are updated when a
style is edited. The value of the property is an expression; update is selected if the
expression evaluates to a defined non-zero value. Allowing the flags to be defined by
expressions means that updates can be controlled on a style-by-style level if required.
All update flags are unset by default.

The property update.all can be used to set the flags for all mappings; individual
update.X properties can then act as an override.

There is an update flag for all the basic mappings (projectname, and so on) and also
flags for attributes (update.attrs) and for extras (update.extras). If attribute or
extra updating is selected, all attributes or extras are updated on an edit.

Oracle Retail Design 12.0

 Configuration Guide 17

Enabling of the Comments Entry Capability
The ability to enter comments within Oracle Retail Design provides an ongoing dialog
and enables further collaboration between partners on a specific style file. Because the
comments dialog box that appears within Oracle Retail Design is configurable, there are
setup steps required to enable the standard comments functionality within Oracle Retail
Design. This section identifies the components required to set up the functionality and the
attributes and functions that support the comments configuration.

Comments Entry Definition Files
There are two required definition files that need to be configured to set up the comments
entry capability. First, the user view configuration file is updated to identify the layout of
the comments dialog and the printing of comments. Once this definition is completed, it
needs to be uploaded via the Oracle Retail Design Administration – Configurations
option. See the Oracle Retail Design User Guide for information on how to upload a file
within the Configurations option. Once the configuration file is updated, the
administrator uploads the comments dialog layout definition referenced within the
configuration file via Spectrum. Specifically, the Oracle Retail Design administrator must
open the “Design general tab sheets” application within the Spectrum and upload the .xml
file that defines the comments dialog layout. To ensure that the comments button is
visible within Oracle Retail Design, the final step requires the administrator to verify the
security settings for the comments functionality via Oracle Retail Design administration –
Security. Once these steps have been completed, the user should have the ability to see
the comments functionality within Oracle Retail Design.

Note: There is also a default comments.xfo file that is
already uploaded for enterprises accessing www.retail.com.
This file defines the server side format file that supports the
comments printing. All that is required to leverage this file is
to reference the comments mode within the user view
configuration file. See the examples below.

Below are examples of default configuration files available to support the standard setup
of the comments entry capability. The files can be also be found by browsing to the
following URL:
 http://www.retail.com/import/dtds/

This example configuration file references the comments layout and printing capability.
You will note that the commentspectype which references the comments dialog layout
file type is 300. For the comments entry capability to work, the administrator must upload
an xml file with a spec sheet type of 300.

<?xml version="1.0"?>
<!DOCTYPE Configurations PUBLIC "-//Oracle retail.com//DTD Design configuration
XML//EN" "http://www.retail.com/import/dtds/desconfig.dtd">

<!-- Default configuration: allow parameters to be added -->

<Configurations>

 <!-- The global default -->

 <Configuration name="Default">

General User View Configuration

18

 <Details>

 <!-- Styles and comments reporting parameters -->

 <ParameterGroup ref="reporting"/>

 <!-- Comments definition -->

 <ParameterGroup ref="comments"/>

 </Details>

 </Configuration>

 <!-- Shared reporting parameters -->

 <ParameterGroup name="reporting" id="reporting">

 <Parameter name="type">xfo</Parameter>

 <ParameterGroup name="styles">

 <Parameter name="layout">landscape</Parameter>

 </ParameterGroup>

 <ParameterGroup name="comments">

 <Parameter name="modes">
 Text View/comments,prop.format=text
 List View/comments,prop.format=list
 </Parameter>

 <Parameter name="layout">portrait</Parameter>

 </ParameterGroup>

 </ParameterGroup>

 <!-- Shared comments parameters -->

 <ParameterGroup name="comments" id="comments">
 <Parameter name="commentspectype">300</Parameter>
 </ParameterGroup>

</Configurations>

Oracle Retail Design 12.0

 Configuration Guide 19

Here is an example of the comments dialog layout must be uploaded within the “Design
general tab sheets” of Spectrum. This file is named commentsentry.xml. Please note that
the sheet type is 300. These types of files are described in more detail in the chapter “Tab
Layout Configuration.”
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE SpecSheets PUBLIC "-//Oracle retail.com//DTD Design specsheets XML//EN"
"http://www.retail.com/import/dtds/specsheet.dtd">
<SpecSheets application="styletab">

 <!-- Configurable comments entry: standard version -->

 <SpecSheet type="300" description="Commnts entry: version1" fill="true" version="1"
borders="etched">

 <Page scrollable="false">

 <Form name="all">

 <!-- Set confirm option for multiple styles -->

 <Calc cell="comm$confirm" expr="comm$multi"/>

 <!-- Set autoemail option to send email always -->

 <Calc cell="comm$autoemail" expr="1"/>

 <SubForm fill="b">
 <Form name="outer" visible="comm$canadd" description="New comment" columns="2">

 <TextField label="Subject" fill="h" limit="32" cell="comm$subject"/>
 <Checkbox label="Send as email" cell="comm$email"/>
 <Label fontsize="-5" cellw="2" fill="n"/>

 <!-- Main text -->

 <TextArea width="155" rows="15" fill="b" cell="comm$text" cellw="2"/>

 </Form>
 </SubForm>

 <!-- Display -->

 <SubForm fill="b">

 <Form name="display" visible="comm$multi = 0" description="Current comments">
 <Custom name="comments" fill="b">
 <Parameter name="mode">both</Parameter>
 <Parameter name="initial">text</Parameter>
 <Parameter name="textfontsize">2</Parameter>
 <Parameter name="textsize">900x275</Parameter>
 <Parameter name="listrows">15</Parameter>
 </Custom>
 </Form>

 </SubForm>

 <!-- Magic 'mark as unread stuff' -->

 <Form name="marker">
 <Checkbox label="Mark comments as unread" pos="w" fill="h" cell="comm$unread"/>
 </Form>

 </Form>

 </Page>

 </SpecSheet>

</SpecSheets>

General User View Configuration

20

Comments Entry Configurable Attributes
To support the configuration of commentsentry.xml, there are a number of attributes that
specifically support the comments capability. These are also referenced within the
chapter “Spreadsheet Expression Syntax.”
Within the commentsentry.xml definition, the standard style$ link fields (see the Style
Linkages section in the chapter “Spreadsheet Expression Syntax”) are available if
comments for a single style are being entered. In addition, the following comment fields
are supported:
Output fields:
comm$subject: set this to the ‘subject’ for the comment. The value can come from a text
field or from a standard set in a drop down.
comm$text: set this to the ‘text’ for the comment. This will usually be set from a
TextArea field but could be calculated from other values.
comm$email: set this to non-zero if the comment is also to be sent as an email. The
standard email entry dialogue will be shown to collect the addresses. This will normally
be set from a check box.
Input fields:
comm$multi: this is set to 1 if comments for multiple styles are being entered. It can be
used to control the visibility of the comments display area. This will always be empty for
multiple styles.
comm$canadd: this is set to 1 if the user is allowed to create comments. It should be
used to control display of the entry fields. There is no point in showing these if the user
cannot add.
The comments component is used to display style file comments. It can be used as part of
the comment entry dialog form to display the current set of comments. There is no input
value associated with the component, so a cell name should not be present.
<Custom name=”comments”>
 <Parameter name=”mode”>text, list or both</Parameter>
 <Parameter name=”initial”>text or list</Parameter>
 <Parameter name=”print”>true or false</Parameter>
 <Parameter name=”textfontsize”>N</Parameter>
 <Parameter name=”textsize”>WxH<Parameter>
 <Parameter name=”listrows”>N</Parameter>
 <Parameter name=”showent”>other, partner, always or never<Parameter>
</Custom>

Parameter Meaning Default

mode If text, the comments are shown in text format, most recent first;
if list, the comments are displayed in multi-column sortable lst
format. If both, radio buttons are available to switch between the
formats.

both

initial If the mode is both, this selects the initial display text

print Selects whether the separate Print Comments button is available.
(Note that if server-side comment reporting is not configured,
comments are always printed in text format and the mode must
be text or both to enable printing).

true

Oracle Retail Design 12.0

 Configuration Guide 21

Parameter Meaning Default

textfontsize A positive or negative increment which is added to the point size
of the default font to get the font for text format displays. For
example if the value is 2, the font will be 2 points larger than the
default.

0

textsize The dimension in pixels of the text display area. This may be
adjusted to change the size of the comments entry dialogue. The
actual size may be affected by screen size or by the size of the
list format compoment.

900x275

listrows The number of visible rows in the list format display (note that
this refers to rows with a single line of text). The actual number
of rows displayed may be larger if the comments component is
stretched to fit a form or if the text format is made larger.

15

showent Controls whether the enterprise of the comment user is shown in
brackets after the user name:

other: the enterprise is shown if it is not the same as that of the
current user.
partner: the enterprise is shown if the user belongs to a trading
partner.
always: the enterprise is always shown.
never: the enterprise is never shown.

The value of this parameter is passed to the server template as
the showent property.

other

Server Side Reporting Definition
Oracle Retail Design supports the generation of printable output on the client using pre-
defined format files. The server side reporting option is available from within the client
side printing option dialog box and leverages specific format files that have been defined
and uploaded within Oracle Retail Design. During the upload of the format files, a mode
is assigned to that format. To enable this user to select this format within the printing
option dialog box, the mode needs to be assigned to a user-friendly option name within
the user view configuration. This section identifies the configuration attributes required to
set up the modes within the user view configuration file. The actual definition of the
format files is covered in the chapter “XFO Templates.”

General User View Configuration

22

To configure XFO printing for styles, a reporting ParamaterGroup should be included
in your configuration file. If the setup is common to all of your configurations, it can then
be included as a shared group at the end of the file and use a ‘ref’ attribute to refer to it:

 <ParameterGroup ref=”reporting”>
 …
 …

 <!-- Shared comments and styles reporting parameters -->

 <ParameterGroup name="reporting" id="reporting">

 <Parameter name="type">xfo</Parameter>

 <ParameterGroup name="styles">

 <Parameter name="modes">
 Mode one/simple
 Mode two/two
 </Parameter>

 </ParameterGroup>

 <ParameterGroup name="comments">

 <Parameter name="modes">
 Text View/comments,prop.format=text
 List View/comments,prop.format=list
 </Parameter>

 <Parameter name="layout">portrait</Parameter>

 </ParameterGroup>

 </ParameterGroup>

The reporting parameter group contains the following two nested groups:
 styles, which sets up styles printing from the main Print button
 comments, which sets up comments printing.

The type parameter specifies the reporting type; this should be xmf or xfo. XFO is the
Oracle Retail recommended print format. If specified outside the inner groups, it applies
to both groups.
The optional modes parameter defines the templates modes (as in xfo-mode-19). The
modes are listed on separate lines. The string before the / is shown in the drop down in
the print dialogue box. The string after the / is the mode string assigned when uploading
the format file. In the example above, this configuration causes two options to appear
within the drop-down list when the server side reporting option is selected within the
client side Print dialog. Specifically, Mode one and Mode two are available for selection.
The content of Mode one will be tied to the format file that was uploaded with mode set
to “simple”, while the content of Mode two is tied to the format file uploaded with mode
set to “two.” As the administrator uploads new printing format files, he or she must
update the configuration file for them to appear to the user.
The mode strings may be followed by optional parameters which are passed to the
formatting engine. In the example here, the same template is used for both modes; tests
within the template control whether the output is in text or list format.

Oracle Retail Design 12.0

 Configuration Guide 23

There is a built-in option max which specifies the maximum number of style files which
are supported by the mode. This can be used to prevent hugely-detailed reports being
generated for large numbers of styles. For example:

<Parameter name="modes">
 Mode one/simple
 Mode two/two,max=1
 </Parameter>

Here the second mode is available only when a single style file is selected.
If the layout parameter is present, the Portrait/Landscape option is included in the print
dialogue; the value of the parameter specifies the default for the option.

Scope Definition
The configuration file can be defined at an enterprise level, or the configuration file can
define the options described above for a particular scope. This choice allows the
administrator to define the features differently for different departments or divisions, or
support changes to the features for a new season. Oracle Retail recommends that both
enterprise-specific features are defined in the form followed by scope-specific settings.
This strategy allows you to define all user view configuration options within one
definition file. The ability to upload multiple definition files and set the scope outside of
the definition file is also supported. This section identifies the configuration attributes
required to set the scope within the user view configuration file.
Below is an example excerpt of a configuration file that identifies how the scope can be
set within the configuration file for a specific division and season.
<Configurations>

 <!-- The default for a Config Summary Screen for Accessories and Spring 2006 -->

 <Configuration name="Configurable Summary Screen">
 <Scopes>
 <Scope>
 <Division>
 <Name>Functional Accessories</Name>
 </Division>
 <Season>
 <Name>SP06</Name>
 </Season>
 </Scope>
 </Scopes>

 <Details>

 <Tabs>

 <!-- Standard tabs -->

 <Spec key="configsumm" type="1">
 <TabLabel>Summary</TabLabel>
 </Spec>

General User View Configuration

24

 <Builtin type="volumes"/>
 <Builtin type="price"/>
 <Builtin type="bom"/>
 <Builtin type="cost"/>

 <Builtin type="elc">
 <Parameter name="autocreate">false</Parameter>
 </Builtin>

 <Builtin type="specification"/>
 <Builtin type="bid"/>
 <Builtin type="labels"/>

 </Tabs>

If a configuration file is uploaded to replace the previous configuration, and it does not
contain the same scope set as the previous version, the old scope configurations are lost.
If a configuration with a new name is uploaded, existing configurations in the same
scopes are not removed. Oracle Retail Design uses the most recent upload for a specific
scope. Where there are multiple configurations and scopes within Oracle Retail Design,
the configuration is determined based on the following rules:
1. Find best hierarchy match.
2. If there is more than match, choose configuration with matching season.
3. If there is still more than one match, choose most recently uploaded version.
The hierarchy match is based on the selections on the user console. If the enterprise is
using subscoping at the subclass level, but the user does not select a subclass, the match
is by division, department and class only. Note that Oracle Retail Design deployed on
www.retail.com does not use subscoping, and therefore the scope cannot be matched at
the class or sub-class level.

 Configuration Guide 25

3
Tab Layout Configuration

Oracle Retail Design is a collaborative product development solution that provides
retailers flexibility to capture key product information by product type. Specifically, the
retailer has the ability to configure the Specification, Bid, and Estimated Landed Cost
tabs within Oracle Retail Design according to the different types of products they will be
developing with Oracle Retail Design. In addition, they have the ability to configure new
tabs to appear within a style file in Oracle Retail Design.
In order to design the user interface and define the field and validation rules used within a
configured tab, XML-based forms need to be created, uploaded into Oracle Retail
Design, and assigned to specific product types defined by the retailer’s administrator. The
XML tag language works with the application logic to generate and display specified
forms within the configurable tabs. In addition to displaying a configurable form with
data fields, images, and icons, the application allows data fields to be linked, calculated,
and exported within the configurable tabs.
This chapter provides information about the following:
 A sample configuration file.
 How to upload the file into Oracle Retail Design.
 Detailed explanations of attributes and elements used to support the configuration.

Spectrum Utility
The Spectrum utility is used to support the development and display of the configurable
forms. It is a separate application that appears only for Oracle Retail Design
administrators. This service is organized to allow the administrator to upload and view
specification, bid, estimated landed cost and general tabs during development. In
addition, the administrator has the ability to manage the icons that may be configured to
appear within a specific configurable form. Specific details of how to navigate through
Spectrum are included in the Oracle Retail Design User Guide.

Product Information Administration
The Product Information option on the Oracle Retail Design administration console is
where the configurable XML files are uploaded and linked to a specific product or ELC
type within Oracle Retail Design. In order for the user to view and test all functionality
included with the configurable forms, the user needs to upload the form within Oracle
Retail Design and assign it to the appropriate types via Product Administration. Once
XML files are uploaded and linked to a specific type within Oracle Retail Design, the
user is able to see the type and select it within the product file. The specific product type
that is selected within a product file in Oracle Retail Design determines what is populated
within the Specification and Bid tabs. Similarly, the specific ELC type that is selected
within Oracle Retail Design determines what appears in the ELC tab.

Tab Layout Configuration

26

Product Information Window in Oracle Retail Design

The actual development of the XML files can be done in any text editor. The tags and
attributes that are used within the development of the XML files are defined in the
designspecsheet.dtd. The elements and attributes of this file have been annotated below in
the Elements and Attributes section.

Getting Started
Depending on the sheet that will be supported, the administrator can either start
development of a specification sheet from scratch or copy an existing sheet if the
information will be similar. As the sheet is being developed, the administrator should
upload the sheet into Spectrum to verify the code will be compiled without error. If an
error is encountered and the administrator has been uploading the sheet fairly frequently,
the administrator should be able to pinpoint the section of code that will need to be
reviewed and changed.
As you are editing your XML document, keep in mind that all XML tags need a
beginning and ending tag. This is especially important to note if you are developing the
xml sheet from scratch.
Before you actually begin your new specification sheet, you may want to go through the
exercise of laying out the various pages, forms and subforms to help organize your
overall approach to developing the sheets. Once you define the headings and appropriate
layout, the following questions should be asked when completing section of data:
 What type of data field? (Date, Integer, Text, Text Area, Choice, FloatField, and so

on)
 What is the name of the data field?
 What is the width of the data field?
 If no name exists, will the field need to be recorded in the log file. What name would

you like the field to be recorded under in the log file?
 Does this field need to be linked to another standard field or specification field within

Design?
 Does this field need to appear on the list screen within Design?
 Does this field need to appear in the season details file as a mapped field?
 Who has the ability to edit/update this field?

Oracle Retail Design 12.0

 Configuration Guide 27

 Is this a calculated field? Will this field be used in calculations?

Field Elements
Within the configurable specification sheet language, the retailer has the ability to
configure fields to appear within the list screen, link configured fields between sheets,
link configured fields to the Summary window and identify configured fields to be
exported within the season details file or as part of the server-side print file. To achieve
these functions, the administrator must use various types of fields including standard
fields, miscellaneous fields, and mapped fields.
 Standard fields – These are standard database fields that can be referenced when

linking information from the summary screen or linking information from a
configurable tab to the summary screen. Because standard fields are already defined
in the database, in many cases, they are already available to appear in the list screen
configuration and are available to be exported. See the sections concerning style
linkages in the chapter “Spreadsheet Expression Syntax” for details related to
Standard Fields.

 Miscellaneous fields – These are configured fields that can be referenced to perform
client-side functions. Specifically, if an administrator would like a configured field to
appear on the style file list screen, it is necessary for the administrator to tie the
configured field to a miscellaneous field. In addition, to link configurable data
between configurable tabs, miscellaneous fields must be used. Currently, Oracle
Retail Design also includes miscellaneous fields on the season details extract and the
server-side print, but in the long term, miscellaneous fields will be used as an
exclusively client-based configurable field. There is a limit of 250 miscellaneous
fields that can be configured within the Lists Administration to appear within the
style file list screen. There is no limit to the number of miscellaneous fields that are
used to link data between tabs. However, the same miscellaneous field cannot be
used more than once within the same form.

 Mapped fields – These are configured fields that can be referenced to perform server
side functions. Specifically, if an administrator would like a configured field to
appear on the season details extract and/or to be included in the server side print,
mapped fields are recommended. There is no limit to the number of mapped fields
that are referenced within the configurable forms. However, the same mapped field
cannot be used more than once within the same form.

 Linked Fields – In Oracle Retail Design, a function within the XML-based
configurable forms language links data between the specification, bid, and estimated
landed cost configurable tabs. This “link” function behaves very similarly to the
linking provided by the existing miscellaneous fields; however there is no limit to the
amount of data that can be referenced by the link functionality. In addition, data
referenced by the link functionality can be used in calculations and expressions. Data
referenced by the link functionality alone cannot be configured to appear on the list
screen or the server side reporting functions.

Tab Layout Configuration

28

Sample XML File
The following excerpt provides an example of the XML code for a simple Oracle Retail
Design specification sheet. It incorporates many of the most common XML tags, or
elements and attributes, which are used to define a spec sheet tab. You can use this
sample file and the descriptions of the elements and attributes in this chapter to explore
the opportunities available for developing your own configurable tabs.
<?xml version = '1.0'?>
<!DOCTYPE SpecSheets PUBLIC "-//retail.com//DTD Design specsheets XML//EN"
"http://dem19.retail.com/retailservera/import/dtds/specsheet.dtd">
<SpecSheets application="styles">

 <SpecSheet type="501" description="Apparel Specification" tabbed="true"
fill="true">
 <Page title="Summary">
 <Form name="Summary">
 <Form name="STmain" columns="2">
 <Form name="STpanel1" columns="2" description="Header Summary">
 <TextField label="Product ID" width="20"
expr="style$stylenumber"/>
 <TextField label="Class" width="20" expr="style$class"/>
 <TextField label="Description" width="20"
expr="style$shortname"/>
 <TextField label="Sub Class" width="20" expr="style$subclass"/>
 <TextField label="Department" width="20"
expr="style$department"/>
 <TextField label="Product Type" width="20" expr="style$type"/>
 <TextField label="Season" width="20" expr="style$season"/>
 <TextField label="Size Range" width="20"
expr="style$sizerange"/>
 <TextField label="Collection" width="20" expr="style$theme"/>
 <TextField label="Base Size" width="20" cell="style$misc_111"/>
 <Custom label="Status" width="20" expr="style$cust_stateid"
name="rstatus"/>
 <DateField label="Approval" mode="local"/>
 </Form>
 <Form name="STlogo">
 <Icon iconname="demologo"/>
 </Form>
 <Form name="STpanel101" columns="1">
 <Image dim="300x300" cellh="50">
 <ImageOption name="image1"/>
 </Image>
 </Form>

 <Form name="STpanel101a" description="Product Details" columns="2">
 <TextField label="Block Reference" width="15"
cell="style$dispatch"/>
 <TextField label="Testing Standard" width="15"
cell="style$misc_102"/>
 <Choice label="Product Life" width="20" cell="style$misc_105">
 <Option value=""><Select></Option>
 <Option>Carryover</Option>
 <Option>New</Option>
 <Option>Exit</Option>
 </Choice>
 <Choice label="Silhouette" width="20" cell="style$misc_100">
 <Option value=""><Select></Option>
 <Option>Darted</Option>
 <Option>Pleated</Option>
 <Option>Flare</Option>

Oracle Retail Design 12.0

 Configuration Guide 29

 <Option>Cropped</Option>
 <Option>A Line</Option>
 <Option>Empire</Option>
 <Option>Halter</Option>
 <Option>Sheath</Option>
 <Option>Slip</Option>
 <Option>Strapless</Option>
 <Option>Wrap</Option>
 </Choice>
 <Choice label="Fit" width="20" cell="style$misc_101">
 <Option value=""><Select></Option>
 <Option>Classic</Option>
 <Option>Low Rise</Option>
 <Option>Slim</Option>
 <Option>Stretch</Option>
 <Option>Loose</Option>
 </Choice>
 <Choice label="Fabric" width="20" cell="style$category">
 <Option value=""><Select></Option>
 <Option>Angora</Option>
 <Option>Boucle</Option>
 <Option>Cashmere</Option>
 <Option>Cotton</Option>
 <Option>Cotton Sateen</Option>
 <Option>Cotton Twill</Option>
 <Option>Cotton Poplin</Option>
 <Option>Crepe</Option>
 <Option>Linen</Option>
 <Option>Silk Chiffon</Option>
 <Option>Silk Dupioni</Option>
 </Choice>
 <TextField cell="style$misc_9" label="Fiber" map="fibertgt"
width="15"/>
 <TextField label="Weight" width="15" cell="style$misc_10"/>
 <TextField label="Construction" width="15"
cell="style$misc_11"/>
 <TextField label="Yarn Count" width="15" cell="style$misc_12"/>
 <TextField label="Gauge" width="15" cell="style$misc_13"/>

 <Choice label="Finish" width="20" cell="style$misc_14">
 <Option value=""><Select></Option>
 <Option>Bio Polish</Option>
 <Option>Mercerized</Option>
 <Option>Micro Sanded</Option>
 <Option>Soft Handfeel</Option>
 <Option>Wrinkle-Resistant</Option>
 </Choice>
 <Choice label="Wash" width="20" cell="style$misc_68">
 <Option value=""><Select></Option>
 <Option>Compact Finish</Option>
 <Option>Fabric Wash</Option>
 <Option>Mild Silicone</Option>
 <Option>Non-Wash</Option>
 <Option>Colorfast</Option>
 <Option>Soft Handfeel</Option>
 </Choice>
 <Choice cell="style$misc_114" keyed="true" label="Fabric Country
Origin Target" map="fabriccotgt" perm="2,9,12" width="20">
 <Option key="y" list="fabricco"></Option>
 </Choice>
 <Choice cell="style$misc_174" keyed="true" label="Dye
House/Finisher Target" map="fabricmilltgt" perm="2,9,12" width="20">
 <Option key="y" list="dyehouse"></Option>

Tab Layout Configuration

30

 </Choice>
 </Form>
 </Form>

Elements and Attributes
This section provides a reference for elements and attributes used in defining Oracle
Retail Design configurable specification sheets or tab layouts. Elements are presented in
the order in which they appear in the specsheet.dtd file. For each element, a description,
format, and where applicable, an example is provided.

Identifying Statement
Every specification sheet will start with a statement in this format:

<?xml version="1.0" encoding="UTF-8"?>

<!-- DTD for Design spec sheets. Version 0.01 -->

Example
This identifies the DTD file from which the specification sheet will be validated.
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE SpecSheets PUBLIC "-//www.retail.com//DTD Design specsheets XML//EN"
"http://www.retail.com/import/dtds/specsheet.dtd">

SpecSheets
SpecSheets is the enclosing element. It contains one or more individual spec sheet
definitions.
<!ELEMENT SpecSheets (SpecSheet+)>
<!ATTLIST SpecSheets application CDATA #IMPLIED
 version (1 | 2) "2">

The application attribute defines the internal “application code” for the sheets. The sheet
processor can reject an import if it is configured for a different code. There are three
options for the Specsheets application value:
 styles – This maps to the specification sheet. If this is uploaded as a bid tab or ELC

tab, an error will occur.
 stylebids – This maps to the specification sheet. If this is uploaded as a spec tab or

ELC tab, an error will occur.
 styleelc – This maps to the specification sheet. If this is uploaded as a spec tab or bid

tab, an error will occur.
 styletab – Maps to a ‘general’ sheet which can be configured as a new tab, comments

display, and so on.
The version attribute can define a default version for all the sheets in the file. The default
is 2. If you were to change the version to 1, the information would display in a different
format (see below). Note that the border and background attributes can be used to
override the default settings.

Oracle Retail Design 12.0

 Configuration Guide 31

Example
<SpecSheets application="styles" version="1">
<SpecSheets application="styles" version="2"> OR <SpecSheets
application="styles">

Results of the different SpecSheets version attributes:

SpecSheets Version 1 Format

SpecSheets Version 2 (Default) Format

SpecSheet
SpecSheet defines a single sheet layout. It contains one or more pages.
<!ELEMENT SpecSheet (Page+)>
<!ATTLIST SpecSheet type CDATA #REQUIRED
 description CDATA #REQUIRED
 tabbed (true | false) "false"
 defaulttabs (true | false) "false"
 fill (true | false) "false"
 version (1 | 2) #IMPLIED
 borders (none | lined | etched) #IMPLIED
 background CDATA #IMPLIED
 enabled CDATA #IMPLIED
 perm CDATA #IMPLIED>

The integer type attribute defines the specification type number.
The description attribute defines text displayed for the sheet in administration tools.
If the tabbed attribute is present, tabs are displayed; if defaulttabs is present the default
tab titles are used. This attribute is deprecated and will be removed eventually.

Tab Layout Configuration

32

The fill attribute defines whether the sheet fills horizontally. The default is false.
The version attribute defines the spec sheet display version. Currently versions 1 and 2
are supported. The default is the SpecSheets version attribute.
The borders attribute sets the default border for all forms in the sheet; if omitted the
default is ‘etched’ for version 1 and ‘lined’ for version 2.
The background attribute sets the background color for the page and its forms. It should
be a color name like 'black' (see the fields of the ava.awt.Color class), or an RGB value in
decimal or hex (decoded by java.lang.Integer.decode). If the background attribute is not
present, the background color is ‘light gray’ (the standard Design color) for version 1 and
white for version 2 sheets.
The enabled attribute defines an expression which can be used to dynamically update the
‘editing enabled’ state of the sheet. The attribute is available on most nested elements; the
most recently seen value will override the settings on enclosing elements. Note that
enabled settings do not combine. A form may have a ‘true’ enabled attribute while the
value for the sheet is false; the form will then be available for editing.
The perm attribute defines editing permissions for the specsheet. The basic format of the
perm value is:
allow-deny

‘allow’ and ‘deny’ are comma-separated lists of application-specific security roles. The
roles are the keys defined in the system administration services window (the ‘sec:’ prefix
may be omitted). We use the following table in defining permissions:

Service Administration – User Types Set-Up

Key Description Enable by Default

sec:1 Account Manager

sec:2 Administrator

sec:3 Artist

sec:4 Imports

sec:5 Buyer

sec:6 IS

sec:7 MIO

sec:8 Planning/Allocation

sec:9 Product Management

sec:10 Quality Control

sec:11 Oracle Retail Support

sec:12 Sourcing Manager

sec:13 Technical Designer

sec:14 Packaging

sec:loc [All local users] X

Oracle Retail Design 12.0

 Configuration Guide 33

Service Administration – Partner Roles Set-Up

Key Description Enable by Default

sec:p1 Agent

sec:p2 Supplier

sec:p5 Domestic Supplier

sec:prt [All partner users] X

“*” means all users; it should not be used in conjunction with any other roles. An empty
list means no users.
“deny” may be omitted if there are no exclusions.
Examples of perm attributes:
1. perm=“*” means ‘everybody’ and has the same effect as omitting the attribute.
2. perm=“loc-1” means all users in the ‘loc’ group except those in the local ‘1’ group. It

is equivelent to perm=“sec:loc-sec:1”.
3. perm=“*-2,p1” means everybody, except those users in the local ‘2’ group and the

partner ‘1’ group.
Common settings will be perm=“loc” for local users only and perm=“prt” for partner
users only.
Not all combinations are sensible, for example, “loc-*” means ‘all local users except for
everybody’, and is the same as perm=“”. An item that cannot be edited by anyone is not
very useful.
The perm attribute is available on most other nested elements; the most recently seen
value will override settings on enclosing elements.

Example
<SpecSheet type="20" description=" Shirt Specification Sheet" tabbed="true"
perm="2,9">

In this example, the type appears within Spectrum and the administration console and is
the unique identifier or key that defines the sheet. If a specification sheet with the same
type is uploaded, the contents of the current type will be replaced.
The description appears within Spectrum and the administration console, but is not a key
for the sheet. Many sheets can have the same description.
Oracle Retail recommends using the tabbed attribute instead of the default tabs attribute.
If you change a specification sheet to read tabbed=“false”, it assumes there are not
multiple tabs and only the last tab would appear when uploading the sheet into Spectrum.
The permissions attribute defined here allows the Administrator (2) and Product
Management (9) to have access to information within this SpecSheet.

Tab Layout Configuration

34

Page
The Page element defines a single page or tab.
<!ELEMENT Page ((Matrix | Form)*)>
<!ATTLIST Page title CDATA #IMPLIED
 scrollable (true | false) "true"
 background CDATA #IMPLIED
 enabled CDATA #IMPLIED
 perm CDATA #IMPLIED>

If the sheet is not tabbed, there must be one page only. Each Page contains one or more
matrices or forms.
The title attribute defines the tab title. It is required if the sheet is tabbed.
The scrollable attribute defines whether the entire page scrolls. The default is true.
The background attribute sets the background color of the page; if omitted, the default
for the sheet is used.
The enabled attribute defines an expression which can be used to dynamically update the
‘editing enabled’ state of the sheet. The attribute is available on most nested elements; the
most recently seen value overrides the settings on enclosing elements. Note that enabled
settings do not combine. A form may have a ‘true’ enabled attribute whilst the value for
the sheet is false; the form will then be available for editing.

Example
 <Page title="Construction Details">
 </Page>
 <Page title="Bill of Materials ">
 </Page>
 <Page title="Graded Measurements">
 </Page>

In this example, there are three pages within this SpecSheet titled Construction Details,
Bill of Materials, and Graded Measurements. If tabbed<>true, only one page would
appear. As mentioned above, it would be the Graded Measurements page that would
appear. It is very important to include the end tag for each page, as there are multiple
forms, matrices defined within a page.
Because you may not always know how much space the contents of the new specification
sheet may take, set the scrollable attribute to true (the default).

Oracle Retail Design 12.0

 Configuration Guide 35

Matrix
The Matrix element defines a multi-column list.
<!ELEMENT Matrix ((Calc | CalcSet)*, CellChoice?, (Column | ColumnSet)+, (Row |
RowSet)*)>
<!ATTLIST Matrix name CDATA #REQUIRED
 description CDATA #IMPLIED
 border (none | lined | etched) #IMPLIED
 rows CDATA #REQUIRED
 headings (false | true) "true"
 visiblerows CDATA #IMPLIED
 visiblecols CDATA #IMPLIED
 scrollable (false | true) #IMPLIED
 horizontalscroll (false | true) "false"
 leftfixedcols CDATA #IMPLIED
 rowheadingwidth CDATA #IMPLIED
 showeditable CDATA #IMPLIED
 visible CDATA #IMPLIED
 cellpfx CDATA #IMPLIED
 map CDATA #IMPLIED>

The name attribute is the unique name for this matrix in the sheet. The name is always
required. The name is not defined as an XML ID because the same name may be used in
different SpecSheets.
The description attribute is used to generate a heading for the matrix.
The rows attribute defines the number of rows; the number of columns is implied by the
number of Column elements.
The headings attribute defines whether headings are displayed.
The visiblerows attribute defines the number of rows displayed in the client GUI. The
default is 5. The actual number of rows displayed may differ if the matrix size is altered
to fit in the available space.
If the scrollable attribute is absent, the matrix scrolls vertically if the Page is not
scrollable, and does not scroll if the Page is scrollable. This default behavior is suitable
for fixed matrices, but may not be best for matrices with dynamic row sets.
The horizontalscroll attribute specifies whether a horizontal scroll bar is present in the
Matrix. This can be useful if there is a dynamic column set. If horizontal scrolling is
selected, the visiblecols attribute gives an indication as to the visible width of the matrix.
The measure is based on a notional default column width and does not relate directly to
real columns in the matrix.
The leftfixedcols is the number of non-scrolling columns on the left of the matrix. It can
be used only if horizontalscroll is true and must be less than the number of columns. A
ColumnSet counts as a single column in the leftfixedcols count.
The rowheadingwidth attribute must be present if row headings are required; it is the
width of the headings column.
If showeditable is true, editable cells are displayed with a different background color in
edit mode.
The visible attribute defines an expression which can be used to dynamically show or
hide the matrix. The matrix is visible if the expression evaluates to a non-zero number.

Tab Layout Configuration

36

The cellpfx attribute must be set if any cells in the matrix are involved in spreadsheet
calculations. It is used as a prefix to form the spreadsheet cellnames for matrix cells. A
cell at row ‘r’ and column ‘c’ will have a spreadsheet cellname of pfx$r.c. For example,
if the prefix is “zz”, the cell at row 3, column 6 will have a spreadsheet cellname of
zz$3.5. If no cells are involved in calculations, omitting the cellpfx attribute speeds up
several matrix operations. The map attribute defines a mapping for the entire matrix.
Initial contents and row/cell mappings are defined by Row elements.
Calc elements may be included before Column elements to define intermediate values
and functions.
The optional CellChoice element defines the default items for any choice columns or
cells in the matrix. It can be included even if the default cell type is not chosen; this
allows the default to be used for a number of individual choice cells without repeating the
items.
CalcSet elements are used to compute 1-d and 2-d array values in dynamic row and/or
column areas.

Example
This example also uses the Form element. See later elements for more information about
its usage.
 <Form name="BOMmain" description="Bill of Materials Details">
 <Matrix name="BOMpanel1" rows="5">
 <Column width="15" heading="FABRIC"/>
 <Column width="15" heading="Where is it Used?"/>
 <Column width="15" heading=" Content"/>
 <Column width="15" heading="Supplier Name"/>
 <Column width="15" heading="Cost"/>
 <Column width="15" heading="Weight"/>
 <Column width="15" heading="Construction"/>
 </Matrix>
 </Form>

cellattrs
The cellattrs entity is a shorthand for repeated attribute definitions in the DTD. These
attributes can be set in Matrix, Column, or Cell elements. The Cell setting overrides the
Column setting, which in turn overrides the Matrix setting.
<!ENTITY % cellattrs 'align (l | c | r) #IMPLIED
 type (text | int | float | date | checkbox | choice) #IMPLIED
 prec CDATA #IMPLIED
 limit CDATA #IMPLIED
 enabled CDATA #IMPLIED
 perm CDATA #IMPLIED'>

<!ATTLIST Matrix %cellattrs;>

The align attribute defines the column alignment. For example, ‘l’ would be used for text
items, ‘r’ for numeric values and ‘c’ for date values. The alignment can be overridden by
an align attribute in a Cell element.
The type attribute defines the datatype expected for values in the column.
The prec attribute can be used with float only; it defines the number of decimal places;
the default is 2.
The limit attribute can be used with text cells only; it defines the maximum text length. It
must be ‘none’ (to cancel an enclosing default limit) or a positive integer.

Oracle Retail Design 12.0

 Configuration Guide 37

Column
The column attribute defines a single column. The width is required, but the heading is
optional. If the heading is omitted but the matrix headings attribute is true, an empty
heading is displayed.
<!ELEMENT Column (Heading?, CellChoice?)>
<!ATTLIST Column width CDATA #REQUIRED
 heading CDATA #IMPLIED
 headingexpr (false | true) "false"
 map CDATA #IMPLIED
 %cellattrs;>

The column heading may be set in a heading attribute or child Heading element, but not
both.
If the headingexpr attribute is true, the heading value is treated as an expression which is
evaluated to obtain the column heading.
The map attribute defines a column level mapping.
The optional CellChoice element defines the default items for choice cells in the column.

Example
 <Column width="10" heading="POM"/>
 <Column width="20" heading="Description"/>
 <Column width="10" heading="Tot(-)"/>
 <Column width="10" heading="Tot(+)"/>
 <Column width="10" heading="XS"/>
 <Column width="10" heading="S"/>
 <Column width="10" heading="M"/>
 <Column width="10" heading="L"/>
 <Column width="10" heading="XL"/>

ColumnSet
The ColumnSet attribute defines a dynamic ‘column’ set. This contains a set attribute
defining an expression which should evaluate to a list of column headings. A ColumnSet
is treated as a single ‘virtual’ column when referred to in spreadsheet expressions and
Cell elements. The spreadsheet value associated with a cell in a dynamic column set will
be a 1-d or 2-d array.
<!ELEMENT ColumnSet (CellChoice?, SubColumn*)>
<!ATTLIST ColumnSet width CDATA #IMPLIED
 set CDATA #REQUIRED
 dimension CDATA #IMPLIED
 required (false | true) "false"
 map CDATA #IMPLIED
 %cellattrs;>

<!ELEMENT SubColumn (CellChoice?)>
<!ATTLIST SubColumn width CDATA #IMPLIED
 heading CDATA #REQUIRED
 map CDATA #IMPLIED
 %cellattrs;>

The dimension attribute defines the data; it can be used in spreadsheet calculations to
link with related data in other matrices. For example, the dimension could be “size” for a
dynamic column set derived from a list of sizes. If the same dimension is used elsewhere
in a row or column set, the two sets can be used in linked calculations.

Tab Layout Configuration

38

If the matrix has a cellpfx attribute, and a dimension is provided, a spreadsheet cell
named “PFX$DIMENSION” will be set to the list of values from the set expression. Here
PFX is the cell prefix and DIMENSION is the dimension. For example, if the cellpfx is
“szmat” then the cell containing the size names in the example above would be
szmat$size.
If the required attribute is true, the matrix will not be displayed if the set is empty.
The initial implementation does not allow more than one ColumnSet per matrix, and does
not support ‘sub columns’.
Currently the expression used to define the set should not contain direct or indirect
references to other cells in this matrix.

Heading
The Heading element defines the heading for a matrix column.
<!ELEMENT Heading (#PCDATA)>

PCData represents parsed character data indicating that the element contains text and no
other elements.

Example
<Column width="20" heading="Description"/>

Row
The Row element defines initial contents for a matrix row.
<!ELEMENT Row (Cell*)>
<!ATTLIST Row row CDATA #IMPLIED
 heading CDATA #IMPLIED
 headingexpr (false | true) "false"
 map CDATA #IMPLIED>

The row attribute is the one-based row number.
The heading attribute is the row heading; it will be ignored if the Matrix
rowheadingwidth attribute is not present.
If headingexpr is true, the heading is treated as an expression.
The map attribute defines a row-level mapping.

Example
 <Row row="1" heading="false">
 <Cell col="1" editable="true" type="text"/>
 <Cell col="2" editable="true" type="text"/>
 <Cell col="3" editable="true" type="float"/>
 <Cell col="4" editable="true" type="date"/>
 <Cell col="5" editable="true" type="text"/>
 <Cell col="6" editable="true" type="text"/>
 </Row>

Oracle Retail Design 12.0

 Configuration Guide 39

RowSet
A dynamic row ‘set’ may be defined with the RowSet element.
<!ELEMENT RowSet (SubRow* | Cell*)>
<!ATTLIST RowSet row CDATA #IMPLIED
 set CDATA #REQUIRED
 dimension CDATA #IMPLIED
 required (false | true) "false"
 map CDATA #IMPLIED>

<!ELEMENT SubRow (Cell*)>
<!ATTLIST SubRow heading CDATA #IMPLIED
 map CDATA #IMPLIED>

This contains a set attribute defining an expression which should evaluate to a list of row
headings. A dynamic row set can also contain nested ‘sub-row’ SubRow elements. The
subrows are numbered in the same sequence as normal rows.
For example:
 <RowSet row="5" set="someexpr">
 <SubRow heading="sub1"/>
 <SubRow heading="sub2"/>
 <Row>

This defines rows 5 and 6. Nested sub-rows are allowed with RowSets only.
The spreadsheet cell associated with a Cell in a RowSet will be an array; two-
dimensional if the Cell is part of a dynamic column set.
See the notes on ColumnSet for a description of the dimension and required attributes.
A cell will be defined containing the row set list if the matrix has a cellpfx and the
dimension is specified. For more details, see the ColumnSet notes.
The initial implementation does not allow more than one RowSet per matrix. A map
attribute is not allowed if the RowSet contains sub-rows.
Currently, the expression used to define the set should contain direct or indirect
references to other cells in this matrix.

Cell
The Cell element defines initial contents of a row/column cell and can also define a cell
mapping.
<!ELEMENT Cell (#PCDATA | CellChoice | Value)*>
<!ATTLIST Cell col CDATA #REQUIRED
 editable (true | false) "true"
 heading (true | false) "false"
 background CDATA #IMPLIED
 expr CDATA #IMPLIED
 loglabel CDATA #IMPLIED
 loglabelx CDATA #IMPLIED
 map CDATA #IMPLIED
 %cellattrs;>

The col attribute is the 1-based column number. This attribute allows only the non-default
Cell elements to be included.
The contents of the Cell are the initial value; the editable attribute defines whether the
cell can be edited by the user.

Tab Layout Configuration

40

If the heading attribute is true the cell contents are displayed differently, perhaps using a
bold font.
The expr attribute defines a spreadsheet expression which is used to determine the cell
contents. Any cell with an expression is implicitly non-editable.
An editable cell which has initial contents must be used with care. Once any edits have
been made to the matrix in the client, the initial value will be saved to the server. The
saved value will then continue to be used, even if the initial value is changed in the
matrix definition.
If the cell type is ‘choice’, a CellChoice element may be present to define the choice
items. There must be a CellChoice defined in the Cell, Column, or Matrix. Note that
DTD rules require that the contents are surrounded by ()* indicating any number of
CellChoice elements. However it is not legal to include more than one.
The initial value for a checkbox cell must be true or false; false is the default.
If there is an initial value, it should be defined by a single Value element; for
compatibility with previous versions, the value can be defined directly in the Cell if there
are no other elements. If there is a CellChoice element, the initial value is not allowed.
loglabel and loglabelx define the change log label for the cell. loglabel is a simple string,
loglabelx is an expression evaluated in the context of the cell. loglabel and loglabelx
cannot both be used.

Example
 <Row row="1" heading="false">
 <Cell col="1" editable="true" type="text"/>
 <Cell col="2" editable="true" type="text"/>
 <Cell col="3" editable="true" type="float"/>
 <Cell col="4" editable="true" type="date"/>
 <Cell col="5" editable="true" type="text"/>
 <Cell col="6" editable="true" type="text"/>
 </Row>

CellChoice
The CellChoice element defines the contents of a matrix ‘choice’ cell.<!ELEMENT
Cell (#PCDATA |
<!ELEMENT CellChoice (Option+)>
<!ATTLIST CellChoice keyed (true | false) #FIXED "true">

CellChoice is similar to the basic Choice item, but has far fewer attributes. For clarity in
this definition, and ease of parsing, a separate element is used. Note that all CellChoice
elements are keyed.

Oracle Retail Design 12.0

 Configuration Guide 41

CalcSet
CalcSet defines array calculations in a dynamic matrix.
<!ELEMENT CalcSet EMPTY>
<!ATTLIST CalcSet cell CDATA #REQUIRED
 expr CDATA #REQUIRED
 dimensions CDATA #REQUIRED
 flexible (false | true) "false"
 map CDATA #IMPLIED>

The dimensions attribute lists the dimension values used to construct the array. It must
contain one or two dimension strings, separated by commas, which match the dimensions
of the ColumnSet or RowSet elements.
If the flexible attribute is true, the expression is evaluated with flexible dimension
matching. This allows array values to be shared between matrices or spreadsheets when
the dimensions do not match exactly.

Form
The form element defines a spec sheet form with input items.
<!ELEMENT Form (Defaults | TextField | IntField | FloatField | TextArea | Choice |
Image | Icon | Checkbox |
 SubForm | Label | MultiLabel | DateField | Custom | Matrix | Form
| Calc)*>

<!ATTLIST Form name CDATA #REQUIRED
 description CDATA #IMPLIED
 columns CDATA "1"
 tabbed (false | true) "false"
 tabsinrow CDATA #IMPLIED
 vertical (false | true) "false"
 scrollable (false | true) "false"
 map CDATA #IMPLIED
 enabled CDATA #IMPLIED
 visible CDATA #IMPLIED
 background CDATA #IMPLIED
 border (none | lined | etched) #IMPLIED
 perm CDATA #IMPLIED>

The mandatory name attribute defines the form name. The name is used to match the
form against input data stored in the database.
The description attribute is used to generate a heading for the form.
The columns attribute defines the number of columns used in the display. The default is
1.
The tabbed attribute is true if the form items are displayed as separate tabs.
The tabsinrow attribute is relevant only if the form is tabbed; it defines the number of
per row.
The vertical attribute selects an ‘old-style’ vertical set of textareas format.
Direct nesting of Matrix and Form elements is allowed without requiring a SubForm. A
SubForm is needed only if attributes are required.
The visible attribute defines an expression which can be used to dynamically show or
hide the form. The form will be visible if the expression evaluates to a non-zero number.
The background attribute sets the background color; if omitted the color is taken from
the parent form or page.

Tab Layout Configuration

42

The border attribute sets the border for the form.
Form level mapping is defined by the map attribute.

Example
In this specification sheet example, which incorporated SubForm elements, the Cell
element is used to allow the user to enter contents to a field and map them to a
miscellaneous field and mapped field.
<Form name="garment">
 <SubForm compat="true">
 <Form name="form1" columns="2" description="HEADER INFORMATION">
 <TextField label="Product Number" width="50" expr="style$stylenumber"/>
 <TextField label="Department" width="50" expr="style$department"/>
 <TextField label="Product Description" width="50" expr="style$shortname"/>
 <TextField label="Season" width="50" expr="style$season"/>
 </Form>
 </SubForm>

 <SubForm compat="true">
 <Form name="form1b" columns="2">
 <IntField label="Fabric Target" width="20" cell="style$misc_3"
map="fabrictgt"/>
 <TextField label="Construction Target" width="20" cell="style$misc_4"
map="constructtgt"/>
 <TextField label="Material Target" width="20" cell="style$misc_5"
map="materialtgt"/>
 <TextField label="Finish Target" width="20" cell="style$misc_6"
map="finishtgt"/>

In this bid sheet example, the expr attribute is used to populate what was entered in the
specification sheet’s cell attribute and is linked to the bid sheet.
<SubForm compat="true">
 <Form name="form1c" columns="2" >
 <IntField label="Fabric Target" width="20" expr="style$misc_3"/>
 <IntField label="Fabric" width="20" map="fabric"/>
 <TextField label="Construction Target" width="20"
expr="style$misc_4"/>
 <TextField label="Construction" width="20" cell="style$misc_7"
map="construction"/>
 <TextField label="Material Target" width="20"
expr="style$misc_5"/>
 <TextField label="Material" width="20" cell="style$misc_8"
map="material"/>
 <TextField label="Finish Target" width="20" expr="style$misc_6"/>
 <TextField label="Finish" width="20" cell="style$misc_9"
map="finish"/>
 </Form>
</SubForm>

Oracle Retail Design 12.0

 Configuration Guide 43

itemattrs
The itemattrs entity is shorthand for attributes shared by all items
<!ENTITY % itemattrs 'label CDATA #IMPLIED
 width CDATA "0"
 cellw CDATA #IMPLIED
 cellh CDATA #IMPLIED
 fill (n | h | v | b) #IMPLIED
 pos (c | n | ne | e | se | s | sw | w | nw) #IMPLIED
 font (b | i | bi) #IMPLIED
 fontsize CDATA #IMPLIED
 labelw CDATA #IMPLIED
 labelfont (b | i | bi) #IMPLIED
 labelfontsize CDATA #IMPLIED
 labelalign (l | c | r) #IMPLIED
 labelcolon (false | true) "true"
 loglabel CDATA #IMPLIED
 perm CDATA
#IMPLIED'>

Attributes for some item types can also have a map attribute:
<!ENTITY % mapattrs '%itemattrs;
 map CDATA #IMPLIED'>

Attributes for some item types can have a cell attribute:
<!ENTITY % itemcellattrs '%mapattrs;
 index CDATA #IMPLIED
 form CDATA #IMPLIED
 enabled CDATA #IMPLIED
 cell CDATA #IMPLIED'>

Attributes for item types can have expr and cell attributes:
<!ENTITY % itemexprattrs '%itemcellattrs;
 expr CDATA #IMPLIED'>

The compat attribute is used with elements which do not have any associated data and
which were supported in the old ‘forms’ language. These items were counted as part of
the data store for the form, even though there could be no data. If an old form has existing
data stored in the database, this attribute should be set to true to ensure that the column
positions are preserved.
The compat attribute is not required with elements such as Defaults or Calc.
<!ENTITY % datalessattrs '%itemattrs;
 compat (true | false) "false"'>

Tab Layout Configuration

44

Example
The header row in this example uses font and width attributes:
<Form name="form4" columns="8">
<Defaults labelalign="r" fill="n" width="10" labelcolon="false"/>
<!-- main heading -->
<Label font="b" fontsize="4" value="Cost Calculation"/>
<Label cellw="6"/>
<Label font="b" fontsize="4" value="Please Review"/>
<!-- blank line-->
<Label cellw="8"/>
<Label cellw="4"/>
<Label font="b" fontsize="2" cellw="2" value="First Cost"/>
<Label font="b" fontsize="2" cellw="1" value="Quantity"/>
<Label font="b" fontsize="2" cellw="1" value="Extended Cost"/>

In this example, the Fabric Cost in the Bill of Materials table does not have a field label
for the log file to use, so we defined one.
<IntField cell="fabriccost" map="fabriccost" loglabel="Fabric Cost"/>

In this example, note that all these items are mapped to an attribute:
<IntField label="Fabric Target" width="20" cell="style$misc_3" map="fabrictgt"/>
<TextField label="Construction Target" width="20" cell="style$misc_4"
map="constructtgt"/>
<TextField label="Material Target" width="20" cell="style$misc_5"
map="materialtgt"/>
<TextField label="Finish Target" width="20" cell="style$misc_6" map="finishtgt"/>

In these examples, the items are set using the cell attribute and then how they appear
linked using the expr attribute:
 In this specification sheet example, the cell element is used to allow the user to enter

contents to a field and map them to a miscellaneous field and mapped field.
 <IntField label="Fabric Target" width="20" cell="style$misc_3"
map="fabrictgt"/>
 <TextField label="Construction Target" width="20" cell="style$misc_4"
map="constructtgt"/>
 <TextField label="Material Target" width="20" cell="style$misc_5"
map="materialtgt"/>

 In this bid sheet example, the expr element is used to link the contents of the field in
the specification sheet to the bid sheet. The user is not able to enter information in the
bid sheet because expr prevents editing.

<IntField label="Fabric Target" width="20" expr="style$misc_3"/> (LINKED FROM SPEC
SHEET)
<TextField label="Construction Target" width="20" expr="style$misc_4"/> (LINKED
FROM SPEC SHEET)
<TextField label="Material Target" width="20" expr="style$misc_5"/> (LINKED FROM
SPEC SHEET)

Oracle Retail Design 12.0

 Configuration Guide 45

Defaults
The Defaults element sets defaults for the basic item attributes.
<!ELEMENT Defaults EMPTY>
<!ATTLIST Defaults %itemattrs;>

Example
<Defaults labelalign="r" fill="n" width="10" labelcolon="false"/>

Common Initial Value
Common “initial value” element. With some elements, a Value attribute can be used as
an alternative. The value element and attribute must not be used together.
<!ELEMENT Value (#PCDATA)>

Simple Item Types – TextField and IntField
Simple item types can have the default value as an attribute.
<!ELEMENT TextField (Value?)>
<!ATTLIST TextField %itemexprattrs;
 limit CDATA #IMPLIED
 value CDATA #IMPLIED>

<!ELEMENT IntField (Value?)>
<!ATTLIST IntField %itemexprattrs;
 value CDATA #IMPLIED>

Example
<TextField label="Construction Target" width="20" cell="style$misc_4"
map="constructtgt"/>
<IntField label="Fabric Target" width="20" cell="style$misc_3" map="fabrictgt"/>

FloatField
The FloatField element defines a floating point number.
<!ELEMENT FloatField (Value?)>
<!ATTLIST FloatField %itemexprattrs;
 value CDATA #IMPLIED
 prec CDATA #IMPLIED>

The prec attribute defines the number of decimal places; the default is 2.

Example
This example shows a number of the FloatField labels that are currently defined within
the bid sheet:
<FloatField label="First Cost $" width="20" cell="style$misc_20" map="firstcost"
prec="3"/>
<FloatField label="Packaging Cost $" width="20" map="packcost"
cell="style$misc_21" prec="3"/>

<FloatField label="*Cost & Packaging Total $" width="20" cell="style$itemcost"
expr="zsum(style$misc_20,style$misc_21)" prec="3"/>

Tab Layout Configuration

46

TextArea
The TextArea element can be used to define spaces for comments or other text
information.
<!ELEMENT TextArea (Value?)>
<!ATTLIST TextArea %itemexprattrs;
 rows CDATA #REQUIRED>

The rows attribute for a text area is the number of text rows

Example
This example shows how the comments fields can be defined as TextAreas:
<Form name="form10" description="Comments">
<TextArea label="Retailer Comments" width="50" cell="style$misc_60" rows="4"
map="retailercomm"/>
<TextArea label="Supplier Comments" width="50" cell="style$misc_61" rows="4"
map="suppcomm" perm="p1,p2"/>
…
</Form>

Icon
The Icon element defines an image from icon list. In order for icons to appear, they must
be uploaded via Spectrum – Icons.
<!ELEMENT Icon EMPTY>
<!ATTLIST Icon %datalessattrs;
 iconname CDATA #REQUIRED
 dim CDATA #IMPLIED>

The iconname attribute defines the name of the icon. The dim attribute defines the
display size of the image; if omitted the actual image size is used.
dim defines the image dimensions in pixels by width and height and must be WxH,
where W and H are integers.

Example
 <Form name="logo">
 <Icon compat="true" iconname="samplelogo"/>
 </Form>

 <Image label="1" compat="true" dim="80x80" cellh="5"/>
 <ImageOption name="Constructionimage1"/>
</Image>

Oracle Retail Design 12.0

 Configuration Guide 47

Checkbox
Checkbox items have a state attribute to set the initial value.
<!ELEMENT Checkbox EMPTY>
<!ATTLIST Checkbox %itemcellattrs;
 state (false | true) "false"
 group CDATA #IMPLIED>
A checkbox with a group attribute acts like a 'radio' button. Only one checkbox in
the group is set at a time.

Example
<Form columns="2" description="Inner Packing" name="form6">
<Checkbox label="Boxes"/>
<Checkbox label="Eggcrate Carton"/>
<Checkbox label="Crosscrated Carton"/>
<Checkbox label="Inner Carton"/>
<Checkbox label="Master Polybag"/>
</Form>

Label
The Label element defines a single-line label.
<!ELEMENT Label (Value?)>
<!ATTLIST Label %datalessattrs;
 align (l | r | c) #IMPLIED
 value CDATA #IMPLIED>

Example
<TextField label="Division" width="20"/>
<TextField label="Department" width="20"/>
<TextField label="Product" width="20"/>
<TextField label="Description" width="20"/>
<TextField label="Class" width="20"/>
<Label compat="true"/>

MultiLabel
MultiLabel defines a multi-line wrapped label.
<!ELEMENT MultiLabel (Value?)>
<!ATTLIST MultiLabel %datalessattrs;
 dim CDATA #IMPLIED>

The dim attribute defines the display width in pixels. The default is 300.

Tab Layout Configuration

48

DateField
Date entry field.
<!ELEMENT DateField (Value?)>
<!ATTLIST DateField %itemexprattrs;
 value CDATA #IMPLIED
 mode (std | local | time) "std"
 icon (true | false) #IMPLIED>

The mode attribute defines the operation and value returned. It must be one of the
following:
 std – the date defined using “'standard” server time zone
 local – the date defined using local time zone
 time – the date & time defined using local time zone.

The default is std.

Example
 <DateField label="Created Date" mode="local"/>

Custom
Custom item requires a name attribute to define the item.
<!ELEMENT Custom (Parameter*, Value?)>
<!ATTLIST Custom %itemexprattrs;
 name CDATA #REQUIRED
 imageid CDATA #IMPLIED>
It can have nested parameter elements to provide further information to the
component creator.

Parameter
A Parameter defines a single extra configuration parameter for a custom component.
<!ELEMENT Parameter (#PCDATA)>
<!ATTLIST Parameter name CDATA #REQUIRED>

Oracle Retail Design 12.0

 Configuration Guide 49

SubForm
The Subform item encloses a nested form or matrix.
If the nested item is omitted, a name must be present referring to an earlier form. These
shared forms must not contain, directly or indirectly, any data entry items.
<!ELEMENT SubForm ((Matrix | Form)?)>
<!ATTLIST SubForm %datalessattrs;
 name CDATA #IMPLIED>

Example
 <Form columns="3" name="form6c">
 <SubForm compat="true">
 <Form description="MASTER" name="form6c1">
 <TextField label="Units per CTN" width="10"/>
 <TextField label="Net Weight (kgs)" width="10"/>
 <TextField label="Gross Weight (kgs)" width="10"/>
 <TextField label="Length (cms)" width="10"/>
 <TextField label="Width (cms)" width="10"/>
 <TextField label="Heigth (cms), " width="10"/>
 <TextField label="Volume" width="10"/>
 </Form>
 </SubForm>
 <SubForm compat="true">
 <Form description="INNER" name="form6c2">
 <TextField label="Units per Inner" width="10"/>
 <TextField label="Net Weight (kgs)" width="10"/>
 <TextField label="Gross Weight (kgs)" width="10"/>
 <TextField label="Length (cms)" width="10"/>
 <TextField label="Width (cms)" width="10"/>
 <TextField label="Heigth (cms), " width="10"/>
 <TextField label="Volume" width="10"/>
 </Form>
 </SubForm>
 <SubForm compat="true">
 <Form description="LOADING" name="form6c3">
 <TextField label="Units/20'" width="10"/>
 <TextField label="Unit/40'" width="10"/>
 <TextField label="Units/HC" width="10"/>
 <TextField label="Vol per 20' Container" width="10"/>
 <TextField label="Vol per 40' Container" width="10"/>
 <TextField label="Vol per HC Container" width="10"/>
 </Form>
 </SubForm>
 </Form>

Tab Layout Configuration

50

Choice
The Choice element contains a number of options. Each option element contains the
displayed choice and an optional value that is used for external export and updates. The
first item is the default, unless an option is present with the selected attribute set to true.
<!ELEMENT Choice (Option+)>
<!ATTLIST Choice %itemcellattrs;
 keyed (true | false) "false">

By default, the value stored in the database for a Choice item is the index of the selected
option. This means that if options are added or the list is reordered, the stored value may
refer to a different option.
To avoid this scenario, a Choice item can be keyed. In this case each option must include
a distinct key attribute. The key is stored in the database, allowing option lists to be
changed without disturbing the value.

Example
Below is an example of the Choice field that will appear as a drop-down list box within
the bid sheet.
 <Choice label="Show Country of Origin on Label">
 <Option>Yes</Option>
 <Option>No</Option>
 </Choice>

Option
The Options element defines items in a Choice.
<!ELEMENT Option (#PCDATA)>
<!ATTLIST Option value CDATA #IMPLIED
 selected (true | false) "false"
 key CDATA #IMPLIED
 list CDATA #IMPLIED
 expr CDATA #IMPLIED>

The key attribute is compulsory, if the Choice is keyed.
The list attribute defines a lookup parameter code which is used to get the real options for
this item. All the active (and current) values for the parameter are included. If there is a
default value for the parameter, it is included as the first item; the remaining items are
alpha sorted. If list is used, the option contents must be empty.
If a list option is marked as the default (with selected = true), the default item is the first
in the list.
The expr attribute defines a spreadsheet expression, which evaluates to the real options
for this item. expr is similar to list except that the set of values can depend on other
values in the spreadsheet.
The value attribute defined the string used for import and export processes to refer to the
option. If value is not present, the string itself is used. The value attribute is ignored if a
value list is set.

Oracle Retail Design 12.0

 Configuration Guide 51

Example
<Choice label="Fabric Mills" keyed="true" width="20" cell="style$misc_100"
map="fabricmill">
<Option selected="true" key="x" value=""><Select></Option>
<Option list="fabricmilllist" key="y"/>
</Choice>

(Also see Choice examples.)

Image
The Image item contains either a single name or a set of named options.
<!ELEMENT Image (ImageOption+)>
<!ATTLIST Image %datalessattrs;
 dim CDATA #IMPLIED
 compact (true | false) "false">
<!ELEMENT ImageOption (#PCDATA)>
<!ATTLIST ImageOption name CDATA #REQUIRED>

The dim attribute defines the display size of the image in pixels by width and height and
must be WxH, where W and H are integers. If omitted, fixed defaults are used.
If compact is ‘true’, the display does not reveal the notes, change and fullsize buttons;
instead a pop-up menu is available for these functions.

Example
Below is an example of how an image (or three) could be represented within the
specification sheet language.
<Form name="Packaging Images" columns="3" description="Packaging Image">
<Image label="Packaging #1" compat="true" dim="210x210" cellw="1">
<ImageOption name="pack1"/>
</Image>
<Image label="Packaging #2" compat="true" dim="210x210" cellw="1">
<ImageOption name="pack2"/>
</Image>
<Image label="Packaging #3" compat="true" dim="210x210" cellw="1">
<ImageOption name="pack3"/>
</Image>

Calc
The Calc element defines a spreadsheet cell with associated expression. Both cell name
and expression are required attributes.

<!ELEMENT Calc EMPTY>
<!ATTLIST Calc cell CDATA #REQUIRED
 expr CDATA #REQUIRED
 function (true | false) "false"
 map CDATA #IMPLIED>

If the function attribute is true, the element defines a spreadsheet function; the cell name
is the function name and the expression is the body.
The map attribute defines a mapping for the calculated value. map cannot be used with
function declarations.
The Calc element is not associated with any form of GUI component.

Tab Layout Configuration

52

Example
Below is an example of the functions represented in the soft home ELC sheet:
<Calc cell="commission" expr="lookupdate('commission', style$orderby,
style$agent)"/>

 <Calc cell="commissionpercent" expr="commission/100"/>

 <Calc cell="commissioncalc" expr="($1 * $2)" function="true"/>

This example shows how the commission would actually be calculated using the function
from above>
<FloatField labelfontsize="2" labelfont="b" cell="style$misc_240"
cellw="1" expr="commissioncalc(firstcost, commissionpercent,)" map="commissioncost"
prec="3"/>

 Configuration Guide 53

4
XFO Templates

Oracle Retail Design supports the generation of printable output on the client and server
side. The client side printing is generated based on specified rules within the code. If
users are expecting an exact format, they may not choose to leverage the client side print.
The server side printing leverages specific format files that have been defined and
uploaded within Oracle Retail Design. The server side printing is available from within
the client-side printing option dialog box and is also used during the technical
specification export process supported by Oracle Retail Integrator. Format files can be
developed using XFO technology and can be uploaded by browsing to the following
URL from within the Oracle Retail Design Administration Console:
 https://www.retail.com/applications/design/template.jsp

The administrator is prompted to browse and upload the template file, define the format
that it uses and identify a mode that will be used to cross-reference the configuration file.
The template mode is a free-form text field and the value input is used to cross-reference
the uploaded file in other configuration administration steps. Specifically, the mode is
used within the enterprise and user view configuration file to identify a format that can be
used by the server side printing options available to the user. In addition, the mode can be
referenced within Oracle Retail Integrator as the ObjectiveSheetType during the setup of
the run type used to support the technical specification export process.

Note: Although the objective sheet template upload process
continues to support the upload of .xmf files, Oracle Retail
recommends that xfo formats be used.

Print Template Upload Window in Oracle Retail Design

The actual development of the XFO files can be done in any text editor. A text editor that
supports XML would be most efficient and is recommended. This chapter focuses on the
primary functions supported within the development of the XFO templates.

XFO Templates

54

XFO Introduction
The template-driven PDF generator used to format print files on the Oracle Retail Design
client and within the technical specification export process is named ‘XFO’. An XFO
template is an XML file containing a mixture of markup XML and Style File XFO
processing elements which are used to control the output and to include dynamic values.
The first implementation uses the XSL formatting objects (XSL-FO) markup language, in
conjunction with Apache FOP (http://xml.apache.org/fop) which is a XSL-FO to PDF
renderer. FOP implements most of the XSL-FO standard, but there are some limitations.
See documents on the website for conformance details.
Template names have the form xfo-[mode-]E, where E is the enterprise ID and mode is
the optional mode string. The engine searches for a template with the correct enterprise
first, then tries a file with enterprise 0. This design allows default templates for common
requirements such as comments printing.

XFO Operation
The XFO processor first reads and parses the template file. Any XML errors found at this
stage will be reported by an error PDF produced by the processor. When a PDF is
generated from a set of styles, the ‘style file’ elements are processed to produce pure
XSL-FO output, which is passed directly to the FOP engine for rendering to PDF.

Basic Structure
An XFO template will contain elements from the XSL-FO namespace and the ‘style file
xfo’ control namespace. Conventionally prefixes fo: and sf: are used for these
namespaces.
<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format"
 xmlns:sf="http://www.retail.com/XSL/style-files">

The namespace URLs should be included exactly as above. If you need to embed SVG
for advanced graphics, add the SVG namespace to the root element or the SVG element
when used:
<svg:svg xmlns:svg="http://www.w3.org/2000/svg”>

Expressions and Attributes
Attributes in fo: (and svg:) elements may contain expressions enclosed in ${ and }. These
expressions are evaluated during the processing phase and final attribute value is passed
to the XSL-FO output. Expressions are written using the standard ‘spec sheet’ expression
language and may refer to variables set earlier in the processor.

Example:
<fo:simple-page-master master-name="one"
 page-height="${pageheight}${unit}"
 page-width="${pagewidth}${unit}">

<fo:block break-before="${index > 0 ? 'page' : 'auto'}">

Here the page dimensions in the page master as set using previously defined numbers and
a unit string (mm, cm, in, and so on). In the block element, the value of the break-before
attribute is set to page or auto according to the value of the index variable.
Note that in common with all XML files, any & or < characters in expressions must be
written by the character entities & and <

http://xml.apache.org/fop

Oracle Retail Design 12.0

 Configuration Guide 55

SF Processing Elements
The following sf: processing elements are available.
Attributes which are expressions are evaluated directly. They are not enclosed in ${ }. An
attribute defined as a string may contain ${ } expressions.
An attribute defined as a name represents a ‘variable’ name. It must follow the rules for
Java identifiers. Essentially, the first character must be a letter or _ and the remainder can
be letters, digits, or _.
Any sf: element which contains other elements defines a new ‘context,’ variables defined
in this context are not in scope outside it.

sf:str
<sf:str x=”expression”/>

Evaluate the expression and include the result as a string at the current point in the XSL-
FO output.

Example
<fo:block><sf:str x=”item -> shortname”/></fo:block>

sf:int
<sf:int x=”expression”/>

Evaluate the expression and include the result as an integer at the current point in the
XSL-FO output.

Example
<fo:block><sf:int x=”item -> quantity”/></fo:block>

sf:float
<sf:float x=”expression” fmt=”string”/>

Evaluate the expression and include the result as a decimal number at the current point in
the XSL-FO output. The optional fmt attribute can be used to supply a format for the
conversion (see java.text.DecimalFormat); if omitted a default format with 2 decimal
places is used.

Example
<fo:block><sf:float x=”item -> elctarget” fmt=”0.000”/></fo:block>

sf:date
<sf:date x=”expression” fmt=”string” tz=”string”/>

Evaluate the expression as in internal date value (a Java time stamp divided by 1000),
convert the date to a string using the supplied format or a default, and include the result in
the XSL-FO output. See java.text.SimpleDateFormat for details of the optional format
string. If the format is omitted a locale-specific date format is used.

XFO Templates

56

The optional tz attribute is used to select the time zone for the formatting. It must be one
of the time zone IDs understood by java.util.TimeZone (for example “Europe/London”
or “PST”). If tz is omitted, the server’s ‘standard’ time zone is used. Most dates in
design (initial availability, bid deadline, and so on) represent a ‘day’ and are stored
internally using the standard time zone; tz should not be used with these. Dates which
represent a point in time (last change, log dates, and so on) contain a time of day element
and the time zone is relevant.

Examples
<sf:date x=”item -> biddeadline”/>
<sf:date x="item -> changedate" tz="${tz}" fmt="yyyy-MM-dd HH:mm:ss"/>

The first example displays a date using the default format; the second displays a time
stamp using such as 2004-11-09 12:23:13 with a timezone obtained from a variable.

sf:set
<sf:set n=”name” x=”expression”/>

or
<sf:set n=”name” x=”expression”>
 ... content ...
</sf:set>

The expression is evaluated and assigned to the name. In the first syntax, the name
remains in scope until the end of the current context. In the second example, the name is
in scope during the processing of the embedded content.

Example
<sf:set n="unit" x="'mm'"/>
<sf:set n=”temp” x=”x * 10>
 ... content ...
</sf:set>

The first example sets unit to the string “mm”; the second defines temp for the processing
of the enclosed content.

sf:update
<sf:update n=”name” x=”expression”/>

or
<sf:update n=”name” x=”expression” index=”expression”/>

The expression is evaluated and assigned to the most recent definition of the name. The
name should have been defined by an earlier sf_set element. In the second form, the
index expression is evaluated and used to set an element in the array identified by the
name. The array should have been created earlier using the array function.

Examples
<sf:update n="count" x="count+1"/>

Set count to its previous value, plus 1.
<sf:set n=”arr” x=”array(10)”/>
…
<sf:update n=”arr” x=”1” index=”i+1”/>

Set element i+1 in the array arr to 1.

Oracle Retail Design 12.0

 Configuration Guide 57

sf:func
<sf:func n=”name” x=”expression”/>

or
<sf:func n=”name” x=”expression”>
 ... content ...
</sf:set>

Define the expression as a function. The rules for the scope of the name are as in sf:set.

Example
<sf:func n="imwidth" x="$1 * min(1, min(maxwidth/$1, maxheight/$2))"/>

sf:if
<sf:if x=”expression”>
 ... content ...
</sf:if>

If the expression is defined and non-zero, then process the content; otherwise, ignore the
content.

Alternative Format
<sf:if x=”expression”>
 <sf:then>
 ... content 1 ...
 </sf:then>
 <sf:else>
 ... content 2 ...
 </sf:else>
</sf:if>

In this form, the content in the ‘then’ part is processed if the expression is non-zero;
otherwise the content in the ‘else’ part is processed. The ‘else’ part can be omitted but
that is the same as the more succinct first format.

sf:for
<sf:for n=”name” to=”expression” from=”expression” by=”expression”
 while=”expression” set=”expression” var=”name”>
 ... content ...
</sf:for>

sf:for is used to process content repeatedly. All the attributes are optional, but at least one
of two, while or set must be used. To prevent the server running for ever as a result of
a faulty template, a limit of 8192 iterations is imposed by the processor.
There are three distinct forms of iteration; any combination may be used:
 Numeric

Iterate over the range ‘from’ to ‘to’ inclusive, in steps of ‘by’. If from is omitted, the
iteration starts at 1; by is omitted the step is 1. If the name n is supplied, the iteration
value is assigned to it during the loop.
This is roughly equivalent to the java loop:
for (name = from; name <= to; name += by)

Except that if the step by is negative, the loop counts down and the test is name >= to.
 Conditional

If while is used, the loop terminates as soon as the expression evaluates to ‘false’
(undefined or zero).

XFO Templates

58

 Set
The set expression should evaluate to a set of items; the loop continues whilst there are
elements in the set; the current item is assigned to the name defined by var, if present.
The item set will be defined outside the processor.

Examples
<sf:for to=”10”>
 .. content ..
</sf:for>

Process the content 10 times.
<sf:for n="index" from="0" set="items" var="item">
 ... content ...
</sf:for>

Process the content over the set of items; the current item is assigned to item; the
variable index counts up from zero.

sf:macro
<sf:macro n=”name”>
 ... content ...
</sf:macro>

Store the content against the name for later use. The macro is expanded using the sf:call
element. Macros are useful for repeated header components, and so on.

sf:call
<sf:call n=”name”>
 <sf:set n=”name1” x=”expression1”/>
 <sf:set n=”name2” x=”expression2”/>
 ...
</sf:call>

Process the content of the macro name; while processing name1, name2... are set to
expression1, expression2...
The nested sf:set elements are optional.

Builtin Values and Functions
The processor always defines the variable now as the current date. This can be used to
include the time of printing in a footer, for example:
<fo:block font-size="5pt">
 <sf:date x="now" fmt="yyyy-MM-dd HH:mm:ss" tz="Europe/London"/>
</fo:block>

The following functions are always available:

array(n)
Create a 1-dimensional array of size n. The size must not be more than 512.
Example:
<sf:set n=”arr” x=”array(size+1)”/>

Oracle Retail Design 12.0

 Configuration Guide 59

geticon(string)
Lookup the ‘icon’ named by the argument. The result is undefined if the icon does not
exist, and an icon object otherwise:

Field Type Meaning

file string Image file name

width integer Image width

height integer Image height

Example:
<fo:external-graphic src="url(${geticon('logo') -> file})"/>

getprop(prop) or getprop(prop, deflt)
Lookup a property passed to the processor. If the property is not defined, the result is
undefined or deflt if there are two arguments.
Example:
<sf:set n="pagewidth" x="getprop('pagewidth', 210)"/>

valuekey(v)
A value which is derived from a parameter lookup (for example the value of a mapped
dropdown list box) may have an associated external value. This function returns the
external value of v, if any, or v if there is no external value.

hasmorevalues(set)
The argument must evaluate to a ‘set’ (see sf:for); return 1 if there are further items in the
set or zero if the set is exhausted. This can be used to determine whether a break is
needed after an item.

XFO Templates

60

XFO and Styles
When processing Oracle Retail Design styles, there are additional predefined values and
functions.

Values

local
local is set to 1 if the user generating the output is in the same enterprise as the styles
owner, and 0 if the user is in a different enterprise. This matches the style$local value in
spec sheets and can be used to produce different output for local and partner users.
When creating objective sheets for tech spec output, local is set to 0.

itemcount
The number of style items being processed. This should not be used to iterate over the
set. Use items (below). The count may be used to estimate layouts, and so on but is not
guaranteed to be accurate. It is possible that one or more of the styles selected by the user
have been deleted by another user between selection and processing.

items
items is a set of style objects. Iterate over the set with an sf:for element (see above).
Each object contains the fields show below. Boolean fields are represented as a combined
value with a numeric par of 0 or 1 and a string part of “false” or “true.”
Dimension objects have integer width and height fields.

Field Type Meaning

designid string Style number

retailername string Name of retailer enterprise

shortname string Style short name

longname string Style long name

creationdate date Creation date

changedate date Last change date

lastedituser user User who last edited style

lasteditentname string Enterprise name of last edit user

datachange boolean Data change flag

documentchange boolean Document change flag

documentexportdate date Date of last document export

division hierarchy Style division

department hierarchy Department

clazz hierarchy Class

subclazz hierarchy Subclass

Oracle Retail Design 12.0

 Configuration Guide 61

Field Type Meaning

buyer user Buyer

quality user Quality manager

designer user Designer (in retailer)

availdate date Initial availability

biddeadline date Bid deadline

deliveries integer # of deliveries

text1 string Text field 1 (features)

text2 string Text field 2 (comments)

text3 string Text field 3 (proposed changes)

category string Category

dispatchtype string Dispatch type

supplierid integer ID of supplier

suppliername string Name of supplier enterprise

suppliernum string Supplier number (in retailer)

supplieraccountnum string Supplier account number

supplierproductnum string Supplier design ID

accountmanager user Account manager

supplierdesigner user Designer in supplier

suppliertechnologist user Technologist in supplier

supplierdepartment hierarchy Suppler department (team)

countryid integer ID of country (COO)

countrycode string Country code

countryname string Country name

locationid integer ID of location (factorty)

locationname string Location name

locationcode string Location code

fobcountryid integer ID of FOB country

fobcountrycode string FOB country code

fobcountryname string FOB country name

foblocationid integer ID of FOB location

foblocationname string FOB location name

foblocationcode string FOB location code

XFO Templates

62

Field Type Meaning

agentid integer ID of agent

agentname string Name of agent enterprise

agentnum string Agent number (in retailer)

agentaccountnum string Agent account number

agentcontact user Agent contact

priceoption integer Price by option

costoption integer Cost by option

quantity integer Total volume

quantityoffered integer Supplier volume

retail decimal Retail price

cost decimal Item code

vat decimal VAT

netcost decimal Net cost

margin decimal Buying margin

elctarget decimal ELC target

leadtime integer Lead days

orderreqdby date Order required by

effectiveuntil date Effective until

seasonid integer ID of season

seasoncode string Season code

seasonname string Season name

seasonstart date Season start

seasonend date Season end

phasecode string Phase code

phasename string Phase name

themename string Theme name

retailerstatus status Retailer status

supplierstatus status Supplier status

typename string Product type name

type integer ID of product type

typecodes integer array Spec and bid sheet codes

elctypename string ELC type name

Oracle Retail Design 12.0

 Configuration Guide 63

Field Type Meaning

elctype integer ID of ELC type

elctypecodes integer array ELC sheet code (element 0)

sizerange sizerange Size range

colours colour array Colours

labels label array Labels

volumes integer array (2D) Volumes by size and colour

volumestotal integer Total computed volumes

sizevolumes integer array Volumes by size

colourratios decimal array Colour ratios

colourvolumes integer array Volumes by colour

images attachment array Summary and spec images

documents attachment array Attached documents

ID values (such as seasonid) can be used for parameter lookups. They are internal values
and have no external meaning.

Subsidiary Objects

User
The value of a user object is the user’s name. The object also contains these fields:

Field Type Meaning

name string User’s name

email string User’s email address

Hierarchy
The value of a hierarchy object a combined value with the hierarchy item internal ID as
the numeric part, and the name of the item as the string part. The object also contains
these fields:

Field Type Meaning

id integer Internal ID

name string Name of hierarchy item

code string Number/code of hierarchy item

XFO Templates

64

Status
A status object contains the following fields:

Field Type Meaning

name string State name

date date Date of status change

Sizerange
A sizrerange object contains the following fields:

Field Type Meaning

name string Size range name

code string Size range code

list sizelist List of actual sizes

Sizelist
A sizelist object contains the following fields:

Field Type Meaning

columns integer Number of columns in range (1 or 2)

sizes size array Array of individual sizes

Size
A size object contains the following fields:

Field Type Meaning

name string Size name

code string Size code

percent decimal Size percentage from size range definition

To iterate over all the sizes in a style, use elements like:
<sf:set n="sizes" x="item -> sizerange -> list -> sizes"/>

<sf:for n="s" from="0" to="length(sizes)-1">
 <sf:set n="size" x="sizes[s]"/>
 ...
 <sf:str x=”size -> name”/>
 ...
</sf:for>

Oracle Retail Design 12.0

 Configuration Guide 65

Colour
A colour object contains the following fields:

Field Type Meaning

id integer Internal ID of colour

name string Colour name

code string Colour code

rgb integer Colour RGB value

Label
A label object has the following fields:

Field Type Meaning

comment string Label comment

whenadded date Date when label added to style

code string Label template code

description string Label template description

typename string Label template type

subtypename string Label template subtype

Attachment
An attachment object has the following fields:

Field Type Meaning

file string File name on server of image or document

internalname string Attachment ‘internal name’

name string Attachment name

size dimension Image size; not set for documents

date date Upload/import date of image or document

caption string Annotated image caption

annotations annotation
array

Array of image annotations

styleimage boolean 1 if the image is from the ‘summary’ images tab, zero
otherwise

The internalname field indicates the location of the image in the style (for the summary
images tabs the value is 0, 1, 2... for each tab). The simplest way to obtain a specific
image is via the findimage function.

XFO Templates

66

The name field is useful for documents. It is the name as shown in the documents list on
the summary tab.
The size field is a dimension object with integer width and height fields. The caption and
annotations fields are set from the style image notes view; the caption is the text area at
the bottom and the annotations are the text notes.

Annotation
An annotation object contains the following fields:

Field Type Meaning

text string Annotation text

foregroundcolour integer RGB value of text colour (may be unset)

backgroundcolour integer RGB value of background colour (may be unset)

position fraction Position of annotation; the x, y values give the position
as fractions of the display area for the image

size dimension Size of text box in pixels

pointer fraction Position of pointer end within image; the x, y values give
the position as fractions of the image size (for example,
[0.5, 0.5] represents the centre of the image).

A fraction object contains decimal x and y fields. It represents a position as a fraction of
another dimension.
Standard sf: and fo: elements in conjuction with SVG graphics can be used to draw
images and the annotations. See the example template.

Functions
There are additional functions available to obtain more complex style values. As well as
the functions listed below, the standard parameter lookup and formatting functions are
also available. Note that mapped values obtained from getmap represent the ‘export’
forms of values rather than the internal forms. In particular values associated with spec
sheet <Choice> items will be represented using the option “value” or parameter “external
value.” Such values will not behave in the same way if used in arguments to lookup
functions. If there is any doubt, calculate values with <Calc> elements in the spec sheet.

getmisc(item, name)
Get the misc value name from the item (the first argument must be a style item). If the
name is a number or a string starting with a digit, “misc_” is prefixed automatically.
Example:
getmisc(item, 100)
Get misc value 100.

Oracle Retail Design 12.0

 Configuration Guide 67

getlink(item, name)
Get the link value name from the item (the first argument must be a style item). If the
name is a number or a string which does not start with “link_”, then “link_” is prefixed
automatically.
Example:
getlink(item, ‘mkSE’)

Get linkage value “link_mkSE”.

getmap(item, tab, name)
Get a mapped value named name. The first argument is a style item and the second
defines the tab in the usual way – spec, bid, elc or tab:key. If the mapped item refers to a
form, matrix, row or column the result will be an array.

findimage(item)

findimage(item, X)
Find an attachment object for a style image. In the single argument form, the first image
from the summary image tabs is returned. In the second format, image X is returned (X is
“0”, “1”, “2” ...).
If the indicated image is not present on the style, the result is undefined.

findimage(item, tab, formname, imagename)
Find an image from a spec sheet. The second argument indicates the spec tab (as for
getmap); the third argument is the form name on the spec sheet and the final argument
indicates the image name in the spec sheet <Image> item.
Example:
<sf:set n="ig" x="findimage(item, 'spec', ‘form3’, ‘img1’)"/>

Find an image in form “form3” on the specification tab of the item.

getchangelog(item, maxnum, days, roles)
Return change log records for the style. The first argument is a style item; the remaining
arguments are optional.
maxnum is the maximum number of records returned; if zero or omitted there is no limit.
days specifies the maximum number of days back to go when loading records; if zero or
omitted there is no limit (for example, specifying 7 would return all changes in the past
week).
roles sets ‘security role keys’ to control the changes that are returned. If omitted, the
default setting is ‘partner users’.

XFO Templates

68

The result of getchangelog is an array of change records, each of which has the following
fields:

Field Type Meaning

user string Name of user making change

date date Date/time of change

comment string Change comment (create, edit, import, and so
on)

field string Name of field which is changed

previous string Previous value

current string New value

For example:
<sf:set n="log" x="getchangelog(item, 100)">
 <sf:if x="length(log) > 0">
 ... define table for log display ...

 <sf:for n="ixl" from="0" to="length(log)-1">
 <sf:set n="rec" x="log[ixl]"/>
 ...

getcomments(item, maxnum, days)
Return style file comment records for the style. The first argument is a style item; the
remaining arguments are optional.
maxnum is the maximum number of records returned; if zero or omitted there is no limit.
days specifies the maximum number of days back to go when loading records; if zero or
omitted there is no limit (for example, specifying 7 would return all comments in the past
week).
The result of getcomments is an array of comment records, each of which has the
following fields:

Field Type Meaning

user string Name of user who entered comment

userent string Enterprise name of user

date date Date/time of comment

subject string Comment subject

text string Comment text

emails string Comment emails list

For example:
<sf:set n="comms" x="getcomments(item)">
 <sf:if x="length(comms) > 0">
 ... define table for comment display ...

 <sf:for n="ixl" from="0" to="length(comms)-1">
 <sf:set n="c" x="comms[ixl]"/>
 ...

Oracle Retail Design 12.0

 Configuration Guide 69

Standard Properties
For reports generated from the client, these standard properties are available via the
getprop function:
pagewidth and pageheight: the page size in millimeters1 as selected by the user.
user: a combined value containing the ID and name of the user generating the report.
userent: a combined value containing the ID and name of the enterprise of the user
generating the report.

Configuring XFO Objective Sheet Output
There is a new ObjectiveSheetType integrator parameter for the PLX RDO export run
type. If the value of this parameter is “default,” then the current objective sheet
formatting is used.
Otherwise the general form of the value is:
TYPE[-MODE],prop.a=x,prop.b=y,…

The TYPE is the template type; this should be xmf or xfo. The optional mode selects a
template other than the default. The optional property settings are passed to the template
formatter. In an XFO template these may be retrieved using the getprop function. This
allows a single common template to generate varying output.
Examples:

Value Selected file

xmf xmf-19

xfo xfo-19

xfo-styles xfo-styles-19

xfo-styles,prop.mode=full xfo-styles-19

The template upload page now includes fields to select the required type and mode.

Configuring XFO Client Printing in Oracle Retail Design
XFO printing is now available in the Oracle Retail Design client as an alternative to the
rather basic client-side PDF generation. There are pros and cons for the new approach.
While the output will certainly be better, there will be the extra initial effort of template
construction. And the XFO output will not reflect exactly what is seen on the screen. It
can be thought of as a reporting engine.
XFO printing is the preferred solution for style comment printing.
To configure XFO printing for styles, please reference the Server side reporting
definition section in the chapter “General User View Configuration.”

1 A millimeter is 1/1000 of a meter. See, for example: http://www.npl.co.uk/reference/length.html

 Configuration Guide 71

5
Spreadsheet Expression Syntax

This document is a brief description of the spreadsheet expression syntax used throughout
the configurable definition files of Oracle Retail Design. Expressions can be leveraged in
user view configuration files to support the Oracle Retail Design to Oracle Retail
Webtrack project integration, in the tab layout definition files to support configuration
sheets, and in XFO templates used to support printing and export processes.

Data Types
Values in expressions are either numbers or strings.2 A value can also be undefined
(represented internally by the special numeric value NaN, or not-a-number). When an
undefined value is used in an expression, the result is generally also undefined. There are
built-in functions which will test for undefined values.
Numbers are stored in double precision format, with an approximate range of ±5-324 to
±2+308. A numeric constant is a sequence of decimal digits, with an optional decimal
point and exponent. The exponent part is e±integer (or E±integer). If the sign is omitted,
a positive exponent is used.
Examples:
1. 1.0 .023 1e4 1E-10 2.3e+5
2. 3e+5 = 2.3x105 = 230000.

A string constant is a sequence of characters enclosed in ‘ or “ quotes. The quote
character used to start a string must be used to end it (when entering a string constant in
an expression used as an XML attribute, avoid using the quote character used for the
attribute).
Within a string the backslash (\) character is used to introduce escape sequences. The
following sequences are useful:

Sequence Character

\\ \

\” “

\’ ‘

Examples:
“abcd” ‘Please type something’ “A string with a quote \” inside”

2 Values derived from user entry fields can sometimes be both a number and a string. For example
a country dropdown in Design will be linked to a value that contains the internal ID of the country
as a number and the display name of the country as a string. The numeric value is available for
parameter lookups, while the string value is used for display in text fields, and so on.

Spreadsheet Expression Syntax

72

Lists
Value list objects are returned by the lookup functions. They are generally used to
populate drop down choices in spec sheets and to populate dynamic row and column sets
in spec sheet matrices.
The number of items in a list can be determined with the length function and individual
elements can be obtained by subscription.

Arrays
An array value has any number of dimensions. The number of elements is b1 × b2 …
where bi are the bounds of each dimension. The bounds may be obtained using the length
function and individual elements may be obtained using subscription.
Arrays are used to represent cells in the dynamic row/column areas of matrices in spec
sheets. A cell which is either in a dynamic row or column area (but not in both) is
represented by a 1-dimensional array, while a cell which is both areas is represented by a
2-dimensional array.
Arrays are also used to represent spec sheet mappings attached to entire forms or
matrices, or matrix rows or columns.
When such an array cell is used in an expression, the context of the expression is taken
into account to determine which elements of the array are involved. If the cell is used in a
dynamic array context with the same “dimensions”3, only a single element will be
selected and a normal scalar expression is evaluated.
For example, if x$3.4 represents a cell in the dynamic area of a matrix, and the
expression:
x$3.4 * 2

is used in a dynamic area in another matrix with matching dimensions, the expression is
evaluated once for each element in the array and the result used for the matching element
in the destination matrix.
If an array cell is used in a context which has no dimensionality (that is, is not part of a
dynamic area in a matrix) or which has different “dimensions”, then the array value as a
whole is used. In this case, the only valid use of the cell is for aggregation or
subscription.
For example, using the array cell x$3.4, the expression:
sum(x$3.4)

could be used in a numeric field in the spec sheet to display the sum of all the elements in
the cell.

Array items
A single-dimensional array may be used directly in an expression by enclosing a list of
values in { } brackets.
For example:
 { 1, 2, 3, 4, x+y, ‘string’}[2]

has the value 2. Array items are useful in conjunction with loops in XFO templates.

3 In other words, the “dimension” attribute strings in the dynamic area definitions in the two
matrices are equal.

Oracle Retail Design 12.0

 Configuration Guide 73

Object Values
An object value is analogous to a Java object with public fields. The value is constructed
by client code (often automatically from a real Java object) and made available to the
expression evaluation context.
The fields in an object value are accessed using the -> operator. The right hand side of
this operator must be a name.
For example, assuming that a java.awt.Point object has been mapped into an object
value and stored in ‘pt’:
 pt -> x
 pt -> y

will extract the two fields.

Variable Names
Variables names contain letters, digits, underscore (_), dollar ($) or period (.) characters.
A name should start with a letter or digit (names starting with other characters are
reserved for internal use).
The special name $n, where n is a decimal number, represents a function argument. It has
no meaning outside of a function definition. $1 is the first argument; $2 is the second, and
so on. $0 represents the number of arguments in the call.

Function Calls
A function call is a reference to a built-in or user-defined function. A user defined
function can be used to replace commonly-used expressions by a simple call.
The syntax of a call is:
functionname(arg1, arg2, …)

There may be zero or more arguments.

Aggregate Functions
Some of the built-in functions operate by aggregating the arguments. These functions
treat arrays, lists and iterators specially by including all their elements in the aggregation.
For example, if a and b both represent arrays, then sum(a, b) will sum all the elements
in both arrays.

Spreadsheet Expression Syntax

74

Expressions
Names, constants and function calls are combined into expressions using operators.
Operators have differing precedence. Higher precedence operators are evaluated before
lower precedence operators. Parentheses (()) may be used to alter the order of evaluation.

Operator Precedence Meaning

?: 1 Conditional expression

| 2 OR – the result is 1 if either operand is non-zero, and 0
otherwise

& 3 AND – the result is 1 if both operands are non-zeo and 0
otherwise

= or == 4 Equals: evaluates to 1 or 0

!= or <> 4 Not equals

< 5 Less than

<= 5 Less than or equals

> 5 Greater than

>= 5 Greater than or equals

+ 6 Addition or concatenation

- 6 Subtraction

|| 6 String concatenation

* 7 Multiplication

/ 7 Division

% 7 Modulus (remainder)

^ 8 Power: a^b = ab

-> 9 Field selection

The addition and comparison operators may be used with string operands; if one operand
is a number and the other is a string, the number is converted to a string before
evaluation. The addition operator (+) performs string concatenation if either operand is a
string; the concatenation operator (||) always converts both arguments to strings before
evaluation.
For example, 1+2 evaluates to 3, while 1 || 2 evaluates to “1.02.0”.
Other operators evaluate to undefined if either argument is a string.

Conditional Expressions
The conditional expression operator ? is used with three operands:
a ? b : c

If a is non-zero the result is b otherwise the result is c.

Oracle Retail Design 12.0

 Configuration Guide 75

Subscription
Individual elements of arrays and lists may be obtained using subscripts in [] brackets.
Arrays with more than one dimension require multiple subscripts separated by commas.
All subscripts are zero-based. An alternative is to use the element function.

Iterator Expression
Iterator expressions can be used to perform an aggregate calculation with an expression
calculated over all the elements of an array. Iterators are recognized only as the
arguments to aggregate functions such as sum or avg.
The selection of elements in the array is performed by the evaluation client, possibly
using constraints to limit the set returned.
The syntax is:
{ name : expression }

The expression is evaluated over all the elements of the array represented by ‘name’. The
value is undefined if the client does not support iteration over the array.
Iterators are commonly used in spec sheet matrices to perform some complex aggregation
over the elements in a dynamic row or column set.
For example, assuming that x$3.4 represents a matrix cell in a dynamic region:
sum({ x$3.4 : x$3.4 ^ 2 }

will sum the squares of all the values in the set.
avg({ x$3.4 : lookup(‘parameter’, x$3.4))

will average the results of the lookup call over all the elements in the set.

Spreadsheet Expression Syntax

76

Examples

Expression Notes
1+2
1+2*3^4 This is equivalent to 1 + (2 * (3^4))
((1+2)*3)^4
a ^ 0.5 The square root of a
a = b If a equals b then evaluate to 1 otherwise evaluate to

0.
a = b & c = d If a equals b and c equals d then evaluate to 1

otherwise evaluate to 0.
sum(a,b) < 10 | c >= 5 If sum(a,b) is less than 10 or c is greater than or

equal to 5, then evaluate to 1 otherwise 0.
val3 = 10 ? a+b : a-abs(zz) If val3 equals 10, then the result is a+b; otherwise the

result is a-abs(zz)
x[i] The i’th element in the array or list x.
y[1, e+7, n] An element in the 3-dimensional array y.
value -> name The field ‘name’ in the object value represented by

‘value’
value[i] -> name
(value[i]) -> name The field ‘name’ in the object value stored in the i’th

element of the array ‘value’.
value -> items[x]
(value -> items)[x] The x’th element in the array stored in the field

‘items’ in the object value ‘value’.
avg({ x$3.4 : abs(x$3.4) } Average the absolute value of the elements in the

array represented by x$3.4.

Oracle Retail Design 12.0

 Configuration Guide 77

Built-in Functions
A number of built-in functions are available for use in expressions. Some are available in
all contexts; some are specific to spec sheets in all contexts4, and some are specific to
Oracle Retail Design. If a function is used with an incorrect number of arguments, or
arguments of the wrong type, the result is undefined.

Functions Available in All Contexts

Function Arguments Meaning

number(a) Number Return a as a number. This is used for ‘combined’
values which would otherwise be used as strings in
expressions.

floor(a) Number Return the largest integer which is not greater than
a: floor(1.9) = 1 and floor(-1.9) = -2

ceil(a) Number Return the smallest integer which is not less than a:
ceil(1.1) = 2 and ceil(-1.1) = 1

round(a) Number Round a to nearest integer

abs(a) Number Absolute value of a

isset(a) Any If a is defined, return 1; otherwise return 0

ifset(a, b) Any If a is defined, return a otherwise return b

zerop(a, b) Numbers If a is zero, return 0 otherwise return a*b; this
function is useful because b need not be defined if a
is zero.

if(a1, b1, a2, b2 ..) Any If a1 is non-zero, the result is b1; otherwise if a2 is
non-zero, the result is b2, and so on. If none of the
conditions succeed, the result is undefined if there is
an even number of arguments, or the last argument
if there an odd number of arguments.

if(a, b, c) is equivalent to (a ? b : c).

length(a) §
or
length(arr, index)

Array, list or
string.

In the single argument form, return the length of the
one dimensional array, list or string a. If a is a string
the length is the number of characters in the string.
In the two argument form, return the length of the
dimension index in the array arr. If arr is not an
array the result is undefined.

4 For example, within the Spectrum spec sheet application.

Spreadsheet Expression Syntax

78

Function Arguments Meaning

substr(str, m)
or
substr(str, m, n)

String and
numbers

This is equivalent to the Oracle SUBSTR function.
The first argument is converted to a string. The
result is the substring starting at position m which is
n characters long. If n is omitted, the remainder of
the string is returned.

indexof(a, b)
or
indexof(a, b, c)

Strings In the two argument form, return the position of the
substring b in the string a, or -1 if the substring is
not found. In the three-argument form, start the
search at position c. This is analogous to
a.indexOf(b) or a.indexOf(b, c) in Java.

lower(a) String Convert the string a to lower case.

upper(a) String Convert the string a to upper case.

element(a, x1, ..) Array or list Return the element with subscipts x1, … from the
array or list a. This is exactly equivalent to a[x1, …]
- the [] subscripting syntax was introduced after
element.

Aggregate Functions

Function Arguments Meaning

sum(a, b, c …) Numbers Sum all the arguments; if any are undefined the
result is undefined.

zsum(a, b, c …) Numbers Sum all the arguments, ignoring any that are
undefined.

avg(a, b, c …) Numbers Average of the arguments; if any are undefined
the result is undefined.

zavg(a, b, c …) Numbers Average of the arguments, ignoring any that are
undefined.

max(a, b, c …) Numbers or strings Maximum value of all the arguments; if any are
strings, the result is a string otherwise the result
is a number.

min(a, b, c …) Numbers or strings Minimum value of all the arguments.

Oracle Retail Design 12.0

 Configuration Guide 79

Lookup Functions in Spec Sheets
The first argument of each lookup function must be a string defining is the parameter key,
as set in the parameters admin window. The argument will often be a string constant, but
this is not mandatory.
The second argument of the lookupdate, lookuplistdate and lookupnosortdate
functions is a date, from a date entry field on a spec sheet or from a linked date value.
The remaining arguments are the lookup keys for the parameter. If the number of key
arguments in a single value lookup does not match the definition of the parameter, the
result is undefined.

Function Arguments Meaning

lookup(parm, k1, k2 …) Any Lookup single value using
current date

lookupdate(parm, date, k1, k2 …) Any Lookup single value using
supplied date.

lookuplist(parm, k1, k2 …) Any Lookup list using current
date. If the keys are omitted,
all the active values for the
parameter are returned. If the
parameter type is string, the
list results are sorted
alphabetically.

lookuplistdate(parm, date, k1, k2 …) Any Lookup list using supplied
date. If the keys are omitted,
all the active values for the
parameter are returned. If the
parameter type is string, the
list results are sorted
alphabetically.

lookupnosort(parm, k1, k2 …) Any As lookuplist except that the
results are not sorted
alphabetically. The results
are sorted by key.

lookupnosortdate(parm, data, k1, k2 …) Any As lookuplistdate except that
the results are not sorted
alphabetically. The results
are sorted by key.

In a ‘list’ lookup call, fewer keys than required by the parameter may be used. The result
is the set of values matching the supplied keys. For the ‘nosort’ functions (new in 11.0),
the set is sorted by the remaining keys. For example, if a parameter ‘list’ is defined with
two freeform keys, the call:
lookupnosort(‘list’, ‘one’)

will return all the values with ‘one’ in the first key, sorted by the value in the second key.
This allows finer control over the ordering of values than with the ‘sort’ functions which
sort by the values.

Spreadsheet Expression Syntax

80

Formatting Functions in Spec Sheets
These functions may be used to format numeric and date values.

Function Arguments Meaning

format(number, pattern) Number, string Format the number using pattern5.

localdateformat(date)
or
localdateformat(date, pattern)

Number, string Format the ‘local’ date using pattern6; if the
pattern is omitted or the pattern value is a
number instead of a string, use a locale
specific default date format. A numeric
pattern value of 1 selects a default date/time
format.

dateformat(date)
or
dateformat(date, pattern)

Number, string Format the ‘system’ date using pattern; if
the pattern is omitted, use a locale specific
default date format.

dateformattz(date, tz)
or
dateformattz(date, tz, pattern)

Number, string Format the date using the pattern and the
timezone specified by tz. The timezone
should be one of the names recognized by
java.util.TimeZone. The pattern is selected
as in localdateformat.

formatfraction(x, base) Numbers Format the number x as an integer +
fraction, using a fraction divisor of base – 8
or 16 for example.

formatfraction(3.375, 16) = ‘3 3/8’

formatfraction4(x) Number Format the number x as a fraction using
base 4. Fractions will be represented using
the characters ¼, ½, and ¾.

dateparse(str, pattern) Strings Parse the date string using the pattern and
return a ‘system date’.

For example:

dateparse(‘2004-12-23’, ‘yyyy-MM-dd’)

localdateparse(str, pattern) Strings Parse the date string using the pattern and
return a ‘local’ date.

dateparsetz(str, pattern, tz) Strings Parse the date string using the pattern and
the timezone specificed by tz.

5 See the documentation for java.text.DecimalFormat for details.
6 See the documentation for java.text.SimpleDateFormat for details.

Oracle Retail Design 12.0

 Configuration Guide 81

Style Linkage Functions in Design
These functions are used to extract list values from styles in the Design application.

Function Arguments Meaning

getsizename(index) Number Get the index’th size name from the
current size range. The first name has
index 1; getsizename(0) returns the
number of sizes in the range.

getsizelist(sizerange) Number Get the sizes in the sizerange as a list,
suitable for use in dynamic matrix row
or column sets. sizerange must be
style$sizerange or a cell set in a custom
size selector component.

getsizeratrios(sizserange) Number Get the ratios in the sizerange as a list

getsizecodes(sizerange) Number Get the size codes in the sizerange as a
list

getcolourlist(colset) String Get the set of colours as a list, suitable
for use in dynamic matrix row or
column sets. colset must be
style$colourlist or a cell set in a custom
colour selector component.

getretailerdata(type [,filter]) String Get retailer-specific data identified by
type. See below for more information.

getsupplierdata(type [,filter]) String Get data for the supplier on the style.
See below.

getagentdata(type[, filter]) String Get data for the agent on the style. See
below.

Spreadsheet Expression Syntax

82

getretailerdata
The first argument to getretaildata specifies the data returned. In most cases the result is
a value list suitable for use in drop down choices or matrix dynamic row/column sets.
In most cases, the filter, if present, should evaluate to the internal ID of a database value.
A ‘combined’ value resulting from a style linkage or drop down choice is usually used.
For example:
getretailerdata(‘subclasses’, style$class)

would return a list of all the subclasses in the class used on the style.

Type Filter Meaning

users Optional List of retailer users. If filter is present and non-zero,
limit to account managers only.

themes Themes

phases Phases in the current season

classes Optional List of classes. If operating in a single class context,
this is just a single value list. If filter is not present,
return classes in the current department. Otherwise
filter must evaluate to a department ID; the classes in
that department are returned.

subclasses Required List of subclasses. If operating in a single subclass
context, this is just a single value list. Otherwise filter
must be present and evaluate to a class ID. The
subclasses in this class are returned.

foblocations Optional List of FOB locations. If filter is present it must
evaluate to a country ID used to filter the location list.

fobleadtime Required The integer lead time for the FOB location identified
by filter. This is a single value, not a list.

fobcountry Required The country value for the FOB location identified by
filter. This is a single value, not a list.

countries List of countries.

fobcountries List of countries which have FOB locations.

colours Optional List of colours. If filter is present and non-zero, the
list is limited to just the colours used in palettes
available in the current context.

Oracle Retail Design 12.0

 Configuration Guide 83

The following types are not available only in reporting search sheets; they are not
available in spec sheets used with style definition.

Type Filter Meaning

departments List of departments. If operating at department level, this is just a
single value list.

sizecharts List of sizecharts for the context.

partners Optional List of partners for the current context. If filter is present it must
evaluate to a department ID used to filter the partners.

status List of retailer status values.

types List of product types

elctypes List of ELC types

getsupplierdata and getagentdata

Type Filter Meaning

users Optional List of partner users. If filter is present and non-zero, limit
to account managers only.

locations Optional List of partner locations (factories, and so on). If filter is
present it must evaluate to a country ID used to filter the
list.

depts Partner departments.

locationcountry The country associated with a partner location (factory).
Note that this is a single value, not a list.

Spreadsheet Expression Syntax

84

Style Linkages
These are the special names which are linked to style values in Oracle Retail Design. The
explanation of each refers to the default field names on the standard summary screen.
In Oracle Retail Design, there are two distinct modes for the summary screen. In
‘standard’ mode, the built-in, hard-coded summary screen is used. In ‘custom’ mode
there is no built-in summary screen; all values are set via fields in spec sheets.
 If the Set? column contains No, the value may never be updated from a spec sheet; if

the column contains Always, the value may be updated in ‘standard’ or ‘custom’
summary mode; otherwise the value may be updated in ‘custom’ summary mode
only.

 If the 11.0? column contains Y, the linkage is available in ‘custom’ summary mode
only.

 A type of ‘Combined’ means that the value has both an internal ID, suitable for key
lookup, and also a display name.

 A ‘Date’ value is a number, but also contains a formatted date for use in text fields,
and so on.

Link name Type Meaning Set? 11.0?

style$customer Combined Retailer No

style$stylenumber String Style number

style$shortname String Style short name

style$longname String Style long name Y

style$division Combined Division No

style$department Combined Department No

style$season Combined Season

style$local Number 1 if the user belongs to the
retailer, 0 if the user belongs to a
partner.

No Y

style$level Number Indicates current hierarchy level
– 2 for department, 3 for class
and 4 for subclass.

No Y

style$class Combined Class Note7

style$subclass Combined Sub class Note8

style$createdate Date Style creation date No Y

style$changedate Date Style last change date No Y

style$buyer Combined Buyer user

7 style$class may not be set if operating at class or subclass level
8 style$subclass may not be set if operating at subclass level.

Oracle Retail Design 12.0

 Configuration Guide 85

Link name Type Meaning Set? 11.0?

style$quality Combined Quality user

style$designer Combined Designer user

style$theme Combined Theme

style$phase Combined Phase

style$bidline Date Bid deadline

style$deliveries Number # of deliveries

style$iadate Date IA date

style$elctarget Number ELC target Always

style$fobloc Combined FOB Location

style$fobcountry Combined FOB Country

style$priceby Number Price by option

style$costby Number Cost by option

style$quantity Number Quantity

style$price Number Retail price

style$vat Number VAT

style$itemcost Number Item cost Always

style$elc Number ELC Always

style$margin Number Buying margin No

style$type Combined Product type Note9

style$elctype Combined ELC type Note10

style$cust_status Combined Customer status Note11

style$sup_status Combined Customer status Note12 Y

style$leaddays Number Lead days

style$orderby Date Order by date

style$supplier Combined Style supplier No

style$accnum String Supplier account number No

style$accmgr Combined Supplier account manager No

style$agent Combined Agent No

9 Must be set from a custom type field.
10 Must be set from a custom elctype field.
11 Must be set from a custom rstatus field.
12 Must be set from a custom sstatus field.

Spreadsheet Expression Syntax

86

Link name Type Meaning Set? 11.0?

style$agentcontact Combined Agent Contact No

style$sup_design_id String Supplier Design ID

style$sup_designer Combined Supplier designer

style$sup_team Combined Supplier team (department)

style$factory Combined Factory

style$country Combined COO

style$effective_until Date Effective until date

style$sup_quantity Number Quantity offered

style$colourlist String Style colour list Note13

style$sizerange Combined Style size range Note14

style$text1 String Features Always

style$text2 String Comments Always

style$text3 String Proposed Changes Always

style$category String Category

style$dispatch String Dispatch type

style$misc_N Any Misc value N Always

style$link_N Any Linkage value N Always

Style Linkage Functions in Design
These functions are used to extract list values from styles in the Oracle Retail Design
application.

Function Arguments Meaning

getsizename(index) Number Get the index’th size name from the current size
range. The first name has index 1; getsizename(0)
returns the number of sizes in the range.

getsizelist(sizerange) Number Get the sizes in the sizerange as a list, suitable for use
in dynamic matrix row or column sets. sizerange
must be style$sizerange or a cell set in a custom size
selector component.

getcolourlist(colset) String Get the set of color as a list, suitable for use in
dynamic matrix row or column sets. colset must be
style$colourlist or a cell set in a custom color selector
component.

13 Must be set from a custom colourselector field.
14 Must be set from a custom sizeselector field.

Oracle Retail Design 12.0

 Configuration Guide 87

Style Custom Spec Sheet Fields
Design provides a number of ‘custom’ spec sheet fields which are used to set special
values on a style. Details are shown below. All can use the standard width, map, and
loglabel attributes, as well as the field layout attributes.

Retailer Status
<Custom label=”A label” name=”rstatus” cell=”style$cust_stateid”/>

In ‘custom’ summary mode the cell name is ignored and should be omitted.

Supplier Status
<Custom label=”A label” name=”sstatus”/>

Colour List
The colourselector component is used to select a set of colours from palettes. It will
normally be used to set the main colour list for a style (style$colourlist), but additional
components can be used to create new colour lists, perhaps to support multiple channels,
and so on.
In ‘standard’ summary mode, the cell cannot be style$colourlist because this is set on the
summary tab.
<Custom name=”colourselector” cell=”style$colourlist”>
 <Parameter name=”label”>true or false</Parameter>
 <Parameter name=”codes”>true or false</Parameter>
 <Parameter name=”colours”>true or false</Parameter>
 <Parameter name=”replaceable”>true or false</Parameter>
</Custom>

Parameter Meaning Default

label If true, the standard ‘Colours:’ label is shown above the
selector.

false

codes If true, the colour code is shown next to the name. false

colours If true, the actual colours (using the RGB values) are
displayed.

false

replaceable If true, the Replace Colour button is shown. This option has no
effect if any of the built-in costing tabs (volumes, bom, price
and cost) are present because these do not support colour
replacement.

false

Spreadsheet Expression Syntax

88

Size Range
The sizeselector component is used to select a size range (chart). It will normally be used
to set the main size range for a style (style$sizerange), but additional components can be
used to set extra size ranges, perhaps to support multiple channels, and so on.
In ‘standard’ summary mode, the cell cannot be style$sizerange because this is set on the
summary tab.
<Custom name=”sizeselector” cell=”style$sizerange”>
 <Parameter name=”label”>true or false</Parameter>
 <Parameter name=”codes”>true or false</Parameter>
 <Parameter name=”colours”>true or false</Parameter>
 <Parameter name=”replaceable”>true or false</Parameter>
</Custom>

Parameter Meaning Default

label If true, the standard ‘Size Chart:’ label is shown above the
selector.

false

chart If true, the size list is show below the range drop down. true

sizes If true, size names are shown in the chart. true

ratios If true, initial size ratios are shown as percentages. false

codes If true, size codes are displayed in the chart. false

Documents
The documents component implements the attachment documents feature.
In 11.0, this custom component is not available in ‘standard’ summary mode and also
must be used on a fixed spec tab. It cannot be used on the specification, bid or elc tabs.
In the 11.1 release, additional documents components may be used. There is a single
main documents area, corresponding to the documents area on the standard fixed
summary screen. The main area has the same restrictions on use as in the 11.0 release.
Additional documents areas are identified with an imageid attribute. This must be unique
within the spec sheet and is used to identify the attached documents in the database. The
imageid value must end with an asterisk (*) to indicate to the spec sheet subsystem that
multiple documents are associated with the component.
<Custom name=”documents”>
 <Parameter name=”label”>true or false</Parameter>
</Custom>

<Custom name=”documents” imageid=”mydocs*”>
 <Parameter name=”fontsize”>3</Parameter>
 <Parameter name=”size”>300></Parameter>
</Custom>

Oracle Retail Design 12.0

 Configuration Guide 89

Parameter Meaning Default

label If true, the standard ‘Documents:’ label is shown above the
component.

false

fontsize Font size increment for names in document list; works in same
way as similarly named specsheet item attribute.

0

size Sets target size for document list box. If the value is a single
integer, it sets the height of the box. Otherwise the value should
be WxH, where W and H are integers setting the width and
height. Note that the actual size of the box will be affected by
the filling attribute of the component.

100x75

Images
The images component provides the standard multiple image tabs. This custom
component is not available in ‘standard’ summary mode and also must be used on a fixed
spec tab. It cannot be used on the specification, bid or elc tabs.
<Custom name=”images”>
 <Parameter name=”number”>N</Parameter>
</Custom>

Parameter Meaning Default

number The number of image tabs shown. Must be in range 1-
16.

8

Product Type and ELC Type
The type and elctytpe component provides drop downs to select the product type and ELC
type. These custom components are not available in ‘standard’ summary mode and also
must be used on a fixed spec tab – they cannot be used on the specification, bid or elc
tabs.
<Custom label=”Some label” name=”type”/>
<Custom label=”Some label” name=”elctype”/>

Comment Display
The comments component is used to display style file comments. It can be used as part of
the comment entry form to display the current set of comments. There is no input value
associated with the component so a cell name should not be present.
<Custom name=”comments”>
 <Parameter name=”mode”>text, list or both</Parameter>
 <Parameter name=”initial”>text or list</Parameter>
 <Parameter name=”print”>true or false</Parameter>
 <Parameter name=”textfontsize”>N</Parameter>
 <Parameter name=”textsize”>WxH<Parameter>
 <Parameter name=”listrows”>N</Parameter>
 <Parameter name=”showent”>other, partner, always or never<Parameter>
</Custom>

Spreadsheet Expression Syntax

90

Parameter Meaning Default

mode If text, the comments are shown in text format, most recent
first; if list, the comments are displayed in multi-column
sortable lst format. If both, radio buttons are available to
switch between the formats.

both

initial If the mode is both, this selects the initial display text

print Selects whether the separate Print Comments button is
available. (Note that if server-side comment reporting is not
configured, comments are always printed in text format and
the mode must be text or both to enable printing).

true

textfontsize A positive or negative increment which is added to the point
size of the default font to get the font for text format displays.
For example, if the value is 2, the font will be 2 points larger
than the default.

0

textsize The dimension in pixels of the text display area. This may be
adjusted to change the size of the comments entry dialogue.
The actual size may be affected by screen size or by the size
of the list format component.

900x275

listrows The number of visible rows in the list format display (note
that this refers to rows with a single line of text). The actual
number of rows displayed may be larger if the comments
component is stretched to fit a form or if the text format is
made larger.

15

showent Controls whether the enterprise of the comment user is shown
in brackets after the user name:
other: the enterprise is shown if it is not the same as that of
the current user.
partner: the enterprise is shown if the user belongs to a
trading partner.
always: the enterprise is always shown.
never: the enterprise is never shown.

The value of this parameter is passed to the server template as
the showent property.

other

 Configuration Guide 91

A
Appendix: designconfig.dtd

<?xml version="1.0" encoding="UTF-8"?>

<!-- DTD for Design configuration definition

 A single file can contain any number of configurations, but these are
 treated independently.

 Common ParameterGroup elements can be included at the top level and
 referred to using ref= attributes.
-->

<!ELEMENT Configurations ((Configuration | ParameterGroup)+)>

<!-- An individual Configuration can be attached to a number of different
 scopes. It defines the tab layout for design windows in each scope.

 The required name attribute supplies a name for the configuration for use
 in GUIs, etc. The name must be unique amongst other congurations. When
 a configuration is uploaded, all existing instances with the same name
 are removed and replaced with the new version. If the upload does not
 contain the same scope set as the database, old scope configutations will
 be lost.

 When a configuration with a new name is uploaded, existing configurations
 in the same scope(s) are not removed. The Design client uses the most
 recent upload for the required scope; when a style is created or edited,
 the configuration name is saved to the database and used if the style is
 exported.

 When there are multiple configurations and scopes in the database, the
 client locates a configuration using these rules:

 1. Find best hierarchy match
 2. If there is more than match, choose configuration with
 matching season
 3. If there is still more than one match, choose most recently
 uploaded version.

 The hierachy match is based on the selections on the user console. If
 the enterprise is using subscoping at the subclass level, but the user
 does not select a subclass, then the match will be by division,
 department and class only.
-->

<!ELEMENT Configuration (Scopes?, Details)>

<!ATTLIST Configuration name CDATA #REQUIRED
 version CDATA #IMPLIED>

<!-- The Scopes element contains the individual scopes that the configuration
 applies to. If Scopes is omitted the configuration is the global
 default.
-->

<!ELEMENT Scopes (Scope+)>

<!-- A Scope element defines a congfiguration scope by hierachy and season.

Appendix: designconfig.dtd

92

 The hierachy can be defined at division, department, class or subclass
 level. Design always used the most specific match.

 Note that configuration scopes at class and subclass level are relevent
 only for enterprises using the new 'userscopelevel' option, and for users
 who select a subscope on the design console. If a user does not select a
 subscope level then the default configuration for the department or
 division will be used.

 Note that any number of seasons may be included; the configuration is
 stored for each.

 A Scope element without any nested hierarchy or season settings will also
 be treated as the global default.
-->

<!ELEMENT Scope ((Division, (Department, (Class, Subclass?)?)?)?, Season*)>

<!-- Individual scope elements. At least one of Name or Number is always
 required.
-->

<!ELEMENT Division (Name?, Number?)>
<!ELEMENT Department (Name?, Number?)>
<!ELEMENT Class (Name?, Number?)>
<!ELEMENT Subclass (Name?, Number?)>
<!ELEMENT Season (Name?, Number?)>

<!ELEMENT Name (#PCDATA)>
<!ELEMENT Number (#PCDATA)>

<!-- Configuration details. The Tabs element defines the tab layout and the
 optional Conditions element defines the data required before a style can
 be saved.

 If the Tabs element is omitted, the default tab set is used.

 Parameter elements may be used to define configuration parameters. These
 will affect global functions such as style copy.
-->

<!ELEMENT Details (Tabs?, Conditions?, (Parameter | ParameterGroup)*, Exporter?)>

<!-- Design tabs. These can be selected from a set of built-in tabs, fixed
 spec tabs and custom tabs define by classname.

 If the standard Summary tab is used it must be the first in the list.

 A specific builtin tab may not be listed more than once. Each tab may
 include Parameter elements to provide further configuration information.
 Currently Summary and Builtin tabs will ignore parameters.
-->

<!ELEMENT Tabs (Summary?, (Builtin | Spec | Custom)*)>

<!ELEMENT Summary ((Parameter | ParameterGroup)*)>

<!-- The type attribute for Builtin defines the standard tab type -->

<!ELEMENT Builtin (Parameter*)>
<!ATTLIST Builtin type (volumes | price | bom | cost | specification | bid | elc |
labels) #REQUIRED>

Oracle Retail Design 12.0

 Configuration Guide 93

<!-- The Spec tab defines a fixed spec sheet. The type attribute specifies
 the numeric sheet type; the specsheet 'application code' is fixed. The
 key attribute is used to locate saved data for the tab; it must be unique
 within the configuration.

 The perm attribute controls whether the tab is visible to the current
 user. The value is treated in the same way as the perm attribute in spec
 sheets, which controls edit access (for details see specsheet.dtd). Note
 that the tab is always created internally, to ensure that linkage
 calculations, etc, are performed correcrly; the perm value controls
 whether the tab is made visible.

 The TabLabel element defines the label attached to the tab. This may be
 expanded to allow multiple languages later.
-->

<!ELEMENT Spec (TabLabel, (Parameter | ParameterGroup)*)>
<!ATTLIST Spec type CDATA #REQUIRED
 key CDATA #REQUIRED
 perm CDATA #IMPLIED>

<!ELEMENT TabLabel (#PCDATA)>

<!-- A Custom tab is defined by a Java class name. -->

<!ELEMENT Custom (TabLabel, (Parameter | ParameterGroup)*)>
<!ATTLIST Custom class CDATA #REQUIRED
 perm CDATA #IMPLIED>

<!-- Parameter defines a single extra configuration parameter for a tab. -->

<!ELEMENT Parameter (#PCDATA)>
<!ATTLIST Parameter name CDATA #REQUIRED>

<!-- ParameterGroup allows a set of related parameters to be grouped together
 and accessed using the group name. It can be used to set parameters for
 a single area of the application, such as reporting.

 Note that althouth the syntax allows ParameterGroups wherever Parameters
 are valid, the implementation code will often not use groups.

 A common ParameterGroup can be defined with an id attribute in a
 configuration or at the top level and referred to using the ref
 attribute. If ref= is used, the name attribute must not be present and
 there must be no nested Parameter elements. The id name must be unique
 amongst all id attributes in the file.
-->

<!ELEMENT ParameterGroup ((Parameter | ParameterGroup)*)>
<!ATTLIST ParameterGroup id ID #IMPLIED
 ref IDREF #IMPLIED
 name CDATA #IMPLIED>

<!-- The Conditions element defines fields which must be set before a style
 can be saved.
-->

<!ELEMENT Conditions (Condition+)>

<!-- A single Condition include a field name attribute and an optional error
 message. If the error message is omitted, the 'Save' button will not be
 enabled if the field is not set.

Appendix: designconfig.dtd

94

 If the standard Summary tab is present, these fields are limited to the
 special 'linkage values' - misc_X and link_X; otherwise any standard link
 field can be tested.

 In non-summary mode, include the fields 'shortname' and 'stylenumber' to
 mimic the original behaviour.

 Note that the field names are the same as the standard style specsheet
 values without the leading "style$".
-->

<!ELEMENT Condition (Error?)>
<!ATTLIST Condition field CDATA #REQUIRED>
<!ELEMENT Error (#PCDATA)>

<!-- The Exporter element defines a styletab spec sheet type and linkage
 information required for style exports.

 There is no stored data associated with the export definition form. All
 information is communicated via linkage cells.

 The optional Conditions element defines the names that myst be set before
 any exports are enabled.

 Parameter elements can be used to define export preprocessors and other
 data.
 -->

<!ELEMENT Exporter (Conditions?, (Parameter | ParameterGroup)*, Export+)>
<!ATTLIST Exporter type CDATA #REQUIRED>

<!-- The Export element defines a single export type that is supported by the GUI.

 The key attribute identifies the export type in the style XML extract.

 The flag attribute defines the characters used to identify the export in
 the style record. All the export flags in use are combined into one
 column in the database, so keep the flag strings short.

 If the flag is omitted, the style will not be marked for direct export;
 however the preprocessing will still be performed. This can be used to
 implement a 'get new style numbers from somewhere else' interface.

 The indicator attribute is the cell which is set by the GUI to indicate
 that the export type has been selected. It should start with the export
 prefix "exp$".

 The miscdate attribute is the number of a style misc field which is set
 to the timestamp that the export was requested. It can be used to
 display export info in the styles list.

 If the onceonly attribute is true, the export type should not be enabled
 if any of the selected styles have already been exported.
-->

<!ELEMENT Export (Conditions?, ExportData*)>
<!ATTLIST Export key CDATA #REQUIRED
 flag CDATA #IMPLIED
 indicator CDATA #REQUIRED
 miscdate CDATA #IMPLIED
 onceonly (false | true) "false">

<!-- The ExportData element defines additional values which can be set for an

Oracle Retail Design 12.0

 Configuration Guide 95

 export. The values are output in the styles XML extract.

 The key attribute is displayed in the extract; the link attribute defines
 the export name from the GUI; as with the indicator, it must start with
 "exp$". The type attribute controls the display format of the value in
 the extract.
 -->

<!ELEMENT ExportData EMPTY>
<!ATTLIST ExportData key CDATA #REQUIRED
 link CDATA #REQUIRED
 type (string | int | float | date | time) "string">

 Configuration Guide 97

B
Appendix: specsheet.dtd

<?xml version="1.0" encoding="UTF-8"?>

<!-- DTD for Design spec sheets. Version 0.01 -->

<!-- SpecSheets is the enclosing element. It contains one of more individual
 spec sheet definitions.

 The optional application attribute defines the the internal "application
 code" for the sheets. The sheet processor can reject an import if it is
 configured for a different code.

 The version attribute can define a default version for all the sheets in
 the file. The default is 2.
-->

<!ELEMENT SpecSheets (SpecSheet+)>
<!ATTLIST SpecSheets application CDATA #IMPLIED
 version (1 | 2) "2">

<!-- SpecSheet defines a single sheet layout. It contains one or more pages.

 The integer type attribute defines the specification type number.

 The description attribute defines text displayed for the sheet in
 adminstration tools.

 If the tabbed attribute is present tabs are displayed; if defaulttabs is
 present the (very old) default tab titles are used. This attribute is
 deprecated and will be removed eventually.

 The fill attribute defines whether the sheet fills horizonally. The
 default is false.

 The version attribute defines the spec sheet display version. Currently
 versions 1 and 2 are supported. The default is the SpecSheets version
 attribute.

 The background attribute sets the background colour for the page and its
 forms. It should be a colour name like 'black' (see the fields of the
 java.awt.Color class), or an RGB value in decimal or hex (decoded by
 java.lang.Integer.decode).

 If the background attribute is not present, the background colour is
 'light gray' (the standard Design colour) for version 1 and white for
 version 2 sheets.

 The borders attribute sets the default border for all forms in the sheet;
 if omitted the default is 'etched' for version 1 and 'lined' for version
 2.

 The enabled attribute defines an expression which can be used to
 dynamically update the 'editing enabled' state of the sheet. The
 attribute is available on most nested elements; the most recently seen
 value will override the settings on enclosing elements.

 Note that enabled settings do not combine. A form may have a 'true'
 enabled attribute whilst the value for the sheet is false; the form will

Appendix: specsheet.dtd

98

 then be available for editing.

 The perm attribute defines editing permissions for the specsheet. The
 basic format of the perm value is:

 allow-deny

 'allow' and 'deny' are comma-separated lists of application-specific
 security roles. The roles are the keys defined in the system
 administration services window (the "sec:" prefix may be omitted)

 "*" means 'everyone'; it should not be used in conjunction with any other
 roles. An empty list means 'nobody'.

 The deny part may be omitted if there are no exclusions.

 Examples:

 perm="*" means 'everybody' and has the same effect as omitting the
 attribute.

 perm="loc-1" means all users in the 'loc' group except those in the local
 '1' group. It is equivelent to perm="sec:loc-sec:1".

 perm="*-2,p1" means everybody, except those users in the local '2' group
 and the partner '1' group.

 Common settings will be perm="loc" for local users only and perm="prt"
 for partner users only.

 Not all combinations are sensible: for example "loc-*" means 'all local
 users except for everybody', and is the same as perm="". An item which
 cannot be edited by anyone is not very useful.

 The perm attribute is available on most other nested elements; the most
 recently seen value will override settings on enclosing elements.
-->

<!ELEMENT SpecSheet (Page+)>
<!ATTLIST SpecSheet type CDATA #REQUIRED
 description CDATA #REQUIRED
 tabbed (true | false) "false"
 defaulttabs (true | false) "false"
 fill (true | false) "false"
 version (1 | 2) #IMPLIED
 borders (none | lined | etched) #IMPLIED
 background CDATA #IMPLIED
 enabled CDATA #IMPLIED
 perm CDATA #IMPLIED>

<!-- The Page element is a single page or tab.

 If the sheet is not tabbed there must be one page only. Each Page
 contains one or more matrices or forms.
 elements.

 The title attribute defines the tab title. It is required if the sheet is
 tabbed.

 The scrollable attribute defines whether the entire page scrolls. The
 default is true.

 The background attribute sets the background colour of the page; if

Oracle Retail Design 12.0

 Configuration Guide 99

 omitted the default for the sheet is used.
-->

<!ELEMENT Page ((Matrix | Form)*)>
<!ATTLIST Page title CDATA #IMPLIED
 scrollable (true | false) "true"
 background CDATA #IMPLIED
 enabled CDATA #IMPLIED
 perm CDATA #IMPLIED>

<!-- The Matrix element defines a multi-column list.

 The name attribute is the unique name for this matrix in the sheet. The
 name is always required. The name is not defined as an XML ID because
 the same name may be used in different SpecSheets.

 The description attribute is used to generate a heading for the matrix.

 The rows attribute defines the number of rows; the number of columns is
 implied by the number of Column elements.

 The headings attribute defines whether headings are displayed.

 The visiblerows attribute defines the number of rows displayed in the
 client GUI. The default is 5. The actual number of rows displayed may
 differ if the matrix size is altered to fit in the available space.

 If the scrollable attribute is absent, the matrix scrolls vertically if
 the Page is not scrollable, and does not scroll if the Page is
 scrollable. This default behaviour is suitable for fixed matrices, but
 may not be best for matrices with dynamic row sets.

 The horizontalscroll attribute specifies whether a horizontal scroll bar
 is present in the Matrix. This can be useful if there is a dynamic
 column set. If horizontal scrolling is selected, the visiblecols
 attribute gives an indication as to the visible width of the matrix. The
 measure is based on a notional default column width and does not relate
 directly to real columns in the matrix.

 The leftfixedcols is the number of non-scrolling columns on the left of
 the matrix. It can be used onlt if horizontalscroll is true and must be
 less than the number of columns. A ColumnSet counts as a single column
 in the leftfixedcols count.

 The rowheadingwidth attribute must be present if row headings are
 required; it is the width of the headings column. If a dynamic row set
 with subrows (see below) is present, there will be two headings columns;
 rowheadingwidth may be a pair of integers separated by a comma in this
 case. If a single integer is given it is used for both columns.

 The showeditable attribute can be false, true or a colour name (see
 background attribute for details of colour names). If not false,
 editable cells will be displayed with a different background colour in
 edit mode.

 The visible attribute defines an expression which can be used to
 dynamically show or hide the matrix. The Matrix will be visible if the
 expression evaluates to a non-zero number.

 The cellpfx attribute must be set if any cells in the matrix are involved
 in spreadsheet calculations. It is used as a prefix to form the
 spreadsheet cellnames for matrix cells. A cell at row 'r' and column 'c'
 will have a spreadsheet cellname of pfx$r.c. For example, if the prefix

Appendix: specsheet.dtd

100

 is "zz", the cell at row 3, column 6 will have a spreadsheet cellname of
 zz$3.5. If no cells are involved in calculations then omitting the
 cellpfx attribute will speed up several matrix operations.

 The map attribute defines a mapping for the entire matrix.

 Initial contents and row/cell mappings are defined by Row elements.

 Calc elements may be included before Column elements to define
 intermediate values and functions.

 The optional CellChoice element defines the default items for any choice
 columns or cells in the matrix. It can be included even if the default
 cell type is not choice; this allows the default to used for a number of
 individual choice cells without repeating the items.

 CalcSet elements are used to compute 1-d and 2-d array values in dynamic
 row and/or column areas.
-->

<!ELEMENT Matrix ((Calc | CalcSet)*, CellChoice?, (Column | ColumnSet)+, (Row |
RowSet)*)>
<!ATTLIST Matrix name CDATA #REQUIRED
 description CDATA #IMPLIED
 border (none | lined | etched) #IMPLIED
 rows CDATA #REQUIRED
 headings (false | true) "true"
 visiblerows CDATA #IMPLIED
 visiblecols CDATA #IMPLIED
 scrollable (false | true) #IMPLIED
 horizontalscroll (false | true) "false"
 leftfixedcols CDATA #IMPLIED
 rowheadingwidth CDATA #IMPLIED
 showeditable CDATA #IMPLIED
 visible CDATA #IMPLIED
 cellpfx CDATA #IMPLIED
 map CDATA #IMPLIED>

<!-- Entity defining cell attributes. These attributes can be set in Matrix,
 Column or Cell elements. The Cell setting will override the Column
 setting which in turn overrides the Matrix setting.

 The align attribute defines the column alignment. For example, 'l' would
 be used for text items, 'r' for numeric values and 'c' for date values.
 The alignment can be overriden by an align attribute in a Cell element.

 The type attribute defines the datatype expected for values in the column.

 The prec attribute can be used with float only; it defines the number of
 decimal places; the default is 2.

 The limit attribute can be used with text cells only; it defines the
 maximum text length. It must be 'none' (to cancel an enclosing default
 limit) or a positive integer.
-->

<!ENTITY % cellattrs 'align (l | c | r)
#IMPLIED
 type (text | int | float | date | checkbox | choice)
#IMPLIED
 prec CDATA
#IMPLIED

Oracle Retail Design 12.0

 Configuration Guide 101

 limit CDATA
#IMPLIED
 enabled CDATA
#IMPLIED
 perm CDATA
#IMPLIED'>

<!ATTLIST Matrix %cellattrs;>

<!-- The column attribute defines a single column. The width is required, but
 the heading is optional. If the heading is omitted but the matrix
 headings attribute is true, an empty heading is displayed.

 The column heading may be set in a heading attribute or child Heading
 element, but not both. If the headingexpr attribute is true, the heading
 value is treated as an expression which is evaluated to obtain the column
 heading.

 The map attribute defines a column level mapping.

 The optional CellChoice element defines the default items for choice
 cells in the column.
-->

<!ELEMENT Column (Heading?, CellChoice?)>
<!ATTLIST Column width CDATA #REQUIRED
 heading CDATA #IMPLIED
 headingexpr (false | true) "false"
 map CDATA #IMPLIED
 %cellattrs;>

<!-- A ColumnSet attribute defines a dynamic 'column' set. This contains a
 set attribute defining an expression which should evaluate to a list of
 column headings. A ColumnSet is treated as a single 'virtual' column when
 referred to in spreadsheet expressions and Cell elements. The
 spreadsheet value associated with a cell in a dynamic column set will be
 a 1-d or 2-d array.

 The dimension attribute defines the data; it can be used in spreadsheet
 calculations to link with related data in other matrices. For example,
 the dimension could be "size" for a dynamic column set derived from a
 list of sizes. If the same dimension is used elsewhere in a row or
 column set, the two sets can be used in linked calculations.

 If the matrix has a cellpfx attribute, and a dimension is provided, a
 spreadsheet cell named "PFX$DIMENSION" will be set to the list of values
 from the set expression. Here PFX is the cell prefix and DIMENSION is
 the dimension. For example, if the cellpfx is "szmat" then the cell
 containing the size names in the example above would be szmat$size.

 If the required attribute is true, the matrix will not be displayed if
 the set is empty.

 Currently the expression used to define the set should not contain direct
 or indirect references to other cells in this matrix.
-->

<!ELEMENT ColumnSet (CellChoice?, SubColumn*)>
<!ATTLIST ColumnSet width CDATA #IMPLIED
 set CDATA #REQUIRED
 dimension CDATA #IMPLIED
 required (false | true) "false"
 map CDATA #IMPLIED

Appendix: specsheet.dtd

102

 %cellattrs;>

<!-- A SubColumn element defines a sub column within a dynamic column
 set. Cell level attributes may be specified in the ColumnSet or SubColumn
 elements; the latter always takes precedence. A map attribute may not be
 used in ColumnSet if there are SubColumns. A width must be specifed in
 the ColumnSet or SubColumn.
-->

<!ELEMENT SubColumn (CellChoice?)>
<!ATTLIST SubColumn width CDATA #IMPLIED
 heading CDATA #REQUIRED
 map CDATA #IMPLIED
 %cellattrs;>

<!-- The Heading element defines the heading for a matrix column -->

<!ELEMENT Heading (#PCDATA)>

<!-- The Row element defines initial contents for a matrix row. The row
 attribute is the one-based row number. The heading attribute is the row
 heading; it will be ignored if the matrix rowheadingwidth attribute is
 not present. If headingexpr is true, the heading is treated as an
 expression.

 The map attribute defines a row-level mapping.
 -->

<!ELEMENT Row (Cell*)>
<!ATTLIST Row row CDATA #IMPLIED
 heading CDATA #IMPLIED
 headingexpr (false | true) "false"
 map CDATA #IMPLIED>

<!-- A dynamic row 'set' may be defined with the RowSet element. This
 contains a set attribute defining an expression which should evaluate to
 a list of row headings. A dynamic row set can also contain nested
 'sub-row' SubRow elements. The subrows are numbered in the same sequence
 as normal rows. For example:

 <RowSet row="5" set="someexpr">
 <SubRow heading="sub1"/>
 <SubRow heading="sub2"/>
 <Row>

 This defines rows 5 and 6. Nested sub-rows are allowed with RowSets
 only.

 The spreadsheet cell associated with a Cell in a RowSet will be an array;
 two-dimensional if the Cell is part of a dynamic column set.

 See the notes on ColumnSet for a description of the dimension and
 required attributes.

 A cell will be defined containing the row set list if the matrix has a
 cellpfx and the dimension is specifed - for more details see the
 ColumnSet notes.

 A map attribute is not allowed if the RowSet contains sub-rows.

 Currently the expression used to define the set should contain direct or
 indirect references to other cells in this matrix.
-->

Oracle Retail Design 12.0

 Configuration Guide 103

<!ELEMENT RowSet (SubRow* | Cell*)>
<!ATTLIST RowSet row CDATA #IMPLIED
 set CDATA #REQUIRED
 dimension CDATA #IMPLIED
 required (false | true) "false"
 map CDATA #IMPLIED>

<!ELEMENT SubRow (Cell*)>
<!ATTLIST SubRow heading CDATA #IMPLIED
 map CDATA #IMPLIED>

<!-- The cell element defines initial contents of a row/column cell and can
 also define a cell mapping. The col attribute is the 1-based column
 number. This attribute allows only the non-default Cell elements to be
 included.

 The contents of the Cell are the initial value; the editable attribute
 defines whether the cell can be edited by the user. If editable is
 false, and there is no initial value, the cell will be blank.

 If the heading attribute is true the cell contents are displayed
 differently, perhaps using a bold font.

 The background attribute sets the background colour of the cell. This
 should be used only with a cell that has editable false or has a
 non-overridable expression (otherwise the standard background/editable
 colours are used).

 The expr attribute defines a spreadsheet expression which is used to
 determine the cell contents. Any cell with an expression is implicitly
 non-editable.

 Note that an editable cell which has initial contents must be used with
 care. Once any edits have been made to the matrix in the client, the
 initial value will be saved to the server. The saved value will then
 continue to be used, even if the initial value is changed in the matrix
 definition.

 If the cell type is 'choice', a CellChoice element may be present to
 define the choice items. There must be a CellChoice defined in the Cell,
 Column or Matrix. Note that DTD rules require that the contents are
 surrounded by ()* indicating any number of CellChoice elements. However
 it is not legal to include more than one.

 The initial value for a checkbox cell must be true or false; false is the
 default.

 Tf there is an initial value, it should be defined by a single Value
 element; for compatability with previous versions, the value can be
 defined directly in the Cell if there are no other elements. If there is
 a CellChoice element, the initial value is not allowed.

 loglabel and loglabelx define the change log label for the cell.
 loglabel is a simple string, loglabelx is an expression evaluated in the
 context of the cell. loglabel and loglabelx cannot both be used.
-->

<!ELEMENT Cell (#PCDATA | CellChoice | Value)*>
<!ATTLIST Cell col CDATA #REQUIRED
 editable (true | false) "true"
 heading (true | false) "false"
 background CDATA #IMPLIED

Appendix: specsheet.dtd

104

 expr CDATA #IMPLIED
 loglabel CDATA #IMPLIED
 loglabelx CDATA #IMPLIED
 map CDATA #IMPLIED
 %cellattrs;>

<!-- The CellChoice element defines the contents of a matrix 'choice' cell.
 CellChoice is similar to the basic Choice item, but has far fewer
 attributes. For clarity in this definition, and ease of parsing, a
 separate element is used.

 Note that all CellChoice elements are keyed.
-->

<!ELEMENT CellChoice (Option+)>
<!ATTLIST CellChoice keyed (true | false) #FIXED "true">

<!-- CalcSet defines array calculations in a dynamic matrix.

 The dimensions attribute lists the dimension values used to construct the
 array. It must contain one or two dimension strings, separated by
 commas, which match the dimensions of the ColumnSet or RowSet elements.

 If the flexible attribute is true, the expression is evaluated with
 flexible dimension matching - this allows array values to be shared
 between matrices or spreadsheets when the dimensions do not match
 exactly.
-->

<!ELEMENT CalcSet EMPTY>
<!ATTLIST CalcSet cell CDATA #REQUIRED
 expr CDATA #REQUIRED
 dimensions CDATA #REQUIRED
 flexible (false | true) "false"
 map CDATA #IMPLIED>

<!-- The Form element defines a spec sheet 'form' with input items.

 The mandatory name attribute defines the form name. The name is used to
 match the form against input data stored in the database.

 The description attribute is used to generate a heading for the form.

 The columns attribute defines the number of columns used in the display.
 The default is 1.

 The tabbed attribute is true if the form items are displayed as separate
 tabs.

 The tabsinrow attribute is relevant only if the form is tabbed; it
 defines the number of per row.

 The vertical attribute selects an 'old-style' vertical set of textareas
 format.

 Note that we allow direct nesting Matrix and Form elements without requiring
 a SubForm. A SubForm is needed only if attributes are required.

 The visible attribute defines an expression which can be used to
 dynamically show or hide the form. The form will be visible if the
 expression evaluates to a non-zero number.

 The background attribute sets the background colour; if omitted the

Oracle Retail Design 12.0

 Configuration Guide 105

 colour is taken from the parent form or page.

 The border attribute sets the border for the form.

 Form level mapping is defined by the map attribute.
 -->

<!ELEMENT Form (Defaults | TextField | IntField | FloatField | TextArea | Choice |
Image | Icon | Checkbox |
 SubForm | Label | MultiLabel | DateField | Custom | Matrix | Form
| Calc)*>

<!ATTLIST Form name CDATA #REQUIRED
 description CDATA #IMPLIED
 columns CDATA "1"
 tabbed (false | true) "false"
 tabsinrow CDATA #IMPLIED
 vertical (false | true) "false"
 scrollable (false | true) "false"
 map CDATA #IMPLIED
 enabled CDATA #IMPLIED
 visible CDATA #IMPLIED
 background CDATA #IMPLIED
 border (none | lined | etched) #IMPLIED
 perm CDATA #IMPLIED>

<!-- Entity defining basic attributes for all items

 The label attribute defines the label attached to the item. For
 'vertical' forms it is the heading; for tabbed forms it is the tab name.
 For normal components, the labelfont and labelfontsize attributes define
 the font for the label. The labelalign attribute defines the label
 alignment. If the 'labelcolon' attribute is true (the default), a colon
 is appended to the label string.

 The cellw and cellh attributes define the number of form cells that the
 item occupies, vertically and horizontally. The defaults are 1. cellw
 must not be greater than the number of columns in the form.

 The labelw attribute defines the number of 'half-cells' that are
 allocated to the label. It must be in the range 1 to (cellw*2-1). The
 default is (cellw*2-1) which means that if cellw is more than one, the
 label occupies all but one of the half-cells.

 The fill attribute defines whether the item expands to fill the available
 space. Possible values are 'n' for no filling, 'h' for horizontal
 filling, 'v' for vertical filling and 'b' for filling in both dimensions.
 The default is no filling, except for text (and int/float) fields for
 which the default is 'h' to facilitate easy alignment of fields.

 The pos attribute defines the position the item occupies if it is smaller
 than the available space. Possible values are 'c' for centre and the
 compass points. The default depends on the item type.

 The font attribute is 'b' for a bold font, 'i' for italic and 'bi' for
 bold italic.

 The fontsize attribute defines the increment over the default font.
 Positive values are larger than the default, negative values smaller.

 The loglabel attribute defines the text that appears in the change log
 for the field; if omitted the label is used. A loglabel should be
 provided if the label is omitted for a field which should be present in

Appendix: specsheet.dtd

106

 the log.
-->

<!ENTITY % itemattrs 'label CDATA
#IMPLIED
 width CDATA "0"
 cellw CDATA
#IMPLIED
 cellh CDATA
#IMPLIED
 fill (n | h | v | b)
#IMPLIED
 pos (c | n | ne | e | se | s | sw | w | nw)
#IMPLIED
 font (b | i | bi)
#IMPLIED
 fontsize CDATA
#IMPLIED
 labelw CDATA
#IMPLIED
 labelfont (b | i | bi)
#IMPLIED
 labelfontsize CDATA
#IMPLIED
 labelalign (l | c | r)
#IMPLIED
 labelcolon (false | true) "true"
 loglabel CDATA
#IMPLIED
 perm CDATA
#IMPLIED'>

<!-- Attributes for items which can also have a map attribute -->

<!ENTITY % mapattrs '%itemattrs;
 map CDATA #IMPLIED'>

<!-- Attributes for items which can have a cell attribute.

 The index attribute is the 1-based index of the item in the associated
 data array. If the attribute is omitted the first free index is used.

 An index value must not be used more than once. Setting an index
 attribute allows the item to be moved around in form without disturbing
 saved values.

 Various arrays in the client, server and database are sized according to
 the maximum index used in a form. It is important that these values are
 kept as small as possible. No index value (explicit or implicit) more
 than 1024 is allowed.

 The form attribute is the name of a form which stores the data for the
 field. The name must refer to a Form element, not a Matrix. The index
 attribute must be present if form is used. Care must be taken when
 allocating indices in forms which are used elsewhere - a reference to
 index in a form from an earlier form will 'reserve' that index.
 -->

<!ENTITY % itemcellattrs '%mapattrs;
 index CDATA #IMPLIED
 form CDATA #IMPLIED
 enabled CDATA #IMPLIED
 cell CDATA #IMPLIED'>

Oracle Retail Design 12.0

 Configuration Guide 107

<!-- Attributes for items which can have expr and cell attributes -->

<!ENTITY % itemexprattrs '%itemcellattrs;
 expr CDATA #IMPLIED'>

<!-- The compat attribute is used with elements which do not have any
 associated data and which were supported in the old 'forms' language.
 These items were counted as part of the data store for the form, even
 though there could be no data. If an old form has existing data stored
 in the database, this attribute should be set to true to ensure that the
 column positions are preserved.

 The compat attribute is not required with new elements such as Defaults
 or Calc.
-->

<!ENTITY % datalessattrs '%itemattrs;
 compat (true | false) "false"'>

<!-- The Defaults element sets defaults for the basic item attributes -->

<!ELEMENT Defaults EMPTY>
<!ATTLIST Defaults %itemattrs;>

<!-- Common 'initial value' element. With some elements a value attribute can
 be used as an alternative. The value element and attribute must not be
 used together.
 -->

<!ELEMENT Value (#PCDATA)>

<!-- Simple item types. Some can have the default value as an attribute -->

<!-- Simple text fields. The optional limit attribute (a positive integer)
 sets the maximum text length.
-->

<!ELEMENT TextField (Value?)>
<!ATTLIST TextField %itemexprattrs;
 limit CDATA #IMPLIED
 value CDATA #IMPLIED>

<!ELEMENT IntField (Value?)>
<!ATTLIST IntField %itemexprattrs;
 value CDATA #IMPLIED>

<!-- Floating point number.

 The prec attribute defines the number of decimal places; the default is 2.
-->

<!ELEMENT FloatField (Value?)>
<!ATTLIST FloatField %itemexprattrs;
 value CDATA #IMPLIED
 prec CDATA #IMPLIED>

<!-- The rows attribute for a text area is the number of text rows -->

<!ELEMENT TextArea (Value?)>
<!ATTLIST TextArea %itemexprattrs;
 rows CDATA #REQUIRED>

Appendix: specsheet.dtd

108

<!-- Fixed image from icon list.

 The iconname attribute defines the name of the icon. The dim attribute
 defines the display size of the image; if omitted the actual image size
 is used.

 dim must be WxH where W and H are integers.
-->

<!ELEMENT Icon EMPTY>
<!ATTLIST Icon %datalessattrs;
 iconname CDATA #REQUIRED
 dim CDATA #IMPLIED>

<!-- Checkbox items have a 'state' attribute to set the initial value.

 A checkbox with a group attribute acts like a 'radio' button - only one
 checkbox in the group is set at a time.
-->

<!ELEMENT Checkbox EMPTY>
<!ATTLIST Checkbox %itemcellattrs;
 state (false | true) "false"
 group CDATA #IMPLIED>

<!ELEMENT Label (Value?)>
<!ATTLIST Label %datalessattrs;
 align (l | r | c) #IMPLIED
 value CDATA #IMPLIED>

<!-- Multi-line wrapped label.

 The dim attribute defines the display width in pixels. The default is 300.
-->

<!ELEMENT MultiLabel (Value?)>
<!ATTLIST MultiLabel %datalessattrs;
 dim CDATA #IMPLIED>

<!-- Date entry field. The mode attribute defines the operation and value
 returned. It must be one of:

 std date defined using 'standard' server timezone
 local date defined using local timezone
 time date & time defined using local timezone.

 The default is 'std'. Note that the default implied by the old forms
 language was 'local'.

 The icon attribute controls whether the 'set date' button is displayed
 with an icon or text. The default is currently 'false'.

 A DateField can be used to display the value of an expression.
-->

<!ELEMENT DateField (Value?)>
<!ATTLIST DateField %itemexprattrs;
 value CDATA #IMPLIED
 mode (std | local | time) "std"
 icon (true | false) #IMPLIED>

<!-- Custom item require a name attribute to define the item. It can have
 nested parameter elements to provide further information to the component

Oracle Retail Design 12.0

 Configuration Guide 109

 creator.

 If one or more images can be associated with the item, the imageid
 attribute is required. If the item can store multiple images, the id
 must be suffixed with an asterisk (*). The imageid value must be unique
 within the sheet.
-->

<!ELEMENT Custom (Parameter*, Value?)>
<!ATTLIST Custom %itemexprattrs;
 name CDATA #REQUIRED
 imageid CDATA #IMPLIED>

<!-- Parameter defines a single extra configuration parameter for a custom
component -->

<!ELEMENT Parameter (#PCDATA)>
<!ATTLIST Parameter name CDATA #REQUIRED>

<!-- The subform item encloses a nested form or matrix.

 If the nested item is omitted, a name must be present referring to an
 earlier form. These shared forms must not contain, directly or
 indirectly, any data entry items.
-->

<!ELEMENT SubForm ((Matrix | Form)?)>
<!ATTLIST SubForm %datalessattrs;
 name CDATA #IMPLIED>

<!-- The Choice item contains a number of options. Each option element
 contains the displayed choice and an optional 'value' which is used for
 external export and updates. The first item is the default, unless an
 option is present with the 'selected' attribute set to true.

 By default the value stored in the database for a Choice item is the
 index of the selected option. This means that if options are added or
 the list is reordered, the stored value may refer to a different option.
 To avoid this, a Choice item can be 'keyed'. In this case each option
 must include a distinct 'key' attribute. The key is stored in the
 database, allowing option lists to be changed without disurbing the
 value.
 -->

<!ELEMENT Choice (Option+)>
<!ATTLIST Choice %itemcellattrs;
 keyed (true | false) "false">

<!-- Items in a Choice. The key attribute is compulsory if the Choice is
 keyed.

 The list attribute defines a lookup parameter code which is used to get
 the real options for this item. All the active (and current) values for
 the parameter are included. If there is a default value for the
 parameter, it is included as the first item; the remaining items are
 alpha sorted. If list is used, the option contents must be empty.

 If a list option is marked as the default (with selected = true), then
 the default item is the first in the list.

 The expr attribute defines a spreadsheet expression which evaluates to
 the real option(s) for this item. expr is similar to list except that
 the set of value(s) can depend on other values in the spreadsheet.

Appendix: specsheet.dtd

110

 The value attribute defined the string used for import and export
 processes to refer to the option. If value is not present, the string
 itself is used. The value attribute is ignored if a value list is set.
 -->

<!ELEMENT Option (#PCDATA)>
<!ATTLIST Option value CDATA #IMPLIED
 selected (true | false) "false"
 key CDATA #IMPLIED
 list CDATA #IMPLIED
 expr CDATA #IMPLIED>

<!-- The Image item contains either a single name or a set of named options.

 The dim attribute defines the display size of the image. If omitted
 fixed defaults are used.

 dim must be WxH where W and H are integers.

 If compact is 'true', the is shown without the notes, change and fullsize
 buttons; instead a pop-up menu is available for these functions.
 -->

<!ELEMENT Image (ImageOption+)>
<!ATTLIST Image %datalessattrs;
 dim CDATA #IMPLIED
 compact (true | false) "false">

<!-- The name attribute in an ImageOption must be unique within the form -->

<!ELEMENT ImageOption (#PCDATA)>
<!ATTLIST ImageOption name CDATA #REQUIRED>

<!-- The Calc element defines a spreadsheet cell with associated expression.
 Both cell name and expression are required attributes.

 If the function attribute is true, the element defines a spreadsheet
 function; the cell name is the function name and the expression is the
 body.

 The map attribute defines a mapping for the calculated value. map cannot
 be used with function declarations.

 The Calc element is not associated with any form of GUI component.
-->

<!ELEMENT Calc EMPTY>
<!ATTLIST Calc cell CDATA #REQUIRED
 expr CDATA #REQUIRED
 function (true | false) "false"
 map CDATA #IMPLIED>

	Preface
	Audience
	Related Documents
	Customer Support

	Introduction
	General User View Management
	Tab Layout Definition
	Spectrum Utility
	Product Information Administration

	Server Side Reporting Template Administration

	General User View Configuration
	Style File Tab Definition
	Style File Tab Configurable Attributes

	Configuration of the Oracle Retail Design to Oracle Retail Webtrack Project Integration
	Functional Description of the “Projects” Parameter Group
	Project Interface Configuration
	Parameters

	Enabling of the Comments Entry Capability
	Comments Entry Definition Files
	Comments Entry Configurable Attributes

	Server Side Reporting Definition
	Scope Definition

	Tab Layout Configuration
	Spectrum Utility
	Product Information Administration
	Getting Started
	Field Elements
	Sample XML File
	Elements and Attributes
	Identifying Statement
	SpecSheets
	SpecSheet
	Page
	Matrix
	cellattrs
	Column
	ColumnSet
	Heading
	RowSet
	Cell
	CellChoice
	CalcSet
	Form
	itemattrs
	Defaults
	Common Initial Value
	Simple Item Types – TextField and IntField
	FloatField
	TextArea
	Icon
	Checkbox
	Label
	MultiLabel
	DateField
	Custom
	Parameter
	SubForm
	Choice
	Option
	Image
	Calc

	XFO Templates
	XFO Introduction
	XFO Operation
	Basic Structure
	Expressions and Attributes
	Example:

	SF Processing Elements
	sf:str
	sf:int
	sf:float
	sf:date
	sf:set
	sf:update
	sf:func
	sf:if
	sf:for
	sf:macro
	sf:call

	Builtin Values and Functions
	array(n)
	geticon(string)
	getprop(prop) or getprop(prop, deflt)
	valuekey(v)
	hasmorevalues(set)

	XFO and Styles
	Values

	Functions
	Standard Properties
	Configuring XFO Objective Sheet Output
	Configuring XFO Client Printing in Oracle Retail Design

	Spreadsheet Expression Syntax
	Data Types
	Lists
	Arrays
	Array items
	Object Values
	Variable Names
	Function Calls
	Expressions
	Built-in Functions

	Style Linkages
	Style Custom Spec Sheet Fields
	Retailer Status
	Supplier Status
	Colour List
	Size Range
	Documents
	Images
	Product Type and ELC Type
	Comment Display

	Appendix: designconfig.dtd
	Appendix: specsheet.dtd

