o

PeopleTools 8.12 Integration Tools
PeopleBook

PeopleTools 8.12 Integration Tools PeopleBookPeopleTools 8.12 Integration Tools
PeopleBook

SKU MTITr8SP1B 1200

PeopleBooks Contributors: Teams from PeopleSoft Product Documentation and
Development.

Copyright © 2001 by PeopleSoft, Inc. All rights reserved.
Printed in the United States of America.

All material contained in this documentation is proprietary and confidential to PeopleSoft,
Inc. and is protected by copyright laws. No part of this documentation may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, including, but not
limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without the
prior written permission of PeopleSoft, Inc.

This documentation is subject to change without notice, and PeopleSoft, Inc. does not warrant
that the material contained in this documentation is free of errors. Any errors found in this
document should be reported to PeopleSoft, Inc. in writing.

The copyrighted software that accompanies this documentation is licensed for use only in
strict accordance with the applicable license agreement which should be read carefully as it
governs the terms of use of the software and this documentation, including the disclosure
thereof.

PeopleSoft, the PeopleSoft logo, PeopleTools, PS/nVision, PeopleCode,
PeopleBooks, Vantive, and Vantive Enterprise are registered trademarks, and
PeopleTalk and "People power the internet." are trademarks of PeopleSoft, Inc. All
other company and product names may be trademarks of their respective owners.

Contents

About This PeopleBook

Before YOU Be@INccviiiiiiiiiieiicicceece ettt ettt b e eb e e b e naenrne s Xvi
Related DOCUMENTATIONccueiuieieiieeieieeieeieie ettt te sttt ettt eeesneeneeees Xvi
Documentation on the INternet............ceoieieiiiieiirieee e Xvi
Documentation on CD-ROMccccoiiiiiiiiieieeeee s Xvii
Hardcopy Documentationccceeererieienenienieneeiesieetenesieee et Xvii
Typographical Conventions and Visual CUeS..........cccccveevvieiieiiieieeieeieesre e xvii
Comments and SUGZESTIONScoueeuieriirieieitieiereetete ettt sttt XiX
Chapter 1
Overview of Integration Technologies
APPLICAtION MESSAZINGecvveeiieireirieeieetiesteeetteereebeebeesteeseseesseesseasssesssesssessseeseesseesseens 1-1
When to Use Application MesSaging..........cceevveevvierieerveireereenreesseeseesneesveenns 1-1
Component INTEITACESccviiivieiiiiiieieeeete ettt ettt stb e e b e b e e sreestsestbeesneeens 1-2
When to Use Component INterfacescccevvveiiieviiinieiiieiiecieeeeseeeve e 1-2
Business INtETIINKcocuieiiiiiieiee e 1-2
When to Use Business Interlinksccccooeiieiininiiiiieeeeeeee e 1-3
Integration Software Development Kit.........cccoviiiiiniiiiniiieniieeeee e 1-3
Related DOCUMENtAtIONeevieiieiierieeie ettt 1-4
File Layout Objects / DefINItiONS.cecveruerieriirieeieniiniteieseetesie sttt 1-5
When To Use File Layoutsc.coceririeniniiiieniiniencneetenieeteieseee e 1-5
EDT MANAZETveeiiiieeiiieeiiee ettt ettt ettt ettt e st e st e st e s sbteesbteesabeesabeeeneeesabeeenns 1-5
When To Use EDI Manager..........coceveveeveninienenieienieeiteiesicete st 1-6
Merchant INtEEIAtiONc.ccevievuieiiiiiiitiete et eeteeseeere e bt ebeestaeseaesebeesseesseesseesssessseans 1-6
When To Use Merchant Integration...........c.ccoeeienirienenieneninieneeeeseseeene 1-7
IMESSAZE ALENL....ecuvieiiiieeieieeeteeestteesteeesteeessseeesteessseesssseessseesnseeasssessssesessseesssesassseessseennes 1-7
When To Use MeSSaZe AZENL.....c.ccoviiriieiiieieieiiieeieereerieesieesiresereeeneesreessessseesees 1-7
DAtabase AQENLSeccveiiiieiieeieeiierteeeteereereeereereesteesteestbeerbeesbeebeestaestbeesbeerbeesaebeesraens 1-7
When To Use Database AGENtS..........cccueevvievrieriieriienieireereereesseesieessneesneesveenns 1-8
Chapter 2

Merchant Integration
Understanding Merchant INtegrationcc.eeevieviienieiieiiieieeseesee e ereesreeseesenesneens 2-1

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS iii

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Merchant Integration Process FIOW.........cccccvviviiiviiiiiiiieieesiece e 2-1
The USer EXPEIICIICEc..eevuiriiiiiiiiieieeitetesteei ettt sttt s 2-2
Hidden Application Functionality...........ccccecveeviiiviieniienieiie e 2-2
Branded Application Functionalitycccceevveiviiiviiineeniesiecie e 2-3
Merchant HTML CONEENEcc.eecvieriieriieiieeie ettt 2-3
IMIP FEATUIESeeuveeniieiieiiie ettt sttt ettt st sttt e b e b e sbe e st eateeeeenbee s 2-3
Maintaining Merchant Informationccccceevieiiiiiiiiiienie e 2-5
Merchant CategoriesS COMPONENL.........ccvecvievierreerieerieeieereesseesseessressresseeseessesssenns 2-5
Merchant Categories Page..........co.eeveviiieiiiniiiininieeseeeeteeeeee e 2-6
Merchant Profile COmMPONENTcoeeoiiriiiiriiiiiieneeiee sttt 2-7
Merchant Profile Page.........cccccvivvieiiiiiiicciecee et 2-7
Merchant Authentication Page.........ccccooevieniiiiiininiiieeeee e 2-9
Merchant BI Overrides Page.........cccooceeviiiriiininiiiiniiicceceee e 2-10
Merchant Category Pageccvevvieviiiiieiiiiic ettt 2-12
Application Attributes Pageccceeceeriiiiiiniiiiiieeeeee 2-13
Developing an MIP.........cooiiiiiiiieete ettt sttt s 2-14
Single Sign-On Records and Fieldsccocovoieniiiiiinininiicecees 2-15
PSAUTHPARMSttt 2-15
PSMERCHBI ...ttt 2-15
PSMERCHBIPARMS ..ottt 2-16
PSMERCHANTC AT ...ttt ettt 2-16
PSMERCHANTAPP.....ooiieeeeee et 2-16
PSSESSIONDATA ...ttt ettt ettt sttt e seeseenns 2-16
Single Sign-On PeopleCode FUNCHONSc.ccovieiiieiiiiiiecie et 2-17
GetAuthenticationParmsccooeeieiiiieierieee e 2-17
CreateSessionInformationc.eecvvecierierieeciieiieeese et 2-17
INSErtSessioNDAta.........couieiiiieieiee et e 2-18
GetSesSIONDALAoouieiiieiee e e 2-18
DeleteSessioNData.ccvieiiiiieiieieee e 2-19
Establish the Merchant ACCOUNEccooiiieiiiiieieeeee e 2-19
Create the MIP ...t 2-20
Create the Business INterlinkccooieviiiiiiiiiiiieeecc e 2-20
Create Merchant CategOrICS........ecvvievvierierieeriereeieeseeereereeseesseesrnessvessveens 2-20
Create a New Merchant Profile...........cocoiiiiiiiiiiiinieee e 2-21

Set Up Connection and Authentication Parameterscccccocevvvevereenennenne. 2-22
Specify Business Interlink Information.............ccccccveeeiiiviienienieeciieeeeeineen, 2-23
Specify Alternate Merchant URLS by Categorycccccvveeveevieenieeniecveennenn, 2-24
Specify Application AtIDULES........cccveverierinieiieeieeeereetee e 2-24
Build or Modify the Application Page...........ccoceevveiiiiiiiniiesiecre e 2-24
Create the MIP PeopleCode......ccviiiiiiieiiiiieiieeeiecteeve et 2-25

CONTENTS iv PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Implementing an MIPc.oooiiiiiiiiiiicie ettt r e s v seveebeesraeeeas 2-30
Implementation Tasksccoerieiiiiiiii e 2-30
Implementing MIPs Delivered with Your PeopleSoft Application 2-30
Activate the Merchant ACCOUNL........c.eecuiiiiirieiiierierte et 2-31
Configure the Merchant Profile...........ccocovoieiiiiininiiiiiiiieceeeee e 2-31

Modifying the Merchant Profile Page..........c.ccccvevvieviiiiiiiiiecieceeeeee, 2-32
Modifying the Merchant Authentication Page............ccococeeviniinininninennnnn. 2-32
Modifying the Merchant BI Overrides Page........cc.ccoceviiiiiininiincnicncnne 2-33
Modifying the Merchant Category Pagecccoovvevieeiiiciiccieciece e, 2-33
Modifying the Application Attributes Pagecccccoceevinieninienenenneneene 2-34
Manage User Access to Merchant SErviCesc.cceveviererienenienenienienieeeseeeene 2-34

Chapter 3

The PeopleSoft API Repository

USING the REPOSITOTY ...cuviiiiiiiiiieiiiteeseete ettt 3-1
Example of Using the RePOSItOTYccccouiiiiriiiiiiiiniiieniiteceeeeeteeeee e 3-2
REPOSItOrY PrOPEITIESeovviciiieiiieiieiiecitectie ettt ettt er e esb e sveestaesaresaveesveens 3-7

BINAINGS ..viovviiiieiiecee ettt st st e b e eebeebe e baeees 3-7
NAMESPACES ...ttt ettt st sttt et ettt sbe e sttt et esaeesaeesaeesane e 3-7
Bindings Collection ProPerties........ccuievviirrierieriiiiiereesieesresreereereesseeseneesveeveesseens 3-7
COUNL ..ttt ettt b e be e sttt et e nbeesbeesaee e 3-7
Bindings Collection Methods.........c.cocueiiiiiniiniiiiiiieneecteeeeeeee e 3-8
TEEINL ettt et 3-8
Bindings PrOPEItIESccuveiviiiieiieiieiiectesiie ettt ettt e stteetreeveesveesbaeseaeseaesaveesseassaens 3-8
INAINIC ...ttt ettt et ettt e s bt e st e e eab e e s bt e ebteesbeeenaaeea 3-8
Bindings MEthodScoviiiiiiiieieciecie ettt e ve et s tve v e esreesraesraens 39
GENETALE ...ttt ettt sb e sttt et et e s bt e satesabeeabeebeenbs 39
Namespaces Collection Properties.........cocoveevererriiniiieninieeneeesescee e 39
COUNL ...ttt ettt b ettt et e nbeesbeesaeeeane 39
Namespaces Collections Methods............coveviieiieiiiiiieeie e 39
TEEITL .ttt et ettt s 39
TEMBYNAIME ...ttt e e s e e e s beesntaeesssee e 3-10
NamesPaCeSs PrOPEITIES....cc.vicvviiiiiiieiieiie et ere ettt er e b v e sreesaeesareeave e 3-10
CLASSES ...ttt e et et e st e et e st e et et e bt e te e e ateenteenteeteenteeeneenaneens 3-10
INGITIE .ttt et et b e bt bttt et e b e sbe e s et e eae 3-11
Namespaces MEthOdS.......cc.eccviiiiiiiieiieiie ettt sareeabeeareenns 3-11
CrEatEODJECL. ..ttt sttt sttt 3-11
ClassInfo Collection Properties..........ccvevvieriierieiieeieereereesieeseesereereereesveesseesseens 3-11
COUNL ...ttt ettt ettt et et e bt e s bt e saeesaeeeateenteens 3-11
ClassInfo Collection Methods..........ceveeviiiiieiiieniienieeie e 3-12

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CONTENTS

\

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

TEOINL ¢ttt 3-12
TEEMBYNAME ..o 3-12
ClasSINTO PrOPETLIESeecvveiviieeiieiieiieciie ettt ettt stre e e e et estreesbeeveeaneseneeenas 3-13
DOCUMENEALION ...ttt ettt neeees 3-13
IMELNOMS. ...ttt ettt ettt e et be et naee s 3-13
INAITIE .ttt ettt b e bt bttt et sb e bt e it e 3-13
PIOPEITIES ..vviiviiiiiieiieeecte ettt ettt eve v e e be e be e tbesabestbeeabeesseesbaesaeens 3-13
MethodInfo Collection Methodsccueviiriieriieniiiieeieeeeee e 3-13
TEEINL ettt ettt 3-13
TEEMBYNAIME ...ttt e e e e e eae e sbaesntseesssee e 3-14
MethodInfo Collection Properties........cocueveriererieninienienieieneetese e 3-14
COUNL ...ttt ettt ettt e bt e s bt e saeesaeeenteeteens 3-14
MethodINfo PrOpertiesccueeviiviieiiieiiecie ettt ve e saeeseaesere e 3-15
ATZUIMNEITS ...ttt sttt et sae e sae e eaeeen 3-15
DOCUMENEALION ...ttt ettt et e e eeis 3-15
INAITIE .ttt ettt e b e s bt bttt et e b e sbee et e 3-15
) 0TS UUPRUURTUUPRROPPNt 3-15
PropertyInfo Collection Methods............cocueiiieiiinieiiiiiecieeee e 3-16
TEEINL ettt 3-16
TEMBYNAIMEeiiiiiiiiii et 3-16
PropertyInfo Collection Properties..........cccviivieviienierieiieeiienee e e esreesieeseveeeveenns 3-17
COUNL ..ottt ettt st et e bt e s bt e saeesae e eateeteens 3-17
PropertyInfo PrOPEertiescooverieriiieniiiiteceteeeeee e 3-17
DOCUMENEALION ...ttt ettt see e 3-17
INAITIE ..ttt ettt et e bt s he e ettt e bt e bt e s aee e 3-17
) 0TS P U UURTUUPROPPINt 3-18
USAEE .t euvieeirieeeiie ettt esteestteestteesebeeasteeessseesssaeesseessseeassseesssaeesseeensseessseenssennes 3-18
Example Using Visual BasiC........cccccveriiiiiiiiiiiesiecie et 3-18
Summary of Repository Methods and Properties...........cceoeverveninieniniencnceicneenn, 3-21
Chapter 4
Introducing File Layout
Fields: A Breakdown Of Filesccoeouiiiiieiiiieieceee e 4-1
Creating a File Layout in Application DEeSIGNET.........c.ccoveivieiieniieiieireereesieesreeveeneens 4-2
Naming File Layouts, Records and Fieldsccccocconiriininiiniinniiincnences 4-5
Date, Time, and DateTime Field Considerationscccveeveveuvveeiviveeeeiiieeeeeinenennn 4-6
Customizing the File Layoutcccccviiviiiviiirieiecieeie et 4-7
File Layout PrOPEItiesc.ccvieiieiieiieiiesiieeiieette e et e steestreseveeeveesbeesveestaesanessneanseens 4-7
File ReCOTd PrOPeTties......cc.eeouiiieeiiriiiieieeiteieeitetesieee ettt 4-9
File Field PrOPertiesc..coveriiririeniiiieiesieetee ettt 4-12

CONTENTS vi PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Using Segments instead of RECOrds...........cooviivviiiiiiiiiniiiiecieceece e 4-16
File Layout EXamPle.........cccoeviiiiiiiieieeii ettt ettt ettt seees 4-16
Supported File FOrmats.coooiiriiiiiiiiiiiieeee e 4-25
Fixed Format Positional File............ccoooieiiiiiiiiiiee e 4-25
Considerations using FIXED Format.........c..cccceoviiiininininiininieenceeeee 4-26
Variable Format Delimited File (CSV)...coocovviiiiiiieiicciececeecee e 4-26
Considerations using CSV FOrmat...........ccccceeveriiiiieiiienieniesee e 4-27
Tagged Hierarchical Data File (XML)c..cocceniiiininiiiiniiieeeeesceesceee 4-27
Considerations using XML Format...........cccccceveviiiiiiienienienie e 4-28
Chapter 5
Open Query ODBC Driver and API
OVETVIEW ...ttt ettt et ettt e e et e e et ea e e e e e st ent e st en e e seeseemeeeseeseenseeseeneeseeneensenneennes 5-1
FRATUIES ..o ettt et e et e s bt e saeeas 5-1
ATCRILECTUTE ...ttt ettt et et ent e teseeeneeseeneenee e 5-2
COMPONENLS.veiiiiriiieitieteeitet ettt ettt ettt sttt et et e st s et et e et eteesaeesaeesane e 5-3
Open QUuery ODBC DITVET......ooiiiiriiiiieieriieiieeseeeseetee et 5-3
Open QUETY APL.....oiieii et 5-3
External Reporting TOOISccoeiieieniiieiiiieeeeeeee e 5-4
1 11S) 0] A O UUURUTSRPPR 5-4
Supported ODBC v2.5 FUNCHONScveeviieriieiiieireeie ettt esieesiresreesreeveesaeesteesenesaneesneenns 5-4
ODBC Driver Application FIOW........cccoccviiviiiriiiiiciie ettt saae v e 5-6
Initializing PeopleTO0IScc.coiiiiiiiiiiiie et 5-6
SQLATOCENV ...ttt ettt e teeteesaeesnaeenne e 5-6
SQLAIOCCONNECTcvveieeteeeetieeetee et et et eteeeeteeeere e et eeeeeeeeaeeeeaeeeeveeeeaeeeeareeans 5-7
SQLEFICCENVoiiiiiiiiiceee e ettt et e e et e e e e eta e e e 5-7
Connection MOEL.........cocuieiiiieieiie ettt 5-7
ODBC API FUNCHONS ...etetieiieieeeieieeie ettt ee e sneesesneas 5-8
SQLCONNECTeiiiiiiieieiiee ettt e et e et e e eette e e e eetbe e e e etbeeeeeareeeesnsseeeeeannes 5-8
SQLDIIVETCONNECEveeutieiieeieeiiieieeieesteesteestesteebeebeesseesseeseeesnaesnseesseesseesseesssesnns 5-8
PeOPIeSOft DITVET.....iiciiiciiiciieieecieecee ettt v e bt staestaeeabeesve e 5-9
Information Proceduresoeiiiiiieiiiieee e 5-10
SQLGELINTO....eeeieiieeieiectieiee ettt ettt et esae b e sse e s esesseessensessnensens 5-10
SOQLFUNCHONSeeoviiiitiieetie ettt ettt et e et e et e et e e eaeeeeteeeeaeeeeereeeeaneas 5-11
SQLGETYPEINTO.viieiiieiiiiieiieciiece et re e taestresabeerveesneens 5-11
Catalog Procedures (Meta data)cccceeveerieeiieeniierie et 5-12
SQLPIOCEAUIESeveievieeeeeie ettt ettt ee et e e te e et eeeteeeeaeeeeaeeeenneas 5-12
SQLProcedureCOIUMIS.........c.oeieiieetee ettt e e eteeeeae e e eeeaeees 5-13
PeopleSoft DITVETcoiiiiiiiiiieieeeee et e 5-14
EXecuting SQLoioiiiiieiieciie ettt er ettt e etb e e e e sae e aaesare e 5-14

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS vii

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Statement Handleooooeiiiiiiiiieeee e 5-15
SQLATIOCSEMLuvivieeieiieiteieete ettt ettt ettt ebesteesbesbeesseseeseensesseessensessaensens 5-15
EXecution MOAEISc.coeeiiiiieieieee e e 5-15
SQLEXECDIIECTuveiieiieeeie ettt et et e e eaeeeeaeeeeaneas 5-16
SQLPIEPAIEcoviiiiieiiieiieeetteeerte sttt ettt sttt e r b b saeesanesaneens 5-17
SQLEXECULEeeiieiiiieeeiiee ettt e et e e et e e e eetva e e e eettaeeeeeateeeeessaeeeenaseeaeanes 5-17
Descriptive Informationcceevvieiieiieiieeiiecie e 5-18
SQLCOIAMIIDULESeeveeeiieiieiieiiesite sttt ettt et see e steebeebeebeeseesseessnessnesnseens 5-18
SQLDESCIIDECOL ...ttt e e et e e eaeeeeaeeeeaeees 5-18
SQLDESCIIDEPArAIN........ccuviiiiieieiie et e e et e e e an 5-19
SQLGEtROWCOUNLcuetiiiiiieiiiecite ettt et et e b 5-19
SQLNUMPATAMS.ooiiiiiiiiiiiiie et ettt ette e e eette e e e eaveeeeeareeeeeaes 5-20
SQLNUMRESUILCOIS.......eeeviiieeieieeee ettt et reeeeaeas 5-20
Binding Application Datacccooeeviininiiiiiiiieeeeeee e 5-20
SQLBINACOL........oiieiieetee e ettt e e ae e et eeeareeenneas 5-21
SQLBINAPAIAMETETccvviieiieeeiie ettt ettt eeaeeeeaeeeaee s 5-21
Literal Parameterscccvviieiieiiie e eciee ettt et e ea 5-22
REtrieving RESUILScocviiiiiiciieiie ettt sttt e e e ve e tre s tre s eveesveesbaenes 5-22
Retrieving One Value Directly........cccoovviiviiiiiiiiiiiicciece e 5-22
SQLEFELCI 1.ttt ettt eee et et esb e se e e e s e sseensessessnensans 5-23
SQLGEEDALAcccecuiiiieeiiee ettt eete e e et e e et e e e e tte e e e etbaeeeeareeaeaaes 5-23
Retrieving Status and Error Information.............cccceveeviiiiiiveeniecie e 5-24
N0) 25 5 {0 OSSPSR 5-24
Terminating Transactions and CONNECIONSc.cceveervierverreeereerreesresreereereenenas 5-25
SQLTTANSACE ..veeeieiiiieeeeiiie ettt ettt e e et e e e eette e e e eetaeeeeetbeeeeetbeeeesrsaeeessaeeeeanes 5-25
SQLDISCOMNECEc.vvieiiieitieiietiertteete et et eteesteesteesstesaesnbeenseenseeseesseesseesssesnseenseens 5-25
SQLEFIEECONNECT......cciiiiiiiiiiiiie ettt et ete e e et e e et e e e etbeeeeetbeeeeeaaeeeeanes 5-25
SQLEFTCEENVoiiiiiiiiceee e et e ette e e et e e e etta e e e eareeeeeaes 5-26
ODBC COMPLANCE ..ottt ettt ettt ettt sttt st e e sb ettt ebeetesaeeseenbe s 5-26
COTE APttt et e et e e e e e e e e tbaaeeearaaaean 5-26
LeVEL 1T APT .ottt ettt st ettt ne e 5-27
LeVEl 2 AP ..ottt 5-27
ODBC t0 RDM Data TYPES.....ceruieiiiiieniieniieniieteeit ettt sttt et 5-27
Example Using the Open Query ODBC APL.......cccoooviiiiiiiiiieiecceeeee e 5-28
Chapter 6
PeopleTools Command Line Parameters
Command Line for Startcccoiiiiiiiiiiicce e e 6-1
Command Line Parametersc...ocouiiieviiiiiiiiiie ettt e 6-2
EXAMPLES ..ottt 6-4

CONTENTS viii PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Command Line for Project Build............cccccviiviiiiiiiieiieciccceieeeeseesee e 6-4
251010 (USSR 6-5
Command Line for UpZrade COPYc.eevieiieriierieiieere et eteesieesreseveeveeseesseessnessneens 6-6
EXAMPIE ..oeviiiiieiieciie ettt st st e b e e be e aaeees 6-9
Object Type Selection Table.........ccvevieiiiiiiiiieiieieree e 6-9
Chapter 7
EDI Manager
Understanding Electronic Data Interchangeccccveeevieviieniiniiiiiieieeiccee e 7-1
Converting EDI Codes and PeopleSoft Codesccovvirviiiieciieniieiiesiie e 7-3
Action Codes and Event Codes........cuevuiiiieriieniienieiie ettt 7-3
Defining Primary and Secondary Event and Action Codesccccceerereniene 7-4
Data VAlUES ...ccuvieiieiieciie ettt ettt et ettt ettt ettt eneae s 7-6
Identifying Database Table for CONVersionc.ccoceeevererieninieneneeneneene 7-7
Creating a Conversion Data Profilecccocveeviiiviienienieiiecie e, 7-8
Defining EDI TTanSaCtioNSccuevteeiertirieniiniieienieeetenie sttt sbe et st eeenne 7-10
Defining TTanSaACtIONSc.eccvveeveeiierietiesteesieeseeereereebeesreesteestaeesreesseesseesseesseessnas 7-10
Setting Up Trading Partnerscocceoeriiieiiiiiiiieieeseeeeetee et 7-15
Deleting EDI Manager ODbJEctscuevirieririiniiniieienieeiteiesieete et 7-21
Chapter 8
Mapping EDI Transactions
Processing New EDI Transactionsccccecererierenienienenienie et 8-1
PeopleSoft Business Document FOrmatccceevveivieiieiie e 8-2
L070] 118 00 B 3T 0) (¢ SRS 8-3
999 Record FOrMAL........c.eevuieiieiieeieeieeitete ettt 8-3
‘998 Record FOrMAL.......cc.eevuieiiieiieeiieieeiteee ettt 8-4
Creating Electronic COmmErce MapS........cccccveeveeiierieniiesiiesiesireereeseesseesseesenessnessneenns 8-4
Creating Map Profiles........cocooieriiiiiiniiiei e 8-20
Using the EDI Manager for General Data EXtraction...........ccocceeeveeveneniencniencnnene. 8-22
Chapter 9
Monitoring EDI Processing
Managing EDI AGENLSccviiiiiiiiiieiieciie sttt et ettt et staesebeseveesreebeesraesraesenessneens 9-1
RUN CONIOLS ...ttt st 9-2
Preparing Outbound MapSccvevieriiiiiiiieieeieesee st ere e eveeteeseeesesesaveesreesreens 9-2
Starting EDI AZENLScc.coiuiriiriiiiieierieetete sttt sttt sttt 9-4
Viewing the EDI Audit Trailc..cooveviiiiiiiiiiiieiieeesecee et seve e 9-11
Reviewing and Correcting EITOTS.......ccucvuirieriiniiieniiiieieneeec e 9-12
Packages and Transaction GIOUPS.........c.ccvvervieeviereerreesieeseesreereereesseesseesssesssensnes 9-12

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS ix

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Chapter 10
Message Agent
MesSaZE ALENt OVETVIEW ...c..euieiiiiiiiitieieeiente ettt sttt ettt et sb e st sae bt be e eseenae s 10-1
Managing Multiple Scroll Levels (Level Mapping).........cccceeveveeveeneenieneeniencennenn 10-2
Limitations of Multiple Scroll Levels........ccccovieviniininieniiieniiieieeeeeee 10-2
Adding or Updating Multiple ROWS.........ccccviiiiiiiiiiiiiiiecieciccrecreereeieeien 10-3
Retrieving Multiple ROWScccooiiiiiiniiiiiiiiciceceeeeee e 10-3
Message Agent Field Mappingcoccevevieniniiieninieeneeee e 10-4
Programming the MeSSage AZENL..........ccvevveiviirieriieriieireereereesieesiresreereereessnessneeens 10-4
Message AZEnt APL SETUP.....cccviieeiieeiieeiie ettt ree e e e e e sereeereaeenens 10-5
Basic Program SEIUPc.eevveeriierieiieere et ereesteesieeseesereereeseeseesseesesesssessneens 10-5
Searching for Records/Search Dialog Processing..........cocceceeveveencrienennenne. 10-6
Edit Table ProCeSSINg........cccviivvieriieriieiieeieeieesieeste e ereesteeseresevesreeveesenesenes 10-8
Message Agent EXAMPLEScc.cccviieviiiiiiieiiiiiecie ettt stre e sveeveeve e anesenas 10-9
Add @ 1EVEL 0 TOW .eouiiiiieeiieeie ettt ettt ettt 10-9
Add or update a row (NON-1eVel 0)ccoevvieiieiiiiieiecie e 10-11
REAA @ TOW ..ottt 10-13
Add or update multiple rows (non-level 0)ccccevievinieninieninieienenne, 10-15
Read MUILIPIE TOWS ..ocvviiiieiiiciiiciieteereesee ettt st e v e e bt eee 10-17
Get error INFOrmMAatioNccecveiiieiiirinircrere ettt 10-19
Get message definition field information............ccoceevereenininnininicncneen. 10-21
Get search dialog information............ccceeveeieeeiienienie e 10-23
Do search dialog ProCesSing........c.ueeierveiieiieeiierieesieesieesreeresreereeseesseenns 10-24
Get edit/prompt table information..........c..ccccevierinieniniininenceceeeen 10-26
Do edit/prompt table ProCeSSINGcccveevvierreerieeieerieerieeereereereesreeseaeeeve e 10-26
C/CAF PIOZLAMcevvievrieerieieeetreeereereeveete e taesereeebeesseesbeessaesebessbessseesseesseenens 10-28
Troubleshooting the MesSage AZENLcevuererieririenienieieneneeese e 10-31
Message Agent DEebDUZZINGcccvevieriiieiieiieieriie ettt saee s 10-31
INSTAITATION . ..eeutieiieeie ettt st et et 10-31
AdMINISTEATION ...ttt 10-32
Declaring funCtioNSocveiiieriierieeie ettt 10-32
COMNECLINEZ ..ttt ettt sttt st b ettt et s 10-33
SEATtIMESSAZE .. veeevieerrieriiieetieereesreeerteeesreesbeeestseessseeasseessseeensaeensseessseeensns 10-33
ProCeSSMESSAZE.c..veruiiriiiiiieiieieere ettt 10-33
Tips fOr MeESSAZE AZENLeoruiiiiiiiiiiienieritee ettt st 10-35
Inserting multiple Level 1 TOWS. ...ccovciiieiiiiieiiecie e 10-35
Retrieving multiple output TOWS.......cocoeviriiriniininieieneeeeeee e 10-35
Using %MessageAgent in PeopleCode..........cocoveeniniiiiininiininiiiencieee 10-35
DUPLICAte KEYS ..cuviiiiiiiiiciiiciieieeieetett ettt s eb e s ebeesbeesbe s 10-36
“Specified record already exists — update?”.........cccoeceererieninieneneeneneens 10-36

CONTENTS X PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

PerfOrmanceoeeeiueiiieieie e 10-36
Message ANt AP ..ot 10-36
C Function AP SPecifiCs.......couirieriniiiiiniiiieiesiteeeeteeetee st 10-36
OLE Automation SPeCifiCsccceririererierienienieneneeienieetenieste e 10-37
Operations by Functional Category.........cc.ecveviiiiiicriiniieniesee e 10-37
Session Level OPerations.........ccceveveereririeninienienieetenie st 10-37
Processing MESSAZESceveruiriieiiniieieniesitee ettt ettt 10-37
Field Level OPerations........c.cccvevveeiieiieeiieeniienreesieesreeereeseesseesssessnesssessseenns 10-38
EITOT PTOCESSINEcveentiiiieiiiiieie ettt 10-39
Search Dialog ProCessing.........cocererieriiriiiieniinteienieeeestetee e 10-39

List BOX PrOCESSING......cccviiiiiiiieiieitieciie et cre ettt eere v b steesareseve e 10-39
Edit Table ProCESSING......ccoviiiiiiriieienieeteieeteei et 10-40
CheckANASEtOPEIALOTeveeueiiieiieteeiteteeie ettt sttt 10-41
COMMECT ..ttt sttt et e b e b e s bt e st e et e bt e sbeesbeesaaeeateens 10-42
DISCOMNMECT......eeutietieiieeiie ettt ettt e et e bt et e beesseesseesnbeenteenseenseesseessnesnsenas 10-43
FINAFICIA ..ottt ettt seennas 10-43
FINAFIStFIEIA ...t 10-44
FindFirstListBOXFICldceocuiiiiieiieiecie et 10-44
FindFirstLiStBOXROWcciiiiiiiiiiiieiieeie ettt 10-45
FindFirstPromptValueROWcccoeviiiiiiiiiiiciceccece e 10-46
FindLiStBOXFICIAeevuiiiiiiiieiieeieeieee ettt 10-46
FindLiStBOXROWc..viiiiiiiieiieiieste ettt s 10-47
FINANEXEFIEIA ... 10-48
FindNextListBOXFIeld..........ccoecieiieiiriieie ettt 10-49
FindNextLIStBOXROWc.ooiiiiiiiiiiiiiieie ettt 10-50
FIndNexXtOUtPULROWoocviiiiiiiiiciicceece ettt stae e ees 10-51
FindNextPromptValueROWcocooviiiiiiiniiiiee e 10-51
FindPromptValueROW.......ccoouiiiiiiiiiiiiee e 10-52
GetEditTableFieldCountooeeiiiieiei et 10-53
GetEditTableFieldInfococcvviiiiiiieiee e 10-54
GetEditTableFieldList.........c.cooiiiiiiiieieee ettt 10-55
GEtEITOrEXPIaINTEXt .. viiviiiieiiiiiecie ettt et str e ereeb e e sreestaesere e 10-57
GetErrorExplainTextLength..........cocooiiiiiiiiiiniicseeeecee e 10-58
GEtErrOrFieldNAMEc.vieiieiieiiecie ettt 10-58
GetErrorFieldNameLength.............cocviviiiiiiiiieiiecie e 10-59
GetErrorRecoOrdNAME.cc.eeiiiiiiiiiieieeeesee ettt 10-60
GetErrorRecordNameLengthcooovieriiiiiiininiiiceceeeeeseens 10-61
GELEITOTTEXE 1.ttt ettt ettt s 10-61
GetErrorTeXtLengthcoiiiiiiiiieeeeeee e 10-62
GEtFIRIACOUNLiiiie ettt ettt ettt ettt enbeesteesraesnneeas 10-63

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS Xi

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

JANUARY 2001

CONTENTS

GEtFICIAINTO ...t 10-63
L€ 17 2 1<) e | 5 T AR 10-64
GEtFICIANGAIMIE ...ttt et se e seeeneens 10-66
GetFieldNameLength..........coooieiiiiiiiiiceeeceesee ettt 10-67
GEtLiStBOXFICIAeeiieiiiiece e e 10-67
GetListBOXFIieldCOoUNtooiiiiiieieieeeee e 10-69
GetLiStBOXFIldINT0cccoivieiiiieeeceee e 10-69
GEtLIStBOXROW.....oiiiiiieiieiecece ettt ettt s e e e ens 10-70
GetLiStBOXROWCOUNLcoiiiiiieieeiieeit et 10-71
GetMaxFieldNameLength...........cccocoiiiiiiieiiecie et 10-72
GetMaxValueLength........cccoocoiiiiiiiiiiiiieeeee e 10-72
GetPromptValueFieldCount...........ccceoviiiiiiiiiieciieeecrecre e 10-73
GetPromptValueInfoccovviviiiiiiiicicce e e e e 10-74
GetPromptValuCROWcc.iiiiiiiiiiii e 10-74
GetPromptValueROWCOUNLccvieiiiiiiiiiciecie ettt sbe e ens 10-75
GetSearchFieldCOUNLccuiiuiiieiieee e 10-76
GetSearchFieldINToccuiviiiiiiie e 10-77
L€ SN0 11 5 1 TSR 10-78
GetSearchRECOTd.ooueeiiiieiee e 10-79
GetSearchRecordLengthcooiiiiiiiiiiiiiiieee e 10-80
GEEVAIUE ...ttt ettt st e e et et este st e e seeeneens 10-81
GetValueLengthccoviiiiiiiiiccce ettt et 10-81
ProCESSMESSAZE. . ..ccuveiiiiriiiiiieieeitet ettt ettt e 10-82
ProcessPromptTable.........c.covviiiieiieiiecie et 10-83
ProcessSearchDiIalog.c.ccviiiieiieieciiecte ettt et ear e v ens 10-84
SEEFICIA ...ttt ettt st se e e teesse b e eseenes 10-85
SELOPLIONS ...eevvveirecireeeriereeteesteestteeteebeebeesteestaestbessbeesseasseesseesssesssesssessseesseesssenses 10-86
SEATtIMESSAZE ...evveeevrieeiiieeiieeriie et e steeetteesbeeetaeessseessbaeesseessseeesseesnseeensseessseeennns 10-87
Chapter 11
Using Database Agents and Message Definitions
Understanding Database AZENLS.........cccvvievvieriierieiiiiieeieeieesreesieesiresreereesreeseesssesenes 11-1
Monitoring the Databasec.ccoievieiiiiiiiiieriesee sttt sere v e 11-2
Triggering Events through the Message Agent.........cecevervieninieneneenineenieneenne, 11-2
Creating a Batch of Online ProCessesc.ccoevieriirienieniniieniinieicsceieeeceenees 11-3
Adding Database Agents to0 Your WorkfloW..........ccceveeviiiiiiiniieniiesie e 11-4
Running Database AGENTS..........ccvevieiiieiiieirieiieieesieeseeereereereesreesteesaressreessesssessseesens 11-6
Adding Database Agents to the Process Schedulerccccoevvininiiniiniiniicninene, 11-7
Starting Database AGENLS........ccciriiiiririiriiieere ettt 11-12
Assigning Database Agents to COMPONENLSc.ccovvevrierirerreereereerieenenennns 11-12

Xii

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Case Study: Remote Report Deliveryccvcvierieiiiiiiciieieciecete et 11-13
THE QUETY ..ottt st 11-13
The Message Definitioncecvvieeviieiiiiieniecie et 11-13
The COMPONENL.....cc.eeiiiiiiiiiiiriietereet ettt 11-14
Troubleshooting the Database AZENt.........cccoveeieririereririienereeeeetee e 11-14
Understanding the Message Agent and Message Definitions.........cccccoceeveneencnennene 11-15
IMESSAZE ALENEveeeeiieeiieeiiieeeteeeeiteesreeereeereaeessraeessseesssaeassseessseeessseessseessseesssennn 11-15
Message DefINItioNSc..cevueriieriiiiiieneeieeetee et 11-16
Creating Message DefINItioNS.c..ccvvirieiiieiiieeie e esreesre et ereesaeeseneesneesreenns 11-16
Chapter 12
Outgoing Forms API
Understanding FOrms ROULINGSccc.oiiiiiiniiriiiniiiiciieeeeeeeeteeeee e 12-1
PSFORMS.DLL ...ttt sttt st e e 12-2
FOImS APL...ooe e ettt et ettt et e st et e b s 12-3
Operations by Functional Category.........c.cceceeviriirieninieneninienesee e 12-3
Session Level OPerations...........ccecereeierinieneneeieneetestese ettt 12-3
QUETY OPECTALIONSeevveevieieieeiieeireereesteesteestreseresereesseesseeseesseesssesssessseessessseenns 12-3
SeNd OPEIAtION......cueiiiiieiiieeiteteeieee sttt ettt st st 12-3
PSTCIOSESESSIONeouvieniieiieiiieeie ettt ettt et seaeeaeenbeebeesneesneeenneennas 12-3
PSTGELAPIINTOeoviiiiiiiicccce et 12-4
PSTGEtFIeldCOUNLccuiiiiiieieeieectieee ettt e 12-5
| (€ (<11 =] 1a | T USSP 12-5
PSTGEtFOrmMOCOUNLcc.eoiiiiiiiiiiiiieeec et 12-7
PSTGEtFOIMILLISE ..ottt ettt enees 12-7
PSTGEtLAStEITOT.eotiiiieciie ettt et e 12-8
PSTOPENSESSION.....ecviiiiiciiiciii ettt ettt ettt sabestbeerbeesbeesbeesaeesabesesesenas 12-9
PSESENAFOIM......ooiiiiieiiece et et 12-9
Index

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS xiii

ABOUT THIS PEOPLEBOOK

PeopleSoft provides an enterprise suite of business applications that, in some cases work with
other applications in an integrated fashion. Integration Tools describes some of the ways in
which you can link PeopleSoft applications and third-party applications together. This book
includes the following:

Overview of Integration Technologies gives an overview of various PeopleSoft integration tools
and when to use them. It also introduces the PeopleSoft Integration Software Development Kit
provided with PeopleTools, including a sample project for integration development testing.

Merchant Integration gives an overview of PeopleSoft’s Merchant Integration system and how to
develop and implement a merchant integration point.

The PeopleSoft API Repository describes the internal classes, methods, and properties provided
by PeopleSoft for integration.

Introducing File Layout describes the mapping of fields in a file and how to create a file layout in
Application Designer.

Open Query ODBC Driver and API describes the Open Query Interface for PeopleTools.
Beginning with an overview of the product requirements, this document will describe an API
based on the defacto data access standard ODBC.

PeopleTools Command Line Parameters lists the parameters you can add to the command lines
that start PeopleTools. These parameters enable you to specify login information and to
automatically navigate to specific panels.

EDI Manager introduces the PeopleSoft application you use to control the exchange of electronic
data interchange (EDI) transactions. It provides an overview of our EDI architecture and explains
how to provide EDI setup information for your company and its trading partners.

Mapping EDI Transactions describes the process by which EDI Agents transfer EDI transaction
data into the PeopleSoft database. It explains how to create maps that specify how the EDI Agent
translates between PeopleSoft Business Documents, which are text files, and the PeopleSoft
database tables.

Monitoring EDI Processing describes the administration processes for EDL. It tells you how to
schedule EDI Agents to run and how to review audit trail information.

Message Agent covers the Message Agent process and programming the Message Agent APIs for
communicating with the PeopleSoft Message Agent. You use the Message Agent to exchange
data with PeopleSoft applications.

Using Database Agents and Message Definitions describes how to create and use database agents
to automate many routine system tasks.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE XV

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Outgoing Forms API explains how to integrate an electronic forms package so that it can accept
workflow routings from PeopleSoft applications. It includes function descriptions for the
application programming interface (API) calls that PeopleSoft applications make.

Before You Begin

To benefit fully from the information covered in this book, you need to have a basic
understanding of how to use PeopleSoft applications. We recommend that you complete at least
one PeopleSoft introductory training course.

You should be familiar with navigating around the system and adding, updating, and deleting
information using PeopleSoft windows, menus, and pages. You should also be comfortable
using the World Wide Web and the Microsoft® Windows or Windows NT graphical user
interface.

Related Documentation

To add to your knowledge of PeopleSoft applications and tools, you may want to refer to the
documentation of the specific PeopleSoft applications your company uses. You can access
additional documentation for this release from PeopleSoft Customer Connection
(www.peoplesoft.com). We post updates and other items on Customer Connection, as well. In
addition, documentation for this release is available on CD-ROM and in hard copy.

@ Important! Before upgrading, it is imperative that you check PeopleSoft Customer
Connection for updates to the upgrade instructions. We continually post updates as we
refine the upgrade process.

Documentation on the Internet

You can order printed, bound versions of the complete PeopleSoft documentation delivered on
your PeopleBooks CD-ROM. You can order additional copies of the PeopleBooks CDs through
the Documentation section of the PeopleSoft Customer Connection Web site:
http://www.peoplesoft.com/

You’ll also find updates to the documentation for this and previous releases on Customer
Connection. Through the Documentation section of Customer Connection, you can download
files to add to your PeopleBook library. You'll find a variety of useful and timely materials,
including updates to the full PeopleSoft documentation delivered on your PeopleBooks CD.

PREFACE Xvi PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Documentation on CD-ROM

Complete documentation for this PeopleTools release is provided in HTML format on the
PeopleTools PeopleBooks CD-ROM. The documentation for the PeopleSoft applications you
have purchased appears on a separate PeopleBooks CD for the product line.

Hardcopy Documentation

To order printed, bound volumes of the complete PeopleSoft documentation delivered on your
PeopleBooks CD-ROM, visit the PeopleSoft Press Web site from the Documentation section of
PeopleSoft Customer Connection. The PeopleSoft Press Web site is a joint venture between
PeopleSoft and Consolidated Publications Incorporated (CPI), our book print vendor.

We make printed documentation for each major release available shortly after the software is
first shipped. Customers and partners can order printed PeopleSoft documentation using any of
the following methods:

Internet From the main PeopleSoft Internet site, go to the
Documentation section of Customer Connection. You can
find order information under the Ordering PeopleBooks
topic. Use a Customer Connection ID, credit card, or
purchase order to place your order.

PeopleSoft Internet site: http://www.peoplesoft.com/.

Telephone Contact Consolidated Publishing Incorporated (CPI) at
800 888 3559.
Email Email CPI at callcenter@conpub.com.

Typographical Conventions and Visual Cues

To help you locate and interpret information, we use a number of standard conventions in our
online documentation.

Please take a moment to review the following typographical cues:
monospace font Indicates PeopleCode.

Bold Indicates field names and other page elements, such as
buttons and group box labels, when these elements are
documented below the page on which they appear. When
we refer to these elements elsewhere in the
documentation, we set them in Normal style (not in bold).

We also use boldface when we refer to navigational paths,
menu names, or process actions (such as Save and Run).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE xvii

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

PREFACE

Italics Indicates a PeopleSoft or other book-length publication.
We also use italics for emphasis and to indicate specific
field values. When we cite a field value under the page
on which it appears, we use this style: field value.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the number 0,
not the letter O.

KEY+KEY Indicates a key combination action. For example, a plus
sign (+) between keys means that you must hold down the
first key while you press the second key. For ALT+W,
hold down the ALT key while you press W.

Jump links Indicates a jump (also called a link, hyperlink, or
hypertext link). Click a jump to move to the jump
destination or referenced section.

Cross-references The phrase For more information indicates where you can
find additional documentation on the topic at hand. We
include the navigational path to the referenced topic,
separated by colons (:). Capitalized titles in italics
indicate the title of a PeopleBook; capitalized titles in
normal font refer to sections and specific topics within the
PeopleBook. Cross-references typically begin with a
jump link. Here's an example:

For more information, see Documentation on CD-ROM in
About These PeopleBooks: Related Documentation.

e Topic list Contains jump links to all the topics in the section. Note
that these correspond to the heading levels you'll find in
the Contents window.

Opens a pop-up window that contains the named page or

| Name of Page or dialog box. Click the icon to display the image. Some
Dialog Box screen shots may also appear inline (directly in the text).

Text in this bar indicates information that you should pay particular attention to as you work
with your PeopleSoft system. If the note is preceded by Important!, the note is crucial and
includes information that concerns what you need to do for the system to function properly.

Text in this bar indicates For more information cross-references to related or additional
information.

xviii PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Text within this bar indicates a crucial configuration consideration. Pay very close attention
to these warning messages.

Comments and Suggestions

Your comments are important to us. We encourage you to tell us what you like, or what you
would like changed about our documentation, PeopleBooks, and other PeopleSoft reference and
training materials. Please send your suggestions to:

PeopleTools Product Documentation Manager
PeopleSoft, Inc.

4460 Hacienda Drive

Pleasanton, CA 94588

Or send comments by email to the authors of the PeopleSoft documentation at:
DOC@PEOPLESOFT.COM

While we cannot guarantee to answer every email message, we will pay careful attention to your
comments and suggestions. We are always improving our product communications for you.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE Xix

CHAPTER 1

Overview of Integration Technologies

The following technology offerings from PeopleSoft provide a complete toolkit to integrate your
internet, third party, legacy, and custom in-house applications. This section provides a short
overview of each technology — for more details, refer to the book or chapter covering that
technology.

Application Messaging

Application Messaging—also referred to as Publish and Subscribe (Pub/Sub)—enables
applications to publish data that can be subscribed to by multiple processes. These processes can
be located on the same database and/or server or can be located on another database and/or
server. It works in an asynchronous environment, which means the publisher doesn’t need to be
connected to the subscriber when publishing the data. This is comparable to the way email uses
queues in order to guarantee the delivery of a message to its subscribers. Wherever possible,
interfaces across databases have been designed to use an asynchronous interface via Application
Messaging. This provides customers with more flexibility in deploying and operating PeopleSoft
systems.

When to Use Application Messaging

e Data synchronization. Application Messaging can help to synchronize data stored in different
systems. For example, imagine that an employee changes job codes, and that this change is
entered into a PeopleSoft HRMS application. As soon as this change is entered and saved, the
HRMS system publishes a message containing the changed data on the messaging network.
Other systems on the network, such as manufacturing or accounting systems, may have
subscribed to messages of this type.

o System-to-system workflow. You can use application messaging as an extension of
PeopleSoft workflow functionality. PeopleSoft workflow is based on business events:
conditions that trigger the need for a follow-up activity. Business events can direct work from
person to person and also from system to person. Application messaging enables system-to-
system workflow by eliminating the need to programmatically drive the execution of each step
of a business process spanning different systems. Instead of creating a custom program to
drive workflow, the delivery of an application message to a subscriber initiates the execution
of the next step through the use of a subscription process. For example, hiring an employee in
PeopleSoft HRMS could create a purchase requisition for supplies or a worklist entry for a
supplies administrator.

e Asynchronous integration. When you need to integrate with our third party partners in an

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OVERVIEW OF INTEGRATION TECHNOLOGIES 1-1

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

asynchronous environment. You do not want to use application messaging in scenarios where
the publishing system needs to wait for an "answer" from another system; in this situation, use
business interlinks.

For more information about application messaging, refer to PeopleSoft Application
Messaging.

Component Interfaces

[0

Component Interfaces (CI) expose the rich functionality delivered in the hundreds of compnents
that make up PeopleSoft products. A component is an atomic transaction which implements a
business process or function. A component interface provides real time synchronous access to the
PeopleSoft business rules and data associated with a business component. The interface is
exposed via standard access methods. Component Interfaces can be viewed as "black boxes" that
encapsulate PeopleSoft data and business processes, and hide the details of the structure and
implementation of the underlying page and data. The actual interface consists of a set of clearly
defined properties and methods that follow an object-oriented programming model. External
applications can only access a component’s data using the interface’s specified properties or
methods.

When to Use Component Interfaces

e When third parties must retrieve and/or update PeopleSoft data real time using request/reply
synchronously

* When you want to recycle the online business logic associated with a PeopleSoft component

For more information about component interfaces, refer to PeopleSoft Component Interface.

Business Interlink

1-2

PeopleSoft Business Interlink is an integrated framework that allows PeopleSoft applications to
access, update and invoke procedures in an external system in a real-time synchronous mode
using a generic in-memory API. Prior to PeopleTools 8, calling out to an external system from
PeopleCode required either writing a vendor-specific DLL on Windows NT or writing shared
libraries on Unix, and the corresponding PeopleCode to invoke the routine. Business interlinks
enable a PeopleCode program to map the inputs and outputs of an external system to PeopleCode
variables and to PeopleSoft record fields.

Each business interlink definition represents a business transaction associated with an integration
point; for example, calculate sales tax. Each interlink definition is associated with an interlink
plug-in, created in XML and C++ by PeopleSoft or by a third party associated with the external

OVERVIEW OF INTEGRATION TECHNOLOGIES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

system. Interlink plug-ins are self-describing class libraries that expose their services to the
Application Designer and contain the runtime routines for executing the interface to the external
system. Since the connection between systems occurs through the business interlink, neither
system needs to know the internal workings of the other.

The business interlink framework provides for querying data, updating data, adding data, deleting
data, and performing specific transactions against objects in an external system. It can process a
single transaction in a real-time fashion, or it can process a batch of data by loading multiple
rows of input into its input buffer and then invoking the corresponding method.

When to Use Business Interlinks

* When you need to access or update data in an external system from PeopleCode in a real time
synchronous environment.

e When you need to invoke a function or procedure in an external system from PeopleCode in a
real time synchronous environment.

e When you need to call C++ routines to perform specific functions or calculations that can not
be effectively written in PeopleCode.

@ For more information about business interlinks, refer to PeopleSoft Business Interlink
Application Developer Guide.

Integration Software Development Kit

The PeopleSoft Integration Software Development Kit (SDK) consists of utilities, sample data
and source code for use with PeopleSoft’s application messaging, component interface, business
interlink and portal pagelet technologies, along with a sample database project you can use to test
your work. These technologies are recommended as the basis for your integrations, but
PeopleSoft 8 includes several other tools and technologies you can use, described elsewhere in
this PeopleBook.

PeopleSoft applications are delivered with many completely developed integrations implemented
for common activities in a variety of categories. You can use them as templates for your own
integration development. The SDK assumes knowledge of one or more of the following
languages: PeopleCode, C++, Visual Basic (VB), Active Server Pages (ASP) or XML,
depending on the technology used.

The SDK is automatically installed to the PeopleSoft home directory (PS_ HOME), under sdk.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OVERVIEW OF INTEGRATION TECHNOLOGIES 1-3

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

B sdk

E1-L] entrustpki
&-_] classes
L] conf
El-_1 psappmsg
-1 bin
----- .| clazzes
-] sre
-1 pscompirtfc
B s
=] psinterlinks
-1 bin
- build
----- .| classzes
-----]
-] sre
-1 pspagelst
B s
-] sdkdb

H £ ptedk

Integration SDK directory structure

Related Documentation

Use the following documentation as your primary resource for developing, testing and
implementing integrations:

e The Enterprise Integration PeopleBook is your most comprehensive resource for developing
integrations between applications, called Enterprise Integration Points (EIPs). It includes
information about development tools and techniques, and the EIPs delivered with PeopleSoft
applications.

¢ [f you want to incorporate third party merchant services into your application over the internet,
PeopleSoft provides a framework for quickly developing and managing Merchant Integration
Points (MIPs). Refer to the overview of Merchant Integration for more information.

e The PeopleSoft API Repository allows PeopleCode and third party integrators to discover the
internally available classes, methods, and properties provided by PeopleSoft for integration.
The API Repository documentation explains how to use this facility.

¢ File layouts enable you to read and write complex structured data between your PeopleSoft
application and third party products using ordinary text files. Refer to the overview of File
Layouts for more information.

e PeopleSoft provides an implementation of the Entrust public key infrastructure to enable SSL
connections between HTTP servers. The Entrust PKI module is certified Entrust-Ready™, and
is provided as part of the Integration SDK. You can use it to replace the default keystore
shipped as part of your PeopleSoft application. You can find installation instructions for the
Entrust PKI module in <PS_HOME>\sdk\entrustpki\readme.txt.

The PeopleBook documentation for the following technologies includes sections covering the
use of the Integration SDK in developing and testing integrations with each technology:

¢ Application messaging — refer to the overview of Application Messaging for more
information.

e Component interfaces — refer to the overview of Component Interfaces for more information.

1-4 OVERVIEW OF INTEGRATION TECHNOLOGIES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

e Business interlinks — refer to the overview of Business Interlinks for more information.

o Portal pagelets — refer to Developing Pagelets for more information.

File Layout Objects / Definitions

[0

The File class provides methods and properties for reading from and writing to external files.
Most application interfaces to files require complex parsing of file data. Files that allow for this
kind of complexity in a PeopleSoft application are based on a file layout. A file layout is a
definition (or mapping) of a file to be processed. It identifies where in the file data fields are
located. This powerful interface allows application developers to access data from a file as they
would a message or a panel buffer (scroll). There is no need to parse each file record into fields.

The following formats are supported by file layout definitions:
¢ Fixed Format Positional File (FIXED)
e Variable Format Delimited File (CSV)
e Tagged Hierarchical Data File (XML)

File layouts will be unique to a specific format, and may only process that particular type of
formatted file. The definition created in the Application Designer retains a consistent look and
feel irrespective of format. File layouts rely solely on PeopleCode as the engine behind the actual
data access and movement.

When To Use File Layouts

e When you need to load a flat file to a table, or when you need to unload a table to a flat file

For more information about file layouts, refer to Introducing File Layout.

EDI Manager

The EDI (Electronic Data Interchange) Manager is a tool for managing a customer’s electronic
commerce transactions with their trading partners. It provides panels that allow customers to
setup and maintain data about their trading partners, define additional e-commerce transactions
based on their trading partner’s requirements and monitor EDI processing activities. The batch
inbound and outbound transaction processing of EDI Manager are written in Application Engine
and use a grid to map data between the tables in a PeopleSoft application and PeopleSoft
Business Documents. PeopleSoft Business Documents are then typically converted by a third
party to the standard X.12 or EDIFACT EDI format.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OVERVIEW OF INTEGRATION TECHNOLOGIES 1-5

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

When To Use EDI Manager

¢ When you need to define a PeopleSoft Business Document which will be used for an X.12 or
EDIFACT EDI transaction.

@ Note. EDI Manager should no longer be used to load or unload flat files that are not X.12 or
EDIFACT EDI transactions. File layouts have stronger file access methods.

@ For more information about EDI Manager, refer to EDI Manager.

Merchant Integration

PeopleSoft’s Merchant Integration capability enables end users to interact with third-party Web
sites and other Internet-based services directly from a PeopleSoft application, effectively making
those merchant services part of the application interface. This dramatically enhances the
application’s functionality and the end user’s experience.

Using a subset of the PeopleTools integration technologies, you can develop a Merchant
Integration Point (MIP) to incorporate a merchant’s services into your application. An MIP
communicates with the merchant’s Website to enable the merchant to act in a PeopleSoft
application support role, facilitating a variety of interactions between your end users and the
merchant.

An MIP adds a merchant’s services to a PeopleSoft application page, either as an underlying
transactional exchange triggered by the user’s interaction with the application, or in the form of
an interface branded with the merchant’s logo that enables a user to interact directly or indirectly
with the merchant. In the delivered software, the user is typically presented with a choice of
merchant services on a PeopleSoft community page, such as purchasing supplies, making travel
arrangements, or accessing health plan information.

The user interacts with the PeopleSoft interface, which communicates with the merchant’s
server, producing an integrated environment. Many of the elements used to accomplish this
exchange are part of the PeopleSoft Internet Architecture (PIA) and the Single Sign-On
Framework delivered with your application.

PeopleSoft’s Single Sign-On Framework addresses the need for a third-party merchant to
seamlessly authenticate a user who initiates business transactions using an MIP from a
PeopleSoft application page. The Single Sign-On Framework comprises all the elements needed
for developing MIPs with this functionality, including the Merchant Categories and Merchant
Profile components, the generic business interlink run-time plug-in for HTTP-based transactions
(HTTPEnable.dll), and all the records and pre-defined PeopleCode functions required for
assembling these elements into a typical MIP.

1-6 OVERVIEW OF INTEGRATION TECHNOLOGIES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

When To Use Merchant Integration

e To integrate third party services which are accessible over the Internet into your PeopleSoft
application.

@ For more information about merchant integration and the Single Sign-On Framework, see
Merchant Integration.

Message Agent

The Message Agent processes real time synchronous messages sent to our applications by an
external system, such as a Visual Basic or C program, and uses the existing business rules
associated with a PeopleSoft component. It can send data to and receive data from the
component.

When To Use Message Agent

@ Note. Component interfaces are a more robust alternative for exposing business rules to
external applications that require a real-time synchronous connection. The Message Agent is
used to support certain functionality from previous releases, but should not be used for new
development.

@ For more information about Message Agent, refer to Message Agent.

Database Agents

A database agent is a workflow program that monitors one or more tables in the database for
conditions that should trigger business events. Database agents use a database agent query, which
is a special type of PeopleSoft Query, to determine the data that needs to be processed and pass
the results of the query to the Message Agent. If the component that the Message Agent connects
to has a business event associated with it, that event is triggered when the data is saved. The
database agent is scheduled to run on a periodic basis using the Process Scheduler.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OVERVIEW OF INTEGRATION TECHNOLOGIES 1-7

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

When To Use Database Agents

@ Note. Database agents are used in conjunction with the Message Agent to support certain
functionality from previous releases, but should not be used for new development. You
should choose a more advanced technology based on your business requirements. One
option, for example, is to write an Application Engine program that queries the database and
calls a component interface.

For more information about database agents, refer to Using Database Agents and Message
Definitions.

1-8 OVERVIEW OF INTEGRATION TECHNOLOGIES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 2

Merchant Integration

Understanding Merchant Integration

In PeopleSoft 8, PeopleSoft’s Merchant Integration capability enables end users to interact with
third-party Web sites and other Internet-based services directly from a PeopleSoft application,
effectively making those merchant services part of the PeopleSoft interface. This dramatically
enhances the end user’s experience of the application.

Merchant integration is accomplished using Merchant Integration Points (MIPs). An MIP is
an enhanced form of Enterprise Integration Point (EIP), but instead of connecting to another
application, it incorporates a third-party merchant’s services into your PeopleSoft application
using a combination of page controls, PeopleTools integration technologies, and PeopleCode. It
enables a merchant whose services you purchase to act in a PeopleSoft application support role,
and it can facilitate a variety of interactions between your end users and the merchant.

@ Although they use some of the same technologies, EIPs are developed and used differently
from MIPs, and are documented separately. For more information about EIPs, see the
Enterprise Integration PeopleBook.

If you’re implementing one or more MIPs that were delivered with your PeopleSoft application,
skip the section in this chapter titled “Developing an MIP,” where we discuss the technical details
of Merchant Integration. To learn more about the MIPs delivered with your application, see your
application documentation. If you want to develop your own MIP, read this entire chapter.

Merchant Integration Process Flow

An MIP adds a merchant’s services to a PeopleSoft application page, either as an underlying
transactional exchange triggered by the user’s interaction with the application, or in the form of
an interface that enables a user to interact directly or indirectly with the merchant. The user
interacts with the PeopleSoft interface, which communicates with the merchant’s server,
producing a seamless environment. The following diagram illustrates the basic MIP process
flow.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-1

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

A PeopleSoft . —
7. Displ. I
6. Update application tables application isplay application page
Application (\‘Qﬁ
database ° e
OQ\QOO Web browser
o
A ¥
2. PeopleCode 5. Transaction
generates HTTP data or HTML
request content
3. Sign-on
parameters 4. Merchant sends
or transaction HTTP reply
data
Merchant Web
server

Merchant integration process flow

In response to a PeopleCode event (1), your PeopleSoft application’s PeopleCode sends an HTTP
request (2) containing either sign-on parameters or transaction data (3) to the merchant’s Web
server. The merchant’s server processes the request, then sends an HTTP reply (4) containing
either transaction data or HTML content (5) back to the calling PeopleCode, which updates the
application tables (6), modifies the application page content, and refreshes the page (7) as needed.

Many of the elements used to accomplish this exchange are part of the PeopleSoft Internet
Architecture (PIA) or the Single Sign-On Framework delivered with your application.

@ For more information, see MIP Features and PeopleSoft Internet Architecture
Administration.

The User Experience

With Merchant Integration, the user is typically presented with a choice of merchant services on a
PeopleSoft community page, such as purchasing supplies, making travel arrangements, or
accessing health plan information. Most delivered MIPs launch from a PeopleSoft community
page, but you can develop new MIPs that launch from any application page. An MIP can be
made available to users in several ways, as described by the following configurations.

Hidden Application Functionality

The merchant provides functionality that underlies an application, transparent to the user. The
MIP’s functionality is integrated into the application page using PeopleCode. A user action, such
as saving the page, triggers a transaction between the application and the merchant site.
Information about the transaction and its results may or may not be provided to the user.

2-2 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Branded Application Functionality

In this scenario, the merchant is presented as a branded portion of a PeopleSoft application page.
Part or all of the application page consists of a PeopleSoft interface dedicated to interacting with
the merchant site. The merchant’s brand name and logo appear on the page, but the page controls
and layout are part of the PeopleSoft application. The controls trigger MIPs that submit
transactions to the merchant site, retrieve the merchant’s responses, and insert the responses into
the page’s data display. This is the most common type of MIP interface.

Home > Schedule Resodrces > Service Order > Drders > Service Order

Find External Resource

@ Home # Help & Sign Out
; g

o 11]
Business Unit: UsS004 ILLINOIS OPERATIONS w
Service Order ID: aooooooad 2 C/
Line Number: 1 SkI"SVI"agE.COITI

Mote: Information you enter on this page will be posted and viewed by outside vendars. Please
remaove any confidential information related to your project. Also note that you will pay a pre-
negotiated transaction fee if and when you sign a contract with an external resource through an
outside wendor using this application.

Main Search Information

Description: |HRMS IMFLEMEMNTATION
Enter & short Assignment title.
Start Date: IDQID4IQDDD B End Date: IDSH arzont B
Estimated Duration |2 57
{days):
Assignment Description: HRMS IMPLEMENTATION ;I

Erter a longer description of the assignment.

Top of application page with branded merchant service

Merchant HTML Content

Here the merchant responds to the MIP by providing HTML content as the basis for all or part of
the application page content. Your PeopleSoft application may reformat the content to generate a
presentation consistent with the rest of the application, but the controls on the page are provided
by the merchant. By interacting with the page, the user interacts directly with the merchant site.
The application can use or store the information on the page just as with any other PeopleSoft

page.

MIP Features
Installing MIPs

PeopleSoft applications are delivered with a number of MIPs already developed and available for
use. When you install an application, the components for all MIPs developed for that application

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-3

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

are installed as well, with their functionality disabled by default. After installing your
application, you can decide which MIPs to enable, then determine which users will have access to
the MIPs you’ve enabled. You must establish an appropriate account with each merchant whose
MIP you enable, so the MIP can access the merchant’s Web site.

@ For more information about enabling an MIP, establishing a merchant account, and
managing user access to merchant services, see Implementing an MIP.

Support

PeopleSoft supports the portion of the MIP that’s part of your PeopleSoft application. Merchants
are responsible for the proper operation of their Web sites, and for responding properly to
requests directed to them by your PeopleSoft application.

Single Sign-On Framework

PeopleSoft’s Single Sign-On Framework addresses the need for a third-party merchant to
seamlessly authenticate a user who initiates business transactions using an MIP from a PeopleSoft
application page. With Single Sign-On, the user has to sign on only once, when entering the
PeopleSoft application. The need for a subsequent sign-on to the merchant system is handled
without directly involving the user, who doesn’t have to remember multiple user IDs or
passwords. This enables the user to make transactions on a merchant system without having the
sense of moving from one application to another. To the user, all transactions occur within the
PeopleSoft application.

The Single Sign-On Framework comprises all the elements needed for developing MIPs with this
functionality, including the Merchant Categories and Merchant Profile components, the generic
business interlink run-time plug-in for HTTP-based transactions (HTTPEnable.dll), and all the
records and pre-defined PeopleCode functions required for assembling these elements into a
typical MIP. The Single-Sign-On Framework makes it easy to modify and implement an MIP.

For a given MIP, you establish a single company account for each desired service for which the
merchant requires a distinct sign-on ID and password. When a user triggers the MIP, your
PeopleSoft application signs on to the merchant site. The sign-on ID it uses can be any agreed
upon identification, but one benefit of the Single Sign-On Framework is that you can use a pre-
defined Company ID and password which signs on to a single company account regardless of the
current user. The MIP can also pass the merchant a user-specific ID for uniquely identifying and
maintaining account information for the current user during the current session. This Merchant
User ID is automatically generated by the MIP based on criteria you specify in the merchant
profile.

@ For more information about how to create an MIP using Single Sign-On, see Developing an
MIP. For more information about the merchant profile, see Maintaining Merchant
Information. For more information about managing access to a merchant, see Manage User
Access to Merchant Services.

2-4 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Secure Sockets Layer

Secure Sockets Layer (SSL) is the most widely used security protocol on the Web. An MIP
should use SSL for key activities such as sign-on and credit card transactions, but doesn’t require
it otherwise. The run-time plug-in HTTPEnable.dll handles SSL automatically.

@ For more information about creating business interlinks using HTTPEnable.dll, see
PeopleSoft Business Interlink Application Developer Guide and Writing a XML Design-
Time Plug-In using the pshttpenable Runtime Plug-In.

Session Information

The Single Sign-On Framework provides predefined PeopleCode functions to support you in
monitoring and storing data for multiple merchant sessions. It provides an application data table
to contain the session IDs and machine names for multiple merchants at PeopleCode run time.
You can use the functions to record, retrieve and delete session information in that table. The
table is global, so it will be accessible from PeopleCode at all times while the user is in the
application, and it tracks all merchant systems to which the user is signed on. Once the user exits
the application, the session information is discarded.

@ For more information about merchant sessions, see Single Sign-On PeopleCode Functions
and Create the MIP PeopleCode.

Maintaining Merchant Information

Merchant information is stored in the Merchant Categories and Merchant Profile components;
you’ll use these components both for developing a new MIP and for implementing a delivered
MIP.

@ For more information about using merchant categories and profiles, see Create the MIP and
Implementing an MIP.

Merchant Categories Component

This component consists of one page, the Merchant Categories page. It serves as a repository of
predefined categories that can be used in a merchant profile. Each category represents a type of
service that a merchant might provide. A merchant can be assigned to multiple categories, or to
no category.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-5

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

Merchant Categories Page

categories.

Usage Use the Merchant Categories page to list all available merchant

Object Name | MERCHANTCATTBL

Navigation Go, PeopleTools, Utilities, Use, Merchant Categories

Prerequisites | None

Requirements

Access Enter a Merchant Category ID.

Where Used | Merchant Category page.

{ Merchant Categories
Merchant Category: RECRUIT
Category Description First (4] 1cf 1 [¥] Last
Effective Date Status ‘Description Short_ -
Description
osi01/2000 |Acti\te j |Recruit Contractors |Recruiting
E Save FEadd @Updatea’Display) 4@ Inglude History) @Correct History)

Merchant Categories page

Effective Date

Status

Description

Short Description

2-6 MERCHANT INTEGRATION

Enter the date on which you want the displayed row to
become the current row.

Select one of the following values:

Active: Select this to enable the displayed row to become
the current row on its effective date.

Inactive: Select this to disable the displayed row. An
inactive row will never become the current row, regardless
of its effective date.

Enter a description of the category that’s general enough
to encompass similar services from different merchants
you may assign to the category.

Enter a short description of the category.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

@ For more information about using the Merchant Categories page, see Create Merchant
Categories.

Merchant Profile Component

The Merchant Profile component consists of several pages that maintain the information your
PeopleSoft application needs for implementing an MIP using Single Sign-On, including:

e MIP enabled status.

Merchant contact information for setting up and managing your account.

Your company ID and encrypted password for merchant sign-on.

User identification for session management.

Merchant Web site URLSs for sign-on and other transactions.

Information for overriding business interlink parameter defaults.

Categories of services the merchant provides.
e Application specific features of the MIP.

You’ll need to create a new merchant profile in order to develop a new MIP, and you’ll need to
modify an existing merchant profile to reflect your account information before you implement a
delivered MIP. Your PeopleSoft application requires the profile information so that it can
interact correctly with the merchant.

Merchant Profile Page

Usage Use the Merchant Profile page to maintain basic information about each
merchant.

Object Name | MERCHANTID

Navigation Go, PeopleTools, Utilities, Use, Merchant Profile, Merchant Profile

Prerequisites | None

Access Enter a merchant ID for which you want to manage a merchant
Requirements | integration.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-7

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

Merchant Profile Merchant Authentication Merchant Bl Cwerrides Merchant Category »

Merchant ID: SKILYILG

Merchant Information

‘Effective Date: W B ¥ Merchant Enabled °
‘Description: |Ski|ls Yillage

Short Description: |Ski|ls

Object owner identifier: | FeopleTools j

Merchant Logo: ISKILLSVILLAG E_LOGO

Relationship Manager: |F0rem anFred

Relationship Manager Email: |fre dfi@skillsvillage.com

Relationship Manager Phone: |925-555-1 212

B save (= Haxt tab [l dd | [Update.l’DispIa;r) A Include Histon,r:] [Cormect Histon,r)

Merchant Profile | Merchant Authentication | Merchant Bl Overrides | Merchant Categary | Application Attributes

Merchant Profile page

Effective Date

Merchant Enabled

Description

Short Description

Object owner identifier

Merchant Logo

Relationship Manager

Relationship Manager
Email

Relationship Manager
Phone

MERCHANT INTEGRATION

Enter the date on which you want the displayed row to
become the current row.

Select this check box to enable MIPs using this profile to
connect to the merchant.

Enter a description of this profile that’s general enough to
encompass all the services you’ll access using it.

Enter a short description of the profile.

Select from a drop down list the PeopleSoft product with
which MIPs using this profile are associated.

Enter the Image Catalog name of the merchant logo image
you want to display in HTML areas of MIPs using this
profile.

Enter the name of the merchant’s support representative
who serves as your company’s primary contact, in
standard PeopleSoft name format.

Enter the relationship manager’s email address, in
standard PeopleSoft email address format.

Enter the relationship manager’s telephone number, in
standard PeopleSoft telephone format for your country.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

For more information about using the Merchant Profile page, see Create a New Merchant
Profile and Modifying the Merchant Profile Page.

Merchant Authentication Page

Usage Use the Merchant Authentication page to maintain information that your
application uses to sign on to the merchant’s Web site.

Object Name | MERCHANTAUTH

Navigation Go, PeopleTools, Utilities, Use, Merchant Profile, Merchant
Authentication

Prerequisites | None

Access Enter a merchant ID for which you want to manage a merchant
Requirements | integration.

Merchant Profile Merchant.ﬁ\uthenticatinn\ Merchant Bl Overrides Merchant Category 4

Merchant ID: SKILVILG

Effective Date: 0@i0142000

‘Merchant User ID Type: | Operator ID + Company 1D j

*Company ID: |MYCO

Company Authentication Token: |“‘*‘“‘“"* Confirm: I"‘“‘“"‘—
Merchant Website URL: |http:Ivaw.Skillsvillage.com

ﬁ Save Previous tab) Next tab) Endd) | E] Update.l’DispIay) 4@ Include History) @Conect History)

Merchant Profile | Merchant Authentication | Merchant Bl Overrides | Merchant Category | Application Attributes
Merchant Authentication page

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-9

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

2-10

Merchant User ID Type Select one of the following values, which the merchant
will use to identify a user from your company:

Company Identifier: Select this to use your Company ID
if the merchant doesn’t need to differentiate between
users.

Employee ID + Company ID: Select this to append your
Company ID to your user’s employee ID.

EMail Address: Select this to use your user’s email
address. This requires that an email address has been
entered into the user’s PeopleSoft profile.

Operator ID + Company ID: Select this to append your
Company ID to your user’s operator ID.

Company ID Enter the name that will be used to identify your company
when the MIP signs on to the merchant Web site.

Company Authentication Enter the password that will be used to authenticate your

Token company when the MIP signs on to the merchant Web
site.

Confirm This field is hidden; it appears after you enter a Company

Authentication Token and press TAB. Enter the token
again to Confirm it.

Merchant Website URL Enter the complete HTTP URL you expect your MIPs to
use as the default initial point of contact with the merchant
Web site.

For more information about using the Merchant Authentication page, see Set Up Connection
and Authentication Parameters and Modifying the Merchant Authentication Page.

Merchant Bl Overrides Page

Usage Use the Merchant BI Overrides (merchant business interlink overrides)
page to specify which business interlinks to use for the current MIP, and
to enter settings which will temporarily override selected default settings
of any specified business interlink. When you add a row, you’re
prompted for a selection from the business interlink table
PSIODEFN_VW.

Object Name | MERCHANTBIPARMS

Navigation Go, PeopleTools, Utilities, Use, Merchant Profile, Merchant BI
Overrides

MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Prerequisites | None

Access Enter a merchant ID.
Requirements

| Merchant Profile ;" Merchant Authentication | Merchant Bl Overrides 'y Merchant Category | ¥

Merchant ID: SKILVILG
Merchant Information ! First (4 101 1 [Last
Description: Skills Village Effective Date: 080152000
Business Interlink First (4] 10f 1 [B] Last
'‘Business Interlink: |DIRECTORY ﬂ ¥ Sign-On Business Interlink
(]
Override Parameter Name Parameter Value
73 Sener |billyp.peoplesoﬂ.c0m
F Pont EEE
i User_DN |cn=Admin,0=PeupIeSuﬂ
Select All I Select Mane | Resst |
B save Frevious tah) Hext tah) [Eeadd |] Update.fDisplay) A Include History) [Corect Histon,r:]

Merchant Profile | Merchant Authentication | Merchant Bl Owverrides | Merchant Categary | Application Aftributes
Merchant Bl Overrides (merchant business interlink overrides) page

Business Interlink Select a business interlink definition from the list of
available definitions. The business interlink’s parameter
names and default values will appear in the Business
Interlink Settings grid.

Sign-On Business Interlink Select this check box to designate this business interlink
as the one used to sign on to the merchant Web site. You
can select this check box for only one row, or for none.

Business Interlink Settings Select the Override check box to indicate that the
parameter’s assigned value will override its default value.
When you save the page, only rows with this check box
selected will remain.

Enter a new Parameter Value that will override the
parameter’s default value at run-time. This doesn’t affect
the stored default value for the parameter.

Important! Some business interlink setting parameters
require a specific value, and should not be overridden.
You’re responsible for understanding which parameters
you can safely override.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-11

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Select All Click this button to select the Override check box for all
displayed rows on the grid.

Select None Click this button to clear the Override check box for all
displayed rows on the grid.

Reset Click this button to reload all of the business interlink’s
parameters, and reset them to their default values on this

page.

Note. Although clicking Reset deletes any unsaved
override values, you can retain previously saved values if
you exit the Merchant Profile component without saving.

@ For more information about using the Merchant BI Overrides page, see Specify Business
Interlink Information and Modifying the Merchant BI Overrides Page.

Merchant Category Page

Usage Use the Merchant Category page to build a list of the categories to
which the current merchant belongs. When you add a row, you’re
prompted for a selection from the MERCHANTCATTBL table.

Object Name | MERCHANTCAT

Navigation Go, PeopleTools, Utilities, Use, Merchant Profile, Merchant

Category
Prerequisites | The Merchant Categories page must contain at least one entry.
Access Enter a merchant ID.
Requirements

2-12 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

| Merchant Profile " Merchant Authenfication | Merchant Bl Overrides | Merchant Category ¥

Merchant Information

Description: =1

Short Description:

E Save Prewvious tab

Merchant ID: SKILVILG

‘Merchant Category: IRECRUIT g
Merchant Website URL: |http:IMww.skiIlre cruit.com
Description: Recruit Contractors

First (4 101 1 2] Last

kills village Effective Date: 02/01/2000

wiewall First (0 101 [Last

Rectuiting

) MNext tah) Eadd) (H Updatea’DispIay) 4@ Include Histor\r) @’Correct Histor\r)

hierchant Profile | Merchant Authentication | Merchant Bl Cwerrides | Merchant Category | Application Attributes

Merchant Category page

Merchant Category Select a merchant category from the list of available
categories. The system displays the Description and
Short Description you entered on the the Merchant
Categories page.

Merchant Website URL Enter the complete HTTP address of the merchant’s URL

that should be used for transactions in this category.

@ For more information about using the Merchant Category page, see Specify Alternate
Merchant URLs by Category and Modifying the Merchant Category Page.

Application Attributes Page

Usage The Appplication Attributes page provides a convenient location to store
information relating to your MIP. It has no specific purpose—the
attributes are maintained as name/value pairs, and can represent
anything.

Object Name | MERCHANTAPPATTRS

Navigation Go, PeopleTools, Utilities, Use, Merchant Profile, Application
Attributes

Prerequisites | None

Access Enter a merchant ID.

Requirements

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

JANUARY 2001

@l{ Merchant Bl Overrides " Merchant Categary ™ Application Aftribute s \I_

Merchant ID: SRILVILG

Merchant Information
Description: Skills Village

Application Attributes

Effective Date; 08f01/2000

ﬁ Save) Previous tab | [551 -

Attribute Name Attribute Value

| [SKILLRECRUITD
|sPPDEY |SKILLRECRUITO2
[anTEST [SKILLRECRUITD4

[add @Updateibisplay) @Include History) @ConectHistory)

Merchant Profile | Merchant Authentication | Merchant Bl Overrides | Merchant Categaory | Application Attributes

Application Attributes page

Application Attributes

Developing an MIP

2-14

Enter an Attribute Name identifier to represent an
attribute for which an MIP using this merchant profile
expects a value.

Enter as an identifier the Attribute Value that an MIP
using this merchant profile should use for this attribute.

Click the Plus button to add a new attribute grid row after
the current one.

Click the Minus button to remove the current attribute grid
TOW.

This section explains how to develop a new Merchant Integration Point to enhance your installed
PeopleSoft application. It assumes you’re familiar with the core tools and technologies involved,
including business interlinks, Application Designer and PeopleCode.

Developing an MIP for your PeopleSoft application consists of two distinct activities:

1. Contact the merchant whose services you wish to use, and establish an account for your

organization.

2. Use PeopleTools to create the MIP that will access and interact with the merchant account

you’ve set up.

HTTPEnable.dll

The business interlink run-time plug-in called HTTPEnable.dll is particularly well suited for use
in transactions over the Internet, because it uses HTTP GET and POST methods to send and

MERCHANT INTEGRATION

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

receive XML-formatted data. Your MIP will be easier to develop and maintain if your merchant
can conduct all transactions—including sign-on—in XML, so that you can base your entire MIP
on HTTPEnable.dll.

@ For more information about creating business interlinks using HTTPEnable.dll, see
PeopleSoft Business Interlink Application Developer Guide and Writing a XML Design-
Time Plug-In using the pshttpenable Runtime Plug-In.

Single Sign-On Records and Fields

Following is a listing of some the PeopleSoft records which contain relevant data or can be used
as templates in your Single Sign-On MIP PeopleCode. For more detail, examine the record
definitions in Application Designer.

@ For more information about using these records and fields, see Create the MIP PeopleCode.

PSAUTHPARMS

This record definition is provided for use as a template from which you can instantiate a
PeopleCode object to maintain authentication information extracted from the merchant profile for
sign-on, including the following fields:

e MERCHANTID: The merchant ID, which is the primary key for the merchant profile.
e MRCHUSERID: The working ID used by the merchant to identify a user from your company.

e COMPANYID: The ID used by your company to identify your company on the merchant
system.

o WRKTOKEN: The decrypted password used by your company to sign on to the merchant Web
site.

e SIGNONBIURL: The URL specified for the run-time plug-in designated as the sign-on
business interlink on the Merchant BI Overrides page, if one is selected.

e MERCHWSITEURL: The primary Web site URL specified in the merchant profile or one of
its categories for initiating MIP transactions.

PSMERCHBI

This is the PeopleTools table used to select the current effective dated row from
PSMERCHBIPARMS, identified by the following fields:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-15

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

e MERCHANTID: The merchant ID, which is the primary key for the merchant profile.

e EFFDT: The effective date of the merchant profile’s current row.

PSMERCHBIPARMS

This is the PeopleTools table for the business interlink information on the Merchant BI Overrides
page, containing the following fields:

e EFFDT: The effective date of the merchant profile’s current row.

¢ [ONAME: The name of the selected business interlink.

o JOSETTINGNAME: The name of a setting parameter for the selected business interlink.

e [OVALUE: The override value for the selected setting parameter of the selected business
interlink.

PSMERCHANTCAT

This is the PeopleTools table for the category information on the Merchant Category page,
containing the following fields:

e MERCHANTID: The merchant ID, which is the primary key for the merchant profile.
o EFFDT: The effective date of the merchant profile’s current row.
e MERCHANTCAT: The name of the selected merchant category.

e MERCHWSITEURL: The Web site URL specified for the selected merchant category.

PSMERCHANTAPP

This is the PeopleTools table for the attribute information on the Application Attributes page,
containing the following fields:

e MRCHAPPATTRNAME: The name of an application attribute.

e MRCHAPPATTRVALUE: The value of the selected application attribute.

PSSESSIONDATA

This record definition is provided for use as a template from which you can instantiate a global
PeopleCode rowset object. You use the Single Sign-On Framework functions to instantiate this
rowset and maintain the following fields:

e MERCHANTID: The merchant ID, which is the primary key for this record.

e MRCHSESSION: The session ID obtained from the selected merchant.

2-16 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

¢ MRCHMACHINENAME: The machine name obtained from the selected merchant.

Single Sign-On PeopleCode Functions

The Single Sign-On Framework includes several predefined PeopleCode functions, which reside
in the FieldFormula event of the PSFUNCLIB_PTIC.MRCHSIGNONFNCTN field. You’ll use
these functions in your MIP PeopleCode.

GetAuthenticationParms

Syntax

GetAuthenticationParms (merchant id)

Description

GetAuthenticationParms extracts from the merchant profile all the basic parameters
necessary ¢

to sign on to the merchant Web site.

Parameters

merchant_id Specify as a string the primary key of the search record for
the desired merchant profile—
PSMERCHANTID.MERCHANTID.

Returns

A record containing authentication parameters retrieved from the merchant profile. This record
should first be instantiated from the PSAUTHPARMS record definition. The return value is Null
if the merchant_id profile is not enabled for the current effective-dated row, or if the current
user’s profile is unavailable.

CreateSessioninformation

Syntax

CreateSessionInformation ()

Description

CreateSessionInformation creates a global rowset object called &SessionInformation, based on
the PSSESSIONDATA record definition. Be sure to globally declare &SessionInformation at the
top of PeopleCode programs where you want to use it.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-17

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Parameters

None.

InsertSessionData

Syntax

InsertSessionData (session data record)

Description

InsertSessionData inserts a new row into the global rowset object &SessionInformation and
copies the contents of a session data record into it.

Parameters

session_data_record Specify the record identifier of the session data record you
want to copy into the &SessionInformation rowset. You
should first have instantiated this record from the
PSSESSIONDATA record definition and populated it.

Returns

A boolean value: True if the record data was successfully inserted, False if it wasn’t.

GetSessionData

Syntax

GetSessionData (merchant id)

Description

GetSessionData retrieves a row from the global rowset object &SessionInformation and copies
its contents into a session data record.

Parameters

merchant_id Specify as a string the MERCHANTID field of the row
you wish to retrieve from the &SessionInformation
rowset.

Returns

A record containing the session data retrieved from &SessionInformation for the specified
merchant. This record should first be instantiated from the PSSESSIONDATA record definition.
The return value is Null if a record containing the MERCHANTID field doesn’t exist in the
rowset. Updating the return value effectively updates that row in &SessionInformation.

2-18 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

DeleteSessionData

Syntax

DeleteSessionData (merchant id)

Description

DeleteSessionData deletes the specified row from the global rowset object &SessionInformation.

Parameters

merchant _id Specify as a string the MERCHANTID field of the row
you wish to delete from the &SessionInformation rowset.

Returns

A boolean value: True if the row was successfully deleted, False if it wasn’t.

Establish the Merchant Account

Establish with the merchant what services will be made available, what terms will apply, how
you’ll connect to the merchant’s server, and how you’ll present the services to your users. The
resulting MIP, of course, will depend on your company’s policies and procedures, and will vary
considerably from merchant to merchant. Here are some suggested points to cover:

1. Meet with merchant representatives to evaluate the business and technical feasability of an
MIP.

2. Develop a checklist or questionnaire which covers the technical, functional and
administrative aspects of the proposed MIP, and submit it to the merchant. It should serve to
make both you and the merchant more aware of the parameters necessary for a successful
integration. Some possible questions:

= Will the merchant accept XML formatted data? If so, you can use the HTTPEnable.dll run-
time plug-in.

= Does the merchant require a merchant user ID for sign-on? If so, what format must it have?

= What other input does the merchant require (company ID, password and user ID are handled
by the Single Sign-On Framework)?

= What output does the merchant produce, and what form does it take (machine name and
session ID are handled by the Single Sign-On Framework)?

3. Determine what proprietary APIs the merchant provides, if any.

4. Determine whether the merchant services are best implemented as hidden application
functionality, branded application functionality, or merchant HTML content.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-19

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

2-20

Create the MIP

The MIP you develop will use the following elements:
e A business interlink design time plug-in.

e A business interlink run-time plug-in.

e A business interlink definition.

e An application message definition (in some cases).
e Merchant categories (in some cases).

¢ A merchant profile.

¢ One or more application pages or page controls.

e One or more PeopleCode programs.

In the following sections, we describe each of the development tasks necessary for creating a
typical MIP.

You’ll need to collect some of the profile information from the merchant. Read through the
following sections to determine what information is necessary, so you can have it ready
before you start.

Create the Business Interlink

The HTTPEnable.dll busines interlink is the preferred vehicle for interacting with any merchant.
Your merchant may require a custom run-time plug-in for sign-on.

Create the design time plug-in—see PeopleSoft Business Interlink Application Developer Guide.

Create a custom run-time plug-in if the merchant requires it—see PeopleSoft Business Interlink
Runtime Plug-in Programming Guide.

Create the business interlink object definition using the design time plug-in—see Designing a
Business Interlink Definition.

Create Merchant Categories

A merchant who provides multiple services may supply a different URL for each service. This is
where merchant categories come into play. You’ll assign each service to a different category,
enabling you to record a different URL for the merchant under each category. You can then
develop one or more MIPs for that merchant using a single profile; your PeopleCode for each
MIP should select the appropriate URL based on category. You can use any of the categories
delivered with your PeopleSoft application, or you can create your own.

MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

=,

Merchant categories have no intrinsic meaning; they simply provide a way to group MIPs by
function. You can associate any category with a given URL, but for maintenance reasons
it’s helpful to have a category name and description that match the URL’s purpose.

Follow this procedure to create any new categories you need, then apply the categories when you
modify or create the merchant profile.

To create a new merchant category:
1. Select Go, PeopleTools, Utilities, Use, Merchant Categories, then Add a new record.

The new Merchant Category ID you enter must be upper case and no longer than 10
characters. The Merchant Categories page will appear.

2. Set the Status to Active for the current effective-dated row.
3. Enter a Description and Short Description of the category for the current effective-dated row.

4. Click Save to save the new merchant category.

For more information about merchant categories, see Merchant Categories Component.

Create a New Merchant Profile

The Single Sign-On Framework requires a merchant profile in order to implement the MIP. The
merchant profile stores and maintains all the information and parameters needed for managing
your relationship with the merchant, including integrating the merchant services with your
application, maintaining account security, applying effective dating, conveniently updating
connection and sign-on parameters, applying alternate Web site URLs, and invoking custom
attributes. The PeopleCode programs you create for the MIP will use the information in the
profile to configure and manage its interactions with the merchant.

To create a new merchant profile:

1. Select Go, PeopleTools, Utilities, Use, Merchant Profile, Merchant Profile, then Add a new
record.

The new merchant ID you enter must be upper case and no longer than 30 characters.
2. On the Merchant Profile page, select the Merchant Enabled check box.

MIPs using this profile won’t retrieve authentication parameters unless this box is selected.
3. Enter a Description and Short Description of the merchant.

4. Enter contact information in the Relationship Manager, Relationship Manager Email, and

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-21

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Relationship Manager Phone fields.

Get this information from your merchant; it’s for your convenience. The relationship
manager is the merchant’s support representative.

@ If the merchant has a different relationship manager for each service it provides, you may
want to create a separate profile for each service.

5. Click Save to save the new profile.

@ For more information about the Merchant Profile page, see Merchant Profile Page.

Set Up Connection and Authentication Parameters

This information is needed by the Single Sign-On Framework to connect and establish a session
on the merchant’s Web site. If the Merchant Authentication parameters vary depending on the
service provided, you’ll need to create a separate profile for each service.

To set up connection and authentication parameters:

1. On the Merchant Authentication page, select the Merchant User ID Type expected by the
merchant Web site.

Obtain this information from your merchant. This selection will have no effect if the
merchant doesn’t require a merchant user ID.

@ If the merchant expects a Merchant User ID Type that can’t be generated by one of the
available choices, select an available choice for now. You’ll use PeopleCode to establish the
correct Merchant User ID during a later procedure.

2. Enter the Company ID and Company Authentication Token that the MIP will use for sign-on.

This is your company’s sign-on password; obtain it from your merchant. When you tab out
of the Company Authentication Token edit box, a Confirm edit box will appear.

3. Retype the Company Authentication Token in the Confirm edit box.

4. Enter the complete HTTP URL that the MIP will use as the default initial point of contact
with the merchant Web site.

This will probably be the sign-on URL—obtain this information from your merchant.

5. Click Save to save the modified profile.

2-22 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

[0

For more information about the Merchant Authentication page, see Merchant Authentication
Page.

Specify Business Interlink Information

Although you don’t need to enter anything on the Merchant BI Overrides page to develop a
working MIP, configuring its business interlinks on this page is advisable for several reasons:

* You can manage your MIP and its constituent elements through a single component.

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

® You can override the default settings for a business interlink, and you can change the overrides

at any time without altering your PeopleCode.

Follow this procedure for each business interlink that will be used by the MIP.

To specify a business interlink:
1. On the Merchant BI Overrides page, enter the name of the Business Interlink.

Use the Business Interlink edit box prompt button to select a business interlink definition

from the list of available definitions. The business interlink’s parameter names and default

values will appear in the Business Interlink Settings grid.

2. Select the Sign-On Business Interlink check box if the displayed business interlink will be

used to sign on to the merchant Web site.

At most, one business interlink can be designated as the Sign-On Business Interlink for your

MIP.

3. Enter a new value for each Parameter Value you wish to override.

If your MIP requires parameter values different from the business interlink’s default settings,

the Business Interlink Settings grid enables you to specify those values without interfering

with the defaults.
4. Select the Override check box for each parameter you wish to override.
5. Clear the Override check box for each parameter you don’t wish to override.

6. Click Save to save the modified profile.

Only the grid rows with a selected Override check box will remain on the page, and the MIP

will use their parameter values in place of the business interlink’s default settings.

For more information about the Merchant BI Overrides page, see Merchant BI Overrides
Page.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION

2-23

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Specify Alternate Merchant URLs by Category

Follow this procedure if your MIP will connect to the merchant at a different Web site URL for
each transaction. Follow the procedure once for each URL.

To specify a merchant category and URL:

1. On the Merchant Category page, select a category you want to use.

2. The category name and description should reflect the types of transaction they represent.

3. Enter the complete Merchant Website URL to associate with the selected category.

4. Click Save to save the modified profile.

@ For more information about the Merchant Category page, see Merchant Category Page.

Specify Application Attributes

Adding information to the Application Attributes page is necessary only if you want to apply
extra criteria to your MIP that you can use for your own purposes. These criteria are stored as
name/value pairs.

To specify an application attribute:

1. On the Application Attributes page, if an empty row isn’t available in the Application
Attributes grid, click the Plus button to add a new row.

2. Enter a new uppercase Attribute Name.
The attribute name should reflect type of information it represents.

3. Enter the uppercase Attribute Value you wish to associate with the Attribute Name you
entered.

4. Click Save to save the modified profile.

@ For more information about the Application Attributes page, see Application Attributes
Page.

Build or Modify the Application Page

@ For more information, see Application Designer.

2-24 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Create the MIP PeopleCode

The exact composition of your MIP PeopleCode will depend on:

e The type of sign-on and account terms required by the merchant.

The business interlinks your MIP uses.

The number of different transactions your MIP conducts.

The level of session management your MIP requires.
e How your users will interact with your MIP.

The following examples demonstrate many of the basic features you’ll include in your merchant
integration PeopleCode programs, with an emphasis on the sign-on task. Non-sign-on
transactions may use a different business interlink definition, design time plug-in, or run-time
plug-in, and their PeopleCode won’t include any of the sign-on and authentication elements.

@ The code fragments in this section may not comprise a complete MIP PeopleCode program,
and code examples aren’t necessarily in the order in which you’ll want to use them in your
program.

Declare the Merchant Single Sign-On Functions

Declare Function CreateSessionInformation PeopleCode
PSFUNCLIB PTIC.MRCHSIGNONFNCTN FieldFormula;

Declare Function GetAuthenticationParms PeopleCode
PSFUNCLIB PTIC.MRCHSIGNONFNCTN FieldFormula;

Declare Function InsertSessionData PeopleCode PSFUNCLIB_ PTIC.MRCHSIGNONFNCTN
FieldFormula;

Declare Function GetSessionData PeopleCode PSFUNCLIB PTIC.MRCHSIGNONFNCTN
FieldFormula;

Declare Function DeleteSessionData PeopleCode PSFUNCLIB PTIC.MRCHSIGNONFNCTN
FieldFormula;

@ For more information about these functions, see Single Sign-On PeopleCode Functions.

Declare Data Objects
The global rowset object must be called &SessionInformation:

/* Global Rowset Object */

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-25

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Global Rowset &SessionInformation;

/* Local Record Objects */
Local Record &AuthParms;
Local Record &SessionDatalnsrt;

Local Record &SessionDataGet;

Define the Sign-On Function

A sign-on function is not required, but the following example code shows how to use the Single
Sign-On functions and data structures. The details of this function depend very much on the
specifics of your MIP and the requirements imposed by the merchant. It calls a sign-on business
interlink, which could be a custom business interlink, or a business interlink based on
HTTPEnable.dll, which is recommended. The function’s parameters are the return values from
the GetAuthenticationParms function, and it returns a record containing session information
received from the merchant system.

@ You can use some parts of this sign-on function as the basis for PeopleCode for other
transactions.

Function SignOn (&MerchantID, &MrchUserID, &CompanyID, &Token, &SignOnURL,
&MerchantURL) Returns Record

&ReturnValue = CreateRecord (Record.PSSESSIONDATA) ;

&ReturnValue .MERCHANTID.Value = &MerchantID;

Instantiate and configure the business interlink object

If the parameters passed to this function are the values returned from the GetAuthenticationParms
function, the name of the business interlink you provide here must match the one selected as the
Sign-On Business Interlink in the merchant profile:

&SIGNON BI = GetInterlink (Interlink.MYSIGNONBI) ;

Because the GetAuthenticationParms function automatically returns any override value for the
URL location of the sign-on business interlink, you can assign that value (if it exists) from the
&SignOnURL parameter passed to this function:

&SIGNON BI.URL = &SignOnURL;

GetAuthenticationParms also returns the value of the Merchant Web site URL field from the
Merchant Authentication page, so if the business interlink has a MerchantURL parameter (as

2-26 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

those used for delivered MIPs do), you can override its default value by assigning the value from
the &MerchantURL parameter passed to this function:

&SIGNON BI.MerchantURL = &MerchantURL;

If your MIP needs to temporarily override the business interlink’s default settings, you can
retrieve those settings from the merchant profile’s PSMERCHBIPARMS record and apply them
to the business interlink object. Here we apply the override value for the User DN parameter:

&BIName = "MYSIGNONBI";
&ParameterName = "User DN";

SQLExec ("SELECT IOVALUE FROM PSMERCHBIPARMS WHERE EFFDT = (SELECT
MAX (A.EFFDT) FROM PSMERCHBI A WHERE A.MERCHANTID=:4 AND A.EFFDT <= %DATEIN(:1))
AND IONAME = :2 AND IOSETTINGNAME = :3", %Date, &BIName, &ParameterName,
&MerchantID, &OverrideValue) ;

&SIGNON BI.User DN = &OverrideValue;

If your MIP connects to different Web site URLs depending on merchant category, you can
retrieve the appropriate URL for a category from the merchant profile’s PSMERCHANTCAT
record and use it to override the business interlink’s default merchant Web site URL:

&MerchantCat = "Category0l";
SQLExec ("SELECT MERCHWSITEURL FROM PSMERCHANTCAT WHERE EFFDT = (SELECT
MAX (A.EFFDT) FROM PSMERCHANTCAT A WHERE A.MERCHANTID=:2 AND A.EFFDT <=
$DATEIN(:1)) AND MERCHANTID = :2 AND MERCHANTCAT = :3", %Date, &MerchantID,

&MerchantCat, &MerchCatURL) ;

&SIGNON BI.MerchantURL = &MerchCatURL;

Sign on and obtain session information

UserID, GroupID and AuthToken are the input parameters required by this merchant for sign-on,
so assign them the values of the sign-on function’s parameters:

&SIGNON BI.AddInputRow ("UserID", &MrchUserID, "GroupID", &CompanyID,
"AuthToken", &Token) ;

&EXECRSLT = &SIGNON BI.Execute() ;
If (&EXECRSLT <> 1) Then

/* Signon failed; respond accordingly */
Else

&RSLT = True;

Session_ID and Machine Name are the session parameters returned by this merchant. The Single
Sign-On Framework currently supports only these two fields:

While &RSLT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-27

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

&RSLT = &SIGNON BI.FetchNextRow ("Session ID", &SESSION, "Machine Name",
&MACHINENAME, "return status", &ReturnStatus, "return status msg",
&ReturnStatusMsg) ;

End-While;

End-If;

&ReturnValue .MRCHSESSION.Value = &SESSION;

&ReturnValue.MRCHMACHINENAME.Value = &MACHINENAME;

Return &ReturnValue;

End-Function;

@ The inputs you provide and the outputs returned by the merchant are determined entirely by
agreement between you and the merchant.

Create and Initialize Data Objects and Variables

You’ll know the merchant ID at application design time; &AuthParms holds authentication
information:

/* Use this &MERCHANTID value for all transactions */
&MERCHANTID = "MYMERCHANT'";

&AuthParms = CreateRecord (Record.PSAUTHPARMS) ;

Create the global rowset object &SessionInformation, based on the PSSESSIONDATA record
definition. &SessionDatalnsrt holds session information returned by the sign-on function;
&SessionDataGet holds data retrieved from &SessionInformation:

CreateSessionInformation() ;
/* Use variables based on PSSESSIONDATA for all *

* transactions if you maintain session information */
&SessionDatalInsrt = CreateRecord (Record.PSSESSIONDATA) ;

&SessionDataGet = CreateRecord (Record.PSSESSIONDATA) ;

GetAuthenticationParms retrieves authentication information from the Merchant Profile,
including the URL locations of the sign-on business interlink and the merchant Web site:

&AuthParms = GetAuthenticationParms (&MERCHANTID) ;

2-28 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

If &AuthParms = Null Then
/* Application specific error handling */

End-If;

Sign On and Manage Session Information
Submit the Merchant User ID, Company ID and decrypted authentication token:

&SessionDataInsrt = SignOn (&AuthParms.MERCHANTID.Value,

&AuthParms .MRCHUSERID.Value, &AuthParms.COMPANYID.Value,
&AuthParms .WRKTOKEN.Value, &AuthParms.SIGNONBIURL.Value,
&AuthParms .MERCHWSITEURL.Value) ;

Insert the returned session data into the &SessionInformation object:
If Not InsertSessionData (&SessionDatalInsrt) Then
/* Application specific error handling */
End-If;
Retrieve session data from the &SessionInformation object, based on merchant ID:
/* Use &SessionInformation to determine the MRCHSESSION *
* and MRCHMACHINENAME values for all transactions */
&SessionDataGet = GetSessionData (&MERCHANTID) ;
If &SessionDataGet = Null Then
/* Application specific error handling */
End-If;

You may want to eliminate information about a merchant session the current user has
completed—delete a session row from the &SessionInformation object, based on merchant ID:

If Not DeleteSessionData (&MERCHANTID) Then
/* Application specific error handling */

End-If;

Use Application Attributes

One possible use for application attributes is to store the meanings of arbitrarily named data items
used by the merchant so they can be referenced with more understandable names that you assign
to them. For example, if the “application developer” skill is represented on the merchant site by
the code SKILLRECRUITO02, you could store the code as the more understandable application
attribute APPDEV. This example retrieves the code so you can submit it to the merchant for a
search:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-29

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

/* Retrieve the value of the APPDEV attribute to use *
* as the business interlink’s SkillCode parameter */

&AppAttrName = "APPDEV";

SQLExec ("SELECT MRCHAPPATTRVALUE FROM PSMERCHANTAPP WHERE EFFDT = (SELECT
MAX (A.EFFDT) FROM PSMERCHANTAPP A WHERE A.MERCHANTID=:2 AND A.EFFDT <=
$DATEIN(:1)) AND MERCHANTID = :2 AND MRCHAPPATTRNAME = :3", %Date, &MerchantID,

&AppAttrName, &AppAttrValue) ;

&SIGNON BI.SkillCode = &AppAttrValue;

Implementing an MIP

2-30

In this section, we assume you’ve determined which merchant services you want to make
available to users of your PeopleSoft application, and we describe how to implement the
Merchant Integration Points that provide those services.

Depending on the MIP you’re implementing, you may also need to be familiar with PeopleSoft
Security.

Implementation Tasks

If you developed a custom MIP for your PeopleSoft application, you may have already
completed one or more of the tasks listed below. All three tasks are necessary, so you can
use this section as a checklist for your custom MIP.

Implementing an MIP involves the following tasks:

1. Activate the merchant account—establish an account for your organization with the
participating merchant whose services you want to use.

2. Configure the Merchant Profile—use the appropriate Merchant Profile pages to configure and
enable the MIP that provides access to the merchant services.

3. Manage user access to merchant services—configure your application’s security to provide
appropriate user access to the part of your application that uses the MIP.

When you complete all implementation tasks, your authorized users will be able to use the MIP.

Implementing MIPs Delivered with Your PeopleSoft Application
MIPs delivered with PeopleSoft applications vary widely with respect to the way you should

complete the implementation. An MIP with a simple purpose, minimal security concerns, or a
highly automated setup procedure may require little fuss on your part to become operational. An

MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

MIP with high security requirements or a wide range of possible configurations may involve
contacting the merchant, modifying the merchant profile, or restricting user access to certain
application pages.

Your application documentation is your primary source of information about implementing its
MIPs. You may not need to use this chapter at all, so refer to your application PeopleBook first.

Activate the Merchant Account

The procedure for activating your account varies from merchant to merchant, and may be
required before you configure the MIP, after you enable the MIP, or as part of the initial
connection process with the merchant. See your application documentation for details about the
relevant MIP before proceeding.

@ If you’re implementing an MIP you developed to enhance your PeopleSoft application, you
should have already established and activated a merchant account as part of that process.

When you activate your account, you may receive any of the following:

e A company ID and authentication token (password) for signing on to the merchant Web site.
¢ Information about the merchant’s relationship manager (account contact).

e A Web site URL the MIP should use to connect to the merchant.

This information should be added to the MIP’s merchant profile.

@ For more information about adding account information to the MIP, see Configure the
Merchant Profile.

Configure the Merchant Profile

When you install your PeopleSoft application, all the elements that support the MIPs delivered
with the application are deployed and ready for use, including business interlink or application
message definitions, business interlink plug-ins, page controls, a merchant profile, and
PeopleCode that manages those elements.

@ Your application may require other configuration steps for this MIP. Refer to your
application documentation for details.

PeopleSoft’s MIPs are delivered with generic connection, security and account information
populating their merchant profiles. This information may not be accurate with respect to your
company, so you must update it for the accounts you set up. In most cases, configuring an MIP

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-31

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

requires only that you modify the MIP’s merchant profile with information specific to your
company. The modifications required for some MIPs may be minor, while for others they may be
major. You may also need to enter some of the information before establishing an account with
the merchant, then add the rest after establishing the account.

Because the merchant profile is effective-dated, you should add a new row to the Merchant
Profile component, which will acquire the values of the displayed row. You can then modify the
new row with your company’s information.

@ Refer to your application documentation to determine which modifications to make and
when. The modifications may include any of the following items in the Merchant Profile
component.

Modifying the Merchant Profile Page

To modify a merchant profile:

1. Select Go, PeopleTools, Utilities, Use, Merchant Profile, Merchant Profile, then open the
merchant profile.

2. Create a new effective-dated row if necessary.

3. Select the Merchant Enabled check box.

4. Enter the relationship manager’s name, email address and telephone number.
5. This information is for your reference; the MIP will work without it.

6. Click Save to save the modified profile.

@ For more information about the Merchant Profile page, see Merchant Profile Page.

Modifying the Merchant Authentication Page

To modify merchant authentication parameters:

1. Select Go, PeopleTools, Utilities, Use, Merchant Profile, Merchant Authentication, then open
the merchant profile.

2. Select the appropriate User ID Type for the MIP.
This may already be correctly set; see your application documentation for more information.

3. Enter the Company ID and Company Authentication Token that the MIP will use for sign-on.

2-32 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

This is your company’s sign-on password; obtain it from your merchant. When you tab out
of the Company Authentication Token edit box, a Confirm edit box will appear.

4. Retype the Company Authentication Token in the Confirm edit box.
5. Enter the Merchant Website URL to which the MIP should connect.

Depending on the scope and terms of your account, the merchant may want to direct your
users to a URL specifically designed for your company. This may already be correctly set;
see your application documentation for more information.

6. Click Save to save the modified profile.

@ For more information about the Merchant Authentication page, see Merchant Authentication
Page.

Modifying the Merchant Bl Overrides Page

Usually, this page requires no modification when implementing an MIP.

@ For more information about the Merchant BI Overrides page, see Merchant BI Overrides
Page.

Modifying the Merchant Category Page

The MIP may be designed to connect to a separate Website URL for each category of transaction.
Refer to your application documentation; if it indicates that the MIP uses such separate URLSs,
and the merchant has provided you with such URLSs specifically designed for your company,
follow this procedure for each listed category.

To modify merchant categories:

1. Select Go, PeopleTools, Utilities, Use, Merchant Profile, Merchant Category, then open the
merchant profile.

2. Select a merchant category row.
3. Enter the correct Merchant Website URL for the displayed merchant category.

4. Click Save to save the modified profile.

@ For more information about the Merchant Category page, see Merchant Category Page.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MERCHANT INTEGRATION 2-33

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Modifying the Application Attributes Page

Usually, this page requires no modification when implementing an MIP.

@ For more information about the Application Attributes page, see Application Attributes
Page.

Manage User Access to Merchant Services

Merchant integration is achieved with an authorized merchant account accessed through an
application page. The users don’t have to know any merchant account IDs or passwords,
therefore you’re requiring only a single PeopleSoft sign-on by each user.

The set of available merchant integrations can vary from user to user at the same site in effect, but
not in fact. When you enable an MIP, it’s available to all of your PeopleSoft users, but you can
control access to merchant services in two ways:

¢ Using PeopleSoft navigation restrictions.

Your PeopleSoft application applies its security settings to your users’ PeopleSoft roles,
which determine their access to specific application pages. You can effectively use roles to
control access to the merchant by controlling access to application pages containing the
relevant merchant links and content. Users without access won’t be able to navigate to those
pages. This is a standard PeopleSoft security feature.

@ For more information about controlling user access to pages, see Security.

o Using the merchant’s account access.

If a component or page provides other functionality in addition to a merchant service, you
may wish to give some users access to the non-merchant functionality, but not to the
merchant services. Most merchants should be able to provide access to only those users you
specify, based on the merchant user ID type defined in the merchant profile. An unauthorized
user can trigger a sign-on to the merchant site, but can’t use the merchant’s services. Refer to
your application documentation and the merchant to determine whether you can manage user
access in this way.

2-34 MERCHANT INTEGRATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 3

The PeopleSoft APl Repository

The PeopleSoft API Repository allows PeopleCode and third party integrators to discover the
internally available classes, methods, and properties provided by PeopleSoft for integration. The
Repository is useful to third-party integrators who integrate in a generic fashion: middleware
providers, testing tool providers and automated documentation providers.

The PeopleSoft API Repository is not a necessary interface for integrators who integrate at the
business rule level, such as integration with a Expense Report, and so on. Those integrators
should use Component Interfaces or Business Interlinks.

Using the Repository

The major job of the Repository is to describe the available PeopleSoft APIs. It provides a
number of mechanisms to determine the classes available in the API, the properties of each class,
the methods of a class (along with the required parameters), and information concerning which
group a class belongs (known as a Namespace).

The process of determining the information about the API is known as discovery. Third-party
integrators may use information found through discovery to drive generic integration tools.

The Repository is dived into Namespaces. Each Namespace contains a collection of related
classes. Example Namespaces include "PeopleSoft", "ComponentInterface", "Trees", or
"BusinessInterlinks".

A class defines a related set of methods and properties. Using the Repository, you can determine
the methods and properties that are available, and can be used on any object returned by a call to
the PeopleSoft APL. An instance of a class is known as an object.

A property is a data item of an object that has both a Name and Type (string, number, boolean,
etc). Some properties are used for inputing data to a class, some are used for getting data from a
class, some are used for both. Whether a property is used for input or output or both is known as
Usage.

A method is a function you can call on an object. Methods have a Name and a return Type
(string, number, boolean, etc). Methods also have a collection of arguments that must be set prior
to invoking the method. Methods arguments have identical attributes to properties.

The following flow chart shows the different types of objects and collections instantiated from the
Repository:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-1

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

JANUARY 2001

&Rep = &Session.Repository
&BindC = &Rep.bindings

&Bind = &BindC.Item(&i)

&NameC = &Rep.namespaces

&Name = &NameC.Item(&i)

&ClassC = &Name.Classes

&Class = &ClassC.Item(&i)

&PropC = &Class.Properties

&Prop = &PropC.Item(&i)

Propertylnfo

&MethC = &Class.Methods MethodInfo
Legend
&Meth = &MethC.Item(&1) MethodInfo
|:| Object &PropC = &MethC.Arguments
@ Collection &Prop = &PropC.Item(&i) Propertylnfo
Flow chart for Repository

Example of Using the Repository

The following example gets information for the class ABS_HIST from the Namespace

Component Interface, and writes it to the file BC.TXT.

The following is the complete code sample, followed by the flat file. After that are steps that

explain each line.

Example Using Visual Basic contains an exact copy of this example, done in Visual Basic.

Local ApiObject &MYSESSION;
Local ApiObject &MYCI;
Local string &OutTEXT;
Local File &MYFILE;
&MYSESSION = GetSession() ;

&MYSESSION.Connect (1, "EXISTING",

nn nn
’ ’

&MYFILE = GetFile ("CI.txt", "A");

3-2 THE PEOPLESOFT AP| REPOSITORY

0) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

&NAMESPACES = &MYSESSION.Repository.Namespaces;

&NAMESPACE = &NAMESPACES.ItemByName ("CompIntfc") ;

&OutTEXT = "Namespace = " | &NAMESPACE .Name ;

&MYFILE.WriteLine (&OutTEXT) ;

&CLASSES = &NAMESPACE.classes;

&CLASS = &CLASSES.ItemByName ("ABS HIST") ;

&UtTEXT = " Class: " | &CLASS.Name;

&MYFILE.WriteLine (&OutTEXT) ;

&OUtTEXT = " Methods" ;

&MYFILE.WriteLine (&OutTEXT) ;

&METHODS = &CLASS.methods;
For &K = 0 To &METHODS.Count - 1
&METHOD = &METHODS.item (&K) ;
&OUutTEXT = " " | &METHOD . name " " &METHOD . Type;
&MYFILE.WriteLine (&OutTEXT) ;
&ARGUMENTS = &METHOD.arguments;
For &M = 0 To &ARGUMENTS.count - 1
&ARGUMENT = &ARGUMENTS.item (&M) ;
&OUtTEXT = " " | &ARGUMENT.name | ": " | &ARGUMENT.type;
&MYFILE.WriteLine (&OutTEXT) ;
End-For;

End-For;

&OUtTEXT = " Properties";

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-3

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

&MYFILE.WriteLine (&OutTEXT) ;

&PROPERTIES = &CLASS.properties;

For &I = 0 To &PROPERTIES.count - 1
&PROPERTY = &PROPERTIES.item(&I) ;
&OutTEXT = " " | &PROPERTY . name e " | &PROPERTY . type;
&MYFILE.WriteLine (&OutTEXT) ;

End-For;

&MYFILE.Close () ;

The above code produces the following flat file:

Namespace = CompIntfc

Class: ABS HIST
Methods
Get: Boolean
Save: Boolean
Cancel: Boolean
Find: ABS HIST
GetPropertyByName: Variant
Name: String
SetPropertyByName: Number
Name: String
Value: Variant
GetPropertyInfoByName: CompIntfcPropertyInfo
Name: String
Properties
EMPLID: String
LAST NAME SRCH: String
NAME: String

ABSENCE HIST: ABS HIST ABSENCE HISTCollection

3-4 THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

interactiveMode: Boolean

getHistoryItems: Boolean

componentName: String

compIntfcName: String

stopOnFirstError: Boolean

propertyInfoCollection: CompIntfcPropertyInfoCollection
createKeyInfoCollection: CompIntfcPropertyInfoCollection
getKeyInfoCollection: CompIntfcPropertyInfoCollection

findKeyInfoCollection: CompIntfcPropertyInfoCollection

The following steps go through the code example line by line:

1.

Get a session object.

Before you can access the API Repository, you have to get a session object. The session
controls access to PeopleSoft, provides error tracing, allows you to set the runtime
environment, and so on.

&MYSESSION = GetSession() ;

&MYSESSION.Connect (1, "EXISTING", "", "",6 0);

Open the file

As this text is going to be written to a flat file, the next step is to open the file. If the file is
already created, the new text will be appended to the end of it. If the file hasn’t been created,
the GetFile built-in function will create the file.

&MYFILE = GetFile("CI.txt", "A");

Get the Namespace you want.

Use the Namespaces property on the Repository object to get a collection of all the available
Namespaces. We want to discover information about a Component Interface, so we specify
Complntfc in the ltemByName method to get that Namespace. With ItemByName, you must
specify a Namespace that already exists. You’ll receive a runtime error if you specify one
that doesn’t exist.

&NAMESPACES = &MYSESSION.Repository.Namespaces;

&NAMESPACE = &NAMESPACES.ItemByName ("CompIntfc") ;

Write the text to the file.

Because all the information discovered is being written to a file, the next step is to write text
to the file. This code writes the string Namespace, followed by the name of the namespace, to
the file.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-5

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

3-6

7.

&OUutTEXT = "Namespace = " | &NAMESPACE.Name;

&MYFILE.WriteLine (&OutTEXT) ;

Get the class you want, and write text to the file.

Use the Classes property on the Namespace object to get a collection of all the available
classes. We want to discover information about the Component Interface named ABS HIST,
so we specify that using ItemByName. Then we write that information to the file.

&CLASSES = &NAMESPACE.classes;

&CLASS = &CLASSES.ItemByName ("ABS HIST") ;

&OUtTEXT = " Class: " | &CLASS.Name;

&MYFILE.WriteLine (&OutTEXT) ;

Get the methods, arguments, and write the information to the file.

Use the Methods property on the Class object to get a collection of all the available methods.
After you get each method, and write the information to the file, loop through and find all of
the arguments for the method, then write that information to the file.

&OutTEXT = " Methods";

&MYFILE.WriteLine (&OutTEXT) ;

&METHODS = &CLASS.methods;
For &K = 0 To &METHODS.Count - 1
&METHOD = &METHODS.item(&K) ;
&OutTEXT = " " | &METHOD . name "ty " | &METHOD. Type;
&MYFILE.WriteLine (&OutTEXT) ;
&ARGUMENTS = &METHOD.arguments;
For &M = 0 To &ARGUMENTS.count - 1
&ARGUMENT = &ARGUMENTS.item (&M) ;
&OUtTEXT = " " | &ARGUMENT.name | ": " | &ARGUMENT.type;
&MYFILE.WriteLine (&OutTEXT) ;
End-For;

End-For;

Get the properties and write the information to the file.

THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Use the Properties property on the Class object to get a collection of all the available
properties. Write each property, with its type, to the file. At the end of the program, close the
file.

&OUtTEXT = " Properties";

&MYFILE.WriteLine (&OutTEXT) ;

&PROPERTIES = &CLASS.properties;

For &I = 0 To &PROPERTIES.count - 1
&PROPERTY = &PROPERTIES.item(&I) ;
&OUutTEXT = " " | &PROPERTY .name e o | &PROPERTY . type;
&MYFILE.WriteLine (&OutTEXT) ;

End-For;

&MYFILE.Close() ;

Repository Properties

Bindings
The Bindings property returns a reference to a Bindings collection.

This property is read-only.

Namespaces
The Namespaces property returns a reference to a Namespaces collection.

This property is read-only.

Bindings Collection Properties

Count

This property returns the number of Bindings Properties objects in the Bindings collection object.

@ Note. All repository counts begin at zero, not one.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-7

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

This property is read-only.

Example

&COUNT = &BINDINGS.Count;

Bindings Collection Methods

Item

Syntax

Item (number)

Description

The Item method returns a Bindings object that exists at the number position in the Bindings
collection executing the method

Parameters

number Specify the position number in the collection of the
Bindings object that you want returned.

Returns

A reference to a Bindings object, NULL otherwise.

Example

For &N = 0 to &BINDINGS.Count - 1
&BINDING = &BINDINGS.Item(&N) ;
/* do processing */

End-For;

Bindings Properties

Name
This property returns the name of the object as a string.

This property is read-only.

3-8 THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Bindings Methods

Generate

Syntax

Generate ()

Description

This method is a reserved internal function, and shouldn’t be used at this time.

Namespaces Collection Properties

Count

This property returns the number of Namespaces Properties objects in the Namespaces collection
object.

@ Note. All repository counts begin at zero, not one.

This property is read-only.

Example

&COUNT = &NameC.Count;

Namespaces Collections Methods

Item

Syntax

Item (number)
Description

The Item method returns a Namespaces object that exists at the number position in the
Namespaces collection executing the method

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-9

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Parameters

number Specify the position number in the collection of the
Namespaces object that you want returned.

Returns

A reference to a Namespaces object, NULL otherwise.
Example
For &N = 0 to &NAMESPACES.Count - 1
&NAMESPACE = &NAMESPACES.Item (&N) ;
/* do processing */

End-For;

ItemByName

Syntax

ItemByName (name)

Description

The ItemByName method returns the item specified by name. name is case insensitive.

Parameters

name Specify the name of the Namespaces object that you want
returned. This parameter takes a string value.

Returns

A reference to a Namespaces object, NULL otherwise.

Example

&NAMESPACE = &NAMESPACES.ItemByName ("BusinessComponent") ;

Namespaces Properties

Classes
This property returns a reference to a ClassInfo Collection Properties collection.

This property is read-only.

3-10 THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Example

&CLASSC = &NAME.Classes;

Name
This property returns the name of the object as a string.

This property is read-only.

Namespaces Methods

CreateObject

Syntax

CreateObject (classname)

Description

This method is a reserved internal function and shouldn’t be used at this time.

Classinfo Collection Properties

Count

This property returns the number of ClassInfo Properties objects in the ClassInfo collection
object.

@ Note. All repository counts begin at zero, not one.

This property is read-only.

Example

&COUNT = &InfoC.Count;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-11

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

ClassiInfo Collection Methods

Item

Syntax

Item (number)

Description

The Item method returns a ClassInfo object that exists at the number position in the ClassInfo
collection executing the method

Parameters

number Specify the position number in the collection of the
ClassInfo object that you want returned.

Returns

A reference to a ClassInfo object, NULL otherwise.
Example
For &N = 0 to &CLASSES.Count - 1
&CLASS = &CLASSES.Item(&N) ;
/* do processing */

End-For;

ItemByName

Syntax

ItemByName (name)

Description

The ItemByName method returns the item specified by name. name is case insensitive.

Parameters

name Specify the name of the ClassInfo object that you want
returned. This parameter takes a string value.

Returns

A reference to a ClassInfo object, NULL otherwise.

3-12 THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Example

&CLASS = &CLASSES.ItemByName ("ABS HIST") ;

Classinfo Properties

Documentation

This property returns a description of the class, as a string. This doesn’t actually return all the
documentation for the class, just a brief description.

This property is read-only.

Methods
This property returns a reference to a MethodInfo Collection Methods collection.

This property is read-only.

Name
This property returns the name of the object as a string.

This property is read-only.

Properties
This property returns a reference to a Propertylnfo Collection Methods collection.

This property is read-only.

Methodinfo Collection Methods

Item

Syntax

Item (number)
Description

The Item method returns a MethodInfo object that exists at the number position in the
MethodInfo collection executing the method

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-13

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Parameters

number Specify the position number in the collection of the
MethodInfo object that you want returned.

Returns

A reference to a MethodInfo object, NULL otherwise.

Example

For &K = 0 To &METHODS.Count - 1
&METHOD = &METHODS.item(&K) ;
&OUtTEXT = " " | &METHOD . name R &METHOD . Type;
&MYFILE.WriteLine (&OutTEXT) ;

End-For;

ItemByName

Syntax

ItemByName (name)

Description

The ItemByName method returns the item specified by name. name is case insensitive.

Parameters

name Specify the name of the MethodInfo object that you want
returned. This parameter takes a string value.

Returns

A reference to a MethodInfo object, NULL otherwise.

Example

&METHOD = &METHODS.ItemByName (“Save”) ;

MethodInfo Collection Properties

Count

This property returns the number of MethodInfo Properties objects in the MethodInfo collection
object.

3-14 THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

@ Note. All repository counts begin at zero, not one.

This property is read-only.

Example

&COUNT = &MethC.Count;

MethodInfo Properties

Arguments

This property returns a reference to a Propertylnfo Collection Methods collection.

This property is read-only.

Documentation

This property returns a description of the class, as a string. This doesn’t actually return all the
documentation for the class, just a brief description.

This property is read-only.

Name

This property returns the name of the object as a string.

This property is read-only.

Type

This property returns the type of the method. Valid values include:

Bool

Number

Float

String

Variant

Blob (Binary large object)

any API class name

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

THE PEOPLESOFT AP| REPOSITORY

3-15

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

3-16

This property is read-only.

Propertylnfo Collection Methods

Item

Syntax

Item (number)

Description

The Item method returns a PropertyInfo object that exists at the number position in the
PropertyInfo collection executing the method

Parameters

number Specify the position number in the collection of the
PropertyInfo object that you want returned.

Returns

A reference to a PropertyInfo object, NULL otherwise.

Example

For &K = 0 To &PROPERTIES.Count - 1
&PROPERTY = &PROPERTIES.item (&K) ;
&OUtTEXT = " " | &PROPERTY.name ": " | &PROPERTY.Type;
&MYFILE.WriteLine (&OutTEXT) ;

End-For;

ItemByName

Syntax

ItemByName (name)

Description

The ItemByName method returns the item specified by name. name is case insensitive.

THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Parameters

name Specify the name of the Propertylnfo object that you want
returned. This parameter takes a string value.

Returns

A reference to a Propertylnfo object, NULL otherwise.

Example

&PROPERTY = &PROPERTIES.ItemByName (“GetHistoryItems”) ;

Propertylnfo Collection Properties

Count

This property returns the number of Propertylnfo Properties objects in the PropertyInfo collection
object.

@ Note. All repository counts begin at zero, not one.

This property is read-only.

Example

&COUNT = &PropC.Count;

Propertylnfo Properties

Documentation

This property returns a description of the class, as a string. This doesn’t actually return all the
documentation for the class, just a brief description.

This property is read-only.

Name
This property returns the name of the object as a string.

This property is read-only.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-17

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Type

This property returns the data type. Valid values are:

e Bool

e Number

e Float

e String

e Variant

¢ Blob (Binary large object)

e or any API class name.

This property is read-only.

Usage

This property returns a number that describes which direction the specified property (or
argument) can be passed. The valid values are:

Value Description

0 Can be passed into PeopleSoft API

1 Can be passed out of PeopleSoft API

2 Can be passed either into or out of PeopleSoft API

This property is read-only.

Example Using Visual Basic

The following example gets information for the class ABS _HIST from the Namespace
Component Interface.

Private Sub Commandl Click()

IEE S S S S SRS E LSS SRR RS RS E SR SRS EEEE R EEEEREEEE RS

'* TacDemo: Example Repository Usage from Visual Basic

1%

'* Copyright (c) 1999 PeopleSoft, Inc. All rights reserved.

IEE S S S S SRS LSS SRS RS S S SR SRR SRR LR EEEEREEEE RS

3-18 THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

' Declare variables
Dim oSession As New PeopleSoft PeopleSoft.Session
Dim oPSMessages As PSMessageCollection

Dim oPSMessage As PSMessage

' Establish a PeopleSoft Session

nStatus = oSession.Connect (1, "//PSOFT0070698:9001", "PTDMO",

' Enable error-handler

On Error GoTo ErrorHandler

' Get a Component Interface "shell™"

Dim oNamespaces As NamespaceCollection
Dim oNamespace As Namespace

Dim oClasses As ClassInfoCollection

Dim oClass As ClassInfo

Dim oMethods As MethodInfoCollection

Dim oMethod As MethodInfo

Dim oArguments As PropertyInfoCollection
Dim oArgument As PropertyInfo

Dim oProperties As PropertyInfoCollection

Dim oProperty As PropertyInfo

Set oNamespaces = oSession.Repository.namespaces

Set oNamespace = oNamespaces.ItemByName ("ComponentInterface")

Dim outText As String

outText = "Namespace = " & oNamespace.Name & vbNewLine

THE PEOPLESOFT AP| REPOSITORY

3-19

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

Set oClasses = oNamespace.classes

Set oClass = oClasses.ItemByName ("ABS HIST")

outText = outText & " Class: " & oClass.Name & vbNewLine

outText = outText & " Methods" & vbNewLine

Set oMethods = oClass.methods
For k = 0 To oMethods.Count - 1
Set oMethod = oMethods.Item(k)

outText = outText & " " & oMethod.Name & ": " & oMethod.Type
& vbNewLine

Set oArguments = oMethod.arguments
For m = 0 To oArguments.Count - 1
Set oArgument = oArguments.Item(m)

outText = outText & " " & oArgument.Name & ": " &
oArgument . Type & vbNewLine

Next

Next

outText = outText & " Properties" & vbNewLine

Set oProperties = oClass.properties
For k = 0 To oProperties.Count - 1
Set oProperty = oProperties.Item(k)

outText = outText & " " & oProperty.Name & ": " &
oProperty.Type & vbNewLine

Next

txtResults = outText

3-20 THE PEOPLESOFT AP| REPOSITORY PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

' Leave before we encounter the error handler

Exit Sub

ErrorHandler:
If Err.Number = 1001 Then ' PeopleSoft Error
Set oPSMessages = oSession.PSMessages
If oPSMessages.Count > 0 Then
For i = 1 To oPSMessages.Count
Set oPSMessage = oPSMessages.Item(i)
MsgBox (oPSMessage.Text)
Next i
oPSMessages.DeleteAll
Else

MsgBox ("PS Api Error. No additional information available from
Session log")

End If
Else ' VB Exrror
MsgBox ("VB Error: " & Err.Description)

End If

End Sub

Summary of Repository Methods and Properties

This table contains a list of all the Repository objects plus their methods. Methods that can be
used by a class are marked with an ”X”.

Method Bindings coll Namespace | Classinfo | MethodInfo | Propertyinfo
s collection | collection | collection collection

CreateObject X

(classname)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE PEOPLESOFT AP| REPOSITORY 3-21

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

3-22

JANUARY 2001

Method Bindings coll Namespace | Classinfo | MethodInfo | Propertyinfo
s collection | collection | collection collection

Generate() X

Item(number) | X X X X X

ItemByName X X X X

(name)

This table contains a list of all the Repository objects plus their properties. All properties are

read-only.

Property Rep Binding | Namespace | Classinfo | MethodInfo | Propertyinfo
coll/ coll/ coll/ object | coll/ coll/ object | coll/ object
object | object object

Arguments RO

Bindings RO

Classes RO

Count RO RO RO RO RO

Documentati RO RO RO

on

Generate RO

Methods RO

Name RO RO RO RO RO

Namespaces | RO

Properties RO

Type RO RO

Usage RO

THE PEOPLESOFT AP| REPOSITORY

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 4

Introducing File Layout

A File Layout is a definition (or mapping) of a file to be processed. It identifies where in a file
data fields are located. Once a File Layout has been created, you can write PeopleCode programs
that use the file object, which in turn use the File Layout, to either read data from or write data to
a file.

You don’t have to create a file layout for accessing data in a file. PeopleTools supports reading
and writing to plain text files, as well as to files that have a format based on a File Layout.

o Ifthe file is a plain text file, data is read or written using text strings.
o [fthe file is based on a File Layout, you can use text strings, rowset or record objects.

Using a File Layout greatly simplifies reading, writing and manipulating hierarchical transaction
data with PeopleCode.

@ For more information about using PeopleCode to access a file, see File Class.

Fields: A Breakdown of Files

A file, in the simplest sense, is a collection of fields in a text format. In order to interface with
each field within a file, the field must have a ‘describable’ location. The method of this
'description' falls into one of the following categories based on File Formats:

Fixed Positional Each field has a starting position and a length which is
their descriptive location.

Sequence Positional (CSV) Fields are separated and the order of appearance is their
descriptive location.

Tagged (XML) Each field has predefined tags (or identifiers) surrounding
it.

@ For more information about the different file formats, see Supported File Formats.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING FILE LAYOUT 4-1

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Relationships exist between fields, consequently, there must be a way to logically group fields
into a collection. In the RDBMS world these collections are Tables or Records. Each line within
a file can be considered a collection of fields.

Note. With some file formats, the logical concept of a line may actually span multiple
physical lines, but the concept of collections of fields remains.

This gives us the following structure for a file:

= File Layout
- File Record
File Field

File Layout Structure

where a File Layout is simply a collection of File Records, which in turn are a collection of
Fields, each of which has a describable location.

Note. To preclude confusion with the often used record and field names, we refer to the
collection as a File Record and fields as File Fields when pertaining to a File Layout.

Creating a File Layout in Application Designer

4-2

To create a File Layout, you need to start Application Designer. The following example covers
the easiest case: creating a File Layout from existing record definitions.

To create a new file layout

1. Select File, New, File Layout.

Mew
Hew
= oK
Buziness Process ;I
Field Cancel |
HTHL Catalog hd|

Creating a New File Layout Definition

Click OK to create the new File Layout.

INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

4 File Layout1 [File Layout]

A New File Layout Definition

The default root node is “NEW FILE”. This will change to whatever you name the File
Layout definition when you save the definition. Records in the File Layout can have the same
name as the File Layout, however, each record must have a unique name.

The default file format type is FIXED.
2. Drag or Insert Records.

Records can be dragged and dropped onto the root node or inserted (using Insert, Record).

e Lopout (e Loyo) M=K
A E
EMPL_CHECELIST
@ EMPLID
-~ CHECELIST_DT
@ CHECKLIST_CD
- RESPONSIELE_ID
COMMEMNTS

File Layout Definition with Single Record

The record is used as a template for the File Layout. All fields are automatically expanded.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING FILE LAYOUT 4-3

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

=,

4-4

JANUARY 2001

Important! A record that is dragged and dropped or inserted into a File Layout will only be
used as a template. The record and field names will be copied to the File Record and File
Field names respectively, however, no references are stored concerning the copied
object. A change to the record will not be reflected in the File Layout. File Records and File

Fields are stored within a File Layout only.

3. Order the records (optional).

When a second record is dragged in a File Layout, its location defaults to being a sibling of

the existing File Record.

& CHECKLIST_DT

@ CHECKLIST_CD

& RESPONSIBLE_ID
----- @ COMMENTS

{Z) EMPL_CHKLST_ITM

----- & CHECKUST_DT

----- & CHECKLIST_SEQ
----- & CHKLST_ITEM_CD
----- & BRIEFING_STATUS
----- & STATUS_DT

£f File Layout1 [File Layout) M= B |

File Layout with Two Records

If you want a record to be a child of the previous File Record, select the file record you want
to move, then use the order button with the right arrow on it. The order buttons are located in

the Application Designer tool bar.

Order buttons

The outer buttons (up and down arrows) move the selected element’s order within the File
Layout. The inner two buttons (left and right arrows) change the hierarchy of the selected
element. Both File Records and File Fields may be moved using the order buttons.

INTRODUCING FILE LAYOUT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Ef File Layout1 [File Layout)

CHECKLIST_DT
CHECKLIST_CD

File Layout with Two Records in Hierarchy

Naming File Layouts, Records and Fields

File Layout names can be 30 characters in length, and should follow the PeopleSoft naming
standards. File Record and File Field names can be 15 characters in length, and should follow the
PeopleSoft naming standards.

@ For more information see Naming Records Definitions.

Each File Record within a File Layout must have a unique name. Each File Field within a single
File Record must have a unique name. However, different File Records within the same File
Layout can have fields with the same name.

@ If you use the WriteRecord, ReadRowset or WriteRowset file layout methods for writing
to or reading from records, the application record and the File Record must have the exact
same name. These methods only write to like-named records. If you rename a record after
you use it to create a File Layout definition, in your File Layout definition you will have to
rename your File Record to the exact same name. Because these methods use like-named
records, the same file layout definition can contain more than one record. Records that aren’t
like-named are ignored. Like-named records do not have to contain all the same fields.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING FILE LAYOUT 4-5

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

=,

4-6

Note. If you use the WriteRecord, ReadRowset or WriteRowset file layout methods for
writing to or reading from records, the application record fields and the File Fields must
have the exact same name. These methods only write to like-named fields. If you rename a
field after you use it to create a File Layout definition, in your File Layout definition you
will have to rename your File Field to the exact same name. Fields that aren’t like-named are
ignored. Like-named fields do not have to have the same length. Peoplesoft recommends
that like-named fields be of the same type.

Date, Time, and DateTime Field Considerations

When you insert fields that have a field type of Date, Time or DateTime, the field length is fixed
in the File Layout.

e Date fields have a fixed length of 10
e Time fields have a fixed length of 20
e DateTime fields have a fixed length of 31

This is to follow ISO 8601 standards.

For more information about ISO 8601, see http://www.iso.ch/markete/8601.pdf.

When writing (outputting) a file from Peoplesoft, dates, times, and datetimes will be written in
the correct, specified format.

When using a File Layout to read (input) a file, datetime fields must have the following format:

CCYY-DD-MMTHH :MM: SS.ssssss [+/-hhmm]

If a datetime field does not have this format, a NULL is written to the database, the File Layout's
IsError property is set to True, and the field's EditError property is set to True.

For more information see Handling File Layout Errors.

When using a File Layout to read (input) a file, date fields must be in the same format as
specified by the File Layout. If a date field being read doesn't have the same date format, a NULL
is written to the database, the File Layout's IsError property is set to True and the field's
EditError property is also set to True.

For more information see Handling File Layout Errors.

INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

After you read data in, it's always a good practice to check the EditError flag to see whether there
were any errors reading the data.

Considerations for Using Dates with the ReadRowset Method

Single digits in dates in the form MMDDYY or MMDDYYYY must be padded with zeros. That
is, if the date in your data is February 3, 2000, the form must be:

02/03/2000
or
02/03/00
The following is net valid.

2/3/00

Customizing the File Layout

Each node in the File Layout (the File Layout, every File Record and every File Field) has an
associated property dialog box. On these dialog boxes you can specify the format, the length and
type of each node.

Some properties are only available for a specific File Layout Format. For example, a File
Definition Tag is only available for a file with XML specified as the File Layout Format. When a
property is only available for a particular format, that is noted in parenthesis after the name of the
property (that is, File Definition Tag (XML))

File Layout Properties

The File Layout Properties dialog box contains all information stored at the File Layout (root)
level.

You can access the File Layout properties dialog box using any of the following methods:
¢ By using File, Object Properties

e By pressing ALT+ENTER

¢ By double-clicking on the top most level of a File Layout definition

e By right-clicking on an open File Layout, then selecting Data Object Properties

The General tab of the properties dialog box contains description information for the File
Layout.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING FILE LAYOUT 4-7

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

File Layout Definition Properties

General | Usze |

EMPL_CHECKLIST

Description: ||

LComments:

— Last Updated
[Drate/Time: 04,/11/2000 12:18:04PM
By Operatar: FTDMO

oK I Cancel I

File Layout Definition Properties General Tab

The Use tab of the properties contains specific information for the File Layout.

File Layout Definition Properties

General Use

File Layout Mame: EMPL_CHECKLIST
File Layout Type : CS5Y

File Layaut Format : m
Definition Qualifier : I"—

Definition D elimiter : lm Ix_
File Defirition Tag : li
Buffer Size : lgi

0K I Cancel
File Layout Definition Properties Use Tab

File Layout Format The type of file layout. You can only choose one type per
file layout. Valid values are FIXED, CSV, or XML.

4-8 INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

Definition Qualifier (CSV)

Definition Delimiter (CSV)

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

The qualifier surrounding each field in the file record to
use in this Layout (can be overridden at the File Record
and File Field levels).

The default delimiter between each field in the file record

to use in this Layout (can be overridden at the File Record
level). The default value is Comma. If you specify Other,
a blank field displays, where you can type in the delimiter
you want to use.

@ The Definition Delimiter is overwritten by the Field Delimiter specified in the File Layout

record properties.

File Definition Tag (XML)

Buffer Size (XML)

The XML Tag name associated with this Layout (or
Transaction). This tag can be 30 characters in length. This
tag must be unique in the File Layout.

The size of the input buffer used at runtime. You would
only use this if you want to pre-allocate an input buffer.
Then you should set Buffer Length equal to, or greater
than, the largest record (or rowset) you expect to process.

File Record Properties

The File Record Properties dialog box contains information stored at the File Record level.

You can access the File Record properties by:

¢ Double-clicking on the File Record node

OR

e Selecting the File Record node, right-clicking, then selecting Selected Node Properties.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING FILE LAYOUT

4-9

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

JANUARY 2001

Use I

File Layout Record Properties

File Layaut Mame :

File Layaut Type :

EMPL_CHECKLIST
LSy

File Record Mame :
ID SeqMo:

hax Fec Length :
File Record ID :

1D Start Position :
D Length :
Default Qualifier :
Field Delirniter:
Fecord Tag:

Record Description:

EMPL CHECKLIST

Carmma

IU—
|38—
l—
IU—
IU—
l—
I jv

IEMPL_EHEI:KLIST

u]

ol

Cancel

File Layout Reco

rd Properties

File Record Name

The File Record Name associated with this File Record.
This name will be used when accessing the File Record
from PeopleCode. Every File Record in a File Layout
must have a unique name.

@ Note. If you use the WriteRecord, ReadRowset or WriteRowset file layout methods for
writing to or reading from records, the application record and the File Record must have the
exact same name. These methods only write to like-named records. If you rename a record
after you use it to create a File Layout definition, in your File Layout definition you will
have to rename your File Record to the exact same name. Because these methods use like-
named records, the same file layout definition can contain more than one record. Records
that aren’t like-named are ignored. Like-named records do not have to contain all the same

fields.

ID Seq No. (CSV)

4-10 INTRODUCING FILE LAYOUT

The sequence number of the field that contains the File
Record ID identifier.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Max Rec Length The default maximum length of the combined field sizes
of the record. This value isn’t incremented automatically.
If you add fields to a record, you will need to change this
value to account for the new or changed field(s). You also
need to change this value if you insert a segment then add
fields to that segment.

v Warning! Any inbound or outbound data will be truncated beyond this value.

File Record ID A group of numbers used to identify the File Record. Each
File Record ID must be unique in the File Layout. You
can use this number in processing the file. This number is
automatically written to the file if you use the
WriteRecord or WriteRowset methods and the file type
is FIXED or CSV.

ID Start Position The column or starting position in the File Record where
the File Record ID starts.

ID Length The length of the File Record ID. This number is
automatically generated when you enter the File Record
ID. You can specify a number larger than the number of
characters in a File Record ID, but you can’t specify a
number smaller than the number of characters in the File
Record ID.

Default Qualifier (CSV) The qualifier used for the File Record ID and the default
for fields when no field qualifier is specified. This value
overrides the Definition Qualifier specified in the File
Layout properties dialog box. When you first create a File
Layout, this property is blank.

Field Delimiter (CSV) The delimiter used for all fields in the File Record. This
overwrites the Definition Delimiter specified on the File
Layout properties dialog box.

Record Tag (XML) The XML Tag Name for this File Record. This defaults to
the File Record name.

@ Note. Though each record name in a File Layout must be unique, record tags do not have to
be unique.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING FILE LAYOUT 4-11

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Record Description A description of the record. This is only for your own
documentation purposes.

File Field Properties

The File Field Properties dialog box contains information stored at the File Field level.
You can access the File Field properties by:

¢ Double-clicking on the File Field node

OR

o Selecting the File Field node, right-clicking, then selecting Selected Node Properties.

File Layout Field Properties I

Use

— Field Inheritance
File Layout Mame : EMPL_CHECKLIST

File Layout Type : CSW

Sequence No: 1

Field Mame : Er.,.1|:-|_| D I~ Suppress
Field Type : ICharactel vI ™ UppeiCase

Decimal Pozition: Ig

Field Length : 1 Propagate
Start Position : 1 ﬁl IEI jl 2'

Field Qualifier :

Field Tag: EMPLID
Strip Characters I ™ Triim Spaces
Field Description: I ﬂ

Field Inheritance
Record hlame : [pERSONAL_DATA =l
Field Mame : IEMF'LID j

Default Value : I

0k I Cancel

File Layout Field Properties

Most of the individual properties are usable by all field types. However, some are specific to a
particular field type (for example, UpperCase is only applicable for character fields, while Date
Separator is only applicable for date fields, and so on.) The above screen shot is for a character
type of field. However, the following description will go through all the possible properties.

4-12 INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

Field Name

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

The File Field Name associated with this File Field. This
name will be used when accessing the File Field from
PeopleCode. Every field within a File Record must have a
unique name: however, two different File Records can
contain the same File Field.

@ Note. If you use the WriteRecord, ReadRowset or WriteRowset file layout methods for
writing to or reading from records, the application record fields and the File Fields must
have the exact same name. These methods only write to like-named fields. If you rename a
field after you use it to create a File Layout definition, in your File Layout definition you
will have to rename your File Field to the exact same name. Fields that aren’t like-named are
ignored. Like-named fields do not have to have the same length. Peoplesoft recommends
that like-named fields be of the same type.

Suppress

Upper Case (Char)

Field Type

Whether or not to suppress reading or writing this field.
Primarily this is used with CSV file types, when you want
to suppress reading in a select field during inbound
processing. (With Fixed file types, you can specify a start
position and length beyond the field and thereby "skip" it.)

This converts lowercase text to upper case during inbound
processing. This is primarily used when customer data
may be in lowercase, and PeopleSoft requires the data to
be in uppercase.

The data type of the File Field. The valid field types are
available in a drop-down list.

@ For more information about data types, see Creating Field Definitions.

Date Format (Date)

Date Separator (Date)

Decimal Position

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

The format of the date, such as MMDDYY, DDYYMM,
and so on. The valid date formats are available in a drop-
down list.

The character used to separate date values. Default value
is /.

The number of decimal positions (to the right) of the
decimal point. This property is only valid for fields
defined as Number or Signed number.

INTRODUCING FILE LAYOUT

4-13

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

@ Note. You’re only allowed 31 characters for Decimal Pos (31 characters plus a decimal
point.)

Field Length The length (maximum number of characters) of this field.

@ Note. You’re only allowed 32 character precision for number and signed number fields, that
is, a total of 32 characters both to the right and left of the decimal. Other fields, such as
character fields, can have a longer length.

@ Note. You will not be able to set the field length for fields of type Date, Time, and
DateTime. These field lengths are automatically set to the ISO standards for such fields.

Start Position (FIXED) The starting position (column) of the field within the File
Record.

@ Important! If you specify a Start Position for a field that overwrites a previous field, no
data will be written to the file. Use Propagate to change the Start Positions for your File
Fields.

Propagate (FIXED) If a field position or length is changed, an amount may be
entered here to increment (positive number) or decrement
(negative number) the current field and all fields before it
(<<<) or after it (>>>).

Field Qualifier (CSV) The qualifier for the field, that is, the character that
surrounds this field, separating it from other fields.
Specifying this value will overwrite the value specified in
the File Layout properties and File Record properties.

Field Tag (XML) The XML Tag Name to be used around the field. The
default value is the name of the field.

@ Note. Though each field name in a File Record must be unique, each Field tag does not have
to be unique.

4-14 INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Strip Chars Specify any characters to be removed from the input
buffer. You would use this to preprocess input strings. For
example, if this field in your input file contains hyphens,
but you want to remove the hyphens prior to doing any
processing on the field, you could enter a hyphen here,
and it would be stripped out while being read. You can
specify more than one character to be stripped out. Be
sure to not separate the strip characters. For example, the
following will strip out all hyphens and semi-colons:

b

The following will strip out all hyphens, semi-colons and

spaces:

5 -

Field Description A description of the field. This is for your own
documentation purposes.

Field Inheritance Inheritance allows the field’s value to be derived from the
specified Parent File Record and Field. If you’re writing to
a file, specifying a record and field name means the value
will only be written in the parent File Record, not the child
(inheriting) File Record (that is, the value won’t be written
more than once to a file.)

For example, the following file sample shows both the
EMPLID (8113) and EFFDT (08/06/1999) written only
once to a file, though these fields are repeated in the third
File Record (with File Record ID 102.)

100 8113 Frumman, Wolfgang
101 08/06/1999 000001 8219 Going to London office
102 100 000015 I 08/06/1999
102 200 000030 I 08/06/1999
102 300 000009 I 08/06/1999
102 400 000001 I 08/06/1999
102 500 000011 I 08/06/1999
Record Name Specify the name of the record you want to inherit a value
from.
Field Name Specify the name of the field on the record that you want

to inherit a value from.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING FILE LAYOUT 4-15

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Default Value If no value is present, the value specified here will be
used.

Using Segments instead of Records

Instead of inserting records, you can insert segments and fields into a record. What is the
difference between a record and a segment? When you insert a record into a File Layout, all the
fields are inserted, along with additional information. A segment is the exact same as a record,
only it contains no information. You have to add all the information yourself. After you add the
information to a segment, you can treat it just like any other file record.

For example: suppose in the file provided to you, some of the File Records contain new data, and
need to be inserted, while others contain data that’s updating existing data. You could add a
segment with a single field that indicates whether the Field Record was new or changed (like
AUDIT ACTION). When you process the file, you can use PeopleCode to look at this field, and
based on its value, do the appropriate action.

Another example: suppose you wanted to include two fields from the PERSONAL DATA table
in your file, but not all the other fields. You have two choices: insert the PERSONAL DATA
table and manually delete all the unwanted fields, or insert a segment, name it

PERSONAL DATA, then insert the two fields you want.

File Layout Example
The following example will illustrate creating a File Layout that could be used with the
ABSENCE HIST record. In addition, this example will insert a segment used to track
AUDIT ACTION, with the following meanings:
e A - Row inserted

e C - Row changed (updated), but no key fields changed.

To create a File Layout definition

gl ABSENCE_HIST (Record)

Record Fields IRgcm{ Type]

Hum Field Hame Type | Len | Format Short Hame Long Hame

1 |EMPLID) ErmpllD

2 |ABSEMCE_TYPE Char 3 Upper | Type Abzence Type

3 |BEGIN_DT Date 10 Eeqin Date Begin Date

4 |RETURH_DT Date 10 Fietumn Dt Fetumn Date

5 |DURATION_DAYS Mbr 3 Days Duration [Days)

E |DURATION_HOURS Mbr 11 Hourg Diuration [Hours)

7 |REASON Char 0 |Miwed |Reason Reazan

8 |PalD_UMPaID Char 1 Upper Faid/Unpd Paid/ | Jrnpaid

9 |EMPLOYER_APPROVED Char 1 Upper |&pproved Employer-fpproved
10 |COMMEMTS Long 0 Comment Comment

ABSENCE_HIST record definition

4-16 INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

For simplicity, let’s say each row in our data file has the following structure:

888 A
000 8001
888 A
000 8001
888 A
000 8001
888 A
000 8516
888 C
000 8516
888 A
000 8516
888 A
000 8553
888 A
000 8553
888 A
000 8553
888 A

000 8553
required

888 C
000 8553
888 A
000 8553
888 A
000 8553

888 C

VAC

VAC

VAC

MAT

SCK

VAC

JUR

MAT

MAT

PER

SCK

SCK

SCK

1981-09-12

1983-03-02

1983-08-26

1986-06-06

1988-08-06

1987-07-14

1990-12-12

1992-02-20

1994-08-19

1993-04-15

1987-01-28

1988-08-02

1995-09-12

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

1981-09-26

1983-03-07

1983-09-10

1986-08-01

1988-08-07

1987-07-28

1990-12-17

1992-10-01

1995-03-01

1993-04-19

1987-01-30

1988-08-03

1995-09-13

14

13

56

14

224

194

.0

Local Jury Duty P N

Maternity Leave U N

Maternity

Hong Kong Flu

Sick

U N Personal Day

P N
P N
P N

INTRODUCING FILE LAYOUT

4-17

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

000 G001 MAT 1991-07-02 1991-09-28 88
will be paid as 80% of Claudia's current salary.

JANUARY 2001

3-month Maternity P Y Maternity

000 is the File Record ID for ABSENCE_HIST and each field appears in the same order as in the
ABSENCE_HIST record. 888 is the File Record ID for the CHANGE ACTION segment.

@ The end of file (EOF) character must be on a separate line and not on a line containing data
for any incoming file, regardless of file type. Each data line needs to be terminated with an

end of line (EOL) character, which is different than an EOF.

This file is of type FIXED.

1. Use the ABSENCE HIST record definition as a template for the File Layout.

Create a new File Layout, then drag the ABSENCE HIST record into the open File Layout.

----- & BEGIN_DT

----- & RETURMN_DT

----- & DURATION_DAYS
----- & DURATION_HOURS

----- & EMPLOYER_&APPROVED
----- & COMMENTS

File Layout with ABSENCE_HIST record

2. Save the File Layout.

We’ll save it with a name of ABS_HIST.

4-18 INTRODUCING FILE LAYOUT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Efi ABS_HIST [File Layout)

----- @ HBSEMCE_TWPE

----- & BEGIN_DT

----- & RETURM_DT

----- & DURATION_D&YS
----- & DURATIOM_HOURS

----- & EMPLOYER_APPROVED
----- @ COMMENTS

[(O] x]

File Layout saved as ABS_HIST

Notice that the first node has changed from NEW FILE to ABS_HIST.

3. Change the File layout properties.

Double-click on the top-most node in the File Layout, ABS HIST, to display the File Layout
properties. Fill in a short and long description of the file layout you're creating. For this
example, we're creating a FIXED file layout, so you don't need to make any changes on the

Use tab.

4. Change the File Record properties.

Double-click on the ABSENCE HIST File Record to display the File Record Properties.
Enter a Record ID of 000, a Starting Position of 1 and a Length of 4:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING FILE LAYOUT 4-19

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

File Layout Record Properties

Use I

File Layout Mame : ABS_HIST
File Layout Type : FIXED

File Record Mame : IABSENCE_H|5T

Fecord ID SeqMa:

ID
Max Rec Length l;fg—
ID 0

File Record I : 0

ID Start Position : |4—
Fecord ID Length : IE—
Diefault Hualfisr : l—
Field Delimiter: m

Fecord Tag: IABSENCE_HIST

Record Description:

]

oK I Cancel |

File Layout Record Properties Example

@ Note. If you forget to update the Record ID Length field you’ll receive an error message.

When you click OK, you’ll get the following message:

Application Designer

@ ’ Increment start positions for all fields? (118,14)
Explain |

Increment Field Position message

Click Yes. This will automatically increment the start position numbers for every field to take
the length of the file Record ID you just added into account. If you don't click yes, you will
have to manually increment the start position for all your fields.

We have just created the File Record ID for the ABSENCE_HIST record (bold text from our
sample file above):

000 8001 VAC 1981-09-12 1981-09-26 14 .0 PY

000 8001 VAC 1983-03-02 1983-03-07 5 .0 PY

4-20 INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

@ Note. If you use the WriteRecord, ReadRowset or WriteRowset file layout methods for
writing to or reading from records, the application record and the File Record must have the
exact same name. These methods only write to like-named records. If you rename a record
after you use it to create a File Layout definition, in your File Layout definition you will
have to rename your File Record to the exact same name. Because these methods use like-
named records, the same file layout definition can contain more than one record. Records
that aren’t like-named are ignored. Like-named records do not have to contain all the same

fields.

5. Change the File Field Properties.

When a record definition is used as a template for a File Layout, each field’s starting position
is defaulted based on the order it appears in the record as well as its length.

Double-click on the EMPLID File Field to display its Properties:

Use

~ Field Inheritance

File Layout Field Properties I

File Layout Mame : ABS_HIST
File Layout Type : FIXED
Sequence Mo : 1
Field Marne : [EmPLD | [Suppress
Figld Type : m ™ UpperCase
Decimal Pos: .
Field Length : 1 Propagate
Start Position : IE— lrﬁl lu_j il
Field Clualifier : "
Field Tag: EMPLID
Strip Characters ™ Trim Spacesz
Field D escription: ﬂ
Field Inheritance
RecordName - [0 NOT-INHERIT =
Field Mame : I j
Default Value : I
0K I Cancel

File Layout Field Properties Example

Notice that the Start Position is automatically incremented to 5 (since the File Record ID is 4
character long.) However, in the example there’s an extra space between the end of the File
Record ID and the first field. Therefore, you need to change the start position of this field,
and all the fields after this field. To do this:

e Click once on the up arrow under Propagate, to change that number from 0 to 1

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING FILE LAYOUT 4-21

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

e Click the button with the arrows pointing right (>>>).
This will increment the starting position of this field and all fields following this field by 1.
6. Adjust other fields (optional)

If you look carefully at the record definition for ABSENCE_HIST, you’ll notice that the last
field (COMMENTYS) has a length of 0. This is because it's a field of type Long.

@ All Long fields have a default length of 0.

Because the format for this File Layout is FIXED, you have to change the Field Length of
that field to something other than 0 if you want to pick up the data for that field.

File Layout Field Properties I

Use

— Field Inheritance
File Layout Mame : ABS_HIST

File Layout Type : FIXED

Sequence No: 10

Field Name : COMMENTS " Suppress
Field Type : lm ™ UppeiCase
Decimal Pos: lgi

Field Length : il Propagate

Start Pogition : an lrﬁl lu_ﬂ 2'
Field Glualifier : m

Field Tag: [COMMENTS

Strip Characters I ™ Trim Spaces
Field Description: I ﬂ

Field Inheritance
Fecord Name: |10 NOT-INHERIT

=l
Field Mame : I j

Default Value : I

()8 I Cancel
Example File Layout Field Properties

You don’t have to propagate this change because this is the last field in the record.
7. Increase the Max Rec Length for the File Record

The Max Rec Length field on the File Record properties sheet does not automatically get
updated to reflect any changes that you may make to a field length. After you change any
field lengths, you must go back and update the Max Rec Length on the File Record property
sheet to the appropriate value.

4-22 INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

8.

Insert a segment.

We want to insert a segment that is a sibling, (that is, at the same level), as the

ABSENCE_HIST record. Insert a segment by selecting Insert Segment from the pop-up

menu, or by going Insert, Segment. The Insert New Segment dialog box is displayed.

Inzert Mew Segment I

File Layout Mame : EMPL_CHECKLIST
File Layout Tppe : CSV

File Record Mame: : ||
ID SeqMa:
Max Rec Length: [o
Fil Record 1D :
1D Start Position:— [4
1D Length :

Default Qualifier :
Field D elirniter : Camma
FRecord Tag :

Record Description:

]JTWW

Cancel |

Inserting New Segment dialog box

Does this dialog box look familiar? It should. It’s identical to the File Layout Record
properties dialog box. Fill in the File Record Name, Max Rec Length, File Record ID, ID
Start Position and Record ID Length attributes. When you click OK, the segment will be

inserted.

CHANGE_ACTION
(2 ABSENCE_HIST

----- & ABSEMCE_TYPE
----- & BEGIN_DT

----- & RETURN_DT

----- & DURATION_DAYS

----- & FAID_UNFAID
----- & EMPLOYER_APPROVED
----- & COMMENTS

Efi ABS_HIST [File Layout) == &= I

File Layout with Inserted Segment

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING FILE LAYOUT

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

4-23

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

9.

Insert a field.

JANUARY 2001

Now we want to insert a File Field into the segment. Insert a field by selecting Insert Field
from the pop-up menu, or by going Insert, Field. The Insert New Field dialog box is

displayed.

Inzert Mew Field I

File Layout Mame : ABS_HIST
File Layout Type . FI<ED

Field M ame : IAUDIT_ACTIDN ™ Suppress
Field Type : ICharacter vl ™ UpperCaze

Decimal Pos: ID—
Field Length : |1—

Start Position : |4—

Field Qualifier : I—

Field Tag: Ii

Strip Characters I ™ Tim Spaces

Field D escription:

Field Inheritance

Record Name: [p0.NOTINHERIT |
Field Mame : I ﬂ
Default Value : I

ok I Cancel |

Insert New Field dialog box

Again, a familiar dialog box! Fill in the Field Name, Field Length, and Start Position of the

new field, then click OK.
ERABS HIST(Feloyow) ____ EEK|

L@ AUDIT_ACTION
= {Z) ABSENCE_HIST

----- @ EMFLID

----- @ ABSENCE_TYPE
----- & BEGIN_DT

----- @ RETURN_DT

----- & DURATION_D&YS

----- & PAID_UNPAID
----- & EMPLOYER_APPROVED
----- & COMMENTS

File Layout with new field added

4-24 INTRODUCING FILE LAYOUT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

10. Save your work.

Be sure to save the changes you've made to your File Layout by going to File, Save, or
clicking on the save icon in the toolbar.

Now that you’ve created and saved a File Layout, you must use PeopleCode to access the
data. File Layouts rely solely on PeopleCode as the engine behind the actual data access and
movement. This powerful interface allows application developers to access data from a file as
they would a message or a panel buffer (scroll). Using methods such as WriteRecord or
ReadRowset there is no need to parse each File Record into fields.

@ For more information see File Class.

Supported File Formats

The following formats are supported by File Layout definitions.

Fixed Format Positional File (FIXED) (this is the default)
Variable Format Delimited File (CSV)

Tagged Hierarchical Data File (XML)

Each File Layout only has one format type associated with it.

Fixed Format Positional File

This is the most common type of flat file currently processed by EDI Manager. Almost all EDI
type processing (as it exists today) utilizes this file type where each data element is oriented by a
fixed, or column dependent, position within the file.

Attribute Description EDI Manager
Equivalent

File The File Format (FIXED). none

Layout

Format

File A group of numbers that can be used to identify the RowlID

Record ID | File Record.

ID Start The column starting position of the File Record ID. Treated as a Field

Position within each Map
(Record) The length of the File Record ID. Treated as a Field
ID Length within each Map
File A user specified name for the File Record. PeopleSoft Record

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING FILE LAYOUT 4-25

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Attribute Description EDI Manager
Equivalent

Record Name

Name

File Field | A user specified name for the File Field. PeopleSoft Record’s
Field Name

(Field) The column starting position of the File Field. Starting Position

Start

Position

Field The length of the File Field. Length of Field

Length

Field The formatting options for both inbound and Based on Field type

Format outbound field processing.

Considerations using FIXED Format
You should be aware of the following when working with files of FIXED format.

o Be careful when you change the length or starting position of any file fields, or if you insert a
new file field between two existing ones. It’s possible to overlay fields. Results are
unpredictable.

e When you insert a record into a File Layout, be sure to check the length of any fields of type
Long. It’s legal for these fields to have a length of 0. You will need to change that length to the
appropriate length (256, generally) if you want that information included in your file.

e Max Record Length is calculated only for file records, and only once, when the file record is
first added to the File Layout. It isn’t dynamically calculated after that. If you add or delete any
file fields, or change the length of any file fields, you will also have to change the Max Record
Length.

e Max Record Length is never calculated for segments. You will always have to total the length
of any file fields for a segment.

Variable Format Delimited File (CSV)

In this type of file, each data element is surrounded with a separator, a delimiter or both. File
Record IDs can be used to determine which table data is moved to or from, however, in most
cases this type of file contains homogenous records.

If your text contained the following, the qualifier would be double quotes () and the delimiter
would be a comma ().

"NAME" , "ADDRESS" , "PHONE"

File Layout definitions store the File Record Identifier (when used) and the relative sequence
number of the field. (In the text example above, “PHONE” would be sequence number 3).

4-26 INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Attribute Description EDI Manager
CSV Equivalent
File Format The File Format (CSV). none
File Record A group of numbers that can be used to identify RowID
D the File Record.
ID Sequence | The sequence number of the Field that contains Treated as a Field
Number the Record identifier. within each Map
Field The qualifier used when processing this file. This | Delimiter
Qualifier can be set at the File Layout, File Record or File
Field level.
Field The delimiter used when processing this file. This | Separator
Delimiter can be set at the File Layout or File Record level.
File Record A user specified name for the File Record. None
Name
File Record A user specified name for the File Field. None
Field
Field Format | The formatting options for both inbound and Based on Field
outbound field processing. type

Considerations using CSV Format

You should be aware of the following when working with files of CSV format.

¢ Both the Definition Qualifier and the Definition Separator accept a blank as a valid value.

e [fa field is NULL, you don't have to use qualifiers. In the following example, Field2 is NULL.

Fieldl, ,Field3,Field4. . .

Tagged Hierarchical Data File (XML)

This type of file contains data represented in a hierarchical or ‘tree’ type structure. A tag
surrounds each data element. A File Record tag might group multiple entries.

File Layout definitions tie the identifier along with parent and child relationships to the File
Record and File Field.

There is no EDI Manager Equivalent for this format.

Attribute

Description

File Format

The File Format (XML).

File Record ID

The Tag Name representing the File Record.

Field Identifier

The Tag Name representing the File Field.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING FILE LAYOUT

4-27

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Attribute Description

Field Format The formatting options for both inbound and outbound field
processing.

File Record A user specified name for the File Record.

Name

Field Name A user specified name for the File Field.

Considerations using XML Format
You should be aware of the following when working with files of XML format.

o [f you use the WriteRecord method to write data to your file, you will have to add your own
end tag to indicate the end of the record. This is because the code has no way of knowing
whether you want to write children records following the record just written out.

In the following example, the text in bold has to be written to the file using the WriteLine
method because it isn’t automatically added by WriteRecord:

<RECORD1>
Text
<RECORD2 >
More text
</RECORD2 >

</RECORD1>

¢ In most cases, you should use the Buffer Length that’s automatically generated and used
internally. However, if you want to pre-allocate an input buffer, you should set Buffer Length
equal to, or greater than, the largest record (or rowset) you expect to process.

e Max Record Length is calculated only for file records, and only once, when the file record is
first added to the File Layout. It isn’t dynamically calculated after that. If you add or delete any
file fields, or change the length of any file fields, you will also have to change the Max Record
Length.

e Max Record Length is never calculated for segments. You will always have to total the length
of any file fields for a segment.

4-28 INTRODUCING FILE LAYOUT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 5§

Open Query ODBC Driver and API

This section describes the PeopleTools Open Query Interface, an API based on the defacto data
access standard ODBC.

Overview

Features

The PeopleSoft Open Query ODBC driver and API have been designed to allow third party
reporting tools or applications to access PeopleSoft data in conformance with the PeopleSoft
Query Access Architecture (the embedded SQL access intelligence provided by PeopleSoft
Query). The Query Access Architecture provides the following key features:

e Multiple levels of security
= Query authorization
= Operator security

= Operator profile

Record Level

= Access group

Row Level
= Security record
o Standard Query data access

= Access to all supported PeopleSoft databases

Ability to run stored PeopleSoft queries

= Automatic use of TableSets

Effective dated output

= Translate values

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-1

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

5-2

= Effectively dated

= International translations

JANUARY 2001

Architecture

The following diagram illustrates the components involved in the Open Query Architecture. The
bold blocks represent the components of the Open Query product and are the focus of this

document.

Client

Third Party

Reporting Tools

‘ Visual Basic

PeopleSoft
Cube Builder

PeopleSoft
Query

A

Applications
A

OoDBC

‘ Microsoft ODBC Driver Manager ‘

Open Query
API

A

A\

Open Query ODBC Driver I

A A

Open Query API

|

Internal Query API (Qdm, Qpm)

PeopleSoft Database API (SamUtil)

A

2-Tier y

A

v 3-Tier

Native Database Driver |

| Tuxedo

A

Network Transport
Layer

v

Server

y

Database Process |

PeopleTools Tuxedo Service

PeopleTools Database API

Native Database Driver

PeopleSoft Data

S

Open Query Architecture

The two bolded blocks above are the deliverables described below.

Product

Audience

Purpose

Open Query ODBC

Third party application
vendors and
implementation partners

Open, documented API providing
access to PeopleSoft Query as a data
source. Primary means of achieving

OPEN QUERY ODBC DRIVER AND API

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

programmatic interface to PeopleSoft
data.

Open Query API PeopleTools Development | PeopleSoft proprietary. Exposes
Query definition and run-time
functions for use within PeopleTools.
API used by ODBC driver and OLAP.

Components

Open Query ODBC Driver

The Open Query ODBC driver represents the external means to extract data from PeopleSoft
database.

Using ODBC as our external API has several distinct advantages:

e Third party tools do not needs special information about PeopleSoft data

e Most third party reporting and query tools already support ODBC

¢ Custom integration with PeopleTools no longer required.

e Eliminates proprietary interface drivers (namely p2sps.dll)

e Supported by other application development tools, like Visual Basic and PowerBuilder
o Connectivity to PeopleSoft data is maintained by the PeopleSoft security architecture

¢ Extension or modification of driver behavior is allowed via the ODBC standard

The ODBC driver does not have any intrinsic knowledge of PeopleSoft data structures. Only the
interface components exposed via the Open Query API are required to extract ad-hoc query data.

This layer provides only the data modification and conversion code necessary to comply with the
ODBC SDK standards. None of the PeopleTools structures are exposed at this level.

Open Query API

Whereas the ODBC driver is designed to present a stable interface to external applications, the
Open Query API is constantly under construction and therefore is not useful in this capacity.
From earlier experience, the requirement to modify behavior between releases presents a
challenge when dealing with third party applications. The solution was to create an intermediate
layer between the ODBC driver and the underlying PeopleTools manager code. This wrapper
code reduces the number of method calls to an acceptable level and allows the PeopleTools
development team some leeway when new functionality is required or when the underlying code
base is modified.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-3

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

5-4

JANUARY 2001

The Open Query API allows the external driver (ODBC) and PeopleTools applications to focus
soley on providing PeopleSoft data in the formats described by those products. It also abstracts
the underlying connective architecture from the upper levels of the interface.

As the architecture of this API is fluid, it is only available to PeopleTools development.

External Reporting Tools

The Open Query ODBC driver will allow third party reporting tools or ODBC-enabled
development applications to access a PeopleSoft database. The driver will enforce user, table,
and row level security through internal PeopleTools APIs. A user can leverage PeopleSoft Query
to easily create platform-independent queries. These ad-hoc queries can be run against any
supported PeopleSoft database platform.

Perhaps the greatest benefit of the ODBC approach is the ability to choose the best of breed
reporting or analysis tool. Users will be able to use their tool of choice.

Internet

The Open Query API is a valuable link to all external data access mechanisms, including access
to data over the internet.

Supported ODBC v2.5 Functions

This quick-reference summary lists the ODBC API calls supported by the ODBC driver. API
calls not supported will return SQL_ERROR. Each call is discussed in further detail in the
following section.

ODBC Call Function

SQLAllocEnv Allocate an environment handle for the ODBC connection.

SQLAIllocConnect Allocate a connection; returns a connection handle.

SQLAIllocStmt Allocate a statement handle for the specified connection.

SQLBindCol Provide the buffer address for an answer column about to be
fetched.

SQLBindParameter Provide the value of a parameter (prompt variable) defined in
the Query.

SQLColAttributes Returns result column descriptor information for a result set.

SQLConnect Connect to the PeopleSoft database.

SQLDescribeCol Provide descriptors (data type, etc.) for a result column.

SQLDescribeParam Describe a parameter marker in a statement.

SQLDisconnect Disconnect from the data source.

SQLDriverConnect Connect to the PeopleSoft database, prompting the user for

OPEN QUERY ODBC DRIVER AND API

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

any logon parameters not provided by the caller.

SQLError Retrieve information about an error that occurred on a
previous call.

SQLExecDirect Prepare and execute a Query. Note: only the stored procedure
syntax is supported in phase 1.

SQLExecute Execute a previously prepared Query.

SQLFetch Fetch a row of the answer set into the bound columns.

SQLFreeConnect Close the database connection and free all resources
associated with it.

SQLFreeStmt Discard all resources associated with a previously prepared
statement.

SQLGetData Retrieve data for a specific column of the current fetched row.
(Useful for long data, images, etc.)

SQLGetFunctions Tell applications what ODBC functions this driver supports.

SQLGetInfo Retrieve information about the data source.

SQLGetRowCount Return the number of rows affected by the last execution.

SQLGetTypelnfo Return information about data types supported by the data
source.

SQLNumParams Return the number of parameters in a statement.

SQLNumResultCols Return the number of result columns in the answer set of a
prepared Query.

SQLPrepare Prepare a Query for execution.

SQLProcedureColumns Provide a list of Queries and result columns available to the
current operator and matching the specified qualifiers.

SQLProcedures Retrieve a list of available stored procedures (Queries).

SQLTransact Commit or rollback the current transaction.

The following table of ODBC functions are supported calls with no underlying functionality.
These functions exist to ensure compatibility with ODBC applications.

ODBC Call Function

SQLColumns Retrieve column information from the database.
SQLForeignKeys Retrieve database information concerning foreign keys.
SQLGetConnectOption Get connection option information.
SQLGetCursorName Get the name of the cursor.

SQLGetStmtOption Get statement option information.

SQLMoreResults Returns whether or not another result set is pending.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

OPEN QUERY ODBC DRIVER AND API

5-5

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

SQLPrimaryKeys Retrieve database information on primary keys.

SQLSetConnectOption Set database connection options.

SQLSetCursorName Set the name of the cursor to be used with the statement.

SQLSetScrollOptions Set options to control cursor scrolling.

SQLSetStmtOption Set options for the statement.

SQLSpecialColumns Retrieve information about optimal keys or auto incremented
columns.

SQLStatistics Retrieve statistics on tables and indices from the database.

SQLTables Retrieve a list of tables and/or views in the database.

ODBC Driver Application Flow

This section provides a detailed explanation of how the ODBC data access model maps to the
PeopleSoft data access model. For an introduction to ODBC standards and levels of compliance,
see Appendix A. The areas of ODBC functionality are divided into five categories:

Connectivity

Execution

Data Retrieval and Cursor Model

Data Types
e Conformance Level

For each category, we give an overview of the ODBC model and supporting API functions, then
explain how the PeopleSoft Static Query ODBC driver will implement the ODBC functions. If
you are already familiar with ODBC, skip to the PeopleSoft Driver section. This section is
specific to the PSQODB32 driver.

The Static Query ODBC driver will implement most, but not all, functions of a Level 1 API
compliant ODBC driver. The driver will only support a pre-defined PeopleSoft Query object. A
PeopleSoft Query object will be exposed to the application developer through the ODBC stored
procedure APL

Initializing PeopleTools

5-6

SQLAIllocEnv

SQLAllocEnv allocates memory for an environment handle and initializes the ODBC call level
interface for use by an application.

RETCODE SQLAllocEnv (phenv)

OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Argument | Type Use Description
1 HENYV FAR * Output Pointer to storage for the environment
handle.

SQLAllocConnect

SQLAIllocConnect allocates memory for a connection handle within the environment identified
by henv. This is called after SQLAllocEnv.

RETCODE SQLAllocConnect (henv, phdbc)

Argument | Type Use Description
1 HENV Input Environment handle.
o) HDBC FAR * Output Pointer to storage for the connection
handle.
SQLFreeEnv

SQLFreeEnv releases an environment handle and frees all memory associated with the handle.
This is called after SQLFreeConnect.

RETCODE SQLFreeEnv (henv)

Argument | Type Use Description

1 HENV Input Environment handle.

Connection Model

ODBC uses an abstraction that maps a single name (called the data source name or DSN) to all
the necessary underlying software components required to access the data. The data source name
is chosen by an end user or a system administrator and should be a name that makes clear to the
user what kind of data it represents. ODBC data source mapping information is maintained in
the registry in Windows NT and Windows 95.

In order to connect to a PeopleSoft data source, several pieces of information are needed. With
the introduction in PeopleTools 7 of multiple signon capabilities, it is necessary to prompt the
user for the required logon information. By default, PeopleTools installs an ODBC data source
with the name PeopleSoft PeopleTools. This DSN has no references to PeopleSoft connection
information. It is in effect an empty data source. Using this data source forces the underlying
PeopleSoft security mechanisms to present the user with a signon dialog. The user fills this in as
the would for a normal PeopleSoft application.

As per the ODBC standard, the PeopleSoft driver allows the user to create a data source that
provides the information necessary to complete a logon. If the information matches a current
logon session, the user will not be prompted to logon again.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-7

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

It is worthwhile to note that the connection environment is affected by the workstation settings
for the Process Scheduler. The values for the DBBIN and TOOLBIN are searched for the
necessary support files required to logon to a database. Hence these values need to be valid. In
the case of a 3-tier logon, the value for DBBIN can be and should be set empty.

ODBC API Functions

ODBC supports three connection functions: SQLConnect, SQLDriverConnect, and
SQLBrowseConnect. SQLBrowseConnect will not be supported by the query ODBC driver.

SQLConnect

RETCODE SQLConnect (hdbc, szDSN, cbDSN, szUID, cbUID, szAuthStr,cbAuthStr)

Argument | Type Use Description

1 HDBC Input Connection handle.

2 UCHAR FAR* Input Data source name.

3 SWORD Input Length of szDSN

4 UCHAR FAR* Input User identifier.

5 SWORD Input Length of szUID

6 UCHAR FAR* Input Authentication string (typically the
password).

7 SWORD Input Length of szAuthStr.

SQLConnect loads a driver and establishes a connection to a data source. The connection handle
references storage of all information about the connection, including status, transaction state, and
error information.

This function assumes a connection may be completed by supplying only a DSN, user, and
password. It is further assumed that the application will either prompt the end user for security
information, the security information is hard-coded or that the security information can be
obtained from a centralized security server like Kerberos.

SQLDriverConnect

RETCODE SQLDriverConnect (hdbc, hwnd, szConnStrIn, cbConnStrIn, szConnStroOut,
cbConnStrOutMax, pcbConnStrOut, fDriverCompletion)

Argument | Type Use Description
1 HDBC Input Connection handle
2 HWND Input Window handle. The application can pass the

5-8 OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

handle of the parent window, if applicable, or
a null pointer if either the window handle is
not applicable or if SQLDriverConnect will
not present any dialog boxes.

3 UCHAR FAR* Input A full connection string, a partial connection
string, or an empty string.

4 SWORD Input Length of szConnStrlIn.

5 UCHAR FAR* Output Pointer to storage for the completed

connection string. Upon successful
connection to the target data source, this
buffer contains the completed connection
string. Applications should allocate at least

255 bytes for this buffer.
6 SWORD Input Maximum length of the szConnStrOut buffer.
7 SWORD FAR* Output Pointer to the total number of bytes returned

in szConnStrOut. If the number of bytes is
>= cbConnStrOutMax, the completed
connection string in szConnStrOut is
truncated to cbConnStrOutMax -1.

8 UWORD Input Flag which indicates whether Driver Manager
or driver must prompt for more connection
information:

SQL DRIVER PROMPT,

SQL DRIVER COMPLETE,

SQL DRIVER COMPLETE REQUIRED,
or

SQL DRIVER NOPROMPT.

SQLDriverConnect handles the entire connection process for an application, prompting the end
user for any necessary information to complete connection. The programmer can specify as
much or as little about the connection as he or she wants to. In the simplest case, the application
doesn’t specify any information at all about the connection. It simply supplies the connection
handle returned from SQLAllocConnect, a window handle, and option specification of

SQL DRIVER _COMPLETE, and zeros or NULLSs for the rest of the arguments:

rc = SQLDriverConnect (hdbc, hwnd, NULL, 0, NULL, O, O, SQL DRIVER COMPLETE) ;

PeopleSoft Driver

The following keywords are used and supported by the PeopleSoft ODBC driver:
e DSN — Data Source Name required by ODBC

e APPNAME — Application Server name used for 3-tier logon only

e DBTYPE — Database type of logon can be any of the following values

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-9

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

= DB2 - DB2 via Centura SQL Network

= DB2400 — DB2 on AS/400 via Client Access

= DB20ODBC — DB2 using the IBM ODBC driver

= DB2UNIX — DB2 UNIX driver

= ORACLE - Oracle via the OCI interface

= INFORMIX — Native Informix

= SYBASE — Native Sybase

= MICROSFT — SQL Server via ODBC

= APPSRV — Used to indicate that the database name is actually an application server name
e DBNAME — Name of the database or alias

e DBQ — Used to combine values separated by ‘/°, APPNAME/DBTYPE/DBNAME. The
APPNAME value and the following slash are dropped when not in 3-tier.

e SERVER — Name of the database server, used by Sybase and Informix
e UID — PeopleSoft operator ID
e PWD — Password associated with the PeopleSoft operator

The driver uses any information it retrieves from the ODBC.INI file or registry to augment the
information passed to it in the connection string. If the information in the ODBC.INI file or
registry duplicates information in the connection string, the driver uses the information in the
connection string.

The existing PeopleSoft database connection dialog will be used to prompt the user for any
required connection information.

Information Procedures

ODBC defines these functions as a means for the application to get information about the ODBC
driver and data source. Typically, the application calls these functions passing a value of the
particular type of information of interest. These values are numerous and are defined in the
Microsoft ODBC SDK Reference manual.

SQLGetInfo

SQLGetInfo returns general information about the driver and data source associated with an
hdbec.

RETCODE SQLGetInfo (hdbc, fInfoType, rgbInfovValue, cbInfoValueMax, pcbInfoValue)

5-10 OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Argument Type Use Description

1 HDBC Input Connection handle.

2 UWORD Input Type of information. finfoType must be
a value representing the type of interest

3 PTR Output Pointer to storage for the information.
Depending on the fInfoType requested

4 SWORD Input Maximum length of the rgbInfoValue
buffer.

5 SWORD FAR * Output The total number of bytes (excluding the
null termination byte for character data)
available to return in rgbInfoValue.

SQLFunctions

SQLGetFunctions returns information about whether a driver supports a specific ODBC

function.

RETCODE SQLGetFunctions (hdbc,

fFunction, pfExists))

Argument

Type

Use

Description

1

HDBC

Input

Connection handle.

2

UWORD

Input

SQL_API_ALL FUNCTIONS or a
#define value that identifies the ODBC
function of interest.

UWORD FAR *

Output

If fFunction is

SQL API ALL FUNCTIONS,
pfExists points to a UWORD array with
100 elements. The array is indexed by
#define values used by fFunction to
identify each ODBC function; some
elements of the array are unused and
reserved for future use. An element is
TRUE if it identifies an ODBC function
supported by the driver. It is FALSE if
it identifies an ODBC function not
supported by the driver or does not
identify an ODBC function.

SQLGetTypelnfo

SQLGetTypelnfo returns information about data types supported by the data source. The driver
returns the information in the form of an SQL result set.

RETCODE SQLGetTypeInfo (hstmt,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

£SglType)

OPEN QUERY ODBC DRIVER AND API 5-11

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

5-12

JANUARY 2001

Argument | Type Use Description
1 HSTMT Input Statement handle for the result set.
2 SWORD Input The SQL data type

Catalog Procedures (Meta data)

ODBC Listing procedures supply the client with Catalog table information. The PeopleSoft
ODBC driver will support listings of queries and columns utilizing PeopleSoft metadata.

SQLProcedures

SQLProcedures returns the list of procedure names stored in a specific data source. Procedure is
a generic term used to describe executable objects, or named entities that can be invoked using
input and output parameters, and which can return result sets similar to the results returned by
SQL SELECT statements.

RETCODE SQLProcedures (hstmt, szProcQualifier, cbProcQualifier, szProcOwner,

cbProcOwner, szProcName, cbProcName)

Argument | Type Use Description

1 HSTMT Input Statement handle.

2 UCHAR FAR * Input Procedure qualifier.

3 SWORD Input Length of szProcQualifier.

4 UCHAR FAR * Input String search pattern for procedure
owner names.

5 SWORD Input Length of szProcOwner.

6 UCHAR FAR * Input String search pattern for procedure
names.

7 SWORD Input Length of szProcName.

This function is typically used before statement execution to retrieve information about

procedures available from the data source’s catalog.

SQLProcedures returns the results as a standard result set (when SQLFectch is called), ordered
by PROCEDURE QUALIFIER, PROCEDURE OWNER, PROCEDURE NAME,

PROCEDURE_REMARKS and PROCEDURE _TYPE. The table below list the columns in the
PeopleSoft result set.

Column Name Data Type Description
PROCEDURE QUALIFIER SQL CHAR(128) ©
PROCEDURE OWNER SQL CHAR(128) ‘QUERY’

OPEN QUERY ODBC DRIVER AND API

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

PROCEDURE NAME

SQL_CHAR(128)

Query name with
punctuation and spaces
converted to
underscore

REMARKS

SQL_CHAR(256)

Description of the
Query, currently

unused
PROCEDURE TYPE SQL INT SQL PT PROCEDUR
E
SQLProcedureColumns
RETCODE SQLProcedureColumns (hstmt, szProcQualifier, cbProcQualifier,
szProcOwner, cbProcOwner, szProcName, cbProcName, szColumnName, cbColumnName)
Argument | Type Use Description
1 HSTMT Input Statement handle
2 UCHAR FAR* Input Procedure qualifier name.
3 SWORD Input Length of szProcQualifier.
4 UCHAR FAR* Input String search pattern for procedure
owner names.
5 SWORD Input Length of szProcOwner.
6 UCHAR FAR* Input String search pattern for procedure
names.
7 SWORD Input Length of szProcName.
8 UCHAR FAR* Input String search pattern for column names.
9 SWORD Input Length of szColumnName.

SQLProcedureColumns returns a list of input and output parameters, as well as the columns that
make up the result set for the specified procedures. The driver returns the information as a result

set on the specified hstmt.

This function is typically used before statement execution to retrieve information about
procedure parameters and columns from the data source’s catalog.

SQLProcedureColumns returns the results as a standard result set (when SQLFectch is called),
ordered by PROCEDURE QUALIFIER, PROCEDURE OWNER, PROCDURE NAME, and
COLUMN TYPE. The table below list the columns in the result set.

Column Name Data Type Description
PROCEDURE QUALIFIER SQL CHAR(128) | N/A
PROCEDURE OWNER SQL CHAR(128) | N/A

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

OPEN QUERY ODBC DRIVER AND API 5-13

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

PROCEDURE NAME SQL CHAR(128) | Procedure identifier

COLUMN NAME SQL CHAR(128) | Procedure column identifier.

COLUMN _TYPE SQL_INT SQL PARAM INPUT or
SQL RESULT COL

DATA TYPE SQL_INT SQL data type

TYPE NAME SQL_CHAR(128) | Data type name of procedure column.

PRECISION SQL_INT Precision of the procedure column.

LENGTH SQL_INT Length in bytes of data transferred on
an SQLGetData or SQLFetch
operation.

SCALE SQL_INT Scale of procedure column.

RADIX SQL_INT N/A

NULLABLE SQL _INT Whether the procedure column
accepts a NULL value.

REMARKS SQL_CHAR(256) | A description of the procedure
column.

PeopleSoft Driver

The driver will return information for the first query requested only. It will not return results for
multiple queries. The driver will call the new query API functions OpmDescribeParm and
OpmDescribeCol. QpmDescribeParm will walk the query definition stored in Astmt and for each
prompt variable return a SOLProcedureColumns result row of COLUMN_TYPE equal to

SQL PARM INPUT. QpmDescribeParm will walk the same query definition and for each result
column return a SQLProcedureColumns result row of COLUMN_ TYPE equal to

SQL RESULT COL. The szProcQualifier and szProcOwner criterion will be ignored. The result
set returned will be for the current Oprld. The result set columns for Procedure Qualifier and
Procedure Remarks do not apply and are set to NULL with a 1 byte column length. The
Procedure Owner column is set to either the Oprld or Public.

Executing SQL
The minimum ODBC SQL conformance level requires the driver to support the following :
e Data Definition Language (DDL): CREATE TABLE and DROP TABLE.

e Data Manipulation Language (DML): simple SELECT, INSERT, UPDATE SEARCHED, and
DELETE SEARCHED.

e Expressions: simple (such as A > B + C).

e Data types: CHAR, VARCHAR, or LONG VARCHAR.

OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

The PeopleSoft ODBC driver will not support the minimum SQL conformance level even though
it reports supporting extended syntax. Open Query will only support the ODBC extended SQL
Grammar for stored procedures. The stored procedure syntax is:

{[? = 1 call procedure name [(param, ...)]}

The stored procedure execution model was chosen because it supports the independent creation
of an SQL statement. In our case, the independent creation is done through PeopleSoft Query.
However, instead of a stored procedure, the result is a PeopleSoft Query object.

Statement Handle

Before an application can execute an SQL statement, it must allocate a statement handle for the
statement. To allocate a statement handle, an application declares a variable of type HSTMT and
passes its address to SQLAllocStmt.

SQLAIllocStmt

RETCODE SQLAllocStmt (hdbc, phstmt)

Argument | Type Use Description

1 HDBC Input Connection handle.

2 HSTMT FAR* Output Pointer to storage for the statement
handle.

SQLAIllocStmt allocates memory for a statement handle and associates the statement handle with
the connection specified by Adbc.

A statement handle references statement information, such as network information, SQLSTATE
values and error messages, cursor names, number of result set columns and status information for
SQL statement processing.

If the application calls SQLAllocStmt with a pointer to a valid Astmt, the driver overwrites the
hstmt without regard to its previous contents.

Execution Models

ODBC supports three execution models. Each accomplishes the same tasks, but each one differs
with regard to when and where (on the client or on the server) each step is performed.

ExecDirect

In this model, the SQL statement is specified, sent to the server, and executed, all in one step.
This model is best suited for ad hoc SQL statements or SQL statements that will be executed
only once. Parameters can be used, but they act merely as place-holders that the driver replaces
with the parameter values before it sends the SQL statement to the server.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-15

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

The DBMS discards the optimization information used to execute the SQL statement after
execution is complete. If the same statement is specified again with SOQLExecDirect, the entire
process of parsing and optimizing happens again.

Prepare/Execute

In this model, the SQL statement is “prepared” (sent to the server, parsed, and optimized) first
and executed later. When the statement is executed, what flows to the server is not the SQL
statement itself, but merely some way of referencing the statement so that the access plan can be
executed immediately. Parameters are often used in these SQL statements, so the only items that
flow to the server are the reference to the access plan and the parameter values, not the entire
SQL statement.

The Prepare/Execute model should be used when repeated execution of the same SQL statement
is needed and when the SQL statement must be constructed dynamically during runtime. To use
this model, the application calls SQLPrepare, and then (presumably in a loop) calls SQLExecute.

Stored Procedures

The stored procedure model is like the Prepare/Execute model except that with stored
procedures, the preparation step can be done independently from the application and the stored
procedure persists beyond the runtime of the application. To use stored procedures in ODBC,
the application calls SQLExecDirect but uses the SQL statement to specify the stored procedure
name:

SQLExecDirect (hstmt, “{call query.procl(?,?,?)}”, SQL NTS);

SQLExecDirect

RETCODE SQLExecDirect (hstmt, szSqglStr, cbSglStr)

Argument Type Use Description

1 HSTMT Input Statement handle

2 UCHAR FAR* Input SQL statement to be executed.
3 SDWORD Input Length of szSqlStr.

SOLExecDirect executes a preparable statement, using the current values of the parameter
marker variables if any parameters exist in the statement. The application calls SQLExecDirect
to send an SQL statement to the data source. The driver modifies the statement to use the form
of SQL used by the data source, then submits it to the data source. In particular, the driver
modifies the escape clauses used to define ODBC-specific SQL grammar extensions.

The application can include one or more parameter markers in the SQL statement. To include a
parameter marker, the application embeds a question mark (?) into the SQL statement at the
appropriate position. It is unnecessary to use any parameter markers, as PeopleSoft Query objects
know the exact number of prompt values. The PeopleSoft driver will prompt the user for input

5-16 OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

values at this time, if no values where previously supplied via the input or the
SQLBindParameter function.

Only stored procedures (predefined queries) are supported.

In addition to the ODBC error conditions, the PeopleSoft driver will return an error condition if
the following conditions are true:

e A valid PeopleSoft query name can not be found or loaded

e Prompt values can not be satisfied via a prompting page

SQLPrepare

RETCODE SQLPrepare (hstmt, szSglStr, cbSglStr)

Argument | Type Use Description

1 HSTMT Input Statement handle

2 UCHAR FAR* Input SQL statement to be executed.
3 SDWORD Input Length of szSqlStr.

SQLPrepare prepares an SQL string for execution. The application calls SQLPrepare to send an
SQL statement to the data source for preparation. The application can include one or more
parameter markers in the SQL statement. To include a parameter marker, the application embeds
a question mark (?) into the SQL string at the appropriate position. Once a statement is prepared,
the application uses Astmt to refer to the statement in later function calls. The prepared statement
associated with the As#m¢ may be re-executed by calling SOLExecute until the application frees
the Astmt with a call to SQLFreeStmt with the SQL_DROP option or until the As#m¢ is used in a
call to SOLPrepare, SOQLExecDirect, or one of the catalog functions (SQLColumns, SQLTables,
and so on). Once the application prepares a statement, it can request information about the
format of the result set.

Only stored procedures (predefined queries) are supported.

SQLExecute

RETCODE SQLExecute (hstmt)

Argument | Type Use Description

1 HSTMT Input Statement handle

SOLExecute executes a prepared statement, using the current values of the parameter marker
variables if any parameter markers exist in the statement. SQLExecute executes a statement
prepared by SOQLPrepare. Once the application processes or discards the results from a call to
SQLExecute, the application can call SOQLExecute again with new parameter values.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-17

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

To execute a SELECT statement more than once, the application must call SOQLFreeStmt with the
SQL_CLOSE parameter before reissuing the SELECT statement.

As in the SQLExecDirect function, the PeopleSoft ODBC driver will prompt the user for input
values if values have not been previously supplied.

Descriptive Information

In order for applications to be flexible enough for ad-hoc SQL, it is necessary to provide the
application a means to query the ODBC driver for information pertaining to required storage and
data types. This is done via descriptive functions defined by the ODBC specification. ODBC
enabled applications use these functions to dynamically query the driver for information about
the result set and the input and output values.

SQLColAttributes

RETCODE SQLColAttributes (hstmt, icol, fDescType, rbgDesc, cbValueMax, pcbValue)

Argument | Type Use Description

1 HSTMT Input Statement handle

2 UWORD Input Column number of result data.

3 UWORD Input Valid descriptor type.

4 PTR Output Pointer to storage for descriptor
information

5 SWORD Input Maximum buffer size

6 SWORD FAR* Output Output length of data in buffer.

7 SWORD FAR* Output Pointer to integer output data.

SQOLColAttributes returns descriptor information for a column in a result set; it cannot be used to
return information about the bookmark column (column 0). Descriptor information is returned as
a character string, a 32-bit descriptor-dependent value, or an integer value.

SQLDescribeCol

RETCODE SQLDescribeCol (hstmt, icol, szColName, cbColNameMax, pcbColName,
pfSqlType, pcbColDef, pibScale, pfNullable)

Argument | Type Use Description

1 HSTMT Input Statement handle

2 UWORD Input Column number of result data.

3 UCHAR FAR* Output Pointer to storage for the column name.

5-18 OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

4 SWORD Input Maximum length of the szColName
buffer.

5 SWORD FAR* Output Total number of bytes available to return
in szColName.

6 SWORD FAR* Output The SQL data type of the column.

7 UDWORD FAR* Output The precision of the column on the data
source.

8 SWORD FAR* Output The scale of the column on the data
source.

9 SWORD FAR* Output Indicates whether the column allows
NULL values.

SQLDescribeCol returns the result descriptor - column name, type, precision, scale, and
nullability - for one column in the result set. An application typically calls SOQLDescribeCol
after a call to SQLPrepare and before or after the associated call to SOLExecute. An application
can also call SOLDescribeCol after a call to SOQLExecDirect.

SQLDescribeParam

RETCODE SQLDescribeParam (hstmt, ipar, pfSqlType, pcbColDef, pibScale,

pfNullable)

Argument | Type Use Description

1 HSTMT Input Statement handle

2 UWORD Input Marker number.

3 SWORD FAR* Output Pointer to storage for the SQL type.

4 SWORD FAR* Output Pointer to storage for precision of value.
5 SWORD FAR* Output Pointer to storage for scale of value.

6 UDWORD FAR* Output Pointer to storage for nullable flag.

SQLDescribeParam returns the description of a parameter marker associated with a prepared
SQL statement. In terms of PeopleSoft Query objects, this is the description of the prompt values

required to fulfill the query keys.

SQLGetRowCount

RETCODE SQLRowCount (hstmt, pcrow)

Argument | Type Use

Description

1 HSTMT Input

Statement handle.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

OPEN QUERY ODBC DRIVER AND API 5-19

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

2 SDWORD FAR * Input Pointer to storage of the row counter.

SOLRowCount returns the number of rows affected by an UPDATE, INSERT, or DELETE
statement or by a SQL_UPDATE, SQL_ADD, or SQL_DELETE operation in SQLSetPos. If
called during a fetch cycle, the value returned is the number of rows returned to the application at
the current position.

SQLNumParams

RETCODE SQLNumParams (hstmt, pccol)

Argument | Type Use Description
1 HSTMT Input Statement handle
2 SWORD FAR* Output Number of parameters in the statement.

SQLNumParams returns the number of parameters in an SQL statement.

SQLNumResultCols

RETCODE SQLNumResultCols (hstmt, pccol)

Argument | Type Use Description
1 HSTMT Input Statement handle
2 SWORD FAR* Output Number of columns in the result set.

SQOLNumResultCols returns the number of columns in the result set. SOLNumResultCols can be
called successfully only when the hstmt is in the prepared or executed state. An application
typically would use value returned in pccol in a loop and call SQLDescribeCol for each column
in the result set.

Binding Application Data

An application retrieves an entire row of values using a technique called binding. Binding
associates the data from the data source with variables in the application program. There are two
directions of binding, input and output. Input data must always be bound. On output, once a
result column is bound, the variable receives the value for that column each time a new row is
fetched. The following example shows how this technique differs from SQLGetData.

/* for all columns in the current result set */
for (i = 0; 1 < columns; i++)

SQLBindCol (hstmt, ...,&valueli]l, ...)

while (SQL_SUCCESS == (rc = SQLFetch (hstmt)))
/* value[1 .. n] contains data for current row */

5-20 OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

SQLBindCol
RETCODE SQLBindCol (hstmt, icol, £fCType, rbgValue, cbValueMax, pcbValue)

Argument Type Use Description

1 HSTMT Input Statement handle

2 UWORD Input Column number of result data.

3 SWORD Input The C data type of the result data.

4 PTR Both A pointer to storage for the result
column.

5 SDWORD Input Maximum length of the rgbValue
buffer.

6 SDWORD FAR* Both A pointer to a buffer for the
SQL NULL DATA or the number of
bytes available to return in rgbValue
prior to calling SQLFetch.

SQLBindCol assigns the storage and data type for a column in a result set.

SQLBindParameter

RETCODE SQLBindParameter (hstmt,

ibScale, rbgValue, cbValueMax, pcbValue)

ipar,

fParamType, fCType, £SqglType, cbColDef,

Argument | Type Use Description

1 HSTMT Input Statement handle

2 UWORD Input Parameter number, ordered
sequentially left to right, starting at 1.

3 SWORD Input The type of the parameter.

4 SWORD Input The C data type of the parameter.

5 SWORD Input The SQL data type of the parameter.

6 UDWORD Input The precision of the column or
expression of the corresponding
parameter marker.

7 SWORD Input The scale of the column or expression
of the corresponding parameter marker

8 PTR Both A pointer to a buffer for the
parameter’s data.

9 SDWORD Input Maximum length of the rgbValue
buffer.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

OPEN QUERY ODBC DRIVER AND API

5-21

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

10 SDWORD FAR* Both A pointer to a buffer for the
parameter’s length.

SQLBindParameter binds a buffer to a parameter marker in an SQL statement. An application
calls SOQLBindParameter to bind each parameter marker in an SQL statement. Bindings remain
in effect until the application calls SOQLBindParameter again or until the application calls
SQLFreeStmt with the SQL__DROP or SQL_ RESET PARAMS option.

An application can use SQLBindParameter to supply the prompt values for a PeopleSoft query.
SQLBindParameter will call the new function, ODBCBindParm. ODBCBindParm will convert
the ODBC C data type, fCType, to the ODBC SQL data type, fSq/Type. It will then map the
ODBC SQL data type to a supported PeopleSoft RDM data type and call the appropriate internal
bind function. Appendix B shows the data types supported by the PeopleSoft driver.

An ODBC driver is required to support conversions from all ODBC C data types to the ODBC
SQL data types that they support.

Literal Parameters

An application may also supply prompt values as literal strings embedded in the SQL statement
string. For example:

SQLExecDirect (hstmt, “{call query.myquery (8001, NEWGN)}”, SQL NTS);

If prompt values are not provided, Query displays a dialog to prompt the user for each required
value at the time of statement execution.

Retrieving Results

For row-returning statements such as SELECTs or stored procedures, ODBC provides three ways
to retrieve data. Using a single function call, an application can retrieve a single value, an entire
row of values, or multiple rows of values. The PeopleSoft driver only supports the first two
methods; single value and entire row.

Retrieving One Value Directly

One way an application can retrieve data is by using a function call (SQLGetData) for every
column in every row. The application supplies function arguments that specify the column
number and a variable in which to receive the data, and after the function call has been
successfully executed the value for the given column is returned in the variable. The application
uses two loops to retrieve an entire result set, as in this example:

/* For all rows */
while (SQL_SUCCESS == (rc = SQLFetch (hstmt)))
/* for all columns in current results set */
for (colnum = 1; colnum <= columns; colnum++)
SQLGetData (hstmt, colnum, ..., &value, ..)

5-22 OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

SQLGetData is also used for another purpose: the piece-meal retrieval of large text and binary
data (such as images). It is often difficult or impossible for an application to allocate a single
piece of memory big enough to hold a large data object, such as a 50-page document or a high-
density bitmap.

SQLFetch

RETCODE SQLFetch (hstmt)

Argument | Type Use Description

1 HSTMT Input Statement handle

SQLFetch fetches a row of data from a result set. The driver returns data for all columns that
were bound to storage locations with SQLBindCol. SQLFetch positions the cursor on the next
row of the result set. When the cursor is positioned to the last row of the result set, SQLFetch
returns SQL_NO_DATA FOUND.

If the application called SQLBindCol to bind columns, SQLFetch stores data into the locations
specified by the calls to SQLBindCol. If the application does not call SOLBindCol to bind any
columns, SQLFetch doesn’t return any data; it just moves the cursor to the next row. An
application can call SOLGetData to retrieve data not previously bound to a storage location.

SQLGetData

RETCODE SQLGetData (hstmt, icol, £fCType, rbgValue, cbValueMax, pcbValue)

Argument | Type Use Description

1 HSTMT Input Statement handle

2 UWORD Input Column number of result data.

3 SWORD Input The C data type of the result data.

4 PTR Both A pointer to storage for the result
column.

5 SDWORD Input Maximum length of the rgbValue buffer.

6 SDWORD FAR* Both A pointer to a buffer for the
SQL NULL DATA or the number of
bytes available to return in rgbValue
prior to calling SQLFetch.

SQLGetData returns result data for a single unbound column in the current row. The application
must call SOLFetch to position the cursor on a row of data before it calls SOLGetData. 1t is
possible to use SQLBindCol for some columns and use SQLGetData for others within the same
row. This function can be used to retrieve character or binary data values in parts from a column

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-23

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

5-24

JANUARY 2001

with a character, binary, or data source specific data type (for example, data from
SQL LONGVARBINARY or SQL_ LONGVARCHAR columns).

Retrieving Status and Error Information

When any ODBC call fails, the driver is responsible for retaining the error information until the
next ODBC call. The error state and error text is retrieved from the driver with the SQLError

function.

SQLError

RETCODE SQLError (henv, hdbc,

hstmt,

szErrorMsg, cbErrorMsgMax, pcbErrorMsg)

szSglState, pfNativeError,

Argument

Type

Use

Description

1

HENV

Input

Environment handle or
SQL NULL HENV.

HDBC

Input

Connection handle or
SQL NULL HDBC.

HSTMT

Input

Statement handle or
SQL NULL HSTMT.

UCHAR FAR *

Output

SQLSTATE as null terminated string.

SDWORD FAR *

Output

Native error code (specific to the data
source).

UCHAR FAR *

Output

Pointer to storage for the error message
text.

SWORD

Input

Maximum length of the szErrorMsg
buffer. This must be less than or equal to
SQL MAX MESSAGE LENGTH - 1.

SWORD FAR *

Output

Pointer to the total number of bytes
(excluding the null termination byte)
available to return in szErrorMsg. If the
number of bytes available to return is
greater than or equal to cbErrorMsgMax,
the error message text in szErrorMsg is
truncated to cbErrorMsgMax - 1 bytes.

SQLError returns error or status information. An application typically calls SOQLError when a
previous call to an ODBC function returns SQL_ERROR or SQL_SUCCESS WITH_INFO. The
application can, however, call SOLError after any ODBC function call.

OPEN QUERY ODBC DRIVER AND API

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Terminating Transactions and Connections

Each query object that runs in ODBC creates a transaction. In order to ensure that all memory
associated with a transaction is freed and locks released, an application should call SQLTransact.

SQLTransact

RETCODE SQLTransact (henv, hdbc, fType)

Argument | Type Use Description

1 HENV Input Environment handle or
SQL NULL HENV.

2 HDBC Input Connection handle or
SQL NULL HDBC.

3 UWORD Input Flag for SQL_COMMIT or
SQL ROLLBACK.

SQLTransact requests a commit or rollback operation for all active operations on all /stmts
associated with a connection. SQLTransact can also request that a commit or rollback operation
be performed for all connections associated with the Aenv. In the case of query objects, the
transaction is automatically closed upon termination of the statement handle.

SQLDisconnect

RETCODE SQLDisconnect (hdbc)

Argument | Type Use Description

1 HDBC Input Connection handle

SQLDisconnect closes the connection associated with a specific connection handle.

If an application calls SQLDisconnect before it has freed all hstmts associated with the
connection, the driver frees those hstmts after it successfully disconnects from the data source.
However, if one or more of the hstmts associated with the connection are still executing
asynchronously, SQLDisconnect will return SQL_ ERROR.

SQLFreeConnect

RETCODE SQLFreeConnect (hdbc)

Argument | Type Use Description

1 HDBC Input Connection handle

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-25

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

SQLFreeConnect releases a connection handle and frees all memory associated with the handle.
This is called after SOLDisconnect.

SQLFreeEnv

RETCODE SQLFreeEnv (henv)

Argument | Type Use Description

1 HENV Input Environment handle.

SQLFreeEnv frees the environment handle and releases all memory associated with the
environment handle.

ODBC Compliance

The ODBC API defines a set of core functions that correspond to the functions in the X/Open
and SQL Access Group Call Level Interface specification. ODBC also defines two extended sets
of functionality, Level 1 and Level 2.

For the specific ODBC API descriptions and implementation details, see Microsoft® Open
Database Connectivity™ Software Development Kit, Version 2.50, For the Microsoft Windows™
and Windows NT™ Operating Systems ©1992, 1993, 1994, 1995, 1996, 1997 Microsoft
Corporation. All rights reserved.

The following list summarizes the functionality included in each conformance level.

Core API

e Allocate and free environment, connection and statement handles.

e Convert to data sources. Use multiple statements on a connection.

e Prepare and execute SQL statements. Execute SQL statements immediately.
e Assign storage for parameters in an SQL statement and result columns.

e Retrieve data from a result set. Retrieve information about a result set.

e Commit or rollback transactions.

e Retrieve error information.

Level 1 API

e Core API functionality.

5-26 OPEN QUERY ODBC DRIVER AND API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

e Connect to data sources with driver-specific dialog boxes.

e Set and inquire values of statement and connection options.

e Send part or all of a parameter value (useful for long data).

e Retrieve part or all of a result column value (useful for long data).

e Retrieve catalog information (columns, special columns, statistics, and tables).

o Retrieve information about driver and data source capabilities, such as supported data types,
scalar functions, and ODBC functions.

Level 2 API

e Core and Level 1 API functionality

e Browse connection information and list available data sources.

Send arrays of parameter values. Retrieve arrays of result columns values.

Retrieve the number of parameters and describe individual parameters.

Use a scrollable cursor.

Retrieve the native form of an SQL statement
e Retrieve catalog information (privileges, keys, and procedures).

Call a translation DLL.

To claim that it conforms to a given API or SQL conformance level, a driver must support all the
functionality in that conformance level, regardless of whether that functionality is supported by
the DBMS associated with the driver. However, conformance levels do not restrict drivers to the
functionality in the levels to which they conform. Drivers can support as much functionality as
they can; applications can determine the functionality supported by a driver by calling
SQLGetlnfo, SOQLGetFunctions, and SQLGetTypelnfo.

ODBC to RDM Data Types

The following table shows the mapping from ODBC C data types to ODBC SQL and PeopleSoft
RDM data types.

RDM Type fSqlType Type

RDM_CHAR SQL_CHAR unsigned char FAR*
RDM_LONG CHAR SQL_VARCHAR unsigned char FAR*
RDM_NUMBER, RDM_SIGNED NUMBER | SQL NUMERIC unsigned char FAR*

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-27

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

JANUARY 2001

RDM_DATE

SQL_DATE

struct tag DATE_STRUCT {
UWORD year;

UWORD month,;

UWORD day;

}

RDM_TIME

SQL_TIME

struct TIME_STRUCT {
UWORD hour;
UWORD minute;
UWORD second;

}

RDM_DATETIME

SQL_TIMESTAMP struct TIMESTAMP_STRUCT {

SWORD year;
UWORD month;
UWORD day;
UWORD hour;
UWORD minute;
UWORD second;
UWORD fraction;

}

RDM_IMAGE

SQL_LONGVARBINARY unsigned char FAR *

Example Using the Open Query ODBC API

5-28

The following example shows the ODBC API calls needed to execute a PeopleSoft Query using
the PeopleSoft Open Query ODBC driver. The query “myquery” requires two bind variables:
business unit and department id. “myquery” returns an answer set of 3 columns: Employee ID,

Name and Monthly Rate.

/***

* Function: OpenQuerySample

*

*

*

* Description: Sample program illustrating the usage of PeopleSoft's *

* Open Query ODBC API. *
* Sample code uses basic PeopleSoft Query ODBC interface *
* functions. Most error checking is excluded to make *
* code easier to follow; in a typical application, *
* every return code would be checked. *
* *
* Returns: TRUE if successful *

***/

BOOL WINAPI OpenQuerySample (HWND hWnd)
{

HENV hEnv; //
HDBC hDbc ; //
HSTMT hStmt ; //
RETCODE retcode; //
char szConnectString[] =

OPEN QUERY ODBC DRIVER AND API

Environment handle for application
Connection handle

Statement handle

Return code

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

"DSN=PeopleSoft PeopleTools;DBTYPE=ORACLE; DBNAME=PTDMO7; UID=PTDMO ; PWD=PTDMO; " ;
char szConnStringOut [256] ; // completed connection string

SWORD nConnStringLen; // length of completed connect string

// Allocate environment, database connection

retcode = SQLAllocEnv (&hEnv) ;

if ((retcode = SQLAllocConnect (hEnv, &hDbc)) != SQL SUCCESS)
// error--this would normally abort program with message
return (FALSE) ;

// Connect to the database

retcode = SQLDriverConnect (hDbc, hWnd, szConnectString,
strlen(szConnectString), szConnStringOut, sizeof (szConnStringOut),
&nConnStringlLen, SQL DRIVER COMPLETE) ;

retcode = SQLAllocStmt (hDbc, &hStmt) ;
ProcessQuery (hStmt) ;

// Close the connection, release resources
retcode = SQLFreeStmt (hStmt) ;

retcode = SQLDisconnect (hDbc) ;

retcode = SQLFreeConnect (hDbc) ;

retcode = SQLFreeEnv (hEnv) ;

return (TRUE) ;

}

/***

* Function: ProcessQuery *
* *
* Description: Run a query and retrieve answer set. *
* *
* Returns: TRUE if successful, else FALSE *

***/

BOOL ProcessQuery (HSTMT hStmt)

{

RETCODE retcode; // Return code
char szSelect[] = "{call query.myquery(?,?)";

// binding of input variables must occur before statement execution
for (i = 0; 1 < 2; i++)

retcode = SQLBindCol (hStmt, i, datatype, &value, sizeof (value), &valuelen);
retcode = SQLExecDirect (hStmt, szSelect, strlen(szSelect)) ;

while (retcode = SQLFetch(hStmt) == SQL SUCCESS)

// process data for a fetched row....

return (retcode == SQL NO_DATA FOUND) ;

}

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OPEN QUERY ODBC DRIVER AND API 5-29

CHAPTER 6

PeopleTools Command Line Parameters

The simplest way to link a PeopleSoft application and a third-party application is to launch the
PeopleTools executable file from the third-party application using a WinEXE-type function. This
method enables you to start a PeopleSoft application or PeopleTools, although it does not
establish any kind of connection between the applications.

PeopleTools offers a variety of command-line parameters that you can use to control what
database it connects to and what window or page it displays. Using these parameters, you can
automatically navigate to the part of the system the user needs.

This section lists the command line parameters you can use to start PeopleTools.

Command Line for Start

The command line for starting PeopleSoft applications or PeopleTools has the following syntax:

PSTOOLS [-parameter value [-parameter value . . .]]

The command line for starting Data Mover has the following syntax:

PSDMT [-parameter value [-parameter value . . .]]

You can include as many or as few parameters as you need or none.

Each parameter starts with a hyphen (-) or a forward slash (/). The value for each parameter
follows it, separated by zero or more spaces. In general, the value doesn’t need to have quotes
around it, even if it has internal spaces—the system treats all text following the parameter as part
of the value, up to the next parameter or the end of the command line.

@ You need to enclose a value in double quotes only when it includes a hyphen or forward
slash, or when you want to include leading or trailing spaces. If the value itself includes a
double quote character, precede the double quote with a back slash (V).

If you pass incorrect values, or if the specified User doesn’t have security access to the specified
menu or page, the system returns the error “You are not authorized to access this component.
(40,20).”

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLETOOLS COMMAND LINE PARAMETERS 6-1

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Command Line Parameters

The available parameters for PSTOOLS.EXE fall into three general categories:
e Parameters providing login information

e Parameters specifying which window or page to display

e Parameters setting general options

All of the available parameters are listed in the table below.

If the command line includes login parameters, it uses them only if no PeopleSoft applications
are currently running. If you already have a PeopleSoft application running, the system starts a
new instance using the same login information as the active instance.

Parameter | Value Description

-CT Database type The type of database to connect to. The valid values
are: SQLBASE, ORACLE, INFORMIX, SYBASE,
MICROSFT, DB2, DB2ODBC, DB2MDI, DB2400,
DB2UNIX (Note the spelling of MICROSFT).

-CS Server name The name of the database server for the database you’re
connecting to. This setting is required for some
database types.

-CD Database name | The name of the database to connect to, as you would

enter it into the PeopleSoft Login dialog box.

-CO User ID The PeopleSoft User ID to use to login.

-CP Password The password for the specified User ID.

-CI Connect ID The ID used to connect to the database server.

-CW Password The password for the specified Connect ID.

-SS NO Suppresses the display of the PeopleSoft splash screen.

-SN NO Suppresses the sound that plays when you log onto the
PeopleSoft system.

-MN Menu name The name of the window to start. Use the

PSMENUITEM.MENUNAME value, such as
“MAINTAIN_SALES ORDERS”. Use the menu name
as it appears in the Application Designer, not the menu
display text.

-MB Menu bar name | The menu bar to start. Use the
PSMENUITEM.BARNAME value, such as
“USE_AM?”. Use the bar name, not the bar label.

-MI Menu item name | The menu item to select. Use the
PSMENUITEM.ITEMNAME value, such as
“HEADER?”. Use the item name, not the label.

6-2 PEOPLETOOLS COMMAND LINE PARAMETERS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Parameter | Value Description

-MP Page name The page to start. Use the PSPNLGROUP.ITEMNAME
value, such as “GENERAL 1”. Use the page name, not
its display text.

You need to provide the page name even if it’s the same
as the menu item name.

-MA Action mode The action mode to use for the selected page. Which
actions are available depends on the page.

Use the text of the action mode as it appears on the
menu, including an ampersand (&) before the
underlined letter. The complete set is:

&Add, &Update/Display, Update/&Display All,
&Correction, Data &Entry

The default is &Update/Display, if that action is
available for the selected page.

-K Key list A list of key field/value pairs for the record definition
underlying the selected page. The format of each pair
is:

fieldname=value
For example, “-K SETID=MFG -K CUST_ID=NEXT”

You should provide a value for each key field at level 0
on the selected page.

-W None Display the Select Worklist dialog box for the current
User ID.

-QUIET (none) Run in “quiet mode,” so that no message boxes appear.

-@ Filename Read the command line parameters from the specified

text file. Include all the parameters as a single line.
PSTOOLS.EXE uses all the parameters on the
command line, plus all the parameters listed in the file.
Essentially, PSTOOLS.EXE inserts the contents of the
file at the location of the -@ parameter.

-P (none) Delete the parameter files specified on the current
command line with the -@ parameter.
-FP Filename Data Mover only. The name of the Data Mover script to
run.
Examples

This command line starts PeopleTools, logs onto the DEP7TST database, opens the Maintain
Customers window, and displays the General Information page from the Use menu. The user sees
the page in Add mode with the Set ID and Cust ID already set:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLETOOLS COMMAND LINE PARAMETERS 6-3

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

PSTOOLS -CT MICROSFT -CS SEPNTDBO5 -CD EP7TST -CO VP1 -CP VPl

-MN MAINTAIN CUSTOMERS -MB USE -MI GENERAL INFORMATION -MP GENERAL 1

-MA &Add -K SETID=MFG -K CUST ID=NEXT

The next example shows a command line that takes input from a text file named PSRMA.TXT:

PSTOOLS -@PSRMA TXT

The text file contains a single line of text giving the command line parameters:

-CTMICROSFT -CSSEPNTDB05 -CDEP7TST -COVP1 -CPVP1
-MNMANAGE RETURNED MATERIAL -MBUSE -MIRMA FORM -MPRMA FORM2
-MA&Update/Display -KBUSINESS UNIT=MO4A -KRMA ID=EW100

The last example includes a menu bar name with an internal hyphen. That value must be

surrounded by double quotes:

PSTOOLS -CT MICROSFT -CS SEPNTDBO5 -CD EP7TST -CO VP1 -CP VPl

-MN MAINTAIN SALES ORDERS -MB “USE A-M"

-MA&Add

Command Line for Project Build

-MI HEADER -MP SOLD TO

The command line statement for the project build does the following:

¢ Connects the project to the source database

e Uses the build settings from the Windows registry to generate the SQL script for create or alter

Verify the following before executing the build command line:

e Create and load system components of the project

e Set the build settings in the Windows registry

source database server for the
database to which you are
connecting. This setting is
required for some database

types.

Option | Description Error Handling
-CT Database Type. The type of Required. If this parameter is not
database to connect to. supplied, the last database type is
(MICROSFT, ORACLE, taken from the registry. If it fails,
SYBASE, and so on) further execution is stopped and
the error messages are written to
the log file.
-CS Server name. The name of the | Required for some database

types. If this parameter is not
supplied, further execution is
stopped and the error messages
are written to the log.

6-4 PEOPLETOOLS COMMAND LINE PARAMETERS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Database name. The name of
the source database to
connect to, as you would
enter it into the PeopleSoft
Login dialog box.

Required. If this parameter is not
supplied, further execution is
stopped and the error messages
are written to the log file.

User ID. Peoplesoft User ID
to login to source.

Required. If this parameter is not
supplied, the last database type is
taken from the registry. If it fails,
further execution is stopped and
the error messages are written to
the log file.

User Password. The password
for the specified User ID for
source.

Required. If this parameter is not
supplied the PeopleSoft Login
dialog is prompted for the user to
give the valid User password. If
it fails, further execution is
stopped and the error messages
are written to the log file.

-PJB

Project Name. The name of
the project which is to be
built. This project should be
available in the database
before starting the command
line project build.

Required. This is the main
parameter which is used
internally by the EXE to decide
that the user the trying to do
project build. If this parameter is
not specified and if all the source
login parameters are given, this
EXE will just launch the
application.

Example

Assume the following:

e Project name = CJR1

Database type = Microsoft
Database name = CJR810G
User ID = PTDMO

Password = PTDMO

Pathname of SQL script file = c:\temp\psbuild.sql

e Pathname of log file = c:\temp\psbuild.log in the windows registry.

You enter the following command line:

PSTOOLS.EXE —-CT MICROSFT -CD CJR810G -CO PTDMO -CP PTDMO

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLETOOLS COMMAND LINE PARAMETERS

-PJB CJR_PRJ

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Command Line for Upgrade Copy

The command line executable for the upgrade copy does the following:

e Connects to the source database

e Connects to the target database

JANUARY 2001

o Copies the project and its objects from the source to target. If the same project already exists
in the target database, it overwrites the same with the new project.

The details about the command line parameters are as follows:

Option | Description Error Handling

-CT Source — Database Type. The Required. If this parameter is
type of database to connect to not supplied, the database type is
source. (For example taken from the registry. If it
SQLBASE, ORACLE, fails, further execution is
SYBASE, and so on). stopped and the error messages

are written to the log file (if log
file name parameter is
specified).

-CS Source — Server name. The name | Required for some database
of the source database server for | types. If this parameter is not
the database you’re connecting supplied, further execution is
to. This setting is required for stopped and the error messages
some database types. are written to the log file (if log

file name parameter is
specified).

-CD Source — Database name. The Required. If this parameter is not
name of the source database to supplied, further execution is
connect to, as you would enter it | stopped and the error messages
into the PeopleSoft Login dialog | are written to the log file (if log
box. file name parameter is

specified).

-CO Source — User ID. The Required. If this parameter is not
Peoplesoft User ID to use to supplied, the user id is taken
login to source. from the registry. If it fails,

further execution is stopped and
the error messages are written to
the log file (if log file name
parameter is specified).

-CP Source — User Password. The Required. If this parameter is not
password for the specified User | supplied, the PeopleSoft Login
ID for source. dialog prompts the user to give

the valid User password. If it
fails, further execution is
stopped and the error messages

6-6 PEOPLETOOLS COMMAND LINE PARAMETERS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

are written to the log file (if log
file name parameter is
specified).

Target — Server name. The name
of the target database server for
the database you’re connecting
to. This setting is required for
some database types.

Required for some database
types. If this parameter is not
supplied, further execution is
stopped and the error messages
are written to the log file (if log
file name parameter is
specified).

Target — Database name. The
name of the target database to
connect to, as you would enter it
into the PeopleSoft Login dialog
box.

Required. If this parameter is not
supplied, further execution is
stopped and the error messages
are written to the log file (if log
file name parameter is
specified).

Target — User ID. The
Peoplesoft User ID to use to
login to the target.

Required. If this parameter is not
supplied, further execution is
stopped and the error messages
are written to the log file (if log
file name parameter is
specified).

Target — User Password. The
password for the specified User
ID for the target.

Required. If this parameter is not
supplied, further execution is
stopped and the error messages
are written to the log file (if log
file name parameter is
specified).

Log File name. The name of the
file in which the error messages
are logged to during the
commandline upgrade copy
process.

Not required. If this parameter is
specified, a file is created in the
specified path & name and all
the error messages are written to
that file.

-PJC

Source — Project Name. The
name of the project that is to be
copied from source to target.
This project should be available
in the source before starting the
command line upgrade copy to
target.

Required. This is the main
parameter which is used
internally by the EXE to identify
that the user is trying to do
upgrade copy. If this parameter
is not specified and if all the
source login parameters are
given, this EXE will just launch
the application.

Commit Limit (Number > 0).
The Commit Limit for the
number of objects
copied/compared before a

Not required. The default will
be 50 if the user does not set this
parameter.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLETOOLS COMMAND LINE PARAMETERS

6-7

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

commit is issued. Example: -
CL 150

Audit Flags on Records
(Number -> 0 or 1). This
indicates if the Target Audit
Flags are kept or Set Target
Audit Flags from Source. If the
value is set 0, then the Target
Audit Flags are taken from
Source. If the value is set 1, then
the Target Audit Flags are kept
as is. Example: -AF 0

Not required. The default will
be (1) to keep Target Audit
Flags.

-DDL

DDL on Records and Indexes
(Number -> 0 or 1). This
indicates if the Target DDL flags
are to be kept or Set Target DDL
Flags from Source. If the value
is set 0, then the Target DDL
Flags are taken from Source. If
the value is set 1, then the Target
DDL Flags are kept as is.
Example: -DDL 0

Not required. The default will
be (1) to keep Target DDL
Flags.

-OBJ

Object Type to Copy (Numbers
with comma (,) as the delimiter).
List of object types to Copy or
All. There are 55 object types
and please refer to the Object
Type Selection Table given
below while choosing the
objects. For example: If you are
choosing just Records and
Indexes alone for copying,
choose the appropriate numbers
for Records and Indexes from
the table below. For Records,
the number is 0, and for the
Indexes the number is 1.
Example: -OBJ 0,1

Not required. If this parameter is
not specified, then all of the
objects will be copied by
default.

-RST

Reset Done Flags (Number -> 0
or 1)This is to reset the done
flags before initiating the copy.
If the value is 0, then the done
flags are not reset before
initiating the copy. If the value is
1, then the done flags are reset
before initiating the copy.
Example: -RST 0

Not required. The default will
be (1) to reset the done flags
before initiating the copy.

6-8 PEOPLETOOLS COMMAND LINE PARAMETERS

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

-LNG

Copy Languages (Numbers with
comma (,) as the delimiter)This
is the list of Languages to copy.
There are 10 languages and
please refer to the Language
Selection Table given below
while choosing the languages.
For example: If you are choosing
just English and Spanish alone
for copying, choose the
appropriate codes for English
and Spanish from the table
below. For English, the code is
ENG, and for Spanish the code
is ESP. Example: -LNG
ENG,ESP

Not required. If this parameter
is not given, then the languages
that are already set in the project
will be used as the default.

Example

PSTOOLS.EXE -CT MICROSFT -CD CJR750 -CO PTMDO -CP PTDMO
TO PTDMO -TP PTDMO -LF C:\TEMP\CJR1.LOG -CL 150 -AF 0 -DDL 0 -OBJ 0,1,5,10,20

RST 0

-LNG ENG, ESP

Object Type Selection Table

Number Object Description
0 Record

1 Index

2 Field

3 Format Definition

4 Translate

5 Page

6 Menu

7 Component

8 Record People Code
9 Menu People Code
10 Query

11 Tree Structure

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLETOOLS COMMAND LINE PARAMETERS

-PJC CJR1 -TD CJR7502 -

6-9

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

12 Tree

13 Access Group

14 Color

15 Style

16 Not used

17 Business Process

18 Activity

19 Role

20 Process Definition

21 Process Server

22 Process Type

23 Process Job

24 Process Recurrence

25 Message

26 Dimension

27 Analysis Model

28 Cube Template

29 Interface Object

30 File layout Definition

31 Component Interface

32 App Engine Program

33 App Engine Section

34 SQL Object

35 Message Node

36 Message Channel

37 Message Definition

38 Approval rule set

39 Message People Code

40 Subscription People Code
41 Message Channel People Code
42 Component Interface People Code
43 Application Engine People Code
44 Page People Code

6-10 PEOPLETOOLS COMMAND LINE PARAMETERS

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

45 Page Field People Code

46 Component People Code

47 Component Record PeopleCode

48 Component Record Field
PeopleCode

49 Image

50 Style Sheet

51 HTML Catalog

52 File Reference objects

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLETOOLS COMMAND LINE PARAMETERS 6-11

CHAPTER 7

EDI Manager

The EDI Manager provides the tools you need to manage electronic commerce transactions with
your trading partners. You use it to set up and maintain data about your trading partners, and to
define the data mapping that occurs between transaction files and the tables in your PeopleSoft
database. The following table lists tasks you may have to perform and the corresponding
documentation sections.

If you need to... Read this section...
Learn about electronic commerce Understanding Electronic Data Interchange
architecture

Specify conversion rules for transaction data | Converting EDI Codes and PeopleSoft Codes

Define the transaction types your application | Defining EDI Transactions
can process

Set up trading partner relationships between | Setting Up Trading Partners
external companies and internal business
units

Map data between EDI transaction files and | Mapping EDI Transactions
staging tables in your PeopleSoft database

Perform ongoing administration tasks Monitoring EDI Processing
involved in keeping EDI processing running
smoothly

Understanding Electronic Data Interchange

Electronic Data Interchange (EDI) is a standard means of exchanging data between companies, so
they can transact business electronically. For example, using EDI, a company can submit an order
to a vendor, and the vendor can acknowledge and fulfill the order, without any paper changing
hands or any contact between company representatives.

EDI provides a standard format for transaction data, allowing trading partners to communicate in
a common language. When one company needs to initiate a transaction with another, it extracts
the transaction data from its database, translates it into the common EDI format, and transmits it
over a network to the trading partner. The second company receives the EDI transmission and
transfers its data into its transaction processing application.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-1

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

7-2

This conceptually simple process involves several distinct steps. Here’s an overview of the
architecture that enables PeopleSoft application to complete EDI transactions:

Third Party

PeopleSoft

PeopleSoft EDI Architecture

The portion above the dotted line shows the services typically provided by a Value-added
Network (VAN). A VAN is a consulting organization that provides services related to the
exchange of EDI transactions—usually a private network for exchanging EDI transactions,
although the network could also be the Internet.

For incoming transactions, the hand-off to PeopleSoft applications comes when the EDI
translation software converts transactions from the standard EDI formats X.12 or EDIFACT into
PeopleSoft Business Document format. A PeopleSoft-supplied EDI Agent reads the PeopleSoft
Business Document files and places their data in staging tables in the PeopleSoft database. An
EDI Application Load SQR transfers data from the staging tables to the appropriate application
tables. From there, the data is processed like any other PeopleSoft transaction.

The process for outgoing transactions is similar. You periodically run an SQR that extracts the
appropriate data from the application tables and copies it to a set of staging tables. An EDI Agent
creates PeopleSoft Business Documents from this data; then the EDI translation software converts
the documents into X.12 or EDIFACT format and transmits them to the trading partner.

So, the PeopleSoft portion of the process has two stages:

e Based on data mappings you define, EDI Agents copy data between PeopleSoft Business
Documents and the incoming or outgoing staging tables.

¢ SQRs transfer data between the staging tables and the application tables, performing any
necessary data validation.

You use the EDI Manager to define the mappings that EDI Agents use for conversions and to
maintain information about your vendors and other trading partners.

The staging tables are a temporary storage area for EDI transaction data. Later, a transaction-
specific “application load” process transfers the data from the staging tables into the application
tables.

EDI MANAGER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

@ For more information about the application load and application extract processes, see the
documentation for the application that supports the transactions.

Converting EDI Codes and PeopleSoft Codes

When you receive an EDI transaction from a trading partner, much of its data is in the form of
codes or identification numbers. For example, the trading partner who submitted the transaction is
given as a Trading Partner ID, and the type of transaction is identified by a Transaction ID.

Your PeopleSoft database also stores much of its data in the form of codes or IDs. You have
Business Unit IDs, Customer IDs, Employee IDs, Operator IDs, and so on. Some of these codes
and IDs represent the same data as the codes and IDs in the EDI transaction, even though the
codes themselves might be different.

When the EDI Agent processes a transaction, it copies the transaction data into the PeopleSoft
database. As it does so, it can convert the external EDI codes into the internal PeopleSoft codes.
Similarly, as it writes out the file for an outgoing EDI transaction, it can convert the PeopleSoft
codes into codes that your trading partner will recognize. You specify how the EDI Agent
converts the codes using the EDI Manager.

The EDI Manager can perform two kinds of conversions:

e |t can translate between EDI event codes and PeopleSoft action codes, which specify what
action a transaction requires. See Action Codes and Event Codes.

e It can convert data values from any field in the transaction. See Data Values.

Action Codes and Event Codes

EDI transactions use event codes to specify what action the transaction calls for. For example,
event codes specify whether the current transaction is a completely new transaction, a resubmitted
transaction, or an update to a previous transaction.

Event codes come in two flavors, both of which can be specified for the same transaction:

e Primary event codes, also called purpose codes, specify the status of the transaction: whether
it’s a new transaction, a cancellation, a duplicate, a status request, and so on. Every transaction
has a primary event code assigned to it.

e Secondary event codes, also called fransaction codes, specity the type of transaction in detail.
For example, a transaction’s secondary event code could say that the transaction is a catalog
order, a rush order, or a request for a sample. Not all transaction types include secondary event
codes.

PeopleSoft applications, on the other hand, determine what action to take on a transaction using a
single action code. So, when the EDI Agent processes an EDI transaction, it needs to convert its
event code(s) into a PeopleSoft action code.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-3

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

7-4

Using the EDI Manager, you specify which (pairs of) event codes get translated into which action
codes. Since you may want to process transactions differently depending on which trading partner
they come from, the EDI Manager enables you to define different event code-to-action code
translations for each trading partner.

The following table lists the three major steps in defining how the EDI Agent translates event

codes into action codes and where to find information.

Steps for defining how to translate codes

Use this section...

Define the set of recognized primary event
codes, secondary event codes, and action
codes.

Link to next section

As part of a trading partner profile, specify
which event codes or pairs of event codes
correspond to which action codes.

Defining EDI Transactions

For each of your trading partners, specify
which trading partner profile to use.

Setting Up Trading Partners

Defining Primary and Secondary Event and Action Codes

To access EDI Manager from your browser

1. Open your browser. Select PeopleTools, EDI Manager, Use.

& Cube Manager [0 e

Action Code Definition

w2 Application Engine
@ spplication Message Monitor, = Process
W Inouire

[a EDI Manager

W Maintain Security

W hlass Change

w# Process honitor

W Process Scheduler Manager
& PEinvision

W Report Manager

w2 Translate

w2 Workflow Administrator
w2 Worklist
W PSiCery

& Utilities [y

Brimary Event Code Defn
Secondary Event Code Defh

Entity Code Definition
Transaction Definition

Conversion Type Definition
Partner Profile Definition

Caonversion Data Profile
Internal Partner Defn
External Parther Defn
Business Entity Defn
Data Mapping Profile Defn

Inbound Map Definition
Qutbound Map Definition

Delete EDI Manager Objects

EDI Manager Use Options

2. Select an option from the list.

The following sections describe the Use options.

To define a primary event code

EDI MANAGER

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

1. Select Primary Event Code Defn.

For each of the options, you can search for an existing value or directly add a new value by
clicking on the link at

Primary Event Code Defn

Find an Existing Value

Search By |EC Primary EventCodej

EC Primary Event Code: ||
Advanced Search

Add a3 MNew Yalue

Find an Existing Value - Primary Event Code

Primary Event Code Defn

Add a New Value
EC Primaty Event Code: ||

Add

Find an Existing Walue %

Add a New Value — Primary Event Code

2. Click Add a New Value then add the value.
Enter the primary event code as it will appear in the PeopleSoft Business Document

3. Enter a description of the event code and save the page.
This Description is for your information only. It doesn’t affect the processing of a PeopleSoft
Business Document.

To define a secondary event code

1. Select Secondary Event Code Defn.

2. Enter the secondary event code as it will appear in the PeopleSoft Business Document.
Alternatively, you can search for an existing Secondary Event Code, by clicking Search.

3. Enter a description of the event code and save the page.

This Description is for your information only. It doesn’t affect the processing of a PeopleSoft
Business Document.

To define an action code

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-5

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

=,

7-6

We deliver the EDI Manager with a complete set of action codes for the actions standard
PeopleSoft applications support. You need to add new action codes only if you create new
programs that handle new actions.

1. Select Action Code Definition.

2. Enter the action code as you want the EDI Agent to write it in the electronic commerce
staging tables.

Alternatively, you can search for an existing Action Code, by clicking Search.
3. Enter a description of the action code and save the page.

This Description is for your information only. It doesn’t affect processing.

Data Values

In many cases, the set of possible values in a particular field of an EDI transaction doesn’t match
the corresponding set of values in the PeopleSoft database. For example, the EDI transaction
might identify bank transaction codes using three-digit numbers, while the PeopleSoft database
uses single letters to represent the same codes. In such cases, the EDI Agent needs to translate the
external values into the corresponding internal values.

To accomplish this task, you need to define a conversion data profile. A conversion data profile
takes the values from a particular PeopleSoft database table (such as the table holding bank
transaction codes) and specifies how that value appears in PeopleSoft Business Documents. You
can create multiple conversion data profiles for the same table, because you might need to create
different conversions for different trading partners. For example, different banks might use
different transaction codes.

Here are the three major steps in specifying how to convert the data values for your trading
partners.

Steps for converting data values Use this section...

Identify a table in the PeopleSoft database Identifying Database Table for Conversion
whose values appear differently in
PeopleSoft Business Documents. Assign a
Trading Partner Conversion ID to the table.

Create a conversion data profile that specifies | Creating a Conversion Data Profile
the internal and corresponding external
values for each value in the table. If different
trading partners use different values, create
one conversion data profiles for each set of
external values.

Assign the appropriate conversion data Setting Up Trading Partners
profile to each of your trading partners.

EDI MANAGER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Identifying Database Table for Conversion

To identify a database table whose values need to be converted

1. Select Conversion Type Definition.

2. Enter a Conversion Type ID or search for an existing one.

Conversion Type Definition

Find an Existing Value

Search By % |ConversionT\ype D vl

Conversion Type 1D; I
Advanced Search

Add a Mew Value

Conversion Type Definition ID

You can also search for the record name.

Conversion Type Definition

Lookup Record

Search By |Rec0rd (Tahle) Namej

Record (Tahle) Mame: I
Advanced Lookup

Lookup Record Name Page

3. Enter the record name of the table whose values you want to convert and enter a description.

You can enter a description in the Description text box, the large edit box, or both.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-7

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

JANUARY 2001

l(Conversion Type Definition _
Conversion Type ID: TIT
Record: IACCT_CD_TEIL Ql
Description: |Acc0unt Code Tahle
=l
|
&l save [EkAdd) | E] Update/Display

Conversion Type Definition Page

4. Save the page.

Creating a Conversion Data Profile

To create a conversion data profile

1. Select Conversion Data Profile.

Search for an existing Conversion Data Profile or enter a new value.

Conversion Data Profile \L

Cwt Pro ID: DT

Description: |

*Cwt TypelD:
" No-alue Pass Thru

M«

Default Value:

Source Profile: I Ql e

Add
[Setid Based

Conversion Values First (40 10t 1 [
Int
Internal Value External Value:
Deflt Add Delete |
a Ext
QA w | Defit M
& save Eadd | |) Update/Display

Conversion Data Profile page

7-8 EDI MANAGER

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

You use this page to specify translation values for one or more database tables, identified
here by their Conversion Profile IDs.

The page includes two areas to enter data. The outer area enables you to add multiple
Conversion Type IDs to the conversion profile. The inner area scrolls among the values in the
table identified by the Conversion ID.

Copy the definition of a similar conversion data profile (optional).

If the profile you’re creating is similar to an existing profile, you can copy the details of the
existing profile definition into this component. Then, you can change just the parts that are
different.

Select the existing profile in the Source Profile list box, then click the button. The
system copies the translation values from the selected profile into the pages.

Enter a description of the conversion data profile.

You can enter both a short description (in the Description text box) and a long description (in
the long edit box). These descriptions are for your information only; the system doesn’t use
them.

Select a Conversion ID.

In the Cvt Pro ID drop-down list box, select the Trading Partner Conversion ID of the table
that you want to provide external values for.

Specify whether the table whose values you are converting has a Set ID key.

Many tables in PeopleSoft Financials applications have a Set ID key. The Set ID key enables
you to store data for multiple business units on the same table while making sure that each
unit only accesses its own data. The Conversion Data Profile page enables you to select a Set
ID. Selecting a Set ID will control the list of internal values available for mapping: if the
table you are retrieving the internal values from has a Set ID field, the Conversion Data
Profile page will only display the values for the selected Set ID.

To select a Set ID, click the Setid Based check box, then select the appropriate Set ID from
the drop-down list next to the check box.

Select an internal value and enter the corresponding external value.

In the Internal Value list box, select a value from the table whose Conversion ID you
selected. Then, in the External Value text box, type the corresponding value as it will appear
in PeopleSoft Business Documents.

Specify which internal and external values to use when there are multiple possibilities.

One potential complication of having many-to-one mapping occurs with outbound
transactions: when the internal value is D, what value should the Outbound EDI Agent write
into the outbound file? In this situation, the Outbound EDI Agent uses the row marked as the
internal default (Int Deflt) value).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-9

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

The same scenario holds in reverse when you have multiple internal database values that you
need to map to the same external value. There is no problem with outbound transactions: the

Outbound EDI Agent maps the internal value to the appropriate external value. For incoming
transactions, however, you need to specify which of the multiple internal values to use. You

do so by selecting one of the rows as the external default (Ext Deflt) value.

When you need to convert multiple external values to the same internal value, you need to
mark each of the external values as an Ext Deflt, then mark one of the rows as the Int Deflt.
When you need to convert muliple internal values to the same external value, mark each of
the internal values as an Int Deflt, the mark one row as the Ext Deflt.

You need to perform this step even if you have all one-to-one mappings. Simply select the
Int Deflt and Ext Deflt check boxes for every row.

8. Repeat the previous steps to add additional Conversion IDs. Then save the page.

Defining EDI Transactions

When you receive an EDI transaction from a trading partner, the first record of the transaction
includes a Transaction ID that identifies the transaction type. The EDI Agent uses the
Transaction ID, in conjunction with the Trading Partner ID, to determine which inbound map to
use to process the transaction data. Similarly, when you initiate an outbound transaction, the EDI
Agent puts the appropriate Transaction ID in the first transaction record so that the recipient
knows what kind of transaction you’ve sent.

In the EDI Manager, you need to identify what transactions your system is prepared to process.
You also need to specify, for each of your trading partners, which of these transactions they are
authorized to perform. Here are the major steps you need to take:

Steps for converting data values Use this section...

Create a Transaction ID for each type of Defining EDI Transactions
transaction your applications support.

Create one or more partner profiles, which To define a partner profile
list a set of transactions that partners can

perform.

Assign a partner profile to each trading Setting Up Trading Partners
partner.

Defining Transactions

To define a transaction
1. Select Transaction Definition.

2. Enter a unique Transaction ID as it will appear in PeopleSoft Business Documents.

7-10 EDI MANAGER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

3. Specify whether you’re setting up an ID for inbound or outbound transactions.

Transaction Definition

Add a New Value

EC Transaction 1D I

Inbound f Outhound Switch: =l

Inkound
bl |Suthaund

Find at Existing Yalue

Specifying Inbound or Outbound Transaction Definition

If you support both inbound and outbound transactions of the same transaction type, you
have to define two Transaction IDs.

4. Click the Add button.

The Transaction Definition page displays.

{ Transaction Definition
I Trans ID: THT Inbound |
I Descr: | |
Transaction Option Definition ind | ¥ A First [4] 1ot 1 [Last
*EC Option Description
Transaction Option VYalues First (4 10t 4 [M] Last
*Op Value Description
| |
ﬁ Save

EAdd) | Update/Display

Transaction Definition page

You use this page to define the transaction and specify any special transaction parameters.

5. Enter a description of the transaction in the Descr text box.
The description appears in list boxes when you need to select a Transaction ID.

6. Enter the name of a transaction option that the application load or application extract process

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-11

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

7-12

usces.

The EC Option text box gives you a place to specify a transaction parameter that the system
will use when it copies data between the electronic commerce staging tables into the
transactional application tables.

Enter the name of the option in the EC Option text box and a description in the Description
text box.

Enter the valid values for the transaction option.

In the Transaction Option Values area, you need to list the valid values for the transaction
option you specified at step 6. When you define a trading partner, you’ll specify which of
these values to use for that partner. In this way, the application load or application extract
process can handle the transaction differently depending on the trading partner it comes from.

Enter a value in the Op Value box, and describe this value in the Description text box.

Repeat steps 6 and 7 to add additional transaction options.

8. Save the page.

To define a partner profile

1.

Select Partner Profile Definition.

To define a new partner profile, enter a unique EC Profile ID in the dialog box, and click
Add. Otherwise, search for an existing value for the desired EC Profile ID.

{ Profile Definition " Profile Defaults
EC Profile ID: PCC SuurceTPID:I Q) 5

Description: |

EC Outhound File List Path: I

EC Outhound File List Name: I

™ New List File Per Run

Messagel

E Save MNext tab

FProfile Definition | Profile Defaults

Partner Profile Definition Page

You use this page to define the profile and specify where files for this partner reside.

EDI MANAGER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

2. Copy the definition of a similar partner profile (optional).

If the profile you’re creating is similar to an existing profile, you can copy the details of the
existing profile definition into this component. Then, you can change just the parts that are
different.

Select the existing profile in the Source TPID list, then click the button. The system
copies the translation values from the selected profile into the pages.

3. Enter a description of the profile in the Description text box.

4. Specify the directory where you want the EDI Agent to write outbound transaction files for
partners with this profile.

Enter the directory path in the EC Outbound File List Path text box.

If the EDI Agent runs on a server running MVS, it ignores this setting. Instead, it looks in
the JCL for a DDNAME matching the filename you specify in the next step.

5. Enter a name for the file that lists all pending outbound transaction files.

As the EDI Agent creates transaction files, it adds the names of those files to a list file, whose
name you enter in the EC Qutbound File List Name text box.

The transaction files themselves will be named 1.DAT, 2.DAT, and so on, except on MVS
servers. On MVS, the files will be named using the first eight characters of the external

Trading Partner ID.
6. Check the New List File Per Run box if you want a new list generated every run. (optional)
L .
7. Click L to designate message header and footer. The message page appears.

Qutput Message HeaderfFooter
EC Profile ID: PCC
Ingert Footer Insert Newlinel
[~
=
s

8. Select the Profile Defaults tab.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-13

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

Profile Definition Frofile Defaults _

Available Transactions First (41 105 4 [¥] Last
*EC Transaction ID: [AUDIT Qg mout] Q)
Profile Defaults e 2| First (4 1 of 1 [¥] Last
*EC Option Op Value EI
| a qQ

s

Action Assignment First (4] 1cf 1 [¥] Last

*EC Action Code: “Pri Event: Sec Event: -
=1
[Ta) | U e
& 5ave Previous tab) Eladd) | UpdateIDisplay) [Correct History)

Profile Defaults Page

Use this page to specify which transactions a partner with this profile can perform and how
the EDI Agent converts event codes into action codes for each transaction. If a transaction
has transaction options associated with it, you also specify which value to assign to that
option for partners with this profile.

@ For more information about action codes and event codes, see Converting EDI Codes and
PeopleSoft Codes. For information about transaction options, see the procedure Defining
Transactions.

9. Select a transaction type that partners with this profile can perform.

Select the Transaction ID in the EC Transaction ID, and specify whether it’s an inbound or
outbound transaction by selecting I or O from the In/Out list.

10. If the transaction type has transaction options associated with it, specify which value to use
for each one.

When you define a transaction type, you have the option to specify one or more transaction
options that the system will use when it copies data between the electronic commerce staging
tables into the transactional application tables. If the transaction type you’re adding includes
options, you need to specify which of the available values for that option the EDI Agent
should use for partners with this profile.

@ Most transaction types will not have any options, and you can skip this step.

Select the option from the EC Option list. Then, select one of its valid values from the Op
Value list. Repeat this step for each defined transaction option.

7-14 EDI MANAGER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

11. Specify which action code to use for each pair of primary and secondary event codes.

The controls in the Action Assignment group box enable you to specify how the EDI Agent
translates between the event codes in a PeopleSoft Business Document and the action codes
in the electronic commerce staging tables.

Select one of the defined action codes in the EC Action Code box, then select the primary and
secondary event codes that map to this action code. If this transaction type only uses a
primary event code (Pri Event), you can leave the Sec Event box empty.

Repeat this step to define each possible action code, and each possible combination of
primary and secondary event codes, for this transaction type. Press F7 to add additional rows
to the scroll.

12. Repeat steps 7 to 9 for each transaction type that partners with this profile can perform.

13. Save the component.

Setting Up Trading Partners

In casual speech, the term trading partner refers to a company with which your company does
business. That’s close to what it means in the EDI Manager too, except that it needs to be more
specific. In EDI Manager terms, a trading partner is a business entity in an external company with
which a business entity in your company does business.

PeopleSoft Financials applications enable you to organize your company into multiple business
units, each of which tracks its data somewhat independently. Each business unit likely does
business with a different set of trading partners. When a trading partner submits an EDI
transaction, it needs to address it to a specific business unit, or the EDI Agent needs to know in
some way which business unit to forward the transaction to.

Conversely, the external companies you do business with are not monolithic entities. They have
different divisions, departments, or business units, and you may need to address your EDI
transactions to a specific entity inside that company.

When you set up trading partners in the EDI Manager, you need to define the internal structure of
your company and possibly of the companies you trade with also. You should:

e Define Entity Codes for the various types of business entities that serve as trading partners.
Internally, the entities are usually business units.

o Assign Trading Partner IDs to the internal entities (business units) that external trading partners
need to be able to submit transactions to. Because of the way each PeopleSoft Financials
application tracks its own set of business units, a single Trading Partner ID can refer to
multiple Business Unit IDs, all of which actually refer to the same physical business unit.

e Assign Trading Partner IDs to the external companies with which you do business.

e [f you need to submit EDI transactions to specific business entities within an external
company, assign a Business Entity ID to each one.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-15

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

To define a PeopleSoft Entity Code
1. Select Entity Code Definition.

To define a new entity code, select Add a New Value, enter a unique Entity Code in the
dialog box, and click Add.

To update an existing entity code, select Search or Find an Existing Value to select from a
list of available codes.

Et Entity Code Thl

PeopleSoft Entity Code: APBL

Description: |Accounts FPayahle Business Unit

Record (Table) Name: IEIUS_UNIT_TEIL_AP ﬂ " External Entity

Iy
& 5zve L Return to Search E"ﬂ)
Entity Code Definition page

Use this page to specify what type of business entity this Entity Code applies to, and which
table in the PeopleSoft database lists the valid entities of this type.

2. In the Description text box, describe to what sort of entity this Entity Code applies.
3. Select the record definition for the table that lists valid entities of this type.

In other words, pick the prompt table for this type of entity from the Record (Table) Name
list. For example, if you’re defining an Entity Code for business units, specify the table that
holds Business Unit IDs.

4. Specify whether this Entity Code applies to external trading partners.

You need to identify Entity Codes both for your internal business entities and for the external
companies you trade with. For example, you’ll probably want to create Entity Codes based on
the Vendor table and the Customer table.

If the Entity Code you’re defining is for external companies, select the External Entity
check box. If the Entity Code is for entities internal to your own company, leave the check
box unselected.

5. Save the page.

7-16 EDI MANAGER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

To create an internal Partner ID

1.

Select Internal Partner Defn.

To define a new definition, select Add a New Value, enter a unique Internal Partner ID in the
dialog box, and click Add.

To update an existing definition, select Search or Find an Existing Value to select from a
list of available values.

Ec Int Partner Def

I Int TPID: GERERALINT |

Descr: |Genera| Internal Parther

Business Unit Assignment ind | Wiew All First [1.0t 1 [Last

'PS Code [GENR | Q) & unit [6ENR Q] 1] Add

I

TP ID Alias Definition First (4] 101 1 [#] Last

*Ext TPID | Q| |=|*alias TPID | =

ﬁ Save QReturn to Search [add @Correct Hiztory

Internal Partner Definition page

Use this page to specify which internal business entities share this Partner ID, and which
external trading partners do business with this partner.

Enter a description of the Partner ID in the Descr text box.
Specify to which business entity or entities this Trading Partner ID applies.

In the PS Code box, select the Entity Code for the type of business entity, then select the
specific entity in the Unit box.

Since the same business unit can be referred to by different Business Unit IDs in different
PeopleSoft Financials applications, you can add multiple units to the same Trading Partner
ID.

Specify which external trading partners work with this internal trading partner, and what
name they use to refer to the internal partner.

In the Ext TPID box, select the name of an external trading partner that does business with
the internal partner you’re defining. Then, in the Alias TPID box, enter the name by which
the selected external partner will refer to the internal partner—that is, the text that will appear
in the Internal Trading Partner field in the PeopleSoft Business Document.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-17

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

=,

7-18

If you haven’t defined your external trading partners yet, you’ll need to return to this page
after you add them.

Repeat this step for each external trading partner.

5. Save the page.

To add an external trading partner
1. Select External Partner Defn.

To define a new definition, select Add a New Value, enter a unique External Partner ID in
the dialog box, and click Add.

To update an existing definition, select Search or Find an Existing Value to select from a
list of available values.

You’ll need to find out from the trading partner or from the VAN what Trading Partner ID to

use.
{ Ec ExtPartner Def 3
Ext TPID: THT
Descr: |
Map ID: | Q] Profile ID: | Q] cwtProip: | Ql
Customer /Yendor Assignment First (4] 1.cf 1 [Last
*PS Code SetlD *PS CustomerVYendor Number
Add Dielete
Q| Q| Ql [Add [Delete |

TP Alias Assignment ind | Wieww Al First (0 151 [Last
*Int TPID *Alias TPID
I I Add
E Save Ekadd) E Update."DispIa\,r) @Correct Histoly)

External Partner Definition page

Use this page to provide information about the external trading partner.
2. Enter a description of the trading partner in the Descr text box.
3. Select the map profile that includes the mappings this trading partner uses.

Select the appropriate Map Profile ID from the list of valid Map IDs.

EDI MANAGER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

4. Select the partner profile that identifies the transactions this partner can perform.
Select the appropriate Partner Profile ID from the list of valid Profile IDs.

5. Select the conversion data profile that specifies how to translate this partner’s codes into
PeopleSoft codes (optional).

Select the appropriate Conversion Data Profile ID from the Cvt Pro ID list.

6. Specify the Customer ID, Vendor ID, or other ID for this trading partner.

@ If you exchange transactions with multiple business entities inside this trading partner, you’ll
need to define the partner’s external business entities. See the next procedure, To define
business entities in an external trading partner company. If you define external business
entities, each one needs to have its own unique Customer ID, Vendor ID, or other ID. The ID
you assign here should be the ID for the corporate office.

In the PS Code box, select the Entity Code for the type of entity this partner is—customer,
vendor, or whatever. If your system uses table set processing, select the SetID for the
Customer or Vendor table in the SetID box. In the PS Customer/Vendor Number box,
select the specific value from the Customer or Vendor table that corresponds to this trading
partner.

If different tables in the system refer to this trading partner by different names, you can list all
the IDs as part of the trading partner definition.

7. Identify the internal trading partners who do business with this external trading partner.

In the Int TPID box, select the name of an internal trading partner that does business with the
external partner you’re defining. Then, in the Alias TPID box, enter the name by which the
new external partner will refer to the selected internal partner—that is, the text that will
appear in the Internal Trading Partner field in the PeopleSoft Business Document.

Repeat this step for each internal trading partner.

8. Save the page.

To define business entities in an external trading partner company

@ Follow this procedure only if you need to be able to address transactions to multiple business
entities that are part of the same external trading partner.

1. Select Business Entity Defn.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-19

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

7-20

To define a new definition, select Add a New Value, enter a unique External Partner ID in
the dialog box, and click Add.

To update an existing definition, select Search or Find an Existing Value to select from a
list of available values.

{ Eu: Bus Entity Def %
External Business Entity ID: THT
Description: I
Parent Trading Partner ID: I ﬂ
Customer JYendor Assignment ind | Wiew Al First (4] 1cf 1 [®] Last
*PS Code SetiD *PS Customer/endor Number Add
& | Q| oY
Associated Internal Entity Assignment ind | Wigw A First (4] 1cf 1 [Last
*Internal Entity ID *Alias Internal Entity 1D
Y 2 Add
r '« [
& save [2dd | | UpdatesDisplay

Business Entity Definition Page

Use this page to define the groups or entities you deal with inside an external trading partner.
Enter a description of the business entity in the Descr text box.

Specify to which trading partner company this business entity is a part.

Select the appropriate Trading Partner ID from the Parent Trading Partner ID list.

When the EDI Agent processes a transaction that involves the business entity you’re defining,
it will use the Map ID, Profile ID, and Conversion Data ID assigned to the parent trading
partner.

Specify the Customer ID or Vendor ID for this business entity.

To establish a business entity as a valid trading partner, it must appear as a separate entry in
your PeopleSoft database as a customer or a vendor. In the Customer/Vendor Assignment
area, you identify which customer or vendor will be referred to by the External Business
Entity ID you’re creating. The system needs this information so that it can figure out what
Customer ID or Vendor ID to assign to incoming EDI transactions, and what External
Business Entity ID to assign to outgoing EDI transactions.

In the PS Code box, select the Entity Code for customers or vendors. If your system uses
table set processing, select the SetID for the Customer or Vendor table in the SetID box. In
the PS Customer/Vendor Number box, select the specific value from the Customer or Vendor
table that corresponds to this business entity.

EDI MANAGER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

If different tables in the system refer to this business entity by different names, you can list all
the IDs as part of the trading partner definition.

5. Identify the internal trading partners who do business with this external trading partner, then
save the page.

In the Internal Entity ID box, select the name of an internal trading partner that does
business with the external entity you’re defining. Then, in the Alias Internal Entity ID box,
enter the name by which the new external entity will refer to the selected internal partner—
that is, the text that will appear in the Internal Trading Partner field in the PeopleSoft
Business Document.

Repeat this step for each internal trading partner.

Deleting EDI Manager Objects

There may come a time when you need to remove business objects that you have created. You
may wish to delete the business entities that have been established if the business entities are no
longer valid. This is done through the Delete EDI Manager Objects menu list.

To delete EDI Manager objects

1. Select Delete EDI Manger Objects.

{ EcDelete 3

&
Delete EC Map: =Y
Delete Trading Partner Profile: I— ﬂ
Delete Data Comversion Profile: I— =Y
Delete External TP ID: =Y
Delete Internal TP ID: =Y

Fress SAYE To Commit Delete

ﬁ Sawve
Delete EDI Manager Objects page

2. Enter the objects to be deleted in the appropriate field list.

3. Press save to delete.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL EDI MANAGER 7-21

CHAPTER 8

Mapping EDI Transactions

PeopleSoft applications store their transaction data in tables in the PeopleSoft database. For an
application to process an EDI transaction, it needs the transaction data in its tables. So, the first
step in processing an EDI transaction is transferring the data from an incoming EDI Transaction
Set file into the application tables. Similarly, the first step in generating an EDI transaction for
delivery to a trading partner is getting the transaction data out of the application tables into an
EDI Transaction Set file.

You specify how the EDI Agent transfers data between EDI Transaction Set files and application
tables by creating electronic commerce maps. There are two kinds of electronic commerce maps:

¢ Inbound maps, which transfer incoming transaction data into your PeopleSoft database
e QOutbound maps, which create outgoing EDI documents from transaction data in the database

This chapter explains how to create both types of maps. It also tells you how to create map
profiles, which specify to what maps your trading partners have access.

Processing New EDI Transactions

We deliver PeopleSoft applications with a number of EDI transactions already defined. However,
if you want your application to process a transaction we don’t supply, you can use PeopleTools to
add support for it. Here are the major steps in the process.

To process new EDI transactions

1. Use PeopleTools to develop the application that processes the transaction. Create the database
tables and the pages users need to process the transaction.

2. Define a PeopleSoft Business Document format based on the EDI format for the transaction.
At this step, think about how the data from the EDI document needs to map to the application
tables.

3. Write a translation program that converts EDI documents into PeopleSoft Document format.
Usually, you’ll have an EDI Translator program to handle this step.

4. Create staging tables to serve as a temporary holding area between the PeopleSoft Document
and the application tables.

5. Create a mapping that copies data between the PeopleSoft Business Documents and the
staging tables.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MAPPING EDI TRANSACTIONS 8-1

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

6. Write an application load procedure that transfers data from the staging tables to the
application tables.

This chapter primarily covers step 5 in this procedure.

PeopleSoft Business Document Format

A PeopleSoft Business Document is a ASCII file that contains the data for one or more EDI
transactions. It contains both the transaction data and control information, which tells the system
what type of transaction it is, who it came from, and how the various parts of the document relate
to each other.

A PeopleSoft Business Document is divided into records, separated from each other with a line
feed and carriage return. Each record is divided into fixed-length fields. One of the fields in the
record, usually the first one, is a Record ID field that specifies what type of record it is—a header,
detail line, summary line, or whatever. What the rest of the fields are depends on the type of
record.

The first record in a PeopleSoft Business Document is always a control record. The control
record specifies the type of transaction contained in the following lines and the trading partners
involved. Based on the control record, the EDI Agent retrieves the mapping definition for the
specified transaction and the data conversion options relevant to the trading partner.

The EDI Agent reads the records in the document one at a time. For each record following the
control record, the EDI Agent reads the value in the Record ID field and uses it to determine
which PeopleSoft record definition to use to parse the rest of the record. The PeopleSoft record
definition specifies the location, size, and data type of the remaining fields in the record. The EDI
Agent copies the data from the document into staging tables in the database, following the rules
in the mapping definition.

When the EDI Agent encounters a new control record—identified by the Record ID 999 or 998—
it retrieves the mapping definition for the new transaction type and repeats the process.

Most transactions include a variety of record types: a header, detail lines, schedules, summary
lines, and so on. The layout of the records within a PeopleSoft Business Document follows a
logical pattern. All detail lines linked to a particular parent or header line must follow the parent
record.

@ The EDI Agent processes transactions at the “unit of work” level, corresponding to the
ST/SE level in X.12 format. Each transaction should be a unit of work that you want the EDI
Agent to commit or rollback as a unit, such as a single purchase order or invoice.

Let’s look at an example.

001 Header Line 1
002 Detail Line 1A
002 Detail Line 1B
002 Detail Line 1C
001 Header Line 2

8-2 MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

002 Detail Line 2A
002 Detail Line 2B

This file has two header lines and five detail lines. The EDI Agent determines which detail lines
go with which header lines based entirely on their order.

When the EDI Agent processes this PeopleSoft Business Document, it works through the records
in order. First, it processes Header Line 1 using the work record that’s appropriate for Record ID
001. Next, it processes Detail Line 1A using the work record for Record ID 002.

Now, if you ask the EDI Agent to calculate some value, such as the sum of all the detail lines, it
determined which detail lines to group together based on their position. It calculates the value for
all detail lines since the most recently encountered header line.

Control Records

The first record in a PeopleSoft Business Document is always a control record (998 and 999
records). The control record specifies the type of transaction contained in the following lines and
the trading partners involved. Based on the control record, the EDI Agent retrieves the mapping
definition for the specified transaction and the data conversion options relevant to the trading
partner.

Within the flat file, the control records:

e For Outbound — Allow a third party translator or trading partner to determine what the data
contains (999 only).

e For Inbound — Allow the EDI Manager to determine what the data contains (999 and 998).

‘999’ Record Format

This reserved record identifier acts as a control record to “switch” map definitions within a data
file. The layout is as follows :

Field Description Value

1-3 Record Identifier ‘999’

4-18 Transaction ID Char

19-22 External Entity Code Char / Values :
CUST or VNDR

23-38 External Trading Partner ID Char

39-42 Internal Alias Entity Code Char / Values :
AP, AR, OM, ...

43-58 Internal Trading Partner Alias ID Char

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MAPPING EDI TRANSACTIONS 8-3

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

‘998’ Record Format

This format allows the specification of a PeopleSoft Map ID directly in the data contents. This
type of map definition can be used when Trading Partner conversions are not needed or not
available. All other data conversion functionality can be utilized.

Field Description Value
1-3 Record Identifier ‘998’
4-13 PeopleSoft EC Map ID Char
14-23 PeopleSoft Trading Partner Profile ID Char
24-33 PeopleSoft Data Conversion Profile ID Char

Creating Electronic Commerce Maps

Electronic commerce maps specify how the EDI Agent transfers data between PeopleSoft
Business Documents and the staging tables in the PeopleSoft database. There are two types of
maps:

¢ Inbound maps, which the EDI Agent uses to transfer data from PeopleSoft Business
Documents to the staging tables, in preparation for processing by a PeopleSoft application.

e Oubound maps, which the EDI Agent uses to create PeopleSoft Business Documents from data
the applications put in the staging tables for delivery to a trading partner.

You create one map for each EDI transaction.

@ Electronic commerce maps help transfer data between PeopleSoft Business Documents and
staging tables in the PeopleSoft database. They don’t apply to the “application load” or
“application extract” processes, which copy data between the staging tables and the
transactional tables.

To define an inbound map
1. Inthe Application Designer, create the staging tables for the incoming data.

The staging tables are an intermediate step between the PeopleSoft Business Document
format and the transactional application tables. So, the structure of the tables is intermediate
between the PeopleSoft Business Document format and the structure of the transaction tables.

The record definition for a staging table has three kinds of fields in it:
e Required system fields
¢ Fields corresponding to the data fields in the PeopleSoft Business Documents

e Extra fields for calculated data needed in the application tables, such as summary values, date
stamps, or action codes (optional)

8-4 MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

The required system fields are:

ECTRANSID Transaction ID
ECQUEUEINSTANCE Instance ID
ECTRANSINOUTSW I or O, specifying an incoming or outgoing transaction

These fields must be key fields for the tables.

Save the record definitions with the extension EC to identify them as staging tables. Use
SQL Create to create tables using the record definitions.

In the Application Designer, create work records that mimic the structure of the records in the
PeopleSoft Business Document.

You need to create a work record for each physical record in the PeopleSoft Business
Document file.

One (and only one) field in the work record needs to be designated as holding the Record ID
for the document record it mimics. For most records, it’s the first field, reflecting the fact that
the Record ID in the PeopleSoft Business Document is usually the first data on the line.

The EDI Agent uses this field to match the appropriate work record with each record in the
PeopleSoft Business Document. Later in this procedure, you’ll specify which Record ID this
work record applies to. When the EDI Agent reads a record from the PeopleSoft Business
Document, it uses the work record with the same Record ID to read the record’s data. If you
want, you can add the appropriate Record ID as a default value for the field; the EDI
Manager will automatically fill in the correct Record ID at step 9.

The rest of the fields in the work record definition should match the corresponding fields in
the PeopleSoft Business Document record. They should to be in the same order and should
have the same length. Add default values for any fields that have them.

Save the work record with the extension WD to identify it as a work document.
From your browser, select PeopleTools, EDI Manager, Use, Inbound Map Definition.

To define a new map definition, select Add a New Value, enter a unique value in the dialog
box, then click Add.

To update an existing definition, select Search or Find an Existing Value to select from a
list of available codes.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MAPPING EDI TRANSACTIONS 8-5

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

Description \'. Business Document Layaout Target Records

EC Map ID: AUDIT

Source Map Definition: I Q) =]
*EC Transaction ID: IF\UDIT Q=

Description: IAuditTraiI Mapping
[~
ﬁ Save QReturn to Search Hext tab Eadd @Conect Hiztory

Description | Business Document Layout | Target Records

Inbound Map Definition Description page

You use this page to specify to which transaction this map applies.
4. Select the transaction to which this map applies.

All defined inbound transactions appear in the EC Transaction ID list.

For information about defining electronic commerce transactions, see the EDI Manager
section.

5. Enter a description of the map.

You can enter both a short description (in the Description text box) and a long description (in
the larger box). These descriptions are for your information only; the system doesn’t use
them.

6. Copy the definition of a similar map (optional).

If the map you’re creating is similar to an existing map, you can copy the details of the
existing map definition into this component. Then, you can change just the parts that are
different.

Select the existing map in the Source Map Definition list box, then click the
button. The system copies the map information from the selected map into the pages.

7. Click the Business Document Layout tab.

8-6 MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

You use the Business Document Layout page to describe the format of the PeopleSoft
Business Document.

f Description)’ Business Document Layout \: Target Records ‘|

First (4] 1ot 1 [P Last

EC Map ID: THT Trans ID: GEMERALIMN Descr: EI
File RowID: 000 ‘Business Doc Record: I Q| Z
ind | e Al First (40 101 1 [¥] Last
Seq: I Name: I Descr: I +1[=]
Start: |0] Field Type: Al crar
Length: ID
 None & None
' EC Entity Code TP Convert
" Pri Evt Cd ' Record ID
' Sec Evt Cd ' Convert
' EC Queue Control Number From: To:
& save Frawious tah) Next tab) Eladd) Update.fDisplay:] [Correct Histon,r)

Description | Business Document Layout | Target Recards
Business Document Layout page

At step 2, you created work record definitions that mimic the structure of the PeopleSoft
Business Document. On this page, you specify which work record definition to use for each
record in the PeopleSoft Business Document, and what type of data appears in each field.

This page has two areas. The outer area enables you to associate multiple work record
definitions with this map. The inner area scrolls through the list of fields in a work record
definition.

8. Select one of the work record definitions you created in step 2, then click the lightning bolt
button.

Select the record definition from the Business Doc Record list box. When you click the
lightning bolt button, the EDI Manager copies data from that record definition into the rest of
the fields on this page.

9. Specify to which Record ID this work record definition applies.

If the first field in the work record definition isn’t the one for Record IDs, use the inner area
to scroll to the Record ID field. The EDI Agent uses this field to match the work record
definition to the appropriate record(s) in the PeopleSoft Business Document.

o With the field displaying on the page, click the Row ID option button in the Field Value
Conversion group box. A text box appears next to the option.

o In the text box, enter the Record ID of the records whose structure this work record definition
mimics. When the EDI Agent finds a record in the PeopleSoft Business Document with this
Record ID, it will use this word record definition to parse it.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MAPPING EDI TRANSACTIONS 8-7

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

8-8

10. Scroll to the next field in the work record definition.

11.

The inner scroll bar on the page controls the list of record definition fields.
Check the location of a field in the record.

If you defined the work record definition at step 2 properly, the correct field information
should appear in the text boxes, copied from the work record. You can verify the existing
information rather than entering it. If the format of the PeopleSoft Business Document is
slightly different than the work record definition, you can modify the formatting on this page
to match the document without affecting the work record definition.

The Seq text box gives the number of the field in the record. The first field in the record is
field 1, the second is field 2, and so on. The Name is the field name from the work record,
and the Field Type indicates the data type of the field’s data.

The Start and Length boxes specify the location and size of the field in the PeopleSoft
Business Document. The Start position is the number of characters from the beginning of the
record to where the first character of this field’s data appears. The Length is the number of
characters reserved for this field; it’s also the number of characters the system will transfer to
the staging tables.

For numeric data, the Dec Positions is the number of characters to the right of the decimal
point. If an incoming PeopleSoft Business Document uses implicit decimal format—that it, if
it doesn’t include decimal points in this field (in any row)—the EDI Agent will insert them
(in all rows) at the position specified in this box. If the data already includes decimal points,
the EDI Agent doesn’t change them or insert any other decimal points.

For Date data, you also need to enter a Date Fmt and Delimiter. You use these text boxes to
specify the format for dates in this field in the incoming file. Use standard date formatting
conventions, as illustrated in this table.

Date Value Date Fmt Delimiter

19961226 YYYYMMDD N (for
None)

1996/12/26 YYYYMMDD /

DEC-96-26 MMMYYDD -

26-DEC-1996 DDMMMYYYY -

26.12.1996 DDMMYYYY

12. Specify what type of data the field contains.

The Special EDI Attribute group box contains a number of option buttons. You select one to
specify whether the data in the current field is transaction data or is an EDI control code of
some kind. The available options are:

None The data in the field is normal transaction data.

MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

EC Entity Code

EC Queue Control Number

Pri Evt Cd

Sec Evt Cd

PEOPLETOOLS 8.12 INTEGRATION TOoOLS PEOPLEBO

The field gives an Entity Code, which specifies what type
of business entity the Trading Partner ID for the current
transaction refers to. The Entity Code tells the EDI Agent
what table to use to find the list of valid IDs.

The data in this field is a unique identifying number that
you want to store in the EDI Agent queue so that you can
refer to it when reviewing EDI audit history. For example,
in a purchase order, you might identify the PO Number as
the EC Queue Control Number.

The field identifies the Primary Event Code, sometimes
called the Purpose Code. The EDI Agent uses the fields
identified as Event Codes to determine the appropriate
Action Code (see step 20). If you identify a Primary Event
Code, you must also identify a Secondary Event Code in
the same record.

The field identifies the Secondary Event Code, sometimes
called the Transaction Code. The EDI Agent uses the
fields identified as Event Codes to determine the
appropriate Action Code. If you identify a Secondary
Event Code, you must also identify a Primary Event Code
in the same record.

For more information about Entity Codes, Event Codes, and Action Codes, see the EDI

Manager section.

OK

13. Specify how the EDI Agent needs to convert the data as it copies data from the field into the

staging tables.

The EDI Agent can perform certain kinds of data conversion as it copies data from the
PeopleSoft Business Document into the staging tables. The Field Value Conversion options

arec:

None

TP Convert

Row ID

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

The EDI Agent copies the data exactly as it appears in the
PeopleSoft Business Document field.

The EDI Agent converts data from this field according to
the rules defined in a conversion type definition. When
you select this option, a drop-down list box appears so that
you can select which conversion type definition to use.

Use this option for the first field in the work record
definition only. See step 9 for details.

MAPPING EDI TRANSACTIONS

8-9

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Convert

JANUARY 2001

The EDI Agent converts the data as specified in the From

and To boxes. When the field in the PeopleSoft Business
Document contains the value in the From box, the EDI
Agent converts it into the value in the To box. This option
includes a scroll bar, and you need to enter a row for each

possible value in the field.

You can perform data conversion at several points during processing. Use the Convert

option for conversions that apply to this map only and are valid for all trading partners.

14. Repeat steps 10 through 13 for each field in the work record definition.

15. Repeat steps 8 through 14 for each record in the PeopleSoft Business Document.

To associate another work record definition with this map, put the cursor in the Business Doc

Record list box and press the F7 key.

16. Click the Target Records tab.

You use the Target Records page to specify into which staging tables to copy the transaction

data.

| Description ' Business Document Layout |~ Target Records _

EC Map ID:

TNT Trans ;. GEMERALIN Descr:

File Row ID: 000

File Layout Model:

First (4] 108 1 [¥] Last -EI

*Target Record: I Q) g
Sequence: [0
*Field Name: I Q)
FieldType: [0 Q) cHar

¥ File Field Value |

" Default Value
" EC Agent Calc'd

ﬁSave (82 Previous tab | (=5

Description | Business Document Layout | Target Records

Ekaad) 2 Updatea’Display) @’Correct History)

Target Records page

The page has three areas. The outer area enables you to move between the work record
definitions you associated with this mapping on the previous page. For each work record
definition, you can specify one or more staging tables to copy data into; that’s what the

8-10 MAPPING EDI TRANSACTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

17.

18.

19.

20.

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

second area is for. The third (innermost) area moves through the list of fields in the staging

table’s record definition.

Select a work record definition.

Use the outer scroll bar to move between the work record definitions you added to this
mapping on the previous page. The record definition name appears in the File Layout Model

field.

Select the staging table to copy data into, then click the lightning bolt button.

In the Layout Record list, select the record definition for the table you want to copy
transaction data to. Click the lightning bolt button to copy field information from the record

definition into the page.

Select a field in the staging table record definition.

Use the inner scroll bar to move between fields.

The Sequence text box gives the number of the field in the record. The Field Name is the
field name from the record definition, and the Field Type indicates the data type of the field’s
data. All of this information comes from the record definition you selected.

Specify what data to copy into this field.

In the Set Field Equal To area, select the value you want the EDI Agent to copy into the

selected field.

e To copy the value from a field in the PeopleSoft Business Document, select the File Field
Value option button. Enter the name of the field whose value you want to copy in. Use the

the page.

field name from the work record definition that appears as the File Layout Model at the top of

o To enter a default value into the table, select the Default Value option button and enter the

desired value in the text box that appears next to it.

@ You can specify both a file field to copy data from and a default value. If you do, the EDI
Agent enters the default value into the staging table only when the specified file field doesn’t
have a value.

e To enter a value that the EDI Agent calculates as it copies data into the staging table, select the

EC Agent Calc’d option button, then pick a calculation option from the drop-down list that
appears next to it. The table below describes the available calculation options.

Calculation Option

Value Written in the Field

Action Code Conversion

An Action Code.

The EDI Agent gets the values from the fields in this record
labeled Primary Event Code and Secondary Event Code,
looks up the combination in the partner profile for the trading
partner, and inserts the appropriate Action Code.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

MAPPING EDI TRANSACTIONS 8-11

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

JANUARY 2001

Calculation Option

Value Written in the Field

Apportion Parent Value

A percentage of the value from the parent line.

The EDI Agent takes the numeric value from the preceding
parent line, divides it by the number of child lines, and puts
the resulting value in this field on each child line.

You have to fill out the Related Record Info to identify the
parent line.

Average Summary Value

The average value from a particular field.

The EDI Agent adds up the values in this field from all
occurrences of this record reporting to the same parent line,
divides by the number of records, and puts the result in this
field.

You have to fill out the Related Record Info to identify the
field whose average you want.

Business Document Level
External TPID

The Trading Partner ID of the trading partner that generated
the EDI transaction.

The EDI Agent gets the Trading Partner ID from the first
record in the PeopleSoft Business Document.

Business Document Level
Internal TPID

The Trading Partner ID of the internal group to which the
EDI transaction is addressed.

The EDI Agent gets the Trading Partner ID from the first
record in the PeopleSoft Business Document.

Current Date

The date on which the EDI Agent processes the PeopleSoft
Business Document.

Current Date and Time

The date and time when the EDI Agent processes the
PeopleSoft Business Document.

EC Queue Instance

The system-generated Queue Instance ID given to this
PeopleSoft Business Document.

Note: To create a valid mapping, you must map this value
into the ECQUEUEINSTANCE field.

EC Transaction ID

The Transaction ID from the first record in the PeopleSoft
Business Document.

Note: To create a valid mapping, you must map this value
into the EDTRANSID field.

File Name/File ID

The name of the PeopleSoft Business Document file.

Incremented Key Sequence
Number

A system-generated sequence number.

The EDI Agent increments the number for each child row of
a particular parent. It starts at 1 again when it reaches a new
occurrence of the parent line.

You have to fill out the Related Record Info to identify the

MAPPING EDI TRANSACTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Calculation Option

Value Written in the Field

parent line.

Inherit Parent Value

A value copied directly from the parent line.

You have to fill out the Related Record Info to identify the
parent line.

Maximum Summary Value

The maximum value of a field.

The EDI Agent checks all the occurrences of a specified
record and field, and copies the maximum value into this
field.

You have to fill out the Related Record Info to identify the
field whose maximum you want.

Minimum Summary Value

The minimum value of a field.

The EDI Agent checks all the occurrences of a specified
record and field, and copies the minimum value into this
field.

You have to fill out the Related Record Info to identify the
field whose minimum you want.

Operator ID

The Operator ID of the user who started the EDI Agent.

Process Instance

The system-generated Instance ID from the Process
Scheduler.

Run Control ID

The Run Control ID of the run control used to start the EDI
Agent.

Total/Accumulate Summary
Value

The total of the values in a field.

The EDI Agent adds together the values from a specified
field in all occurrences of a record reporting to the same
parent line and puts the result in this field.

You have to fill out the Related Record Info to identify the
field whose total you want.

Trading Partner Conversion

The customer, vendor, or business unit associated with a
Trading Partner ID.

21. Enter the related record information (for some calculated options only).

When you select some of the calculation options in step 20, three drop-down list boxes
appear in the Related Record Info area. You use these list boxes to identify the Row,
Record, and Field to use in the calculation.

For example, if you selected the Total/Accumulate Summary Value option, the EDI Agent
will add up the values from the specified row, record, and field.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

MAPPING EDI TRANSACTIONS 8-13

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

@ If you selected the Increment Key Sequence Number option, only the Row list box
appears. You don’t need to select a record or field.

22. Repeat steps 19 through 21 for each field in the staging table.

To create a valid mapping, you must enter the appropriate values in the three required system

fields:

ECTRANSID Use the EC Transaction ID option to have the EDI Agent
put the Transaction ID in this field.

ECQUEUEINSTANCE Use the EC Queue Instance ID option to have the EDI
Agent put the Instance ID in this field.

ECTRANSINOUTSW Enter a Default Value of [in this field, to specify an

inbound map definition.

23. Repeat steps 18 to 22 for each staging table you want to copy data into.
24. Repeat steps 17 to 23 for each work record definition.

25. Save the map.

To define an outbound map
1. From your browser, select PeopleTools, EDI Manager, Use, Outbound Map Definition.

To define a new map definition, select Add a New Value, enter a unique value in the dialog
box, then click Add.

To update an existing definition, select Search or Find an Existing Value to select from a
list of available codes.

8-14 MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

This page appears.

{ Description ‘.I Source Records Target Business Doc Layout

EC Map ID: THT

Source Map Definition: I Q) FE]|
*EC Transaction ID: IbENERALOUT al =2

Description: |
[
=
&l save Next tab Eladd) Update.fDispIay) [# Correct Histor\r)

Description | Source Records | Target Business Doc Layout

Outbound Map Definition Description page

2. Select the transaction to which this map applies.

All defined outbound transactions appear in the EC Transaction ID list.

For information about defining electronic commerce transactions, see the EDI Manager
section.

3. Enter a description of the map.

You can enter both a short description (in the Description text box) and a long description (in
the larger box). These descriptions are for your information only; the system doesn’t use
them.

4. Copy the definition of a similar map (optional).

If the map you’re creating is similar to an existing map, you can copy the details of the
existing map definition into this component. Then, you can change just the parts that are
different.

Select the existing map in the Source Map Definition list box, then click the
button. The system copies the map information from the selected map into the pages.
5. Click the Source Records tab.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MAPPING EDI TRANSACTIONS 8-15

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK JANUARY 2001

You use the Source Records page to specify which staging tables to retrieve data from to
create PeopleSoft Business Documents.

Description y~ Source Records TargetBusiness Dac Layout

I EC Map ID: TNT TransID: GEMERALOUT Descr: |
File Row ID: 000
*Source Record: IAEISENCE_HIST g
Parent Recoril: IAEISENCE_HIST1 Q)
Where Clause: ;I
[
ﬁ Save Frewious tah) Mext tab) Elraad) | H Update.l’[)isplay) @Correct History)

Description | Source Records | Target Business Dot Layout
Source Records page

6. Select the record definition for extracting data from the staging table.

In the Source Record list box, select the record definition that retrieves the data you want
from the staging tables. It could be the record definition used to define the table or a view that
retrieves just the data you want.

You want to add lines to the PeopleSoft Business Document in a logical unit of work order—
header information before detail line information, parent lines before child lines, and so on.

You don’t need to explicitly create a control record for the PeopleSoft Business Document
(the 999 or 998 record). The EDI Agent creates one automatically from information in the
queue that stores pending outbound transactions.

7. Select a parent record (child lines only).

If the record definition you selected in step 6 retrieves data for a record that’s related to a
preceding parent record—such as the detail line under a header—pick the record definition
for the parent record in the Parent Record list.

The parent record is typically the record definition you used for the previous row in the
outbound mapping.

8. Enter the SQL WHERE close to specify which rows to retrieve.

8-16 MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

When you’re creating a header line, the WHERE clause needs to select the header
information for a single transaction. You identify a single transaction using the Transaction
ID and unique Queue Instance ID. The WHERE clause should look like this:

WHERE ECTRANSID = S$ECTRANSIDS AND ECQUEUEINSTANCE = $SECQUEUEINSTANCES

The two values inside dollar signs are system variables that the EDI Agent replaces with the
Transaction ID and Queue Instance ID respectively of the first transaction in the pending
outbound queue. This WHERE clause has the effect of only retrieving the data for that one
transaction.

If you’re extracting the data for child lines, the WHERE clause must include a link to the
parent record, to tell the EDI Agent how to join the tables. The WHERE clause needs to
include a statement of this form:

WHERE fieldname = Srecord.fieldname$

The first fieldname is a field from the source record definition; record.fieldname is a field in
the parent record definition. You must include the dollar signs around record.fieldname.

9. Repeat steps 6 to 8 to specify the record definition for each record to go into the PeopleSoft
Business Document.

10. Click the Target Record Doc tab.

You use the Target Record Doc Layout page to specify how the EDI Agent formats the
PeopleSoft Business Document.

{ Description " Source Records | Target Business Doc Layout _
EC Map ID: THNT Trans ID: GEMERALOUT Descr:
view Al First [1064 [P] Last
File Row ID: 000 *Model File Layout: || Q # =1
vigw Al First [1001] Last
Sequence: IU & Source Field I
Start: ID +_I| Description: |
Length: ID " Default
Field Type: ID_ Q) cHeR Agent Value
' TP Corwersion
Pad Character: | | ' Convert
Strip Chars: I
From To
[Convert to Upper Case
E Save Previous tab || & Ekadd) E Update.l’DispIay:] @Correct Histoly)
Description | Source Records | Target Business Dac Layout

Target Business Document Layout page

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MAPPING EDI TRANSACTIONS 8-17

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

8-18

For each of the source record definitions you added on the previous page, you identify an
associated work record definition that specifies how the EDI Agent writes the staging table
data into the PeopleSoft Business Document.

This page has two scroll bars. The outer scroll bar enables you to scroll between the source
record definitions you added on the previous page; they are identified by the File Row ID the
system assigned when you added them. The inner scroll scrolls among the fields in the work
record definition you associate with the source record definition.

11. Select the work record definition that specifies the format of the output record, then click the
lightning bolt button.

The File Row ID field identifies a source record definition from the previous page. In the
Model File Layout list box, choose the work record definition that the EDI Agent will use to
write data from the source record into the PeopleSoft Business Document.

When you click the lightning bolt button, the system copies field information from the work
record definition into the page. The Target Record Field Info group box displays information
about where in the record it will write each field’s data.

Depending on the data type of the record field, the Target Record Field Info box offers
additional formatting options, so that you can format the data in the outgoing PeopleSoft
Business Document.

e For any field, you can enter in the Strip Chars box one or more characters you don’t want the
Outbound EDI Agent to include when it copies data into the outbound transaction file. For
example, you may want to “strip” the hyphens from phone numbers and Social Security
Numbers, or the decimal from a currency amount. When the Outbound EDI Agent writes data
from a field into an outbound transaction file, it will first remove any and all instances of the
characters in the Strip Chars text box. You can include any number of characters in the Strip
Chars box.

The Strip Chars text box contains a /ist of the individual characters to remove, not a string
to remove. For example, if the field data is 455-67-8898 and the Strip Chars text box has a
hyphen in it, the EDI Agent writes 455678898 to the file. If the Strip Chars text box has the
two characters -5 in it, the EDI Agent writes the same field data to the file as 4678898.

e For character fields, you can click the Convert to Upper Case check box to tell the Outbound
EDI Agent to write the contents of the field in all upper case letters.

o For character fields or numeric fields, you can use the Pad Character text box to specify a
character for the Outbound EDI Agent to use to pad data so it is the full length of the field. For
character fields, the Outbound EDI Agent adds the specified character to the left of the existing
field information. For numeric fields, the most typical use is to pad a number with initial zeros.

e For date fields, you can specify in the Date Fmt and Delimiter text boxes how you want to
format dates in this field in the Business Document. Use standard date formatting conventions,
as illustrated in this table.

MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Date Value Date Fmt Delimiter
19961226 YYYYMMDD N (for

None)
1996/12/26 YYYYMMDD /
DEC-96-26 MMMYYDD -
26-DEC-1996 DDMMMYYYY -
26.12.1996 DDMMYYYY

12. Specify what data you want the EDI Agent to write in the field.

In the Conversion Processing area, select the value you want the EDI Agent to write into the
selected field.

To copy the value from a field in the source record, select the Source Field option button.
Enter the name of the field whose value you want to copy in.

@ You need to specify a source field for all fields in the work record definition, except those
for which you provide a default value. You must pick a source field even if you select one of
the other options as well.

To enter a default value into the document, select the Default Value option button and enter
the desired value in the text box that appears next to it.

You can specify both a file field to copy data from and a default value. If you do, the EDI
Agent enters the default value into the document only when the specified field doesn’t have a
value.

If you select TP Conversion, the EDI Agent converts data from the specified source field
according to the rules defined in a conversion type definition. When you select this option, a
drop-down list box appears so that you can select which conversion type definition to use.

If you select Convert, the EDI Agent converts the data in the source field as specified in the
From and To boxes that appear below it. When the field in the PeopleSoft Business Document
contains the value in the From box, the EDI Agent converts it into the value in the To box.
This option includes a scroll bar, and you need to enter a row for each possible value in the
field.

To enter a value that the EDI Agent calculates as it copies data into the staging table, select the
Agent Value option button, then pick a calculation option from the drop-down list that appears
next to it. The table below describes the available calculation options.

Calculation Option Value Written in the Field

Action Code Conversion An Action Code.

labeled Primary Event Code and Secondary Event Code,
looks up the combination in the partner profile for the

The EDI Agent gets the values from the fields in this record

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MAPPING EDI TRANSACTIONS 8-19

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

JANUARY 2001

trading partner, and inserts the appropriate Action Code.

Current Date

The date on which the EDI Agent creates the PeopleSoft
Business Document.

Current Datetime

The date and time when the EDI Agent creates the
PeopleSoft Business Document.

EC Entity Code Flag Flags this field as an Entity Code field to use in determining
trading partner conversion logic. The values specify whether
the entity is a customer, vendor, or business unit.

EC Trans ID The Transaction ID.

Incremented Key Sequence A system-generated sequence number.

Nbr The EDI Agent increments the number for each child row of
a particular parent. It starts at 1 again when it reaches a new
occurrence of the parent line.

Secondary Event Code The Secondary Event Code from the Action Code

conversion.

Trading Partner Conversion

The Trading Partner ID associated with the customer,
vendor, or business unit.

13. Move to the next field in the record definition and repeat step 12.

14. Scroll to the next source record definition and repeat steps 11 to 13.

15. Save the map.

16. Run the Outbound EDI Agent Preparer to create the Outbound EDI Agent SQC.

After you create or modify outbound maps, you need to run a special compilation process that
prepares the maps for use by the EDI Agent. For information about running this process, see

Monitoring EDI Processing.

Run the Outbound EDI Agent Preparer only after you’ve made all your changes to outbound
maps. You only need to run it once to prepare all outbound maps.

Creating Map Profiles

8-20

When you add a trading partner, you assign to it a map profile, which lists the electronic
commerce maps that the EDI Agent can use to process transactions from the partner. The map

profile serves two purposes:

e It restricts the trading partners access to transactions they aren’t authorized to exchange with

your company.

e By assigning different map profiles to different trading partners, you can get the EDI Agent to

MAPPING EDI TRANSACTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

process the “same” transaction differently for different partners.

All you do to define a map profile is build a list of the maps you want to make available to
partners with that profile. Then, when you add a new trading partner, you select which map
profile to use for that partner.

To create a map profile

1.

4.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

From your browser, select PeopleTools, EDI Manager, Use, Data Mapping Profile Defn.

To define a new map definition, select Add a New Value, enter a unique value in the dialog
box, then click Add.

To update an existing definition, select Search or Find an Existing Value to select from a
list of available codes.

"Ec Wap Profile Def
I EC Map Profile ID: GEMERALMP
Descr: |Genera| ap Profile
Map Assignment Find | % First (4 151 [M] Last
*EC Map ID g Q EC Transaction ID A
Rs
Bl s=ve] [CLRetun te Search Bbadd)

EC Map Profile Definition page

You use this page to specify which maps are available for partners with this Map Profile ID.
Enter a description of the map profile in the Descr text box.
Add the maps you want partners with this map profile to use.

Select the Map ID from the EC Map ID list. Repeat this step until you’ve added maps for all
the transactions partners with this profile are able to perform.

Don’t forget to add both inbound and outbound maps.

Save the page.

MAPPING EDI TRANSACTIONS 8-21

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Using the EDI Manager for General Data Extraction

The primary purpose of the EDI Manager is to create PeopleSoft Business Documents, which
contain business transaction data and are subsequently translated into X.12 or EDIFACT format
and transmitted to a trading partner. However, you can also use it as a general tool for extracting
data from database tables into a text file. This section provides an overview of this process.

To create a text file from PeopleSoft database data

1. Using the Application Designer, create a view that extracts the data you want and includes
three EDI control fields.

For example, suppose you want to print a list of the countries in COUNTRY_TBL. You need
to create a view with the three EDI control fields described below, plus the fields you want
from COUNTRY_TBL. The view would look something like this:

£ COUNTRYDUT_VW (Record)

Field Name |Type|Len |Format |H | Short Name| Long Name
:ECTRANSID 15 Mixed

ECQUEUEINSTANCE

ECTRANSINOUTSW Inbound / Dutbound Switch
COUNTRY Country

DESCR [Description

The EDI control fields must be the first three fields in the view. The fields are:

EDITRANSID The Transaction ID for the transaction you want to
perform. You’ll probably want to define a special
Transaction ID for this data extraction transaction. For
details, see Defining EDI Transactions.

ECQUEUEINSTANCE An ID field you can use to track individual transactions
while they’re in the EDI Agent queue awaiting processing.
If you don’t need to track individual transactions, you can
use the same value in this field for all transactions.

ECTRANSINOUTSW A field specifying whether a transaction is incoming (I) or
outgoing (O). For outgoing transactions, this value is
always O, so the view definition can specify ‘O’ as the
value for this field.

The SELECT statement for the view looks something like this:

8-22 MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Record Properties
General I Usze Tepe |
—Record Typg————— SOL Yiew Select Statement:
" SEL Table SCE-JLTEHEJ =]
& SAL Yiew o ’
D i Vi o,
HIEMIE VIS COUNTRY,
£ Derived/work E&Sﬁﬁ
' SubRecard COUNTRY_TEL
 Query View
Man-Standard SOL
T able Mame:
0K I Cancel I

In this example, the Transaction ID is CNTRY, the queue instance ID is always 0, and the
inbound/outbound switch is always ‘O’ (Outbound). Since the queue instance will be the
same for all records, the EDI Agent will process them as a single transaction.

For this example to work, you must use the EDI Manager to define the Transaction ID
CNTRY.

2.

Create a record definition that specifies the layout of the PeopleSoft Business Document file.

This record definition typically consists of the ECFILEROWID field and all the fields from
the table.

=8 COUNTRYDUT_WD (Record) [CTO[=]

Field Mame |Type|Len |Format |H |Short Name|Long Name

Country
Description

Define the outbound map.

In the example, you would specify CNTRY as the Transaction ID on the first page in the
Outbound Map Definition component. On the second page, the Source Record is the view
you created in step 1 and the Where Clause is:

WHERE ECTRANSID = ‘CNTRY’

On the third page, the Model File Layout is the record definition you created in step 2. Once
you’ve selected the record definition from the list box, click the lightning bolt button to copy
the field information into the page. You can use the default values for all the fields except
ECFILEROWID. For ECFILEROWID, select Default in the Conversion Processing group
box and enter whatever value you want to appear in the first column of the text file.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MAPPING EDI TRANSACTIONS 8-23

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

4. Run the Outbound Driver Preparation process.

@ For information about running this process, see Preparing Outbound Maps.

5. Add an entry to the ECQUEUE table.

To extract your data, you need to add a record to the ECQUEUE table. The EDI Agent uses
this table to determine what transactions are ready to process. The fields in the table are

described below.

ECTRANSID The Transaction ID, which tells the EDI Agent which map
definition to use. In the example, the Transaction ID is
CNTRY.

ECQUEUEINSTANCE The Instance ID. The example uses a single Instance ID—
0 (zero)—for all the data.

ECTRANSINOUTSW The inbound/outbound switch. Extracting data is an
outbound transaction, so the value is O (the letter O).

ECBUSDOCID The Business Document ID. Since you are not creating an
EDI transaction, you can specify 0 in this field.

ECQUEUESTATUS The status of the current record. The EDI Agent processes

records with the status L.

The remaining fields in the table—BUSINESS UNIT, ECENTITYCD_BU,
ECCUSTVNDRVAL, and ECENTITYCD_EXT—all relate to trading partner information.
Since you are not creating an EDI transaction, you can use generic partner information. The
EDI Manager includes a set of default values especially for this purpose. Use the value
GENR in all these fields.

6. Schedule the Outbound EDI Agent to run.

The Outbound EDI Agent extracts your data, and processes any other transactions on the
ECQUEUE table with the status L.

When the Outbound EDI Agent extracts your data, it changes the status field
ECQUEUESTATUS to P (Processed). To repeat the extraction, change the status back to L.

8-24 MAPPING EDI TRANSACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 9

Monitoring EDI Processing

You will use the Process and Inquire pages in the EDI Manager on an ongoing basis to keep your
electronic commerce transactions flowing smoothly.

This chapter explains how to:

e Prepare outbound maps for use by the EDI Agent
e Schedule EDI Agents to run

e Review and correct EDI processing errors

e Review processing history

@ You must run the outbound map preparation process before you can process any outgoing
EDI transactions.

Managing EDI Agents

EDI Agents copy EDI transaction data between PeopleSoft Business Documents and the
PeopleSoft database, using the maps you defined in the previous chapter. There are two types of
EDI Agents:

¢ Inbound EDI Agents, which process incoming transactions by copying data from PeopleSoft
Business Documents into the database

e Outbound EDI Agents, which create PeopleSoft Business Documents from transaction data in
the EDI staging tables

Creating EDI maps doesn’t start an EDI Agent running. You have to submit a Process Scheduler
request that tells the system when, where, and how often to run each EDI Agent.

This section describes how to start one or more EDI Agents to process your incoming and
outgoing EDI transactions. It also explains the procedure you need to complete to prepare
outbound maps for use by the EDI Agent.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MONITORING EDI PROCESSING 9-1

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

9-2

Run Controls

All the procedures described in this section involve scheduling tasks to run using the Process
Scheduler. To schedule a process, you need to tell the system when and where you want the
process to run. For example, you might tell it to run the inbound EDI Agent at five o’clock, or
every day at five o’clock, or on your workstation right away. Depending on the process, you may
need to specify other parameters as well, such which documents or transactions to process.

A run control is a database record that provides values for these settings. Instead of entering the
same values each time you schedule a process, you create (and save) a run control with those
settings. The next time you schedule the process, you select the run control and the system fills in
the settings.

So, when you select any of the Process menu options, the EDI Manager asks for a Run Control
ID. To use an existing run control record, select Update/Display mode; to create a new one, select
Add mode.

Preparing Outbound Maps

When you create an outbound map definition, you define what data the EDI Agent needs to
extract from the staging tables. In order to select that data from the tables, the EDI Agent needs to
execute SQL statements whose details depend on the map definition.

Whenever you create or modify an outbound map definition, you need to run a preparation
process that generates the appropriate SQL statements and compiles them into a format that the
EDI Agent can use. This process creates an SQC file.

Note. You must run the Outbound Driver Preparation before you can process any outbound
EDI transactions. PeopleSoft doesn’t deliver a compiled version of the drivers; you have to
compile it for your system.

To prepare outbound maps for the EDI Agent

1. From your browser, select PeopleTools, EDI Manager, Process, Outbound Driver
Preparation.

To define a new run control, select Add a New Value, enter a unique value in the dialog box,
then click Add.

To update an existing run control definition, select Search or Find an Existing Value to
select from a list of available codes.

MONITORING EDI PROCESSING PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

{ Run Parameters
Run Control ID: HRRpts Report Mananer Frocess honifor Run
ECOUTMAP.SQC Directory: [

ITranle:I QJ Select I Unselectl Refresh ||

Select Transaction ID Map ID Description
r
& 5zve C1 Return to Search [Eadd

First (40 1ot 1 [¥] Last

Outbound Driver Preparation page

2. Specify where to put the SQC that contains the outbound map definitions.

In the ECOUTMAP.SQC Directory text box, enter the directory where you want the

Process Scheduler to put the SQC. The directory needs to be in the SQR search path of the

workstation or server that will run the outbound EDI Agent.
3. Click the Run button.

The Process Scheduler Request page displays.

Process Scheduler Request

Select Description Process Hame Process Type *Type

User ID: FTOM O Run Control ID: CAYEMAN

Server Name: |_ *| RunDate: |nm 412000 ez

Recurrence: I 'I Run Time: |1 2:33:33FPM RE
Time Zone: I 'I Resetto Current DatedTime |

*Format

¥ Outhound EC Agent Prep ECPREP S0R Report |Weh

=l [ror =] EH

Process Scheduler Request page

4. Specify the server where you want the SQR compiler to run.

5. Specify when you want the process to run.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

MONITORING EDI PROCESSING

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

9-3

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

You’ll probably want to run the preparation process just once (then run it again after
changing or adding maps). Enter the date and time when you want to run it in the Date and
Time boxes. They default to the current date and time.

6. Click the OK button to run (or schedule to run) the outbound map preparation.

Starting EDI Agents

If your system processes EDI transactions, you’ll usually want to have two EDI Agents running
on a regular schedule: one inbound agent and one outbound agent. You can also start other EDI
Agent instances for special purposes, such as processing the corrected version of a PeopleSoft
Business Document that failed the first time.

If errors occur at any point during EDI processing, the EDI Agent sends a worklist item to the
role user or users assigned to the EDI COORDINATOR role. For more information about
reviewing the errors, see Viewing the EDI Audit Trail, later in this chapter.

To schedule the Inbound EDI Agent to run
1. From your browser, select PeopleTools, EDI Manager, Process, Inbound EC Agent.

To define a new run control, select Add a New Value, enter a unique value in the dialog box,
then click Add.

To update an existing run control definition, select Search or Find an Existing Value to
select from a list of available codes.

l(Run Control Parameters _

Run Control D CAVEMAN Report Manager Process Monitof Run

@ File List Driven | File List Path: [

€ Single File File List Name: |
" Single Instance

& Do Mot Force [T Suppress Rowid
{998 or 999 in file) % T comma
7 Farce with Map Separated

Information (398) Format
' Force with Parner
Infarmation {999}
E Sawve QRetum to Search Ekadd

Inbound EC Agent page

You use this page to specify how you want the Inbound EDI Agent to process its files.

9-4 MONITORING EDI PROCESSING PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

2.

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Select the Run Option that the EDI Agent is to use to determine which documents or
transactions it is to process.

The EDI Agent can process all pending PeopleSoft Business Documents, one specific
PeopleSoft Business Document, or a single transaction. In the Run Option area, select the
appropriate option button:

File List Driven The EDI Agent processes all the PeopleSoft Business
Documents whose filenames appear in a list file that the
EDI translator software creates. The filenames must
include their complete paths.

Single File The EDI Agent processes all the transactions in a single
specified PeopleSoft Business Document.

Single Instance The EDI Agent processes a single transaction.

@ The Single Instance option is only available for transactions that the EDI Agent has already
attempted to process. The transaction needs to have an EC Queue Instance ID.

3.

Identify the file or transaction you want the EDI Agent to process.

When you select a Run Option, the Inbound Agent Parameters area updates to show the
fields that are relevant to the selected option.

If you selected File List Driven, enter the directory that contains the PeopleSoft Business
Document files and the list file in the File List Path text box, and the filename of the list file
in the File List Name box.

If you selected Single File, enter the directory that contains the file in the Single File Path
text box, and the PeopleSoft Business Document filename in the Single File Name box.

@ If the EDI Agent will run on a server running MVS, it will ignore the File List Path or
Single File Path setting. Instead, it will look in the JCL for a DDNAME matching the
specified file name. The File List Path option is not very useful for MVS platforms, because
there has to be a DDNAME for each file in the list.

If you selected Single Instance, select the Business Document ID, Transaction ID, and
Queue Instance ID of the transaction you want to process, in that order.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MONITORING EDI PROCESSING 9-5

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Run Contral Parameters _

Run Control ID: CAVEMAN Report Manager Process Monitor Run

€ File List Driven EC Business Document ID: | Q)

: EC Transaction ID: I Ql
EC Queue Instance: I =

T sSuppress Rowid

& Do MotFarce

(898 or 499 in file) T Comma
© Force with Map Eoerpri;atted
Infarmation (398) %

 Farce with Partner
Information (989)

& szve L Return to Search bk add

Single Instance Run Option page

4. Specify how the Inbound Agent determines which map definition to use.

By default, the Inbound Agent looks for records with the Row ID 999 to determine what type
of transaction it’s processing, and therefore which map definition to use. However, you can
also specify a transaction map or trading partner for al// transactions this Inbound EDI Agent
processes. Using this feature, the Inbound EDI Agent can process files that don’t include
control records.

If you select the Do Not Force option, the Inbound EDI Agent will look for a control record
at the beginning of each transaction in the incoming data file. You don’t need to complete any
other parameters.

If you select Force with Map Information, the Inbound Agent Forced Parameters box
displays list boxes so you can select the transaction map to use for all transactions in the
incoming file.

' Do Mot Force EC Map ID: I =
{958 or 998 infil) | |EC Profile ID: | QJ
Force with Man | |re conyert Profile ID: | QJ

nformation (9987

1 Farce with Parner Q
Information {9559

If you select Force with Partner Information, the box displays list boxes so you can select
the partner information to use for all transactions in the incoming file.

9-6 MONITORING EDI PROCESSING PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

€ Do Mot Force External Entity Code: | Q
{898 or 938 infile) | [Forced Trans I | =Y
' Force with Map External Trading Partner Id: I Q

Information {998)
“Farce with Partner Internal Alias Entity Code: I

Information (999) | [EC Alias Trading Partner ID: I

Select the File Option the EDI agent is to use to display file data.

[T Suppress Rowid

[T comma
Separated
Format

Suppress Rowid:

Comma Separated Format:

identifier.

profile is forced with either 999 or 998 information.

Use this option to map homogenous files to the same
table. A rowid of ‘000’ must be specified in the map
definition, however, the flat file need not have a record

Use this option to import files of variable length fields into
PeopleSoft tables. This option is only available when the

The Separator should appear between each field in the file. The Delimiter surrounds each

field.

6. Click the Run button.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

The Process Scheduler Request page displays.

Process Scheduler Request

User ID: FTOMO Run Control ID: MEWY_ID

Server Name: Iﬁ[Run Date: IW (]
Recurrence: I—L[Run Tirme: IW
Time Zone: I vI Resetto Current Date/Time |

Select Description Process Name Process Type *Type *Format
¥ Inbound EC Agent ECINOON SQR Report [wen =] [roF =] EH

Process Scheduler Request page

MONITORING EDI PROCESSING

9-7

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

=,

=

9-8

7. Specify on what server you want the agent to run.

In a production workflow, you’ll usually want to run the EDI Agent on a dedicated server.

8. Specify when—and how often—you want the agent to run.

If you’re running the EDI Agent once, enter the date and time when you want to run it in the
Date and Time boxes. They default to the current date and time.

If you’re running the agents on a server, the Process Scheduler can run them once or
periodically on a specified schedule. You use the Run Recurrence box to specify when and
how often to run the database agents.

By default, the system runs the agents Once, but you’ll usually want to run the more
frequently. To run them more than once, select a different recurrence name from the list box.
A recurrence name provides a running schedule; it specifies when to run the agent for the first
time and how often to run it after that.

To see the schedule associated with a recurrence name, select it in the list box and click the
View button. To add a new recurrence name, type a name into the text box and click the New
button. See Process Scheduler for details.

If you selected a Run Recurrence other than Once, the recurrence definition sets the run
date and time. It overrides any Run Date/Time you set.

The Run Output option is not relevant for the EDI Agent.

9. Click the OK button to run (or schedule to run) the EDI Agent.

To schedule the Outbound EDI Agent to run

From your browser, select PeopleTools, EDI Manager, Process, Outbound EC Agent.

MONITORING EDI PROCESSING PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

To define a new run control, select Add a New Value, enter a unique value in the dialog box,
then click Add.

To update an existing run control definition, select Search or Find an Existing Value to
select from a list of available codes.

Run Parameters

Run Control ID: ~ HRRpts Report Manager Process Monitor Run

" EC Trans ID
" Business Unit

[vendoriCustomer

[Suppress EC 999 Record [Suppress Rowid [" Single Document File
[Keep Queue Status [’ Message HeaderFooter [Separate Output Flag
[Comma Separated Format

& 5zve L Return to Search [2dd

Outbound EC Agent page

You use this page to specify how you want the Outbound EDI Agent to write data to the
PeopleSoft Business Document files.

2. Specify which transactions you want the EDI Agent to process.

To have the EDI Agent process all pending transactions, leave all three check boxes
unselected. A pending transaction is one that an application extract process has added to the
staging tables, and that has a status of L (Loaded).

To process all transactions of a particular type, select the EC Trans ID check box, then pick
the Transaction ID from the drop-down list that appears next to it.

To process all transactions from a particular business unit, select the Business Unit check
box and enter the Business Unit ID in the text box that appears next to it.

To process all transactions for a particular trading partner, select the Vendor/Customer
check box, then enter the Vendor ID, Customer ID, or other internal ID for the desired
partner.

You can select multiple check boxes. For example, you could process all outgoing invoices
for a particular vendor by selecting both the EC Trans ID and Vendor/Customer check
boxes.

3. Specify how you want to format the outgoing transaction file.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MONITORING EDI PROCESSING 9-9

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

9-10

By default, the Outbound EDI Agent adds a record with the Row ID 999 at the beginning of
each transaction. This record identifies the transaction type in a way that is recognized by the
PeopleSoft Inbound EDI Agent. If you select the Suppress EC 999 Record check box, the
Outbound EDI Agent will not include this record in the outgoing file.

If you don’t want to include the Row ID for each record in the outgoing file, select the
Suppress Rowid check box.

By default, the Outbound EDI Agent creates outbound transactions files in which the data for
each field appears in the fixed column position specified in the outbound map definition. If
you select the Comma Separated Format check box, the Outbound EDI Agent instead
creates transaction files in which the fields are separated by a comma or other character rather
than always appearing in a specified column position. The comma separated option allows
you to select the file options to read in flat file data that is comma-delimited.

The Comma Separated option is only available if you used forced agent mapping. Selecting
the Suppress Rowid option allows you to load data without requiring a rowid identifier.
However, it is required that your map definition contains a rowid even if you are suppressing
it in the run control setup. The rowid must be 000.

" Suppress EC 999 Record [Suppress Rowid [T Single Docurment File
[T Keep Queue Status [Message HeaderFooter [Separate Output Flag

sy Separatur:l,_ CSVY Delimiter: I_ "' Mo Delimiter for Numeric ?

The CV Separator is the character the EDI Agent will use to separate the fields in a record.
The CSV Delimiter is the character the EDI Agent uses to mark the beginning and end of a
data value. In the text below, the separator is a comma, and the delimiter is a single quote.

'WOW','23.23','Big Deal'

When you use comma-separated format, the Outbound EDI Agent ignores the column
positions specified in the outbound map definition. It adds data to the outbound file in the
exact order in which the fields appear in the map definition. You must make sure the map
definition specifies the fields in the order you want them to appear; that is, you must make
sure the order of the rows in the map definition matches the order you want the fields to
appear in the file.

Single Document File This option allows the results of the EDI to be written to a
single Output File. The business document id is
incremented as though multiple documents were created.
The file may contain multiple 999 records.

Keep Queue Status The ECQUEUE.ECQUEUSTATUS field will not be
updated at the completion of the execution. This allows
the record in ECQUEUE to be processed multiple times.

MONITORING EDI PROCESSING PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Message Header/Footer Message Header and Footer Information may be specified

at the Partner Profile level. If this flag is specified,

Header and Footer information will be processed prior to

and/or following each business document.

@ Message Header and Footer Information is stored with the Trading Partner Definition.

4.

7.

Click the Run button.

Process Scheduler Regquest

User ID: PTOM0 Run Control ID: HRRpts

Server Narme: lﬁ[Run Date: IW B
Recurrence: lﬁ Run Tirme: IW
Time Zohe: I—Ll Resetto Current DatefTime I

Select Description Process Hame Process Type *Type *Format
W Outbound EC Agent ECOUTON SOR Report [wen =] [POF =] EH

Process Scheduler Request page

Specify on which server you want the agent to run.

Specify when—and how often—you want the agent to run.

If you’re running the EDI Agent once, enter the date and time when you want to run it in the

Run Date and Run Time boxes. They default to the current date and time.

If you’re running the agents on a server, the Process Scheduler can run them once or

periodically on a specified schedule. You use the Recurrence box to specify when and how

often to run the database agents.

If you selected a Run Recurrence other than Once, the recurrence definition sets the run

date and time. It overrides any Run Date/Time you set.

Click the OK button to run (or schedule to run) the EDI Agent.

Viewing the EDI Audit Trail

As EDI Agents run, they write status information to tables in your PeopleSoft database. The EDI

Manager’s Inquire menu gives you access to several panels for reviewing the status and the

processing history.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

MONITORING EDI PROCESSING

9-11

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

9-12

Reviewing and Correcting Errors

PeopleSoft delivers a predefined business process named Manage EDI which, among other
things, routes information about any processing errors it encounters to the EDI Coordinator’s
worklist. The coordinator can select the item from the worklist to review the error and possibly
correct the problem.

To review EDI processing errors
1. From your browser, select PeopleTools, EDI Manager, Inquire, Business Document Errors.
The Business Document Detail panel appears.

This pagel gives detailed information about the processing of each line in a PeopleSoft
Business Document.

2. Review the processing details for the document.

When you first open the panel, it shows the processing information for the first record in the
file, which is a 999 record. Use the outer scroll bar to scroll from one line to the next. The
status of each line appears in the Status field.

3. Fix the erroneous data in the PeopleSoft Business Document (optional).

This page enables you to edit data from the PeopleSoft Business Document.

Because this panel enables you to change transaction data, you’ll want to carefully control
access to it. In Operator Security, only give the EDI Coordinator rights to edit this panel.

4. Save the panel group.
5. Select Inquire, Transaction Maintenance.
6. Reset the EC Queue Status for the corrected transactions to L.

When the EDI Agent encounters an error while processing a transaction, it sets the status
field in the pending transaction queue (ECQUEUE) to E. Resetting the status of a transaction
to L makes the Outbound EDI Agent try to process it again.

Packages and Transaction Groups

The EDI transaction set file that you receive over the network from an external trading partner
might include any number of transactions bound for any number of internal trading partners. To
manage all this the transaction data, the file organizes it into several levels.

e The top level of organization is the package level. The package is the entire transaction set file,
addressed to your company much as a mail package would be.

o The package can contain one or more transaction groups. Each transaction group is a set of

MONITORING EDI PROCESSING PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

transactions of the same type, with the same trading partners involved.

e Each transaction group includes one or more individual units of work. A unit of work is a
single transaction that you want to commit or rollback as a whole.

When the (third-party-supplied) EDI translation software creates PeopleSoft Business
Documents, it divides up the transaction set file at approximately the transaction group level. A
PeopleSoft Business Document typically includes multiple units of work, and may include
multiple transaction groups depending on how the translation software is set up.

The PeopleSoft Business Documents do not contain any information about what packages or
transaction groups their transactions come from. However, the EDI translation software can
provide this information in a separate audit file, and the EDI Agent can copy the information into
audit tables in your database.

@ For the auditing information to be available, the EDI translation software must write the
package and transaction group information to an audit file, and the EDI Agent must process
this file using the predefined AUDIT inbound map.

To view summary information about a PeopleSoft Business Document
1. Select Inquire, Business Document Summary, Summary.
2. Enter the Business Document ID of the document you want to review.

This pagel displays information about how the EDI Agent processed the specified PeopleSoft
Business Document. If the document included multiple transactions, the scroll bar in the
lower part of the panel enables you to see the information about each individual transaction.

3. Review the packages and transaction groups that this document is part of (optional).
This page displays information about the EDI packages and transaction groups that the
current document’s data came from.

To view summary information about an EDI package

1. Select Inquire, Package Log Summary.

2. Enter the Package Control ID for the package whose status you want to review, or press Enter
to select from a list of the packages.

This pagel displays the processing information for the selected package. The scroll bars in the
lower part of the panel enable you to scroll through the transaction groups that were inside
the package and the PeopleSoft Business Documents that were created from the data in the
package.

To view summary information about an EDI transaction group

1. Select Inquire, Transaction Group Summary.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MONITORING EDI PROCESSING 9-13

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

2. Enter the Transaction Group Control ID for the group whose status you want to review, or
press Enter to select from a list of the groups.

This page displays the processing information for the selected transaction group.

9-14 MONITORING EDI PROCESSING PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 10

Message Agent

@ Note. Message Agent is a deprecated integration feature in this PeopleSoft release. We
recommend that you not develop new integration applications with the Message Agent
API's. PeopleSoft’s Component Interface is now the recommended method to access
PeopleSoft components (panel groups) and the business logic associated with them outside
of PeopleSoft on-line pages.

@ Because the Message Agent has been replaced with component interface, we chose to
expend our documentation efforts in the new material. Therefore, in this Message Agent
documentation there are many references to message definitions and the message agent
server that are no longer valid. The meanings of these terms have changed in the application
messaging architecture of Release 8 and beyond. This Message Agent documentation also
references the PTDMO database to use for sample message definitions. PTDMO is no longer
available to customers or partners. PeopleSoft 8 includes an Integration SDK to replace it.

v Warning! If you have compiled C programs that call PeopleSoft 7.5 Message Agent APIs,
they must be recompiled with new C headers included with PeopleSoft §.

Message Agent Overview
To use the Message Agent you must have the following:
e a message definition for Message Agent
e Message Agent client programs

e a Message Agent Server

@ Note. This outline follows the same steps an external program would perform to mimic the
behavior of the on-line PeopleSoft panels. The specific API calls used in each of these
operations are detailed in the Programming the Message Agent section.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-1

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Managing Multiple Scroll Levels (Level Mapping)

Many PeopleSoft application panels include one or more scroll bars, which enable them to
display data from more than one row of data at a time. When you access such a panel using the
Message Agent, you have access to multiple rows of data.

The message definition specifies what the Agent does if it finds a row. The Agent actions are to:
e update it

e replace it

e delete it

e skip it

® Or error

If the Message Agent does not find a row it will add a new row, skip it or return an error.

As a result of the Level Mapping button in the message definition, panels with multiple rows of
data will give you the following:

Map Level Options I

—Record Hierarchy

—If Row Found
@ Update ¢ Skip ¢ Beplace

" Delate © Enor

—If Row Mot Found
& Inzert © Skip ¢ Emor

™ Delete Remaining Rows

™ Qutput &l oocurences

oK Cancel I

Map Level Options

If the Message Definition that is being used has the Output all occurrences option selected, you
also have the option of retrieving data from all the rows inside a level 1 scroll, assuming that the
message definition includes their fields as output fields.

@ This option only works for Level 1 scrolls.

Limitations of Multiple Scroll Levels

Many PeopleSoft application panels include one or more scroll bars, which enable them to
display data from more than one row of data at a time. When you access such a panel using the

10-2 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Message Agent, you have access to multiple rows of data. The Message Agent can only add or
update one row of data at a time. So, to add or update multiple rows inside a scroll you will need
to make repeated calls to process the message (ProcessMessage).

Adding or Updating Multiple Rows

The Message Agent can only add or update one row of data at a time, except for data inside a
level 1 scroll. To add or update multiple rows inside level 2 or level 3 scrolls, you need to process
the rows one at a time.

To add or update rows inside a scroll:
1. Specify which message definition to use (StartMessage).

2. If necessary, get the metadata that describes the fields in the message definition
(GetFieldList, or the GetFieldInfo method in the OLE interface).

3. Set the values for the first row you want to add or update (SetField). You must set values for
the key fields of the main record definition inside the scroll as well as any higher level keys.

4. For level 1 scrolls only, set the values for the next row you want to add or update (SetField).
This time, you don’t need to specify the level 0 keys again; just provide the new level 1
values. Repeat this step for each row you want to add or update.

5. Process the row (ProcessMessage).

6. Check the results (GetField). You can get the values from the output fields specified in the
message definition. If an error occurred, you can request the text of the error message.

7. Repeat steps 3 through 6 for the next record you want to add or update.
8. Disconnect from the Message Agent or start another message.

9. If the message definition has the Delete remaining rows option selected, the Message Agent
will remove any rows inside the scroll that you didn’t add or update since you started the
message at step 1.

Retrieving Multiple Rows

To retrieve the data from an individual row within a scroll, follow the same process as you do to
retrieve data from a panel that does not include a scroll bar. You provide the Message Agent with
values for all the key fields necessary to identify the row, then use GetField to retrieve the values
from the (non-key) data fields specified as output fields in the message definition.

If the message definition you are using has the ‘Output all occurrences’ option selected, you also
have the option of retrieving data from all the rows inside a level 1 scroll—assuming, of course,
that the message definition includes their fields as output fields.

@ The Output all occurrences option is available for level 1 scrolls only.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-3

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

To retrieve data from all rows inside a level 1 scroll:
1. Specify which message definition to use (StartMessage).

2. Ifnecessary, get the metadata that describes the fields in the message definition
(GetFieldList, or the GetFieldInfo method in the OLE interface).

3. Set the values for the level 0 key fields, but not for any of the level 1 key fields (SetField).
The level 1 keys need to be specified as output fields in the message definition.

4. Process the message (ProcessMessage).

5. Get the results for the first returned row (GetValue). You can get the values from the output
fields specified in the message definition.

6. Get the next returned row (FindNextOutputRow), then repeat step 5. Continue until
FindNextOutputRow returns the keyword PSMSG_NOTFOUND, which means that you’ve
processed all the returned rows.

7. Disconnect from the Message Agent or start another message.

Message Agent Field Mapping

Which data fields map to which panel fields is designated in the field mapping creation step of
the message definition. Field mapping is how the Message Agent knows what values to enter
into the correct fields on the PeopleSoft panels.

Programming the Message Agent

The Message Agent APIs provide the means to accomplish many functions with the panel
interface. The Message Agent APIs provide you the capability to use the program options:

e Search (field query and file query)
o Scrollbar listing (limited to level 1)
e Prompt and Edit tables

e Search Dialog processing

There are a large number of calls that make up the Message Agent APIs and there are a number
of complex issues associated with programming some parts of an external program. This section
identifies some of the particular APIs to accomplish the above programming options and provides
a number of very simple program examples that will detail each area of programming the
Message Agent APIs.

10-4 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Message Agent API Setup

The data transferred to a message or panel interface is based on the basic elements of the Message
Agent API programming. The Message Agent API section outlines in detail each API function
and operation. This section identifies the particular APIs to accomplish the above programming
options.

Basic program setup
A basic program using the Message Agent APIs may contain only a few APIs. The following
APIs can be used to create a basic Message/Panel Interface program.
To create a basic Message/Panel Interface program
1. Use the following APIs:
Connect - Connects to a specific application server machine/port and log on.

StartMessage - specify the message definition to use.

SetField — Set field calls to the set key fields and set field for data entry (if you want to
add/update or correct).

ProcessMessage - enter the data into the panel.
Disconnect - disconnect from the application server.
Optionally, if retrieving data is required you would include:
FindFirstField
GetValue
FindNextField
FindNextOutputRow
The above programming completes the following:
e Ensures the program can connect to a Message Agent.
¢ Identifies what message definition to use.

e Sets the value of a message field to be mapped into a panel buffer when the message is
processed.

o Triggers message processing after all input message fields have been sent.
e Any fields mapped as output will be returned if an unique name is identified.

Examples of simple basic API program are:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-5

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Add a level 0 row

Add or update row (non-level 0)

Read a row

Add or update multiple rows (non-level 0)

Read multiple rows

C/C++ program

Sample API programs are listed in the Message Agent Examples section of this documentation.

Searching for Records/Search Dialog Processing

You may want to retrieve information from records. Or you may want to add or update a record
in the PeopleSoft database. To do a record search you must first specify the key values for the
record. If you are retrieving an existing on-line, you have two options for specifying the key
values:

e Enter complete values for each of the key fields

e Enter partial values (search criteria) in the key fields, then select from a list of the records
matching the partial values

When you enter partial values in the online system, it displays a list box with the matching
records. The Message Agent API includes functions that mimic this operation. You can create a
Message Agent API program to perform search and retrieve functionality using the following
APIs:

To create a search API program
1. Use the following APIs:

StartMessage

GetSearchFieldInfo

FindField

GetFieldCount

GetFieldList

The above field search APIs query for field information. If you require a query of file information
you can include the following APIs:

GetFieldNameLength
GetFieldName

ProcessSearchDialog

10-6 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

GetSearchFieldCount
GetSearchList
GetSearchRecordLength
GetSearchRecord
FindFirstListboxRow
FindFirstListBoxField
GetListBoxRow
FindNextListBoxField
FindNextLastBoxRow
FindListBoxRow
FindListboxField
GetListBoxRowCount

ProcessMessage

You may use the following two APIs to query information about data:

GetMaxValueLength

GetValueLength

The above programming completes the following:

Specifies which message definition to use (StartMessage).

Get the name of the search record (GetSearchRecord) and its field attribute information
(GetSearchList or GetSearchFieldInfo).

Enter search values in one or more fields (SetField).
Process the search dialog box (ProcessSearchDialog).
Find out how many records matched the search criteria (GetListBoxRowCount).

Select the record you want. You can scroll through the records using FindFirstListBoxRow and
FindNextListBoxRow, or go to a specific row using FindListBoxRow. You get the values from
a row using GetListBoxRow or GetListBoxFieldInfo.

Use the values from the selected record to set the key values for the message (SetField).

Process the message (ProcessMessage).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-7

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

@ Note. Typical use of the Search Dialog Processing APIs is with Windows clients to emulate
PeopleSoft panels.

Examples of search API programs are:

¢ Get message definition field information
e Get search dialog information

e Do search dialog processing

Sample API programs are listed in the Message Agent Examples section of this documentation.

Edit Table Processing

Some record fields have an edit fable associated with them. The edit table lists valid values for
the field. For example, a State field may have an associated edit table that lists the valid state
codes. When you enter data, the system checks it against the edit table; if you enter a value that
does not appear on the table, you get an error.

Edit tables are also called prompt tables, because in the online system, a user can press F4 to
display the contents of the table and select a value. You can mimic this behavior using a Message
Agent API program.

To create an edit/prompt table API program
1. Use the following APIs:

StartMessage

GetFieldList

FindFirstPromptValueRow

FindNextPromptValueRow

FindPromptValueRow

GetPromptValueRowCount

GetPromptValueRow

GetPromptValueFieldCount

GetEditTableFieldList

ProcessMessage

Using the above programming APIs, the following events are completed:

10-8 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

o Gets the attributes of the field (GetFieldList, GetFieldInfo, GetSearchList, or GetSearchlnfo).
If the field has an edit table, it appears as the last attribute in the field attribute structure.

o Gets the attributes for the fields in the edit table (GetEditTableFieldList or
GetEditTableFieldInfo).

e Process the edit table request (ProcessPromptTable).

e Select the edit table record you want. You can find out how many records matched the search
criteria using GetPromptValueRowCount. You can scroll through the records using
FindFirstPromptValueRow and FindNextPromptValueRow, or go to a specific row using
FindPromptValueRow. You get the value from a row using GetPromptValueRow.

Examples of search API programs are:
o Get edit/prompt table information

e Do edit/prompt table processing

e Do search dialog processing

Sample API programs are listed in the Message Agent Examples section of this documentation.

Message Agent Examples

Add a level 0 row

This example shows how you would add a level 0 row using the Message Agent. The example
uses the AddLO message definition in the MSGAGT_EXAMPLES business process. The
message definition references the VOLUNTEER ORG TABL panel in “add” mode. It maps 4
fields, all for input: VOLUNTEER ORG, EFFDT, EFFSTATUS, and DESCR.

After running this program you can use the online panels to look at the level 0 row you just
entered.

The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine/port and logon.
StartMessage - specify the message definition to use.

SetField - specify the level 0 keys, and the level 0 data.

ProcessMessage - enter the data into the panel.

Disconnect - disconnect from the app server machine.

Public Sub Main()

ALAAAA AR AN AR AR AR ARAAR AR AR AR AR A AR AR AL

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-9

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

' Simple Message Agent program to add a LO row.

1

LA A R A AR R AR AR RA AR AR AR AR ARA AR A LA AR AL

' Connect to the Message Agent server.
ServerPort = InputBox("Please input server machine:port™)
Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

' Identify what message definition to use.
Result = Mag.StartMessage("MsgAgtExamples", "AddL0", False)

If Result <> PSMSG_OK Then PrintError ("Error in StartMessage")

' Set the key fields.

Result = Mag.SetField("VOLUNTEER _ORG", "RPS")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField"EFFDT", "01/01/98")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Set the data field.

Result = Mag.SetField("DESCR", "Retired programmer society")
If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Process the message

Result = Mag.ProcessMessage(nReplyOption)

If Result <> PSMSG_OK Then PrintError ("Error in ProcessMessage")

" All done disconnect from the Message Agent server.

10-10 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Result = Mag.Disconnect()

MsgBox "Success"

End Sub

Add or update a row (non-level 0)

This example shows how you would either add or update a non level 0 row. This example uses
the AddUpdRow message definition in the MSGAGT EXAMPLES business process. This
message definition references the NAMES panel in “update/display” mode. It maps 4 fields, all
for input: EMPLID, NAME TYPE, NAME PART, and PREFERRED NAME.

After running this program you can use the online panels to look at the level 1 row you just
entered.

The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine/port and logon.
StartMessage - specify the message definition to use.

SetField - specify the level 0 keys, and the level 1 data to insert/update.
ProcessMessage - enter the data into the panel.

Disconnect - disconnect from the app server machine.

Public Sub Main()

ALAARA AR AR AR A AR AR ARARA AR AR AR AR A AR AR AL

' Simple Message Agent program to add/upd a non-LO row.

1

LA AARARA AR A AR A AR L AR A R AR AR AR ARA R AR AR AR AL

' Connect to the Message Agent server.
ServerPort = InputBox("Please input server machine:port™)
Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-11

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

' Identify what message definition to use.
Result = Mag.StartMessage("MsgAgtExamples", "AddUpdRow", False)

If Result <> PSMSG_OK Then PrintError ("Error in StartMessage")

' Set the key fields.

Result = Mag.SetField("EMPLID", "8001")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField("NAME TYPE", "OTH")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField("NAME_PART", "F")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Set the data field.
Result = Mag.SetField("PREFERRED NAME", "1")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Process the message

Result = Mag.ProcessMessage(nReplyOption)

If Result <> PSMSG_OK Then PrintError ("Error in ProcessMessage")
" All done disconnect from the Message Agent server.

Result = Mag.Disconnect()

MsgBox "Success"

End Sub

10-12 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Read a row

This example shows how you would read a row using the Message Agent. The example uses the
ReadRow message definition in the MSGAGT EXAMPLES business process. The message
definition references the NAMES panel and record, and runs in “update/display” mode. It maps 4
fields, the first for input (the key) and the others for output: EMPLID, NAME TYPE,
NAME_PART, and PREFERRED NAME.

The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine/port and logon.
StartMessage - specify the message definition to use.

SetField - specify the level 0 key.

ProcessMessage - perform the operation.

FindFirstField - get the first field in the row.

GetValue - get the field value.

FindNextField - get the next field (and loop), if one.

Disconnect - disconnect from the app server machine.

Public Sub Main()

ALAARA AR AR AR AR ARAAR AR AR AR AR A AR AR AL

' Example Message Agent program to read a row.

1

LA AL AR AR AR AR AR AR AR AR ARAR AR AR AR AR L]

Dim Value As String

' Connect to the Message Agent server.
ServerPort = InputBox("Please input server machine:port™)
Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-13

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

' Identify what message definition to use.
Result = Mag.StartMessage("MsgAgtExamples", "ReadRow", False)

If Result <> PSMSG_OK Then PrintError ("Error in StartMessage")

' Set the key field.
Result = Mag.SetField("EMPLID", "8001")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Process the message
Result = Mag.ProcessMessage(nReplyOption)

If Result <> PSMSG_OK Then PrintError ("Error in ProcessMessage")

' Get all the fields in the output row.
Result = Mag.FindFirstField()
If Result <> PSMSG_OK Then PrintError ("Error in FindFirstField")
Do
Result = Mag.GetValue(Value, 30)
If Result < PSMSG_OK Then PrintError ("Error in GetValue")
MsgBox Value
Result = Mag.FindNextField()

Loop Until Result <> PSMSG_OK

' Done

MsgBox "Operation completed successfully"

" All done disconnect from the Message Agent server.

Disconnect:

Result = Mag.Disconnect()

10-14 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

End Sub

Add or update multiple rows (non-level 0)

This example shows how you would add or update multiple non-level 0 rows. The example uses
the AddUpdRows message definition in the MSGAGT EXAMPLES business process. The
message definition references the NAMES panel and record, and runs in “update/display” mode.
It maps 4 fields for input EMPLID, NAME TYPE, NAME PART, and PREFERRED NAME.

After running this program you can use the online panels to look at the rows you just entered.
The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine/port and logon.
StartMessage - specify the message definition to use.

SetField - specify the keys and data for all the rows.

ProcessMessage - perform the operation.

Disconnect - disconnect from the app server machine.

Public Sub Main()

LALLM AR A AR A AR ARARAAR AR AR ARAARARAAAA AN AR AL

' Simple Message Agent program to add/upd multiple rows.

1

LML AARARAA R A AR A AR A AR AR AR AR AL ARA R AR AR AR AL

' Connect to the Message Agent server.
ServerPort = InputBox("Please input server machine:port™)
Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

' Identify what message definition to use.

Result = Mag.StartMessage("MsgAgtExamples", "AddUpdRow", False)

If Result <> PSMSG_OK Then PrintError ("Error in StartMessage")

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-15

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

10-16

' Set the LO key.
Result = Mag.SetField("EMPLID", "8001")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Set the data fields for the first row.

Result = Mag.SetField"NAME _TYPE", "OTH")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField("NAME_PART", "F")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField("PREFERRED NAME", "2")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Set the data fields for the second row.

Result = Mag.SetField"NAME _TYPE", "OTH")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField("NAME_PART", "L")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField("PREFERRED NAME", "3")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Process the message

Result = Mag.ProcessMessage(nReplyOption)

JANUARY 2001

If Result <> PSMSG_OK Then PrintError ("Error in ProcessMessage")

" All done disconnect from the Message Agent server.
Result = Mag.Disconnect()

MsgBox "Success"

MESSAGE AGENT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

End Sub

Read multiple rows

This example shows how you would add or update multiple non-level 0 rows. The example uses
the AddUpdRows message definition in the MSGAGT EXAMPLES business process. The
message definition references the NAMES panel and record, and runs in “update/display” mode.
It maps 4 fields for input EMPLID, NAME TYPE, NAME PART, and PREFERRED NAME.

After running this program you can use the online panels to look at the rows you just entered.
The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine/port and logon.
StartMessage - specify the message definition to use.

SetField - specify the level 0 keys, and the level 1 data to insert/update.
ProcessMessage - perform the operation.

FindFirstField - point to the first field in the row.

GetValue - get the value for this field.

FindNextField - point to the next field (loop for all fields in the row).
FindNextOutputRow - point to the next output row (loop for all rows).
Disconnect - disconnect from the app server machine.

Public Sub Main()

LML AARARAA R A A AAA AR A AR RAARAA AR AL ARA R AR A AR A AR

' Example Message Agent program to read multiple rows.

1

ALAARA AR AN AR AR ARARAARRARA AR ARAARARAAAA AR A AR AL

Dim Value As String

' Connect to the Message Agent server.

ServerPort = InputBox("Please input server machine:port")

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-17

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

' Identify what message definition to use.
Result = Mag.StartMessage("MsgAgtExamples", "ReadRows", False)

If Result <> PSMSG_OK Then PrintError ("Error in StartMessage")

' Set the key fields.
Result = Mag.SetField("EMPLID", "8001")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Process the message
Result = Mag.ProcessMessage(nReplyOption)

If Result <> PSMSG_OK Then PrintError ("Error in ProcessMessage")

' Get all the output rows.
Do
' Get all the fields in the output row.
Result = Mag.FindFirstField()
If Result < PSMSG_OK Then PrintError ("Error in FindFirstField")
Do
Result = Mag.GetValue(Value, 30)
If Result <> PSMSG_OK Then PrintError ("Error in GetValue")
MsgBox Value
Result = Mag.FindNextField()

Loop Until Result <> PSMSG_OK

Result = Mag.FindNextOutputRow()

Loop Until Result <> PSMSG_OK

10-18 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

'Done

MsgBox "Operation completed successfully"

" All done disconnect from the Message Agent server.
Disconnect:

Result = Mag.Disconnect()

End Sub

Get error information

This example shows how you would get error information from the message agent. The example
uses the AddUpdRows message definition in the MSGAGT_EXAMPLES business process. The
message definition references the NAMES panel and record, and runs in “update/display” mode.
It maps 4 fields for input EMPLID, NAME TYPE, NAME PART, and PREFERRED NAME.
The example will attempt to input an invalid value to the NAME_PART field, which will result
in an error in the process message.

Note that other Message Agent API calls can result in errors that create error text/explain text,
however the error record/fields are not valid.

The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine/port and logon.
StartMessage - specify the message definition to use.

SetField - specify the keys with one setting an invalid value.

ProcessMessage - perform the operation.

GetErrorRecordName - get name of record that got the error.

GetErrorFieldName - get name of field that got the error.

GetErrorText - get the error text associated with the last error.
GetErrorExplainText - get the explain text associated with the last error.

Disconnect - disconnect from the app server machine.

Public Sub Main()

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-19

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Dim Str As String

LA AL A R A AR L AR A AR AA AR R AR AR AR AR AR AR AR AL

' Basic Visual Basic Message Agent program.

1

ALAAAA AR AN RN AR AR ARA AR AR AR AR RAARAR AR A AR A AR AL

' Connect to the Message Agent server.
ServerPort = InputBox("Please input server machine:port")
Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

' Identify what message definition to use.
Result = Mag.StartMessage("MsgAgtExamples”, "AddUpdRow", False)

If Result <> 0 Then PrintError ("Error in StartMessage")

' Set the key fields, with the last one being bad.

Result = Mag.SetField("EMPLID", "8001")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField("NAME _TYPE", "OTH")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")
Result = Mag.SetField("NAME_ PART", "X")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Process the message

Result = Mag.ProcessMessage(nReplyOption)

If Result = 0 Then PrintError ("Error expected in StartMessage")

10-20 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

' We expect an error here

Result = Mag.GetErrorRecordName(Str, 50)

If Result <> 0 Then PrintError ("Error in GetErrorRecordName")

Result = Mag.GetErrorFieldName(Str, 50)

If Result <> 0 Then PrintError ("Error in GetErrorFieldName")

Result = Mag.GetErrorText(Str, 50)

If Result <> 0 Then PrintError ("Error in GetErrorText")

Result = Mag.GetErrorExplainText(Str, 100)

If Result <> 0 Then PrintError ("Error in GetErrorExplainText")

'Done

MsgBox "Operation completed successfully"

" All done disconnect from the Message Agent server.
Disconnect:

Result = Mag.Disconnect()

End Sub

Get message definition field information

This example shows how you would get the field information in the message definition using the
Message Agent. The example uses the AddUpdRow message definition in the
MSGAGT EXAMPLES business process.

The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine and logon.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-21

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

StartMessage - specify the message definition to use.
GetFieldCount - get the number of fields in the message definition.
GetFieldInfo - get field information for a specific field (loop for all fields).

Public Sub Main()

ALAARA AR AN AR AR AR AR RN AR AR AR RAARARAAAA AR AR AL

' Example Message Agent program to get message definition field info.

1

LA AL AR AR AR AR R AR AR AR AR AL ARA R A AR AL AR AR

Dimi&

Dim FieldInfo As Object

' Connect to the Message Agent server.
ServerPort = InputBox("Please input server machine:port")
Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

' Identify what message definition to use.
Result = Mag.StartMessage("MsgAgtExamples”, "AddUpdRow", False)

If Result <> 0 Then PrintError ("Error in StartMessage")
' Process the number of fields in the message definition.
Result = Mag.GetFieldCount(i)

If Result <> 0 Then PrintError ("Error in GetFieldCount")

' Loop through all the fields.

Forj=0Toi-1

10-22 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

' Get the information about this field.

Result = Mag.GetFieldInfo(j, FieldInfo)

If Result <> 0 Then PrintError ("Error in GetFieldInfo")
FieldName = FieldInfo.szFieldName

FieldType = FieldInfo.fFieldType

FieldSize = FieldInfo.nFieldSize

FieldMapUse = FieldInfo.fFieldMapUse
FieldMapTransfer = FieldInfo.fFieldMapTransfer
FieldLevel = FieldInfo.nFieldLevel

Next j

' Done

MsgBox "Operation completed successfully"

" All done disconnect from the Message Agent server.
Disconnect:

Result = Mag.Disconnect()

End Sub

Get search dialog information

You can get information about all of the search record fields using the message agent. This
procedure is exactly like getting the information about the fields in a message definition, except
the Message Agent calls have different names (see Get message definition field information).

GetSearchFieldCount will get the number of fields in the message definitions search record
definition. GetSearchFieldInfo is used to get information about a specific field.

You can also get the name of the search record for the current message definition using the
GetSearchRecord call, and the length of this record name using the GetSearchRecordLength.

Note that if you are using C/C++ PSMsgGetSearchList is the call you should use, and it returns

all the information about the fields. You must pass it a pointer to an array big enough for all of
the fields.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-23

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Do search dialog processing

This example shows how you would do search dialog processing using the Message Agent. The
example uses the ReadRow message definition in the MSGAGT EXAMPLES business process.

The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine and logon.
StartMessage - specify the message definition to use.

SetField - set the key value for search processing.

ProcessSearchDialog - do the search processing.

FindFirstListBoxRow - point to the first row.

GetListBoxFieldCount - get the cound of fields in the row.
GetListBoxFieldInfo - get information on each field in the row.
FindNextListBoxRow - get the next row (loop for all rows).

Public Sub Main()

ALAARA AR AR R A AN ARARAAR AR AR AR RAARARAAAA AR AR AL

' Example Message Agent program to do search dialog processing.

1

LML AARARAA R A AR A AR A AR A AR AR AR AR AR AL ARA AR AR AR AR AL

Dim i&

Dim RowlInfo As Object

' Connect to the Message Agent server.

ServerPort = InputBox("Please input server machine:port™)
Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

' Identify what message definition to use.

10-24 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Result = Mag.StartMessage("MsgAgtExamples", "ReadRow", False)

If Result <> PSMSG_OK Then PrintError ("Error in StartMessage")

' Set the key field.
Result = Mag.SetField("EMPLID", "80")

If Result <> PSMSG_OK Then PrintError ("Error in SetField")

' Process the message
Result = Mag.ProcessSearchDialog(0)

If Result <> PSMSG_OK Then PrintError ("Error in ProcessSearchDialog")

' Get all the rows in the search results.
Result = Mag.FindFirstListBoxRow()
If Result <> PSMSG_OK Then PrintError ("Error in FindFirstListBoxRow")
Do
' Get all of the fields in the row.
Result = Mag.GetListBoxFieldCount(i)
If Result < PSMSG_OK Then PrintError ("Error in GetListBoxFieldCount")
Forj=0Toi-1
Result = Mag.GetListBoxFieldInfo(j, RowInfo)
If Result <> PSMSG_OK Then PrintError ("Error in GetListBoxFieldInfo")
MsgBox RowInfo.szValue
Next j
Result = Mag.FindNextListBoxRow()

Loop Until Result <> PSMSG_OK

'Done

"

MsgBox "Operation completed successfully

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-25

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

" All done disconnect from the Message Agent server.
Disconnect:

Result = Mag.Disconnect()

End Sub

Get edit/prompt table information

You can get information about all of the information about edit/prompt table fields using the
message agent. This procedure is exactly like getting the information about the fields in a
message definition, except the Message Agent calls have different names (see Get message
definition field information).

GetEditTableFieldCount will get the number of fields in the prompt/edit table (record).
GetEditTableFieldInfo is used to get information about a specific field in the prompt/edit table
(record).

Note that if you are using C/C++ PSMsgEditTableFieldList is the call you should use, and it
returns all the information about the fields. You must pass it a pointer to an array big enough for
all of the fields.

Do edit/prompt table processing

This example shows how you would get the field information in the message definition using the
Message Agent.

The flow of the program is as follows:

Connect - connect to a specific (prompted for) app server machine and logon.
StartMessage - specify the message definition to use.

ProcessPromptTable - get the edit/prompt table.

FindFirstPromptValueRow - point to the first row

GetPromptValueFieldCount - get the number of fields in the message definition.
GetPromptValuelnfo - get field information for a specific field (loop for all fields).
FindNextPromptValueRow - point to the next row (loop for all rows).

Public Sub Main()

LA AL A AR ARAARA AR RAA AR AR AL ARA R AR A AR AR AL

10-26 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

' Example Message Agent program to do edit/prompt table processing.

1

LA A R A AR R AR AR RA AR AR AR AR ARA AR A LA AR AL

Dim i&

Dim RowObj As Object

' Connect to the Message Agent server.
ServerPort = InputBox("Please input server machine:port™)
Result = Mag.Connect(ServerPort, "PTDMO", "PTDMO")

If Result <> PSMSG_OK Then PrintError ("Error in Connect")

' Identify what message definition to use.
Result = Mag.StartMessage("MsgAgtExamples", "ReadRow", False)

If Result <> PSMSG_OK Then PrintError ("Error in StartMessage")

' Process the message
Result = Mag.ProcessPromptTable("SP_ BUIN_ NONVW", 0)

If Result <> PSMSG_OK Then PrintError ("Error in ProcessPromptTable")

' Get all the rows in the search results.
Result = Mag.FindFirstPromptValueRow()
If Result <> PSMSG_OK Then PrintError ("Error in FindFirstPromptValueRow")
Do
' Get all of the fields in the row.
Result = Mag.GetPromptValueFieldCount(i)
If Result <> PSMSG_OK Then PrintError ("Error in GetEditTableFieldCount")

Forj=0Toi-1

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-27

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Result = Mag.GetPromptValuelnfo(j, RowObyj)
If Result < PSMSG_OK Then PrintError ("Error in GetPromptValuelnfo")
MsgBox RowObj.szValue
Next j
Result = Mag.FindNextPromptValueRow()
Loop Until Result <> PSMSG_OK

'Done

MsgBox "Operation completed successfully"

" All done disconnect from the Message Agent server.
Disconnect:

Result = Mag.Disconnect()

End Sub

C/C++ program

This example shows a very simple Message Agent program written in C/C++. It performs the
same functionality as “Add or update a row (non-level 0) Visual Basic example. This message
definition references the NAMES panel in “update/display” mode. It maps 4 fields, all for input:
EMPLID, NAME TYPE, NAME PART, and PREFERRED NAME.

Note that all Message Agent calls have the “PSMsg” string at the beginning and the
PSMsgConnect sets a “context” that is used by subsequent calls.

After running this program you can use the online panels to look at the level 1 row you just
entered.

The flow of the program is as follows:

PSMsgConnect - connect to a specific (prompted for) app server machine/port and logon.
PSMsgStartMessage - specify the message definition to use.

PSMsgSetField - specify the level 0 keys, and the level 1 data to insert/update.

PSMsgProcessMessage - perform the operation.

10-28 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

PSMsgDisconnect - disconnect from the app server machine.
#include <string.h>
#include <stdio.h>

#include <src/inc/psmsgapi.h>

void PrintError(char *);

PSMSGHANDLE hCtx;

main()

{

PSOPERATOR Opr;
nt Result;

int nReplyOption;

strepy(Opr.szOprld, "PTDMO");

strecpy(Opr.szOprPswd, "PTDMO");

Result = PSMsgConnect(PSMSG_APIVERSION, "207.135.60.205:7000", &Opr, &hCtx);
if (Result = PSMSG_OK)

PrintError("Error in Connect");

Result = PSMsgStartMessage(hCtx, "MSGAGT EXAMPLES", "AddUpdRow", 0);
if (Result = PSMSG_OK)

PrintError("Error in StartMessage");

Result = PSMsgSetField(hCtx, "EMPLID", "8001");

if (Result = PSMSG OK)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-29

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

PrintError("Error in SetField");

Result = PSMsgSetField(hCtx, "NAME_TYPE", "OTH");
if (Result = PSMSG OK)

PrintError("Error in SetField");

Result = PSMsgSetField(hCtx, "NAME_PART", "F");
if (Result I= PSMSG_OK)

PrintError("Error in SetField");

Result = PSMsgSetField(hCtx, "PREFERRED NAME", "me");
if (Result '= PSMSG_OK)

PrintError("Error in SetField");

Result = PSMsgProcessMessage(hCtx, &nReplyOption);

if (Result 1= PSMSG_OK)

PrintError("Error in ProcessMessage");

Result = PSMsgDisconnect(hCtx);

if (Result 1= PSMSG OK)

PrintError("Error in Disconnect");

printf("Success\n");

return(0);

10-30 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

/* Print an error and die */

void PrintError(char *pStr)

{

printf("%s\n", pStr);

PSMsgDisconnect(hCtx);

//exit(1);

Troubleshooting the Message Agent

The following section provides a means to correct possible Message Agent programming
problems.

Message Agent Debugging

You just attempted processing a Message Agent transaction but it fails with an error. In the
beginning, you may see errors frequently but don’t get frustrated. In time, you’ll master how to
create a Message Agent transaction from start to finish, from creating PeopleSoft data objects in
Application Designer to placing your finishing touches in your program. This section will
provide you with tips and guidelines on how to troubleshoot problem areas along the way.

Let’s start from the beginning. What should your initial steps be to locate where the problem lies?

Installation

As of PeopleTools 7.5, the client is required only to have a subset of PeopleSoft dll’s to have
access to the Message Agent and invoke Message Agent API functions. After downloading client
installation files from the PeopleSoft CD to a “file server,” you can install only the necessary
client dll’s on Windows by running a batch program located under the SETUP directory. For
UNIX clients, you must perform a server transfer of files and then run a shell script to copy the
appropriate files to the UNIX client.

@ For more information and details about installation setup, please refer to the Installation
Documentation.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-31

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Administration

You can have multiple instances of the Message Agent server (PSAPISRV) running for a given
Application Server. In addition, you have the option, like other Application Server servers, to
recycle the Message Agent server after a certain number of requests were performed. This option
may be performed if for some reason the Message Agent servers crashed. The PeopleTools 7.5
Message Agent architecture leverages off the capabilities of our Tuxedo servers. Tuxedo is
responsible for queue management of requests from clients and management of servers. Tuxedo
also provides a monitoring capability. Please review our Administration Documentation for
further details.

Declaring functions

Some difficulties may arise from simply calling the functions from a program. For Visual Basic
programmers, we recommend using the OLE Automation Server API’s. You can create an OLE
Automation Server object two ways. It’s rather easy to program once you get the hang of it. The
two programming optionals are:

Programming an OLE Automation Server in Visual Basic

To Program a OLE Automation Server
1. Create a reference to the type library psmas.tlb.

2. Declare a variable of type CMagAutoServer in your program. From here, you have access to
its member functions like Connect, StartMessage, ProcessMessage and Disconnect.

Alternative programming option of a OLE Automation Server
3. Declare a variable as a generic object
4. Set the variable to what’s returned by CreateObject (“PeopleTools.MessageAgent”).

Both options accomplish the same results but performance is quicker using the first option. You
can also call the C API’s from Visual Basic but you must declare and create aliases for these
functions. Refer to the examples included in the Message Agent documentation for further
details.

For C/C++ programmers, just include psmsgapi.h in your programs and you’ll have access to all
functions and global definitions declared there. Note that the header file is compliant to both C
and C++ compilers now. Or, you can dynamically load psmsg.dll (LoadLibrary in Windows
programming) and obtain function pointers to the API’s you need.

For Java programmers, you will have to create wrapper code around the C API’s.

@ Your program can invoke Message Agent functions from either a Windows-client or UNIX-
client, unlike previous versions.

10-32 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Connecting

Great, now you’re trying to connect to the Application Server. Make sure you have the proper
machine name/IP address and port. There is really no way to query your network for all active
Application Servers. You must know this ahead of time. The valid syntax for address and port
connection are:

//machine name:port,
//ip address:port,
where:
the machine and IP address are the network identifiers for the machine
and the port is the numbered identifier for the Tuxedo domain of the connecting machines.

Remember, the PeopleTools 7.5 Message Agent only supports one active connection per process.
That is, you cannot call the Connect function twice without calling the Disconnect function in
between them. This is a result of a Tuxedo limitation. The Message Agent does not support the
round-robin approach that our Windows client can be configured to do.

StartMessage

If you have gotten passed connecting to the Application Server and now StartMessage is
returning an error, most likely, you have specified the wrong or invalid parameters in this
function call. Verify that you are accessing the correct Activity and Message Definition. Make
sure you are identifying these objects by their name and not by their label/description.

ProcessMessage

What do you do if your ProcessMessage function call returns PSMSG_ERROR. Let’s first
concentrate on the functions that retrieve error information. For the most part, they’ll provide
you with enough information to figure out what went wrong. Refer to the Message Agent
examples to get an idea on how to use them.

PSMsgGetErrorText

You may notice messages returned from PSMsgGetErrorText like "Row exists in ADD or
DATAENTRY mode" or "More than 1 row exists for search keys”. In each case, you have not
provided enough key values to access a particular mode for a “panel group.” You must ensure
that the key value you provide is a unique identifier to a row. Take a look at what search record
you have defined to access a particular panel group. Are you supplying enough key values to the
search record for it to perform its duty? Please note that the Message Agent can not default
values into the search record like that of online processing. You must manually set those values
through the Message Agent. For example, say you are hiring a new employee online. When you
perform this action, a default of NEW can be seen in the search dialog for Employee ID. The
user doesn’t have to type any values in but can just hit return to accept the default. However, the
Message Agent is unaware of this. So, the user has to map “NEW” to the search field for
Employee ID through the Message Agent using PSMsgSetField. Currently, the Message Agent

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-33

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

does not simulate online search dialog processing to its fullest (e.g., no Search* PeopleCode is
invoked).

SOL and PeopleCode Tracing

An important part of debugging Message Agent transactions is learning how to read and interpret
trace files. From it, you can figure out what may have went wrong during the transaction. A
major change to the PeopleTools 7.5 Message Agent is that traces reside on the Application
Server instead of the client. You should coordinate with your administrator on obtaining access
to these log files. There are two kinds of tracing, SQL and PeopleCode. There are several ways
to invoke both of them. Two options are:

e Trace all SQL and PeopleCode - You can trace all SQL and PeopleCode performed by the
Application Serve by configuring the TraceSQL and TracePC flags on the Application Server.
As one can surmise, the trace logs can get quite large over time since the Application Server
must trace every SQL transaction and every PeopleCode program it executed.

e Trace SQL and PeopleCode generated by specific clients - You can trace SQL and
PeopleCode generated by specific clients. You set the TraceSQLMask and TracePCMask
parameters on the Application Server and set the appropriate trace flags on the client via
Configuration Manager. Refer to the Administration documentation for more details.

Here are some common messages that that appear in your trace file when the flag for Message
Agent Information is turned on.

Message Set Numbers and Message Numbers

¢ Bad map level option - For records positioned at Level 1, 2 or 3, the Message Agent will
retrieve level mapping information when accessing data at those levels. This information is
defined in your Level Mapping options in your Message Definition. Sometimes, this message
will appear if your panel layout is not structured properly.

¢ Record field not found - The Message Agent attempted to locate a record.field reference on
that panel group but could not find it. Verify that your Message Definition field mapping is
pointing to the correct record.field and that the panel group contains that record.

¢ Unable to update value - During the course of the transaction, the value you inserted for a
particular field could not be properly saved. Most likely, the format of the data is invalid. In
other cases, it could be that PeopleCode for that particular field did not properly execute.

¢ Record not found in current panel context - The Message Agent could not locate the record
within the panel group. Verify that the record exists by reviewing the panels’ layout.

e Unknown form field - The field mapping you used is not valid. Note that field mappings are
case sensitive.
“MapCore:” statements

¢ Invalid data format - Pretty much self-explanatory. If you are inserting any date fields, verify
they are in the proper format for that client.

10-34 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

¢ Could not find record field - The Message Agent tried to retrieve the record and field it needs
to map data to but could not. Verify the record and field exist in the database and panel.

e Unable to find Recfield - The Message Agent had difficulties locating a record or field in your
field mapping.

e Unable to find entry for this map level - The Message Agent tried to locate the record at a
specific scroll level but could not find it. Make sure you’re mapping to the appropriate record
at a particular level. The indentation in the field mapping gives you a visual of what records lie
at what scroll level. Review your panel layout.

¢ Skipping parent key - Usually of no concern. It just indicates that the Message Agent was
traversing through child records and looking for keys to identify a particular row of data. It
will inherit key values from parent records.

If you were able to perform the transaction successfully with PeopleCode out of the picture, begin
adding back programs. It could be that the PeopleCode you wrote is not executing properly.

v Since the Message Agent in runs on the application server, all PeopleCode is executed on the
application server. You may want to run the Validation Wizard with the web option turned
on to verify that all your PeopleCode can be executed on the application server. Review
values being used by PeopleCode functions.

Tips for Message Agent

Inserting multiple Level 1 rows.

You have the ability to insert multiple Level 1 rows of data with one ProcessMessage call through
the Message Agent. You cannot use this same procedure to insert multiple Level 0, 2 or 3 rows
of data in one transaction. The idea is to set all Level 0 key and non-key fields and then loop
through all Level 1 key and non-key fields. Once that is completed, issue a ProcessMessage to
save that data. Refer to the Message Agent examples in the documentation for more details.

Retrieving multiple output rows.

Again, this is limited to Level 1 scrolls. Make sure the level 1 record has the flag “Output All
Occurrences” checked on. Refer to the Message Agent examples for further details on navigating
through output lists.

Using %MessageAgent in PeopleCode

You can isolate what PeopleCode functions are being executed by encapsulating those lines of
code with if-then statements using %MessageAgent as a criteria. The PeopleCode variable
%MessageAgent will contain an actual value when the Message Agent is involved in the
transaction.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-35

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Duplicate Keys

Records containing duplicate keys are not supported by the Message Agent. In my opinion, the
notion of duplicate keys is bad RDBMS syntax. The only workaround is to add another key to
the record so a unique set of key values can identify each and every row. You must remove the
Duplicate Key field attribute from the record.

“Specified record already exists — update?”

When in Add mode, you may accidentally insert key values for a row that already exist in the
database. The above message will appear and gives you the option to update the record or do
nothing. Since you can’t drag your mouse pointer over a push-button to answer this dialog
through the Message Agent, you may wonder what you can do. One of the API’s called
PSMsgSetOptions allows you to answer this message ahead of time. You can pass in a parameter
with a value of PSMSG OPT CHANGEMODEADDUPDATE to answer yes to the above
dialog. If this option is not set, the Message Agent will assume the answer is no. You should set
this option before you call ProcessMessage. This option will be set for the life span of your
connection to the Application Server until you call the disconnect function or reset the value
using the above APL

Performance

If you’re considering inserting large amounts of data, try to take advantage of inserting multiple
Level 1 rows. Of course, the panel group you’re accessing must have that particular panel
architecture. By “batching” data up in this fashion, you save less trips across the network.

Take a look at indexing. Verify the search keys being used line up with the indexes created for a
table. Say that you have a record that contains indexes to fields A, B, C, D and E in that order.
Say that you have a search record with values for fields A, C and E. 1t’1l take a long time to look
for a record with these key criteria because the database will have to perform a full index table
scan. If you have a search record with values for fields A, B and C, it will perform the lookup a
lot quicker. Refer to your DBMS manuals.

Message Agent API

C Function API Specifics
To use the C API, you need these files:

e PSMSG.DLL contains the C function API for communicating with the Message Agent
(PSMAG.EXE). It must be available on the machine running the Message Agent.

e PSMSG.LIB is an import library you can link to in order to call PSMSG.DLL.

o PSMSGAPI.H contains the function prototypes and definitions for the API.

10-36 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

OLE Automation Specifics

The PeopleSoft installation program registers the Message Agent as an OLE automation server.
However, if you want to make sure the registration was done correctly, you can enter this
command line from the PeopleTools BIN directory:

REGSVR32 PSMAS.DLL

The PeopleTools.MessageAgent object has methods corresponding to most of the C API
functions. The method names, parameters, and return codes are the same as the C API functions
given in the function descriptions, with these exceptions:

e For the method name, use the function name without its PSMsg prefix.
o Leave out the #Context parameter.
e For parameters shown as pointers in the C syntax, use reference variables.
e These functions are not available:
= GetEditTableFieldList
= GetListBoxField
= GetListBoxRow
= GetPromptValueRow
= GetSearchList

= SetOptions

Operations by Functional Category

Session Level Operations

CheckAndSetOperator Sets the Operator ID the Message Agent uses to log
into the PeopleSoft database.

Connect Verifies that the Application Server port is
available.
Disconnect Destroys client side objects.

Processing Messages

StartMessage Identifies message definition to be used.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-37

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Triggers message processing after all input message
fields have been sent.

ProcessMessage

Field Level Operations

SetField

GetMaxFieldNameLength

GetMaxValueLength

FindField

FindFirstField

FindNextField

FindNextOutputRow

GetFieldCount

GetFieldInfo (OLE only)

GetFieldList (C only)

GetFieldNameLength

GetFieldName

GetValueLength

GetValue

MESSAGE AGENT

Sets the value of a message field to be mapped
into a panel buffer when the message is
processed.

Determines the length of the longest field name
in the output message field list.

Determines the length of the longest value in the
output message field list.

Locates a specified field by name in the output
message field list and sets the current position to
that field.

Locates the first field in the output message field
list and sets the current list position to that field.

Locates the next field in the output message field
list and sets the current list position to that field.

Moves the current position to the next data row
in the output list.

Returns the number of fields in the message
definition.

Returns information about a field in the message
definition.

Returns a list of the fields in the message
definition, along with their information.

Determines the length of the current field name
in the output message field list.

Retrieves the field name of the current field in
the output message field list.

Determines the length of the value in the current
output message field.

Retrieves the value for the current entry in the
output message field list.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

Error Processing

GetErrorExplainText

GetErrorExplainTextLength

GetErrorFieldName

GetErrorFieldNameLength

GetErrorRecordName

GetErrorRecordNameLength

GetErrorText

GetErrorTextLength

Search Dialog Processing

GetSearchFieldCount
GetSearchFieldInfo (OLE
only)

GetSearchList (C only)

GetSearchRecord

GetSearchRecordLength

ProcessSearchDialog

List Box Processing

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Gets the detailed description associated with
a PeopleSoft error message set number and
message number.

Returns the length of the detailed description
associated with a PeopleSoft error message.

Returns the name of the record field that was
the source of an error.

Returns the length of the field name
associated with a PeopleSoft error message.

Returns the name of the record definition that
was the source of an error.

Returns the length of the record definition
name associated with a PeopleSoft error
message.

Retrieves the error text for the first error
encountered while processing a message.

Returns the length of the error text.

Returns the number of fields in the message
definition’s search record definition.

Returns the attributes for a field in the message
definition’s search record.

Returns the attributes for the fields in the
message definition’s search record.

Retrieves the search record definition for the
current message definition.

Determines the length of the record definition
name for the current message definition’s
search record.

Searches the PeopleSoft database using the
values set in the search record fields.

FindFirstListBoxField Locates the first field in the field list returned by a

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

MESSAGE AGENT

10-39

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

FindFirstListBoxRow

FindListBoxField

FindListBoxRow

FindNextListBoxField

FindNextListBoxRow
GetListBoxField (C only)
GetListBoxFieldInfo
(OLE only)

GetListBoxFieldCount
GetListBoxRow (C only)

GetListBoxRowCount

Edit Table Processing

FindFirstPromptValueRow

FindNextPromptValueRow

FindPromptValueRow

GetEditTableFieldCount

search and sets the current position there.
Locates the first record returned in a search.

Locates a field in a record returned by a search and
sets the current position to that field.

Sets the current position in a list box to a specified
ToW.

Locates the next field in the field list returned by a
search and sets the current list position to that field.

Locates the next record returned in a search.

Returns information about the current field in the
search result list box.

Returns information about the current field in the
search result list box.

Returns the number of fields in the record
definition for a search result list box.

Returns the contents of the current list box row.

Returns the number of rows (database records) in a
search result list box.

Locates the first record in a list of prompt
values.

Locates the next row in a list of prompt
values.

Sets the current position in a prompt value
list to a specified row.

Returns the number of fields in a prompt

table.
GetEditTableFieldInfo (OLE Returns field information for a field in a
only) prompt table.

GetEditTableFieldList (C only) Returns field information for the fields in a

GetPromptValuelnfo (OLE

only)

GetPromptValueFieldCount

10-40 MESSAGE AGENT

prompt table.

Returns the contents of the current field
from a prompt table.

Returns the number of fields in a prompt

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

value result set.

GetPromptValueRow (C only) Returns the contents of the current row from
a prompt table.
GetPromptValueRowCount Returns the number of rows retrieved from
a prompt table.
ProcessPromptTable Retrieves values from a field’s prompt
table.
CheckAndSetOperator
Syntax
int stdcall PSMsgCheckAndSetOperator(PSMSGHANDLE #4Context, LPPSOPERATOR
IpOperator);
Description

Sets the Operator ID the Message Agent uses to log into the PeopleSoft database.

CheckAndSetOperator enables you to set the Operator ID that the Message Agent uses to log into
the PeopleSoft database. The Operator ID determines the Message Agent’s security access, both
to the data in the database and the menus in PeopleSoft applications. If the Message Agent is
already logged in, CheckAndSetOperator changes to the Operator ID specified in the
PSOPERATOR structure.

@ If you change operators using CheckAndSetOperator, the menu security for the new operator
takes affect after you change windows. While you remain in the current window, the
available menu options are those for the Operator ID in effect before this function call.
However, the data security for the new operator, including row-level security, takes effect
immediately.

Note that CheckAndSetOperator works only if the PeopleSoft PSOPRDEFN table includes the
specified Operator ID. The Message Agent cannot use the custom user exit feature to check
security using the PSGETLOGONINFO function.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpOperator A pointer to a buffer that holds the PeopleSoft Operator
ID and password. The form of the structure containing the
data is:

typedef struct /* logon information structure */

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-41

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

10-42

{

JANUARY 2001

char szOprld[PSMSG OPERATORLEN + 1]; // Operator ID

char szOprPswd[PSMSG_OPERATORLEN + 1]; // Password

} PSOPERATOR;

Return Value

Value

Meaning

PSMSG OK

The operator information was successfully set.

PSMSG_NOTFOUND

The specified Operator ID is invalid.

PSMSG_ERROR

A general error occurred.

Connect

Syntax

int stdcall LPPSOPERATOR (long /MsgAPI[Version, LPCSTR IpccszTopic,[poperator
PSMSGHANDLE FAR * IphContext);

Description

Identifies Application Server port availability.

Parameters
IMsgAPIVersion

IphContext

IpceszTopic

Lpoperator

Return Value

The API version number defined in PSMSGAPI.H. Pass
the symbol PSMSG_APIVERSION for this argument.

A pointer to a buffer to receive a context handle from the
Message Agent.

Application Server name or IP address and port number.

Operator id and password

Value

Meaning

PSMSG OK

The application has successfully connected to the
Message Agent.

PSMSG ERROR

General error.

PSMSG_NOMOREAGENTS

All Message Agent instances using the specified topic
name are busy.

MESSAGE AGENT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

PSMSG NOTLOADED Message Agent is not present.

Disconnect

Syntax
int stdcall PSMsgDisconnect(PSMSGHANDLE /iContext);,

Description

Disconnects the calling program from the Message Agent.

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
Return Value
Value Meaning
PSMSG _OK The application successfully disconnected from the
Message Agent.
PSMSG_ERROR General error.
PSMSG_BADCONTEXT | Invalid PSMSGHANDLE.

FindField

Syntax
int stdcall PSMsgFindField(PSMSGHANDLE hContext, LPCSTR IpcszFieldName);

Description

Locates a field in the output message field list and sets the current position to that field.

After the Message Agent processes a message with ProcessMessage, it builds a list of the output
message fields defined in the Application Designer message definition. If your application is
looking for a specific output field, use FindField to set the current list position to that field, then
use GetValue to extract the field’s value.

Parameters
hContext The context handle.
IpcszFieldName The name of the field to find. The field must be designated

as an output field in the message definition.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-43

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

10-44

Return Value

Value Meaning
PSMSG OK Success. The location is set to the field.
PSMSG _ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg.

PSMSG_NOTFOUND The requested field was not found.

FindFirstField

Syntax
int stdcall PSMsgFindFirstField PSMSGHANDLE /Context);

Description

Locates the first field in the output message field list and sets the current position there.

After the Message Agent processes a message with ProcessMessage, it builds a list of the output
message fields defined in the Application Designer message definition. FindFirstField sets the
current list position to the beginning of the list. Use GetFieldName and GetValue to extract the
field name and value, then use FindNextField to move to the next field.

If your application needs a specific output field, use FindField to find the field by name.

Parameters
hContext The context handle.

Return Value

Value Meaning
PSMSG OK Success. The location is set to the first field.
PSMSG _ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG_BADCONTEXT | Invalid PSMSGHANDLE.
PSMSG_NOTFOUND Output field list was empty.

FindFirstListBoxField

Syntax
int stdcall PSMsgFindFirstListBoxFieldPSMSGHANDLE /iContext),

MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Description

Locates the first field in the field list returned by a search and sets the current position there.

Parameters

hContext The context handle.

Return Value

Value Meaning
PSMSG OK Success. The location is set to the first field.
PSMSG NOTFOUND Field list was empty.

FindFirstListBoxRow

Syntax
int stdcall PSMsgFindFirstListBoxRow(PSMSGHANDLE /hContext),

Description

Locates the first record returned in a search.

When the Message Agent processes a search record using ProcessSearchDialog, it can return
multiple records that meet the search criteria. When it does, the Message Agent creates a “table”
of values. FindFirstListBoxRow moves the current position to the first row in the table, so that
you can retrieve data from the fields in that row.

When you start retrieving data, the initial current row is the first returned row, so you don’t need
to call FindFirstListBoxRow.

Once you’ve set the current row, you can retrieve field values from the row using one of three
methods:

e Copy the entire row into an array using GetListBoxRow

e Systematically move from one field to the next with FindFirstListBoxField and
FindNextListBoxField, using GetListBoxField to retrieve the value of each field

o Use FindListBoxField to specify which field’s value you want, then use GetListBoxField to
retrieve the value

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-45

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Return Value

Value Meaning
PSMSG OK Success. A row of data is available.
PSMSG NOTFOUND The search didn’t return any rows.

FindFirstPromptValueRow

Syntax
int stdcall PSMsgFindFirstPromptValueRow(PSMSGHANDLE /Context);

Description

Locates the first record in a list of prompt values.

When the Message Agent processes the edit table for a field, it returns a list of the rows from the
edit table meeting the search criteria.

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindPromptValueRow, or systematically scroll through the
rows using FindFirstPromptValueRow and FindNextPromptValueRow.

With FindPromptValueRow, you specify which row you want by its order in the list. The first
row is row 0, the second is row 1, and so on. To determine how many rows are available, use
GetPromptValueRowCount.

Once you’ve set the current row, you can retrieve field values from the row using
GetPromptValueRow.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

Return Value

Value Meaning
PSMSG_OK Success. A row of data is available.
PSMSG_NOTFOUND The search didn’t return any rows.

FindListBoxField

Syntax
int stdcall PSMsgFindListBoxField PSMSGHANDLE /iContext, LPCSTR IpcszFieldName);

10-46 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Description
Locates a field in a record returned by a search and sets the current position to that field.
When the Message Agent processes the search dialog box, it returns a “table” of values, where

each row is a record meeting the search criteria and each column is a field specified as a list box
field in the search record definition.

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindListBoxRow, or systematically scroll through the rows
using FindFirstListBoxRow and FindNextListBoxRow.

Once you’ve set the current row, you can retrieve field values from the row using one of three
methods:

¢ Copy the entire row into an array using GetListBoxRow

e Systematically move from one field to the next with FindFirstListBoxField and
FindNextListBoxField, using GetListBoxField to retrieve the value of each field

¢ Use FindListBoxField to specify which field’s value you want, then use GetListBoxField to
retrieve the value

Parameters
hContext The context handle.
IpcszFieldName The name of the field to find. The specified field must be

a field in the search record definition for the current
message definition.

Return Value

Value Meaning
PSMSG OK Success. The location is set to the field.
PSMSG_NOTFOUND The requested field was not found.

FindListBoxRow

Syntax
int stdcall PSMsgFindListBoxRow(PSMSGHANDLE /hContext int nRowlIndex);

Description

Sets the current position in a list box to a specified row.

When the Message Agent processes the search dialog box, it returns a “table” of values, where
each row is a record meeting the search criteria and each column is a field specified as a list box
field in the search record definition.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-47

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindListBoxRow, or systematically scroll through the rows
using FindFirstListBoxRow and FindNextListBoxRow.

With FindListBoxRow, you specify which row you want by its order in the list box. The first row
is row 0, the second is row 1, and so on. To determine how many rows are available, use
GetListBoxRowCount.

Once you’ve set the current row, you can retrieve field values from the row using one of three
methods:

e Copy the entire row into an array using GetListBoxRow

e Systematically move from one field to the next with FindFirstListBoxField and
FindNextListBoxField, using GetListBoxField to retrieve the value of each field

¢ Use FindListBoxField to specify which field’s value you want, then use GetListBoxField to
retrieve the value

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
nRowlndex An integer indicating a row within the list box.
Return Value
Value Meaning
PSMSG OK Success.
PSMSG _NOTFOUND The specified row was not found.

FindNextField

Syntax
int stdcall PSMsgFindNextField PSMSGHANDLE /Context);

Description

Locates the next field in the output message field list and sets the current list position to that field.

Use FindNextField in conjunction with FindFirstField to visit each field in the output message
field list. For each field, use GetFieldName and GetValue to extract the field name and value. If
your application only needs particular output fields, use FindField to locate fields by their names.

10-48 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
Return Value
Value Meaning
PSMSG OK Success.
PSMSG_ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG_BADCONTEXT | Invalid PSMSGHANDLE.
PSMSG_NOTFOUND There was no next field in the output list.

FindNextListBoxField

Syntax
int stdcall PSMsgFindNextListBoxField(PSMSGHANDLE /iContext),

Description

Locates the next field in the field list returned by a search and sets the current list position to that
field.

When the Message Agent processes the search dialog box, it returns a “table” of values, where
each row is a record meeting the search criteria and each column is a field specified as a list box
field in the search record definition.

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindListBoxRow, or systematically scroll through the rows
using FindFirstListBoxRow and FindNextListBoxRow.

Once you’ve set the current row, you can retrieve field values from the row using one of three
methods:

¢ Copy the entire row into an array using GetListBoxRow

e Systematically move from one field to the next with FindFirstListBoxField and
FindNextListBoxField, using GetListBoxField to retrieve the value of each field

¢ Use FindListBoxField to specify which field’s value you want, then use GetListBoxField to
retrieve the value

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-49

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Return Value

Value Meaning
PSMSG OK Success.
PSMSG _NOTFOUND There was no next field in the list.

FindNextListBoxRow

Syntax
int stdcall PSMsgFindNextListBoxRow(PSMSGHANDLE /Context);

Description
Locates the next record returned in a search.
When the Message Agent processes the search dialog box, it returns a “table” of values, where

each row is a record meeting the search criteria and each column is a field specified as a list box
field in the search record definition.

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindListBoxRow, or systematically scroll through the rows
using FindFirstListBoxRow and FindNextListBoxRow.

Once you’ve set the current row, you can retrieve field values from the row using one of three
methods:

e Copy the entire row into an array using GetListBoxRow

e Systematically move from one field to the next with FindFirstListBoxField and
FindNextListBoxField, using GetListBoxField to retrieve the value of each field

o Use FindListBoxField to specify which field’s value you want, then use GetListBoxField to
retrieve the value

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
Return Value
Value Meaning
PSMSG OK Success. A row of data is available.
PSMSG _NOTFOUND There are no more rows of data.

10-50 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

FindNextOutputRow

Syntax
int stdcall PSMsgFindNextOutputRow(PSMSGHANDLE /A Context);

Description

Locates the next row of output for a message that maps data from a level one scroll.

The Message Agent can map data to and from fields that appear inside a level 1 scroll on a panel.
When a scroll includes more than one row of data, the Message Agent creates a “table” of output
values. FindNextOutputRow moves the current position to the next row in the table, so that you
can retrieve data from the fields in that row.

When you start retrieving data, the initial current row is the first row in the scroll. So the first use
of FindNextOutputRow advances the current position to the second row.

Once you’ve sent this message, the other Find messages (FindField, FindFirstField, and
FindNextField) set the current position to fields in the current row. Use GetFieldName and
GetValue to extract the field name and value.

@ This function is only available for level 1 scrolls.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

Return Value

Value Meaning
PSMSG_OK Success. Another row of data is available.
PSMSG_ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg.
PSMSG NOTFOUND There are no more rows of data in the scroll.

FindNextPromptValueRow

Syntax
int stdcall PSMsgFindNextPromptValueRow(PSMSGHANDLE #Context);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-51

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Description

Locates the next row in a list of prompt values.

When the Message Agent processes the edit table for a field, it returns a list of the rows from the
edit table meeting the search criteria.

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindPromptValueRow, or systematically scroll through the
rows using FindFirstPromptValueRow and FindNextPromptValueRow.

With FindPromptValueRow, you specify which row you want by its order in the list. The first
row is row 1, the second is row 2, and so on. To determine how many rows are available, use
GetPromptValueRowCount.

Once you’ve set the current row, you can retrieve field values from the row using
GetPromptValueRow.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

Return Value

Value Meaning
PSMSG_OK Success. A row of data is available.
PSMSG_NOTFOUND There are no more rows of data.

FindPromptValueRow

Syntax
int stdcall PSMsgFindPromptValueRow(PSMSGHANDLE hContext int nRowlIndex);

Description

Sets the current position in a prompt value list to a specified row.

When the Message Agent processes the edit table for a field, it returns a list of the rows from the
edit table meeting the search criteria.

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindPromptValueRow, or systematically scroll through the
rows using FindFirstPromptValueRow and FindNextPromptValueRow.

With FindPromptValueRow, you specify which row you want by its order in the list. The first
row is row 1, the second is row 2, and so on. To determine how many rows are available, use
GetPromptValueRowCount.

10-52 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Once you’ve set the current row, you can retrieve field values from the row using
GetPromptValueRow. There are no functions for navigating through the fields in the row.

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
nRowlndex An integer indicating a row within the list of prompt
values.
Return Value
Value Meaning
PSMSG OK Success.
PSMSG _NOTFOUND The row could not be found.

GetEditTableFieldCount

Syntax

int stdcall PSMsgGetEditTableFieldCount(PSMSGHANDLE /Context, LPCSTR
IpcszRecordName, LPINT [lpnCount),

Description
Returns the number of fields in a prompt table.
GetEditTableFieldCount returns the number of fields in an edit table. You can use this

information to allocate a buffer large enough for GetEditTableFieldList to copy the field
attributes into.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpcszRecordName A pointer to a buffer containing the name of the record
definition for the edit table. Do not include the PS_prefix
from the table name.

IpnCount A pointer to a buffer to receive the number of fields.

Return Value
PSMSG OK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-53

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

10-54

GetEditTableFieldinfo

OLE Method

long GetEditTableFieldInfo(LPCTSTR IpcszRecordName, long nFieldNum, LPDISPATCH
FAR *IpSearchOby);

Description

Returns field information for a field in a prompt table. (OLE Automation only; for C, use
GetEditTableFieldList)

When you define a field in the Application Designer, you have the option to assign it an edit
table, also known as a prompt table. The edit table lists valid values for the field; when you enter
data, the system checks it against the edit table. In the online system, the user can press F4 to
display the contents of the edit table and select a value.

If a field has an edit table associated with it, the edit table name appears as the last piece of data
in the field attribute object for that field (szEditTable). Note that the name is the name of the
record definition for the table, not the name of the table itself; it doesn’t include the PS_ prefix.

GetEditTableFieldInfo creates an object with all the information you need about a field in the edit
table.

Parameters

IpcszRecordName A pointer to a buffer containing the name of the record
definition for the edit table. Do not include the PS_prefix
from the table name.

nkFieldNum The number of the field in the edit table field you want.

IpSearchObj A pointer to an object in which the function will specify
field information. The properties of the object are:

MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

SzFieldName (string)
SzLongName (string)
SzShortName (string)
FFieldType (integer) // Field type. Valid values are

//
PSMSG TYPE CHAR, PSMSG TYPE NUMBER,

/
PSMSG TYPE DATE, PSMSG TYPE TIME,

/
PSMSG TYPE DATETIME,

// PSMSG_TYPE UNSUPPORTED
nFieldSize (integer)
fFieldUse (integer) // Field use attribute(s). Values are

/
PSMSG _USE KEY, PSMSG USE DUPLKEY,

/
PSMSG _USE ALTKEY, PSMSG USE DESCKEY,

//PSMSG_USE_SEARCHITEM,PSMSG USE L
ISTITEM

szEditTable (string) // Edit table

Return Value

Value Meaning

PSMSG OK Success.

PSMSG_ERROR The specified edit table does not exist.
GetEditTableFieldList
Syntax

int stdcall PSMsgGetEditTableFieldListtPSMSGHANDLE /Context, LPCSTR
IpcszRecordName, PSMSGSEARCHFIELD IpFieldlnfo);,

Description

Returns field information for the fields in a prompt table.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-55

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

=,

10-56

This function is not available through the OLE Automation interface. Use
GetEditTableFieldInfo instead.

When you define a field in the Application Designer, you have the option to assign it an edit
table, also known as a prompt table. The edit table lists valid values for the field; when you enter
data, the system checks it against the edit table. In the online system, the user can press F4 to
display the contents of the edit table and select a value.

If a field has an edit table associated with it, the edit table name appears as the last piece of data
in the field attribute structure for that field (szEditTable). Note that the name is the name of the
record definition for the table, not the name of the table itself; it doesn’t include the PS_ prefix.

GetEditTableFieldList creates an array with all the information you need about the fields in the
edit table. Each element of the array is a structure as shown above; the number of elements in the
array is the number of fields in the edit table, which you can determine using
GetEditTableFieldCount.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpcszRecordName A pointer to a buffer containing the name of the record
definition for the edit table. Do not include the PS_prefix
from the table name.

IpFieldInfo A pointer to a buffer in which the function will create an
array of field attribute structures. The form of the structure
is:

typedefstruct

{

char szFieldName[PSMSG FIELDNAMELEN + 1]; // Field name

char szLongName[PSMSG LONGNAMELEN + 1]; // Long name
char szShortName[PSMSG SHORTNAMELEN + 1]; // Short name

INT {FieldType; // Field type. Valid values are
// PSMSG_TYPE_CHAR, PSMSG_TYPE NUMBER,
// PSMSG_TYPE DATE, PSMSG TYPE TIME,
// PSMSG_TYPE DATETIME,
// PSMSG_TYPE_UNSUPPORTED

INT nFieldSize; // Field size in bytes

MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

INT fFieldUse; // Field use attribute(s). Values are
// PSMSG_USE_KEY, PSMSG USE_DUPLKEY,

// PSMSG_USE ALTKEY, PSMSG_USE DESCKEY,

//PSMSG_USE SEARCHITEM,PSMSG USE LISTITEM
char szEditTablePSMSG RECNAMELEN + 1]: // Edit table

} PSMSGSEARCHFIELD;

Return Value

Value Meaning
PSMSG OK Success.
PSMSG_ERROR The specified edit table does not exist.

GetErrorExplainText

Syntax

int stdcall PSMsgGetErrorExplainText(PSMSGHANDLE /hContext, LPCSTR
IpcszExplainText, int nSize);

Description

Gets the detailed description associated with a PeopleSoft error message.

When an PeopleSoft application user receives an error message, the message box includes an
Explain button. The user clicks the button to view more a more detailed description of the
problem. GetErrorExplainText enables the Message Agent to retrieve the same detailed
description. It retrieves the descriptive text associated with the first error the Message Agent
encountered while processing a message.

Use GetErrorExplainText in conjunction with GetErrorText. If the GetErrorText message
includes a message set and message number at the end, GetErrorExplainText returns the
“explain” text for that set and message.

To determine how large the descriptive text is, and consequently how large a buffer to allocate,
use GetErrorExplainTextLength.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpsczExplainText A pointer to a buffer to receive the error text.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-57

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

10-58

nSize The maximum number of characters to copy to the buffer,
including the null terminator. The error text is truncated if
it is longer than nSize.

Return Value

PSMSG_OK, even if the message doesn’t include any “explain” text.

GetErrorExplainTextLength

Syntax

int stdcall PSMsgGetErrorExplainTextLength(PSMSGHANDLE AContext, LPINT
IpnLength);,

Description
Returns the length of the detailed description associated with a PeopleSoft error message.
GetErrorExplainTextLength determines the length of the descriptive text associated with the first

error the Message Agent encountered while processing a message. This length does not include
the null terminator for the string.

You can use this information to allocate a buffer large enough to hold the text. Use
GetErrorExplainText to retrieve the actual text.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnLength A pointer to a buffer to receive the text length.

Return Value

PSMSG_OK, even if the message doesn’t include any descriptive text.

GetErrorFieldName

Syntax

int stdcall PSMsgGetErrorFieldName(PSMSGHANDLE #Context, LPCSTR
IpcszFieldName, int nSize);

Description

Returns the name of the record field that was the source of an error.

MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

When the data the Message Agent enters into a panel fails an online edit, you can use
GetErrorFieldName to determine which record field the Message Agent wasn’t able to update. If
more than one field failed an edit, GetErrorFieldName returns the name of the first field to fail.

To determine how large the field name is, use GetErrorFieldNameLength. To determine which
record definition contains the field, use GetErrorRecordName.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpsczFieldName A pointer to a buffer to receive the field name.

nSize The maximum number of characters to copy to the buffer,

including the null terminator. The record definition name
is truncated if it is longer than nSize.

Return Value

Value Meaning
PSMSG_OK The field name was successfully set.
PSMSG_ERROR The field name could not be determined.

GetErrorFieldNameLength

Syntax

int stdcall PSMsgGetErrorFieldNameLength(PSMSGHANDLE /iContext, LPINT
IpnLength);,

Description
Returns the length of the field name associated with a PeopleSoft error message.
GetErrorFieldNameLength determines the length of the field name associated with the first error

the Message Agent encountered while processing a message. This length does not include the
null terminator for the string.

You can use this information to allocate a buffer large enough to hold the text. Use
GetErrorFieldName to retrieve the actual field name.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnLength A pointer to a buffer to receive the length of the field

name.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-59

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Return Value

Value Meaning
PSMSG OK The field name length was successfully set.
PSMSG_ERROR The field for the message could not be
determined.
GetErrorRecordName
Syntax

int stdcall PSMsgGetErrorRecordName(PSMSGHANDLE AContext, LPCSTR
IpcszRecordName, int nSize);

Description

Returns the name of the record definition that was the source of an error.

When the data the Message Agent enters into a panel fails an online edit, you can use
GetErrorRecordName to determine which record definition contains the field the Message Agent
wasn’t able to update. If more than one field failed an edit, GetErrorRecordName returns the
record definition name for the first failure encountered.

To determine how large the record definition name is, use GetErrorRecordNameLength. To
determine which record field failed the edits, use GetErrorFieldName.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpsczRecordName A pointer to a buffer to receive the record definition name.

nSize The maximum number of characters to copy to the buffer,

including the null terminator. The record definition name
is truncated if it is longer than nSize.

Return Value

Value Meaning

PSMSG _OK The record definition name was successfully set.

PSMSG_ERROR The record definition name could not be
determined.

10-60 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

GetErrorRecordNamelLength

Syntax

int stdcall PSMsgGetErrorRecordNameLength(PSMSGHANDLE /hContext, LPINT
IpnLength);,

Description
Returns the length of the record definition name associated with a PeopleSoft error message.
GetErrorRecordNameLength determines the length of the record definition name associated with

the first error the Message Agent encountered while processing a message. This length does not
include the null terminator for the string.

You can use this information to allocate a buffer large enough to hold the text. Use
GetErrorRecordName to retrieve the actual text.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnLength A pointer to a buffer to receive the length of the record

definition name.

Return Value

Value Meaning

PSMSG OK The record definition name length was
successfully set.

PSMSG_ERROR The record definition for the error message
could not be determined.

GetErrorText

Syntax

int stdcall PSMsgGetErrorText(PSMSGHANDLE hContext,
LPSTR IpszErrorText,int nSize);

Description

Retrieves the error text for the first error encountered while processing a message.

When the Message Agent encounters an error, it records a textual description of the error and
goes into an error state. Once in the error state, the Message Agent will only respond to
StartMessage, GetErrorText, GetErrorTextLength, and Disconnect.

To determine how large the error text buffer needs to be, use GetErrorTextLength.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-61

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpszErrorText A pointer to a buffer to receive the error text.

nSize The maximum number of characters to copy to the buffer,

including the null terminator. The error text is truncated if
it is longer than the number of characters in nSize.

Return Value

Value Meaning
PSMSG_OK Success.
PSMSG _ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG_BADCONTEXT | Invalid PSMSGHANDLE.

GetErrorTextLength

Syntax
int stdcall PSMsgGetErrorTextLength(PSMSGHANDLE /iContext,

LPINT IpnlLength);

Description
Returns the length of the error text.
GetErrorTextLength determines the length of the error string for the first error the Message Agent

encountered while processing a message. This length does not include the null terminator for the
string.

You can use this information to allocate a buffer large enough to hold the error text. Use
GetErrorText to retrieve the actual message.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnLength A pointer to a buffer to receive the error text length.

Return Value

Value Meaning

PSMSG OK Success.

10-62 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

PSMSG _ERROR General error.
PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

GetFieldCount

Syntax
int stdcall PSMsgGetFieldCount(PSMSGHANDLE /hContext, LPINT lpnCount);

Description
Returns the number of fields mapped in the message definition.
You can use the Message Agent to get field information and create an interface for the user to

enter data. GetFieldCount writes the number of fields in the message definition mapping at the
location specified by the [pnCount buffer; GetFieldList returns the field information.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnCount A pointer to a buffer to receive the number of fields.

Return Value

Value Meaning
PSMSG_OK Success.
PSMSG _ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

GetFieldInfo

OLE Method Syntax
long GetFieldInfo(long nFieldNum, LPDISPATCH FAR *FieldObject);,

Description

Returns a list of the fields in the message definition. (OLE Automation method only; for C, use
GetFieldList instead)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-63

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

10-64

You can use the Message Agent to get field information and create an interface for the user to
enter data. GetFieldInfo provides the information you need about a field in the mapping to create
an appropriate control.

Parameters
nFieldNum The number of the field in the message definition whose
information you want.
FieldObject A pointer to the 1Dispatch interface of a field object. The
object has these properties:
szFieldName(string) // Field name

fFieldType(integer) // Field type. Valid values are

Return Value

// PSMSG_TYPE CHAR, PSMSG TYPE NUMBER,
// PSMSG_TYPE DATE, PSMSG TYPE TIME,
//PSMSG TYPE DATETIME,
// PSMSG_TYPE UNSUPPORTED
nFieldSize(integer) // Field size in bytes
fFieldMapUse(integer) // Field use attribute(s). Values are
// PSMSG_USE_INPUT, PSMSG_USE_OUTPUT,
// PSMSG_USE BOTH, PSMSG_USE_SEARCHKEY
fFieldMapTransfer(integer)// Field method attribute(s).
// Values are
// PSMSG_XFR_COPY, PSMSG_XFR XLATS,
// PSMSG_XFR XLATL, PSMSG_XFR REVERSE

nFieldLevel(integer) // Field's scroll level

Value Meaning
PSMSG OK Success.
PSMSG _ERROR Error.

MESSAGE AGENT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

GetFieldList

Syntax
int stdcall PSMsgGetFieldList(PSMSGHANDLE /#Context,

LPPSMSGFIELDINFO [pFields);

Description

Returns a list of the fields in the message definition.

@ This function is not available through the OLE Automation interface. Use GetFieldInfo
instead.

You can use the Message Agent to get field information and create an interface for the user to
enter data. GetFieldList provides the information you need about each field in the mapping to
create an appropriate control. GetFieldCount returns the number of fields in the mapping.

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
IpFieldst A pointer to a buffer to receive the field information. The
form of the structure is:
typedef struct
{

char szFieldName[PSMSG FIELDNAMELEN + 1]; // Field name
INT {FieldType; // Field type. Valid values are
// PSMSG_TYPE_CHAR, PSMSG_TYPE NUMBER,
// PSMSG_TYPE DATE, PSMSG TYPE TIME,
// PSMSG_TYPE DATETIME,
// PSMSG_TYPE_UNSUPPORTED
INT nFieldSize; // Field size in bytes
INT fFieldMapUse; // Field use attribute(s). Values are
//PSMSG_USE_INPUT, PSMSG _USE OUTPUT,

//PSMSG_USE _BOTH, PSMSG_USE SEARCHKEY

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-65

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

INT fFieldMapTransfer;

INT nFieldLevel;

} PSMSGFIELDINFO;

Return Value

JANUARY 2001

// Field method attribute(s). Values are
// PSMSG_XFR_COPY, PSMSG_XFR_XLATS,
// PSMSG_XFR XLATL, PSMSG_XFR REVERSE

// Field's scroll level

Value

Meaning

PSMSG OK

Success.

PSMSG ERROR

General error.

PSMSG NOTLOADED

Message Agent is not present.

PSMSG_BADCONTEXT

Invalid PSMSGHANDLE passed to PSMsg function.

GetFieldName

Syntax

int stdcall PSMsgGetFieldName(PSMSGHANDLE /Context,
LPSTR IpszFieldName, int nSize);

Description

Retrieves the field name of the current field in the output message field list.

After the Message Agent processes a message with ProcessMessage, it builds a list of the output
message fields defined in the Application Designer message definition. GetFieldName returns
the name of the current field in that list.

Parameters
hContext

IpszValue

nSize

Return Value

The context handle assigned when this program connected
to the Message Agent.

A pointer to a buffer to receive the field name of the
output message field.

The maximum number of characters to copy to the buffer,
including the null terminator. The field name is truncated
if it is longer than the number of characters in nSize.

Value

Meaning

PSMSG OK

Success.

10-66 MESSAGE AGENT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

PSMSG _ERROR General error.
PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

GetFieldNameLength

Syntax
int stdcall PSMsgGetFieldNameLength(PSMSGHANDLE /sContext, LPINT lpnLength);

Description

Determines the length of the current field name in the output message field list.

After the Message Agent processes a message with ProcessMessage, it builds a list of the output
message fields defined in the Application Designer message definition. GetFieldNameLength
returns the length of the name of the current field in that list. This length does not include the
null terminator for the string.

You can use this information to allocate a buffer large enough to hold the current field name. To
determine the length of the longest output field name, use GetMaxFieldNameLength.

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
IpnLength A pointer to a buffer for the field name length.
Return Value
Value Meaning
PSMSG OK Success.
PSMSG_ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

GetListBoxField
Syntax

int stdcall PSMsgGetListBoxField PSMSGHANDLE /Context, LPLISTBOXFIELDINFO
IpFieldlnfo);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-67

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Description

Returns information about the current field in the search result list box.

@ This function is not available through the OLE Automation interface. Use
GetListBoxFieldInfo instead.

When the Message Agent processes the search dialog box, it returns a “table” of values, where
each row is a record meeting the search criteria and each column is a field specified as a list box
field in the search record definition.

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindListBoxRow, or systematically scroll through the rows
using FindFirstListBoxRow and FindNextListBoxRow.

Once you’ve set the current row, you can retrieve field values from the row using one of three
methods:

o Copy the entire row into an array using GetListBoxRow

o Systematically move from one field to the next with FindFirstListBoxField and
FindNextListBoxField, using GetListBoxField to retrieve the value of each field

¢ Use FindListBoxField to specify which field’s value you want, then use GetListBoxField to
retrieve the value

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
IpFieldlnfo A pointer to a buffer to receive the field information. The
form of the structure holding the field information is:
typedef struct
{
char szFieldName[PSMSG_FIELDNAMELEN + 1]; // Field name
char szValue[PSMSG_MAXVALUELEN + 1]; /I Field value
int nFieldNameSize; // Field name size in bytes
int nValueSize; // Value’s size in bytes

} PSMSGLISTBOXFIELDINFO;

Return Value

Value Meaning

PSMSG_OK The field exists and its attributes have been

10-68 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

copied into the structure.

PSMSG NOTFOUND The specified field does not exist.

GetListBoxFieldCount

Syntax
int stdcall PSMsgGetListBoxFieldCount(PSMSGHANDLE /AContext, LPINT IpnCount);

Description

Returns the number of fields in the record definition for a search result list box.

After the Message Agent processes a search dialog, it returns a list of the database records
matching the search criteria. GetListBoxFieldCount returns the number of fields in each record or
row. Use this number to create an array of PSMSGLISTBOXFIELDINFO structures for
GetListBoxRow.

To get the values from a particular record, use GetListBoxRow. To scroll through the records one
at a time, use FindFirstListBoxRow and FindNextListBoxRow.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnCount A pointer to a buffer to receive the number of fields.

Return Value
PSMSG_OK, even when no fields exist.

GetListBoxFieldInfo

OLE Method
long GetListBoxFieldInfo(long nFieldNum, LPDISPATCH FAR */pRowObj);

Description

Returns information about the current field in the search result list box. (OLE Automation only;
for C, use GetListBoxField or GetListBoxRow)

When the Message Agent processes the search dialog box, it returns a “table” of values, where
each row is a record meeting the search criteria and each column is a field specified as a list box
field in the search record definition.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-69

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

To retrieve values from this table, you first set the current row using one of two methods: move to
a specific row in the result set using FindListBoxRow, or systematically scroll through the rows
using FindFirstListBoxRow and FindNextListBoxRow.

Once you’ve set the current row, use GetListBoxFieldInfo to get information about a field in the

row.
Parameters

nFieldNum The number of the field you want from the list box.
IpRowObj A pointer to an object holding the field information. The

properties of the object are:
SzFieldName (string)
szValue (string)
nFieldNameSize (integer)

nValueSize (integer)

Return Value

Value Meaning
PSMSG_OK The field exists and its attributes have been
copied into the structure.
PSMSG NOTFOUND The specified field does not exist.
GetListBoxRow
Syntax

int stdcall PSMsgGetListBoxRow(PSMSGHANDLE /hContext,

LPPSMSGLISTBOXFIELDINFO IpRowInfo);

Description

Returns the contents of the current list box row.

@ This function is not available through the OLE Automation interface. Use
GetListBoxFieldInfo instead.

When the Message Agent processes a search record using ProcessSearchDialog, it can return
multiple records that meet the search criteria. When it does, the Message Agent creates a “table”

10-70 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

of values. The columns in this table are the fields identified as List Box fields when the record
was created in the Application Designer. In the online system, the user sees this table as a list of
records in a list box.

You use FindListBoxRow, FindFirstListBoxRow, and FindNextListBoxRow to set a current row
within this table, then use GetListBoxRow to copy the contents of this row into an array.

Each element in the array is a PSMSGLISTBOXFIELDINFO structure; the number of elements
is the number of fields in specified in the search record definition as list box fields. To determine
the number of fields, use GetListBoxFieldCount.

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
IpRowlInfo A pointer to an array of field information structures. The
form of the structure is:
typedef struct
{

char szFieldName[PSMSG_FIELDNAMELEN + 1]; // Field name

char szValue[PSMSG_MAXVALUELEN + 1]; // Field value
int nFieldNameSize; // Field name size in bytes
int nValueSize; // Value’s size in bytes

} PSMSGLISTBOXFIELDINFO;

Return Value
PSMSG_OK

GetListBoxRowCount

Syntax
int stdcall PSMsgGetListBoxRowCount(PSMSGHANDLE /Context, LPINT IpnCount);

Description

Returns the number of rows (database records) in a search result list box.

After the Message Agent processes a search dialog, it returns a list of the database records
matching the search criteria. GetListBoxRowCount returns the number of records. You can use
this information to set up a processing loop that handles each record in turn.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-71

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnCount A pointer to a buffer to receive the number of rows.

Return Value
PSMSG_OK

GetMaxFieldNameLength

Syntax
int stdcall PSMsgGetMaxFieldNameLength(PSMSGHANDLE /Context,
LPINT /pnLength);
Description

Determines the length of the longest field name in the output message field list.

After the Message Agent processes a message with ProcessMessage, it builds a list of the output
message fields defined in the Application Designer message definition.
GetMaxFieldNameLength returns the length of the longest field name in that list. The length
does not include the null terminator. You can use this information to allocate a buffer large
enough for the longest field name.

To determine the length of an individual field, use GetFieldNameLength.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnLength A pointer to a buffer for the field name length.

Return Value

Value Meaning
PSMSG_OK Success.
PSMSG_ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

10-72 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

GetMaxValueLength

Syntax
int stdcall PSMsgGetMaxValueLength(PSMSGHANDLE /#Context,

LPINT IpnlLength);,

Description

Determines the length of the longest value in the output message field list.

After the Message Agent processes a message with ProcessMessage, it builds a list of the output
message fields defined in the Application Designer message definition. GetMaxValueLength

returns the length of the longest value in that list. The length does not include the null terminator.
You can use this information to allocate a buffer large enough for the longest value.

To determine the length of a particular value, use GetValueLength.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnLength A pointer to a buffer for the length.

Return Value

Value Meaning
PSMSG OK Success.
PSMSG_ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

GetPromptValueFieldCount

Syntax

int stdcall PSMsgGetPromptValueFieldCount(PSMSGHANDLE /Context, LPINT
IpnCount),

Description

Returns the number of fields in a prompt value result set.

After the Message Agent processes the edit table for a field using ProcessPromptTable, it returns
a list of the rows matching the search criteria. GetPromptValueFieldCount returns the number of
fields in each row.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-73

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnCount A pointer to a buffer to receive the number of fields.

Return Value
PSMSG_OK

GetPromptValuelnfo

OLE Method
long GetPromptValuelnfo(long nFieldNum, LPDISPATCH FAR *IpRowObyj);

Description

Returns the contents of the current field from an edit table. (OLE Automation only; for C, use
GetPromptValueRow instead)

When the Message Agent processes an edit table using ProcessPromptTable, it can return
multiple rows that meet the search criteria. You use FindPromptValueRow,
FindFirstPromptValueRow, and FindNextPromptValueRow to set a current row, then use
GetPromptValuelnfo to copy the contents of a field from this row into an array.

Parameters
nkieldNum The number of the prompt table field you want.
IpRowObj A pointer to an object holding field information. The

properties of the object are:
SzFieldName (string)
szValue (string)
nFieldNameSize (integer)

nValueSize (integer)

Return Value
PSMSG_OK

10-74 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

GetPromptValueRow

Syntax

int stdcall PSMsgGetPromptValueRow(PSMSGHANDLE /Context,
LPPSMSGLISTBOXFIELDINFO IpRowlInfo);

Description

Returns the contents of the current row from an edit table.

@ This function is not available through the OLE Automation interface. Use
GetPromptValuelnfo instead.

When the Message Agent processes an edit table using ProcessPromptTable, it can return
multiple rows that meet the search criteria. You use FindPromptValueRow,
FindFirstPromptValueRow, and FindNextPromptValueRow to set a current row, then use
GetPromptValueRow to copy the contents of this row into an array.

Each element in the array is a PSMSGLISTBOXFIELDINFO structure; the number of elements
is the number of fields in the edit table. To determine the number of fields, use
GetPromptValueFieldCount.

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
IpRowlInfo A pointer to an array of field information structures. The
form of the structure is:
typedef struct
{

char szFieldName[PSMSG_FIELDNAMELEN + 1]; // Field name

char szValue[PSMSG_MAXVALUELEN + 1]; // Field value
int nFieldNameSize; // Field name size in bytes
int nValueSize; // Value’s size in bytes

} PSMSGLISTBOXFIELDINFO;

Return Value
PSMSG _OK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-75

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

GetPromptValueRowCount

Syntax

int stdcall PSMsgGetPromptValueRowCount(PSMSGHANDLE /iContext, LPINT
IpnCount);,

Description
Returns the number of rows retrieved from a prompt table.
After the Message Agent processes the edit table for a field, it returns a list of the records from

the edit table matching the search criteria. GetPromptValueRowCount returns the number of
records. You can use this information to set up a processing loop that handles each record in turn.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnCount A pointer to a buffer to receive the number of rows.

Return Value
PSMSG_OK

GetSearchFieldCount

Syntax
int stdcall PSMsgGetSearchFieldCount(PSMSGHANDLE /hContext, LPINT IpnCount);

Description

Returns the number of fields in the message definition’s search record definition.

GetSearchFieldCount writes the number of fields in the search record definition at the location
specified by the /pnCount buffer. You can use this information to allocate an array of
PSMSGSEARCHFIELD large enough to hold the field attributes returned by GetSearchList, as in
this example:

nRet = PSMsgGetSearchFieldCount(hContext, &nFieldCount);
IpSearchInfo = new PSMSGSEARCHFIELD[nFieldCount];
Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

10-76 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

IpnCount A pointer to a buffer to receive the number of fields.

Return Value
PSMSG OK

GetSearchFieldinfo

OLE Method
long GetSearchFieldInfo(long nFieldNum, LPDISPATCH FAR *IpSearchObj);

Description

Returns the attributes for the fields in the message definition’s search record. (OLE Automation
only; for C, use GetSearchList instead)

The search record definition determines which fields you can use to search for database records.
GetSearchFieldInfo copies all the information you need about a field in the search record into an
object. The object has the properties shown below.

Using the information in this object, you can create a user interface control for the field. Use
SetField to enter search criteria into one or more of these fields, then use ProcessSearchDialog to
perform the search.

Parameters

nFieldNum The number of the field in the search record you want
information for.

IpSearchObj A pointer to an object containing the field attributes. The

properties of the object are:

szFieldName (string)
szLongName (string)
szShortName (string)
fFieldType (integer) // Field type. Valid values are
// PSMSG_TYPE_CHAR, PSMSG_TYPE NUMBER,

// PSMSG_TYPE_DATE,
PSMSG TYPE TIME,

// PSMSG_TYPE DATETIME,
// PSMSG_TYPE_UNSUPPORTED

nFieldSize (integer)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-77

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

fFieldUse (integer) // Field use attribute(s). Values are
// PSMSG_USE_KEY, PSMSG USE_DUPLKEY,
// PSMSG_USE ALTKEY, PSMSG USE DESCKEY,

// PSMSG_USE_SEARCHITEM,
PSMSG_USE LISTITEM

szEditTable (string) // Edit table

Return Value

Value Meaning
PSMSG OK Success.
PSMSG_ERROR The message definition doesn’t have a search
record.
GetSearchList
Syntax
int stdcall PSMsgGetSearchList(PSMSGHANDLE /Context, LPPSMSGSEARCHFIELD
IpSearchlinyo);,
Description

Returns the attributes for the fields in the message definition’s search record.

@ This function is not available through the OLE Automation interface. Use
GetSearchFieldInfo instead.

The search record definition determines which fields you can use to search for database records.
GetSearchList copies all the information you need about the fields in the search record into an
array. Each element of the array is a structure as shown below; the number of elements in the
array is the number of fields in the search record definition, which you can determine using
GetSearchFieldCount.

Using the information in this array, you can create a user interface that enables users to enter
search criteria. Use SetField to enter search criteria into one or more of these fields, then use
ProcessSearchDialog to perform the search.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

10-78 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

IpSearchinfo A pointer to an array of field structures containing the
attributes of each field in the search record definition. The
form of the structure is:

typedef struct
{
char szFieldName[PSMSG FIELDNAMELEN + 1]; // Field name

char szLongName[PSMSG LONGNAMELEN + 1]; // Long name
char szShortName[PSMSG SHORTNAMELEN + 1]; // Short name

INT {FieldType; // Field type. Valid values are
// PSMSG_TYPE CHAR, PSMSG TYPE NUMBER,
// PSMSG_TYPE DATE, PSMSG TYPE TIME,
//PSMSG_TYPE DATETIME,

// PSMSG_TYPE UNSUPPORTED

INT nFieldSize; // Field size in bytes

INT fFieldUse; // Field use attribute(s). Values are
//PSMSG_USE KEY, PSMSG USE DUPLKEY,

// PSMSG_USE ALTKEY, PSMSG_USE DESCKEY,
// PSMSG_USE SEARCHITEM, PSMSG_USE LISTITEM

char szEditTablelPSMSG_RECNAMELEN + 1]: // Edit table

} PSMSGSEARCHFIELD;

Return Value

Value Meaning
PSMSG OK Success.
PSMSG_ERROR The message definition doesn’t have a search
record.
GetSearchRecord
Syntax

int stdcall PSMsgGetSearchRecord(PSMSGHANDLE hContext, LPSTR IpszRecordName,
int nSize);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-79

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

10-80

Description

Retrieves the search record definition for the current message definition.

Each message definition specifies a record definition to use as the search record for the panel
group it opens. The search record determines which fields the Message Agent can use to locate
database records for opening in the panel group, and which fields it must provide values for to
create a new database record. GetSearchRecord returns the name of the search record definition
for the current message definition.

You can use this function only after you’ve set the current message definition with
StartMessage.

To determine how large the record definition name is (so you know how large the buffer needs to
be), use GetSearchRecordLength.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpszValue A pointer to a buffer to receive the name of the search
record definition.

nSize The maximum number of characters to copy to the buffer,

including the null terminator. The record definition name
is truncated if it is longer than the number of characters in

nSize.
Return Value
Value Meaning
PSMSG OK Success.
PSMSG_NOTFOUND No current message definition. Use
StartMessage to set the message definition.

GetSearchRecordLength

Syntax
int stdcall PSMsgGetSearchRecordLength(PSMSGHANDLE /4Context, LPINT IpnLength),

Description

Determines the length of the record definition name for the current message definition’s search
record.

MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

GetSearchRecordLength determines the length of the name of the search record definition for the
current message definition. This length does not include the null terminator for the string.

You can use this information to allocate a buffer large enough to hold the text. Use
GetSearchRecord to retrieve the actual record definition name.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnLength A pointer to a buffer for the record definition name length.

Return Value

PSMSG_OK, even if the system can’t locate the search record definition.

GetValue

Syntax

int stdcall PSMsgGetValue(PSMSGHANDLE /Context,
LPSTR IpszValue, int nSize);,

Description
Retrieves the value for the current entry in the output message field list.
After the Message Agent processes a message with ProcessMessage, it builds a list of the output

message fields defined in the Application Designer message definition. GetValue returns the
value of the current field in that list.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpszValue A pointer to a buffer to receive the value of the output
message field.

nSize The maximum number of characters to copy to the buffer,

including the null terminator. The value is truncated if it
is longer than the number of characters in nSize.

Return Value

Value Meaning
PSMSG OK Success.
PSMSG_ERROR General error.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-81

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

GetValueLength

Syntax
int stdcall PSMsgGetValueLength(PSMSGHANDLE /hContext,

LPINT IpnlLength);

Description

Determines the length of the value in the current output message field.

After the Message Agent processes a message with ProcessMessage, it builds a list of the output
message fields defined in the Application Designer message definition. GetValueLength returns
the length of the current value in that list. The length does not include the null terminator. You
can use this information to allocate a buffer large enough to hold the value.

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
IpnLength A pointer to a buffer for the length.
Return Value
Value Meaning
PSMSG OK Success.
PSMSG_ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

ProcessMessage

Syntax
int stdcall PSMsgProcessMessage(PSMSGHANDLE /i Context,

LPINT /pnReplyOption);

Description

Triggers message processing after all input message fields have been set.

10-82 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

After you have set all input message fields with SetField, ProcessMessage opens the panel, sets
the values for the input fields, saves the panel data, and prepares a list of output values (if any).

The message definition specifies a reply option of None, Reply, or Forward. The calling program
can respond to this option in any way that it appropriate. The expected response is: Reply means

to send a confirmation to the original sender; Forward means to forward the field values that were
actually set back to the sender.

If an error occurs, the Message Agent records the text of the error and enters an error state; see
GetErrorText for details.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpnReplyOption A pointer to a buffer for the message reply option. The

message reply option indicates how PeopleSoft expects
the calling program to respond to the originator of the

message.
Return Value
Value Meaning
PSMSG_OK Success.
PSMSG _ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.

PSMSG NOMATCHINGR | The Message Agent attempted to locate a record in
OWS Update/Display mode, but could not locate it.

Reply Option Value

Value Meaning

PSMSG_NOREPLY No action.

PSMSG _REPLY Send confirmation to the originator of the message.
PSMSG_FORWARD Return a copy of the new field values to the originator.

ProcessPromptTable
Syntax

int stdcall PSMsgProcessPromptTable(PSMSGHANDLE /Context, LPCSTR
IpcszRecordName, int nMaxRows);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-83

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Description
Retrieves values from a field’s edit table.
ProcessPromptTable retrieves values from the specified edit table. If you’ve set values in any of

the edit table fields using SetField, the Message Agent uses the values as search criteria, returning
only rows with matching values in those fields.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpcszRecordName A pointer to a buffer containing the name of the record
definition for the edit table. Do not include the PS_prefix
from the table name.

nMaxRows The maximum number of rows to return. If you specify

nMaxRows as 0, the Message Agent will use the row limit
for your system (300 by default).

Return Value

Value Meaning

PSMSG OK Success.

PSMSG NOMATCHINGR | No database rows matched the search criteria.
OWS

PSMSG NOTFOUND The search criteria are not valid.

PSMSG ERROR General error.

ProcessSearchDialog

Syntax
int stdcall PSMsgProcessSearchDialog(PSMSGHANDLE /hContext, int nMaxRows);

Description

Searches the PeopleSoft database using the values set in the search record fields.

After you have set search criteria values in all the necessary search record fields with SetField,
ProcessSearchDialog performs a database search for records matching the specified values. It is
the equivalent of clicking the OK button in a search dialog box in the online system.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

10-84 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

nMaxRows The maximum number of rows to return. If you specify
nMaxRows as 0, the Message Agent will return the row
limit for your system (300 by default).

Return Value

Value Meaning
PSMSG OK Success.
PSMSG_NOMATCHINGR | No database rows matched the search criteria.
OWS
PSMSG _NOTFOUND The search criteria are not valid.
PSMSG_ERROR General error.
SetField
Syntax
int stdcall PSMsgSetFieldPSMSGHANDLE hContext, LPCSTR IpcszFieldName, LPCSTR
IpcszValue);,
Description

Sets the value of a message field to be mapped into a panel buffer when the message is processed.

The message definition contains a mapping between message input fields and panel record fields.
To update a panel record field, your program passes message field names and values to the
Message Agent. The Message Agent buffers these values until you use ProcessMessage. For
more information about how the Message Agent applies these values, see ProcessMessage.

In addition to setting the value for a panel field, you can use SetField to constrain the values
returned by ProcessSearchDialog or ProcessPromptValue. These functions will only return rows
whose values match the partial value you set using SetField. In this use, the [pcszFieldName
parameter refers to the actual field name, not the field mapping name.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpcszFieldName The name of the field to set a value for. The field must be
designated as an input field in the message definition.

IpcszValue The value for the field.

Return Value

Value Meaning

PSMSG OK Success.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-85

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

10-86

PSMSG _ERROR General error.

PSMSG NOTLOADED Message Agent is not present.

PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg function.
PSMSG_NOTFOUND The requested field was not found.

SetOptions

Syntax
int stdcall PSMsgSetOptions(PSMSGHANDLE /s Context, int fOptions);

Description

Specifies whether to change from Add mode to Update/Display mode when the Message Agent
finds a matching level 0 record.

This function is not available using the OLE Automation interface.

When the Message Agent is adding records, it may find an existing record that matches the record
it’s trying to add. When this happens, the Message Agent can:

e Report an error and not add the record.
o Switch to Update/Display mode and update the existing record with the new data.

You use PSMSG_OPT CHANGEMODEADDUPDATE to specify which action the Message
Agent takes.

This option applies only to records at level 0 on the panel. The message definition specifies how
to handle matching records at other levels. Also, the option applies only to message definitions
that use Add mode.

The PSMSG_OPT_ NOGUI setting enables you to improve performance by suppressing the
creation of the Message Agent interface controls. Since the Message Agent typically runs on an
unattended server machine, it doesn’t need to display its controls.

Parameters
hContext The context handle assigned when this program connected
to the Message Agent.
fOptions One of the following keywords.
MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

PSMSG_CHANGEMODEADDUPDATE (1) tells the
Message Agent to switch to Update/Display mode if it
finds a matching level O record while in Add mode. If you
do not set this option, the Agent reports an error if it finds
a matching record.

PSMSG_OPT NOGUI (2) tells the Message Agent not to
create or display the user interface controls on the panels it
accesses. Setting this option overrides the setting from the

registry.

PSMSG _OPT NOFIELDEDITS (4) tells the Message
Agent not to perform any validation edits on the incoming
data.

PSMSG_OPT RESET (0) returns all options to their

defaults.
Return Value
Value Meaning
PSMSG OK Success.
PSMSG_ERROR General error.

PSMSG NOTLOADED Message Agent is not present.
PSMSG BADCONTEXT | Invalid PSMSGHANDLE passed to PSMsg.

StartMessage

Syntax
int stdcall PSMsgStartMessage(PSMSGHANDLE hContext,

LPCSTR IpcszActivityName, LPCSTR IpcszMessageDefn,

BOOL bOriginatorVerified);

Description

Notifies the Message Agent that the caller is ready to send and receive data for a defined
message.

The StartMessage function tells the Message Agent which Application Designer message
definition to use for mapping fields. You use this function before setting the input message fields
with SetField or processing the message with ProcessMessage. You can start multiple messages
during a single connection to a Message Agent.

If the Message Agent cannot open the message definition, the Message Agent goes into an error
state until the next message is specified.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL MESSAGE AGENT 10-87

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

When someone creates a message definition in Application Designer, they have the option of

requiring that the calling program verify the originator of the message, by means of an electronic
signature or some other method. If a message requires originator verification but there is no way
for the calling program to verify the originator, the Message Agent does not process the message.

Parameters

hContext The context handle assigned when this program connected
to the Message Agent.

IpcszActivityName Name of an activity created in the Application Designer.

IpcszMessageDefn Name of a message definition that is part of the specified
activity.

bOriginatorVerified Pass TRUE if your application has verified that the user

who originated the message really sent it. An example is

an email package that supports ‘signing’. Pass FALSE if
the verification failed, or if your application has no means
of verifying the originator.

Return Value

Value Meaning
PSMSG OK The Message Agent opened the message definition.
PSMSG _ERROR General error.

PSMSG NOTLOADED Message Agent is not present.

PSMSG BADCONTEXT Invalid PSMSGHANDLE passed to PSMsg
function.

PSMSG_NOTFOUND The requested message definition was not found.

10-88 MESSAGE AGENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 11

Using Database Agents and Message
Definitions

A database agent is a workflow program that performs a simple function: it runs a query against
your PeopleSoft database and passes the results to the Message Agent.

Using database agents in conjunction with the Process Scheduler, you can monitor your database
tables for conditions that should trigger business events. A database agent can run any query that
you can define with PeopleSoft Query. The WHERE clause of the query is the business rule
that’s looking for exception conditions.

The Message Agent is a application server Tuxedo service that takes data from external
applications and enters it onto a PeopleSoft panel. Essentially, it enables you to add automated
steps to your business processes: the Message Agent enters the data instead of a flesh-and-blood
user.

You create message definitions to tell the Message Agent how to apply the data it receives from
the external application. A message definition associates a form or other electronic document
with a PeopleSoft panel, setting up a correspondence between the fields in the electronic
document and the record fields that underlay the panel.

Together, databate agents and message definitions significantly extend the range of tasks you can
automate. For example, you could create a database agent that queries for overdue receivables,
and schedule it to run once a week. When the database agent finds overdue receivables, it passes
the data to the Message Agent, which enters the data into a page that in turn generates work list
entries for the appropriate AR clerks. All without user intervention.

@ For more information about developing and integrating Windows applications that use the
Message Agent, see Message Agent.

Understanding Database Agents

Although database agents perform a simple task, they play an important role in workflow. By
running predefined queries on a regular basis, they periodically check your PeopleSoft database
for data that is relevant to your business processes. By passing the data to the Message Agent,
they enable the system to respond automatically.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-1

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Monitoring the Database

Most of the routings in a business process are triggered by a user entering data onto a page. For
example, in a purchase order approval process, the system generates an approval request when a
user enters a new purchase order. This immediate response is part of the productivity gain that
PeopleSoft Workflow provides.

However, there are situations where you’d like to trigger routings based on some event that
doesn’t involve a user at all: the number of outstanding work items entries gets too high, a
contract lapses, the Process Scheduler completes a batch process, or whatever. Database agents
make such routings possible.

To trigger routings based on a non-user-initiated event, you use PeopleSoft Query to write a
query that checks the database for data that needs to be processed. Using the Process Scheduler,
you schedule a database agent to run the query on a regular schedule and kick off a workflow
when the condition is true. Once you’ve started the database agent, no user intervention is
required.

@ For an example of how we’ve used a database agent to monitor the PeopleSoft database, see
Case Study: Remote Report Delivery.

PeopleSoft

Application
Database and
Workflow

PeopleSoft Message
Application Definition
Database

Database Agent

Message Agent
Application Processor

3. PeopleSoft panel saves

data to the database, and

1. Database agent 2. Message Agent maps the application agent

executes a query the query results to a triggers routings.
PeopleSoft panel

Triggering Events through the Message Agent

Database agents do not trigger business events directly. They can’t. With PeopleSoft workflow,
you trigger business events by entering (and saving) data on a PeopleSoft page that has Workflow
PeopleCode associated with it. Database agents can’t enter data on pages; the only agents who
can are flesh-and-blood users and the Message Agent.

11-2 USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Database agents trigger business events indirectly, by passing the results of their queries to the
Message Agent. The Message Agent uses one of its message definitions to map the query results
to a PeopleSoft page. If the page has Workflow PeopleCode associated with it, a business
process is triggered when the Message Agent saves the page.

If a database agent query returns multiple rows of data—for example, if it finds several overdue
items—the agent passes the rows to one or more Message Agents, one row at a time. If you have
multiple Message Agents running, the database agent distributes the workload between them.
The Message Agent invokes the component that triggers the business event once for each row it
receives.

@ For more information about the Message Agent, see Creating Message Definitions and
Message Agent.

Creating a Batch of Online Processes

When you’re working with PeopleSoft applications, there are some activities that you perform
interactively (online processes) and some that you ask the system to perform behind the scenes
(batch processes). Batch processes provide three major benefits:

® You can schedule them to run at a later time, on a recurring schedule if necessary.

e They can process a large number of items all together, unlike online processes which typically
work on one item at a time.

* You can offload them to a server, so that time-consuming tasks don’t tie up your machine.

However, batch processes have one possible drawback: they connect to the database directly,
rather than working through the PeopleSoft pages. If you’re counting on the Page Processor to
validate incoming data or run some custom PeopleCode, you probably don’t want a batch process
updating the database behind its back. And since you trigger business events by saving data on a
page, batch processes can’t kick off a workflow.

You can use database agents to get around these limitations. Like online processes, database
agents enter data through PeopleSoft pages (using the Message Agent as an intermediary); like
batch processes, they can handle a batch of items. In essence, you can have an agent run a batch
of online processes.

For example, suppose you have a batch process that transfers assets between departments, and
you want to notify (via email) the managers of all affected departments. The batch process itself
can’t trigger an email routing, and to create the emails manually would be tedious and time-
consuming. Instead, after the batch process is complete, you could run a database agent that
queries for the transferred assets and sends an email to each manager. Or better still, you could
replace the batch process with a database agent that makes the asset transfer. Since the database
agent enters data through the normal asset transfer page, it can trigger an email routing as it
makes the transfer.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-3

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

@ One potential drawback to this approach may be performance. Most PeopleSoft batch

processing uses “set” SQL processing; that is, they use SQL statements that process large
volumes of data at once. Database agents process individual rows of data at a time.

Adding Database Agents to Your Workflow

11-4

The database agent program is simple, but fitting it into the workflow requires a good deal of
planning.

In order for a database agent to trigger a business event, it has to pass its data to the Message
Agent, and the Message Agent has to transfer that data to a page that has Workflow PeopleCode
associated with it. So, in addition to the database agent itself, you have to make sure you’ve
defined (1) a message definition that maps the query results to a page and (2) a page that triggers
the appropriate business event.

To add a database agent (overview)
1. Identify the data you want the database agent to retrieve.

Before you create a database agent, you need to figure out what you’re looking for. If you’re
creating an agent that monitors the database, you’re looking for data that tells you there’s
work to be done: overdue employee reviews, inventory shortages, overdue accounts
receivables.

2. Build a page that collects the information you need to start the process.

To trigger a business event, you need a page that can provide the system with the data it
needs to route a work item to the next step in the workflow. The page must also use a record
definition whose Workflow PeopleCode triggers the appropriate event. If you don’t already
have an appropriate page, you need to build one.

For more information on setting up pages so they trigger a business event, see Defining
Event Triggers.

3. Write a query that retrieves the necessary information from the database.

From step 1, you know what condition you’re looking for, and from step 2, you know what
data you’re going to need to trigger the business event. Use PeopleSoft Query to write a
query that checks for the condition and retrieves the necessary data.

For more information about Query see PeopleSoft Query.

USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

=,

To create a database agent query, your query profile must allow the creation of workflow
queries; see Setting up Query Security.

Most of the time, your query will retrieve only key information from the database. When the
Message Agent passes this key information to the page, the page retrieves the rest of the data
for the item identified by the key.

Note: In PeopleSoft Query, make sure you identify the query as a database agent query
using File, Properties, and that all headings in the query are specified as Text rather than
RFT Short or RFT Long.

4. Design and build a business process for handling the data from the agent.

What processing steps need to occur when the database agent finds what it’s looking for?
Use the Application Designer to define a business process and the events that make it up.

For more information see Building Workflow Maps and Adding Events and Routings.

Make sure to include an activity with a database agent icon in it. When you complete the
setup dialog boxes for the database agent icon, you define a message definition that tells the
Message Agent how to transfer the data from the query result set to the page.

For more information, see Message Agent.

5. Test the database agent.

Run the database agent program from the Windows Start menu or create an icon. Check to
see that you get the results you expect: that the database agent retrieved the correct data and
that the correct business process was triggered.

For more information about the command line see Running Database Agents.

6. Add the database agent to the Process Scheduler.

Once you’ve verified that you’re getting the correct results, add the database agent to the
Process Scheduler. You specify what pages users run the database agent from and how often
the system runs it.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-5

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

@ For more information, see Adding Database Agents to the Process Scheduler.

7. Run the database agent.

Go to the page that you assigned the database agent to and click the Run button to run it.

@ For more information, see Starting Database Agents.

Running Database Agents

During testing, you can run the database agent program from the Microsoft Windows File menu
or create a Windows icon for it. But when you go into production, you’ll use the Process
Scheduler to run the agent, even when you don’t need it to run multiple times. See the next
section to learn how to add agents to the Process Scheduler.

The command line to start a database agent is:
PSDBA -Aactivity name -MDmessage definition
[-TOPICtopic -T -Eerror threshold -L -kbindl=bind valuel

-kbind2=bind value2 ...]

You can use a hyphen or a forward slash (/) to introduce each parameter.

Don’t include spaces between the command-line switches and their arguments. The arguments
themselves can include spaces and don’t need to be in quotes unless they contain a hyphen or
slash. The order of the parameters doesn’t matter.

-Aactivity name The name of the Application Designer activity that this
database agent is part of.

-MDmessage_definition The name of the message definition that defines the query
and the page mapping for this database agent. The
message definition has to be part of the specified activity.

-TOPICtopic The topic name to use for communicating with the
Message Agent. If you include this option, the database
agent looks for (or starts, if you include the -L option) a
Message Agent with the specified topic name.

11-6 USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

If you don’t include this option, the database agent uses
the default topic name, PSMessagexx, where xx is a two-
digit number. It looks for any available Message Agents
with such topic names and distributes its result set among
them. If you include the -L option, the database agent
starts the number of instances specified using the Message
Agent Server setting in the Configuration Manager, and
distributes its result set among them.

-T Turns on the trace file option. When you include -T on
the command line, the database agent creates a trace file in
your Windows TEMP directory. Its filename is
DBA* . TMP, where * is a unique alphanumeric character.

-Eerror_threshold The number of errors the database agent tolerates before
aborting. The default value is 1. When you specify a
number higher than one, the trace file only contains the
text of the last error encountered.

-L Instructs the database agent to start the Message Agent
before executing its query, then close the Message Agent
when it’s done. If you don’t specify a topic name using
the -TOPIC parameter, the database agent starts the
number of instances you specified using the Message
Agent Server setting in the Configuration Manager; in this
situation, the Message Agents don’t close after the
database agent disconnects.

-kbind1=bind valuel A value for the first bind variable in the query that the
agent runs. If the query doesn’t have bind variables, don’t
include any -k arguments. If the query includes multiple
bind variables, you can include multiple -k arguments.

@ In addition to the parameters listed here, the PSDBA command line can include any of the
login parameters that are available for PeopleTools executables.

@ For more information see PeopleTools Command Line Parameters.

Adding Database Agents to the Process Scheduler

The steps for scheduling a database agent are the same as those for any Process Scheduler
process.

o Define a process type definition. The process type definition specifies the general parameters

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-7

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

that all database agents share.

PeopleSoft ships with the process types for database agents already defined, so you can skip
step 1. We recommend that you always include the /L option in the process type definitions
for database agents.

o Create a process definition. When you add a database agent to the Process Scheduler, you
provide the unique information about this agent. Most importantly, you specify what activity
name and message definition define the database agent and how often the Process Scheduler
runs it.

@ For more information about any of the Process Scheduler options, see Process Scheduler
Development.

@ The default process type definitions for database agents use the %INSTANCE% variable for
the -TOPIC parameter. This setting ensures that each database agent starts its own instance
of the Message Agent. If you want to take advantage of the Message Agent Server
functionality—where the database agent starts multiple instances of the Message Agent and
distributes its work among them—remove the -TOPIC setting from the process type
definitions.

Database agents can only run on machines running Windows 95 or Windows NT. That’s
because it needs to communicate with the Message Agent and PeopleSoft applications.

To add a database agent to the Process Scheduler
1. Select PeopleTools, Process Scheduler Manager, Use, Process Definitions.

2. Search for an existing process or add a new one.

11-8 USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Use the standard search or add method to enter the Process Type and Name. Be sure the
Process Type is Database Agent.

The Process Definitions page appears.

{ Process Definition \'. Process Definition Cptions Cwerride Options Destination »

Process Type: Datahase Agent
Hame: ROUTEPR
“Description: [Route Purchase Requests ¥ apI aware

¥ Log client request
"' SOR Runtime

Long Description: |This datahase agentis used inthe Purchase Request ;I
example. It routes approved purchase requests to
buyers.

-
*Priority: IMedium vl
& save (1 Raturn to Search Hext tab e add

Praocess Definition | Pracess Definition Options | Override Options | Destination | Page Transfer | Maotification

Process Definitions page

In this component, you tell the Process Scheduler where, how, and how often to run the
database agent.

3. Enter a short description of the database agent in the Description text box and a more
detailed description in the Long Description text box.

4. Select the Log client request and API Aware check boxes.

These check boxes tell the Process Scheduler that the database agent program can and will
update the Process Monitor status tables.

5. In the Priority list box, specify what priority the Process Scheduler should give to this
process.

The priority determines the order in which the Process Scheduler runs processes when more
than one is scheduled for the same time.

6. Move to the Process Definition Options page.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-9

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

11-10

7.

JANUARY 2001

Process Type: Database Agent

Name: ROUTEPR
*Run Location: I Both A I
Server Hame: I

f Process Definition)’ Process Definition Cptions ‘(Cwerride Options Y Destination \IE)

Recurrence Hame: |

B save) [QRetumto Search | (B Previous tab | Next tab |

[RUN_DBAGENT QJ [Delete | [TLSALL Q| [Delete |
Add Add

Process Definition | Process Definition Options | Override Options | Destination | Page Transfer | Motification

[Fksdd |

Process Definition Options page

In the Run Location field, select Server.

If you want this database agent to always run on the same server, enter the Server Name; if
you don’t care which server it runs on, leave the Server Name blank.

In a production environment, you’ll usually want to have a server dedicated to running
database agents.

In the Recurrence Name list box, specify how often you want the Process Scheduler to run

this database agent.

If none of the available values give you the option you want, don’t worry. You’ll be able to
add a new recurrence name when you run the database agent for the first time.

In the Component box, select the components containing the pages from which user will be

able to run the database agent.

If you don’t have a special page in mind (and the query doesn’t include any bind variables),
you can use RUN_DBAGENT from the Workflow Administrator.

For more information about running database agents from the selected page, see Starting
Database Agents.

To add additional pages, click Add to add rows in the Component box.

USING DATABASE AGENTS AND MESSAGE DEFINITIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

10. In the Process Security Groups box, select the security groups that have the right to run this
database agent.

If there’s more than one security group, click Add to add additional groups.

@ For more information about process security groups, see Understanding PeopleSoft Security.

11. Move to the next page in this component.

The Override Options page appears.

Frocess Definition Frocess Definition Options Cwarride Cptions Destination »

Process Type: Datahase Agent
Narne: ROUTEFR
*Parameter List: |Append j |—E1 00 jA Route To Buyer IMD Route Purchase Request

*Command Line: | Nane I [

Working Directory:| Nane I [

& save 21 Retum to Sealch) Previous tab] Hext tab) ErAdd

FProcess Definition | Process Definition Options | Owerride Options | Destination | Page Transfer | Motification

Override Options page

This page is where you specify the name of the query the database agent runs. If the query
includes runtime bind variables, you provide values for them too.

12. Select the Append option to add parameters to the Parameter List.
13. Enter these command line parameters in the right text box:

-Aactivity name -MDmessage definition [-T -Eerror threshold

-kbindl=bind valuel ...]

@ For more information about these command line parameters, see Running Database Agents.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-11

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

The activity name and message definition name are required for all database agents. The
bind variable arguments are required if the specified query has bind variables. The bind
variable values must be either constants or fields from the run control record.

14. Save your work.

You don’t need to add anything to the remaining pages in this component.

Starting Database Agents

Adding a database agent to the Process Scheduler makes it available, but it doesn’t actually
schedule the agent to run. You start a database agent just like you start other scheduled
processes, using the Process Scheduler Request dialog box.

Assigning Database Agents to Components

When you add a database agent (or any other scheduled process, for that matter) to the Process
Scheduler, you specify which component users can start it from. When users select Run from that
component, the Process Scheduler Request dialog box lists the database agent as one of the
processes they can request.

To schedule a process, you pass the Process Scheduler a run control. So, the component you
assign the database agent to must be one that creates run control records.

@ For more information about run controls, see Process Scheduler.

If the query that your database agent runs doesn’t include any runtime bind variables, you can
assign the database agent to an existing component that creates run controls. The system gets all
the run control information it needs from the Process Scheduler Request dialog box. We
recommend that you assign these database agents to the RUN DBAGENT component, which
appears in the Workflow Administrator under the menu item Process, Database Agent.

If the query does include runtime bind variables, you need to create a run control record
definition that includes the necessary fields, build a page on which the user can enter values for
the fields, and assign the database agent to this page. For example, if the database agent queries
for all employees in a specified department, you’ll need a run control record that includes a
DEPTID field and a page with an entry field for DEPTID.

To schedule a database agent to run

1. Navigate to the component that you assigned the database agent to.

For example, if you assigned it to the RUN_DBAGENT component, select PeopleTools,
Workflow Administrator, Process, Database Agent.

2. Search for an existing Run Control ID or add a new one.

11-12 USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Use the standard search or add method to enter your Message ID and access the first page in
the component.

3. If'the database agent query includes bind variables, enter values for them on the page that
appears.

If you’re on the Database Agent page in the Workflow Administrator, there are no editable
controls.

4. Click in the toolbar or select File, Run.

This option displays the Process Scheduler Request dialog box so that you can specify
when, where, and how often to run the database agent. For details about the Process
Scheduler Request dialog box, see Process Scheduler.

Case Study: Remote Report Delivery

This section describes one of the database agents we deliver with PeopleSoft applications. We
hope that giving examples of how we’ve used a database agent will help you implement your
own.

The Remote Report Delivery feature enables users to request reports by means of an email
message or form, and to receive the report back via email. The system uses a database agent to
check for completed reports that it needs to deliver back to the requester.

First, a quick overview of how the feature works. A user sends a specially formatted message to
a mailbox that the PeopleSoft system is monitoring. Using the Message Agent, the system adds
the report request to the Process Scheduler. The Process Scheduler prints the report and places it
in a particular directory. A database agent queries for completed reports, and when it finds some,
sends an email message to the requester with the report attached.

The Query

The Remote Report Delivery database agent runs the query [DBAG] Report Delivery. The SQL
for this query is:

SELECT A.REPORT INSTANCE
FROM PS RPT DLVRY VW A
WHERE A.RPT DELIVERY STAT = ‘P’

RPT DLVRY_VW is a view that includes the completed reports from the report request table
(RPT_RQST). This query selects the Instance ID for all reports that haven’t been delivered yet
(whose status is ‘P’ for “Pending”).

The Message Definition

The message definition for the [DBAG] Report Delivery query maps the Instance ID to the
REPORT_ DELIVERY component in the Workflow Administrator. This component has fields
for all the details about the report request: who requested it, what run control it used, and so on.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-13

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

The message definition specifies that the Message Agent accesses the component in
Update/Display mode. Just as it would if a user selected Update/Display mode, the system
presents a search dialog box. The Message Agent maps the Instance ID to the search key field,
and the system retrieves the report request details and displays the component. The Message
Agent saves the component, which causes the system to run all the PeopleCode associated with
the component.

The Component

The sole purpose of the REPORT_DELIVERY component is to retrieve report details and trigger
an email back to the report requester. The record definitions that underlay this component
include PeopleCode functions that perform two crucial tasks:

e The RPT RQST VW record definition changes the report delivery status from ‘P’ (Pending)
to ‘D’ (Delivered)

e The RPT RQST WRK record definition triggers the Report Delivery business event.

For the Message Agent to be able to use the component, we had to assign it to a menu using the
Application Designer. We added it to the Workflow Administrator. However, since only the
Message Agent uses this component, we didn’t give users access to the component in Security
Administrator.

Troubleshooting the Database Agent

The Database Agent, a Windows application, has not changed much in the new Message Agent
architecture. Its purpose is to retrieve the results of a query and issue commands via the Message
Agent to insert/update data into PeopleSoft components. The only requirement we must impose
is that the Database Agent has to run in three-tier mode. That is, the command line generated to
launch the Database Agent, whether on a PeopleSoft Windows client or an NT Process Scheduler
server, must have signon parameters that will allow you to connect to an Application Server. We
have modified the Process Type definitions for the Database Agent to reflect that rule. If you
attempt to launch a Database Agent process in two-tier mode through the Process Scheduler, your
process will not run. /CX and /TOPIC parameters are now required unlike previous versions of
PeopleTools.

In addition to SQL and PeopleCode traces, you can view the history of a Database Agent process
in another trace file. To invoke the Database Agent trace, you’ll need to append a /T parameter to
the command line. It will create a DBA*.tmp file on the client’s % TEMP% directory. Within it,
you can see which Activity, Message Definition, Query and Application Server are being used.
You’ll see the results of the query listed in the trace file and each individual Message Agent
transaction being performed.

/* results from query */
JOB_REQ#=000000
Job Code=1051
Department=10300
Position=00000008

/* results from performing the Message Agent transaction */

11-14 USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

[

11.42.28 : StartMessage
JOB_REQ#=000000
Job Code=G061
Department=10200
Position=00000008

: ProcessMessage

The above shows an example of a successful transaction. If the transaction had failed, the
ProcessMessage line would not appear and be replaced by an error message. The /E parameter
will determine how many of those errors the Database Agent can encounter before stopping the
process altogether.

If you attempt to launch a Database Agent process in two-tier mode, the trace file will typically
have a comment in there saying that it’s missing a value for the /TOPIC parameter. Most errors
will generate a message “Data buffer error, verify query field mapping” to appear in your Process
Monitor. This message implies that at least one of the Message Agent transactions was not
successfully processed. To isolate the problem, you may want to get your hands on a utility
program, like the Message Test program, that will allow you to feed the same offending data
values over and over again to the Message Agent to help troubleshoot the problem.

For more information see the Troubleshooting the Message Agent.

Understanding the Message Agent and Message Definitions

Message Agent

The Message Agent is a Tuxedo service, residing on the application server, that accepts messages
from Windows applications. The messages allow third-party applications to enter data into, and
get data out of, PeopleSoft applications. PeopleSoft performs all the same edits and security
checks it always does, including running any PeopleCode associated with the page. So, if the
page has Workflow PeopleCode associated with it, the Message Agent can trigger a business
event.

The Message Agent extends the reach of your business processes beyond the users who use
PeopleSoft applications. Rather than typing data directly into a PeopleSoft page, people
throughout the organization can enter the data using software they’re familiar with.

The primary use of the Message Agent is entering data into the PeopleSoft database.
However, you can also develop applications that use the Message Agent to retrieve data
Jfirom the PeopleSoft database. For more information see Message Agent.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-15

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Message Definitions

To allow other programs to be able to “fill in” a PeopleSoft page, you create a message definition
in the Application Designer. The definition creates a mapping between the fields passed to the
Message Agent and the fields on a PeopleSoft page. It specifies:

¢ A unique name. When a Windows application sends a message to a Message Agent, it tells
the Agent which message definition to use.

e The page to enter data into, the action mode, and the search record definition. When a
Message Agent starts using a message definition, it navigates to the corresponding PeopleSoft
page. It gets to the page just as a user would: by selecting the page name from a menu,
selecting an action mode from the cascading menu, and entering key data into a search dialog
box.

e Which data fields to map to which page fields. The Message Agent gets the values from
specified fields and enters them into the corresponding fields on the PeopleSoft page. The
Message Agent can also copy values from the page back to the external application, so the
application can verify the results or pass them on to the user.

e How to process fields controlled by scrolls. A page that has scroll bars can include multiple
rows of data from the database. The message definition specifies whether the Message Agent
can add rows to the scroll, update existing rows, or delete rows.

e How to respond to the user.
Creating Message Definitions

The Message Agent accepts data from a variety of sources, such as electronic forms software,
interactive voice response (IVR) systems, or World Wide Web applications. The toolbar for
creating activities in Application Designer includes several icons that represent these application

types.

To create a message definition, you select the icon that best represents the external application the
Message Agent is getting data from. You add the icon to the activity the external application is
part of, then create a mapping between the fields of data provided by the external application and
fields in PeopleSoft record definitions.

You create one message definition for each form, query, or electronic document type you want
the Message Agent to process.

To create a message definition

1. Open the activity.

The activity toolbar appears. Several of the icons represent types of external applications that
can send data to the Message Agent.

11-16 USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Description

Inbound form

Interactive Voice Response.

Web link.

Kiosk

EDI

Other external application.

Database agent.

NVision

15 1= o o e

@ For information about opening or creating activities, see Building Workflow Maps.

2. Add to the map the icon corresponding to the source of the data.
Click the icon in the toolbar, then click on the map where you want it to appear.
3. Right-click the icon on the map and select Component Properties.

The Message Agent Definition dialog box appears.

Mezzage Agent Definition

Harme: IF'Iace Requistion E-Form Aftributes. .. |
lcon Descr: Flace Requistion Lewvel Mapping... |
E-Form

Field t apping... |

Descriptior: — §2n end user may place a requistion remately through an 1=
electronic farm.

Cancel |

Message Agent Definition dialog box

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-17

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

11-18

4. Enter a name and description.

JANUARY 2001

The text you enter in the Name text box is the name that the external application uses to
identify this message definition. It must be unique.

By default, the name also appears as the display text under the icon on the map. If you want
different text to display under the icon, enter it in the Icon Descr text box. You can include
line breaks in the text by pressing the ENTER key; these line breaks will appear in the icon

display text.

You can enter a more detailed explanation of the message definition in the Description text
box. We recommend that you describe what application uses this message definition and

what it accomplishes.

5. Click the Attributes button.

The Message Attributes dialog box appears.

Meszzage Attributes

— Target Panel Group

tenu MName: [PURCHASE_REQUEST
Ear Mame: IUSE
Item MName: [CREATE_PURCHASE_REQUEST

Action Mame: I&Add

Search Record: IWFEXPH_H DR

Led Led Lef Lo Le]

Cancel |

Message Attributes dialog box

If you’re creating a message definition for electronic forms, you’ll see the Message Agent
Form Attributes dialog box instead of the Message Attributes dialog box.

Mone Reply Forward

coC
Lo

Meszsage Agent Form Attributes

— Target FPanel Group — Forms Attibutes
MenuName: [PURCHASE_REQUEST rr
Ear Mame: USE -

I S ek ©
Item Hame: [CREATE_PURCHASE_REQUEST =] e
Action Mame: I&Add j Wi E0es
Search Fecond: IWFEXF’H_HDH j ™ “erify Originatar 1d
oK I Cancel |

Message Agent Form Attributes dialog box

USING DATABASE AGENTS AND MESSAGE DEFINITIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

You use either of these dialog boxes to specify which page the Message Agent enters data
into. The Message Agent Form Attributes dialog box also contains some settings that are
relevant for forms only.

6. Choose the target component.

Use the first three list boxes in the Target Component box to identify the page the Message
Agent should enter data into. In the Action Name list box, specify what type of action the
Message Agent needs to perform on the database; the list includes only those actions that are
available for the selected page.

7. Choose the search record for the component.

In the Search Record list box, select the record definition to use for locating the appropriate
record. The Message Agent uses this record definition rather than the standard search record
or add mode search record specified for the page when you created the component. The
record definition you select must include all the level 0 key fields for the selected page.

@ For more information about associating search records with components, see Creating
Component Definitions.

8. Specify a query to run (database agents only).

A database agent runs a query against your PeopleSoft database and passes the results to the
Message Agent. In the Query list box, select the query that the database agent runs.

@ For more information about database agents, see Adding Database Agents to Your
Workflow.

9. Specify a reply method (electronic forms only).

The reply method specifies what kind of feedback you want to provide to users who send
forms to the Message Agent. The options are:

None The user doesn’t get any acknowledgment.

Reply The user gets an email message confirming the processing
of the form or giving the text of any error message.

Forward The user gets a copy of the form returned to him or her,
filled in with the field values that the Message Agent set.
If there was an error, the Message Agent returns the field
values as the user entered them.

You can specify a different reply method for when the Message Agent successfully maps the
form fields to the page (When OK) and when an error occurs (When Error).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-19

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

=,

11-20

Some forms products, such as Lotus Notes, have an electronic signature feature that enables
it to verify the identity of a person who mails a form. If you select the Verify Originator Id
option, the Message Agent only accepts forms that were signed by a verified user.

10.

11.

12.

USING DATABASE AGENTS AND MESSAGE DEFINITIONS

Click the OK button to close the dialog box.
Click the Level Mapping button.

The Map Level Options dialog box appears.

Map Level Options

—Record Hierarchy
— If Fiow Found
@ |pdate " Skip ¢ Replace

APPR_WA1_
APPR_VAZ_WRE
APPR_INST_LOG

APPR_RULE_Ww/
APPR_RULE_ROLE
APPR_RULE_AMT
APPR_RULE_OTY
APPR_RULE_FIELD

ROLEUSER_Ww/

wiF_MESSAGE_CAT

WIORELIST Yw'2 ﬂ_ I Output all oecurences

= Delete Ermor

r If Fiow Mot Found
& |nsert © Skip ¢ Emor

™ Delete Remaining Rows

oK | Cancel |

Map Level Options dialog box

You use this dialog box to specify how the Message Agent handles fields controlled by a
scroll bar; that is, fields at levels higher than 0. The Record Hierarchy box lists the record
definitions associated with scroll bars in the page you are mapping to.

If the page doesn’t have any scroll bars, the list is empty. However, you still need to select
one of the options in the If Row Found and If Row Not Found boxes.

Set the map level options.

You can set different map level options for each scroll on the page. Highlight a record
definition in the Record Hierarchy box before setting the options. If the box lists more than
one record definition, set the options for each one in turn.

When the Message Agent is ready to map the key fields for a scroll, it checks whether a row
with those key values already exists. If one does, the Message Agent takes the action you
select in the If Row Found box. If no such row exists, it takes the action you select in the If
Row Not Found box. The table below describes the available actions.

For level 0 fields, the Message Agent adds or updates records based on the Action Name you
selected for the page.

Option Action

Update Replace the values in the existing row with the values from the
external application. Leave the values of any unmapped fields

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

13.

14.

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Option Action

unchanged.

Delete Remove the existing row and don’t insert a new one.

Skip Discard the values from the external application, and don’t do
anything to the existing row (if there is one).

Error Report an error, and don’t do anything to the existing row (if there
is one).

Replace | Delete the existing row and insert a new row using the values from
the external application. Replace differs from Update in how it
handles fields for which the external application doesn’t provide
values. Update leaves the fields with their values from the
existing row; Replace returns them to their default values.

Insert Add a row to the scroll using the values from the form or query.

The external application must provide values for all required
fields.

Click the Delete Remaining Rows check box if you want the rows that the Message Agent
maps to replace any existing rows, rather than adding to them.

When this check box is selected, the Message Agent removes any rows in the scroll that the
external application does not provide values for. If the check box is not selected, the
Message Agent adds or updates the rows you provide values for and leaves other rows in the
scroll unchanged.

Set the Output all occurrences option.

The Output all occurrences check box specifies how the Message Agent handles output
fields that are inside a scroll.

Output fields are record fields whose value the Message Agent copies from the record zo the
corresponding form field. If an output field is inside a scroll, there may be multiple values
for that field—one for each row in the scroll. If you select the Output all occurrences check
box, the Message Agent makes all the values for the field available; if you don’t select it, the
Message Agent returns only the value from the first row.

An example of this would be to return all of the rows of training classes that a person is
enrolled in.

@ This option is useful only if the external application is capable of processing multiple rows,
and is available for level 1 scrolls only.

@ For information on writing an external application that retrieves multiple rows of output
data, see Message Agent.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-21

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

15. Click the OK button to close the dialog box.
16. Click the Field Mapping button.

The Message Agent Field Map dialog box appears.

Mezzage Agent Field Map
w Input
comments Copy |Input
deliver_to Copy |lnput [WFEXPR_HDR WFExPR_DELIVER.
deptid Copy |lnput |[WFEXPR_HDR.DEPTID
From Copy |lnput [WFEXPR_HDR EMaAILID
item_id Copy [Input |'WFEXPR_LN.WFEXPF_ITEM
quantity Copy |Imput |[WFEXPR_LN.QUANTITY Add.. |
Kev [request_id Copy (Input [WFEXPR_HDR.\WFEXPR_REQUEST
Chatge. .. |
Delete... |
ak. I Cancel

Message Agent Field Map dialog box

This “map” shows the relationship between the fields from the external program and
PeopleSoft record fields.

When you first open the dialog box for a new message definition, the list is blank unless
you’re creating the message definition for a database agent. When you’re mapping a
database agent query, the Message Map displays the column headings from PeopleSoft
Query. It displays the headings rather than the field names because a query can include fields
with the same name (from different record definitions), but the column headings should let
you differentiate them.

@ Note: The order in which you map fields is critical. You have to map values into the
PeopleSoft record fields in a specific order:
a) You must map the key fields before any other fields at the same level.
b) If the page you’re mapping to has multiple levels, you must map the fields from level
0 before level 1, level 1 before level 2, and so on.

17. Click the Add button to add a new field mapping.

11-22 USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Or, to modify an existing field mapping, double-click it in the Message Map, or highlight it
and click the Change button.

The Map Field dialog box appears.

Map Field
Field M ame: || j
Map Mode: ICop}l vl Map When: Ilnput vl
—Wal
ahe Record Field
% RecField |[S=arch Record) -
FEHEE N FEXPR_HDR

APPR_FIELDS_WFK,
WFEXPR_LN_WREK
ROLEXLATOPR
WFEXPR_LN
“WFERPR_ITEM
APPR_VAL WRE.
APPE_VAT_WRE.
APPR_VAZWRE,
APPR_INST_LOG
APPR_RULE_Ww <l

P nln IR n T a1 R

ok I Cancel

Map Field dialog box

You use the Map Field dialog box to specify the relationship between a field of data from the
external program and a PeopleSoft record field.

18. Specify the field to map.

If you selected a field name in the Message Map dialog box, the Field Name list box should
show the field. If you’re adding a new field to the map, type its name in the box or select it
from the list.

19. Set a value for the field.

The Record box lists the record definitions that are available for mapping, namely the
(Search Record) and the record definitions associated with the component for this message
definition. Highlight the record that contains the field you want; the record’s fields appear in
the Fields list box. Highlight the one you want to link to the selected external field.

20. Set the Map Mode and Map When options.

@ Most of the time you’ll leave the Map Mode and Map When list boxes with their default
values: Copy and Input respectively. The other values are useful only if the external
application accepts output values from the Message Agent.

Although the primary purpose of a message definition is to add data to PeopleSoft, the
Message Agent can actually establish two-way communication with the external application.
After the Agent transfers data to the page, it builds a list of output fields and makes their
values available to the external application.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-23

PEoPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

11-24

So, when you map each field, you’ll identify it as an input field, output field, or both:

e An input field is a form field whose value the Message Agent copies from the form to the
corresponding record field.

e An output field is a record field whose value the Message Agent copies from the record to the
corresponding form field after mapping all input fields.

In the Map When list box, specify whether the Message Agent should copy the value from
the form field to the record field (Input), from the record field zo the form field (Output), or
Both.

You would use Both when the form is multi-purpose for input and output functions.

For more information about establishing two-way communication with an external
application, see Message Agent.

The value in the Map Mode list box applies only to output fields. It tells the system whether
to copy the assigned value directly into the output field or to replace the assigned value with
the corresponding value from the Translate Table. For example, suppose you associate an
Employment Status field with the record field PERSONAL DATA.STATUS. If the
PERSONAL DATA. STATUS field holds an abbreviation that translates to a value on the
Translate Table, you can tell the system to fill in the output field with the abbreviation
(Copy) or with the corresponding Translate Table value (Xlat-S for the short form or Xlat-L
for the long form).

The Xlat-S and Xlat-L options only appear if the selected record field has Translate Table
values associated with it.

21. Click the OK button to add the field association to the Message Map.
The record field you selected appears in the Value column.
22. Highlight the next field you want to map, or click the Add button, and repeat steps 18 to 21.

Creating a Valid Message Map

To create a valid message map, you must map an input field to every required field in the
record definitions, including all key fields. Furthermore, each external application that uses
this message definition must provide values for those fields.

The Message Agent can’t map data into fields that have default processing associated with
them. For example, it can’t map into a Request ID field that automatically fills in the next
available Request ID. If the search dialog box for a page has default processing, skip that
field in the message map.

USING DATABASE AGENTS AND MESSAGE DEFINITIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

Handling File Attachments

The Message Agent can’t transfer a file attachment to a PeopleSoft page field. If an
incoming form has a file attachment, the program that passes it to the Message Agent has to
handle it somehow. For example, the program that we deliver for Lotus Notes integration,
PSNOTES.EXE, detaches any attached file and places it in the directory specified by the
DetachDir setting in the Microsoft Windows registry. It gives the file a unique name using a
consecutive numbering scheme.

When PSNOTES.EXE detaches a file attachment, it writes the name and location of the file
in the FileName and FilePath fields. If you want to store the filename and location in the
PeopleSoft database, map these two fields to record fields.

Mapping to Pages with Scrolls

If the page for this message definition includes a level 1 scroll, a single transaction can
provide values for more than one row in the scroll. To provide values for more than one row,
map more than one field to the same level 1 record field. For example, a form for specifying
beneficiaries could have fields named BENEFIC1 and BENEFIC2, both of which you would
map to the level 1 record field BENEFICIARY. When the Message Agent maps these fields,
it will create two rows in the scroll, one for each value in the form.

@ You can provide values for multiple rows only for level 1 scrolls. For level 2 and level 3
scrolls, you must process one row at a time.

@ For more information about managing multiple scroll levels with the Message Agent, see
Message Agent.

1.

2.

Click the OK button in both dialog boxes to close them.
Connect the icon to the business event or step that follows it in the activity.

If the data that the Message Agent enters on the page triggers a business event, add the
business event icon to the activity and draw a connecting arrow from the incoming data icon
to the event icon.

If the next step in the activity is another page, connect the incoming data icon to the
following step icon.

For more information about adding icons to activities and connecting icons within activities,
see Building Workflow Maps.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING DATABASE AGENTS AND MESSAGE DEFINITIONS 11-25

CHAPTER 12

Outgoing Forms API

The PeopleSoft Application Designer enables application developers to implement routings,
which transfer data from one step in a business process to another. One of the available types of
routings is a forms routing. With a forms routing, the system takes data from a PeopleSoft panel
the user is working on, enters it onto a third-party form, and mails the completed form to
designated users by means of the forms product’s mail capabilities.

This chapter describes the programming requirements for integrating an electronic forms package
with PeopleSoft applications so that it can accept forms routings. It includes complete reference
material for the PeopleSoft Forms API.

@ You can also integrate electronic forms software so that users can send forms to PeopleSoft
applications using the Message Agent.

@ For more information about the Message Agent, see the Message Agent documentation.

Understanding Forms Routings
To design a forms routing, a developer maps the fields in a PeopleSoft panel to the fields in the

form it wants to generate. When a user triggers the forms routing, the system copies the data
from the panel fields to the corresponding form fields, then sends the form.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OUTGOING FORMS API 12-1

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK

12-2

JANUARY 2001

Personnel Adminiziration

Elarl File Edil Hanel MPiocess lable View Help
HIEI#IXI]
Scka— ez Jiman ID: 00

Humnes Mllioee and Talophrs

Stuel [0 Einhesh iz I
Laly |
Slali: ||.|r- A |||m.r: ETET) \\

Lnundry: [114e |# Ialrd Skirs
H haninar
Address Change
Sl mew cho R SR Sl 1FF5
%&' Mew Addrags 15
\:201 Kanduzkeag 51,
1Fl.lr||ir|wr|:;kr| R
MC,
M)456E 3434,
il 4 ST
ArzaCade &Frone “®)76-2047 ,
Mapping an Outgoing Form
PSFORMS.DLL

PeopleSoft applications communicate with the forms software by means of a DLL named
PSFORMS.DLL. To integrate a forms product with PeopleSoft applications, you create a
version of PSFORMS.DLL that supports the function calls the PeopleSoft application uses to
generate and send forms.

Communicating with the Forms Software

- \T1|/|

The function descriptions in this section describe the function calls that PeopleSoft applications
make to PSFORMS.DLL and the responses it expects to the calls.

Since you’ll want PSFORMS.DLL to work at any installation, you don’t want to build in any
site-specific information, like the name of the forms server and database that the PeopleSoft
applications accesses. For site-specific information, you can add entries to the Microsoft
Windows registry. PSFORMS.DLL can read the entries to identify the forms server, database,
and any other site-specific information it needs.

OUTGOING FORMS API

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

@ We concentrate on the right side of the diagram above. PeopleSoft 7 supports any VIM- or

MAPI-compliant email package. No further development is necessary.

Forms API

Operations by Functional Category

Session Level Operations

PsfGetAPIInfo

PsfOpenSession

PsfCloseSession

Query Operations
PsfGetFormCount
PsfGetFormList
PsfGetFieldCount
PsfGetFieldList

PsfGetLastError

Send Operation

PsfSendForm

Provides the name of forms product this DLL
supports and returns the version number of the API
it implements.

Connects the PeopleSoft system to the forms
interface DLL using a specified login name and
password.

Closes a session.

Counts the available forms.

Lists the available forms.

Counts the fields on a form.

Provides a list of the fields on a form.

Gets the error message text associated with an error
code.

Sends a completed form through the mail system.

PsfCloseSession

Syntax

int FAR PASCAL PsfCloseSession (HSESSION hSession) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

OUTGOING FORMS API

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Description

Closes a session.

Parameters

hSession The session handle assigned by PsfOpenSession when
PeopleSoft connected to PSFORMS.DLL.

Return Values

Value Code | Meaning
PSF_OK 0 The session was successfully closed.
PSF_NOSESS 4 hsession doesn’t identify a current session.

PsfGetAPlInfo

Syntax
int FAR PASCAL PsfGetAPIInfo (LPPSFDEFNKEY IpDefKey) ;
Description

Provides the name of forms product this DLL supports and returns the API version.

PeopleSoft uses the same programming interface for all forms products. It uses the
PsGetAPIInfo function to get the product name of the forms software your version of
PSFORMS.DLL supports.

PsfGetAPIInfo puts the product name as a string in the name field of the structure.

Parameters

IpDefKey A pointer to a structure containing a character array for
the function to write to. The form of the structure is:

typedef struct

{
char name[PSF_FIELDNAMELEN + 1];
} PSFDEFNKEY;

Return Value

An integer identifying the version of this API the DLL implements. The value is set in the
PeopleSoft forms interface header file.

12-4 OUTGOING FORMS API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

PsfGetFieldCount

Syntax
int FAR PASCAL PsfGetFieldCount (HSESSION hSession, LPPSFFORMDEFN IpFormData) ;
Description
Counts the fields on a form.
PsfGetFieldCount gives the number of fields in a form by entering an integer in the wNumPFields

field of the [pFormData structure. The name of the desired form is in the structure’s formName
field.

The PeopleSoft system uses the field count to allocate an array large enough to hold all the
fields. It passes a pointer to this array to PsfGetFieldList.

Parameters
hSession The session handle assigned by PsfOpenSession.
IpFormData A pointer to a structure that contains form information.

The form of the structure is:
typedef struct

{

PSFDEFNKEY formName; // Name of the form
WORD wNumFields; // Number of fields
char cSep; // Separator character

LPPSFFIELDVAL TpFields;// Pointer to field array
} PSFFORMDEFN;

Return Values

Value Code | Meaning

PSF OK 0 The function executed successfully.
PSF NOMAIL 2 Mail system failure.

PSF NOFORM 3 The specified form is not accessible.
PSF NODB 5 The forms database is not accessible.

PsfGetFieldList

Syntax

int FAR PASCAL PsfGetFieldList (HSESSION hSession, LPPFSFORMDEFN IpFormData) ;
Description

Provides a list of the fields on a form.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OUTGOING FORMS API 12-5

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

12-6

PsfGetFieldList provides the PeopleSoft application with information about the fields in a form.
The name of the desired form is in the structure’s formName field. The structure’s lpFields field
points to the array of structures that PsfGetFieldList updates. Each item in the array has this
structure:

typedef struct

{

char szF1dName[PSF_FORMNAMELEN + 1]; // Field name

WORD wF1dSize; // Field size

LPSTR TpszStrval; // Field value

} PSFFIELDVAL;

PsfGetFieldList enters data into the szFldName and wF1dSize fields. The PeopleSoft system will
provide the field values before passing the structure to PsfSendForm.

PsfGetFieldList includes all fields required to send forms using the forms product, regardless of
whether they appear on the user’s form. For example, if a user’s form contains a TO field but no
CC field, PstGetFieldList includes both fields since a CC field is required to transmit a mail
message. If the forms mail system supports and requires attributes such as sensitivity, return
receipt, and priority, PsfGetFieldList also returns these items as fields.

Parameters
hSession The session handle assigned by PsfOpenSession when
PeopleSoft connected to PSFORMS.DLL.
IpFormData A pointer to a structure that contains form information.
The form is:
typedef struct
{
PSFDEFNKEY formName; // Name of the form
WORD wNumFields; // Number of fields
char cSep; // Separator
character

LPPSFFIELDVAL TpFields; // Pointer to array
} PSFFORMDEFN;

Return Values

Value Code | Meaning
PSF OK 0 The function executed successfully.
PSF NOMAIL 2 Mail system failure.
PSF NOFORM 3 The form is not accessible.
PSF NODB 5 The forms database is not accessible.
PsfGetFormCount
Syntax

int FAR PASCAL PsfGetFormCount (HSESSION hSession, LPINT IpnCount) ;

OUTGOING FORMS API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

Description
Counts the available forms.
PstGetFormCount sets [pnCount to a pointer to the number of forms available in the forms

database. The PeopleSoft system uses the count to allocate an array large enough to hold all the
forms. It passes a pointer to this array to PsfGetFormList.

Parameters

hSession The session handle assigned by PsfOpenSession when
PeopleSoft connected to PSFORMS.DLL.

IpnCount A pointer to an integer that will receive the count.

Return Values

Value Code | Meaning
PSF OK 0 The function executed successfully; lpnCount
is set to the number of forms.
PSF_NOMAIL 2 Mail system failure.
PSF_NODB 5 The forms database is not accessible.
PsfGetFormList
Syntax

int FAR PASCAL PsfGetFormList (HSESSION hSession, LPPFSFORMLIST IpFormList) ;
Description

Lists the available forms.

PstGetFormList provides a list of the available forms in the forms database. The structure’s
IpForms field points to the array of structures that PsfGetFieldList updates. Each item in the
form name array has this structure:

typedef struct

{
char name[PSF_FIELDNAMELEN + 1];
} PSFDEFNKEY;

Parameters

hSession The session handle assigned by PsfOpenSession when
PeopleSoft connected to PSFORMS.DLL.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL OUTGOING FORMS API 12-7

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

IpFormList A pointer to a structure to hold the list of form names.
The form of the structure is:

typedef struct

{

UINT nNumForms; // The number of forms
LPPSFDEFNKEY 1pForms; // Form name array
} PSFFORMLIST;

Return Values

Value Code | Meaning
PSF OK 0 The function executed successfully.
PSF NOMAIL 2 Mail system failure.
PSF NODB 5 The forms database is not accessible.
PsfGetLastError
Syntax

int FAR PASCAL PsfGetLastError (HSESSION hSession, LPSTR IlpszErrText,
UINT uBufSize, UINT uErrCode) ;

Description
Gets the error message text associated with an error code.
PsfGetLastError gets the text of an error message based on the error code. The PeopleSoft

system passes it the error code it received and a pointer to a text buffer. PsfGetLastError copies
the corresponding error text into the buffer, up to the size specified by uBufSize.

Parameters
hSession The session handle assigned by PsfOpenSession when
PeopleSoft connected to PSFORMS.DLL.
IpszErrText A pointer to a buffer where the function places the error
text.
uBufSize The size of the buffer that IpszErrText points to.
uErrCode The error code to retrieve the error text for.
Return Values
Value Code | Meaning
PSF_OK 0 The function executed successfully.
PSF_NOERR 9 No message was found for the specified error
code.

12-8 OUTGOING FORMS API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

PsfOpenSession

Syntax

int FAR PASCAL PsfOpenSession (LPSTR IpszUserName, LPSTR IpszPassword,

Description

LPHSESSION IphSession) ;

Connects the PeopleSoft system to the forms interface DLL using a specified login name and

password.

PsfOpenSession logs in to the form software using the specified user name and password. It
places a session handle in the buffer that [pASession points to. All subsequent API calls use this

session handle.

PsfOpenSession always opens a new session, even when it could access a shared session.

Parameters

IpszUserName

IpszPassword

IphSession

Return Values

A null-terminated string containing the user name to login
to the forms software with.

A null-terminated string containing the password for the
user identified by /pszUserName.

A pointer to a buffer for the session handle that this
function assigns.

Value Code | Meaning
PSF OK 0 The session was successfully opened.
PSF_NOSESS 4 The function was unable to establish a session.
PSF_NOSPEC 6 The forms database or server was not specified.
PsfSendForm
Syntax

int FAR PASCAL PsfSendForm

Description

(HSESSION hSession, LPPSFFORMDEFN IpFormData) ;

Sends a form through the mail system with the specified ficld values.

PsfSendForm sends a form via the specified open session. The [pFormData structure has values
in all fields, including the data values in the field array it points to.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

OUTGOING FORMS API 12-9

PEOPLETOOLS 8.12 INTEGRATION TOOLS PEOPLEBOOK JANUARY 2001

Parameters

hSession The session handle assigned by PsfOpenSession when
PeopleSoft connected to PSFORMS.DLL.

IpFormData A pointer to a structure that contains form information.

The form of the structure is:
typedef struct

{

PSFDEFNKEY formName; // Name of the form

WORD wNumFields; // Number of fields

char cSep; // Separator
character

LPPSFFIELDVAL T1pFields; // Pointer to array
} PSFFORMDEFN;

Each item in the field array has this structure:
typedef struct

{

char szF1dName[PSF_FORMNAMELEN + 1]; // Field name
WORD wF1dSize; // Field size
LPSTR TpszStrval; // Value

} PSFFIELDVAL;

Return Values

Value Code | Meaning

PSF OK 0 The function executed successfully.
PSF_NOFIELD 1 A field is missing or the wrong size.
PSF NOMAIL 2 Mail system failure.

PSF NOFORM 3 The form is not accessible.

PSF NODB 5 The forms database is not accessible.

12-10 OUTGOING FORMS API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

Index

A

Action codes 7-3,7-6
API
repository 3-1
APIs
for outgoing forms 12-3

Application Attributes page 2-13. See also merchant

integration, custom attributes
Application load process ~ 7-2
application messaging
data synchronization 1-1
system-to-system workflow 1-1
whentouse 1-1
Application programming interfaces
Auditing EDI processing 9-11

B

business interlink
HTTPEnable.dll 2-14

in merchant integration 2-10, 2-14, 2-20, 2-23

whentouse 1-3

Business units
in external companies 7-19
setting up as trading partners ~ 7-17

C

Calculation options
EDI Agent 8-11, 8-19
CD-ROM
ordering il
Codes
converting from EDI to PeopleSoft
command line parameters
for PSTOOLS.EXE 6-1
format of 6-1
component interface
when touse 1-2
Conversion data profiles
assigning to trading partners 7-19
defined 7-6
defining 7-8
Converting data
during EDI processing 7-3

CreateSessionInformation See merchant integration,

PeopleCode

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

See APIs

Customers
setting up as trading partners ~ 7-18

D

Data conversion
during EDI processing ~ 7-6
EDI calculation options ~ 8-11, 8-19
database agents
whentouse 1-8
Database agents
adding to Process Scheduler 11-7
adding to workflow 11-4
assigning to panel groups 11-12
case study 11-13
command line 11-6
creating batches of online processes with 11-3
login parameters 11-7
monitoring database with 11-2
naming conventions for queries 11-5
specifying query torun 11-19
starting 11-12
starting multiple Message Agents 11-7
Database Agents
defined 11-1
DeleteSessionData See merchant integration,
PeopleCode

E

ECOUTMAP.SQC 9-3

EDI
architecture 7-1
converting codes to PeopleSoft IDs 7-3
creating map definitions for 8-1
defining valid transactions 7-10
packages 9-12
reviewing and correcting errors 9-11
setting up trading partners 7-15
standard formats ~ 7-2
transaction groups 9-12

EDI Agents
managing 9-1
specifying how often to run ~ 9-8, 9-11
starting 9-4

EDI COORDINATOR role 9-4

EDI manager
when touse 1-6

EDI Manager 7-1, 8-1, 9-1

EDIFACT format 7-2

INDEX

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

INDEX

2

Electronic commerce maps
Electronic Data Interchange
Entity codes 7-16
Errors
reviewing and correcting for EDI ~ 9-11
Event codes 7-4
Event codes 7-3
External business entities ~ 7-19
External trading partners ~ See also Trading partners
business units within ~ 7-19
settingup 7-18

F

File attachments
from Lotus Notes
File formats
PeopleSoft Business Documents ~ 8-2
file layout 4-1
creating 4-2
CSV format 4-26
CSV format considerations ~ 4-27
customizing 4-7
date, time and datetime considerations 4-6
example 4-16
file field properties 4-12
file record properties 4-9
fixed format 4-25
fixed format considerations 4-26
naming 4-5
properties 4-7
segments vs. records 4-16
XML format 4-27
XML format considerations 4-28
file layout objects and definitions
when touse 1-5
Forms
reply methods for
routings 12-1

G

GetAuthenticationParms
PeopleCode

GetSessionData
PeopleCode

H

HTTPEnable.dll 2-14

See Map definitions
See EDI

11-25

11-19

See merchant integration,

See merchant integration,

Inbound transactions
creating map definitions for 8-4

JANUARY 2001

InsertSessionData See merchant integration,
PeopleCode
integration
with external services 2-1. See also merchant
integration

integration technologies, overview 1-1
Internal trading partners See also Trading partners
settingup 7-17

L

Lotus Notes
file attachments on forms
Verify Originator ID option

Map definitions
creating for EDI ~ 8-1
creating profiles for trading partners ~ 8-20
for inbound transactions ~ 8-4
for outbound transactions ~ §-14
preparing for outbound EDI Agent 9-2
Map profiles 8-20
Map When 11-24
Merchant Authentication page 2-9. See also
merchant integration, connection and authentication
Merchant BI Overrides page 2-10. See also
merchant integration, business interlink
Merchant Categories component 2-5. See also
merchant integration, merchant categories
Merchant Category page 2-12. See also merchant
integration, merchant categories; merchant
integration, merchant URLs
merchant integration ~ 2-1
branded functionality = 2-3
business interlink 2-10, 2-14, 2-20, 2-23

11-25
11-19

connection and authentication 2-9,2-22, 2-32
creating an MIP 2-20
custom attributes 2-13, 2-24, 2-29

development 2-14,2-24

hidden functionality 2-2

HTML content 2-3

implementing an MIP 2-30

installation 2-3

merchant account 2-19, 2-31

merchant categories 2-5, 2-12, 2-20, 2-24, 2-33
merchant profile 2-5, 2-7,2-21, 2-31, 2-32
merchant URLs 2-24

MIP 1-6,2-1,2-3,2-14

PeopleCode 2-17, 2-25, 2-26, 2-28, 2-29
process flow 2-1

records and fields 2-15

Secure Sockets Layer 2-5

session information 2-5, 2-29

Single Sign-On Framework = 2-4,2-25

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

support 2-4

user access 2-34
user experience 2-2
when touse 1-7

merchant profile 2-5, 2-7. See also merchant
integration. See also merchant integration

Application Attributes page 2-13, 2-24, 2-34
Merchant Authentication page 2-9, 2-22, 2-32
Merchant BI Overrides page 2-10, 2-23, 2-33
merchant categories 2-6, 2-20

Merchant Category page 2-12, 2-24,2-33
Merchant Profile page 2-7, 2-21, 2-32

Merchant Profile page 2-7. See also merchant
integration, merchant profile
message agent

when touse 1-7

Message Agent 11-1

APIsetup 10-5

APIs 10-36

basic program setup 10-5

debugging 10-31

debugging -installation ~ 10-31
debugging-administration 10-32
debugging-connecting 10-33
debugging-declaring functions 10-32
debugging-ProcessMessage 10-33
debugging-StartMessage 10-33
defined 11-15

deleting rows in scrolls ~ 11-21

edit table processing 10-8

Examples 10-9

field mapping 10-4

handling file attachments ~ 11-25
managing scroll levels using 10-2
mapping data into scrolls 11-20
multiple rows - adding/updating 10-3
multiple rows - retrieving multiple rows 10-3
multiple scroll levels - limitations ~ 10-2
output data 11-21

processing 10-1

programming 10-4

replying to users 11-19

search dialog processing 10-6
sources of data 11-16

starting multiple instances 11-7
topic names for 11-7

Tricks of the Trade ~ 10-35

triggering events through 11-2
troubleshooting 10-31

Message definitions 11-1

creating valid field mappings 11-24
defined 11-16

icons for 11-16

order of fields in mappings 11-22
specifying panels for 11-18
specifying search records 11-19
types of 11-16

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLETOOLS 8.12 INTEGRATION ToOoLS PEOPLEBOOK

MIP See merchant integration. See merchant
integration

0]

Object Linking and Embedding (OLE) See OLE
automation
OLE automation
Message Agent as server 10-37
Open Query
API 5-3
ODBC driver 5-3
supported API calls 5-4
Open Query ODBC Driver
architecture ~ 5-2
Outbound transactions
creating map definitions for 8-14
directory for files 7-13
preparing maps torun ~ 9-2
Outgoing Forms API
forms routing 12-1

P

Packages (EDI)
reviewing auditing information =~ 9-12
Partner profiles 7-12
assigning to trading partners 7-19
PeopleBooks
CD-ROM, ordering iii
printed, ordering iii
PeopleCode
in merchant integration 2-17, 2-25
PeopleSoft Business Document format ~ 8-2
Primary event codes See Event codes
Process Scheduler
scheduling EDI Agents 9-4
PSAUTHPARMS See merchant integration, records
and fields
PSFORMS.DLL 12-2
PSMERCHANTAPP See merchant integration,
records and fields
PSMERCHANTCAT See merchant integration,
records and fields
PSMERCHBI See merchant integration, records and
fields
PSMERCHBIPARMS See merchant integration,
records and fields
PSSESSIONDATA See merchant integration,
records and fields
PSTOOLS.EXE
command line parameters for 6-1
command line syntax ~ 6-1
Purpose codes See Event codes

INDEX 3

PEOPLETOOLS 8.12 INTEGRATION ToOLS PEOPLEBOOK

INDEX

4

Q

Queries

for database agents 11-4

specifying for database agents 11-19
Queue control numbers 8-9

R

Records
in PeopleSoft Business Documents ~ 8-2
Registry
adding sections for workflow 12-2
Reply methods
for forms 11-19
repository
bindings collection methods 3-8
bindings collection properties ~ 3-7
bindings methods 3-9
bindings properties 3-8
ClassInfo collection methods ~ 3-12
ClassInfo collection properties 3-11
Classlnfo properties 3-13
discovery 3-1
MethodInfo collection methods ~ 3-13
MethodInfo collection properties 3-14
MethodInfo properties 3-15
namespaces collection methods ~ 3-9
namespaces collection properties 3-9
namespaces methods ~ 3-11
namespaces properties 3-10
PeopleCode example 3-2
properties 3-7
PropertyInfo collection methods 3-16
PropertyInfo collection properties 3-17
PropertyInfo properties 3-17
summary methods and properties 3-21
using 3-1
Visual Basic example 3-18
Routings
defined 12-1
Run controls ~ 9-2

S

Scrolls
managing with Message Agent 10-2
Search records

JANUARY 2001

specifying for message definitions 11-19
Secondary event codes See Event codes
Single Sign-On Framework See merchant

integration, Single Sign-On Framework
starting

PeopleSoft applications 6-1
Starting

EDI Agents 9-4
Starting PSTOOLS.EXE 6-1

T

Third-party applications

communicating with ~ 12-2
Trading Partner Conversion ID ~ 7-7
Trading partners

conversion profiles for 7-6

creating map profiles for ~ 8-20

external 7-18

internal ~ 7-17

partner profiles for 7-12

settingup 7-15

specifying valid transactions for 7-14
Transaction Groups (EDI)

reviewing auditing information =~ 9-12
Transactions

available for trading partners ~ 7-14

defining for EDI 7-10

processing new 8-1

processing single 9-5

reviewing auditing information for 9-11

vV

Value-added Network (VAN) 7-2
Vendors
setting up as trading partners ~ 7-18

W

Work records
for EDI map definitions 8-5

X

X.12 format 7-2

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

