
PeopleSoft PepperCode

PeopleSoft PepperCode

SKU MTPCr8SP1B 1200

PeopleBooks Contributors: Teams from PeopleSoft Product Documentation and

Development.

Copyright © 2001 by PeopleSoft, Inc. All rights reserved.

Printed in the United States of America.

All material contained in this documentation is proprietary and confidential to PeopleSoft,

Inc. and is protected by copyright laws. No part of this documentation may be reproduced,

stored in a retrieval system, or transmitted in any form or by any means, including, but not

limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without the
prior written permission of PeopleSoft, Inc.

This documentation is subject to change without notice, and PeopleSoft, Inc. does not warrant

that the material contained in this documentation is free of errors. Any errors found in this

document should be reported to PeopleSoft, Inc. in writing.

The copyrighted software that accompanies this documentation is licensed for use only in

strict accordance with the applicable license agreement which should be read carefully as it

governs the terms of use of the software and this documentation, including the disclosure

thereof.

PeopleSoft, the PeopleSoft logo, PeopleTools, PS/nVision, PeopleCode, PeopleBooks, and

Vantive are registered trademarks, and PeopleTalk and "People power the internet." are

trademarks of PeopleSoft, Inc. All other company and product names may be trademarks of

their respective owners.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O N T E N T S i i i

C o n t e n t s

About This PeopleBook
Before You Begin .. xiv

Related Documentation ... xiv

Documentation on the Internet .. xiv

Documentation on CD-ROM ... xv

Hardcopy Documentation .. xv

Typographical Conventions and Visual Cues... xv

Comments and Suggestions.. xvii

Chapter 1

Understanding PepperCode

Defining PepperCode... 1-1

Comparing PepperCode and C/C++ .. 1-3

Comparing PepperCode and C/C++ Classes... 1-3

Comparing PepperCode Actions and C/C++ Functions.. 1-4

Customizing Planning Software .. 1-5

Chapter 2

Getting Started with PepperCode

Writing Sample PepperCode Constructs ... 2-1

Understanding Program Elements ... 2-4

Chapter 3

Understanding PepperCode Basics

Writing .spl Files ... 3-1

Writing PepperCode #include Statements ... 3-1

Rules for Inclusion and Writing #include Statements... 3-2

Using two files that include each other ... 3-4

Using #include instead of forward declarations .. 3-4

#include and pre-8.0 versions.. 3-5

Understanding Scopes and Identifiers ... 3-6

Writing PepperCode Comments .. 3-7

Writing PepperCode Documentation Comments .. 3-7

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

C O N T E N T S i v P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Understanding #document error messages.. 3-8

Format for #document comments ... 3-9

Using --doc and --header with documentation comments............................... 3-11

Writing PepperCode Notice Comments .. 3-11

Understanding PepperCode Data Types .. 3-11

Understanding PepperCode Performance Considerations ... 3-14

Using PepperCode Naming Conventions .. 3-15

Chapter 4

Understanding PepperCode Classes

Writing New Class Definitions.. 4-3

Understanding Default Values .. 4-5

Understanding Multiple Inheritance.. 4-5

Specializing Slots .. 4-5

Understanding Dot Notation ... 4-6

Declaring Classes... 4-6

Forward Class Declarations .. 4-6

Slot Clause List Statements... 4-7

Slot Declaration Statements .. 4-8

Understanding Instance and Class Slots .. 4-9

Writing Temporary Objects ... 4-9

Using Predefined Classes .. 4-10

Using Instance Names ... 4-12

Chapter 5

Understanding PepperCode Actions

Writing Action Definitions .. 5-2

Incomplete and Forward Declarations .. 5-4

Avoiding Incomplete Declarations.. 5-6

Matching Parameters and Parameter Lists .. 5-6

Using context:, no_context:, and readonly:... 5-6

Writing Action Parameters .. 5-7

Using required: Keyword as Explicit Default Value... 5-8

Understanding non-local action parameters .. 5-9

Understanding Parameter Defaults.. 5-9

Understanding How Parameters Behave With Execute .. 5-11

Action Parameters are No Longer Static... 5-12

Writing Schemas.. 5-13

Action Schema Declarations and Definitions ... 5-15

Declaring Actions: Forward (or Incomplete) Action Declarations................................ 5-15

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O N T E N T S v

Executing Actions.. 5-18

New Rule for Invoking Action.. 5-19

Passing Output in execute Statement .. 5-20

Writing Methods.. 5-21

Implementing A Method: Example 1.. 5-21

Implementing A Method: Example 2.. 5-23

Implementing A Method: Example 3.. 5-27

Understanding Context .. 5-33

Accessing Action Status .. 5-40

Understanding How Actions Are Executed... 5-41

Action Execution & Definitions.. 5-42

Using Transaction Logs ... 5-42

Chapter 6

Writing Control Statements

Writing Assignment Statements .. 6-1

Writing if-else Statements ... 6-2

Writing while Statements .. 6-2

Writing foreach Statements ... 6-3

Writing execute Statements ... 6-5

Writing succeed, fail, or leave Statements... 6-5

Writing break and continue in Loops .. 6-6

Writing Enumerations in Loops... 6-7

Using Dot Notation in Expressions ... 6-9

Chapter 7

Writing Osets

Writing Osets with Action Parameters .. 7-4

Writing Osets in Loops.. 7-5

Writing Osets with the foreach Statement ... 7-6

Chapter 8

Writing Arrays

Writing Associative Arrays ... 8-1

Writing Nonassociative Arrays.. 8-3

Understanding Array operations.. 8-5

Writing Arrays of Arrays... 8-5

Writing Statements Involving Arrays .. 8-8

Writing Array Accesses ... 8-8

Writing Arrays Indexed by Float ... 8-8

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

C O N T E N T S v i P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Chapter 9

Understanding Histories And Side Effects

Understanding the History Abstract Data Structure .. 9-1

Representing Availability of a Capacity Resource.. 9-2

Understanding The History Data Structure ... 9-4

Understanding History Data Structure Elements .. 9-4

Understanding A History Elements List ... 9-4

Understanding An Example of History Object ... 9-5

Understanding An Example of Interval Implementation 9-5

Understanding GetValue Implementation... 9-5

Finding Maximum... 9-6

Understanding Side Effects and Persistence.. 9-8

Understanding The Effect of Supply/Constraint and Capacity/Inventory on

Side Effects ... 9-8

Understanding the Scheduling Classes: Resource and Task 9-9

Understanding the Resource Class.. 9-9

Understanding Tasks... 9-10

Understanding Resource Supplies and Constraints... 9-10

Understanding the Effect of Resource Supplies and Constraints

on Histories ... 9-11

Programming for Side Effects: The side_effect Keyword 9-12

Understanding Schedules... 9-13

Chapter 10

Understanding Operators And Functions

Understanding Infix and Intrinsic Operators and Functions.. 10-1

Understanding SET_EPSILON and SET_FLOAT_FORMAT 10-6

Using EQ With Strings.. 10-8

Accessing C/C++ Functions .. 10-8

PepperCode Data Types in cpp_function Statements 10-9

Rules for Passing Arguments .. 10-9

Typedefs Used With C++ Functions... 10-10

Using PepperCode Runtime Functions ... 10-11

GET_NAME_OF_CLASS.. 10-22

TYPEP Example ... 10-23

Using Expression Comparisons .. 10-23

Using Upstairs Objects Functions ... 10-24

Using String Functions for National Language Support 10-27

Using Postpone Side Effects Functions .. 10-30

Using Functions That Query From PepperCode ... 10-33

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O N T E N T S v i i

Using History Functions ... 10-35

Using Dump Functions ... 10-44

Chapter 11

Writing PepperCode Applications

Writing a PepperCode Class .. 11-1

Naming A Class .. 11-1

Naming Class Slots ... 11-1

Adding An Action To A Class .. 11-1

Adding Default Values To A Class... 11-2

Specializing Class Slots .. 11-2

Using Casting .. 11-5

Writing a PepperCode Action.. 11-6

Using no_context .. 11-7

Avoiding Static Parameters... 11-7

Checking The Output Variable On An Action.. 11-8

Grouping Action Parameters... 11-9

Writing A PepperCode Transaction... 11-11

Starting Transaction Names With transaction_... 11-12

Using The Action Schema Transaction... 11-12

Putting Minimal Code Into A Transaction .. 11-12

Including No Instances, Classes, Histories, Or Actions.. 11-12

Using Default Values For Input Parameters.. 11-12

Performing Error Checking... 11-13

Using #document and #end_document ... 11-17

Writing A PepperCode Method ... 11-18

Writing Actions That Dispatch The Method... 11-18

Implementing Input And Output Parameters .. 11-19

Including The Object As An Argument .. 11-19

Casting The Inner Object To The Class .. 11-19

Writing a C++ Utility... 11-20

Checking That A Corresponding Function Is Not Defined................................... 11-20

Putting C++ Code In The Proper Location ... 11-20

Capitalizing C++ Function Names.. 11-21

Providing Meaningful PepperCode Types .. 11-21

Using RPS_IMPORT When Defining External C++ Functions 11-22

Adding and Retrieving Documentation ... 11-23

Using #include Files .. 11-24

Customizing and Displaying Class Names .. 11-25

Customizing PepperCode Methods And Actions .. 11-26

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

C O N T E N T S v i i i P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Replacing Standard Method Actions ... 11-26

Adding Method Slots ... 11-28

Adding A Constraint.. 11-32

Creating the Class Shipset_Milestone_Constraint .. 11-33

Writing an Action to Display Information .. 11-34

Writing An Action To Define The Penalty ... 11-34

Writing An Action To Specify The Repair ... 11-37

Writing An Action To Specify The Time Interval .. 11-40

Writing An Action That Creates A Constraint Object .. 11-40

Chapter 12

Compiling And Linking PepperCode

Setting Up and Using Your Own PepperCode Sandbox ... 12-1

Running the Compiler.. 12-2

Solaris example ... 12-3

HP-UX example .. 12-4

Digital Unix (OSF/1) and Linux examples ... 12-4

NT example... 12-4

Command-line rules in detail .. 12-6

Installation and Configuration Issues .. 12-6

LD_LIBRARY_PATH.. 12-6

List of Necessary Files .. 12-7

.splrc .. 12-7

Compiler Options (For Use During Installation) .. 12-8

PepperCode Compiler Reference... 12-10

Command-line Rules in Detail .. 12-11

Most-Used Compiler Options ... 12-11

Options That Dictate Which Compiler or Linker to Run...................................... 12-12

Options Used When Compiling PepperCode.. 12-13

Options Used Only When Compiling C++ Source Code...................................... 12-16

Options to be Used With --make_program Option ... 12-16

Machine-Specific Escape Clause .. 12-17

Options for Compiler Maintenance... 12-17

Using Hush .. 12-18

Chapter 13

Understanding PepperCode Syntax

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O N T E N T S i x

Chapter 14

Debugging PepperCode

Avoiding Common Mistakes ... 14-1

Troubleshooting Guide .. 14-6

Compiler Frequently Asked Questions (FAQ).. 14-6

Q: How does one compile PepperCode files that #include each other?.......... 14-6

Q: Why doesn't an enumeration constant have an integer value? 14-7

Q: The rules have changed for declaring actions locally. What about

classes?.. 14-7

Error Message Reference .. 14-9

Errors (That Stop Compilation) .. 14-9

Warnings (These Don't Stop Compilation) ... 14-20

Using Debugging Tools ... 14-20

Using The Action Interpreter .. 14-21

Using Action Debug Tracing .. 14-23

Using The Action Debug Tracing Transaction and C++ Function 14-24

Setting Action Debug Tracing Behavior... 14-24

Enabling and Disabling Action Debug Tracing .. 14-25

Understanding Action Debug Tracing Output .. 14-26

Creating Debug Messages With The MSG Function.. 14-29

Using Debugging Functions.. 14-31

describe ... 14-32

describe_all ... 14-32

describe_one.. 14-34

describe_by_name... 14-36

describe_by_uid .. 14-37

how_many... 14-39

list_objects .. 14-39

display_rhistory... 14-40

display_rinitial_history ... 14-40

display_ahistory .. 14-40

display_chistory .. 14-40

Other Debugging Functions .. 14-41

Using Debugging Actions.. 14-41

Understanding Key Terms .. 14-41

Setting The Debugging Message Level .. 14-42

Running The Debugging Actions.. 14-42

Understanding The Debugging Action Categories ... 14-43

Displaying PepperCode Instance Information .. 14-43

Displaying History Information .. 14-43

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

C O N T E N T S x P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Displaying Task Reschedule Information ... 14-43

Debugging Side Effects... 14-44

Displaying Time Period Information .. 14-44

Miscellaneous Debugging Actions ... 14-44

Deciding Which Debugging Action To Use ... 14-45

Understanding Debugging Action Descriptions.. 14-46

transaction_describe_all .. 14-46

transaction_describe_one .. 14-46

transaction_describe_by_name ... 14-47

transaction_describe_by_uid... 14-47

transaction_how_many ... 14-47

transaction_list_objects ... 14-47

transaction_display_rhistory ... 14-47

transaction_display_rinitial_history.. 14-48

transaction_display_ahistory... 14-48

transaction_display_chistory... 14-48

transaction_set_intersect_debug_level.. 14-49

transaction_printf .. 14-49

transaction_printf_with_current_time... 14-49

transaction_start_of_day ... 14-49

transaction_end_of_day .. 14-49

transaction_start_of_week... 14-50

transaction_end_of_week.. 14-50

transaction_start_of_month... 14-50

transaction_end_of_month.. 14-50

display_violated_constraints ... 14-50

display_resource_constraints .. 14-51

display_resource_supplies... 14-51

retract_resource_constraint ... 14-51

assert_resource_constraint .. 14-51

retract_resource_supply .. 14-52

assert_resource_supply ... 14-52

retract_task_side_effects ... 14-52

assert_task_side_effects .. 14-52

retract_resource_side_effects .. 14-53

assert_resource_side_effects ... 14-53

repair_me .. 14-53

object_is_alive... 14-53

resource_info... 14-54

create_some_objects ... 14-54

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O N T E N T S x i

delete_some_objects ... 14-54

Understanding Debug Command Files ... 14-55

Using Sanity Checks.. 14-61

Understanding What Sanity Checks Do and Don’t Do... 14-61

Using Sanity Checks ... 14-61

Understanding Each Sanity Check.. 14-62

A Parent Task Must Have Subtasks .. 14-62

Work Duration Check For Unsplittable Leaf Tasks...................................... 14-62

A Calendar Must Have Computed Legal Time... 14-63

A Resource Constraint Must Have Quantity >= 0.0 14-63

A Resource Supply Must Have Quantity >= 0.0... 14-63

Start And End Time Checks Of Effective Entries... 14-63

A Routing Entry Must Have Quantity >= 0.0 ... 14-64

A Routing Entry Must Match A Routing Step.. 14-64

A Bor Entry Must Have A Valid Equipment Class 14-64

A Build Option Must Have At Least One Routing Step 14-65

A Build Option Must Supply An Item (Part) For All Time 14-65

A Build Option Should Have Only One Primary Order Bor 14-65

A Build Option Should Have Only One Primary Operation Bor Per

Routing Step.. 14-65

An Inventory Item Must Have A Way To Be Replenished 14-65

A Sales Order Must Have Sales Order Lines.. 14-65

A Purchase Order Must Have Purchase Order Lines 14-66

An Equipment Resource Must Have Enough Capacity To Repair Any

One Of Its Equipment Constraints .. 14-66

Understanding Potential Sanity Checks .. 14-66

Every Product Must Map To An Inventory Item .. 14-66

Sourcing Logic Checks ... 14-66

Understanding Sanity Check Output... 14-67

transaction_mfg_sanity_check (:verbose 0 :filename "") 14-67

transaction_mfg_sanity_check(:verbose 0 :filename "") 14-68

transaction_mfg_sanity_check(:verbose 1 :filename "") 14-69

Index

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L P R E F A C E x i i i

A B O U T T H I S P E O P L E B O O K

This PeopleBook, PeopleSoft PepperCode, provides you with the information you need to write
programs in the PepperCode programming language.

You should be familiar with navigating around the system and adding, updating, and deleting

information using PeopleSoft windows, menus, and pages. You should also be comfortable using

the Microsoft® Windows 95 or Windows NT graphical user interface.

Because we assume you already know how to navigate around the PeopleSoft system, much of

the information in this book is not procedural. That is, it does not typically provide step-by-step

instructions on using tables, pages, and menus. Instead we provide you with all the information

you need to use the system most effectively, and to customize the documentation to your

organizational or departmental needs. This book expands on the material covered in PeopleSoft

training classes.

Understanding PepperCode provides an overview of PepperCode, also known as the Scheduling

Programming Language (SPL).

Getting Started with PepperCode introduces you to PepperCode with a sample program that

creates two objects representing bicycles. The program tests itself by printing information about
them.

Understanding PepperCode Basics gives basic information about how to write PepperCode (.spl)

files, #include statements, and comments, and it discusses PepperCode data types, performance

considerations, and naming conventions.

Understanding PepperCode Classes explains PepperCode classes, which provide definitions of

the data stored in an object.

Understanding PepperCode Actions explain PepperCode actions, which are similar to C functions

or Pascal procedures, but have very different semantics for memory allocation and the lifetimes

of variables and changes to variables.

Writing Control Statements explains how to write PepperCode control statements, such as

assignment (=), if-else, and while.

Writing Osets explains how to write PepperCode osets, which behave like a list.

Writing Arrays explains how to write PepperCode arrays, which behave like a list.

Understanding Histories And Side Effects explains histories and side effects, and describes how
and when to use the side_effect keyword in slot declarations.

Understanding Operators And Functions lists and describes how to use the PepperCode intrinsic

operators and functions. It also describes how to access and use C/C++ functions.

Writing PepperCode Applications provides guidelines for creating PepperCode applications, such

as writing a PepperCode class, action, transaction, and method.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

P R E F A C E x i v P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Compiling And Linking PepperCode describes how to compile your code and link it with existing

Planning software for testing purposes.

Understanding PepperCode Syntax describes the PepperCode syntax recognized by the parser in
the current PepperCode compiler.

Debugging PepperCode explains the debugging tools for PepperCode, including symbolic

debuggers for C++, the debugging functions that you can use to print methods and their

descriptions, and other methods.

This section describes information you should know before you begin working with PeopleSoft

products and documentation, including PeopleSoft-specific documentation conventions,

information specific to PeopleTools, how to order additional copies of our documentation, and so

on.

Before You Begin

To benefit fully from the information covered in this book, you need to have a basic

understanding of how to use PeopleSoft applications. We recommend that you complete at least

one PeopleSoft introductory training course.

You should be familiar with navigating around the system and adding, updating, and deleting

information using PeopleSoft windows, menus, and pages. You should also be comfortable using

the World Wide Web and the Microsoft® Windows or Windows NT graphical user interface.

Related Documentation

To add to your knowledge of PeopleSoft applications and tools, you may want to refer to the

documentation of the specific PeopleSoft applications your company uses. You can access

additional documentation for this release from PeopleSoft Customer Connection

(www.peoplesoft.com). We post updates and other items on Customer Connection, as well. In

addition, documentation for this release is available on CD-ROM and in hard copy.

Important! Before upgrading, it is imperative that you check PeopleSoft Customer

Connection for updates to the upgrade instructions. We continually post updates as we

refine the upgrade process.

Documentation on the Internet

You can order printed, bound versions of the complete PeopleSoft documentation delivered on

your PeopleBooks CD-ROM. You can order additional copies of the PeopleBooks CDs through

the Documentation section of the PeopleSoft Customer Connection Web site:

http://www.peoplesoft.com/

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L P R E F A C E x v

You’ll also find updates to the documentation for this and previous releases on Customer

Connection. Through the Documentation section of Customer Connection, you can download

files to add to your PeopleBook library. You'll find a variety of useful and timely materials,

including updates to the full PeopleSoft documentation delivered on your PeopleBooks CD.

Documentation on CD-ROM

Complete documentation for this PeopleTools release is provided in HTML format on the

PeopleTools PeopleBooks CD-ROM. The documentation for the PeopleSoft applications you
have purchased appears on a separate PeopleBooks CD for the product line.

Hardcopy Documentation

To order printed, bound volumes of the complete PeopleSoft documentation delivered on your

PeopleBooks CD-ROM, visit the PeopleSoft Press Web site from the Documentation section of

PeopleSoft Customer Connection. The PeopleSoft Press Web site is a joint venture between

PeopleSoft and Consolidated Publications Incorporated (CPI), our book print vendor.

We make printed documentation for each major release available shortly after the software is first

shipped. Customers and partners can order printed PeopleSoft documentation using any of the

following methods:

Internet From the main PeopleSoft Internet site, go to the

Documentation section of Customer Connection. You can

find order information under the Ordering PeopleBooks

topic. Use a Customer Connection ID, credit card, or

purchase order to place your order.

PeopleSoft Internet site: http://www.peoplesoft.com/.

Telephone Contact Consolidated Publishing Incorporated (CPI) at

800 888 3559.

Email Email CPI at callcenter@conpub.com.

Typographical Conventions and Visual Cues

To help you locate and interpret information, we use a number of standard conventions in our

online documentation.

Please take a moment to review the following typographical cues:

monospace font Indicates PeopleCode.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

P R E F A C E x v i P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Bold Indicates field names and other page elements, such as

buttons and group box labels, when these elements are

documented below the page on which they appear. When

we refer to these elements elsewhere in the

documentation, we set them in Normal style (not in bold).

We also use boldface when we refer to navigational paths,

menu names, or process actions (such as Save and Run).

Italics Indicates a PeopleSoft or other book-length publication.

We also use italics for emphasis and to indicate specific

field values. When we cite a field value under the page on

which it appears, we use this style: field value.

We also use italics when we refer to words as words or

letters as letters, as in the following: Enter the number 0,

not the letter O.

KEY+KEY Indicates a key combination action. For example, a plus

sign (+) between keys means that you must hold down the

first key while you press the second key. For ALT+W,

hold down the ALT key while you press W.

Jump links Indicates a jump (also called a link, hyperlink, or

hypertext link). Click a jump to move to the jump

destination or referenced section.

Cross-references The phrase For more information indicates where you can

find additional documentation on the topic at hand. We

include the navigational path to the referenced topic,

separated by colons (:). Capitalized titles in italics

indicate the title of a PeopleBook; capitalized titles in

normal font refer to sections and specific topics within the

PeopleBook. Cross-references typically begin with a

jump link. Here's an example:

For more information, see Documentation on CD-ROM in

About These PeopleBooks: Related Documentation.

• Topic list Contains jump links to all the topics in the section. Note

that these correspond to the heading levels you'll find in

the Contents window.

 Name of Page or

Dialog Box

Opens a pop-up window that contains the named page or

dialog box. Click the icon to display the image. Some

screen shots may also appear inline (directly in the text).

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L P R E F A C E x v i i

Text in this bar indicates information that you should pay particular attention to as you work

with your PeopleSoft system. If the note is preceded by Important!, the note is crucial and

includes information that concerns what you need to do for the system to function properly.

Text in this bar indicates For more information cross-references to related or additional

information.

Text within this bar indicates a crucial configuration consideration. Pay very close attention

to these warning messages.

Comments and Suggestions

Your comments are important to us. We encourage you to tell us what you like, or what you

would like changed about our documentation, PeopleBooks, and other PeopleSoft reference and

training materials. Please send your suggestions to:

PeopleTools Product Documentation Manager

PeopleSoft, Inc.

4460 Hacienda Drive

Pleasanton, CA 94588

Or send comments by email to the authors of the PeopleSoft documentation at:

DOC@PEOPLESOFT.COM

While we cannot guarantee to answer every email message, we will pay careful attention to your
comments and suggestions. We are always improving our product communications for you.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E 1 - 1

C H A P T E R 1

Understanding PepperCode

This section provides an overview of PepperCode, also known as the Scheduling Programming
Language (SPL).

Defining PepperCode

PepperCode is a high-level, object-oriented programming language. The language is optimized

for use with Planning scheduling applications. It has the following features:

• PepperCode is a high-level language, so you can spend more time writing the application and

less time worrying about low-level coding details. For example:

� Pointers and pointer manipulation are invisible to you, which eliminates bugs related to
uninitialized pointers, dangling pointers, and misallocated memory.

� A construct similar to a linked list is built into the language.

� Memory allocation and deallocation are hidden from you.

� All data is automatically initialized so that execution is predictable.

• PepperCode provides some constructs aimed specifically at scheduling algorithms. A

mechanism called context makes it easy to try out various combinations of values before

making global changes to the state of the entire system. Each experiment is independent of the

others; when experiments are complete, changes that were part of the failed experiments can be

discarded while changes that represent the optimal combination of values are accepted.

• PepperCode provides a more dynamic object-oriented programming environment than

statically compiled languages like C++. You can create new classes by creating subclasses at

execution time, change the default values of members at execution time, and query any class to

get a list of subclasses or instances that currently exist.

• PepperCode code is easy to transport to any system that provides a standard C++ compiler,

since PepperCode code is automatically converted to C++ code during compilation.

• PepperCode offers a feature called side effects, where a dependent member is computed from

independent members through a side-effect function. Any change to an independent member

causes the dependent member to be recomputed.

• Built-in features support a client-server architecture.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 - 2 U N D E R S T A N D I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

In addition, Planning software, which is written in PepperCode, has the following features that

make it easy to customize:

• An extensive group of predefined object hierarchies and functions are provided that enable the

easy specialization of the application software.

• Application menus can be changed simply by placing a command in a file.

• Transaction logging enables you to restore a system to its previous state when needed.

A Planning application runs PepperCode code. The application can run PepperCode code when a

user selects a menu item or uses the menu system to run a command file. In addition, during

debugging phases, a diagnostic tool enables you to execute PepperCode code from a command
line.

PepperCode code has two main constructs: classes and actions. Classes define objects. Actions

can create, delete, and modify objects, and can execute other actions. When a PepperCode

application wants to perform an operation, it instructs the PepperCode (or SPL) Action Interpreter

to run an action, as in the following example. An action that is designed to be run in a command

file or to be used by a programmer customizing the software is called a transaction—to

distinguish it from actions that are meant to be hidden within the system. From the viewpoint of

PepperCode, however, there is no distinction between an action and a transaction.

Planning

application

PepperCode

(SPL) Action

Interpreter

Transaction TransactionObject1

Action2 Object2

Menu item selected

 or command file run

Execute

transaction

Execute

transaction

 Create object

Execute

action

Create object

Delete

object

Example of running PepperCode code

Actions can change the values of a class or create a new class through subclassing. However,

there is no way to delete a class during runtime.

Because classes can be modified during runtime, you could think of a class as an object.

However, in this documentation, the term object applies only to an instance of a class.

An action can query a parent class to retrieve its child classes, which makes it easier to keep track

of classes in your code and reduces the possibility of errors.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E 1 - 3

Following is an example of how a manufacturing application might enable a user to add a line to

a purchase order. The user chooses a menu item that causes the Action Interpreter to execute

transaction_add_purchase_order_line. This transaction executes the action

create_purchase_order_line, which creates the object purchase_order_line. Later, the user

chooses a menu item to delete the line, which causes the Action Interpreter to execute

transaction_delete_purchase_order_line. This transaction deletes the object purchase_order_line.

Planning

PepperCode

(SPL) Action

Interpreter

transaction_add_purchase_order_line transaction_delete_purchase_order_line

create_purchase_order_line

purchase_

order_line

Menu item selected

or command file run

Execute

 transaction

Execute

 transaction

 Execute action

Delete

object

Create

object

Manufacturing example

Comparing PepperCode and C/C++

Because PepperCode code is similar to C++ code, it’s easier to look at the differences instead of

the ways they are alike.

Comparing PepperCode and C/C++ Classes

PepperCode classes differ from C++ classes in the following ways:

• PepperCode uses the term slot instead of the C++ data member or member function terms. `A

slot can hold:

� data (like a C++ data member)

� an action (like a C++ member function)

� an instance of a class (like a C++ member of type class)

� another class

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 - 4 U N D E R S T A N D I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

• Unlike C++, methods are stored on ordinary slots like data values are. All PepperCode slots

are public.

• A PepperCode class slot is like a C++ static data member or static member function. All

instances of the class read and write the same value for that slot.

• As mentioned earlier, PepperCode is more abstract than C++. It doesn’t provide ways to

specify how class slots are represented in memory in terms of offsets, ordering, addresses, and

so on. Also, PepperCode has no bit fields or unions. As a result, a program is less likely to

have a memory error, since most memory allocation and deallocation is handled by
PepperCode.

• Another way PepperCode is safer than C++ is that it has no uninitialized slots. Every slot has a

default value, either specified explicitly in the code or provided by the compiler.

Comparing PepperCode Actions and C/C++ Functions

A PepperCode action is similar to a function in C++, C, or Pascal. As mentioned previously, if a

PepperCode class has a slot of type action, the action on that slot acts like a C++ member

function or method.

PepperCode actions differ from C++ functions in the following ways:

• A declaration for a PepperCode action must list local parameters along with other parameters.

• A PepperCode action can have more than one output parameter, while a C++ function can have

only one return value.

• An action cannot appear within an expression. It must be invoked with the execute statement.

• In an action invocation, the parameters can be listed in any order Before each parameter is a

keyword, which is the name for the parameter as it appears in the definition of the action.

• Input parameters can have default values, so it’s not necessary to provide all of them. But

defaults behave differently in PepperCode than in C++.

• Actions are invoked within other actions by a parameter of type input or local, not by their

original name.

• Output values aren’t copied from a formal argument to an actual argument, as in C++. Instead,

the action behaves as if it were a class and the outputs behave as if they were slots on a class.

• As mentioned earlier, PepperCode has a powerful feature called context. Changes to the values

of slots on objects can be accepted or rejected at the appropriate time. Binding an action to

multiple contexts lets your application try independent experiments and postpone selecting the

optimum outcome until the experiment is complete.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E 1 - 5

Customizing Planning Software

Your Planning software, written in PepperCode, is customizable so it can meet your own

specialized requirements. You can add new menu items or tailor existing menu items. In

addition, you can create your own custom software, compile it, and link it to the existing Planning

Scheduler product, MFG product, or both.

You can do the following in your custom software:

• Create new transactions. Wrapper transactions extend the behavior of existing transactions:

you simply create a new transaction that calls the existing Planning transaction and add the

additional functionality you need.

• Create new classes that inherit behavior from existing classes in the Planning Scheduler

product, MFG product, or both.

• Create new software to override inherited behavior in classes. This software simply needs to

use the schema specified for the action slot in the class.

This documentation describes how to create actions, classes, and methods for your custom

software.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L G E T T I N G S T A R T E D W I T H P E P P E R C O D E 2 - 1

C H A P T E R 2

Getting Started with PepperCode

This section introduces you to PepperCode with a sample program that creates two objects
representing bicycles. The program tests itself by printing information about them.

The example contains some constructs that are familiar to C++ programmers, other constructs

that may be unfamiliar to C++ programmers but familiar to programmers of other object-oriented

languages, and one construct that is unique to PepperCode. PepperCode files use a .spl extension.

Writing Sample PepperCode Constructs

// Include the .spl file containing PepperCode runtime functions.

// By convention, these functions appear in all uppercase letters in code.

#include "cpp_utility.spl"

// Create an enumeration containing the possible bike materials.

enum material { STEEL, ALUMINUM, CARBON_FIBER, TITANIUM, OTHER };

// Define a basic class for a vehicle.

class Vehicle : Base_Class {

int serial_number

int passengers

int price

};

slot Vehicle.passengers { default: 4 };

// Derive the class Bicycle from the class Vehicle.

// Add two new slots, in addition to those from the Vehicle class.

// Override the default number of passengers to a more realistic value

// for a bike.

class Bicycle: Vehicle {

string model_name

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

2 - 2 G E T T I N G S T A R T E D W I T H P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

enum<material> frame_material

};

slot Bicycle.frame_material{ default: STEEL };

slot Bicycle.passengers{ default: 1 };

// Define a procedure to create an instance of the Bicycle class

// (or one of its subclasses). The instance of the class is an object.

action create_bicycle

(input: int serial_number,

input: string model_name,

input: string class_name,

output: instance<Bicycle> new_bike,

no_context:)

{

// Create an object with the CREATE_OBJECT function.

// model_name is the name of the object.

// (All named objects must have a unique name.)

// class_name is the name of the class the object belongs to.

new_bike = CREATE_OBJECT(model_name, class_name);

new_bike.serial_number = serial_number;

new_bike.model_name = model_name;

succeed();

}

// Create instances of the classes Atb and Bicycle.

// Test it by generating a list of the instances of Bicycle and iterating

// through the list—printing the serial number of each Bicycle or Atb.

action spl_main

(input: int argc,

input: oset[string] argv,

input: string identity,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L G E T T I N G S T A R T E D W I T H P E P P E R C O D E 2 - 3

local: oset[instance<Bicycle>] list)

{

// Create a subclass at runtime. Atb is the name of the new class,

// which is a subclass of Bicycle.

CREATE_SUBCLASS("Atb", "Bicycle");

// Create the bicycles. The object names are stumphopper and vamenos.

execute create_bicycle(:serial_number 44475656,

:model_name "stumphopper",

:class_name "Atb");

execute create_bicycle(:serial_number 55572323,

:model_name "vamenos",

:class_name "Bicycle");

// As a test, print information about the objects.

// list is an oset of instances that are "filled in."

// The next argument is the name of the class whose descendants

// you want to list.

// 1 specifies that you want instances (as opposed to 0 for classes).

GET_DESCENDANTS(list, Bicycle, 1);

foreach item in list

PRINTF("%s serial number=%d, model_name=%s\n",

item.class_name, item.serial_number, item.model_name);

succeed();

}

When the program runs, it prints the class an object is derived from, followed by the serial
number and model name (which in this case is the object name) for the object, as follows:

Atb serial number=44475656, model_name=stumphopper

Bicycle serial number=55572323, model_name=vamenos

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

2 - 4 G E T T I N G S T A R T E D W I T H P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Understanding Program Elements

If this code was compiled and then linked with Planning software modules, and a menu item was
created to execute spl_main, the program would run as illustrated here.

 Planning

 application

 PepperCode

 (SPL) Action

 Interpreter

spl_main

Vehicle

class

Bicycle

class

Atb

class

vamenos

stump-

hopper

Create

subclass

Execute

transaction

Menu item selected to

create bike objects

Print

information

Create

objects

Atb serial number=44475656, model_name=stumphopper

Bicycle serial number=55572323, model_name=vamenos

Running the sample code

The first line of the program should be familiar to C++ programmers:

#include "cpp_utility.spl"

This statement causes the file cpp_utility.spl to be included in the program. This file contains

declarations, including those for PepperCode runtime functions such as CREATE_OBJECT,

CREATE_SUBCLASS, GET_DESCENDANTS, and PRINTF.

C++ programmers should also recognize the declaration of the enumerated type:

enum material { STEEL, ALUMINUM, CARBON_FIBER, TITANIUM, OTHER };

The Bicycle class defined later in the code uses the enumeration for its material value.

Next, two classes are defined: first a basic class for any vehicle and then a more specific class for

bicycles that is derived from the Vehicle class. Classes are the prototypes for object instances;

they can inherit from one or more other classes to provide greater specialization. The data values,

or slots, defined for the Vehicle class apply to the Bicycle class, which inherits from it. So the

Bicycle class contains slots for serial_number, passengers, price, model_name, and
frame_material.

class Vehicle : Base_Class {

int serial_number

int passengers

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L G E T T I N G S T A R T E D W I T H P E P P E R C O D E 2 - 5

int price

};

slot Vehicle.passengers { default: 4 };

class Bicycle: Vehicle {

string model_name

enum<material> frame_material

};

slot Bicycle.frame_material{ default: STEEL };

slot Bicycle.passengers{ default: 1 };

There are no uninitialized slots in PepperCode. If you don’t provide a default, PepperCode

provides one for you. In this code, a default is defined for passengers in the Vehicle class. In the

Bicycle class definition, this default is changed to a more appropriate value for a bike; a default is

also provided for frame_material. The default initialization of slots is similar to that for C++

members.

Slots are referred to using dot notation—for example, Vehicle.passengers refers to the passengers

slot in the Vehicle class, while Bicycle.passengers refers to the passengers slot in the Bicycle

class.

In addition to classes, the sample program also has two actions, which resemble C++ functions.

Actions can contain declarations for both input parameters and local variables, followed by the

action body containing PepperCode code. To exit an action, a succeed or fail statement is

supplied. This is how the context mechanism is implemented: you can try out various

combinations of values before making global changes to the state of the entire system. Changes
that were part of the failed experiments can be discarded with the fail statement.

The action create_bicycle is used in the spl_main action to create objects of the Bicycle class:

action create_bicycle

(input: int serial_number,

input: string model_name,

input: string class_name,

output: instance<Bicycle> new_bike,

no_context:)

{

new_bike = CREATE_OBJECT(model_name, class_name);

new_bike.serial_number = serial_number;

new_bike.model_name = model_name;

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

2 - 6 G E T T I N G S T A R T E D W I T H P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

succeed();

}

action spl_main

(input: int argc,

input: oset[string] argv,

input: string identity,

local: oset[instance<Bicycle>] list)

{

CREATE_SUBCLASS("Atb", "Bicycle");

execute create_bicycle(:serial_number 44475656,

:model_name "stumphopper",

:class_name "Atb");

execute create_bicycle(:serial_number 55572323,

:model_name "vamenos",

:class_name "Bicycle");

GET_DESCENDANTS(list, Bicycle, 1);

foreach item in list

PRINTF("%s serial number=%d, model_name=%s\n",

item.class_name)),

item.serial_number, item.model_name);

succeed();

}

C++ programmers are likely to be surprised that the program creates a new derived class at

execution time (the call to CREATE_SUBCLASS). And although creating instances of a class at

execution time isn’t particularly unusual in C++ (the call to CREATE_OBJECT is similar to the

C++ operator new), the semantics of an instance are very different: C++ has no global or local

variables of type class. All instances of classes are allocated dynamically, and instead of naming

and accessing them with fixed identifiers at compilation time, you can name them and access

them with strings at execution time. The local variable new_bike resembles a C++ pointer in the

sense that you can’t use it to access an instance of the class Bicycle until you initialize it to point

to one. In this example, CREATE_OBJECT initializes new_bike to point to a newly created

instance; alternatively, a call to the GET_INSTANCE_BY_NAME function could determine

which instance to point to.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L G E T T I N G S T A R T E D W I T H P E P P E R C O D E 2 - 7

Note: You should normally not use CREATE_OBJECT as in this example. Use the

example shown in Using Instance Names for a better way.

The second action, spl_main, holds a few more surprises for C++ programmers. First, the action

create_bicycle creates two bicycles (the execute statements), one of them using the subclass Atb.

The code doesn’t keep a list of the instances of Bicycle that were created. Instead, when it comes

time to test the program with print statements, GET_DESCENDANTS provides a list of

instances. The code uses a foreach statement to iterate over the list. Notice that you aren’t

limited to printing out the data that lies in the slots of an instance, but can also determine the class

an instance belongs to, and can use the identity of that class as an extra piece of information about

the instance. Instead of using a string or enumeration slot to remember that one of the bicycles is

an all-terrain bicycle (ATB), you can rely on the ability of PepperCode to query its class

membership directly.

Users of languages like LISP or SmallTalk may not find these aspects particularly novel, except

for the succeed statement in each action that hints at the mechanism for committing or rolling

back changes that the action has made to the database.

The following sections cover PepperCode in greater detail. The simple example in this section

doesn’t show all the constructs of the language, but it does provide an overview of the material

that the remaining sections will cover.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E B A S I C S 3 - 1

C H A P T E R 3

Understanding PepperCode Basics

This section gives basic information about the PepperCode language.

Writing .spl Files

PepperCode code should be in files that end in .spl. By convention, the following types of files

are used for PepperCode code; they should be placed in this order in a makefile to ensure that

action declarations are compiled before the action definitions, which depend on those

declarations:

• cpp_filename.spl: C/C++ function declarations

• filename .spl: class definitions

• dcl_filename.spl: action declarations

• filename .spl: action definitions

• transaction_filename.spl: transaction definitions

• filename _ui_actions.spl: PC client form actions

In this guide, the different elements of the PepperCode language are discussed without

specifically referring to this file architecture. You should keep in mind that when you write code,
you need to place it in these different files.

Writing PepperCode #include Statements

Pre-compiled header files represent the interface to classes, actions, and enums in a particular

module. This representation is in a very compact form that is quicker and easier for the compiler

to parse.

The following is the syntax of a #include statement:

#include "filename"

#include <filename>

These statements are equivalent. They behave as if the compiler reads in declarations for the
symbols exported by the named file, without actually compiling that file.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

3 - 2 U N D E R S T A N D I N G P E P P E R C O D E B A S I C S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

PepperCode has two compiler directives, called #include and #remote_include, that allow you to

import declarations and actions from other source files.

The compiler opens the source file and inserts its contents where the statement appears. As with

C/C++ code, filenames in double quotes (" ") should be in the current directory or in the path

specified with the -I command line option, and files enclosed in angle brackets (< >) should be in

a location specified by a search path in the environment.

When placing filenames in double quotes (" ") for Windows NT, you can use a file delimiter

of "/" instead of "\\".

If an included.spl file includes other files, the directory containing the “outer” included.spl file is
used in the search list for the nested files instead of the current working directory.

Like C/C++, if the PepperCode compiler cannot find the files in the current working directory, it

will search the directories specified with the -I command-line option of the PepperCode compiler.

PepperCode includes are different from C/C++ includes in the following ways:

• No white space may precede the pound sign (#).

• The file must end in .spl.

• You cannot start a syntactic construct inside an included file and end it in the outer file, or

vice-versa.

Rules for Inclusion and Writing #include Statements

If you use an action or class in a *.spl file, and the action or class is defined in another *.spl file,

you must #include the other *.spl file.

The following rules apply to #include statements:

• If <filename> begins with "/" (or, on Windows NT systems, with "\\" or a single character

followed by a colon), it is an absolute name; otherwise, it is a relative name.

For example, an absolute path would be "/home/jfarris" on UNIX and "\\Sanma-file-01\c:" on

Windows NT. A relative path would be "./jfarris" on UNIX and "c:\autoexec.bat" on

Windows NT.

• If <filename> is relative, then the compiler searches for the file using a list of directories. The

first directory in the list is the directory in which the compiler found the file containing the

"#include" statement. The remaining directories are provided by the "--include" and "-I"

options specified on the compiler command line, in order. Note that the current working

directory does not explicitly appear in the list unless you specify it with "--include" or "-I", or

the file containing the "#include" statement was found in the current working directory.

Example:

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E B A S I C S 3 - 3

Suppose you're compiling xyz.spl, a file in "/home/jfarris/spl", and you're including abc.spl.

When you compile xyz.spl, the compiler will look for abc.pchs because the compiler uses pre-

compiled header files (*.pchs) when including *.spl files. If you're using the default compiler

option as follows:

> spl xyz.spl

the compiler will have no problem finding abc.pchs if it is in the same directory as xyz.spl,

"/home/jfarris/spl", because it looks in the directory containing the file you are compiling, by

default. However, if abc.pchs is in another directory (say "/home/jfarris"), the compiler will not

be able to find abc.pchs, and you will get a file-not-found error. If you use the --include compiler
option to include "/home/jfarris" in the include path as follows:

> spl --include "/home/jfarris" xyz.spl //absolute pathname

or

> spl --include ".." xyz.spl //relative pathname

the compiler will be able to find abc.pchs, and in the absense of any other problems, will compile

xyz.spl and the included code.

An alternative to using the --include compiler option (following this example) is to place a path to
abc.pchs in the include statement as follows:

#include "../spl_parent.spl" //relative pathname

or

#include "/home/jfarris/spl_parent.spl" //absolute pathname

The name under which the compiler finds the file is called the "full name". A full name may be

absolute or relative. For example, the "full name" of spl_parent.spl in the above example is

"/home/jfarris/spl_parent.spl".

The name of just the file without the path is called the "base name". For example, the "base

name" of spl_parent.spl is "spl_parent.spl".

To break cycles in the graph of file inclusions, the compiler refuses to read two files having the

same "base name". Thus, if two different files in two different directories have the same name, a
compilation will include only one of them, directly or indirectly.

Example:

Suppose you had the following #include statements in xyz.spl:

#include "../spl_parent.spl"

#include "../doc/spl_parent.spl"

In this case, the compiler will read one #include statement and ignore the other. A further

complication is that there is no absolute rule for determining which #include statement the

compiler chooses. Of course, this aspect of the compiler will only cause a problem if there are

two different *.spl files with the same name in your #include statements.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

3 - 4 U N D E R S T A N D I N G P E P P E R C O D E B A S I C S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

The "include" statement is implemented by reading in "precompiled header" files rather than by

reading the actual PepperCode and parsing it, although in concept either implementation would

have the same effect. If a PepperCode source file is named x.spl, the corresponding precompiled

header file is named x.pchs. PepperCode precompiled headers differ from those used by Borland

and Microsoft C++ compilers: the file x.pchs is independent of changes in any source file except

x.spl.

A PepperCode compilation normally generates a precompiled header file unless you use the "--

no_header" option on the command line.

Precompiled header files are architecture-independent.

Using two files that include each other

Normally you must compile any included *.spl file before you compile the file containing the

"#include" statement. If two files include each other, directly or indirectly, you must use the

command line option "--header_only" to generate the precompiled header for the first one; then
you can compile the second, and after that you'll be able to compile the first.

For more information and an example that shows what to do when two source files include

each other, see the --header_only compiler option.

Using #include instead of forward declarations

If you use an action or class in a *.spl file, and the action or class is defined in another *.spl file,

you must #include the other *.spl file. The only exception to this is the use of a forward action

declaration in lieu of a #include statement. This is not recommended but is allowed to maintain
backward compatibility.

For more information on the use of forward action declarations, see Declaring Actions:

Forward (or Incomplete) Action Declarations.

Action Example:

Using the example from Declaring Actions: Forward (or Incomplete) Action Declarations,

#include columns.spl is used instead of using a forward action declaration:

user.spl

#include "columns.spl"

action spl_main(input: float supply, input: float demand,

local: float difference)

{

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E B A S I C S 3 - 5

execute print_three_columns(:a supply, :b demand, :c (demand - supply));

}

columns.spl:

action print_three_columns(input: float a, input: float b, input: float c)

{

PRINTF("%15.5e\t%15.5e\t%15.5e", a, b, c);

}

Classes Example:

In the following example, you must #include the *.spl file containing the definition for

Parent_Class. You cannot use a forward class declaration in a situation like this because you are

referring to slots on the class. Also, please note that you do not need a forward class declaration

for Firstborn_Class. Starting in Release 8.0, it is unnecessary to have forward class or action

declarations for classes or actions that are defined in the same *.spl file.

If Parent_Class were defined in spl_parent.spl, the code would look like this:

#include "spl_parent.spl"

action spl_main()

{

Firstborn_Class.person_name = "Cain";

Parent_Class.person_name = "Adam";

PRINTF("%s is the parent of %s.\n",

Parent_Class.person_name,Firstborn_Class.person_name);

}

class Firstborn_Class : Parent_Class {

};

The file spl_parent.spl could be as simple as this:

class Parent_Class {string person_name};

#include and pre-8.0 versions

Included files are processed much differently by the Release 8.0 Compiler than they were in

previous versions. *.h files no longer need to be included because the libraries corresponding to

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

3 - 6 U N D E R S T A N D I N G P E P P E R C O D E B A S I C S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

*.h files are now included in the substrate. Including *.h files will cause no compiler problems,

but it will generate a warning.

For more information on the warning, see No longer necessary to include C++ files ending

in .h.

In Release 7.5, you had to include *.h files to describe human-written C++ functions. In both

Releases 7.5 and 8.0, you have to include *.spl files to describe PepperCode (SPL) functions;

however, in Release 8.0 the apparent inclusion of a *.spl file causes the compiler to actually use

the corresponding *.pchs file. Inclusion of *.spl and *.pchs files is unrelated to the use of .h files

in previous versions of PepperCode.

These changes are largely the result of the 8.0 Compiler's new compilation method. Starting in

Release 8.0, the compiler makes two passes over the source code. In the first pass, the compiler

processes inclusions using pre-compiled header (*.pchs) files. Then, in the second pass, the

compiler compiles the source code to object code.

Understanding Scopes and Identifiers

There are four different kinds of scope:

• Predefined scope: This includes all identifiers which are intrinsic to the language, such as

"Base_Class" or "ADD"

• Global scope: This includes all identifiers declared at the outer level, such as action

declarations, enum declarations, and class declarations. It is nested within the predefined scope.

• Local scope: each action creates a local scope. All parameters defined in an action belong to its

local scope. As such, they can only be used in that action or actions that are children of that

action.

• Foreach scope: Each "foreach" statement creates a nested local scope and declares its index

variable within that scope.

An identifier declared within a nested scope may duplicate one which is declared in an outer

scope, in which case it hides the outer declaration for the duration of the nested scope.

Within a scope, an identifier cannot be associated with two different definitions, except in the

case of enumeration constants, as described below.

The program may not refer to an identifier that is not associated with a definition which is
currently in scope, except in the case of slot default values, as described below.

Scope Example:

In the following example, xyz has local scope (3) and foreach scope (4) in action abc. The action
variable abc.o has global scope (2). PRINTF has pre-defined scope (1).

action abc(input: int i,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E B A S I C S 3 - 7

output: int o,

local: int xyz = 17,

local: oset[string] os)

{

PRINTF("Outside the loop xyz is an integer: %d", xyz);

foreach xyz in os

{

PRINTF("Inside the loop xyz is a string: %s", xyz);

}

PRINTF("Now xyz is an integer again: %d", xyz);

}

Writing PepperCode Comments

You can format your comments in C or C++ styles. Following is an example of C-style

comments:

/* This is

a multiple line

comment. */

a = /* A partial line comment */ 5;

Here is an example of C++-style comments:

// This is

// a multiple line

// comment.

a = 5; // Cannot be embedded

Writing PepperCode Documentation Comments

You can use #document and #end_document to form comments. These comments are a

PepperCode documentation feature. The compiler ignores the text between #document and

#end_document, so these comments do not have to be C or C++ style comments. It then writes

these comments to a *.doc file using the --doc compiler option. Each *.spl file containing

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

3 - 8 U N D E R S T A N D I N G P E P P E R C O D E B A S I C S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

comments formed with #document and #end_document gets a corresponding .doc file when

compiled.

Here is an example of #document and #end_document.

#document transaction_create_or_set_chip_env

You put your comments here.

These comments do not have to be enclosed in /* and */.

These comments do not have to begin with //.

These comments can continue for as many lines as you like.

#end_document transaction_create_or_set_chip_env

Notice that #document is followed by the name of the transaction (in this case,

transaction_create_or_set_chip_env). When you include the name of the transaction, the

compiler can associate these comments with that transaction, ensuring that the *.doc file tells you

which transaction these comments apply to.

Understanding #document error messages

You must include the transaction name in the #document and #end_document statements. If you

don't, you will get the error "Missing transaction name after "#document"." If you include the

transaction name with #document but not with #end_document, you will get a mismatch error.

For more information on these errors, see Missing transaction name after "%s".. and

Mismatch between "#document %s" at line %d and "#end_document %s"...

If you forget the #end_document statement, you may not get an error at all, but the compiler will

consider the remainder of your *.spl file to be a comment. This could cause logic problems that

may be difficult to diagnose. Conversely if you forget the #document statement, the compiler will

consider your comment text to be code. This could also cause logic problems that may be difficult

to diagnose. Here is the error received when the #document statement was commented out:

hello_world.spl:8: parse error

spl_main is a pre-defined action that is

^

(Skipping to ';' at 16:28)

hello_world.spl:17: parse error

}

^

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E B A S I C S 3 - 9

If you use the --doc compiler option, the compiler writes the text between #document and

#end_document to a file named <filename>.doc for all of the #document blocks in the *.spl file,

where <filename>.spl is the name of your source file. This file will contain the name of the

source file and the line number at which the documentation comments start, so you do not have to
put this into the comments.

Example: Hello World!

hello_world.spl:

#document spl_main

spl_main is a pre-defined action that is

executed automatically when the program is run.

It does not have to be called.

#end_document spl_main

action spl_main()

{

PRINTF("Hello, world!\n");

}

hello_world.doc:

#document spl_main, "hello_world.spl", 6:

spl_main is a pre-defined action that is

executed automatically when the program is run.

It does not have to be called.

#end_document spl_main

Format for #document comments

When you write #document comments for a particular transaction, you should place them just

before the code for that transaction. Use the following format:

Description: Describe the purpose of the transaction here.

Inputs: List the input parameters. For each parameter, list its name and data type, and describe

the parameter.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

3 - 1 0 U N D E R S T A N D I N G P E P P E R C O D E B A S I C S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Required Inputs: List the names of the required inputs here.

Input Defaults: List the names and default values for each input parameter that has a default

value.

Outputs: List the output parameters. For each parameter, list its name and data type, and describe

the parameter.

Instances Updated: List object instances in the server that are updated or whose slot values are

updated.

Here is an example.

#document transaction_add_mfg_attribute

Description: Adds an attribute.

Inputs: mfg_attribute_name STRING

The mfg attribute identifier.

class_name STRING

The class name of the attribute instance required. Must be a subclass of

Mfg_Attribute.

Required Inputs: mfg_attribute_name

Input Defaults: class_name "Mfg_Attribute"

Outputs: exit_msg STRING

An exit message to be read by the user.

Instances updated: Mfg_Attribute instance added.

#end_document transaction_add_mfg_attribute

Typically, #document documentation blocks like those in the examples are used only for

transactions. However, they can be used to document anything, and anything documented with
#document blocks will be written to the *.doc files when you use the --doc compiler option.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E B A S I C S 3 - 1 1

Using --doc and --header with documentation comments

Starting in Release 8.0, *.doc files are generated from #document blocks using the --doc compiler

option instead of the -d option. You can also generate them in standalone mode without actually
compiling the source code containing the #document blocks.

To generate only a *.doc file for a particular *.spl file, use the --header_only and --no_header
compiler options in conjunction with this compiler option.

Example:

To generate the file xyz.doc without actually compiling xyz.spl:

> spl --no_header --header_only --doc xyz.spl

To generate the file xyz.doc along with compiling xyz.spl (to an object file):

> spl --doc xyz.spl

Writing PepperCode Notice Comments

You can use #notice and #end_notice to enclose comments. Use these comments to form

a copyright notice. If you don’t include the #notice and #end_notice statements, the

compiler will give a warning message.

Here is an example of #notice and #end_notice.

#notice

Copyright 1994-1998 by Peoplesoft, Inc.

All U.S. and World rights reserved.

#end_notice

If you do not include a #notice statement block, you will receive a warning message.

For more information about the warning message received, see Source file should have a

"#notice" statement..

Understanding PepperCode Data Types

PepperCode has the data types shown in the following table. They are used in slot or action

parameter definitions.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

3 - 1 2 U N D E R S T A N D I N G P E P P E R C O D E B A S I C S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

PepperCode Data Types

Data type Syntax C/C++ comparison Description

int int name Corresponds to C long

In C++, would be

passed by value

Stores integer values. Signed two's

complement integer

float float name Corresponds to C

double

In C++, would be

passed by value

Stores float values. Doubleprecision

IEEE floating point

time time name No C equivalent

In C++, would be

passed by value

Represents a relative time value, in

seconds, that could be added to or

subtracted from the date type. It can

be a positive or negative value.

date date name No C equivalent

In C++, would be

passed by value

Stores an absolute point in time.

You cannot add date values together,

but you can add a date and time

value to get a new date; for example,

value = ADD(time, date);.

string string name Equivalent to C char *

In C++, would be

passed by value

Stores a sequence of characters (null-

terminated) that are bounded by

double quotes (" "). Usually used for

text. Null-terminated array of bytes

encoded in the UTF-8 version of

Unicode.

enum declaration:

enum

enum_name

{values};

reference:

enum<enum

_name>

name

Similar to C enum, but

PepperCode enums can

be compared to enums

only, while C enums

can be compared to

integers, too.

* Stores a logical grouping of named

constants, for example, enum

Boolean { TRUE, FALSE }; It can

be used to specify the only valid

values for a slot.

instance instance<cla

ss_name>

name

Corresponds to C++

object of type class

In C++, would be

passed by reference or

copy into

** Pointer to an instance of a

PepperCode class (object instance).

Gives quick access to the slots of an

object and is generally used to link

objects together.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E B A S I C S 3 - 1 3

class class<class_

name> name

Corresponds to C++

type class

In C++, would be

passed by reference

** Pointer to a PepperCode class

(object class). Most objects don’t

need to point to a class, since they

can query for their direct parent

class.

oset oset[data_ty

pe] name

Like a linked list Stores an ordered set (list) of a

specified data type—for example,

oset[int], oset[instance

<Base_Type>], and so on. It can

reference any data type besides oset.

An alternative to an oset of osets is

an oset of instances that point to

osets. Note that the list is ordered,

but not sorted.

action For action

parameters:

action<actio

n_name>

name

For action

parameters

and slots of

a class:

action<sche

ma_name>

name

Similar to C functions

and Pascal procedures,

but provide more than

the procedural

abstraction of functions

and procedures

Points to a PepperCode action,

which is an encapsulation of

PepperCode statements with input

and output to the statements. Or

points to an action schema that

actions can be based on. To

implement a method in a class, you

must specify a schema in the slot.

history history<data

_type>

name

No equivalent in any

language

Stores time-varying data of type

history<int>, history<float>, or

history<string>. The values of

histories cannot be changed by

PepperCode statements directly;

instead, they are changed by a side

effect mechanism.

* Starting in Release 8.0, two enumerations may use the same constant name(s).

Example:

enum Week { SUN, MON, TUES, WED, THU, FRI, SAT };

enum WorkWeek { MON, TUES, WED, THU, FRI };

** The term "pointer to" in the previous descriptions means that when you declare a variable of

type "instance" (for example) you do not create a PepperCode instance; you merely create a

variable capable of referring to a PepperCode instance which exists independently.

Example of creating a PepperCode instance:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

3 - 1 4 U N D E R S T A N D I N G P E P P E R C O D E B A S I C S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action create_bicycle

(input: int serial_number = required:,

input: string model_name,

input: string class_name,

// The following line creates a variable capable of referring

// to a PepperCode instance

output: instance<Bicycle> new_bike,

no_context:)

{

// Create an object(instance) with the CREATE_OBJECT function.

// model_name is the name of the object.

// (All named objects must have a unique name.)

// class_name is the name of the class the object belongs to.

new_bike = CREATE_OBJECT(model_name, class_name);

new_bike.serial_number = serial_number;

new_bike.model_name = model_name;

succeed();

}

Understanding PepperCode Performance Considerations

The following operations are resource- and computation-intensive processes:

• Creating and deleting objects. Try not to create unnecessary objects. If a feature is

implemented with fewer objects, it will be more efficient.

• List processing.

For more information about processing lists more efficiently, refer to Writing Osets.

• Several enums in a tight loop.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E B A S I C S 3 - 1 5

For more information about processing enums more efficiently, refer to Writing

Enumerations in Loops.

• String compares. Strings are compared character-by-character.

For more information, refer to Using EQ With Strings.

• Recursion. Because of the overhead involved with calling actions, don’t use recursion with

PepperCode. Instead, use an iterative algorithm or write a C++ function that uses recursion.

Using PepperCode Naming Conventions

A name for a class, action, slot, and parameter is a contiguous set of alphanumeric characters.

Underscores separate characters into “words,” for example, action_name. In addition, a class

name uses a capital letter at the beginning of each word, for example, Spl_Class. This helps you

to easily distinguish between class names and action parameters; for example, My_Class versus

my_class.

The C++ runtime functions should be in all capital letters.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S 4 - 1

C H A P T E R 4

Understanding PepperCode Classes

PepperCode objects are either classes or instances of classes. Often, however, the term "object" is
used loosely to mean "instance" and not "class".

A PepperCode class is a collection of members called "slots". Every slot has these attributes:

• name

• data type

• initial value

• an attribute called "class_slot:"

• an attribute called "side_effect:"

The programmer may declare that a class has a particular slot, or the programmer may declare

that the class inherits slots from zero or more parent classes. A class also has slots that are

predefined by the language itself.

A class implicitly inherits from the predefined class called "Base_Class". (Base_Class is pre-
defined starting in Release 8.0.)

To form the set of slots belonging to a class, we first make a set of all of the slots belonging to the

first parent class. Then we add all of the slots from the second parent class whose names do no

duplicate those already in the set, and repeat for each additional parent class. Next we add the

slots directly declared in the class. If the name of any of those duplicates that of a slot that is

already in the set, then the directly declared slot is allowed to override certain characteristics of

the parent class. It can change the data type, change the initial value, add the "class_slot"

attribute, or add the "side_effect:" attribute (this is called "specialization"). Finally we add any

slots predefined by the language whose names do not duplicate those already in the set.

Thus, if a class has the opportunity to inherit a slot "x" from more than one parent, it inherits that

slot from the parent that appears first in the list, and the remaining parents have no effect on that
slot.

Example:

In the example below, Homer and Marge are the "parents" of Bart and Lisa. Bart inherits

hair_color from Homer because Homer is the first parent on his inheritance list. Likewise, Lisa

inherits hair_color from Marge.

class Homer {

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

4 - 2 U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

string hair_color

string favorite_beer

};

class Marge {

string hair_color

string favorite_book

};

// Bart inherits hair_color from Homer

class Bart: Homer Marge {

};

// Lisa inherits hair_color from Marge

class Lisa: Marge Homer {

};

Every slot on a class is capable of storing a value. If the programmer specifies a value with an

"default:" clause, the slot is born with that explicit default value; otherwise, the slot is born with

an implicit default value. During execution, the program may assign a new value to a slot

belonging to the class.

The "class_slot:" attribute has no effect on the class itself, but does affect instances of the class.

The "side_effect:" attribute permits the slot to participate in a side effect function.

The programmer may "specialize" a slot which was inherited from a parent class by changing the

default value, or by adding the "class_slot:" attribute, or by adding the "side_effect:" attribute.

Such a slot inherits from the parent class those characteristics not specified by the programmer.

The programmer may not "specialize" the data type, because that creates an independent slot

which does not inherit any characteristics from any parent class.

You should use the side_effect slot only when it is needed. The only reason for not using it is that

it wastes memory and disk space. However, severe consequences can occur if you don't use the
side_effect slot when it is needed.

A class is a "first-class" object. The program can manipulate data on the slots of a class, and it

can manipulate variables of type class. A variable of type class is capable of referring to the class

itself or to any subclass of that class.

At runtime, the program can create a new class which inherits from one or more parent classes

(every class will inherit from Base_Class whether that is specified explicitly or not). However, it

cannot specialize a slot (although it can change the default value of a slot after the new class has

been created), nor can it create slots other than those inherited from the parents.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S 4 - 3

At runtime, the program can refer to the value of a slot on a class, and it can redefine the value of

that slot.

Classes can inherit redefined values. If a class inherited the value of a slot from a parent when it

was born, and the program has not subsequently redefined the slot on the child, then a change at

runtime to the value of the slot on the parent will propagate to the corresponding slot on the child.

In other words, the value of an inherited slot on a class is coupled to that of the slot on the parent

until it is "disconnected", either by specifying an explicit default value for the child slot at its

birth, or by assigning a value to the slot at runtime. The explicit default or the assignment will
"disconnect" the slot even if the redefined value is not different from the parent's value.

An instance of a class is an replica of the class which contains exactly the same set of slots as
does the class.

If a slot has the "class_slot:" attribute, then the instance does not have an independent copy of the

slot; instead, the copy belonging to the class appears as if it also belonged to the instance.

Changing the value of that slot on the class will change the slot on the instance too, and vice
versa.

If a slot does not have the "class_slot:" attribute, then the instance has an independent copy whose

initial value is copied from the corresponding slot on the class. (For this reason, a slot on a class

which does not have the "class_slot:" attribute is often called a "default value slot", because it
provides the initial value for the corresponding slot on the instance.)

Subsequent changes to the slot belonging to the class have no effect on the corresponding slot

belonging to the instance, and vice versa. In particular, once an instance is created, it is not

affected by the inheritance of redefined values described in connection with slots on classes.

The PepperCode object model is very different from the C++ object model:

• Classes are first-class objects. A C++ programmer may think of a class as incorporating a

special "hidden" instance which contains a copy of all of the slots defined on the class, whereas

true instances contain only the slots which do not have the "class_slot:" attribute.

• All inheritance in PepperCode is "virtual" in C++ terms. In the case of multiple inheritance, a

class contains only one copy of a particular slot, even if it could have inherited that slot from

multiple parents.

• PepperCode classes and instances do not have function members. A slot of type "action"

behaves like a C++ slot of type "pointer to function" in the sense that the program can redefine

it at runtime; it behaves like a C++ "virtual function" in the sense that even when the object is

masquerading as a member of one of its parent classes, the slot will have the action appropriate

to the true, runtime type of the object.

• PepperCode classes and instances exist in a global, dynamically-allocated, environment. There

is no static or automatic allocation for PepperCode objects, and no scoping. There are

automatic, scoped variables capable of pointing to PepperCode objects, however.

Writing New Class Definitions

Following is the syntax for a new class definition:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

4 - 4 U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

class new_class_name : parent_class_name1 [parent_class_name2 ...] {

data_type slot_name_n { [class_slot:] [side_effect:] default: value }

...

};

Any class_name or slot_name is a contiguous set of alphanumeric characters. A

class_name should have underscores and capital letters that separate characters into “words,” for

example, Spl_Class. A slot_name can use underscores to create words. This enables you to

easily distinguish between class names and slot names.

One or more parent_class_name(s) can be placed after a colon (:) and are delimited by a blank

space, for example, : Base_Class Mid_Class High_Class. In a new class definition, at least one

parent class must be specified. There must be a space after the colon (:).

Braces ({}), followed by a semicolon (;) contain the slots. If no slots are specified, the braces are

empty; for example:

class Their_Class : Base_Class { };

In Release 8.0 and later, class definitions can set default values for slots without a separate "slot"

statement.

Example:

The default value for i is assigned a value of 123 in the following class definition:

class c {

int i { class_slot: side_effects: default: 123 }

};

In PepperCode versions earlier than 8.0, default slot values must be placed in slot statements.

The value is assigned using the default: keyword. The object system provides default values at

object creation time, so there are no uninitialized slots.

Old syntax:

class new_class_name : parent_class_name1 [parent_class_name2 ...] {

data_type slot_name_n

...

};

slot new_class_name.slot_name_n { default: value [class_slot:] [side_effect:] };

...

Note that a class statement and all slot statements for that class must reside in the same file.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S 4 - 5

Understanding Default Values

If you omit slot statements, the compiler provides the following defaults for you:

• integer – 0 (zero)

• string – “default string”

• oset – empty list

• action – nil (attempting to execute this causes a runtime error)

• float – 0.0

• instance – Null_Instance

• class – Null_Class

You need to decide if these defaults are appropriate in your code. If not, you should provide a

default. For more information on Null_Instance and Null_Class, refer to a following section,
“Some Predefined Classes.”

Understanding Multiple Inheritance

When multiple parent classes are specified (called multiple inheritance), classes listed first after

the colon take priority when the new class inherits values and defaults. In other words, for :

Base_Class Mid_Class High_Class, if Base_Class and High_Class have specified a data type and

default value for the same slot name, the Base_Class type and value would be used.

Specializing Slots

If a slot of type class A is defined in the parent class, you can specialize it in the subclass with a

different type B, provided that B is a subclass of A. For example:

class A {};

class B : A {};

class C {

instance<A> foo

};

class D : C {

instance foo // specialize slot definition

};

You cannot specialize a slot of a primitive type, such as int or float, in a subclass declaration.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

4 - 6 U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Understanding Dot Notation

In slot statements, the slots are referred to as:

class_name.slot_name

This format is called dot notation. class_name is the name of the class and slot_name is the name

of the slot as specified in the slot definition.

For example:

class c {

int my_slot

};

slot c.my_slot { default: 155 };

For more information about dot notation, refer to Using Dot Notation in Expressions.

Declaring Classes

The following syntax is for class definitions. Only one definition may exist for a particular class

identifier. If a list of base classes appears, then this is a derived class, and a definition for each of

the base classes must precede this definition.

class <class identifier> { <class body> }

class <class identifier> : <base classes> { <class body> }

The class body consists of a list of slot declarations.

The list of derived-class slots is formed as described at the start of this chapter.

class <class identifier> ;

This is a forward (or incomplete) class declaration. It is compatible with any other class

declaration having the same identifier.

Forward Class Declarations

Forward class declarations are not recommended in Release 8.0, but they are still allowed to

maintain backward compatibility with previous versions.

Forward class declarations can be used only to inform the compiler of the existence of a class that

is defined elsewhere and only in the manner specified in the first example below. Of course, the

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S 4 - 7

compiler must have access to the class definition. If they are used for any purpose beyond this

limited use, an error will occur.

The following example illustrates how forward class declarations can be used:

class Second;

class First {

instance<Second> firstslot

};

The following example illustrates how forward class declarations cannot be used:

class Second;

action spl_main (local: string c_name)

{

c_name = Second.name;

}

In this example, execution of the code in this second example causes the following error:

The declaration of "Second" is incomplete.

For more information on this type of error, see The declaration of "%s" is incomplete..

Slot Clause List Statements

The following syntax is for slot clause list statements.

slot <classname> . <slotname> { <slot clauses> } ;

A slot clause list statement provides a slot clause list to add attributes to the normal declaration of

a slot which appeared within an earlier class statement. This quietly overrides the corresponding

attributes in the normal declaration. The complete declaration of the class must appear in the

same source file as the slot clause list statement. A default value specified in a slot clause list

statement must be compatible in data type with the normal declaration.

This statement is a convenience for use in situations where a derived class inherits a slot from a

base class but wishes to change only one attribute, such as the default value; it eliminates the need

to repeat the entire slot declaration within the derived class.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

4 - 8 U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Example:

class base {

int i { class_slot: default: 17; }

};

class derived: base {

};

slot derived.i { default: 18; }

If the default value is a string or an undefined identifier, and the data type of the slot is "action",

"class", or "instance", then the identifier is assumed to name an action, class, or instance, which

need not be declared in the current compilation. In this circumstance, a class or instance need not

exist until runtime, but it must exist before the first reference to the slot or the first instantiation of

the class containing the slot; otherwise, a runtime error will occur. In this circumstance, the

undeclared action must actually exist in some other compilation which will be linked into the

same program.

Slot Declaration Statements

A slot declaration consists of a data type and the slot name, optionally followed by a slot clause

list. For example:

int slotname

float another_slotname { default: 3.5 class_slot: side_effect: }

If a slot declaration does not provide a slot clause list, then a subsequent slot clause list statement

may provide one, but there must not be more than one slot clause list for a particular slot in a

particular class.

If the program does not specify an explicit default value for a slot via inheritance, or via a slot

clause list within the declaration, or via a separate slot clause list statement, then the data type

determines the implicit default value according to the following list. (Note that the implicit

default values for slots are different than the implicit default values for action parameters.
Implicit default values for action parameters are listed in Understanding Parameter Defaults.)

integer 0

string "default string"

instance Null_Instance

class Null_Class

action<schema_name> nil pointer

action<action_name> nil pointer

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S 4 - 9

float 0.0

oset empty list

enum<> nil pointer

Understanding Instance and Class Slots

The value for a slot is by default stored on its object instance and is called an instance slot. You

could also store the value of a slot on the object class; this is called a class slot. For an instance

slot, a copy of it is created each time an object instance is created. For a class slot, all object

instances use the same slot and value; it can be used for communication between objects. A

PepperCode class slot is like a C++ static data member or static member function—all instances

of the class read and write the same value for that slot.

To create a class slot, put the class_slot: keyword in a slot statement:

slot class_name.slot_name { class_slot: };

For example:

class Spl_Class : Base_Class {

int value_1

float value_2

string description

};

slot Spl_Class.value_1 { default: 10 class_slot: };

slot Spl_Class.value_2 { default: 99.345 class_slot: };

slot Spl_Class.description { default: “default” class_slot: };

Writing Temporary Objects

Typically, applications written in PepperCode provide the capability of saving objects to a disk

file called a snapshot. It’s useful to be able to tag certain objects so that the application knows

not to save them. Placing the keyword temporary_instances: at the end of the slot definition list

accomplishes this. For example:

class Temp_Element : Spl_Class {

int count

temporary_instances: // This is a temporary object

};

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

4 - 1 0 U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Using Predefined Classes

One of the reasons that PepperCode 8.0 is leaner and faster than the PepperCode of previous

releases is because more of its constructs are predefined. As such, they are in the predefined

scope. The following objects are declared by the compiler to be in the predefined scope:

class Base_Class {

string name;

string class_name { class_slot: }

string class_display_name { class_slot: }

};

class Null_Class: Base_Class {};

instance<Null_Class> Null_Instance;

class Base_Enum_Class: Base_Class {

string enumerator;

string enum_display_name;

};

As mentioned earlier, Base_Class is the PepperCode root class that has functionality needed by

the object system; for example, it provides utilities for communication to and from the Planning

graphical user interface (GUI). All objects must inherit, either directly or indirectly, from

Base_Class.

Every class and instance has a predefined readonly slot of type string called "name" which gives

the name of the class or instance.

The slot "class_name" gives the name of the class or, if used on an instance, the name of the class
to which the instance belongs. It is a readonly slot.

For more information in an example of using the class_name slot, see

GET_NAME_OF_CLASS.

The slot "class_display_name" is a readonly slot used for internationalization.

When you refer to this slot, the runtime system looks in the local language message table for the

string which corresponds to the name of the class. If found, it returns that string; otherwise, it

returns the name of the class. This slot is not visible from any instance of the class.

A slot "enum_display_name" of type string appears on each instance created by an "enum"

statement; it translates the value of the "enumerator" slot, which is the name of an enumeration

constant, into a local language. Otherwise, it has the same behavior and restrictions as

"class_display_name".

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S 4 - 1 1

C and C++ programmers tend to assume that NULL, the integer constant 0, and the value zero are

all interchangeable with the concept of a null pointer. (Actually, however, a C or C++

implementation need not represent a null pointer with the value zero.) In PepperCode, the null

instance isn’t represented by zero: it is a valid instance whose name is Null_Instance. The

PepperCode runtime function GET_NULL_INSTANCE returns this instance. Because the

compiler permits you to set an instance either to the null instance or to zero, it’s important to

distinguish between the two. For example, the following action will always fail:

action a (local: instance<c> ci)

{

ci = GET_NULL_INSTANCE();

if (EQ(ci, 0))

succeed();

ci = 0;

if (EQ(ci, GET_NULL_INSTANCE()))

succeed();

fail();

}

For more information and a description of GET_NULL_INSTANCE, refer to Accessing

C/C++ Functions.

Similarly, the null class is a specific class whose name is Null_Class, which isn’t the same as a

class whose value is 0.

Starting in Release 8.0, you are allowed to use the name of a class in an expression. However, we

have maintained backward compatibility in that you can still use the GET_CLASS C++

Functions to return the name of a class. Provided the compiler has seen a definition of a

particular class, you can use that class in an expression instead of calling

GET_CLASS_BY_NAME:

class some_class { int some_slot };

action spl_main ()

{

some_class.some_slot = 15;

}

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

4 - 1 2 U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Note: Assignment statements that use the name of a class in an expression can only be made

in an action.

Using Instance Names

All instances of a class have an intrinsic single name slot that is automatically initialized to

provide the name of the instance. Intrinsic, in this case, means that you don’t have to declare a

name slot on the class in order to get this slot. This intrinsic name slot is read-only so you

cannot change it. Each instance of a class should have a unique name; if you try to create a new

class or object with the same name as an existing class or object, the object system generates a

unique name for the object. The following example illustrates how objects are named:

class Named_Class { };

action named_object_test

(local: instance<Named_Class> named_object,

no_context:)

{

execute create_object(:object_name "animal",

:class_name "Named_Class");

named_object = create_object.new_object;

PRINTF("\n%s\n", named_object.name);

execute create_object(:object_name "vegetable",

:class_name "Named_Class");

named_object = create_object.new_object;

PRINTF("\n%s\n", named_object.name);

execute create_object(:object_name "mineral",

:class_name "Named_Class");

named_object = create_object.new_object;

PRINTF("\n%s\n", named_object.name);

succeed();

}

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E C L A S S E S 4 - 1 3

When you run this, it prints:

Enter an action call: B()

animal

vegetable

mineral

Result: (:RESULT 3)

As was mentioned earlier, slot name is read-only. The following code will fail:

execute create_object(:object_name "animal",

:class_name "Named_Class");

named_object = create_object.new_object;

named_object.name = "cat"; // This line will cause failure.

PRINTF("\n%s\n", named_object.name);

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 1

C H A P T E R 5

Understanding PepperCode Actions

An action is similar to a C function or Pascal procedure, but with very different semantics for

memory allocation and the lifetimes of variables and changes to variables, which is described

later. Following is an example of an action definition:

/* action */

action print_simple_string

/* action parameters */

(input: string pstring = "Null",

local: int string_length = 0,

output: int printed)

/* action body */

{

printed = 0;

string_length = STRLEN(pstring);

if (sting_length < 2) {

PRINTF("\nstring < 2");

fail;

}

else {

PRINTF("\n%s", pstring);

printed = 1;

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 2 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

succeed();

}

}

An action has a unique name that can be referenced from classes and other actions. It also has a

list of local, input, and output parameters and an action body containing PepperCode statements.

To execute an action from within another action, use an execute statement.

Writing Action Definitions

A PepperCode action is analogous to a C function or Fortran subroutine. It provides formal

parameters, local variables, and a series of executable statements.

Following is the syntax for a new action definition:

action <schema_name> action_name

(param_type: data_type param_name_1 = value_1,

...

param_type: data_type param_name_n = value_n,

context: | no_context:)

{

...

succeed(); | fail(); | leave();

}

Any action_name, schema_name, or param_name is a contiguous set of alphanumeric

characters; the name can have underscores that separate characters into “words,” for example,

spl_action.

schema_name is optional. If it is specified, put the name in angle brackets (< >).

Any previous declaration must match with respect to the presence or absence of a schema and (if

the schema has been defined with an action_schema statement) with respect to the name of the

schema.

For more information, refer to Writing Schemas.

The action parameter list is a group of parameter definitions enclosed in parentheses (()); if

there are no parameter definitions, empty parentheses are required. However, if you have an

action declaration, no parentheses appear in the action definition. A space separates the data_type

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 3

from the param_name. param_type always ends in a colon (:). Except for the last line in

the list, a comma separates each definition from the next. Optional default values are specified
with an equal sign (=); for example, local: string string_length = 0.

For more information, refer to Declaring Actions: Forward (or Incomplete) Action

Declarations and Writing Action Parameters.

If the optional no_context: keyword is included in the parameter list, no new context is created

when the action is executed. If this keyword is omitted, a new context is created before

execution, since the default is context:.

For more information, refer to Understanding Context.

PepperCode statements are placed inside the action body, which is contained by braces ({}). One

of the PepperCode exit statements, either succeed(); , fail();, or leave();, must also appear. These

statements exit the action and specify whether changes made to object values are accepted or

rejected.

For more information, refer to Understanding Context.

Following are examples of action definitions. The first example is a simple action that prints

“Hello There.”

action print_hello_there

() // No action parameters

{

PRINTF("\nHello There\n"); // Call C printf

succeed();

}

Here is a more general implementation of an action that prints text. It accepts a string to be

printed.

action print_simple_string

(input: string pstring, // Pass the string to be printed

no_context:) // Prevent context creation

{

PRINTF("\n%s\n", pstring); // Call C printf

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 4 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

succeed();

}

Following is a more complex example, showing an action with various types of action
parameters, defaults, and exit statements.

action print_simple_string

(input: string pstring = "Null", // Pass in the string to be printed

local: int string_length = 0, // Local variable with a default

output: int printed, // Show that the string was printed

no_context:) // Prevent context creation

{

printed = 0; // Initialize the output parameter

string_length = STRLEN(pstring); // Call C strlen

if (LT (string_length, 2)) { // If the length is less than 2,

PRINTF("\nstring < 2"); // print a warning

fail(); // and fail from the action.

}

else { // If not less than 2,

PRINTF("\n%s", pstring); // call C printf

printed = 1; // set the output variable

succeed(); // and succeed from the action.

}

}

Incomplete and Forward Declarations

PeopleSoft allows two exceptions with regard to the parameter list. First, for backward

compatibility, this definition may omit the parameter list if a previous declaration did not omit the

parameter list; we treat this as if this declaration had the same parameter list as the previous one.

For more information, and another example, see Declaring Actions: Forward (or Incomplete)

Action Declarations.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 5

Example:

action<schema1> uses_schema1(input: string s = "It is also the definition.");

// This declaration works because it has a parameter list

// and the definition does not.

action<schema1> uses_schema1

{

PRINTF("%s%s",s1,s);

};

Second, if the previous declaration has no local parameters, this declaration may have local

parameters.

action <optional schema> <identifier> ;

This is an incomplete declaration. It declares that an action exists having the specified name, but

we know nothing about its parameter list. Any previous declaration must not have a body or

parameter list, and must match with respect to the presence or absence of a schema and (if the

schema is present) with respect to the name of the schema.

action <optional schema> <identifier> <parameter list> ;

This is an incomplete declaration. It declares that an action exists having the specified schema

and body. Any previous declaration must match with respect to the presence or absence of a

schema and (if the schema is present) with respect to the name of the schema. Any previous

declaration must either have an equivalent parameter list or no parameter list. Any previous

declaration must not have a body.

It is unnecessary (and undesirable) to put local parameter declarations into an incomplete or

"forward" action declaration. The preferred style is to put all the non-local variables in both the

declaration and definition of the action, but to put local variables in the definition only. For

example:

action a(input: int i, inout: int io, output: int o);

action a(input: int i, inout: int io, output: int o, local: l)

{

succeed();

}

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 6 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Avoiding Incomplete Declarations

Preferred programming practice is to avoid incomplete declarations by including "*.spl" files. In

fact, if you include the *.spl file containing an action definition, you do not need to make a

forward action declaration for it. Thanks to the "precompiled header" feature of the compiler,

including a "*.spl" file uses far fewer system resources than in previos PepperCode versions.

Because the compiler makes two passes over the source file, it allows the use of an action to

precede the definition if both occur in the same file. This also applies to the use of classes.

As you probably know from C++, a pre-compiled header file contains all of the action and class

header information. These inclusions are resolved and the compiler determines what actions and

classes have been defined in the first pass of the compiler over the source code before

compilation to object starts.

When you do use an incomplete declaration, preferred programming practice is to put all local

declarations in the parameter list belonging to the definition and none in the parameter list

belonging to the incomplete declaration. This allows programmers to add or delete local

parameters without having to edit two different parts of the program; and without changing the

modification date of the file containing the incomplete declaration (assuming the incomplete
declaration and the definition are in separate files).

An incomplete declaration with local parameters will cause a warning message about obsolete
coding practice; so will a definition that omits the parameter list.

Matching Parameters and Parameter Lists

Two parameter lists match if all keyword parameters match, disregarding order.

Two keyword parameters match if their keyword-parameter types, names, data types, and

initializations match.

Using context:, no_context:, and readonly:

Within the action parameter list, only one of the "context:", "no_context:", and "readonly:"

reserved words may appear. The compiler may choose to implement "readonly:" by creating a

context and forcing it to fail at runtime, or by using the parent context but ensuring that no

changes are made.

After taking the union of the set of parameters defined by the action schema and the set of

parameters defined by the action's own parameter list, no two arguments may have the same

name, with one exception: an action may specify either "context:", "no_context:", or "readonly:"

even if one of those words appears in the action schema parameter list. In that case, the action
overrides the action schema.

For example, mutually recursive actions A and B could be coded thus:

action a(input: int i);

action b(input: int i) { ... }

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 7

action a(input: int i, local: float f) { ... }

Writing Action Parameters

Here is the syntax for action parameters.

<category> <type_decl> <id>

<category> <type_decl> <id> = <expression>

input: <type_decl> <id> = required:

inout: <type_decl> <id> = required:

The <category> may be "input:", "output:", "inout:", or "local:", indicating the following

behavior:

Scenario input output inout local

Caller can pass

actual argument

in invocation?

Y Y Y N

Caller can alter

this using dot

notation?

N N N N

Caller can read

this using dot

notation?

N Y Y N

Callee can alter

this?

N Y Y Y

Callee can read

this?

Y Y Y Y

Passing Arguments: Considering Data Type

Output Category Example:

The comments referring to "row" refer to the table above.

action spl_main(local: int lo)

{

action_output.o = 6; // ERROR (caller cannot alter this) [2nd row]

execute action_output(:o lo); // Caller can pass arg in invocation [1st row]

PRINTF("%d", action_output.o); // Caller can read result [3rd row]

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 8 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

PRINTF("%d", lo);

}

action action_output(output: int o)

{

PRINTF("%d", o); // Callee can read this (will see the default) [5th row]

o = 5; // Callee can alter this [4th row]

}

Using required: Keyword as Explicit Default Value

The required keyword, new for Release 8.0, is a way of requiring that a value be assigned to

certain input parameters when calling an action. If you use "required:" as the explicit default

value of an action input or inout parameter, the compiler and action interpreter will force the

caller to pass an explicit actual argument.

Example:

The required: keyword is assigned as the default value for quantity.

action counter(input: int quantity = required:)

{

PRINTF("%d\n", quantity);

}

action spl_main()

{

execute counter();

}

Executing this program causes the following error:

You must supply a value for "required:" parameter "quantity"

If you assign a value to quantity as in the following example, the error goes away:

action counter(input: int quantity = required:)

{

PRINTF("%d\n", quantity);

}

action spl_main()

{

execute counter(:quantity 15);

}

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 9

Understanding non-local action parameters

If a parameter has type "action", and the parameter is not "local:", then the data type must refer to

an action schema rather than a specific action.

Example:

You are not allowed to do either of the following in a parameter list declaration:

input: action alternate_repair

output: action alternate_repair

In the action definition for action one_pass_inventory_constraint_repair, the following input

parameter is declared (this type of parameter list declaration is allowed):

input: action<constraint_repair> alternate_repair,

In this declaration, "constraint_repair" is an action schema, and "alternate_repair" is not the name

of an actual action but an input variable that can be used to pass an action into action

one_pass_inventory_constraint_repair. The action passed in must be an action that has

action_schema "constraint_repair" in its definition.

The action "rm_repair_explode_planned_orders_only" is passed into

one_pass_inventory_constraint_repair using the following execution statement (This execution
statement was copied from action default_gs_dispatch.):

execute one_pass_inventory_constraint_repair(

:constraint_class constraint_class,

:deconflict_env deconflict_env,

:use_alternate_repair 1,

:alternate_repair rm_repair_explode_planned_orders_only);

Notice that this execute statement sets input variable "alternate_repair" equal to action

"rm_repair_explode_planned_orders_only." This means that if you say "execute alternate_repair"

in action "one_pass_inventory_constraint_repair," you will execute action

"rm_repair_explode_planned_orders_only" (This is, of course, true only for the execution

statement above and only while it is in the process of execution.).

Understanding Parameter Defaults

If, when an action is invoked, the caller supplies no actual parameter corresponding to a particular

formal parameter, the program attempts to use a default value. This applies to all four categories.

The rules for determining the default value are these (in order):

1. If the declaration of the parameter used the optional "= <expression>" construct, that

expression provides the default value. The <expression> must be a literal or identifier, and its

data type must be one which could legally be assigned to the formal parameter (see

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 1 0 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

"Assignment"). In the example below, "Ford" is the default for "model_name". (It is intended

that the compiler someday permit general constant expressions here.)

If the data type is "instance", the expression may be an undeclared identifier which names an

instance that will be created at runtime (This would be new_car in the example below.);

otherwise, the identifier must name a declared entity. Notice that these rules are stricter than

the corresponding rules for the explicit default value specified by the slot "default:" clause.

Example of <expression> for types string and instance:

action create_car(input: string model_name = "Ford",

output: instance<Automobile> new_car){<body>}

2. If the default is not specified in the declaration of the parameter, the program uses an implicit

default value determined by the data type as follows.

integer 0

string nil pointer

instance nil pointer

class nil pointer

action<schema_name> nil pointer

float 0.0

oset empty list

action<action_name> action_name

enum<> nil pointer

Note that the implicit default values for action parameters are different than the implicit

default values for class slots.

For more information about implicit default values for class slots, see Slot Declaration

Statements:

3. If the declaration uses the "= required:" construct, the compiler (or, at runtime, the action
interpreter) reports an error.

For more information about the error message, see You must supply a value for "required:"

parameter "%s".

It is intended that the caller should read "output:" and "inout:" parameters only after invoking the

action, but such a restriction is not in general enforceable by static analysis. If the caller violates

this restriction, then either it sees the default value, or a runtime error occurs.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 1 1

Understanding How Parameters Behave With Execute

When you invoke an action with an "execute" statement, the parameters shall behave as if the

following steps occurred in order:

1. Assign to formal input: and inout: parameters from any actual parameters provided by the

caller

2. Assign default values to remaining input:, output:, and inout: parameters

3. Invoke the action being called

4. Allocate local: parameters and assign their default values

5. Execute statements in the body of the action being called

6. Deallocate local: parameters

7. Return from the action being called

8. Assign from formal output: parameters to any actual parameters provided by the caller.

Notice that if you specify an actual output parameter in an "execute" statement, and then use the

<action>.<output_parameter> notation in an assignment statement, the assignment generated by

the "execute" statement occurs first. Also notice that the "execute" statement does not assign to an

actual "inout" parameter after returning from the action; this irregularity preserves compatibility

with with original PepperCode compiler.

If an action uses "required:" for any parameter that is not inherited from a schema, then you may

not assign that action to a slot on an object. Also, you may not pass that action as an actual

parameter when invoking another action, because in those cases it would be impossible to supply

the required value when invoking the action via the slot or formal parameter.

In the following example, action "counter" will be evoked by spl_main. What happens in each of

the eight steps above will be explained in the eight steps listed below the example.

action counter(input: int dummy,

input: int quantity = required:,

local: int i,

output: int o)

{

PRINTF("quantity equals %d (passed in from spl_main).\n", quantity);

PRINTF("dummy equals %d (by default).\n", dummy);

PRINTF("local parameter i equals %d (by default).\n", i);

PRINTF("default value of o equals %d.\n", o);

// o, which will be passed to spl_main, is assigned a value of 5.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 1 2 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

o = 5;

}

action spl_main(local: int lo)

{

PRINTF("default value of lo equals %d.\n", lo);

// lo = 0

execute counter(:quantity 15, :o lo);

// lo = 5

PRINTF("After returning from counter successfully, lo equals %d.\n", lo);

}

When the action "counter" is executed in spl_main (following the numbered list above):

1. Integer "quantity" is assigned a value of 15.

2. Integer "dummy" is assigned a value of zero by default (see default values list above).

3. action "counter" is invoked.

4. Space is allocated for local parameter "i", and it is assigned a default value of zero.

5. PRINTF commands in "counter" are executed, the the output parameter o is assigned a value

of 5.

6. Local parameter i is deallocated.

7. action counter returns to spl_main.

8. lo, which was passed to counter (child action) as the value of counter's output parameter o, is

now passed the value of 5. lo will be assigned this new value only when counter returns

successfully. If counter were to fail, lo would not change to the new value. Possible failure is

the reason that lo keeps its original value until counter returns.

Action Parameters are No Longer Static

In the Release 7.5 (and earlier) compiler, the first call to "non_static" in the example below would

see "5" as the value of "x", but the third call would see "17" because the value "17" was "left

over" from the previous call. In the Release 8.0 compiler, the first and third calls will both see

"5", because that is the default value for "x" wherever you don't specify a value for x in the action

invocation.

action non_static(input: int x = 5,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 1 3

input: string count)

{

PRINTF("This is the %s time non_static has been run. x = %d.\n",count,x);

}

action spl_main()

{

execute non_static(:count "1st");

execute non_static(:count "2nd", :x 17);

execute non_static(:count "3rd");

}

Running this program yields the following output:

This is the 1st time non_static has been run. x = 5.

This is the 2nd time non_static has been run. x = 17.

This is the 3rd time non_static has been run. x = 5.

By the way, this code will compile and run on the Release 8.0 compiler, as written.

Writing Schemas

A schema is a common structure for action parameters. It allows actions to be grouped by

function or associated by type, and reduces the duplicate definition of parameters. An action can

have action parameters from a schema, from its own parameter list, or both. A schema can also

contain keywords that are placed in a parameter list. A schema is similar to a C typedef for a

pointer to a function type—for example, typedef int (*)(int, char);.

A schema is also used to declare a slot of type action. This type of slot is similar to a C++

function member.

The syntax for a schema definition is the following:

action_schema schema_name (param_list);

A calling action can use either of the following parameter definitions to refer to actions that have

a schema:

local: action<schema_name> param_name

local: action<schema_name> param_name = action_name

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 1 4 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

For example, if you were to define a schema for the action print_simple_string, shown in a

previous section called “Action Definitions,” you could use the following definition:

action_schema print_str

(input: string pstring = "Null",

output: int printed,

no_context:);

The action definition could be revised as follows:

action <print_str> print_simple_string

(local: int string_length = 0)

{

printed = 0;

string_length = STRLEN(pstring);

if ((string_length < 2) {

PRINTF("\nstring < 2");

fail();

}

else {

PRINTF("\n%s", pstring);

printed = 1;

succeed();

}

}

And the parameter definition in the action print_simple_strings could also be revised:

For more information about the original listing of action print_simple_strings, refer to

Writing Action Parameters.

action print_simple_strings

(local: action<print_str> print_string = print_simple_string,

no_context:)

{

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 1 5

execute print_string();

execute print_string(:pstring "String Number 1");

execute print_string();

execute print_string(:pstring "A");

execute print_string(:pstring "Null");

execute print_string();

succeed();

}

For more information about the use of schemas, refer to Writing Methods.

Action Schema Declarations and Definitions

An action schema describes a set of arguments.

action_schema <identifier> <parameter list> ;

This defines that an action schema exists have the specified parameter list. Any previous

definition must match with respect to the parameter list. No two parameters may have the same
name, and only one of the reserved words "context:", "no_context:", and "readonly:" may appear.

action_schema <identifier> ;

This is an incomplete declaration. Using this type of declaration in Release 8.0 PepperCode will

cause a parameter list error.

For more information on the error, see Action should have a parameter list..

Declaring Actions: Forward (or Incomplete) Action Declarations

The use of forward action declarations is not recommended. Because of the compiler's new

method for processing inclusions, forward action declarations are no longer necessary. The

suggested method for gaining access to an action definition (so you can execute the action) is to

include the *.spl file containing it. If the action definition is in the same file, just later on in the

file, you don't need a forward action declaration at all, thanks to the two passes of the Release 8.0
Compiler.

The forward action declarations used in Release 7.5 are still allowed.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 1 6 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

For more information on the Release 7.5-type forward action declarations, see Declaring

Actions: Forward (or Incomplete) Action Declarations.

Starting in Release 8.0, there are new rules for local parameter declarations and forward action

declarations. They are simpler and more like C++. Parameter lists may now be placed in both the

action declaration and the action definition. These parameter lists must, however, match with

respect to non-local variables. It is unnecessary (and undesirable) to put local parameter

declarations into an incomplete or "forward" action declaration. The preferred style is to put all

the non-local variables in both the declaration and definition of the action, but to put local
variables in the definition only.

For example:

action a(input: int i, inout: int io, output: int o);

action a(input: int i, inout: int io, output: int o, local: l)

{ succeed();

}

The Release 8.0 Compiler considers these two declarations to be perfectly compatible, because

the definition is allowed to have local variables that do not appear in the declaration. Keeping

local variables out of the declaration helps avoid unnecessary recompilation when you change

local variables. (Declaring local variables in the forward declaration is allowed but not

recommended.)

Both of the following examples use this new type of forward action declaration. They are very

much like the forward action declarations of previous PepperCode versions. The only difference

between this type and the type used in previous versions is that the action definition and the
action declaration both have parameter lists.

The compiler must see a declaration or definition of "print_three_columns" before it can be

called. The compiler can "see" action print_three_columns with a forward action declaration in

two different ways:

• Example 1: The *.spl file containing the action declaration is included in the file that executes

the action. This is a C++ style of programming. In this example, this would be

"dcl_columns.spl". Including the action declaration file is discouraged in Release 8.0 for

reasons that are explained in the example.

• Example 2: The forward action declaration is placed in the file where the action is being

executed, in lieu of including the *.spl file containing the action definition.

Example 1: Using a C++ style of programming, we include the file that provides the declaration

of print_three_columns instead of the file that provides the definition. C++ doesn't let you include

the file containing the definition here, but PepperCode does, so we could just as well have

included "columns.spl", eliminating the need for "dcl_columns.spl" entirely, and eliminating the

opportunity to cause an error by letting the definition and declaration get out of synch.

user.spl:

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 1 7

#include "dcl_columns.spl"

action first_user

(input: float supply,

input: float demand,

local: float difference)

{

execute print_three_columns(:a supply, :b demand, :c (demand - supply));

}

Anybody who wants to call print_three_columns can include this file (which provides a

declaration) instead of columns.spl (which provides a definition). This works only if the

declaration and definition match with respect to all variables but local variables.

dcl_columns.spl:

action print_three_columns(input: float a, input: float b, input: float c);

By including dcl_columns.spl in columns.spl, we allow the compiler to check that the declaration

and definition match (a mismatch would cause a malfunction in the code which includes

dcl_columns.spl and which invokes print_three_columns). If you forget this step, there's a danger

that someone will modify "columns.spl" without modifying "dcl_columns.spl", causing an error

that the compiler cannot possibly detect.

columns.spl

#include "dcl_columns.spl"

action print_three_columns(input: float a, input: float b, input: float c)

{

PRINTF("%15.5e\t%15.5e\t%15.5e", a, b, c);

}

Since columns.spl includes dcl_columns.spl and dcl_columns.spl cannot be compiled

separately, dcl_columns.spl must be compiled with the --header_only option before

compiling columns.spl.

Example 2: We place the forward action declaration in user.spl in lieu of including the *.spl file

containing the action definition.

user.spl

action print_three_columns(input: float a, input: float b, input: float c);

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 1 8 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action first_user(input: float supply, input: float demand,

local: float difference)

{

execute print_three_columns(:a supply, :b demand, :c (demand - supply));

}

columns.spl:

action print_three_columns(input: float a, input: float b, input: float c)

{

PRINTF("%15.5e\t%15.5e\t%15.5e", a, b, c);

}

Note that in Example 2, we do not have to include dcl_columns.spl in columns.spl. Also, the

forward action declaration in user.spl takes the place of including columns.spl. We are, however,

limited by both of these methods in that the parameter lists for the action declaration and the

action definition must match with respect to non-local variables.

The rules for forward class declarations have not changed. Forward class declarations are very

different than forward action declarations.

For more information on forward class declarations, see Forward Class Declarations.

For more information on the mismatched parameter error that can be caused by improper

forward action declarations, see the error message Mismatch in parameter "%s" (see

%s:%d)..

Executing Actions

To execute an action within the action body of another action—referred to as the calling action—

use the following syntax:

execute action_name (parameter(s));

In the calling action, action_name must be defined as a local parameter of type action:

local: action<action_name> param_name

Input parameters are listed by keyword, not position. In addition, you can omit parameters. The

syntax for each input parameter is:

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 1 9

:keyword value

keyword is the name of the parameter as defined in the action that is executed.

The following example illustrates these concepts. Here is an action that will be executed:

action add_three_ints

(input: int arg1 = 0, // Three input parameters

input: int arg2 = 0,

input: int arg3 = 0,

output: int result, // One output parameter

no_context:)

{

result = arg1 + arg2 + arg3;

succeed();

}

The following action executes the action add_three_ints:

action add_some_ints

(local: action<add_three_ints> add_three_ints,

no_context:)

{

execute add_three_ints(:arg1 1, :arg2 1, :arg3 2);

PRINTF("\nResult is: %d\n", add_three_ints.result);

execute add_three_ints(:arg2 1, :arg3 2, :arg1 1);

// Notice that arguments don’t need to be in positional order

PRINTF("\nResult is: %d\n", add_three_ints.result);

succeed();

}

New Rule for Invoking Action

In certain cases, there is no longer a need to declare a local action. However, PeopleSoft has

maintained backward compatibility in that you can still declare a local action in these cases. As

long as you define an action in the current scope and are not using it as a variable, you can invoke

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 2 0 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

it without declaring it as a local parameter. Please note that this new rule applies only to actions

declared as local. If you want to declare an input, output, or inout variable of type action, you will

have to use an action schema for its data type.

For more information and an example of how to do this, see Writing Action Parameters.

Example:

action b();

action a() {

execute b();

}

instead of:

action b();

action a(local: action b) {

execute b();

}

Passing Output in execute Statement

This section explains the new Release 8.0 rule for returning output values in execute statements.

However, we have maintained backward compatibility in that you can still pass output using the

method of previous versions. In an "execute" statement, you can pass an actual argument to an

"output:" parameter instead of writing an explicit assignment after the "execute" statement (for

backward compatibility, you must still write an explicit assignment for an "inout:" parameter.)

Example:

For the action

action some_action(output: int o) {<body>};

Starting in Release 8.0, you can pass output in the following way:

action spl_main ()

{

execute some_action(:o some_variable);

}

In previous releases, you could only pass output in the following way:

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 2 1

action spl_main ()

{

execute some_action();

some_variable = some_action.o;

}

Writing Methods

Methods on objects are implemented as a slot that is the name of the method. This slot is usually

a class slot, so it is shared by all instances of the class. The value of the method slot is the name

of a PepperCode action to call that implements this method. Note that the actions that implement
a particular method must share the same action schema.

When PepperCode code calls a method, the underlying code looks up the ActionSchema for the

named action, and creates a C++ method call to the action’s Action_Execute() method, passing a

data structure that holds the parsed parameters to the actual C++ code.

In a class definition, a slot of type action is an implementation of a PepperCode method, like a

C++ member function or method:

action<schema_name> name

The action method stored in an action slot can be referenced and executed. Any action of that
schema type can be assigned to that slot.

The dispatch of a method—the process of calling the correct method associated with a class—is

not performed automatically. Instead, the value of a local action parameter is defined and the

action is called through the local parameter.

Following are three examples illustrating these concepts.

Implementing A Method: Example 1

Following is an example of how to implement a PepperCode method. It includes storing actions

on objects and dispatching those actions. The action that will be executed uses the schema

print_str:

action_schema print_str

(input: string pstring = "Null",

output: int printed,

no_context:);

Here are the actions that use this schema:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 2 2 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action<print_str> print_string

()

{

PRINTF("\n%s", pstring);

printed = 1;

succeed();

}

action<print_str> print_indented_string

()

{

PRINTF("\n %s", pstring); // Indent the string

printed = 1;

succeed();

}

Next, a class has a slot that stores an action of schema type print_str. That slot has a default value
of action print_string:

class Printable_Object : Spl_Class {

string description

action<print_str> print_action

};

slot Printable_Object.description { default: "default description" };

slot Printable_Object.print_action { default: print_string class_slot: };

Note: In the common case, each instance of a particular class will have its action slots set to

the values as every other instance of that class. In that case, it is important to use the

class_slot: keyword on each of those slots to reduce the amount of memory consumed. Only

if different instances will store different actions on the same slot should you omit that

keyword.

Finally, the actions are executed from another action:

action dispatch_print_string

(input: instance<Printable_Object> printable_object,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 2 3

local: action<print_str> print_string_action,

output: int printed,

no_context:)

{

// Retrieve print string from object

print_string_action = printable_object.print_action;

// Call the action

execute print_string_action

(:pstring printable_object.description);

// Retrieve and set the output variable

printed = print_string_action.printed;

succeed();

}

Implementing A Method: Example 2

Here is an example that illustrates both the use of action schemas and polymorphism. A classic

example of polymorphism is a program that draws shapes such as circles, squares, and triangles.

Good object-oriented design suggests that the code that draws a list of objects should not need to

know the shape of each object or how to draw a particular shape. Instead, it should ask each

object to draw itself, and the code packaged within each object should know the shape of that

object and how to draw it.

This example uses an action schema draw to provide the “signature” for a family of actions that

draw shapes. Then it creates three actions belonging to this family: draw_circle, draw_square,

and draw_triangle. In a realistic example, each action would contain code specific to that shape,

but for simplicity this example just prints a message.

The example also creates a parent class shape and three subclasses for the specific shapes.

Default statements associate the appropriate action with each subclass: for example,

draw_triangle is associated with triangle. Notice the use of no_context: in each schema statement

to avoid wasting memory.

The action creator creates an instance of each of the possible shapes and invokes the action

drawer to draw each shape. Notice that drawer merely asks each object to draw itself: it does not

need to know what shape the object has or how to draw that shape. You could add a new kind of

shape such as an ellipse without altering drawer at all, which is evidence that this mechanism

achieves the goals of polymorphism and encapsulation.

// class declaration

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 2 4 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

class shape;

// See Understanding Operators And Functions for information on the

// PepperCode runtime functions listed here.

cpp_function instance<shape> CREATE_OBJECT(string, string) "cpp_create_object";

cpp_function void PRINTF(string) "printf";

cpp_function void INIT_CLASSES(void) "initialize_spl_objects";

// Generic action to draw a shape

action_schema draw

(input: instance<shape> the_shape,

no_context:);

// Specific action to draw a circle

action<draw> draw_circle()

{

PRINTF("Draw circle\n");

succeed();

}

// Specific action to draw a square

action<draw> draw_square()

{

PRINTF("Draw square\n");

succeed();

}

// Specific action to draw a triangle

action<draw> draw_triangle()

{

PRINTF("Draw triangle\n");

succeed();

}

// Generic class for shape; specific classes for circle, square,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 2 5

// triangle, each having the appropriate action or "method"

class shape {

action<draw> draw_myself

};

class circle: shape {};

slot circle.draw_myself { default: draw_circle class_slot: };

class square: shape {};

slot square.draw_myself { default: draw_square class_slot: };

class triangle: shape {};

slot triangle.draw_myself { default: draw_triangle class_slot: };

// Tell the shape to draw itself; this executes draw_circle, draw_square,

// or draw_triangle—whichever "method" is associated with this instance

// of the polymorphic shape

action drawer

(input: instance<shape> the_shape,

local: action<draw> draw,

no_context:)

{

draw = the_shape.draw_myself;

execute draw(:the_shape the_shape);

succeed();

}

// Creates three objects which can draw themselves using the appropriate

// "method"

action creator

(local: instance<shape> chalk,

local: instance<shape> trafalgar,

local: instance<shape> bermuda)

{

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 2 6 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

chalk = CREATE_OBJECT("chalk", "circle");

trafalgar = CREATE_OBJECT("trafalgar", "square");

bermuda = CREATE_OBJECT("bermuda", "triangle");

execute drawer(:the_shape chalk);

execute drawer(:the_shape trafalgar);

execute drawer(:the_shape bermuda);

succeed();

}

To run this code, follow the compilation and linking process.

For more information, refer to Compiling And Linking PepperCode.

First, link it into an existing Production Planning software product that generates an executable

called standalone. Running the program with the command line option -I causes it to prompt on

the keyboard for a transaction to be invoked by the Action Interpreter. Type creator() to invoke

the test case and then :exit to leave the interpreter and end the program:

shell> ./standalone -I

Checking ResponseAgent configuration......Done Initializing Runtime Object

System...

...Done

Setting app name to 'standalone'

Initializing standalone...

Initializing communication buffer and hash table...MJD...Done

Creating slot classes......Done

Creating slot specifier classes......Done Initializing Schedule......Done

Creating the Base Class......Done

Creating form classes......Done

...Done

Entering interpreter mode...

Enter an action call: creator()

Draw circle

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 2 7

Draw square

Draw triangle

Result: (:RESULT 3)

Enter an action call: :exit

...Done.

shell>

Implementing A Method: Example 3

This example of PepperCode code is followed by a section-by-section analysis of that code.

// Forward declaration of the class graphic_object

class Graphic_Object;

// Declaration of the type of the method.

action_schema Display (input: int file_handle, instance<graphic_object> this);

// Definition of the base object class

class Graphic_Object {

int x;

int y;

action<Display> print_method;

};

// Define the action that executes for this method for the Graphic_Object class

slot Graphic_Object.print_method {:default_value default_print};

// Create a subclass of the Graphic_Object class. This subclass has a new

member variable.

class Circle : Graphic_Object {

int radius;

};

// Override the default action with a new one for the print_method.

slot Circle.print_method {:default_value default_print};

Create a second subclass of the Graphic_Object class. This as 2 new member

variables.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 2 8 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

class Square : Graphic_Object {

int width;

int height;

};

// Note that you DO NOT override the print_method.

// Implement the actual action for the default print method.

action<Display> default_print ()

{

FPRINTF (file-handle, “x = %d, y = %d\n”, this.x, this.y);

};

// Implement the action for the circle print method.

action<Display> circle_print (

local: instance<Circle> this_circle)

{

this_circle = this; // Unsafe cast from graphic_object to a circle;

FPRINTF (file-handle, “x = %d, y = %d radius = %d\n”, this.x, this.y,

this_circle.radius);

};

// Implement a transaction to test this code out.

action<Transaction> transaction_test (

local: instance<Graphic_Object> my_instance,

local: action<Display> print_method)

{

// Assume an action exists to create a graphic object

execute create_graphic_object (x: 10 y: 15);

// Grab the new object, and cast it to the base class.

my_instance = create_graphic_object.new_instance

// Call the method.

//

// Note that a future version of the compiler should support

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 2 9

// execute my_instance.print_method (file_handle: file_handle);

//

print_method = my_instance.print_method();

execute print_method (this: my_instance file_handle: file_handle);

// Assume a action exists for creating circles.

Execute create_circle (x: 1 y: 2 radius: 3);

// Grab the new object and cast it to the base class.

My_instance = create_circle.new_instance;

// Call the print_method

print_method = my_instance.print_method;

execute print_method (this: my_instance file_handle: file_handle);

// Assume a action exists for creating squares.

Execute create_square (x: 4 y: 5 width: 6 height: 7);

// Grab the new object and cast it to the base class.

My_instance = create_square.new_instance;

// Call the print_method

print_method = my_instance.print_method;

execute print_method (file_handle: file_handle);

};

Following is an explanation of the previous code, one section at a time.

// Forward declaration of the class graphic_object

class graphic_object;

This line tells the PepperCode compiler that a class named Graphic_Object exists, and that it can

be referenced. This is a declaration only for the compiler to do type checking.

// Declaration of the type of the method.

action_schema Display (input: int file_handle, instance<graphic_object> this);

Declares an action schema of type Display. This declaration tells the compiler that there is a

family of actions that will all have the same calling structure. Actions that are members of this

family will be interchangeable because the parameter structure is known. This creates a new type

in the PepperCode file that can be used as action<Display>.

// Definition of the base object class

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 3 0 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

class Graphic_Object {

int x;

int y;

action<Display> print_method;

};

// Define the action that executes for this method for the Graphic_Object class

slot Graphic_Object.print_method {:default_value default_print

:class_slot};

This code declares a PepperCode class of objects. This class has three member variables. One of

those member variables has shared storage that is shared between all instances of the class. This

is designated with the :class_slot keyword in the slot statement. The two member variables x, and
y are simple integer members that hold a coordinate point for any graphic object.

The action<Display> print_method; line declares a slot of type action. This slot will hold the

name of an action to be called as a method. The action that is the value of this slot must be of

type Display—declared as action<Display>. This creates a method on a object, and the name of
the method is the member variable name.

The slot line sets the default value of the method to be the action named default_print. Note that

this method has not yet been defined. That is OK since the method is not accessed until the

method is executed at run time. At compile time a member is created to hold the action name and

declare its type.

// Create a subclass of the Graphic_Object class. This subclass has a new

member

// variable.

class Circle : Graphic_Object {

int radius;

};

// Override the default action with a new one for the print_method.

slot Circle.print_method {:default_value default_print};

Creates a subclass of the Graphic_Object. Note this class inherits all structure and behavior from

the class Graphic_Object. This example adds a new slot named radius. Since this class has a new

slot, you are going to need a new way of printing the data for the object, so you should override

the print_method with a new action. This is done in the slot statement. Note that the slot

statement changes the default value of this slot for the class Circle. Since this is a class slot—

only one piece of memory shared by all instances—the method is now set for all instances of the
Circle class.

Create a second subclass of the Graphic_Object class. This has two new member variables.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 3 1

class Square : graphic_object {

int width;

int height;

};

// Note that you DO NOT override the print_method.

Creates a second subclass of the Graphic_Object class. This new subclass also has new structure.

Since the print_method is not overriden, instances of this class will use the default print_method,

and the new structure will not be printed out.

// Implement the actual action for the default print method.

action<Display> default_print ()

{

FPRINTF (file-handle, “x = %d, y = %d\n”, this.x, this.y);

};

// Implement the action for the circle print method.

action<Display> circle_print (

local: instance<Circle> this_circle)

{

this_circle = this; // Unsafe cast from graphic_object to a circle;

FPRINTF (file-handle, “x = %d, y = %d radius = %d\n”, this.x, this.y,

this_circle.radius);

};

Implements actions for the two version of the method. Note that these actions do very simple

things. They print the slots of the object to a file handle. Later on you can write new methods

that take a file or screen handle and have different behavior.

Note the base method prints out the x and y coordinate, and the circle method prints out the x, y,
and radius slots.

// Implement a transaction to test this code out.

action<Transaction> transaction_test (

local: instance<Graphic_Object> my_instance,

local: action<Display> print_method)

{

This routine tests out the code.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 3 2 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

It starts by declaring two local variables to the action that will hold instances of Graphic_Object,

and a variable to hold the method. The need for the variable to hold the method is because the

compiler doesn’t yet support the desired functionality and will be made obsolete in the future.

// Assume an action exists to create a graphic object

execute create_graphic_object (x: 10 y: 15);

// Grab the new object, and cast it to the base class.

my_instance = create_graphic_object.new_instance

Calls an action named create_graphic_object that you have not explicitly written in this example,

but assume it creates an object of the class Graphic_Object and assigns the x and y values passed

in the member variables. An output parameter of this object is the new_instance, which you

retrieve, and assign to the local variable. Note the local variable is of the base class, and so this is

a cast.

You now have a Graphic_Object in the local variable with x = 10, and y = 15.

// Call the method.

//

// Note that in a future version of the compiler it should support

// execute my_instance.print_method (file_handle: file_handle);

//

print_method = my_instance.print_method();

execute print_method (this: my_instance file_handle: file_handle);

The local variable print_method gets assigned as its value the value of the method slot

print_method from the object held in my_instance. You then execute the action that is the value

of the local variable, passing it the object, and the file_handle parameter. The underlying C++

code that is generated by the PepperCode compiler takes the string value that is the name of the

action which is actually stored in the slot, and looks up a definition of the named action. It then

parses the parameters passed into C++ member slots on that object, and calls the action_execute

method on the underlying C++ object, which implements the body of the action. The action

lookup happens in-line with the execute statement in the generated C++ code. This means that

the value of the action slot can be changed at any time up to and including the line before the

execute statement, and this would affect the action actually executed.

The file pointed to by file_handle would get the following text put into it:

x = 10, y = 15

// Assume a action exists for creating circles.

Execute create_circle (x: 1 y: 2 radius: 3);

// Grab the new object and cast it to the base class.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 3 3

My_instance = create_circle.new_instance;

// Call the print_method

print_method = my_instance.print_method;

execute print_method (this: my_instance file_handle: file_handle);

Follow the same procedure for a circle object. Note that a different method is executed, because

the value of the print_method slot for Circle objects is circle_method, and this results in the C++

code looking up a different actionschema, and consequently a different function is executed.

// Assume a action exists for creating squares.

Execute create_square (x: 4 y: 5 width: 6 height: 7);

// Grab the new object and cast it to the base class.

My_instance = create_square.new_instance;

// Call the print_method

print_method = my_instance.print_method;

execute print_method (file_handle: file_handle);

};

Do the same thing for squares, but because you did not override the print_method slot for the

square class the default_print action is called to implement this method.

A very important consequence of implementing methods as slots that hold actions is that behavior

of a object can be customized very simply at run time. Suppose you have an object that is deeply

imbedded inside the Planning code. This object has a method that performs a desired operation.

For example, a planning_period object has a consume method that takes a SO, and consumes

forecasts from the planning period. Further you have offered a single action that implements this

method. This action consumes forecast for the sales order from the planning period the sales

order was taken in—at the order date. If the forecast for that period is already consumed to 0,

then no further consumption takes place.

Suppose a service partner wants to customize this code to consume any amount over the periods

forecast from the nearest prior, or later period with unconsumed forecast. This customization is

easy. Write the new Consume method in a customer module, and change the default method on

the planning period to be the new method by using the transaction transaction_set_slot_default

(class, slot, value);

Understanding Context

When an action is executed within the body of another action (the calling action), a new context is

created. A context is a mechanism for maintaining objects and their values. You can think of a

context as a collection of all the objects that it creates or deletes, and all the slot values it changes.

A context is valid as long as a calling action has not exited.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 3 4 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

The PepperCode exit statements determine whether changes made to class and object slots are

accepted or rejected:

• succeed();—Accept changes.

• fail();—Reject changes. The world outside the action is restored to the state it held before the

action started executing.

• leave();—Remember changes so they can be restored later, but don’t change the data values. If

the action is executed again with the same context, the remembered values are restored and can
be modified; any one of the exit statements can then be used on that data.

You must execute one of these statements before a context is accepted or rejected. If you have a

hierarchy of calling actions, you can leave several actions; as long as a calling action higher in the

hierarchy has not exited, you can go back to the contexts lower in the hierarchy, as illustrated
here.

Action

Action

Action

Action

Leave

action

Leave

action

Leave

action

Execute

action

Execute

action

Execute

action

Leaving and restoring multiple contexts in a hierarchy of calling actions

For example, you can re-execute Action2 after leaving it and returning to Action1. On that

second execution, the values of parameters and slots of classes revert to the values they had

before Action2 was left.

Multiple contexts is a powerful feature of PepperCode that enables you to explore possible

solutions. Binding an action to multiple contexts lets you try independent experiments and
postpone selecting the optimum outcome until the experiment is complete.

In addition to an action using the succeed, fail, or leave statements on itself, a parent action can

also pass the succeed or fail functions a context—an action parameter name—to discard or accept

the changes of a child action. For example:

execute var0();

execute var1();

if (GT(var0.score, var1.score))

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 3 5

succeed(var0);

else

succeed(var1);

In general, actions that do not change data values for an object should use the no_context:

keyword, while actions that do change values probably need a context. The no_context: keyword

saves memory and computing resources by not copying object data values.

Although context: is the default, this keyword is useful if, for example, a schema uses no_context:
and you want to override that behavior in an action.

When changing the value of an object in an action that could fail, always give the action a

context; specifically, don’t use the no_context: keyword.

To illustrate how the context mechanism works, consider this simple example that uses an

instance of an class called gradebook to keep track of the scores on a school examination. A

child action called enter_one_score makes the changes in the gradebook; a parent action called

enter_scores calls the child to enter three different scores.

To show one method of using context, you can arrange for the child to return with a leave

statement. The parent then executes either a succeed statement to accept the child’s changes, or a

fail statement to reject them:

#include "cpp_utility.spl"

class gradebook {

oset[int] grades

int average

int high_score

int low_score

};

slot gradebook.high_score { default: 0 };

slot gradebook.low_score { default: 100 };

//

// This action enters a new score into the gradebook and updates the

// average, the high score, and the low score. Then it returns without

// either committing or retracting the changes that it has made. The

// parent action can then choose whether to accept or reject the changes.

//

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 3 6 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action enter_one_score

(input: instance<gradebook> g,

input: int score,

local: int sum)

{

g.high_score = MAX(g.high_score, score);

g.low_score = MIN(g.low_score, score);

g.grades.push(score);

sum = 0;

foreach grade in g.grades

sum = ADD(sum, grade);

g.average = DIV(sum, g.grades.length());

PRINTF("average/high/low inside enter_one_score:\t%d %d %d\n",

g.average, g.high_score, g.low_score);

leave; // Let the parent action decide to accept or reject changes

}

//

// For demonstration purposes, this parent action calls enter_one_score to

// enter three scores into the gradebook. The first two times, it accepts

// the changes made by the child action. The third time, it rejects the

// changes.

//

action enter_scores

(local: instance<gradebook> g)

{

// Create a gradebook for chemistry class

g = CREATE_OBJECT("chemistry_class", "gradebook");

execute enter_one_score(:g g, :score 99); // Enter a score

PRINTF("average/high/low outside enter_one_score:\t%d %d %d\n",

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 3 7

g.average, g.high_score, g.low_score);

succeed(enter_one_score); // Accept the changes

PRINTF("average/high/low after accepting changes:\t%d %d %d\n\n",

g.average, g.high_score, g.low_score);

execute enter_one_score(:g g, :score 75); // Enter a score

PRINTF("average/high/low outside enter_one_score:\t%d %d %d\n",

g.average, g.high_score, g.low_score);

succeed(enter_one_score); // Accept the changes

PRINTF("average/high/low after accepting changes:\t%d %d %d\n\n",

g.average, g.high_score, g.low_score);

execute enter_one_score(:g g, :score 50); // Enter a score

PRINTF("average/high/low outside enter_one_score:\t%d %d %d\n",

g.average, g.high_score, g.low_score);

fail(enter_one_score); // Reject the changes

PRINTF("average/high/low after rejecting changes:\t%d %d %d\n\n",

g.average, g.high_score, g.low_score);

succeed();

}

When you run the example, it prints these results:

average/high/low inside enter_one_score: 99 99 99

average/high/low outside enter_one_score: 0 0 100

average/high/low after accepting changes: 99 99 99

average/high/low inside enter_one_score: 87 99 75

average/high/low outside enter_one_score: 99 99 99

average/high/low after accepting changes: 87 99 75

average/high/low inside enter_one_score: 74 99 50

average/high/low outside enter_one_score: 87 99 75

average/high/low after rejecting changes: 87 99 75

The PRINTF statement for inside enter_one_score demonstrates that within the child the changes

always take place immediately, as they would in any programming language. But the PRINTF

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 3 8 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

statement for outside enter_one_score demonstrates that the changes disappear after the child

executes the leave statement.

Only after the parent executes the succeed statement—in the first two cases—do the child’s

changes appear in the parent’s environment. And when the parent executes the fail statement—in

the third case—the child’s changes disappear forever.

The previous example gives the parent control over the child’s changes. Alternatively, the child

can control whether its own changes ever appear in the parent’s environment. Now change the

example slightly to show how this works. This time, the child normally accepts its own changes

with succeed, but if the grade average falls too low, it rejects them with fail:

#include "cpp_utility.spl"

cpp_function void INIT_CLASSES() "initialize_spl_objects";

class gradebook {

oset[int] grades

int average

int high_score

int low_score

};

slot gradebook.high_score { default: 0 };

slot gradebook.low_score { default: 100 };

//

// This action enters a new score into the gradebook and updates the

// average, the high score, and the low score. Then it returns without

// either committing or retracting the changes that it has made. The

// parent action can then choose whether to accept or reject the changes.

//

action enter_one_score

(input: instance<gradebook> g,

input: int score,

local: int sum)

{

g.high_score = MAX(g.high_score, score);

g.low_score = MIN(g.low_score, score);

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 3 9

g.grades.push(score);

sum = 0;

foreach grade in g.grades

sum = sum + grade;

g.average = sum / g.grades.length();

PRINTF("average/high/low inside enter_one_score:\t%d %d %d\n",

g.average, g.high_score, g.low_score);

// If the score brought the average below 80, discard the changes.

if (g.average < 80)

fail();

succeed();

}

//

// For demonstration purposes, this parent action calls enter_one_score

// to enter four scores into the gradebook. Whether the child's changes

// propagate to the parent depends on how the child returns to the parent.

//

action enter_scores

(local: instance<gradebook> g)

{

// Create a gradebook for chemistry class

g = CREATE_OBJECT("chemistry_class", "gradebook");

execute enter_one_score(:g g, :score 99);

PRINTF("average/high/low outside enter_one_score:\t%d %d %d\n\n",

g.average, g.high_score, g.low_score);

execute enter_one_score(:g g, :score 75);

PRINTF("average/high/low outside enter_one_score:\t%d %d %d\n\n",

g.average, g.high_score, g.low_score);

execute enter_one_score(:g g, :score 50);

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 4 0 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

PRINTF("average/high/low outside enter_one_score:\t%d %d %d\n\n",

g.average, g.high_score, g.low_score);

execute enter_one_score(:g g, :score 82);

PRINTF("average/high/low outside enter_one_score:\t%d %d %d\n\n",

g.average, g.high_score, g.low_score);

succeed();

}

When you execute this second example, it prints:

average/high/low inside enter_one_score: 99 99 99

average/high/low outside enter_one_score: 99 99 99

average/high/low inside enter_one_score: 87 99 75

average/high/low outside enter_one_score: 87 99 75

average/high/low inside enter_one_score: 74 99 50

average/high/low outside enter_one_score: 87 99 75

average/high/low inside enter_one_score: 85 99 75

average/high/low outside enter_one_score: 85 99 75

Notice that for the first, second, and fourth invocations of enter_one_score, the parent sees the

changes made by the child. But on the third invocation, the child executes the fail statement—

rejecting its own changes—and from the viewpoint of the parent, it seems as if the changes had

never been made.

Accessing Action Status

The PepperCode compiler predeclares for you an enumeration called Action_Status:

enum Action_Status { LEAVE, FAIL, SUCCEED };

For any action that doesn’t already have a parameter named status, the compiler adds an output

parameter of type Action_Status:

output: enum<Action_Status> status

You can query this parameter to determine whether the action executed a leave, fail, or succeed

statement. For example:

action child(input: int i)

{

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 4 1

if (i == 5)

succeed();

fail();

}

action parent()

{

execute child(:i 5);

if (child.status == SUCCEED)

PRINTF("success\n");

PRINTF("failure\n");

succeed();

}

Understanding How Actions Are Executed

Many computer languages provide a runtime system that invokes a specific function to start the

program. For example, a C program starts with the main function; a Pascal or Fortran program
starts at a program statement.

The PepperCode runtime system, however, provides an Action Interpreter, which is code that

reads a string containing a human-readable action invocation that is similar to the syntax you use

in a PepperCode execute statement. The Action Interpreter parses the string, invokes the action,
and returns a string containing a human-readable list of output values.

The Action Interpreter is used in several ways:

• When you use the GUI interface to the Planning software, it passes strings to the Action

Interpreter to perform commands.

• When you create a command file for use as an input script to the Planning software, the Action

Interpreter reads the action invocations specified in the file.

• When a client invokes a remote procedure on the server, the invocation may involve the Action

Interpreter.

• The Planning software source code defines a cpp function called

SERVER_EXECUTE_ACTION that invokes the Action Interpreter.

An execute statement is usually not executed by the Action Interpreter, except in certain client-

server situations when #remote_include is used.

In addition, you can define an Interpreter menu item for debugging.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

5 - 4 2 U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

For more information, refer to Using The Action Interpreter.

Action Execution & Definitions

If a PepperCode program contains an action called "spl_main", that action will be called

automatically when the program starts, simulating the statement:

execute spl_main();

If a PepperCode program lacks such an action, it will not execute any PepperCode statements
until it reads an action invocation from a networked client, a command file, or the keyboard.

You should design spl_main to take three parameters:

action spl_main

(input: int argc,

input: oset[string] argv,

input: string identity)

The argc and argv parameters correspond to their namesakes in the C or C++ main function. The

identity parameter is set to client, server, or standalone, depending on whether the program has

been linked to serve as a client, a server, or a monolithic program.

This plays a role similar to that of the main function in C or C++; because it’s invoked before any

other action, it’s a good place to perform initializations, such as starting the graphical user

interface (GUI).

Every PepperCode-generated program accepts these options (these are options to the generated
program, not to the PepperCode compiler):

-file filename Read action invocations from "filename"

-I Prompt for action invocations on stdout and read them from stdin

An action invocation inside a file or on stdin looks like an "execute" statement without the

"execute" keyword:

transaction_do_something(:name "xyz", :value 123)

Using Transaction Logs

A transaction is an action that is part of the external interface of Planning software. It can be

invoked by the Action Interpreter when a menu item is selected within the Planning software or

when in a command file is run.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E A C T I O N S 5 - 4 3

The PepperCode Action Interpreter can log each transaction it executes that changes data on the

server. If you took a snapshot of the data at the beginning of a session with Planning software,

then performed all of the transactions listed in the log file generated by that session, the resulting

changes to the data would be the same as those that occurred during the actual session. So, the
log file can help you to restore the system to the state before a session was executed.

Clients cannot create a transaction log file. The Action Interpreter never logs an action executed

by the client on the client, but it can log an action executed by a client on the server.

The Action Interpreter writes to a log file—as specified in the .rps file—a timestamp and a

human-readable string describing the transaction invocation. Here is an example of a log entry:

// 01/19/95 20:58:15 PST

transaction_factorial (:factor 4 :error 0)

Notice that the log entry doesn’t have commas between arguments or a terminating semicolon.

By default, every transaction invoked by the Action Interpreter is written to the log file.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G C O N T R O L S T A T E M E N T S 6 - 1

C H A P T E R 6

Writing Control Statements

PepperCode has the following types of control statements:

• assignment (=)

• if-else

• while

• foreach

• succeed, fail, or leave

• subaction execution

• expressions for executing cpp functions

• execute statement

For more information about action exits, succeed, fail, and leave, refer to Understanding

Context.

Writing Assignment Statements

<lvalue_expression> = <rvalue_expression>;

An assignment statement evaluates the two expressions and assigns the rvalue expression to the

lvalue.

For strings, instances, lists, and classes, the assignment operator behaves like the default

assignment operator for a C pointer: assignment copies the pointer but does not duplicate the

target. If the destination list is a slot on an object, however, it receives a duplicate copy of the

list. If the destination list is an action parameter, both source and destination point to the same
list (no copy is made).

Only an lvalue expression can be the target of an assignment, or the actual parameter

corresponding to a formal parameter which is an "inout:" or "output:". An expression is an lvalue

if it satisfies all of the following:

• It is a "local:", "output:", or "inout:" parameter of the current action.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

6 - 2 W R I T I N G C O N T R O L S T A T E M E N T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

• Its data type is not "action" (the data type may be "action schema").

Writing if-else Statements

The PepperCode if-else statement is similar to the C++ if-else statement:

if (<expression>) <statement> ;

if (<expression>) <statement> else <else_stmt> ;

The expression must evaluate to type "int", "date", "time", "instance", "class", or "string".

<statement> is either one statement or multiple statements within braces ({ }). At least one
statement or an empty block ({ }) is required after the if and, when used, the else.

Following is an example of an if-else statement that could be placed in an action body:

if ((string_length < 2) { // If the length is less than 2,

PRINTF("\nstring < 2"); // print a warning

fail(); // and fail from the action.

}

else { // If not less than 2,

PRINTF("\n%s", pstring); // call C printf

succeed(); // and succeed from the action.

}

Writing while Statements

The PepperCode while statement is similar to the C++ while statement:

while (<expression>) <statement> ;

The expression must evaluate to type "int", "date", "time", "instance", "class", or "string".

<statement> is either one statement or multiple statements within braces ({ }).

The expression is evaluated first and then before each iteration. The statement repeats until the

expression evaluates to false.

Here is an example of using the while statement:

cpp_function int PRINTF(string) "printf";

action print_n_times

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G C O N T R O L S T A T E M E N T S 6 - 3

(input: string message,

input: int counter)

{

while (counter > 0)

{

PRINTF("message");

counter = SUB(counter, 1);

}

}

Here’s another example:

action a(local: int i)

{

i = 0;

while (i < 10)

{

PRINTF("%ld\n", i);

i = i + 1;

}

succeed();

}

Writing foreach Statements

The foreach statement iterates over an oset or array:

foreach id in <expression> <statement> ;

foreach id in reverse <expression> <statement> ;

The <expression> must have type oset or array; "id" declares a temporary variable whose type

matches the element type of the oset or array and whose scope is <statement>. For each element

of the oset or array, we assign that element to "id" and then execute <statement>.

For an oset, we visit the elements in order from head to tail (or, for the "in reverse" form, from
tail to head).

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

6 - 4 W R I T I N G C O N T R O L S T A T E M E N T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

For an array, we visit the elements in a repeatable order which is the same for every target

machine, but which may change if one adds or deletes elements. The "in reverse" form is not

allowed.

Adding or deleting elements within <statement> is an error, except that it is safe to delete any

element which has already been assigned to "id".

For more information, refer to Writing Osets and Writing Arrays.

<statement> is either one statement terminated with a semicolon (;) or multiple statements within

braces ({ }).

If the oset is empty, <statement> does not execute.

To move through the list from the last element to first element, use the reverse keyword:

foreach item in reverse oset statement

Here is a straightforward example of the use of foreach to traverse a list of integers, summing
them. Notice that the loop index variable element is declared for you by the compiler:

action sum_int_list

(input: oset[int] int_list,

output: int sum,

no_context:)

{

sum = 0;

foreach element in int_list

sum = sum + element;

succeed();

}

Here is another example of a foreach statement:

action a

(inout: int i,

input: array[int] l,

output: int o)

{

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G C O N T R O L S T A T E M E N T S 6 - 5

o=0; // Output variable o

foreach o in l // Index variable o

{

i = i + o; // Index variable o

}

o = i; // Output variable o

succeed();

}

Writing execute Statements

The execute statement invokes an action.

execute <identifier> (<actual arglist>) ;

Invokes the action specified by <identifier> and pass to it the <actual arglist>. If <identifier>

names a local variable of type action, invoke the corresponding action and save its state in that

variable; if it names an action, create an implicit local variable to save its state.

For more information about execute statement, refer to Executing Actions.

Writing succeed, fail, or leave Statements

leave ;

fail ;

succeed ;

Returns from the current action, telling the context mechanism to leave its changes uncommitted;

or to roll back its changes; or to commit them.

succeed (<identifier>) ;

If <identifier> is the name of a local variable that represents an action with uncommitted change,

this statement commits those changes. If there are no uncommitted changes, a runtime error

occurs. The identifier must name an explicit local variable, not an implicit one created by using

the "execute" statement with an action name.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

6 - 6 W R I T I N G C O N T R O L S T A T E M E N T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

For more information about action exits, succeed, fail, and leave, refer to Understanding

Context.

Writing break and continue in Loops

The break statement breaks out of a loop. Use it in a foreach or while loop to break out of a loop

if a certain condition occurs. For example, the following code prints a list of integers from 1 to

either 100 or to the integer j that is input into this action, whichever is lesser.

action a_break(

input: int j,

local: int i)

{

i = 1;

while (i < 101)

{

PRINTF("%ld\n", i);

i = i + 1;

if (i > j) break;

}

succeed();

}

The continue statement continues to the end of a loop without breaking out of the loop. Use it in

a foreach or while loop to skip code in a loop if a certain condition occurs. For example, the

following code prints a list of 100 integers. The list will be either the numbers 1 to 100, or if the

integer j is less than 100, the list will be the numbers 1 to j and then j, which is printed 100 minus
j times.

action a_continue(

input: int j,

local: int i)

{

i = 0;

while (LT(i, 100))

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G C O N T R O L S T A T E M E N T S 6 - 7

{

i = i + 1;

if (i > j) continue;

PRINTF("%ld\n", i);

}

succeed();

}

Starting in Release 8.0, you cannot use a C++ function statement to declare BREAK or

CONTINUE within PepperCode; these keywords are automatically recognized by the compiler.

The BREAK and CONTINUE statements were originally implemented by users as C++

functions, then added to the compiler as pseudo C++ functions, so in previous releases of

PepperCode the users did not need to define them. The Release 8.0 Compiler provides "break"

and "continue" statements and also BREAK and CONTINUE statements as intrinsic functions

(built-in functions), so these cpp_function declarations are no longer needed.

In version 7.5.2 or earlier, if you use break or continue, you had to include the file cpp_utility.spl

or use the following statements:

cpp_function void BREAK() "break";

cpp_function void CONTINUE() "continue";

Writing Enumerations in Loops

Enumerated types—data type enum—are implemented as named object instances. As a result,

the PepperCode object system looks up the enumeration each time it’s referenced, which is why

many references to an enumeration can be slow. If many lookups are required to execute a piece

of code, that piece of code may perform poorly. For example, the following code looks up the

enumerator instance 100 times:

action slow_enumerator

(local: enum<Boolean_Flag> the_flag,

local: int index)

{

index = 0;

while (index < 100) {

// The next line creates C++ code that looks up the enumeration

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

6 - 8 W R I T I N G C O N T R O L S T A T E M E N T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

// TRUE by name each time through this loop. This is a classic

// invariant value inside a loop.

the_flag = TRUE;

index = index + 1;

}

}

Every time the loop is traversed the enumeration TRUE is looked up. This lookup is slow if

executed many times.

An alternate implementation that looks up the enumerator once is as follows:

action slow_enumerator (

(local: enumerator<Boolean_Flag> the_flag,

local: enumerator<Boolean_Flag> true_flag,

local: int index)

{

index = 0;

// The C++ code looks up the enumeration instance and stores its

// value in the local true_flag.

true_flag = TRUE;

while (index < 100) {

the_flag = true_flag;

index = index + 1;

}

}

The implementation of enumerations will change in future releases, so this coding technique

won’t be required. In addition, this technique is required only if the enumeration is going to be

looked up many times: either inside a loop or inside an action called in a loop. For enumerations

that are accessed only a few times, this technique is not required, since the performance penalty is

not as large for each lookup.

Following is another example. This code references a Boolean enumeration inside of a loop:

foreach item in items {

if (item.value == TRUE) // slow use of an enum

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G C O N T R O L S T A T E M E N T S 6 - 9

...

}

The above code could be written much more efficiently by assigning TRUE to a

local enum parameter and then using the parameter in the if statement; for

example:

...

local: enum<Boolean_Flag> true_enum,

...

true_enum = TRUE;

foreach item in items {

if (item.value == true_enum)

...

}

Using Dot Notation in Expressions

Within expressions, you use dot notation to access the value stored on a slot of an instance or

class variable:

variable_name.slot_name. ... slot_name

The following example shows that slots accessed with dot notation can be used in the same way

that you would use parameters or literal constants:

class C{

int first_slot

int second_slot

int third_slot

};

class D{

instance <C> nested

};

action a

(input: int first_parm,

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

6 - 1 0 W R I T I N G C O N T R O L S T A T E M E N T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

input: int second_parm,

input: instance<C> ic,

input: instance<D> id,

output: int third_parm)

{

third_parm = first_parm + second_parm;

ic.third_slot = ic.first_slot + ic.second_slot;

id.nested.third_slot = id.nested.first_slot +

id.nested.second_slot;

succeed();

}

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G O S E T S 7 - 1

C H A P T E R 7

Writing Osets

As described earlier, an oset behaves like a list.

For more information, refer to Understanding PepperCode Data Types.

You can copy an oset with the assignment operator (=):

oset1 = oset2

The result of the copy is an independent list—changes to the new list do not effect the old list,

and vice-versa. When an oset is “copied,” only the link list elements of the oset are copied, not

the values of the oset itself.

You can also traverse a list with the foreach or while statement, described later in this section.

For more information and a description of foreach and while, refer to Writing Control

Statements.

A list recognizes the operators and functions in this table. index must be an expression that

evaluates to an integer. item evaluates to the type that the list contains.

Oset Operators and Functions

Message Description Return type

list.enque(item) Places item at the end of the list.

list.push(item) Places item at the beginning of the list.

list.push_ordered(item) Add item to the list so that the list remains sorted

in ascending order, assuming it was sorted to

begin with.

list.pop() Delete the item at the beginning of the list.

list.delete(item) Deletes the first member of the list that matches

item.

list.delete_first() Delete the head item.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

7 - 2 W R I T I N G O S E T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Message Description Return type

list.delete_last() Delete the tail item.

list.nth(index) Returns the value of the nth element of the list.

index is an integer; the list is numbered starting

with zero.

list.set_nth() Sets the value of the nth element of the list.

list.first() Returns the value of the first element of the list.

list.last() Returns the value of the last element of the list.

list.empty() If the list is empty, returns 1; otherwise, returns

0.

integer

list.length() Returns the number of elements in the list. integer

list.flush() Causes the list to become empty.

The following example illustrates the manipulation of lists. Notice that the local parameter

float_list is created by default as a completely legal, but empty list; no initialization is required.

cpp_function void PRINTF(string) "printf";

// Print the list

action print_float_list

(input: oset[float] float_list,

no_context:)

{

if (float_list.empty())

PRINTF("List is empty\n");

else

{

PRINTF("List contains: ");

foreach item in float_list

PRINTF(" %g", item);

PRINTF("\n");

}

succeed();

}

// Test various operations on a list

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G O S E T S 7 - 3

action play_with_list

(local: oset[float] float_list)

{

execute print_float_list(:float_list float_list);

float_list.push(5.0);

float_list.push(6.0);

float_list.push(7.0);

execute print_float_list(:float_list float_list);

float_list.enque(8.0);

execute print_float_list(:float_list float_list);

float_list.delete(5.0);

execute print_float_list(:float_list float_list);

float_list.delete(143.0);

execute print_float_list(:float_list float_list);

PRINTF("Value of element number 2 is %g\n", float_list.nth(2));

PRINTF("Value of first element is %g\n", float_list.first());

PRINTF("Value of last element is %g\n", float_list.last());

PRINTF("Length of list is %ld\n", float_list.length());

float_list.flush();

PRINTF("Length of list is %ld\n", float_list.length());

succeed();

}

For more information about the process you need to run this code, refer to Compiling And

Linking PepperCode.

Link the code to an existing Planning product, which creates an executable program called

standalone. If you run this particular product with the command-line option -I, it prompts on the

keyboard for input to the Action Interpreter. Invoke play_with_list() and then type :exit to leave

the Action Interpreter:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

7 - 4 W R I T I N G O S E T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

shell> ./standalone -I

Checking ResponseAgent configuration......Done Initializing Runtime Object

System...

...Done

Setting app name to 'standalone'

Initializing standalone...

Initializing communication buffer and hash table...MJD...Done

Creating slot classes......Done

Creating slot specifier classes......Done Initializing Schedule......Done

Creating the Base Class......Done

Creating form classes......Done

...Done

Entering interpreter mode...

Enter an action call: play_with_list()

List is empty

List contains: 7 6 5

List contains: 7 6 5 8

List contains: 7 6 8

List contains: 7 6 8

Value of element number 2 is 8

Value of first element is 7

Value of last element is 8

Length of list is 3

Length of list is 0

Result: (:RESULT 3)

Enter an action call: :exit

...Done.

shell>

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G O S E T S 7 - 5

Writing Osets with Action Parameters

When using osets, remember that an oset is copied every time it is assigned to an object slot or

action parameter. For this reason, it may be more efficient to store large osets on an object, and

then pass the object from action to action. Here are some examples of when osets are copied:

action transform_objects

(input: oset[instance<Spl_Class>] old_objects,

output: oset[instance<Spl_Class>] new_objects)

...

// my_objects is copied

execute transform_objects(:old_objects my_objects);

// new_objects is copied

local_parameter = transform_objects.new_objects;

...

local: oset[int] temp_scores,

local: oset[int] real_scores,

...

temp_scores = real_scores; // real_scores is copied

temp_scores.enque(99);

real_scores = temp_scores; // temp_scores is copied

object.scores = real_scores; // real_scores is copied

...

Writing Osets in Loops

Because osets are implemented as linked lists, accessing the nth element of an oset requires a

linear traversal of the list until the nth element is accessed. If this occurs inside a loop, the linear

traversal of the list may become expensive. The following code is O(n2) in computational

complexity and will perform badly if n is large:

action poor_oset_use

(input: oset[instance<foo>] the_list,

local: instance<foo> item,

local int index,

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

7 - 6 W R I T I N G O S E T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

local: int len)

{

len = the_list.length();

index = 0;

while (index < len) {

// Get the nth item in the list.

// This causes a linear traversal of the list.

item = the_list.nth(index);

// Do what ever you need to do to the list.

my_functon (item);

index = index + 1;

}

}

The foreach construct is designed to iterate over every element in an oset—without incurring the

overhead of a linear lookup to find each element of the set. The following code will execute with

o(n) complexity on the list:

action better_list_iteration

(input: oset[instance<foo>] the_list)

{

foreach item in the_list {

my_functon (item);

}

}

This code is also much simpler, and clearer in the behavior that it exhibits.

Writing Osets with the foreach Statement

The foreach statement will loop over every item in an oset. The only way to stop the foreach is to

use BREAK. For example, the following code will exit the foreach statement when the value 100

is found in an oset of integers:

...

local: oset[int] scores, // (67 23 5 1 7 55 100 99 33 25 30 2 1)

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G O S E T S 7 - 7

...

foreach score in scores {

if (score == 100) {

perfect_score_found = 1;

BREAK; // stop looping, you found a perfect score

}

}

...

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G A R R A Y S 8 - 1

C H A P T E R 8

Writing Arrays

This section describes arrays for PeopleCode.

Writing Associative Arrays

Here is the syntax for an associative array.

<element_type> [<index_type>] <id>

This declares an associative array (that is, a hash table) whose elements have the data type

<element_type>, and whose index or key is any expression having the data type <index_type>.
The index type can be any of these types:

• int

• string

• float

• instance (implicitly instance<Base_Class>)

• class (implicitly class<Base_Class>)

• date

• time

The element type can be any of these:

• int

• string

• float

• instance<some_particular_class>

• class<some_particular_class>

• date

• time

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

8 - 2 W R I T I N G A R R A Y S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

• <another array>

For example, "local: int[string] x" declares a local variable named "x" which is an associative
array of integers, indexed by keys which are strings.

An associative array is "sparse": indexes need not be integers, and even if they are integers, they

need not be consecutive. For example, here is an associative array with two elements whose

indices (keys) are "a" and "z":

local: float[string] indexed_by_string...

indexed_by_string["a"] = 1.5;

indexed_by_string["z"] = 25.6;

As another example, here is an associative array with two elements whose keys are 0 and 5

(elements having keys 1 through 4 simply do not exist):

local: float[int] indexed_by_int...

indexed_by_int[0] = 1.5;

indexed_by_int[5] = 25.6;

If you attempt to read an element using a nonexistent key, you get a default value with no error

message. The default value for a particular element type is the same as the implicit default value

for an action formal parameter of that type (an integer element is 0, a string element is nil, etc.)

Using the arrays shown in the preceding examples, the following statement will print zeros

(because the default value for a formal parameter of type float is zero):

PRINTF("%f %f", indexed_by_int[1], indexed_by_string["b"]);

In most cases, by generating a default value instead of a runtime error, the PepperCode language

causes programs to be more reliable. But this does place on the programmer the burden of

detecting the situation where, due to some error, a particular key doesn't exist. The

straightforward method is to use a function called "exists":

if (indexed_by_string.exists("b"))

execute some_action(:some_parameter indexed_by_string["b"]);

else {

exit_msg = NLSPRINT("Element at index 'b' doesn't exist");

fail();

}

However, the preceding example looks up the key in the array twice (once for the "exists"

function and once for the array indexing itself), and that's a relatively expensive operation. If you

know that the value 0.0 can never legally appear in the array, then it's cheaper to test for that:

temp = indexed_by_string["b"];

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G A R R A Y S 8 - 3

if (0.0 != temp)

execute some_action(:some_parameter temp);

else {

exit_msg = NLSPRINT("Bad/nonexistent element at index 'b'");

fail();

}

Even if the value 0.0 might legally appear in the array, it's cheaper to test for that first, and to call

"exists" only in the case where you need to distinguish a zero value from a nonexistent entry:

temp = indexed_by_string["b"];

// Short-circuit || skips the "exists" unless temp is zero

if (0.0 != temp || indexed_by_string.exists("b"))

execute some_action(:some_parameter temp);

else {

exit_msg = NLSPRINT("Bad/nonexistent element at index 'b'");

fail();

}

Writing Nonassociative Arrays

Here is the syntax for a nonassociative array.

<element_type> [] <id>

This declares a nonassociative array (vector) whose elements have the data type <element_type>,

and whose index is a nonnegative integer. The array contains a series of contiguous elements

whose indices range from zero to some upper bound. Initially the array is empty, but the upper

bound automatically grows as needed when you store into it, or if you copy another array to it.

The legal element types are the same as the ones allowed for associative arrays.

The initial length of a nonassociative array is zero. The first assignment to the array changes the

upper bound to be the index of that element. Any elements below the upper bound which haven't

yet been assigned to will have a default value which is the same as the implicit default value for

an action formal parameter of that type (zero for int, nil for instance, etc.)

After that, any assignment to an element using an index greater than the upper bound raises the

upper bound and increases the length of the array.

For example, "local: float[] y" declares a local variable named "y" which is a nonassociative array

of floating-point numbers. If you assign the following values to it:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

8 - 4 W R I T I N G A R R A Y S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

y[3] = 30;

y[5] = 50;

then elements y[3] and y[5] come into existence with the values 30 and 50; to keep the array

elements contiguous, y[0], y[1], y[2], and y[4] also come into existence and have the default

value zero.

All elements between zero and the current upper bound are considered to exist, even if no value

has been assigned to them yet. In fact, they do occupy space in memory. This is a significant

difference between nonassociative arrays and associative arrays. In the following example, the

PRINTF statement will say "1 26001":

local: string[int] associative,

local: string[] vector

...

associative[26000] = "abc";

vector[26000] = "abc";

PRINTF("%d %d", associative.length(), vector.length());

If you use an index outside the bounds of the vector to read an element, that doesn't cause an error

or enlarge the array; instead, it gives you the default value. You may use either the "exists"

function or the "length" function to decide whether an index is out of bounds.

Using the vector "y" shown a few paragraphs ago, reading either y[4] or y[6] will yield the value

0.0, because array elements which haven't been set always return the default value. However, y[4]

exists but y[6] doesn't, because y[4] is below the upper bound but y[6] is above it:

PRINTF("%f %f\n%d %d", y[4], y[6], y.exists(4), y.exists(6));

0.0 0.0

1 0

Assigning to y[6] raises the upper bound of the array and causes that element to come into
existence (even if the value you assign to it is zero):

y[6] = 0.0;

PRINTF("%f %f\n%d %d", y[4], y[6], y.exists(4), y.exists(6));

0.0 0.0

1 1

There is an expense associated with enlarging an existing array. Thus, if you know at the outset

what size the array will eventually need to be, it's fastest to assign to the highest-index element at

the outset, so that the array immediately grows to the desired size. If you assign to the elements

in order beginning with index 0 and continuing up to n, the time cost of memory allocation will

be greater by roughly a factor of log2(n) than if you had assigned to index n initially. Therefore,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G A R R A Y S 8 - 5

even if you don't know at the outset what value to put into element n, it is well worth assigning

some arbitrary value using that index, and then assigning the correct value later on. After you

have established the size of the array, you can access elements within bounds in any order

without incurring any software-imposed time penalty. (Of course, hardware mechanisms like the
processor cache or the demand-paging system may favor one access pattern over another.)

Understanding Array operations

Arrays are similar to osets in their ability to store an arbitrary collection of elements, and certain

operations apply to either data type. For example, "flush()" removes all elements of an array just

as it removes all elements of an oset. Because osets existed first, and used "member function"
notation like "variable.flush()", arrays use the same style of function notation.

Array Operators and Functions

Function Description

delete(i) Remove from an associative array the element having index (key) i. If the

key did not exist, returns 0; otherwise returns 1. For a nonassociative

array, this causes a compilation error.

exists(i) Return 1 if the element having index i exists, else 0. For a nonassociative

array, this tests whether the index is in bounds.

flush() Make the array be empty.

length() Return the number of elements in the array. For a multidimensional array,

this counts only the number of subarrays, and does not walk the subarrays

counting their elements recursively.

rlength() Like "length()", but walks subarrays recursively and counts the number of

leaf elements.

empty() Returns nonzero if length() is zero.

Writing Arrays of Arrays

PepperCode arrays are one-dimensional, but because the element type of an array can be another
array, they provide approximately the effect of multi-dimensional arrays.

For example, the following declaration creates approximately the effect of a two-dimensional

array whose first dimension is indexed by int, whose second dimension is indexed by string, and

whose element type is float.

local: float[int][string] a

More precisely, that declaration creates an associative array whose index is int and whose

element type is array; each of those elements is is an associative array whose index is string and
whose element type is float.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

8 - 6 W R I T I N G A R R A Y S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

A multidimensional array can mix associative and nonassociative arrays. For example, this is an

associative array indexed by an integer, each of whose elements is a nonassociative array whose

element type is string:

local: string [int][] b

There are some subtle differences between a PepperCode array of arrays and a true

multidimensional array in a language like Fortran or Pascal. A multidimensional array is a perfect

rectangle: each row has the same number of columns. But a PepperCode array of arrays is sparse,

and can have an irregular shape. Suppose that you make the following assignments to associative

array "a":

a[0]["a"] = 27.1;

a[0]["b"] = 28.2;

a[1]["w"] = 29.3;

Now a[0] (let's call this the first "row") has two elements ("columns"), while a[1] (the second

"row") has only one. And the "column" keys for the second row are different than either of the

column keys for the first row.

Even if the arrays are nonassociative rather than associative, the result may not be rectangular; in
the following example, the first row once again has two elements while the second row has one:

local: int[][] d2

d2[0][0] = 1;

d2[0][1] = 2;

d2[1][0] = 3;

The non-rectangular property makes PepperCode arrays useful for storing irregular data. For

example, if you want to use three indices "nation", "state", and "city" to access an integer

representing population, you can declare an associative array of arrays of arrays where each index

has type string. Because a large state like California has many more cities than a small state like

Delaware, a rectangular array dimensioned to suit California would waste considerable unused

space for Delware. Because PepperCode arrays are not constrained to be rectangular, they don't
waste space in that fashion:

local: int[string][string][string] population

...

population["usa"]["california"]["pleasanton"] = x;

...

population["usa"]["delaware"]["dover"] = y;

...

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G A R R A Y S 8 - 7

Another implication of the "array of arrays" model is that operator functions like "exists" and

"delete" apply to a particular, one-dimensional array. Here is a function which deletes an element

of the outer array (in other words, it deletes an entire inner array):

population["usa"].delete("kansas")

And here is a function which deletes a single element of an inner array:

population["usa"]["california"].delete("san mateo")

Here is a function which checks the existence of one element of the outer array:

population["usa"].exists("nevada")

And here is a function which checks the existence of one element of an inner array:

population["usa"]["nevada"].exists("reno")

Of course, you can also apply a function to the outermost level of the array of arrays. The

following example tells how many states appear within the "usa" array:

population["usa"].length()

The "rlength" function travels the array recursively and counts leaf elements. Here we count the

number of cities in California, in the entire US, and in the entire world:

population["usa"]["california"].rlength() // length() would work too

population["usa"].rlength() population.rlength()

It is not necessary to check whether a particular array exists before applying a function to it: if an

array doesn't exist, then it behaves like an empty array. Thus, the second statement in the

following example quietly returns zero even though the array corresponding to "oregon" no
longer exists:

population["usa"].delete("oregon")

population["usa"]["oregon"].length()

If you want to have a nonassociative rectangular array, you can do so by using a technique often

employed in C programs. (Although C provides multidimensional array declarations, their

usefulness is limited because the dimensions are not maintained as variables at runtime and are

not included with the array when you pass the array as an argument to a function.) This technique

declares a one dimensional array and treats it as a two-dimensional array by performing the index
computation explicitly. Here is an example:

input: int[] x, input: int rows, input: int columns

...

x[i*columns+j] = 10; // Assign to x[i][j]

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

8 - 8 W R I T I N G A R R A Y S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Writing Statements Involving Arrays

You can use a "foreach" statement to traverse an array, and you can use an assignment statement
to copy an array. See the section on the "foreach" statement for an example.

A "foreach" statement guarantees to traverse arrays in an order which, although unspecified, will

be the same on every target machine. (In this implementation, when you use "instance" as the

index type for an array, we actually use the UID of the instance rather than the address of the
instance, to avoid machine dependence.) You may not use the "in reverse" form for arrays.

(In this implementation, if you traverse two identically typed associative arrays with "foreach"

loops, the sequence of indices will be the same for both arrays if you satisfy two requirements: [1]

the set of indices now present must be the same and [2] the maximum size the array has ever had

must be the same. Requirement [1] probably doesn't surprise you, but maybe requirement [2]

does. The reason for [2] is that we traverse the hash buckets in order instead of using additional

memory to remember the order of insertion of the elements. We also automatically increase the

number of hash buckets to maintain good performance as the array grows, which forces us to alter

the function which maps indices onto hash buckets, and to redistribute the elements among the

buckets. But we never reduce the number of buckets when you delete. Maybe that's a bug; if we

did so, then we could eliminate requirement [2].)

An assignment statement makes a complete copy of an array. The right side and left side arrays

must have exactly the same index and element types.

Writing Array Accesses

To access an array as an lvalue or rvalue, write its name followed by a list of keys or indices, each

enclosed in square brackets:

a[5]["blue"][37.2] = a[5]["red"][37.2];

Writing Arrays Indexed by Float

Because floating-point numbers are subject to roundoff error, it would be easy to construct a

situation where a program would fail to find an element within an associative array, or would

enter a second element with a slightly different key instead of replacing an existing element.

To avoid this, if the index type of an array is "float", PepperCode discards the low order bits of

any value used to access such an array. This is similar to the "epsilon" feature used in floating

point comparisons, but is implemented differently and is not governed by the "SET_EPSILON"

function.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S 9 - 1

C H A P T E R 9

Understanding Histories And Side
Effects

A history is a data structure that represents a value that varies over schedule time. Schedule time

is the time over which the scheduling system is making decisions (not wall clock time). Since

schedules are projecting actions into the future, and these actions can have effects on the value of

many variables in the schedule, a data structure is required to record these changes.

The history data structure has a rich programmatic interface for manipulating values and finding

relevant information about the values of a history over time. This data structure is used to

implement projected on-hand inventory balances, capacity availability, machine state, and any

other time-varying variable.

For more information and a listing of the functions used for the history interface, refer to

Using History Functions.

Note: The history sections in this section contain several code examples. These example are

written in a pseudo-code similar to C++. They are not written in PepperCode.

Understanding the History Abstract Data Structure

A history has the following properties:

• It has a value at all points in time.

• It has a single value at any point in time.

• The value at any point in time is a function of the effects that persist at that point in time.

A simple interface to a history object can be the following two functions:

• GetValue (History, time) , which returns a history value at the given time.

• SetValue (History, time, value) , which sets the history value at the given time.

These two functions could be used to implement the entire history facility, although that would be

inefficient.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

9 - 2 U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Note: The functions GetValue and SetValue, as was stated earlier, are written in pseudo-

code. They are used here for example only. The real history functions are listed in Using

History Functions.

The following line gets the value of a history at a given point in time.

GetValue(Part_A_History, “1/2/96 3:48:00 PM”)

The following line initializes a history to have all zero values.

foreach time from -infinity to infinity{

SetValue (Part_A_History, time, 0)

}

This could be composed into a function:

History CreateHistory (int initial_value)

{

History the_history = new History;

foreach time from -infinity to infinity {

SetValue (the_history, time, initial_value);

}

return the_history;

Note that this code would run forever.

Representing Availability of a Capacity Resource

Histories can be used to represent concepts such as the availability of a capacity resource.

Suppose you have a manufacturing work center that has two drills in it. You want to know how

many drills are UNASSIGNED to production tasks at any point in time. If you ever assign more

than two drills, you want to know about that so you can signal a violation. To do this you create a

history to represent the availability of drills in the drill work center (DrillWC).

Histories are written as a list of history elements. Each history element has a time interval and a

value. A history interval is shown as ((start . end) value). A history is a list of history elements

such as (((start_time1 . end_time1) value1) ((end_time1 . end_time2) value2)). Adjacent history

elements must meet; that is, the end of the prior history is equal to the start of the following

element. This ensures that all points in time have a value.

To assign an initial value to our history, you could use the function discussed earlier,
CreateHistory.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S 9 - 3

DrillWC = CreateHistory (2);

This sets DrillWC to the following history:

(((-infinity . infinity) 2))

Now suppose a task is scheduled to use a single drill from DrillWC from time 10 to time 20. This

will result in only a single drill being available to be assigned from 10 to 20. The history that
represents this state is as follows:

(((-infinity . 10) 2) ((10 . 20) 1) ((20 . infinity) 2))

There are two drills available up to time 10, then from time 10 to time 20 there is one drill
available, and then two again from 20 to the end of time.

Now suppose a second task from time 15 to time 25 uses two drills. The history would look like

the following:

(((-infinity . 10) 2) ((10 . 15) 1) ((15 . 20) -1) ((20 . 25) 0) ((25 .

infinity) 2))

Task Start End Drills used

T1 10 20 1

T2 15 25 2

From 0 to 10, no one uses the drill, so two are available.

From time 10 to 15, only task T1 uses a drill, so one drill is available.

From time 15 to 20 both T1 and T2 use the drill, for three total, leaving -1 drills available.

From time 20 to time 25, only T2 uses the DrillWC, so zero drills are available, and after 25 both

drills are available.

Given this data structure and the accessors, you can write functions that get useful data, such as

getting every time where this history is over allocated, or getting the next over-allocation after a

given time. For example:

boolean Overallocated (History the_history)

{

foreach time from -infinity to infinity {

if (GetValue (the_history, time) < 0) return TRUE;

}

return FALSE;

}

time GetNextOverallocation (History the_history, time start_time)

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

9 - 4 U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

{

foreach time from start_time to infinity {

if (GetValue (the_History, time) < 0) return time;

}

return NEVER; // Special key that means no time found.

};

Understanding The History Data Structure

The current implementation of histories is a linked list of temporally ordered history elements.

As done before in this section, pseudo code is used to discuss the data structure, but the actual

implementation is in C++ using Lists, and a number of other complications.

Understanding History Data Structure Elements

Each history element has four slots:

• the start time of the interval,

• the end time of the interval,

• the value for that interval,

• and a list of the side effect objects responsible for the value.

The list is known as the changers list. The end time of the preceding element must be equal to the

start time of the following element. This means that the intervals meet. Every history must cover

each point in time between and including the beginning_of_time fence to the end_of_time fence.

Understanding A History Elements List

The list of history elements is a doubly linked list, so it can be traversed in order of either

increasing time or decreasing time.

Because histories are implemented as a doubly linked list, you have some known performance

characteristics for the base accessor functions. Both GetValue(), and SetValue () have linear—

O(n)—speed, where n is the number of distinct history elements generated by the entire set of

changers on the history. Clearly as n becomes large, you expect the performance of histories to
decrease.

When history lookup becomes a bottleneck in the performance of the system, the history

functions will be reimplemented to use a different data structure to index times to values. One

alternative is to use a index similar to ISAM that quickly points a time into roughly the correct

area of the history, and then perform a linear search for the correct time point. This leaves the

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S 9 - 5

performance at O(m), where m = n/constant. Another possible implementation is to make the

history elements form a balanced tree, and thus have a better performance.

Understanding An Example of History Object

The History object in C is defined as:

class History {

List<Interval> rep;

HE_Type type;

};

This example says that a history is implemented as a class with two member variables. The type

member variable determines the data type of the value of each element. The List<Interval> rep

member is the list of history elements. This doubly-linked list operates with a series of member

functions for controlling the current item in the list, and for moving the current pointer forward

and backward through the list, as well as for inserting and deleting elements. The list data type is

used to implement Osets and histories, as well as many other items in the substrate.

Understanding An Example of Interval Implementation

The implementation of Interval is complicated by the fact that different histories can have

different data types. The following example show the Interval implementation for a double data

type. The actual implementation involves a union of multiple records with multiple data types.

An Interval structure for a double data type looks like the following example:

struct Interval {

Time start;

Time end;

ListVoid changers;

double value;

};

Understanding GetValue Implementation

The following example is the implementation of GetValue for the history. Note that some of the

additional functions and code are due to the union of the multiple data types.

RPS_FLOAT History_get_value_double(void* h, RPS_DATE dt)

{

History* history = (History*)h;

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

9 - 6 U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Interval *he;

assert(history->get_type()==HE_Double);

history->find(dt);

he = history->current();

if (!he) return 0.0;

return HistoryElement(he).d->value;

}

To examine this example line by line:

The first line creates a local History variable, and casts the history passed in.

History* history = (History*)h;

The second line declares a local interval pointer.

Interval *he;

The next line is an error check to make sure the history passed in has a data type assigned.

assert(history->get_type()==HE_Double);

The next line uses the find method on the history to set the current pointer in the history to point

to the HistoryElement that contains the time point dt.

history->find(dt);

The next line retrieves the interval for the current HistoryElement.

he = history->current();

If no element is found then return 0.0 as the value. This value could also represent an error.

if (!he) return 0.0;

The next line uses the historyElement to look up the value through a union that composes all the

different types of History elements into a single structure. This value is the one returned to the

caller.

return HistoryElement(he).d->value;

Finding Maximum

GetValue was a simple history accessor. Following is a more complicated example that finds the
quantity of the maximum over allocation that occurs on a history between two time points.

// What is the maximum value that the history is over allocated by from

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S 9 - 7

// start_time to end_time

//

CPP_FLOAT cpp_max_quantity_overallocated (void *history, CPP_DATE start_time,

CPP_DATE end_time)

{

History *the_history = (History*)history;

List<Interval> lhe;

Interval *he;

CPP_FLOAT max_overallocated = 0.0;

assert(the_history->get_type()==HE_Double);

if (start_time > end_time)

// This should probably print an error message

return 0;

the_history->get_list(lhe);

lhe.reset(BEGIN);

he = lhe.current();

while (he) {

// begin checking the quantity in a "legal time period"

if (he->end > start_time) {

// staring right at special case

if ((start_time == end_time) && (he->start == end_time)) {

max_overallocated = HistoryElement(he).d->value;

return rps_abs_d(max_overallocated);

}

if (he->start > end_time) // terminate

return rps_abs_d(max_overallocated);

if (rps_lt_d(HistoryElement(he).d->value, max_overallocated))

max_overallocated = HistoryElement(he).d->value;

}

he = lhe.next();

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

9 - 8 U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

}

return rps_abs_d(max_overallocated);

}

Understanding Side Effects and Persistence

This section discusses how histories are updated from values that change inside PepperCode.

What happens is that a mechanism called a “side effect” watches slot values, and when the values

change, the side effect updates other things, such as histories.

Histories are data structures that contain computed information, based on the values assigned to
schedule tasks.

What exactly is the processing that these supplies and constraints have on histories, and what are

the differences caused by inventory/capacity and consume/supply dimensions? How are the

history values maintained? This section addresses these questions.

Understanding The Effect of Supply/Constraint and Capacity/Inventory on
Side Effects

A side effect computes a dependent variable from a set of independent variables any time one of

the independent variables change. This structure is implemented in the substrate of the

PepperCode system. The performance ramifications are very significant, and can be costly.

Every resource supply and constraint has a side effect with independent variables of the

start_time, end_time, quantity, and selected_object, and a dependent variable of the history. The
following processing takes place when an independent variable changes:

• every side effect attached to that variable has its retract function fired.

• the slot value is changed.

• all the side effects are asserted.

Remember the performance ramifications. For a reasonable-sized BOM, moving a task and

setting its start time and end time slots are relatively expensive operations.

There are two different dimensions of the differences which affect the behavior of side effects:

resource supply vs. resource constraint, and capacity vs. inventory.

The resource supply vs. resource constraint dimension has to do with how to take a value—the

quantity—and combine it with the existing value of the interval. For resource constraints,

subtract the value from the history value. For resource supply, add the value to the interval value.

This combination function can get more complex than addition/subtraction. For histories that

represent time-varying states of an object, the combination function sets the state to the state of
the latest effect in time.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S 9 - 9

The capacity vs. inventory dimension has to do with persistence of the effect, or how long the

effect lasts. For a capacity resource, the effect of the usage of a resource persists from the

start_time to the end_time of the task; then the resource is given back to the pool, and is available

for other uses. For inventory parts, the usage persists forever. That is, once a part is used, it is

never given back to the pool for some one else to use. This difference is encoded by how the side

effect determines the start time and end time for the persistence of the side effect. For a capacity

side effect, the side effect code looks up the start and end of the task, and uses these as the start

and end of the side effect. For an inventory constraint, the side effect looks up the start time of

the task for the start of the side effect, and uses infinity for the end time. A resource supply

inventory side effect uses the end time of the task as the start time of the side effect, and infinity

as the end time of the side effect.

Understanding the Scheduling Classes: Resource and Task

The two PepperCode classes involved with scheduling are resource and task.

Understanding the Resource Class

In PepperCode, there is an object called a Resource. This object is the base class for

Equipment_Resource, and for Inventory_Resource. This means all resources share the same

basic structure for manipulating the time varying portion of the behavior. Notice there are two

history slots on this object. The initial_history slot is a history that can be used to determine how

much was available for each time period when the resource was created. For a capacity resource

this represents the capacity available for the resource. In any PepperCode function, the

resource_history slot is typically passed as the history value.

class Resource : Named_Object Spl_Class {

oset[instance<Resource_Constraint>] resource_constraints

oset[instance<Resource_Supply>] resource_supplies

float initial_amount

enum<Relevant_Status> relevant_status

history<float> initial_history

history<float> resource_history

action<substitute> substitute_action

action<resource_batch> resource_batch_action

action<calculate_duration> calculate_duration_action

action<calculate_quantity> calculate_quantity_action

action<consumable> consumable_action

};

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

9 - 1 0 U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Understanding Tasks

In PepperCode, tasks look roughly like the following:

class Base_Task : Named_Object Spl_Class {

instance<Base_Task> parent

date start_time

date end_time

enum<Task_Status> status

};

class Duration_Task : Base_Task {

oset[instance<Resource_Constraint>] resource_constraints

oset[instance<Resource_Supply>] resource_supplies

};

Duration_task is the basic scheduled task. It is scheduled to run from start_time to end_time, and

has a list of the resource_constraints associated with the task, and a list of resource supplies

associated with the task.

Understanding Resource Supplies and Constraints

A resource constraint represents a usage of either a inventory resource or a capacity resource by

the task. A resource supply represent a supply of either a inventory or capacity resource. Both

resource_constraints and resource_supplies have effects on the history of the object they effect,

but only resource_constraints are constraints in the search engine.

The definition of the resource_constraints (usages of a resource by the task) and resource_supply

(supply of a resource) are shown following. These are fairly straightforward.

class Constraint : Spl_Class {

float weight // instance weight

float class_weight // class weight

action<penalty> penalty_action

instance<Spl_Class> object

};

class Repairable_Constraint : Constraint {

enum<Relevant_Status> relevant_status

action<start_and_end> start_and_end_action

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S 9 - 1 1

action<constraint_repair> repair_action

action<repair_earliest> repair_earliest_action

action<earliest_violated> earliest_violated_action

int start_fall_earlier

};

class Resource_Constraint : Repairable_Constraint {

int created_by_user

instance<Duration_Task> object

class<Resource> selected_object_class

instance<Resource> selected_object

float quantity

action<duration_constraint> duration_constraint_action

action<inventory_constraint> inventory_constraint_action

};

class Resource_Supply : Spl_Class {

instance<Duration_Task> object

instance<Resource> resource

float quantity

};

Understanding the Effect of Resource Supplies and Constraints on Histories

Refer to the Resource_Constraint class in the previous section. The resource_constraint object

has the following slots:

• a object slot which holds the task that this resource constraint is associated with. This allows

the resource_constraint to get to the start_time, and end_time of the scheduled duration_task.

• a quantity slot, which is the amount of the resource that this task needs to use.

• a selected_object slot that holds the Resource object that will be affected.

These slots allow access to all the required information needed to call these history functions:

• a function that takes (start_time, end_time, quantity, and a history) and updates the history to

reflect a usage of quantity from start time to end time.

• a function that updates the history to reflect the removal of a usage of quantity from start_time

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

9 - 1 2 U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

to end_time.

The two functions in the last two bullets are opposites; they serve to assert and retract the side

effect of a task from a history.

Programming for Side Effects: The side_effect Keyword

You should add the “side_effect” keyword to the declaration to a slot that is:

• An input or output to a side effect function.

• Any slot which lies along the path leading from the root object of a side effect subtree to an

input or output slot.

Adding the “side_effect” keyword consumes memory. Aside from that, there is no harm done if

you add on a slot which is not associated with side effects, but if you do not use it on a slot which

is associated with side effects, a runtime error message will be printed on the server console.

Here is an example of using the side_effect keyword. It is taken from resource.spl.

class Resource_Supply : Spl_Class {

instance<Duration_Task> object

instance<Resource> resource

float quantity

float increment_amount // if duration, in seconds,

// otherwise units

int increment_type // 0 - none, 1 - duration,

// 2 - quantity

};

slot Resource_Supply.object { side_effect: };

slot Resource_Supply.quantity { side_effect: };

slot Resource_Supply.resource { side_effect: };

slot Resource_Supply.increment_amount {default: 0.0 class_slot: };

slot Resource_Supply.increment_type {default: 0 class_slot: };

slot Resource_Supply.init_action { default: resource_supply_init };

slot Resource_Supply.delete_action { default: delete_resource_supply };

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S 9 - 1 3

Understanding Schedules

PeopleSoft Planning uses an in-memory representation to allow fast computation. There is no

option of running a consolidation job to compute projected on-hand balances, next requirements,

or any of the other batch processes in MRP systems. PeopleSoft Planning always computes the

ramifications of scheduling an event.

A schedule is a set of inventory and capacity histories that projects the availability of material and

capacity into the future, and a set of tasks that have been scheduled. The tasks change the

projected values for on-hand material and capacity availability.

Any real world event represented in PeopleSoft Planning is a scheduled event in the in-memory

model. The receipt of material based on a scheduled purchase order delivery is a real world event

represented as a PO Delivery task in PeopleSoft Planning. This task is a part of the schedule.

This task has an effect on the projected on hand balance of material for the part that is delivered.

The change in the projected on hand quantity of the delivered material is calculated immediately
when the PO delivery is added to the schedule. No consolidation or netting process is required.

For more information on how this technically happens in the software, refer to

Understanding Side Effects and Persistence.

A production operation is a scheduled task. Its materials usage, capacity allocations, and

materials supplied are all effects of scheduling this task. As soon as the production operation is

added to the schedule, its effects are computed on available balances of material and capacity

availability. A Sales Order is another real world event that represents the shipment of material

from a location under PeopleSoft Planning control to a customer. This is represented as a
shipment of material, and changes the projected on hand balance in the future.

A change in a BOM’s effectivity is not a real world event, and so does not directly affect the

schedule. It does indirectly affect the schedule by determining the appropriate BOM’s to add to a

work order, but the resulting mapped materials requirements with the work order operations are

what affect the schedule, not the actual BOM, or its effectivity. Effectivity is a set of dates on the

data, such as the start and end date, that specify when this data is true. For example, if the

effectivity for a part number is today until next Friday, the part number is good until next Friday.

The ramifications of this model of a schedule are not immediately apparent, but they effect every

aspect of thinking about the schedule, or about materials availability, or about the processes that

are used to find information.

For example, there is no transaction to allocate material to an order. Since an order—be it a

production order, or a sales order—is a scheduled task, its effects on materials availability and

capacity are always asserted into the projected on-hand balance for inventory and availability for

capacity. Allocation of material to priority orders is handled by scheduling orders such that they

are predicted to have materials and capacity available when they are scheduled to execute. If

insufficient material is available, and an allocation decision needs to be made, then the conflicting

orders are rescheduled to a time point where the material is anticipated to be available.

Here is a scheduling example.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

9 - 1 4 U N D E R S T A N D I N G H I S T O R I E S A N D S I D E E F F E C T S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Part A has five on hand now. Next Monday you project an order for five units to be delivered:

you have a PO Delivery scheduled with a due date of next Monday, and a quantity of five. The

history for Part A will project an on-hand balance of five up through next Monday, and then a

projected balance of ten for the rest of time. At this point, our schedule consists of a single
history for Part A, and one scheduled task for the delivery of the material.

Add two sales orders both due this Friday, both for five part A’s. As soon as the Sales Orders are

entered into the schedule, the effects of these orders are computed on projected on hand balances

and capacity availability. Your schedule now consists of a history for Part A which shows a

projected balance of five units from now till Friday, then -5 units on hand from Friday to

Monday, and 0 units on hand from Monday till the end of time; and three tasks, and one PO

Delivery on next Monday, and two sales order shipments on Friday. Notice that all that happened

was that two sales orders were added. No allocation of either material process or inventory

netting process was executed.

The schedule now has an Inventory violation. You project that there will be a shortage on Friday

of five units. At this point you do not make an inventory allocation of material to an order. You

decide which order to schedule on Friday, and which order to reschedule to Monday, Monday

being when the material is projected to be available. This decision can be made in a number of
ways, but order priority might be a good criteria.

Now our schedule consists of a projected on hand inventory for part A of five till Friday, then 0

from Friday till the end of time; and three tasks, a sales order shipment on Friday, a PO Delivery

Monday morning, and a sales order shipment Monday morning, right after the material delivery.

The inventory violation has been resolved by moving a task.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 1

C H A P T E R 1 0

Understanding Operators And Functions

This sections lists and describes how to use the PepperCode intrinsic operators and functions. It
also describes how to access and use C/C++ functions.

Understanding Infix and Intrinsic Operators and Functions

There is a new inline notation type for mathematical operations in Release 8.0. It applies to the
operators in the following table. However, we have maintained backward compatibility in that
you can still use prefix notation.

Example:

You can now use the following expression (using inline notation):

i = i + 1;

In previous releases, you would have had to code this expression in prefix notation as follows:

i = ADD(i,1);

The following table lists the new Infix notation operators and the data types with which they can
be used.

Each operator allows a limited set of data types for its operands.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 2 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

PepperCode Infix Notation

Operator Left operand Right operand Result Coerces?

||

&&

int int int N

int int

float float

string string

date date

<=

>=

<

>

time time

int Y

int int

float float

string string

instance instance

class class

date date

time time

action action

==

!=

enum enum

int Y

~ string string int N

int int int

float float float

int time time

*

time int time

Y

int int int

float float float

time int time

/

%

time time int

Y

int int int

float float float

+

date time date

Y

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 3

Operator Left operand Right operand Result Coerces?

time date date

time time time

int int int

float float float

date time date

-

time time time

Y

int int

date int

time int

string int

instance int

! none--unary

class int

N

int int

float float

+

-

none--unary

time time

N

instance slotname

class slotname

action out-parmname

enum slotname

oset fcnname

.

array fcnname

any N

cpp_function any

action none

()

intrinsic fcn

arglist

any

N

int

string

float

[] array

instance

any N

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 4 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Operators && and || perform short-circuit evaluation.

PepperCode has several intrinsic operators and functions derived from C++ operators and
functions, as listed in this table. Most of these operators and functions take two arguments—arg1
and arg2, in that order; they all return one value. True is 1 and false is zero. An argument can be
an expression. For logical operations, inputs are TRUE if nonzero, and the output is 1 for TRUE
and zero for FALSE.

Note: Most of the prefix functions have an equivalent in the Infix operators. The prefix
operators are still included to maintain compatibility with any release prior to Release 8.0.
When possible, use the infix operators.

PepperCode Prefix Operators and Functions

Operator or function Description Number of
arguments

Argument
data types

Return
type

GT Is arg1 greater than
arg2?

2 int, float, time,
date, string

int

GT_OR_EQ Is arg1 greater than
or equal to arg2?

2 int, float, time,
date, string

int

LT Is arg1 less than
arg2?

2 int, float, time,
date, string

int

LT_OR_EQ Is arg1 less than or
equal to arg2?

2 int, float, time,
date, string

int

EQ Is arg1 equal to
arg2?

2 int, float, time,
date, string,
instance, class,
enum

int

NE Is arg1 not equal to
arg2?

2 int, float, time,
date, string,
instance, enum

int

ADD Add arg1 to arg2. 2 int, float, time,
date

Same as
argument

SUB Subtract arg2 from
arg1.

2 int, float, time,
date

Same as
argument

MUL Multiply arg1 by
arg2.

2 int, float, time,
date

Same as
argument

DIV Divide arg1 by arg2. 2 int, float, time,
date

Same as
argument

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 5

Operator or function Description Number of
arguments

Argument
data types

Return
type

AND Logical AND arg1
and arg2.

2 int, instance,
class

int

OR Logical OR arg1 and
arg2.

2 int, instance,
class

int

NOT Logical NOT arg. 1 int, time, date,
instance, class

int

NIL Return 1 if the
argument is NIL;
otherwise, return
zero.

1 string, oset,
instance, class,
action

int

MIN Return the minimum
of two numbers.

2 int, float, time,
date

Same as
argument

MAX Return the
maximum of two
numbers.

2 int, float, time,
date

Same as
argument

ABS Return the absolute
value—always
positive—of arg.

1 int, float, time Same as
argument

MOD Return the
remainder of arg1
divided by arg2.

2 int, float, time,
date

Same as
argument

POW Return arg1 raised to
the power of arg2.

2 int, float Same as
argument

ROUND Round to a float
value.

1 float float

ROUND_UP Round a float value
up. The ceiling is an
increase to the next
highest integer
value.)

1 float float

ROUND_DOWN Round a float value
down. The floor is a
decrease to the next
lowest integer
value.)

1 float float

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 6 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Operator or function Description Number of
arguments

Argument
data types

Return
type

INT_TO_FLOAT Convert an integer
to a float.

1 int, date, time float

INT_TO_TIME Convert an integer
to a time value.

1 int time

INT_TO_STRING Convert an integer
to a string.

1 int, time string

FLOAT_TO_INT Convert a float to an
integer.

1 float int

FLOAT_TO_STRING Convert a float to a
string.

1 float string

STRING_TO_INT Convert a string to
an integer.

cpp_ascii_to_int

scheduler/utils/cpp_

spl_misc.h

1 string int

STRING_TO_FLOAT Convert a string to a
float.

1 string float

RETRACT Fires the retract
method for each side
effect associated
with the slot passed
in as an argument.

1 slot int

ASSERT Fires the assert
method for each side
effect associated
with the slot passed
in as an argument.

1 slot int

If you invoke a function with arguments of two different types, the “lower priority” type gets
converted to the “higher priority” type. The following list shows the priority of a data type, from
highest to lowest:

• float

• date

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 7

• time

• int

Note: The RETRACT and ASSERT functions are meant for use in exceptional
circumstances by programmers who understand fully the side effects mechanism. Normally
the side effect methods are fired automatically as part of the act of assigning a value to a slot,
so it is not necessary to invoke these functions. The compiler will issue an error if the
argument which you pass to the function is not a slot.

Understanding SET_EPSILON and SET_FLOAT_FORMAT

Although most of the operators and functions listed in the Intrinsic Operators and Functions table
are self-explanatory to an experienced C/C++ programmer, SET_EPSILON and
SET_FLOAT_FORMAT require further explanation:

SET_EPSILON and SET_FLOAT_FORMAT

Function # arguments, data
types

Description

SET_EPSILON 1, int When you compare floating point values by

using functions such as EQ, NE,

LT_OR_EQ, or LT, PepperCode considers

values to be equal if they differ by less than

a tiny amount, called the epsilon. As a

result, small round-off errors do not prevent

numbers from being considered equal.

This function sets the value of the epsilon to

be approximately 1*10^(-n), where n is the

argument you pass to the function. If the

numbers being compared are greater than

1.0, the system scales the epsilon upward by

multiplying it by the sum of the numbers

being compared.

SET_FLOAT_FOR

MAT

1, string This function sets the format that the

FLOAT_TO_STRING function uses when it

converts a floating point number to human-

readable form. The argument to

SET_FLOAT_FORMAT is a string that

must follow the rules for the C language

function printf. For example, the format

could be one of the following:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 8 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function # arguments, data
types

Description

% 15.2f

Create a 15-character string containing a

number that has two digits to the right of the

decimal point, but no exponent.

% .5f

Create a string—just large enough to

represent the number—with five digits to the

right of the decimal point, by no exponent.

% .5e

Create a 15-character string containing a

number that has two digits to the right of the

decimal point and that has an exponent.

% 15g

Use 15 digits for the string and use an

exponent only if the number is too big or

small to be represented without one.

Using EQ With Strings

Using EQ on strings is not a pointer comparison, it is a string compare (strcmp). The following
statements do almost exactly the same thing in PepperCode:

...

input: string string_1,

input: string string_2,

...

if (EQ (string_1, string_1)) // really a strcmp

...

if (EQ (STRING_COMPARE (string_1, string_1), 0))

...

strcmp must check every character of one string against every corresponding character of another
string until there is not a match. This can be expensive for strings that begin with the same set of
characters.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 9

Accessing C/C++ Functions

In addition to the PepperCode intrinsic operators and functions, you can declare and then use
C/C++ operators and functions from within PepperCode code.

To declare a C or C++ function, use the following syntax:

cpp_function return_type SPL_FUNCTION_NAME (argument(s)) "cpp_function_name";

• return_type can be any PepperCode data type or void for C/C++ functions that don’t return
anything.

• SPL_FUNCTION_NAME is the name that PepperCode actions will use to reference the
C/C++ function. This name should always be in all capital letters so it is easy to identify.
Multiple cpp_function declarations may map different PepperCode identifiers to the same C++
function. However, multiple cpp_function declarations may not map the same PepperCode
identifier to multiple C++ functions

• argument(s) is a list of PepperCode data types, separated by commas, for all arguments. The
data types of the arguments supplied in this arglist must match with those specified in the C++
function. Also, the data types of function calls must match.

• cpp_function_name is the actual C/C++ function name, placed inside of double quotes (" ").

PepperCode Data Types in cpp_function Statements

As these scenarios illustrate, you must provide meaningful PepperCode types in the C++ function
declaration.

The types provided in the C++ function declaration must correspond to the types in the actual
C++ function. Starting in Release 8.0, the PepperCode compiler generates code that allows the
linker to check the argument list data types.

Many of the Release 7.5 cpp_function declarations have already been modified to work in
Release 8.0. For example, in Release 7.5, the SET_SLOT_ACTION_ON_INSTANCE function
took class<Spl_Class> as the first argument. Since the name of the function specifies an instance,
it obviously requires an instance as an argument instead of a class. So, the cpp_function
declaration was changed to specify the data type "instance<Spl_Class>" as the first argument
instead of the data type "class<Spl_Class>."

Release 8.0 Function Declaration:

cpp_function void SET_SLOT_ACTION_ON_INSTANCE (instance<Spl_Class>, string,

string) "cpp_set_slot_action_on_instance";

Release 7.5 Function Declaration:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 1 0 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

cpp_function void SET_SLOT_ACTION_ON_INSTANCE (class<Spl_Class>, string,

string) "cpp_set_slot_action_on_instance";

Rules for Passing Arguments

The rules for passing arguments in Release 8.0 have not really changed, but argument types are
checked in Release 8.0, and this may require some changes to the way that you declare and use
C++ functions.

The arglist declares the formal arguments of the C++ function using PepperCode data types. Data
types can be preceded by "const:".

Example:

cpp_function int STRING_COMPARE (const: string, const: string) "nlstrcmp";

Since argument types were not checked in previous releases, you could have probably gotten by
with:

cpp_function int STRING_COMPARE (string, string) "nlstrcmp";

However, this will not work in Release 8.0.

You can also use the symbol "&".

Example:

cpp_function string SYSTEM_CALL(string, int &) "cpp_system_call";

which indicates pass-by-reference…

and the symbol "*".

Example:

cpp_function int LIST_FILES_IN_DIRECTORY(const:

string,oset[string],oset[string], string *) "ls_to_lists";

which indicates pass-by-pointer.

The default is pass-by-value. Only one level of "&" or "*" is currently allowed.

When you pass an actual argument to a formal argument which was declared with "*", the
compiler implicitly takes the address of the actual argument.

The arglist may contain the argument "void" alone, or the arglist may contain no arguments.
These have the same meaning.

Example:

cpp_function date GET_EARLY_FENCE() "LpExportToSPL_getEarlyFence";

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 1 1

If the arglist contains at least one argument which is not "void", it may end with "..." or ", ...".
This denotes that the C++ function has a variable argument list.

Example:

cpp_function void LP_LOG(int, int, string, ...) "LpExportToSPL_lpLog";

Typedefs Used With C++ Functions

When writing C++ functions to be invoked from PepperCode, the programmer should use the
typedefs which begin with "RPS_" in the table below. These "barrier" typedefs provide a small
degree of insulation from changes in the underlying implementation. However, to do anything
meaningful with the data inside the C++ function, you typically need to know what the
underlying C++ declaration is, since mere typedefs (as opposed to classes with methods that
operate on the data) don't allow that; so the table shows them as well.

PepperCode C++ typedefs Underlying type Comments

Int RPS_INT 32-bit int [1]

Float RPS_FLOAT double IEEE 64 bits

String RPS_STRING (char *) [4]

Date RPS_DATE 32-bit int [2]

Time RPS_TIME 32-bit int [2]

void RPS_VOID (void) [3]

instance<> RPS_INSTANCE (rtoe_instance_obje

ct *)

class<> RPS_CLASS (rtoe_class_object

*)

action<> RPS_ACTION (struct

spl_action_info *)

oset[] RPS_OSET (ListVoid *) [5]

enum<> RPS_ENUM (rtoe_instance_obje

ct *)

history[] RPS_HISTORY (History *) [5]

array RPS_ARRAY (spl_array *) [5]

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 1 2 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

PepperCode and C++ typedefs

Notes:

1. For identical behavior on all machines, we intend that all PepperCode implementations

perform 32-bit integer arithmetic on PepperCode type "int", no matter whether the word size

of the underlying machine is 32 or 64 bits. The previous compiler used 64-bit arithmetic on

64-bit machines.

2. Due to loose programming practices in the past, we force PepperCode date and time to

occupy the same amount of space as PepperCode int. C++ programmers should not assume

this is equivalent to C++ "time_t". On some 64-bit machines (DEC Alpha OSF/1 Unix, SGI

Irix) "time_t" uses 32 bits, but on others (HP-UX) it uses 64.

3. This type is used only to indicate that a function has no return value or no arguments. The

"void *" type is not allowed.

4. The declaration "string *" maps to "char **". The declaration "string &" maps to "char *&".

The declaration "const string" maps to "const char *", not "char *const". It is expected that

the implementation will change to use some "class rps_string" type instead of "char *". At
that point, the restrictions in [5] will apply.

5. The declarations "oset &" and "oset *" are not yet implemented. The C++ programmer

should understand that assigning to "ListVoid *" does not invoke the copy constructor for

ListVoid, and thus causes a memory leak. The same comments apply to "history" and to

"array".

Using PepperCode Runtime Functions

This table lists most of the PepperCode runtime functions. There are also sections following this
one that list PepperCode runtime that are grouped together under specific utilities, such as history
functions.

In the 8.0 and later versions of PepperCode, it is no longer necessary to write a "#include"
statement for a .h file when you declare a cpp_function. Instead, the SPL compiler generates the
C++ declaration based on the cpp_function statement, and the linker will check that the
declaration is consistent with the actual C++ definition. However, if any of the arguments to the
function are const or pointers or references, you must use "const:", "*", and "&" in the declaration
to indicate this. If the function takes a variable-length argument list, you must use "..." to indicate
this.

An example of a declaration using the new syntax:

cpp_function void MYFUNC(int, const: float *, date & ...) "myfunc";

To call a class member function, you must use a non-member wrapper function.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 1 3

When you pass an actual argument to a formal argument declared with "*", the compiler
automatically takes the address of the argument for you (there is no "address of" operator in SPL
comparable to the "&" operator in C++). In the table below, you do not have to #include the .h
file in the C++ function Include file column.

For PepperCode before version 8.0, if you use the cpp_function statement to add a new function
to the system, rather than to simply obtain access to an existing one, you must also create a .h file
that contains the C or C++ function prototype declaration. You must use #include to include the
.h file in the PepperCode source file that invokes the function. The PepperCode compiler simply
passes the #include statement through to the C++ compiler when the included filename ends in .h.
This file satisfies the requirement that the C++ compiler must see a prototype for each function it
is asked to invoke. For these versions of PepperCode, in the table below, you have to #include
the .h file in the C++ function Include file column.

PepperCode Runtime Functions

Function signature Description Arguments and
returns

C++ function Include
file

void

CREATE_MULTIPL

Y_INHERITED_SU

BCLASS (string,

oset[string])

Creates a

subclass of an

existing set of

parent classes.

Argument1: the name

of the new subclass

Argument2: an oset

of parent class names

cpp_create_multiply_inhe

rited_subclass

scheduler/utils/cpp_spl_

misc.h

String

CREATE_NAME_F

ROM_OSET(oset[stri

ng], int)

Creates a

name from an

oset of strings.

Argument1: an oset

of strings

Argument2: an flag

for specifying a

unique name (1 =

unique)

cpp_create_name_from_o

set

scheduler/utils/cpp_spl_

misc.h

instance<Spl_Class>

CREATE_OBJECT(s

tring, string)

Create an

instance of an

already

existing class.

Argument1: the name

of the instance you

want to create

Argument2: the name

of the class it belongs

to

Returns: an instance

of the class

cpp_create_object

scheduler/utils/cpp_spl_

misc.h

Void

CREATE_SUBCLAS

S (string, string)

Creates a

subclass of an

existing parent

class.

Argument1: the name

of the new subclass

Argument2: the name

of the parent class

cpp_create_subclass

scheduler/utils/cpp_spl_

misc.h

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 1 4 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and
returns

C++ function Include
file

Date

CURRENT_TIME ()

Returns: the current

system date

rps_get_current_time

substrate/utilsCC/util.h

String

DATE_TO_STRING

(date)

Converts a

date into a

string with

format

"mm/dd/yy

hh:mm:ss"

Argument1: a date cpp_get_date_string

scheduler/utils/cpp_spl_

misc.h

Void

DELETE_OBJECT

(instance<Spl_Class>

)

Deletes an

instance. This

function

should only be

used within a

delete method.

Argument1: an

instance

cpp_delete_object

scheduler/utils/cpp_spl_

misc.h

void DESCRIBE

(instance<Spl_Class>

, int)

Prints the

value of every

slot on an

instance.

Argument1: an

instance

Argument2: a

verbose flag (1 =

verbose, 0 = not

verbose)

rps_describe

substrate/objectcore/rps.h

float EXP (float) Calls the C

exp function.

Argument1: a float

Returns: the result of

exp

C function exp

PepperCode compiler

includes .h file for you

int FLOAT_TO_INT

(float)

Converts a

float into an

integer (the

float is

truncated).

Argument1: a float

Returns: an integer

rps_float_to_int

substrate/utilsSPL/cpp_m

ath.h

String

FLOAT_TO_STRIN

G (float)

Converts a

float into a

string.

rps_float_to_string

substrate/utilsSPL/cpp_m

ath.h

Class<Spl_Class>

GET_CLASS_BY_N

AME (string)

Finds a class

when given its

name.

Note: This is

now obsolete.

Use

name.class_na

me instead.

Argument1: the name

of a class

Returns: a class (if

found), or 0

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 1 5

Function signature Description Arguments and
returns

C++ function Include
file

class<Spl_Class>

GET_CLASS_OF_IN

STANCE

(instance<Spl_Class>

)

Gets the class

of an instance.

Argument1: an

instance

Returns: a class

cpp_get_class_of_instanc

e

scheduler/utils/cpp_spl_

misc.h

Void

GET_DESCENDAN

TS

(oset[instance<Spl_Cl

ass>],

class<Spl_Class>,

int)

Finds all

descendants of

a class

(including

descendants of

descendants).

The

descendants

can be

instances or

classes. Note

that a class is

considered to

be its own

descendant.

Normally

GET_DESCE

NDANTS

returns classes

if the first

argument is an

oset of classes,

or instances if

the first

argument is an

oset of

instances. For

backward

compatibility,

it accepts a

third argument

of type integer

which is 0 for

classes and 1

for instances.

Argument1: an oset

of instances or

classes that will be

“filled in” during the

function execution.

Argument2: a class

Argument3: a flag for

specifying instances

or classes (1 =

instances, 0 =

classes)

cpp_get_descendants

scheduler/utils/cpp_get_d

escendants.h

void

GET_DIRECT_DES

CENDANTS

Finds only the

direct

descendants of

Argument1: an oset

of instances or

classes that will be

cpp_get_direct_descenda

nts

scheduler/utils/cpp_spl_

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 1 6 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and
returns

C++ function Include
file

(oset[instance<Spl_Cl

ass>],

class<Spl_Class>,

int)

a class. The

descendants

can be

instances or

classes.

“filled in” during the

function execution.

Argument2: a class

Argument3: a flag for

specifying instances

or classes (1 =

instances, 0 =

classes)

misc.h

instance<Spl_Class>

GET_INSTANCE_B

Y_NAME (string)

Finds a named

instance when

given its

name.

Argument1: the name

of an instance

Returns: an instance

(if found), or 0

cpp_get_instance_by_na

me

scheduler/utils/cpp_spl_

misc.h

int

GET_MSG_LEVEL

()

Returns: the current

message level

get_debug_level

substrate/utilsCC/Error.h

string

GET_NAME_OF_CL

ASS

(class<Base_Class>)

Gets the name

of a class.

Not used in

Release 8.0 or

later. See

GET_NAME_

OF_CLASS

below.

Argument1: a class

Returns: a class name

rps_get_name_of_class

substrate/objectcore/rps.h

instance<Base_Class

>

GET_NULL_INSTA

NCE ()

This is a

shortcut for

GET_INSTA

NCE_

BY_NAME

("Null_Instanc

e").

Returns: The

Null_Instance object.

get_null_instance

scheduler/utils/cpp_spl_g

lobals.h

void

GET_RANDOM_SE

ED (oset[int])

Copies the

random seed

into an

existing oset

of integers.

Any existing

integers in the

oset will

flushed at

execution

Argument1: an oset

of integers

cpp_get_random_seed

scheduler/utils/random.h

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 1 7

Function signature Description Arguments and
returns

C++ function Include
file

time.

instance<Spl_Class>

GET_TYPED_INST

ANCE_BY_NAME(s

tring instance_name,

string class_name)

Gets the

named

instance of

that type.

Argument1: the

name of the instance

you are looking for.

Argument2: the

name of the class of

that instance.

If the named instance of

that type exists, returns

the instance handle;

otherwise, returns 0.

cpp_get_typed_instance_

by_name

scheduler/spl/cpp_utility.

spl

int

INSTANCE_EXISTS

_IN_LIST

(instance<Spl_Class>

,

oset[instance<Spl_Cl

ass>])

Checks an

oset to see if

an instance (or

class) is a

member of the

oset.

Argument1: an

instance (or class)

Argument2: an oset

of instances (or

classes)

Returns: 1 if the

instance (or class) is a

member of the oset, 0

otherwise

cpp_instance_exists_in_li

st

scheduler/utils/cpp_spl_

misc.h

int

LIST_FILES_IN_DI

RECTORY (string,

oset[string]

subdirectories,

oset[string] files)

Returns a list

of

subdirectories

and files that

are the

immediate

children of a

given

directory.

Argument1: the name

of a directory.

Argument2: an output

giving a list of

subdirectories which

are immediate

children of the

Argument1 directory.

Argument3: an output

giving a list of

subdirectories which

are immediate

children of the

Argument1 directory.

Returns: 0 if fails;

nonzero otherwise.

To read error

messages on a non-

zero return, use the

following code:

error =

list_directory

cpp_io.h

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 1 8 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and
returns

C++ function Include
file

subdirectories.pop();

where error is a

string, and

subdirectories is

Argument2.

int MSG (int, string) Prints a string

(formatted for

printf) when

the current

message level

is greater than

or equal to the

first argument.

Argument1: message

level needed to print

Argument2

Argument2: string

(formatted for printf)

Returns: 1 when the

print was performed,

0 otherwise.

int

OBJECT_IS_ALIVE

(instance<Spl_Class>

)

Checks to see

if an instance

has been

deleted.

GET_DESCE

NDANTS and

GET_DIREC

T_DESCEND

ANTS

automatically

make this

check.

Argument1: an

instance

Returns: 1 if the

instance is not

deleted, 0 otherwise

cpp_object_is_alive

scheduler/utils/cpp_spl_

misc.h

void PRINF (string) Prints without

appending a

newline to the

format string.

Argument1: a string

void PRINTF (string) Calls the C

printf

function.

PRINTF

appends a

newline to the

format string;

PRINF does

not.

Argument1: a string printf

int RANDOM (int) Returns a

random

number

Argument1: the upper

bound for the random

number. The random

rps_random

substrate/utilsCC/RpsMat

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 1 9

Function signature Description Arguments and
returns

C++ function Include
file

between 0 and

one less than

Argument1.

number will always

be less than this

argument.

Returns: a random

integer

h.h

void

RANDOMIZE_SEE

D ()

Randomly

generate a

random

number seed.

cpp_randomize_seed

scheduler/utils/random.h

integer REGMATCH

(string, string)

Performs

pattern

matching on a

string.

Argument1: a string

upon which to

perform pattern

matching.

Argument2: the string

containing the pattern

to match.

For rules about

building this string,

refer to Using

Expression

Comparisons.

Returns: 1 if a match

is found; 0 otherwise.

cpp_regex_match

scheduler/utils/cpp_spl_u

tility.h

int RENAME_FILE

(string, string)

Renames a

file.

Argument1: The

name of an existing

file.

Argument: The new

name for the file.

Returns: 0 if

successful; nonzero

otherwise.

To read error

messages on a non-

zero return, use the

STRERROR

function.

rename_file

cpp_io.h

int Sets the Argument1: the new set_debug_level

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 2 0 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and
returns

C++ function Include
file

SET_MSG_LEVEL

(int)

current

message level.

message level

Returns: the

previous message

level

substrate/utilsCC/Error.h

int

SET_RANDOM_SE

ED(oset[int])

Sets the

random seed.

Argument1: an oset

of integers

Returns: 1 when the

random seed was set,

0 otherwise.

cpp_set_random_seed

scheduler/utils/random.h

void

SORT_BY_NAME

(oset[instance<Spl_Cl

ass>])

Sorts an oset

of named

instances by

name.

Argument1: An oset

of named instances.

This operation is

destructive. The list

passed in is

destructively

changed.

cpp_sort_by_

name

scheduler/utils/cpp_spl_s

ort.h

int STRERROR (int) Returns an

error message

for

RENAME_FI

LE.

Argument1: A

nonzero integer value

returned upon failure

of RENAME_FILE.

Returns: The official

OS error message.

strerror

cpp_io.h

int

STRING_COMPARE

(string, string)

Calls the C

strcmp

function.

Argument1: a string

Argument2: a string

Returns: the result of

strcmp

C function strcmp

PepperCode compiler

includes .h file for you

string

STRING_CONCAT

(oset[string])

Concatenates

an oset of

strings.

Argument1: an oset

of strings

Returns: a

concatenated string

cpp_string_concat

substrate/utilsSPL/CppStr

ing.h

date

STRING_TO_DATE

(string)

Converts a

string of

format

“mm/dd/yy

hh:mm:ss”

into a date

Argument1: a string

of format “mm/dd/yy

hh:mm:ss”

Returns: a date

cpp_string_to_date

scheduler/utils/cpp_spl_

misc.h

int STRLEN (string) Calls the C

strlen

Argument1: a string C function strlen

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 2 1

Function signature Description Arguments and
returns

C++ function Include
file

function. Returns: the length of

a string

PepperCode compiler

includes .h file for you

string STRPRINT

(string, values, ...)

Prints to a

string.

Argument1: A

formatted string

similar to what is

used in C++ printf.

The formatting

directive must be

%n$x, where n is the

position of the

variable argument

and x is the data type

of the variable. The

type of the argument

is anything you can

use for printf()

(except for the *

precision argument,

such as %.*s). In

addition, you can use

%D, which prints a

date/time value.

Argument2: The

values, if any, for the

formatted string in

argument1. There

must be a value for

each formatting

directive in the string.

Returns: the string.

strprint

substrate/utilsCC/xOpenP

rint.h

string STRRPL

(string, string, string)

Takes a source

string and

within that

string replaces

every

occurrence of

one string

with another

string.

Argument1: source

string

Argument2: string

that will be replaced

Argument3:

replacement string

Returns: string

resulting from

replacing Argument3

with Argument2 in

Argument1

strrpl

substrate/utilsSPL/CppStr

ing.h

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 2 2 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and
returns

C++ function Include
file

string STRSTR

(string, string)

Calls the C

strstr function.

Argument1: a string

Argument2: a string

Returns: the result of

strstr

C function strstr

PepperCode compiler

includes .h file for you

int STRING_TO_INT

(string)

Converts a

string into an

integer.

Argument1: a string

Returns: an integer

cpp_ascii_to_int

scheduler/utils/cpp_spl_

misc.h

int TYPEP (class1,

class2)

Determines if

a class is a

descendant of

another class

Returns a nonzero

value if the second

class is a descendant

of, or equal to, the

first class.

GET_NAME_OF_CLASS

The function GET_NAME_OF_CLASS will not be included as an intrinsic or built-in function in
Release 8.0 or later as it is no longer necessary to use this function. You can now use the
"class_name" slot in place of GET_NAME_OF_CLASS.

Every class and instance of a class has a predefined readonly slot of type string called
"class_name" which gives the name of the class for the class or instance to which it is applied.
The following example demonstrates the use of the "class_name" slot as a replacement for the
GET_NAME_OF_CLASS function.

Example:

This example uses actual Release 7.5 code taken from mfg_change_over_repair.spl. In the code,
an instance of the CO_Candidate class called co_candidate has just been created, and the name of
its class is to be printed to output. In Release 7.5, we did so with the following line of code:

PRINTF("\n%s::", GET_NAME_OF_CLASS(GET_CLASS_OF_INSTANCE(co_candidate)));

In Release 8.0, you could use the following line of code for this purpose:

PRINTF("\n%s::", co_candidate.class_name);

This line of code will print the string "CO_Candidate" to output. The "class_name" slot will yield
the name of the class for

• An instance of a class (as in the example above)

• A class itself as in the following example.

Example:

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 2 3

The following line of code (if applied to this example) will print the string "CO_Candidate":

PRINTF("\n%s::", CO_Candidate.class_name);

You may not wish to replace all of your GET_NAME_OF_CLASS calls with the class_name
slot. If this is so, there is an option. You could use the cpp_function statement to declare
GET_NAME_OF_CLASS as a C++ function. The following line added to your code will do this
and will save you a lot of work if you use GET_NAME_OF_CLASS a lot:

cpp_function string GET_NAME_OF_CLASS (class<Base_Class>)

"rps_get_name_of_class";

TYPEP Example

The following example of TYPEP prints the error message only if the class of the "part" variable
was not of type Inventory_Part.

if (NOT(TYPEP(Inventory_Part, GET_CLASS_OF_INSTANCE(part)))) {

exit_msg =

NLSPRINT("Unit/Item '%1$s/%2$s' is not derived from a subclass of '%3$s'.",

site_name,part_name,Inventory_Part.class_display_name);

fail();

Using Expression Comparisons

Regular expression comparisons use these rules:

. Matches any single character.

^ Matches the beginning of the string.

$ Matches the end of the string.

\x Matches the character x.

[abcd] Matches any single character from the set

abcd.

[^abcd] Matches any single character not in the

set abcd.

[a-d] Matches any single character between a

and d inclusively.

[^a-d] Matches any single character not between

a and d inclusively.

(regexp) Matches anything that matches regexp.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 2 4 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

* Matches a sequence of 0 or more of the

preceding atom.

· Matches a sequence of 1 or more of the

preceding atom.

? Matches 0 or 1 occurrence of the

preceding atom.

e1|e2 Matches either expression e1 or

expression e2.

Using Upstairs Objects Functions

When an PepperCode action executes the “fail” statement, it can still return to its caller via output
parameters any data which is scalar—values of type float, int, or string—or which is an oset of
scalars. However, it cannot return any data structure which requires the creation of an object or a
change to any slot on any object, regardless of the data type of the slot, because the context
mechanism rolls back—or “undoes”—such changes.

An object is in jeopardy if it would disappear when a “fail” causes the current context to end.
This is equivalent to saying that the object appears to have been created in the current context.
An object which is in jeopardy may have been created in a child context which ended with a
“succeed”, but it will disappear if the current context ends with a “fail”, because the context
rollback mechanism operates hierarchically. Similarly, the slot changes are in jeopardy, or the
slots appear to have changed in the current context.

The context mechanism records “object-creation” information whenever you invoke
CREATE_OBJECT or CREATE_SUBCLASS. The context mechanism records a “slot change”
whenever you use the “=” assignment operator to change a slot on an object.

The following family of C++ functions cause the context mechanism to behave as if an object,
which appears to have been created in the current context, had actually been created in the parent
context. The functions also cause any slot changes, which appear to have occurred on that object
in the current context, to behave as if they had occurred in the parent context instead. These
functions move the object-creation and slot-change information “upstairs” to the parent context,
so that they are no longer in jeopardy and will be unaffected by a “fail” in the current action,
though they will still be rolled back by a “fail” in the parent action.

Upstairs Objects Functions

Function signature Description
C++ function

Arguments and returns

UPSTAIRS_INSTANCE

(instance<Base_Class, int)

cpp_upstairs_instance

Should be called for each

instance before calling fail.

Instance<Base_Class>:

The instance for which this

function is called.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 2 5

Function signature Description
C++ function

Arguments and returns

int: When set to a nonzero

value,

UPSTAIRS_INSTANCE

examines each slot on the

object and call itself

recursively if appropriate.

UPSTAIRS_CLASS

(class<Base_Class, int)

cpp_upstairs_class

Should be called for each

class before calling fail.

Class<Base_Class>: The

class for which this

function is called.

int: When set to a nonzero

value, UPSTAIRS_CLASS

examines each slot on the

object and call itself

recursively if appropriate.

UPSTAIRS_OSET_INST

ANCE

(oset[instance<Base_Class

], int)

cpp_upstairs_oset_instance

Should be called for each

oset of instances before

calling fail.

Oset[instance<Base_Class

>]: The oset of instances

for which this function is

called.

int: When set to a nonzero

value,

UPSTAIRS_INSTANCE

examines each slot on the

object and call itself

recursively if appropriate.

UPSTAIRS_OSET_CLAS

S (oset[class<Base_Class],

int)

cpp_upstairs_oset_class

Should be called for each

oset of classes before

calling fail.

Oset[class<Base_Class>]:

The oset of classes for

which this function is

called.

int: When set to a nonzero

value, UPSTAIRS_CLASS

examines each slot on the

object and call itself

recursively if appropriate.

To use one of these functions, perform the following steps:

1. Create classes and instances in the normal fashion with CREATE_SUBCLASS or

CREATE_OBJECT.

2. Change slot values in the normal fashion with the “=” assignment operator.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 2 6 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

3. Just before executing “fail”, invoke the appropriate “upstairs” function on each class or

instance.

The “upstairs” function move to a higher context the information about the creation of the

objects and the changes to their slots, and thereby protects the object-creation and the slot

changes from being undone by the “fail”. Moving the context information protects it from

jeopardy. Do not change any slots on an object after invoking the “upstairs” function and

before executing “fail”, because those changes will not be protected from jeopardy.

When you set the “int” argument to a nonzero value, the function examines each slot on the
object and call itself recursively if appropriate. In other words, if a slot contains an instance or
class which is in jeopardy, then the function will invoke itself recursively on that instance or
class; if a slot contains an oset of instances or an oset of classes, then the function will examine
each element of the oset and invoke itself recursively if that particular instance or class is in
jeopardy. As a safety feature, the function will not invoke itself recursively on an object which is
not in jeopardy, even though some slot changes on that object may themselves be in jeopardy. If
you want to move upstairs some in-jeopardy slot changes on a not-in-jeopardy object, you must
invoke the “upstairs” function explicitly on the not-in-jeopardy object: recursion will not do this.

Notice that recursion is only an issue for slots of type instance, class, oset of instance, or oset of
class. When a function sends a newly created instance upstairs, it also sends upstairs all slot-
changes related to that instance, regardless of the slot data type, and no matter whether a slot was
changed to point to an object created in the current context or to an object which was not created
in the current context. The “recursion” argument determines only whether the function applies
itself recursively to instances and classes which are pointed to by slots on the instance (or class)
originally passed to the function.

It is legal to execute these functions inside any action, provided that after the current context
comes to an end, there will be at least one context remaining below the “workspace” context.
Another way to state this restriction is that an “upstairs” function will refuse to move changes into
the “workspace” context. Thus, it is not legal to execute these functions in a transaction invoked
directly by the action interpreter, whether the action interpreter is operating in the original
workspace context or in a bookmark workspace context. If you attempt to execute an “upstairs”
function in a context that is not far enough below a workspace context, the function will print a
runtime error message and do nothing further.

It is legal to execute these functions inside a “:no_context” action provided there is at least one
context between the workspace context and the current context. In the case of a “:no_context”
action, the behavior of an “upstairs” function is consistent—it moves the context information
upward to the parent context—but it is not necessary what the programmer expects, because in
this case the current context is shared with the parent action, and the parent context is associated
not with the parent action, but with a more remote ancestor action in the call chain. For example,
if a “:no_context” action shares a context with its parent, the “upstairs” function moves the
changes to the context belonging to its grandparent; if a “:no_context” action shares a context
with its grandparent (because the parent is also a “:no_context” action), the “upstairs” function
moves the changes to the context belonging to its great-grandparent; and so on.

It is legal to execute one of these functions explicitly on a class or instance which is not itself in
jeopardy; the function will move upstairs any slot changes on that object which are themselves in

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 2 7

jeopardy, even though the object is not. Thus an action can change a slot on an object created by
its parent, then call an “upstairs” function on that object to protect the slot change which would
otherwise be in jeopardy, and then “fail” without losing the effect of that slot change.

Following is a short example of using the UPSTAIRS_INSTANCE function.

action test_upstairs

(local: instance<Base_Class> obj)

{

obj = create_object(:object_name "animal",

:class_name "Named_Class");

UPSTAIRS_INSTANCE (obj, 1);

fail();

}

Using String Functions for National Language Support

When you wish to create a version of your program targeted at a particular nation, many—but not
all—string constants in a program need to be translated into the local language of that nation.
Also, string comparisons need to use the algorithms which are appropriate to that language: for
example, comparing strings which contain characters with accents and umlauts may require a
special string-comparison function.

You can use two functions to support languages targeted at a particular nation: NLSPRINT and
NLSTRCMP. Use the following rules to decide when to use these functions:

• Use NLSPRINT to print to a string anything which needs translation to the local language: for
example, an error message to the user. Use STRPRINT, which behaves the same as
NLSPRINT except that it does not do string translation, to print anything which do not need
translation: for example, the name of an action or class.

• Use NLSTR to look up a translation for a string.

• Use NLSTRCMP to compare strings using local-language rules: for example, to sort a list of
strings for presentation to the user. Use STRCMP to compare strings without using local-
language rules: for example, to compare strings for precise equality regardless of language.

The include file to use with the NLS functions is substrate/utilsCC/NLString.h.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 2 8 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

International Language Functions

Function signature
Description
C++ function Arguments and returns

string NLSPRINT (string,

values, ...)

where arg_names is an

optional list of argument

names.

Prints to a string. Allows

for international

characters.

nlsprint

Argument1: A formatted

string similar to what is

used in C++ printf. The

formatting directive must

be %n$x, where n is the

position of the variable

argument and x is the data

type of the variable. The

type of the argument is

anything you can use for

printf() (except for the *

precision argument, such

as %.*s). In addition, you

can use %D, which prints a

date/time value.

Argument2: The values, if

any, for the formatted

string in argument1. There

must be a value for each

formatting directive in the

string.

Returns: the translated

string.

string NLSTR (string) Look up the translated

string.

nlstr

Argument1: a string. The

string that this function

looks up a translation for.

Returns: the translated

string. If no translation

table is loaded or no

translated string is found,

returns the original string.

int NLSTRCMP (string,

string)

Compares two strings.

Allows for international

characters.

nlstrcmp

Argument1: a string

Argument2: a string

Returns: the result of

NLSTRCMP, which has

the same results as the

strcmp function.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 2 9

Following is an example NLSPRINT statement.

exit_msg = NLSPRINT("transaction_create_sales_order: Unit '%1$s' does not

exist.", site_name);

Run nlscollect to collect the strings for translation tables. These tables allow your code to print
using international languages.

To collect the strings into the translation table, perform the following steps:

1. If you are creating a new translation table, use the following command to copy the given

translation table, rps_nls_collect, to the translation table file nls_translation_table:

cp $RPSHOME/resources/rps_nls_table translation_file_name

where translation_file_name is the name of the file containing the new translation table.

2. Use the following command to run nlscollect on your spl files. This command will append

the translation table for your code onto the translation table file.

nlscollect *.spl >> translation_file_name

where translation_file_name is the name of the file containing the translation table.

3. Have the translator fill in the translations in the translation table.

4. Have the system administrator add the following lines to the .rps resource file:

TRANSLATION TABLE = translation_file_name

COLLATION TABLE = collation_file_name

CHARSET = character_set_name

where translation_file_name is the name of the file containing the translation table,

collation_file_name is the name of the file containing the collation table, and

character_set_name is the name of the character set. The translation_file_name and the

collation_file_name should have the full pathname where these files are stored. The collation

table should be in $RPSHOME/resources; the default filename is US-ASCII.collation.

The character_set_name should match the character_set_name that is listed in the translation

table.

The translation table will contain the collected strings, followed by a line to be filled in by a
translator. A comment in front of each string shows which file contains the string, along with the
line number in the file. The CHARSET line tells what character_set_name to use (in this case,
US-ASCII). The following is the beginning of a sample translation table.

//!MSGTRANSLATION-RPS-PRA-2.1

CHARSET=US-ASCII

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 3 0 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

{

//mfg_attribute_transactions.spl:988

"transaction_add_mfg_attribute: Mfg Attribute Name cannot be blank.",

""

}

{

//mfg_attribute_transactions.spl:993

"transaction_add_mfg_attribute: Mfg Attribute '%1$s' already exists.",

""

}

{

The following is the beginning of the same translation table., filled out by a translator. In this
example, the translated strings just have the letter “X” added.

//!MSGTRANSLATION-RPS-PRA-2.0

CHARSET=US-ASCII

{

//mfg_attribute_transactions.spl:988

"transaction_add_mfg_attribute: Mfg Attribute Name cannot be blank.",

"Xtransaction_add_mfg_attribute: Mfg Attribute Name cannot be blank."

}

{

//mfg_attribute_transactions.spl:993

"transaction_add_mfg_attribute: Mfg Attribute '%1$s' already exists.",

"Xtransaction_add_mfg_attribute: Mfg Attribute '%1$s' already exists."

}

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 3 1

Using Postpone Side Effects Functions

You can postpone side effects. When side effects are postponed, subsequent assignments to input
slots do not affect the output slot, and the output slot can be resynchronized later to reflect the
eventual values of the input slots. For example, this could be used the "cancel tasks" feature.

Postpone Side Effect Functions

Function signature
Description
C++ function Arguments and returns

RETRACT_AND_POSTP

ONE_SE (slot)

Invokes the “Retract”

method using the current

values of the input slots,

and then postpones further

evaluation of all of the side

effects with which that slot

is associated. Any

subsequent assignment to

that slot will not trigger the

side effects functions

associated with the slot. If

a subsequent assignment

does change the value of

the slot, the histories

associated with these

functions will remain

unchanged and therefore

become inconsistent with

the value of the input slot.

slot: A reference to a slot

that has side effects.

Returns: void

It is an error to invoke this

function on a slot which

has no side effects

associated with it, but it is

harmless to invoke it on a

slot for which some or all

of the side effects are

already postponed. On

error, this function prints a

message on the server

console but allows the

server to continue running.

RESYNCH_SE(slot) Tells the slot to assert the

side effects functions

associated with the slot, so

that all histories associated

with those side effects

become consistent with the

values of all of their input

slots.

slot: A reference to a slot

that has side effects.

Returns: void

It is an error to invoke this

function on a slot which is

not an input to any side

effects, but it is harmless to

invoke it on a slot whose

side effects are not in the

postponed state. On error,

this function prints a

message on the server

console but allows the

server to continue running.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 3 2 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature
Description
C++ function Arguments and returns

int

IS_ASSERTED_SE(slot)

Checks to see if all the side

effects associated with a

slot are postponed.

slot: A reference to a slot

that has side effects.

Returns: False if all the

side effects associated with

the slot are postponed, true

otherwise.

It is an error to invoke this

function on a slot that is

not associated with any

side effects. On errors,

this function prints a

message on the server

console but allows the

server to continue running.

The PepperCode "succeed", "fail", and "leave" operations will behave normally. If an action
succeeds, slots retain the states they held at the end of execution of the action; if the action fails or
leaves, slots revert to the state they held at the start of execution of the action.

Snapshots will preserve the postponement state of each side effect.

As a side benefit, these functions also eliminate redundant side effect evaluation. The problem is
that if two slots "start_time" and "end_time" are associated with the same side effect, the
"side_effect_t::Retract" method gets invoked twice and the "side_effect_t::Assert" method gets
invoked twice:

x.start_time = 5; // Retract, then assert unnecessarily

x.end_time = 10; // Retract unnecessarily, then assert

Because nobody references the history between the two assignments, it would be sufficient to
invoke the side_effect_t::Retract method once—using the values of the two slots prior to the first
assignment—and the side_effect_t::Assert method once—using the values of the two slots after
the second assignment.

RETRACT_AND_POSTPONE_SE(x.start_time);

// Save old value of start_time,

// end_time, and quantity in

// side_effect_t and retract.

RETRACT_AND_POSTPONE_SE(x.end_time); // Already postponed, so do nothing

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 3 3

RETRACT_AND_POSTPONE_SE(x.quantity); // Already postponed, so do nothing

x.start_time = 5; // No side effect processing

x.end_time = 10; // No side effect processing

x.quantity = 2.0; // No side effect processing

RESYNCH_SE(x.start_time); // Invoke "Assert" method

// using current values of slots;

// change state to "Valid".

RESYNCH_SE(x.end_time); // Not postponed, so do nothing.

RESYNCH_SE(x.quantity); // Not postponed, so do nothing.

Actually, you only need to invoke RETRACT_AND_POSTPONE_SE and RESYNCH_SE on
one of the input slots:

RETRACT_AND_POSTPONE_SE(x.start_time);

x.start_time = 5;

x.end_time = 10;

x.quantity = 2.0;

RESYNCH_SE(x.start_time);

Using Functions That Query From PepperCode

You can make queries from PepperCode using the same syntax which is available to the client
through the action interpreter. You can also issue a special query which operates on an oset of
candidate instances, instead of starting with a list of classes.

For more information about the query language, see Writing Queries within the Using
PepperTools 8.0 Applications PeopleBook.

The PepperCode interfaces are the QUERY and QUERY_OSET functions.

The include file to use with these functions is substrate/utilsSPL/NLString.h.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 3 4 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Query Functions

Function signature
Description
C++ function Arguments and returns

int QUERY (string,

oset[instance<Base_Class>

])

Makes a query. Returns

the result set at time of the

query—a list of instances

that satisfy the query. It

does not create an instance

of type “Query,” subscribe

to that instance, and

periodically reevaluate the

query.

ai_spl_query

Argument1: a string

containing a select

statement.

Argument2: an oset of

instances or classes that

will be “filled in” during

the function execution.

The instances are the ones

that satisfy the query.

Returns: 0 if there is an

error. If there is an error,

the oset in argument2 is

not changed.

int QUERY_OSET

(oset[instance<Base_Class

>], string,

oset[instance<Base_Class>

])

Issues a query against an

existing oset of instances

instead of a list of classes,

as is done in QUERY.

ai_spl_query_oset

Argument1: The candidate

instances.

Argument2: the where and

order-by clauses.

Argument3: the result

instances.

An example of a simple PepperCode function which uses the QUERY function is:

action test_query(input: string select_statement,

output: oset[instance<Base_Class>] results)

{

if (QUERY(select_statement, results))

succeed();

fail();

}

In QUERY_OSET, the string in argument 2 must contain a “where” clause or an “order-by”
clause with an optional semicolon at the end, as in the following example:

local: oset[instance<Base_class>] candidates,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 3 5

output: oset[instance<Base_Class>] results

...

QUERY_OSET(candidates, "where quantity > 50 order by display_name;", results);

It applies the "where" predicate to the instances in the candidate list, selects the ones which pass
the test, and then sorts the remaining ones using the "order by" keys. The QUERY_OSET
function returns zero on error, one on success.

Here is an example of a simple PepperCode function which uses the QUERY_OSET function to
achieve the same effect as a normal query:

action test_oset_query(input: string class_name,

input: string where_and_order_by_clauses,

output: oset[instance<Base_Class>] results,

local: oset[instance<Base_Class>] candidates)

{

// Get a list of all instances of the specified class

GET_DESCENDANTS(candidates, GET_CLASS_BY_NAME(class_name), 1);

// Filter them using the specified clauses

if (QUERY_OSET(candidates, where_and_order_by_clauses, results))

succeed();

fail();

}

Using History Functions

The following table lists the history functions. The include file to use with these functions is
scheduler/utils/cpp_spl_history.h. The C++ function is cpp_NAME,where NAME is the function
name.

History Runtime Functions

Function signature Description Arguments and returns

float

GET_END_OF_HISTOR

Y_VALUE

Gets the last history

element in the history.

This should be the same as

GET_VALUE (history,

Argument1: a history.

Return: the value of the

last history element in the

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 3 6 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and returns

(history<float>) end_of_time). history.

int

QUANTITY_OF_HISTO

RY_EXISTS

(history<float>, float, date,

date)

Tests to see if a quantity in

a history always exists

over a given length of

time.

Argument1: a history.

Argument2: a quantity.

Argument3: start date.

Argument4: end date.

Returns: TRUE if no point

in time between the start

data and the end date has a

value < quantity.

int

QUANTITY_OF_HISTO

RY_EXCEEDS

(history<float>, int, date,

date)

Tests to see if a quantity in

a history exists at all over a

given period of time.

Argument1: a history.

Argument2: a quantity.

Argument3: start date.

Argument4: end date.

Returns: TRUE if any

point in time between the

start data and the end date

has a value > quantity.

float

MAX_QUANTITY_OVE

RALLOCATED

(history<float>, date, date)

Finds the maximum

quantity that is

overallocated.

Overallocated means value

< 0.

Argument1: a history

Argument2: start date

Argument3: end date

Returns: The maximum

amount that any point in

time is overallocated

between the start time and

the end time. The absolute

value of the value is

returned. Returns 0 if no

point in time is

overallocated.

void

GET_OVERALLOCATE

D_CHANGERS

(oset[instance<Spl_Class>]

, history<float>, date, date)

Fills the changers list with

a list of all resource

constraints that have a side

effect in the changers list

of a history element that is

overallocated.

Overallocated means value

< 0.

Argument1: the changers

list. An oset of instances

that will be filled during

the function execution.

Argument2: a history.

Argument3: start time.

Argument4: end time.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 3 7

Function signature Description Arguments and returns

date

NEXT_TIME_TO_TRY

(history<float>,

instance<Spl_Class>, float,

date, int, int, time, date)

Searches for a set of

intervals of a given

duration, where the

calendar is legal, and the

quantity exists in the

history.

Argument1: a history.

Argument2: a calendar.

This function looks for

intervals where this

calendar is legal.

Argument3: quantity. This

function searches for

intervals where this

quantity exists in this

history.

Argument4: the start date.

Argument5: search

direction. If 1, search later

that the start date. If not 1,

search earlier than the start

date.

Argument6: the splittable

flag. If 1, the returned

intervals do not have to be

contiguous.

Argument7: the duration of

the intervals to search for.

Argument8: an invalid

time.

Returns: the next time to

try. If no intervals are

found, returns the invalid

time.

date

STATE_NEXT_TIME_T

O_TRY (history<string>,

history<string>, string, int,

date, int, time, date)

Searches for a set of

intervals of a given

duration, where the

calendar is legal, and the

quantity exists in the state

history.

Argument1: a state history.

Argument2: a calendar.

This function looks for

intervals where this

calendar is legal.

Argument3: the name of

the state.

Argument4: flag to use

either the achieve state

match test or the string

match test.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 3 8 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and returns

Argument5: the start date.

Argument6: search

direction. If 1, search later

that the start date. If not 1,

search earlier than the start

date.

Argument7: the duration of

the intervals to search for.

Argument8: an invalid

time.

Returns: the next time to

try. If no intervals are

found, returns the invalid

time.

float

GET_HISTORY_VALUE

(history<float>, date)

Returns the value for this

time point in the history

Argument1: a history.

Argument2: a time point in

this history.

Returns: value at this time

point in the history.

float

AREA_UNDER_CURVE

(history<float>, date, date)

Computes the sum of

positive area under the

curve of the history passed

in from a start time to an

end time.

For all intervals or partial

intervals:

− if (interval value > 0)

then

(interval end - interval

start) * interval value

else 0

Argument1: a history.

Argument2: start time.

Argument3: end time.

Returns: the sum of the

positive area under the

curve of the history from

the start time to the end

time.

void

MOST_OVERALLOCAT

ED_CHANGERS

(oset[instance<Spl_Class>]

, history<float>, date, date)

Return the changers for the

most overallocated interval

in the history between st

and et.

Argument1: the changers

list. An oset of instances

that will be filled during

the function execution.

Argument2: a history.

Argument3: the start time.

Argument4: the end time.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 3 9

Function signature Description Arguments and returns

float

GET_INITIAL_AMOUNT

(history<float>)

Return the value at the

beginning of time.

Argument1: a history.

Returns: the value at the

beginning of this history.

float

MIN_HISTORY_VALUE

(history<float>, date, date)

Return the minimum

history value.

Argument1: a history.

Argument2: start time.

Argument3: end time.

Returns: The minimum

value for all the time

points between the start

time and the end time.

void

ANALYZE_HISTORY

(history<float>,

history<float>, oset[int])

Return an analysis of a

history.

Argument1: a history.

Argument2: the history

that represents the original

values, before anything is

changed.

Argument3: an oset of four

integers that will be filled

during the function

execution. These are:

the number of supply tasks

effecting history,

the number of constraints

effecting history,

the number of history

elements in initial history,

and

the number of history

elements in history.

int STATE_EXISTS

(history<string>, string,

date, date)

Tests to see if a state

exists.

Argument1: a history.

Argument2: a state.

Argument3: start time.

Argument4: end time.

Returns: TRUE if the state

is the value of at least one

point in time from the start

time to the end time.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 4 0 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and returns

date

NEXT_LEGAL_CALEND

AR_TIME

(history<string>, date,

date)

Gives the date of the next

time when the calendar is

legal.

Argument1: a calendar.

Argument2: a start time.

Argument3: an invalid

date.

Returns: the date of the

next place after the start

time when the calendar is

legal. If no such time

exists, returns the invalid

date.

int

IS_LEGAL_CALENDAR

_TIME_FOR_SPLITTING

(history<string>, date, int)

(Note: In the code, this is

shown as a date. However,

int is the proper type to

use.)

Tests a calendar to see if a

time is a legal time to

begin a split child task.

Argument1: a calendar.

Argument2: start time.

Argument3: search

direction. If 1, search later

that the start time. If not 1,

search earlier than the start

time.

Returns: TRUE only if the

start time is a legal time to

begin a split child task in

the direction indicated.

For example, 8:00 AM is

not legal for a backward

split on a 5 day 2 shift

calendar, but it is legal on

a 5 day 3 shift calendar.

Returns FALSE (0) if it

can not find time.

date

PREVIOUS_LEGAL_CA

LENDAR_TIME

(history<string>, date,

date)

Returns the previous time

that the calendar is legal.

date

PREVIOUS_LEGAL_CA

LENDAR_TIME

(history<string> calendar,

date st, date invalid_date)

Argument1: a calendar.

Argument2: start time.

Argument3: an invalid

date.

Returns: the date of the

next time before the start

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 4 1

Function signature Description Arguments and returns

time that the calendar is

legal. If none exists,

returns the invalid date.

int

TIME_BETWEEN_TWO_

POINTS_FOR_CALEND

AR (history<string>, date,

date)

Computes the duration of

legal time on the calendar.

Argument1: a calendar.

Argument2: start time.

Argument3: end time.

Returns: the duration of

legal time on this calendar

between the start time and

the end time.

date

NEXT_CALENDAR_BR

EAK (history<string>,

date)

Finds the next break in the

calendar.

Argument1: a calendar.

Argument2: a time.

Returns: the end time of

the interval that contains

the given time.

date

PREVIOUS_CALENDAR

_BREAK (history<string>,

date)

Find the previous break in

the calendar.

Argument1: a calendar.

Argument2: a time.

Returns: the start time of

the interval that contains

the given time.

void

ADD_TO_HISTORY_VA

LUE_ON_CALENDAR

(history<float>,

history<string>, float)

Add a quantity to a history

at all points in time where

a given calendar is legal.

Argument1: a history.

Argument2: a calendar.

Argument3: a quantity that

is added to the history

whenever the calendar is

legal.

void

GET_INVENTORY_ARE

AS (oset[date], oset[date],

oset[float], history<float>,

date, date)

Computes areas of positive

inventory. An area is a

continuous set of time

points where the value is

always positive. The

history is passed in and

calculated from start time

to end time, the results are

passed out such that the

first element in the oset of

start times is the start time

of the first area, the first

element of the oset of end

Argument1: an oset of start

times for computed areas.

This will be filled during

the function execution.

Argument2: an oset of end

times for computed areas.

This will be filled during

the function execution.

Argument3: an oset of

areas that have a positive

inventory. This will be

filled during the function

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 4 2 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and returns

times is the end time of the

first area, and the first

element in the oset of areas

is the area—time *

quantity—containing

positive inventory.

execution.

Argument4: a history.

Argument5: start time at

which to compute the

areas.

Argument6: end time at

which to compute the

areas.

int

NUMBER_OF_AREAS_S

HORT (history<float>,

date, date, float)

Count the number of areas

where the value does not

drop below threshold.

Argument1: a history.

Argument2: start time.

Argument3: end time.

Argument4: a threshold.

Returns: the number of

areas from start time to end

time in this history where

the value does not drop

below the threshold.

date

GET_DATE_OF_NEXT_

NEGATIVE_VALUE

(history<float>, date, date)

Find the next point in time

where the value < 0.

Argument1: a history.

Argument2: start time.

Argument3: an invalid

date.

Returns: the next time after

the start time where the

history value is < 0. If no

such time is found, returns

the invalid date.

date

GET_DATE_OF_PREVIO

US_NOT_ENOUGH

(history<float> history,

float enough, date st, date

et)

Find the previous point in

time where the value is not

enough.

Argument1: a history.

Argument2: a history value

that represents enough

value.

Argument3: a start time.

Argument4: an invalid

time.

Returns: the previous time

before the start time where

the history value is <

enough. If no such time is

found, returns the invalid

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 4 3

Function signature Description Arguments and returns

date.

void

ADD_TO_HISTORY_VA

LUE (history<float>, float)

Adds a quantity to the

value for all time points on

history

Argument1: a history.

During function execution,

a quantity will be added to

the value on all time points

on this history.

Argument2: a quantity to

add to all time points on

the history.

void

GET_ALLOCATED_CH

ANGERS

(oset[instance<Spl_Class>]

, history<float>, date, date)

Return all resource

constraints that have an

effect on history during

intervals where the value >

0.

Argument1: changers. An

oset of resource constraints

that will be filled during

function execution. These

are all the resource

constraints that have an

effect on the history where

the value > 0.

Argument2: a history.

Argument3: start time at

which to return resource

constraints.

Argument4: end time at

which to return resource

constraints.

Using Dump Functions

The following functions allow you to dump information to a file. The include file to use with
these functions is scheduler/utils/cpp_spl_dump.h. The C++ function is cpp_NAME, where
NAME is the function name.

Dump Functions

Function signature Description Arguments and returns

int

OPEN_DUMP_FILE(strin

g, string)

Opens a file that can be

modified by the dump

functions. Only one file at

a time can be opened by

OPEN_DUMP_FILE. If

Argument1: The complete

filename, including the

path, to be opened.

Argument2: The mode of

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 0 - 4 4 U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Function signature Description Arguments and returns

the open fails, the

dump_fail flag is set to 1.

the file open. "w" for

overwrite the existing file,

and "a" for append to the

existing file.

Returns: 1 if successful, 0

if dump failed.

int

CLOSE_DUMP_FILE()

Closes the file that was

opened by

OPEN_DUMP_FILE.

Returns: 1 if successful, 0

if dump failed.

void DUMP_DATE(date,

int, int)

Prints a date to the dump

file.

Argument1: The date to be

printed.

Argument2: The number

of characters used in the

print format.

Argument3: A flag to

determine if the output to

the dump file is right-

justified. 0 = left-justified,

1 = right-justified.

void

DUMP_FLOAT(float, int,

int)

Prints a float to the dump

file.

Argument1: The float to be

printed.

Argument2: The number

of characters used in the

print format.

Argument3: A flag to

determine if the output to

the dump file is right-

justified. 0 = left-justified,

1 = right-justified.

void DUMP_INT(int, int,

int)

Prints an integer to the

dump file.

Argument1: The integer to

be printed.

Argument2: The number

of characters used in the

print format.

Argument3: A flag to

determine the justification

for the output to the dump

file. 0 = left-justified, 1 =

right-justified.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G O P E R A T O R S A N D F U N C T I O N S 1 0 - 4 5

Function signature Description Arguments and returns

void

DUMP_NEWLINES(int,

int, int)

Prints newlines to the

dump file.

Argument1: The number

of newlines to print.

void DUMP_SPACES(int,

int, Int)

Prints spaces to the dump

file.

Argument1: The number

of spaces to print.

void

DUMP_STRING(string,

int, int)

Prints a string to the dump

file.

Argument1: The string to

be printed.

Argument2: The number

of characters used in the

print format.

Argument3: A flag to

determine if the output to

the dump file is right-

justified. 0 = left-justified,

1 = right-justified.

void DUMP_TIME(time,

int, int)

Prints a time to the dump

file.

Argument1: The time to be

printed.

Argument2: The number

of characters used in the

print format.

Argument3: A flag to

determine if the output to

the dump file is right-

justified. 0 = left-justified,

1 = right-justified.

int

DUMP_RESET_STATUS

()

Resets the dump_failed

flag to 0 and returns 0.

Returns: 0

int

DUMP_TEST_RESET_ST

ATUS()

Resets the dump_failed

flag to 0 and returns the

previous value of the

dump_failed flag. This is

useful if you want to check

the value of the

dump_failed flag.

Returns: The value of the

dump_failed flag (before it

is reset to 0 by this

function).

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 1

C H A P T E R 1 1

Writing PepperCode Applications

This section provides guidelines for creating PepperCode applications.

Writing a PepperCode Class

Here is an example of a class that shows its main elements:

Following are general guidelines for writing a PepperCode class. Although you can use these
guidelines in any order, you could follow them sequentially as you design a class.

Naming A Class

When writing the name of the class, separate and capitalize each “word” of the class name.

This: class Spl_Class

Not this: class spl_class

This will allow action parameters to be easily named by using the lowercase version of the class.
For example:

input: instance<Spl_Class> spl_class,

Naming Class Slots

Use lowercase when naming the slots of a class.

This: action<delete> delete_action

Not this: action<delete> Delete_Action or action<delete> DELETE_ACTION

Adding An Action To A Class

When adding a new action to a class (commonly referred to as a method), make the action slot a
“class slot.”

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 2 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Very little memory is required for a class slot, because the slot is stored on the class and not on
each instance. Here is an example of a class slot:

class Spl_Class : Base_Class {

action<delete> delete_action

};

slot Spl_Class.delete_action { default: delete_spl_class class_slot: };

Notice that a slot default value is needed for specifying a class slot.

However, when assigning an action to an existing action slot (commonly referred to as
“specializing the method”), using the class_slot: keyword is unnecessary and should not be used
to avoid confusion. For example:

class My_Spl_Object : Spl_Class {

};

slot My_Spl_Object.delete_action { default: delete_my_spl_object };

delete_action isn’t defined at this level, and therefore isn’t called a class slot.

When adding an action to a class, always provide a default method.

If a default method is not provided, any PepperCode code that accesses and attempts to
execute the action will break.

Adding Default Values To A Class

When defining default values, place the slot statements directly below the class definition, as in
the previous example of Spl_Class.

This will make the class definition readable and easy to modify.

Specializing Class Slots

Specialize slots when possible.

In PepperCode, the data type of a slot can be “specialized” when the slot is inherited from another
class. Specializing slots will prevent unnecessary casting to the needed type. Specializing a slot
does not add an extra slot (or any extra memory) to an object. Only the type of slot is changed.

Here are a few classes and PepperCode statements that demonstrate why specializing slots is a
good idea:

class Basic_Task : Spl_Class { // A basic task object

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 3

};

class Child_Task : Basic_Task { // A child task

int child_task_information // with some stuff stored on it

};

class Parent_Task : Basic_Task { // A parent task

oset[instance<Child_Task>] children

// with child tasks stored on it

};

If you wanted to write new parent and child task classes that inherit from the previous classes,
you could do the following. The new child task class will have additional slot information that
does not exist in the Child_Task task. The new parent class will have only instances of the new
child class stored in its children slot. Here are the new classes without slot specialization:

class My_Child_Task : Child_Task { // New child task

string my_information // with some new stuff stored on it

};

class My_Parent_Task : Parent_Task { // New parent task

};

Note: In this case, “parent” and “child” refer to part-whole relationships, not to class-
subclass relationships. A Child_Task is not a subclass or instance of a Parent_Task.

Because only tasks of class My_Child_Task are stored in the children slot of My_Parent_Task,
and there is no slot specialization on the children slot of class Parent_Task, the following code
will have to “cast” to the appropriate class before the slot my_information can be referenced from
the My_Child_Task class:

action find_child_by_using_my_information

(input: instance<My_Parent_Task> my_parent_task,

input: string my_information,

local: instance<My_Child_Task> temp_child_task,

// Must use a cast variable

output: instance<My_Child_Task> my_child_task,

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 4 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

no_context:)

{

my_child_task = 0; // Specify a default for the output variable.

foreach child_task in my_parent_task.children {

temp_child_task = child_task; // Must cast so that the

// slot my_information can be accessed.

if (temp_child_task.my_information == my_information) {

my_child_task = temp_child_task;

succeed();

}

}

succeed();

}

Without the above cast from child_task to temp_child_task, the compiler would not have allowed
the slot my_information to be accessed.

For more information about the term “cast,” refer to Using Casting.

If the slot children on the class My_Parent_Task was specialized to the correct type, as in the
following code, the action find_child_by_using_my_information could be written without the

cast. To specialize a slot, redefine the existing slot name. In this example, the slot children
does this.

class My_Parent_Task : Parent_Task { // New parent task

oset[instance<My_Child_Task>] children // Specialize slot.

};

action find_child_by_using_my_information

(input: instance<My_Parent_Task> my_parent_task,

input: string my_information,

output: instance<My_Child_Task> my_child_task,

no_context:)

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 5

{

my_child_task = 0; // default the output variable

foreach child_task in my_parent_task.children {

if (child_task.my_information == my_information) {

// No cast necessary

my_child_task = child_task;

succeed();

}

}

succeed();

}

More examples of specializations can be found in the file
scheduler/spl/constraints/constraints.spl. Look at the slot object and how it is specialized on each
resource constraint class.

Using Casting

Casting (or downcasting) means altering the type of an inherited or system-defined parameter.
You do it so that the object which is the binding of the parameter will come to have the proper
slots.

Assume you're writing a method action in the Dog class called go_to_kennel_action. It

will become the value of the go_home method defined at the Mammal class level, whose default

action is default_go_home_action. And that default action belongs to a schema,

go_home_schema, which provides the input parameter mammal_self, representing the

Mammal which goes home. The mammal_self input parameter is typed as a Mammal.

(input: instance<Mammal> mammal_self, ?)

Since your go_to_kennel_action also belongs to the go_home_schema—it had better,

or it won't be allowed as the value of the method slot—it also inherits the mammal_self
parameter. But your action wants to do something with the Kennel slot on the object passed in

as mammal_self. A Dog doesn't just go to any old home: it has to be a kennel. And the

problem is that a generic Mammal instance doesn't have a Kennel slot. For that, you have to be

an instance of Dog. So you have a problem, because if your action refers to the nonexistent slot

Kennel on the object bound to the mammal_self parameter, crashes will result. So you have

to (down)cast the binding of mammal_self in order to alter its type. This insure that it will be

interpreted as a Dog instance.

The syntax is:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 6 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action<go_home_schema> go_to_kennel_action (local: instance<Dog>

locvar_dog_self, ?)

locvar_dog_self = mammal_self

Once you've done this, and only then, can you confidently refer to Kennel and any other slots that

only a Dog would have on the object passed in as mammal_self and now bound to

locvar_dog_self.

Writing a PepperCode Action

Here is an example of an action definition that shows some main elements:

// Action

action print_simple_string

// Action parameters

(input: string pstring = “Null”,

local: int string_length = 0,

output: int printed)

// Action body

{

printed = 0;

string_length = STRLEN (pstring);

if (string_length < 2) {

PRINTF(“\n%s”, pstring);

printed = 1;

succeed();

}

}

Following are general guidelines for writing a PepperCode action. Although you can use these
guidelines in any order, you could follow them sequentially as you design an action.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 7

Using no_context

Use the no_context: keyword appropriately.

Every action generates a new context by default. If the no_context: keyword is used in the
parameter list of an action, then that action will not generate a new context.

Determining when an action should have a context is not always clear. Here are a few rules that
make the decision easier.

An action should generate a new context if it can fail after PepperCode objects have been
modified. In this case, the modification of PepperCode objects includes the following:

• slot modification on instances or classes

• the creation of PepperCode instances and classes

• the deletion of PepperCode instances and classes

An action should not generate a new context if no data values are modified, no objects are
created, and no objects are deleted. This is commonly done in reports.

Whenever possible, don't allow actions to generate unnecessary contexts. Extra context
processing is very inefficient.

Avoiding Static Parameters

Beware of static action parameters.

Because static action parameters maintain their values until the calling action exits, it is easy to
introduce bugs while using them. This section lists the action parameter defaults.

For more information about action parameters, refer to Writing Action Parameters.

Here are some practical rules that should help. When an action is called multiple times from the
same action, do not rely on its default values unless you reset them before the action exits. An
example of resetting default values is in the action create_object from the file
scheduler/spl/dispatch.spl. The create_object action resets the parameter object_name before it
succeeds or fails.

action create_object

{

if (object_name == "") {

PRINTF("\n\n\nHEY!!! YOU CANNOT CREATE AN OBJECT OF CLASS %s WITH AN

EMPTY NAME!!!\n\n\n",

class_name);

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 8 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

new_object = 0;

object_name = "__Anonym__"; // reset because of static action parameters

fail();

}

else {

new_object = CREATE_OBJECT(object_name, class_name);

object_name = "__Anonym__"; // reset because of static action parameters

succeed();

}

}

Checking The Output Variable On An Action

When using an output variable on an action, make sure that it has a value before the action exits.

This will allow other actions to use the output variable, even if the action fails. Default values
cannot always be used reliably for this, because action parameters are static and maintain values
across multiple function calls.

This is the correct way:

action get_some_value

(input: instance<Some_Spl_Object> object,

output: int some_value,

no_context:)

{

some_value = 0; // Provide an output for the output parameter.

//

// Other code here to find and set some_value.

//

succeed();

}

Here are two incorrect ways:

action get_some_value

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 9

(input: instance<Some_Spl_Object> object,

output: int some_value,

no_context:)

{

// No default provided here

//

// Other code here to find and set some_value.

//

succeed();

}

action get_some_value

(input: instance<Some_Spl_Object> object,

output: int some_value = 0, // Won’t work for multiple calls.

no_context:)

{

//

// Other code here to find and set some_value.

//

succeed();

}

Grouping Action Parameters

For readability, group action parameters together by type.

This is the correct way:

action create_production_in_period

(input: instance<Part> part,

input: float quantity,

input: date period_start,

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 1 0 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

input: date period_end,

input: instance<Equipment_Resource> equipment_resource,

input: instance<Build_Option> build_option,

input: int batch_method = 0,

input: int return_production = 0,

input: string routing_class_name = "Routing_Parent",

local: oset[instance<Spl_Class>] objects,

local: oset[string] strings,

local: action<choose_build_option> choose_build_option,

local: action<set_current_resource_on_bors> set_current_resource_on_bors,

local: action<clear_current_resource_on_bors> clear_current_resource_on_,

local: action<equipment_matches_any_bor> equipment_matches_any_bor,

local: action<production_supply_in_period> production_supply_in_period,

local: action<create_production> create_production,

output: oset[instance<Routing_Parent>] new_production,

output: string exit_msg = "",

no_context:)

This is the incorrect way:

action create_production_in_period

(input: instance<Part> part,

local: oset[instance<Spl_Class>] objects,

output: oset[instance<Routing_Parent>] new_production,

local: oset[string] strings,

input: float quantity,

input: int batch_method = 0,

input: int return_production = 0,

local: action<choose_build_option> choose_build_option,

input: string routing_class_name = "Routing_Parent",

local: action<set_current_resource_on_bors> set_current_resource_on_bors,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 1 1

output: string exit_msg = "",

local: action<clear_current_resource_on_bors> clear_current_resource_on_,

input: date period_start,

local: action<equipment_matches_any_bor> equipment_matches_any_bor,

input: date period_end,

local: action<production_supply_in_period> production_supply_in_period,

input: instance<Equipment_Resource> equipment_resource,

local: action<create_production> create_production,

input: instance<Build_Option> build_option,

no_context:)

Writing A PepperCode Transaction

An PepperCode transaction is a type of action. Transactions are special actions for having the
Production Planning interface with the user. Due to this, all transaction inputs are strings, floats,
and ints (for readability’s sake). A transaction is formatted text that represents a command to
execute inside Planning. Transactions exist in many different places, such as:

• command files generated by the data bridge,

• command files edited in a text editor,

• log files sent from the client to the server for normal operations,

• and log files sent via the communications API to command the server.

Note: When placing filenames in double quotes (" ") for Windows NT, you can use a file
delimiter of "/" instead of "\\".

The format of every transaction is as follows:

transaction_name (:keyword1 value1 :keyword2 value 2)

Transactions are actions that are of type action<transaction>. By convention, they have

transaction_ as the beginning of their name.

Following are general guidelines for writing a PepperCode transaction. Although you can use
these guidelines in any order, you could follow them sequentially as you design a transaction.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 1 2 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Starting Transaction Names With transaction_

Always use transaction as the first word of the transaction name.

Some of the substrate code depends on the fact that transaction names begin with transaction.

This: transaction_create_sales_order

Not this: create_sales_order

Using The Action Schema Transaction

Always use the action schema transaction when writing a transaction.

This schema provides special parameters and behavior for transactions.

This: action<transaction> transaction_create_sales_order

Not this: action transaction_create_sales_order

Putting Minimal Code Into A Transaction

Whenever possible, don’t put too much application code in a transaction.

The purpose of a transaction is to collect input, perform error checking, call an action to do the
“real work,” and then provide error, warning, and informational messages.

For example, the transaction transaction_create_sales_order does not create a sales order within
its action body. Instead, it calls the action create_sales_order which creates the sales order object.

Including No Instances, Classes, Histories, Or Actions

The input parameters for a transaction should never include instances, classes, histories, or
actions.

Using an instance or class as input to a transaction is commonly referred to as “passing a uid” to a
transaction. Passing uids to a transaction as input will cause the reload of a log file to break.

Using Default Values For Input Parameters

Use default values for input parameters whenever possible.

Notice that this advice is different for writing actions. Because transactions are usually called
from the “top level” from a page or menu file, the default values can be trusted. Because
transactions are rarely called from other actions or transactions, the default values will always be
maintained correctly.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 1 3

For more information, refer to Writing Action Parameters.

Performing Error Checking

Perform error checking on the transaction inputs.

Every transaction must validate its input values. When a problem is discovered, the transaction
should return an error message or warning message through the exit_msg output parameter. The
following transactions are good examples of transactions that perform error checking (they are in
the file mfg/spl/sales_order/mfg_sales_order_transactions.spl):

transaction_create_sales_order

transaction_add_sales_order_line

Here is the transaction transaction_create_sales_order:

action<transaction> transaction_create_sales_order

(input: string site_name = "",

input: string sales_order_name,

input: string class_name = "Sales_Order",

input: string order_date = "",

input: string customer = "",

local: instance<Site> site,

local: instance<Environment> environment,

local: date o_date,

local: instance<Customer> customer_instance,

local: instance<Sales_Order> so,

output: instance<Sales_Order> sales_order = 0)

{

if (site_name == "") {

site_name = GET_PARENT_ENV().default_site.name;

}

site = GET_INSTANCE_BY_NAME(site_name);

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 1 4 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

if (NOT(site)) {

exit_msg = NLSPRINT("Unit '%1$s' does not exist.",site_name);

fail();

}

// Check whether the instance comes from right class .

if (NOT (TYPEP(Site,GET_CLASS_OF_INSTANCE (site)))) {

exit_msg = NLSPRINT("'%1$s' is not of type

'%2$s'.",site_name,Site.class_display_name);

fail ();

}

if(class_name == ""))

class_name = "Sales_Order";

so = GET_INSTANCE_BY_NAME (APPEND_STRINGS(site.name,sales_order_name));

if (so) {

exit_msg = NLSPRINT("Unit/Sales order '%1$s/%2$s' already

exists.",site_name,sales_order_name);

fail();

}

// ensures class exists, but not that class is appropriate (ie subclass of

Sales_Order).

if (NOT (GET_CLASS_BY_NAME(class_name))) {

exit_msg = NLSPRINT("Class '%1$s' does not exist as a Sales Order

class.",class_name);

fail();

}

// Check for the validity of the class.

if (NOT (TYPEP(Sales_Order,GET_CLASS_BY_NAME (class_name)))) {

exit_msg = NLSPRINT("'%1$s' is not of type Sales_Order.",class_name);

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 1 5

fail ();

}

if (EQ(customer, "")) {

exit_msg = NLSPRINT("Customer '%1$s' is Invalid.",customer);

fail ();

}

customer_instance = GET_INSTANCE_BY_NAME(customer);

if (NOT(customer_instance)) {

execute transaction_create_customer(:name customer);

}

else {

if (NOT(TYPEP(Customer,GET_CLASS_OF_INSTANCE(customer_instance)))) {

execute transaction_create_customer(:name customer);

}

}

customer_instance = GET_INSTANCE_BY_NAME(customer);

environment = GET_PARENT_ENV();

o_date = STRING_TO_DATE(order_date);

if (NOT (o_date)) {

exit_msg = NLSPRINT("Order Date '%1$s' is invalid.",order_date);

fail();

}

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 1 6 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

execute create_sales_order(:sales_order_name sales_order_name,

:site site,

:order_date o_date,

:class_name class_name,

:customer customer_instance);

if (create_sales_order.status == SUCCEED) {

sales_order = create_sales_order.new_sales_order;

succeed();

}

else {

fail();

}

}

Here are some basic rules about performing error checking in transactions.

• When referencing a named instance, use the function GET_INSTANCE_BY_NAME.

If GET_INSTANCE_BY_NAME returns 0, the transaction should fail. For an example, see

the error check on the input parameter sales_order_name in the transaction

transaction_create_sales_order, seen above and in the mfg_sales_order_transactions.spl file.

• When referencing a named class, use the function GET_CLASS_BY_NAME.

If GET_CLASS_BY_NAME returns 0, the transaction should fail. For an example, see the

error check on the input parameter class_name in the transaction

transaction_create_sales_order, seen above and in the mfg_sales_order_transactions.spl file.

• When appropriate, provide a default value for date inputs.

Most dates default to early_fence, late_fence, start_of_time, or end_of_time. For an example,

see the error check on the input parameter start_time in the transaction

transaction_add_bom_to_build_option, in the mfg_routing_transactions.spl file). The

following excerpt from that transaction shows only the relevant code.

action<transaction> transaction_add_bom_to_build_option

(input: string build_option_name,

input: string part_name,

input: string site_name = "",

input: int step,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 1 7

input: float quantity,

input: string constraint_class_name = "Standard_RM_Constraint",

input: int blowthrough = 0,

input: int configurable = 0,

input: string start_time = "",

input: string end_time = "",

// locals declared here

{

// more transaction code goes here.

if (start_time == "") {

s_time = GET_PARENT_ENV().start_of_time;

}

else {

s_time = STRING_TO_DATE(start_time);

}

// remainder of the transaction code goes here

}

• The function STRING_TO_DATE returns 0 when passed an invalid date string.

If STRING_TO_DATE returns 0 in a transaction, the transaction should fail. For an

example, see the error check on the input parameter order_date in the transaction

transaction_create_sales_order (seen above and in the mfg_sales_order_transactions.spl file).

Using #document and #end_document

Write documentation by using #document and #end_document.

Use transaction_add_sales_order_line as an example for writing transaction documentation.

For more information, refer to Adding and Retrieving Documentation.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 1 8 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Always use the primary key of an object for identification.

Writing A PepperCode Method

In a class definition, a slot of type action is an implementation of a PepperCode method, like a
C++ member function or method:

action<schema_name> name

The action method stored in an action slot can be referenced and executed. Any action of that
schema type can be assigned to that slot.

The “dispatch” of a method—the process of calling the correct method associated with a class—is
not performed automatically. Instead, the value of a local action parameter is defined and the
action is called through the local parameter.

Following are general guidelines for writing a PepperCode method. Although you can use these
guidelines in any order, you could follow them sequentially as you design a method.

Writing Actions That Dispatch The Method

When possible, write an action that dispatches the method.

This will provide a consistent API—application programming interface—for other PepperCode

code to use. For example, the following action delete_object dispatches the delete method

for any PepperCode object of type Spl_Class. Notice that the input to the dispatcher action is the
same as the input defined on the delete action schema.

action_schema delete_schema

(input: instance<Spl_Class> object,

no_context:);

class Spl_Class : Base_Class {

action<delete_schema> delete_action

};

slot Spl_Class.delete_action { default: default_delete class_slot: };

// Note: default_delete is not shown.

action delete_object

(input: instance<Spl_Class> object,

local: action<delete_schema> delete_action,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 1 9

no_context:)

{

delete_action = object.delete_action; // Lookup the delete

method.

execute delete_action(:object object); // Call the delete method.

succeed();

}

Implementing Input And Output Parameters

Implement all of the input and output parameters in the action schema for the method.

This will allow the dispatch of the method to use a standard API.

Including The Object As An Argument

Always include the object on which the method is stored as an argument to the method.

Because there is no method data type in PepperCode, you use action schemas to implement
methods. Because of this, you have to provide our own backpointer to the object of the method.

In the previous example, the input parameter object serves this purpose.

Casting The Inner Object To The Class

In the body of the method, cast the input object to the PepperCode class that the method assumes.

For more information about casting, refer to Using Casting.

For example, here is the delete method for a sales order. Notice that without the cast, you would
not be able to reference any of the specific slots of a Sales_Order (like name and
sales_order_lines).

action<delete> delete_sales_order

(local: instance<Sales_Order> sales_order)

{

sales_order = object;

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 2 0 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

MSG(25, "\nDeleting Sales Order %s", sales_order.name);

execute delete_object_list(:object_list sales_order.sales_order_lines);

execute delete_object_list(:object_list sales_order.ship_sets);

DELETE_OBJECT(sales_order);

succeed();

}

Writing a C++ Utility

This section describes how to write C++ utilities that are referenced directly from PepperCode.
Do not confuse this discussion with writing substrate or interface utilities.

Following are general guidelines for writing a C++ utility to use in your PepperCode code.
Although you can use these guidelines in any order, you could follow them sequentially as you
design a C++ utility.

Checking That A Corresponding Function Is Not Defined

Before writing a new C++ function for use in PepperCode, make sure that a corresponding
function has not already been defined.

Most of the existing C++ function declarations can be found in files that begin with cpp_ in the
scheduler/spl/ directory. Also, make sure that a PepperCode intrinsic operator or function does
not exist for the function you need.

For more information about the PepperCode intrinsic functions and operators, refer to
Understanding Infix and Intrinsic Operators and Functions.

Putting C++ Code In The Proper Location

Put the C++ code in the proper location.

If you are writing a complex utility involving a C++ class that must be referenced from
PepperCode, use the following files as an example:

scheduler/utils/intersector.h

scheduler/utils/intersector.cc

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 2 1

scheduler/utils/intersector_access.h

scheduler/utils/intersector_access.cc

scheduler/spl/cpp_intersect.spl

For example, to add a new C++ sorting utility function for the scheduler module, you would do
the following:

• place your function definitions (the body of the code) in scheduler/utils/cpp_spl_sort.cc, and

• place the top-level function signature (the declaration, showing only the function name and its
parameters) in scheduler/utils/cpp_spl_sort.h.

Capitalizing C++ Function Names

The declared name for a C++ function should always be in all capital letters.

This: cpp_function void PRINTF (string) "printf";

Not this: cpp_function void printf (string) "printf";

And not this: cpp_function void Printf (string) "printf";

Providing Meaningful PepperCode Types

Provide meaningful PepperCode types in the C++ function declaration.

For more information about the types, see Typedefs Used With C++ Functions.

The types provided in the C++ function declaration should correspond to the types in the actual
C++ function. Currently, the PepperCode compiler does not check these types at compile time.

For example, the FLOAT_TO_INT function takes one float as an argument and returns the float
as an integer. If you look at the declaration, the input argument types and return types are
obvious.

This:

cpp_function int FLOAT_TO_INT (float) "rps_float_to_int";

Not this:

cpp_function float FLOAT_TO_INT (int) "rps_float_to_int";

cpp_function void FLOAT_TO_INT (string) "rps_float_to_int";

cpp_function time FLOAT_TO_INT (date) "rps_float_to_int";

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 2 2 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Using RPS_IMPORT When Defining External C++ Functions

You must use the RPS_IMPORT macro when you define external C++ functions in order to
allow for system patchability.

When you put the definition of an external C++ function "myfunc" into a file "mydir/myfile.cc",
do the following:

• Put an external declaration or "prototype" into a file "myfile.h", and always put '#include
"mydir/myfile.h"' into "myfile.cc". (The same rule applies to external C++ variables.)

• Put the macro RPS_INCLUDE in front of a prototype or variable declaration (if you declare a
class, however, put it after the word "class").

• Always put '#include "mydir/rps_import_def.h" into "mydir/myfile.h" as the last "#include"
statement.

• If "myfile.h" or "myfile.cc" needs to include other files, put the inclusions from other
directories first; then the ones from directory "mydir" last. Use the appropriate directory name
in each #include statement.

Here is an example of using the RPS_IMPORT macro. This is taken from cpp_spl_dump.h.

/* Copyright 1994-1997 by PeopleSoft, Inc. */

/* All U.S. and world rights reserved. */

#ifndef CPP_SPL_DUMP_H

#define CPP_SPL_DUMP_H

#include <utilsCC/cpp_types.h>

#include <scheduler_utils/rps_import_def.h>

RPS_IMPORT CPP_INT cpp_open_dump_file (CPP_STRING filename, CPP_STRING mode);

RPS_IMPORT CPP_INT cpp_close_dump_file ();

RPS_IMPORT void cpp_dump_newlines (CPP_INT number);

RPS_IMPORT void cpp_dump_spaces (CPP_INT number);

RPS_IMPORT void cpp_dump_int (CPP_INT int_to_dump, CPP_INT columns, CPP_INT

right_justified);

RPS_IMPORT void cpp_dump_float (CPP_FLOAT float_to_dump, CPP_INT columns,

CPP_INT right_justified);

RPS_IMPORT void cpp_dump_float_for_export (CPP_FLOAT float_to_dump, CPP_INT

columns,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 2 3

CPP_INT right_justified);

// Write UTF-8 "string_to_dump" to export file using the appropriate export

// locale's character set. No language translation takes place. String is

// left- or right-justified with enough blanks to occupy specified number of

// "columns". If "columns" is less than 1, the string is printed without

// any padding blanks.

RPS_IMPORT void cpp_dump_string (CPP_STRING string_to_dump, CPP_INT columns,

CPP_INT right_justified);

RPS_IMPORT void cpp_dump_date (CPP_DATE date_to_dump, CPP_INT columns, CPP_INT

right_justified);

RPS_IMPORT void cpp_dump_time (CPP_TIME time_to_dump, CPP_INT columns, CPP_INT

right_justified);

RPS_IMPORT CPP_INT cpp_dump_test_reset_status();

RPS_IMPORT CPP_INT cpp_dump_reset_status();

// Like cpp_dump_string, but uses the translation table to convert the

// "string_to_dump" argument to the local language and characterset

// specified by the "export" locale.

RPS_IMPORT void nls_dump_string (CPP_STRING string_to_dump, CPP_INT columns,

CPP_INT right_justified);

#endif

Adding and Retrieving Documentation

PepperCode has a documentation feature which lets you put text into the .spl file for use in
generating documentation. The compiler always ignores the text as if it were a comment, but
optionally it will write the text to a file named sourcefile.doc.

For a transaction named transaction_build_bicycle, the syntax would be:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 2 4 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

#document transaction_build_bicycle

Your description goes here, and continues

for as many lines as you like.

#end_document transaction_build_bicycle

This block of documentation can occur anywhere within the source file.

A -d option causes the compiler to generate the .doc file.

The compiler automatically puts into the .doc file the name of the source file and the line number
at which the comment started, so there’s no need to put that information inside the comment by
hand, where it might easily get out of date if you suddenly need to move some transactions to a
different source file.

Using #include Files

Assume there is a custom module "cus" built on top of the standard "mfg" module. It also
assumes a standard directory structure of:

$RPS_SDK/cus/

$RPS_SDK/cus/spl/ for *.spl files, and

$RPS_SDK/cus/utils/ for *.cc & *.h files

where $RPS_SDK is the partial path from the root of the network file system to the directory
where Planning files reside.

To include Planning spl source files from scheduler or mfg in custom module spl files, use angle-
brackets:

#include <spl/foo.spl>

#include <spl/mfg_foo.spl>

To include custom module spl source files in custom module spl files use double quotes:

#include "cus_foo.spl"

To include custom module C++ source (*.cc) files in custom module spl files, use header files
with double quotes:

#include "../utils/cus_cpp_foo.h"

A custom module C++ source (*.cc) file (for example, cus_cpp_foo.cc) need only include its own
header file with double quotes:

#include "cus_cpp_foo.h"

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 2 5

To include Planning C++ source files in custom module C++ header (*.h) files, include the
associated header file using angle-brackets:

#include <string.h>

#include <utilsSPL/interface_History.h>

#include <objectcore/rps.h>

Finally, and this case should be rare, to include custom module C++ source (*.cc) files in custom
module C++ header (*.h) files, include the associated header file using double quotes:

#include "cus_cpp_base.h"

Note: When placing filenames in double quotes (" ") for Windows NT, you can use a file
delimiter of "/" instead of "\\".

For more information about using #include, see Writing PepperCode #include Statements.

Customizing and Displaying Class Names

The Named_Object class is not built-in, but it is part of the Planning product.

Named_Object provides a slot called display_name, which you set if you want the user to

see a more descriptive name for a class than the real name of the class. display_name is the

name that is displayed to the end user when they display a class; it defaults to the real name of the
class.

For example, a transfer option will have from-unit and to-unit information appended to its class
name. You might want to just display the name of the transfer option, without the unit
information appended to it. Also, a task has appended to its name the build option and the part
being built. You might want to have a display name without the build option in it.

Note: In some PepperCode files, “site” is often used instead of “unit”.

Following is the code for named_object.

Named_Object

class Named_Object: Spl_Class {

string display_name

action <set_display_name> set_display_name_action

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 2 6 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

};

To set display_name, you must perform the following tasks:

• Have your class inherit from Named_Object.

• Write the set_display_name method for that class, and set the display_name slot in

that method.

Customizing PepperCode Methods And Actions

PepperCode can be customized in several ways, some more ambitious than others. It's best to
familiarize yourself with existing facilities before undertaking radical changes.

Since PepperCode is an object-oriented system, much customization involves modifying or
adding to the standard objects supplied by the system. Since these changes are made at run time
only, the standard definitions remain intact. Some customizing techniques, in rough order of
ambitiousness:

• You can modify the values of system slots, thus overriding the local or inherited values. When
the relevant slots are methods, the slot values are actions (functions); so replacement values are
actions which you must supply. Our first example—refer to “Replacing Standard Method
Actions”—shows such replacement of a method slot action, where the purpose is to modify the
system's reporting behavior.

• You can add new data slots to the standard ones supplied by the system. New data slots are
normally added in new subclasses of existing object classes.

• You can add new method slots to those supplied by the system. Like new data slots, new
method slots are often added in new subclasses of existing object classes. If the new action
you supply will share parameters with other actions, you can create an action schema to
manage the sharing. Our first example—refer to “Adding Method Slots”—shows how. It also
shows how to invoke the new method. Our second example extends similar techniques to
create a new subclass of constraints (refer to “Adding a Constraint”). It also demonstrates the
use of a system-defined C++ function—rather than a specialized transaction—to create
instances of the new class.

Replacing Standard Method Actions

The system presently contains a Dispatch_List object used to control the printing (or

“dumping”) of scheduling reports. This object contains a method slot relevant,

human_dump_action. The slot's value is the action dispatch_list_dump. Here is its

code:

action<human_dump> dispatch_list_dump

(local: instance<Dispatch_List> dispatch_list)

{

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 2 7

dispatch_list = object;

DUMP_STRING("Dispatch List For ", 0, 0);

DUMP_STRING(dispatch_list.equipment_resource.name, 0, 0);

DUMP_STRING(" From ", 0, 0);

DUMP_DATE(dispatch_list.start_time, 0, 0);

DUMP_STRING(" To ", 0, 0);

DUMP_DATE(dispatch_list.end_time, 0, 0);

DUMP_NEWLINES(3);

DUMP_SPACES(3);

DUMP_STRING("Production", 40, 0);

DUMP_NEWLINES(1);

DUMP_SPACES(3);

DUMP_STRING("—————", 40, 0);

DUMP_NEWLINES(1);

foreach element in dispatch_list.pending_elements {

DUMP_NEWLINES(1);

DUMP_SPACES(3);

execute dump_object(:spl_object element, :human_dump TRUE);

}

succeed();

}

Assume that a different format is desired, and that the following action produces it.

action<human_dump> special_dispatch_list_dump

(local: instance<Dispatch_List> dispatch_list)

{

dispatch_list = object;

DUMP_NEWLINES(3); // This new line adds three blank lines.

DUMP_STRING("Dispatch List For ", 0, 0);

DUMP_STRING(dispatch_list.equipment_resource.name, 0, 0);

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 2 8 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

...

// From here on, the code is the same as the original.

}

The problem, then, is to replace the old action with the new one at run time. There's a standard

transaction for this purpose, transaction_set_action_method, with arguments

:class_name—a string, the class object where the slot can be found; :slot_name—a string,

the slot in which the new value is to be installed; and :action_name—a string, the action

which is to be installed as the new slot value. So all you have to do is to include the following
line in a command file and then arrange to load the file into the system. Loading can be done via
the user interface, or via load files.

execute transaction_set_action_method (:class_name "Dispatch_List"

:slot_name "human_dump_action"

:action_name "special_dispatch_list_dump").

A similar modification could be performed on the slot machine_dump_action, which calls

the standard action dispatch_list_mdump. The “m” in “mdump” is a convention which

indicates a format readable by machine, as opposed to humans. Further, the slots

machine_dump_action and human_dump_action are found in the system object

Dispatch_Element as well as Dispatch_List, with respective standard actions

dispatch_element_mdump and dispatch_element_dump.

Adding Method Slots

As you have seen, system behavior can sometimes be modified by replacing existing method
actions with new ones. In other cases, however, you modify by creating new method slots with
brand new actions. As noted, since slots cannot be added to existing objects at run time, new
slots need new classes to hold them. This section demonstrates the second, more ambitious sort
of modification.

A previous section demonstrated the creation of a new subclass in order to add a new slot. This
example is no different with respect to subclass creation, but since the new slot is a method slot
this time, this example also needs to create the action which will become the slot's value.

As background for the exercise, consider the existing class Routing_Option. A routing

option is a way of obtaining a needed material for some planning Task. One way of obtaining

material is to build it. The existing Build_Option class represents this possibility.

To accommodate a new method for build option instances which can calculate the cost of the
option—the specific goal of the example—the following example adds a new subclass,

Build_Option_CUS, for “customized” or “customer”, below Build_Option. The new

subclass will inherit all of the slots of the parent class and add one more, our new method slot.

Any instances of Build_Option_CUS would inherit all the old slots plus the new one.

The new method slot will be build_cost_method. As a default action for the slot, to be

passed—all else equal—to objects lower in the inheritance hierarchy, use an action, or function,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 2 9

default_build_cost_action. And since actions, like data objects, can be usefully

categorized according to their parameters, the following example also creates a sample schema

upon which the new action can be based, build_cost_schema. Once all of this machinery is

in place and an instance of Build_Option_CUS containing the new method has been made,

the method must be invoked. For illustration, the following example provides a calling action

atp_cost.

The following example shows the necessary code in the order required by the compiler: with
dependent code following the code it depends on.

As mentioned, this example provides a default action for the new build_cost_method.

However, a more specialized action may be appropriate for instances of even more specialized
classes even lower in the hierarchy. In this case, it is possible to override the default action by
replacing it with a specialized action at the lower level. The following example shows a

specialized action build_and_ship_cost_action which might replace

default_build_cost_action, as the value of the build_cost_method method slot.

For brevity, this example doesn’t show the definition of the lower subclass or the installation of
the code as the new method slot value. The purpose of the specialized action is to include
consideration of the shipping cost when calculating the overall cost of a build option.

Here are the steps in detail.

1. Create an action schema build_cost_schema.

It expects an input argument object, an instance of the existing class Routing_Option. It

has an output parameter cost.

// All Action schema that are designed for use as methods (a slot on an

// object) should have an input argument "object" whose type is the same

// as the object it was designed for (here, Routing_Option).

// Action schema with output parameter cost.

action_schema build_cost_schema

(input: instance<Routing_Option> object,

input: string sales_order_name = "",

input: string site_name = "",

output: float cost,

no_context);

2. Define a new action default_build_cost_action which uses the new build_cost_schema action
schema and thus inherits its parameters.

The new default action uses the schema’s input parameter object and its output parameter

cost. The action also uses the slot cumm_cost, which has been defined at the

Routing_Option level: it returns the value of the cumm_cost slot as the cost of an

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 3 0 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

instance of Build_Option_CUS. More elaborate procedures for cost calculation are

possible, and can be made to override this default calculation; this will be demonstrated

below.

// New action using the build_cost_schema action schema and its object and

// cost parameters.

action<build_cost_schema> default_build_cost_action ()

{

cost = object.cumm_cost;

succeed();

}

3. Define the class Build_Option_CUS as a subclass of Build_Option, adding a method

slot build_cost_method. Make the new default_build_cost_action the
default value of this new method slot.

Class Build_Option_CUS : Build_Option {

action<build_cost_schema> build_cost_method //New method slot.

};

slot Build_Option_CUS.build_cost_method

{default: default_build_cost_action}; //Method slot gets default value.

4. Write an action that invokes the newly defined method. Here, the new calling action

atp_cost takes as input an instance of the Build_Option_CUS class. It gets the value

of the build_cost_method slot in that instance—an action; makes that value the binding

of the local variable locvar_build_cost_action; and then executes the action by its

local name—within the if expression.

action atp_cost

(input: instance <Build_Option> build_option,

input: string sales_order_name,

input: string site_name,

local: instance<Part> part,

local: action<build_cost_schema> locvar_build_cost_action,

local: action<dku_part> dku_part_action,

output: float cost)

{

// This function will return the build option cost

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 3 1

// Called by: schedule_atp_option

// Get behavior.

locvar_build_cost_action = build_option.build_cost_action;

part = build_option.part;

dku_part_action = part.dku_part_action;

// Execute behavior.

execute dku_part_action();

if (EQ(dku_part_action.dku_part_flag, TRUE)) {

execute locvar_build_cost_action(:object build_option,

:sales_order_name sales_order_name,

:site_name site_name);

}

else {

execute locvar_build_cost_action(:object build_option);

}

// Use what behavior returns.

cost = locvar_build_cost_action.cost;

succeed();

}

5. Create a specialized cost-building action, build_and_ship_cost_action, which can

be used to override the inherited default action, default_build_cost_action, in the

class Build_and_Ship_Option. Neither the class nor the replacement is shown here,

however. The purpose of the specialized action is to take shipping cost into account when

calculating the cost of a Build_Option_CUS.

// Given a source (site) and destination (customer region),

// return the freight cost.

action<build_cost_schema> build_and_ship_cost_action

(local: instance<Build_Option_CUS> build_option,

local: instance<Sales_Order> sales_order,

local: instance<Customer_Region> cr,

local: instance<Site> site,

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 3 2 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

local: class<Freight_Cost> fc_class,

local: oset[instance<Freight_Cost>] FCs)

{

FCs.flush(); // superstition

sales_order = GET_INSTANCE_BY_NAME(sales_order_name);

cr = sales_order.customer_region;

site = GET_INSTANCE_BY_NAME(site_name);

fc_class = Freight_Cost;

GET_DESCENDANTS(FCs, fc_class, 1);

foreach fc in FCs {

if ((fc.source == site) &&

(fc.destination == cr)) {

// Return freight cost for source/destination shipment.

cost = fc.cost;

succeed();

}

}

// else return default value

cost = 0.0;

succeed();

}

Adding A Constraint

Previous sections have demonstrated (1) replacement at run time of existing method actions in
existing classes and (2) creation of a subclass in order to add a method slot containing a new
action. In this section the example combines elements of both techniques: it creates a new
subclass, but rather than create new method slots, it overrides the values of existing, inherited
method slots with new actions. The previous example used new transactions to enable creation of
instances of the new class. This time, though, the example uses the prepared C++ function

CREATE_OBJECT for instance creation.

The new subclass will represent a new type of scheduling constraint. Constraints are, of course,
represented as objects in PepperCode, like almost everything else. There's an existing constraint

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 3 3

class, Milestone_Constraint, which this example intends to specialize. It's a reparable

constraint, meaning that it comes with a repair method as well as an indication of the penalty
which is imposed if the constraint is violated. The goal here is to represent a new subtype of
milestone constraint, namely that all of the lines on a sales order should ship together.

For this purpose, the example creates a constraint subclass,

Shipset_Milestone_Constraint. The constraint itself will need four actions:

• to display information about the constraint;

• to define the penalty imposed if the constraint is violated;

• to define the repair action if the constraint is violated;

• and to specify the time interval within which the constraint must be satisfied.

In addition, the example needs two supporting actions:

• to create an instance of a shipset_milestone_constraint and make it the value of

the milestone_constraint slot in a relevant sales order;

• and to delete a sales order having a shipset_milestone_constraint, making sure that

the latter constraint is deleted as well to prevent hanging pointers.

The following sections describe the creation of the class and the actions discussed above.

Creating the Class Shipset_Milestone_Constraint

Create the class Shipset_Milestone_Constraint as a subclass of

Milestone_Constraint. Four existing methods get new actions as default slot values.

class Shipset_Milestone_Constraint : Milestone_Constraint {

oset[date] ship_dates

};

slot Shipset_Milestone_Constraint.display_action

{ default: display_shipset_milestone_constraint class_slot: };

slot Shipset_Milestone_Constraint.penalty_action { default:

shipset_milestone_penalty };

slot Shipset_Milestone_Constraint.repair_action { default:

shipset_milestone_repair };

slot Shipset_Milestone_Constraint.start_and_end_action { default:

shipset_start_and_end

class_slot: };

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 3 4 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Writing an Action to Display Information

Write an action to display information about the constraint.

action<display> display_shipset_milestone_constraint

(local: instance<Shipset_Milestone_Constraint> milestone_constraint,

local: instance<Sales_Order_CUS> sales_order,

local: action<violated> violated_check)

{

milestone_constraint = object;

sales_order = milestone_constraint.object;

execute violated_check(:the_constraint milestone_constraint);

PRINTF("\n%s", milestone_constraint.class_name);

PRINTF("\nSales Order: %s", sales_order.name);

PRINTF("\nPenalty X Weight: %lf X %lf = %lf\n",

violated_check.penalty, violated_check.weight,

violated_check.penalty_times_weight);

succeed();

}

Writing An Action To Define The Penalty

Write an action to define the penalty imposed if the constraint is violated. Constraint penalties
must be normalized to values between 0 and 1.

// Loop over all sales order lines and determine the set of unique ship dates

// and their frequency of occurrence.

// No violation means either there are no sales order lines for the sales

// order, or that all lines have the same ship date.

action<penalty> shipset_milestone_penalty

(local: instance<Shipset_Milestone_Constraint> milestone_constraint,

local: oset [instance<Sales_Order_Line>] sales_order_lines,

local: instance<Sales_Order_CUS> sales_order,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 3 5

local: date et, // end time of shipment as scheduled

local: date latest_ship, // latest of all et

local: date earliest_ship, // earliest of all et

local: oset[date] ship_dates,

local: oset[date] dates,

local: int so_line_count,

local: string date_inserted_p)

{

milestone_constraint = the_constraint;

sales_order = milestone_constraint.object;

sales_order_lines = sales_order.sales_order_lines;

so_line_count = sales_order_lines.length();

if (sales_order_lines.empty() == 1) {

penalty = 0.0;

succeed();

} // Otherwise examine sales order lines.

// Initialize latest ship date and set of ship dates.

latest_ship = sales_order_lines.first().shipment.end_time;

ship_dates.flush();

ship_dates.push(latest_ship);

// Determine distinct scheduled sales order line shipment dates.

foreach sales_order_line in sales_order_lines {

et = sales_order_line.shipment.end_time;

if (et == latest_ship) {

latest_ship = et; // Update latest_ship.

ship_dates.enque(et);

} // Do next sales_order_line.

else {

dates.flush(); // Temporary list

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 3 6 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

date_inserted_p = "FALSE";

foreach ship_date in ship_dates {

if (NOT (date_inserted_p == "TRUE")) {

if (et < ship_date) {

// Enque new date on list, add existing date

after.

dates.enque(et);

dates.enque(ship_date);

date_inserted_p = "TRUE";

}

else {

if (et == ship_date) {

// Save existing date.

dates.enque(ship_date);

date_inserted_p = "TRUE";

}

else {

dates.enque(ship_date);

}

}

}

else {

// Just collect the rest of the ship dates into the

temp list.

dates.enque(ship_date);

}

} // foreach ship_date

ship_dates = dates;

}

} // foreach sales_order_line

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 3 7

earliest_ship = ship_dates.first();

latest_ship = ship_dates.last();

if (earliest_ship == latest_ship) {

penalty = 0.0;

}

else {

penalty = DIV(SUB(INT_TO_FLOAT(ship_dates.length()), 1.0),

so_line_count);

milestone_constraint.ship_dates = ship_dates;

}

succeed();

}

Writing An Action To Specify The Repair

Create an action to specify the repair if the constraint is violated.

// Should be in mfg_repair.spl

action<constraint_repair> shipset_milestone_repair

(local: instance<Shipset_Milestone_Constraint> milestone_constraint,

local: oset [instance<Sales_Order_Line>] sales_order_lines,

local: instance<Sales_Order_CUS> sales_order,

local: instance<Routing_Parent> routing_parent,

local: date et, // end time of shipment as scheduled

local: date earliest_ship, // earliest of all et

local: date latest_ship, // latest of all et

local: date mode_ship, // most common et

local: date new_time, // time to move shipset tasks to

local: oset[date] ship_dates,

local: oset[int] ship_date_frequency,

local: int random_value,

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 3 8 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

local: int index,

local: int count_index,

local: int count)

{

ship_dates.flush();

ship_date_frequency.flush();

milestone_constraint = the_constraint;

ship_dates = milestone_constraint.ship_dates;

sales_order = milestone_constraint.object;

sales_order_lines = sales_order.sales_order_lines;

// Initialize earliest ship and latest ship dates.

earliest_ship = ship_dates.first();

latest_ship = ship_dates.last();

// Determine the most common scheduled sales order line shipment date.

foreach sdate in ship_dates {

count = 0;

foreach sales_order_line in sales_order_lines {

et = sales_order_line.shipment.end_time;

if (et == sdate) {

count = count + 1;

}

}

ship_date_frequency.enque(count);

}

// Find the max of ship_dates (the most common ship date).

index = 0;

count = 0;

count_index = 0;

foreach frequency in ship_date_frequency {

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 3 9

if (frequency > count) {

count = frequency;

count_index = index;

}

index = index + 1;

}

mode_ship = ship_dates.nth(count_index);

// Sometimes move all to mode_ship

// Sometimes move all to latest_ship

// Sometimes move all to earliest_ship

MSG(25, "\nShipset Milestone Repair");

random_value = RANDOM(100);

if (random_value < 40) {

new_time = mode_ship;

MSG(25, " mode");

}

else {

if (random_value < 70) {

new_time = latest_ship;

MSG(25, " latest");

}

else {

new_time = earliest_ship;

MSG(25, " earliest");

}

}

MSG(25, " moving shipset to: %s\n", DATE_TO_STRING(new_time));

foreach sales_order_line in sales_order_lines {

routing_parent = sales_order_line.shipment;

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 1 - 4 0 W R I T I N G P E P P E R C O D E A P P L I C A T I O N S P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

execute reschedule_task(:task routing_parent,

:target_time new_time, :st_or_et END_TIME);

status = reschedule_task.status;

if (status == SUCCEED) {

MSG(25, " S\n");

}

else {

MSG(25, " F\n");

fail();

}

}

succeed();

}

Writing An Action To Specify The Time Interval

Write an action to specify the time interval within which the constraint must be satisfied.

action<start_and_end> shipset_start_and_end

(local: instance<Environment> environment)

{

environment = GET_PARENT_ENV();

start_time = environment.early_fence;

end_time = environment.late_fence;

succeed();

}

Writing An Action That Creates A Constraint Object

Write an action which creates an instance of a Shipset_Milestone_Constraint, making

the instance the value of the milestone_constraint slot in a sales order. This action will

be executed at sales order creation time.

// Create a constraint for each Sales_Order at sales order creation time.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L W R I T I N G P E P P E R C O D E A P P L I C A T I O N S 1 1 - 4 1

action create_shipset_milestone

(input: instance<Sales_Order_CUS> sales_order,

output: instance<Shipset_Milestone_Constraint>

shipset_milestone_constraint,

no_context:)

{

execute create_object(:class_name "Shipset_Milestone_Constraint");

shipset_milestone_constraint = create_object.new_object;

shipset_milestone_constraint.object = sales_order;

sales_order.milestone_constraint = shipset_milestone_constraint;

succeed();

}

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 1

C H A P T E R 1 2

Compiling And Linking PepperCode

This section describes how to compile your code and link it with existing Planning software for
testing purposes.

The directory that contains the PepperCode compiler is /home/v8vm/product/splcompiler. If you
are familiar with the PepperCode Release 7.5 compiler and have written applications using
Release 7.5 PepperCode, the following subsections should get you up to speed on the new
Release 8.0 compiler. This information was derived from refman.txt, a UNIX flat file that can be
found in the same directory that contains the PepperCode compiler, experiments with the
compiler, and conferences with Development.

Starting in Release 8.0, you can write “standalone” PepperCode, compile it, then execute it, and
you don’t have to use RPSMake or The Project Manager (also known as splsh). This is referred to
as standalone mode. To use the Release 8.0 Compiler in standalone mode, you will need a UNIX
account on the PeopleSoft San Mateo Office's UNIX network. Your system administrator can
help you set up your account.

Setting Up and Using Your Own PepperCode Sandbox

At this point, it is suggested that you create a directory for your PepperCode programs. You can
create this directory anywhere on UNIX where you have read, write, and execute permission.
However, it is suggested that you use your own UNIX directories (/home/<your name>). Here,
your programs and their source files will be easier for you to maintain and control.

1. Create a directory to hold your PepperCode progams and their components.

2. Change directories to the directory that you just created, write the following code using your

favorite UNIX text editor, then save it to a file called hello_world.spl in your newly created

directory:

action spl_main()

{

PRINTF(“Hello, world!\n”);

}

spl_main is a special action in PepperCode that is automatically executed when the program

is run.

3. Remain in your newly created directory and compile hello_world.spl. This will generate the

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 2 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

object file hello_world.o. Do so with the following command:

> /home/v8vm/product/splcompiler/spl hello_world.spl

Note: It is important that you stay and keep all files that the compiler might need in the
newly created directory throughout this procedure.

This compilation will generate the following files and place them in your newly created

directory:

Files Generated by Default Compilation

File(s) Description

hello_world.o object file (used in the next step)

hello_world.pchs pre-compiled header file. This file is used

when including PepperCode source files.

For more information, see Writing

PepperCode #include Statements.

hello_world.cc C++ code that is the PepperCode source

file translated into C++

4. Link the object file you just created to generate the executable hello_world with the following
command:

> /home/v8vm/product/splcompiler/spl --make_program hello_world hello_world.o

5. Now, try your new program by typing the program name.

> hello_world

You should see the familiar output “Hello, world!” followed by the server output normally

seen when starting the Supply Chain server.

The compiler option --make_program along with other compiler options are described in
PepperCode Compiler Reference.

Running the Compiler

The program "spl" can be used to compile one .spl source file and generate an object file; or to
bind one or more object files into a shared library (DLL); or to bind one or more object files and

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 3

shared libraries into an executable program. Following is the syntax you use from a Unix
command line:

./spl options filename

filename is the name of the file you want to compile. Only one filename is allowed. If filename
ends in .spl, the compiler expects a PepperCode source file. If filename ends in .cc, the compiler
expects to compile C++ source from a previous PepperCode file compilation.

For more information about options, see PepperCode Compiler Reference.

Solaris example

To compile one .spl source file and generate an object file called "myfile.o", on Solaris, for
example:

spl myfile.spl

To build a shared library called "libmylibrary.so":

spl --make_library libmylibrary.so myfile.o anotherfile.o

To build a program called "myprogram" using that library plus another object file:

spl --make_program myprogram yetanotherfile.o libmylibrary.so

To execute the program, first make sure that your LD_LIBRARY_PATH variable is not set (in
the C shell, say "unsetenv LD_LIBRARY_PATH"). Then say:

./myprogram

On Solaris, by default, the program looks for the PepperCode runtime libraries (often called the
"substrate" relative to the directory in which the compiler resides, followed by the current
working directory ".". If you wish, you may use the environment variable LD_LIBRARY_PATH
to override this, searching first in the directories named by LD_LIBRARY_PATH and then in the
compiler's own directories. If you move the runtime libraries to a different location after building
the program (the nightly v8vm server build script does this, for example) or if you use non-
absolute pathnames for your own libraries and you expect to run the server from a directory other
than the current working directory, then you will need to set LD_LIBRARY_PATH to specify a
colon-separated list of the directories where the libraries reside.

In the Solaris world, there is only one complexity not shown in the example above. If two
compilations a.spl and b.spl both use "#include" on one another, you must first generate header
files using the "--no_header" option, then compile the files normally:

spl --header_only a.spl

spl --header_only b.spl

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 4 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

spl a.spl

spl b.spl

(Actually, since there's no need to generate the headers a second time, you could use "--
no_header" on the latter two compilations.)

HP-UX example

HP-UX behaves like Solaris, with two exceptions. First, by convention the shared library suffix is
".sl". Second, 32-bit versions of the operating system use SHLIB_PATH rather than
LD_LIBRARY_PATH to tell the runtime loader where to find libraries at program-startup time.

Digital Unix (OSF/1) and Linux examples

Digital Unix and Linux behave like Solaris, with one exception: the directories specified by
LD_LIBRARY_PATH are searched only after the directories specified by the compiler itself. For
most users this works fine (your libraries aren't in the compiler's directories, so searching them
first is a harmless waste of time), but programmers maintaining the substrate libraries will need to
relink with the "--rt_path" option (described later) instead of relying on LD_LIBRARY_PATH if
they wish to override the directories normally specified by the compiler.

NT example

To compile one .spl source file and generate an object file called "myfile.obj" on NT:

spl myfile.spl

To build from it a program "myprogram":

spl --make_program myprogram.exe myfile.obj

Using shared libraries on NT is more complicated than on Solaris, for two reasons. First, the code
which NT generates to access a symbol generally varies depending on whether the access crosses
the boundary between one library and another. Second, NT does not permit mutual dependency
between two libraries unless you first create at least one "import library" to describe the interface
of one of the libraries. The PepperCode compiler will help handle both problems, but it requires
you to use extra command-line options.

Suppose you want to build three mutually dependent libraries a.dll (based on files a0.spl and
a1.spl), b.dll (based on b0.spl and b1.spl), and c.dll (based on c0.spl and c1.spl). Then you want
to link them together with myprogram.obj to generate program myprogram.exe. We'll describe a
general method which extends to an arbitrary number of mutually dependent libraries.

The easy part is to compile myprogram.spl into myprogram.obj as usual:

spl myprogram.spl

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 5

Next, compile all the library source files with --header_only, using the --lib_tag option to tell
each of them which library it will belong to:

spl --header_only a0.spl --lib_tag a

spl --header_only a1.spl --lib_tag a

spl --header_only b0.spl --lib_tag b

spl --header_only b1.spl --lib_tag b

spl --header_only c0.spl --lib_tag c

spl --header_only c1.spl --lib_tag c

Now compile the files for library a and then build an import library "a.lib" which describes
interfaces (this does not build a real shared library--we'll do that later). This step implicitly builds
an "export library" called "a.exp" as well:

spl --no_header a0.spl --lib_tag a

spl --no_header a1.spl --lib_tag a

spl --make_implib a.lib a0.obj a1.obj

Repeat the preceding steps for the other libraries, using "--lib_tag b" and "--lib_tag c" as
appropriate:

spl --no_header b0.spl --lib_tag b

spl --no_header b1.spl --lib_tag b

spl --make_implib b.lib b0.obj b1.obj

spl --no_header c0.spl --lib_tag c

spl --no_header c1.spl --lib_tag c

spl --make_implib c.lib c0.obj c1.obj

Now build the real shared libraries. For each one, specify on the command line the export library
corresponding to the DLL being built, the object files for that DLL, and the the import library
which describes the other DLLs:

spl --make_library a.dll a.exp a0.obj a1.obj b.lib c.lib

spl --make_library b.dll b.exp b0.obj b1.obj a.lib c.lib

spl --make_library c.dll c.exp c0.obj c1.obj a.lib b.lib

Finally build the program, specifying the import libraries:

spl --make_program myprogram.exe myprogram.obj a.lib b.lib c.lib

NT uses the PATH variable to tell the runtime loader where to find libraries at program-startup
time, so generally you must make sure your PATH variable includes the directory in which the

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 6 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

PepperCode compiler resides (because the PepperCode runtime libraries reside there too). Then
type:

./myprogram

Command-line rules in detail

As the examples above show, by default the compiler knows what suffixes are appropriate to the
platform on which it is running (for example, on Unix it generates .cc for C++ files and .o for
object files, whereas on NT it generates .cpp for C++ files and .obj for object files). You can
override this using a command-line option like "--object_suffix", as explained later.

Unlike typical Unix compilers, PepperCode does not use file suffixes to decide what a particular
file contains. For example, if you say "spl myfile.obj", the compiler will not automatically decide
that because the file ends in ".obj" it must be an object file. Instead, you must explicitly use "--
make_program" or "--make_library" to tell the compiler to generate a library or program instead
of attempting to read PepperCode source code from "myfile.obj". Also, PepperCode will not take
a combination of source and object files in the same command; you must first compile each
source file, one at a time, and then link the objects.

Also unlike typical Unix compiler, PepperCode attempts to remove an output file before
truncating and writing it, so it will succeed if the file is removable but unwritable; and it puts the
object file in the same directory as the source file.

No matter which operating system you are using, a filename or directory name may use either
northwest (NT) or northeast (Unix) slashes.

Installation and Configuration Issues

The Release 8.0 Compiler is very flexible. You can choose to “install” the Release 8.0 compiler
in your own UNIX directories or use the existing installation at /home/v8vm/product/splcompiler.

Look here if you are installing the Release 8.0 Compiler or you wish to customize it.

Installation and configuration of the compiler is much easier and more compact because
PepperCode has been streamlined. Installation and configuration is, however, quite a different
procedure in Release 8.0, so these special instructions are provided here.

LD_LIBRARY_PATH

Note: The library path variable is different for each target machine. For example, older HP
systems use SHLIB_PATH instead of LD_LIBRARY_PATH; NT provides no default and
uses PATH instead of LD_LIBRARY_PATH; etc.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 7

By default, the compiler looks for *.so libraries that it needs in the directory containing the
compiler and in the current directory. You may override this behavior by setting the
LD_LIBRARY_PATH environment variable. If set, LD_LIBRARY_PATH must be set to a list
of directories that includes a directory containing the *.so libraries the compiler needs.

You may wish to set your own LD_LIBRARY_PATH if you move the runtime libraries to a
different location after building the program (the nightly v7vm build does this, for example) or if
you use non-absolute pathnames for your own libraries and you expect to run the server from a
directory other than the current working directory.

LD_LIBRARY_PATH was implemented in this way to allow you more flexibility in your
development efforts. It allows you the choice of either using your own custom-made shared
libraries or using the default libraries that can be found in the same directory as the compiler.

If you want to execute the program using the default path to the libraries that is set by the
compiler, first make sure that your LD_LIBRARY_PATH variable is not set (in the C shell, say
"unsetenv LD_LIBRARY_PATH"). Then (assuming that myprogram is your program) say:

./myprogram

List of Necessary Files

This is the list of files that must be present in the same directory for proper operation of the
compiler:

File Name Description

spl or spl.exe the executable compiler

.splrc global configuration file

splrt_stripped.h declarations required by the C++ source

code generated by the compiler

*.so or *.dll the "substrate" libraries which provide the

compiler runtime system

auto_timestamp.o startup code to be linked into the

executable program

The global configuration file .splrc contains a series of command-line flags. When the compiler
starts up, it first reads the global configuration file. Then it reads an optional per-user
configuration file $HOME/.splrc (on Unix) or "%USERPROFILE%\Application
Data\PeopleSoft\SPL\.splrc" (on NT). Finally it reads the flags on the actual command line.

.splrc

This is an optional per-user configuration file. With it, you can customize the behavior of the
compiler. Use the options listed below as a guide for modifying .splrc. On UNIX, .splrc will be

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 8 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

located in the $HOME directory. On Windows NT, it will be located in
%USERPROFILE%\Application Data\PeopleSoft\SPL.

It is possible to customize the behavior of the compiler by modifying the global .splrc file. For
example, you could change the --cpp_suffix option to use a different suffix for C++ files, or you
could change the -cpp_fmt flag to use a different C++ compiler, or you could use --loud to make
the compiler treat a particular warning as an error. The individual user can often override the
settings in the global .splrc file by specifying different ones in the $HOME/.splrc file, although
flags like "--cpp_fmt" require great care, and flags like "--include" only allow you to add
directories to the list, not to remove them. It is intended that the compiler will eventually use the
Win32 registry instead of .splrc files when executing on that system. However, this
implementation is not planned for Release 8.0.

Compiler Options (For Use During Installation)

The following options are normally put into .splrc and are used for installing the compiler,
although you are allowed to specify them on the command line if you wish:

--cpp_suffix <suffix>

--object_suffix <suffix>

--dll_suffix <suffix>

--ar_suffix <suffix>

--implib_suffix <suffix>

--explib_suffix <suffix>

--exe_suffix <suffix>

These tell the compiler what file suffix to expect for C++ sources, object files, shared library
(DLL) files, archive (static) library files, import library files, export library files, and executables.
The <suffix> should not include a ".". The compiler sets these to default values, so it's not
necessary to specify them in the configuration files unless you want to override the defaults.

On Unix systems which do not use import libraries per se, the "implib_suffix" is normally set to
the suffix of static libraries (e.g. "a"). The explib_suffix is left unset, and the exe_suffix is set to
the empty string.

--cpp_fmt <format>

--cpp_d_fmt <format>

--cpp_o_fmt <format>

--lib_fmt <format>

--lib_d_fmt <format>

--lib_o_fmt <format>

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 9

--implib_fmt <format>

--implib_d_fmt <format>

--implib_o_fmt <format>

--prog_fmt <format>

--prog_d_fmt <format>

--prog_o_fmt <format>

These tell the compiler how to run the C++ compiler, how to build a shared library (DLL), how to
build an import library, and how to build a program. Each comes in three forms: the compiler
uses the "_d_" form when the --debug flag is in effect, and uses the "_o_" form when the --
optimize flag is in effect. The format strings use a printf-like syntax, as described earlier in this
section.

--purify_fmt <format>

--quantify_fmt <format>

On Unix systems, these provide prefix formats which we prepend to the appropriate "--
prog_*_fmt" string if you use "--purify" or "--quantify" along with "--make_program".

--verbose

This prints on the console a list of all the flag values in effect. If there are no other flags which
call for the compiler to do work, then it exits. Otherwise, the compiler proceeds to do its normal
work, and when it issues a command to the operating system (e.g. to run the C++ compiler) it first
prints that command on the console.

--no_debug

--warn

--no_optimize

These are opposites of the usual options, provided only so that one can override a configuration
file.

--rt_fmt <list>

This specifies the list of runtime (substrate) libraries, using whatever syntax the target OS
expects. For example, on Solaris, this will probably consist of " -laintpr -lrtoe ...". Note that the
string may not begin with "-", so we usually put a blank at the beginning.

--oslib_fmt <list>

--oslib_d_fmt <list>

Similar to --rt_fmt, this specifies the list of OS or C++ compiler libraries required in building
programs. --oslib_d_fmt specifies libraries to use when --debug is in effect.

--include_fmt <format>

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 1 0 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

--define_fmt <format>

This tells how to format each --include or --define option before passing it along to the target
machine C++ compiler. The <format> should contain a single "%s" to mark the spot where we
should substitute the directory or macro definition. If the format would begin with "-", put a blank
in front of it (for example, " -I%s" or " -D%s".).

Each of the <format> strings described in the preceding list of options may use the following
printf-like codes:

$* or %* List of all input files

$@ or %@ Output file from --make_program, --make_library, --
spl_to_object, or --cpp_to_object

$w or %w Directory in which the compiler executable resides

$$ Substitute a dollar sign

%% Substitute a percent sign

$r or %r Substitute the list of runtime libraries obtained from the –
rt_fmt flag

$l or %l Substitute the list of OS and C++ compiler libraries
obtained from the --oslib_fmt or --oslib_d_fmt flag.

$i or %i Substitute all of the --include and --define options,
formatted according to the --include_fmt and --define_fmt
strings, here.

$# or %# Store the list of input files in a temporary file and
substitute the name of the temporary file in place of the
'$#' sequence.

$p or %p Substitute the value of --rt_path

$. or %. Substitute the value of --make_program, --make_library, -
-spl_to_object, or --cpp_to_object with suffix removed.

PepperCode Compiler Reference

The procedures for using the new compiler are very different from those for using previous
versions of the compiler. This section explains options for using the Release 8.0 PepperCode
compiler. It provides command line syntax, descriptions of command line syntax, and examples
of command line syntax for the 8.0 compiler.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 1 1

Command-line Rules in Detail

By default the compiler knows what suffixes are appropriate to the platform on which it is
running. For example, on Unix it generates .cc for C++ files and .o for object files, whereas on
NT it generates .cpp for C++ files and .obj for object files. You can override this using a
command-line option like "--object_suffix", as explained in Compiler Options (For Use During
Installation).

Unlike some compilers, PepperCode does not use file suffixes to decide what a particular file
contains. For example, if you say "spl myfile.obj", the compiler will not automatically decide that
because the file ends in ".obj" it must be an object file. Instead, you must explicitly use "--
make_program" or "--make_library" to tell the compiler to generate a library or program instead
of attempting to read PepperCode source code from "myfile.obj". Also, PepperCode will not take
a combination of source and object files in the same command; you must first compile each
source file, one at a time, and then link the objects.

Also unlike some compilers, PepperCode attempts to remove an output file before truncating and
writing it, so it will succeed if the file is removable but unwritable; and it puts the object file in
the same directory as the source file.

No matter which operating system you are using, a filename or directory name may use either
northwest (NT) or northeast (UNIX) slashes. The following sections give a list of all of the
command-line options, grouped according to their purpose.

Most-Used Compiler Options

These compiler options are used for most compilations.

default (no option switch)

The default generates a single object file from a single PepperCode (*.spl) file. The object file is
given the same name as the *.spl file by default.

Usage:

> spl <PepperCode source file>

Example:

> spl myfile.spl

This example creates an object file called myfile.o (myfile.obj on Windows NT). The generated
file is placed in the same directory as the *.spl file.

--make_program

This compiler option generates an executable program file from one or more object files and
libraries.

Usage:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 1 2 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

> spl --make_program <executable file> <object files> [source libraries]

Example:

> spl --make_program myprogram myfile.o

This example generates an executable program from the object file generated in the <no option>
example above.

--make_library

This option tells the compiler to convert one or more object files into a shared library and put the
result into file <name>. On Win32 systems it is important that all of those object files were built
with the same --lib_tag option.

Usage:

> spl --make_library <shared library name> <one or more object files>

Example:

> spl --make_library libmylibrary.so myfile.o

This example makes a shared library libmylibrary.so from myfile.o.

Options That Dictate Which Compiler or Linker to Run

These compiler options let you use the PepperCode compiler as a machine-independent interface
to the C++ compiler when you work with human-written C++ code. They are mutually exclusive
as the compiler does only one thing at a time. As mentioned earlier, the compiler does only one
thing at a time, so the options in this section are mutually exclusive unless otherwise noted.

--spl_to_object <object file name> <PepperCode file name>

This option translates a single *.spl file <PepperCode file name> into an object file called <object
file name>. The object file must end with the standard object suffix. There should be exactly two
filenames on the command line. One must have the .o or .obj object file suffix, and the other must
have the spl suffix. This compiler option is used when you want your object file to have a
different name than your *.spl file.

Example:

> spl --spl_to_object y.o x.spl

This option will generate an object file named y.o from spl file x.spl.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 1 3

--cpp_to_object <object file name> <cpp file name>

This option translates a single C++ source file <cpp file name> into an object file called <object
file name>. The object file must end with the standard object suffix (*.o on UNIX, *.obj on
WindowsNT). Instead of running the PepperCode compiler, we run the C++ compiler.

Example:

> spl --cpp_to_object y.o x.cc

This option will generate an object file named y.o from C++ file x.cc.

--preprocessor

Applies the C++ preprocessor to a single C++ source file, which must end with the standard C++
suffix (not .h), and write the result to the standard output.

-c--

no_object

Translate a single *.spl file into a C++ source file (.cc or .cpp file) and a pre-compiled header file
(.pchs file). However, no object file is generated when using this option.

--make_implib <name>

Like --make_library, but for use on Win32 systems which requires you to generate import
libraries before generating shared libraries or DLLs. This does nothing on other systems.

--debug

--optimize

Generate debuggable or optimized code. These are mutually exclusive. They always affect
PepperCode compilations and C++ compilations, and on some target machines they affect the
creation of libraries and executable programs as well, so it is wise to specify them consistently in
every command.

Options Used When Compiling PepperCode

These options are used when compiling PepperCode. They are ignored otherwise.

--include <directory>

 -I<directory>

Add the directory to the list of directories in which we search for "spl" files mentioned in
"#include" statements. The path may use either northwest or northeast slashes.

For an example of how this is used, see Rules for Inclusion and Writing #include Statements. As
mentioned under Options Used Only When Compiling C++ Source Code, you can also use these

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 1 4 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

options with --cpp_to_object. Note that if you use these options when compiling C++ code, the
list of directories gets passed to the C++ compiler. If you use these options when compiling
PepperCode, the list of directories gets passed to the PepperCode compiler but not to the C++
compiler, since PepperCode-generated code contains only a single, canned "#include" statement
anyway.

--no_warn

Suppress printing of any warnings. This takes effect after any --loud and --quiet options. First the
compiler establishes the severity of each message, and then --no_warn globally suppresses all
messages whose severity is lower than "error".

--loud <integer>

--quiet <integer>

This option raises or lowers the severity of the message specified by <integer> (the integer
corresponding to a particular warning appears after the word "Warning" when the compiler prints
it.) You can use --loud to turn a warning into an error, or you can use --quiet to suppress a
warning (and then you can use --loud to turn it back into a warning again).

You can also use --loud to turn a normal error into a fatal error, which causes the compiler to quit
immediately. You cannot use --quiet to lower the severity of an error or fatal error.

Example:

If you issued the following:

spl --make_program --quiet 71

Message number 71 would not appear. This only applies to warnings. If it is an actual error
message, you cannot make it go away in this manner. You will get a compiler message informing
you that this is already an error.

--lib_tag <tag>

When compiling PepperCode, this option generates C++ code for the dynamically linked library
that is associated with string <tag>. This is required only on Win32 systems, although using it on
other operating systems is harmless.

Normally the compiler generates C++ code to be built into the main portion of a program, as
opposed to a shared library or DLL. If you use this option, it generates code to be linked into a
shared library (DLL). The "tag" is a cookie used to distinguish one DLL from another in a
situation where one DLL imports symbols from another: it need not match the name of the DLL
file, but must be different than the "name" you use for any other DLL.

You should specify this whenever compiling a *.spl file whose code will ultimately become part
of a Win32 DLL. In particular it is important to use this option consistently both when compiling
with --header_only and with --no_header.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 1 5

--header_only

This compiler option generates a precompiled header for this source file, but does not attempt to
compile the source file. This is useful when two source files use "#include" on one another. A
precompiled header (a binary file whose name ends in ".pchs") must exist for each "#include"
statement in a source file before you can compile that source file. When two *.spl files include
one another directly or indirectly, you must generate the predefined header for one source file,
then compile the other, and finally compile the first.

Example:

Say you have two files a.spl and b.spl. They include each other in their source code. If you were
to try to compile these files normally with the following command:

spl a.spl

You would get an error. Because you included b.spl in a.spl, the compiler will look for the file
b.pchs. It won’t be able to find this file because it hasn't been generated yet. The same thing
would happen if you tried to compile b.spl. To avoid this error, you must generate a.pchs and
b.pchs before you actually compile. The following is an example of how you would proceed:

spl --header_only a.spl //generates a.pchs (needed to generate b.o)

spl --header_only b.spl //generates b.pchs, (needed to generate a.o)

spl --no_header a.spl //generates a.o using b.pchs (generated above)

spl --no_header b.spl //generates b.o using a.pchs (generated above)

Actually, you could compile with no option on the latter two compilations. The no_header option
is being used here because you have already generated header files for a.spl and b.spl in the first
two compilations.

--no_header

If you use this option, you will not generate a precompiled header. When building a program
from scratch, you may find it easier to process all the files first with --header_only, then compile
them all with --no_header.

For an example of this, see header_only in this section.

--doc

This compiler option generates a *.doc file as specified in the PepperCode Documentation
Comments section. To generate only a *.doc file for a particular *.spl file, use the --header_only
and --no_header compiler options in conjunction with this compiler option.

Example:

To generate the file xyz.doc without actually compiling xyz.spl:

> spl --no_header --header_only --doc xyz.spl

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 1 6 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

To generate the file xyz.doc along with compiling xyz.spl (to an object file):

> spl --doc xyz.spl

For more information on using documentation comments and #document blocks, see Writing
PepperCode Documentation Comments.

Options Used Only When Compiling C++ Source Code

You may use the PepperCode compiler as a machine-independent interface to the C++ compiler.

For more information, see Options That Dictate Which Compiler or Linker to Run.

--define <macroname>=<value>

Define the specified macro. This option is ignored if you are compiling a PepperCode source file,
since the PepperCode language itself does not perform macro substitutions. Omitting the
"=<value>" portion sets the macro to "1".

--include <directory>

-I<directory>

Add the directory to the list of directories in which we search for files mentioned in "#include"
statements. The path may use either northwest or northeast slashes.

For more information, see Options Used When Compiling PepperCode.

Options to be Used With --make_program Option

These options are used with the --make_program compiler option. They are ignored otherwise.

--client

Build a program which lets clients call actions via TCP/IP networking. By default, networking is
disabled, so to call actions at runtime you must either create a main-program action called
"spl_main" (which will be invoked automatically at startup whether or not you built the program
with --client) or you must run the program with the "-I" option, which prompts for action
invocations on the keyboard.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 1 7

--no_main

Disable automatic generation of a main program. This is useful when employing the PepperCode
compiler as a front end to hide the syntax of the local C++ compiler while linking human-written
C++ code which provides its own "main". In the absence of this option, we generate a main
program which sets a build stamp and invokes certain startup functions in the "substrate"
(PepperCode runtime) libraries.

--no_rt

Disable linking of the "substrate" (PepperCode runtime) libraries. This is useful when employing
the PepperCode compiler as a front end to hide the syntax of the local C++ compiler while
linking human-written C++ code which does not depend on those libraries. Typically --no_rt
requires --no_main, since the automatically generated main program calls functions in those
libraries.

--rt_path <directory>

Adds <directory> to the link-time search list for substrate (runtime) libraries.

--purify

--quantify

Use these options along with --make_program and a list of object files and libraries to prepare a
version of the program which checks the heap (--purify) or generates a performance profile (--
quantify).

Machine-Specific Escape Clause

--quote <argument>

This option passes <argument> to the C++ compiler or linker without interpreting it. This may
appear repeatedly. For example, you could say:

--quote "-O parallel"

to pass "-O parallel" to the C++ compiler or linker. All of the --quote options are passed to the
compiler or linker prior to the first input file name.

Options for Compiler Maintenance

These options are meant to be used only by those that maintain the PepperCode compiler.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 1 8 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

--keep

-K

Do not delete temporary files and output files in case of error.

--parse_dump

Generate on stdout a diagnostic listing of the syntax tree after parsing but before reading
precompiled headers corresponding to "#include" statements.

--include_dump

Like "--parse_dump", but after reading precompiled headers.

--check_dump

Like "--parse_dump", but after semantic checking.

--pch_dump

Instead of reading the source file, read the corresponding precompiled header (which must
already exist) and print a diagnostic listing on stdout.

For more information about some additional options, see Compiler Options (For Use During
Installation).

Using Hush

The Hush feature allows you to remove the executable code within the actions from a
PepperCode source file, while leaving the interface intact to allow other source files to include the
Hushed source file. You use Hush to protect proprietary PepperCode code.

Hush can perform the following tasks:

• Replaces the PepperCode source file, filename.spl, with a PepperCode source file that has

the executable code within the actions deleted. This does not delete the entire action; it
removes the code within the {}, leaving the rest of the action intact. The write-permission bits
are cleared on this file to prevent editing of the source file and recompiling of the object file by

the make command.

• Replaces the C++ source file, filename.cc, with a zero-length non-writable file that has the

same modification time as the C++ source file. This conceals the code and prevents

recompiling of the object file by the make command.

Following is the syntax you use from a UNIX command line:

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 1 9

hush options filename

options can be one or more of the following:

-outfile newfile Do not replace the PepperCode source

file, filename.spl. Instead, put the

PepperCode source file with the deleted

actions into a file named newfile.

-keepcc Do not replace the C++ source file,

filename.cc.

-help Print a help message for the Hush

command.

For example, if you want to share interfaces and object files, but not proprietary code, do the
following:

1. Use the make command to make the directory normally.

2. Using csh, enter the following commands:

foreach x (*.spl)

hush $x

end

If you were to perform Hush upon the sample code in the section Getting Started with
PepperCode, the code would look as follows:

For more information, including a listing of the sample code, see Getting Started with
PepperCode.

// Include the .spl file containing PepperCode runtime functions.

// By convention, these functions appear in all uppercase letters in code.

#include "cpp_utility.spl"

// Create an enumeration containing the possible bike materials.

enum material { steel, aluminum, carbon_fiber, titanium, other };

// Define a basic class for a vehicle.

class Vehicle : Base_Class {

int serial_number

int passengers

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 2 - 2 0 C O M P I L I N G A N D L I N K I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

int price

};

slot Vehicle.passengers { default: 4 };

// Derive the class Bicycle from the class Vehicle.

// Add two new slots, in addition to those from the Vehicle class.

// Override the default number of passengers to a more realistic value

// for a bike.

class Bicycle: Vehicle {

string model_name

enum<material> frame_material

};

slot Bicycle.frame_material{ default: steel };

slot Bicycle.passengers{ default: 1 };

// Create an instance of the Bicycle class (or one of its subclasses).

// The instance of the class is an object.

action create_vehicle

(input: int serial_number,

input: string model_name,

input: string class_name,

output: instance<Bicycle> new_bike,

no_context:)

{

}

// Create instances of the classes Atb and Bicycle.

// Test it by generating a list of the instances of Bicycle and iterating

// through the list—printing the serial number of each Bicycle or Atb.

action spl_main

(input: int argc,

input: oset[string] argv,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P I L I N G A N D L I N K I N G P E P P E R C O D E 1 2 - 2 1

input: string identity,

local: action<create_vehicle> create_vehicle,

local: oset[instance<Bicycle>] list)

{

}

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X 1 3 - 1

C H A P T E R 1 3

Understanding PepperCode Syntax

The following grammar describes the syntax recognized by the parser in the current PepperCode

compiler. You will notice a few constructs that are not documented elsewhere in the manual.

Some of these are recognized by the parser but then are rejected later in the compiler; they

represent possible future enhancements to the language. Others are accepted by the compiler;

they represent obsolete features that are still accepted.

The most notable example of the latter involves trailing semicolons. For historical reasons, the

compiler accepts extra semicolons after right braces (}) in certain places where C and C++ do not

require them—for example, after the left brace ({) at the end of an action definition.

<spl_statements>

::= <spl_statement> <spl_statements>

| <spl_statement>

<spl_statement>

::= <toplevel_statement>

<toplevel_statement>

::= <class_statement>

| <slot_statement>

| <action_statement>

| <enum_statement>

| <action_scheme_statement>

| <function_statement>

| <function_scheme_statement>

| <cpp_fn_statement>

| <cpp_fn_scheme_statement>

| <directive_statement>

<directive_statement>

::= <include_directive>

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 3 - 2 U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

<include_directive>

::= #include <filespec>

| #remote_include <filespec>

<filespec>

::= < <filename> >

| " <filename> "

<keyword_parameter_list>

::= ()

| (<keyword_parameter_list_recur>)

<keyword_parameter_list_recur>

::= <keyword_parameter_declaration>

| <keyword_parameter_list_recur> , <keyword_parameter_declaration>

<keyword_parameter_declaration>

::= <keyword_parameter_type> <type_specifier> <identifier>

<keyword_parameter_initial_value>

| <keyword_parameter_attribute>

<keyword_parameter_type>

::= input:

| inout:

| local:

| output:

| returntype:

<keyword_parameter_attribute>

::= explain:

| interpret:

| audit:

| audit_no_replay:

| no_context:

| context:

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X 1 3 - 3

<keyword_parameter_initial_value>

::= = <constant>

| = <identifier>

| <empty>

<parameter_list>

::= ()

| (<parameter_list_recur>)

<parameter_list_recur>

::= <parameter_declaration>

| <parameter_list_recur> , <parameter_declaration>

<parameter_declaration>

::= <type_specifier>

<class_statement>

::= class <identifier> <base_classes> <class_body_semi>

| <CLASS> <identifier> ;

<class_body_semi>

::= <class_body> ;

<class_body>

::= { <slot_specs> <class_specs> }

| { <class_specs> }

| { <slot_specs> }

| { }

<base_classes>

::= <empty>

| : <base_class_id>

| <base_classes> <base_class_id>

<base_class_id>

::= <identifier>

<slot_specs>

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 3 - 4 U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

::= <slot_spec>

| <slot_specs> <slot_spec>

<slot_spec>

::= <slot_type> <identifier>

<slot_type>

::= <type_specifier>

<class_specs>

::= <class_spec>

| <class_spec> <class_specs>

<class_spec>

::= <after_init_spec>

| <class_interface_value>

| <temporary_instances>

<after_init_spec>

::= after_init: <compound_after_init_statements>

<class_interface_value>

::= class_interface_value: <identifier>

<temporary_instances>

::= temporary_instances:

<compound_after_init_statements>

::= { <after_init_statements> }

| { }

<after_init_statements>

::= <after_init_statements> <after_init_statement>

| <after_init_statement>

<after_init_statement>

::= <if_statement>

| <compound_after_init_statements>

| <execute_statement>

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X 1 3 - 5

| <while_statement>

| <assignment_statement>

| <expression_statement>

| <foreach_statement>

<enum_statement>

::= enum <identifier> { <enumerator_list> } ;

<enumerator_list>

::= <identifier>

| <enumerator_list> , <identifier>

<slot_statement>

::= slot <identifier> . <identifier> <slot_clause_body> ;

<slot_clause_body>

::= { }

| { <slot_clauses> }

<slot_clauses>

::= <slot_clauses> <slot_clause>

| <slot_clause>

<slot_clause>

::= <slot_default_clause>

| <slot_db_clause>

| <slot_documentation_clause>

| <slot_cardinality_clause>

| <slot_interface_type>

| <slot_class_slot_clause>

<slot_default_clause>

::= default: <slot_default_specifier>

<slot_default_specifier>

::= <constant>

| <identifier>

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 3 - 6 U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

| <type_specifier>

| new

| new <identifier>

<slot_db_clause>

::= db: { }

<slot_documentation_clause>

::= documentation: <string_constant>

<slot_cardinality_clause>

::= cardinality: <constant>

<slot_interface_type>

::= slot_interface_value: <identifier>

<slot_class_slot_clause>

::= class_slot:

<cpp_fn_statement>

::= cpp_function <type_specifier> <identifier> <parameter_list>

<string_constant> ;

| cpp_function < <identifier> > <identifier> <string_constant> ;

<cpp_fn_scheme_statement>

::= cpp_function_schema <type_specifier> <identifier> <parameter_list> ;

<action_statement>

::= <action_declaration> ;

| <action_declaration> <keyword_parameter_list> ;

| <action_declaration> <action_body_semi>

| <action_declaration> <keyword_parameter_list> <action_body_semi>

<action_declaration>

::= action <identifier>

| action < <identifier> > <identifier>

<action_scheme_statement>

::= <action_scheme_declaration> ;

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X 1 3 - 7

| <action_scheme_declaration> <keyword_parameter_list> ;

<action_scheme_declaration>

::= action_schema <identifier>

<action_body_semi>

::= <compound_action_body_statements>

| <compound_action_body_statements> ;

<compound_action_body_statements>

::= { <action_body_statements> }

| { }

<action_body_statements>

::= <action_body_statements> <action_body_statement>

| <action_body_statement>

<action_body_statement>

::= <if_statement>

| <action_body_semi>

| <execute_statement>

| <while_statement>

| <exit_statement>

| <assignment_statement>

| <expression_statement>

| <foreach_statement>

<target_statement>

::= <action_body_statement>

<if_statement>

::= <if_simple_statement>

| <if_simple_statement> else <target_statement>

<if_simple_statement>

::= if (<expression>) <target_statement>

<execute_statement>

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 3 - 8 U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

::= execute <first_variable> <action_keyword_list> ;

<foreach_statement>

::= foreach <identifier> in <expression> <target_statement>

| foreach <identifier> in reverse <expression> <target_statement>

<return_statement>

::= return (<identifier>) ;

| return (<int_constant>) ;

| return (<float_constant>) ;

| return (<string_constant>) ;

<exit_statement>

::= leave ;

| succeed (<first_variable>) ;

| succeed () ;

| fail (<first_variable>) ;

| fail () ;

<while_statement>

::= <WHILE> (<expression>) <target_statement>

<assignment_statement>

::= <expression> = <expression> ;

<expression_statement>

::= <expression> ;

<expression>

::= <constant>

| <identifier> <path>

<path>

::= <link> (<arg_list>

| <link>

<link>

::= <path> . <identifier>

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X 1 3 - 9

| <empty>

<arg_list>

::=)

| <multi_arg_list>)

<multi_arg_list>

::= <multi_arg_list> , <expression>

| <expression>

<first_variable>

::= <identifier>

<action_keyword_list>

::= (<keyword_list>)

| ()

<keyword_list>

::= <keyword_list> , <keyword_value>

| <keyword_value>

<keyword_value>

::= : <identifier> <expression>

<type_specifier>

::= int

| void

| float

| date

| time

| string

| <instance_type_specifier>

| <class_type_specifier>

| <function_type_specifier>

| <cpp_fn_type_specifier>

| <action_type_specifier>

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 3 - 1 0 U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

| <oset_type_specifier>

| <enum_type_specifier>

| <history_type_specifier>

<instance_type_specifier>

::= instance < <identifier> >

<class_type_specifier>

::= class < <identifier> >

<cpp_fn_type_specifier>

::= cpp_function < <identifier> >

<action_type_specifier>

::= action < <identifier> >

<enum_type_specifier>

::= enum < <identifier> >

<oset_type_specifier>

::= oset [<type_specifier>]

<history_element_type_specifier>

::= int

| float

| string

| instance

<history_type_specifier>

::= history < <history_element_type_specifier> >

<constant>

::= <string_constant>

| <int_constant>

| <float_constant>

| - <int_constant>

| - <float_constant>

<identifier>

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L U N D E R S T A N D I N G P E P P E R C O D E S Y N T A X 1 3 - 1 1

::= [A-Za-z][A-Za-z0-9_]*

<int_constant>

::= [0-9]+

<string_constant>

::= "[^"]*"; recognizes the same backslash escape characters as ISO C,

including '\"'.

<float_constant>

::= [0-9].[0-9]+

<filename>

:: recognizes the syntax of a Unix filename

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 1

C H A P T E R 1 4

Debugging PepperCode

PepperCode code is converted to C++ code during compilation:

• Actions become C++ instances.

• Parameters become C++ member variables.

To debug PepperCode code, there are a number of tools, including symbolic debuggers for C++

and the debugging functions that you can use to print methods and their descriptions. This

section describes these and other methods of debugging your code.

Avoiding Common Mistakes

Some common mistakes programmers make when writing PepperCode code are the following:

• Omitting opening or closing parentheses (()) or braces ({ })

• Adding extraneous semicolons (;)

PepperCode doesn’t accept semicolons (;) in all of the places that C and C++ do. The main

exception is within a class definition:

class c {

int i // no semicolon here

float f // or here

};

• Not including the proper header files or forward declarations

Be sure to include declaration or action files that define needed actions.

• Not declaring an action as a local parameter within the calling action

PepperCode requires you to declare an action as a local parameter before you can invoke it.

The local parameter should be in the form:

action<action_name> param_name

not:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 2 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action<schema_name> param_name

The tricky part is that in code the syntax looks very similar, so you could accidentally specify

a schema, as in the following example:

action_schema draw();

action<draw> draw_circle() { ... }

action<draw> draw_square() { ... }

action draw_something

(local: action<draw> draw_circle)

{

// Will fail at execution time because "draw" is a schema,

// not an action whose schema is draw. draw_circle is just a

// parameter and doesn’t refer to an action definition.

execute draw_circle();

succeed();

}

If the action has one or more parameters, the compiler may be able to detect the problem at

compilation time. In this example, it will complain that size isn’t a parameter in draw. (If the

compiler doesn’t detect the error, this problem results in a segmentation violation at

execution time.)

action_schema draw();

action<draw> draw_circle

(input: int size)

{ ... }

action<draw> draw_square

(input: int size)

{ ... }

action draw_something

(local: action<draw> draw_circle)

{

execute draw_circle(:size 5); // Compiler issues an error message

succeed();

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 3

}

The correct version of draw_something specifies that the local parameter isn’t just an action

whose schema is draw, but is the specific action draw_circle:

action draw_something

(local: action<draw_circle> draw_circle)

{

execute draw_circle(:size 5);

succeed();

}

• Forgetting to reset static action parameters when an action is called multiple times

Even local parameters must be reset. For more information, refer to the discussion on static

action parameters in Writing Action Parameters.

• Not assigning a value to an instance input parameter of an action

This will cause the action to break when executed because the value of the instance parameter

will be zero. For example:

action evaluate_score

(input: instance<Spl_Class> an_object,

local: int current_score)

{

current_score = an_object.score; // will break when an_object = 0

//

// do some other stuff here

//

succeed();

}

...

execute evaluate_score(); // OOPS!!! This will break

• Calling methods directly, instead of calling their corresponding dispatcher actions

• Assuming that expressions are evaluated from left to right (like C/C++)

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 4 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

The following code will break when the_object is zero. In C/C++, the expression stops

evaluating when it hits the_object; in PepperCode, the expression continues to evaluate

(the_object.score, 100) as well. When the_object is zero, this code crashes in

PepperCode, but not in C/C++.

if (AND (the_object,

EQ (the_object.score, 100)))

• Calling C++ functions when corresponding actions exist

For example, CREATE_OBJECT is a C++ function that should never be called directly.

Instead, the action create_object should be used.

Also, DELETE_OBJECT should only be called from within delete methods. The action

delete_object is the top-level call for deleting an object. This is important because every

PepperCode object has a default delete method that is called if you use delete_object.

• Using GET_DESCENDANTS on objects that are in a free store

When an object is in a free store, it should not be accessed with GET_DESCENDANTS.

One example is spreadsheet row objects.

• Accessing an empty oset

When an oset is empty, any of the oset functions that return values will break. For example:

...

local: oset[int] scores, // local oset parameter

...

scores.flush(); // empty the oset

scores.first(); // This will break !!!

scores.last(); // so will this !!!

...

• Modifying an oset while looping over it with foreach

The foreach statement loops over an oset by incrementing the link-list pointers of the oset.

When the link-list pointers are modified during a foreach, the system can break with a “stale

pointer” error. Note that foreach loops over the actual oset, not a copy of the oset. Here is an

example:

// This action is an example of how NOT to modify osets in a foreach.

//

action bad_oset_usage

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 5

(local: oset[int] scores,

no_context:)

{

scores.flush(); // clear the oset

scores.enque(1); // enque three numbers on the oset

scores.enque(2); // ...

scores.enque(3); // ...

foreach score in scores

if (score == 2)

scores.delete(score); // THIS WILL CAUSE THE SYSTEM TO

BREAK

foreach score in scores

if (score == 2)

scores.enque(score); // THIS WILL CAUSE THE SYSTEM TO BREAK

succeed();

}

// This action is an example of how to modify osets in a foreach

// by making a copy of the oset.

//

action better_oset_usage

(local: oset[int] scores,

local: oset[int] temp_scores,

no_context:)

{

scores.flush(); // clear the oset

scores.enque(1); // enque three numbers on the oset

scores.enque(2); // ...

scores.enque(3); // ...

temp_scores = scores; // make a copy of the original oset

foreach score in temp_scores // loop over a copy of the original oset

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 6 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

if (score == 2)

scores.delete(score);

foreach score in temp_scores // loop over a copy of the original oset

if (score == 2)

scores.enque(score);

succeed();

}

To avoid this problem when deleting an entire oset of objects in a delete method, use the

action delete_object_list.

• Not checking for errors resulting from the limited type checking PepperCode does

Troubleshooting Guide

This section is meant to help developers resolve errors and other problems encountered in the

development process. It contains a Frequently Asked Questions (FAQ) section and a PepperCode

Error Message Reference. The individual FAQ questions and error messages have links to other
sections of this document that pertain to the particular question or error message.

Compiler Frequently Asked Questions (FAQ)

The following are frequently asked questions whose answers may help you in your transition to
the Release 8.0 compiler:

Q: How does one compile PepperCode files that #include each other?

The pre-compiled header files (*.pchs) are used when *.spl files are included.

For more information on inclusion and examples that demonstrate how inclusion works, see

Writing PepperCode #include Statements.

Pre-compiled header files are generated when *.spl files are compiled. The following example is
provided for use in cases where two *.spl files include each other.

You must include a *.spl file in a file you are compiling if you use actions or classes that are

defined in it.

Example:

If two compilations a.spl and b.spl both use "#include" on one another, you must first generate

header files using the "--header_only" compiler option, then compile the files normally or

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 7

compile them using the --no_header option. If you were to try to compile these files to an object

file without first generating header files for them, the compiler would look for the header file and

issue an error because of the missing file (See error message Error on "%s": %s..). The following

is an example of how you would proceed:

spl --header_only a.spl //generates a.pchs, cannot create a.o yet

spl --header_only b.spl //generates b.pchs, cannot create b.o yet

spl --no_header a.spl //generates a.o using a.pchs (generated above)

spl --no_header b.spl //generates b.o using b.pchs (generated above)

Actually, you could compile with the default option on the latter two compilations. The

no_header option is being used here because you have already generated header files for a.spl and

b.spl in the first two compilations.

To see a functional example of this type of compilation, see --header_only.

Q: Why doesn't an enumeration constant have an integer value?

A: The same constant can appear in multiple enumerations, but it may not be possible to assign

the same integer constant in each one. If the following statements appear in separate

compilations, green would naturally be "2" in one case and "3" in the other. An expression like
"green.integer" would not tell the compiler which "green" was intended.

enum rgb { red, blue, green };

enum rainbow { red, orange, yellow, green, indigo, violet };

Q: The rules have changed for declaring actions locally. What about classes?

As long as you declare an action, you can invoke it without declaring a local parameter:

action b();

action a() {

execute b();

}

instead of:

action b();

action a(local: action b) {

execute b();

}

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 8 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

A: The simple answer is yes. You can use an existing class as it is named without declaring it

locally or using GET_CLASS_BY_NAME to retrieve it. In fact, you cannot declare a local class

as follows:

action a(local: class b) {<body>}

This will cause an error.

If, however, you want to use a variable to represent the class or use an instance of the class, you
must declare it in the action.

For more information, see Using Predefined Classes. For more information on the new rules

for local actions, see New Rule for Invoking Action.

Example:

// The following are class definitions. (No parameters are specified.)

class c {

};

class c1:c {

};

class c2:c {

}

action a ()

{

PRINTF(“%s”, c.name) // This action prints the name of the class.

// The class need not be declared locally.

}

action b (local: class(c) cv,

local: int foo)

{

if foo = 1

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 9

cv = c

else if foo = 2

cv = c1

else if foo = 3

cv = c2;

endIf

PRINTF(“%s”, cv.name) // This action prints the name of the class.

// The name of the class depends on foo.

// For this to work,

// the class needs to be declared locally.

// if foo = 1, the result is c.

// if foo = 2, the result is c1.

// if foo = 3, the result is c2.

}

Error Message Reference

This section provides troubleshooting information for error messages that you may encounter

while compiling PepperCode. They are separated into two categories, errors that stop compilation

and warnings that don't stop compilation. They are then listed in alphabetical order in each

section.

Errors (That Stop Compilation)

You must resolve these errors before you continue.

Action should have a parameter list.

This error can occur in an action definition, a forward action declaration, or an action_schema

definition when you don't use a parameter list.

Example:

Say you declare an action schema as follows:

action_schema schema1;

Because the parentheses are missing from the action schema declaration, the compiler determines

that the action parameter list, which should be enclosed in the parenthesis, is missing. When an

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 1 0 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action is defined later with this action schema, the compiler cannot find the parameter list for the

action schema because of the missing parenthesis, and this error message is generated.

An action schema should be defined as follows:

action_schema schema1(<parameter list>);

The actual parameter list is not required, but the parentheses are required.

For more information, see Action Schema Declarations and Definitions.

Cannot set local parameter "%s" in an execute statement.

This error occurs if you try to set a parameter in an execute statement that is local to the action
being called.

Example:

The following line of code will cause this error if "l" is a local parameter in action_local:

execute action_local(:l 5);

Declaration of "%s" conflicts with the declaration in %s:%d.

This can happen when you have more than one action or class definition. The first "%s" is the

action or class in question. The second "%s" is the file name of the file containing the conflicting

declaration. The "%d" is the line number of the line of code where the conflict occurs.

Example:

Declaration of "uses_schema1" conflicts with the declaration in schema_example_3.spl:8.

This happens if the forward action declaration for action uses_schema1 has a body. If a forward

action declaration has a body, the compiler cannot tell which declaration is the forward

declaration and which one is the definition. Try taking the body off of your forward action
declaration.

For more information, see Declaring Actions: Forward (or Incomplete) Action Declarations.

Deleting output files and stopping due to an error in the compiler itself

This error can be caused by a variety of serious code problems that cause the compiler to stop.

Example:

In a sample run, this error was caused by the following command:

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 1 1

PRINTF("%d", action_output.o);

This error occurred because of an attempt to print something that did not yet exist.

action_output.o did not yet exist because action_output had not yet been evoked. This same

command caused no problem after action_output was invoked because action_output.o then

existed.

Error on "%s": %s.

This is a generic error. It is used to pass error messages from a variety of sources to the

PepperCode compiler. The first string ("%s") represents the object that caused the error. The

second string (%s) represents the actual error.

Example:

Error on "./xyz.pchs": No such file or directory.

This error occurs when the compiler cannot find xyz.pchs. The cause is either because the file has

not been generated, or the directory containing xyz.pchs is not in the include path. For more

information, see Writing PepperCode #include Statements and the error message No such file or

directory...

fatal: "%s": open failed: No such file or directory

The compiler could not find a component necessary for compilation. If the error message refers to

a *.so file (PepperCode Library File), then your LD_LIBRARY_PATH environment variable has

not been properly set.

Example:

fatal: libshello.so: open failed: No such file or directory

It couldn’t find library libshello.so because the directory containing it was not specified in

LD_LIBRARY_PATH.

If you are a previous user of Supply Chain products, your LD_LIBRARY_PATH may be set up

for use with Release 7.5. If you temporarily unset your LD_LIBRARY_PATH by entering the

command “unsetenv LD_LIBRARY_PATH, the Release 8.0 default library path

(.:/home/v8vm/product/splcompiler) will be used. In most cases, this will resolve the error.

However, if you wish to use your own components that are not in the default

LD_LIBRARY_PATH, you must reset your LD_LIBRARY_PATH to include

/home/v8vm/product/splcompiler and all other directories containing the components that you

want to use. You can do this temporarily from the command line or permanently in your .cshrc

file with the command “setenv LD_LIBRARY_PATH <path containing components & default

*.so libraries>”.

Example:

The following will set LD_LIBRARY_PATH to the default:

> setenv LD_LIBRARY_PATH .:/home/v8vm/product/splcompiler

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 1 2 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

For more information, see LD_LIBRARY_PATH.

LNK4049: locally defined symbol ""struct spl_action_info spl_action_info_xyz"

imported

Note: This error message applies to Windows NT only.

When you use "#include" to import the PepperCode source file which declares action "xyz", the

compiler and the project manager cooperate to decide whether the action appears a different

shared library (DLL) than the file you are currently compiling, and emits appropriate code. In that

case, this message does not appear.

But if, instead of using "#include", you rely on an incomplete declaration like "action xyz();", or

if you use "default: xyz" to set the default value of a slot without ever declaring the action, then

the compiler must be conservative and guess that the action might be imported from some other

DLL. The message from the Microsoft linker says that the action really appears in the same DLL

as the code which refers to the action, and therefore the compiler did not need to be so
conservative.

Mismatch between "#document %s" at line %d and "#end_document %s".

The transaction name specified after #document does not match the transaction name specified

after #end_document. These transaction names must match.

Example:

If the transaction names were misspelled as follows:

#document transaction_foo

…

#end_document transaction_who

The following error would occur:

Mismatch between "#document transaction_foo" at line 6 and "#end_document

transaction_who".

Mismatch in parameter "%s" (see %s:%d).

The parameter lists do not match up with regard to the first "%s". This error can be caused by

• Misspelling parameter names

• Forward action declaration parameter lists that don't match the action definition parameter lists

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 1 3

The first "%s" is, of course, the parameter that doesn't match. The second "%s" is the file in

which the parameter was mismatched, and "%d" is the line of the code in which the error was

found.

Example:

Mismatch in parameter "s" (see schema_example_5.spl:6).

This particular error was caused by a forward action declaration parameter list that didn't match

the action definition parameter list. Forward action declarations are no longer recommended

because the compiler now resolved inclusions in a more efficient manner.

For more information, see Writing PepperCode #include Statements.

Check your forward action declarations and make sure that the parameters match those listed in

the action definition, or you could include the file containing the action definition. Either of these

solutions should resolve this error without causing other errors.

Missing transaction name after "%s".

This error occurs if you forget a transaction name. The string ("%s") tells you where you forgot it.

Example:

If you forget to put the transaction name after the #document statement in a #document block,
you will get the following error:

Missing transaction name after "#document".

No such file or directory.

The compiler couldn’t find the file or directory specified in your code. This message is usually

part of a larger error message. Example: Error on "./xyz.pchs": No such file or directory. For

more information and other examples see the following:

• Error on "%s": %s..

• fatal: "%s": open failed: No such file or directory

Not found: <cpp function> (<type>*, <type>*)

This error usually occurs at link time when you declare a cpp_function but do not describe the

arguments in precisely the same way the C++ code does.

Example:

Say that the following cpp function was declared:

cpp_function int STRING_COMPARE(string, string) “nlstrcmp”;

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 1 4 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

This will cause the following error:

Not found: nlstrcmp(char*, char*)

In the case of the STRING_COMPARE function, the C++ code declares the arguments using

"const char *", so you must add "const:" to the cpp_function statement in PepperCode as follows:

cpp_function int STRING_COMPARE(const: string, const: string) “nlstrcmp”;

As an alternative to using the STRING_COMPARE function, you could use the operators "==",

"<", ">", "<=", or ">=", and the compiler will generate the appropriate C++ function call for you.

For more information on making declarations for and using C++ Functions see Accessing C/C++

Functions.

Nothing named "%s" is in scope here.

This error will occur if you try to use an object ("%s" in the error message above) that hasn't been

defined with regard to scope. It can occur if you have defined the PepperCode object in a local

scope, then try to use it outside the local scope.

To correct the error, define the object that you are trying to use for the scope in which you are

trying to use it. If the object is defined in another source file (*.spl), be sure to #include that

source file in the source file where the object is being used. If the object is defined in a local

scope, i.e. a local variable, try defining it globally by declaring it in an action or class. For more
information on scope definitions, see Understanding Scopes and Identifiers.

Depending on your situation, you may also receive parse errors and missing type name errors. In

the case of C++ functions, you must first define the C++ function with a cpp_function declaration

(see Accessing C/C++ Functions). If you do not, the compiler will not recognize the C++

function. This can potentially cause parse errors and missing type errors along with this error. The

only exceptions to this rule are the C++ functions that are already included in the substrate.

Declaring them will cause a warning, except in the case of the BREAK and CONTINUE

functions.

In the case of the BREAK and CONTINUE functions, you cannot declare them with cpp

functions. To correct the error (in the case of BREAK or CONTINUE only), remove the cpp

function declarations for BREAK and CONTINUE.

parse error

cpp_function void CONTINUE() "continue";

^

You may also see one or more of the following type of error messages:

jim.spl:1: Missing type name (e. g. "int", "class<>", etc.)

BREAK and CONTINUE are now built into the compiler as keywords, so the old trick of

declaring them as cpp_functions no longer works. For more information on making declarations

for and using C++ Functions see Accessing C/C++ Functions.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 1 5

Parameter "%s" should be "output:" or "inout:", not "%s:"

You are attempting to perform an operation with a parameter that cannot be performed with the
parameter. It can only be performed with an "output" or "inout" parameter.

Example:

The following error occurred because of an attempt to print the value of a local variable that was
from another action:

Parameter "l" should be "output:" or "inout:", not "local:"

parse error

You will get this error if the compiler cannot parse your code. It will not be able to parse your

code if it encounters something that is incompatible with the compiler's rules. Of course, the error

message always indicates the point in the code where the compiler stopped parsing your code.

This is the best indication of the error location. Parse errors are usually due to a syntax problems
or a definition problems.

Example:

parse error

Copyright 1994-1998 by PeopleSoft, Inc.

^

hello_world.spl:4: Missing "#notice" for this "#end_notice" statement.

Compilation failed with 2 error(s).

In this example, the #notice block was not correct, and the compiler was reading characters that it

didn't understand, code that should have been commented out.

SPL: <class_x> is not a subclass of <class_y>

When the source and target class (or instance) of an assignment do not have a proper parent/child

relationship, the Release 8.0 Compiler generates a warning at compilation time, and generates

code to check the relationship at runtime. If the relationship still isn't correct, the runtime code

prints this message: SPL: <class_x> is not a subclass of <class_y>.

The following is an illustration of a typical class/subclass error scenario:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 1 6 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Class name

Vehicle

Class name

Bicy cle

Class name

Deliv ery

Bicy cle.tires

Bicy cle.is_tandem

Deliv ery .tires

Deliv ery .TonLoad

Vehicle.tires

v =instance<Vehilce>

b=instance<Bicy cle>

d=instance<Deliv ery >

v =b OK

(See Ex. 1 below.)

b=v Not OK

(See Ex. 2 below.)

b=d Really Not OK

(See Ex. 3 below.)

Class/Subclass Diagram

The above Class/Subclass Diagram refers to the following examples:

enum Boolean_Flag { TRUE, FALSE };

class Vehicle {

int tires;

};

class Bicycle: Vehicle {

enum<Boolean_Flag> is_tandem;

};

class Delivery: Vehicle {

enum<Boolean_Flag> TonLoad;

};

The code in the following examples refers to the code and diagram above.

Example 1: Assigning a Child Class Type Variable to a Parent Type Variable

The following assignment is safe because the only slot we can reference using "v" is "tires",

which does exist on "b":

action ok(input: instance<Bicycle> b, output: instance<Vehicle> v)

{

v = b;

}

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 1 7

Example 2: Assigning a Parent Class Type Variable to a Child Type Variable

The following assignment is unsafe because a vehicle, such as a delivery van, does not have a slot

called "is_tandem", but once we assign "v" to "b", the compiler cannot prevent us from saying

"b.is_tandem" and accessing a nonexistent slot. It might be safe if "v" is actually a bicycle (e.g. if

we got the value of "v" by calling action "ok" originally), but the compiler can't tell whether the

value of "v" originally came from a bicycle, a delivery vehicle, or something else.

Neither the compiler nor the linker can tell whether this is safe or not, so at runtime (provided you

used --debug and not --optimize when you compiled) the generated code will check for the unsafe

case and issue this error message "SPL: <class1> is not a subclass of <class2>".

action not_ok(input: instance<Vehicle> v, output: instance<Bicycle> b)

{

b = v;

}

Example 3: Assigning a Class Type Variable to an Unrelated Class Type Variable

The following assignment is always unsafe because a vehicle, such as a delivery van, has very

few slots in common with a bicycle. It could never have a slot called "is_tandem", and bicycle

could never have a slot called TonLoad. However, once we assign "d" to "b", the compiler cannot

prevent us from saying "b.is_tandem" and accessing a nonexistent slot. Since "d," a delivery van,

cannot be a bicycle, it can never be safe, and the compiler can't tell where the value of "d"

originally came from.

action really_not_ok(input: instance<Delivery> d, output: instance<Bicycle> b)

{

b = d;

}

Neither the compiler nor the linker can tell whether this is safe or not, so at runtime (provided you

used --debug and not --optimize when you compiled) the generated code will check for the unsafe

case and issue this error message "SPL: <class1> is not a subclass of <class2>".

Remember that "Base_Class" works well as a generic data type, because every class is a child of

Base_Class, whereas not all classes are related to "Spl_Class" or "Named_Object".

Target of "%s" is not an lvalue.

This error occurs because of an attempt to make an assignment that is invalid. You can assign

values only to expressions that are valid lvalues. To determine which values are valid lvalues, see

Writing Assignment Statements.

Example:

If you examine the following code, you will see that an action is called, then an attempt is made

to assign a value to the called action's input value.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 1 8 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

execute action_input(:i 5); // Caller can pass actual arg in invocation

action_input.i = 6; // ERROR (caller cannot alter this)

Since an input value cannot be a valid lvalue, the following error occurs.

Target of "=" is not an lvalue.

For more information, see Writing Action Parameters.

The declaration of "%s" is incomplete.

If %s is a class, this error has occurred because of the improper use of a forward (or incomplete)

class declaration. Forward class declarations are still allowed to maintain backward compatiblity

with previous versions, but they can only be used in the same limited manner as they were used in

previous releases of PepperCode. For example, when a class is declared only with a forward class

declaration in a particular *.spl file, you cannot change or even refer to the slots of that class. You
can only declare an instance of that class.

To correct this error, you can either #include the *.spl file that contains the class definition

(specified by %s in the error message) or remove the code that caused the error. For more

information on forward class declarations and to see examples of the correct and incorrect ways

of using them, see Forward Class Declarations.

Undefined symbol: spl_action_info_abc

The linker issues this error. It occurs if you are using a forward action declaration in lieu of

including the *.spl file that contains the action definition, and you misspell the action name in the

action definition. If you misspell the action name in the forward action declaration you will get an

error in the compiler itself (See Deleting output files and stopping due to an error in the compiler
itself.)

Example:

The file columns.spl contains the action definition for print_three_columns, and user.spl contains

a forward action declaration for print_three_columns, so user.spl can execute the action. If you

misspell "print_three_columns" in columns.spl, you will receive the error (from the linker):

Undefined first referenced

symbol in file

spl_action_print_three_columns(spl_action_io*) user.o

ld: fatal: Symbol referencing errors. No output written to user

spl: Command "/disk/u423/compilers/SparcWorks/SUNWspro/bin/CC" failed with

status 256

For historical reasons, the compiler allows you to declare actions by saying "action abc();"

instead of using "#include" to include the PepperCode source file which defines action "abc".

Thus it cannot check for misspellings or missing definitions; the linker will be the first to discover

these.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 1 9

Unterminated string literal.

This error is usually caused by a syntax problem. It occurs if you forget to add a closing quotation
mark when specifying a string.

Example:

s = “string;

will cause this error because there is nothing to tell the compiler where "string" ends. The
following is the correct way to make the assignment:

s = “string”;

You must supply a value for "required:" parameter "%s"

The required: keyword is new in Release 8.0. You received this error because you did not assign

a value to required: parameter "%s". A parameter becomes required when it is assigned a default

of required: as in the following example:

action counter(input: int quantity = required:)

{

PRINTF("%d\n", quantity);

}

action spl_main()

{

execute counter();

}

Executing this program causes the following error:

You must supply a value for "required:" parameter “quantity”

If you assign a value to quantity in your action call, as in the following example, the error goes

away:

action counter(input: int quantity = required:)

{

PRINTF("%d\n", quantity);

}

action spl_main()

{

execute counter(:quantity 15);

}

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 2 0 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Warnings (These Don't Stop Compilation)

Warnings won't stop you, but they could be the precursor to or an indicator of more serious

problems.

Assignment to "input:" variable "%s".

This warning message will occur if an assignment is made to an input variable in a called

function. The called function can alter an input variable, but the alteration doesn't have any effect

on the calling function. For more information on what data can be passed and where, see Writing

Action Parameters.

cpp_function "%s" ignored because it conflicts with a built-in function.

This is a warning message that is caused by making a cpp_function declaration for a function that

is already built into the code. (The function name will appear in the place of %s.) Starting in

Release 8.0, many PepperCode C++ functions are pre-defined. This is one of them.

No longer necessary to include C++ files ending in .h

Including *.h files is an obsolete practice and is no longer a valid action in Release 8.0. If *.h files

are included, this warning message is generated. Their inclusion has no other effect but to cause

this warning message. Starting in Release 8.0, the *.h libraries are built into the substrate, so they

no longer have to be included with a #include statement. For more information, see Writing

PepperCode #include Statements.

Source file should have a "#notice" statement.

This warning will occur if you have not included a notice statement in the *.spl file that you are

trying to compile.

You can eliminate this error by placing a notice statement block in each of your *.spl source files.

The following is the #notice statement block that is used for *.spl files:

#notice

Copyright 1994-1998 by Peoplesoft, Inc.

All U.S. and World rights reserved.

#end_notice

Using Debugging Tools

Since symbolic debuggers don’t understand the PepperCode language, you will encounter some

limitations when using them to debug PepperCode programs. However, you can use a
combination of techniques to make debugging possible.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 2 1

Using The Action Interpreter

As mentioned earlier, PepperCode has a runtime system that provides an Action Interpreter,

which is code that reads a string containing a human-readable action invocation that is similar to

the syntax you use in a PepperCode execute statement. The Action Interpreter parses the string,

invokes the action, and returns a string containing a human-readable list of output values.

The command line interface to the Action Interpreter executes PepperCode actions that you enter

at the prompt. For example, if you have the following action:

action compare

(input: int i,

input: int j,

output: int difference)

{

difference = i - j;

if (difference == 0)

fail();

succeed();

}

You could invoke compare from another action:

action another

(local: action<compare> compare_proc)

{

execute compare_proc(:i 5, :j 6);

if (compare_proc.status == FAIL)

fail();

succeed();

}

Or you could invoke compare from the Action Interpreter directly through a command line:

compare(:i 5 :j 6)

Notice how the comma and semicolon are removed.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 2 2 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

For more information, see the process outlined in Compiling And Linking PepperCode. For

more information about output from the Action Interpreter, see Writing Methods and

Writing Osets.

To start your server in action interpreter mode, allowing you to use action interpreter commands,

enter the following command:

./server -I

In the window where you are running the server, you will get the following prompt, showing that

you can now enter an action interpreter command:

Enter an action call:

To exit the action interpreter, enter the following command:

:exit

To start the action interpreter from your client, have the Client and Server running and command

files loaded. Then perform the following steps:

1. From the Client, select Help, Tech Support.

The Technical Support form appears.

Technical Support Form

2. Click on the pepper in the center of the “Powered by Red Pepper” logo.

The Temp form appears.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 2 3

Temp Form

3. Click on Action Interpreter.

In the window where you are running the server, you will get the following prompt:

Enter an action call:

Now you can enter an action interpreter command.

To exit the action interpreter, enter the following command, then click OK on the Temp

Form.

:exit

Using Action Debug Tracing

Action debug tracing helps PepperCode programmers debug problems by tracing the values of

action inputs on entry and action outputs on exit.

Action debug tracing lets you trace a particular action and all of its descendants. Tracing begins

when you first execute the action, and ends when the function returns. In the meantime, tracing

affects every action which you invoke directly from PepperCode code (rather than by using the

action interpreter to parse a string containing an action invocation).

On entry to the action, the trace prints a line similar to this on the server console window—C++

file descriptor stderr—showing the values of all “input:” and “inout:” parameters:

>my_first_action: (one_input: string “abc”)

(another_input: float 6.5)

On return from the action, the trace prints a line similar to this, showing the values of all

“output:” and “inout:” parameters. The return status is shown as “F” (fail), “S” (succeed), or “L”

(leave) in parentheses after the action name:

<my_first_action (S): (one_output: oset[int]: list 3 100 200 300)

When one action calls another, the “>” and “<” characters repeat to represent nesting via

indentation:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 2 4 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

01>my_first_action: (one_input: string “abc”)

(another_input: float 6.5)

02>child_of_first: (child_input: instance<Base_Class>

oid(337 “Detailed_Equipment_Constraint”))

03>grandchild_of_first: (grandchild_input: date 8073996)

03<grandchild_of_first (S):

02<child_of_first (S): (child_output: class<Base_Class>

oid (445 “Deconflict_Env”))

02>child_of_first: (child_input: instance<Base_Class>

oid(337 “Detailed_Equipment_Constraint”))

02<child_of_first (S): (child_output: class<Base_Class>

oid (445 “Deconflict_Env”))

01<my_first_action (S): (one_output: oset[int]: list 3 100 200 300)

You can ask to trace many different actions, but only the first action you invoke will actually

enable tracing, and, when it returns, disable tracing. While tracing is on, if the program invokes a

different action which you have also asked to trace, or if it invokes recursively the action which

originally enabled tracing, that has no effect on the state of tracing.

Using The Action Debug Tracing Transaction and C++ Function

Action Debug Tracing adds a single transaction:

action action_debug_trace(input: string action_name = 0, input: int enable = 1)

Action Debug Tracing also provides a C++ function which you can call from the command line

of a debugger if you have compiled the program with debugging information and the debugger is
capable of invoking functions from the command line:

void action_debug_trace(const char *action_name, int enable)

Setting Action Debug Tracing Behavior

By setting the action_debug_trace input parameters set in the following ways, you can cause the

following behavior. If “enable” isn’t specified, it defaults to 1.

• action_name is set to an action name, “enable” is set to a nonzero value: Enable tracing when

the action is invoked.

• action_name is set to an action name, “enable” is set to zero: Don’t enable tracing when the

action is invoked. This doesn’t tell the action to disable tracing when invoked; this restores the

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 2 5

action to the default state, allowing you to invoke the action without starting the trace facility.

• action_name is set to a nil or zero-length value, “enable” is set to a nonzero value: Disable

action tracing immediately for the current action being traced, and turn it back on the next time

an action is invoked that has action debug tracing enabled. In other words, using "" as the

action_name causes the trace now in progress to stop prematurely, but doesn't clear the

"enable" flags which you have turned on with "action_debug_trace" in the past.

Note: If the server is busy executing an action, it won't stop and prompt on the console for

another action until it is finished. However, if you ran the server inside a debugger, you can

use the debugger to interrupt the server, and then execute the C++ function from the

debugger's user interface.

• action_name is nil or zero-length, “enable” is set to zero: disables tracing immediately. The

next action that is invoked will turn tracing back on, even if that action doesn’t have action

debug tracing enabled. In other words, a new trace is started the next time you invoke any
action, without actually turning on the "enable" flag associated with that action.

• action_name is set to a nonexistent action name: An error message is printed on the sever

window:

action_debug_trace: no such action “my_first_action”

Enabling and Disabling Action Debug Tracing

There are several ways to enter the command to enable and disable action debug tracing. To

enable, set the enable parameter to a non-zero value; to disable, set it to zero. Some examples of

entering the command are:

• Type the command at the command line prompt in the server console window. Typing the

following will cause tracing on the transaction transaction_create_inventory_part:

action_debug_trace(:action_name "transaction_create_inventory_part")

• Invoke the action_debug_trace action within a command file.

• Invoke the action_debug_trace action using an “execute” statement inside a .spl file.

• Call the C++ function action_debug_trace from a debugger command line.

When action_debug_trace begins a trace, a confirmation message appears on the server console
window, so that if you view a log file later on, it is clear that human interventions took place:

action_debug_trace: +my_first_action

action_debug_trace: -my_first_action

action_debug_trace: +

action_debug_trace: -

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 2 6 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Understanding Action Debug Tracing Output

This example started a server and client. Then it selected Help, Tech Support in the client to get

to the page where Action Interpreter was clicked to start the action interpreter.

Enter an action call: action_debug_trace(:action_name

"transaction_create_inventory_part")

action_debug_trace: +transaction_create_inventory_part

Enter an action call: :exit

This call to action_debug_trace will trace the transaction transaction_create_inventory_part. One

way to use that transaction, and therefore trace it, is to add an item.

In this example, click Browse, right-click on item, select add in the popup menu, in the dialog

box type "pedal" as the name, then click Apply. The following trace listing occurs.

01>transaction_create_inventory_part:

(site_name: string: "")

(part_name: string: "pedal")

(class_name: string: "")

(description: string: "")

(uom: string: "")

(planner_code: string: "")

(mps_type: int: 0)

(buyer_code: string: "")

(default_production_area_name: string: "")

(on_hand: float: 0)

(configurable: int: 0)

(aggregate_demand_flag: int: 0)

(quantity_precision: int: 0)

(cost: float: 0)

(unit_price: float: 0)

(cost_of_goods: float: 0)

(weight: float: 0)

(volume: float: 0)

(inventory_cost_per_day: float: 0)

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 2 7

(demand_time_fence: time: 0)

(consume_sales: int: 1)

(consume_production: int: 0)

(consume_transfers: int: 0)

02> create_inventory_part:

(part_name: string: "pedal")

(class_name: string: "Inventory_Part")

(description: string: "")

(uom: string: "Each")

(planner_code: string: "")

(buyer_code: string: "")

(mps_type: int: 0)

(configurable: int: 0)

(quantity_precision: int: 0)

(consume_sales: int: 1)

(consume_production: int: 0)

(consume_transfers: int: 0)

(aggregate_demand_flag: int: 0)

(demand_time_fence: time: 0)

(initial_amount: float: 0)

(cost: float: 0)

(weight: float: 0)

(volume: float: 0)

(unit_price: float: 0)

(cost_of_goods: float: 0)

(inventory_cost_per_day: float: 0)

(site: instance<Base_Class>: oid(1136))

(production_area: instance<Base_Class>: oid(5))

03> create_base_part:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 2 8 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

(part_name: string: "pedal")

(class_name: string: "Inventory_Part")

(site: instance<Base_Class>: oid(1136))

(initial_amount: float: 0)

(description: string: "")

(uom: string: "Each")

(planner_code: string: "")

04> create_resource:

(resource_name: string: "pedal")

(class_name: string: "Inventory_Part")

(site: instance<Base_Class>: oid(1136))

(initial_amount: float: 0)

05> create_object:

(object_name: string: "SM_pedal")

(class_name: string: "Inventory_Part")

05< create_object(S):

(new_object: instance<Base_Class>: oid(2509))

05> set_object_display_name:

(object: instance<Base_Class>: oid(2509))

06> default_set_resource_display_name:

(object: instance<Base_Class>: oid(2509))

06< default_set_resource_display_name(S):

05< set_object_display_name(S):

04< create_resource(S):

(new_resource: instance<Base_Class>: oid(2509))

03< create_base_part(S):

(new_part: instance<Base_Class>: oid(2509))

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 2 9

03> encode_part_consumption_flags:

(sales: int: 1)

(transfer: int: 0)

(production: int: 0)

03< encode_part_consumption_flags(S):

(consumption_code: int: 4)

02< create_inventory_part(S):

(new_part: instance<Base_Class>: oid(2509))

(output_part_production_area: instance<Base_Class>: oid(5))

(exit_msg: string: "")

Creating Debug Messages With The MSG Function

You can place the C++ MSG function in your code and use it to print debugging information.

Following is the cpp definition of the function:

cpp_function int MSG (int, string) "dmsg";

Afterward, you can use the function in your code:

MSG (level, message(s));

This function uses the same rules as the printf function, except that the messages appear only if a

global debugging level threshold is set to be greater than or equal to the level specified by the first
argument.

The PepperCode compiler automatically creates code that calls the MSG function so that a

message is printed whenever an action is executed; the messages print whenever the global debug

level is at least 50.

The Planning software has a Preferences menu item called Debug Level that lets you interactively

specify the level. You can also use the GET_MSG_LEVEL function—as described in “C/C++

Function Access”—to get the current level, and the transaction_set_debug_level transaction to

change the level to a new value and return the old value.

For more information about GET_MSG_LEVEL, refer to Accessing C/C++ Functions.

The system will accept any integer value as a debug level. However, only levels 0 through 50

have meaning. Following are the debug levels that have significant meaning:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 3 0 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Level Meaning

 0 Turns off debugging messages.

 1 Reports information about serious

PepperCode errors right before a crash.

Level 1 is the default debug level for the

PepperCode system.

 2 Reports failures in basic PepperCode

actions.

 25 Reports what is happening in the system

from a functional point of view.

Messages at this level should not be

verbose. Instead, they should be simple

messages that explain what the system is

doing.

 26 to 49 Reports “how” the “what” is happening.

Messages at this level are detailed

programmer messages.

 50 Reports the name of an action before the

action is executed.

When writing PepperCode code, you should provide debugging messages that you can control

with the debug level—especially if there are situations where a symbolic debugger isn’t available.
For example, the following MSG statement prints a message when the debug level is 25:

MSG(25, "\nMoving production task %s to %s\n",

production_task.name, DATE_TO_STRING(new_production_time));

Here are some more examples of good debugging messages:

// The software could break because of a missing routing step

//

MSG(1, "\nIn map_bor_entries...routing step %d not found in parent %s\n",

bor_entry.routing_step, routing_parent.name);

// The software could break because an illegal value was returned.

//

MSG(1, "Warning: timeval returned zero value for item %s on resource %s.\n",

part.name, resource.name);

// No production can be created when task classes are omitted

//

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 3 1

MSG(2, "\nIn create_routing_children...No task classes for build option %s.

build_option.name);

// Could not enforce a hard temporal constraint between two tasks.

//

MSG(2, "\nCould Not Enforce Temporal Constraint between %s and %s.\n",

task1.name, task2.name);

// Display the name of the production being created.

//

MSG(25, "\nCreating Production %s:", new_routing_parent.name);

// Display the name of the sales order line being deleted.

//

MSG(25, "\nDeleting Sales Order Line (%s %d)",

sales_order_line.sales_order.name, sales_order_line.line_number);

// Display why a task failed in the build query.

//

MSG(25, "\nBuild Query window exceeded for task %s.\n", routing_task.name);

// Display stuff that interests the programmer (for debugging only).

//

MSG(26, "\nIn calculate_duration_from_quantity: Calculated duration is %f\,

duration);

// Display stuff that interests the programmer (for debugging only).

//

MSG(30, "\n new_score = %f current_score = %f delta_score = %f\n",

new_score, current_score, delta_score);

Using Debugging Functions

The following functions can be helpful when you are debugging your code. You can execute

them with a symbolic debugger, such as dbx, or declare them with a cpp_function statement and

use them in your code.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 3 2 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

In general, the functions can be used with any symbolic debugger, but the exact command you

type to invoke them varies. For example, with dbx, you normally use print to invoke a function;

with the xdb debugger the command is p.

describe functions return the following line:

(class_name uid object_name)

An object name of Anonymous means the object isn’t a named object.

The describe functions display IS to refer to an instance slot and CS to refer to a class slot.

Following are some variable definitions for the functions:

Variable Description

rps_verbose 1 is verbose; zero means that slots that are

lists are not printed.

uid A unique integer identifier. Certain

functions return the uid so you can use it

with other functions.

The rest of this section is a list of the debugging functions you can use.

describe

Description: Prints the slot values of a PepperCode object, including the name and uid of the
object

Syntax: void describe

To run describe with dbx on Solaris, reference either the object name or address:

call describe((void*)0x1234,1 // 0x1234 is the object address

call describe(imp_arg0,1) // imp_arg0 is the object name

describe_all

Description: Calls the describe function on all PepperCode objects of a given class

Syntax: void describe_all (char *class_name, int rps_verbose)

Transaction:

action<transaction> transaction_describe_all (input: string class_name = "",

input: int verbose = 1)

Debugger Example:

(debugger) call describe_all("Vendor", 1)

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 3 3

(Vendor 144 Memory_Is_Us)

name IS: Memory_Is_Us

editor_class_name CS: Spl_Class_Form

class_string_id CS: none

init_action CS: default_init

delete_action CS: default_delete

display_action CS: default_display

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

class_interface_value IS: -1

temporary_instances IS: 0

(Vendor 145 ACME_Chassis_Company)

name IS: ACME_Chassis_Company

editor_class_name CS: Spl_Class_Form

class_string_id CS: none

init_action CS: default_init

delete_action CS: default_delete

display_action CS: default_display

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

class_interface_value IS: -1

temporary_instances IS: 0

(Vendor 146 Joes_Monitors)

name IS: Joes_Monitors

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 3 4 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

editor_class_name CS: Spl_Class_Form

class_string_id CS: none

init_action CS: default_init

delete_action CS: default_delete

display_action CS: default_display

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

class_interface_value IS: -1

temporary_instances IS: 0

(Vendor 147 We_Sell_Everything)

name IS: We_Sell_Everything

editor_class_name CS: Spl_Class_Form

class_string_id CS: none

init_action CS: default_init

delete_action CS: default_delete

display_action CS: default_display

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

class_interface_value IS: -1

temporary_instances IS: 0

(debugger)

4 instances of class Vendor were described.

describe_one

Description: Calls the describe function with one object of a given class

Syntax: void describe_one (char *class_name, int rps_verbose)

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 3 5

Transaction:

action<transaction> transaction_describe_one (input: string class_name = "",

input: int verbose = 1)

Debugger Example:

(debugger) call describe_one("Build_Option", 1)

(Build_Option 179 Computer_Routing)

name IS: Computer_Routing

editor_class_name CS: Spl_Class_Form

class_string_id CS: build_option

init_action CS: default_init

delete_action CS: delete_build_option

display_action CS: display_build_option

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

part IS: (DKU_Part 176 Computer)

purchase_option_action CS: purchase_option_false

build_option_action CS: build_option_true

explode_action CS: build_explode

cost IS: 0.000000000000000

cumm_cost IS: 0.000000000000000

backflush_step IS: 0

alternate_routings IS: ...null_list

task_classes IS: [ATO_Shipment]

class_containers IS: [(Class_Container 180 Anonymous)]

bom_entries IS: [(Bom_Entry 181 Anonymous)]

supply_entries IS: ...null_list

bor_entries IS: ...null_list

orderings IS: ...null_list

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 3 6 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

class_interface_value IS: -1

temporary_instances IS: 0

(debugger)

describe_by_name

Description: Looks up an object by name and calls the describe function

Syntax: void describe_by_name (char *object_name, int rps_verbose)

Transaction:

action<transaction> transaction_describe_by_name (input: string name = "",

input: int verbose = 1)

Debugger Example:

(debugger) call describe_by_name("Computer", 1)

(DKU_Part 176 Computer)

name IS: Computer

editor_class_name CS: DKU_Part_Editor

class_string_id CS: part

init_action CS: default_init

delete_action CS: delete_part

display_action CS: display_part

machine_dump_action CS: default_machine_dump

human_dump_action CS: part_dump

compare_dump_action CS: default_compare_dump

resource_constraints IS: ...null_list

resource_supplies IS: ...null_list

initial_amount IS: 0.000000000000000

relevant_status IS: (Relevant_Status 13

_Relevant_Status_RELEVANT_REPAIR)

initial_history IS: ...PRKMETH not implemented

resource_history IS: ...PRKMETH not implemented

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 3 7

resource_batch_action CS: resource_batch_false

duration_action CS: default_resource_duration

quantity_action CS: default_resource_quantity

consumable_action CS: consumable_true

production IS: ...null_list

sales_order_line_action CS: sales_order_line_false

planning_period_action CS: planning_period_false

part_action CS: part_true

routing_parent_container_action CS: routing_parent_container_false

description IS: The Customers SPARCstation

routing_options IS: [(Build_Option 179 Computer_Routing)]

phantom_part_action CS: phantom_part_false

dku_part_action CS: dku_part_true

planning_part_action CS: planning_part_false

inventory_part_action CS: inventory_part_false

configurable_part_action CS: configurable_part_from_slot

buyer_code IS: default string

configurable_flag IS: 1

planned_orders IS: ...null_list

planning_container IS: (Planning_Container 257 Anonymous)

all_planning_parents IS: ...null_list

to_planning_parents IS: ...null_list

consume_forecast_action CS: part_consume_forecast

class_interface_value IS: 2

temporary_instances IS: 0

(debugger)

describe_by_uid

Description: Looks up an object by uid and calls the describe function

Syntax: void describe_by_uid (int uid, int rps_verbose)

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 3 8 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Transaction:

action<transaction> transaction_describe_by_uid (input: int uid = -1, input: int

verbose = 1)

Debugger Example:

(debugger) call describe_by_uid(257, 1)

(Planning_Container 257 Anonymous)

editor_class_name CS: Spl_Class_Form

class_string_id CS: none

init_action CS: default_init

delete_action CS: delete_planning_container

display_action CS: default_display

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

part IS: (DKU_Part 176 Computer)

planning_periods IS: [(Planning_Period 258 Anonymous)

(Planning_Period 259 Anonymous)]

order_to_shipment_map IS: [1.000000000000000]

class_interface_value IS: -1

temporary_instances IS: 0

(debugger) call describe_by_uid(257, 0)

(Planning_Container 257 Anonymous)

editor_class_name CS: Spl_Class_Form

class_string_id CS: none

init_action CS: default_init

delete_action CS: delete_planning_container

display_action CS: default_display

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 3 9

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

part IS: (DKU_Part 176 Computer)

planning_periods IS: ...verbose needed to print this value

order_to_shipment_map IS: ...verbose needed to print this value

class_interface_value IS: -1

temporary_instances IS: 0

(debugger)

how_many

Description: Counts the number of instances and classes of a PepperCode class

Syntax: void how_many (char *class_name)

Transaction:

action<transaction> transaction_how_many (input: string class_name = "", input:

int verbose = 0)

Debugger Example:

(debugger) call how_many("Vendor")

There are 4 instances of class Vendor.

There are 1 classes of class Vendor. (Vendor included)

(debugger)

list_objects

Description: Displays the class, uid, and name for each instance of a PepperCode class

Syntax: void list_objects (char *class_name)

Transaction:

action<transaction> transaction_list_objects (input: string class_name = "")

Debugger Example:

(debugger) call list_objects("Vendor")

4 instances of class Vendor...

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 4 0 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

(Vendor 144 Memory_Is_Us)

(Vendor 145 ACME_Chassis_Company)

(Vendor 146 Joes_Monitors)

(Vendor 147 We_Sell_Everything)

(debugger)

display_rhistory

Description: Displays a resource availability history

Syntax: void display_rhistory (char *resource_name, int verbose)

Transaction:

action<transaction> transaction_display_rhistory (input: string resource = "",

input: int verbose = 1)

display_rinitial_history

Description: Displays a resource initial history

Syntax: void display_rinitial_history (char *resource_name, int verbose)

Transaction:

action<transaction> transaction_display_rinitial_history (input: string resource

= "", input: int verbose = 1)

display_ahistory

Description: Displays an attribute history

Syntax: void display_ahistory (char *attribute_name, int verbose)

Transaction:

action<transaction> transaction_display_ahistory (input: string attribute = "",

input: int verbose = 1)

display_chistory

Description: Displays a calendar history

Syntax: void display_chistory (char *calendar_name)

Transaction:

action<transaction> transaction_display_chistory (input: string calendar = "")

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 4 1

Other Debugging Functions

display_violated_constraints

Input: string class_name

display_resource_constraints

Input: string resource_name

transaction_display_resource_supplies

Input: string resource_name

transaction_printf

Input: string pstring

transaction_printf_with_current_time

Input: string pstring

transaction_set_intersect_debug_level

Input: int debug_level = 0

Using Debugging Actions

This section describes PepperCode actions that are used for debugging Planning products

implemented in PepperCode.

PepperCode debugging actions are needed for a variety of reasons. First, it is useful to view the

values of PepperCode instance slots without using a debugger: a debugger may take several

minutes to load, while a debugging action may take a few seconds or less to run. Second, a

debugger may not be available. This occurs frequently at a customer unit, sometimes called

“site”. Third, debugging information may not exist in the current environment. This occurs when

.o files were not compiled with the -g option, as is the case with our internal and customer

releases. Fourth, when information that is necessary for debugging must be calculated. This is

where debugging actions are very useful because they can be written to display values of specific

data structures, where the values already exist or are calculated in the debugging action.

The actions described in this document are for debugging only!!! Don’t use these actions in the

PepperCode application or in any customization. These actions don’t always conform to current

coding standards, so don’t use them as coding examples.

Understanding Key Terms

• Describe: A PepperCode utility that displays the value of every slot of a PepperCode instance.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 4 2 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

• History: A C++ data structure that maintains values through time. The history is the backing

data structure behind every part and equipment histogram. For items (or parts) and resources

(or equipment), a history represents availability in float quantities.

• Side Effect: A C++ object that enforces the effect of a PepperCode instance—like a resource

constraint or resource supply—on a History. The side effect automatically “fires” when a

relevant value on the PepperCode instance is changed. For example, changing the quantity of a

resource constraint will cause the side effect for that resource constraint to “fire”, thereby

changing the associated resource history, which could be for an resource or item.

• UID: The unique identifier of a PepperCode instance. The uid of a PepperCode instance is the

value of the “uid” slot.

Setting The Debugging Message Level

The following is some general PepperCode debugging advice.

For more information and specific debugging advice, see Deciding Which Debugging

Action To Use.

To understand what the system is doing, set the message level to 25. When the message level is

25, the system displays "what" it is doing and why any failures occur. These messages are

particularly useful when the system isn’t behaving as expected.

To see what actions are being called, set the message level to 50. At message level 50, the system
displays the name of the action that is currently executing.

WARNING: The system runs significantly slower when message level 50 is used.

Running The Debugging Actions

The debugging actions described in this document are not connected to the GUI. They must be
run from a command file or from the action interpreter.

For more information, see Understanding Debug Command Files or run the action

interpreter.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 4 3

Understanding The Debugging Action Categories

There are several different categories of PepperCode debugging actions. Each of these categories

is described below along with the debugging actions that fit the category. Use these categories to

find the debugging action that you need. A short description of each debugging action and its

input parameters is provided in a later section of this document.

Displaying PepperCode Instance Information

The following actions display information about PepperCode instances. Most of these actions

display the values of the slots of instances.

• transaction_describe_all

• transaction_describe_one

• transaction_describe_by_name

• transaction_describe_by_uid

• transaction_how_many

• transaction_list_objects

Displaying History Information

The following actions display information about C++ history objects. These actions are very

useful for debugging the values of resource (equipment) and item (part) histograms, as well as

debugging side effects.

• transaction_display_rhistory

• transaction_display_rinitial_history

• transaction_display_ahistory

• transaction_display_chistory

Displaying Task Reschedule Information

Task rescheduling involves the following kinds of operations:

• User reschedules from a task form or gantt chart

• Reschedules performed by the optimizer

• Compress / Expand from by either the user or optimizer

• Build Query reschedules

• Generate Initial Schedule reschedules

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 4 4 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

There is currently only one debugging action that is used to display task reschedule information,

other than setting the message level. It is called transaction_set_intersect_debug_level. This

action is very useful when debugging the various kinds of rescheduling listed above. For

example, the debugging information produced by this action can tell you which resource (part or
equipment resource) causes a task compress to fail.

Debugging Side Effects

The following actions are useful for debugging side effects. These actions allow the side effects

of resource constraints and resource supplies to be asserted and retracted manually. It is

extremely important that you NOT use this code as an example for performing side effect
processing of any kind. These actions should be used for debugging only.

• retract_resource_constraint

• assert_resource_constraint

• retract_resource_supply

• assert_resource_supply

• retract_task_side_effects

• assert_task_side_effects

• retract_resource_side_effects

• assert_resource_side_effects

Displaying Time Period Information

The following actions display information about starting and ending time periods. They are

currently used only for debugging C++ date/time functions for finding the start and end of a time

period (day, week, month).

• transaction_start_of_day

• transaction_end_of_day

• transaction_start_of_week

• transaction_end_of_week

• transaction_start_of_month

• transaction_end_of_month

Miscellaneous Debugging Actions

The following debugging actions don’t fit into any existing category.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 4 5

• transaction_printf

• transaction_printf_with_current_time

• display_violated_constraints

• display_resource_constraints

• display_resource_supplies

• repair_me

• object_is_alive

Deciding Which Debugging Action To Use

This section lists some common debugging situations and which debugging action(s) can be used

to debug the problem.

Deciding Which Debugging Action You Want To Use

Debugging Situation Debugging Action To Use

Need to see the slot values of a

PepperCode instance.

transaction_describe_by_name

transaction_describe_by_uid

Need to see how many instances of a

PepperCode class currently exist.

transaction_how_many

Need to see a one-line description of

every instance of a PepperCode class.

transaction_list_objects

Need to see the availability of a part or

equipment resource.

transaction_display_rhistory

The values on a part or equipment

histogram appear to be incorrect.

transaction_display_rhistory

All equipment constraints are violated and

the optimizer cannot repair them.

transaction_display_rhistory

Need to see if a PepperCode instance has

been deleted.

object_is_alive

Some PepperCode instances which could

have been deleted are displayed in the

GUI.

object_is_alive

The equipment histogram appears to have

been initialized incorrectly.

transaction_display_rhistory

transaction_display_rinitial_history

A calendar may have been initialized

incorrectly.

transaction_display_chistory

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 4 6 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Testing a resource constraint side effect. retract_resource_constraint

assert_resource_constraint

Need to see how long it takes to load a

command file.

transaction_printf_with_current_time

Need to see a listing of the violated

constraints without using the scorecard.

display_violated_constraints

Need to see the resource constraints on a

resource.

display_resource_constraints

Need to see the resource supplies on a

resource.

display_resource_supplies

Need to test a constraint repair without

running the optimizer.

A reschedule operation is failing (such as

a user reschedule, compress, expand, or

build query).

transaction_set_intersect_debug_level

Understanding Debugging Action Descriptions

The following is a brief description of each PepperCode debugging action, along with its input
and output parameters.

Note: Site is another name for unit; this name occurs in several of the following

descriptions.

transaction_describe_all

Calls the DESCRIBE function on every instance of a PepperCode class.

action<transaction> transaction_describe_all

(input: string class_name = "",

input: int verbose = 1)

transaction_describe_one

Calls the DESCRIBE function on one randomly selected instance of a PepperCode class.

action<transaction> transaction_describe_one

(input: string class_name = "",

input: int verbose = 1)

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 4 7

transaction_describe_by_name

Calls the DESCRIBE function on a named PepperCode instance.

Accepts a site name as input for all objects that have a site. If no “site_name” is entered, only the

“name” parameter is used to look up the PepperCode instance for describe.

action<transaction> transaction_describe_by_name

(input: string name = "",

input: string site_name = Does_Not_Apply”,

input: int verbose = 1)

transaction_describe_by_uid

Calls the DESCRIBE function on a PepperCode instance that is referenced by UID.

action<transaction> transaction_describe_by_uid

(input: int uid = -1,

input: int verbose = 1)

transaction_how_many

Displays how many objects of a PepperCode class exist in memory. This action doesn’t count

objects that have been deleted in context. When the verbose flag is 1, the number of PepperCode

instances for every subclass of the input class is displayed.

action<transaction> transaction_how_many

(input: string class_name = "",

input: int verbose = 0)

transaction_list_objects

Displays a one-line summary for every instance of a PepperCode class.

action<transaction> transaction_list_objects

(input: string class_name = "")

transaction_display_rhistory

Displays the values of every history element for a given resource history. The resource history

can be a part history, equipment resource history, or standard resource history. When the verbose

flag is 1, the resource constraints of each history element are also displayed.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 4 8 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Accepts a site name. If no “site_name” is entered, on the “name” parameter is used to look up the

resource. If no resource is found, the default site is used to look up the resource.

action<transaction> transaction_display_rhistory

(input: string resource ="",

input: string site_name = "",

input: int verbose = 1)

transaction_display_rinitial_history

Displays the values of every history element for a given initial resource history. The resource

history can be an equipment resource history or standard resource history. This transaction

doesn’t really apply to part histories.

Accepts a site name. If no “site_name” is entered, on the “name” parameter is used to look up the

resource. If no resource is found, the default site is used to look up the resource.

action<transaction> transaction_display_rinitial_history

(input: string resource = "",

input: string site_name = "",

input: int verbose = 1)

transaction_display_ahistory

Displays the values of every history element for a given attribute history. The values displayed

are state information. When the verbose flag is 1, the changers and dependents of each history

element are also displayed.

action<transaction> transaction_display_ahistory

(input: string attribute = "",

input: int verbose = 1)

transaction_display_chistory

Displays the values of every history element for a given calendar history. The values represent
the LEGAL and ILLEGAL periods of the calendar.

action<transaction> transaction_display_chistory

(input: string calendar = "")

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 4 9

transaction_set_intersect_debug_level

Displays the internal values of the intersector during a task reschedule, or during an optimize

"next time to try". The displayed intersector values often show why a task cannot be compressed

to a specific point in time, or why a task reschedule if failing. The debug level values are as

follows:

0 = debugging off

1 = show output only

2 = please show me more than just output

3 = let me have it, show me everything

action<transaction> transaction_set_intersect_debug_level

(input: int debug_level = 0)

transaction_printf

Displays a given string to the server shell window. This transaction is useful for placing

messages inside of a command file.

action<transaction> transaction_printf

(input: string pstring,

transaction_printf_with_current_time

Displays a given string to the server shell window, along with the current system clock time.

This transaction is useful for placing messages inside of a command file. Specifically, this

transaction is great for showing how long command files take to load.

action<transaction> transaction_printf_with_current_time

(input: string pstring,

transaction_start_of_day

Displays the result of calling the PepperCode function START_OF_DAY on a given date.

action<transaction> transaction_start_of_day

(input: string date_string,

output: date start_of_day)

transaction_end_of_day

Displays the result of calling the PepperCode function END_OF_DAY on a given date.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 5 0 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action<transaction> transaction_end_of_day

(input: string date_string,

output: date end_of_day)

transaction_start_of_week

Displays the result of calling the PepperCode function START_OF_WEEK on a given date.

action<transaction> transaction_start_of_week

(input: string date_string,

output: date start_of_week)

transaction_end_of_week

Displays the result of calling the PepperCode function END_OF_WEEK on a given date.

action<transaction> transaction_end_of_week

(input: string date_string,

output: date end_of_week)

transaction_start_of_month

Displays the result of calling the PepperCode function START_OF_MONTH on a given date.

action<transaction> transaction_start_of_month

(input: string date_string,

output: date start_of_month)

transaction_end_of_month

Displays the result of calling the PepperCode function END_OF_MONTH on a given date.

action<transaction> transaction_end_of_month

(input: string date_string,

output: date end_of_month)

display_violated_constraints

Displays a short description of all violated constraints of a given PepperCode class. It is assumed

that the PepperCode class is a descendant (or equal to) the class Repairable_Constraint.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 5 1

Now takes a score card as input instead of a constraint class name.

action<transaction> display_violated_constraints

(input: string score_card_name = "mfg_score_card",

display_resource_constraints

Displays the resource constraints of a resource.

Has a parameter for turning on and off the displaying of constraints. This parameter is for

internal use only.

action<transaction> display_resource_constraints

(input: string resource_name,

input: int display_constraints = 1,

display_resource_supplies

Displays the resource supplies of a resource.

Has a parameter for turning on and off the displaying of supplies. This parameter is for internal

use only.

action<transaction> display_resource_supplies

(input: string resource_name,

input: int display_supplies = 1,

retract_resource_constraint

Retracts the side effect of a resource constraint by calling the PepperCode function RETRACT.

action retract_resource_constraint

(input: instance<Resource_Constraint> resource_constraint,

assert_resource_constraint

Asserts the side effect of a resource constraint by calling the PepperCode function ASSERT.

action assert_resource_constraint

(input: instance<Resource_Constraint> resource_constraint,

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 5 2 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

retract_resource_supply

Retracts the side effect of a resource supply by calling the PepperCode function RETRACT.

action retract_resource_supply

(input: instance<Resource_Supply> resource_supply,

assert_resource_supply

Asserts the side effect of a resource supply by calling the PepperCode function ASSERT.

action assert_resource_supply

(input: instance<Resource_Supply> resource_supply,

retract_task_side_effects

Retracts the side effects of the resource constraints and resource supplies on a task. The uid or

name of the task can be used to identify the task. If the uid is passed as the value of parameter

“duration_task”, then the “task_name” parameter isn’t used to look up the task. Non-zero values

for the parameters “constraints” and “supplies” specify if constraints and supplies will be
retracted.

action retract_task_side_effects

(input: instance<Duration_Task> duration_task = 0,

input: string task_name = "",

input: int constraints = 1,

input: int supplies = 1,

assert_task_side_effects

Asserts the side effects of the resource constraints and resource supplies on a task. The uid or

name of the task can be used to identify the task. If the uid is passed as the value of parameter

“duration_task”, then the “task_name” parameter isn’t used to look up the task. Non-zero values

for the parameters “constraints” and “supplies” specify if constraints and supplies will be

asserted. This action assumes that retract_task_side_effects has already been called on

duration_task—the side effects are already retracted.

action assert_task_side_effects

(input: instance<Duration_Task> duration_task = 0,

input: string task_name = "",

input: int constraints = 1,

input: int supplies = 1,

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 5 3

retract_resource_side_effects

Retracts the side effects of the resource constraints and resource supplies on a resource. The uid

or name of the resource can be used to identify the resource. If the uid is passed as the value of

parameter “resource”, then the “resource_name” parameter isn’t used to look up the resource.

Non-zero values for the parameters “constraints” and “supplies” specify if constraints and

supplies will be retracted.

action retract_resource_side_effects

(input: instance<Resource> resource = 0,

input: string resource_name = "",

input: int constraints = 1,

input: int supplies = 1,

assert_resource_side_effects

Asserts the side effects of the resource constraints and resource supplies on a resource. The uid

or name of the resource can be used to identify the resource. If the uid is passed as the value of

parameter “resource”, then the “resource_name” parameter isn’t used to look up the resource.

Non-zero values for the parameters “constraints” and “supplies” specify if constraints and

supplies will be asserted. This action assumes that retract_resource_side_effects has already been
called on resource—the side effects are already retracted.

action assert_resource_side_effects

(input: instance<Resource> resource = 0,

input: string resource_name = "",

input: int constraints = 1,

input: int supplies = 1,

repair_me

Calls the repair method of a repairable constraint. This action is useful for testing constraint

repairs without using optimize.

action repair_me

(input: instance<Repairable_Constraint> repairable_constraint,

input: string deconflict_env_name = "deconflict_env",

object_is_alive

Calls the PepperCode function OBJECT_IS_ALIVE on a given PepperCode object. The

OBJECT_IS_ALIVE function makes sure that an object has not been deleted in context. This

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 5 4 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

action is useful if you think a specific PepperCode object has been deleted, but yet continues to be

used in the system.

action object_is_alive

(input: instance<Spl_Class> object,

resource_info

Displays all possible values about a resource that most programmers would ever want to know. If

you plan to use this action, the input parameters should be self-explanatory. Otherwise, you

probably should not use this action.

action<transaction> resource_info

(input: string resource_name = "",

input: int describe = 0,

input: int display_history = 0,

input: int verbose = 0,

input: int retract_constraints_before_displaying_history = 0,

input: int retract_supplies_before_displaying_history = 0,

input: int display_constraints = 0,

input: int display_supplies = 0,

create_some_objects

Creates a given number of PepperCode objects of a given PepperCode class. This action is useful

for testing any situation where PepperCode objects must be created and then deleted—context

problems, command file loads, and efficiency questions. This action can be used with action

delete_some_objects.

action create_some_objects

(input: int number_of_objects = 100,

input: string class_name = "Named_Object",

input: string object_name = "bogus_object",

delete_some_objects

Deletes a given number of PepperCode objects of a given PepperCode class. This action is useful

for testing any situation where PepperCode objects must be created and then deleted—context

problems, command file loads, and efficiency questions. This action can be used with action

create_some_objects.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 5 5

action delete_some_objects

(input: int number_of_objects = 100,

input: string class_name = "Named_Object",

Understanding Debug Command Files

The following command file was run on the standard bike dataset after optimize had reduced all

constraint violations. The output section follows the command file section.

transaction_printf_with_current_time(:pstring "Starting Debugging Actions

Example...")

transaction_list_objects(:class_name "Score_Card_Element")

transaction_describe_one(:class_name "Score_Card_Element")

transaction_describe_by_name(:name "main_environment")

transaction_describe_by_uid(:uid 1000)

transaction_how_many(:class_name "Base_Task" :verbose 0)

transaction_how_many(:class_name "Base_Task" :verbose 1)

object_is_alive(:object 1000)

transaction_display_rhistory(:resource "SM_Aluminum" :verbose 0)

transaction_display_chistory(:calendar "calendar_all_time")

transaction_printf_with_current_time(:pstring "...Finished Debugging Actions

Example")

Following is the output of command file load.

Loading file /home/daun/data/bike/debugging-example.command

(09/11/96 10:24:17)—> Starting Debugging Actions Example...

12 instances of class Score_Card_Element...

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 5 6 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

(Score_Card_Element 1103 request_milestone_constraint_element)

(Score_Card_Element 1104 promise_milestone_constraint_element)

(Score_Card_Element 1105 fg_constraint_element)

(Score_Card_Element 1106 standard_rm_constraint_element)

(Score_Card_Element 1107 detailed_equipment_constraint_element)

(Score_Card_Element 1108 aggregate_equipment_constraint_element)

(Score_Card_Element 1109 inventory_target_constraint_element)

(Score_Card_Element 1110 capacity_by_period_element)

(Score_Card_Element 1111 change_over_constraint_element)

(Score_Card_Element 1112 safety_stock_constraint_element)

(Score_Card_Element 1113 excess_stock_constraint_element)

(Score_Card_Element 1114 reduce_routing_wip_element)

(Score_Card_Element 1103 request_milestone_constraint_element)

score_card IS: (Score_Card 1102 mfg_score_card)

constraint_class IS: Request_Milestone_Constraint

description IS: Requested Deliveries

dump_header IS: Request Date Customer

Shipment Start Shipment End Shipment Site Sales

Order

violated_constraints IS: ...null_list

number_of_violations IS: 0

penalty IS: 0.000000000000000

display_name IS: request_milestone_constraint_element

human_dump_action CS: score_card_element_dump

set_display_name_action CS: default_set_display_name

editor_class_name CS: Spl_Class_Form

init_action CS: default_init

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 5 7

delete_action CS: default_delete

display_action CS: default_display

machine_dump_action CS: default_machine_dump

compare_dump_action CS: default_compare_dump

class_interface_value -1

temporary_instances 0

(Environment 725 main_environment)

min_system_time IS: 01/01/95 00:00:00

max_system_time IS: 01/01/96 00:00:00

start_of_time IS: 01/01/95 00:00:00

end_of_time IS: 01/01/96 00:00:00

early_fence IS: 03/01/95 00:00:00

late_fence IS: 06/01/95 00:00:00

current_time IS: 03/20/95 00:00:00

leveling_fence IS: 01/01/95 00:00:00

old_early_fence IS: 03/01/95 00:00:00

old_late_fence IS: 06/01/95 00:00:00

default_site IS: (Plant_Site 723 SM)

task_queue IS: ...null_list

msg_level IS: 1

debug_slot IS: 0

reschedule_env IS: (Reschedule_Env 726 reschedule_environment)

mfg_env IS: (Mfg_Env 729 main_mfg_environment)

global_constraints IS: ...null_list

resource_gantt_st IS: 03/01/95 00:00:00

resource_gantt_et IS: 06/01/95 00:00:00

max_tasks_per_resource_gantt IS: 500

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 5 8 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

display_name IS: main_environment

set_display_name_action CS: default_set_display_name

editor_class_name CS: Spl_Class_Form

init_action CS: default_init

delete_action CS: default_delete

display_action CS: default_display

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

class_interface_value -1

temporary_instances 0

(Generate_Method 1000 __Anonym___1000)

generate_row_action IS:

generate_site_aggregate_resource_required_units

editor_class_name CS: Spl_Class_Form

init_action CS: default_init

delete_action CS: default_delete

display_action CS: default_display

machine_dump_action CS: default_machine_dump

human_dump_action CS: default_human_dump

compare_dump_action CS: default_compare_dump

class_interface_value -1

temporary_instances 0

There are 391 instances of class Base_Task.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 5 9

There are 40 classes of class Base_Task. (Base_Task included)

Base_Task

Base_Task 391

Duration_Task 391

Non_Split_Child_Task 391

Routine_Task 391

Routine_Task 391

Unsplittable_Task 391

Unsplittable_Parent_Task 98

Routing_Parent 87

Unsplittable_Leaf_Task 293

Routing_Task 137

Transfer_Task 0

Forecast_Task 0

Transport_Task 11

Shipment_Task 11

Routing_Parent_Container 11

Production_Task 126

Shipment_Parent 11

Shipment_Line 11

Shipment_Transport 0

Forecast_Shipment_Parent 0

Negative_Supply_Task 0

Other_Independent_Demand_Task 0

Transfer_Parent 0

Production_Parent 76

Splittable_Task 0

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 6 0 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Downtime_Task 0

Scheduled_Downtime_Task 0

Co_Downtime_Task 0

Purchase_Order_Line_Delivery 5

Planned_Order 140

Split_Child_Task 0

Milestone_Task 0

Start_Milestone 0

End_Milestone 0

Achiever_Task 0

Assemble_Bicycle 26

Paint_Frame 46

Paint_Tandem_Bike_Frame 4

Assemble_Tandem_Bike 4

Weld_Frame 46

Object 1000 is ALIVE.

SM_Aluminum History:

(01/01/95 00:00:00 . 03/23/95 00:00:00) 0.000000000000000

(03/23/95 00:00:00 . 03/24/95 20:59:58) 14.000000000000000

(03/24/95 20:59:58 . 03/25/95 00:59:58) 10.000000000000000

(03/25/95 00:59:58 . 03/25/95 04:59:58) 6.000000000000000

(03/25/95 04:59:58 . 04/06/95 10:59:58) 2.000000000000000

(04/06/95 10:59:58 . 01/01/96 00:00:00) 0.000000000000000

calendar_all_time History:

(01/01/95 00:00:00 . 01/01/96 00:00:00) LEGAL

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 6 1

(09/11/96 10:24:18)—> ...Finished Debugging Actions Example

Using Sanity Checks

This section describes the software that verifies the consistency of Planning data models. This

software is often referred to as “sanity checks”.

While the existing Planning transactions perform error checking on input data, they cannot check

the consistency of the data model. For example, the transaction for creating an inventory item (or

part) can verify if the data needed to create a part is correct. However, this same transaction

cannot perform error checking on whether a build option exists for a buildable inventory item. In

this case, the Planning system assumes that a build option will be created later with a different

transaction. If the build option isn’t created, then the buildable inventory item might not be

replenished by the optimizer: for example, there might be unexpected results because of an

inconsistent data model).

It is because of these types of cases that separate error checks are needed after the data model is
loaded into memory.

Understanding What Sanity Checks Do and Don’t Do

The sanity checks perform error checking on specific in-memory data model relationships. The

output of sanity checks is a listing of error conditions. This output can be directed to a file or to

the server shell window (the default).

The sanity checks are NOT used to perform error checking that should occur in transactions. If a

transaction can check for a specific error condition, then that error condition should not be

checked by the sanity code. The one exception to this rule is error checking that is very

expensive to perform (because it is run once for every transaction called).

Using Sanity Checks

The sanity checks are performed by calling one of the following transactions.

• transaction_mfg_sanity_check : Check manufacturing data consistency as well as

project-management (scheduler) data consistency.

• transaction_pm_sanity_check : Check only project-management (scheduler) data

consistency

Both of these transactions have the same two input parameters, which are described here:

• verbose : The legal values for this parameter are 0 and 1. When 0, only the number of

problems will be displayed. When 1, the objects that are involved in the problems found will

be displayed.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 6 2 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

• filename : This is the path to an output file. If the value of this parameter is “”, then the

output of the sanity check will be displayed in your server console window. If the value is a

legal filename, then the output of the sanity check will be written to that file.

Currently, there is no GUI for running either of the sanity transactions.

For more information including examples, refer to Understanding Sanity Check Output.

Understanding Each Sanity Check

The following is a description of the error checking performed by each sanity check. The first 5

sanity checks are implemented in the scheduler module by transaction_pm_sanity_check. The

remaining sanity checks are implemented in the manufacturing module by

transaction_mfg_sanity_check.

transaction_mfg_sanity_check calls transaction_pm_sanity_check. Client Services project

managers can use this calling structure as an example for adding customer specific sanity

checks to a customer module.

A Parent Task Must Have Subtasks

This check ensures that every parent task has at least one subtask, or child task. This is a

requirement of the base scheduling system because the start and end times of a parent task are

derived from its subtasks, or children.

The following is the output of this check.

There are 0 parent tasks without subtasks.

Work Duration Check For Unsplittable Leaf Tasks

This check ensures that every unsplittable leaf task has a work duration that is greater than 0 and

not greater than the “longest” legal calendar interval (of its calendar). This is a requirement of the

base scheduling system.

This check will be affected by the 2.5 feature “Task Wrapping Around Calendars”.

The following is the output of this check:

There are 0 zero duration tasks (of class Unsplittable_Leaf_Task).

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 6 3

There are 0 tasks (of class Unsplittable_Leaf_Task) that are too long for

their calendars.

A Calendar Must Have Computed Legal Time

This check ensures that every calendar has at least one “legal” time interval. This also includes

making sure that the calendar has been computed by the calendar mechanism. This is a

requirement of the base scheduling system because without at least one legal calendar interval a

calendar cannot be used to reschedule tasks or initialize reusable resources.

The following is the output of this check.

There are 0 calendars that have no LEGAL_TIME.

There are 0 calendars that are not COMPUTED.

A Resource Constraint Must Have Quantity >= 0.0

This check ensures that every resource constraint has a quantity that is greater than or equal to
0.0. This is a requirement of the base scheduling system.

The following is the output of this check.

There are 0 resource constraints whose quantity is less than or equal to 0.0

A Resource Supply Must Have Quantity >= 0.0

This check ensures that every resource supply has a quantity that is greater than or equal to 0.0.
This is a requirement of the base scheduling system.

Note: Negative supply tasks will be found in this check. Customers using negative supply

tasks (which are non-standard and not generally supported in the product) can ignore this

sanity check.

The following is the output of this check.

There are 0 resource supplies whose quantity is less than or equal to 0.0

Start And End Time Checks Of Effective Entries

This check ensures that the following will be true about every effective entry (bom entry, bor

entry, supply entry, planning bom entry, and transfer option):

• The start time of the effective entry will be less than the end time of the effective entry. This is

important because the start and end times of effective entries specify an interval of time that is

used by the scheduling system (which assumes that it is using legal intervals).

• The start time of the effective entry will be greater than or equal to start of time. This check is

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 6 4 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

used mainly to find dates that are “out of bounds” and can be ignored. Nothing in the system

will break because of these “out of bounds” cases.

• The end time of the effective entry will be less than or equal to end of time. The same rule

applies here as well concerning “out of bounds” cases.

The following is the output of this check.

There are 0 effective entries whose start times are not less than their end

times.

There are 0 effective entries whose start times are earlier than Start Of

Time.

There are 0 effective entries whose end times are later than End Of Time.

A Routing Entry Must Have Quantity >= 0.0

This check ensures that every routing entry (bom entry, bor entry, and supply entry) has a

quantity that is greater than or equal to 0.0. This will prevent constraints and supply objects from

being created with a quantity of 0.0.

Note: This check should be eliminated as soon as error checking is added to the create and

modify transactions for bor entries, bom entries, and supply entries.

The following is the output of this check.

There are 0 routing entries whose quantities are not greater than 0.0.

A Routing Entry Must Match A Routing Step

This check ensures that every routing entry (bom entry, bor entry, and supply entry) matches a

step on the routing; the routing_step slot of the routing entry must match the index of some task

entry that is stored on the build option.

The following is the output of this check.

There are 0 routing entries that do not match a routing step.

A Bor Entry Must Have A Valid Equipment Class

This check ensures that every equipment class on a bor entry will have at least one corresponding

equipment resource. Without a corresponding equipment resource, the Bor_Entry is useless to

the manufacturing system.

The following is the output of this check.

There are 0 bor entries whose equipment class has no equipment instances.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 6 5

A Build Option Must Have At Least One Routing Step

This check ensures that every build option will have at least one routing step. The build option

cannot be exploded without a routing step.

The following is the output of this check.

There are 0 build options that have no routing tasks.

A Build Option Must Supply An Item (Part) For All Time

This check ensures that the supply entries of a build option are effective such that the item of the

build option can be supplied at any period of time between the start and end of time. This also
means that at least one effective supply entry must exist on the build option.

The following is the output of this check.

There are 0 build options whose supply entries do not cover the entire

schedule.

A Build Option Should Have Only One Primary Order Bor

This check ensures that every build option should have only one primary order bor.

The following is the output of this check.

There are 0 build options that have multiple Primary Order BORS.

A Build Option Should Have Only One Primary Operation Bor Per Routing Step

This check ensures that every build option should have only one primary operation bor per

routing step.

The following is the output of this check.

There are 0 build options that have multiple Primary Operation BORS.

An Inventory Item Must Have A Way To Be Replenished

This check ensures that every inventory item (or inventory part) has at least one way to be

replenished; the item has at least one purchase option, build option, or transfer option.

The following is the output of this check.

There are 0 inventory items that may not be replenishable (no Build Option,

Purchase Option, or Transfer Option exists).

A Sales Order Must Have Sales Order Lines

This check ensures that every sales order has at least one sales order line.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 6 6 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

The following is the output of this check.

There are 0 sales orders that do not have sales order lines.

A Purchase Order Must Have Purchase Order Lines

This check ensures that every purchase order has at least one purchase order line.

The following is the output of this check.

There are 0 purchase orders that do not have purchase order lines.

An Equipment Resource Must Have Enough Capacity To Repair Any One Of Its
Equipment Constraints

This check ensures that every equipment resource has enough capacity to repair any individual

equipment constraint that requests it; the maximum availability of the equipment isn’t less than

the maximum equipment constraint quantity. This check is very helpful when the capacity of an

equipment resource did not get initialized properly.

The following is the output of this check.

There are 0 equipment resources without enough capacity to satisfy its

constraints.

Understanding Potential Sanity Checks

The following are some ideas for sanity checks that have not been implemented.

Every Product Must Map To An Inventory Item

This check would make sure that every product (or DKU part) mapped to an inventory item (or
inventory part).

Technical notes: (to help with future implementation).

• Every product must have an effective transfer option.

• Each of these transfer options must have a legitimate part mapping on the from-unit (from-site)

of the transfer option, or an item with the same name exists at the from-unit.

• For the legitimate mapped item, there must be a transfer prep option.

Sourcing Logic Checks

This check would ensure the following:

• For each ratio source template, all descriptor ratios must sum to 1.0.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 6 7

• For each descriptor on a template, there must be a routing option that matches (by attribute);

the routing option cannot be a transfer prep. Also, the routing option must be legitimate for the

part.

Understanding Sanity Check Output

The following are some examples of the output of transaction_mfg_sanity_check. The section

headings represent the syntax of the transaction as it would appear in a command file.

transaction_mfg_sanity_check (:verbose 0 :filename "")

There are 0 parent tasks without subtasks.

There are 0 zero duration tasks (of class Unsplittable_Leaf_Task).

There are 0 tasks (of class Unsplittable_Leaf_Task) that are too long for

their calendars.

There are 0 calendars that have no LEGAL_TIME.

There are 0 calendars that are not COMPUTED.

There are 0 resource constraints whose quantity is less than or equal to 0.0

There are 0 resource supplies whose quantity is less than or equal to 0.0

There are 0 effective entries whose start times are not less than their end

times.

There are 0 effective entries whose start times are earlier than Start Of

Time.

There are 0 effective entries whose end times are later than End Of Time.

There are 0 routing entries whose quantities are not greater than 0.0.

There are 0 routing entries that do not match a routing step.

There are 0 bor entries whose equipment class has no equipment instances.

There are 0 build options that have no routing tasks.

There are 0 build options whose supply entries do not cover the entire

schedule.

There are 0 build options that have multiple Primary Order BORS.

There are 0 build options that have multiple Primary Operation BORS.

There are 0 inventory parts that may not be replenishable (no Build Option,

Purchase Option, or Transfer Option exists).

There are 0 sales orders that do not have sales order lines.

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 6 8 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

There are 0 purchase orders that do not have purchase order lines.

There are 0 equipment resources without enough capacity to satisfy its

constraints.

transaction_mfg_sanity_check(:verbose 0 :filename "")

There are 1 parent tasks without subtasks.

There are 1 zero duration tasks (of class Unsplittable_Leaf_Task).

There are 1 tasks (of class Unsplittable_Leaf_Task) that are too long for

their calendars.

There are 1 calendars that have no LEGAL_TIME.

There are 1 calendars that are not COMPUTED.

There are 1 resource constraints whose quantity is less than or equal to 0.0

There are 1 resource supplies whose quantity is less than or equal to 0.0

There are 2 effective entries whose start times are not less than their end

times.

There are 2 effective entries whose start times are earlier than Start Of

Time.

There are 1 effective entries whose end times are later than End Of Time.

There are 6 routing entries whose quantities are not greater than 0.0.

There are 9 routing entries that do not match a routing step.

There are 1 bor entries whose equipment class has no equipment instances.

There are 5 build options that have no routing tasks.

There are 6 build options whose supply entries do not cover the entire

schedule.

There are 1 build options that have multiple Primary Order BORS.

There are 1 build options that have multiple Primary Operation BORS.

There are 1 inventory parts that may not be replenishable (no Build Option,

Purchase Option, or Transfer Option exists).

There are 1 sales orders that do not have sales order lines.

There are 1 purchase orders that do not have purchase order lines.

There are 1 equipment resources without enough capacity to satisfy its

constraints.

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 6 9

transaction_mfg_sanity_check(:verbose 1 :filename "")

Parent tasks without subtasks:

(1523 childless_parent)

Zero duration Unsplittable_Leaf_Tasks:

(1524 no_work_duration_task)

Unsplittable_Leaf_Tasks that are too long for their calendars:

(1525 too_long_task)

Calendars that have no LEGAL_TIME:

(1526 no_time_calendar)

Calendars that are not COMPUTED:

(1527 not_computed_calendar)

Resource constraints whose quantity is less than or equal to 0.0:

(1530 SM_test_resource 0.000000000000000 test_task (03/01/95 00:00:00 .

03/02/95 00:00:00))

Resource supplies whose quantity is less than or equal to 0.0:

(1531 SM_test_resource 0.000000000000000 test_task (03/01/95 00:00:00 .

03/02/95 00:00:00))

Effective entries whose start times are not less than their end times:

(1534 Bogus_Effective_Class (05/01/95 00:00:00 . 04/01/95 00:00:00)

(799311600 . 796723200))

(1535 Bogus_Effective_Class (05/01/90 00:00:00 . 12/31/69 16:00:00)

(641545200 . 0))

Effective entries whose start times are earlier than Start Of Time:

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 7 0 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

(1535 Bogus_Effective_Class (05/01/90 00:00:00 . 12/31/69 16:00:00)

(641545200 . 0))

(1536 Bogus_Effective_Class (12/31/69 16:00:00 . 04/01/99 00:00:00) (0 .

922953600))

Effective entries whose end times are later than End Of Time:

(1536 Bogus_Effective_Class (12/31/69 16:00:00 . 04/01/99 00:00:00) (0 .

922953600))

Routing entries whose quantities are not greater than 0.0:

(1539 Bom_Entry SM_bogus_build_option 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1542 Bor_Entry SM_bogus_build_option 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1559 Bor_Entry SM_primary_bogus_build_option 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1560 Bor_Entry SM_primary_bogus_build_option 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1561 Bor_Entry SM_primary_bogus_build_option 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1562 Bor_Entry SM_primary_bogus_build_option 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

Routing entries that do not match a routing step:

(1539 Bom_Entry SM_bogus_build_option 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1542 Bor_Entry SM_bogus_build_option 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1544 Supply_Entry SM_bogus_build_option_A 1.000000000000000 (03/05/95

00:00:00 . 01/01/96 00:00:00) (794390400 . 820483200))

(1546 Supply_Entry SM_bogus_build_option_M 1.000000000000000 (01/01/95

00:00:00 . 04/01/95 00:00:00) (788947200 . 796723200))

(1547 Supply_Entry SM_bogus_build_option_M 1.000000000000000 (04/01/95

00:00:00 . 05/01/95 00:00:00) (796723200 . 799311600))

(1548 Supply_Entry SM_bogus_build_option_M 1.000000000000000 (05/02/95

00:00:00 . 06/01/95 00:00:00) (799398000 . 801990000))

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L D E B U G G I N G P E P P E R C O D E 1 4 - 7 1

(1549 Supply_Entry SM_bogus_build_option_M 1.000000000000000 (06/01/95

00:00:00 . 01/01/96 00:00:00) (801990000 . 820483200))

(1551 Supply_Entry SM_bogus_build_option_Z 1.000000000000000 (01/01/95

00:00:00 . 06/05/95 00:00:00) (788947200 . 802335600))

(1554 Supply_Entry SM_bogus_build_option_S 1.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

Bor entries whose equipment class has no equipment instances:

(1542 Bor_Entry Bogus_Equipment_Class 0.000000000000000 (01/01/95

00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

Build options that have no routing tasks:

(1538 SM_bogus_build_option)

(1543 SM_bogus_build_option_A)

(1545 SM_bogus_build_option_M)

(1550 SM_bogus_build_option_Z)

(1553 SM_bogus_build_option_S)

Build options whose supply entries do not cover the entire schedule:

(1538 SM_bogus_build_option)

(1543 SM_bogus_build_option_A)

(1545 SM_bogus_build_option_M)

(1550 SM_bogus_build_option_Z)

(1553 SM_bogus_build_option_S)

(1555 SM_primary_bogus_build_option)

Build options that have multiple Primary Order BORS:

(1555 SM_primary_bogus_build_option)

Build options that have multiple Primary Operation BORS:

(1555 SM_primary_bogus_build_option)

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

1 4 - 7 2 D E B U G G I N G P E P P E R C O D E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Inventory parts that may not be replenishable (no Build Option, Purchase Option,

or Transfer Option exists):

(1552 SM_part_not_for_build_option)

Sales orders that do not have sales order lines:

(1563 SM_sales_order_without_lines)

Purchase orders that do not have purchase order lines:

(1564 SM_purchase_order_without_lines)

Equipment resources without enough capacity to satisfy its constraints:

(1567 SM_resource_that_cannot_be_repaired)

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L I N D E X 1

Index

#

#document 3-7

error messages 3-8

format 3-9

writing comments to a file 3-9

#include

differences in PepperCode prior 8.0 3-5

PepperCode compared to C++ 3-2

rules for writing 3-2

use instead forward declarations 3-4

using 11-24

using two files that include each other 3-4

writing 3-1

#notice 3-11

warning message 14-20

.

.spl for PepperCode files 3-1

.splrc

modifying compiler behavior 12-7

<

-<directory> 12-13, 12-16

8

8.0 PepperCode

#include differences for prior 8.0 3-5

A

action

declaration

forward 5-15

execution

automatic 5-42

parameters 5-7

spl_main 12-1

spl_main definition 5-42

action debug tracing 14-23

action interpreter 14-21

Action Interpreter

how it is used 5-41

action parameters

see parameters 11-9

Action_Status 5-40

actions 5-1

Action_Status 5-40

actions used for debugging 14-41

adding to a class 11-1

checking outputs 11-8

context 5-33

customizing 11-26

declaration error 14-10

example 2-5, 5-1

examples 5-3

executing 5-18

executing within another action 5-33

how they are executed 5-41

incomplete and forward declarations 5-4

matching parameter lists 5-6

new rule for invoking 5-19

parameter default values 5-9

parameter list 5-2

parameters 5-7

parameters are no longer static 5-12

parent action passing to child 5-34

PepperCode and C/C++ comparison 1-4

replacing standard method actions 11-26

required input parameter 5-8

running debugging actions 14-42

schema

errors 14-9

schema declarations & definitions 5-15

schemas 5-13

syntax 5-2

transaction logs 5-42

using context and no_context 5-35

writing 11-6

writing to dispatch methods 11-18

ADD_TO_HISTORY_VALUE 10-43

ADD_TO_HISTORY_VALUE_ON_CALENDAR

10-42

AREA_UNDER_CURVE 10-39

arrays 8-1

accesses 8-8

arrays of arrays 8-5

associative 8-1

exists function 8-2

bounds

associative 8-2

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

I N D E X 2 P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

nonassociative 8-4

enlarging 8-4

functions 8-5

use with arrays of arrays 8-7

indexed by float 8-8

mixing associative and nonassociative 8-6

multidimensional 8-5

nonassociative 8-3

exists function 8-4

use with statements 8-8

assignment statement 6-1

osets 7-1

B

Base_Class 4-1, 4-10

BREAK 6-7

break statement 6-6

C

-c 12-13

C/C++

compared to PepperCode actions 1-4

compared to PepperCode classes 1-3

C/C++ functions

accessing 10-8

declaring 10-9

passing arguments 10-9

using RPS_IMPORT 11-22

using typedefs with 10-10, 11-21

C++ comparison 2-6

C++ functions

checking for corresponding function 11-20

naming 11-21

placing C++ code 11-20

providing PepperCode types 11-21

writing 11-20

C++ header files

not necessary to include warning 14-20

casting 11-5

using with methods 11-19

CD-ROM

ordering iii

changes

class

Using Name of Class in Expression 4-11

--check_dump See Index of Compiler Options

Child_Task

example 11-3

class

declarations & definitions 4-6

parent and child relationships 14-15

warning at compile time 14-15

class slot 4-9

class slots

see slots 11-2

class_name

using instead of GET_NAME_OF_CLASS

10-22

classes 4-1

adding a constraint class 11-32

adding and action to 11-1

adding default values 11-2

changing attribute of derived class 4-7

customizing and displaying names 11-25

declaring 4-6

default values 4-5

example 2-4

forward declarations 4-6

inheriting redefined values 4-3

instance names 4-12

instance of 4-3

multiple inheritance 4-5

naming 11-1

PepperCode and C/C++ comparison 1-3

predefined 4-10

writing 11-1

writing new definitions 4-3

writing parent and child 11-3

--client 12-16

CLOSE_DUMP_FILE 10-44

code reading errors 14-15

command line

rules 12-11

syntax 12-10

comments

C++ style 3-7

documentation 3-7

format for documentation comments 3-9

generating for an .spl file 3-11

notice 3-11

writing to a file 3-9

compiler

fatal error 14-11

generic error 14-11

severe error 14-10

compiler options

-<directory> 12-13, 12-16

-c 12-13

--client 12-16

compiler maintentance 12-17

compiler or linker to run 12-12

compiling PepperCode 12-13

--cpp_to_object 12-13

--debug 12-13

default (no option switch) 12-11

--define <macroname>=<value> 12-16

--doc 12-15

for C++ source code 12-16

--header_only 12-15

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L I N D E X 3

--include 12-16

--include <directory> 12-13

installation 12-8

--lib_tag 12-14

--loud 12-14

machine specific escape clause 12-17

--make_implib 12-13

--make_library 12-12

--make_program 12-11

most used 12-11

--no_header 12-15

--no_main 12-17

--no_object 12-13

--no_rt 12-17

--no_warn 12-14

--optimize 12-13

--preprocessor 12-13

--purify 12-17

--quantity 12-17

--quiet 12-14

--quote 12-17

--rt_path 12-17

--spl_to_object 12-12

used with --make_program 12-16

compiling PepperCode

.splrc 12-7

command-line rules 12-6, 12-11

HP_UX example 12-4

installation and configuration issues 12-6

LD_LIBRARY_PATH 12-7

necessary files 12-7

NT example 12-4

OSF/1 and Linus example 12-4

running the compiler 12-2

Solaris example 12-3

to object example 12-1

using as C++ compiler 12-16

context 5-6

example 5-35

multiple 5-34

understanding 5-33

CONTINUE 6-7

continue statement 6-6

contraints

adding 11-32

cpp_function 6-7

error 14-20

--cpp_to_object 12-13

CREATE_MULTIPLE_INHERITED_SUBCLASS

10-12

CREATE_NAME_FROM_OSET 10-12

CREATE_OBJECT 10-13

CREATE_SUBCLASS 10-13

CURRENT_TIME 10-13

D

data type errors 14-15

data types 3-11

DATE_TO_STRING 10-13

--debug 12-13

debugging 14-1

action debug tracing 14-23

action interpreter 14-21

actions used for debugging 14-41

command files 14-55

common mistakes 14-1

debugging action categories 14-43

deciding which debugging actions 14-45

descriptions of debugging actions 14-46

functions used for debugging 14-31

MSG function 14-29

running debugging actions 14-42

setting message level 14-42

declaration incomplete error 14-18

declarations

cpp_function

Not BREAK or CONTINUE 6-7

declarations & definitions

class 4-6

default (no option switch) 12-11

defaults

adding to a class 11-2

classes 4-5

for uninitialized slots 2-5

--define <macroname>=<value> 12-16

DELETE_OBJECT 10-13

DESCRIBE 10-13

--doc 3-9, 12-15

generating for an .spl file 3-11

documentation

adding and retrieving 11-23

documentation comments 3-7

dot notation

slots 4-6

use in expressions 6-9

dump functions 10-44

DUMP_DATE 10-45

DUMP_FLOAT 10-45

DUMP_INT 10-45

DUMP_NEWLINES 10-45

DUMP_RESET_STATUS 10-46

DUMP_SPACES 10-45

DUMP_STRING 10-46

DUMP_TEST_RESET_STATUS 10-46

DUMP_TIME 10-46

E

enumerations

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

I N D E X 4 P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

use in loops 6-7

using the same constant names 3-13

error messages 14-9

#document 3-8

execute

actions 5-18

automatic 5-42

parameter behavior 5-11

passing action outputs 5-20

execute statement 6-5

exists

use with associative arrays 8-2

use with nonassociative arrays 8-4

EXP 10-13

expressions

comparisons 10-23

F

FAQ 14-6

files

dumping information to 10-44

type for PepperCode code 3-1

float

indexing arrays with 8-8

FLOAT_TO_INT 10-13

FLOAT_TO_STRING 10-14

foreach

arrays 8-8

scope 3-6

foreach statement 6-3

break and continue 6-6

enumerations 6-7

osets 7-5, 7-6

forward action declaration 5-15

forward class declarations 4-6

forward declarations

using #include instead of 3-4

functions 10-11

ADD_TO_HISTORY_VALUE 10-43

ADD_TO_HISTORY_VALUE_ON_CALENDAR

10-42

ANALYZE_HISTORY 10-40

AREA_UNDER_CURVE 10-39

arrays 8-5

CLOSE_DUMP_FILE 10-44

CREATE_MULTIPLE_INHERITED_SUBCLASS

10-12

CREATE_NAME_FROM_OSET 10-12

CREATE_OBJECT 10-13

CREATE_SUBCLASS 10-13

CURRENT_TIME 10-13

DATE_TO_STRING 10-13

DELETE_OBJECT 10-13

DESCRIBE 10-13

dump 10-44

DUMP_DATE 10-45

DUMP_FLOAT 10-45

DUMP_INT 10-45

DUMP_NEWLINES 10-45

DUMP_RESET_STATUS 10-46

DUMP_SPACES 10-45

DUMP_STRING 10-46

DUMP_TEST_RESET_STATUS 10-46

DUMP_TIME 10-46

EXP 10-13

FLOAT_TO_INT 10-13

FLOAT_TO_STRING 10-14

functions used for debugging 14-31

GET_ALLOCATED_CHAMBERS 10-44

GET_CLASS_BY_NAME 10-14

GET_CLASS_OF_INSTANCE 10-14

GET_DATE_OF_NEXT_NEGATIVE_VALUE

10-43

GET_DATE_OF_PREVIOUS_NOT_ENOUGH

10-43

GET_DESCENDENTS 10-15

GET_DIRECT_DESCENDANTS 10-16

GET_END_OF_HISTORY 10-35

GET_HISTORY_VALUE 10-38

GET_INITIAL_AMOUNT 10-39

GET_INSTANCE_BY_NAME 10-16

GET_INVENTORY_AREAS 10-42

GET_MSG_LEVEL 10-16

GET_NAME_OF_CLASS 10-16

GET_NULL_INSTANCE 10-16

GET_OVERALLOCATED_CHANGERS 10-36

GET_RANDOM_SEED 10-16

GET_TYPED_INSTANCE 10-17

history 10-35

INSTANCE_EXISTS_IN_LIST 10-17

IS_ASSERTED 10-32

IS_LEGAL_CALENDAR_TIME_FOR_SPLITTI

NG 10-41

LIST_FILES_IN_DIRECTORY 10-17

MAX_QUANTITY_OVERALLOCATED

10-36

MIN_HISTORY_VALUE 10-39

MOST_OVERALLOCATED_CHANGERS

10-39

MSG 10-18

NEXT_CALENDAR_BREAK 10-42

NEXT_LEGAL_CALENDAR_TIME 10-40

NEXT_TIME_TO_TRY 10-37

NLSPRINT 10-28

NLSTR 10-28

NLSTRCMP 10-28

NUMBER_OF_AREAS_SHORT 10-43

OBJECT_IS_ALIVE 10-18

OPEN_DUMP_FILE 10-44

postpone side effects 10-30

PREVIOUS_CALENDAR_BREAK 10-42

PREVIOUS_LEGAL_CALENDAR_TIME

10-41

PRINF 10-18

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L I N D E X 5

PRINTF 10-18

QUANTITY_OF_HISTORY_EXCEEDS 10-36

QUANTITY_OF_HISTORY_EXISTS 10-36

QUERY 10-34

QUERY_OSET 10-34

RANDOM 10-19

RANDOMIZE_SEED 10-19

REGMATCH 10-19

RENAME_FILE 10-19

RESYNCH_SE 10-31

RETRACT_AND_POSTPONE 10-31

SET_MSG_LEVEL 10-19

SET_RANDOM_SEED 10-20

SORT_BY_NAME 10-20

STATE_EXISTS 10-40

STATE_NEXT_TIME_TO_TRY 10-38

STRERROR 10-20

STRING_COMPARE 10-20

STRING_CONCAT 10-20

STRING_TO_DATE 10-20

STRING_TO_INT 10-22

STRLEN 10-20

STRPRINT 10-21

STRRPL 10-21

STRSTR 10-21

TIME_BETWEEN_TWO_POINTS_FOR_CALEN

DAR 10-41

TYPEP 10-22

upstairs objects 10-24

UPSTAIRS_CLASS 10-25

UPSTAIRS_INSTANCE 10-24

UPSTAIRS_OSET_CLASS 10-25

UPSTAIRS_OSET_INSTANCE 10-25

using string functions 10-27

using upstairs objects functions 10-25

G

GET_ALLOCATED_CHAMBERS 10-44

GET_CLASS_BY_NAME 10-14

GET_CLASS_OF_INSTANCE 10-14

GET_DATE_OF_NEXT_NEGATIVE_VALUE

10-43

GET_DATE_OF_PREVIOUS_NOT_ENOUGH

10-43

GET_DESCENDANTS 10-16

GET_DESCENDENTS 10-15

GET_END_OF_HISTORY 10-35

GET_HISTORY_VALUE 10-38

GET_INITIAL_AMOUNT 10-39

GET_INSTANCE_BY_NAME 10-16

GET_INVENTORY_AREAS 10-42

GET_MSG_LEVEL 10-16

GET_NAME_OF_CLASS 10-16

GET_NULL_INSTANCE 10-16

GET_OVERALLOCATED_CHANGES 10-36

GET_RANDOM_SEED 10-16

GET_TYPED_INSTANCE 10-17

global

scope 3-6

H

--header

use with --doc 3-11

header files

differences for PepperCode prior 8.0 3-5

including 3-1

--header_only 12-15

histories 9-1

history functions 10-35

I

if-else statement 6-2

--include 12-16

--include <directory> 12-13

incomplete declarations

avoiding 5-6

inheritence

multiple 4-5

inout 14-15

inout parameter 5-7

input parameter 5-7

input variable

error assigning to 14-20

installation

compiler options 12-8

instance names 4-12

instance slot 4-9

INSTANCE_EXISTS_IN_LIST 10-17

IS_ASSERTED 10-32

IS_LEGAL_CALENDAR_TIME_FOR_SPLITTING

10-41

L

LD_LIBRARY_PATH 12-7

leave

assignment 6-5

leave statement 6-5

--lib_tag 12-14

LIST_FILES_IN_DIRECTORY 10-17

lists

arrays 8-1

osets 7-1

LKN4049 error 14-12

local

scope 3-6

--loud 12-14

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

I N D E X 6 P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

M

--make_implib 12-13

--make_library 12-12

--make_program 12-11

MAX_ANALYZE_HISTORY 10-40

MAX_QUANTITY_OVERALLOCATED 10-36

methods 5-21

adding slots 11-28

customizing 11-26

example 5-21, 5-23, 5-27

including object 11-19

input and output parameters 11-19

replacing standard method actions 11-26

using casting 11-19

writing actions that dispatch 11-18

MIN_HISTORY_VALUE 10-39

mismatch between #document error 14-12

mismatch in parameter error 14-12

missing transaction name error 14-13

MOST_OVERALLOCATED_CHANGERS 10-39

MSG 10-18

MSG function 14-29

N

naming conventions 3-15

National Language Support 10-27

NEXT_CALENDAR_BREAK 10-42

NEXT_LEGAL_CALENDAR_TIME 10-40

NEXT_TIME_TO_TRY 10-37

nlscollect 10-29

NLSPRINT 10-28

NLSTR 10-28

NLSTRCMP 10-28

no such file or directory error 14-13

no_context 5-3, 5-6

using 5-35, 11-7

--no_header 12-15

--no_main 12-17

--no_object 12-13

--no_rt 12-17

--no_warn 12-14

not found error 14-13

nothing named in scope error 14-14

notice comments 3-11

Null_Instance 4-11

NUMBER_OF_AREAS_SHORT 10-43

O

object 4-1

object model

differences in PepperCode and C++ 4-3

OBJECT_IS_ALIVE 10-18

objects

temporary 4-9

OPEN_DUMP_FILE 10-44

operators 10-1

--optimize 12-13

osets 7-1

action parameters 7-4

assignment statement 7-1

example of functions 7-2

foreach 7-6

foreach and while 7-5

operators and functions 7-1

output 14-15

output parameter 5-7

output variables

checking for an action 11-8

P

parameter

matching parameter lists 5-6

Parameter %s should be output or inout not %s See

Error Message Reference in back of document

parameters

action

no longer static 5-12

avoiding static action parameters 11-7

behavior when executes 5-11

casting 11-5

context, no_context, readonly 5-6

default values 5-9

grouping 11-9

local parameter error setting 14-10

non-local action 5-9

osets 7-4

required 5-8

schemas 5-13

Parent_Task

example 11-3

parse error 14-15

PeopleBooks

CD-ROM, ordering iii

printed, ordering iii

PepeprCode

functions 10-11

PepperCode

compared to C/C++ actions 1-4

compared to C/C++ classes 1-3

data types 3-11

debugging 14-1

diagram of example 1-3

diagram of running 1-2

getting started 2-1

Getting Started with Compiling 12-1

making queris from 10-33

naming conventions 3-15

J A N U A R Y 2 0 0 1 P E O P L E S O F T P E P P E R C O D E

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L I N D E X 7

operators 10-1

overview 1-1

performance considerations 3-14

sample construct 2-1

sample construct diagram 2-4

sample construct explained 2-4

syntax 13-1

performance considerations 3-14

Planning software

customizing 1-5

postpone side effect functions 10-30

predefined classes 4-10

--preprocessor 12-13

PREVIOUS_CALENDAR_BREAK 10-42

PREVIOUS_LEGAL_CALENDAR_TIME 10-41

PRINF 10-18

PRINTF 10-18

--purify 12-17

Q

--quantity 12-17

QUANTITY_OF_HISTORY_EXCEEDS 10-36

QUANTITY_OF_HISTORY_EXISTS 10-36

queries

making form PepperCode 10-33

QUERY 10-34

QUERY_OSET 10-34

--quiet 12-14

--quote 12-17

R

RANDOM 10-19

RANDOMIZE_SEED 10-19

readonly 5-6

refman 12-1

REGMATCH 10-19

RENAME_FILE 10-19

required 5-8

required error message 14-19

RESYNCH_SE 10-31

RETRACT_AND_POSTPONE 10-31

RPS_IMPORT 11-22

--rt_path 12-17

S

sanity checks 14-61

schemas 5-13

example 5-14

scope 3-6

SET_EPSILON 10-6

SET_FLOAT_FORMAT 10-6

SET_MSG_LEVEL 10-19

SET_RANDOM_SEED 10-20

side effects 9-1

postponing 10-30

side_effect slot use 4-2

slot clause list statements 4-7

slots

adding attributes to previous slot 4-7

adding to methods 11-28

attributes of 4-1

declaration statement 4-8

default values 4-2

defaults 2-5

dot notation 4-6

forming the slots belonging to a class 4-1

method implementation 5-21

naming 11-1

side_effect use 4-2

slot clause list statements 4-7

specializing 4-2, 4-5

storage of values 4-9

SORT_BY_NAME 10-20

slots 11-2

spl_main 5-42

--spl_to_object 12-12

splsh 12-1

STATE_EXISTS 10-40

STATE_NEXT_TIME_TO_TRY 10-38

statements

arrays 8-8

assignment 6-1

break 6-6

continue 6-6

execute 6-5

foreach 6-3

if-else 6-2

leave 6-5

succeed 6-5

while 6-2

static action parameters

avoiding 11-7

STRERROR 10-20

string functions

using 10-27

STRING_COMPARE 10-20

STRING_CONCAT 10-20

STRING_TO_DATE 10-20

STRING_TO_INT 10-22

STRLEN 10-20

STRPRINT 10-21

STRRPL 10-21

STRSTR 10-21

succeed statement 6-5

T

Target of 14-17

temporary_instance 4-9

P E O P L E S O F T P E P P E R C O D E J A N U A R Y 2 0 0 1

I N D E X 8 P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

TIME_BETWEEN_TWO_POINTS_FOR_CALEND

AR 10-41

transaction logs 5-42

transactions

action schema 11-12

error checking 11-13

inputs not to use 11-12

naming 11-12

using input parameter defaults 11-12

writing 11-11

translation tables

collecting strings for 10-29

Troubleshooting 14-6

TYPEP 10-22

example 10-23

U

Undefined symbol spl_action_info_abc 14-18

Unterminated string literal. 14-19

upstairs objects

functions 10-24

upstairs objects functions

using 10-25

UPSTAIRS_CLASS 10-25

UPSTAIRS_INSTANCE 10-24

UPSTAIRS_OSET_CLASS 10-25

UPSTAIRS_OSET_INSTANCE 10-25

W

while statement 6-2

break and continue 6-6

enumerations 6-7

while statements

osets 7-5

methods 11-18

Z

zero and null instance 4-11

