
PeopleTools 8.12 Component
Interface PeopleBook

PeopleTools 8.12 Component Interface PeopleBook

SKU MTCIr8SP1 1200

PeopleBooks Contributors: Teams from PeopleSoft Product Documentation and
Development.

Copyright © 2001 by PeopleSoft, Inc. All rights reserved.

Printed in the United States of America.

All material contained in this documentation is proprietary and confidential to PeopleSoft,
Inc. and is protected by copyright laws. No part of this documentation may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, including, but not
limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without the
prior written permission of PeopleSoft, Inc.

This documentation is subject to change without notice, and PeopleSoft, Inc. does not warrant
that the material contained in this documentation is free of errors. Any errors found in this
document should be reported to PeopleSoft, Inc. in writing.

The copyrighted software that accompanies this documentation is licensed for use only in
strict accordance with the applicable license agreement which should be read carefully as it
governs the terms of use of the software and this documentation, including the disclosure
thereof.

PeopleSoft, the PeopleSoft logo, PeopleTools, PS/nVision, PeopleCode,
PeopleBooks, Vantive, and Vantive Enterprise are registered trademarks, and
PeopleTalk and "People power the internet." are trademarks of PeopleSoft, Inc. All
other company and product names may be trademarks of their respective owners.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O N T E N T S i i i

C o n t e n t s

About This PeopleBook
Before You Begin ... vii

Related Documentation .. vii

Documentation on the Internet ..viii

Documentation on CD-ROM ..viii

Hardcopy Documentation ...viii

Typographical Conventions and Visual Cues..viii

Comments and Suggestions.. x

Chapter 1

Component Interface

Introduction.. 1-1

Component Interface Architecture... 1-2

Attributes of a Component Interface... 1-3

Component Interface Name .. 1-3

Keys .. 1-3

Properties and Collections... 1-4

Security for Properties... 1-5

Methods... 1-6

Chapter 2

Creating a Component Interface

Views in Application Designer.. 2-1

Component Interface View ... 2-2

Component Interface View Display.. 2-2

Creating a New Component Interface... 2-3

Creating Properties.. 2-5

Making Properties Read-Only... 2-6

Creating Collections.. 2-6

Adding and Removing Keys ... 2-7

Which Properties to Expose? .. 2-7

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

C O N T E N T S i v P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Guidelines for Exposing Components... 2-7

Working with Methods ... 2-8

Standard Methods ... 2-8

User-Defined Methods .. 2-9

Setting Component Interface Security... 2-10

Testing a Component Interface.. 2-13

Getting the Signature of the ItemByKeys Method.. 2-18

Validating a Component Interface... 2-20

Generating Visual Basic Template .. 2-20

Generating PeopleCode ... 2-24

Chapter 3

The Component Interface API

Binding Considerations ... 3-3

COM Binding.. 3-3

Third Party Application... 3-3

External API Installation... 3-4

C Header Binding.. 3-4

Third Party Application... 3-4

C Header File .. 3-4

Connecting to a Component Interface ... 3-5

Installing External Client Settings for the API.. 3-5

Comparing Component Interface and Components... 3-5

Differences in Search Dialog Processing .. 3-5

Differences in PeopleCode Event and Function Behavior................................ 3-5

Limitations of Client-Only PeopleCode.. 3-6

Email from a Component Interface... 3-6

WinMessage Unavailable.. 3-6

Calling another Component Interface ... 3-6

Chapter 4

Component Interface Example

PeopleCode Example... 4-2

Java and Active Server Page Examples ... 4-4

Active Server Page Example... 4-6

Connecting to the Application Server ... 4-7

Getting an Instance.. 4-7

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O N T E N T S v

Finding an Existing Record... 4-8

Getting an Instance of Data... 4-9

Migrating Through Scrolls.. 4-10

Editing and Accessing Data in an Item ... 4-11

Inserting a Row into a Collection.. 4-11

Deleting a Row from a Collection .. 4-12

Disconnecting from a Session... 4-12

Java Example .. 4-12

Connecting to the Application Server ... 4-13

Getting an Instance of the Component Interface... 4-13

Finding an Existing Record... 4-13

Getting an Instance of Data... 4-13

Migrating Through Scrolls.. 4-14

Editing and Accessing Data in an Item ... 4-14

Inserting an Item into a Collection.. 4-15

Deleting a Row from a Collection .. 4-15

Disconnecting from a Session... 4-15

Chapter 5

Component Interface SDK

Requirements ... 5-1

The PTSDK Development Project... 5-1

PTSDK Project Objects... 5-2

PTSDK Records.. 5-2

SDK_BUS_EXPENSES Test Page... 5-7

Installing the PTSDK Project .. 5-7

Component Interface Tester and Samples ... 5-10

C++ Tester and Sample... 5-10

Preparing Your C++ Tester and Sample ... 5-11

Using the C++ CI Tester ... 5-13

Using the C++ CI Sample ... 5-14

Visual Basic Tester and Sample.. 5-15

Preparing Your Visual Basic Tester and Sample .. 5-15

Using the Visual Basic CI Tester .. 5-15

Using the Visual Basic CI Sample .. 5-16

ASP Tester and Sample... 5-18

Preparing Your ASP Tester and Sample ... 5-19

Using the ASP CI Tester ... 5-19

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

C O N T E N T S v i P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Using the ASP CI Sample ... 5-20

Java Tester and Sample ... 5-22

Preparing Your Java Tester and Sample ... 5-22

Using the Java CI Tester ... 5-23

Using the Java CI Sample ... 5-23

Index

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L P R E F A C E v i i

A B O U T T H I S P E O P L E B O O K

This book describes a PeopleSoft component interface that is a PeopleTools object that you create

in Application Designer. It allows access to a PeopleSoft component for synchronous access

from another application. This book includes the following:

Introduction to Component Interface introduces the component interface architecture, including

component interface properties, collections, keys, and methods.

Creating a Component Interface describes how to create a component interface.

The Component Interface API discusses techniques for accessing components from PeopleCode

and through Visual Basic or web-based applications through the Component Interface API.

Component Interface Example shows a sample of creating and calling a component interface.

Component Interface SDK describes how to use the component interface resources in the

Software Development Kit to integrate your PeopleSoft application with third party products.

Before You Begin

To benefit fully from the information covered in this book, you need to have a basic

understanding of how to use PeopleSoft applications. We recommend that you complete at least

one PeopleSoft introductory training course.

You should be familiar with navigating around the system and adding, updating, and deleting

information using PeopleSoft windows, menus, and pages. You should also be comfortable using

the World Wide Web and the Microsoft® Windows or Windows NT graphical user interface.

Related Documentation

To add to your knowledge of PeopleSoft applications and tools, you may want to refer to the

documentation of the specific PeopleSoft applications your company uses. You can access

additional documentation for this release from PeopleSoft Customer Connection

(www.peoplesoft.com). We post updates and other items on Customer Connection, as well. In

addition, documentation for this release is available on CD-ROM and in hard copy.

Important! Before upgrading, it is imperative that you check PeopleSoft Customer

Connection for updates to the upgrade instructions. We continually post updates as we

refine the upgrade process.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

P R E F A C E v i i i P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Documentation on the Internet

You can order printed, bound versions of the complete PeopleSoft documentation delivered on

your PeopleBooks CD-ROM. You can order additional copies of the PeopleBooks CDs through

the Documentation section of the PeopleSoft Customer Connection Web site:

http://www.peoplesoft.com/

You’ll also find updates to the documentation for this and previous releases on Customer

Connection. Through the Documentation section of Customer Connection, you can download

files to add to your PeopleBook library. You'll find a variety of useful and timely materials,

including updates to the full PeopleSoft documentation delivered on your PeopleBooks CD.

Documentation on CD-ROM

Complete documentation for this PeopleTools release is provided in HTML format on the

PeopleTools PeopleBooks CD-ROM. The documentation for the PeopleSoft applications you

have purchased appears on a separate PeopleBooks CD for the product line.

Hardcopy Documentation

To order printed, bound volumes of the complete PeopleSoft documentation delivered on your

PeopleBooks CD-ROM, visit the PeopleSoft Press Web site from the Documentation section of

PeopleSoft Customer Connection. The PeopleSoft Press Web site is a joint venture between

PeopleSoft and Consolidated Publications Incorporated (CPI), our book print vendor.

We make printed documentation for each major release available shortly after the software is first

shipped. Customers and partners can order printed PeopleSoft documentation using any of the
following methods:

Internet From the main PeopleSoft Internet site, go to the

Documentation section of Customer Connection. You can

find order information under the Ordering PeopleBooks

topic. Use a Customer Connection ID, credit card, or

purchase order to place your order.

 PeopleSoft Internet site: http://www.peoplesoft.com/.

Telephone Contact Consolidated Publishing Incorporated (CPI) at

800 888 3559.

Email Email CPI at callcenter@conpub.com.

Typographical Conventions and Visual Cues

To help you locate and interpret information, we use a number of standard conventions in our

online documentation.

Please take a moment to review the following typographical cues:

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L P R E F A C E i x

monospace font Indicates PeopleCode.

Bold Indicates field names and other page elements, such as

buttons and group box labels, when these elements are

documented below the page on which they appear. When

we refer to these elements elsewhere in the

documentation, we set them in Normal style (not in bold).

We also use boldface when we refer to navigational paths,

menu names, or process actions (such as Save and Run).

Italics Indicates a PeopleSoft or other book-length publication.

We also use italics for emphasis and to indicate specific

field values. When we cite a field value under the page on

which it appears, we use this style: field value.

We also use italics when we refer to words as words or

letters as letters, as in the following: Enter the number 0,

not the letter O.

KEY+KEY Indicates a key combination action. For example, a plus

sign (+) between keys means that you must hold down the

first key while you press the second key. For ALT+W,

hold down the ALT key while you press W.

Jump links Indicates a jump (also called a link, hyperlink, or

hypertext link). Click a jump to move to the jump

destination or referenced section.

Cross-references The phrase For more information indicates where you can

find additional documentation on the topic at hand. We

include the navigational path to the referenced topic,

separated by colons (:). Capitalized titles in italics

indicate the title of a PeopleBook; capitalized titles in

normal font refer to sections and specific topics within the

PeopleBook. Cross-references typically begin with a

jump link. Here's an example:

For more information, see Documentation on CD-ROM in

About These PeopleBooks: Related Documentation.

• Topic list Contains jump links to all the topics in the section. Note

that these correspond to the heading levels you'll find in

the Contents window.

 Name of Page or

Dialog Box

Opens a pop-up window that contains the named page or

dialog box. Click the icon to display the image. Some

screen shots may also appear inline (directly in the text).

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

P R E F A C E x P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Text in this bar indicates information that you should pay particular attention to as you work

with your PeopleSoft system. If the note is preceded by Important!, the note is crucial and

includes information that concerns what you need to do for the system to function properly.

Text in this bar indicates For more information cross-references to related or additional

information.

Text within this bar indicates a crucial configuration consideration. Pay very close attention

to these warning messages.

Comments and Suggestions

Your comments are important to us. We encourage you to tell us what you like, or what you

would like changed about our documentation, PeopleBooks, and other PeopleSoft reference and

training materials. Please send your suggestions to:

PeopleTools Product Documentation Manager

PeopleSoft, Inc.

4460 Hacienda Drive

Pleasanton, CA 94588

Or send comments by email to the authors of the PeopleSoft documentation at:

C:\User\Documentum\Export\DOC@PEOPLESOFT.COM

While we cannot guarantee to answer every email message, we will pay careful attention to your
comments and suggestions. We are always improving our product communications for you.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E 1 - 1

C H A P T E R 1

Component Interface

Introduction

Every organization depends on real-world business objects—such as invoices and inventory

items—to conduct its business. In PeopleSoft applications, components represent real-world

business objects. For example, an invoice component is a way to capture, store, and display all

the essential information related to any given invoice—the general billing and shipping

information, plus details about each line item.

Components have keys that enable navigation to a specific instance of a business object, and also

includes the essential information that describes the object (the fields in the component).

Additionally, a component includes an organization’s business rules associated with whatever

type of business object the component represents.

While online, a user can view, enter, and manipulate data about a business object through the use

of a component and its associated pages.

A component interface is a PeopleTools object that you create in Application Designer. It

exposes a PeopleSoft component for synchronous access from another application. External

applications need not be concerned with the details of page structures and component definitions

in order to access the underlying data and business logic through component interfaces.

PeopleSoft components can be accessed from the following applications:

• Microsoft’s Component Object Model (COM)

• C/C++ shared libraries

• Java

• PeopleCode

An instance of a component interface refers to the object at runtime, populated with a single

group of data that describes a unique business object. In other words, a component interface

refers to a type of business object, such as an invoice, while a component interface instance refers

to a unique version of that business object, such as invoice number 945 versus invoice number

946, and so on.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

1 - 2 C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Note: In most cases, component interfaces behave exactly the same as their online

counterparts (their associated components). This means that PeopleCode events typically

fire in the same order as the online case, and so on. However, there are Comparing

Component Interface and Components to this behavior that relate both to PeopleCode

processing and search dialog processing.

Component Interface Architecture

The overall component interface architecture includes more than just component interfaces

themselves. There are three fundamental elements to the overall component interface

architecture—components, component interfaces, and the component interface API.

Elements Description

Components One or more pages performing a business transaction that a

component interface is associated with.

Component Interface Exposed aspect of a component. However, unlike components,

component interfaces are readily accessible by internal and

external applications and multiple component interfaces can

reference the same component.

Component Interface

API

Application programming interface for a Microsoft COM (Visual

Basic) application.

 PeopleCode

The following illustration shows the relationship of the basic elements of the component interface

architecture.

Component Interface

COM (VB)Methods

Component

PeopleCode

Functions

Fields and Scrolls
Properties and

Collections

Keys
Component

Search Keys

C/C++

API
External Application

PeopleSoft Application

PeopleCode

Component Interface Architecture

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E 1 - 3

Attributes of a Component Interface

Every component interface has the following four main attributes:

• Component Interface Name

• Keys

• Properties and Collections

• Methods

Component Interface Name

As with every other object in PeopleTools, component interfaces must have a name. The

component interface name is used to access it, and should somehow identify the business object
that it describes, such as LOCATION.

The naming of component interfaces should be consistent and systematic. Also, the name should

not be changed once the component interface is part of a production system—other applications

depend on a consistent name with which to reference the component interface.

If you are changing the structure of a component interface such that an existing program will no

longer be able to access it correctly, create a new component interface rather than updating the

existing one. There is no “version” property on a component interface, so if you need to create a

new version of a delivered component interface, adhere to a standard naming guideline to avoid
confusion. A suggested naming guideline is as follows:

• LOCATION (original component interface)

• LOCATION_V2 (version two of the component interface)

Keys

Keys define the values that uniquely identify an instance of a component interface. When you

create a new component interface, component interface keys are created automatically based on

the associated component’s search record. However, you can add or change certain keys, if

desired.

A component interface can have three types of keys:

Key Type Key Characteristics

Get Keys These keys automatically map to fields marked as Srch in the

component’s search record. You need to change Get keys only if you

modify the keys of the underlying component after you’ve created a

component interface.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

1 - 4 C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Key Type Key Characteristics

Create Keys These keys get created automatically if the Use tab on the

Component Properties dialog allows the Add action, then Create

keys are generated for the component interface automatically. If the

component has an Add mode search record, then the component

interface uses that search record for the Create keys. Otherwise, the

search record is used to generate the keys.

Find Keys These map to fields marked as both Alt and Srch in the component

search record. You may remove Find Keys that you do not wish to

make available for searching.

Note. Application Designer automatically creates certain component interface keys based on

how some options are set in the component properties, in addition to some of the field

options (Alt and Srch) referenced by the search record.

Properties and Collections

Properties are the individual data items (fields) that describe a component interface. Each

property maps to a single field in the component interface’s underlying component. A collection

is a type of property—which points to a scroll, instead of of mapping to an individual field, it

points to a scroll.

Note: The first item in a component interface collection is always referred to as item one,

not item zero, which is consistent with other PeopleCode processing.

There are two main types of properties: user-defined properties and Standard Properties.

User-Defined Properties

User-defined properties come from a component interface’s associated component, and must be

added manually. They are the specific record fields that you choose to expose to an external

system with the component interface.

Standard Properties

Standard properties are common across all component interfaces and are assigned automatically

when a component interface is created. Standard properties also exist for each collection within a

component interface. The following table lists the standard properties, including collection and
DataRow types. The Application Designer does not display these properties.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E 1 - 5

Type Name What it does…

Standard CreateKeyInfoCollection Returns a set of items that describes the

Create keys.

 GetKeyInfoCollection Returns a set of items that describes the

Get keys.

 FindKeyInfoCollection Returns a set of items that describes the

Find keys.

 PropertyInfoCollection Returns a set of items that describes

properties.

 GetHistoryItems Controls whether the component interface

runs in “Update/Display” mode or

“Correction” mode. Applies only to

getting a component interface, not to

creating a component interface.

 InteractiveMode Controls whether to apply values and run

business rules immediately, or whether

items are queued and business rules are run

later, in a single step. Interactive mode is

recommended for most cases where you

use a component interface to establish

“real-time” integration with another

interactive application. However, if you

are using a particular component interface

as part of a batch process in which

thousands of rows are to be inserted,

performance may be improved by not

running in interactive mode.

 ComponentName Returns the name of the component class

as named in Application Designer

Collection Count Returns the number of items in a collection

DataRow ItemNum Returns the position of the row within the

collection of a DataRow.

.

For more information on properties, including PropertyInfo properties and related

PeopleCode, see Component Interface Classes in the PeopleCode Reference.

Security for Properties

In Application Designer, you control access to user-defined properties by not including the

property in the component definition or by making the property read-only. This is a global

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

1 - 6 C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

setting, not related to any individual class or operator ID. PeopleSoft row-level security governs

which data values appear for a given property.

For more information on setting up component interface security, see Setting Component

Interface Security.

Methods

A method is an object that performs a very specific function on a component interface at runtime.

For each component interface, numerous methods are available. For example, if you are working

with a purchase order component interface, you may use a method to approve a specific purchase

order. Likewise, you can use methods to save or create a new purchase order. As with

component interface properties, there are two main types of methods: User-Defined Methods and

Standard Methods.

User-Defined Methods

User-defined methods are those that you can create to meet the requirements of an individual

component interface. A method is simply a PeopleCode function that you wish to make
accessible through the component interface. Each method maps to a single PeopleCode function.

Standard Methods

Standard methods are those that are available on all component interfaces. They are

automatically generated upon the creation of a new component interface in Application Designer,

and provide the basic functions required of any component interface.

As with standard properties, standard methods exist for every component interface, as well as for

each collection within a component interface. The following are standard methods for

component interface:

Standard Methods Action

Cancel Backs out of the current component interface, canceling any

changes made since the last save. Equivalent to clicking the

Cancel button online. Returns “True” on success, and “False”

on failure.

Create Creates a new instance of a component interface. Equivalent to

opening a new record in Add mode online. Returns “True” on

success, and “False” on failure.

Find Performs a partial key search for a particular instance of a

component interface. Returns “True” on success, and “False”

on failure.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E 1 - 7

Standard Methods Action

Get Retrieves a particular instance of a component interface.

Equivalent to opening a record in Update/Display or Correction

mode when online with a PeopleSoft application. Returns

“True” on success, and “False” on failure.

Save Saves an instance of a component interface. Equivalent to File,

Save in the online system. Returns “True” on success, and

“False” on failure.

GetPropertyByName

(PropertyName)

Returns the value of a property specified by name. This

function typically is used only in applications that cannot get

the names of the component interface properties until runtime.

SetPropertyByName

(PropertyName,

PropertyValue)

Sets the value of a property specified by name. This function

typically is used only in applications that cannot set the names

of the component interface properties until runtime.

GetPropertyInfoByName

(PropertyName)

Returns the information about a property which is specified by

name. This function typically is used only in applications that

cannot get the names of component interface properties until

runtime or by applications that need to provide a dynamic list of

values that would normally be found in prompt tables.

CopyRowset

(from PeopleCode only)

Enables you to copy rowsets created from the message data in

your component interface.

CopyRowsetDelta

(from PeopleCode only)

Enables you to copy only the changes created from the message

data in your component interface.

Item(Index)

Collection method

Takes an item number as a parameter and returns an object of

the type stored in the specified row in the collection. For

example, if the collection is a data collection, the return value is

a DataRow. If the return value is a PropertyInfoCollection,

then the return value is a PropertyInfo object, and so on.

Data Collection Methods Action

InsertItem(Index) Inserts a new item. Equivalent to pressing F7 to insert a

new row when online. It takes the item number as a

parameter, and follows the same conventions for executing

business rules (PeopleCode) as the online system.

DeleteItem(Index) Deletes an item. Equivalent to pressing F8 when online.

Item(Index) Takes an item number as a parameter, and returns the

specified row in the collection.

ItemByKeys(keys) Identifies and finds a specific item based on keys. The

keys will vary according to the design of the collection.

For more information on determining the key signature, see

Getting the Signature of the ItemByKeys Method.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

1 - 8 C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

CurrentItem: Returns the current effective DataRow in the collection. Its

behavior is consistent with effective date rules used online.

This method works with effective-dated records only.

CurrentItemNum: Returns the item number of the current effective DataRow

in the collection. Its behavior is consistent with effective

date rules used online. This method works with effective-

dated records only.

GetEffectiveItem(DateStri

ng, SeqNum):

Returns a pointer to the DataRow that would be effective

for the specified date and sequence number. A more

general case of the GetCurrentItem function, which returns

the object that is effective at this moment. This method

works with effective-dated records only.

GetEffectiveItemNum(Dat

eString, SeqNum):

Returns the item number within the collection of the

DataRow that would be effective for the specified date and

sequence number. A more general case of the

GetCurrentItemNum function, which returns the number of

the object that is effective at this moment. This method

works with effective-dated records only.

DataRow Methods Action

GetPropertyByName(Prope

rtyName):

Returns the value of a property specified by name. This

function typically is used only in applications that cannot

get the names of the component interface properties until

runtime.

SetPropertyByName(Proper

tyName, PropertyValue):

Sets the value of a property specified by name. This

function typically is used only in applications that cannot

set the names of the component interface properties until

runtime.

GetPropertyInfoByName(Pr

opertyName):

Returns a PropertyInfo object with the information about a

property that is specified by name. This function typically

is used only in applications that cannot get the names of

component interface properties until runtime or by

applications that need to provide a dynamic list of values

that would normally be found in prompt tables.

Security for Methods

The following methods provide techniques for accessing component interface properties and

property information. Because properties cannot be individually secured within a component
interface, these particular methods also cannot be individually secured.

• GetPropertyByName

• SetPropertyByName

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E 1 - 9

• GetPropertyInfoByName

• CopyRowset

• CopyRowsetDelta

For more information on setting component interface security, see Setting Component

Interface Security.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 1

C H A P T E R 2

Creating a Component Interface

You create and modify component interfaces using Application Designer. This section assumes
that you are already familiar with Application Designer.

Views in Application Designer

When working with a component interface object in Application Designer, you see the

component view on the left and the component interface view on the right.

The Component View and Component Interface View

The component view shows exactly the same hierarchical record structure that you would see if

you had the component open in Application Designer. The Component Interface View shows a

similar structure.

In general, you add individual objects, or groups of objects, to the component interface by

dragging objects from the component view into the component interface view. All objects in the

component view are part of the underlying component interface, and they are accessible through

user-defined methods or through PeopleCode events on the component. However, only the

objects in the component interface view will be exposed to the calling program at runtime.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 2 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Component Interface View

The component interface view displays a tree in which each object type is represented by a

unique icon. Some icons are used in both the component view and the component interface view

with slightly different meanings. The tables below explain the meaning of each icon in the

component interface view.

Icon Description

Component Interface

Group of keys

Property that is a key field from the underlying record

Alternate search key

Group of properties or methods

Property or method

Collection

Property that is a required field for the underlying record

Identifies an item in a component interface that is no longer

“in sync” with the underlying component. For example, if a

field on which a property depended is deleted from the

component, this icon appears.

Component Interface View Display

Columns What displays…

Name Name of a specific element of a component interface (such as the

name of a property or method).

Record Name of the underlying record upon which a specific element is based.

Note that if this underlying record name changes, the component

interface will continue to point to the appropriate record.

Field Name of the field to which a component interface property points. As

with the record name, the underlying field name can change, and the

component interface will continue to point to the appropriate field.

Read Only

(Y/N)

Displays whether a specific property or collection has been marked

read-only.

Comment Displays any comments that exist in the Edit Property dialog for the

selected key, property, or collection.

In the component interface view, properties display in the same order as they appear in the
component; that is, they are not sorted alphabetically.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 3

Creating a New Component Interface

Because each component interface points to a single component, you must know for which

component you are constructing a component interface. You may choose to use an existing

component within your application, or create a new one for the sole purpose of constructing a

component interface. Many parts of the component interface, such as the keys, are created based

on settings in the referenced component.

To create a new component interface

1. Select File, New from the Application Designer menu.

2. Select the Component Interface object type from the New dialog.

Selecting a Component for Component Interface

3. Select the component on which this component interface will be based.

Once you select the appropriate component, you’ll see a message asking if you want default

component interface properties to be defined based on the fields of the selected component.

Confirming default property values

4. Click Yes to confirm the default property definitions, or No if you don’t want any default

properties.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 4 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

An untitled component interface displays showing the Get keys and Find keys. However,

Create keys are produced only if the search record of the underlying component is set to run

in Add mode (the example shown below does not have Create keys, because the search record

of the underlying component cannot run in Add mode). Application Designer creates the
keys for you as you drag and drop objects.

A New Component Interface

Note: You can begin adding properties to a new component interface at any point.

However, you cannot add any methods to the component interface until you have saved the

component interface.

5. Save the component interface.

When you save a new component interface, Application Designer automatically creates the

standard methods Cancel, Find, Get, and Save. Create is not generated automatically unless

the component supports the Add mode. Therefore, the Create standard method has not been

generated for the component interface displayed.

Once you have saved the component interface, you can add user-defined methods to it.

6. Add properties, collections, or methods to the component interface.

For more information on creating properties, collections, and methods, see Creating

Properties, Creating Collections, and Working with Methods.

7. Set the security.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 5

For more information on enabling security, Setting Component Interface Security.

8. Test the component interface.

Application Designer includes a helpful feature for testing any component interface you

create.

For more information on testing your component interface, see Testing a Component

Interface.

Creating Properties

To create a property

1. Drag a record, field, or scroll from the component view to the component interface view.

It does not matter exactly where you drop the object in the component interface view. The

system automatically converts the field or record into a component interface property, and

places it in the appropriate place in the list of Properties. Also, when you drag an object

from the component view into the component interface view, all “child” objects are brought

into the component interface automatically. Once these child properties have been added to

the component interface, you can remove each property individually, if necessary.

Dragging a key from the search records, which precede the level zero record in the page

view, will add a key to all appropriate key collections (Get, Create, and Find) on the

component interface. Because appropriate keys are added automatically when a component

interface is first created, you typically will have to add keys only if the new keys are added to
the underlying component after the creation of the component interface.

To delete a property

1. Select the property and press the Delete key on your keyboard.

You can also right-click on the property and select Delete from the pop-up menu, or highlight

the property and select Edit, Delete from the Application Designer menu. Standard

Windows behavior is employed for selecting multiple properties. That is, you can Shift+click

to select a series of properties or Control+click to select multiple, individual properties.

Property names are automatically named according to the corresponding fields from the

component. However, it’s easy to rename a property if necessary. A renamed property still
references the original field, regardless of the name change.

To rename a property

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 6 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

1. Click the property name twice in the component interface view.

Use two “slow” clicks, as opposed to double-clicking. You can also right-click on the

property and select Edit Name from the pop-up menu, or select Edit, Edit Name from the

Application Designer menu. In the example below, we’re changing the EMPLID property

name to EmployeeID.

2. Type in the new property name.

Programs accessing this component interface must reference the new property name.

Making Properties Read-Only

You can make any property (including collections) read-only. At runtime, a read-only property

can be read, but not updated.

To make a property read-only

1. Highlight the property and select Edit, Toggle Read Only Access from the Application

Designer menu.

You can also right-click on the property in the component interface view, and select Toggle

Read Only Access from the pop-up menu. A “Y” appears in the Read Only (Y/N) column of

the component interface view corresponding to each property that you have selected to be
read-only.

Creating Collections

A collection is a property that points to a scroll, rather than a field, in a component interface’s

underlying component. Creating collections is similar to creating other properties—you drag the

scroll from the component view into the component interface view. There are some important
points to keep in mind when creating scrolls, as follows:

• When dragging a scroll into the component interface view, all “child” scrolls come with it.

This is the same behavior you would expect when creating any property. “Child” properties

are always added automatically when you drag a field from the component view to the

component interface view. After the property or collection has been created, you can delete
individual child properties or collections manually, if necessary.

• Keys that appear in parent and child scrolls are not added to child collections. In order for

the component interface to function as expected, the keys must remain synchronized at

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 7

different levels of the component. Having keys at lower levels, makes it possible to

compromise this synchronization. Therefore, lower-level keys are not introduced into the

component interface.

• When dragging a child scroll into the component interface view, parent collections are

created automatically. For example, if you drag just the level two scroll from the component

view into the component interface view, a level zero collection and a level one collection are

created for you automatically in the component interface. This hierarchy of collections is

necessary so that it’s possible to navigate to the child collection at runtime.

Adding and Removing Keys

Application Designer makes keys automatically when you create a component interface.

Typically, you will have to add keys only if new keys are added to the underlying component

after the creation of the component interface. However, you may want to modify the Find keys—

either to restrict a user from searching on a particular key or to add an alternate search key that

didn’t exist when the component was created.

To add a key

1. Drag the desired key from the component view to the component interface view.

You first will need to expand the Search key collection (the first collection) in the component

view, and then drag the desired key to the component interface view.

To delete a Find key

1. Select the desired Find key in the component interface view and press the Delete key.

Which Properties to Expose?

You easily create component interface by dragging a scroll from the component view into the

component interface view. However, some forethought is required before exposing a component

as a component interface. Certain components, in fact, must be carefully exposed to ensure that

they behave as you would expect.

Guidelines for Exposing Components

The first time you drag a scroll from the component view to the component interface view, the

system follows certain rules to determine what properties to expose.

• Considerations about levels. Keys are exposed only at the highest level collection in which

they first appear. In some cases, this is not desirable. When an effective-dated page that has

the same level zero and level one record is exposed through a component interface, it should be

exposed in exactly the same way it is displayed on the page. In this case, only one key field

typically appears at level zero and the effective-date keys appear at level one. Your component

interface wrapper should expose the page in the same fashion—removing keys that do not

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 8 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

appear on the level zero scroll in the page from the component interface top-level collection,

and manually adding those keys that appear on level one scroll in the page to the second-level

collection.

Typically, you will not want to expose Get or Create keys since these are set before a Get or

Create operation and might be inadvertently changed.

• No Add mode on page. If your page does not support Add mode, then typically you will not

want to expose the level zero record of the component, as it will contain data that is not

specific to the component interface you are creating.

• Invisible fields. You should not expose fields that are not visible in the component view. The

component optimization code may eliminate unused fields from its buffers in which case an

error will result when that field is accessed by the component interface.

Working with Methods

A method is an object that performs a specific function on a component interface at runtime.

Each method is simply a PeopleCode function made accessible to other programs. As with

properties, methods are saved as part of a component interface definition. There are two main
types of methods: standard methods and user-defined methods.

For more information on PeopleCode related to component interface, see Component

Interface Classes in the PeopleCode Reference.

Standard Methods

By default, each component interface is created with the standard methods—Cancel, Find, Get,

Save—enabled. Additionally, the Create standard method is generated if Create keys have been

added to the component interface. When creating a new component interface, you must save the

component interface before the standard methods will be created. Application Designer adds the

standard methods upon the first save of a new component interface.

You can control whether or not standard methods are accessible at runtime. Follow the procedure
below to enable or disable any standard method.

To enable or disable standard methods

1. Select File, Object Properties from the Application Designer menu.

You can also right-click anywhere in the component interface view and select Component

Interface Properties from the pop-up menu. The Object Properties dialog opens.

2. Click the Standard Methods tab.

You can enable or disable any of the standard methods selecting the corresponding checkbox.

Doing so determines whether or not the method is available at runtime when the component

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 9

interface is accessed. Create is grayed out in the example below. This is because no Create

keys exist for this component interface, which indicates that the search record for the

underlying component cannot run in Add mode.

Enabling Standard Methods

User-Defined Methods

To create a user-defined method

1. Right-click anywhere in the component interface view, and select View PeopleCode from the

pop-up menu.

You can also highlight any object in the component interface view, and then select View,

View PeopleCode from the Application Designer menu. The PeopleCode editor appears.

With a new component interface, initially there will be no PeopleCode displayed in the
editor, because no user-defined methods have been created yet.

2. Write the required PeopleCode functions.

Any PeopleCode functions you write will be stored in a single PeopleCode program attached

to the component interface. You must set permissions for every user-defined method. If

you've set permission to Full Access, at runtime, that function for the component interface

will be exposed to calling programs as a method.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 1 0 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Creating User-Defined Methods

New user-defined methods do not appear in the list of methods until you save the component

interface.

Setting Component Interface Security

After creating a component interface, you need to set security for it before the component

interface can be tested or accessed. As with other PeopleTools objects, access must specifically

be granted before a component interface is available for use at runtime by any user. Additionally,

before a component interface can be tested, security access must be given to the appropriate class,

so that the desired user(s) can access the component interface.

There are essentially two ways to secure component interfaces:

• Use Maintain Security to set security. Maintain Security addresses component interface

security in the same manner that it addresses security for other PeopleTools objects. You can

use it to control access to individual methods or entire component interfaces.

• Use Application Designer to mark individual properties “read only.” Any property can be

marked “read only” in the component interface design. For more information, see Making

Properties Read-Only.

To set up component interface security

1. From your browser, select PeopleTools, Maintain Security, Use, Permission Lists.

2. Select the permission list to which you want to set security.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 1 1

3. Select the Component Interface tab.

Component Interface tab in Maintain Security

4. Select the component interface from the list for which you want to set security.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 1 2 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Component Interface list

If you want to add another component interface to the list, click . Enter the component
interface name in the text box.

Inserting a Component Interface

The Authorized Component Interface screen appears, showing all methods (both standard

and user-defined) within the component interface and their method access.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 1 3

Setting Access Permissions for Methods

5. Set the Access Permission for each method.

For each method within the component interface, you can choose between Full Access and

No Access. You must grant Full Access to at least one method to make the component

interface available for testing and other online use. Click OK when done.

Testing a Component Interface

After setting the security parameters for a component interface, you can test the contents and

behavior of that component. When you are working with a test component, real data from the

database is used. Therefore, if you save the information you change by calling the Save method,

it will be changed in the database.

To test a component interface

1. Open the component interface in Application Designer.

2. Select Tools, Test Component Interface from the Application Designer menu.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 1 4 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

You can also right-click anywhere in the component interface view and select Test

Component Interface. The Test Component dialog appears. This dialog displays the key

structures (in the left-hand columns) for getting, creating, or finding an instance of the

component interface. The right-hand columns provide a place for you to enter sample key

values for testing.

Testing a Component Interface

3. Enter key values.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 1 5

To enter a key value, double-click in the column to the right of any displayed keys. You can

then edit the value in the right-hand column. The data used for the test will correspond to the

key values you enter here. In the example above, we’ve entered an employee ID of 8001.

4. Select whether to run in Interactive Mode.

If you select the Interactive Mode box, this means that the component will be sending each

“set property” request to the application server immediately, instead of storing them up to be

sent in batches; is means that edit processing (and other processing, such as FieldChange

PeopleCode) will occur for each transaction.

Whether or not you select this option depends on how you expect a particular component

interface to be used, as well as what you are specifically testing at the moment. In a real

production system, this parameter can significantly affect performance, but it makes little

difference in the test component. In non-interactive mode, errors and properties are not

updated until a method is executed. By default, Interactive Mode is turned on.

5. Select whether to Get History Items.

Selecting this option determines whether to retrieve “history” data. This option applies to

effective-dated fields only, and is equivalent to running in either Update/Display mode or

Correction mode online. This option is initially turned off.

6. Decide whether to Get Existing records or to Create New a new one for the test.

The Get Existing option is equivalent to opening a record in Update/Display or Correction
mode online. It tests calling the Get method through the Component Interface API. The

Create New option is equivalent to creating a new record in Add mode online. It tests calling

the Create method through the Component Interface API. If your component does not

support the Create method, this button will be disabled.

If you want to enter a partial key, use the Find option. Application Designer will then use the

values in the FindKeyInfoCollection tree to return a set of target components. You then can

choose a single instance by selecting and clicking the Get Selected button. If you do not

enter a partial key before clicking Find, all key values in the database are returned. This is the

same as calling the Find method through the Component Interface API; followed by selecting

a value from the Find results, and then setting the Get key and calling the Get method.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 1 6 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Using the Component Interface Tester’s “Find” Option

After you click either the Get Existing, Create New, or Find button, the Component

Interface Tester dialog appears.

Using the Component Interface Tester

7. Test component interface properties.

To change a value, double-click on a value and enter a new value. Note that the test

component interface uses real data. If you save the information you’ve changed by calling

the Save method, the information will be changed in the database (in Interactive Mode).

Some basic validation is done when you leave the field—which is equivalent to tabbing off of

a field in the online case. This validation includes system edit, FieldChange PeopleCode

events, and FieldEdit PeopleCode events. Further validation may be done when the Save

method is called (SaveEdit, SavePreChange, Workflow, and SavePostChange). If errors or

warnings are encountered, they are displayed in the Error Message Log at the bottom of the

window. The Error Message Log displays the same text that would appear in the Session

object PS-Messages collection if you were accessing the component through the Component

Interface API.

8. Test component interface methods by right-clicking on the component interface name.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 1 7

A pop-up menu appears showing the Save and Cancel standard methods, plus any user-

defined methods that exist for the component interface. The Find, Create, and Get standard

methods are not valid for an instantiated component, and therefore are not shown.

If a component interface method requires one or more parameters, a dialog in which you can

enter the parameters will appear. After the method executes, the same dialog appears again,

displaying any change to the parameters caused by the method. The return value of the

function is displayed in the title of the dialog. If a component interface requires no

parameters, you will not see the initial dialog, but will see the return value dialog following
the function call.

Testing Component Interface Methods

Because the execution of a component interface method can result in a change to the

component interface structure, Application Designer will always redraw the component

interface tree in its collapsed form following a method call.

9. Test collection methods by right-clicking on the collection name.

A pop-up menu appears showing the standard collection methods. Select the collection

method you want to test for this component interface. After you select a collection method to

test, the Enter parameters dialog prompts you to enter an item number for the collection

method you are testing. The index [Number] you enter is used to retrieve, insert, or delete

an item, according to the rules discussed below.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 1 8 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Using the Enter Parameters Dialog

After you enter an index [Number], the result is shown in the dialog. If there is a return

value, it is displayed in the title bar. Otherwise the message “No value” is displayed. Click

OK or Cancel to dismiss the dialog.

The purpose of each collection method is as follows:

• Item(index): Returns the row at the specified index. Only the success or failure of this routine

is of interest from within the test component.

• InsertItem(index): Inserts a new item. Equivalent to pressing the F7 button online. A new

item will be inserted following the index [Number] you specified on the Enter parameters

dialog.

• DeleteItem: Deletes the item number you specified on the Enter parameters dialog.

Equivalent to pressing the F8 button online.

• ItemByKeys(key1, key2, …): Returns the row corresponding to the specified keys. Only the

success or failure of this routine is of interest from within the test component.

• CurrentItem: This method returns the effective row in an effective-dated record. Only the

success or failure of this routine is of interest from within the test component.

• GetEffectiveItem(DateString, SeqNum): Returns a pointer to the DataRow that would be

effective for the specified date and sequence number. A more general case of the

GetCurrentItem function, which returns the object that is effective at this moment. This
method works with effective-dated records only.

• GetEffectiveItemNum(DateString, SeqNum): Returns the item number within the collection

of the DataRow that would be effective for the specified date and sequence number. A more

general case of the GetCurrentItemNum function, which returns the number of the object that

is effective at this moment. This method works with effective-dated records only.

Getting the Signature of the ItemByKeys Method

You can get the signature for the ItemByKeys method (or any other method) when testing a

component interface. Open the object, and select Tools, Test Component. Navigate to the

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 1 9

desired collection, right-click on it, and select ItemByKeys from the pop-up menu. A dialog

appears showing you the specific parameters, types, and the order in which you should call

ItemByKeys. This is particularly helpful for the ItemByKeys method, because its signature is

different for each component interface.

In the following example, the keys for ABSENCE_HIST's ItemByKeys method are

ABSENCE_TYPE (String), BEGIN_DT (String), and EMPLID (String).

Getting the Signature of the ItemByKeys Method

Viewing the Signature of the ItemByKeys Method

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 2 0 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Validating a Component Interface

Validation ensures that a component interface definition has not deviated from its source

component. This can happen whenever a component deletes or adds a record or field. It can also

happen if the key structure is modified by adding or removing keys. Properties and keys that are

no longer synchronized with their associated component are marked with the icon.

With respect to component interfaces, validation is the process of checking whether the

underlying component of a component interface has changed. It does not validate the

PeopleCode associated with a component interface. To validate the PeopleCode, you must

open the component, and then select Tools, Validate from the Application Designer menu.

To correct an invalid component interface, you may have to delete properties for which there are

no longer appropriate fields or records. If the structure of the source component has changed, you

may have to delete old properties and re-add the new properties in their appropriate locations. If

a new property provides the same functionality as a previous property, you can change the name

of the new component interface property back to its original name, which will make it appear to

external applications as though the component interface has not changed. This will work only if

the new component interface is not structurally different than the original component interface.
That is, the properties still appear at the same collection levels.

To validate a component interface

1. Open the component interface in Application Designer.

Validation occurs automatically whenever you open a component interface in Application

Designer.

2. Select Tools, Validate for Consistency from the Application Designer menu to validate an

open component interface.

You can also right-click anywhere in the component interface view and select Validate for

Consistency. As you make changes to components, component interfaces, or other related

objects, you may want to validate a component interface that you already have open in

Application Designer, rather than closing and re-opening the component interface to force

validation to occur. Use this feature to validate a currently open component interface.

Generating Visual Basic Template

After creating and testing the component interface, you can begin coding the run-time portion of

the application. From Application Designer, you can generate a Visual Basic template based on

your component interface. Then you can modify the template as needed.

To generate a Visual Basic Template

1. Open a component interface definition in Application Designer.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 2 1

Right-click anywhere in the definition view to display the pop-up menu.

Generate Visual Basic Template pop-up

2. Select Generate Visual Basic Template.

When the template is successfully generated, the following message displays:

Generated VB Template message

3. Open the generated file and modify the source code, as needed.

Example of Visual Basic Generated File

The following file is a dynamically generated Visual Basic template you can use as a sample.

You need to replace all <*> notations with valid Visual Basic variables.

Private Sub ABS_HIST()

On Error GoTo eMessage

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 2 2 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

'***** Set Object References *****

Dim oCISession As Object

Dim oABS_HIST As Object

Dim oABSENCE_HIST As Object

Dim oABSENCE_HISTItem As Object

'***** Set Connect Parameters *****

strAppSeverPath = <*>

strOperatorID = <*>

strPassword = <*>

'***** Create PeopleSoft Session Object *****

Set oCISession = CreateObject("PeopleSoft.Session")

'***** Connect to the App Sever *****

oCISession.Connect 1, strAppSeverPath, strOperatorID, strPassword, 0

'***** Get the Component *****

Set oABS_HIST = oCISession.GetCompIntfc("ABS_HIST")

'***** Set the Component Interface Mode *****

oABS_HIST.InteractiveMode = False

oABS_HIST.GetHistoryItems = True

'***** Set Component Get/Create Keys *****

oABS_HIST.EMPLID = <*>

'***** Execute Get Or Create *****

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 2 3

oABS_HIST.Get

'***** BEGIN: Set Component Interface Properties *****

'***** BEGIN: Set Component Interface Properties *****

'Set ABSENCE_HIST Collection Field Properties -- Parent: PS_ROOT Collection

Set oABSENCE_HIST = oABS_HIST.ABSENCE_HIST

'For <*> = 1 to oABSENCE_HIST.Count

Set oABSENCE_HISTItem = oABSENCE_HIST.Item(<*>)

oABSENCE_HISTItem.EMPLID = <*>

oABSENCE_HISTItem.ABSENCE_TYPE = <*>

oABSENCE_HISTItem.BEGIN_DT = <*>

oABSENCE_HISTItem.RETURN_DT = <*>

oABSENCE_HISTItem.DURATION_DAYS = <*>

oABSENCE_HISTItem.DURATION_HOURS = <*>

oABSENCE_HISTItem.REASON = <*>

oABSENCE_HISTItem.PAID_UNPAID = <*>

oABSENCE_HISTItem.EMPLOYER_APPROVED = <*>

oABSENCE_HISTItem.COMMENTS = <*>

oABSENCE_HISTItem.DAY_OF_WEEK = <*>

'Next <*>

'***** END: Set Component Interface Properties *****

'***** END: Set Component Interface Properties *****

'***** Save Component Interface *****

oABS_HIST.Save

oABS_HIST.Cancel

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

2 - 2 4 C R E A T I N G A C O M P O N E N T I N T E R F A C E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Exit Sub

eMessage:

'***** Display VB Runtime Errors *****

MsgBox Err.Description

'***** Display PeopleSoft Error Messages *****

If oCISession.PSMessages.Count > 0 Then

For i = 1 To oCISession.PSMessages.Count

MsgBox oCISession.PSMessages.Item(i).Text

Next i

End If

End Sub

Generating PeopleCode

After creating and testing the component interface, you can generate the PeopleCode and then

modify it, if needed.

To generate PeopleCode from a component interface

1. Open a component interface definition.

2. Insert the component interface into a project.

Select Insert, Current Object into Project. Save the project.

3. Open the PeopleCode editor.

4. Select the component interface from the project workspace.

Drag and drop the object from the project into the PeopleCode editor.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C R E A T I N G A C O M P O N E N T I N T E R F A C E 2 - 2 5

PeopleCode generated by dragging and dropping ABS_HIST component interface

5. You can make any necessary changes to the PeopleCode in the PeopleCode editor window.

You must replace the “<*>” notations, which are variable place holders, with specific values

for your program before executing the PeopleCode.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L T H E C O M P O N E N T I N T E R F A C E A P I 3 - 1

C H A P T E R 3

The Component Interface API

After creating your component interface, you need to create an API which will build the dynamic

link libraries, classes, and registry settings necessary to allow a third party application to

communicate with PeopleSoft. These files reside on the client machine; that is, the web server

for ASP, and the machine running the Java program for Java. The registry file may also need to

be executed to update the registry with the new libraries.

Only external applications, such as COM or C/C++ programs, require a component interface API.

PeopleCode programs do not require a component interface API, and in fact, we do not

recommend building a Component Interface API if a component interface is to be accessed from
PeopleCode only.

To build a component interface

1. Open any component interface.

2. Select Build, PeopleSoft APIs from the Application Designer menu.

Build PeopleSoft API Bindings dialog

3. Set options for COM Type Library area.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

3 - 2 T H E C O M P O N E N T I N T E R F A C E A P I P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Build Select this checkbox if you are building the API so that it

can be accessed from Visual Basic programs. Otherwise,

the type library will not be built.

Target Directory This is the directory to which the API is built.

Type Library Template Specifies the type library template you want to use.

COM Server DLL Location This identifies the directory in which the PeopleSoft API

Adapter (psapiadapter.dll) resides on the workstation. The

default location is the PeopleTools “bin” directory (set by

the PS_HOME variable set in Configuration Manager).

The system creates the following type library files in the

Location you specify:

Peoplesoft_Peoplesoft.tlb

Peoplesoft_Peoplesoft.reg

Auto Register Select this option to create the registry information

required for the type library and execute it immediately, so

that your workstation’s registry will be immediately

updated without having to restart it.

Clean Up Registry Select this option to set up the clean up registry.

 These two files are only on the workstation used to build the API. All other workstations

that will make use of the API must have these files copied to the corresponding directories.

Then, the registry file (Peoplesoft_Peoplesoft.reg) must be imported to each workstation’s

registry by executing (double-clicking) the generated registry file. If the directory structure

differs from the original workstation on which the APIs were built, then you must edit the

registry file to change the location of the psapiadpter.dll to reflect the correct directory

structure, and then import the registry file on the workstation.

4. Set options for C programs as required.

If you are building the API so that it can be accessed from C programs, click the Build

checkbox that appears in the C Header Files frame. Otherwise, the header file(s) will not be

built.

The Location identifies the directory in which the header files must reside on the

workstation. The default location is the directory from which you started PeopleTools.

5. Build the APIs.

Currently you cannot select an individual API to be built. If you create a new API or modify

an existing one, you will have to rebuild all the APIs.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L T H E C O M P O N E N T I N T E R F A C E A P I 3 - 3

Done message…

Note. The directory containing the PeopleSoft API Adapter (psapiadapter.dll) needs to be set

in the PATH environment variable for C Header Files.

Binding Considerations

This section describes some things to consider depending on the binding type: COM bindings on

a local workstation or web server or C Header file bindings.

COM Binding

When deploying component interface on a local workstation or web server with COM binding,
you need the following:

• Third party application (non-PeopleSoft)

• Type library called PeopleSoft_PeopleSoft.tlb. This type library is not specific to a single

database instance—it is specific to those database objects.

• Registry file called PeopleSoft_PeopleSoft.reg. This registry file is not specific to a single

database instance. It is specific to the path settings for the typelib and the psapiadapter.dll that

you chose during the Build API . Be aware that often the machine you are deploying to is not
the machine that you ran the Build APIs on.

• External API installation

• PeopleSoft Application Server

• PeopleSoft application

Third Party Application

For applications written in Visual Basic, Excel Visual Basic for Applications (VBA), or other
COM languages, note the following:

• If your program is early-binding, there is a direct reference to the path of the typelib in your

code. Therefore, as you deploy you must have the typelib in the same directory on each
machine.

• If your program is late-binding, there is no a direct reference to the path of the typelib in your

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

3 - 4 T H E C O M P O N E N T I N T E R F A C E A P I P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

code. Your code will look in the registry for the path to the typelib. Therefore, as you deploy

you can have the typelib in different directories on each machine. You do need to update the

registry settings as part of the deployment. This is a more flexible approach.

External API Installation

You will be doing the External API installation on each workstation that runs the non-PeopleSoft

application.

During the External API install, you will be prompted for the directory that you want the External

API files to go. This needs to be the same directory that you used as the settings for the Build
APIs process.

Note that the External API requires a Java Virtual Machine because the calls to the application
server are done through JOLT because it supports multi-threading.

C Header Binding

When deploying component interface with C Header binding, you need the following:

• Third party application (non-PeopleSoft)

• C Header files: peoplesoft_peoplesoft._i.h

• External API installation

• PeopleSoft Application Server

Third Party Application

For applications written in C or C++, note the following:

• The function names generated by the Build APIs process can be quite long. You may want to

consider creating classes within your C++ code to mask this length throughout your program.

• When you create your installation for your C or C++ program, make sure you include the setup

of the path to the psapiadapter.dll.

C Header File

When you do the Build API process in the Component Interface Designer, it creates one

peoplesoft_peoplesoft_i.h file for all of the objects in the PeopleSoft database. This C header file

is not specific to a single database instance—it is specific to those database objects.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L T H E C O M P O N E N T I N T E R F A C E A P I 3 - 5

Connecting to a Component Interface

To access a component interface from a Visual Basic, C/C++ application, or PeopleCode, you
must first build the component interface object.

Any workstation, running a Visual Basic program, requiring access to the API must have

DLL files, component interface type library and registry information copied to the

appropriate locations. For a web application the above mentioned files need to be copied on

the Web Server only.

Installing External Client Settings for the API

Before a client machine can access component interfaces with COM, certain environment settings

must be set up on the client workstation. These settings are not required for PeopleCode access to

component interfaces. Each client workstation that accesses component interfaces through an

external (non-PeopleCode) application will need the external API directory installed.

For more information about installing the external client settings, consult the PeopleSoft 8
Installation and Adminstration Guide for your database platform.

Comparing Component Interface and Components

In many ways, accessing a component interface is equivalent to working with an online

component. However, the fact that component interfaces are not equivalent to components means

that there are a few key areas in which you’ll see differences between component interfaces and
components. For example, search dialog processing and some PeopleCode events are different.

Differences in Search Dialog Processing

When you run a component interface, the SearchInit, SearchSave, and RowSelect events do not

fire. This means that any PeopleCode associated with these events will not run. The first event to

run is RowInit.

Differences in PeopleCode Event and Function Behavior

PeopleCode events and functions that relate exclusively to GUI and online processing cannot be

used by component interface. These include:

• Menu PeopleCode and pop-up menus. The ItemSelected and PrePopup PeopleCode events

are not supported. In addition, the CheckMenuItem, DisableMenuItem, EnableMenuItem,

HideMenuItem, and UncheckMenuItem functions aren’t available.

• Transfers between components, including modal transfers. The TransferPage,

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

3 - 6 T H E C O M P O N E N T I N T E R F A C E A P I P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

DoModalPageGroup, and IsModalPageGroup functions cannot be used.

• Dynamic tree controls. Functions related to this control, such as GetSelectedTreeNode,

GetTreeNodeParent, GetTreeRecordName, RefreshTree and TreeDetailInNode cannot be

used.

• ActiveX controls. The PSControlInit and PSLostFocus events are not supported, and the

GetControl function cannot be used.

Limitations of Client-Only PeopleCode

• Component interface can run on either the client or the server. A component interface runs on

the client only if both of the following conditions are true: (Otherwise, the component

interface runs on the server.)

� The code calling the component interface is running on a client machine.

� The second parameter of the Connect method is EXISTING.

• Component Interfaces must run either entirely on the server or entirely on the client. To ensure

this restriction, component interface references declared in PeopleCode must be declared as
local variables.

• Some built-in functions are always client-only, others are client-only under specific conditions.

• Some built-in functions behave differently when used in three-tier mode as opposed to two-tier

mode.

For more information see Client-Only PeopleCode.

Email from a Component Interface

If you want to use a component interface to send email, use TriggerBusinessEvent PeopleCode

event, and not SendMail.

WinMessage Unavailable

You cannot use WinMessage in a component that will be used to build a component interface.

You should use MsgGet() instead.

Calling another Component Interface

A component interface should not call itself in any of the PeopleCode included within its

component definition, because this may result in an infinite loop of the component interface.

A component interface should not call itself from a user-defined method.

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E E X A M P L E 4 - 1

C H A P T E R 4

Component Interface Example

This section describes the steps in creating a sample component interface.

To create a component interface

1. Create a new component interface in Application Designer by selecting File, New,

Component Interface.

The system prompts you to open the component on which the component interface will be

based.

2. Add properties to the component interface by dragging fields, tables, or scrolls over to the

rightmost pane.

The easiest way to add properties is to drag level 1 scrolls to the right side and drop. This

exposes the data that a normal page would have access to in the component.

Creating a component interface

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

4 - 2 C O M P O N E N T I N T E R F A C E E X A M P L E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

3. Save the component interface with a unique name.

You are ready to build the component interface. Highlight an object in the rightmost pane and

select Build, PeopleSoft APIs.

Building the APIs

PeopleCode Example

The following example shows how a PeopleCode program might call a component interface

named ABS_HIST.

rem Declare variables;

Local ApiObject &SESSION;

Local ApiObject &CI;

Local ApiObject &ABS_HISTCollection;

Local ApiObject &ABS_HISTItem;

rem Establish a PeopleSoft Session;

rem The Connect method connects a session object to a PeopleSoft application

server;

rem Syntax : (version, {"EXISTING" | ConnectID:Port}, OperatorID, Password,

ExtAuth);

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E E X A M P L E 4 - 3

&SESSION = GetSession();

If (&SESSION.connect(1, "existing", "", "", 0)) Then

rem Get an instance of the Component Interface;

rem The Component Interface definition should already exist;

&CI = &SESSION.GetComponent(Component.ABS_HIST);

If (&CI <> Null) Then

rem Set required keys to GET the component;

&CI.EMPLID = "8001";

rem Instantiate the Component Interface;

If (&CI.get()) Then

rem Get a specific row in a collection;

&ABS_HISTCollection = &CI.ABSENCE_HIST;

&ABS_HISTItem = &ABS_HISTCollection.item(1);

WinMessage(&ABS_HISTItem.BEGIN_DT | ", " |

&ABS_HISTItem.EMPLOYER_APPROVED);

rem Set properties in the selected row;

If (&ABS_HISTItem.BEGIN_DT = "09/04/1983") Then

&ABS_HISTItem.BEGIN_DT = "09/03/1983";

&ABS_HISTItem.EMPLOYER_APPROVED = "N";

Else

&ABS_HISTItem.BEGIN_DT = "09/04/1983";

&ABS_HISTItem.EMPLOYER_APPROVED = "Y";

End-If;

rem Save changes to database;

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

4 - 4 C O M P O N E N T I N T E R F A C E E X A M P L E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

If (&CI.save()) Then

WinMessage("Successfully Saved Component Interface.");

Else

WinMessage("Error occured in Save method.");

End-If

Else

WinMessage("Error occured in Get method.");

End-If;

Else

WinMessage("Error occured in GetComponent.");

End-If;

Else

WinMessage("Error occured in connect.");

End-If;

Java and Active Server Page Examples

The Java and Active Server Page (.asp) examples shown in this section use a component interface

on the PTDMO demo database named BUS_EXP, which is based on the Business Expenses
Component.

The following business expenses page allows the user to enter information about a type of

expense, the amount, date, currency type, purpose, and so on.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E E X A M P L E 4 - 5

Business Expenses Page

Note. We recommend that before you create a component interface, you be familiar with the

business rules, required fields, and acceptable input for a page. For example, when entering

a new row in a Collection, a third party application needs to be configured so that the user

enters all required fields before attempting to save or commit the row in PeopleSoft. If all

required fields are not entered, the application will error when the user tries to invoke the

Save() method.

The BUS_EXP component interface has two scroll levels just like the Business Expense Page.

Because the NAME and LAST_NAME_SRCH fields are alternate search keys on the search

record, just as on the page, they are not accessible in the same way as the properties. The Create()

method is not available in the component interface because this page does not have the ‘Add’

mode enabled.

User-defined methods can only take simple types of arguments (such as number, character, and so

on) because they are called from C/C++, COM, Visual Basic, Java, and PeopleCode. More

complex types of arguments like rowset, array, and record are unknown to C/C++, COM and

Visual Basic. All user-defined methods must return a value, even if it is only a dummy value.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

4 - 6 C O M P O N E N T I N T E R F A C E E X A M P L E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Business Expense Component Interface Definition

Active Server Page Example

In this example, the page prompts the user to search for a record first. For example,

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E E X A M P L E 4 - 7

Business Expenses Start Page

This page conmprises two HTML forms. When the user enters the search data and clicks Search,

the opening_page.asp file populates the dropdown list. The following section shows the Visual

Basic script with comments of the file.

Connecting to the Application Server

To access component interface, you need to establish a PeopleSoft session.

To create a session object, use the server.CreateObject() method. The Connect method, which

takes five parameters, actually logs into a PeopleSoft session. Operator ID and password should

not be hard-coded in the application, rather the user should be prompted at runtime. The

Connect() method connects a session object to a PeopleSoft application server. If you already

have a PeopleSoft session running, you must specify EXISTING, and not the ConnectID:Port. If

you are using an existing connection to the application server, you cannot specify a different

operator ID or password. If you do not specify these values as NULL, you must specify the exact

same operator ID (and password) as the one that originally started the session.

Getting an Instance

Use the GetComponent() method with a session object to get an instance of a previously created

component interface. Next, we want to search for an existing record by performing a search using
primary or alternate search keys.

Code block 1 loads the search criteria from the previous call made by opening_page.asp.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

4 - 8 C O M P O N E N T I N T E R F A C E E X A M P L E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

<%

‘code block 1

SEARCH_NAME = Request.Form("SEARCH_NAME")

NAME_SELECT = Request.Form("NAME_SELECT")

NAME_STRING = Request.Form("NAME_STRING")

SEARCH_LAST_NAME = Request.Form("SEARCH_LAST_NAME")

LAST_NAME_SELECT = Request.Form("LAST_NAME_SELECT")

LAST_NAME_STRING = Request.Form("LAST_NAME_STRING")

SEARCH_EMPLID = Request.Form("SEARCH_EMPLID")

EMPLID_SELECT = Request.Form("EMPLID_SELECT")

EMPLID_STRING = Request.Form("EMPLID_STRING")

Code block 2 makes a connection to the application server and gets the BUS_EXP component

interface.
‘code block 2

Set oSession = server.CreateObject ("PeopleSoft.Session")

nStatus = oSession.Connect(1, "//EHARRIS032000:9000", "PTDMO", "PTDMO", 0)

Set oBC = oSession.GetComponent("BUS_EXP")

Finding an Existing Record

After getting an instance of the component interface, we recommend you find what data instances

you have access to using the Find() method. In a PeopleSoft search dialog, when a user enters an

employee ID or name into the appropriate field and clicks the search button, the system performs

the search. To accomplish this in a component interface, set the find keys for the component

interface and then invoke the Find() method. This returns an object of type component

interfaceCollection, which can be indexed to extract data such as the GetKeys.

Code block 3 sets the FindKeys for BUS_EXP.

‘code block 3

oBC.EMPLID = EMPLID_SRCH_STRING

oBC.NAME = NAME_SRCH_STRING

oBC.LAST_NAME_SRCH = UCASE(LAST_NAME_SRCH_STRING)

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E E X A M P L E 4 - 9

Getting an Instance of Data

GetKeys are the key values required to return a unique instance of existing data. If the keys you

specify allow for more than one instance of the data to be returned, or if no instance of the data

matching the key values is found, there is a runtime error. Therefore, we recommend you use the

Find() method to query the component interface for existing records prior to calling Get().

GetKeys can be set using simple assignment to the properties of the component interface and then

the Get() method can be invoked. This will populate the component interface with data based on

the key values you set; this is what has been referred to here as a data instance. The Get() method

will return a Boolean value depending on its success or failure, however recovering this value for

error handling is difficult in ASP because a failure of Get() causes an immediate runtime error in
the script.

Code block 4 uses the find() method for the BUS_EXP object to return a collection of type

BUS_EXPCollection.

‘code block 4

SET BC_COLLECTION = oBC.find()

number_of_rows = BC_COLLECTION.COUNT

Response.Write("
 Number of rows :" & number_of_rows)

Code block 5 indexes through the collection that BUS_EXP.find() returned and uses the EMPLID

and NAME to populate the dropdown list.

‘code block 5

for counter_1 = 1 to number_of_rows

SET BC_TEMP = BC_COLLECTION.ITEM(Cint(counter_1))

emplid_temp = BC_TEMP.EMPLID

empl_name = BC_TEMP.NAME

lst_name_srch = BC_TEMP.LAST_NAME_SRCH

NEXT

Code block 6 creates a data instance of the component interface

‘code block 6

oBC.EMPLID = emplid_temp

Status = oBC.Get()

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

4 - 1 0 C O M P O N E N T I N T E R F A C E E X A M P L E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

%>

Migrating Through Scrolls

After getting a data instance, the next step will be to get access to the data in the component

interface. PeopleSoft organizes data into scrolls so that a first-level scroll might have three rows

of data in it and each of those rows may have several rows of data in them held in a second-level

scroll. A user can examine data by moving the scroll bars up and down and looking at various

data rows in the scrolls.

A scroll bar is similar to a collection in component interface, and rows of data in the collection

are called items. The following screen shows how data is organized in the BUS_EXP component

interface. Note the Properties of that component interface: there are two collections in the

BUS_EXP component interface. The first one is BUS_EXPENSE_PER and the second one,

nested below the first, is BUS_EXPENSE_DTL.

Structure of data in BUS_EXP Component Interface

It is possible to return a BUS_EXPENSE_PER collection through simple assignment as shown

below. Then invoke the Count() method to determine how many Items are in the collection and

returns one of those rows using the Item() method. Once we have an item out of a collection,

data can be accessed in that item just as it would be in a page. This item could be used to change

the EMPLID, EXPENSE_PERIOD, or BUS_EXPENSE_SUM of a row of data. Because there

are two scroll levels, it is possible to repeat for a second scroll collection.

oBC.EMPLID = emplid_temp

Status = oBC.Get()

Set oBusExpPerCollection = oBC.BUS_EXPENSE_PER

Number_of_rows_in_collection_integer = oBusExpPerCollection.Count

Set BusExpPerItem =

oBusExpPerCollection.Item(Cint(some_integer_variable))

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E E X A M P L E 4 - 1 1

Set BusExpenseDtlCollection = BusExpPerItem.BUS_EXPENSE_DTL

Number_of_rows_in_collection_integer = BusExpenseDtlCollection.Count

BusExpenseDtlItem = BusExpenseDtlCollection.Item(Cint(some_integer_variable))

Editing and Accessing Data in an Item

Editing a data member of an Item can be accomplished using direct assignment or through the

setPropertyByName() method, which returns a long. In either case, however, it is necessary to

invoke the Save() method on the component interface object to commit changes.

Accessing data in an Item is nearly the same as editing it, and can also be accomplished in two

ways. The first method is to use assignment as in the example below, and the second method is

to use the GetPropertyByName() method. The GetPropertyByName() method usually returns a

string even if that string represents a number.

detRow.EXPENSE_CD = expense_cd

detRow.EXPENSE_AMT = expense_amt

detRow.CURRENCY_CD = currency_cd

i = detRow.setPropertyByName("BUSINESS_PURPOSE", business_purpose)

i = detRow.setPropertyByName("DEPTID", deptid)

oBC.Save()

expense_cd = detRow.EXPENSE_CD

expense_amt = detRow.EXPENSE_AMT

currency_cd = detRow.CURRENCY_CD

oRow.GetPropertyByName("business_purpose")

oRow.GetPropertyByName("DEPTID")

Inserting a Row into a Collection

Set detRow = detRows.InsertItem(Cint(some_integer_variable))

Notice that the return value for inserting a new Item into a collection is the Item that was just

inserted. After the row is inserted, edit all of the required fields in the item. If required fields are

blank or data entered violates some business logic, the application will return a runtime error.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

4 - 1 2 C O M P O N E N T I N T E R F A C E E X A M P L E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Deleting a Row from a Collection

Like inserting items, you can delete items using collection objects.

temp = oRows.DeleteItem(Cint(row_number))

oBC.Save()

The DeleteItem() method returns a boolean value according to the success or failure of the

method and it is important to invoke the Save() method to commit the change to the database.

Disconnecting from a Session

After a session is no longer needed, disconnect from the application server. This is done by

calling the disconnect() method on the session object.

call oSession.disconnect

set oSession = nothing

Java Example

Creating user interfaces without the limitations of HTML is a benefit to using Java. It is necessary

for the classpath to be correctly set to include the libraries and the proper include statements must

be made at the beginning of the class definition.

User Interface for Java Client

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E E X A M P L E 4 - 1 3

Connecting to the Application Server

Connecting to the application server in Java is similar to a connection with an .asp file. A C

Adapter object is created and then used to create a C Session object. Also, the Connect() method
is called as it was in .asp.

import PeopleSoft.ObjectAdapter.*;

import PeopleSoft.Generated.PeopleSoft.*;

import PeopleSoft.Generated.CompIntfc.*;

private ISession oSession;

private CAdapter oAdapter;

oAdapter = new CAdapter();

oSession = new CSession(oAdapter.getSession());

oSession.Connect(1,"//EHARRIS032000:9000","PTDMO","PTDMO",new byte[0]);

Getting an Instance of the Component Interface

Getting an instance of a component interface is almost identical in Java and.asp. All of the same

rules apply, and the component interface definition must exist or the application will error.

busExpense = new CBusExp(oSession.GetComponent("BUS_EXP"));

Finding an Existing Record

You can query a component interface to find what data instances are possible based on primary

and alternate search keys.

busExpense.setName(searchDialogStrings[0]);

busExpense.setLastNameSrch(searchDialogStrings[1]);

busExpense.setEmplid(searchDialogStrings[2]);

return(busExpense.Find());

Although it looks different, the code above does the exact same things in Java as code lines did in

.asp.

Getting an Instance of Data

busExpense.setEmplid(getKey);

boolean result = busExpense.Get();

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

4 - 1 4 C O M P O N E N T I N T E R F A C E E X A M P L E P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Migrating Through Scrolls

The following code lines set up the connection to the application server and get the component

interface.

oAdapter = new CAdapter();

oSession = new CSession(oAdapter.getSession());

oSession.Connect(1,"//EHARRIS032000:9000","PTDMO","PTDMO",new byte[0]);

busExpense = new CBusExp(oSession.GetComponent("BUS_EXP"));

busExpense.setEmplid(getKey);

boolean result = busExpense.Get();

busExpenseFirstScrollItemCollection = busExpense.getBusExpensePer();

busExpenseFirstScrollItem = firstScrollCollection.Item(firstScrollIndex);

return(busExpenseFirstScrollItem.getBusExpenseDtl());

Editing and Accessing Data in an Item

Editing and accessing data in Java is very similar to what is done in .asp, however, accessing

private data members of a given object is not an option due to encapsulation of well written Java

classes. Therefore, Java code will rely on the public members of the class rather than direct

assignment. However, there is still more than one way access data in an Item.

long j = busExpenseSecondScrollCollection.getCount();

Object [][] data = new Object[((int)j + 1)][7];

for(int i = 1; i < j + 1 ; i++)

{

busExpenseSecondScrollItem = busExpenseSecondScrollCollection.Item(i);

data[(i - 1)][0] = busExpenseSecondScrollItem.getBusinessPurpose();

data[(i - 1)][1] = busExpenseSecondScrollItem.getChargeDt();

data[(i - 1)][2] = busExpenseSecondScrollItem.getCurrencyCd();

data[(i - 1)][3] = busExpenseSecondScrollItem.getDeptid();

data[(i - 1)][4] = busExpenseSecondScrollItem.getExpenseAmt();

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E E X A M P L E 4 - 1 5

data[(i - 1)][5] =

busExpenseSecondScrollItem.GetPropertyByName("ExpenseCd");

data[(i - 1)][6] = busExpenseSecondScrollItem.GetPropertyByName("CurrencyCd");

}return(data);

In the following example, data is accessed using the getNAME_OF_PRPERTY() method of an

Item or by using the generic getPropertyByName() method. These code lines show how an entire

collection of data can be captured and packaged into an Object for transfer to a calling Object.

busExpenseFirstScrollItem.setEmplid(emplid);

busExpenseFirstScrollItem.setExpensePeriodDt(expensePeriodDt);

return(busExpense.Save());

Just as before, data is edited using Item objects and using the setNameOfPropery() method of

those Items. Also, note that we needed to call the Save() method on the component interface to

commit the changes.

Inserting an Item into a Collection

busExpenseSecondScrollItem = busExpenseSecondScrollCollection.InsertItem(

secondScrollIndex);

Collection objects in Java also have the InsertItem() method where the return value is the Item

just inserted. After a new Item is created, simply edit data in it and then remember to call the

Save() method to commit the changes.

 Deleting a Row from a Collection

busExpenseSecondScrollCollection.DeleteItem(secondScrollIndex);

boolean result = busExpense.Save();

Remember to save after the delete method is called to commit changes.

Disconnecting from a Session

After a session is no longer needed, it should disconnect from the application server. This is done

by calling the disconnect() method on the session object.

oSession.Disconnect();

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 1

C H A P T E R 5

Component Interface SDK

This section lists the steps that create a program calling a component interface to communicate

synchronously with a PeopleSoft application. The PeopleSoft Integration Software Development

Kit (SDK) installed with your application includes a sample project with data and source code

you can use to test your development work.

For more information and an overview of the PeopleSoft Integration SDK, see Integration

Software Development Kit.

Requirements

You will need the following to call a PeopleSoft component interface.

• Working understanding of C++, COM or Java.

• Specific description of the component interface being called. If PeopleSoft provides your

component interface, look in the “EIP Catalog” section of the Enterprise Integration
PeopleBook for the description; otherwise, contact the custom component interface developer.

• Connection to the PeopleSoft Object Adapter that is installed on a PeopleSoft Application

Server.

The PTSDK Development Project

PeopleSoft uses the Business Expense component as a working example for the PTSDK

development project. You can import this component into any PeopleSoft database to run all of

the samples provided. The following table lists the files in the PTSDK project and installed in the

PeopleSoft home directory (PS_HOME), under sdk\sdkdb.

Name Description

PTSDK Folder containing all the files required to import the PTSDK project

to Application Designer

PTSDKData.dat Sample data to populate SDK_BUS_EXP tables

PTSDKDataImport.d

ms

Data Mover Script to import sdk_data.dat into PeopleSoft

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 2 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

The PTSDK project and associated data are for development purposes only and will not be

supported by PeopleSoft.

PTSDK Project Objects

Object Type Name Description

Component SDK_BUS_EXPENSES Component for SDK

Component

interface

SDK_BUS_EXP Component Interface for component

Message

definition

SDK_BUS_EXP_APPR_MS

G

Application Message for component

Message channel SDK_BUS_EXP_MSG_CHN

L

Application Message Channel

Page SDK_BUS_EXPENSES HTML page for component

Page SDK_PERS_SRCH_SBP HTML search page

PTSDK Records

Record Field Description

SDK_BUS_EXP_DTL SDK_EMPLID

SDK_EXP_PER_DT

SDK_CHARGE_DT

SDK_EXPENSE_CD

SDK_EXPENSE_AMT

SDK_CURRENCY_CD

SDK_BUS_PURPOSE

SDK_DEPTID

Employee ID

Expense Period Date

Charge Date

Expense Code

Amount of expense

Currency of expense

Purpose of expense

Department ID

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 3

Record Field Description

SDK_BUS_EXP_PER SDK_EMPLID

SDK_EXP_PER_DT

SDK_SUBMIT_FLG

SDK_INTL_FLG

SDK_APPR_STATUS

SDK_APPR_INSTANCE

SDK_DESCR

SDK_COMMENTS

Employee ID

Expense Period Date

Submitted Flag

Approval Status

Approval Instance

Description

Comments

SDK_COMPANY_TBL SDK_COMPANY

SDK_EFFDT

SDK_EFF_STATUS

SDK_DESCR

SDK_DESCRSHORT

Company Name

Effective Date

Effective Date Status

Description

Short Description

SDK_COUNTRY_TBL SDK_COUNTRY

SDK_DESCR

SDK_DESCRSHORT

Country

Description

Short Description

SDK_CUR_RT_TYPE SDK_CUR_RT_TYPE

SDK_EFFDT

SDK_EFF_STATUS

SDK_DESCR

SDK_DESCRSHORT

Currency Rate Type

Effective Date

Effective Date Status

Description

Short Description

SDK_CURR_CD_TBL SDK_CURRENCY_CD

SDK_EFFDT

SDK_EFF_STATUS

SDK_DESCR

SDK_DESCRSHORT

Currency Code

Effective Date

Effective Date Status

Description

Short Description

SDK_DEPT_TBL_SBR SDK_EEO4_FUNCTION

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 4 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Record Field Description

SDK_DEPT_TBL SDK_DEPTID

SDK_EFFDT

SDK_EFF_STATUS

SDK_DESCR

SDK_DESCRSHORT

SDK_COMPANY

SDK_LOCATION

SDK_MANAGER_ID

SDK_MANAGER_POSN

SDK_BUDGET_LVL

SDK_DEPT_TBL_SBR

Department ID

Effective Date

Effective Date Status

Description

Short Description

Company Name

Location

Manager ID

Manager Position

Budget Level

Department Table Subrecord

SDK_DEPT_TBL_VW SDK_DEPTID

SDK_EFFDT

SDK_DESCR

SDK_DESCRSHORT

Department ID

Effective Date

Description

Short Description

SDK_DERIVED SDK_EMPLID

SDK_EMPL_RCD

SDK_EMPLID_OLD

SDK_EMPLID_PROCESS

SDK_BUS_EXP_SUM

SDK_EFFDT

SDK_CAR_MODEL_DESC

Employee ID

Employee Record

Business Expense Sum

Effective Date

Car Model Description

SDK_INSTALL SDK_POSITION_MGMT

SDK_COUNTRY

SDK_EXCHNG_TO_CURR

SDK_EXCHNG_RT_TYPE

SDK_GER

Position Management

Country

Exchange to Currency

Exchange to Rate Type

SDK_INTL_FLG_CD SDK_INTL_FLG

SDK_EFFDT

SDK_EFF_STATUS

SDK_DESCR

SDK_DESCRSHORT

Effective Date

Effective Date Status

Description

Short Description

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 5

Record Field Description

SDK_JOB SDK_EMPLID

SDK_EMPL_RCD

SDK_EFFDT

SDK_EFFSEQ

SDK_DEPTID

Employee ID

Employee Record

Effective Date

Effective Sequence

Department ID

SDK_LOCH_TBL SDK_LOCATION

SDK_EFFDT

SDK_EFF_STATUS

SDK_DESCR

SDK_DESCRSHORT

Location

Effective Date

Effective Date Status

Description

Short Description

SDK_PER_SGBLSBR SDK_EMPLID

SDK_OPERCLASS

SDK_EMPL_RCD

SDK_NAME

SDK_LAST_NAME_SRCH

SDK_ACCESS_CD

Employee ID

Operator Class

Employee Record

Employee Name

Last Name Search

Access Code

SDK_PER_SRCHGBL SDK_PER_SGBLSBR

SDK_SSN

SDK_SIN

SDK_NAT_INS_CD

SDK_SSN_FRA

SDK_SIN_GER

SDK_NATIONAL_ID

Social Security Number

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 6 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Record Field Description

SDK_PERS_DATA SDK_EMPLID

SDK_NAME

SDK_LAST_NAME_SRCH

SDK_FIRST_NAME_SRC

SDK_PER_STATUS

SDK_ORIG_HIRE_DT

SDK_SEX

SDK_BIRTHDATE

SDK_BAS_DATA_CHG

SDK_PER_TYPE

SDK_NATIONAL_ID

SDK_SSN

SDK_SIN_GER

SDK_SIN

SDK_SSN_FRA

SDK_NAT_INS_CD

Employee ID

Employee Name

Last Name Search

First Name Search

Original Hire Date

Employees Sex

Employees Birth Date

Social Security Number

SDK_POS_DATA SDK_POSITION_NBR

SDK_EFFDT

SDK_EFF_STATUS

SDK_DESCR

SDK_DESCRSHORT

SDK_DEPTID

Position Number

Effective Date

Effective Date Status

Description

Short Description

Department ID

SDK_PSTREENODE SDK_SETID

SDK_TREE_NAME

SDK_EFFDT

SDK_TREE_NODE_NUM

SDK_TREE_NODE

SDK_TREE_NODE_END

Setid

Tree Name

Effective Date

Tree Node Number

Tree Node

Tree Node Number End

SDK_RT_TYPE_TBL SDK_RT_TYPE

SDK_DESCR

SDK_DESCRSHORT

Rate Type

Description

Short Description

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 7

Record Field Description

SDK_SCRTY_DEPT SDK_OPRID

SDK_DEPTID

SDK_ACCESS_CD

SDK_TREE_EFFDT

SDK_TREE_NODE_NUM

SDK_TREE_NODE_END

Operator ID

Department ID

Access Code

Effective Date

Tree Node Number

Tree Node Number End

SDK_BUS_EXPENSES Test Page

Use the SDK test page called SDK_BUS_EXPENSES to test whether the component interface
(SDK_BUS_EXP) updated the database correctly.

SDK_BUS_EXPENSES page

Installing the PTSDK Project

The following steps describe how to install the objects and create the SDK development database.

To install the sample SDK project:

1. Open Application Designer.

2. Select File, Copy Project From File.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 8 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

For more information about using Copy Project From File, see Application Designer.

3. Browse to the <PS_HOME>\sdk\sdkdb folder.

Finding the Sdkdb Folder

4. Select the folder and click OK.

Copy PTSDK Project from File

5. Select the Project PTSDK that contains all the SDK objects and click Copy.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 9

Copy Source to Target Database

6. Click Copy to copy the objects into your database.

The PTSDK project appears in the project window.

To create the database tables:

7. Select Build, Project.

The Build dialog box will appear.

8. Select the Create Tables and Create Views checkboxes.

9. Select Execute SQL Now in the Build Execute Options and click the Build button.

This builds the database tables and views for the SDK.

10. Add the SDK_BUS_EXPENSES component to a menu.

You must do this before the page can be viewed.

11. Give Security Permission to the component and component interface.

Use the Administer Security page to allow access to the SDK_BUS_EXPENSES component

and to the SDK_BUS_EXP component interface.

For more information about setting security permissions, see Security.

12. Run the Data Mover script import_script.dms on sdk_data.dat.

Both files can be found in <PS_HOME>\sdk\sdkdb. This step imports sample data into the
database for use during development.

For more information about using the Data Mover, see Data Mover.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 1 0 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Component Interface Tester and Samples

The SDK includes a component interface, called SDK_BUS_EXP, which is part of the sample

development project delivered with the SDK. You can use it as follows:

• The Component Interface (CI) Tester is a simple utility you can use to test your external

connection to SDK_BUS_EXP through the PeopleSoft application server.

• The external integration samples also test your connection, but additionally enable you to test

synchronous data entry and retrieval to and from the SDK database using SDK_BUS_EXP.

The CI Tester and the samples are provided as source code. They’re available in four different

languages—C++, Visual Basic, ASP, and Java.

The source files mentioned in this section are located relative to the installed PeopleSoft

home directory (PS_HOME). You must install the sample development project to use the

tester and the samples.

For more information about installing PTSDK, the sample development project, see The

PTSDK Development Project .

C++ Tester and Sample

The C++ files include project files, project workspaces, source code and header files. Comments

are listed in the code to explain each function. The file locations listed below are relative to

<PS_HOME>\sdk\pscompintfc\src\C++\samples.

Filename Location Type

pscitester.dsp pscitester Project file

pscitester.dsw pscitester Project workspace

pscitester.cpp pscitester Source file

sdk_bus_exp.dsp sdk_bus_exp Project file

sdk_bus_exp.dsw sdk_bus_exp Project workspace

sdk_bus_exp.cpp sdk_bus_exp Source file

StdAfx.cpp inc Source file

apiadapterdef.h inc Header file

cidef.h inc Header file

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 1 1

Filename Location Type

peoplesoft_peoplesoft_i.h inc Header file

StdAfx.h inc Header file

Preparing Your C++ Tester and Sample

To prepare your workstation:

1. Install the external API, EXTAPI.

Refer to the PeopleSoft 8 Installation and Administration Guide, Chapter 11, External
Integration Installations.

2. Set the client path environment variable to point to psapiadapter.dll in EXTAPI.

To configure your compiler for the C++ project:

3. In Visual C++, open the Project Settings dialog box and select the C/C++ tab.

These instructions assume you’re using Microsoft Visual C++. If you use a different

compiler, apply the equivalent settings for that product.

4. Select the General Category and add PS_WIN32 to the Preprocessor definitions.

Set Preprocessor definitions for the C/C++ General Category

5. Select the Preprocessor Category and add PS_WIN32 to the Preprocessor definitions.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 1 2 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

Set Preprocessor definitions for the C/C++ Preprocessor Category

6. Go to the Link tab, and select the Input Category.

Set Object/library modules path (the path shown is example only)

7. Specify the full path to psapiadapter.lib to the Object/library modules.

8. Go to the Resources tab and add _DEBUG to the Preprocessor definitions.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 1 3

Set Preprocessor definitions on the Resources tab

Using the C++ CI Tester

The CI tester is run from the command line.

To run the compiled C++ CI Tester:

1. In a DOS window, change directories to the location of the C++ CI tester directory,

<PS_HOME>\sdk\pscompintfc\src\C++\samples\pscitester.

2. Enter pscitester on the command line.

You’ll be prompted for parameters one at a time.

3. At each prompt, type the appropriate value and press Enter:

Enter The Application Server Name [localmachinename]:

Enter The Application Server Port Number [9000]:

Enter PeopleSoft UserID [PTDMO]:

Enter PeopleSoft UserID Password [PTDMO]:

If the connection is successfully established, you’ll see the message “Connected to

Appserver. . .”, followed by a system prompt.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 1 4 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

CI tester — C++ version

Using the C++ CI Sample

This sample is run from the command line.

To run the compiled C++ sample:

1. In a DOS window, change directories to the location of the C++ sample directory,

<PS_HOME>\sdk\pscompintfc\src\C++\samples\sdk_bus_exp.

2. Enter sdk_bus_exp on the command line.

You’ll be prompted for parameters one at a time.

3. At each prompt, type the appropriate value and press Enter:

Enter Server Name [//localmachinename]: (Application Server name)

Enter Port Number [9000]: (Application Server JSL port number)

Enter PeopleSoft User ID [PTDMO]:

Enter PeopleSoft Password [PTDMO]:

You must provide least one of the following three search parameters. If you just press Enter
for all three, the program will exit. Incremental searches are available (e.g. ID=8 will

return all ID’s starting with 8):

Enter Employee ID:

Enter Employee Name <optional>:

Enter Employee Last Name <optional>:

The list of employees produced by the search will appear.

4. Enter the Employee ID of an employee on the list.

The business expense details for the selected employee will be displayed.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 1 5

CI sample — C++ version

Visual Basic Tester and Sample

This VB sample has a simple GUI to allow for data entry and retrieval. The file locations listed

below are relative to <PS_HOME>\sdk\pscompintfc\src\com\samples\vb:

Filename Location Type

pscitester.frm pscitester Form definition

pscitester.vbp pscitester Visual project file

SDK_BUS_EXP.frm sdk_bus_exp Form definition

SDK_BUS_EXP.vbp sdk_bus_exp Visual project file

Preparing Your Visual Basic Tester and Sample

To prepare your workstation:

1. Install the external API, EXTAPI.

Refer to the PeopleSoft 8 Installation and Administration Guide, Chapter 11, External
Integration Installations.

2. Set the client path environment variable to point to psapiadapter.dll in EXTAPI.

Using the Visual Basic CI Tester

To run the compiled Visual Basic CI tester:

1. In a DOS window, change directories to the location of the VB sample directory,

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 1 6 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

<PS_HOME>\sdk\pscompintfc\src\com\samples\VB\pscitester.

2. Enter pscitester on the command line.

The initial form will appear.

CI tester — Visual Basic version

3. Enter the Application Server Name.

4. Enter the application server JSL Port Number (9000).

5. Enter the PeopleSoft User ID (PTDMO).

6. Enter the PeopleSoft User ID Password (PTDMO).

7. Click Connect to test the connection.

If the connection is successfully established, you’ll see the message “Connection to the

Application Server succeeded”.

Visual Basic confirmation message

Using the Visual Basic CI Sample

To run the compiled Visual basic sample:

1. In a DOS window, change directories to the location of the VB sample directory,

<PS_HOME>\sdk\pscompintfc\src\com\samples\VB\sdk_bus_exp.

2. Enter sdk_bus_exp on the command line.

The initial form will appear.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 1 7

Initial form for the SDK_BUS_EXP Visual Basic sample

3. Enter the Application Server name.

4. Enter the application server JSL Port Number (9000).

5. Enter the PeopleSoft User ID (PTDMO).

6. Enter the PeopleSoft Password (PTDMO).

7. Enter at least one of the following: the Employee ID, Name or Last Name.

8. Click Search.

The list of employees produced by the search will appear.

Employee search results in the Visual Basic sample

9. Double-click an employee name.

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 1 8 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

The business expense details for that employee will appear.

Business expense details for the selected employee

ASP Tester and Sample

The ASP files consists of 6 separate ASP pages. The file paths listed below are relative to

<PS_HOME>\sdk\pscompintfc\src\com\samples\asp:

File Path and Name Description

pscitester\pscitester.asp This CI tester form accepts connection

parametersfor testing.

sdk_bus_exp\SDK_BUS_EXP.asp The entry page to sign on to the SDK

Business Expense sample. Upon providing

the Application Server Connect information

and the key field values, a listing of

Employee IDs is created.

sdk_bus_exp\SDK_BUS_EXP_SEARCH_LI

ST.asp

This page lists the Employee IDs for the key

values provided in SDK_BUS_EXP.asp

sdk_bus_exp\SDK_BUS_EXP_ADD_DETA

ILS.asp

This page accepts the SDK Business Expense

Details field values and sends the data to

SDK_BUS_EXP_SAVE_DETAILS.asp to

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 1 9

File Path and Name Description

be saved.

sdk_bus_exp\SDK_BUS_EXP_LIST_DETA

ILS.asp

This page to lists all the SDK Business

Expense Periods and details for the selected

Employee ID.

sdk_bus_exp\SDK_BUS_EXP_SAVE_DET

AILS.asp

This page performs the insert of the SDK

Business Expense Details line and saves the

data.

sdk_bus_exp\SDK_BUS_EXP_FUNCLIB.as

p

This file contains generic functions that are

used by the other ASP pages.

Preparing Your ASP Tester and Sample

To prepare your workstation:

1. Install the external API, EXTAPI.

Refer to the PeopleSoft 8 Installation and Administration Guide, Chapter 11, External

Integration Installations.

2. Set the client path environment variable to point to <PS_HOME>\bin\client\winx86_extapi.

3. Install Microsoft IIS.

Using the ASP CI Tester

To run the ASP CI tester:

1. Open pscitester.asp in a Web browser.

The initial form will appear.

CI tester — ASP version

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 2 0 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

2. Enter the Application Server Name.

3. Enter the Application Server Jolt Port number (9000).

4. Enter the PeopleSoft User ID (PTDMO).

5. Enter the PeopleSoft User ID Password (PTDMO).

6. Click Submit.

If the connection is successfully established, you’ll see the message “Connect to session

passed”.

ASP confirmation message

Using the ASP CI Sample

To run the ASP sample:

1. Open SDK_BUS_EXP.asp in a Web browser.

The initial form will appear.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 2 1

Initial form for the SDK_BUS_EXP ASP sample

2. Enter the Application Server Name.

3. Enter the Application Server Jolt Port number (9000).

4. Enter the PeopleSoft User ID (PTDMO).

5. Enter the PeopleSoft User ID Password (PTDMO).

6. Enter at least one of the following: the Employee ID, Name or Last Name.

7. Click OK.

The search results matching your entered keys will appear.

Employee search results in the ASP sample

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 2 2 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

8. Click Select next to an employee name.

The business expense details for that employee will appear.

Business expense details for the selected employee

Java Tester and Sample

The Java source code is in two files:

• <PS_HOME>\sdk\pscompintfc\src\java\samples\pscitester\pscitester.java

• <PS_HOME>\sdk\pscompintfc\src\java\samples\sdk_bus_exp\sdk_bus_exp.java

For Java bindings EXTAPI is not required; instead use the Java Object Adapter (JOA) shipped

with your PeopleSoft application.

Preparing Your Java Tester and Sample

To prepare your workstation:

1. On the Environment tab of the System control panel, add the following path to the

CLASSPATH environment variable:

<PS_HOME>\web\psjoa\psjoa.jar

2. Install the Sun JVM.

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L C O M P O N E N T I N T E R F A C E S D K 5 - 2 3

Using the Java CI Tester

The CI tester is a command line program.

 To run the compiled Java CI Tester:

1. In a DOS window, change directories to the location of the Java CI tester directory,

<PS_HOME>\sdk\pscompintfc\src\java\samples\pscitester.

2. Launch the executable with:

java pscitester.pscitester

You’ll be prompted for parameters one at a time.

3. At each prompt, type the appropriate value and press Enter:

Enter The Application Server Name:

Enter The Application Server Port Number: (9000)

Enter PeopleSoft UserID: (PTDMO)

Enter PeopleSoft UserID Password: (PTDMO)

If a connection is successfully established, you’ll see a message confirming the connection.

Using the Java CI Sample

This sample is a command line program.

 To run the compiled Java CI Tester:

1. In a DOS window, change directories to the location of the Java sdk_bus_exp directory,

<PS_HOME>\sdk\pscompintfc\src\java\samples\pscitester.

2. Launch the executable with:

java sdk_bus_exp.sdk_bus_exp

You’ll be prompted for parameters one at a time.

3. At each prompt, type the appropriate value and press Enter:

Enter The Application Server Name:

Enter The Application Server Port Number: (9000)

Enter PeopleSoft UserID: (PTDMO)

Enter PeopleSoft UserID Password: (PTDMO)

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

5 - 2 4 C O M P O N E N T I N T E R F A C E S D K P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

You must provide least one of the following three search parameters. If you press Enter for

all three, the program will exit. Incremental searches are available (e.g. ID=8 will
return all ID’s starting with 8):

Enter Employee ID:

Enter Employee Name (optional):

Enter Employee Last Name (optional):

4. Enter the Employee ID of an employee on the list.

The business expense details for the selected employee will be displayed.

CI sample — Java version

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L I N D E X 1

Index

A

access to component interface 2-10

from COM programs 3-3

active server page

in component interface 4-6

API for component interface 1-2

architecture

component interface 1-2

attributes of

component interface 1-3

C

CD-ROM

ordering ii

collections

component interface 1-4

COM library area

setting options 3-1

component interface

access from COM programs 3-3

access from PeopleCode 4-2

access to 2-10

active server page example 4-6

adding keys 2-7

and components 1-2

API 1-2

architecture 1-2

attributes 1-3

building PeopleSoft APIs 3-1

calling another component interface 3-6

component interface view 2-2

ComponentName property 1-5

connecting to 3-3

CopyRowsetDelta method 1-7

create method 1-6

CreateKeyInfoCollection property 1-5

creating 2-3

creating properties 2-5

CurrentItem method 1-8

CurrentItemNum method 1-8

data collection methods 1-8

DataRow methods 1-8

definition 1-1

DeleteItem method 1-7

differences from online behavior 3-5

email 3-6

example of creating one 4-1

example of VB template file 2-21

extapi directory 3-3

FindKeyInfoCollection property 1-5

generating PeopleCode 2-24

generating VB template 2-21

GetEffectiveItem method 1-8

GetEffectiveItemNum method 1-8

GetHistoryItems property 1-5

GetKeyInfoCollection property 1-5

GetPropertyByName method 1-8

GetPropertyInfoByName method 1-7, 1-8

getting ItemByKeys signature 2-18

InsertItem method 1-7

InteractiveMode property 1-5

introduction 1-1

Item method 1-7

ItemByKeys method 1-7

ItemByKeys signature 2-18

java example 4-12

keys 1-3

keys, adding and removing 2-7

methods 1-6, 2-8

methods, data collection 1-8

methods, DataRow 1-8

methods, security for 1-8

methods, standard 1-6, 2-8

methods, user-defined 1-6, 2-9

naming 1-3

PeopleCode events and functions 3-5

PeopleCode, client-only limitations 3-6

properties and collections 1-4

properties and collections, security for 1-5

properties to expose 2-7

properties, creating 2-5

PropertyInfoCollection property 1-5

removing keys 2-7

search dialog processing 3-5

security 2-10

security for methods 1-8

security for properties 1-5

sending email 3-6

SetPropertyByName method 1-7, 1-8

standard methods 1-6, 2-8

standard properties 1-4

testing 2-13

user-defined methods 1-6, 2-9

user-defined properties 1-4

validating 2-20

WinMessage status 3-6

component interface API 1-2

ComponentName property 1-5

components

P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K J A N U A R Y 2 0 0 1

I N D E X 2 P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L

and component interface 1-2

CopyRowsetDelta method 1-7

create method 1-6

CreateKeyInfoCollection property 1-5

creating component interface 2-3

creating component interface properties 2-5

CurrentItem method 1-8

CurrentItemNum method 1-8

D

data collection for component interface 1-8

DataRow methods for component interface 1-8

DeleteItem method 1-7

E

email

and component interface 3-6

sending with component interface 3-6

extapi directory 3-3

F

FindKeyInfoCollection property 1-5

G

generating VB template in component interface

2-21

GetEffectiveItem method 1-8

GetEffectiveItemNum method 1-8

GetHistoryItems property 1-5

GetKeyInfoCollection property 1-5

GetPropertyByName method 1-8

GetPropertyInfoByName method 1-7, 1-8

getting ItemByKeys signature 2-18

I

InsertItem method 1-7

InteractiveMode property 1-5

Item method 1-7

ItemByKeys method 1-7

ItemByKeys signature 2-18

J

java example

in component interface 4-12

K

keys for component interface 1-3

M

methods 1-6

data collection 1-8

DataRow 1-8

security for 1-8

standard 1-6

user-defined 1-6

methods, standard 2-8

methods, user-defined 2-9

N

naming component interface 1-3

naming conventions

component interface 1-3

O

options

for COM type library area 3-1

P

PeopleBooks

CD-ROM, ordering ii

printed, ordering ii

PeopleCode

client-only limitations 3-6

component interface access 3-6, 4-2

generating for component interface 2-24

PeopleCode events and functions

component interface 3-5

PeopleSoft APIs

building for component interface 3-1

properties

component interface 1-4

properties and collections, security for 1-5

PropertyInfoCollection property 1-5

S

search dialog processing

component interface 3-5

security

component interface 1-8

for component interface properties 1-5

security for component interface 2-10

security for component interface methods 1-8

J A N U A R Y 2 0 0 1 P E O P L E T O O L S 8 . 1 2 C O M P O N E N T I N T E R F A C E P E O P L E B O O K

P E O P L E S O F T P R O P R I E T A R Y A N D C O N F I D E N T I A L I N D E X 3

SetPropertyByName method 1-7, 1-8

standard methods 2-8

standard methods for component interface 1-6

standard properties 1-4

T

testing

component interface 2-13

U

user-defined methods 1-6, 2-9

user-defined properties 1-4

V

validating component interface 2-20

Visual Basic template

example of file 2-21

generating one for component interface 2-21

