e

PeopleTools 8.12 PeopleCode
Developer's Guide

PeopleTools 8.12 PeopleCode Developer's Guide
SKU MTPDr8SP1B 1200

PeopleBooks Contributors: Teams from PeopleSoft Product Documentation and
Development.

Copyright © 2001 by PeopleSoft, Inc. All rights reserved.
Printed in the United States of America.

All material contained in this documentation is proprietary and confidential to PeopleSoft,
Inc. and is protected by copyright laws. No part of this documentation may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, including, but not
limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without the
prior written permission of PeopleSoft, Inc.

This documentation is subject to change without notice, and PeopleSoft, Inc. does not warrant
that the material contained in this documentation is free of errors. Any errors found in this
document should be reported to PeopleSoft, Inc. in writing.

The copyrighted software that accompanies this documentation is licensed for use only in
strict accordance with the applicable license agreement which should be read carefully as it
governs the terms of use of the software and this documentation, including the disclosure
thereof.

PeopleSoft, the PeopleSoft logo, PeopleTools, PS/nVision, PeopleCode, PeopleBooks,
Vantive, and Vantive Enterprise are registered trademarks, and PeopleTalk and "People
power the internet." are trademarks of PeopleSoft, Inc. All other company and product names
may be trademarks of their respective owners.

Contents

About This PeopleBook

AUIETICE ...ttt ettt et et sttt e ee et e ne e e XV
Before YOu BN ..c..oouiiiiiiiiiieeieeee e et XVi
Related DOCUMENTALIONccueiiiuiiiiiiiciiee ettt et et e v e XVi
Documentation on the INternet............ccooieieiirieiiiiee e xvii
Documentation on CD-ROMccccooiiiiiiiiiiiiccecceece et e XVii
Hardcopy DOCUMENTAtIONc.coovieeuieiiiiiiieiieie et ettt ere e e veeiaeseresereesbeesneas XVvil
Typographical Conventions and Visual CUeS..........cccevveevveerieiiiieriieniiesre e esee e Xviii
Comments and SUZZESTIONSc.vievieriierieireeieereerieesteestesreeseesseesseesseesssessseessessseesseesens XX
Chapter 1
Introducing What’s New
ODBJECts AN CLASSESeuveiiiieieriieiieie ettt sttt ettt sttt be e nees 1-1
LISt OF CLASSES ...uviiiiiieeiie ettt ettt ettt e e etr e e e veeetaeeseveeenreeas 1-1
Dot Notation and ODBJECES........cccueririiriiriiiinieeieieneee sttt 1-3
InStantiating ODJECES.ccvviiiieiieeie ettt ettt et et e sbesreebeesbeesteeseseesbeesseasaens 1-4
Code Enhancements Using Dot NOtation..........ccceveevienirieninieiienienienie e 1-4
EXIStING COUC ...ttt 1-4
ReE-WIIten COdeoueieieeiiiieiiee ettt 1-5
Data BUTTET ACCESS ..eeuviuieuieitieiieie ettt ettt ettt ettt sttt e te et et esbeeaeete e st eneeseeeneenseees 1-6
Instead Of SQLEXEC. . . .ooooueiiiiie ettt e e ae e et e e ae e eeaee e 1-7
Using the Record ClIassc.ccvvieiiiiiiiiiiieieeieesieesire st ere v senesvveesveeveens 1-7
SQL Definitions and the SQL CIaSSccoveeeerieieiieeieeeeeee e 1-10
Record Class vs. SQL ObJECL.....cccueviriiririiiieniiiieierteesieetee e 1-11
Using SQL Definitions with SQLEXECccceevvviiviiiviieniieiieciecre e, I-11
Using Record Objects With SQLEXECcccvieviiiviieriiiiieciecrecre e 1-11
A (7 R) OO PRRRRR 1-12
Standalone ROWSELc.eoiiiiiieieieecee ettt 1-13
Performance Enhancement for SQLExec and ScrollSelect..........cccooevvvviviieeceeeeneeenee. 1-14
Using Literal Parameters..........ceovvieviieriiiiieiienieseecre e ereesieesveereesreesaneseneesveenns 1-16
GITIAS ottt ettt et et e et e e e tb e e et e e e taeeebe e e taeeetbeeetaeeeabeeebaeenabeeereeeans 1-16
EXIStING COAC .viiviiiiieiiiciieiietetet ettt ettt ettt e e b eeb e aeesaaestaeeaveesves 1-16
Re-WIitten Codevoioviiiiiiieiieeeeeee et et 1-17

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS iii

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Accessing PeopleCode Programscceecvieevieiieniieiieieecieereesieesieesieesereeevesereeseenens 1-17
Case Sensitivity in PeopleCode Programs...........ccccecvevirieriniinenenienenieiencee e 1-19
APPLICAtION REVIEWET ..ottt sttt s 1-20
RUNtIME CRECKINGcvviiiiiiiiciieciiece ettt st e ab e e b et e e beesaaesebeeenas 1-21
AddItional FEAtUIES.......ccueeieiiieieieeieee ettt enee e 1-22
New Component Variable TYPe.....c.ccoveviiriiiiiiiiieie ittt svve v 1-22
NEW DAt TYPES ...eveeeiiieeiiieeiie ettt ettt sre e st e e st e e s aeeestaeesbeeesaeesssaesssaeensseens 1-22
Automatic Backup of PeopleCodeccooeeiiririininiiiiniiiieceeeceteeeee e 1-22
Enhanced Find In FUNCLONc.coiiiiiiiiiieeeeeeee e 1-22
Refreshing your PAgecccviiviiiiiiieieciececeeeeeeee e 1-23
Using Constants Instead of Numeric Values..........c.coceverieninieniniincncniccene 1-23
Enhanced Transfer FUNCHONAlItYccoovviiriiiiiiiiiieiieieeie et 1-24
Attachment PeopleCode..........coiiiiiiiiiiiiiieciecieceereete et e a b 1-24
Mapping of Functions to Methods and Properties..........c.ccocevervienineninencnieneneenee, 1-24
Mapping of Old Names to0 NeW NAMES.......c.cccvververiieiierieiienee e ereereereesreesenesene e 1-26
Chapter 2
Understanding PeopleCode and Events
Accessing PeopleCode in Application Designer (OVErVIEW)c.ccvvverveeveerreereesveeneens 2-2
Record Field PeopleCode ..ottt 2-4
Accessing Record Field PeopleCode From a Record Definitionccccoccevenieenee 2-4
Accessing Record Field PeopleCode From a Page Definition..........cccccceveevencenene 2-6
Fields and Record Fieldsccoooiiiiieiiiieee e 2-7
Record Field EVENnt Set.........coooiiiiiniiiieiieeie ettt 2-7
Component Record Field PeopleCode..........coceriiiinininiininiiicnicieiceeeneeeeieee 2-8
Component Record Field Event Set.........cccoociiiiiiiiniiiiiiiieeeeccee 2-9
Component Record PeopleCode.cuiiviiiiiriiiiieiie ettt sae v seve e 2-9
Component Record Event Set.........ccoeviiiiiiiiiniiiiiieneeceeceeeen 2-10
Component PeopleCodeoovieiuiiiiiiiiiiieiieeeste e str e b e ve v eabeesvaeeeas 2-11
Component EVENE SEt........ccviiiiiiiiieeiiieciie ettt sreeeeae e e stae e seseeessaeenenes 2-11
Page PEOPIECOAECovviiiiciiieieeeeeee ettt st stb e eab e eabeesbeeaeeens 2-12
Page Activate EVENtcccooiiiiiiiiciiceccecte ettt e 2-13
Page Field Control PeopleCode.couiiviiiieiiieiiiciiciieereeeesee e eve e sene e 2-13
Page Field EVENt Stcccviiiiiiiiieieecccte ettt r e 2-14
Menu [tem PeopleCodecoouiiiiiiiiiiieieieeeteeseeee e 2-14
Menu Item ItemSelected EVentccooieiiiiiiiiiieee e 2-16
Application Message PeopleCodecooeririiniiiiniiiiiinieeseeesestee e 2-17
Accessing Message PeopleCodeocuoviiiiriniiiiniiiiicneceeeeeeeee e 2-17
Accessing Message Channel PeopleCode..........coceveeniriininiinieniniencnieceeeee 2-18
Application Message EVENt SELS.........ccvviiviiiieviienieniie e ereesree e sere e eveesaee v e 2-19

CONTENTS iv PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

How PeopleCode Programs are Stored and Savedcccocvevieiiieiecviicnieeeiecieceieene, 2-20
Automatic Backup of PeopleCodeccooeeieriiiininiiiiniiniecececeeeeee e 2-20
Copying PeopleCode with a Parent Definition...........c.coceevvieviienieniiniecrecieereeieenieane 2-21
Upgrading PeopleCode Programs...........cccceceeririeiininiiencnieesiceteieeceesieeesie e 2-21
Chapter 3
Using the PeopleCode Editor
Navigating Between PeopleCode Programs...........cccecvveeviiiviieniienienieereereereesveesiee e 3-1
Understanding the PeopleCode Editor Windowcccoevevieiiiiiiienieenieiiecreeiens 3-1
Using the Drop-down Definition Listccccoviriiriniininiiienieneeceeec e 3-2
Selecting a Record Fieldcooeeiiiiiiiiiiiieceeeeeeee e 33
Selecting a Component Definitionccvevveerieiieiieenieeeecie e 33
Selecting a Page or ActiveX Controlcccceceeveririinenieneninieeceeneeeee, 34
Selecting a Menu Item.......cc.coouiiiiiiniiiiiee e 34
Selecting a Message or Message SubSCIIPtion..........ccvvevvveeveevreerivenveeveeseeenenes 3-5
Selecting a Message Channel.............cocooviiiriininiiiininieeeeeeeeee 3-6
Using the Drop-down Event LiStccccoeiieriniiiiniiiiieieeeciceeseetee e 3-6
Using the PeopleCode EdItor.........ccviviiiiiiiiiiiciieieecee et sve e ere e 3-7
Editing FUNCHONS ...c.vviiiiiiiiiiieii ettt ettt et eebe e e et staeseaesaveesbeesseesaesasesanessnanes 3-8
Find and Replace.......cccueeviiiiiiiiiieieciecect ettt 3-8
Validating SYNtaX......ccoviiriiiiiieiiieeeeese ettt 39
AULO FOTMALING ...veoviiiiiiiie ettt ettt b e steestaeetbeesbeesbeeaeesanesenenenas 3-10
Drag-and-Drop EdItiNgcccovveiiiiiiiiiiiierieieseesee ettt eve e 3-10
Accessing PeopleCode External Functions...........ccocevceevininieniiienincnicnenceee, 3-10
Accessing Definitions and Associated PeopleCode.........ccceevveviiinieniiecieeiieinnne, 3-11
Context-Sensitive HEIPcceevvieriiiiiiiiiiicee e 3-12
Choosing a Font for the PeopleCode Editor..........cccoevieviniininiininiiiciieieeee, 3-12
Generating PeopleCode using Drag-and-DIopcccceevevieeiieiienieniecre e 3-13
Generating Definition References..........ocveveririeniiiiiiniiiieeeseeseee 3-13
Generating PeopleCode for a Business Interlinkcccoeveviiicriinienienieeieenne, 3-14
Generating PeopleCode for a Component Interface...........ccoceveevenieninienineenene. 3-15
Chapter 4
Introducing the SQL Editor
Understanding the SQL Editor Window...........cocoviiiiniiiininiiiinieeneeene e 4-1
Accessing the SQL EdItOrccvioviiiiiiiieiie ettt er e staesrveeave e 4-2
SQL DEfINITIONSveiievieieieee ettt ettt ettt e e et e e e eeaeeeeaaeeeeteeeeareeens 4-2
Dynamic View or SQL View Records.........ccccoviriininiiiiniiieniniecnieeeieseeee 4-4
Application Engine Programsc..cccceeeviiieniiiiiiininienenceeses e 4-5
USINg the SQL EdItOr ...cvviiiiiiiieiiciieieeciiecteete ettt ettt st sveeaveesveevaesraesaaesene e 4-6

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS \

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Chapter 5
PeopleCode Language
Data TYPES ..ttt ettt sttt et 5-1
Conventional Data TYPESc.cevveririeririeiiiieesertee sttt 5-1
Object-Based Data TYPes.......cocveruiriiriiririenienieiesie ettt st 5-2
Data BUffer ACCESS TYPES..c.uiiiiiriiiriieiieiie ettt ettt er e v sreestaeseveeave e 5-2
Page Display TYPeS......ceueririeienieiereeiterte sttt ettt sttt st 5-2
Internet SCriPt TYPEScoveeuieriiriieiiieeteeetee ettt 5-2
Miscellaneous Object-Based TYPESc.eovvverieiiiiiieiieieecie e 5-3
APT ODBJECE TYPEC vttt st st 5-3
Comments and StALEIMENTS.ecviiiiierieeriierie ettt ettt seeeseeeeeeteesseeseeessnesnneenns 5-4
(07071111115 111 TSSOSO 5-4
STALEIMEIIES ...ttt ettt ettt e bt e sbeesbee st sabe e bt e nbeesbeesbeesaees 5-4
SEPATALOLS ...eeeuiiieeiieeiieeette ettt et te et e et e e st e e tbeessbeeestaeesabeesssseessseesnsaeessseeanreaans 5-5
ASSIZNMENT STALCIMNECILS ...c..eeuvieiieiiiieterieetert ettt ettt et 5-5
Language CONSIITUCESccueeiiieerieeeieeeieeesieeeireesreeereeeseaeesreeessreessseeeseseesnnas 5-6
Functions as SUDTOULINES.cceiieieiieieierieee e 5-6
CONLTO] STALBINENILSeeeieiieeeieetieteet ettt ettt et e et e e e esteesaeesssesnseebeesseesnnans 5-6
Branching Statements............cccveeviiiriieiieiieciecie et ereereesreesenesene e 5-6
Y 10 T03 o 1SS URTR 5-8
Conditional LOoOPSc..eertiriiieriiniieiereetese ettt 5-9
FUNCHIONS ..ttt ettt ettt et et eneeee s eneas 5-10
Defining FUNCHIONScciiiiiieie ettt ettt sae e 5-10
Declaring FUNCHONSccviiieiiicieeie ettt ere et staestaeesveesbeebeeaaesenenenas 5-11
Calling FUNCLIONSovviiiiiiiiiieieieeee sttt 5-11
Function Return Values..........ccocuiiiiiiiiiiiiiieieeee et 5-12
EXPIESSIONS ...c.vvieviierieeiieiieiteeetteette et e ete e bt e steestteetbeesbeesbeessaessaestsessseesbeesseesseesssesssenssensss 5-12
COMSLANTS ...ttt ettt e ettt e st e e bt e e s ateeebteesabeesnbeeebeeesabeeennees 5-13
INUITIETIC .. ettt ettt ettt ettt et ettt e e e st e et e eseeteeseeneesseeneeseeneenseseeeneens 5-13
SHrANG CONSLANLS ...c.veeieniiriieieetieierte ettt ettt st st e e 5-13
Boolean CONSANS...........c.eecvieiiieriieiie ettt see ettt eeee e eneeas 5-13
Functions as EXPIESSIONSccvevierieeiieiieiiesiieseesireesneesreeseesseestnessnessnessnesssessnes 5-14
AV 1 o) (<O STUPTO 5-14
User-Defined Variable Declaration and Scopeccooceeveniniencncenenennnn. 5-14
Using User-Defined Variablescoceevieiiiniienieiiecie e 5-16
Passing Variables to FUNCHONScccoreeriiiiiniiniiiinieiceeteetecee e 5-17
SyStem Variables.........coouiiiiiiriiieieieeee ettt 5-17
IMELASIIITIZS . .vevvieerieniieciteeiteeireebeeteesteesteestteeebeesseesseessaesseesasessseesseesseesseesssesssenssensnas 5-17
Record Field REferencesocvevieviieiieiiieiieiteeeee et 5-18
Record Field Reference SyntaX...........coeeveerenieiieninienenineenesceeeneseeee e 5-18

CONTENTS vi PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Legal Record Field Names.........cccevvieviieiiiiiieieeieeseeceesee e 5-19
Definition Name Referencescecvevieriiriiiiieiieieesieree et 5-19
Legal and Illegal Definition Namescccccveevvieviierienreereeieesre e 5-20
Reserved Word Summary Tableccccoevvieviieniinicciecieeeeeeve e 5-20
OPETALOTS. ...ttt ettt ettt ettt sttt sttt et e bt e s bt e s et e s et e eant et e bt enbeesmeesaneeareen 5-21
Math OPETALOLS. ...c..eouieiirtieiertieitente ettt sttt st et sttt st e b e 5-21
Operations on Dates and TImMESccceveeiieninieriininieneeeeeee e 5-22
String CONCALENALIONveevieiieiieritesreereereerreesteesteeereebeesseesseesssesssessseessessseesseens 5-22
(@ OPCTALOT ...ttt ettt ettt ettt b et e st sb e e besbe e st e bt ebeentenbeeanen 5-22
CompPAriSON OPETALOTSceveruiruiertiriienierieetenieeitete et et et eitestesbe e e sbeestenbesbeensesbeenees 5-24
B001ean OPEIators..........cccvieveeriierieiieereereeieeseesresereesseeseesseessaesssesssessseesseesssenens 5-24
Chapter 6
Understanding Objects and Classes in PeopleCode
T A T T TSP 6-1
WHhat 1S AN ODJECL?...c..viieiiiiieiieeie ettt ettt v e b e e teestaestbeesbeesbeessaesreessnessneans 6-1
InStantiating ObBJECTS.couiruieriiriiiiriieteeetee ettt 6-2
Working With ODJECEScuveciierieiieiieiteciie ettt ee st ereebe v baeseaesebeesbeessaeseeens 6-2
ODBJECE PIOPETLIES ...ttt st st 6-3
ODBJECt METNOAS ...ttt st 6-3
ODbJECt ASSIZNIMENLe.vvieevietieireieieeeteereesteesteeebeebeesreesteessreesseesseasssesssessseesseesseesseens 6-5
PasSING ODJECTS ...cveruieiiitiiierieeiee ettt sttt sttt 6-6
Chapter 7
Using Methods and Built-in Functions
Restrictions on Method and Function USE...........c.eecuieiiriiieniieniienieiie et 7-1
Think-Time FUNCHONS.cooiiieiiieeiee et 7-1
WinMessage and MessageBoXcccoiieviiniriininiiniieeeceieee e 7-2
Program Execution with Fields not in the Data Buffer.............cccocconvnienene. 7-4
Errors and Warningsccceccveevieiievrieneenie e eieesieesieesiressessveeneesseessnessneenns 7-4
DIOSAVE ..t e 7-4
Record Object Database Methods..........cccueevieiiiiieniieiiecicereeeesee e e 7-5
SQL Object Methods and FUNCIONSccccvveeviiiniierieniecreereeieesiee e 7-5
Component Interface Restricted Functions..........cccccoceecenieicninieninicncneene 7-6
CallAPPENZINGccuviiiiiieiieiieciiecee ettt re e s tae s ebeeebeesbeesreenees 7-6
ReEtUINTOSEIVET ...ttt 7-7
GELPAZE ... 7-7
LG 1516 ' T« I TSR PPSRRSRR 7-7
L€ 110003111 ¢ o) O TSRS 7-7
Publish MEthodcoouiiiiiiiieiee e 7-8

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS vii

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Implementing Modal TTansfersccccccviiiiiiiiiieiiecrecre e s srae b ens 7-8
Considerations Before Implementing a Modal Transfer...........cccoocevieniniinineenene. 7-9
Using the ImageReference Field...........cocovvviiiiiiiiiiiniccic e 7-11
Using PeopleCode with PeopleSoft Internet Architecture...........cecvevvevienencencneniennen. 7-12
INEEINET SCIIPLS ettt st sttt 7-12
Unsupported FUNCHIONScecoviiiiiiieiiesiecie ettt svaeeveesveeveesaaeseneseveeenas 7-12
Using the Field Object Style Property.......ccccceeveevieeveesieiieeie e 7-12
HTIML ATttt ettt eae s 7-14
Using HTML Definitions and the GetHTMLText Function............cccceceveeirnene. 7-15
Using HTML Definitions and the GetJavaScriptURL Method...........ccccccerrnenneee. 7-17
Increasing the Internet/Tuxedo TimeEOULcccevvieriiiiniiienineeeeee e 7-18
Inserting USING PeOPleCOdeccvveviiiiiiiiiciiicieereeeeee ettt 7-18
Using the GenerateTree FUNCHONoc.eiviiiiiiiniiiiciieie e 7-19
Building your HTML Tree Pagecoceoieiiniiiiiniiiieeceeceteeeeee e 7-20
The HTML Tree Rowset ReCOTdScoouiiuieieiiiiieiiiieeeeee e 7-21
HTML Tree End-User Actions (EVENtS)cccccuveviivrievienieiie e sve e 7-24
Customizing the PeopleCode for the HTML Treecccoocveviviininieninieienceee 7-25
PostBuild PeopleCode EXamplec.cocvevrievieiiiniiiiierieeesiee e 7-27
FieldChange PeopleCode EXample..........cccoveevierieiieiieereeiieseecve e 7-31

Using the Attachment FUNCHIONS..........ccooiiiiiiiiiininiiice e 7-37
Using the Select and SelectNew Methodsccvevviiiiiiiciieniccieceecre e 7-39
WHhat Select DSoiuieieiieeieie ettt 7-40
SEIECE SYINEAK ..ttt sttt ettt st sb sttt sbe b sbeeaeens 7-40
Specifying Child ROWSELScccueriiriiiiiriiiienienieeeeteeeeeeseee e 7-41
Specifying the Select ReCOrdcoooviiviiivieiiiiiieicceecee et 7-42

The WHERE CIaUSEcc.eoviiiiieiieiieiieree et 7-42

Using Select like RowScrollSelect..........ccoooveiiiniiiiniiniiiinieeneccceeee 7-42

Using Standalone ROWSELSccueevvieriieiieiieiriereeieesieesre v ereesreesteesaressveessessveesnenens 7-43
The Fill Method.......eoiiiieie ettt 7-44
The CopyTo MEthodccvvoiiiiiiciiiciicieeeee ettt v e e e eeeas 7-44
Adding Child ROWSEL........oouiiiiiiiiiieieiieeieeesete ettt 7-45
Using Standalone Rowsets to Write @ File........cccocvevvieviiiiiiiiiciicceeeeecreee e, 7-46
Using Standalone Rowsets to Read a File.........ccccovevviiiiiniiiniiiieccceccee e, 7-49
E1rors and Warmingscooereeriirieieneetee ettt ettt 7-51
Syntax of Errors and Warningscccccveevenerienenienenieneseeeseeeesieeee e 7-51

Errors, Warnings, and EditSccccoeiieiiinienieiieee e 7-51

Errors and Warnings in FieldEditccccoiiviiniiniiiiiceecceeeeeee, 7-52

Errors and Warnings in SaveEdit.........cccoooieviiiiiininiiniiienecceeee 7-52

Errors and Warnings in ROWSelectc..cooueiiriiiiniiniiiiiniceccecee 7-52

Errors and Warnings in ROWDEIELEceevvieviiiiiiiieiccicciccre e 7-53

CONTENTS viii PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Errors and Warnings in Other Eventsc.ccccoviivieniiiiiciieeccece e, 7-53
USINg REMOLECALL.....c..oouiiiiiiiiiiiiiiee et 7-53
RemoteCall COMPONENLS......c..eiiiriiriieienieeieteeieeteee ettt 7-55
PeopleCode APL ..o 7-55
Remote Program APcoooiioiiiiece et 7-56
PeopleSoft RemoteCall Servicecoeveeviiiiiieniiieniiieicneee e 7-57
RemoteCall and Process Scheduler...........ccooviiiiiiiieiiinieiieeee e 7-57
Modifying a Process Scheduler Program to Use RemoteCall.............ccccceeenennee. 7-57
Programming GUIAEIINES...........cccueririiieiiieiieeeree et 7-58
Chapter 8
Referencing Data in the Component Buffer
Component Buffer Structure and CONtents.coeevereerienerienenieneeeeneseee e 8-1
Comparing ROWSets t0 SCIOLISccveviiiiiiiiiiiiciietetece et 8-3
What Record Fields Are in the Component Buffer? ... 8-3
Contextual REfEreNCESeoueeiiieieieieciee ettt 8-4
Understanding CutTent CONLEXLceoueruerienirieniinieieneetenie ettt eeennens 8-4
Contextual Reference Processing Orderccocvevieeiieiieiieiienieesiee e eve e 8-5
Contextual ROW References.........coocvieiiiriiiiiiiiiit ettt 8-6
Contextual Buffer Field References..........cccccvevievieriiieciieiieececteeeeeee e 8-7
Contextual Buffer Field Reference Ambiguitycccccvvevvvevienieeiieniiecieeenn, 8-7
Ambiguous Contextual References to Buffer Fields on Level Zero................. 8-8
Resolving Ambiguous References with Objects.........ccccevuevieninienciensenenene 8-8
References Using Scroll Path Syntax and Dot Notation............cccceeevveeeveevieeneeneesneenens 8-9
Scroll Path Syntax in PeopleTools 7.5cocoviiiiiiiiiiiiiieeeeeece e 8-9
Scroll Path Syntax with RECORD.recordname.............cccccovvevvieriieniennrennnnnn, 8-10
Scroll Path Syntax with SCROLL.scrollnameccoceeceevereenenenneenennenne. 8-11
Scroll Level, Row, and Buffer Field References.........cc.ccooovvveiieeiiiiiiiiiieieineeecen, 8-12
Referring to SCroll LeVelSccuviviiiiiiiieiieiic ettt 8-13
Referring to ROWSco.eoviiiiiiiiiiee e 8-15
Referring to Buffer Fieldscoooiiiiiniiiiiccce e 8-16
Using CurrentROWNUMDETcccveieiiiiiiiieiiesie et 8-17
Looping through Scroll Levels.........cccoieriiiiniiiiiiniiienececeeceeeee 8-18
Scroll Path Syntax prior to PeopleTools 7.5ccccoirviniiiiniiiiiiieeeneeceens 8-18
Chapter 9
Data Buffer Access
AACCESS CIASSES ...uvevieuieetieiteste et e ettt et e ettt et e st et e s et et e teseeense st estenseeneensesseeneennenes 9-1
Data Buffer Model and Data Access ObJECtS........coueruirirrieniinienienieeienesieeiesie e 9-1
Data Buffer Classes EXamPIes........c.ccovevviiriiiiiiiiiii et ere v v esveesinesveesveesneens 9-3

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS ix

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Object Creation EXAmPIES.......cccvveiieiiiiiiieniieciecie ettt eer e ve e saneeeveasneens 9-5
ACCESSING LEVEL 0 .cniiiiiiiiiieieeeete e 9-5
ROWSEt ODBJECL...cuviiiiiiiiecie ettt st e b e e av e e beebeeaa e ere e 9-6
ROW ODJECL ..ottt ettt ettt b e b b et estaeebaeeebeeeveenns 9-9
ReCOT OBJECE ..ottt 9-10
FIEld ODJECL...c.uiiiiiiiiieiieieetetecte ettt et et e e ba e seveesveesseeseeas 9-12
Traversing the Data Buffer Hierarchy Example...........c.ccoooeeviiiieviiiniinieiiecieeiens 9-13
ROWSEL.c. ettt et e st te e e 9-13
ROWSELS CONLAIN TOWS....c.cuvriieiiriinienteteteteit ettt sttt 9-14
Rows can contain child TOWSELScceruieiiiieieiieeereee e 9-14
ROWSELS COMEAIN TOWS....cuiiiiiieiiieiieiieiiesiee ettt ettt e st e st eeebe et eseenseesaee 9-14
Rows can contain child rowsets, rowsets COntain rowsccovvuveeeevrvveeeennns 9-14
ROWS CONtAIN TECOTASviiiiiriiieictccce e 9-15
Records contain fields.........coerieriiniiiiieieeeeece e 9-15
USING SNHOTECULSecvvieiieciiicrieteereesieesee et eesreeteesteestaesevesebeesbeesssesasessseesseessens 9-16
Traversing a Rowset EXample........cccoovviiviiiiiiiieiiicie e 9-17
Using a Hidden Work Scroll Example.........ccccocoviiiininiininiiienieecceceeee 9-19
CUITENE CONLEXL ..ttt ettt sttt et ettt st et besbe s e bt eenesaesaeennesaeennens 9-22
Creating Records or Rowsets and Current Contextccoceeevenerveneneennenne 9-23
Accessing Secondary Component Buffer Data............cccoovveviiiiiiiiiiecnieeeeceecreeneene, 9-23
Instantiating Rowsets using non-Component Buffer datac.ccoceninininicnnnne. 9-23
Chapter 10
PeopleCode and the Component Processor
Events Outside the Component Processor FIOWcccccoceviriiininininenineene 10-1
How PeopleCode Programs Are Triggeredccocevvevereiiieninieniiieienieeeeseeieee 10-2
Accessing PeopleCode Programs..........coeevveverieninienieneeienieeeeeeseeeeie e 10-3
Execution Order of Events and PeopleCodec.ccoceriiiininiininiiiiieicnceen 10-4
Events after User Changes Fieldccccooevviiviiniiiiieiieeeeeeeeee 10-5
Events after USEr SAVES.......c.oociiiiiiiiiiiierie sttt 10-5
Component Processor Behavior..........c.coceviiiiiiniiiiiiniieetee e 10-7
From Page Start to Page Display.......c.cceeceviriiniiiineniiicinceceetecseeeeee 10-7
End-User Actions in the COMPONENLc.ccvevvieiiiriieriienie e e e esreeseesnesenes 10-8
ProCESSING SEQUEINCES ...cuvvevieivieiiiecie ettt ette et e bt bt eve e teestaestbeesbeesbeebeesbeessnesssenenas 10-9
Default ProCESSING.ccviiiieiiiiieiieeiesie ettt ettt e etaeereesbe e beesteesebessbeesseesseereens 10-10
Field-Level Default Processing.........coceveevenieieninieninieieseeienieeeeneeeee 10-10
Default Processing on Component Level..........ccccovieviniiiencneniniencneenne, 10-11
Search Processing in Update Modescceevieviieiieiiiiiecieccie e e 10-12
Search Processing in Add Modes........c..coeevieririeniniiieninieieceeeeseee e 10-14
Component Build Processing in Update Modes...........cocceeereenieniniienenienencenns 10-16

CONTENTS X PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

ROW SClECt PrOCESSINGvviivviiiieiiieiieciie ettt et sre e esveeve e e staeevvessveesreens 10-18
Component Build Processing in Add Modesccocevveeninienininienenicncncens 10-19
Field MOQifICAtION.ccuiitieiieiieieie ettt e 10-20
ROW INSEIt PrOCESSINGcuviiiiiiieiieciiiciecre et estee sttt reere e teesebesebeeereessaesreens 10-23
ROW Delete PrOCESSINEG......ooverveeiiriiriieiiiieeiesieetee ettt 10-24
PUSHBULIONS. ...ttt 10-26

g 707001 03U 10-26
Pop-up Menu Display........cccoeeieriiiiiieieneetee et 10-26
ItemSelected ProCESSING.........cccviivieriieriieiiecie ettt resteeereereereesraesanesrveesveens 10-27
PSLOStFOCUS PrOCESSINGcvveiviieiiiiieciieciie ettt v et e saaeseaeeare e 10-27
SAVE PIOCESSINE. ...coueetieiieieiieetenieei ettt sttt sttt et 10-28
EX1t COMPONEILveuvviiiiieiieeiieiiesieeeeesiaeetteeveebeesteeteestsesssessseesseesseasseesssessnesssenns 10-30
PeopleSoft Internet Architecture Processing Considerationsc.cccceevveervesveenneans 10-30
Deferred Processing Modeccvevuieiiiiiiiiieiieiecie ettt et sreeveebeereesane s 10-30
PeopleCode EVENLScc.eiiiiiiiiiiiieieics ettt 10-33
ACtIVALE EVENT....oiiiiiiiiiiicc ettt 10-33
FieldChange EVENt..........cccoovviiviiiiiieiiicie ettt sveeere v eveestaesanesvaeeave e 10-34
FieldDefault EVENtcccoiiiiiiieieeeiee et 10-34
FIieldEdit EVENt......cocuiiiiiiieiii et ettt e 10-35
FieldFormula EVEnt..........cccccoiiiiiiiiieieee e 10-35
TtemSelected EVENL........ooiiiiiiiieiee e 10-36
POStBUILA EVENL.....ccviiiiiiiiiicie et e 10-36
PreBuild EVENToc.ooiiiiiee e 10-36
PrePopup EVENt.....cccviiiiiiie ettt ettt n 10-37
PSControlInit EVENLoooviiiiiiiiieeiee ettt e 10-37
PSLOStFOCUS EVENtouiiiiiiiiiiiiiiiei et 10-38
RowWDelete EVENLoociiiiiieiieieeeee e 10-38
Considerations when Deleting all Rows from a Scrollccccoevveniniennen. 10-39

ROWINIE EVENL ..ot 10-39
Exception to ROWINit Firing........cccccoveiviiiviiiniieiesieciecre e 10-40
ROWINSEIt EVENL...cceiiiiiiiiiie ettt ettt e e 10-40
ROWSEIECE EVENL ...t 10-41
SAVEEIt EVENLeiiiiiiiieiieeeee e e 10-42
SavePostChange Event...........coooiiiiiiiiiniiieeee e 10-43
SavePreChange EVENnt..........ccccceoviiiiiiiiiiieieece et 10-43
Searchlnit EVENT........c.ooiiiiiieieeeee et 10-44
SearchSave EVENt.......c.oooiiiiiiiiiicieece et 10-44
WOTKEIOW EVENLiiiiiiiieieeee e 10-45
PeopleCode Execution in Multiple Scroll Pagescccoovvevvievieiiiiiieniieniecie e 10-45
SCTOI LEVEL ONE ...ttt e 10-46

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CONTENTS

Xi

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

SCIOIL LEVEL TWO ..c.uiiiiiiiiiieiiesiiecite ettt sev e ev e re e reestaesabessbeesbeesbaessneeens 10-46
SCIOIl LeVEl TRICE.......ceoiieiieiieiieeieee ettt ettt e 10-46
Chapter 11
PeopleCode and PeopleSoft Internet Architecture
Using PeopleCode in the PeopleSoft Internet Architecture..........c.ccocvevevienirienennenne. 11-1
Avoiding Features Not Supported by PeopleSoft Internet Architecture................. 11-2
Using PeopleCode to Populate Search Dialog Key Fields.........ccccoveevininininnene 11-2
Client-Only PeopleCode.......cveiviiiiiiieiieieeiiesiee et cve et tr e tve v e sereesreeseesreens 11-3
Functions That Are Always Client-Only...........ccccevevriivienieniie e 11-3
Functions That Are Client-Only under Specific Conditions...........c.ccceevveerurenenennn. 11-3
SCREAUIEPTOCESS ... eeeiieiieiieieeee ettt e 11-4
Functions That Behave Differently in Three-Tier Modec.cocvevvveviieieeieennnee. 11-4
Calling Executables on the Application SEIVETccecvvieviierieeiieiieniecre e 11-4
Calling Dynamic Link Library Functions on the Application Server.............cccccceenie. 11-5
Sample Cross-Platform External Test Function..........ccccocevevieninenicninencncenene 11-5
Updating the Installation and PSOPTIONS Tablescccevveiiieviienieiiecieeieeciie e, 11-7
Chapter 12
Debugging Your Application
Accessing the PeopleCode DebUuggercccevuiiiiniiieniiniiiiieeteeseeereetee e 12-1
PeopleCode Debugger FEatures........cc.evueeieririiiininieiesteesieeetecieee e 12-2
Visible Current Line of EXECULIONc.eervieeieiiiiiieierieeiee e 12-2
Visible Breakpointscoieriiiiierinieenetee ettt 12-2
HOVET INSPECT ..ottt ettt et e et e e et e e taeessseeeseseessseeenes 12-3
SINEIE DEDUZZETveiviiciiieiiieieee ettt e r e e b e esb e e beesreestaesene e 12-4
Variables Panescoccvevieiiiiiiiie et 12-4
FIeld VAlUCSooviiiiiiiiiiccccte ettt 12-6
General Debug@ing TIPS ...ccvvcvieiieiieiieeie ettt ereere e e sreeseaeerne e 12-7
DoModal Considerationscceeveereereerieriieeieesieeseesieseeseeeseeseesseesseens 12-8
PeopleCode Debugger OPLiONS..........ccuveviieeieiiierierieriesieesieesieeesreeseesseesseesssessnesesessnes 12-8
Additional FEAtUreSc.eeviiiiieiieiieiieriie sttt 12-11
Setting Up the Debugging Environment............c.cccoevvieviienienieiiecie e 12-11
Debugging Subscription PeopleCodecoeeieririeriininiiiiiieienecee e 12-12
Compiling all PeopleCode Programs............coceevereevienenieninieninieienieeeenieseeeie e 12-12
Setting PeopleCode Debugger Log Options..........ccceeverieienerienienieiienienceniesieeeenaenn 12-13
Interpreting the PeopleCode Debugger Log File.......ccccooviiiiivieniiiiicieciccee e 12-15
L0Z File CONLENLS.....ueiiiiiiiiiiieiieiiecieste ettt et et etaeeveesbeesbeesteesasessbeesseassaesseens 12-16
Sample TTace Filec..coieriiiiiiiiieieee e 12-20
About Operations and OPErandscocevereererierienenienentene et seeees 12-21

CONTENTS Xii PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

STACKS -ttt ettt ettt e n ettt ene e ene s 12-21
START .ottt ettt et b et esreesbebesteesseseeseensenns 12-21
STOP ..ttt ettt ettt et e s et ae e ee e 12-22
BRANCH ..ottt 12-22
PUSH oottt ettt ettt be st nb e beesae s e seenneenas 12-22
FETCH ...ttt ettt 12-23
BUILTIN .ttt ettt sttt et ese e neeneeeas 12-23
CALL oottt ettt et ettt be e e s e sa et e te e st e seereensenaean 12-24
START EXT ettt st 12-24
RETURN ...ttt ettt ettt nes 12-25
STORE ..ottt ettt ettt ettt s se e ebesseensesaeesae s e 12-25
ERROR ..ottt 12-25
STATEMENT ...ttt e 12-25
Printed Data ValUES.........ccueviieiieiieieiiecte ettt s 12-25
Other Items 1N the Log Filec.cccviiviiiiiiiiiiciicieeiecee et 12-26
23121 B TSP 12-27
Cross Reference REPOItS.......c.cccviiiiiiiiiiieiie ettt s e 12-30
Chapter 13
Using Three-Tier and Windows Client
Implementing Dynamic Tree COntrolsccccevererieniiieninieenceeseeee e 13-1
Recursive Single-Table Dynamic Trees.........ccoceverieririenenienieieeienieeeeneeeeeee e 13-6
HOW Tt WOTKS ..o 13-9
Controlling the Root Node of the Dynamic Tree.........cccoevveevieenienveeviienieesieeenens 13-10
Implementing ActiveX CONIOLS.......cccviiviiiriieriieeiecie ettt eseesre b e et eseesbeerneereens 13-11
Manipulating Events for ActiveX Controls..........cccvevveviieeciieirienienieiieereesreeninens 13-12
Lo @0 112 o) 1 L U 13-13
PSLOSTFOCUS. ...ttt ettt et ettt e s s 13-13
Control SPecific EVENLS.........covevviiiiiiiiciieeeceecee ettt 13-14
Manipulating ActiveX Control Properties and Methods.........cccccoceeveneriincnnienne. 13-15
Data Types for Declaring ActiveX Controls.........cccceeereeveneenienenieeneneene. 13-16
Initializing an ActiveX Control with Data...........c.cccovevviiiiinieniecreceeeiens 13-16
Using ScrollSelect FUNCHONS........c.eeviriiiiiiiirieniceeseeeeeeeee et 13-17
What ScrollSelect DOES........eeueeiuieiieiieiiee ettt 13-18
SCTOIISEIECt SYNMEAXveuvieiieiiiiieiiiteetee ettt 13-19
Specifying the Target SCroll Area.........ccceeeveeevieviieiieiiicreeeeeeecre e 13-19
The SQL SN ...veeviiiieciecieeteereeste ettt sv e eb e b e sbeesteesaaeeeve e 13-20
Specifying the Select Recordcocovieviiiiiiiiniiiiniceeeetecee 13-21
Turbo SCrollSElect........oveiiiiieei e 13-21
Other ScrollSelect FUNCHONS.........couiiiiiieiee et 13-22

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS xiii

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

New Data BERavior........ccooieiiiieieieeeee e 13-22
Specific ROW BEhavior ..ot 13-22
USING OLE FUNCHONScviiviiiiiiieiieciie ettt ettt sveevesebeesveevaesanesaseesnessneesveens 13-23
DAta TYPES ettt ettt ettt 13-24
Sharing a Single Object INSTANCEccvvevviiiiiiieiieree e 13-24
OLE Versus WINEXECc.ueviiiiieiieiieniie sttt ettt ettt s sneeneeens 13-25
ProcesSING GIOUPS ...ccveeviemiiiieiieierieet ettt sttt ettt et sttt ettt e et sbe e 13-25
Component BUildccocoiiiiiiiiiii e 13-26
FieldChange PeopleCodecoovieiiiiiiiiieiieieeieeiiesite sttt eveesveesinesere e 13-26
COMPONETIE SAVE ...evieeerieiiieeiiiestteeteesteeereeesebeesteeessseesseeessseessseesssseesssessnsseenes 13-27
SaveEdit PEopleCodecooiiiriiriiiiiiiieieeeeee ettt 13-28
Other ProcesSing GIOUPS........ccvevvieiveiieeieesieenieesieesresreereeseesseesssesssesssesssessseesns 13-28
Note on External Function LOCationccecerieiieriiiene e 13-29
Default Processing LOCationscccceouirierieniriinenieieseeteieeetee et 13-29
Controlling Process LOCAtION.........c..covevieiieeiieiiesiiesie e ereesieesve v ereesreesneesneesreens 13-30

Index

CONTENTS Xiv PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

ABOUT THIS PEOPLEBOOK

This PeopleBook covers the concepts of PeopleCode, the proprietary scripting language used in
the development of PeopleSoft applications. Its chapters describe techniques for adding
PeopleCode to applications, tips for using PeopleCode, the interaction of PeopleCode and the
Component Processor, and a number of other specialized topics, such as the use of the
PeopleCode debugger and referencing data in the component buffer.

The accompanying book, PeopleCode Reference, is a complete reference of the PeopleCode
language. Its chapters describe the syntax and fundamental elements of the PeopleCode language.

@ For more information see PeopleCode Reference.

Audience

This book is written for technical users, project leaders, and programmers who will be
customizing or developing applications using PeopleTools. To take full advantage of the
information covered in this book, we recommend that you have a basic understanding of how to
use PeopleSoft applications. In other words, you should be familiar with how to navigate your
way around the system and how to add, update, and delete information using PeopleSoft tables
and panels. You should also be comfortable using Microsoft® Windows.

PeopleCode is closely integrated with objects that you create and modify in Application Designer.
This PeopleBook assumes that you are familiar with Application Designer, and that you
understand the structure and relationship of the PeopleSoft application components developed in
Application Designer. It also assumes a basic familiarity with structured programming
languages, relational database concepts, and SQL.

@ For more information about Application Designer see Application Designer.

In this book, you’ll find detailed reference information on how to use PeopleCode as you build
and augment applications with PeopleTools. For information specific to your application, please
refer to your PeopleSoft application documentation.

Introducing What’s New is for developers who are familiar with PeopleCode. It provides a brief
overview of new functionality for this release.

Understanding PeopleCode and Events describes how PeopleCode programs and PeopleCode
events are integrated into Application Designer’s framework. It also give information on how to
add PeopleCode programs to applications in Application Designer.

Using the PeopleCode Editor provides information on how to use the PeopleCode Editor.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE XV

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Introducing the SQL Editor provides information on how to use the SQL Editor.
PeopleCode Language covers the syntax and fundamental elements of the PeopleCode language.

Understanding Objects and Classes in PeopleCode describes at a high level how to use objects
and classes in your PeopleCode programs.

Using Methods and Built-in Functions includes a number of issues related to the use of
PeopleCode methods and built-in functions. It discusses common restrictions on the use of
functions and methods in certain PeopleCode events. It examines groups of functions that are
related by common syntactic complexities (such as functions that access data in multiple-scroll
panels). And it views specific functions in the context of a specific development task (such as
implementing a dynamic tree control or a remote call).

Referencing Data in the Component Buffer discusses the logical and syntactic problems involved
in referencing scrolls, rows of data, and buffer fields.

Data Buffer Access furthers the discussion of how to access data in the panel buffers using the
data buffer access classes (rowset, row, record, field.)

PeopleCode and the Component Processor discusses the flow of execution of the Component
Processor at runtime and its interaction with PeopleCode programs. It describes when
PeopleCode events are generated during the Component Processor’s flow of execution, and how
PeopleCode events trigger PeopleCode programs.

PeopleCode and PeopleSoft Internet Architecture discuss the PeopleCode considerations writing
PeopleCode for PeopleSoft Internet Architecture applications.

Debugging Your Application discusses tools and techniques for debugging PeopleCode in
applications.

Using Three-Tier and Windows Client covers a number of issues related to the use of PeopleCode
methods and built-in functions when used in a three-tier or windows client architecture.
PeopleSoft applications are written to work in the PeopleSoft Internet Architecture. However, you
may have legacy applications or an environment that requires using this older architecture.

Before You Begin

To benefit fully from the information covered in this book, you need to have a basic
understanding of how to use PeopleSoft applications. We recomm end that you complete at least
one PeopleSoft introductory training course.

You should be familiar with navigating around the system and adding, updating, and deleting
information using PeopleSoft windows, menus, and pages. You should also be comfortable using
the World Wide Web and the Microsoft® Windows or Windows NT graphical user interface.

Related Documentation

To add to your knowledge of PeopleSoft applications and tools, you may want to refer to the
documentation of the specific PeopleSoft applications your company uses. You can access

PREFACE XVi PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

additional documentation for this release from PeopleSoft Customer Connection
(www.peoplesoft.com). We post updates and other items on Customer Connection, as well. In
addition, documentation for this release is available on CD-ROM and in hard copy.

@ Important! Before upgrading, it is imperative that you check PeopleSoft Customer
Connection for updates to the upgrade instructions. We continually post updates as we
refine the upgrade process.

Documentation on the Internet

You can order printed, bound versions of the complete PeopleSoft documentation delivered on
your PeopleBooks CD-ROM. You can order additional copies of the PeopleBooks CDs through
the Documentation section of the PeopleSoft Customer Connection Web site:
http://www.peoplesoft.com/

You’ll also find updates to the documentation for this and previous releases on Customer
Connection. Through the Documentation section of Customer Connection, you can download
files to add to your PeopleBook library. You'll find a variety of useful and timely materials,
including updates to the full PeopleSoft documentation delivered on your PeopleBooks CD.

Documentation on CD-ROM

Complete documentation for this PeopleTools release is provided in HTML format on the
PeopleTools PeopleBooks CD-ROM. The documentation for the PeopleSoft applications you
have purchased appears on a separate PeopleBooks CD for the product line.

Hardcopy Documentation

To order printed, bound volumes of the complete PeopleSoft documentation delivered on your
PeopleBooks CD-ROM, visit the PeopleSoft Press Web site from the Documentation section of
PeopleSoft Customer Connection. The PeopleSoft Press Web site is a joint venture between
PeopleSoft and Consolidated Publications Incorporated (CPI), our book print vendor.

We make printed documentation for each major release available shortly after the software is first
shipped. Customers and partners can order printed PeopleSoft documentation using any of the
following methods:

Internet From the main PeopleSoft Internet site, go to the
Documentation section of Customer Connection. You can
find order information under the Ordering PeopleBooks
topic. Use a Customer Connection ID, credit card, or
purchase order to place your order.

PeopleSoft Internet site: http://www.peoplesoft.com/.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE XVii

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Telephone Contact Consolidated Publishing Incorporated (CPI) at
800 888 3559.
Email Email CPI at callcenter@conpub.com.

Typographical Conventions and Visual Cues

To help you locate and interpret information, we use a number of standard conventions in our
online documentation. We also use standard conventions in PeopleCode syntax.

Please take a moment to review the following typographical cues:

monospace font Indicates a PeopleCode program or other example

Bold In PeopleCode syntax, boldface items indicate function
names, method names, language constructs, and
PeopleCode reserved words that must be included literally
in the function call.

Throughout the rest of this PeopleBook bold indicates
field names and other page elements, such as buttons and
group box labels, when these elements are documented
below the page on which they appear. When we refer to
these elements elsewhere in the documentation, we set
them in Normal style (not in bold).

We also use boldface when we refer to navigational paths,
menu names, or process actions (such as Save and Run).

Italics In PeopleCode syntax, italic items are placeholders for
arguments that your program must supply.

Throughout the rest of this PeopleBook itailcs indicates a
PeopleSoft or other book-length publication. We also use
italics for emphasis and to indicate specific field values.
When we cite a field value under the page on which it
appears, we use this style: field value.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the number 0,
not the letter O.

In PeopleCode syntax, ellipses indicate that the preceding
item or series can be repeated any number of times.

{Option1|Option2} In PeopleCode syntax, when there is a choice between two
options, the options are enclosed in curly braces and
separated by a pipe.

[] In PeopleCode syntax optional items are enclosed in

square brackets.

PREFACE XViii PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&Parameter In PeopleCode syntax an ampersand before a parameter
indicates that the parameter is an already instantiated
object.

KEY+KEY Indicates a key combination action. For example, a plus

sign (+) between keys means that you must hold down the
first key while you press the second key. For ALT+W,
hold down the ALT key while you press W.

Jump Links Indicates a jump (also called a link, hyperlink, or
hypertext link). Click a jump to move to the jump
destination or referenced section.

Cross-references The phrase For more information indicates where you can
find additional documentation on the topic at hand. We
include the navigational path to the referenced topic,
separated by colons (:). Capitalized titles in italics
indicate the title of a PeopleBook; capitalized titles in
normal font refer to sections and specific topics within the
PeopleBook. Cross-references typically begin with a
jump link. Here's an example:

For more information, see Documentation on CD-ROM in
About These PeopleBooks: Related Documentation.

e Topic list Contains jump links to all the topics in the section. Note
that these correspond to the heading levels you'll find in
the Contents window.

Opens a pop-up window that contains the named page or
Name of Page or dialog box. Click the icon to display the image. Some
Dialog Box screen shots may also appear inline (directly in the text).

@ Text in this bar indicates information that you should pay particular attention to as you work
with your PeopleSoft system. If the note is preceded by Important!, the note is crucial and
includes information that concerns what you need to do for the system to function properly.

@ Text in this bar indicates For more information cross-references to related or additional
information.

v Text within this bar indicates a crucial configuration consideration. Pay very close attention
to these warning messages.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE Xix

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Comments and Suggestions

PREFACE

Your comments are important to us. We encourage you to tell us what you like, or what you
would like changed about our documentation, PeopleBooks, and other PeopleSoft reference and
training materials. Please send your suggestions to:

PeopleTools Product Documentation Manager
PeopleSoft, Inc.

4460 Hacienda Drive

Pleasanton, CA 94588

Or send comments by email to the authors of the PeopleSoft documentation at:
DOC@PEOPLESOFT.COM

While we cannot guarantee to answer every email message, we will pay careful attention to your
comments and suggestions. We are always improving our product communications for you.

XX PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 1

Introducing What’s New

What’s new for PeopleTools PeopleCode? Plenty! There’s dot notation, new objects and classes,
more places to put your PeopleCode, and an enhanced debugger, to name a few.

This section provides an overview of the new features. This section is written for developers who
have a background in PeopleCode. If you’re new to PeopleCode, you probably shouldn’t start by
reading this section.

Objects and Classes

PeopleSoft is introducing object classes that can be manipulated by PeopleCode. Manipulating
these objects with PeopleCode is an easy and consistent way to manipulate data in the buffer.
These object classes enable you to write code that’s more readable, more easily maintained, and
more reusable. Coding with objects is simply easier.

List of Classes

The following list defines most of the new PeopleTools classes. This high-level list includes the
primary objects that can be instantiated from PeopleCode. It doesn’t include all the sub-classes,
that is, the additional objects that can be instantiated from each class. Each class is described in
detail in PeopleCode Classes.

Class Name Description

AESection Class Use this class to modify, with PeopleCode, the steps and
SQL associated with a given Application Engine section.

Array Class Use this class to manipulate a collection of data storage
locations, each of which holds the same type of data.
Each storage location is called an element of the array.

Business Interlink Class Use this class to contact an external system and access its
data in a synchronous manner.

Component Interface Classes Use this class to gain real-time synchronous access to the
PeopleSoft business rules and data associated from outside
the PeopleSoft online system. A Component Interface is
one of the APIs that work with the Session object.

Field Class Use this class, based on a field definition, to gain access to
all the properties of a field, such as its visibility, whether

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT'S NEW 1-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

JANUARY 2001

Class Name

Description

it's enabled, its value, and so on.

File Class

Use this class for reading from and writing to external
files. These files can either be unformatted files or files
with a pre-set structure defined with a File Layout
Definition.

Grid Class, GridColumn Class

Use these classes to access grids and grid columns on a
page.

Internet Script Classes

Use this class in PeopleSoft Internet Architecture to
dynamically generate a web page.

Message Class

Use this class to create and access an application message
from PeopleCode. Application messages are self-
describing messages that contain application data.

Page Class Use this class to manipulate a page in a component.
Usually you want to hide or display a page in a
component, either based on field values or the user's
security level.

PortalRegistry Classes Use this class to add and register content on your portal.

The PortalRegistry is one of the APIs that work with the
Session object.

ProcessRequest Class

Use this class to schedule a process or job. This class
succeeds the ScheduleProcess PeopleCode function.

Query Classes

Use these classes to access or modify existing PeopleSoft
queries, or to build new queries.

Record Class

Use this class to access a single record within a row. You
can also use this class to create standalone records. This
class is based on a record definition. A record object
consists of one to » fields.

Row Class

Use this class to access a row of data. The Row class is a
single row of data that consists of one to » records of data.
You can also think of a row as a single row in a
component scroll.

Rowset Class

This class is a data structure that describes hierarchical
data. It’s composed of a collection of rows. A component
scroll is a rowset. You can also have a level 0 rowset. Use
rowsets with component buffer data, as well as with
application messages and File Layouts.

Search Classes

Use these classes to access a search index and query its
contents.

Session Class

This class is the root of the entire family of PeopleSoft
APIs that provide external access into the PeopleSoft
system. It controls access to the PeopleSoft system,

INTRODUCING WHAT'S NEW

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Class Name Description

controls the environment, and enables you to do error
handling for all APIs from a central location.

SQL Class This class provides access to SQL definitions in your
PeopleCode program at runtime. You can create SQL
definitions in Application Designer or in your PeopleCode
program. They can be entire SQL programs, or just
fragments of SQL statements that you want to re-use.

Tree Classes These classes provide access to all the functionality of
Tree Manager in your PeopleCode program. The Tree
classes are one of the APIs that work with the Session
class.

Dot Notation and Objects

For the experienced application developer who writes a lot of PeopleCode, the new PeopleCode
object syntax might be the most valuable PeopleTools enhancement. This new object syntax
includes a new set of standard classes and support for Visual Basic-style dot notation to access
properties and methods of those classes.

It’s a simpler, more intuitive, more standard approach to writing code. With this release,
PeopleCode can be used extensively outside of the standard components (such as Application
Engine programs, Application Messaging subscriptions, and Component Interfaces). The new
object syntax de-couples PeopleCode from components and enables the application developer to
write vanilla PeopleCode that executes under the various runtime environments.

Prior to this release, there were only built-in functions, like FetchValue, ScrollSelect, and so on.
In this release, there are now methods. The primary difference between a built-in function and a
method is:

¢ A method can only be executed from an object by using dot notation. You must create an
instance of the object before you can use the method.

o A built-in function, in your code, is on a line by itself, and doesn't (generally) have any
dependencies. You don't have to create an instance of an object before you can use a built-in
unless it takes an object as one of its parameters.

For example, both the GetRowset built-in function and the GetRowset method return a reference
to a rowset object.

The GetRowset built-in could be used almost anywhere in your code. It returns a reference to the
rowset in the current context:

&MYROWSET = GetRowset () ;

The method can only be used as part of a row object to return a reference to a child rowset, that
is, a rowset contained by a row. You must first get a row object before you can get the child
rowset of that row. In order to get the row we use the GetRow built-in function. This returns a
reference to the current row:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT'S NEW 1-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&MYROW = GetRow () ;
&MYROWSET = &MYROW.GetRowset (SCROLL. scrollname) ;

If you're not going to access the row again, you could combine the two lines of code (above) into
the following:

&MYROWSET = GetRow () .GetRowset (SCROLL.scrollname) ;

These two lines are combined using dot notation, that is, the reference to the object (what's
returned with the GetRow built-in function) followed by a period, then a method or property
name.

@ For more information about objects and dot notation, see Understanding Objects and Classes
in PeopleCode.

Sometimes the built-in function and the method with the same name have the same syntax,
sometimes they don’t. You need to check the documentation to be certain.

Instantiating Objects

A class is the blueprint for something, like a bicycle, a car, or a data structure. An object is the
actual thing that's built using that class (or blueprint.) From the blueprint for a bicycle, you can
build a specific mountain bike with 23 gears and tight suspension. From the blueprint of a data
structure class, you build a specific instance of that class. Instantiation is the term for building
that copy, or an instance, of a class.

Code Enhancements Using Dot Notation

In the following example, instead of making a series of FetchValue calls, the re-written code
takes advantage of creating and defining one record object plus the Value property for fields. The
code is now more readable and easier to maintain if the structure of the page changes. If you
have many lines of code calling the same structure (such as a record, a page, a field, and so on),
you may see better performance if you write your code to call the structure once.

Existing Code
For &ROW 2 = 1 To &TOT_ROWS
/* Fetch values from DEMAND PO VW that we need for processing */

&STAGED DATE = Fetchvalue (RECORD.DEMAND CANCP VW, &ROW_1,
DEMAND PO VW.STAGED DATE, &ROW 2);

&INV_LOT_ID = FetchValue (RECORD.DEMAND CANCP VW, &ROW 1,
DEMAND PO _VW.INV_LOT ID, &ROW 2);

1-4 INTRODUCING WHAT'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

&CONTAINER ID =
DEMAND PO VW.CONTAINER ID, &ROW 2);

&SERIAL ID =
DEMAND PO VW.SERIAL ID, &ROW 2);

&STORAGE_ARFA =
DEMAND PO _VW.STORAGE_AREA, &ROW_2);

&STOR LEVEL 1 =
DEMAND PO VW.STOR LEVEL 1, &ROW 2);

&STOR_LEVEL 2 =
DEMAND PO VW.STOR LEVEL 2, &ROW 2);

&STOR LEVEL 3 =

DEMAND PO _VW.STOR_LEVEL_3, &ROW_2);

&STOR LEVEL 4 =
DEMAND PO VW.STOR LEVEL 4, &ROW 2);

&UOM = FetchvValue (RECORD.DEMAND CANCP_VW,
DEMAND PO VW.UNIT OF MEASURE, &ROW 2);

&RECEIVER ID =
DEMAND PO _VW.RECEIVER_ID, &ROW 2);

&RECV LN NBR =
DEMAND PO VW.RECV LN NBR, &ROW 2);

End-For;

Re-Written Code
Local row &ROW 1, &ROW 2;

Local record &RECORD;

For &ROW_2 = 1 To &TOT_ ROWS

FetchValue (RECORD.DEMAND CANCP VW,

FetchValue (RECORD.DEMAND CANCP_VW,

FetchValue (RECORD.DEMAND CANCP VW,

FetchValue (RECORD.DEMAND CANCP VW,

FetchValue (RECORD.DEMAND CANCP_VW,

FetchValue (RECORD.DEMAND CANCP_ VW,

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Fetchvalue (RECORD.DEMAND CANCP VW, &ROW 1,

FetchValue (RECORD.DEMAND CANCP VW, &ROW 1,

&ROW_1,

&ROW 1,

&ROW_1,

&ROW_1,

&ROW_1,

&ROW 1,

&ROW_1,

FetchValue (RECORD.DEMAND CANCP_VW, &ROW_1,

/* Fetch values from DEMAND PO VW that we need for processing */

&RECORD =

GetLevelO () (1) .DEMAND CANCP VW (&ROW 1) .GetRowSet (SCROLL.DEMAND PO VW) . (§ROW_2) .D

EMAND PO VW;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING WHAT'S NEW 1-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&STAGED DATE = &RECORD.STAGED DATE.Value;
&INV_LOT ID = &RECORD.INV_LOT ID.Value;
&CONTAINER ID = &RECORD.CONTAINER ID.Value;
&SERIAL ID = &RECORD.SERIAL ID.Value;

&STORAGE AREA = &RECORD.STORAGE AREA.Value;

&STOR_LEVEL 1 = &RECORD.STOR LEVEL 1.Value;

&STOR_LEVEL 2 = &RECORD.STOR LEVEL 2.Value;

&STOR_LEVEL 3 = &RECORD.STOR LEVEL 3.Value;

&STOR LEVEL 4 = &RECORD.STOR LEVEL 4.Value;
&UOM = &RECORD.UNIT OF MEASURE.Value;

&RECEIVER ID = &RECORD.RECEIVER ID.Value;

&RECV_ILN NBR = &RECORD.RECV_LN NBR.Value;
End-For;

Another advantage of the re-written code is that it can be called from practically any record in the
component because you get the level 0 rowset first. If this code is to be called from the level one
scroll (DEMAND_ CANCP_VW), you might shorten the declaration for &RECORD to the
following:

&RECORD =
GetRowset () . (&ROW_1) .GetRowSet (SCROLL.DEMAND PO VW) . (&ROW_2) .DEMAND PO _VW;

Data Buffer Access

There have been many different ways and built-in functions for accessing page buffer data. A
consistent data model is now available, based on the data buffer access classes Rowset, Row,
Record and Field.

@ The data buffer access support does not replace the existing functions, such as
ActiveRowCount, ScrollSelect, and so on. These functions are still valid and are being kept
for backwards compatibility.

These four classes are built on the data model of a PeopleTools component, in which scrollbars or
grids are used to describe a hierarchical, multiple-occurrence data structure. You can access these
classes using dot notation.

The four data buffer classes relate to each other in a hierarchical manner. The main thing to
remember when learning these relationships is:

1-6 INTRODUCING WHAT'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

e A record contains one or more fields.

= Records contain the fields that make up that record.
* A row contains one or more records and zero or more child rowsets

= A row contains the records that make up that row. In may also contain child rowsets.
® A rowset contains one or more rows

= A rowset is a data structure that describes hierarchical data. For component buffers, think of a
rowset as a scroll on a page that contains all of that scroll’s data. A level 0 rowset contains
all the data for the entire component.

= You can use rowsets with application messages, file layouts, Business Interlinks, and other
definitions besides components.

= A level 0 rowset from a component buffer only contains one row, that is, the keys that the
user specifies to initiate that component. A level 0 rowset from data that isn't a component,
such as a message or a file layout, might contain more than one level 0 row.

@ For more information about these classes, see Data Buffer Access.

To view a rowset, start the PeopleCode debugger in Application Designer, then select Break at
start. Start a PeopleSoft application. When the first PeopleCode program is reached, the
debugger displays the first line of code. Select Debug, View Component Buffers. In the view
window that appears you can look through the entire component buffer. The top level is a rowset.

@ For more information see Debugging Your Application

Instead of SQLEXxec. ..

You now have options other than SQLExec for using SQL.

Using the Record Class

With the Record class you can build and execute a SQL statement by using the following
methods:

Delete

Insert

SelectByKey

Update

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT'S NEW 1-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

[0

1-8

In the following example, the existing code selects all fields into one record then copies that
information to another record. The existing code used SQLExec. The rewritten code uses a record
object method SelectByKey.

Existing Code

&MYKEY = "001";

SQLExec ("select %dateout (msdatel), %dateout (msdate2), %timeout (mstimel),
$timeout (mstime2), %$timeout (mstime3), %datetimeout (msdttml),

$datetimeout (msdttm2), %datetimeout (msdttm3) from ps xmstbll where mskeyl = :1",
&MYKEY, &MYDATEl, &MYDATE2, &MYTIME1l, &MYTIME2, &MYTIME3, &MYDTTM1, &MYDTTM2,
&MYDTTM3) ;

SQLExec ("delete from ps xms outl where mskeyl = :1", &MYKEY);

SQLExec ("insert into ps_xms outl

(mskeyl, msdateoutl, msdateout2, mstimeoutl, mstimeout2, mstimeout3, msdttmoutl, msdttm
out2,msdttmoutl)values(:1,%datein(:2),%datein(:3),%timein(:4),%timein(:5),%timel
n(:6),%datetimein(:7),%datetimein(:8),%datetimein(:9))", &MYKEY, &MYDATE1,
&MYDATE2, &MYTIME1l, &MYTIME2, &MYTIME3, &MYDTTM1, &MYDTTM2, &MYDTTM3) ;

Re-Written Code

SelectByKey works by using the keys you've already assigned values for. It returns successfully
if you assign enough key values to return a unique record. In this example, the record has a single
key, so only that key value is set before executing SelectByKey. If your record has several keys,
you must set enough of those key values to return a unique record.

Local record &REC, REC2;

&REC = CreateRecord (RECORD.XMSTBL1) ;
&REC.MSKEY1 = "001";
&REC.SelectByKey () ;

&REC2 = CreateRecord(RECORD.XMS OUT1) ;
&REC.CopyFieldsTo (&REC2) ;

&REC2 .Delete() ;

&REC2.Insert () ;

For more information see Data Buffer Access, ProcessRequest Class and SelectByKey.

INTRODUCING WHAT'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

In the following example, again, the record object can be used instead of SQLExec.

Existing Code

If None (&EXISTS) Then

SQLExec ("insert into ps_rt rate tbl (rt rate index, term, from cur, to cur,
rt_type, effdt, rate mult, rate div) values (:1, :2, :3, :4, :5, %DateIn(:6),
:7, :8)", RT RATE INDEX, TERM, TO CUR, FROM CUR, RT TYPE, EFFDT, RATE DIV,

RATE_MULT) ;

SQLExec ("select 'x' from ps rt rate def tbl where rt rate index
term = :2 and from cur = :3 and to cur = :4", RT RATE INDEX, TERM, TO CUR,

FROM_CUR, &DEFEXISTS) ;

If None (&DEFEXISTS) Then

SQLExec ("insert into ps_rt rate def tbl (rt_rate index, term, from cur,

to cur, max variance, error type, int basis) values (:1, :2, :3,
:7)", RT RATE INDEX, TERM, TO CUR, FROM CUR, RT RATE DEF TBL.MAX VARIANCE,
RT RATE DEF TBL.ERROR TYPE, RT RATE DEF TBL.INT BASIS);
End-If;
Else
SQLExec ("update ps_rt rate tbl set rate mult = :7, rate div = :8 where
rt rate index = :1 and term = :2 and from cur = :3 and to_cur = :4 and rt_type
:5 and effdt = %DateIn(:6)", RT_RATE INDEX, TERM, TO CUR, FROM CUR, RT TYPE,

EFFDT, RATE DIV, RATE MULT) ;

End-If;

Re-Written Code

Local record &RT RATE TBL, &RT RATE DEF TBL;

If None (&EXISTS) Then
&RT RATE TBL = CreateRecord(RT RATE TBL) ;
&RT RATE DEF TBL = CreateRecord(RT RATE DEF TBL) ;
&RT RATE TBL.Insert() ;

&RT_RATE_DEF_TBL.SelectByKey () ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT'S NEW

16,

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

If None (&DEFEXISTS) Then
&RT RATE DEF TBL.Insert () ;

End-If;

Else
&RT RATE TBL.Update() ;

End-If;

SQL Definitions and the SQL Class

You can create SQL definitions in Application Designer. These can be complete SQL statements
or just fragments that you wish to re-use. You can share code between an online and a batch
process that use the same SQL statements. If a table changes, your SQL must be changed in only
one place. And you can dynamically create or change SQL statements online before you start a
batch process.

SQLExec only allows one row at a time to be fetched. With the SQL object, you can process
more than one row of data.

You can use the SQL class to create temporary SQL statements for manipulating data. The
following example creates a temporary SQL statement, then writes all the rows of data from a
record to a file:

Local Record &LN;
Local File &MYFILE;

Local SQL &SQL2;

&MYFILE = GetFile("record.txt", "A");

If &MYFILE.IsOpen Then
If &MYFILE.SetFileLayout (FILELAYOUT.ABS HIST) Then
&LN = CreateRecord (RECORD.ABSENCE HIST) ;
&SQL2 = CreateSQL("%Selectall(:1)", &LN);
While &SQL2.Fetch (&LN)
&MYFILE.WriteRecord (&LN) ;

End-While;

1-10 INTRODUCING WHAT’'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

End-If;

End-If;

&MYFILE.Close() ;

Record Class vs. SQL Object

If you’re doing many iterations of the same operation (like a million UPDATESs) use the SQL
object with the BulkMode property set to True.

The SQL object maintains a state (that is, a cursor). If your database can take advantage of
BulkMode, instead of a million operations, the commands are committed altogether and only
once. This can improve performance dramatically.

Using SQL Definitions with SQLExec

There are times when SQLExec is the appropriate function to use. If you only need a single row,
use SQLExec, which can only SELECT a single row of data. If your SQL statement retrieves
more than one row of data, SQLExec outputs only the first row to its output variables and
discards subsequent rows. This can improve single-operation performance.

However, you don’t have to hardcode your SQL statement. SQLExec is enhanced to accept the
SQL definitions, and the new meta-SQL, so you can reuse your SQL statements.

For example, consider the following statement:

SQLExec ("Update %Table(:1) set %UpdatePairs(:1) where %$KeyEqual (:2)", &REC,
&FIELD) ;

If you have created a SQL definition with this SQL statement and named it MYUPDATE, you
can use it with SQLExec as follows:

SQLExec (SQL.MYUPDATE, &REC, &FIELD) ;

Using Record Objects With SQLExec

The syntax for SQLExec now accepts Record objects as arguments. Instead of listing a group of
fields, you can use all the fields within a record.

In the following example, a SQLExec statement selects into a record object.

Local Record &DST;

&DST = CreateRecord (RECORD.DST CODE TBL) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT’'S NEW 1-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&DST.SETID.Value = GetSetId(FIELD.BUSINESS UNIT, DRAFT BU, RECORD.DST CODE TYPE,

nu)’.

&DST.DST ID.Value = DST ID AR;

SQLExec ("%SelectByKeyEffDt (:1,:2)", &DST, %Date, &DST) ;

/* do further processing using record methods and properties */

Meta-SQL

Of the many meta-SQL statements for this release, some are expandable, that is, you enter the
code in the PeopleCode editor as a short meta-SQL construct, but at runtime it expands into a full
SQL statement. For example, with the %List construct, you can list all of the fields for a record.
The re-written code is easier to maintain because you don't have to change it if a field was added,
deleted, or renamed. In addition, input processing is applied to the values:

o If the field is a date, a time, or a datetime, its value is automatically wrapped in the appropriate
%Dateln(), %DateOut(), %Timeln(), % TimeOut(), and so on.

e [fa value is a string, its value is automatically wrapped in quotation marks.
o [favalue is NULL, the "=value" part is replaced with "IS NULL".

The following example uses the %EffDtCheck meta-SQL statement, which expands into an
effective date sub-query suitable for a WHERE clause. &DATE has the value of 01/02/1998. The
&REC object has an EFFDT key field. The following code sample

SQLExec ("SELECT FNUM FROM PS REC A where $EffDtCheck(:1, A, :2)", &REC, &DATE);

resolves into the following:
"Select FNUM from PS REC A where EFFDT = (select MAX(EFFDT)
from PS_REC
where PS REC.FNUM = A.FNUM

and PS REC.EFFDT <= %DateIn('1998-01-02'))"

The SQL definition FTP_ TEMPLATE SELECT has the following code. The %List and
%EFFDTCHECK meta-SQL statements make the code easier to maintain. If there are any
changes to the underlying record structure, you don't have to change this SQL definition:

1-12 INTRODUCING WHAT’'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

SELECT $List (FIELD LIST, FTP_DEFAULT TBL A)
FROM PS FTP TEMPLATE TBL A
WHERE A.SETID = :1 AND A.FTP RULE TEMPLATE = :2

AND %EFFDTCHECK (FTP_DEFAULT TBL Al,A,:3) AND A.EFF _STATUS = 'A'

Standalone Rowset

In addition to being able to create records on the fly, you can create a standalone rowset. You can
use this type of object to get rid of hidden work scrolls on a page.

Standalone rowsets are not tied to the database. This means if you make changes to data in a
standalone rowset, it will not be automatically saved to the database. In addition, a standalone
rowset isn’t tied to the component processor. When you fill it with data, no PeopleCode
programs or events run (like RowInit, FieldDefault, and so on.)

Use the CreateRowset function to create a standalone rowset. The parameters for this function
determine if the structure of the rowset you're creating is based on an already instantiated rowset,
on a record definition, or both.

For example, to create a rowset based on an existing rowset, pass in the name of the existing
rowset.

&Level0 = GetLevelO() ;

&MyRowset = CreateRowset (&LevelO) ;

You can create rowsets based on record definitions. The following code creates a rowset
structure composed of four records in an hierarchical structure:

QA_INVEST HDR
QA INVEST LN
QA _INVEST TRANS
QA_INVEST DTL

@ You must start at the bottom of the hierarchy and add the upper levels.

Local Rowset &RS, &RS2, &RS FINAL;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT’'S NEW 1-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&RS2 = CreateRowset (RECORD.QA INVEST DTL) ;
&RS = CreateRowset(RECORD.QA_INVEST_TRANS, &RS2) ;
&RS2 = CreateRowset (RECORD.QA INVEST LN, &RS);

&RS FINAL = CreateRowset(RECORD.QA_INVEST_HDR, &RS2) ;

@ For more information see the CreateRowset function.

Performance Enhancement for SQLExec and ScrollSelect

Users familiar with PeopleCode know that runtime parameter markers in SQL strings were
replaced with the associated literal values. For databases that offer SQL statement caching, a
match was never found in the cache so the SQL was re-parsed and re-assigned a query path.

For example:

ScrollSelect (1, RECORD.ORD HDR HOLD VW, RECORD.ORD HDR HOLD VW, "where
business unit = :1 and order no = :2", &BU, &ORDER NO, True) ;

Old SQL sent to Database (important part in bold):

SELECT BUSINESS UNIT, ORDER NO, . . ., FROM PS ORD HDR HOLD VW where
business unit = ‘MO4a’ and order no = ‘AAA-50001’

New SQL sent to Database (change in bold):

SELECT BUSINESS UNIT, ORDER NO, . . ., FROM PS ORD HDR HOLD VW where
business unit = :1 and order no = :2

Now, in order to handle skipped parameter markers, each parameter marker is assigned a unique
number. This doesn’t change the value associated with the parameter markers, but it might cause
some confusion when it first appears in a Tools SQL trace.

The following code
SELECT SETID, SHIP TO CUST ID FROM PS CUST_ SHPOPT VW
where setid = :1 and ship to cust id = :2 and effdt =

(select max(effdt) from ps cust shpopt vw s2 where s2.setid = :1 and
s2.ship to cust id = :2 and s2.eff status = 'A' and s2.effdt <=
TO_DATE(:B,'YYYY—MM—DD'))

1-14 INTRODUCING WHAT’'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

will appear in the trace as follows:
SELECT SETID, SHIP TO CUST ID FROM PS CUST_ SHPOPT VW
where setid = :1 and ship to cust id = :2 and effdt =

(select max(effdt) from ps cust shpopt vw s2 where s2.setid = :3 and
s2.ship to cust id = :4 and s2.eff status = 'A' and s2.effdt <=
TO_DATE(:S,'YYYY—MM—DD'))

1-2519 09.34.19 0.000 Cur#l RC=0 Dur=0.000 Bind-1 type=2 length=3
value=MFG
1-2520 09.34.19 0.000 Cur#l RC=0 Dur=0.000 Bind-2 type=2 length=5

value=50001

1-2521 09.34.19 0.000 Cur#l RC=0 Dur=0.000 Bind-3 type=2 length=3
value=MFG
1-2522 09.34.19 0.000 Cur#l RC=0 Dur=0.000 Bind-4 type=2 length=5

value=50001

1-2523 09.34.19 0.000 Cur#l RC=0 Dur=0.000 Bind-5 type=2 length=10
value=1999-08-04

@ Some SQL statements can’t contain parameter markers because of database compatibility.

One case is if you concatenate parameter markers to literals, as follows:

ScrollSelect (1, RECORD.TARGET, RECORD.SELECT, "where p.setid = ‘M’:1 and t.setid
= ‘M’:2 . . ." &varl, &var2, &var3, &var4, &var5, True);

Another case is if you use a second bind variable with a %Truncate statement.
The following code is valid without any changes:

$Truncate(:1, 5)
The following code is no longer valid:

$Truncate (:1, :2);

To handle these exceptions, use the ExpandSqlBinds function. This function expands the bind
variable reference, and can be used within a SQLExec statement or on its own.

You can than change the above example to:

ScrollSelect (1, RECORD.TARGET, RECORD.SELECT, ExpandSqlBinds ("where p.setid =
‘M’ :1 and t.setid = ‘M':2 . . .", &varl, &var2, &var3, &var4, &var5), True);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT’'S NEW 1-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

=

You should only use ExpandSQLBinds for those parts of the string into which you want to put
literal values. For example, don't use ExpandSQLBinds with meta-SQL. The following code
shows how to use ExpandSQLBinds with %Table:

SQLExec (ExpandSQLBind ("Insert.... Select A.Field, :1, :2 from ", "O01", "02") |
"$table(:1)", Record.MASTER ITEM TBL) ;

Using Literal Parameters

If your code uses inline (literal) parameters (as opposed to standard parameter markers), they
remain as literals. In the following example, there are three standard parameter markers and one
literal (in bold):

ScrollSelect (2, Record.BI LINE, Record.BI LINE DST AR, Record.BI LINE DST AR,
"where business unit = :1 and invoice = :2 and

line seq num>=:derived work bi.line seq num and line seq num <=:3",

BI HDR.BUSINESS UNIT, BI HDR.INVOICE, &LAST BI LINE) ;

The standard parameter markers are sent to the database as markers, while the literal remains as a
literal. PeopleSoft recommends that you create no new code with literals.

For significant performance improvement, convert your literals to parameter markers.

Grids

1-16

You can now access both a grid and a grid column using PeopleCode (using the Grid and
GridColumn objects). You can have multiple grids on a page, and the grid no longer has to be the
last field on a page.

To hide a column in a grid, you no longer must loop through every row in the grid and hide that
field.

Now you can use the GridColumn property Visible.

The Visible property will also hide grid columns that are displayed as tabs in the PeopleSoft
Internet Architecture.

Existing Code
If COMPLETE FLAG = "Y" Then
For &I = 1 to &ACTIVE ROW2

Hide (SCROLL.TASK RESOURCE, &CURRENT ROW1l, SCROLL.TASK EFFORT, &I,
TASK EFFORT.EFFORT DT) ;

End-For;

INTRODUCING WHAT’'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

End-if;

Re-Written Code
Local Grid &GRID;

Local GridColumn &COLUMN;

If COMPLETE FLAG = "Y" Then
&GRID = GetGrid (PAGE.RESOURCE, "GRID1");
&COLUMN = &GRID.GetColumn ("COL5") ;
&COLUMN.Visible = False;

End-If;

@ For more information on how to use the new grid objects, see File Class.

There is no visible property on a grid, but you can still hide an entire grid. Most of the rowset
methods and properties work on a grid. To hide an entire grid, get its rowset, then use the
HideAllRows() rowset method.

Accessing PeopleCode Programs

Now, PeopleCode programs can be associated with items other than record fields, menus and
pushbuttons.

The following table locates the different types of PeopleCode programs in Application Designer.

PeopleCode Programs In Application Designer

Record field Record definitions and page definitions

Component record field, component record, | Component definitions
and component

Page Page definitions

Page field (ActiveX control) Page definitions

Menu component Menu definitions

Application message Message definitions and message channels

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT’'S NEW 1-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

1-

18

Component Interfaces Component Interface definitions

Application Engine Application Engine program (definition)

You can still access PeopleCode from the project window or from the record definition by
clicking the name of the PeopleCode program or by using Edit, View PeopleCode. To access
record field PeopleCode from a page definition select a field, then select View Record
PeopleCode from either the context window or from the Edit menu.

To access PeopleCode from a page definition select an element on the page, then select View
PeopleCode from either the context window or the Edit menu.

To access page field (ActiveX control) PeopleCode select an ActiveX control on the page, then
select View PeopleCode from either the context window or the Edit menu.

For more information about accessing PeopleCode from different components, see
Accessing PeopleCode in Application Designer (Overview).

You can access component PeopleCode only from the Structure tab of a component definition.
Select any element from that page, then select View PeopleCode from either the context window
or the Edit menu.

All the items with which you can associate PeopleCode are listed in the left-hand drop-down
menu in a component's PeopleCode editor window.

!__.'EMPLUYEE_CHECKLIST.EBL.PleBuiId [Component PeopleCode]

j IPreBuiId j

EMPLO CHEC]
ERS_SRCH_G
EMPLID (field)
OPRCLASS [field)

EMPL_RCD [field) —
MHAME [field)

LAST_MaME_SRCH [field]

ACCESS_CD ([field)

SSM [field)

SIM - [field)

MAT_INS_CD [field)

SSM_FRA (field)

SIN_GER [field)

HATIOMAL_ID [field)

PERSOMAL_DATA [record)

ERMPLID (field)

MAME [field)

MAME_PREFTX (field)

MAME_SUFFIX [field]

LAST_MAME_SRCH [fiehd)

FIRST_MAME_SRCH (field)

ADDRFSS1 {hield) M

A Component's PeopleCode Editor

A component is listed in bold if it has PeopleCode associated with it.

When you select a item of a component, the possible events associated with item are listed in the
right-hand drop-down window.

INTRODUCING WHAT’'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Every PeopleCode program is associated with a PeopleCode event, and is often referred to by that
name, such as RowlInit PeopleCode, or FieldChange PeopleCode. These programs are accessible

from, and associated with, different items. The following table lists events and types of
PeopleCode programs.

These events are part of the normal component processor flow. For more information about
events outside of the component processor (such as Component Interfaces, messages, and so
on) see the documentation specific to that technology.

The Searchlnit and SearchSave events (under Component Record) are only available for the
search record associated with a component.

Record Field | Component | Component | Component | Page Menu
Record Field | Record

FieldChange FieldChange | RowDelete PostBuild Activate | ItemSelected

FieldDefault FieldDefault | Rowlnit PreBuild

FieldEdit FieldEdit Rowlnsert SavePostChg

FieldFormula | PrePopup RowSelect SavePreChg

PrePopup SaveEdit Workflow

RowDelete SavePostChg

Rowlnit SavePreChg

Rowlnsert Searchlnit

RowSelect SearchSave

SaveEdit

SavePostChg

SavePreChg

Searchlnit

SearchSave

Workflow

Case Sensitivity in PeopleCode Programs

PeopleCode formats programs differently now. Variables are no longer automatically translated
into uppercase, but keep the case in which they're typed. If a variable is declared at the start of the
program, all occurrences are converted to the same case in which it is declared. Some
PeopleCode language statements are also no longer converted into uppercase, but instead are
converted to initial caps, for example, data types and keywords.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT’'S NEW 1-19

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

The following example has two parts: the first part is the code as it’s typed in. The user variables
are in bold. The second part is how the code is displayed to the user after saving.

local record &Rec;

global number #

function HandleRec (&InRec as record)
&inrec = &rec;
&num = 0;

end-function;

&rec = createrecord (record.xyz) ;
handlerec (&rec) ;

After saving, the above code would be formatted as follows:
Local Record &Rec;

Global Number #

Function HandleRec (&InRec As Record)
&Inrec = &Rec;
&num = 0;

End-Function;

&Rec = CreateRecord (Record.XYZ) ;

HandleRec (&Rec) ;

Application Reviewer

Access to the Application Reviewer is simplified and its function is greatly expanded. It is now
called the PeopleCode Debugger.

1-20 INTRODUCING WHAT’'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The PeopleCode Debugger is integrated into Application Designer. The interface to the debugger
has a visual indicator of breakpoints, an arrow indicating the current line and the ability to step
through code. You can inspect variables in the different variable panes. In addition, you can
inspect the value of a variable by positioning your cursor over it and reading the pop-up help
bubble. The debugger provides variable inspection windows for Globals, Locals, Function
Parameters, and the new Component scoped variables. It also allows the new PeopleCode Objects
to be expanded so you can inspect their component parts.

You can also debug your application by compiling all the existing PeopleCode to see if it's valid.

@ For more information see Debugging Your Application

Runtime Checking

Changes to PeopleCode runtime checking include edits that cause certain programs that worked
in PeopleTools 7.5 to abort when run in this release.

e Errors caused by missing pushbuttons

A PeopleCode program that refers to a pushbutton that was removed from a page now causes
a runtime error.

e Errors caused by referencing missing page fields

Gray or Hide built-in functions that reference page fields that no longer exist now cause a
runtime error.

o Syntax checking of declared variables

If you declare your variables at the start of your program, the PeopleCode editor runs some
fundamental syntax checking when you save your program. For example, if you declare
&DATE as type Field and then try to assign it as a rowset, you receive a design time error
when you try to save your PeopleCode.

e Checking of SQLExec Bind Variables

A SQLExec with more bind variables than are actually required now causes a runtime error.
For example, the following line of code is now invalid because there are 11 bind variables
and only 10 are required.

SQLExec ("Insert Into PS PF TEMP REC TBL Select :1, PF RECNAME, %datetimein(:3),
:4, :5, :6, :7, %datein(:8), :9, :10 From PS_PF META REC TBL", RECSUITE ID,
&PF RECNAME, &NULL DATETIME, &NULL CHAR, &NULL CHAR, &NULL NUM, &NULL NUM,
&NULL DATE, &NULL CHAR, &NO, &RETURN) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT’'S NEW 1-21

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Additional Features

Below are described some of the new features with this release. Again, for more in-depth
information about each new feature, read the appropriate section.

New Component Variable Type

Variables declared as Component type exist for the life of the component. Declare variables of
the Component type just as you declare Local or Global variables: at the top of your program and
in every program in which you use them.

For more information, see Data Types.

New Data Types

For most PeopleCode classes in this release, a corresponding data type enables you to instantiate
objects from that class. For example, you can declare your rowsets as type Rowset, your grids as
type Grid, and so on. These are object-based data types.

For more information, see Object-Based Data Types.

Automatic Backup of PeopleCode

Has your system ever crashed while you were writing a PeopleCode program? Or worse yet,
while you were fixing a PeopleCode program? Now, you no longer need to fear such failures. The
PeopleCode you’re currently working on is automatically saved to a file on your system in
between times you save it yourself.

For more information see Automatic Backup of PeopleCode.

Enhanced Find In Function
The Find In PeopleCode function is now Find In, because it searches for both PeopleCode and

SQL strings. You can search a project or specify individual records to search. You can also
specify whether to search for PeopleCode and SQL, just SQL, or just PeopleCode.

INTRODUCING WHAT’'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Find In...

Find hat: || Find

uLIE

Find Type: ITth string in PeopleCode and 5GL j Cancel
j Wiew:

Eroject: I Ertire Database

— Search

(v|Record PeopleCode

[w|rienu PeopleCode

[v|Page People Code

[w|Component PeopleCode
[v]Application Engine PeopleCode
[w|Component Interfaces PeopleCode
(vMeszage PeopleCode
[w]Standalone SOL Objects
[v]&pplication Engine SOL Objects

KIS E—

™ Match case ™ Save PeopleCode to File
Feady... Presz Cancel to end zearch
Find In. .. Dialog

@ For more information see Find In

Refreshing your Page

What do you want to do after your PeopleCode calls a RemoteCall, Component Interface,
Business Interlink or Application Engine program? You want to refresh the values displayed on
the page. A new PeopleCode method does just that.

The Refresh rowset method reloads the rowset (scroll) using the current page keys and redraws
the page. GetLevelO().Refresh() refreshes the entire page. You can also limit the refresh to a
particular scroll.

@ For more information see Refresh.

Using Constants Instead of Numeric Values

Some functions now accept or return constants. Use a constant instead of a numeric value to
make your code easier to read.

For example, the char_code parameter of CharType now accepts constants.
&ISKANJI = CharType (&STRTOTEST, 5);
Here's the same code, using a constant:

&ISKANJI = CharType (&STRTOTEST, %CharType Kanji);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING WHAT’'S NEW 1-23

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Similarly, when you’re looking for a return value, it’s much easier when using constants than
numeric return values:

&ONLYHIRAGANA = ContainsOnlyCharType (&STRTOTEST, %CharType Hiragana,
%CharType JapanesePunctuation) ;

If &ONLYHIRAGANA = %CharType Matched Then
WinMessage ("There are only Hiragana and Punctuation characters") ;
Else
If &ONLYHIRAGANA = %CharType NotMatched Then
WinMessage ("Mixed characters") ;
Else
WinMessage ("UNKNOWN") ;
End-If

End-If

Enhanced Transfer Functionality

In addition to specifying a list of RECORD fieldnames for the Transfer built-in function, you can
now specify a record object. Any field of the record object that's also a field of the search record
for the destination component is added to the list. This enhancement is particularly useful when
dealing with Workflows.

Attachment PeopleCode

Several PeopleCode functions have been added to enable you to transfer, view or delete files
using ftp.

Mapping of Functions to Methods and Properties

The first column in the following table lists built-in PeopleCode functions that existed prior to
this release. The second column lists the new method or property that should be used instead of
the function. The existing functions still work in this release, but, they are being kept only for
backwards compatibility. New applications should be created using the new classes, methods, and

properties.
Existing function name Use instead
ActiveRowCount ActiveRowCount Rowset property

1-24 INTRODUCING WHAT’'S NEW PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Existing function name Use instead

ClearSearchDefault SearchDefault Field property

ClearSearchEdit SearchEdit Field property

CompareLikeFields CompareFields Record method

CopyFields CopyFieldsTo or CopyChangedFieldsTo Record
method

CopyRow CopyTo Row method

CurrEffDt EffDt Rowset property

CurrEffRowNum RowNumber Row property, in combination with the
GetCurrEffRow Rowset method

CurrEffSeq EffSeq Rowset property

CurrentRowNumber RowNumber Row property

DeleteRecord Delete Record method

DeleteRow DeleteRow Rowset method

FetchValue Value Field property

FieldChanged IsChanged Field property

GetRelField GetRelated Field method

GetStoredFormat StoredFormat Field property

Gray Enabled Field property

Hide Visible Field property

HideRow Visible Row property

HideScroll HideAllRows Rowset method

InsertRow InsertRow Rowset method

IsHidden Visible Row property

NextEffDt GetNextEffRow().REC.FIELD.Value

NextRelEffDt GetNextEffRow.()REC.FIELD.GetRelated(rec.field).
Value

PriorEffDt GetPriorEffRow().REC.Field.Value

PriorRelEffDt GetPriorEffRow().REC.FIELD.GetRelated(rec.field).
Value

RecordChanged IsChanged Record property

RecordDeleted IsDeleted Record property

RecordNew IsNew Record property

RemoteCall for Application CallAppEngine function

Engine

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING WHAT’'S NEW

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

JANUARY 2001

Existing function name Use instead

RowFlush FlushRow Rowset method

RowScrollSelect Select Rowset method

RowScrollSelectNew SelectNew Rowset method

ScheduleProcess CreateProcessRequest Function

ScrollFlush Flush Rowset method

ScrollSelect Select Rowset method

ScrollSelectNew SelectNew Rowset method

SetDefault SearchDefault Field property

SetDefaultAll SetDefault Rowset method

SetDefaultNext GetNextEffRow().REC.FIELD.SetDefault()

SetDefaultNextRel GetNextEffRow().REC.Field.GetRelated(REC.FIELD
).SetDefault()

SetDefaultPrior GetPriorEffRow().REC.FIELD.SetDefault()

SetDefaultPriorRel GetPriorEffRow().REC.Field.GetRelated(REC.FIELD
).SetDefault()

SetDisplayFormat DisplayFormat Field property

SetLabel Label Field property

SetSearchDefault SearchDefault Field property

SetSearchEdit SearchEdit Field property

SetTracePC If using API (Session object), use Trace Setting Class
Properties

SetTraceSQL If using API (Session object), use Trace Setting Class
Properties

SortScroll Sort Rowset method

TotalRowCount RowCount Rowset property

Ungray Enabled Field property

UnHide Visible Field property

UnHideRow Visible Row property

UnhideScroll ShowAlIRows Rowset method

UpdateValue Value Field property

Mapping of Old Names to New Names

In PeopleTools 8.1 the names of some of the definitions in Application Designer changed. The

names of related built-in functions have changed accordingly.

1-26 INTRODUCING WHAT’'S NEW

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

The first table lists the old terms and new terms

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

In the second table, the first column in the following lists the old names of the functions, system

variables or reserved words. The second column lists the new names. The existing functions,

system variables and reserved words in this table still work in PeopleTools 8.0, however, they are

just being kept for backwards compatibility. New applications should be created using the new

functions, system variables and reserved words.

Old Term New Term

Operator User

Panel Page

Panel Group Component
Business Component Component Interface

Deprecated Function, System Variable or
Reserved Word

New Function, System Variable or
Reserved Word

DoModalPanelGroup built-in function

DoModalComponent built-in function

IsModalPanelGroup built-in function

IsModalComponent built-in function

IsOperatorInClass built-in function

IsUserInPermissionList built-in function

PanelGroupChanged built-in function

ComponentChanged built-in function

SetNextPanel built-in function

SetNextPage built-in function

TransferPanel built-in function

TransferPage built-in function

%OperatorClass System Variable

%PrimaryPermissionList System Variable

%OperatorID System Variable

%UserID System Variable

%OperatorRowLevelSecurityClass System
Variable

%RowSecurityPermissionList System
Variable

%Panel System Variable

%Page System Variable

%PanelGroup System Variable

%Component System Variable

PANEL reserved word

PAGE reserved word

PANELGROUP reserved word

COMPONENT reserved word

PanelGroup variable declaration

Component variable declaration

Business Components are now named Component Interfaces. For Component Interfaces, the old
reserved word, methods and system variables are no longer valid. You must use the new

reserved word, methods or system variables.

No Longer Valid

Use Instead

COMPONENT reserved word

COMPINTFC reserved word

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING WHAT’'S NEW

1-27

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

1-28

JANUARY 2001

No Longer Valid

Use Instead

GetComponent method

GetComplntfc method

FindComponent method

FindCompIntfc method

%Component system variable

%Complntfc system variable

INTRODUCING WHAT’'S NEW

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 2

Understanding PeopleCode and Events

=,

With PeopleTools 8, PeopleCode introduces object classes into its programming model. To
reduce confusion, this section refers to Application Designer objects (such as records, pages,
and so on) as definitions, to distinguish them from PeopleCode data objects. You may
encounter references to the older terms "object" or "object definition" in Application
Designer and other documentation.

Every PeopleCode program is associated with an Application Designer definition and with an
event. Events are predefined points either in the Component Processor flow or in the program
flow (for application messages.) As each point is encountered, the event fires on each definition,
triggering any PeopleCode program associated with that definition and that event. Each class of
definitions in Application Designer can have an event set—a group of events appropriate to that
definition. A definition can have zero or one PeopleCode programs for each event in its event
set. In PeopleTools 7.5, only record fields and menu items had event sets. In PeopleTools 8,
several more types of definitions have event sets as well:

Definition Type Availability

Record field Prior to PeopleTools 8
Component record field New in PeopleTools 8
Component record New in PeopleTools 8
Component New in PeopleTools 8
Page field New in PeopleTools 8
ActiveX control New in PeopleTools 8
Pop-up Menu item Prior to PeopleTools 8
Message New in PeopleTools 8
Message Channel New in PeopleTools 8

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

=,

Note on Application Engine PeopleCode. An Application Engine program can have a
PeopleCode program as an action. Though the right-hand drop-down menu on the
PeopleCode editor window shows the text "OnExecute," it really isn’t an event. Any
PeopleCode contained in an Application Engine action is executed only when the action is
executed. For more information see PeopleCode Actions in the Application Engine book.

Note on Component Interface PeopleCode. A Component Interface can have user-defined
methods associated with it. These methods aren’t part of any processor flow. They're called
as needed by the program executing the Component Interface. For more information see
Component Interface Classes.

Note on "PeopleCode Types." The term "PeopleCode type" is still frequently used, but
fits poorly into the PeopleTools event-driven metaphor. The term PeopleCode event should
now be used instead. However, it’s often convenient to qualify a class of PeopleCode
programs triggered by a specific event with the event name; for example, PeopleCode
programs associated with the RowlInit events are collectively called RowInit PeopleCode.

Accessing PeopleCode in Application Designer (Overview)

2-2

You can access PeopleCode associated with the various Application Designer definitions in
several ways.

With record fields and pop-up menu items, the Project View displays PeopleCode programs
within the project hierarchy using a lightning bolt symbol. The programs are children of the
fields and pop-up menu items with which they’re associated, and are named according to their
associated events, such as ItemSelected, RowlInit, or SaveEdit, as shown in the following
illustration. Double-click a record field or pop-up menu item program in the Project View to
launch the PeopleCode Editor and load that program for editing.

UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

551 DEMO N
{:] Application Engine Programs
-] Business Interlink
-] Component Interface
-] Components
-7 Fields
-2 File Layout Definitions
F-0 HTML
E-(] Images
E-£3 Menus
. @[B4 CORE_PERS_DATA_POPUP
=g JOBCODE_POPUP

- MENUITEM1

B ADD_JOB
2% ltemSelected

; [+ JOBCODE_TRANSFER
-1 Message Definitions
-] Pages
=23 Records

-6 DIMENSION
=43 DIMENSION_ID

PeopleCode Programs in the Project View Hierarchy

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

@ For more information about record field and menu item PeopleCode programs and other
ways to access them, see Record Field PeopleCode and Component PeopleCode.

You can associate PeopleCode with many other types of definitions, such as

components

pages

Component Interfaces

Such PeopleCode programs don't display in the Project View. Instead, right-click the definition’s
name and select View PeopleCode from the pop-up menu. You can also access them from their
associated definitions, as described for each definition in this section.

PeopleCode can also be associated with the following:

e component records, that is, with specific records included in components

e component record fields, that is, with specific record fields included in components

ActiveX controls

Since component record fields, component records and ActiveX controls don’t appear in the
Project View at all, you must access their associated programs through their parent definitions, as

described for each definition in this section.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING PEOPLECODE AND EVENTS

2-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Record Field PeopleCode

2-4

A record is a table-level definition, such as an SQL table, a View, or a Derived/Work Record.
Record fields are child definitions of records, and Record Field PeopleCode programs are child
definitions of record fields. A record field can have zero or one PeopleCode programs for each
event in the record field event set.

In addition to accessing programs through the Project View, you can also access them from the
record definition, and from any page definition that includes that record.

Accessing Record Field PeopleCode From a Record Definition

Record definition fields that have PeopleCode associated with them appear bold in all record
Views.

Efi EMPL_CHECKLIST [Record)

Record Fields lRecord e |

Hum Field Hame Type (| Len | Format | H Short Hame Long Ham
EMPLID HRY Upper 3 EmplD
2 CHECKLIST_DT Dite 10 Chklst Ot Checklist Date
3 CHECKLIST_CD Char 5 Upper Checklist Checklist Code
4 RESPONSIBLE_|D Char 11 Upper Resp 1D Responsikle D
5 COMMENTS Long 1] Commenrt Commert

Record Definition with Three Fields with PeopleCode

In the above example, the first three fields (in bold) have PeopleCode associated with them. In
addition, if you expand the subrecords in a record definition, any fields in the subrecord that have
PeopleCode associated with them will display in bold.

i PERSONAL_DATA [Record)

Fecord Fields |Record Type I

Hum Field Hame Type | Len | Format | H Short Hame Long H =~

1 EMPLID Char 11 Upper I EtmpliCy

2 :HAME Char Al Mame Mame Mame

3 MAME_PREFIX Char 4 Mized Prefix Mame Prefix

4 MNAME_SUFFIX Char 15 Upper Suffix Mame Suffix

5 LAST_MAME_SRCH Char 30 Upper Last Mame Last Marme

6 :FIRST_HAME_SRCH Char 30 Upper First Mame First Mame

|| |7 CeGESEeE
ADDRESS1 Char 55 hiixecd Address 1 Address Ling
ADDRESS2 Char S Pzl Acldress 2 Address Line
ADDRESES Char 55 hiixecd Address 3 Address Ling
ADDRESS4 Char S Pzl Acldress 4 Address Line
CITY Char 30 Mixed City City
COUMTY Chat 30 ized Caurnty CoLrty
STATE Char 6 Upper St State
IP Char 10 Custm Iip Postal Code
COUHTRY Char 3 Upper Cntry Courtry -
o - T _ | _>|_I

UNDERSTANDING PEOPLECODE AND EVENTS

Record Definition with Subrecords with PeopleCode

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

To access record field PeopleCode from an open record definition:
'?ua
1. Click the PeopleCode Display button on the toolbar.

A grid appears with a column for each event in the record field event set. Each cell
represents a field/event combination. The column names are abbreviations of the record field
event names, for example, FCh for the FieldChange event and RlIn for the RowInit event. A
checkmark appears in the appropriate cell for each field/event combination that has an
associated PeopleCode program.

@ For more information about individual events, see Record Field Event Set.

Bl EMPL_CHECKLIST [Record) !E[E
Record Fields IRecor‘d e |

Hum Field Mame Type | FDe| FEd| FCh| FFo| Rin| Rl (RDe| RSe| SEd| SPr

1 |EMPLID Char v

2 |CHECKLIST_DT Date W W

D

4 |RESPOMSIBLE_ID Char

5 [COMMENTS borg | [| [T [| [| [|
| | i

Accessing Record Field PeopleCode from a Record Definition

2. Access the PeopleCode.
You can access the PeopleCode for a given cell by:

Double-click the cell.

Right-click the cell, and select View PeopleCode from the pop-up menu.

Select View, PeopleCode from the main menu.

The PeopleCode Editor appears. If the field/event combination has an associated program, it
displays in the editor.

@ For more information, see Using the PeopleCode Editor.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

2-6

Accessing Record Field PeopleCode From a Page Definition

You can associate a PeopleCode program with any page control that you can associate with a
record field.

To access record field PeopleCode from a page definition, right-click a page control and select
View Record PeopleCode from the pop-up menu. The PeopleCode Editor appears, displaying
the first event in the event set associated with that control’s underlying record field.

Pushbutton controls are a special case. You can associate a PeopleCode program with a
pushbutton only if its destination is defined as PeopleCode Command. When the end-user clicks
a pushbutton defined like this, the FieldEdit and FieldChange events are triggered, so your
PeopleCode must be associated with one of those two events. FieldChange is normally used.

To define a command pushbutton:

1. In the page definition, double-click the pushbutton to access its properties.

Page Field Properties
Tepe I Label I General I
—Tupe = Ewxterral ik
¥ Puzh Button " Huperlink) Uyranic
Destination: leCode Comnmatd) S
Fiecord Name: [DIMENSION_wWRK =l URLID: =
FieldName: [PB_DIM_OPTIONS =l
= [terral it
™ Enable When Page is Display Only
)) = I j
= Wpein e tfind
= Aligrment: Eompariet: I j
0 eft € Gentered| €50 Bight Fages I j
= At Aoehior; I j
At Type: I j = Wsedata from curent pagein seansh
Felsted Eomtrol I j
e
= Secondan Fage Tpes I ﬂ
Fane: I j Hame: I ﬂ
oK I Cancel

Page Field Properties Dialog Box

2. Select PeopleCode Command as the pushbutton Destination.
3. Select the record and field with which your pushbutton, and PeopleCode, are associated.

It’s best to associate the pushbutton with a Derived/Work record field, which separates its
PeopleCode from the PeopleCode associated with any of the page’s other underlying record
fields. You can then store generic PeopleCode with this field so you can reuse it with
pushbuttons on other pages.

UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

4. Click OK to return to the page.

Right-click the pushbutton and select View PeopleCode from the pop-up menu to access the
PeopleCode Editor.

@ For more information, see Using the PeopleCode Editor.

Fields and Record Fields

It’s important to distinguish clearly between fields and record fields:

o Fields are stand-alone definitions, on the same level as records, whose attributes are shared
across all records that use the field.

e Record fields are owned by the record definitions that include them.

@ Fields and record fields are also distinct from component record fields. These are the record
fields used in a component, as they appear in the component’s structure view. Within that
context, they have their own independent event sets and PeopleCode programs. For more
information, see Component Record Field PeopleCode.

Properties of a field, such as data type and size, affect all records that include the field; therefore
any change to a field property affects all records that include the field. Properties of a record
field, such as PeopleCode programs and key settings, are not shared among records; a change to a
record field property affects only the record that owns the record field.

@ PeopleCode programs are owned by record fields and component record fields, not fields.

Record Field Event Set

The events in the Record Field event set will be familiar to users of previous releases of
PeopleTools. These have traditionally been called "PeopleCode types" (now an obsolete term):

¢ FieldChange Event

FieldDefault Event

FieldEdit Event

FieldFormula Event

Rowlnit Event

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

e RowSelect Event

e RowDelete Event

e PrePopup Event

o SaveEdit Event

e SavePreChange Event
e Workflow Event

e SavePostChange Event
e Searchlnit Event

e SearchSave Event

@ For more information, see PeopleCode and the Component Processor.

Component Record Field PeopleCode

Component record field PeopleCode is different from record field PeopleCode.

Component record field PeopleCode is associated with a record field, but only with respect to a
component and one of its events. Use this type of association to tailor your programs to a
particular component. This PeopleCode is only accessible through a component’s structure
display, not from any record definition.

To access PeopleCode associated with a component record field, open the component’s structure
view, select a field, right-click the field name, and select View PeopleCode from the pop-up
menu. A lightening bolt displays next to the field name if PeopleCode is associated with the field
at the component level. If PeopleCode is associated with the field at the record level, a lightening
bolt doesn’t display.

2-8 UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

is§ EMPLOYEE_CHECKLIST.GEL [Component]

Defirition Structure

% EMPLOYEE_CHECKLIST (Component)

F_I"-ég PERS_SRCH_GEL [View) - Search Recard
----- G EMPLID [Subrecord Field)

----- & OPRCLASS [Subrecord Field)

AE

----- & ACCESS_CD (Subrecord Field)
..... & 55N [FRecord Field)
----- % SIM [Record Field)
----- & MAT_INS_CD (Recaord Field]
----- & SSN_FRA [Record Field)
----- & SIM_GER [Record Field]
----- & NATIONAL_ID [Record Field)
= E Scrall - Level 0

% PERSOMAL_DATA [Table]
E Scroll - Level 1 Primary Record: CHECKLIST_ITERM
=S ﬁ Scrall - Level 1 Prirmary Record: EMPL_CHECKLIST

P T W I N T o A M Tk s]

|»

=

Accessing Component Record Field PeopleCode from the Component Structure

The PeopleCode Editor appears. If that field has associated PeopleCode, the first program in the

component record field event set displays in the editor.

For more information, see Using the PeopleCode Editor.

Through a component’s structure display, you can access the definition of a record field included
in a page of the component. That record field has its own event set and associated PeopleCode.

For more information see Record Field PeopleCode.

Component Record Field Event Set

FieldChange Event

FieldDefault Event

FieldEdit Event

PrePopup Event

Component Record PeopleCode

Component record PeopleCode is associated with a record definition, but only with respect to a
component and one of its events. Use this type of association to tailor your programs to a
particular component. This PeopleCode is directly accessible through a component’s structure

display, not from the record definition.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING PEOPLECODE AND EVENTS 2-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

2-10

To access PeopleCode associated with a component record, open the component’s structure view,
select a record, right-click the record name, and select View PeopleCode from the pop-up menu.

s EMPLOYEE_CHECKLIST.GEL [Component] == &= I

Defirition Structure I

% EMPLOYEE_CHECKLIST [Component)
PERS_SRCH_GEL [View) - Search Recard
= Seroll-Leveln
1SOMAL_DATA [T ableg
Scroll - Level 1 Primary Re
Scrall - Level 1 Primary Re
=) EMPL_CHECKLIST (Table)
=) DERIVED_HR (Derived]
. ﬁ Scroll - Level 2 Primary Record: EMPL_CHELST_ITH

Wiew D efinition

Accessing Component Record PeopleCode from the Component Structure

The PeopleCode Editor appears. If that record has associated PeopleCode, the first program in
the component record event set displays in the editor.

For more information, see Using the PeopleCode Editor.

Component Record Event Set

Search records and non-search records in components have different associated event sets. The
following events are associated with component search records:

e Searchlnit Event

e SearchSave Event

The following events are associated with component non-search records:
e RowDelete Event

Rowlnit Event

RowlInsert Event

RowSelect Event

SaveEdit Event

SavePostChange Event

UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

e SavePreChange Event

Component PeopleCode

Component PeopleCode is associated with a component definition and an event. To access
PeopleCode associated with a component, open its structure view, select the component name,
right-click the name, and select View PeopleCode from the pop-up menu.

ii EMPLOYEE_CHECKLIST_GBL (Component) O]] |

Definition Structure I

0 CHECKLIS onen|
PERS_SRCH_GEL [View)] - Searc oo =
Seroll - Level D VWiew PeopleCode
PERSOMAL_DATA [Table)

Scrall - Level 1 Primary Record: CHECKLIST_ITEM

Scroll - Level 1 Primary Record: EMPL_CHECKLIST

-£=) EMPL_CHECKLIST (Table)

(=) DERIVED_HR [Derived]

- ﬁ Scraoll - Level 2 Primary Record; EMPL_CHELST_ITM

“Wiew Definition

Accessing Component PeopleCode from the Component Structure

The PeopleCode Editor appears. If that component has associated PeopleCode, the first program
in the component event set displays in the editor.

@ For more information, see Using the PeopleCode Editor.

Component Event Set

PostBuild Event

PreBuild Event

SavePostChange Event

SavePreChange Event

Workflow Event

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Page PeopleCode

Page PeopleCode is associated with a page definition. Currently, pages have only the Activate
event. This event is only valid for pages that are defined as Standard or Secondary. This event is
not supported for subpages.

To access PeopleCode associated with a page, right-click on any part of the page’s definition,
except an ActiveX control, and select View Page PeopleCode from the pop-up menu.

= EMPLOYEE_CHECKLIST ENG [Page) C1o|

Page Designer IOrder I

NNHHNNHNN

g e B
Wiew Definition
View Page PeopleCode

“iew Becord PeopleCaode

Cut Chrl+=
LCopy Chil+C
Fazte Clrl+
LDelete Del

Find Object References

FPage Field Properties Chrl+F
Page Properties Alt+E nter
Aictiverx Canfol Bt Broperties. Eirlss

Default Page Field Ordering

Accessing Page PeopleCode from the Page Definition

The PeopleCode Editor appears. If that page has associated PeopleCode, it displays in the editor.

@ The term "page PeopleCode" refers to PeopleCode programs owned by pages. It’s important
not to confuse page PeopleCode with PeopleCode properties related to the appearance of
pages, such as the Visible page class property.

@ For more information, see Using the PeopleCode Editor.

@ If you select a non-ActiveX page control, you can select View Record PeopleCode from the
pop-up menu, which displays PeopleCode associated with that record field. For more
information, see Record Field PeopleCode.

2-12 UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Page Activate Event

The page event set consists of a single event, the Activate event, which fires every time the page
is activated.

@ For more information, see the Activate Event.

Page Field Control PeopleCode

Page Field PeopleCode is associated with page fields. The only control that has PeopleCode
associated with it is an ActiveX control.

@ ActiveX controls are not supported in PeopleSoft Internet Architecture.

To access PeopleCode associated with an ActiveX control, select the ActiveX control in the page
definition, right-click it and select View Page PeopleCode from the pop-up menu.

ESVOLUNTEER_ORG_TABLENG [Page) C1o|

Page Designer IOrder I

[mm
e [efimitEr

*age PeopleCode

wiew Hecaord FecpleCads

Cut Chrl+
LCopy Chrl+C
Paste Chil+
Delete Del

Eird EEject Heferences

Page Field Properties Chrl+F
Page Properties Alt+Enter
Activers Control Builin Properties Chil+A,

Default Page Field Ordering

Accessing Page Field PeopleCode from a Page Definition

@ For more information, see Using the PeopleCode Editor.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Page Field Event Set

The only control that has PeopleCode associated with it is an ActiveX control. Every ActiveX
control has its own unique event set. The following events are common to all ActiveX control
event sets; only these events are part of the Component Processor flow:

e PSControllnit Event

o PSLostFocus Event

For more information, see Implementing ActiveX Controls and ActiveX Controls in
PeopleTools.

Menu Item PeopleCode

=,

2-14

PeopleTools menus come in two types, pop-up and standard, both of which are stand-alone
definitions in the project hierarchy.

Important! For the PeopleSoft Internet Architecture, you can only associate PeopleCode
with menu items in a pop-up menu.

Menu item PeopleCode programs are associated with pop-up menu items, which are child
definitions of pop-up menus.

To define a PeopleCode pop-up menu item:

1. In the open pop-up menu definition, double-click the menu item to access its properties. If
you’re creating a new menu item, double-click the empty rectangle at the bottom of the pop-
up menu.

UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

i“§ JOBCODE_POPUP [Menu) [_[O]=]
Add New Jobcods

Wiew Jobcode Detailz

Pop-up Menu Definition in Application Designer

2. The Menu Item Properties dialog box appears. If this is a new menu item, enter a name and a
label for the item.

 Menu Item

Mame: |DD_JOB

Label: iidd Mew Jobcodel
— Type

€ Transfer

F PeopleCode

£ Separator Define Tratsfer.. |

Ok I Cancel |

PeopleCode Menu Item Properties Dialog Box

@ For more information about menus, see Creating Menu Definitions.

3. Select PeopleCode from the Type group.

@ For more information about different types of menu items, see Defining Menu Items.

4. Click OK to close the Menu Item Properties dialog box.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

To access pop-up menu item PeopleCode:
1. Open the pop-up menu definition.
2. Access the PeopleCode.

Right-click the menu item. Ifit’s defined as a PeopleCode menu item, View PeopleCode is
enabled on the pop-up menu.

i JOBCODE_POPUP [Menu] M= E

L_2dd New Jobcode L

Wiew Jobcode Detailz
FRRRE Yiew PeopleCode

iew D efmtiarn

Cut
Copy
Easte
LDelete

Menu Properties
Menu ltem Properties

Accessing Pop-up Menu Item PeopleCode from a Menu Definition

3. Select View PeopleCode.

The PeopleCode Editor appears with that menu item’s associated program, if any, displayed.

@ The term "menu item PeopleCode" refers to PeopleCode programs owned by menu items.
It’s important not to confuse menu item PeopleCode with PeopleCode functions related to the
appearance of menu items, such as CheckMenultem.

@ For more information, see Using the PeopleCode Editor.

Menu Item ItemSelected Event
The menu item event set consists of a single event, the ItemSelected Event. This event fires

whenever an user chooses a menu item from a pop-up menu; so naturally this is where you put
PeopleCode programs that are executed from menu items.

2-16 UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

@ For more information, see the ItemSelected Event

Application Message PeopleCode

Application messages have the following types of Application Designer definitions with
associated PeopleCode:

o the message
¢ the message channel

These definitions have separate definitions and different event sets.

@ For more information about application message definitions, see PeopleSoft Application
Messaging.

Accessing Message PeopleCode

In a message definition, you can associate a PeopleCode program with the message itself and
with each message subscription included in the definition.

To access PeopleCode associated with a message, open the message definition, right-click
anywhere in the Message Structure display, and select View PeopleCode from the pop-up menu.

il EMAIL_MSG [Message) O]] |
e e ———

Field Mame Alias Include

Meszage S
-z} EMAIL_

Inzert Version...
Inzert Child Record ...
Inzert Message Subscription ...

Set Az Default

Rename

Create Test Meszage...

Delete Version

Find Object References

Message Properties

Accessing Message PeopleCode from the Message Definition

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

The PeopleCode Editor appears. If that message definition has associated programs, the first one
in the application message event set displays in the editor.

@ For more information, see Using the PeopleCode Editor.

Each message subscription entry in a message definition represents a PeopleCode program. To
access that program, open the message definition, select the subscription, right-click the
subscription name, and select View PeopleCode from the pop-up menu.

il EMAIL_MSG [Message) O]] |

- -

Message Stucture Field Name Alias Include
E@ YERSION_1

=623 EMAIL_MSG_RCD
"-§2J EMAIL_FILE_RCD
Meszage Subscriptions:

Fun PeopleCode ...

Insert Yersion...
Insert Meszzage Subseription ...

Delete Meszage Subszcription

Find Object References

Meszage Subscription Properties
b ezzage Properties

Accessing Message Subscription PeopleCode from the Message Definition

The PeopleCode Editor appears, with the message subscription’s associated program displayed in
the editor.

@ For more information, see Using the PeopleCode Editor.

Accessing Message Channel PeopleCode

In a message channel definition, PeopleCode is associated with the message channel through its
message nodes. To access PeopleCode associated with a message channel, open the Routing
Rules view, select a message node, right-click on the node’s name, and select one of the
following from the pop-up menu:

¢ View OnRoutePublication PeopleCode

e View OnRouteSubscription PeopleCode

2-18 UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

i“§ QE_ GAME_CHML [Message Channel] M=l E

Messages Rouling Rules I

Direction | Meszage Mode Mame | Meszage Mode Dezcription

' NC 1 Aral

Wiew Definition

Yiew OnRoutePublication PeopleCode

‘Wiew OnBouteSubscription PeopleCode

Inzert Meszage Node

Find Object References

Routing Direction 3

4] | i
Accessing Message PeopleCode from the Message Channel Definition

The PeopleCode Editor appears, with the selected PeopleCode program, if any, displayed in the
editor.

@ For more information, see Using the PeopleCode Editor.

Application Message Event Sets

These events are not considered part of the Component Processor flow, so they’re documented
separately from the majority of PeopleCode events. The following events are associated with
messages:

e OnPublishTransform Event

e OnSubscribeTransform Event

The following event is associated with message subscriptions:
e Subscription Event

The following events are associated with message channels:

¢ OnRoutePublication Event

e OnRouteSubscription Event

@ For more information, see PeopleSoft Application Messaging.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-19

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

How PeopleCode Programs are Stored and Saved

When you save an Application Designer definition, PeopleTools saves all PeopleCode programs
belonging to that definition that have been added or modified. Component record field
PeopleCode and component record PeopleCode belong to the component. If new PeopleCode
programs have been added, PeopleTools creates an association between the owning definition and
new rows in the PeopleCode table. If a PeopleCode program is deleted, the association between
the owning definition and the program is also deleted.

Saving PeopleCode programs together with their owning definitions helps to guarantee the
integrity of the application. In the event of system failure, it’s now extremely unlikely that your
application could end up storing PeopleCode programs that are not associated with any definition;
or worse, a definition associated with a PeopleCode program that was never saved.

@ When you save any Application Designer definition, all PeopleCode programs that you’ve
added or changed since the last save will be checked, formatted, and saved at the same time.
If you want to format and check the syntax of a single PeopleCode program, use the Validate
Syntax command instead of the Save command.

Automatic Backup of PeopleCode

A PeopleCode program is automatically saved to a file while you’re working on it. This
checkpoint occurs at the following times:

e Every 10 keystrokes.

e On a save command, just prior to the save being executed (in case the save doesn’t actually
execute because the code is invalid).

e When another PeopleCode program is selected to be edited (if you have two PeopleCode editor
windows open at the same time, and you move from one to the other).

The file is saved to your temp directory (as specified in your environment), in a file with the
following name:

PPCMMDDYY HHMMSS. txt

where MMDDY'Y represents the month, date and year, respectively, of the checkpoint, and
HHMMSS represents the hour, minute and second, respectively.

The top of the checkpoint file contains the following information:

[PeopleCode Checkpoint File]
[RECORD. recordname.FIELD. fieldname .METHOD . eventname]

If your PeopleCode program is saved successfully, any checkpoint files associated with that
program are automatically deleted.

2-20 UNDERSTANDING PEOPLECODE AND EVENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Copying PeopleCode with a Parent Definition
When you create a copy of an Application Designer definition that contains PeopleCode,
Application Designer lets you choose whether to copy all PeopleCode programs along with the
definition. Each copy of the definition gets a separate copy of the PeopleCode programs.
To copy a definition with its PeopleCode:
1. Open the definition you want to copy.
2. Choose File, Save As.

The Save As dialog appears. Type a name for the new definition in the dialog box.

Save As

Save Mame As:
|BUS_E><PENSE_DT2

Cancel |

Save As Dialog Box

3. Click OK, then click Yes to copy the PeopleCode.

Click Yes in this dialog box to copy all PeopleCode associated with the definition.

Application Designer

& Do you wish to also zave a copy of the PeopleCode associated with BUS_EXPEMSE_DTL?

Ho | Cancel |

Saving Associated PeopleCode Dialog Box

Upgrading PeopleCode Programs

You can upgrade PeopleCode programs independently of the definitions with which they’re
associated.

@ For more information, see the Upgrade Documentation.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEOPLECODE AND EVENTS 2-21

CHAPTER 3

Using the PeopleCode Editor

This section covers the practical aspects of adding PeopleCode to PeopleSoft applications through
the Application Designer interface. It discusses various techniques for using the PeopleCode
Editor and its features.

Navigating Between PeopleCode Programs

The PeopleCode Editor navigational features have been significantly enhanced, making it a more
powerful and convenient tool. Once you access a PeopleCode program associated with an
Application Designer definition, you can access programs associated with other related
definitions, without having to close the Editor window.

@ For more information about accessing PeopleCode within Application Designer, see
Understanding PeopleCode and Events.

Understanding the PeopleCode Editor Window
Application Designer supplies an independent Editor window for each record, definition, menu,

message, and so on, for which you invoke the Editor—these are the parent definitions. The
Editor window’s title bar displays the name and type of the parent definition.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THE PEOPLECODE EDITOR 3-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

E'DIMENSION.DIMENSION_TYPE FieldE dit (Record PeopleCode)
| DIMENSION_TYPE (field) leieIdEdil

1| K

/% Ensure that cube definitions hawe single acot, Curr part, or time
dimensiona. -- Jjrp 11795 */
If All(DIMENIION_TYFPE) And
DIMENSION TYPE <> "5" ind
DIMENSION_TYPE <> "Y¥" Then
GQLExec("zelect max (a.analysis_model _id) from ps_anl mod_dim a,ps_dimension
b where a.dimension id=b.dimension_id and a.measures_din flg='N' and
b.dimension_id=:1 and b.dimension_type=:2 group by b.dimension_ type having
count(*)>1", DIMENSION_ID, DIMENSION TYPE, &5_CUBE):
If A11{&5_CUBE) Then
Error MsgGet (79, 39, "Cube Definition: '%1' already has a dimension of
this type.”, &3_CUBE):
End-If:
End-If:

/% If the Dimension Type iz not Time, we don't need DateFunction and Date
Format Columns bar 10/2/2000 */
sROLLUP_COUNT = ActiwveRowCount (Record.DIM _ROLLUP) ;
If DIMENSION T¥PE <> "T" Then
For T =1 Tn <ROLLITP COTTHT : LI

PeopleCode Editor Window with Record Field PeopleCode

The Editor window contains the main edit pane, the drop-down definition list at the top left, and
the drop-down event list at the top right. The drop-down lists enable you to navigate directly to
the PeopleCode associated with related child definitions—for example, fields within a record—
and their event sets.

@ When you make a selection from either drop-down list, your selected entry has a yellow
background, indicating that you must click in the edit pane before you can start typing.

@ For more information, see Using the Drop-down Definition List and Using the Drop-down
Event List.

You can open as many Editor windows as you want, and resize them within the Application
Designer. Each line of code wraps automatically, based on the window’s current width. A
vertical scroll bar appears if the program has more lines than the Editor can display in the edit
pane.

@ You can’t open two Editor windows for a single parent definition, or for any two of its child
definitions.

Using the Drop-down Definition List

The PeopleCode Editor’s drop-down definition list enables you to navigate between PeopleCode
programs that are associated with a given parent definition and its children. The list displays the
complete hierarchy of child definitions to which you can navigate. The structure of the definition
list depends on the type of parent definition. Each type of list is illustrated and described in the
following sections.

3-2 USING THE PEOPLECODE EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

Selecting a Record Field

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The record PeopleCode drop-down definition list displays all the record fields included in a
record. Each record field displayed in bold has a PeopleCode program associated with at least

one of the events in its event set.

!_.lDIMENSIEIN.DIMENSII]N_ID.HowInil [Record PeopleCode]

DIMENSION_ID [field)

j IHowInil

DIMEMSION [record)
BLANK_MEMBER ([field)
DESCR [field

[} [) [} eld
DIMENSION_TYPE ([field)
LABEL_DECOR_TYPE [field]

ube def.

L:

6/95 */

Selecting a Record Field from the Record Definition List

The record name appears at the top of the list, but you can’t associate PeopleCode with just a
record; you can only associate it with a record field. The record name is displayed to visually

clarify the location of the record fields.

Selecting a Component Definition

The component PeopleCode drop-down definition list displays all the component record fields
and component records included in a component. Each definition displayed in bold has a
PeopleCode program associated with at least one of the events in its event set.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

USING THE PEOPLECODE EDITOR 3-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

3-4

JANUARY 2001

'EMPLOYEE_CHECKLIST.GBL.PERSONAL_DATA.ZIP.FieldDefault [Component PeopleC... [H[=] [E3

ZIP (field) -] IFieIdDefauIl

EMPLOYEE_CHECKLIST.GBL (component] -
EMPL_CHELST_ITM [record) =
BRIEFING_STATUS (field)
EMPLID [field)
CHECKLIST_DT (field) —
CHECKLIST_SEQ [field)
CHELST_ITEM_CD [field)
STATUS_DT [field)
PERSONAL_DATA (recaord)
ADDRESS51 (field)
ADDRESS52 (field)

EMPLID [field)
NAME (field]
NAME_PREFIX [field)
NAME_SUFFIX [field]
LAST_MAME_SACH [field)
FIRST_NAME_SRCH [field)
ADDRESS3 [field)

CITY (field)

CONMTY [field]

Selecting a Component Record Field from the Component Definition List

Selecting a Page or ActiveX Control

The page PeopleCode drop-down definition list displays a page and all the ActiveX controls
included on the page. Each definition displayed in bold has a PeopleCode program associated

with at least one of the events in its event set.

!_JVIJ LUNTEER_ORG_TABL.ENG Activate [Page PeopleCode]

[

ACTIVEX [pagefield)

VOLUNTEER_ORG_TAEL.ENG ([page] j IAclivale

Selecting a Page from the Page Definition List

Selecting a Menu Item

The menu PeopleCode drop-down definition list displays the menu, its menu bars and menu
items. Each menu item displayed in bold has an associated PeopleCode program.

Important! For the PeopleSoft Internet Architecture, you can only associate PeopleCode

with menu items in a pop-up menu.

USING THE PEOPLECODE EDITOR

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

For more information about defining PeopleCode menu items, see Understanding
PeopleCode and Events.

F/JOBCODE_PDPUP_MENUITEM1.JOBCODE_TRANSFER. ItemSelected (Menu PeopleCode) [Hl[=] B3

JOBCODE_TRANSFER [menuitem] j IllemSelected j

OBCODE_POPUP [menu)
MEMUITEMT [menubar]
ADD JOB [menuitem]

; IO, FES0URCES (GBL)”, BarName."SETUE™,
Panel."TOBCODE_TELL_GEL”, "U", Record.MODAL_WRK] :

Itemiane."JOE_CODE_TAELE™,

Selecting a PeopleCode Menu Item from the Menu Definition List

The menu and menu bar names appear on the list, but you can’t associate PeopleCode with just a
menu or a menu bar; you can only associate it with a menu item. The menu and menu bar names
are displayed to visually clarify the positions of the PeopleCode menu items in the pop-up menu

hierarchy.

Selecting a Message or Message Subscription

The message PeopleCode drop-down definition list displays a message, and all the message
subscriptions included in the message definition. Each definition displayed in bold has a
PeopleCode program associated with at least one of the events in its event set. The message
subscriptions are PeopleCode programs, so they will always be bold.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THE PEOPLECODE EDITOR 3-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

!__.'EMAIL_MSE.IJnPuhIisthans[olm [Message PeopleCode) M=l E
IEMAI L MSG (message) j IDnPuinshTransform j

EMAIL_GUARANTEED (subscription]

Selecting a Message from the Message Definition List

Selecting a Message Channel

The drop-down definition list for message channel PeopleCode contains only one entry—the
message channel itself, which is always the selected definition. If it’s displayed in bold, it has a
PeopleCode program associated with at least one of the events in its event set.

E¥/EMAIL_CHNL.OnR outePublication (Message Channel PeopleCode) =] B3 |
IEMAI L_CHML [chanmnel) =] IDnHouteF’uincation =l

Viewing the Single-Entry Message Channel Definition List

Using the Drop-down Event List

The PeopleCode Editor’s drop-down event list enables you to select an event from the event set
of the currently selected definition. You can use this event list to navigate between PeopleCode
programs that are associated with that definition. For every definition/event combination with
associated PeopleCode, the event name is displayed in bold, and it appears at the top of the event
list.

3-6 USING THE PEOPLECODE EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

!__.'AB SEMCE_HIST.RETURM_DT.FieldChange [Record PeopleCode]

| RETURN_DT (field)

j IFieIdEhange

If A11(BEGIN DT, RETURN DT) ind

EEGIN DT <= BETURN DT Then g,aEFEdlll
SDURATION_DATS = RETURN_DT - BEGIN_DTio @il
If sDURATION DAYS > 999 Then| FicldE dit

DURATION DAYS = 999 Fiowal it
Else S aveFreChange

DURATION DAYS = sDURATION DAYS SaveFostChange
End-If; EDWIS elect:t

. owlnzer

End-I£: ol elete
Searchinit

SearchSave
orkflow
FrePopup

Selecting an Event from the Record Event Set

@ For more information about events and event sets, see Understanding PeopleCode and
Events and PeopleCode and the Component Processor.

Using the PeopleCode Editor

The PeopleCode Editor works much like any other text editor, but has capabilities specifically
geared toward the PeopleTools environment.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

Its editing functions are integrated with the menus and toolbar of Application Designer and are
also accessible from a pop-up window.

It checks, formats, and saves all programs associated with Application Designer definitions
simultaneously when any definition is saved (see How PeopleCode Programs are Stored and
Saved).

It includes a Validate Syntax command for checking and formatting a single PeopleCode
program without saving.

It supports standard Windows drag-and-drop editing.

You can open separate instances of the Editor simultaneously, and you can drag and drop text
between programs.

You can open the definition with which the current set of PeopleCode programs is associated
from within the PeopleCode Editor.

You can open a field, record, page, file layout, message definition or other definitions from a
PeopleCode reference to the field, record, page, file layout or message, and so on.

You can access the PeopleCode programs associated with a field, record, page, file layout
message definition or other definitions from a PeopleCode reference to the field, record, page,

USING THE PEOPLECODE EDITOR 3-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

3-8

file layout or message, and so on.

JANUARY 2001

® You can open a PeopleCode Editor window containing an external function definition from a

function declaration or function call.

e You can press F1 with the cursor in a PeopleCode built-in function, method, meta-SQL, and so
on, to open the PeopleSoft help for that item.

Editing Functions

The PeopleCode Editor supports the standard editing functions Save, Cancel, Cut, Copy, Paste,
Find, Replace, and Undo; from the PeopleCode Editor pop-up menu. Cut, Copy, and Paste use
standard Windows keyboard shortcuts. You can also cut, copy, and paste within the same

PeopleCode program or across multiple programs.

Command Key Button

Save Ctrl+S El

Cancel Esc

Cut Ctrl+X or il
Shift+Del

Copy Ctrl+C or
Ctrl+Ins

Paste Ctrl+V or El
Shift+Ins

Find Ctri+F N |

Replace Ctrl+H L:l

Undo Ctrl+Z or
Alt+Bksp

Validate El

Find and Replace

When you use the Find and Replace functions, any text string that is highlighted appears when
either the Find or Replace dialog boxes are called. For example, if you select the function

PriorValue, it appears in the Find dialog box when it's called.

USING THE PEOPLECODE EDITOR

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Find (2] x|
Find what: |Pri0rVaIue
i 8 Cancel |
[~ Match case
Find Dialog Box

You can step through finding and replacing text strings one string at a time, or click on Replace
All to replace globally. The Undo function is available to undo the last replace or replace all.

Replace
Find what: IWaming

Replace with: IDiscardHow Beplace

Replace Al
v Match whole waord only

Cancel

e

Replace Dialog box

Validating Syntax

To check the syntax of the current PeopleCode program and format it if it is syntactically correct,
do one of the following:

o Click the Validate Syntax button EI on the Application Designer toolbar.

e Seclect Tools, Validate Syntax from the Application Designer menu.

o Right-click in the PeopleCode Editor window, then select Validate Syntax from the pop-up
menu.

Validate is a utility with several functions, one of which is to check for PeopleCode that won't run
in the PeopleSoft Internet Architecture. You can check either a single component or an entire
project.

For more information see Validating Projects.

This feature is convenient if you have written multiple PeopleCode programs and you want
to check the syntax of one without saving. If you save the current record or menu, all of the
PeopleCode programs associated with the record or menu are checked prior to saving.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THE PEOPLECODE EDITOR 3-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Auto Formatting

You do not need to format your PeopleCode statements; you only need to use the correct syntax.
In fact, when you save or validate, the system formats the code according to the rules in the
PeopleCode tables—no matter how you entered it originally. It automatically converts field
names to upper case and indents statements for you. This makes your PeopleCode look
consistent with other programs in the system.

PeopleCode is case-insensitive, except for quoted literals. PeopleCode does not format anything
surrounded by quotation marks. String comparisons, however, are case-sensitive. When you
compare the contents of a field or a variable to a string literal, make sure the literal is in the right
case.

Drag-and-Drop Editing

In addition to the standard keyboard shortcuts and toolbar buttons for editing, you can copy or
move text within a window or between two PeopleCode Editor windows, using the mouse and the
CTRL key on your keyboard.

@ You can’t open two Editor windows for a single parent definition, or for any two of its child
definitions.

To move text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Click in the selection and drag the mouse to the other PeopleCode Editor window.

3. When the cursor appears at the place where you wish to insert the text, release the mouse
button.

To copy text between instances of the PeopleCode Editor:

1. Select the text you want to move.

2. Holding down the Ctrl key, click in the selection and drag the mouse to the other PeopleCode
Editor window.

3. When the cursor appears at the place where you wish to insert the text, release the mouse
button.

Accessing PeopleCode External Functions

An external PeopleCode function is a function written in PeopleCode (as opposed to a built-in
function or external DLL function) and defined in a program outside the one from which it is

3-10 USING THE PEOPLECODE EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

called. External PeopleCode functions can be defined in any Record PeopleCode program, but
conventionally they are stored in the FieldFormula event in records beginning with FUNCLIB .

The PeopleCode Editor gives you immediate access to external PeopleCode function definitions.
Right-click the function name in the program where the function is called, then choose View
Function FunctionName from the pop-up menu. This opens a new PeopleCode Editor window
containing the external function definition.

@ Internet Scripts are contained in records similar to FUNCLIB records. However, they’re
named WEBLIB xxx.

Accessing Definitions and Associated PeopleCode

You can open a field, record, page, message, and other definitions from the PeopleCode Editor.
Or you can open a new PeopleCode Editor window containing the programs associated with a
field, record, page, and so on.

To open a definition from the PeopleCode Editor:

1. Right-click on a PeopleCode definition reference

2. Choose View Definition from the pop-up menu.

For example, you could open definitions by clicking in any of the following references:
RECORD.BUS_EXPENSE_PER

BUS_ EXPENSE PER.EXPENSE PERIOD DT
PAGE.BUSINESS EXPENSES

If you access a record definition from a record field reference (that is, recordname.fieldname) the
specified record field is selected when the record definition opens.

To open a new PeopleCode editor window:

1. Right-click on a reference to the definition.

2. Choose View PeopleCode from the pop-up menu.

For example, you can access record PeopleCode from the following record and record field
references:

RECORD.BUS EXPENSE PER
BUS_ EXPENSE PER.EXPENSE PERIOD DT

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THE PEOPLECODE EDITOR 3-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

3-12

Context-Sensitive Help

The PeopleCode Editor has context-sensitive online reference help for all PeopleCode built-in
functions, methods, properties, system variables, and meta-SQL. To access online help, place the
cursor in the name of what you want to look up, then press F1. If there is a corresponding entry
in the online reference system it will be displayed; otherwise a "No Help Available" error
message appears.

If more than one entry is applicable, a popup window showing all applicable entries displays.
You can choose the correct entry from there.

In order to use the F1 functionality, you must have specified where the documentation exists on
your system, on the PeopleTools Options page, in F1 Help URL.

For more information, see PeopleTools Options.

The following is an example of F1 Help URL:

http://Pandora/doc/flsearch.htm?Context ID=$CONTEXT ID%&LangCD=%LANG CD%

After you set the F1 help location, you must quit out of all PeopleTools sessions and start again
before the F1 functionality is active.

Choosing a Font for the PeopleCode Editor

The default font for the PeopleCode Editor is 9-point Courier New. You can change the font in
the PeopleCode Editor. This may be necessary for some languages that don’t display correctly
using Courier New.

To change the PeopleCode editor font:

1. Select Tools, Options, then the PeopleCode tab.

USING THE PEOPLECODE EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Options

Proiectl ‘alidate FeopleCode | Generall Owaner IdI Image I

Font
Fut: Courier Mew

Fant style: Regular
Size: g

Ok Cancel

Tools Options Dialog Box

Use this dialog to change the font in the PeopleCode editor.

@ Note on displaying foreign characters. When you select a font for the PeopleCode Editor,
the font selection dialog presents you with choices based on a character set appropriate for
your international version of Windows. If you experience trouble embedding foreign
characters (such as Thai characters) in PeopleCode, you might need to change the font
setting. If you are trying to display Thai characters in Windows 95, you might also need to
change your keyboard input settings for the characters to display correctly. You can change
your keyboard input settings from the Input Locales tab on the Windows Regional Settings
control page, or on the Keyboard control page.

Generating PeopleCode using Drag-and-Drop

You can generate references to definitions using drag-and-drop. You can also generate
PeopleCode templates for accessing Business Interlinks and Component Interfaces.

Generating Definition References

You can drag-and-drop definitions, such as menus, records, record fields, pages, and so on, from
a project into an open PeopleCode editor window. Doing this generates a reference to the
definition. For example, suppose your project contain a message definition named DIRGROUPS.
If you select the DIRGROUPS message definition from the project, drag it into an open
PeopleCode window, the following is generated:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THE PEOPLECODE EDITOR 3-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

!__.' TEST.BUTTON_BOTTOM. FieldFormula [Record PeopleCode)

| BUTTON_BOTTOM (field) j IFieIdFormuIa j

MESSAGE. DIRGROUPS

Example PeopleCode editor window

Generating PeopleCode for a Business Interlink

After you create your Business Interlink definition, you must use PeopleCode to instantiate an
Interlink object and execute the interlink plug-in. This PeopleCode can be long and complex.
Rather than write it directly, you can drag and drop the Business Interlink definition from
Application Designer’s Project View into an open PeopleCode edit pane. Application Designer
analyzes the definition and generates initial PeopleCode as a template, which you can modify to
suit your purpose.

!__.' DIMEMSION.LABEL_DECOR_TYPE.FieldChange [Record PeopleCode]

| LABEL_DECOR_TYPE (field) jIFieIdEhange =
Pw ===3 S
This is a dynamically generated PeopleCode template to be used only as a
helper

to the application dewveloper.

YTou need to replace all references to '"<*:=' 0R default walues with references
to

PeopleCode wvariahbles and/or a Rec.Fields.*/ —

/% ===» Declare and instantiate: */

Local Interlink &LDAP_SEARCHEI 1:

Local EIDocs &inDoc:

Local BIDocs soutDoc;

Local boolean &RSLT:

Local mmber sEXECRSLT:

sLDAP_SEARCHEI 1 = GetInterlink(INTERLINE.LDAP SEARCHEIND) ;

/% === ¥ou can use the following assignments to set the configuration
harameteYS. LI

Example of Business Interlink code template

@ For more information, see the PeopleSoft Business Interlink Application Developer Guide.

3-14 USING THE PEOPLECODE EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Generating PeopleCode for a Component Interface

After you create your Component Interface definition, you can use PeopleCode to access it. This
PeopleCode can be long and complex. Rather than write it directly, you can drag and drop the
Component Interface definition from Application Designer’s Project View into an open
PeopleCode edit pane. Application Designer analyzes the definition and generates initial
PeopleCode as a template, which you can modify to suit your purpose.

' DIMENSION.LABEL_DECOR_TYPE.SaveEdit [Record PeopleCode]

| LABEL_DECOR_TYPE (field) jISa\reEdil =
I/w === -
This is a dynamically generated PeopleCode template to be used only as a
helper

to the application dewveloper.

YTou need to replace all references to '"<*:=' 0R default walues with references
to

PeopleCode wvariahbles and/or a Rec.Fields.*/

Local Apildbject sSession:

Local Apilbject sUSER_PROFILE;
Local ApiDbject &IDTypesCol:

Local ApilObject &IDTypesItm?

Local Apidbject sattributesCol;
Local &pildbject séttributesItm;
Local Apilbject sRolesCol:

Local Apildbject sRolesItm;

Local &pildbject sRouteControlsCol;
Local ApilObject sRouteControlsItm:
Tonal Anidhiect sPSMeasames: LI

Example of Component Interface code template

@ For more information, see Component Interface.

You can also access your Component Interface using COM. You can automatically generate a
Visual Basic template, similar to the PeopleCode template, to get you started.

To generate a Visual Basic Template:

1. Open a Component Interface in Application Designer.

2. Right-Click anywhere in the open Component Interface.

3. Select Generate Visual Basic Template from the pop-up menu.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THE PEOPLECODE EDITOR 3-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

3-16

Wiew Definition
Yiew PeopleCode

Edit Property

Edit Hame

Edit Comment

Togale Bead Only Access
Delete

Component Interface Properties

Walidate for Consistency

Test Component Interface

Component Interface pop-up menu

You must save the Component Interface before generating the template.

When the template is successfully generated, a message displays with the full path and name of
the file containing the template.

Application Designer
The Yizual Basic template file name is: ;I
@ CATEMPACURRENCY_CD.bas (122.10)

Explain |

Message with path and file name

4. Open the generated file and modify the source code to meet the needs of your application.

Here's an example template.

'"This is a dynamically generated Visual Basic template to be used only as a
helper

'to the application developer.

'You need to replace all references to '<*>' OR default values with references
to

'Visual Basic variables.

Private Sub CURRENCY CD()

On Error GoTo eMessage

USING THE PEOPLECODE EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

'**k**x Set Object References *****
Dim oCISession As Object

Dim oCURRENCY CD As Object

Dim oCURRENCY CD TBL As Object

Dim oCURRENCY_ CD_TBLItem As Object

'**%%%* Set Connect Parameters *****
strAppSeverPath = <*>
strOperatorID = <*>

strPassword = <*>

'xkx*k* Create PeopleSoft Session Object ****x

Set oCISession = CreateObject ("PeopleSoft.Session")

"*x*%x* Connect to the App Sever **x**

oCISession.Connect 1, strAppSeverPath, strOperatorID, strPassword,

T*xx*x* Get the Component **x**

Set oCURRENCY CD = oCISession.GetCompIntfc ("CURRENCY CD")

"*x*x* Set the Component Interface Mode ***x**
oCURRENCY CD.InteractiveMode = False

OoCURRENCY CD.GetHistoryItems = True

'**xx*x Set Component Get/Create Keys ***xx

OCURRENCY CD.CURRENCY CD = <*>

Vhkkkk Execute Get Or Create *****

OCURRENCY CD.Get

0

USING THE PEOPLECODE EDITOR

3-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

'OoCURRENCY CD.Create

"x%x%k*x BEGIN: Set Component Interface Properties *****

"**%**x*x BEGIN: Set Component Interface Properties *****

'Set CURRENCY CD TBL Collection Field Properties -- Parent: PS ROOT
Collection

Set oCURRENCY CD TBL = oCURRENCY CD.CURRENCY CD TBL
'For <*> = 1 to oCURRENCY CD_TBL.Count

Set oCURRENCY CD TBLItem = oCURRENCY CD TBL.Item(<*>)
OCURRENCY CD TBLItem.CURRENCY CD = <*>
OCURRENCY CD TBLItem.EFFDT = <*>
OCURRENCY CD TBLItem.EFF STATUS = <*>
OCURRENCY CD TBLItem.DESCR = <*>
OCURRENCY CD TBLItem.DESCRSHORT = <*>
OCURRENCY CD TBLItem.COUNTRY = <*>
OCURRENCY CD TBLItem.CUR _SYMBOL = <*>

OCURRENCY CD TBLItem.DECIMAL POSITIONS = <*>
OoCURRENCY CD TBLItem.SCALE POSITIONS = <*>

'Next <*>

'x%x%k*x END: Set Component Interface Properties ***x*

'*%x** END: Set Component Interface Properties ***xx*

"*x*x* Save Component Interface **x**

oCURRENCY_CD.Save

oCURRENCY_ CD.Cancel

Exit Sub

3-18 USING THE PEOPLECODE EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

eMessage:
"*x*x** Digplay VB Runtime Errors *****

MsgBox Err.Description

'*x*x** Digplay PeopleSoft Error Messages ****x*
If oCISession.PSMessages.Count > 0 Then
For i = 1 To oCISession.PSMessages.Count
MsgBox oCISession.PSMessages.Item(i) .Text
Next i
End If

End Sub

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THE PEOPLECODE EDITOR 3-19

CHAPTER 4

Introducing the SQL Editor

Use the SQL editor to create SQL for SQL definitions, record views, and Application Engine
programs.

The SQL editor and the PeopleCode editor interfaces are similar. You can add, delete and change
text: you can use the find and replace function; and you can validate your SQL. When you save
your SQL definition, the code is automatically formatted (indented, and so on), just as it is for a
PeopleCode program.

Understanding the SQL Editor Window

The Editor window’s title bar displays either the name of the SQL definition, or the name of the
component that contains the SQL. For example, if the SQL statement is part of an Application
Engine program, the names of the program and the section are listed in the title bar.

EPAETESTPROG STATS SECTIONSS.1.GBL. .1900-01-01 (SQL Object) == &=

$3elect(AE_INT_S)
SELECT COUNT(%)
FROM P§_AE SECTION TEL
UHERE AE_PRODUCT = %Bind(AE_FRODUCT)
AND AE_APPL_ID = %Bind(AE_APPL_ID) |

SQL Editor Window with Application Engine Program SQL

The Editor window consists of the main edit pane.

For SQL definitions and SQL used with records, there is also a drop-down database list at the top
left. For SQL definitions, you can also use a drop-down effective date list at the top right.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING THE SQL EDITOR 4-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ When you make a selection from either drop-down list, your selected entry has a yellow
background, indicating that you must click in the edit pane before you can start typing.

Accessing the SQL Editor
Use the SQL editor to create and edit SQL for the following components:
e SQL definitions
e Dynamic view or SQL view records
e Application Engine programs

You access the SQL editor differently for each type of component.

SQL Definitions

A SQL definition contains SQL statements, which can be entire SQL programs or just fragments
that you want to re-use. You can access a SQL definition using Application Designer. You can
add SQL definitions to a project. In addition, they’re upgradable.

@ For more information see Using Application Designer.

You can create, change or delete SQL definitions using Application Designer. You can also do
the same things programmatically with the SQL class in PeopleCode.

@ For more information see SQL Class.

To create a SQL definition:
1. From Application Designer, select File, New, SQL.

2. Specify the database type you want associated with your SQL definition.

4-2 INTRODUCING THE SQL EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

& (SOL Object) == &=

[default] j

DB 2/Unix

Informis

Microzoft SALServer
Cracle

Sybase

SQL Definition Database Types

You can associate more than one database type with a single SQL definition. In your
PeopleCode, you can specify the appropriate database type for your program. However, at
least one of your SQL statements must be of type Default.

3. Specify an effective date (optional)

SQL definitions can be effective dated. If you'd like to specify an effective date with your
SQL definition, go to the Advanced tab of the SQL definition object property. Access the
object properties by doing one of the following:

Go to File, Object Properties.

Select the SQL definition, right-click, then select Object Properties.

Press Alt + Enter.

Click the Advanced tab, then click Show Effective Date. When you click OK, the SQL
definition shows a date in the right-hand drop-down menu.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING THE SQL EDITOR 4-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

& GET_DISTINCT_WORKLIST.O (SOL Object) == &=

[[default] =] [mso11900 =l

FELECT busprocname
; activitynane

, EVEntname
ROUTENAME
wlrecname

FROM PSEVENTROUTE

SQL definition with effective date

4. Addyou SQL code

You don't need to format your code. The SQL editor formats it when you save your SQL
definition.

Dynamic View or SQL View Records

When you create a SQL View or Dynamic View record definition, you must enter a SQL View
Select Statement to indicate what field values you want to join from which tables. You do this in
the SQL editor.

To access the SQL editor with records:

1. Open or create the dynamic view or SQL view record definition.

2. Click on the Record Type tab.

4-4 INTRODUCING THE SQL EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Efi ACCOMPLISHMT_VW [Record)

Record Fieldz ~ Fecord Type I

~Record Type
¢~ 8QL Table
& 80L View

" Dynamic View

 Derivedfork

¢ SubRecord

" Query View

" Temporary Table

Mon-Standard SQL
Table Name:

Build Sequence No:

o

. Click to open SQL Editor

Record Type Tab of SQL View Record Definition

3. Click on the Click to Open SQL Editor button.

I[defaull]

[

B ACCOMPLISHMT_¥W.2 [SQL Dbject) !EII:{

SELECT A.emplid
cacconplishment
org

deszcr

dt_issued
¥r_acquired
acComp_catedory
FCore

passed
LICENSE_NER
Issued by

Jtate

COuUntry
expiratn_dt
License_werified
renewal
native_langquage
Translator
speak_proficiency

A read nroficiencws

EEEER R R R R R R R R

-

You can select a database type, but not an effective date, from the SQL editor for dynamic

SQL Editor for SQL View Record Definition

view and SQL view record definitions.

Application Engine Programs

You can access the SQL editor from the following action types:

Do Select

Do Until

Do When

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

INTRODUCING THE SQL EDITOR

4-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

e Do While

e SQL

To access the SQL editor in an Application Engine program:
1. Open the Application Engine program.
2. Select the action.

3. Either right-click and select View SQL, or select View, SQL.

EY AETESTPROG MAIN STATS D.1.GBL. .1900-01-01 (SQL Object) [_ (O]

kgelect (AE_APPL_ID, AE PRODUCT)
SELECT AE_APPL_ID
, AE_FRODUCT
FROM PS_AE APPL_TEL
ORDER EY AE_APPL_ID
. AE_FRODUCT

Application Engine SQL Editor window

Select the database type and effective date for this SQL in the section, not in the SQL editor.

@ For more information see Application Engine.

Using the SQL Editor

The SQL Editor works much like any other text editor. You can use the same functions with it as
with the PeopleCode editor: cut, paste, find, replace, and so on.

@ For more information see Editing Functions.

When you right click in an open SQL editor window, the pop-up menu lists all the available
functions for the SQL editor:

4-6 INTRODUCING THE SQL EDITOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Format Display
Walidate Syntax
Fesolve Meta SOL

Delete Statement F8

Cut Chrl+
Copy Chil+C
Paste Chrl+4
Undo Chl+Z2
Find... Chrl+F
Replace... Chrl+H

Object Properties...

SQL Editor pop-up menu

The following functions are available for the SQL editor, but are not available for the
PeopleCode editor.

Function Description

Format Display | You do not need to format your SQL statements; you only need to use the
correct syntax. When you save or validate, the system formats the code
according to the rules in the PeopleCode tables—no matter how you
entered it originally. It automatically converts field names to uppercase
and indents statements for you. Your SQL then looks consistent with other
programs in the system.

Resolve Meta- | If there is meta-SQL in the SQL, select Resolve Meta-SQL to expand the
SQL meta-SQL statement in the Output Window, under the Meta-SQL tab.

For example, the following code expands as follows:
$Join (COMMON FIELDS, PSAEAPPLDEFN ABC, PSAESECTDEFN XYZ

ABC AE_APPLID=XVI AE_PPLID -
AND &BC.VERSION=X' ZVERSION
AND ABC LASTUPDOPRID=XY Z LASTUPDOPRID
AND &BC LASTUPDDTTM=XY ZLASTUPDDTTH

AT\ Buiki A, Find Obiect References

Meta-SQL Expanded in Output window

Delete You can delete stand alone SQL statements. This menu item isn't enabled
Statement with SQL statements that have a database type of Default with no effective
date, or a database type of Default and an effective date of 01/01/1900.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INTRODUCING THE SQL EDITOR 4-7

CHAPTER 5§

PeopleCode Language

This section covers the syntax and fundamental elements of the PeopleCode language. It assumes
that you have some familiarity with a structured programming language, such as C or Visual
Basic.

In its fundamentals, PeopleCode syntax resembles that of other structured programming
languages. Some aspects of the PeopleCode language, however, are specifically related to the
PeopleTools environment. Definition name references, for example, provide a way of referring
to PeopleTools definitions, such as record definitions or pages, without using hard-coded string
literals. Other language features, such as the PeopleCode data types and metastrings, reflect the
close interaction of PeopleTools and SQL.

Data Types

The conventional data types available in previous releases are the core of PeopleCode’s
functionality. The object-based data types are used to instantiate objects from the PeopleTools
classes. The appropriate use of each data type is demonstrated where the documentation
discusses PeopleCode that uses that data type.

PeopleSoft recommends that you declare your variables before you use them. For example, if
you declare a variable of one data type, and assign it a value of a different type, the PeopleCode
syntax checker catches that assignment as a design time error when you save your PeopleCode
program. With an undeclared variable, the assignment error doesn't appear until runtime.

The following example produces a design time error when you try to save your program:

Local Field &DATE;

&DATE = GetRecord (RECORD.DERIVED HR) ;

Conventional Data Types

o ANY

When variables and function return values are declared as ANY, the data type is
indeterminate, allowing PeopleTools to determine the appropriate type of value based on
context. Undeclared local variables are ANY by default.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

e BOOLEAN

e DATE

e DATETIME

¢ NUMBER

e OBJECT

e STRING

e TIME

Object-Based Data Types

For most classes in PeopleTools, you need a corresponding object-based data type to instantiate
objects from that class.

@ For more information, see Understanding Objects and Classes in PeopleCode.

Data Buffer Access Types

e Field

Record

e Row

Rowset

Page Display Types
e Grid
e GridColumn

e Page

Internet Script Types
e Cookie
e Request

e Response

5-2 PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Miscellaneous Object-Based Types
o AESection
e Array

File

Interlink

BIDocs

@ BIDocs and Interlink objects used in PeopleCode programs run on the application server can
only be declared as type Local. You can declare Interlinks as Global only in an Application
Engine program.

e JavaObject

@ JavaObject objects can only be declared as type Local.

e Message
e ProcessRequest

e SQL

API Object Type
e ApiObject

Use this data type for any API object, such as a session object, a tree object, a Component
Interface, a PortalRegistry, and so on.

The following ApiObject data type objects can be declared as Global:
= Session
= PSMessages collection
= PSMessage
= All Tree classes (trees, tree structures, nodes, levels, and so on.)

All other ApiObject data type objects must be declared as Local.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Comments and Statements

At the most general level, a PeopleCode program consists of comments and statements.
Comments can be used to document your code. Control statements control the flow of the
program’s execution.

Comments

There are two ways to insert comments into your PeopleCode. You can surround comments with
/* at the beginning and */ at the end. You can also use a REM (remark) statement for
commenting. Put a semicolon at the end of a REM comment. If you don’t, everything up to the
end of the next statement will be treated as part of the comment.

REM This is an example of commenting PeopleCode;
VAT Logic for Compensation Change ----- */

/* Recalculate compensation change for next row. Next row is based on prior
value of EFFDT. */

calc next compchg (&OLDDT, EFFSEQ, 0);

/* Recalculate compensation change for current row and next row. Next row is
based on new value of EFFDT. */

calc comp change (EFFDT, EFFSEQ, COMP_ FREQUENCY, COMPRATE, CHANGE AMT,
CHANGE_PCT) ;

calc_next compchg (EFFDT, EFFSEQ, O0);

Use comments to explain, preferably in language comprehensible to anyone reading your
program, what your code does. Comments also allow you to differentiate between PeopleCode
delivered with the product and PeopleCode that you add or change. This differentiation will help
in your analysis for debugging, as well as upgrades.

@ We strongly suggest that you use comments to place a unique identifier marking any
changes or enhancements that you have made to a PeopleSoft application. This will make it
possible for you to search for all the changes you have made. This is particularly helpful
when you are upgrading a database.

Statements

A statement can be a declaration, an assignment, a program construct (such as a Break statement
or a conditional loop), or a subroutine call.

5-4 PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Separators

PeopleCode statements are generally terminated with a semicolon. The PeopleCode language
accepts semicolons even if they’re not required, such as after the last statement executed within
an If statement. This allows you to consistently add semicolons after each statement.

Extra spaces and line breaks are ignored—and in fact are removed by the PeopleCode Editor
when you save your code.

Assignment Statements

The assignment statement is the most basic type of statement in PeopleCode. It consists of an
equal sign with a variable name on the left, and an expression on the right:

varname = expression;

The expression on the right is evaluated, and the result is placed in the variable named on the left.
Depending on the data types involved, the assignment is passed either by value or by reference.

Passing by Value

In most types of assignment, the result of the right-hand expression is assigned to the variable as a
newly created value, in its own allocated memory area. Subsequent changes to the value of that
variable have no effect on any other data.

Passing by Reference

When both sides of an assignment statement are object variables, the result of the assignment is
not a copy of the object. You’re only making a copy of the reference. The variable names don’t
refer to separate and distinct objects; they both refer to the same object.

For example, Both &AN and &AN?2 are arrays of number. Assigning &AN2 to &AN does not
make &AN?2 a distinct array. They still both point to the same information.

Local array of number &AN, &AN2;

Local number &NUM;

&N = CreateArray (100, 200, 300);

&AN2 &AN;

&NUM = &AN([1];

The assignment does not allocate any memory or copy any part of the original object. It simply
makes &AN?2 refer to the same array to which &AN refers. Any changes you make to the value
of either variable will also affect the other. On the other hand, assigning &NUM to the first
element in &AN (100), is not an object assignment. It’s in effect passing by value.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

=,

5-6

In PeopleCode the equal sign can function as either an assignment operator or a comparison
operator, depending on context.

Language Constructs
PeopleCode language constructs include:

e Branching structures: If and Evaluate.

Loops and conditional loops: For, Repeat, and While.

Break and Exit statements for escaping loops and terminating program execution.

The Return statement for returning from functions.

Variable and function declaration statements: Global, Local, and Declare Function.

The Function statement for defining functions.

For more information see Control Statements.

Functions as Subroutines

PeopleCode, like C, doesn’t have subroutines as such. PeopleCode subroutines are simply the
subset of PeopleCode functions that are defined to return no value or to return a value optionally.
Calling a subroutine is the same as calling a function with no return value:

function name([param list]);

For more information on function calls, see the section Functions. For information about
declaring and defining functions see the built-in functions Function and Declare Function.

Control Statements
The following sections describe the following control statements, which control the flow of

execution in a PeopleCode program.

Branching Statements

Branching statements control the flow of execution based on their evaluation of conditional
expressions.

PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

If...Then...Else
The syntax of the If..Then...Else statement is:
If condition Then
[statement list 1]
[Else
[statement list 2]]
End-if;
It evaluates the Boolean expression condition. If condition is TRUE, the If statement executes

the statements in statement list 1. 1If condition is FALSE, then it executes the statements in the
Else clause; or, if there is no Else clause, it does nothing.

@ For more information see If.

Evaluate

The Evaluate statement is used in cases where you want to check multiple conditions. Its syntax
is:

Evaluate left term
When [relop 1] right term 1
[statement list]

When [relop n] right term n
[statement list]
[When-other
[statement list]]
End-evaluate;

It takes an expression, left_term, and compares it to compatible expressions (right_term) using
the relational operators (relop) in a sequence of When clauses. If relop is omitted, then =is
assumed. If the result of the comparison is TRUE, it executes the statements in the When clause,
then moves on to evaluate the comparison in the following When clause. It executes the
statements in all of the When clauses for which the comparison evaluates to TRUE. If and only
if none of the When comparisons evaluates to TRUE, it executes the statement in the When-other
clause (if one is provided). For example, the following Evaluate statement executes only the first
When clause. &USE _FREQUENCY in this example can only have one of three string values:

evaluate &USE_FREQUENCY
when = "never"
PROD USE_FREQ = 0;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

when = "sometimes"
PROD USE_FREQ = 1;
when = "frequently"
PROD USE_FREQ = 2;
when-other
Error "Unexpected value assigned to &USE FREQUENCY."
end-evaluate;

To end the Evaluate after the execution of a When clause, you can add a Break statement at the
end of the clause:

evaluate &USE_FREQUENCY
when = "never"
PROD USE_FREQ = 0;
Break;
when = "sometimes"
PROD USE_FREQ = 1;
Break;
when = "frequently"
PROD USE_FREQ = 2;
Break;
when-other
Error "Unexpected value assigned to &USE FREQUENCY."
end-evaluate;

In some rare cases you may want to make it possible for more than one of the When clauses to
execute:

evaluate &PURCHASE_AMT
when >= 100000

BASE DISCOUNT = "Y";
when >= 250000

SPECIAL SERVICES = "Y";
when >= 1000000

MUST_GROVEL = "Y";
end-evaluate;

@ For more information see Evaluate.

For Loops
The For statement repeats a sequence of statements a specified number of times. Its syntax is:
For count = expressionl to expression2
[Step 1i];

statement list
End-for;

The For statement initializes the value of count to expressionl, then increments count by i each
time after it executes the statements in statement list. It continues until count is equal to

5-8 PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

expression2. 1f the Step clause is omitted, then i equals one. If you want to count backwards
from a higher value to a lower value, then use a negative value for i. You can exit a For loop
using a Break statement.

The following example demonstrates the For statement:

&MAX = 10;
for &COUNT = 1 to &MAX;

WinMessage ("Executing statement list, count = " | &COUNT) ;
end-for;

@ For more information see For.

Conditional Loops

Conditional loops, Repeat and While, repeat a sequence of statements, evaluating a conditional
expression each time through the loop. The loop terminates when the condition evaluates to

True. You can exit from a conditional loop using a Break statement. If the Break statement is in
a loop embedded in another loop, the break applies only to the inside loop.

Repeat
The syntax of the Repeat statement is:

Repeat
statement list
Until logical expression;

The Repeat statement executes the statements in statement_list once, then evaluates
logical expression. It logical expression is False the sequence of statements is repeated until
logical_expression is True.

@ For more information, see Repeat.

While
The syntax of the While statement is:
While logical expression

statement list
End-while;

The While statement evaluates logical expression before executing the statements in

statement list. It continues to repeat the sequence of statements until logical_expression
evaluates to False.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

[0

For more information, see While.

Functions

5-10

PeopleCode supports the following types of functions:

Built-in The standard set of PeopleCode functions described in
PeopleCode Built-in Functions. These can be called
without being declared.

Internal Functions that are defined (using the Function statement)
within the PeopleCode program in which they are called.

External PeopleCode PeopleCode functions defined outside the calling program
- generally in record definitions serving as function
libraries.

External non-PeopleCode Functions stored in external (C-callable) libraries.

In addition, PeopleCode also supports methods. The main difference between a built-in function
and a method is:

e a built-in function, in your code, is on a line by itself, and doesn't (generally) have any
dependencies. You don't have to instantiate an object before you can use the function.

¢ a method can only be executed from an object, using dot notation. You have to instantiate the
object first.

For more information see Function and Declare Function. For more information about
methods, see Understanding Objects and Classes in PeopleCode.

Defining Functions

PeopleCode functions can be defined in any PeopleCode program. Function definitions must be
placed at the top of the program, along with any variable and external function declarations.

By convention, PeopleCode programs are stored in records whose names begin in FUNCLIB
and they are always attached to the FieldFormula event (which is convenient because this event is
no longer used for anything else).

You can’t declare a variable within a function definition.

PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

[0

For more information see Function.

Declaring Functions

If you call an external function (that is, a function defined outside the program where it is called)
from a PeopleCode program, you must declare the function at the top of the program. The syntax
of the function declaration varies, depending on whether the external function is written in
PeopleCode or compiled in a dynamic link library.

For more information see Declare Function.

Calling Functions
Functions are called with this syntax:
function name([param list])

The parameter list (param_list), is a list of expressions, separated by commas, that the function
expects you to supply. Items in the parameter list can be optional, or required.

You can check the values of parameters that get passed to functions at runtime in the Parameter
window of the PeopleCode debugger.

For more information see Debugging Your Application.

If the return value is required, then the function must be called as an expression, for example:

&RESULT = Product (&RAISE PERCENT, .01, EMPL_SALARY) ;

If the function has an optional return value it can be called as a subroutine. If the function has no
return value, it must be called as a subroutine:

WinMessage (64, "I can’t do that, " | &OPER NICKNAME | ".");

Parameters are always passed to internal and external PeopleCode functions by reference. If the
function is supposed to be effecting a change in the data the caller passes, you must also pass in a
variable.

Built-in function parameters can be passed by reference or by value, depending on the function.
External C function parameters can be passed by value or by reference, depending on the
declaration and type.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

=,

A built-in function is a function provided by PeopleCode, such as RevalidatePassword,
AddAttachment, and so on. A PeopleCode function is one that you write yourself, or is
written outside the PeopleSoft system.

For more information see Passing Variables to Functions.

PeopleCode doesn't support true recursive functions. Though a function can call itself, the
local variables used by the function keep their same values in all instances of the function,
that is, local variables are scoped at the PeopleCode program level, not at the function level.

Function Return Values

Functions can return values of any supported data type; and some functions do not return any
value.

Optional return values occur only in built-in functions—you can’t define a function yourself that
optionally returns a value. Optional return values are typical in functions that return a Boolean
value indicating whether execution was successful. For example, the following call to
DeleteRow ignores the Boolean return value and just deletes a row:

DeleteRow (RECORD.BUS EXPENSE PER, &L1 ROW, RECORD.BUS_ EXPENSE DTL, &L2 ROW) ;

While the following example checks the return value and returns a message saying whether it
succeeded:

if DeleteRow (RECORD.BUS_ EXPENSE PER, &L1 ROW, RECORD.BUS EXPENSE DTL, &L2 ROW)
then
WinMessage ("Row deleted.");
else
WinMessage ("Sorry -- couldn’t delete that row.");
end-if;

Expressions

5-12

Expressions evaluate to values of any of the PeopleCode data types. A simple PeopleSoft
expression can consist of a constant, a temporary variable, a system variable, a record field
reference, or a function call. Simple expressions can be modified by unary operators (such as a
negative sign or logical NOT), or combined into compound expressions using binary operators
(such a plus sign or logical AND).

PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Definition name references evaluate to strings equal to the name of a PeopleTools definition, such
as a record, page, or message. They provide a way of referring to definitions without using string
literals, which are difficult to maintain.

Metastrings are special expressions used within SQL string literals. At runtime the metastrings
expand into the appropriate SQL for the current database platform.

Constants

PeopleCode supports numeric, string, and Boolean constants.

@ You can express DATE, DATETIME, and TIME values by converting from STRING and
NUMBER constants using the Date, Date3, DateTime6, DateTimeValue, DateValue, Time3,
TimePart, and the TimeValue functions. You can also format a DATETIME value as text
using FormatDateTime.

Numeric
Numeric constants can be any decimal number. Some examples are:

7
0.8725
-172.0036

String Constants

String constants can be delimited by using either single () or double (") quote marks. If a quote
mark occurs as part of a string, the string can be surrounded by the other delimiter type. As an
alternative, you can include the delimiter twice. Some examples are:

"This is a string constant."
'So is this.'

'She said, "This is a string constant."'
"She said, ""This is a string constant."""

Boolean Constants
Boolean constants represent a truth value. The two possible values are:

TRUE
FALSE

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Functions as Expressions

Any function that returns a value can be used as an expression. It can be used on the right side of
an assignment statement, passed as a parameter to another function, or combined with other
expressions to form a compound expression.

@ For more information, see Functions.

Variables
There are the following types of variables available in your program:
e System variables

System variables provide access to system information. System variables are prefixed with
the ‘%’ character, rather than the ‘&’ character. Use these variables wherever you can use a
constant, passing them as parameters to functions or assigning their values to fields or to
temporary variables.

@ For more information, see System Variables.

e User-defined variables

These variable names are preceded by an "&" character wherever they appear in a program.
Variable names can be 1 to 17 characters, consisting of letters A-Z and a-z, digits 0-9, and
characters #, @, $, and .

User-Defined Variable Declaration and Scope
The difference between the type of variables has to do with their life spans:
Global Valid for the entire session

Component Valid while any page in the component in which it's
defined stays active

Local valid for the life of the PeopleCode program in which it's
defined

You can declare variables using the Global, Local or Component statement, or you can use local
variables without declaring them. Here are some examples:

Local Number &AGE;

5-14 PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Global String &OPER NICKNAME;
Component Rowset &MY ROWSET;
Local Any &SOME_FIELD;

Local ApiObject &MYTREE;

Variable declarations must be placed above the main body of a PeopleCode program (along with
function declarations and definitions). Variables can be declared as any of the PeopleCode data
types. If a variable is declared as an ANY data type, or if a variable is not declared, then
PeopleTools will choose an appropriate data type based on context.

@ It’s good practice to declare a variable as an explicit data type unless the variable is going to
hold a value of an unknown data type. If you declare a variable of one data type, then assign
to it a value of a different type, the PeopleCode editor will catch that assignment as a design
time error when you try to save the program. With an undeclared variable, the assignment
error won’t appear until runtime.

Global variables remain defined and keep their values throughout a PeopleSoft session and can be
accessed from different components and applications, including an Application Engine program.
A Global variable must be declared, however, in each PeopleCode program where it’s used. We
recommend that you use Global variables rarely, because they are difficult to maintain.

Global variables are not available to a portal or applications on separate databases. They are only
available on applications and Portals in the same database.

Component variables provide an intermediate ground between Global and Local scope. They
remain defined and keep their values while any page in the component in which they’re defined
stays active. Like a Global variable, a Component variable must be declared in each PeopleCode
program where it’s used.

Component variables act the same as Global variables when an Application Engine program is
called from a page (using CallAppEngine.)

Component variables remain defined after a TransferPage, DoModal or DoModalComponent
function. However, variables declared as Component do not remain defined after using the
Transfer function, whether you’re transferring within the same component or not.

Local variables remain in scope for the life of a PeopleCode program.

@ You can’t declare a variable within a function definition.

You can check the values of your Local, Global and Component variables at runtime in the
different variable windows of the PeopleCode debugger.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ For more information see Debugging Your Application.

Restrictions on Use

The following data types can only be declared as Local. They can not be declared as either
Global or Component:

e JavaObject

e Interlink

@ Interlink objects can only be declared as type Global in an Application Engine program.

The following ApiObject data type objects can be declared as Global:
e Session

e PSMessages collection

e PSMessage

o All Tree classes (trees, tree structures, nodes, levels, and so on.)

All other ApiObject data type objects, such as all Query objects, Component Interface objects,
and so on, must be declared as Local.

Using User-Defined Variables

You should initialize user-defined variables by setting them equal to a constant or a record field
before you use them. If you do not initialize them, strings are initialized as null strings, dates and
times as nulls, and numbers as zero.

A user-defined variable can hold the contents of a record field for program code clarity. For
example, you may give a variable a more descriptive name than a record field, based on the
context of the program. If the record field is from another record, you may assign it to a
temporary variable rather than always using the record field reference. This makes it easier to
type the program, and can also make it easier to read.

Also, if you find yourself calling the same function repeatedly to get a value, you may be able to
avoid some processing by calling the function once and placing the result in a variable.

@ PeopleCode doesn't support true recursive functions. Though a function can call itself, the
local variables used by the function keep their same values in all instances of the function,
that is, local variables are scoped at the PeopleCode program level, not at the function level.

5-16 PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Passing Variables to Functions

PeopleCode variables are always passed to functions by reference. This means, among other
things, that the function can change the value of a variable passed to it so that the variable will
have the new value on return to the calling routine. For example, the Ameortize built-in function
expects you to pass it variables into which it will place the amount of a loan payment applied
towards interest (&PYMNT _INTRST), the amount of the payment applied towards principle
(&PYMNT _PRIN), and the remaining balance (&BAL). It calculates these values based on
information that the calling routine supplies in other parameters:

&INTRST RT=12;
&PRSNT BAL=100;
&PYMNT AMNT=50;
&PYMNT NBR=1;

Amortize (&INTRST RT, &PRSNT BAL, &PYMNT AMNT, &PYMNT NBR, &PYMNT INTRST,

&PYMNT PRIN, &BAL);

&RESULT = "Int=" | String(&PYMNT INTRST) | " Prin=" | String(&PYMNT PRIN) | "
Bal=" | String(&BAL) ;

System Variables

System variables are preceded by a percent (%) symbol whenever they appear in a program. You
can use these variables to get the current date and time, information about the user, the current
language, the current record, page, or component, and more.

@ For more information see System Variables.

Metastrings

Metastrings are special SQL expressions. The metastrings, also called meta-SQL, are prefixed
with a percent (%) symbol, and can be included directly in the string literals. They expand at
runtime into an appropriate substring for the current database platform. Meta-SQL are used in
functions that pass SQL strings, that is,

e SQLExec

the scroll buffer functions (ScrollSelect and its relatives),

in Application Designer to construct dynamic views

with some rowset object methods (Select, SelectNew, Fill, etc.)

with SQL objects

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

5-18

¢ in Application Engine
e with some record object methods (Insert, Update, etc.)

¢ with COBOL

For more information see Meta-SQL.

Record Field References

Record field references are used to retrieve the value stored in a record field, or to assign a value
to a record field.

Record Field Reference Syntax
References to record fields have the following form:

[recordname.] fieldname

You need to supply the recordname only if the record field and your PeopleCode program are in
different record definitions.

For example, suppose that in a database for veterinarians you have two records, PET OWNER
and PET. A program in the record definition PET _OWNER must refer to the PET _BREED
record field in the PET record definition as:

PET.PET BREED

However, a program in the PET record definition can refer to this same record field on a more
intimate basis as simply:

PET BREED

And, if the program is in the PET BREED record field itself, it can refer to this record field using
the caret (*) symbol:

The PeopleCode Editor replaces the caret symbol with the actual record field name.
You can also use object-based dot notation to refer to record fields, for example:

&FIELD = GetRecord (RECORD.PET OWNER) .GetField (FIELD.PET BREED) ;

For more information about referencing record fields see Referencing Data in the
Component Buffer.

PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Legal Record Field Names

A record field name consists of two parts, the record name and the field name, separated by a
period.

The field names used in PeopleCode are consistent with the field names allowed in the field
definition. Case is ignored, although the PeopleCode Editor will, for the sake of convention,
automatically format field names in ALL CAPS. A field name can be 1 to 18 characters,
consisting of alphanumeric characters determined by your current language setting in Windows,
and characters #, @, $, and .

A record name can be 1 to 15 characters, consisting of alphanumeric letters determined by your
current language setting in Windows, and characters #, @, $, and .

Definition Name References

Definition name references are special expressions that reference the name of a PeopleTools
definition, such as a record, page, component, Business Interlink, and so on. Syntactically, a
definition name references consists of a reserved word indicating the type of definition, followed
by a period, then the name of the PeopleTools definition. For example, the following definition
name reference:

RECORD.BUS_EXPENSE PER

refers to the definition name:

"BUS_EXPENSE PER"

Generally, definition name references are passed as parameters to functions. If you attempt to
pass a string literal instead of a definition name reference to such a function, you will get a syntax
error.

You also use definition name references outside function parameter lists, for example in
comparisons:

If (%Page = PAGE.SOMEPAGE) Then
/* do stuff specific to SOMEPAGE */
End-If;
In these cases the definition name reference evaluates to a string literal. Using the definition

name reference instead of a string literal makes it possible for PeopleTools to maintain the code if
the definition name changes.

If you use the definition name reference, and the name of the definition changes, the change
automatically "ripples" through the code, so you don't have to change it or maintain it.

In the PeopleCode editor, if you place your cursor over any definition name reference and right-
click, you can select View Definition from the pop-up menu to open the definition.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-19

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Legal and lllegal Definition Names

Legal definition names, as far as definition name references are concerned, consist of
alphanumeric letters determined by your current language setting in Windows, and the characters

#, @, $,and .

In some cases, however, the definition supports the use of other characters. You can, for
example, have a menu item named "A&M" stored in the menu definition even though "&" is an
illegal character in the definition name reference. The illegal character will result in an error
when you validate your syntax or attempt to save your PeopleCode.

You can get around this problem in two ways:
e Rename the definition so that it uses only legal characters.
¢ Enclose the name of the definition in quotes in the reference, for example:

ITEMNAME. "A&M"

The second solution is a commonly used workaround in cases where the definition name contains
illegal characters. If you use this notation, the definition name reference is not treated as a string
literal: PeopleTools maintains the reference the same way as it does other definition name
references.

@ If your definition name begins with a number, you must enclose the name in quotation marks
when you use it in a definition name reference. For example,
CompIntfc."1l DISCPLIN ACTN".

Reserved Word Summary Table

The following table summarizes the reserved words used in definition name references.

Reserved Word Common Usage
BARNAME Used with transfers and modal transfers.
BUSACTIVITY Used with TriggerBusinessEvent.
BUSEVENT Used with TriggerBusinessEvent.
BUSPROCESS Used with TriggerBusinessEvent.
COMPINTFC Used with the GetComplntfc Session class
method.
COMPONENT Used with transfers and modal transfers.
FIELD Used with the GetField Record class method.
FILELAYOUT Used with the SetFileLayout File class method.
HTML Used with the GetHTMLText function.
IMAGE Used with the Add Image object method and the

5-20 PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Reserved Word Common Usage

ImageReference field.

INTERLINK Used with the Getlnterlink function.

ITEMNAME Used with transfers and modal transfers.

MENUNAME Used with transfers and modal transfers.

MESSAGE Used with Application Messaging functions and
methods.

PAGE Used with transfers and modal transfers to pass

the page item name (instead of the page name),
and with grid and ActiveX controls to pass the

page name.

RECORD Commonly used in component buffer functions
and methods to designate a record.

SCROLL The name of the scroll area in the page. This
name is always equal to the primary record of the
scroll.

SQL Used with the SQL Class.

STYLESHEET Used with style sheets.

Operators

PeopleCode expressions can be modified and combined using math, string, comparison, and
Boolean operators.

Math Operators

PeopleCode uses standard mathematical operators:
+ add

- subtract (or unary negative sign)

* multiply

/ divide

** exponentiation

Exponentiation occurs before multiplication and division; multiplication and division occur
before addition and subtraction. Math expressions otherwise are evaluated from left to right.
You can use parentheses to force the order of operator precedence.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-21

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

The minus sign can also, of course, be used as a negation operator, as in the following
expressions:

-10
- &NUM
- Product (&PERCENT CUT, .01, SALARY)

Operations on Dates and Times

You can add or subtract two date values or two time values, which gives you an NUMBER result.
In the case of dates, the number represents the difference between the two dates in days. In the
case of time, the number represents the difference in seconds. You can also add and subtract
numbers to or from a time or date, which results in another date or time. Again, in the case of
days the number represents days, and in the case of time the number represents seconds.

The following table summarizes these operations:

Operation Result Type | Number Represents...
time + time number of seconds
number

date + date number of days
number

date - date number difference in days

time - time number difference in seconds
date + time datetime

String Concatenation

The string concatenation operator (|) is used to combine strings. For example, assuming
&OPER _NICKNAME is "Dave", the following statement sets &RETORT to "I can’t do that,
Dave."

&RETORT = "I can’t do that, " | &OPER NICKNAME | "."

The concatenation operator automatically converts its operands to strings. This makes it easy to
write statements that display mixed data types. For example:

&DAYS LEFT = &CHRISTMAS - %$Date;
WinMessage ("Today is " | %Date | ". Only " | &DAYS LEFT | " shopping days
left!");

@ Operator

The @ operator converts a string storing a definition reference into the definition. This is useful,
for example, if you want to store definition references in the database as strings and retrieve them

5-22 PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

for use in PeopleCode; or if you want to get a definition reference in the form of a string from the
operator using the Prompt function.

To take a simple example, if the record field EMPLID is currently equal to "8001", the following
expression would evaluate to "8001":

@"EMPLID"

The following example uses the @ operator to convert strings storing a record reference and a
record field reference:

&STR1 = "RECORD.BUS EXPENSE PER";

&STR2 = "BUS EXPENSE DTL.EMPLID";

&STR3 = FetchValue (@(&STR1), CurrentRowNumber (1), @(&STR2), 1);

WinMessage (&STR3, 64);

@ String literals that reference definitions are not maintained by PeopleTools. Bear in mind
that if you store definition references as strings, then convert them with the @ operator in
your code, this will create maintenance problems whenever the definition names change.

The following function takes a rowset and a record, passed in from another program, and does
some processing. The GetRecord method won’t take a variable for the record, however, using
the @ symbol you can dereference the record name. Because the record name is never hard-
coded as a string, if the record name changes, this code will not have to change.

Function Get My Row (&PASSED ROWSET, &PASSED RECORD)
For &ROWSET ROW = 1 To &PASSED ROWSET.RowCount

&UNDERLYINGREC = "RECORD." | &PASSED ROWSET.DBRecordName;

&ROW_RECORD =
&PASSED ROWSET.GetRow (&§ROWSET ROW) .GetRecord (@&UNDERLYINGREC) ;

/* Do other processing */

End-For;

End-Function;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-23

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Comparison Operators

Comparison operators are used to compare two expressions of the same data type. The result of
the comparison is a Boolean value. The following table summarizes these operators:

Operator Meaning

= equal

= not equal

< not equal

< less than

<= less than or equal to

> greater than

>= greater than or equal to

You can precede any of the comparison operators with Not, for example:
e Not=

e Not<

e Not>=

Expressions formed with comparison operators form logical terms that can be combined using
Boolean operators.

String comparisons are case-sensitive. You can use the Upper or Lower built-in functions to do a
case-insensitive comparison.

Boolean Operators

The logical operators AND, OR, and NOT are used to combine Boolean expressions. The
following table shows the results of combining two Boolean expressions with AND and OR
operators:

Exp1 Operator | Exp2 Result
FALSE AND FALSE FALSE
FALSE AND TRUE FALSE

TRUE AND TRUE TRUE
FALSE OR FALSE FALSE
FALSE OR TRUE TRUE
TRUE OR TRUE TRUE

5-24 PEOPLECODE LANGUAGE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The NOT operator negates Boolean expressions, changing a TRUE value to FALSE and a
FALSE value to TRUE.

In complex logical expressions using the operations AND, OR, and NOT, NOT takes the highest
precedence, AND is next, and OR is lowest. Parentheses can be used to override precedence.
(It’s generally a good idea to use parentheses in logical expressions anyway, because it makes
them easier to decipher.) If used on the right side of an assignment statement, Boolean
expressions must be enclosed in parentheses.

The following are examples of statements containing Boolean expressions:

&FLAG = (Not (&FLAG)); /* toggles a Boolean */

if ((&HAS FLEAS or &HAS TICKS) and
SOAP QTY <= MIN SOAP QTY) then

SOAP_QTY = SOAP_QTY + OrderFleaSoap (SOAP_ORDER QTY) ;
end-if;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE LANGUAGE 5-25

CHAPTER 6

Understanding Objects and Classes in
PeopleCode

For this release, PeopleSoft introduces classes of objects that you can manipulate with
PeopleCode. These objects may or may not have a GUI equivalent; some are only
representations of data structures that occur at runtime. With PeopleCode you can manipulate
data in the data buffer easily and consistently. These object classes enable you to write code
that’s more readable, more easily maintained, and more useful. Coding with objects is simply
easier.

What is a Class?

A class is the formal definition of an object and acts as a template from which an instance of an
object is created at runtime. The class defines the properties of the object and the methods used
to control the object’s behavior.

PeopleSoft delivers pre-defined classes (such as Array, File, Field, and SQL.) You cannot create
custom classes.

What is an Object?

An object represents a unique instance of a data structure defined by the template provided by its
class. Each object has its own values for the variables belonging to its class and responds to
methods defined by that class.

The class is a template, or blueprint, from which you create an object. Once an object has been
created (instantiated) from a class, you can change its properties. A property is an attribute of an
object. Properties define object characteristics, such as name or value, or the state of an object,
such as deleted or changed. Some properties are read-only and cannot be set, such as Name or
Author. Other properties are read-write and can be set, such as Value or Label.

Objects are different from other data structures. They contain code (in the form of methods), not
just static data. A method is a procedure or routine, associated with one or more classes, that acts
on an object.

An analogy to illustrate the difference between an object and its class is the difference between a
car and the blue Renault Citroen with license plate number TS5800B. A class is a general
category, while the object is a very specific instance of that class. Each car comes with standard
characteristics, such as four wheels, an engine or brakes, that define the class and are the template

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OBJECTS AND CLASSES IN PEOPLECODE 6-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

6-2

from which the individual car is created. You can change the properties of an individual car by
personalizing it with bumper stickers or racing stripes, which could be likened to changing the
Name or Visible property of an object. The model and date it's created are like read-only
properties because you can't alter them. A tune-up acts on the individual car and changes its
behavior, much like a method acts on an object.

Instantiating Objects

A class is the blueprint for something, like a bicycle, a car, or a data structure. An object is the
actual thing that's built using that class (or blueprint.) From the blueprint for a bicycle, you can
build a specific mountain bike with 23 gears and tight suspension. From the blueprint of a data
structure class, you build a specific instance of that class. Instantiation is the term for building
that copy, or an instance, of a class.

Working with Objects

Generally you instantiate an object (create them from their class) using built-in functions or
methods of other objects. Some objects are instantiated from data already existing in the data
buffer. Think about this kind of object instantiation as taking a chunk of data from the buffer,
encapsulating it in code (methods and properties), manipulating it, then freeing the references.
Some objects can be instantiated from a previously created definition, such as a page or file
layout definition.

The following example creates a field object:
Local field &MyField

&MyField = GetField() ;

Getxxx built-in functions generally provide access to data that already exists, whether in the data
buffers or from an existing definition.

Createxxx functions generally create defined objects that do not yet exist in the data buffer.
Createxxx functions only create a buffer structure. They don’t populate it with data. For example,

the following function returns a record object for a record that already exists in the component
bufter:

&REC = GetRecord() ;

The following example creates a stand-alone record. However, there is no data in &REC2. The
specified record definition must be created previously, but the record doesn’t have to exist in the
buffer:

&REC2 = CreateRecord (EMP_CHKLST_ITM) ;

The exceptions to the general Get/Create rule are objects that have no built-in functions and can
only be instantiated from a session object (such as Tree classes, Component Interfaces, and so
on). For most of these classes, when you use Getxxx, all you get is an identifier for the object.
To fully instantiate the object, you must use an Open method.

UNDERSTANDING OBJECTS AND CLASSES IN PEOPLECODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

[0

For more information see Search Classes.

Object Properties

To set or get characteristics of an object, or to determine the state of an object, you must access
its properties through dot notation syntax. Follow the reference to the object with a period,
followed by the property, and assign it a value. The format is generally as follows:

Object.Property = Value
The following example hides the field &MYFIELD:

&MYFIELD.Visible = False

You can return information about an object by returning the value of one of its properties. In the
following example, &X is a variable that is assigned the value found in the field &MYFIELD:

&X = &MYFIELD.Value

In the following example, a property is used as the test for a condition:

If &ROWSET.ActiveRowCount <> &I Then

Object Methods

You can also use dot notation to execute methods. Follow the reference to the object with a
period, followed by the method name and any parameter the method may take. The format is
generally as follows:

Object.method () ;

You can string methods and property values together into one statement. The following example
strings together the GetField() method with the Name property:

If &REC_BASE.GetField(&R) .Name = &REC_RELLANG.GetField(&J) .Name Then

Some methods return a Boolean value: True if the method execute successfully; False if it
doesn't. The following method compares all like-named fields of the current record object with
the specified record. This method returns as True if all like-named fields have the same value:

If &MYRECORD.CompareFields (&OTHERRECORD) Then

Other methods return a reference to an object. The GetCurrEffRow method returns a row object:

&MYROW = &MYROWSET.GetCurrEffRow () ;

Some methods don’t return anything. Each method's documentation tells you what it returns.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OBJECTS AND CLASSES IN PEOPLECODE 6-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

6-4

Many objects have default methods. Instead of typing the name of the method explicitly, you can
use that method's parameters. Objects with default methods are composite objects. They contain
additional objects within them. The default method is generally the method used to get the lower-
level object.

A good example of a composite object is a record object. Record definitions are comprised of
field definitions. The default method for a record object is GetField.

The following lines of code are equivalent:

&FIELD &RECORD.GetField (FIELD.EMPLID) ;

&FIELD = &RECORD.EMPLID;

If the field you’re accessing has the same name as a record property (such as, Name) you
can’t use the default method for accessing the field. You must use the GetField method.

Another example of default methods concerns rowsets and rows. Rowsets are made up of rows,
so the default method for a rowset is GetRow. The two specified lines of code are equivalent:
They both get the fifth row of the rowset:

&ROWSET = GetRowSet () ;
/*the next two lines of code are equivalent */
&ROW = &ROWSET.GetRow (5) ;

&ROW &ROWSET (5) ;

The following example illustrates the long way of enabling the NAME field on a second level
scroll (the code is executing on the first level scroll):

GetRowset(SCROLL.EMPLOYEE_CHECKLIST).GetRow(l).GetRecord(EMPL_CHKLST_ITM).GetFie
1d (FIELD.NAME) .Enabled = True;

Using default methods enables you to shorten the above code to the following:
GetRowset (SCROLL . EMPLOYEE CHECKLIST) (1) .EMPL_CHKLST ITM.NAME.Enabled = True;

Expressions of the form class.name.property or class.name.method(..) are converted to a
corresponding object. For example:

&temp = RECORD.JOB.IsChanged;
is evaluated as if it were

&temp = GetRecord (RECORD.JOB) .IsChanged;
Furthermore,

JOB.EMPLID.Visible = False;

UNDERSTANDING OBJECTS AND CLASSES IN PEOPLECODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

is evaluated as if it were

GetField (JOB.EMPLID) .Visible = False;

Object Assignment

When you assign one object to another, you are not creating a copy of the object, but are only
making a copy of the reference.

In the following example, &A1 and &A2 do not refer to separate and distinct objects, but refer to
the same object. The assignment of &A1 to &A2 does not allocate any database memory or copy
any part of the original object. It simply makes &A2 refer to the same object to which &A1l
refers.

Local Array of Number &Al, &A2;

&A1l = CreateArray(2, 4, 6, 8, 10);

&A2 = &Al;

&A1

&A2

If the next statement is
&A2[5] = 12;

then &A1[5] also equals 12.

&A1[5] 1

&A2[5]]

The following example is not considered an object assignment:
Local number &NUM;

Local Array of Number &Al;

&A1l = CreateArray (2, 4, 6, 8, 10);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OBJECTS AND CLASSES IN PEOPLECODE 6-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&NUM = &A1[3];

&NUM is of data type Number, which isn’t an object type. If you later change the value of
&NUM in your program, you won't change the element in the array.

Passing Objects

All PeopleCode objects can be passed as function parameters. The application developer can
pass complex data structures between PeopleCode functions (as opposed to passing long lists of
fields). If a function is passed an object, the function will work on the actual object, not on a
copy of the object.

@ For more information, see Object Assignment.

In the following simple example, a reference to the visible property is passed, not the value of
visible. This allows the MyPeopleCodeFunction either to get or set the value of visible:

MyPeopleCodeFunction (&MyField.Visible) ;

In the following example, the function Process_ Rowset loops through every row and record in the
rowset it is passed and executes an UPDATE statement on each record in the rowset. This
function can be called from any PeopleCode program and can process any rowset that is passed to
it.

Local Rowset &RS;
Local Record &REC;
Function Process RowSet (&ROWSET as Rowset) ;
For &I = 1 To &ROWSET.Rowcount
For &J = 1 To &ROWSET.Recordcount
&REC = &ROWSET.GetRow (&I) .GetRecord (&J) ;
&REC.Update () ;
End-For;
End-For;
End-Function;

&RS = GetLevelO() ;

Process_ RowSet (&RS) ;

6-6 UNDERSTANDING OBJECTS AND CLASSES IN PEOPLECODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The following function takes a rowset and a record passed in from another program. GetRecord
won’t take a variable for the record; however, using the @ symbol you can de-reference the
record name.

Function Get My Row (&PASSED ROWSET, &PASSED RECORD)

For &ROWSET ROW = 1 To &PASSED ROWSET.RowCount

&UNDERLYINGREC = "RECORD." | &PASSED ROWSET.DBRecordName;

&ROW_RECORD =
&PASSED ROWSET.GetRow (&§ROWSET ROW) .GetRecord (@&UNDERLYINGREC) ;

/* Do other processing */

End-For;

End-Function;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OBJECTS AND CLASSES IN PEOPLECODE 6-7

CHAPTER 7

Using Methods and Built-in Functions

This chapter covers a number of issues related to the use of PeopleCode methods and built-in
functions. It discusses common restrictions on the use of methods and functions in certain
PeopleCode events. It examines groups of methods or functions that are related by common
syntactic complexities (such as functions that access data in multiple-scroll pages). And it views
specific methods or functions in the context of a complex task (such as implementing a dynamic
tree control, an ActiveX control, or a remote call).

@ For reference information on individual built-in functions, see PeopleCode Built-in
Functions. For more information on individual methods, see PeopleCode Classes.

Restrictions on Method and Function Use

This summarizes general restrictions on the use of PeopleCode built-in functions and methods.

Think-Time Functions

"Think-time" functions suspend processing either until the user has taken some action (such as
clicking a button in a message box), or until an external process has run to completion (for
example, a remote process).

Think-time functions should be avoided in any of the following PeopleCode events:
e SavePreChange

e Workflow

e RowSelect

e SavePostChange

e Any PeopleCode event that fires as a result of a ScrollSelect, ScrollSelectNew,
RowScrollSelect, RowScrollSelectNew function call

¢ Any PeopleCode event that fires as a result of a Select or SelectNew rowset method
Violation of this rule can result in application failure.

The following are think-time functions in PeopleTools 7.5 and PeopleTools 8.0:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

e (Call to an external DLL

e DoCancel

e DoModal

e DoModalComponent

e Exec (think-time only when synchronous)
e File attach functions.

¢ Insertlmage

e OLE functions (think-time only when object requires user action) (CreateObject,
ObjectDoMethod, ObjectSetProperty, ObjectGetProperty)

e Prompt

e RemoteCall

e RevalidatePassword

¢ WinExec (think-time only when synchronous)

e WinMessage and MessageBox (depending on style parameter)

WinMessage and MessageBox

The WinMessage and MessageBox functions sometimes behave as think-time functions,
depending on the value passed in the function’s style parameter, which controls, among other
things, the number of buttons displayed in the message dialog box.

@ In PeopleSoft Internet Architecture style is ignored if the message has any severity other
than Message.

Here is the syntax of both functions:

MessageBox (style, title, message set, message num, default txt [, paramlist])

WinMessage (message [, style]l [, title])

@ The WinMessage function is supported for compatibility with previous releases of
PeopleTools. Future applications should use MessageBox instead.

If the style parameter specifies more than one button, the function behaves as a think-time
function and is subject to the same restrictions as other think-time functions (that is, it should
never be used from SavePreChange through SavePostChange PeopleCode, or in RowSelect).

7-2 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

If the style parameter specifies a single button (that is, the OK button), then the function can be

called in any PeopleCode event.

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

@ In Windows Client, MessageBox dialogs include an Explain button to display more detailed
information stored in the Message Catalog. The presence of the Explain button has no
bearing on whether a message box behaves as a think-time function.

The style parameter is optional in WinMessage. If style is omitted WinMessage displays OK

and Cancel buttons, which causes the function to behave as a think-time function. To avoid this
situation, you should always pass an appropriate value in the WinMessage style parameter.

The following table shows the values that can be passed in the s#yle parameter. To calculate the
value to pass make one selection from each category in the table, then add the selections:

Category | Value | Constant Meaning
Buttons 0 %MsgStyle OK The message box contains one
pushbutton: OK.
1 %MsgStyle OKCancel The message box contains two
pushbuttons: OK and Cancel.
2 %MsgStyle AbortRetrylgnore | The message box contains three
pushbuttons: Abort, Retry, and
Ignore.
3 %MsgStyle YesNoCancel The message box contains three
pushbuttons: Yes, No, and Cancel.
4 %MsgStyle YesNo The message box contains two
push buttons: Yes and No.
5 %MsgStyle RetryCancel The message box contains two
push buttons: Retry and Cancel.

Note. The following values for s#y/e can only be used in Windows Client. They have no
affect in PeopleSoft Internet Architecture.

Category Value | Constant Meaning
Default 0 %MsgDefault First The first button is the default.
Button
256 %MsgDefault Second The second button is the default.
512 %MsgDefault Third The third button is the default.
Icon 0 %Msglcon_ None None

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

USING METHODS AND BUILT-IN FUNCTIONS

7-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

16 %Msglcon_Error A stop-sign icon appears in the
message box.

32 %Msglcon Query A question-mark icon appears in the
message box.

48 %Msglcon_Warning An exclamation-point icon appears in
the message box.

64 %Msglcon_Info An icon consisting of a lowercase
glcon_ g

letter "I" in a circle appears in the

message box.

@ For more information about these functions see MessageBox and WinMessage.

Program Execution with Fields not in the Data Buffer

Accessing a field that isn’t in the data buffer under certain conditions causes a portion of your
PeopleCode program to be skipped. The skip only occurs:

¢ in the Import Manager or if the reference is from the FieldDefault or FieldFormula events, and
o the reference executes on a field that doesn’t exist in the data buffer

After the call to the invalid field, execution skips to the next “top-level” statement. Top-level

statements are statements that aren’t nested inside other statements. The start of a PeopleCode
program is a top-level statement. Nesting begins with the first conditional statement (such as

While or If) or the first function call.

For example, if your code is executing in a function and inside an If...then...end-if statement,
and it runs into the skip conditions, the next statement executed is the one affer the end-if; still
inside the function.

Errors and Warnings

Error and Warning should not be used in FieldDefault, FieldFormula, RowInit, FieldChange,
Rowlnsert, SavePreChange, WorkFlow and SavePostChange PeopleCode. An Error or
Warning in these events causes a runtime error that forces cancellation of the component.

@ For more information about these functions, see Warning and Error.

DoSave

DoSave can be used only in FieldEdit, FieldChange, or MenultemSelected PeopleCode.

7-4 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

[0

For more information about this function see DoSave.

Record Object Database Methods

The following record object methods are used to update the database.
e Delete

e Insert

e Update

These methods should only be used in events that allow database updates, that is, in the following
events:

e SavePreChange

e WorkFlow

SavePostChange

Message Subscription

FieldChange

e Application Engine PeopleCode action

For more information about these methods, see ProcessRequest Class.

SQL Object Methods and Functions

The SQL object can be used to update the database. These functions and methods should only be
used in events that allow database updates, that is, in the following events:

e SavePreChange

e WorkFlow

SavePostChange

Message Subscription

FieldChange

Application Engine PeopleCode action

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

7-6

Component Interface Restricted Functions

PeopleCode events and functions that relate exclusively to GUI and online processing can’t be
used by Component Interface. These include:

e Menu PeopleCode and pop-up menus. The ItemSelected and PrePopup PeopleCode events
are not supported. In addition, the CheckMenultem, DisableMenultem, EnableMenultem,
HideMenultem, and UnCheckMenultem functions aren’t supported.

e Transfers between components, including modal transfers. The DoModal, EndModal,
IsModal, Transfer, TransferPage, DoModalComponent, and IsModalComponent
functions cannot be used.

e Dynamic tree controls. Functions related to this control, such as GetSelectedTreeNode,
GetTreeNodeParent, GetTreeRecordName, RefreshTree and TreeDetaillnNode cannot be
used.

e ActiveX controls. The PSControllnit and PSLostFocus events aren’t supported, and the
GetControl and GetControlOccurance functions cannot be used.

e Cursor position. SetControlValue and SetCursorPos cannot be used.
e WinMessage cannot be used.

For the unsupported functions, you should put a condition around them, testing whether there’s an
existing Interface Component or not.

If %CompIntfcName Then
/* process is being called from a Interface Component */
/* do CI specific processing */

Else

/* do regular processing */

End-if;

CallAppEngine

The CallAppEngine function should only be used in events that allow database updates because
generally, if you’re calling Application Engine, you’re intending to perform database updates.
This includes the following PeopleCode events:

e SavePreChange (Page)
e SavePostChange (Page)

e Workflow

USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

e Message Subscription
e FieldChange

CallAppEngine cannot be used in an Application Engine PeopleCode action. If you need to
access one Application Engine program from another Application Engine program, use the
CallSection action.

@ For more information on CallSection, see Call Section Actions.

ReturnToServer

The ReturnToServer function returns a value from a PeopleCode application messaging
program to the publication or subscription server. You would use this in either your publication or
subscription routing code, not in an Component Processor flow event.

@ For more information see PeopleSoft Application Messaging.

GetPage

The GetPage function can’t be used until after the page processor has loaded the page. You
shouldn’t use this function in an event prior to the PostBuild event.

@ For more information about events, see PeopleCode and the Component Processor. For more
information about this function, see GetPage.

GetGrid

PeopleSoft builds a grid one row at a time. Because the Grid class applies to a complete grid, you
can’t use the GetGrid function in an event prior to the Activate Event.

@ For more information about events, see PeopleCode and the Component Processor. For
more information about this function, see GetGrid.

GetControl

The GetControl function returns a reference to an ActiveX control. You can’t access any
controls until after the page processor has loaded the page. You shouldn’t use this function in an
event prior to the Activate Event.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ For more information about events, see PeopleCode and the Component Processor. For
more information about this function, see GetControl.

Publish Method

If you are using Application Messaging, your Publish PeopleCode should go in the
SavePostChange event, for either the record or the Component.

@ For more information see PeopleSoft Application Messaging.

Implementing Modal Transfers

Modal transfers allow you to transfer from one component (the originating component) to
another component (the modal component) modally; that is, requiring the user to OK or Cancel
the modal component before returning to the originating component.

Modal transfers give you some control over the order in which the user fills in pages, which is
particularly useful in cases where data in the originating component can be derived from data
entered by the user into the modal component.

Be careful to not overuse this feature as it restricts user freedom by forcing users to complete
interaction with the modal page before returning to the main component.

A modal component resembles, in many respects, a Windows modal dialog. It displays three
buttons: OK, Cancel, and Apply. No toolbars or windows are available while the modal
component has the focus.

e The OK button saves changes to the modal component and returns the user to the originating
component.

e The Apply button saves changes to the modal component without returning to the originating
component.

e The Cancel button returns the user to the originating component without saving changes to the
modal component.

Modal components are generally smaller than the page from which they are invoked. Remember
that "OK" and "Cancel" buttons are added at runtime, thus increasing the size of the page(s).

The originating component and the modal component share record fields in a Derived/Work
record called a shared work record. The Derived/Work fields of this record provide the two
components with an area in memory where they can share data. Edit boxes in both components
are associated with the same Derived/Work field, so that changes made to this field in the
originating component are reflected in the modal component, and vice versa.

7-8 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Derived/Work

Record Field

. Edit Box on
Edit Box on Modal e
Originating Panel
Panel Group
Group

Edit Boxes on the Originating and Modal Components Share the Same Data

Edit boxes associated with the same Derived/Work fields must be placed at level zero in both the
originating component and the modal component.

You can use the shared fields to:

e Pass values assigned to the search keys in the modal component search record. If these fields
are missing or invalid, the search dialog appears, allowing the user to enter search keys.

e Pass other values from the originating component to the modal component.

e Pass values back from the modal component to the originating component.

Considerations Before Implementing a Modal Transfer

Any component accessible through an application menu system can be accessed via a modal
transfer. However, to implement a modal transfer, you need to make some modifications to pages
in both the originating component and the modal component. Once these modifications are
complete, you can implement the modal transfer using the DoModalComponent PeopleCode
function from a page in the originating component.

Before beginning this process, you should answer the following questions:

e Should the originating component provide search key values for the modal component? If so,
what are the search keys? (Check the modal component's search record.)

e Does the originating component need to pass any data to the modal component? If so, what
record fields are needed to store this data?

e Does the modal component need to pass any data back to the originating component? If so,
what record fields are needed to store this data?

To implement a modal transfer

1. Create Derived/Work record fields for sharing data between the originating and modal
components.

Create a new Derived/Work record or open an existing Derived/Work record. If suitable
record fields exist, you can use them; otherwise create new record fields for any data that
needs to be shared between the components. These can be search keys for the modal
component, data to pass to the modal component, or data to pass back to the originating
component.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

2. Add derived work fields to the level-zero area of the originating component.

Add one edit box for each of the Derived/Work fields that you need to share between the
originating and modal components to the level-zero area of the page from which the transfer
will take place. You will probably want to make the edit boxes invisible.

3. Add these same derived work fields to the level-zero area of the modal component.

Add one edit box for each of the edit boxes that you added in the previous step to the level-
zero area of the page that you are transferring to. You will probably want to make the edit
boxes invisible.

4. Add PeopleCode to pass values into the Derived/Work fields in the originating component.

If you want to provide search key values or pass data to the modal page, write PeopleCode
that assigns appropriate values to the Derived/Work fields at some point before
DoModalComponent is called.

For example, if the modal component search key is PERSONAL DATA.EMPLID, you could
place the following assignment statement in the Derived/Work field's RowlInit event:

EMPLID = PERSONAL DATA.EMPLID

You also might assign these values in the same program where DoModalComponent is
called.

5. Add any necessary PeopleCode to access and change the Derived/Work fields in the modal
component.

No PeopleCode is required to pass search key values during the search. However, if other
data has been passed to the modal component, you may need PeopleCode to access and use
the data. You may also need to assign new values to the shared fields so that they can be
used by the originating component.

It is possible that the component was accessed through the menu system and not via a modal
transfer. To write PeopleCode that runs only in the component when it is running modally,
use the IsModalComponent built-in function:

If IsModalComponent () Then
/* PeopleCode for modal execution only. */
End-If

6. Add any necessary PeopleCode to access changed Derived/Work fields in the originating
component.

If the modal component has altered the data in the shared work fields, you can write
PeopleCode to access and use the data after DoModalComponent has executed.

@ For more information on the PeopleCode functions, see DoModalComponent and IsModal.

7-10 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Using the ImageReference Field

After you create an image definition in Application Designer, if you want to associate it with a
field at runtime, the field has to be of type ImageReference. An example of this is referencing a
red, yellow, or green light on a page, depending on the context.

@ For Window Client, you can not use a ImageReference field in a grid. For PeopleSoft
Internet Architecture, you can.

To change the image value of a ImageReference field
1. Create a field of type ImageReference.
2. Create the images you want to use.
These images must be saved in Application Designer, as Image definitions.
3. Add the field to a record that will be accessed by the page.

4. Add an image control to the page and associate the image control with the ImageReference
field.

@ For more information on creating fields, creating images, adding fields to records and
associating a record field with an image control, see Creating Field Definitions.

5. Assign the field value.
Use the keyword Image to assign a value to the field. For example:
Local Record &MyRec;

Global Number &MyResult;

&MyRec = GetRecord() ;
If &MyResult Then

&MyRec .MyImageField.Value = Image.THUMBSUP;
Else

&MyRec.MyImageField.Value = Image.THUMBSDOWN;

End-If;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Using PeopleCode with PeopleSoft Internet Architecture

7-12

If you're building pages using View Internet Options, there are a few considerations you'll have
to take into account when you're creating your PeopleCode programs.

Internet Scripts

An Internet Script is a specialized PeopleCode function that generates dynamic web content.
Internet Scripts interact with web clients (browsers) via a request-response paradigm based on the
behavior of the Hypertext Transfer Protocol.

For more information see Internet Script Classes.

Unsupported Functions

Certain PeopleCode functions and methods aren't supported in the PeopleSoft Internet
Architecture. There is no client in a PeopleSoft Internet Architecture application, only the
browser. This means client-only PeopleCode isn’t supported in a PeopleSoft Internet
Architecture application. You can use the Validate feature to check your application for client-
only PeopleCode.

For more information see Client-Only PeopleCode and Validating Projects.

Using the Field Object Style Property

On the Use tab of the page properties, you can associate a page with a style sheet component.

USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

Page Properties

General Use |

— Page Twpe

IStandald page j
Brimany Fesard:

O Eaneelbutions. 12 Elose Box
Page Size

I G40x480 Windows screen ﬂ

width: |E32 Height: |32B

—Shyle
Page Style Sheet: | Use Default Syle ™ =]

Page Backaround: [PORTALSTYLESHEET1
PSSTYLEDEF
—Layout——|PSSTYLEDEF_PTEDEMO

PSSTYLEDEF SMALL
™ Adjust Layout for Hidden Fields

— Popup Menu
| [
¥ &llow Deferred Processing
[o |
Use tab of Page Properties

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

For more information on creating Style Sheets, see Creating Style Sheet Definitions.

The style sheet has several classes of styles defined for it. You can edit each style class to change

the font, the color, the background, etc. Then you can dynamically change the style of a field

using the Style property on a field object. This isn't changing the style sheet: just the style class

associated with that field.

The following example changes the style class of a field depending on the value entered by the
user. This code is in the FieldChange event.

Local Field &field;

&field = GetField() ;

If TESTFIELD1 = 1 Then;

&field.Style

End-If;

If TESTFIELD1 = 2 Then;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

"PSHYPERLINK" ;

USING METHODS AND BUILT-IN FUNCTIONS

7-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

7-14

&field.Style = "PSIMAGE";

End-If;

TESTFIELD1 [T

Field with PSHYPERLINK style

TESTFELD [l

Field with PSIMAGE style

For more information about the field class, see Field Class.

HTML Area

An HTML area control can only be populated in the PeopleSoft Internet Architecture. If you're
running in two-tier, the area isn't populated.

There are two ways to populate an HTML area control. One is to select Constant, and enter your
HTML directly into the control.

The other is to associate the control with a record field, then populate that field with the text you
want displayed in the HTML area.

When you associate an HTML area control with a field, make sure the field is long enough
to contain the data you want to pass to it. For example, if you associate an HTML area
control with a field that is only 10 characters long, only the first 10 characters of your text is
displayed.

The following code populates an HTML area with a very simple bulleted list. This code is in the
RowInit event of the record field associated with the HTML control.

Local Field &HTMLField;

&HTMLField = GetField() ;
&HTMLField.Value = "Item one<lis>Item two";

The following code is in the FieldChange event of a pushbutton. It populates an HTML area
(associated with the record field CHART DATA.HTMLAREA) with a simple list.

Local Field &HTMLField;

USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&HTMLField = GetRecord (Record.CHART DATA) .HTMLAREA;

&HTMLField.Value = "Item one<lis>Item two";

The following code populates an HTML area (associated with the record DERIVED HTML, the
field HTMLAREA) with the output of the GenerateTree function:

DERIVED HTML.HTMLAREA = GenerateTree (&TREECTL) ;

@ For more information see Using the GenerateTree Function.

The following tags are unsupported by the HTML area control:
<body>

<frame>

<frameset>

<form>

<head>

<html>

<meta>

<title>

@ For more information about placing an HTML area control on your page, see HTML Area
Control.

Using HTML Definitions and the GetHTMLText Function

If you're using the same HTML text in more than one place, or if it's a large, unwieldy string, you
can create an HTML definition in Application Designer, then use the GetHTMLText function to
populate an HTML area control.

The following is the HTML string to create a simple table:
<P>

<TABLE>

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

7-16

<TR bgColor=#008000>
<TD>
<P><FONT color=#f5f5dc face="Arial, Helvetica, sans-serif"
size=2>message 1 </P></TD></TR>
<TR bgColor=#0000cd>
<TD>
<P><FONT color=#00ffff face="Arial, Helvetica, sans-serif"
size=2>message 2</P></TD></TR>

</TABLE></P>

This HTML is saved to an HTML definition called TABLE _HTML.:

@6 TABLE_HTML [HTML) [_ (O] =]
<P> 4
<TABLE>

«<TR bgColor=#008000>
<TD>
< P> <FONT color=#f5f5dc face="Arial, Helvetica, sans—serif"
size=2>message 1 <fFONT> < fP><{TD><fTR>
<«<TR bgColor=#0000cd>
<TD>
< P> <FONT color=#00ffff face="Arial, Helvetica, sans-serif"
size=2>message 2<fFONT > <fP></TD></TR>
< fTABLE> < fP>

[A7
HTML definition TABLE_HTML

This code is in the Rowlnit event of the record field associated with the HTML area control:

Local Field &HTMLField;
&HTMLField = GetField() ;
&string = GetHTMLText (HTML.TABLE HTML) ;

&HTMLField.Value = &string;

This produces the following:

USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Example

@ For more information about GetHTMLText, see GetHTMLText.

Using HTML Definitions and the GetJavaScriptURL Method

HTML definitions can hold JavaScript programs in addition to HTML. If you have an HTML
definition that contains a JavaScript, use the GetJavaScriptURL Response method to access (and
execute) this JavaScript.

gé PT_EDITSCRIPT [HTHL) !IEII!{

If‘ Copyright {c) 2000 PeopleSoft, Inc. All Rights Reserved ‘|
ToolsRel: %¥Toolsrel *{

wvar oErr_%FormName = null;

function PSwarning_XFormMName{msqg)

{

msg = PSmessageSubst_¥FormMame{msg, PSwarning_%FormMName.arguments, 1);
alert{msg);

}

function PSerror_¥FormMame{obj, msg)

{

obj.PSsaveclass = obj.className;

obj.className = "PSERROR";

msg = PSmessageSubst_XFormMame{msg, PSerror_%¥FormMame.arguments, 2};
alert{msg);

oErr_XFormMName=obj;

}
ol | o
Example JavaScript HTML definition

This example assumes the existence in the database of a HTML definition called
“HelloWorld JS”, that contains some JavaScript.

Function IScript TestJavaScript ()

$Response.WriteLine ("<script src= " |
%$Response . GetJavaScriptURL (HTML.HelloWorld JS) | "></script>");

End-Function;

@ For more information, see GetJavaScriptURL and Creating HTML Definitions.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Increasing the Internet/Tuxedo Timeout

If you have a large component that’s timing out, you can increase the Internet/Tuxedo timeout.

Modify the pstools.properties file (if you choose the defaults when you set up your web site, this
file resides in the c:\Program Files\Apache Group\Apache\htdocs\peoplesoft8 directory.)

Increase the values for the following lines:
o tuxedo network disconnet timeout=0
e tuxedo send timeout=50

o tuxedo receive timeout=600

@ You need to recycle your web server for this to take effect.

Inserting using PeopleCode

When inserting rows using PeopleCode, you can either use the Insert method with a record
object, or create a SQL Insert statement using the SQL object.

¢ [f you're doing a single insert, use the Record Insert method
e I[fyou're in a loop, and therefore calling the insert more than once, use the SQL object.

Why? Because the SQL object uses dedicated cursors and if the database you're working with
supports it, bulk insert.

A dedicated cursor means that the SQL only gets compiled once on the database, so PeopleTools
only looks for the meta-SQL once. This can mean better performance.

For bulk insert, inserted rows are buffered and only sent to the database server when the buffer is
full or a COMMIT occurs. This cuts down on the number of roundtrips to the database. Again,
this can mean better performance.

The following is an example of using the record insert method:
&REC = CreateRecord (Record.GREG) ;
&REC.DESCR.Value = "Y" | &I;
&REC.EMPLID.Value = &I;

&REC. Insert () ;

7-18 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The following is an example using a SQL object for doing an insert:

&SQL = CreateSQL ("$INSERT(:1)");
&REC = CreateRecord (Record.GREG) ;

&SQL.BulkMode = True;

For &I = 1 to 10

&REC.DESCR.Value = "Y"
&REC.EMPLID.Value

&SQL .Execute (&REC) ;

End-For;

@ For more information see Insert record method and SQL Class.

Using the GenerateTree Function

The GenerateTree function is used to display data in a tree format, with nodes and leaves. The

result of the GenerateTree function is an HTML string, which can be displayed in an HTML area
control. The tree generated by GenerateTree is called an HTML tree.

@ The HTML area control and the GenerateTree function are only supported in the PeopleSoft
Internet Architecture, not in Windows Client.

The GenerateTree function displays data from a rowset. You can populate this rowset using

existing record data. You can also use the Tree Classes to display data from trees created using

Tree Manager.

In order to use this function you must set up a page for displaying the data, as well as populating

a standalone rowset with the data to be displayed.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

USING METHODS AND BUILT-IN FUNCTIONS

7-19

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

7-20

JANUARY 2001

Tree Control Test
SetiD: Set Control Value:
Tree Name: DEFT_SECURITY Effective Date: 01/01/1396
| | Mesd | Last | |

(= 00001 - Corporate Headguarters
FIM - Financial Services
HLC - Health Care Semices
[MF G - Manufacturing
M-AMERICAS - Morth and South Ametica
M-ASIAPAC - Asia Pacific
M-EUR-ALL - Europe-Africa-Middle East
LOC - Local Counties
G UMY - Higher Education
[UTIL - Utilities
(= Tooo
= T1001

[E=Tooz
= Tooz
=004

|ClRetum to Search
HTML Tree Example

The positional links at the top of the page (First, Previous, Next, Last, Left, Right) allow the user
to navigate around the tree. These links are automatically generated as part of the execution of
GenerateTree.

The icon next to a node can have a + sign or a - sign in it, depending on whether the node is
collapsed or expanded. When a node is collapsed, none of the nodes that report to the collapsed
node are displayed, and the icon has a + sign. When a node is expanded, all the nodes that report
to it are displayed, and the icon has a - sign. You can collapse and expand a node by clicking in
the icon. This enables you to view the tree at different levels of detail. When the icon for a node
has no + or — sign in it, it is a terminal node, and cannot be expanded or collapsed.

Building your HTML Tree Page

The page you use to display the HTML tree must contain the following:
e An HTML area used to display the HTML tree
¢ An invisible character field that:

= has a Page Field name

= is at least 46 characters long

= is invisible

The edit box should be invisible, but net display-only. If the field is display-only, it can't be
written to. Making it invisible makes it not visible to the user, but it still has a buffer that can
be written to.

Events are sent to the application from the HTML tree using the invisible field. The events are
processed by FieldChange PeopleCode that is attached to the invisible field.

USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The following is an example page for an HTML tree:

Page Designer lOrder I

NNNNNNNHNNNNNNNNRNEY 5

Example Application Designer HTML tree page

The large area that is selected in the screen shot above is the HTML Area that displays the HTML
tree. The HTML Area is attached to the DERIVED HTML.HTMLAREA field for this example.

The white edit box is the invisible field used to pass events from the HTML tree to the application
and is attached to the DERIVED HTML.TREECTLEVENT field for this example.

The edit box must have a Page Field Name. In this example, the Page Field Name is
TREECTLEVENT.

The HTML Tree Rowset Records

The GenerateTree function takes a pre-built and populated rowset as a parameter. This rowset
must have a certain structure and contain certain fields. In this example, it's a stand-alone rowset,
that is, the rowset is created using the CreateRowset function. The fields necessary for the rowset
are contained in the following record definitions:

e The header record TREECTL_HRD, containing the subrecord TREECTL_HDR_SBR.
e The node record TREECTL_NDE, containing the subrecord TREECTL NDE SBR.

The header record is the level 0 record of the HTML tree rowset. It contains the options for the
HTML tree, such as the name of the collapsed node image, the height of the images, the number
of pixels to indent each node, and so on.

The node record is the level 1 record of the HTML tree rowset. It contains the tree data, as well as
information about the data: is it a dynamic range leaf, what is the level, and so on.

There is a row in the level 1 scroll for each node or leaf in the tree data.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-21

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

JANUARY 2001

If you would like to store additional application data with each node in the tree, you can
incorporate the TREECTL NDE_SBR into a record of your definition and use your record to

define the HTML tree rowset.

For example, you might want to store application key values with each node record, so that when
a user selects a node you will have the data you need to perform the action that you wish to

perform.

The following are the relevant fields in TREECTL _HDR_SBR:

PAGE NAME

PAGE FIELD NAME

PAGE SIZE

DISPLAY LEVELS

COLLAPSED IMAGE

EXPANDED IMAGE

END NODE IMAGE

LEAF IMAGE

IMAGE _WIDTH

IMAGE_HEIGHT

INDENT _ PIXELS

TREECTL_ VERSION

USING METHODS AND BUILT-IN FUNCTIONS

Name of the page that contains the HTML Area and the
invisible field used to process the HTML tree events.

Page field name of the invisible field used to process the
HTML tree events.

Number of nodes or leaves to send to the browser at a
time. Set to 0 to send all the visible nodes or leaves to the
browser. Default value is 0.

Number of levels to display on the browser at a time.
Default value is 8.

Collapsed node image name. Default value is
PT TREE COLLAPSED.

Expanded node image name. Default value is
PT TREE EXPANDED.

End node image name. Default value is
PT TREE END NODE.

Leaf image name. Default value is PT_TREE LEAF.

Image width in pixels. All four images need to be the
same width. Default value is 15 pixels.

Image height in pixels. All four images need to be the
same height. Default value is 12 pixels.

Number of pixels to indent each level. Default value is 20
pixels.

Version of the HTML tree. Default value is 812. Used
with the DESCR_IMAGE field in TREECTL_HDR_SBR.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Efi TREECTL_HDR_SBR [Record)

Record Fields I Record Type I
Mum Field Mame Type | Len | Format Short Name Long Mame
PaGE_MAaME g Upper Fage Name FPage Mame

2 |PAGE_FIELD_MAME Char 18 Upper |Page Field Mame | Page Field Mame
3 |PAGE_SIZE Mbr 3 Page Size Page Size
4 |DISPLAY _LEVELS Mbr 2 Dizplay Levels Digplay Level:
5 |COLLAPSED_|MAGE Char 30 Upper |Collapzed Image Callapzed Image Mame
£ [EXPANDED_IMAGE Char 30 Upper |Expandedimage |Expanded Image Mame
7 |EMD_MODE_IMAGE Char 30 Upper End Mode Image |End Mode Image Mame
8 |LEAF_IMAGE Char 30 Upper |Leaf Image Mame | Leaf Image Mame
9 [IMAGE_IDTH Mbr 2 Image *idth Image Width

10 [IMAGE_HEIGHT Mbr 2 Image Height Image Height

11 |INDEMT_PI=ELS Mbr 2 Indent Pisel: Indent Pixels

12 |TREECTL_VERSIOM Mbr 4 HTHL TreeYers |HTML Tree Version

13 |TOP_MODE_MUB Mbr T Top Node Mum Top Mode Num

14 |LEFT_LEVEL_MUM Mbr 2 Left Lewel Murn Left Lewvel Mum

TREECTL_HDR_SBR record definition

The following are the relevant fields in TREECTL NDE SBR:

LEAF FLAG
TREE NODE
DESCR
RANGE FROM

RANGE TO

DYNAMIC FLAG

ACTIVE FLAG

DISPLAY_ OPTION

STYLECLASSNAME

PARENT FLAG

TREE LEVEL NUM

LEVEL OFFSET

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

If this is a leaf set to "Y". Default value is N
Node name.

Node description. (optional)

Leaf's range from value.

Leaf's range to value.

If this leaf has a dynamic range, set to "Y". Default value
is N

Set to "N" for the node or leaf not to be a link. Default
valueis Y

Set to "N" to display the name only. Set to "D" to display
the description only. Set to "B" to display both the name
and the description. Only used for nodes. Default value is
B

Used to control the style of the link associated with the
node or leaf. Default value is PSHYPERLINK.

If this node is a parent and its direct children will be
loaded now, set to "Y". If this node is a parent and its
direct children are to be loaded on demand, set to "X". If
this node is not a parent, set to "N". Default value is N.

Set to the node's level. Default value is 1.

If a child node is to be displayed more than one level to
the right of its parent, specify the number of additional
levels. Default value is 0.

USING METHODS AND BUILT-IN FUNCTIONS

7-23

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

DESCR IMAGE Use this field to display an image after the node or leaf
image and before the name or description. There is a space
between the two images. The new image isn't scaled. This
field takes a string value, the name of an image definition
created in Application Designer.

This field is only recognized if the TREECTL VERSION
field is greater than or equal to 812.

EXPANDED FLAG When a node's EXPANDED FLAG is "Y", the
GenerateTree function expects the node's immediate
children to be loaded into the & TREECTL Rowset (such
as in PostBuild) and GenerateTree generates HTML such
that the node is expanded and its immediate children are

displayed.
Bl TREECTL_NDE_SBR [Record]
Record Fields I Record Type I
Mum Field Mame Type | Len | Format Short Name Long Mame
LEAF_FLAG Upper Leaf Flag Leaf Flag
2 |TREE_MWODE Char 20 Upper |Mode Tree Mode
3 |DESCR Char 30 Mixed Descr Description
4 |RAMNGE_FROM Char 30 Upper Fange From Fange From
5 |RAMGE_TO Char 30 Upper |Range To Fange To
B [DYMAMIC_FLAG Char 1 Upper |Dynamic Flag Dynamic Flag
7 |ACTIVE_FLAG Char 1 Upper |Active Flag Active Flag
8 [DISPLAY_OPTION Char 1 Upper | Digplay Option Digplay Option
9 |[STYLECLASSMAME Char 30 Upper | style class nam Style Class Mame
10 |PARENT_FLAG Char 1 Upper |Parent Flag Parent Flag
11 |TREE_LEVEL_MUM Mbr 3 Tree Level Tree Level Mumber
12 |LEVEL_OFFSET Mbr 3 Level Offzet Level Offzet
13 |DESCR_IMAGE Char 30 Upper |Descrimage Description Image Mame
14 |EXPANDED_FLAG Char 1 Upper |Expanded Flag Expanded Flag
15 |DISPLAYED_FLAG Char 1 Upper |Displayed Flag Dizplayed Flag

TREECTL_NDE_SBR record definition

HTML Tree End-User Actions (Events)

The GenerateTree function works with an HTML area control and an invisible field. When an
end-user selects a node, expands a node, collapses a node, or uses one of the navigation links, that
event (end-user action) is passed to the invisible field, and the invisible field's FieldChange
PeopleCode is executed.

The FieldChange PeopleCode Example program checks for expanding (or collapsing) a node, as
well as selecting a node, by checking the first character in the invisible field. The following
example is just checking for whether a node is selected or not:

If Left (TREECTLEVENT, 1) = "S" Then

In your application, you can check for the following end-user actions.

Event Description

Tn Toggle the node. Expand or collapse, the opposite of the previous state.

7-24 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Event Description
n is the node's row number in the TREECTL NODE rowset

Xn Expand the node, but first load the children. The children are loaded in
PeopleCode, then the event is passed to GenerateTree, so that the HTML

can be generated with the node expanded. 7 is the node's row number in
the TREECTL_NODE rowset

Display the first page.

Display the previous page.

Display the next page.

Scroll the display left one level.

F
P
N
L Display the last page.
Q
R

Scroll the display right one level.

Sn Select the node or leaf. » is the node's or leaf's row number in the
TREECTL NODE rowset

@ Drag-and-drop is not supported.

Customizing the PeopleCode for the HTML Tree

The PeopleCode for initializing the HTML tree for this example was put into the PostBuild event
of the component that contained the page with the HTML area used with the HTML tree.

The PostBuild PeopleCode Example program is an example of how to initialize the HTML tree
using the Tree classes and load just the root node into the HTML tree rowset.

The first time a user expands a node, the node's direct children are loaded into the HTML tree
rowset by the FieldChange PeopleCode Example program, listed further down. This chunking
functionality allows the HTML tree to support trees of any size with good performance.

You can't just copy either the PostBuild or FieldChange PeopleCode example programs into your
application. You must make some changes to them to make them work with your data. Changes
that you will need to make to the PostBuild PeopleCode are as follows.

To modify the PeopleCode for your HTML tree (part one)

1. Setthe PAGE NAME and PAGE _FIELD NAME fields.

The PAGE_NAME field contains the name of the page that contains the HTML Area and the
invisible field that will be used to process the HTML tree events. The PAGE FIELD NAME
field is the page field name of the invisible field that is used to process the HTML tree events.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-25

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ This is the Page Field name of the invisible field, not the invisible field name.

2. Set the tree specific variables.

The &SET ID, &USERKEYVALUE, &TREE NAME, &TREE DT, and
&BRANCH_NAME variables contain the specific information about your tree. Set these
values to the tree you want to open. In the example PeopleCode, they are set as follows:

&SET ID = PSTREEDEFN VW.SETID;
&USERKEYVALUE = "";

&TREE NAME = PSTREEDEFN VW.TREE NAME;
&TREE DT = PSTREEDEFN VW.EFFDT;

&BRANCH NAME = "";

3. Setthe PAGE_SIZE field.

If you don't want the page to expand vertically to display the tree, set the PAGE_SIZE to a

number of rows that will fit inside the HTML Area. If some vertical expansion is okay, but
you don't want the page to get too big, set the PAGE SIZE to whatever value you like. Set
the PAGE_SIZE to 0 if you don't care how big the page gets.

4. Setthe DISPLAY LEVELS field to the number of levels that will fit inside the HTML Area.

If this field is set too large, wrapping may occur. Positional links at the top of the HTML area
allow the user to navigate as the tree expands.

5. Set the DISPLAY_ OPTION field (optional)

The default for the DISPLAY OPTION field is to display both the node name and the
description. You can chose to display just the node name or just the description. The values
for this field are:

Value Description

N Display name only

D Display description only

B Display both name and description

6. Setthe STYLECLASSNAME field for the root node (optional)

The STYLECLASSNAME field controls the style of the link associated with a node or leaf.
The default for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK isn't the
style you want to use, change this field value to the style you want.

7. Change the last line to assign the output of GenerateTree() to the field attached to the HTML
Area that will display the tree.

7-26 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

In this example, the HTML Area control is the DERIVED HTML.HTMLAREA. You need
to specify the record and field name associated with the HTML area control on your page.

PostBuild PeopleCode Example

Component Rowset &TREECTL;

&NODE_ROWSET = CreateRowset (Record.TREECTL NODE) ;

&TREECTL = CreateRowset (Record.TREECTL HDR, &NODE ROWSET) ;

&TREECTL. InsertRow (1) ;

&REC = &TREECTL.GetRow(2) .GetRecord (1) ;

/* Set the HDR options:

1) PAGE NAME - Name of the page that contains the HTML Area and the invisible
field that will be used to process the HTML tree events.

2) PAGE_FIELD NAME - Page field name of the invisible field that will be used to
process the HTML tree events.

3) PAGE SIZE - Number of nodes or leaves to send to the browser at a time. Set
to 0 to send all of the visible nodes or leaves to the browser. Default value:
0

4) DISPLAY LEVELS - Number of levels to display on the browser at a time.
Default value: 8

5) COLLAPSED IMAGE - Collapsed node image name. Default value:
PT_TREE COLLAPSED

6) EXPANDED IMAGE - Expanded node image name. Default value: PT TREE EXPANDED
7) END NODE IMAGE - End node image name. Default value: PT TREE END NODE
8) LEAF IMAGE - Leaf image name. Default value: PT TREE LEAF

9) IMAGE WIDTH - Image width. All four images need to be the same size.
Default value: 15

10) IMAGE HEIGHT - Image height. Default value: 12
11) INDENT PIXELS - Number of pixels to indent each level. Default value: 20

*/

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-27

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

JANUARY 2001

&REC.GetField (Field.PAGE NAME) .Value = "TREECTL TEST";

&REC.GetField (Field.PAGE FIELD NAME) .Value = "TREECTLEVENT";

&REC.GetField(Field.PAGE SIZE) .Value =

&REC.GetField (Field.DISPLAY LEVELS) .Value
&REC.GetField (Field.COLLAPSED_ IMAGE) .Value
&REC.GetField (Field.EXPANDED IMAGE) .Value =
&REC.GetField (Field.END NODE IMAGE).Value

&REC.GetField (Field.LEAF IMAGE) .Value = "PT

&REC.GetField(Field.IMAGE WIDTH) .Value

&REC.GetField(Field.IMAGE HEIGHT) .Value

&REC.GetField (Field.INDENT PIXELS) .Value

&SET _ID = PSTREEDEFN VW.SETID;
&USERKEYVALUE = "";

&TREE _NAME = PSTREEDEFN VW.TREE NAME;
&TREE DT = PSTREEDEFN VW.EFFDT;

&BRANCH NAME = "";

&MYSESSION = %Session;

&SRC_TREE = &MYSESSION.GetTree () ;

"PT TREE COLLAPSED";
"PT_TREE_EXPANDED" ;
"PT TREE_END NODE";

' TREE_LEAF";

&RES = &SRC_TREE.OPEN (&SET ID, &USERKEYVALUE, &TREE NAME, &TREE DT,

&BRANCH NAME, False);

/* Just insert the root node into the &TREECTL Rowset. If the root node has

children, set the &PARENT FLAG to 'X',
demand. */

&ROOT_NODE = &SRC _TREE.FindRoot () ;

If &ROOT NODE.HasChildren Then

&PARENT FLAG = "X";

USING METHODS AND BUILT-IN FUNCTIONS

its children will be loaded on

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Else
&PARENT FLAG = "N";

End-If;

&NODE_ROWSET = &TREECTL.GetRow (2) .GetRowset (1) ;
&NODE_ROWSET.InsertRow (1) ;

&REC = &NODE ROWSET.GetRow (2) .GetRecord (1) ;

/* Set the NODE values:

1) LEAF FLAG - If this is a leaf set to "Y". Default value: N
2) TREE NODE - Node name.

3) DESCR - Node description. (optional)

4) RANGE FROM - Leaf's range from value.

5) RANGE TO - Leaf's range to value.

6) DYNAMIC FLAG - If this leaf has a dynamic range, set to "Y". Default value:

7) ACTIVE FLAG - Set to "N" for the node or leaf not to be a link. Default
value: Y

8) DISPLAY OPTION - Set to "N" to display the name only. Set to "D" to display
the description only. Set to "B" to display both the name and the description.
Only used for nodes. Default value: B

9) STYLECLASSNAME - Used to control the style of the link associated with the
node or leaf. Default value: PSHYPERLINK

10) PARENT FLAG - If this node is a parent and its direct children will be
loaded now, set to "Y". If this node is a parent and its direct children are to
be loaded on demand, set to "X". Default value: N

11) TREE LEVEL NUM - Set to the node's level. Default value: 1

12) LEVEL OFFSET - If a child node is to be displayed more than one level to the
right of its parent, specify the number of additional levels. Default value: 0

*/

&REC.GetField(Field.LEAF FLAG) .Value = "N";

&REC.GetField(Field.TREE NODE) .Value &ROOT NODE.NAME;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-29

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

7-30

&REC.GetField (Field.
&REC.GetField (Field.
&REC.GetField (Field.
&REC.GetField (Field.
&REC.GetField (Field.
&REC.GetField (Field.
&REC.GetField (Field.
&REC.GetField (Field.
&REC.GetField (Field.

&REC.GetField(Field.

&SRC_TREE.Close() ;

DESCR) .Value = &ROOT NODE.DESCRIPTION;
RANGE_FROM) .Value = " n;

RANGE TO) .Value = "";

DYNAMIC FLAG) .Value = "N";

ACTIVE_ FLAG) .Value = "Y";

DISPLAY OPTION) .Value = "B";
STYLECLASSNAME) .Value = "PSHYPERLINK";

PARENT FLAG) .Value = &PARENT FLAG;
TREE LEVEL NUM) .Value = 1;

LEVEL OFFSET) .Value = 0;

DERIVED HTML.HTMLAREA = GenerateTree (&TREECTL) ;

JANUARY 2001

The FieldChange PeopleCode below is used to process the events passed from the HTML tree to
the application. The code that processes the load children event loads the direct children of a
node the first time the node is expanded by the user. Changes that you will need to make to the
FieldChange PeopleCode are as follows.

To modify the PeopleCode

for your HTML tree (part two)

1. Globally change TREECTLEVENT to the name of the invisible field that will be used to

process the events.

2. Set the tree specific variables.

The &SET _ID, &USERKEYVALUE, &TREE NAME, &TREE DT and

&BRANCH_ NAME variables contain the specific information about your tree. Set these
values to the tree you want to open. In the example PeopleCode, they are set as follows:

&SET_ID = PSTREEDEFN VW.SETID;

&USERKEYVALUE = "";

&TREE _NAME = PSTREEDEFN VW.TREE NAME;

&TREE DT = PSTREEDEFN VW.EFFDT;

&BRANCH NAME = "";

USING METHODS AND BUILT-IN FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

3.

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Set the DISPLAY_OPTION field (optional)

The default for the DISPLAY OPTION field is to display both the node name and the
description. You can chose to display just the node name or just the description. The values
for this field are:

Value Description

N Display name only

D Display description only

B Display both name and description

Set the STYLECLASSNAME field for the root node (optional)

The STYLECLASSNAME field controls the style of the link associated with a node or leaf.
The default for the STYLECLASSNAME is PSHYPERLINK. If PSHYPERLINK isn't the
style you want to use, change this field value to the style you want.

Change the assignment of the output of every GenerateTree call to the field attached to the
HTML Area that will display the tree.

In this example, the HTML Area control is the DERIVED HTML.HTMLAREA. You need
to specify the record and field name associated with the HTML area control on your page.

Change the code that processes the select event to perform the action you want when the user
selects a node or leaf.

You will see this section marked as Process Select Event in the code sample, below. Also see
HTML Tree End-User Actions (Events).

FieldChange PeopleCode Example

Component Rowset &TREECTL;

/* process load children event */
If Left (TREECTLEVENT, 1) = "X" Then
&ROW = Value (Right (TREECTLEVENT, Len (TREECTLEVENT) - 1)) + 1;
&NODE_ROWSET = &TREECTL.GetRow (2) .GetRowset (1) ;
&PARENT REC = &NODE ROWSET.GetRow (&ROW) .GetRecord (1) ;
&PARENT LEVEL = &PARENT REC.GetField(Field.TREE LEVEL NUM) .Value;

&ROW = &ROW + 1;

&SET ID = PSTREEDEFN VW.SETID;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-31

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&USERKEYVALUE = "";
&TREE NAME = PSTREEDEFN VW.TREE NAME;
&TREE DT = PSTREEDEFN VW.EFFDT;

&BRANCH NAME = "";

&MYSESSION = %Session;
&SRC_TREE = &MYSESSION.GetTree () ;

&RES = &SRC TREE.OPEN (&SET ID, &USERKEYVALUE, &TREE NAME, &TREE DT,
&BRANCH NAME, False);

/* Find the parent node and expand the tree one level below the parent.
Insert just the direct children of the parent node into the &TREECTL Rowset. If
any of the child nodes have children, set their PARENT FLAG to 'X', so that
their children are loaded on demand. */

&PARENT NODE =
&SRC_TREE.FindNode (&PARENT REC.GetField (Field.TREE NODE) .Value, "");

If &PARENT NODE.HasChildren Then

&PARENT NODE.Expand (2) ;

If &PARENT NODE.HasChildLeaves Then
/* Load the child leaves into the &TREECTL Rowset. */
&FIRST = True;
&CHILD LEAF = &PARENT_NODE.FirStChildLeaf;
While &FIRST Or
&CHILD LEAF.HasNextSib
If &FIRST Then
&FIRST = False;
Else
&CHILD LEAF = &CHILD_LEAF.NeXtSib;
End-If;

If &CHILD LEAF.Dynamic = True Then

7-32 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&RANGE FROM = "";
&RANGE TO = "";
&DYNAMIC RANGE = "Y";

Else
&RANGE FROM = &CHILD LEAF.RangeFrom;
&RANGE TO = &CHILD LEAF.RangeTo;
&DYNAMIC RANGE = "N";

End-If;

&NODE_ROWSET.InsertRow (&ROW - 1) ;

&REC = &NODE ROWSET.GetRow (&ROW) .GetRecord (1) ;

/* Set the NODE values:

1) LEAF FLAG - If this is a leaf set to "Y". Default value: N
2) TREE NODE - Node name.

3) DESCR - Node description. (optional)

4) RANGE FROM - Leaf's range from value.

5) RANGE TO - Leaf's range to value.

6) DYNAMIC FLAG - If this leaf has a dynamic range, set to "Y". Default value:

7) ACTIVE FLAG - Set to "N" for the node or leaf not to be a link. Default
value: Y

8) DISPLAY OPTION - Set to "N" to display the name only. Set to "D" to display
the description only. Set to "B" to display both the name and the description.
Only used for nodes. Default value: B

9) STYLECLASSNAME - Used to control the style of the link associated with the
node or leaf. Default value: PSHYPERLINK

10) PARENT FLAG - If this node is a parent and its direct children will be
loaded now, set to "Y". If this node is a parent and its direct children are to
be loaded on demand, set to "X". Default value: N

11) TREE_LEVEL NUM - Set to the node's level. Default value: 1

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-33

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

7-34

JANUARY 2001

12) LEVEL_OFFSET - If a child node is to be displayed more than one level to the

right of its parent, specify the number of additional levels. Default value:

*/
&REC.GetField (Field.LEAF FLAG) .Value = "Y";
&REC.GetField (Field.TREE NODE) .Value = "";

&REC.GetField (Field.DESCR) .Value = "";

&REC.GetField (Field.RANGE FROM) .Value = &RANGE FROM;

&REC.GetField (Field.RANGE TO) .Value = &RANGE TO;

&REC.GetField (Field.DYNAMIC FLAG) .Value = &DYNAMIC RANGE;

&REC.GetField (Field.ACTIVE FLAG) .Value = "Y";
&REC.GetField (Field.DISPLAY OPTION) .Value = "B";
&REC.GetField (Field.STYLECLASSNAME) .Value = "PSHYPERLINK";

/* Leaves never have children. */

&REC.GetField(Field.PARENT FLAG) .Value = "N";

&REC.GetField (Field.TREE_LEVEL NUM) .Value = &PARENT LEVEL + 1;

&REC.GetField(Field.LEVEL OFFSET) .Value = 0;

&ROW = &ROW + 1;

End-While;

End-If;

If &PARENT NODE.HasChildNodes Then

/* Load the child nodes into the &TREECTL Rowset.

&FIRST = True;
&CHILD NODE = &PARENT NODE.FirstChildNode;
While &FIRST Or
&CHILD NODE.HasNextSib
If &FIRST Then
&FIRST = False;

Else

USING METHODS AND BUILT-IN FUNCTIONS

*/

0

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

&CHILD NODE

End-If;

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&CHILD NODE.NextSib;

If &CHILD NODE.HasChildren Then

&PARENT FLAG = "X";
Else
&PARENT FLAG = "N";

End-If;

/* If the tree uses
number of levels that the child

If &SRC _TREE.LevelU

&LEVEL OFFSET
&PARENT NODE.LevelNumber - 1;

Else

&LEVEL OFFSET

End-If;

strict levels, set the &LEVEL OFFSET to the

&NODE_ROWSET.InsertRow (&ROW - 1) ;

&REC

&NODE_ROWSET
&REC.
&REC.
&REC.
&REC.
&REC.
&REC
&REC.
&REC.
&REC.
&REC.

&REC.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

GetField (Field.

GetField (Field.

GetField (Field.

GetField (Field.

GetField (Field.

.GetField (Field.

GetField (Field.

GetField (Field.

GetField (Field.

GetField (Field.

GetField (Field.

node is to the right of its parent minus 1. */
se = "S" Then
&CHILD NODE.LevelNumber -
0;

.GetRow (&ROW) .GetRecord (1) ;

LEAF FLAG) .Value = "N";

TREE_NODE) .Value = &CHILD NODE.Name;

DESCR) .Value = &CHILD NODE.Description;
RANGE FROM) .Value = "";

RANGE TO) .Value = "";

DYNAMIC FLAG).Value = "N";

ACTIVE FLAG) .Value = "Y";

DISPLAY OPTION) .Value = "B";
STYLECLASSNAME) .Value = "PSHYPERLINK";
PARENT FLAG) .Value = &PARENT FLAG;
TREE_LEVEL NUM) .Value = &PARENT LEVEL + 1;

USING METHODS AND BUILT-IN FUNCTIONS

7-35

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&REC.GetField (Field.LEVEL OFFSET) .Value = &LEVEL OFFSET;

&ROW = &ROW + 1;
End-While;

End-If;

/* change the parent's PARENT FLAG from 'X' to 'Y' */

&PARENT REC.GetField(Field.PARENT FLAG) .Value = "Y";

HTMLAREA = GenerateTree (&§TREECTL, TREECTLEVENT) ;

End-If;

&SRC_TREE.Close () ;

Else

/* Process select event. */

/* As an example, just display the selected node name or leaf range as a
MessageBox. */

If Left (TREECTLEVENT, 1) = "S" Then
&ROW = Value (Right (TREECTLEVENT, Len (TREECTLEVENT) - 1)) + 1;
&NODE_ROWSET = &TREECTL.GetRow(2) .GetRowset (1) ;
&REC = &NODE ROWSET.GetRow (&ROW) .GetRecord (1) ;
If &REC.GetField(Field.LEAF FLAG) .Value = "N" Then

MessageBox (0, "", 0, 0, "The selected node is %1.",
&REC.GetField(Field.TREE NODE) .Value) ;

Else
If &REC.GetField(Field.DYNAMIC FLAG) .Value = "N" Then

If &REC.GetField(Field.RANGE FROM) .Value =
&REC.GetField (Field.RANGE_TO) .Value Then

7-36 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&TEMP = "[" | &REC.GetField(Field.RANGE FROM) .Value | "]";
Else
&TEMP = "[" | &REC.GetField(Field.RANGE FROM) .Value | " - "

&REC.GetField (Field.RANGE TO) .Value | "1";

End-If;
Else
&TEMP = "[]";
End-If;
MessageBox (0, "", 0, 0, "The selected leaf is %1.", &TEMP);
End-If;
Else

/* process all other events */
HTMLAREA = GenerateTree (&TREECTL, TREECTLEVENT) ;
End-If;

End-If;

/* done processing the event, so clear it */

TREECTLEVENT = "";

Using the Attachment Functions

PeopleTools supplies a subrecord and a work record you should include in your component when
using the file attachment functions.

@ You don’t have to include the subrecord in your component: you could just include the
fields. However, PeopleSoft recommends including the subrecord.

The subrecord is called FILE ATTACH_SBR. It contains the following fields:

ATTACHSYSFILENAME The system file name, that is, the name of the file as it's
stored on the ftp archive.

ATTACHUSERFILE The user file name, that is, the name of the file that the
user selects.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-37

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

No PeopleCode is associated with this subrecord. Developers should include this subrecord in
target records for using attachments.

The work record is called FILE ATTACH_WRK, and contains the following fields:

ATTACHADD Contains a PeopleCode program used for adding
attachments (the AddAttachment built-in function.)

ATTACHDELETE Contains a PeopleCode program used for deleting
attachments (the DeleteAttachment built-in function.)

ATTACHVIEW Contains a PeopleCode program used for viewing
attachments (the ViewAttachment built-in function.)

The PeopleCode program is associated with the FieldChange events for each, as well as the
Rowlnit event for ATTACHADD. The PeopleCode is actually in the form of functions so this
work record acts as a container for the appropriate methods related to attachments. You can
choose to include this work record in your component and use component PeopleCode to invoke
the functions, or you can use your own work record and just call these functions as needed from
within your work record.

To use the Attachment functions:

1. Set up the URL for the ftp archive

For example, suppose the system is fileserver.ps.com, the user account is "joe", and the
password is “secret". The full URL would be as follows:

ftp://joe:secret@fileserver.ps.com/

You can either enter create an entry for this URL in the URL Maintenance page, or specify it
in your PeopleCode.

@ For more information about using the URL Maintenance page, see URL Maintenance.

If you specify the URL in your PeopleCode, you don't have to hardcode the user name and
password. You can de-reference them using a variable (or record field). This enables you to
use encryption with the username and password.

2. Insert the subrecord (FILE_ ATTACH_SBR) into a record used with your page.

Typically, this record is inserted as part of the primary database record.

@ You don’t have to include the subrecord in your component: you could just include the
fields. However, PeopleSoft recommends including the subrecord.

3. Add buttons to add, delete, view attachments as needed.

7-38 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

You can either use the FILE ATTACH_WRK record for the necessary record fields, or you
can use your own work fields.

4. Modify the PeopleCode to support your application.

If you use the supplied PeopleCode programs, you must specify the URL. You may also want
to modify the extension of the expected files (the default is "" which is any file or *.* You

may want to indicate ".doc", ".x1", "*.html", "*.exe", "*.tar".). Comments in
ATTACHADD.FieldChange tell what to do.

If you choose to use the FILE ATTACH_WRK for buttons, you may want to use Component
PeopleCode for your application specific code. This enables you to keep the code in

FILE ATTACH_WRK generic. If you use your own work fields, you can write your own
code and call the functions in FILE ATTACH_WRK as needed.

The following shows an attach resume page:

Resume Attachment
Sonya Vincent

Attached File:

Return to Profile

Attach Resume page

Using the Select and SelectNew Methods

Select and SelectNew, like the ScrollSelect functions, allow you to control the process of
selecting data into a page scroll. You can only use these methods with a rowset. A rowset can be
thought of as a page scroll.

A levelO rowset is a rowset that starts at the levelO of the page, and contains all the data in the
component buffers.

A child rowset is a rowset that is contained by an upper level rowset, also called the parent
rowset. For example, a levell rowset could be considered the child rowset of a levelO, parent,
rowset. Or a level2 rowset could be the child rowset of a levell rowset.

When a rowset is selected into, any autoselected child rowsets will also be read. The child
rowsets will be read using a where clause that filters the rows according to the where clause used
for the parent rowset, using a subselect.

The data contained in a child rowset depends on the row of the parent rowset.

@ For more information see Data Buffer Access.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-39

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

7-40

In addition to these methods there is the record object method SelectByKey, which allows
you to select into a record object. If you’re only interested in selecting a single row of data,
you may want to consider this method instead.

What Select Does

Select selects rows from a table or view and adds the rows to either a rowset or a row. Let’s call
the record definition of the table or view that it selected from the select record. Let’s call the
primary database record of the top level rowset object executing the method the default scroll
record.

The select record can be the same as the default scroll record, or it can be a different record
definition that has the same key fields as the default scroll record. If you define a select record
that differs from the default scroll record, you can restrict the number of fields that are loaded into
the buffers on the client work station by including only the fields you actually need.

Select automatically places child rowssets in the rowset object executing the method under the
correct parent row. If it cannot match a child rowset to a parent row an error will occur.

Select also accepts an optional SQL string that can contain a WHERE clause restricting the
number of rows selected into the scroll area. The SQL string can also contain an ORDER BY
clause, enabling you to sort the rows.

Select and SelectNew generate an SQL SELECT statement at runtime, based on the fields in the
select record and WHERE clause passed to them in the function call. This gives Select and
SelectNew a significant advantage over SQLExec: they allow you to change the structure of the
select record without affecting the PeopleCode, unless the field affected is referred to in the
WHERE clause string. This can make the application easier to maintain.

Also, if you use one of the meta-SQL constructs or shortcuts in the WHERE clause, such as
%KeyEqual or %List, even if a field has changed, you won’t have to change your code.

Unlike the ScrollSelect functions, neither Select or SelectNew allow you to operate in turbo
mode.

Select Syntax

The syntax of Select is:
Select ([parmlist], RECORD.selrecord [, wherestr, bindvars]) ;
Where paramlist is a list of child rowsets, given in the following form:

SCROLL. scrollnamel [, SCROLL.scrollname?2]

USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The first scrollname must be a child rowset of the rowset object executing the method, the second
scrollname must be a child of the first child, etc.

This syntax does the following:
o Specifies an optional child rowset into which to read the selected rows
o Specifies the select record from which to select rows

o Passes a string containing a SQL WHERE clause to restrict the selection of rows and/or an
ORDER BY clause to sort the rows

Let’s examine the different parts of this syntax one at a time.

Specifying Child Rowsets

The first part of the Select syntax specifies a child rowset into which rows will be selected. This
parameter is optional.

If you don’t specify any child rowsets in paramlist, Select selects from a SQL table or view
specified by selrecord into the rowset object executing the method. For example, suppose you’ve
instantiated a level 1 rowset &BUS_EXPENSES PER. The following would select into this
rowset:

Local Rowset &BUS_EXPENSES_ PER;

&BUS_EXPENSES PER = GetRowset (SCROLL.BUS_ EXPSNESE PER) ;

&BUS_EXPENSES PER.Select (RECORD.BUS EXPENSE VW, "WHERE SETID = :1 and CUST _ID =
:2", SETID, CUST ID);

If the rowset executing the method is a level 0 rowset, and you specify Select without specifying
any child rowsets with paramlist, the method reads only a single row, because only one row is
allowed at level 0.

@ Note to developers familiar with previous releases of PeopleCode: In this situation, the
Select method is acting like the RowScrollSelect function.

If you specify a child rowset in paramlist, Select selects from a SQL table or view specified by
selrecord into the child rowset specified in paramlist, under the appropriate row of the rowset
executing the method.

In the following example, rows are selected into a child rowset BUS EXPENSE DTL, matching
level-one keys, and with the charge amount equal to or exceeding 200, sorting by that amount:

Local Record &REC EXP;

Local Rowset &BUS_EXPENSE_PER;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-41

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

7-42

&REC EXP = GetRecord(RECORD.BUSINESS EXPENSE PER;
&BUS_EXPENSE PER = GetRowset (SCROLL.BUS_ EXPSNESE PER) ;

&BUS_EXPENSE PER.Select (SCROLL.BUS EXPENSE DTL, RECORD.BUS EXPENSE DTL, "WHERE
%$KeyEqual (:1) AND EXPENSE AMT >= 200 ORDER BY EXPENSE AMT", &REC EXP) ;

Specifying the Select Record

The record definition of the table or view being selected from is called the select record, and
identified with RECORD.selrecord. The select record can be the same as the primary database
record associated with the rowset executing the method, or it can be a different record definition
that has compatible fields.

The select record must be defined in Application Designer and be a built SQL table or view
(using Build, Project), unless the select record is the same record as the primary database record
associated with the rowset.

The select record can contain fewer fields than the primary record associated with the rowset,
although it must contain any key fields to maintain dependencies with other records.

If you define a select record that differs from the primary database record for the rowset, you can
restrict the number of fields that are loaded into the buffers on the client work station by only
including the fields you actually need.

The WHERE Clause

Select accepts a SQL string that can contain a WHERE clause restricting the number of rows
selected into the object. The SQL string can also contain an ORDER BY clause to sort the rows.

Select and SelectNew generate a SQL SELECT statement at runtime, based on the fields in the
select record and the WHERE clause passed to them in the method parameters.

To avoid errors, the WHERE clause should explicitly select matching key fields on parent and
child rows. This is easy to do using the %KeyEqual meta-SQL.

For more information about the meta-SQL, see %KeyEqual.

Using Select like RowScrollSelect

If the rowset executing the method is a level 0 rowset, and you specify Select without specifying
any child rowsets with paramlist, the method reads only a single row, because only one row is
allowed at level 0.

USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=,

Note to developers familiar with previous releases of PeopleCode: In this situation, the
Select method is acting like the RowScrollSelect function.

If you qualify the lower level rowset such that it only returns one row, it will be acting like a
RowScrollSelect.

&RSLVL1 = GetRowset (SCROLL.PHYSICAL INV) ;

&RSLVL2 = &RSLVL1 (&PHYSICAL ROW) .GetRowset (SCROLL.PO RECEIVED INV) ;
&REC2 = &RSLVL2.PO RECEIVED INV;

If &PO_ROW = 0 Then

&RSLVL2.Select (PO_RECEIVED INV, "WHERE %KeyEqual(:1) and gty available > 0",
&REC2) ;

End-if;

Using Standalone Rowsets

Standalone Rowsets are like regular Rowsets except they aren't tied to a Component or Page. Use
them when you need to work on data that isn't tied to a component or page buffer. Prior to this
release, this was done using work records. You still must build work pages.

Standalone rowsets are nof connected to the Page Processor, so there are no database updates
when they are manipulated. Delete and insert activity on these types of rowsets aren't
automatically applied at save time.

Just like any PeopleTools object the scope of standalone rowsets can be Local, Global or
Component. Consider the following code:

Local Rowset &MYRS;

&MYRS = CreateRowset (RECORD.SOMEREC) ;

This creates a Rowset with SOMEREC as the Level 0 record. The Rowset is unpopulated.
Functionally it is the same as an array of records.

To populate the standalone Rowsets you can use the Fill rowset method, the CopyTo rowset
method or the record methods.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-43

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

The Fill Method

The Fill method fills the rowset by reading records from the database, by first flushing out all the
contents of the rowset. A where clause needs to be provided to get all the relevant rows.

Local Rowset &MYRS;

Local String &EMPLID;

&MYRS = CreateRowset (RECORD.SOMEREC) ;

&EMPLID = '8001';

&MYRS.Fill ("where EMPLID = :1", &EMPLID) ;

The CopyTo Method

The CopyTo method copies like-named fields from a source rowset to a destination rowset. To
perform the copy it uses like-named records for matching, unless specified. It works on any
rowset except the Application Engine state records.

Local Rowset &MYRS1, MYRS2;

Local String &EMPLID;

&MYRS1 = CreateRowset (RECORD.SOMEREC) ;

&MYRS2 = CreateRowset (RECORD.SOMEREC) ;

&EMPLID = '8001';

&MYRS1.Fill ("where EMPLID = :1", &EMPLID) ;

&MYRS1.CopyTo (&MYRS2) ;

Now &MYRS2 contains that same data as &MYRSI1. In this case both &MYRS1 and &MYRS2
were build using like named records.

If you wish to use the CopyTo method where there are no like-named records, you need to
specify the source and destination records. The following code will copy only like-named fields.

7-44 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Local Rowset &MYRS1, MYRS2;

Local String &EMPLID;

&MYRS1

CreateRowset (RECORD.SOMEREC1) ;

&MYRS2 = CreateRowset (RECORD.SOMEREC2) ;

&EMPLID = '8001';

&MYRS1.Fill ("where EMPLID = :1", &EMPLID) ;

&MYRS1 . CopyTo (&MYRS2, RECORD.SOMEREC1, RECORD.SOMEREC2) ;

Adding Child Rowset

The first parameter of the CreateRowset determines the top-level structure. In the previous
examples we passed in the name of the record as the first parameter, thus the rowset was based on
a record. You can also base the structure on a different rowset. In the following example
&MYRS2 inherits the structure of &MYRSI.

Local Rowset &MYRS1, MYRS2;

&MYRS1 CreateRowset (RECORD.SOMEREC1) ;

&MYRS2 = CreateRowset (&MYRS1) ;

To add a child rowset let us consider the following records to describe a relationship. The
structure is made up of three records.

PERSONAL DATA
BUS EXPENSE PER
BUS EXPENSE DTL
Here's how you build rowsets with child rowsets

Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;

&rsBusExpDtl = CreateRowset (Record.BUS_EXPENSE_DTL) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-45

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

7-46

JANUARY 2001

&rsBusExpPer = CreateRowset (&rsBusExpDtl, Record.BUS_EXPENSE PER) ;

&rsBusExp = CreateRowset (&rsBusExpPer, Record.PERSONAL DATA) ;

Another variation is

&rsBusExp = CreateRowset (Record.PERSONAL DATA,

CreateRowset (Record.BUS EXPENSE PER, CreateRowset (Record.BUS EXPENSE DTL))) ;

Using Standalone Rowsets to Write a File

The following example writes a file using a file layout that contains parent-child records.

i BUS_EXP_DUT [File Layout)

=-(2) PERSONAL_DATA
“-@ EMPLID
@ NAME
E-{2) BUS_EXPENSE_PER
& EMPLID
& EXPENSE_PERIOD_DT
& SUBMIT_FLG
@ INTLFLG
@ AFPR_STATUS
& APPR_INSTANCE
& DESCR
@ COMMENTS
=-{2) BUS_EXPENSE_DTL
- EMPLID
- EXPENSE_PERIOD_DT
- CHARGE_DT
@ EXPENSE_CD
@ EXPENSE_AMT
- CURRENCY_CD
- BUSINESS_PURPDSE
- DEFTID

File Layout for example

Local File &MYFILE;

Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;

Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;

Local SQL &SQL1, &SQL2, &SQL3;

&rBusExp = CreateRecord (Record.PERSONAL DATA) ;

&rBusExpPer = CreateRecord(Record.BUS EXPENSE PER) ;

&rBusExpDtl =

CreateRecord (Record.BUS EXPENSE DTL) ;

USING METHODS AND BUILT-IN FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&rsBusExp = CreateRowset (Record.PERSONAL_DATA,
CreateRowset (Record.BUS_EXPENSE_PER, CreateRowset (Record.BUS_EXPENSE DTL))) ;

&rsBusExpPer = &rsBusExp.GetRow(1l) .GetRowset (1) ;

&MYFILE = GetFile("c:\temp\BUS_EXP.out", "W", %FilePath Absolute);

&MYFILE.SetFileLayout (FileLayout.BUS EXP OUT) ;

&EMPLID = "8001";

&SQL1 CreateSQL ("%$selectall (:1) where EMPLID

:2", &rBusExp, &EMPLID) ;

&SQL2 CreateSQL ("%selectall (:1) where EMPLID

:2", &rBusExpPer, &EMPLID) ;

While &SQL1.Fetch (&rBusExp)

&rBusExp.CopyFieldsTo (&rsBusExp.GetRow (1) . PERSONAL DATA) ;

While &SQL2.Fetch (&rBusExpPer)

&rBusExpPer.CopyFieldsTo (&rsBusExpPer (&I) .BUS_EXPENSE PER) ;

&SQL3 = CreateSQL("%selectall(:1) where EMPLID = :2 and EXPENSE PERIOD DT
:3", &rBusExpDtl, &EMPLID,
&rsBuSEXpPer(&I).BUS_EXPENSE_PER.EXPENSE_PERIOD_DT.Value);

&rsBusExpDtl = &rsBusExpPer.GetRow (&I) .GetRowset (1) ;

While &SQL3.Fetch (&rBusExpDtl)
&rBusExpDtl.CopyFieldsTo (&rsBusExpDtl (&J) .BUS_EXPENSE DTL) ;
&rsBusExpDtl. InsertRow (&J) ;

&J = &J + 1;

End-While;

&rsBusExpPer. InsertRow (&I) ;

&I = &I + 1;

End-While;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-47

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&MYFILE.WriteRowset (&rsBusExp) ;
End-While;

&MYFILE.Close () ;

The above code generates the following output file.

JANUARY 2001

AA8001 Schumacher, Simon

BB8001 06/11/1989YNAO Customer Go-Live Celebration

CCc8001 06/11/198906/01/198908226.83 USDEntertain Clients
10100

BB8001 08/31/1989YNAO Customer Focus Group Meeting

CCc8001 08/31/198908/11/1989012401.58 USDCustomer Visit
10100

CCc8001 08/31/198908/12/198904250.48 USDCustomer Visit
10100

ccso001 08/31/198908/12/198902498.34 USDCustomer Visit
10100

BB800O1 03/01/1998YYPO Attend Asia/Pacific Conference

CCc8001 03/01/199802/15/1998011200 USDConference

00001

ccso001 03/01/199802/16/19980220000 JPYConference

00001

BB800O1 05/29/1998NNP0O Annual Subscription

CCc8001 05/29/199805/29/199814125.93 USDSoftware, Inc.
10100

BB8001 08/22/1998NNPO Regional Users Group Meeting

CCc8001 08/22/199808/22/19981045.69 USDDrive to Meeting
10100

CC8001 08/22/199808/22/19980912.44 USDCity Parking
10100

BB8001 12/12/1998NNPO Customer Visit: Nevco

CCc8001 12/12/199812/02/199801945.67 USDCustomer Feedback
00001

CC8001 12/12/199812/02/19981010.54 USDTo Airport

00001

7-48 USING METHODS AND BUILT-IN FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Ccs8001 12/12/199812/03/19980610 USDAirport Tax

00001

CC8001 12/12/199812/03/199804149.58 USDCustomer Feedback
00001

CC8001 12/12/199812/04/1998055.65 USDCheck Voicemail
00001

Cc8001 12/12/199812/04/19980988 USDAirport Parking
00001

CC8001 12/12/199812/04/199802246.95 USDCustomer Feedback
00001

CC8001 12/12/199812/04/199803135.69 USDCustomer Feedback
00001

Using Standalone Rowsets to Read a File

The following code can be used to read in the file created above and insert the rows into the
database.

Local File &MYFILE;
Local Rowset &rsBusExp, &rsBusExpPer, &rsBusExpDtl;
Local Record &rBusExp, &rBusExpPer, &rBusExpDtl;

Local SQL &SQL1;

&rBusExp = CreateRecord (Record.PERSONAL DATA) ;

&rBusExpPer = CreateRecord(Record.BUS_EXPENSE PER) ;

&rBusExpDtl = CreateRecord (Record.BUS EXPENSE DTL) ;

&rsBusExp = CreateRowset (Record.PERSONAL DATA,
CreateRowset (Record.BUS_EXPENSE_PER, CreateRowset (Record.BUS_EXPENSE_DTL))) ;

&MYFILE = GetFile("c:\temp\BUS_EXP.out", "R", %FilePath Absolute);

&MYFILE.SetFileLayout (FileLayout.BUS EXP OUT) ;

&SQL1 = CreateSQL("%Insert(:1)");

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-49

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&rsBusExp = &MYFILE.ReadRowset () ;

While &rsBusExp <> Null;
&rsBusExp.GetRow (1) . PERSONAL DATA.CopyFieldsTo (&rBusExp) ;
&rsBusExpPer = &rsBusExp.GetRow (1) .GetRowset (1) ;

For &I = 1 To &rsBusExpPer.ActiveRowCount
&rsBusExpPer (&I) .BUS_EXPENSE PER.CopyFieldsTo (&rBusExpPer) ;
&rBusExpPer.ExecuteEdits (¥Edit Required) ;
If &rBusExpPer.IsEditError Then
For &K = 1 To &rBusExpPer.FieldCount
&MYFIELD = &rBusExpPer.GetField (&K) ;

If &MYFIELD.EditError Then

&MSGNUM = &MYFIELD.MessageNumber;

&MSGSET = &MYFIELD.MessageSetNumber;
End-If;
End-For;
Else
&SQL1 .Execute (&rBusExpPer) ;
&rsBusExpDtl = &rsBusExpPer.GetRow (&I) .GetRowset (1) ;
For &J = 1 To &rsBusExpDtl.ActiveRowCount
&rsBusExpDtl (&J) .BUS_EXPENSE DTL.CopyFieldsTo (&rBusExpDtl) ;
&rBusExpDtl.ExecuteEdits (¥Edit Required) ;
If &rBusExpDtl.IsEditError Then
For &K = 1 To &rBusExpDtl.FieldCount
&MYFIELD = &rBusExpDtl.GetField(&K) ;
If &MYFIELD.EditError Then

&MSGNUM = &MYFIELD.MessageNumber;

&MSGSET = &MYFIELD.MessageSetNumber;

End-If;

7-50 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

End-For;
Else
&SQL1 .Execute (&rBusExpDtl) ;
End-If;
End-For;
End-If;
End-For;
&rsBusExp = &MYFILE.ReadRowset () ;
End-While;

&MYFILE.Close () ;

Errors and Warnings

For the most part, errors and warnings display messages to users informing them about invalid
data. For this reason, they are almost always placed in FieldEdit or SaveEdit PeopleCode, or in
SearchSave PeopleCode for validation during search processing. In conjunction with edits, errors
stop processing, while warnings allow processing to continue. When errors and warnings appear
in places other than FieldEdit or SaveEdit, their effects vary.

Syntax of Errors and Warnings

Errors and warnings only require a message that the Component Processor displays to users. You
can code the message into the error or warning statement, or you can use Message Catalog.
Peoplesoft recommends using Message Catalog with the MsgGet, MsgGetExplainText, and so
on.

Error and warning use the same syntax. For example:

Error MsgGet (11100, 180, "Message not found.");
Warning MsgGet (11100, 180, "Message not found.");

Errors, Warnings, and Edits

You can use the following PeopleCode events for validation edits: FieldEdit and SaveEdit. The
Component Processor applies FieldEdit when the user changes a field, and SaveEdit when the
user saves the component. Errors and warnings in these events display a message to the user.
Most errors and warnings appear in these event types, although you can use them elsewhere.

For FieldEdit, you can use either the record field or component record field event. Remember
that the record field event for each record fires before the component record field event for that

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-51

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

record. For SaveEdit, you can use the record field or the component record event. Remember that
all record field events for a record fire before the component record events.

Errors and Warnings in FieldEdit

An error in FieldEdit prevents the system from accepting the new value of a field. The
Component Processor highlights the offending field. The user must either change the field back
to its original value or to something else which does not trigger the error. A warning allows the
Component Processor to accept the new data. The Component Processor does not highlight any
field that has warnings.

Errors and Warnings in SaveEdit

An error in SaveEdit prevents the system from saving any row of data. The Component
Processor does not update the database for any field if one field has an error. Although the
Component Processor displays an error message, it does not turn any field red. Unlike FieldEdit
errors, SaveEdit errors can happen anywhere on the page or component, for any row of data. The
data causing the error may appear on a different page within the same group, or a row of data not
currently displayed. If this is the case, the field in error is brought into view by the system.

A warning in SaveEdit also gets applied to all data in the page or component, but the Component
Processor will accept the data, if told to by the user. In a FieldEdit warning, the Component
Processor displays a message box with the text and two push buttons — OK and the standard
Explain (the Explain push button will return an explanation for the last message retrieved with the
MsgGet function). In a SaveEdit warning, though, the message box contains an additional push
button, Cancel. OK accepts the data, overriding the warning and continuing the save process.
Cancel aborts the save process.

Because errors and warnings apply to all rows of data and all pages in a group, you must provide
the user explicit information about what caused the error. Typically, you’ll use the message
catalog function to store messages and substitute variables into them. However, you can also
facilitate this by concatenating in a field value. For example, if you have a stack of historical data
on the page, you could use the following error statement:

Error ("The value exceeds the maximum on "|effdt|".");

Errors and Warnings in RowSelect

@ Errors and warnings should no longer be used in RowSelect processing: instead, use
DiscardRow and StopFetching. The behavior of Error and Warning in RowSelect
PeopleCode, as described here, is retained for compatibility with previous releases of
PeopleTools.

RowsSelect PeopleCode filters out rows of data after the system applies search record criteria. It
also can stop the Component Processor from reading additional rows of data.

7-52 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

[0

A warning causes the Component Processor to reject the current row, but the Component
Processor does continue reading more data. An error prevents any more data coming into the
page or component. The Component Processor accepts the row that causes the error, but doesn’t
read any more data. If you want to reject the current row and stop loading additional rows, you
must issue a warning and an error.

Y ou must specify text for an error or warning, but the Component Processor does not display
messages from RowSelect. You can still use the message text as a way of documenting your
program.

For more information see Understanding PeopleCode and Events, DiscardRow and
StopFetching.

Errors and Warnings in RowDelete

When you delete a row of data (F8), the system prompts you to confirm. If you do confirm,
RowDelete PeopleCode takes place, that is, any record field RowDelete PeopleCode will fire, and
any component record RowDelete PeopleCode. Errors and warnings in RowDelete display a
message box.

A warning from RowDelete presents two choices — accept the RowDelete (the OK push button),
or cancel the RowDelete (the Cancel push button). Maybe after they read the warning message,
the user will think better of the RowDelete. An error from RowDelete PeopleCode prevents the
Component Processor from removing that row of data from the page.

Errors and Warnings in Other Events

You should not put errors or warning in PeopleCode attached to any of the remaining events
(FieldDefault, FieldFormula, RowlInit, FieldChange, RowInsert, SavePreChange, WorkFlow, and
SavePostChange). However, the Component Processor may issue its own errors and warnings
when performing PeopleCode. When this happens, it means the Component Processor tried to do
something and failed, and it cannot recover from the error.

These Event types activate processing that an user has no direct control over. So, if the
Component Processor comes across an error condition, the user cannot fix it. The Component
Processor cancels the transaction to avoid unpredictable results.

For more information about these functions, see Warning and Error.

Using RemoteCall

RemoteCall is a PeopleTools feature that provides a means of executing a COBOL program
remotely from within a PeopleSoft application. Remote calls are made using the RemoteCall
PeopleCode function.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-53

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Because complex PeopleCode processes can now be run on the application server in three-tier
mode, the RemoteCall PeopleCode function has more limited utility. However, RemoteCall can
still be useful, because it provides a way to take advantage of existing COBOL processes.

There have been no changes to the syntax of the RemoteCall function, but the rules about where
RemoteCall runs have been greatly simplified:

¢ In three-tier mode, RemoteCall always runs on the application server.

¢ In two-tier mode, RemoteCall always runs on the client.

As a result of this simplification, some features of PeopleTools 6 have been eliminated:

o There will be no more Location setting for remote calls in Configuration Manager.

o There is no longer a need to set or test network connections in the PeopleTools Options utility.

e There is no longer a capability of running in a "mixed mode" where there is a database
connection and a Tuxedo connection on the client.

@ For more information see PeopleCode and PeopleSoft Internet Architecture.

The RemoteCall function:

e Is a synchronous call. The client passes parameters to the remote program, and then waits
while the program runs. When the remote program is done, it returns any results or status
information to the client, which then resumes execution. This means that RemoteCall is a
"think-time" function and subject to certain restrictions.

@ For more information see Think-Time Functions.

o Is designed for fast response time, and has an API that provides programs with the response
time needed for transaction processing. It is especially useful for SQL-intensive processes that
do not run efficiently on the client. (Note that PeopleCode SQLExec and other SQL intensive
PeopleCode can also be run on the application server in PeopleTools 7 or greater.)

e Can be executed with a command push button or from a pop-up menu.

¢ RemoteCall has no scheduling or multi-step job capabilities. Each execution of RemoteCall is
independent of others.

e Allows you to reuse existing COBOL code.

e For PeopleTools 8.0, you can no longer use RemoteCall to execute an Application Engine
program. Use the CallAppEngine function instead.

7-54 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

RemoteCall Components
The RemoteCall PeopleTools feature consists of the following components:

e PeopleCode API. This interface consists of the RemoteCall PeopleCode function. It is used
from PeopleCode to start a remote program and handle any results. The PeopleCode client
program does not include any special code to specify where the remote program is executed.
TUXEDO can be configured to locally execute the program for testing purposes.

¢ Remote Program API. This is used by the remote COBOL program to receive or pass
parameters and return status information.

¢ PeopleSoft RemoteCall Service. The PeopleSoft application server, PSAPPSRYV, advertises
the RemoteCall service. The service receives requests from clients and starts the requested
program. When the program is completed, it passes the parameters and status code back to the
client.

e TUXEDO. TUXEDO is a message-based transaction monitor for distributed applications. No
direct TUXEDO calls need to be implemented in PeopleCode or remote programs.

PeopleCode API

You can execute the RemoteCall function from PeopleCode associated with any Component
Processor event except SavePostChange, SavePreChange, Workflow, RowSelect, or in any
PeopleCode event resulting from a ScrollSelect or related function call. However, remote
programs that change data should not be run as part of a SaveEdit process, because the remote
program may complete successfully even though an error occurs later in the save process.

The preferred method of calling a remote program that changes data is in FieldChange
PeopleCode in a record field associated with a command push button, or from a pop-up menu
item.

You should not use RemoteCall if you expect the remote program to return a large amount of
data to the client, because data is passed back only through the parameters of the PeopleCode
APL

@ For more information about the function see RemoteCall.

Authorization

Authorization to run a remote program is like authorization to run a PeopleCode program.
Because a remote program is started from PeopleCode, the user has authorization in User
Security to use the page that executes the PeopleCode.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-55

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Unit of Work

The remote program runs in a different unit of work from the page. A commit will be issued by
PeopleTools if needed on the client before RemoteCall is called. This means that, by default, the
remote program is not privy to any database changes unless the page is saved before the program
is called. Once the remote program starts, it will run to completion and commit or abort before
returning to the page. In this way, the remote program and the page will not have locking
contention. To ensure that the save has actually been done, use the DoSaveNow built-in function.

Error Processing
When using RemoteCall to execute a COBOL program, two types of errors can occur:

e PeopleTools errors. An error could occur in PeopleTools or TUXEDO, or the service might
not be found. These are treated as hard errors by PeopleCode. An error message box will be
displayed, and that piece of PeopleCode will be terminated. So, in the case of a PeopleTools
error, the remote program will always either return a Return code of zero, or terminate with a
message due to a system error.

o Application-specific errors. Any error information specific to the remote application must be
passed back in regular data variables, and your application can handle these in an application-
specific way. If you have a status code on which your application depends, you should
initialize it to an invalid value to be sure the COBOL program does indeed return the status
code.

Client Execution Environment

Because the remote program is executed synchronously, clients will get an hourglass icon and
will not be able to do anything in the current window until the remote application completes.
They could move to another window and do processing there; or they could start up another
PeopleSoft window. They will not be able to cancel the remote program once it starts. If the
program does not terminate in a timely fashion (as determined by the RemoteCall timeout set
with Configuration Manager), RemoteCall attempts to terminate the process and returns an error
indicating that the program was terminated.

Remote Program API

The Remote Program API provides the functions to get and put data between the network and the
COBOL program. These functions are implemented in C, but are callable from COBOL through
the PTPNETRT program. For an example, see the PTPNTEST.CBL program.

@ If these APIs are called when the program is not running as a remote program, ACTION-
GET and ACTION-PUT will return an error. All other actions will just return without doing
anything.

7-56 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Error Processing

If an unexpected error is found, call PTPNETRT with ACTION-RESET, then with ACTION-
PUT to send back any error status variables, then with ACTION-DONE to send the buffer.

PeopleSoft RemoteCall Service

The RemoteCall Service serves as a bridge between the PeopleCode API and the remote COBOL
programs. In PeopleTools 6, RemoteCall was the only PeopleSoft TUXEDO service. In
PeopleTools 7, RemoteCall is one of many services advertised from the PSAPPSRV TUXEDO
server, and can be configured as part of the standard domain setup and administration.

The client sends the RemoteCall service request, consisting of the connect information and the
program name, as well as any other parameters for the program, to the application server. The
RemoteCall service then executes the program and passes it the connect string.

RemoteCall and Process Scheduler

COBOL application programs initiated by the RemoteCall service use the same COBOL
application architecture used by Process Scheduler. Once initiated by the Dispatcher, COBOL
application programs call the COBOL SQL API program, PTPSQLRT, to connect to the RDBMS
to compile and execute SQL statements. It is therefore fairly easy to design and implement
COBOL programs to be "bilingual" with respect to Process Scheduler and RemoteCall.

The following guidelines will help you to choose the optimal method for running a particular
COBOL program:

e Use Process Scheduler for asynchronous processes, or processes that can be scheduled, are
multi-step, or that require printed output.

e Use RemoteCall for synchronous processes that are quick ("transaction processing" types of
processes).

Modifying a Process Scheduler Program to Use RemoteCall

To enable an existing program that runs under the Process Scheduler to run under RemoteCall as
well, make the following changes:

e Include the PTCNETRT copy member.
o Include the PTCNCHEK member before the connection call to PTPSQLRT.

e Add the call to PTPNETRT ACTION-DONE just before the program terminates (after the call
to disconnect from the database). This should be conditional on whether you are RUNNING-
REMOTE-CALL.

e If you are running as a RemoteCall, you should be sure that PROCESS-INSTANCE OF
PRUNSTATUS is not set. Otherwise your calls to PTCPSTAT will try to update the
PSPRCSRQST table. This will not cause an error, but it is unnecessary processing.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING METHODS AND BUILT-IN FUNCTIONS 7-57

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

This program can now run from the process scheduler or from RemoteCall. Note that if a
program really wants to pass parameters, it has to have RemoteCall-specific ACTION-GET and
ACTION-PUT calls.

Programming Guidelines
Bear the following points in mind when using RemoteCall:

¢ Do not use RemoteCall for long-running batch jobs. As a rule of thumb, if you think execution
will take more than 15 seconds, you should not be using RemoteCall, but should instead use
the Process Scheduler.

e RemoteCall is meant for running jobs on the server. It should not be used to invoke client-only
programs. Support for local calling with RemoteCall is provided solely as a debugging and
development aid. For client-only programs, use Declare Function, then call the external
function from a library.

¢ [f you do not want to modify an existing program, then pass only the program name and run

control, and do not return any parameters. This way, the program requires few changes to run
as a remote function.

7-58 USING METHODS AND BUILT-IN FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 8

Referencing Data in the Component
Buffer

PeopleCode frequently needs to refer to data in the Component Buffer—the area in memory that
stores data for the currently active component.

This chapter provides some basic information about the structure and contents of the Component
Buffer, then describes two means of specifying a piece of data in the Component Buffer from
within PeopleCode:

e contextual references, which refer to data relative to the location of the currently executing
PeopleCode program.

o references using scroll path syntax, which provide a complete—or absolute—path through the
Component Buffer to the referenced component.

In addition to the built-in functions used to access the Component Buffer, PeopleCode provides
enhanced access to structured data buffers using the new object syntax. You can use the object
based PeopleCode to resolve contextual ambiguities when you reference a non-primary record
field that appears on more than one scroll level in a component. Like built-in functions, object
syntax provides for both relative and absolute references to Component Buffer data.

@ For more information about object based programming, see Understanding Objects and
Classes in PeopleCode.

Component Buffer Structure and Contents

The Component Buffer is a structure in memory that stores all data for the currently active
component. The Component Buffer consists of rows of buffer fields that hold data for the various
records associated with page controls, including primary scroll records, related display records,
derived/work records, and translate table records. PeopleCode can reference buffer fields
associated with page controls as well as other buffer fields from the primary scroll record and
related display records: for details see What Record Fields Are in the Component Buffer?

Primary scroll records are the principal SQL table or view associated with a page scroll level. A
primary scroll record uniquely identifies a scroll level in the context of its page: each scroll level
can have only one primary scroll record; and the same primary scroll record cannot occur on
more than one scroll at the same level of the page. Parent-child relations among primary scroll
records determine the dependency structure of the scrolls on the page. That is, the primary record

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER 8-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

on a level one scroll must be a child of the primary record on level zero; the primary record on a
level two scroll must be a child of the primary record on its enclosing level one scroll; and the
primary record on a level three scroll must be a child of the primary record on its enclosing level
two scroll.

@ Level 0 may have multiple records.

The hierarchical relations among scrolls, controlled by hierarchical relations among primary
scroll records, enable the end-user and PeopleCode to drill down through the scroll hierarchy to
access any specific buffer field, including related display, derived/work, and translate table buffer
fields, which occupy space on the same rows as the primary scroll record buffer fields with which
they are associated.

For example, to access a page field on level two of a page, the end-user must:
o Seclect a field on level one of the page.
e Scroll to and select the desired field on level two of the page.

The following diagram illustrates this scroll path taken by the user:

Level zero row

Selected row on
level one

F1 F2 F3 F4
R1

R2 — — — ——

R3

Target row and buffer
field on level two

FI F2 F3 F4

Scroll Path to a Buffer Field

To access the same field in the Component Buffer, PeopleCode would need to:

1. Specify a scroll and row on scroll level one: this selects a subset of dependent rows on level
two.

2. Specify a scroll and row on scroll level two
3. Specify the specific recordname.ficldname on the level two row.

PeopleCode Component Buffer functions use a common scroll path syntax for locating scrolls,
rows, and fields in multiple-scroll pages.

8-2 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

[0

For more information on PeopleCode scroll path syntax, see References Using Scroll Path
Syntax and Dot Notation.

Comparing Rowsets to Scrolls

The rowset is a new programming construct in PeopleTools 8 which enables more consistent,
more convenient and less ambiguous manipulation of buffer data than existing built-in functions
can achieve. It’s a hierarchical data object that can represent an entire scroll and all of its
subordinate scrolls.

A rowset can contain the entire contents of a Component Buffer, or the contents of any lower
level scroll plus all of its subordinate buffer data. The hierarchical structure of component
levels—scroll, row, record, field—is provided by the new object data types, Rowset, Row,
Record and Field respectively.

For more information about rowsets and related objects, see Data Buffer Access and the
Rowset Class.

You can access any specific rowset, row, record or field within the buffer using the dot notation
inherent in PeopleTools 8 object based programming. This enables you to reference fields within
a record object, records within a row object, and rows within a rowset object as properties of the
parent objects.

For more information about object based programming, see Understanding Objects and
Classes in PeopleCode.

What Record Fields Are in the Component Buffer?

The record fields in the Component Buffer are a superset of those accessible to the end user via
page controls. In most cases PeopleCode can reference any record field in a scroll’s primary
scroll record or in a related display record—not just those fields that are associated with page
controls. The following table provides specific information for various record types and
locations:

Type and Location of Presence in Component Buffer

Record

Primary record on scroll On scroll levels greater than zero all record fields from the
levels greater than zero primary scroll record are in the Component Buffer. This

means that on levels greater than zero PeopleCode can refer to
any record field on the primary scroll record, even if it is not
associated with a page control.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER 8-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Primary record on scroll If scroll level zero of a page contains only controls associated
level zero with primary scroll record fields that are search keys or
alternate search keys, then only the search key and alternate
search key fields will be in the Component Buffer: not the
entire record. The values for the field(s) come from the
keylist, and the record won’t run RowlInit PeopleCode. If
level zero contains at least one record field from the primary
scroll record that is not a search key or alternate search key,
then all the record fields from the primary scroll record will be
available in the buffer. (For this reason you may sometimes
need to add one such record field at level zero of the page to
make sure that all the record fields of the level-zero primary
record can be referenced from PeopleCode.)

Related display record fields | The buffer contains the related display record field, plus any
record fields from the related display record that are
referenced by PeopleCode programs. This means that you can
reference any record field in a related display record.

Derived/work record fields | Only derived/work record fields associated with page controls
are in the Component Buffer. Other record fields from the
derived/work record cannot be referenced from PeopleCode.

Translate Table record Only Translate Table fields associated with page controls are
fields available in the Component Buffer. Other fields from the
Translate Table cannot be referenced from PeopleCode.

@ Special limitation on RowSelect PeopleCode. In RowSelect PeopleCode, you can refer
only to record fields on the record that is currently being processed.

Contextual References

In a contextual reference PeopleCode refers to a row or buffer field determined by the current
context; that is, the context in which the PeopleCode program is currently executing.

Understanding Current Context

All PeopleCode programs, with the exception of programs associated with standard menu items,
execute in a current context. The current context determines which buffer fields can be
contextually referenced from PeopleCode, and which row of data is the "current row" on each
scroll level at the time a PeopleCode program is executing.

The current context is comprised of a subset of the buffer fields in the Component Buffer,
determined by the row of data where a PeopleCode program is executing. The current context
includes:

8-4 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

o All buffer fields in the row of data where the PeopleCode program is executing.

o All buffer fields in rows that are hierarchically superior to the row where the PeopleCode
program is executing.

In the following diagram all rows enclosed in dotted rectangles are part of the current context:

Level zero row
always in context

Rlf— — — —— | Parent of row where
""""""""""""""""""""" execution takes
place is in context

FI F2 F3 F4

Row where PeopleCode
executes is in context

F1 F2 F3 F4

All rows on lower scroll
are out of context

F1 F2 F3 F4
R1

R2
R3

Context of PeopleCode Executing on a Level-Two Scroll

In this example a PeopleCode program is executing in a buffer field on row R3 on scroll level
two. The rows in scroll level two are dependent on row R2 on scroll level one. The rows in
scroll level one are dependent on the single row at scroll level zero. The current context consists
of all the buffer fields at level two row R3, level one row R2, and level 0 row R1. The rows in
the current context on levels one and two are the current rows on their respective scrolls. The
single row on level zero is always current, and is included in any current context. All rows other
than the current rows and the level zero row are outside the current context. Note that no current
row can be determined on scrolls below the one where the PeopleCode is executing.

With PeopleTools 8, contextual references work within the structure of a rowset object, and can
include references to all the field objects, record objects, row objects, and rowset objects in the
current context.

Contextual Reference Processing Order

PeopleCode resolves contextual references at runtime by first looking in the row where the
PeopleCode program is executing; if it doesn’t find an appropriate buffer field, it looks in
progressively higher rows in the current context. The following diagram shows this processing
order:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER 8-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

3 Level zero row

2 Current row on
level 1

1 Row where PC is
executing

FI F2 F3 F4

All rows on lower scroll
are out of context

F1 F2 F3 F4
R1

R2
R3

Processing Order of a Contextual Reference

In typical pages this processing order is not significant; however, there are some cases where the
same record occurs on more than one level of a page, and in these cases it’s important to
understand exactly how the direct reference is resolved.

@ For more information see Contextual Buffer Field Reference Ambiguity.

Contextual Row References

A contextual row reference refers to a row in the current context on level one or lower in the
page. Because each scroll uses a unique primary record, the name of that record uniquely
identifies whichever row is in the current context for that scroll level. A contextual row reference
uses a RECORD.recordname component name reference to specify the scroll level of the
intended row, resulting in a reference to the current row at the specified scroll level.

For example, you can use contextual row references with the RecordDeleted, RecordNew, and
RecordChanged functions:

If RecordDeleted (RECORD.SOME REC) Then...

With PeopleTools 8 object based programming, the desired row can be referenced by specifying
parent rows or rowsets of the current rowset:

If GetRowSet () .ParentRowset.ParentRow.IsDeleted Then. ..

In early versions of PeopleTools you could make contextual row references using a
recordname.fieldname expression, like so:

HideRow (SOME REC.ANY FIELD)

8-6 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

If RecordDeleted (SOME REC.ANY FIELD) Then...

This syntax is still supported.

@ For more information see Understanding Current Context.

Contextual Buffer Field References

A contextual buffer field reference is a type of PeopleCode expression that refers to a buffer
field by specifying a record field. The row of the buffer field is determined by the current context
of the PeopleCode program where the reference is made (see Understanding Current Context).
You can use a contextual buffer field reference to retrieve or update the value in the buffer field,
to pass the buffer field value to a function, or to reference an instance of a page control associated
with the buffer field. The following statements use contextual buffer field references:

SOME_RECORD.SOME_FIELD = &VAL; /* Assigns value of variable to buffer field */
&VAL = SOME_RECORD.SOME_FIELD; /* Assigns value of buffer field to variable */

Hide (SOME_RECORD.SOME_FIELD) ; /* Hides instance of control associated with
buffer field */

With PeopleTools 8§ object based programming, a field object incorporates information about
both the record field on which the buffer field is based, and the page control with which the
buffer field is associated. By referring to the field object, you’re either making a contextual
buffer field reference or you’re changing an interface attribute of the associated page control,
depending on the object property you use. The following example has the same effect as a
contextual buffer field reference:

&MYFIELD.Value = &SOMEVAL; /* Assigns value of a variable to a buffer field */

Contextual Buffer Field Reference Ambiguity

Non-primary record fields may appear on more than one scroll level in a page. For example, a
page may use a derived/work field DERIVED JS.CALC 1 as a work field on level one and level
two of the same page. This creates distinct DERIVED JS.CALC 1 buffer fields for rows on
both levels. Because of the order in which PeopleCode resolves contextual buffer field references
(see Contextual Reference Processing Order), if the following contextual reference executes in a
PeopleCode program on a level-two row:

&VAL = DERIVED JS.CALC 1;
it will always retrieve the buffer field value on the current row on level two. PeopleCode on level

two would be unable to retrieve the value of the DERIVED JS.CALC 1 on level one using a
contextual reference.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER 8-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

To explicitly reference the DERIVED JS.CALC 1 buffer field on level one, you would need to
use a Component Buffer function with a scroll path:

&VAL = FetchValue (SCROLL.Ievell scrollname, CurrentRowNumber (1),
DERIVED JS.CALC 1);

The CurrentRowNumber function would return the current row on level one: that is, the parent
row of the level two row where the PeopleCode program is executing.

@ For more information see References Using Scroll Path Syntax and Dot Notation.

Ambiguous Contextual References to Buffer Fields on Level Zero

Level zero of a page contains only a single row of data, and the buffer fields in this row are
always in the current context. For this reason you can almost always refer to a level-zero buffer
field using a contextual reference. However, there are unusual cases when referential ambiguity
makes it impossible to reference a buffer field on level zero contextually. For example, a page
may use a derived/work field DERIVED JS.CALC 1 as a work field on level zero and level one
of the same page. This creates distinct DERIVED JS.CALC 1 buffer fields for rows on both
levels. Because of the order in which PeopleCode resolves contextual field references (see
Contextual Reference Processing Order), if the following contextual reference executes in a
PeopleCode program on a level-one row:

&VAL = DERIVED JS.CALC 1;

it will always retrieve the buffer field value on the current row on level one.

To explicitly reference the DERIVED JS.CALC 1 buffer field on level zero, you must use a
Component Buffer function with this syntax:

Function([recordname.] fieldname, rownum)

Here rownum, since it is on level zero, is always equal to 1. In the example you would use this
statement:

&VAL = FetchValue (DERIVED JS.CALC 1, 1);

Resolving Ambiguous References with Objects

With PeopleTools 8 object based programming, even if two field objects which are in different
rowsets contain buffer data that’s based on the same underlying record field, references to those
objects are inherently unique, because each is instantiated with respect to a specific point in the
hierarchy of the buffer. Any manipulation of a field object’s interface properties will affect only
the page control with which it’s associated.

The following example instantiates a field object using the "long" form, to emphasise the
hierarchical form of the data. It then hides the field’s associated page control. Because this is a

8-8 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

unique instance of the field, based on its hierarchy, hiding this field won’t affecting the visibility
of any other page control associated with the same record field:

&MYFIELD =
GetRowset (SCROLL.EMPL CHECKLIST) .GetRow (&I) .GetRecord (RECORD.EMPL CHECKLIST) .Get
Field (EMPL CHECKLIST.EMPLID) ;

&MYFIELD.Visible = False;
/* the same code, using the "short" form */

&MYFIELD = GetRowset (SCROLL.EMPL CHECKLIST) .GetRow (&I) .EMPL CHECKLIST.EMPLID;

@ Any change in a field object’s value will affect both the underlying record field and the
value of any other field object based on the same record field. This behavior is the same as
the behavior of contextual buffer field references that alter the field value.

References Using Scroll Path Syntax and Dot Notation

A scroll path is a construction found in the parameter lists of many Component Buffer functions,
which specifies a scroll level in the currently active page. Additional parameters are required to
locate a row or a buffer field at the specified scroll level.

The scroll path construction was enhanced in PeopleTools 5 and again in PeopleTools 7.5.
PeopleTools 7.5 and 8 support all previous versions of the scroll path syntax, and there is no
requirement to update the syntax in existing applications. The older variants of this construction
are covered under Scroll Path Syntax prior to PeopleTools 7.5.

PeopleTools 7.5 scroll path syntax provides the ability to eliminate ambiguous references, which,
although rare, do sometimes occur in complex components. The problem of scroll path
ambiguity is explained in more detail under Contextual Buffer Field References.

PeopleTools 8 adds the convenience of object based dot notation and default methods, which
produce inherently non-ambiguous references, to your PeopleCode programs. You’ll find
examples of dot notation in this section along with examples of the scroll path syntax available in
PeopleTools 7.5, which is still valid in PeopleTools 8.

@ For more information about object based access to data, see Data Buffer Access.

Scroll Path Syntax in PeopleTools 7.5
PeopleTools 7.5 offers two constructions for scroll paths: a standard scroll path syntax, which in

all cases except data buffer references is identical to the syntax in PeopleTools 6 and 7; and an
alternative syntax using a SCROLL.scrollname expression. The latter is more robust in that it

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER 8-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

can handle some rare cases where a RECORD.recordname expression results in an ambiguous
reference.

Scroll Path Syntax with RECORD.recordname
Here is the standard scroll path syntax:

[RECORD. Ievell recname, levell row, [RECORD.level2 recname, level2 row, 1]
RECORD. target recname

This scroll path syntax is the same as in PeopleTools 6 and 7, except when the referenced
component is a buffer field.

@ For more information on earlier versions of scroll path syntax, see Scroll Path Syntax prior to
PeopleTools 7.5.

If the target level (the level you want to reference) is one, you need to supply only the
RECORD.target_recname parameter. If the target scroll level is greater than one, you need to
provide scroll name and row level parameters for all hierarchically superior scroll levels,
beginning at level one. The following table shows scroll path syntax for the three possible target
scroll levels:

Target Level | Scroll Path Syntax

1 RECORD.target recname
2 RECORD.levell recname, levell row, RECORD.target recname
3 RECORD.levell recname, levell row, RECORD.level2 recname,

level2 row, RECORD.target recname

If you are referring to a row or a buffer field, additional parameters are required after the scroll
path.

@ For more information see Scroll Level, Row, and Buffer Field References.

Standard Scroll Path Syntax Parameters

RECORD.levell recname Specifies the name of a record associated with scroll level
one, normally the primary scroll record. This parameter is
required if the target scroll level is two or three.

levell row An integer that selects a row on scroll level one. This
parameter is required if the target scroll level is two or
three.

8-10 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

RECORD./evel2_recname Specifies the name of a record associated with scroll level
two, normally the primary scroll record. This parameter is
required if the target row is on scroll level three.

level2 _row An integer that selects a row on scroll level two. This
parameter is required if the target row is on scroll level
three.

RECORD.target_recname Specifies a record associated with the target scroll level,

generally the primary scroll record. The scroll can be on
level one, two, or three of the active page.

Scroll Path Syntax with SCROLL.scrollname

As an alternative to RECORD.recordname expressions in scroll path constructions, PeopleTools
7.5 permits use of a new SCROLL.scrollname expression. Scroll paths using
SCROLL.scrollname are functionally identical to those using RECORD.recordname, except
that SCROLL.scrollname expressions are more strict: they can refer only to a scroll level’s
primary record; whereas RECORD.recordname expressions can refer to any record in the scroll
level, which in some rare cases can result in ambiguous references. (This can occur, for example,
if the RECORD.recordname expression inadvertently references a related display record in
another page in the component.) Use of RECORD.recordname is still permitted, and there is no
requirement to use the SCROLL.scrollname alternative unless it is needed to avoid an
ambiguous reference.

The scrollname is the same as the scroll level’s primary record name

The scroll name cannot be viewed or changed through the Application Designer interface. Here
is the complete scroll path syntax using SCROLL.scrollname expressions:

[SCROLL. Ievell scrollname, levell row, [SCROLL.Ilevel2 scrollname, level2 row,
11, SCROLL.target scrollname

The target scroll level in this construction is the scroll level that you want to specify. If the target
level is one, you only need to supply the SCROLL.target scrollname parameter. If the target
scroll level is greater than one, you need to provide scroll name and row level parameters for
hierarchically superior scroll levels, beginning at level one. The following table shows scroll path
syntax for the three possible target scroll levels:

Target Scroll Path Syntax

Level

1 SCROLL. target scrollname

2 SCROLL.levell scrollname, levell row, SCROLL.target_scrollname

3 SCROLL.levell scrollname, levell row, SCROLL.level2 scrollname,
level2 row, SCROLL.target scrollname

If the component you are referring to is a row or a buffer field, additional parameters are required
after the scroll path.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER ~ 8-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ For more information see Scroll Level, Row, and Buffer Field References.

Alternative Scroll Path Syntax Parameters

SCROLL.levell scrollname Specifies the name of the page’s level-one scroll. This is
always the same as the name of the scroll level’s primary
scroll record. This parameter is required if the target
scroll level is two or three.

levell _row An integer that selects a row on scroll level one. This
parameter is required if the target scroll level is two or
three.

SCROLL.level2_scrollname Specifies the name of the page’s level-two scroll. This is
always the same as the name of the scroll level’s primary
scroll record. This parameter is required if the target row
is on scroll level three.

level2 row An integer that selects a row on scroll level two. This
parameter is required if the target row is on scroll level
three.

SCROLL.target scrollname The scroll name of the target scroll level, which can be
level one, two, or three of the active page.

Scroll Level, Row, and Buffer Field References

You can reference a scroll level using the scrollpath construct alone. Functions that reference
rows for buffer fields require additional parameters. The following table summarizes the three
types of Component Buffer reference:

Target Reference Syntax Example Function

Component

Scroll level scrollpath HideScroll (scrollpath) ;

Row scrollpath, row number HideRow (scrollpath, row number) ;

Field scrollpath, row number, FetchValue (scrollpath,
[recordname.] fieldname row_number, fieldname) ;

@ For more information on scroll path constructions see Scroll Path Syntax in PeopleTools 7.5.
For information on scroll path constructions before PeopleTools 7.5 see Scroll Path Syntax
prior to PeopleTools 7.5.

8-12 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

PeopleTools 8 provides an alternative to the scroll level, row and field components in the form of
the data buffer classes Rowset, Row, Record and Field, which you reference using dot notation
with object methods and properties. The following table demonstrates the syntax for instantiating
and manipulating objects in the current context from these classes:

Target Object | Example Instantiation Example Operation

Rowset &MYROWSET = &MYROWSET .Refresh () ;
GetRowset () ;

Row &MYROW = GetRow () ; &MYROW . CopyTo (&SOMEROW) ;

Record &MYRECORD = &MYRECORD . CompareFields (
GetRecord () ; &SOMERECORD) ;

Field &MYFIELD = &MYFIELD.Label = "Last
GetRecord () . fieldname; Name" ;

The following sections provide examples of functions using scroll path syntax, which refer to an
example page from a fictitious veterinary clinic database. The page has three scroll levels, shown
in the following table:

Level Scroll Name (= Primary Scroll Record Name)
0 VET

1 OWNER

2 PET

3 VISIT

The examples given for PeopleTools 8 object based syntax assumes that the following initializing
code has been executed:

Local Rowset &VET SCROLL, &OWNER SCROLL, &PET SCROLL, &VISIT SCROLL;

&VET SCROLL = GetLevelO() ;
&OWNER SCROLL = &VET SCROLL.GetRow (1) .GetRowSet (SCROLL.OWNER) ;
&PET SCROLL = &OWNER SCROLL.GetRow (2) .GetRowSet (SCROLL.PET) ;

&VISIT SCROLL = &PET SCROLL.GetRow(2) .GetRowSet (SCROLL.VISIT) ;

Referring to Scroll Levels

The HideScroll function provides an example of a reference to a scroll level. The syntax of the
function is:

HideScroll (scrollpath)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER 8-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

where scrollpath is

[RECORD. levell recname, levell row, [RECORD.Ilevel2 recname, level2 row,]]
RECORD. target recname

To reference the level-one scroll in the example, you would use this syntax:

HideScroll (RECORD.OWNER) ;

This would hide the OWNER, PET, and VISIT scrolls on the example page.
In PeopleTools 8, the object based version of this would be:

&OWNER_SCROLL.HideAllRows () ;

To hide scroll levels two and below, supply the primary record and row in scroll level one, then
the record identifying the target scroll:

HideScroll (RECORD.OWNER, &L1ROW, RECORD.PET) ;

The following diagram shows the scroll path of this statement, assuming that the value of
&L1ROW is 2:

Level zero: Vet

Level one: Owner

FI F2 F3 F4

Level two: Pet

FI F2 F3 F4
R1

R2
R3

Sample Scroll Path

Similarly, to hide the VISIT scroll on level three, you would specify rows on scroll levels one and
two.

HideScroll (RECORD.OWNER, &L1ROW, RECORD.PET, &L2ROW, RECORD.VISIT) ;

If you wanted to use the new SCROLL.scrollname syntax, the above example could be written as
this:

HideScroll (SCROLL.OWNER, &L1ROW, SCROLL.PET, &L2ROW, SCROLL.VISIT) ;

In PeopleTools 8, the object based version of this would be:

&VISIT SCROLL.HideAllRows () ;

8-14 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Referring to Rows

Referring to rows is precisely the same as referring to scroll areas, except that you need to specify
the row you want to pick out on the target scroll. As an example, let’s look at the HideRow
function, which hides a specific row in the level-three scroll of the page:

HideRow (scrollpath, target row)
To hide row number &ROW_NUM on level one:
HideRow (RECORD.OWNER, &ROW_NUM) ;

To do the same using the SCROLL.scrollname syntax:
HideRow (SCROLL.OWNER, &ROW NUM) ;

In PeopleTools 8, the object based version of this for the OWNER rowset would be:
&OWNER_SCROLL (&ROW_NUM) .Visible = False;

On level two:
HideRow (RECORD.OWNER, &L1 ROW), RECORD.PET, &ROW_NUM) ;

In PeopleTools 8, the object based version of this for the PET rowset would be:
&PET SCROLL (&ROW_NUM) .Visible = False;

The following diagram shows the scroll path of this statement, assuming that the value of
&L1 ROW is 2 and that &ROW_NUM is equal to 2:

Level zero: Vet

Level one: Owner

FI F2 F3 F4

R — — — —

R3

Level two: Pet

F1 F2 F3 F4

Scroll Path Statement

On level three:

HideRow (RECORD.OWNER, CurrentRowNumber (1), RECORD.PET, CurrentRowNumber (2),
RECORD.VISIT, &ROW_NUM) ;

In PeopleTools 8, the object based version of this for the VISIT rowset would be:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER 8-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&VISIT SCROLL (&ROW_NUM) .Visible = False;

Referring to Buffer Fields

Buffer field references require a frecordname.|fieldname parameter to specify a record field: the
combination of scroll level, row number, and record field name uniquely identifies the buffer
field:

FetchValue (scrollpath, target row, [recordname.] fieldname)

Assume, for example, that record definitions in the veterinary database have the following fields
that you want to reference:

Record Sample Field
OWNER OWNER NAME
PET PET BREED
VISIT VISIT REASON

You could use the following examples to retrieve values on levels 1, 2, or 3 from a PeopleCode
program executing on level zero.

To fetch a value of the OWNER _NAME field on the current row of scroll area one:
&SOMENAME = FetchValue (RECORD.OWNER, &L1 ROW, OWNER.OWNER NAME) ;

In PeopleTools 8, the object based version of this for the OWNER rowset would be:
&SOMENAME = &OWNER SCROLL (&L1 ROW) .OWNER.OWNER NAME;

To fetch PET _BREED on level two:

&SOMEBREED = FetchValue (RECORD.OWNER, &L1 ROW, RECORD.PET, &L2 ROW,
PET.PET BREED) ;

In PeopleTools 8, the object based version of this for the PET rowset would be:

&SOMEBREED = &PET SCROLL (&L2 ROW) .PET.PET BREED;

The following diagram shows the scroll path to the target field, assuming that & L1 ROW equals
2, &L2 ROW equals 2, and field F3 is PET.PET_BREED:

8-16 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Level zero: Vet

FI F2 F3 F4

Rl —— — — ——

Level one: Owner

FI F2 F3 F4
R1

[R2 — — — —

R3

Level two: Pet

F1 F2 F3 F4

R1

Scroll Path to Target Field

To fetch VISIT_REASON on level three:

&SOMEREASON = FetchValue (RECORD.OWNER, &L1 ROW, RECORD.PET, &L2 ROW,
RECORD.VISIT, &L3 ROW, VISIT.VISIT REASON) ;

To do the same thing using the Scroll.scrollname syntax:

&SOMEREASON = FetchValue (SCROLL.OWNER, &L1 ROW, SCROLL.PET, &L2 ROW,
SCROLL.VISIT, &L3 ROW, SCROLL.VISIT REASON) ;

In PeopleTools 8, the object based version of this would be:

&SOMEREASON = &VISIT SCROLL (&L3 ROW) .VISIT.VISIT REASON;

Using CurrentRowNumber

The CurrentRowNumber function returns the current row, as determined by the current context,
for a specific scroll level in the active page. CurrentRowNumber is often used to determine a
value for the levell row and level2 _row parameters in scroll path constructions. Because current
row numbers are determined by the current context, CurrentRowNumber cannot determine a
current row on a scroll level outside the current context (that is, a scroll level below the level
where the PeopleCode program is currently executing).

For example, you could use a statement like this to retrieve the value of a buffer field on level
three of the PET VISITS page, in a PeopleCode program executing on level two:

&VAL = FetchValue (RECORD.OWNER, CurrentRowNumber (1), RECORD.PET,
CurrentRowNumber (2) , RECORD.VISIT, &TARGETROW, VISIT REASON) ;

Because the PeopleCode program is executing on level two, CurrentRowNumber can return
values for levels one and two, but not three, because level three is outside of the current context
and has no current row number.

@ For more information see Understanding Current Context and CurrentRowNumber.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL REFERENCING DATA IN THE COMPONENT BUFFER 8-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Looping through Scroll Levels

Component Buffer functions are often used in For loops to loop through the rows on scroll levels
below the level where the PeopleCode program is executing. The following loop, for example
could be used in PeopleCode executing on a level-two record field to loop through rows of data
on level three:

For &I = 1 To ActiveRowCount (RECORD.OWNER, CurrentRowNumber (1), RECORD.PET,
CurrentRowNumber (2) , RECORD.VISIT)

&VAL = FetchValue (RECORD.OWNER, CurrentRowNumber (1), RECORD.PET,
CurrentRowNumber (2) , RECORD.VISIT, &I, VISIT_REASON);

If &AL = "Fleas" Then
/* do something about fleas */
End-If;
End-For;
A similar construct may be used in accessing other level 2 or level 1 scrolls, such as work scrolls.

In these constructions the ActiveRowCount function is often used to determine the upper bounds
of the loop. When ActiveRowCount is used for this purpose, the loop goes through all of the
active rows in the scroll (that is, rows that have not been flagged as deleted). If you use
TotalRowCount to determine the upper bounds of the loop, the loop goes through all of the rows
in the scroll: first those that have not been flagged as deleted, then those that have been flagged as
deleted.

Scroll Path Syntax prior to PeopleTools 7.5

In scroll path field references in PeopleTools releases 5 through 7, a recordname.fieldname
expression does double-duty, identifying both the target scroll and the target field. For example,
in this statement:

Hide (RECORD.VET, CurrentRowNumber (1), OWNER.OWNER NAME, &ROWNUM) ;

the expression OWNERE.OWNER_ NAME serves both to identify the scroll level and to specify
arecord field. Compare the PeopleTools 7.5 syntax, where a RECORD.recordname expression
identifies the scroll level by its primary record:

Hide (RECORD.VET, CurrentRowNumber (1), RECORD.OWNER, &ROWNUM, OWNER.OWNER NAME) ;

The pre-7.5 syntax is supported in PeopleTools 7.5, and there is no need to update programs to the
new syntax if they are already working correctly. However, the old syntax can sometimes result in
ambiguous references if the target record is a Derived/Work or related display field that occurs on
more than one level on the page. You can avoid this problem by updating to the new syntax. The
surest way to avoid ambiguity is to use the alternative SCROLL.scrollname construction (see
Scroll Path Syntax with SCROLL.scrollname).

8-18 REFERENCING DATA IN THE COMPONENT BUFFER PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 9

Data Buffer Access

In addition to the built-in functions used to access the Component Buffer, there are classes of
objects that provide access to structured data buffers using the new PeopleCode object syntax.

The data buffers accessed by these classes are typically the Component Buffers which are loaded
when you open a component. However, these classes may also be used to access data from
general data buffers, loaded by an Application Message, an Application Engine program, a
Business Components, and so on.

The methods and properties of these classes provide functionality that is similar to what has been
available previously using the built-in functions. However, they also provide improved
consistency, flexibility, and new functionality.

Access Classes

There are four new data buffer classes: Rowset, Row, Record, and Field. These four classes are
the foundation for accessing Component Buffer data through the new object syntax.

A field object, which is instantiated from the Field class, is a single instance of data within a
record and is based on a field definition.

A record object, which is instantiated from the Record class, is a single instance of a data within a
row and is based on a record definition. A record object consists of one to # fields.

A row object, which is instantiated from the Row class, is a single row of data that consists of one
to n records of data. A single row in a component scroll is a row. A row may have one to » child
rowsets. For example, a row in a level two scroll may have #» level three child rowsets.

A rowset object is a data structure used to describe hierarchical data. It is made up of a collection
of rows. A component scroll is a rowset. You can also have a level 0 rowset.

Data Buffer Model and Data Access Objects

The data model assumed by these classes is that of a PeopleTools component, where scrollbars
or grids are used to describe a hierarchical, multiple-occurrence data structure. These four classes
are built on the data model of a PeopleTools component, in which scrollbars or grids are used to
describe a hierarchical, multiple-occurrence data structure. You can access these classes using dot
notation.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

The four data buffer classes relate to each other in a hierarchical manner. The main thing to
remember when learning these relationships is:

e A record contains one or more fields.

= Records contain the fields that make up that record.
e A row contains one or more records and zero or more child rowsets

= A row contains the records that make up that row. In may also contain child rowsets.
® A rowset contains one or more rows

= A rowset is a data structure that describes hierarchical data. For component buffers, think of a
rowset as a scroll on a page that contains all of that scroll’s data. A level 0 rowset contains
all the data for the entire component.

= You can use rowsets with application messages, file layouts, Business Interlinks, and other
definitions besides components.

= A level 0 rowset from a component buffer only contains one row, that is, the keys that the
user specifies to initiate that component. A level O rowset from data that isn't a component,
such as a message or a file layout, might contain more than one level 0 row.

The following is some simple PeopleCode that traverses through a two level Component Buffer
using the new dot notation syntax. Level zero is based on record QA_INVEST HDR and level
one is based on record QA_INVEST LN.

Local Rowset &HDR ROWSET, &LINE ROWSET;

Local Record &HDR REC, &LINE REC;

&HDR_ROWSET = GetLevelO() ;

For &I = 1 to &HDR ROWSET.RowCount
&HDR_REC = &HDR _ROWSET (&I) .QA INVEST HDR;
&EMPLID = &HDR REC.EMPLID.Value;
&LINE ROWSET = &HDR ROWSET (&I) .GetRowset (1) ;

For &J = 1 to &LINE_ ROWSET.RowCount

&LINE REC = &LINE ROWSET (&J) .QA INVEST LN;
&LINE SUM = &LINE SUM + &LINE REC.AMOUNT.Value;
End-For;

End-For;

You will notice that each rowset is declared and instantiated. In general, your code will be easier
to read and maintain if you follow this practice.

9-2 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

Data Buffer Classes Examples

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Most of the examples in this section use the page EMPLOYEE CHECKLIST.

Employee Checklist

I Schumacher,Siman I 5001

*Checklist Date: IDSH 1i2000 Checklist: IDDDDDB ﬂ Repatriation Checklist
Responsible ID: |66I32 ﬂ FeppenJacgues

Comment: | =
*ChKlst *Chklst km *Briefing Status *Status Date
Seq
[foo [000015 Q) Briefing with Human [initiated =] [oart1r2000

Resources

IEDD IDDDD?S Q) Repatriation Discussion |Initiated =l |DEI11IQDDD
|3E|D IDDDDQQ Q] careerPlacement discussion |Initiated =l |DBI1 142000

E Save QRetum to Search

Employee Checklist Page

This page has the following record structure:

Scroll Level

Associated Primary Record

Rowset and Variable Name

Level 0 PERSONAL DATA

Level 0 rowset: &RS0O

Level 1 scroll EMPL CHECKLIST

Level 1 rowset: &RS1

Level 1 hidden work scroll CHECKLIST_ITEM

Level 1 rowset: &RS1H

Level 2 scroll EMPL CHKLST ITM

Level 2 rowset: &RS2

Another way of looking at the structure of a component

1s to use the Structure View. All of the

scrolls are labeled, as well as the primary record associated with each:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

DATA BUFFER ACCESS 9-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

9-4

JANUARY 2001

Definition

Structure l

is§ EMPLOYEE_CHECKLIST.GEL [Component]

o A

=8

{

-8
= g

EMPLOYEE_CHECKLIST [Component)
PERS_SRCH_GEL [View) - Search Recard
Scroll - Level 0
PERSOMNAL_DATA [Table)
Scroll - Level 1 Primary Record: CHECKLIST_ITERM
Scrall - Level 1 Primary Record: EMPL_CHECELIST
=) EMPL_CHECKLIST (Table)
= DERIVED_HR (Derived]
- B Somoll- Level 2 Frimary Record: EMPL_CHKLST_ITM

Component Structure View showing data hierarchy

In the following example the visible level 1 scroll also only has one row. That row is made up of
the following records:

e EMPL CHECKLIST

e DERIVED HR

e CHECKLIST TBL

e PERSONAL DATA

You can see which records are associated with a scroll by looking at the Order view for a page:

WSEWPLOVEE CHECKLIST ENG (Poge) B
Page Designer Onder l
Lw Label Type Field Record Dizplay Control| Related Fieldﬂ

1 0 Frame Frame [[

? 0 |Frame Frame C C

3 0 [Frame Frame Nl Nl

4 0 |Employes Mame |Edit Box HAME PERSOMAL_DATA [[

5 "] Edit Box EMPLID PERSOMAL_DATA ul ul

E 1 | Checklist ltem Tbl Scroll Bar [[

7 1 |Checklist Sequen |Edit Box CHECKLIST_SEQ|CHECKLIST_ITEM [[

g 1 Scroll Bard Scrall Bar u u

4l 1 |Checklist Date |Edit Box CHECKLIST_DT |EMPL_CHECELIST [[

10 1 |denived_hr.effdt |Edit Box EFFDT DERIVED_HR [[

il 1 |Checklist Edit Bow CHECKLIST_CD [EMPL_CHECKLIST rd C

2 1 |Checklist Descripti Edit Biox DESCR CHECKLIST_TEL [[V

3 1 |Responsible ID |EditBox RESPOMSIBLE_| [EMPL_CHECKLIST v [

4 1 |Responzible Mam |Edit Box MAME FERSOMAL _DATA ol v

15 1 |Comment Long Edit Box COMMEMTS ErPL_CHECKLIST [[

g 2 Scrall Bar2 Scrall Bar [[

v 2 |Chklst Seq Edit Bow CHECKLIST_SEQ[EMPL_CHELST_ITM [T C

18 2 |Chiklst It Edit B CHKLST_ITEM_CEMPL_CHELST_ITH [V [

19 2 |Brigfing Descriptio| Edit Box DESCR CHELST_ITEM_TEBL | v

20 2 |Brigfing Statuz |Drop Dawn List [BRIEFING_STAT |[EMPL_CHELST_ITM [T C -|
4 I I 3 I

EMPLOYEE_CHECKLIST page Order view showing records

DATA BUFFER ACCESS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The level 2 rowset has three rows in it. Each row is made up of two records: the primary record,
EMPL CHKLST ITM, and CHKLST ITM_TBL, the record associated with the related display
field DESCR.

{ Employee Checklist
ISchumacher,Simon ID: &5001
*Checklist Date: IUBJ’HJ’EUUU Checklist: IUUUUU3 ﬂ Repatriation Checklist
Responsible ID: |6602 ﬂ FeppenJacques
Comment: | =
Level? Rowset
euelsRows *ChKist *Chklst ttm ‘Briefing Status ~ *Status Date
Seq
[rao [oooaTs (@] Briefing with Human [Initiated =] [osrrir2000
Row? for level2 f— e =
rowset I|20EI IUUEIEIES Q) Repatriation Discussion IlnltlEﬂEd 'I IDBIHIZUUU
Field | |DDE|E|29 =Y Career.fF'Iacementdiscussion||nitiated =l |DBI11I2IJDD

E Save QReturn to Search

Rowset and Rows

Every record has fields associated with it, like NAME, EMPLID, CHECKLIST SEQ, and so on.
These are the fields associated with the record definitions, not the fields displayed on the page.

Object Creation Examples

Each data buffer access class has its own data type which is the same name as the class, that you
should use when declaring your variables (Rowset objects should be declared as type Rowset,
field objects as type Field, and so on.) Data buffer access class objects can be of type Local,
Global, or Component.

The following declarations are assumed throughout the examples that follow:
Local Rowset &LEVELO, &ROWSET;
Local Row &ROW;
Local Record &REC;

Local Field &FIELD;
Accessing Level 0

The following code instantiates a rowset object, from the Rowset class, that references the level 0
rowset, containing all the page data. It stores the object in the &KLEVELO variable.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&LEVELO = GetLevelO() ;

The level 0 rowset contains all the rows, rowsets, records and fields underneath it.

If the level 0 rowset is formed from Component Buffer data, the level 0 rowset has one row of
data, and that row contains all the child rowsets, which in turn contain rows of data, that contain
other child rowsets.

If the level 0 rowset is formed from buffer data, such as from an Application Message, the level 0
rowset may contain more than one row of data. Each row of the level 0 rowset contains all the
child rowsets associated with that row, which in turn contain rows of data, that contain other child
rowsets.

You would use a level 0 rowset when you wanted an absolute path to a lower level object or
when you wanted to do some processing on the entire data buffer. For example, suppose you
loaded all new data into the Component Buffers, and wanted to redraw the page. You could use
the following code:

/* Do processing to reload Component Buffers */
&LEVELO = GetLevelO() ;

&LEVELO.Refresh() ;

@ For more information see GetJavaClass.

Rowset Object

The following code instantiates a rowset object that references the rowset that contains the
currently running PeopleCode program.

&ROWSET = GetRowset () ;

You might later use the &ROWSET variable and the ActiveRowCount property to iterate over all
the rows of the rowset, or to access a specific row (using the GetRow method) or to hide a child
rowset (by setting the Visible property.)

The level one rowset will contain all the level two rowsets. However, the level two rowsets can
only be accessed using the different rows of the level one rowset. From the level zero or level
one rowset, you can only access a level two rowset by using the level one rowset and the
appropriate row.

For example, suppose your program is running on some field of row five of a level two scroll,
which is on row three of its level one scroll. The resulting rowset will contain all the rows of the
level two scroll that are under the row three of the level one scroll. The rowset will not contain
any data that is under any other level two scrolls.

9-6 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

0 Level zero

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

2 Level two

F1 F2 F3 F4
R1

R3 — —— —— ——

Level one

2 Level two
Fi.._F2__F3___F4

Fi F2 F3 F4

Level 2 rowset

Level 2 Rowset from Level 1 Row

Let’s illustrate this further with an example from the Employee Checklist page.

Suppose that one employee was associated with three different checklists: Foreign loan departure,
Foreign loan arrival, and Foreign loan host. The checklist code field (CHECKLIST CD) on the
first level of the page drives the entries on the second level. Each row in the level one rowset
produces a different level two rowset.

The Foreign Loan Departure checklist (000001) produces a checklist that contains such items as
Briefing with Human Resources, Apply for Visas/Work permits, and so on.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

DATA BUFFER ACCESS 9-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

9-8

Employee Checklist

I Schumacher,Simon ID: 2001

Responsible ID: I5502 ﬂ Peppen,Jaciues

*Checklist Date: IDBIHIQDDD Checklist: IDDDDD'I ﬂ Foreign Loan Departure Cheklst

q

[rao [po0o1s (@] Briefing with Human |initiated =] [par11sz000
Resources

IQDD IDDDDSD QA Apply for VisasiWork Perrmits |Initiated =l IDBIHJ’QDDD

|3uu |uuuuug Ql

400 [poooo1 (@) select movingstarage |initiated]| [oei1172000

company
E Sawve QReturn to Search

Reconfirm Relocation Packagellnitiated =l |nax11rzuuu

Comment: =]
=Previous 10of3 EI Mext=

*Chklst *Chklst km *Briefing Status *Status Date

Se

Foreign Loan Departure Checklist

JANUARY 2001

The Foreign Loan Arrival Checklist (0000004) produces a checklist that contains items as

Register at Consulate, Open new foreign bank accounts, and so on.

Employee Checklist

I Schumacher,Siman I 5001

*Checklist Date: IDBH 172000 Checklist: IDDUUD4 g Fareign Loan Arrival Choklist
Responsible ID: I”D5 ﬂ HoltSusan

Comment: ;l

EFrevioug 703 = Mext=
*Chklst *Chklst tm *Briefing Status *Status Date
Seq
[[p000227[@] Register at Gonsulate |initiated =] [part1iz000
IEDD IDDDDDB Q] Open new fareign bank |Initiated =l |DBI1 172000
accounts

|3UU IEIEIDD18 Q] Register children in school |Initiated j IDBH 12000
[0 [po0019 (@ Jain Mewcamers Club |initiated =] [part1izo00

E Save QRetum to Search

DATA BUFFER ACCESS

Foreign Loan Arrival Checklist

The Foreign Loan Host Checklist (0000005) produces a checklist that contains items such as
Arrange Meeting with Mentor, Clear Local tax filing reqmnts, and so on.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Employee Checklist
I Schumacher,Simon 1D 8001
*Checklist Date: IDBH 112000 Checklist: IDDDDDS g Foreign Loan Host Checklist
Responsible ID: I??DS EM Holt,Susan
Comment: ;l
=Prewious Tof3 EI Mext=
“Chkist *Chklst km *Briefing Status *Status Date
Seq
[rao [pono1s (@) Briefing with Human |initiated =] [oart1iz000
Resources
200 IEIDDD1 7 Q] Arange meeting with Mentor |Initiated =l |DBI1 1i2000
ISDD |000023 R Clear localtaxfiling regmnts |Initiated | |DSI11IEDDD
400 IDDDD2? Q] Complets fareign tax forms |Initiated j IDBH 12000

E Save QReturn to Search

Foreign Loan Host Checklist

@ For more information about the methods and properties of rowsets, see Rowset Class.

Row Object

When you create a page you put fields from different records onto the page. You can think of this
as creating a type of pseudo-SQL join. The row returned from this pseudo join is a row object.

For example, the first level scroll of the EMPLOYEE CHECKLIST page contains the following
fields, associated with these records:

Field Record
CHECKLIST DT EMPL CHECKLIST
CHECKLIST CD EMPL CHECKLIST
COMMENTS EMPL CHECKLIST
DESCR CHECKLIST TBL
NAME PERSONAL DATA
RESPONSIBLE ID EMPL CHECKLIST

The pseudo-SQL join might look like the following:

JOIN A.CHECKLIST DT, A.CHECKLIST CD, A.COMMENTS, B.DESCR, C.NAME,
A.RESPONSIBLE ID

FROM PS EMPL CHECKLIST A, PS CHECKLIST TBL B, PS PERSONAL DATA C, WHERE.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

9-10

What goes into the WHERE clause is determined by the level 0 of the page. For our example, it’s
WHERE EMPLID=8001.

When the component is opened, data gets loaded into the Component Buffers. Any row returned
by the pseudo-SQL statement is a level 1 row object.

CHECKLIST | CHECKLIST | COMMENTS | DESCR NAME RESPONSIBLE
DT _cD _ID
12/03/98 000001 Foreign Peppen, | 6602

Loan Jacque

Department

Checklist

For more information on the row methods and properties, see Row Class.

Record Object

A record definition is a definition of what your underlying SQL database tables will look like,
and how they will process data. After you create your record definitions, you build the underlying
SQL tables that will actually house the application data your users will enter online in your
production environment.

When you create a record object using the CreateRecord function, you’re creating an area in the
data buffers that has the same structure as the record definition, but no data.

When you instantiate a record object from the Record class using some variation of GetRecord,
that record object references a single row of data in the SQL table.

DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

il EMPL_CHECKLIST [Record)
Fecord Fields IRecgrd Type I
Hum Field Hame Type | Len | Format | H Short Hame Long Ham
EMPLID ' har {1 Lpper EtmpliD
2 CHECKLIST_DT Date 10 Chklst Ot Checklist Date
3 CHECKLIST_CD Char B Upper Checklist Checklist Code
4 RESPONZIBLE_ID Char 11 Upper Fezp D Responsible D
2 COMMWENTS Lang 1] Comment Comiment
N Tab
(Dt
17
0 Ty
s -
=TI =
111 ————
Record object 8RECORDT - 5 single row of data from the
SOL table
ERECORD1 = GetRecord (RECORD.EMPL_ CHECELIST) :
Record Object

@ Remember, the data in the record that you retrieve is based on the row. This is analogous to
setting keys to return a unique record.

The following code instantiates a record object for referencing the EMPL_CHECKLIST record of
the specified row.

&REC &ROW.GetRecord (RECORD . EMPL CHECKLIST) ;

Using the "short" method, the following line of code is identical to the above line:

&REC = &ROW.EMPL_ CHECKLIST;

You might later use the &REC variable and the CopyFieldsTo property to copy all like named
fields from one record to another. In the following example, two row objects are created, the
copy from row (COPYFRMROW) and the copy to row (COPYTROW). Using these rows, like-
named fields are copied from CHECKLIST ITEM to EMPL CHKLST ITM.

For &I = 1 To &ROWSET1.ActiveRowCount

©FRMROW = &ROWSET1.GetRow (&I) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

©TROW = &RS2.GetRow (&I) ;
©FRMROW . CHECKLIST ITEM.CopyFieldsTo (©TROW.EMPL CHKLST ITM) ;

End-For;

A row may contain more than one record: besides the primary database record, you may have a
related display record or a derived record. You can access these records as well. The level 1
rowset, &KROWSET1, is made up of many records. The following accesses two of them:
EMPL CHECKLIST and DERIVED HR.

&REC1

&ROW.EMPL CHECKLIST;

&REC2 = &ROW.DERIVED HR;

@ For more information on the methods and properties used with a record, see ProcessRequest
Class.

Field Object

The following instantiates a field object, from the Field class, that is used to access a specific
field in the record.

&FIELD = &REC.GetField(FIELD.CHECKLIST CD);

You might later use the &FIELD variable to as a condition, like:
If ALL(&FIELD) Then
Or

If &FIELD.Value = "N" Then

@ Remember, the data in the field that you retrieve is based on the record, which is in turn
based on the row.

You can also set the value of a field. Remember, using GetField does not create a copy of the
data from the Component Buffer. Setting the value or a property of the field object will set the
actual Component Buffer field or property (see object assignment.)

In the following example, the type of a field is checked, and the value is replaced with the tangent
of that value if it is a number.

If &FIELD.Type <> "NUMBER" Then
/* do error recording */

Else

9-12 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

[0

&FIELD.Value = Tan(&FIELD.Value) ;

End-If;

For more information on the methods and properties used with a field, see Field Class.

Traversing the Data Buffer Hierarchy Example

Suppose you want to access the BRIEFING_STATUS field at level 2 of the following page:

Employee Checklist

I Schurmacher, Simaon ID: 3001

*Checklist Date: IDBIHIEDDD Checklist: IDDDDDS Q| Repatriation Checklist
Responsible ID: |6602 g FPeppenJacques

Comment: | =]
=

‘Chkist *Chklst itm “Briefing Status *Status Date

Seq

[rao [pono1s (@] Briefing with Human |initiated =] [part112000

Resources

IEDD |000025 Q| Repatriation Discussion |Initiated =l |DBI11IEDDD
|3DD |000029 QJ careerPlacement discussion |Initiated =l |DSI11IQDDD

E Save QRetum to Search
Employee_Checklist page

The first thing to ask is where is your code executing? Where are you starting from? For this
example, the code is starting at a field on a record at level 0. However, you don’t always have to
start at the level 0.

Once you start with level 0, you’ll need to traverse the data hierarchy, through the level 1 rowset,
to the level 2 rowset, before you can access the record that contains the field. Here’s the hierarchy
once again:

A rowset contains one or more rows, a row contains one or more records and zero or more
child rowsets, and a record contains one or more fields.
Rowset

The first thing to get is the level 0 rowset, which is the PERSONAL DATA rowset. However,
you don’t need to know the name of the level 0 rowset in order to access it.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

&LEVELO = GetLevelO() ;

Rowsets contain rows

The next object to get is a row. As this code is working with data that is loaded from a page, there
will only ever be one row at level 0. However, if you’re dealing with rowsets that are populated
with data that isn’t based on Component Buffers (i.e., an Application Message) you may have
more than one row at level 0.

&LEVELO _ROW = &LEVELO (1) ;

Rows can contain child rowsets

We need to get to the level 2 rowset. To do that, we need to traverse through the level 1 rowset
first. Therefore, the next object we want to get is the level 1 rowset.

&LEVEL1 = &LEVELO ROW.GetRowset (SCROLL.EMPL CHECKLIST) ;

Rowsets contain rows

If you’re traversing a page, the first thing you’ll always do after you get a rowset is to get the
appropriate row. Because we plan on doing processing on all the rows of the rowset, we’ll set
this up in a loop.

For &I = 1 to &LEVEL1.ActiveRowCount

&LEVEL1 ROW = &LEVELL (&I) ;

End-For;

Rows can contain child rowsets, rowsets contain rows

We need to traverse down another level in our page structure. This means accessing the second
level rowset. Then we need to access the rows in the second level rowset, in another loop.

Because we’re processing all the rows at the level 1, we’re just adding code to the above For
loop. As we’re processing through all the rows at level 2, we’re adding a second For loop. The
new code is in bold.

For &I = 1 to &LEVELl.ActiveRowCount
&LEVEL1 ROW = &LEVELL (&I) ;
&LEVEL2 = &LEVEL1l ROW.GetRowset (SCROLL.EMPL CHKLST ITM) ;
For &J = 1 to &LEVEL2.ActiveRowCount

&LEVEL2 ROW = &LEVEL2 (&J) ;

9-14 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

End-For;

End-For;

Rows contain records

Rows also contain records. In fact, a row will always contain a record, and only may contain a
child rowset, depending on how your page is set up. GetRecord is the default method for a row,
so all you have to specify is the record name.

Because we’re processing all the rows at the level 2, we’re just adding code to the above For
loops. The new code is in bold.

For &I = 1 to &LEVEL1.ActiveRowCount

&LEVEL1 ROW = &LEVELL (&I) ;

&LEVEL2

For &J

= &LEVELl_ROW.GetRowset(SCROLL.EMPL_CHKLST_ITM);
= 1 to &LEVEL2.ActiveRowCount
&LEVELZ_ROW = &LEVEL2 (&J) ;

&RECORD = &LEVEL2 ROW.EMPL CHKLST ITM;

End-For;

End-For;

Records contain fields

Records are made up of fields. GetField is the default method for a record, so all you have to
specify is the field name.

Because we’re processing all the rows at the level 1, we’re just adding code to the above For
loops. The new code is in bold.

For &I = 1 to &LEVEL1.ActiveRowCount

&LEVEL1 ROW = &LEVELL (&I) ;

&LEVEL2

For &J

= &LEVEL1 ROW.GetRowset (SCROLL.EMPL CHKLST ITM) ;
= 1 to &LEVEL2.ActiveRowCount

&LEVEL2 ROW = &LEVEL2 (&J) ;

&RECORD = &LEVEL2 ROW.EMPL_ CHKLST ITM;

&FIELD = &RECORD.BRIEFING STATUS;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

/* Do processing */
End-For;

End-For;

Using shortcuts

The above code is the long way of accessing this field. What if you wanted to use all the
shortcuts, and access the field in one line of code? Here it is! The following code assumes all
rows are 1.

O

o & o >
S K W & < & pr

&
< < < < ® < &
&FIELD = GetLevelO () (1) .EMPL_CHECKLIST (1) .EMPL_CHKLST_ITM (1) .EMPL_CHKLST ITM.BRIEFING_STATUS;

Rowset Example

Here’s another way of expressing the code:

Rowset &LEVELO = GetLevelO() ;
Row &LEVELO_ROW = &LEVELO (1) ;
Rowset &LEVEL1 = &LEVELO_ROW.GetRowset(SCROLL.EMPL_CHECKLIST);

For &I = 1 to &LEVEL1.ActiveRowCount

Row &LEVEL1 ROW = &LEVELL (&I) ;

Rowset &LEVEL2 = &LEVEL1 ROW.GetRowset (SCROLL.EMPL CHKLST ITM) ;

For &J = 1 to &LEVEL2.ActiveRowCount

Row &LEVEL2 ROW = &LEVEL2 (&J) ;
Record &RECORD = &LEVEL2 ROW.EMPL CHKLST ITM;
Field &FIELD = &RECORD.BRIEFING STATUS;

/* Do processing */

End-For;

9-16 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

End-For;

Traversing a Rowset Example

The following code example traverses up to 4 levels of rowsets and could easily be modified to
do more. This example only processes the first record in every rowset. If you wanted to process
every record, you’d have to set up another For loop (For &R =1 to
&LEVELX.RECORDCOUNT, and so on.) Notice the use of ChildCount (to process all children
rowsets within a rowset), ActiveRowCount, IsChanged, and dot notation.

‘...” is where application specific code would go.
&Level0 ROWSET = GetLevelO();

For &A0 = 1 To &LevelO ROWSET.ActiveRowCount

/***************************/

/* Process Level 1 Records */

If &LevelO_ROWSET (&AQ) .ChildCount > 0 Then

For &Bl = 1 To &LevelO ROWSET (&A0) .ChildCount
&LEVEL1 ROWSET = &LevelO ROWSET (&A0) .GetRowset (&B1) ;
For &A1l = 1 To &LEVEL1_ROWSET.ActiveRowCount

If &LEVEL1_ROWSET (&Al) .GetRecord (1) .IsChanged Then

/***************************/

/* Process Level 2 Records */
If &LEVEL1 ROWSET (&Al) .ChildCount > 0 Then

For &B2 = 1 To &LEVEL1 ROWSET (&Al) .ChildCount

&LEVEL2 ROWSET = &LEVEL1 ROWSET (&Al) .GetRowset (&B2) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

For &A2 = 1 To &LEVEL2_ ROWSET.ActiveRowCount

If &LEVEL2_ROWSET (&A2) .GetRecord (1) .IsChanged Then

/***************************/

/* Process Level 3 Records */

If &LEVEL2 ROWSET (&A2) .ChildCount > 0 Then
For &B3 = 1 To &LEVEL1 ROWSET (&A2) .ChildCount

&LEVEL3_ROWSET =
&LEVEL2_ ROWSET (&A2) .GetRowset (&B3) ;

For &A3 = 1 To
&LEVEL3 ROWSET.ActiveRowCount

If
&LEVEL3_ROWSET (&A3) .GetRecord (1) .IsChanged Then

End-If; /* A3 - IsChanged */
End-For; /* A3 - Loop */
End-For; /* B3 - Loop */

End-If; /* A2 - ChildCount > 0 */

/* End of Process Level 3 Records */

/**********************************/

End-If; /* A2 - IsChanged */
End-For; /* A2 - Loop */
End-For; /* B2 - Loop */

End-If; /* Al - ChildCount > 0 */

9-18 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

/* End of Process Level 2 Records */

/**********************************/

End-If; /* Al - IsChanged */
End-For; /* Al - Loop */
End-For; /* Bl - Loop */

End-If; /* A0 - ChildCount > 0 */

/* End of Process Level 1 Records */

/**********************************/

End-For; /* A0 - Loop */

Using a Hidden Work Scroll Example

In the FieldChange event for the CHECKLIST CD field on the EMPL_CHECKLIST record,
there is a program which does the following:

1. Flushes the rowset/hidden work scroll.

2. Selects into the hidden work scroll based on the value of the CHECKLIST CD field and the
effective date.

3. Clears out the second level scroll.
4. Copies like fields from the hidden work scroll to the second level scroll.
The following is the code to do this using built-in functions.

&CURRENT ROW L1 = CurrentRowNumber (1) ;

&ACTIVE ROW L2 = ActiveRowCount (RECORD.EMPL CHECKLIST, &CURRENT ROW L1,
RECORD.EMPL CHKLST ITM) ;

If All (CHECKLIST CD) Then

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-19

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

ScrollFlush (RECORD.CHECKLIST ITEM) ;

ScrollSelect (1, RECORD.CHECKLIST ITEM, RECORD.CHECKLIST ITEM, "Where
Checklist Cd = :1 and EffDt = (Select Max(EffDt) From PS Checklist Item Where
Checklist Cd = :2)", CHECKLIST CD, CHECKLIST CD);

&FOUNDDOC = FetchValue (CHECKLIST ITEM.CHKLST ITEM CD, 1);

&SELECT ROW = ActiveRowCount (RECORD.CHECKLIST ITEM) ;

For &I = 1 To &ACTIVE ROW L2

DeleteRow(RECORD.EMPL_CHECKLIST, &CURRENT ROW L1, RECORD.EMPL CHKLST ITM,
1);

End-For;

If All (&FOUNDDOC) Then
For &I = 1 To &SELECT ROW

CopyFields (1, RECORD.CHECKLIST ITEM, &I, 2, RECORD.EMPL CHECKLIST,
&CURRENT ROW L1, RECORD.EMPL CHKLST ITM, &I);

If &I <> &SELECT ROW Then

InsertRow (RECORD.EMPL CHECKLIST, &CURRENT ROW L1,
RECORD.EMPL CHKLST ITM, &I);

End-If;
End-For;
End-If;
End-If;

This following program does the exact same thing as the previous code, only it uses the data
buffer classes:

1. Flushes the rowset/hidden work scroll (&RS1H).

2. Selects into &RS1H based on the value of the CHECKLIST CD field and the effective date.
3. Clears out the second level Rowset (&RS2).

4. Copies like fields from &RS1H to &RS1.

Local Rowset &RSO0, &RS1, &RS2, &RS1H;

9-20 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&RS0 = GetLevelO () ;

&RS1 GetRowset () ;

&RS2

GetRowset (SCROLL.EMPL CHKLST ITM) ;

&RS1H = &RSO0.GetRow (1) .GetRowset (SCROLL.CHECKLIST ITEM) ;

&MYFIELD = CHECKLIST CD;

If All (&MYFIELD) Then
&RS1H.Flush() ;

&RS1H.Select (RECORD.CHECKLIST ITEM, "where Checklist CD = :1 and EffDt =
(Select Max (EffDt) from PS CHECKLIST ITEM Where CheckList CD = :2)",
CHECKLIST CD, CHECKLIST CD);

For &I = 1 To &RS2.ActiveRowCount
&RS2.DeleteRow (1) ;

End-For;

&FOUND = &RS1H.GetCurrEffRow () .CHECKLIST ITEM. CHKLST ITEM CD.Value;

If All (&FOUND) Then
For &I = 1 To &RS1H.ActiveRowCount
©FRMROW = &RS1H.getrow (&I) ;

©TROW = &RS2.getrow(&I) ;
©FRMROW . CHECKLIST ITEM.CopyFieldsTo (©TROW.EMPL CHKLST ITM) ;

If &I <> &RS1H.ActiveRowCount Then
&RS2.InsertRow (&I) ;
End-If;
End-For;
End-If;

End-If;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-21

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Current Context

Most PeopleCode programs execute in a current context. The current context determines which
buffer fields can be contextually referenced from PeopleCode, and which row of data is the
"current row" on each scroll level at the time a PeopleCode program is executing.

The current context for the data buffer access classes is similar to the current context for
accessing the Component Buffer. However, with the Rowset class, a little additional explanation
is necessary.

@ For more information about current context, see Contextual References.

2 Level two

FI F2 F3 F4
Level zero row R1
always in context R2

Row where PeopleCode

executes is in context B
2 Level two
FI F2 F3 F4
5 F1 F2 F3 F4
[RR— —— —— | R1
'\\‘ o
R3
. R3
R4
R5
Cc
2 Level two

Rowset accessable by second row in R F1 F2 F3 F4

level 1 rowset is in context

Current Context for Rowsets

In this example a PeopleCode program is executing in a buffer field on the second row of the
level one rowset. The following code will return a row object for the second row of the level one
rowset, because that is the row that is the current context.

Local Row &ROW
&ROW = GetRow () ;

The following code will return the B2 level 2 rowset, because of the current context:

Local Rowset &ROWSET2

9-22 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&ROWSET2 = &ROW.GetRowset (SCROLL.EMPL_ CHKLST ITM) ;

This code will NOT return either the C2 or the A2 rowsets. It will only return the rowset
associated with the second row of the level one rowset.

Creating Records or Rowsets and Current Context

When you instantiate a record object using the CreateRecord function, you are only creating an
area in the data buffers that has the same structure as the record definition. It will not contain
any data. This record object will not have a parent rowset or be associated with a row. It is a free-
standing record object, and therefore is not considered part of the current context.

The same applies when you instantiate a rowset object using the CreateRowset function. You are
only creating an area in the data buffers that has the same structure as the record(s) or rowset the
new rowset is based on. It will not contain any data. This type of rowset will not have a parent
rowset or row.

Accessing Secondary Component Buffer Data

When a secondary page is run, the data for its buffers is copied from the parent component to a
buffer structure for the secondary page. This means there are two copies of this data. The data
buffer classes give access to both of these copies of the data. Direct field references
(recname.fieldname) will always use the current context to determine which value to access. So,
in general, when using a secondary page, make sure that all your references are based on the
secondary page.

Instantiating Rowsets using non-Component Buffer data

Both the application message and the file layout technologies represent hierarchical data, and use
the rowset, row, record, field hierarchy. Though you use different methods to instantiate a rowset
object for this data, you still use the same rowset, row, record and field methods and properties to
manipulate the data. (Any exceptions are marked in the documentation.)

To instantiate a rowset for a message:
&MSG = CreateMessage (MESSAGE.EMPLOYEE DATA) ;
&MYROWSET = &MSG.GetRowset () ;

To instantiate a rowset for a file layout:
&MYFILE = GetFile (&SOMENAME, "R");
&MYFILE.SetFileLayout (FILELAYOUT . SOMELAYOUT) ;

&MYROWSET = &MYFILE.ReadRowset () ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DATA BUFFER ACCESS 9-23

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ For more information, see Using Standalone Rowsets.

In an Application Engine program, the default state record is considered the primary record, and
the main record in context. You can access the default state record using the following:

&STATERECORD = GetRecord() ;

If you have more than one state record associated with an application engine program, you can
access them the same way you would access other, non-primary data records, by specifying the
record name. For example:

&ALTSTATE = GetRecord (RECORD.AE STATE ALT) ;

@ For more information, see PeopleSoft Application Messaging and Application Engine.

9-24 DATA BUFFER ACCESS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 10

PeopleCode and the Component
Processor

The Component Processor is the PeopleTools runtime engine that controls processing of the
application from the time the end-user requests a component from an application menu through
the time that the database is updated and processing of the component is complete.

This chapter discusses the Component Processor and its complex interaction with PeopleCode
programs. It describes the PeopleCode events that are generated during the Component
Processor’s flow of execution at runtime, and how PeopleCode events trigger PeopleCode
programs.

Events Outside the Component Processor Flow

Application Messages also have events associated with them (OnPublishTransform,
OnSubscribeTransform, OnRoutePublication, OnRouteSubscription and Subscription.) However,
these events are only associated with the message definition, and are not associated with any
page. Therefore, they aren’t considered part of the Component Processor flow.

@ For more information about these events, see PeopleSoft Application Messaging.

ActiveX controls have two events that are part of the Component Processor flow (PSControllnit
and PSLostFocus.) These events are described in this chapter. However, every ActiveX control
also comes with its own set of events. These events are not considered part of the Component
Processor flow.

@ For more information, see Implementing ActiveX Controls.

An Application Engine program can have a PeopleCode program as an action. Though the right-
hand drop-down on the PeopleCode editor window shows the text "OnExecute" this really isn’t
an event. Any PeopleCode contained in an Application Engine action will only be executed when
the action is executed.

@ For more information see PeopleCode Actions.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

A Component Interface can have user-defined methods associated with it. These methods aren’t
part of any processor flow: they’re called as needed by the program executing the Component
Interface.

@ For more information see Component Interface Classes.

Security has a signon “event" during signon. This is actually PeopleCode programs on a record
field that you've specified in setting up security.

@ For more information see Security.

How PeopleCode Programs Are Triggered

PeopleCode can be associated with a PeopleCode record field, a component record, and many
other items. PeopleCode events fire at particular times, in particular sequences, during the
course of the Component Processor’s flow of execution. When an event fires, it triggers
PeopleCode programs on specific objects.

The following items have events that are part of the Component Processor flow:

Items Events trigger

Menu Items programs associated with the menu item
Page fields (ActiveX controls) programs associated with the page field'
Component record fields programs on specific rows of data
Component records programs on specific rows of data
Components programs associated with the Component
Pages programs associated with the page
Record fields programs on specific rows of data

! ActiveX controls are the only page fields that have PeopleCode associated with them.

Let’s look at two examples.

Suppose the end-user changes the data in a page field, then tabs out of the field. This end-user
action causes the FieldEdit PeopleCode event to fire. The FieldEdit event affects only the
specific field and row where the change took place. If a FieldEdit PeopleCode program is
associated with that record field, the program will be executed. The program is executed just
once, on the specific field and row of data.

10-2 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

If you have two FieldEdit PeopleCode programs, one associated with the record field and a
second associated with the component record field, both programs will be executed, but only on
the specific field and row of data. The FieldEdit PeopleCode program associated with the first
record field fires first, then the FieldEdit PeopleCode program associated with the first
component record field fires.

By contrast, suppose the end-user has opened a component for updating. As part of building the
component the Component Processor fires the RowlInit event. This event triggers RowInit
PeopleCode programs on every record field on every row of data in the component. In a scroll
area with multiple rows of data, every RowlInit PeopleCode program is executed once for each
TOW.

In addition, if you have RowlInit PeopleCode associated with both the record field and the
component record, both programs will be executed against every record field on every row of
data in the component. The RowInit PeopleCode program associated with the first record field
fires first, then the RowlInit PeopleCode program associated with the first component record fires.
This means if you’ve set the value of a field with the record field RowlInit PeopleCode, then reset
the field with the component record RowInit PeopleCode, the second value is the one that will be
displayed to the end-user.

As you can see, when you develop with PeopleCode you need to consider when and where your
programs will be triggered during the Component Processor’s flow of execution.

@ For more information see Execution Order of Events and PeopleCode.

Accessing PeopleCode Programs

Every PeopleCode program is associated with a PeopleCode event, and is often referred to by that
name, such as RowlInit PeopleCode, or FieldChange PeopleCode. These programs are accessible
from, and associated with, different items. The following table lists which event, and hence
which types of PeopleCode programs, are accessible from which item.

@ Page Field events (PSControllnit and PSLostFocus) are only available for pages with
ActiveX controls, which are not available in the PeopleSoft Internet Architecture.
The Searchlnit and SearchSave events (under Component Record) are only available for the
search record associated with a component.

The Searchlnit and SearchSave events are only available for the search record associated with a
component.

Record Field | Component | Component | Component | Page Menu
Record Field | Record

FieldChange FieldChange | RowDelete PostBuild Activate | ItemSelected
FieldDefault FieldDefault | RowlInit PreBuild

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

JANUARY 2001

Record Field | Component | Component | Component | Page Menu
Record Field | Record

FieldEdit FieldEdit Rowlnsert SavePostChg

FieldFormula | PrePopup RowSelect SavePreChg

PrePopup SaveEdit Workflow

RowDelete SavePostChg

Rowlnit SavePreChg

Rowlnsert Searchlnit

RowSelect SearchSave

SaveEdit

SavePostChg

SavePreChg

Searchlnit

SearchSave

Workflow

The following table lists the different types of PeopleCode programs and where they’re accessible
from in the Application Designer.

PeopleCode Programs In Application Designer

Record field Record definitions and page definitions

Component record field, component record,
and component

Component definitions

Page and page field (ActiveX control) Page definitions

Menu item Menu definitions

PEOPLECODE AND THE COMPONENT PROCESSOR

Execution Order of Events and PeopleCode

When you develop with PeopleCode you need to consider when and where your programs will be
triggered during the Component Processor’s flow of execution.

In PeopleSoft, the component is the representation of a transaction. Therefore, any PeopleCode
that is associated with a transaction, should be in events associated with some level of the
component. If you have code that should be executed every time a field is edited, you should put
it at the record field level. If you associate code with the correct transaction, you don’t have to
check for the component that’s issuing it (such as, surrounding your code with dozens of I £
$Component =). Records become more reusable and code is more maintainable.

For example, if you have start and end dates for a course, you would always want to check and
make sure the end date was after the start date. Therefore, your program to check the dates would
go on the SaveEdit at the record field level.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

All similarly named component events fire after the like-named record event. That is, the

PeopleCode program associated with the record field event fires first, then the PeopleCode
program associated with the like-named component event fires. This means that if you’ve set the
value of a field with the record field PeopleCode, then reset the field with like-named component
PeopleCode, the second value is the one that will be displayed to the end-user.

This is best illustrated with some examples:

Events after User Changes Field

Record.

Record.

Record.

Record.

RecordA
FieldA
PeopleCode

Component
RecordA
FieldA
PeopleCode

RecordB
FieldB
PeopleCode

Component
RecordB
FieldB
PeopleCode

FieldEdit Event

recordA.fielda.FieldEdit -> Component.recordA.fielda.FieldEdit ->
recordB.fieldb.FieldEdit -> Component.recordB.fieldb.FieldEdit ->
recordA.fielda.FieldChange -> Component.recordA.fielda.FieldChange ->

recordB.fieldb.FieldChange -> Component.recordB.fieldb.FieldChange ->

FieldChange

RecordA
FieldA
PeopleCode

Component
RecordA
FieldA
PeopleCode

RecordB
FieldB
PeopleCode

Component
RecordB
FieldB
PeopleCode

Flow of Events and PeopleCode programs after end-user changes a field

Events after User Saves

Record.recordA.fielda.SaveEdit -> Record.recordA.fieldb.SaveEdit ->
Record.recordA.fieldc.SaveEdit -> Component.recordA.SaveEdit

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLECODE AND THE COMPONENT PROCESSOR

10-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Record.recordB.fielda.SaveEdit -> Record.recordB.fieldb.SaveEdit ->
Record.recordB.fieldc.SaveEdit -> Component.recordB.SaveEdit

Record.recordA.fielda.SavePreChange -> Record.recordA.fieldb.SavePreChange ->
Record.recordA. fieldc.SavePreChange -> Component.recordA.SavePreChange

Record.recordB. fielda.SavePreChange -> Record.recordB.fieldb.SavePreChange ->
Record.recordB.fieldc.SavePreChange -> Component.recordB.SavePreChange

Record.recordA.fieldA.WorkFlow -> Record.recordB.fieldB.WorkFlow ->
Record.reocrdC.fieldC.WorkFlow

Component .Workflow

Record.recordA. fielda.SavePostChange -> Record.recordA.fieldb.SavePostChange ->
Record.recordA.fieldc.SavePostChange -> Component.recordA.SavePostChange

Record.recordB.fielda.SavePostChange -> Component.recordB.SavePostChange

Component . SavePostChange

SavePostChange

RecordA
FieldA
PeopleCode

RecordA
FieldB
PeopleCode

RecordA
FieldC
PeopleCode

Component
RecordA
PeopleCode

RecordB
FieldB
PeopleCode

Component
RecordB
PeopleCode

Component
PeopleCode

Flow of PeopleCode programs after SavePostChange

10-6 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Component Processor Behavior

This section takes a high-level look at the behaviors of the Component Processor from page
startup to page display, as well as the processes initiated by end-user action after the page is
displayed.

@ Keep in mind that this description is for components not running in deferred mode. If your
component or page is running in deferred mode, refer to Deferred Processing Mode.

The next section, Processing Sequences, examines these processes in greater detail, showing the
flow of system actions and PeopleCode events.

From Page Start to Page Display

Before the end-user chooses a component, the system is in reset state, in which no component is
displayed. Component Processor’s flow of execution begins when the end-user chooses a
component from a PeopleSoft menu. The Component Processor then:

1. Performs search processing, in which it obtains and saves search key values for the
component.

2. Retrieves from the database server any data needed to build the component, then builds the
component, creating buffers for the component data.

3. Does any additional processing for the component, the page, or any ActiveX controls.

@ ActiveX control events are only applicable in the Windows client, not in the PeopleSoft
Internet Architecture.

4. Displays the component and waits for end-user action.

The following flowchart shows the flow of execution at a high level.

Default processing
PostBuild

PSControllnit

Display page,
wait for user action

Processing up to Page Display

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=,

10-8

PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet

Architecture.

End-User Actions in the Component

Once the component is built and displayed, the Component Processor can respond to a number of

possible end-user actions. The following table lists the end-user actions and briefly describes the

resulting processing.

For more information on the processing sequences that result from the end-user action,
follow the hypertext links in the table or read the Processing Sequences section of this

chapter.

End-User Action

Description

Row Insert Processing

When the end-user requests a row insert, the Component Processor
adds a row of data in the active scroll area, then displays the page
again and waits for another action.

Row Delete
Processing

When the end-user requests a row delete, the Component Processor
flags the current row as deleted, then displays the page again and
waits for another action.

Field Modification

If the end-user edits a page field, then leaves the field, the
Component Processor performs standard edits (such as checking the
data type and checking for values out of range). If the contents of
the field do not pass the standard system edits, the Component
Processor redisplays the page with an error or warning message and
changes the field’s color to the system color for field edit errors—
usually red. Until the end-user corrects the error, the Component
Processor will not let the end-user save changes or navigate to
another field. If the contents of the field pass the standard system
edits, the system redisplays the page and waits for further action.

Prompts

If the end-user clicks the prompt icon next to a field (@) a list of
valid values for the prompt field displays. If the end-user clicks
Return To Search or ALT+2, then press ENTER, a search dialog
appears, allowing them to enter an alternate search key or partial
value. If the end-user clicks the detail button next to a date field
(XXX) a calendar displays.

Pop-up Menu Display

If the end-user clicks the pop-up icon next to a field (|@) a pop-up
menu appears. This can be a default pop-up menu or one that has
been defined by the developer. If the end-user clicks the pop-up
icon at the bottom of the page, the pop-up menu for the page
displays.

PEOPLECODE AND THE COMPONENT PROCESSOR

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

ItemSelected The end-user can choose an item from a pop-up menu to execute a

Processing command.

PushButtons The end-user can click a command push button to execute a
command.

Save Processing The end-user can direct the system to save a component by clicking

Save or by pressing ALT+1, then pressing ENTER. If any component
data has been modified, PeopleSoft will also prompt the end-user to
save a component when the Next or List icon button is selected, or
when a new action or component is selected.

The Component Processor first validates the data in the component
then updates the database with the changed component data. After
the update a SQL Commit command finalizes the changes.

If a new component or new key has been requested, the Component
Processor goes through Reset State to display a new component. If
the end-user has not requested a new component, the Component
Processor displays the page and waits for another end-user action.

Exit Component If the end-user clicks EXIT, the component goes into Reset State
until the end-user requests another component.

ActiveX Control Every ActiveX control comes with its own pre-defined events. If
the end-user clicks on an ActiveX control, the Component Processor
fires the relevant ActiveX control event(s). See Implementing
ActiveX Controls.

Processing Sequences

This section looks at possible sequences of actions and PeopleCode events that can occur within
the Component Processor’s flow of execution. The logic of each sequence of actions is presented
in a flow diagram with the following elements:

Symbol Description
System Action Blue rectangles represent actions taken by the
system.

Dark red rhomboids represent branches
(decision points) in the logic.

Decision
Point

(PeopleCode Event) Green ellipses represent PeopleCode Events.

(Subsequence) Teal ellipses are subprocesses.

It’s important to keep a clear distinction between the processing sequences described here and
processing groups. Processing groups are units of processing that, as a whole, run either on the
client or on the application server. Also, processing groups are not applicable when using the

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

PeopleSoft Internet Architecture: all processing runs on a server in PeopleSoft Internet
Architecture.

@ For more information see Processing Groups.

Most of the sequences described in the following sections correspond to the high-level behaviors
defined in Component Processor Behavior. However, two of the sections describe subsequences
that occur only in the context of a larger sequence. These are Default Processing, which occurs in
a number of different contexts, and Row Select Processing, which most commonly occurs as a
part of component build in any of the Update action modes; RowSelect Processing also occurs
when a ScrollSelect or related function is executed to load data into a scroll.

@ Keep in mind that the sequences described here are generalized, and that under some
circumstances variations may occur, particularly when a PeopleCode function within a
processing sequence initiates another processing sequence. For example, if a row of data is
inserted or deleted programmatically during the Component Build sequence, this will set off
a Row Insert or Row Delete sequence.

Also keep in mind that this description is for components not running in deferred mode. If
your component or page is running in deferred mode, refer to Deferred Processing Mode.

Default Processing

In default processing, any "blank" fields in the component are set to their default value (if one is
specified). The default value can be specified either in the Record Field Properties, or in
FieldDefault PeopleCode. If no default value is specified, the field is left blank.

@ In the PeopleSoft Internet Architecture, if an end-user changes a field, but there is nothing to
cause a trip to the server on that field, default processing and FieldFormula PeopleCode
don't run. They only run when some other event causes a trip to the server.

Default processing is relatively complex. For the sake of clarity, the following two sections
describe (1) how default processing works on the level of the individual field, and (2) how default
processing works in the broader context of the component.

Field-Level Default Processing

During default processing the Component Processor "looks at" all fields in all rows of the
component. On each field, it does the following:

10-10 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

1. If'the field is set to NULL (blank) for a character field or set to O for a numeric field the
Component Processor sets the field to any default value specified in the record field
properties for that field.

2. If no default value for the field is defined in the record field properties, then the Component
Processor fires the FieldDefault event, which triggers any FieldDefault PeopleCode
associated with the record field or the component record field.

3. Ifan Error or Warning executes in any FieldDefault PeopleCode a runtime error occurs that
forces the end-user to cancel the page.

@ Important! Avoid using Error and Warning statements in FieldDefault PeopleCode.

The following flowchart shows this logic:

! No
Field Blank

Yes

Record field property
default

Field Blank

FieldDefault

Error/Warning Result

| Continue processing... r

Unrecoverable error:
cancel page

Field-Level Default Sequence Flow

Default Processing on Component Level

Under normal circumstances, default processing in a component is relatively simple: each field on
each row of data undergoes Field-Level Default Processing. For typical development tasks, this
is all you need to be concerned with. However, the complete context of default processing is
somewhat more complex.

1. Field-Level Default Processing is done on all fields on all rows of data in the component.

2. If any field is still blank and any other field in the component has changed, Field-Level
Default Processing may be repeated, in case a condition changed that causes default
processing to now assign a value to something that was left blank previously.

3. The FieldFormula Event fires on all fields on all rows of data in the component. This
PeopleCode event is now often used for FUNCLIB _ (function library) record definitions to
store shared functions, so normally no PeopleCode programs execute.

4. Ifthe FieldFormula Event changed anything, then Field-Level Default Processing is done
again, in case FieldFormula PeopleCode blanked out a field or changed something that causes

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

default processing to now assign a value to something that was left blank previously. Since
there shouldn’t be any FieldFormula PeopleCode, this is unlikely to affect the development
process or performance.

5. Once again, if any field is still blank and any other field in the component has changed,
Field-Level Default Processing is repeated.

The following flowchart shows this logic:

(Field-Level Default Processing)47

Any field blank and
another field changed

Result

Else

C FieldFormula)
(Field-Level Default Processing)47

Any field blank and
another field changed

Result

Else

| Continue processing... |

Default Processing on Component Level

Search Processing in Update Modes

If the end-user chooses any of the Update action modes (Update, Update/Display All, or
Correction), the Component Processor begins Update Mode search processing.

1. The Searchlnit PeopleCode event fires, which triggers any Searchlnit PeopleCode associated
with the record field or the component search record, on the keys or alternate search keys in
the component search record. This permits you to control the search dialog field values or the
search dialog appearance programmatically, or to perform other processing prior to the search
dialog display.

@ Set the search record for the component in the Component Properties.

For example, the following program in Searchlnit PeopleCode on the component search key
record field EMPLID sets the search key page field to the user’s employee ID, grays out the
page field, and enables the user to modify the user’s own data in the component:

EMPLID = %EmployeeId;
Gray (EMPLID) ;

AllowEmplIdChg (true) ;

10-12 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=,

Effects of SetSearchDialogBehavior: Normally a search dialog is displayed. However,
SetSearchDialogBehavior can be used to set the behavior of the search dialog before it is
displayed. If SetSearchDialogBehavior is set to Force display, the dialog will be displayed
even if all required keys have been provided. You can also set SetSearchDialogBehavior to
skip if possible.

2. The search dialog and prompt list appears, in which the user can enter search keys, or select
an Advanced search, to enter alternate search keys.

Effects of SetSearchDefault: Normally the values in the search dialog are not set to default
values. However, if the SetSearchDefault function was executed in Searchlnit PeopleCode
for any of the search key or alternate search fields, those specific field in the dialog are set to
their system default. No other default processing occurs (that is, the FieldDefault event does
not fire).

3. The end-user enters a value or partial value in the search dialog, then clicks on Search.

4. The SearchSave PeopleCode event fires, which triggers any SearchSave PeopleCode
associated with the record field or the component search record, on the search keys or
alternate search keys in the search Record. This allows you to validate the user entry in the
Search Dialog by testing the value in the search record field in PeopleCode and, if necessary,
issuing an error or warning. If an Error statement is executed in SearchSave, the end-user is
sent back to the search dialog. If a Warning is executed the end-user can click OK to
continue or click cancel to return to the search dialog and enter new values.

If partial values are entered, such that the Component Processor can select multiple rows,
then the Prompt List dialog is filled and the end-user can choose a value. If key value(s) from
the search dialog are blank or if the system can’t select any data based on the end-user entry
in the search dialog, the system displays a message and re-displays the search dialog. If the
values entered produce a unique value, the Prompt List isn't filled: instead, the end-user is
taken directly to the page.

Effects of SetSearchEdit: Normally no system edits are applied when the end-user changes a
field in the search dialog. However, if SetSeachEdit is executed for specific search dialog
fields in SearchInit PeopleCode, the system edits will be applied to those fields after the end-
user changes a field and either leaves the field or clicks Search. If the end-user entry in the
field fails the system edits, the system displays a message, highlights the offending field, and
returns the end-user to the dialog. The FieldEdit and SaveEdit PeopleCode events do not
fire.

SearchSave does not fire after values are selected from the search list. If you need to
validate data entered in the search dialog, use the Component PreBuild event to do so.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

10-14

JANUARY 2001

5. The Component Processor buffers the search key values. If the end-user then opens another
component while this component is active, the Component Processor will use the same search

key values and bypass the search dialog.

The following flowchart shows this logic. (It does not show the effects of executing the

SetSearchDefault and SetSearchEdit functions.)

Search Processing Logic in Update Modes

4>| Search Dialog Display |

No value or
no rows
found

selected

earch and
Fill List

Partial key
value

Unique value

| Prompt List |

Error/
Warning Cancel

Accept/
Warning OK

| Buffer search key values |<7

You can use the IsSearchDialog function to create PeopleCode that runs only during search
processing. To create processes that run only in a specific action mode, use the %Mode
system variable. This could be useful in code that is part of a library function and that is
invoked in places other than from the search dialog. It could also be used in PeopleCode

associated with a record field that appears in pages as well as in the search dialog.

Search Processing in Add Modes

When the end-user starts up a component in Add or Data Entry mode, the Component Processor:

1.

Runs default processing on the high-level keys to be displayed in the Add or Data Entry

dialog.

Fires the RowlInit event, which triggers any RowlInit PeopleCode associated with the record

field or the component record, on the Add or Data Entry dialog fields.

PEOPLECODE AND THE COMPONENT PROCESSOR

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

3. Fires the Searchlnit event on dialog fields, which triggers any Searchlnit PeopleCode
associated with the record field or the component search record. This allows you to execute
PeopleCode programs before the dialog is displayed.

4. Displays the Add or Data Entry dialog.
5. If the end-user changes a dialog field then leaves the field or clicks OK:
= In Add Mode only (not Data Entry mode) a Field Modification processing sequence occurs.

= Default processing is run on the Add or Data Entry dialog field(s). Normally this won’t have
any effect, because the field(s) will have a value.

6. When the end-user OK’s the dialog, fires the SaveEdit event, which triggers any PeopleCode
associated with the record field or the component record..

7. Fires the SearchSave event, which triggers any SearchSave PeopleCode associated with the
record field or the component search record. This allows you to validate the end-user entry in
the dialog. If an Error statement is executed in SearchSave, the end-user is sent back to the
Add or Data Entry dialog. If a Warning is executed the end-user can click OK to continue
or click cancel to return to the dialog and enter new value(s).

8. Buffers the search key values and continues processing.

@ It’s simpler than it seems. If you compare the following diagram with Search Processing in
Update Modes, you will notice that the add modes are considerably more complex and
involve more PeopleCode events. However, in practice PeopleCode development is similar
in both cases: PeopleCode that runs before the dialog appears (for example to control dialog
appearance or set values in the dialog fields) generally goes in the SearchInit event;
PeopleCode that validates end-user entry in the dialog goes in the SearchSave event.

The following flowchart shows this logic.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Default processing

1

[}
| Add: 1
1
I mode |
Field Edited System Edits only |
' |
No | H

Fall
, Result i |
| .
' |
| .
' |
' |
El
! Result il i
| | .
| Accept/Warning |
| .
POy ety rera e CRC PO LU H |
Default processing
SaveEdit
Error/Warning

Cancel @

Accept/Warning OK

Error/Warning
Cancel

Accept/Warning OK

I Buffer search key values I

Search Processing Logic in Add and Data Entry Modes

@ You can use the IsSearchDialog function to create PeopleCode that runs only during search
processing. To create processes that run only in a specific action mode, use the %Mode
system variable. This could be useful in code that is part of a library function and that is
invoked in places other than from the search dialog. It could also be used in PeopleCode
associated with a record field that appears in pages as well as in the search dialog.

Component Build Processing in Update Modes
Once the Component Processor has saved the search keys values for the component, it uses the

search key values to select rows of data from the database server using a SQL Select. After the
rows are retrieved, the Component Processor:

10-16 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

1. Performs Row Select Processing, in which rows of data that have already been selected from
the database server can be filtered before they are added to the component buffer.

2. Fires the PreBuild event, which triggers any PreBuild PeopleCode associated with the
component record, giving you an opportunity to set global or component scope variables that
can be used later by PeopleCode located in other events. PreBuild is also used to validate data
entered in the search dialog, after a prompt list is displayed.

@ If a PreBuild PeopleCode program issues an error or warning, the end-user is returned to the
search page. If there is no search page, that is, the search record has no keys, a blank
component page displays.

3. Performs Default Processing on all the rows and fields in the component.

4. Fires the Rowlnit event, which triggers any RowlInit PeopleCode associated with the record
field or the component record. The RowlInit event gives you an opportunity to
programmatically initialize the values of non-blank fields in the component.

5. Fires the PostBuild event, which triggers any PostBuild PeopleCode associated with the
component record, giving you an opportunity to set global or component scope variables that
can be used later by PeopleCode located in other events.

6. Fires the Activate event, which triggers any Activate PeopleCode associated with the page
about to be displayed, allowing you to programmatically control the display of that page.

7. Fires the PSControllnit event, which triggers any PSControllnit PeopleCode for any ActiveX
controls on the page. This allows you to initially set the control and fill it with data.

@ PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

If you place an ActiveX control in a scroll that has an occurs count greater than one, the
PSControllnit event will fire once for every occurrence. That is, if the scroll has an occurs
count of 3, PSControllnit will fire 3 times.

8. Displays the component and waits for end-user action.

The following flowchart shows this logic.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

10-18

RowSelect processing
PreBuild
Default processing

PostBuild

PSControllnit

Display page,
wait for user action

Component Build Processing in Update Modes

PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

Row Select Processing

Row Select processing provides an opportunity for PeopleCode to filter out rows of data after
they have been retrieved from the database server via a SQL Select and before they are copied to
the component buffers.

Row Select processing is a subprocess of Component Build Processing in Add Modes. It also
occurs after a ScrollSelect or related function is executed.

This technique is not often used in recent applications, because it is far more efficient to
filter out the rows using a search view, an effective dated record, the ScrollSelect or a related
function, or the Select method, before they are brought down to the browser.

In Row Select processing the Component Processor:
1. Checks whether there are any more rows to add to the component.

2. Fires the RowSelect event, which triggers any RowSelect PeopleCode associated with the
record field or component record. This provides an opportunity for PeopleCode to filter rows
using the StopFetching and DiscardRow functions. StopFetching causes the system to add
the current row to the component, then stop adding rows to the component. DiscardRow
filters out a current row, then continues the Row Select process.

3. If neither StopFetching nor DiscardRow is called, the Component Processor adds the rows to
the page and checks for the next row. The process continues until there are no more rows to

PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

add to the component buffers. If both StopFetching and DiscardRow are called, the current
row is not added to the page, and no more rows are added to the page.

@ In RowSelect PeopleCode, you can only refer to record fields on the record that is currently
being processed because the buffers are in the process of being populated. This means the
data might not be present.

The following flowchart shows this logic:

No More rows
to read?

Yes
RowsSelect

StopFetching only

DiscardRow only

D

StopFetching AN
DiscardRow

Neither function called

Add row to page

- n Add current
Continue processing... row to page

Row Select Processing Logic

Component Build Processing in Add Modes

After search processing in Add or Data Entry modes, the Component Processor:

1. Runs default processing on all page fields. This gives you an opportunity to set default fields
programmatically using FieldDefault PeopleCode.

2. Fires the RowlInit event on all fields in the component, which triggers any RowlInit
PeopleCode associated with the record field or component record. This allows you to
initialize the state of page controls using RowInit PeopleCode before they are displayed.
(Rowlnit allows you to set the values of non-blank fields programmatically, whereas default
processing is used to set blank fields to their default values.)

3. Fires the PostBuild event, which triggers any PostBuild PeopleCode associated with the
component record, giving you an opportunity to set global or component scope variables that
can be used later by PeopleCode located in other events.

4. Fires the Activate event, which triggers any Activate PeopleCode associated with the page
about to be displayed, allowing you to programmatically control the display of that page.

5. Fires the PSControllnit event, which triggers any PSControllnit PeopleCode for any ActiveX
controls on the page. This allows you to initially set the control and fill it with data.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-19

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

If you place an ActiveX control in a scroll that has an occurs count greater than one, the
PSControllnit event will fire once for every occurrence. That is, if the scroll has an occurs
count of 3, PSControllnit will fire 3 times.

6. Displays a new component using the search key(s) obtained from the Add or Data Entry
dialog with other fields set to their default values.

The following flowchart shows the logic:

Default processing

PostBuild

PSControllnit

Display page,
wait for user action

Logic of Component Build Processing in Add Modes

@ PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

Field Modification

The Field Modification processing sequence occurs after the end-user does any of the following:
e Changes the contents of a field, then leaves the field.
¢ Changes the state of a radio button or checkbox.

e Clicks on a command push button.

@ Modifying an ActiveX control is not part of the Field Modification processing sequence.
Any changes to an ActiveX control are handled by the events local to that Active X control.
For more information see Implementing ActiveX Controls.

In this sequence the Component Processor:

10-20 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

1. Performs standard system edits.

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

To reduce trips to the server, some processing must be done locally on the machine where the
browser is located, while some is performed on the server.

Standard system edits can be done either on the browser utilizing local JavaScript code or on
the application server. The following chart outlines where these system edits are done.

System Edits

Where executed

checking data type Browser
formatting Application server / browser
updating current or history record Browser
effective date Browser
effective date/sequence Browser
new effective date in range Browser

duplicate key Application server
current level is not effective-dated but Browser

one of its child scrolls is

required field Browser

date range Browser

prompt table Application server

translate table

Browser

yes/no table

Depends on field type. Browser if the field is a
checkbox. Application server if the field is an edit
box and the values are Y or N.

@ Default processing for the field can be done on the browser only if the default value is
specified as a constant in the Record Field Properties. If the field contains a default, these
defaults will only occur upon Component initialization. Then, if a user then blanks out a

default value, it will not be reinitialized.

The required fields check is not performed on derived work fields when you tab out of a

field.

If the data fails the system edits, the Component Processor displays an error message and
highlights the field in the system color for errors (usually red).

2. If the field passes the system edits, Component Processor fires the FieldEdit PeopleCode
event, which triggers any FieldEdit PeopleCode associated with the record field or the
component record field. This permits you to perform additional data validation in
PeopleCode. If an Error statement is called in any FieldEdit PeopleCode, Component
Processor treats the error as it does a system edit failure: a message is displayed and the

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLECODE AND THE COMPONENT PROCESSOR 10-21

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

10-22

offending field is highlighted. If a Warning statement is executed in any FieldEdit
PeopleCode, a warning message appears alerting the end-user to a possible problem, but the
system accepts the change to the field.

If the field change is accepted, the Component Processor writes the change to the component
buffer, then fires the FieldChange event, which triggers any FieldChange PeopleCode
associated with the record field or the component record field. This event allows you to add
processes other than validation initiated by the changed field value, such as changes to page
appearance or recalculation of values in other page fields. An Error or Warning statement
in any FieldChange PeopleCode causes an unrecoverable runtime error and forces
cancellation of the page.

Important! We recommend against putting an Error or Warning statement in any
FieldChange PeopleCode. All data validation should be performed in FieldEdit.

After FieldChange processing, Component Processor runs default processing on all page
fields, then redisplays the page. If the end-user has blanked out the changed field, or if
SetDefault or a related function is executed, and the changed field has a default value
specified in the record field definition or any FieldDefault PeopleCode, the field will be re-
initialized to the default.

The following flowchart shows this logic:

| System edits li

(Default Processing) | Display error message |
Unrecoverable error: Display page, Highlight field,
cancel page wait for user action redisplay page

Logic of Field Modification Processing

PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=,

Note on PSControllnit. If the end-user changes a field using a drop down list or other
prompt, the page will be redrawn and the PSControllnit event will fire after default
processing. If the end-user scrolls down, the page will be redrawn and PSControllInit will
fire. If the end-user tabs into a field, types a change, then tabs out of the field, PSControlInit
will not fire. Also note: PSControllnit is only applicable in the Windows client, not in the
PeopleSoft Internet Architecture.

Note on processing groups. The logic shown here occurs as one sequence initiated by a
end-user changing a field value. However, for purposes of partitioning, the FieldEdit and
FieldChange parts of the sequence form two different processing groups. In three-tier mode,
FieldEdit PeopleCode always runs on the client (in Windows.) FieldChange and related
processing can run on either the client or the application server. For more information, see
Processing Groups. Also note: All events run on the application server in the PeopleSoft
Internet Architecture. Processing groups only apply to Windows Client.

Row Insert Processing

Row Insert processing occurs when:

e The end-user requests a row insert in a scroll by pressing ALT+7 then pressing ENTER, clicking
the Insert Row button, or the New button.

¢ A PeopleCode Rowlnsert function or a InsertRow method requests a row insert.
In either case the Component Processor:

1. Inserts a new row of data into the active scroll area. If the scroll area has a dependent scroll
area, the system inserts a single new row into the blank scroll area—it continues until it
reaches the lowest-level scroll area.

2. Fires the RowlInsert PeopleCode event, which triggers any RowlInsert PeopleCode associated
with the record field or the component record. This event hits fields only on the inserted row,
and any dependent rows that were inserted on lower-level scroll areas.

3. Runs default processing on all component fields. Normally this will affect only the inserted
row fields, and fields on its dependent rows, since other rows will already have undergone
default processing.

4. Fires the Rowlnit PeopleCode event, which triggers any RowlInit PeopleCode associated with
the record field or the component record. This event affects fields only on the inserted row
and any dependent rows that were inserted.

5. Fires the PSControllnit event, which triggers any PSControllnit PeopleCode for any ActiveX
controls on the page. This allows you to initially set the control and fill it with data.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-23

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

If you place an ActiveX control in a scroll that has an occurs count greater than one, the
PSControllnit event will fire once for every occurrence. That is, if the scroll has an occurs
count of 3, PSControllnit will fire 3 times.

6. Redisplays the page and waits for end-user action.

@ Important! We recommend against putting an Error or Warning statement in RowlInsert
PeopleCode. All data validation should be performed in FieldEdit or SaveEdit PeopleCode.

The following flowchart shows this logic:

| Insert new row |

Error/Warning

Default processing
Rowlnit Record

PSControlinit

Unrecoverable error:
cancel page

Display page,
wait for user action

Logic of Row Insert Processing

@ If none of the data fields in the new row are changed after the row has been inserted (either
programmatically or by the end-user), when the page is saved, the new row isn’t inserted
into the database.

@ PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

Row Delete Processing

Row Delete processing occurs when:

e The end-user requests a row delete in a scroll by pressing ALT+8 then pressing ENTER, clicking
the Delete Row button, or clicking the Delete button.

10-24 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

¢ A PeopleCode RowDelete function or a DeleteRow method requests a row delete.
In any case the Component Processor:

1. Fires the RowDelete PeopleCode event, which triggers RowDelete PeopleCode associated
with the record field or the component record. This event hits fields on the deleted row and
any dependent child scrolls. RowDelete PeopleCode allows you to check for conditions and
control whether the end-user can delete the row. An Error statement displays a message and
prevents the end-user from deleting the row. A Warning statement displays a message
alerting the end-user about possible consequences of the deletion, but permits deletion of the
TOW.

2. If the deletion is rejected the page is redisplayed after the error message.

3. If the deletion is accepted, the row, and any child scrolls dependent on the row, are flagged as
deleted. It no longer appears in the page, but it is not physically deleted from the buffer and
can be accessed by PeopleCode all the way through the SavePostChange event (note,
however, that SaveEdit PeopleCode is not run on deleted rows).

4. Runs default processing on all component fields.

5. Fires the PSControllnit event, which triggers any PSControllnit PeopleCode for any ActiveX
controls on the page. This allows you to initially set the control and fill it with data.

@ PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

If you place an ActiveX control in a scroll that has an occurs count greater than one, the
PSControllnit event will fire once for every occurrence. That is, if the scroll has an occurs
count of 3, PSControllnit will fire 3 times.

6. Redisplays the page and waits for end-user action.

@ Note about deleted rows. PeopleCode programs are triggered on rows flagged as deleted in
SavePreChange and SavePostChange PeopleCode. Use the RecordDeleted function, or the
IsDeleted Row property, to test whether a row has been flagged as deleted. You can also
access rows flagged as deleted by looping through the rows of a scroll area using a For loop
delimited by the value returned by the TotalRowCount function or the RowCount Rowset

property.

The following flowchart shows this logic:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-25

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

(RowDelete)

AccepUWarning

| Row flagged as deleted |

Delete rejected | i

(Default processing)
(PSControllnit)

I

Display page,
wait for user action

Logic of Row Delete Processing

@ PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

PushButtons

When the end-user presses a pushbutton, this initiates the same processing as changing a field.
Typically PeopleCode programs launched by push buttons are placed in the FieldChange event.

@ For more information see Field Modification.

Prompts

No PeopleCode event fires as a result of prompts, returning to the search dialog or displaying a
calendar. This process is controlled automatically by the system.

Pop-up Menu Display

To display a pop-up menu, an end-user can click on the pop-up button, either next to a field or at
the bottom of a page (if the page has a pop-up menu associated with it.) The end-user can display
a standard pop-up menu on a page field if no pop-up menu has been defined by an application
developer for that page field.

The PrePopup PeopleCode event fires only if the end-user displays a pop-up menu defined by an
application developer on a page field. It doesn’t fire before a pop-up menu attached to the page
background.

10-26 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The PrePopup PeopleCode event allows you to disable, check, or hide menu items in the pop-up.

PrePopup PeopleCode menu item operations (such as HideMenultem, EnableMenultem, and so
on) work with pop-up menus attached to a grid, not a field in a grid, only if the PrePopup
PeopleCode meant to operate on that pop-up menu resides in the record field that is attached to
the first column in the grid. It doesn’t matter if the first field is visible or hidden.

The following flowchart shows this logic:

| User request popup menu |

I
(oo)

| Display popup menu |

Logic of PrePopup Processing

ItemSelected Processing

ItemSelected processing occurs when a end-user chooses a menu item from a pop-up menu. This
fires the ItemSelected PeopleCode event, which is a menu PeopleCode event.

@ For more information see Menu Item PeopleCode.

The following flowchart shows this logic:

| User chooses menu item |

I
C ItemSelected)
I

Display page,
wait for user action

Logic of ltemSelected Processing

PSLostFocus Processing

PSLostFocus processing occurs after a end-user has selected an ActiveX control on a page, then
leaves the ActiveX control. This fires the PSLostFocus PeopleCode event.

@ PSLostFocus is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-27

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

[0

10-28

For more information see Implementing ActiveX Controls.

The following flowchart shows this logic:

| User selects ActiveX control |

I

| User leaves ActiveX control |

I
C PSLostFocus)
I

Display page,
wait for user action

Logic of PSLostFocus Processing

Save Processing

The end-user can direct the system to save a component by clicking Save or by pressing ALT+1,
then ENTER. PeopleSoft will also prompt the end-user to save a component when the Next or List
icon button is selected, or when a new action or component is selected. In all cases the
Component Processor:

1. Fires the SaveEdit PeopleCode event, which triggers any SaveEdit PeopleCode associated
with a record field or a component record. This gives you a chance to cross-validate the page
fields before saving, checking consistency among the page field values. An Error statement
in SaveEdit PeopleCode displays a message and then re-displays the page, aborting the save.
A Warning statement allows the end-user to cancel save processing by pressing Cancel, or
continue with save processing by pressing OK.

2. Fires the SavePreChange event, which triggers any SavePreChange PeopleCode associated
with a record field, a component record, or a component. SavePreChange PeopleCode gives
you a chance to process data after validation and before the database is updated.

3. Fires the Workflow event, which triggers any Workflow PeopleCode associated with a record
field or a component. Workflow PeopleCode should be used only for workflow-related
processing (TriggerBusinessEvent and related functions).

4. Updates the database with the changed component data, performing any necessary SQL
Inserts, Updates, and Deletes.

5. Fires the SavePostChange PeopleCode event, which triggers any SavePostChange
PeopleCode associated with a record field, a component record, or a component.
SavePostChange PeopleCode can be used for processing that needs to occur after the
database update, such as updates to other database tables not in the component buffer.

6. Issues a SQL Commit to the database server.

7. Depending on whether the end-user has requested a new component, either:

PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=

= fires the PSControllnit event and re-displays component
or

= starts a new component.

If you place an ActiveX control in a scroll that has an occurs count greater than one, the
PSControllnit event will fire once for every occurrence. That is, if the scroll has an occurs
count of 3, PSControllnit will fire 3 times.

PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture. Important! Never use an Error or Warning statement in any Save Processing
event other than SaveEdit. All component data validation should be performed in SaveEdit.

SaveEdit

Error/Warning cancel

Accept/Warning OK

SavePreChange
WorkFlow

SQL Insert,
Update, Delete

SavePostChange

| SQL Commit |

New page No

requested

4
PSControllnit
Yes

Display page,
wait for user action

Start new page

Logic of Save Processing

Note on processing groups. The logic shown here occurs as one sequence initiated by a
end-user saving a component. The Component Save processing group, which, in three-tier
mode, can run on either the client or the application server. Though SaveEdit is part of the
Component Save processing group, individual SaveEdit PeopleCode programs can be
specified to run on either the client or the server. For more information, see Processing
Groups.

PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-29

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Exit Component

When the end-user clicks EXIT, the component is canceled, the component buffer is cleared, the
Component Processor returns to reset state and the user must login again. No PeopleCode events
are fired.

PeopleSoft Internet Architecture Processing Considerations

¢ In the PeopleSoft Internet Architecture, if an end-user changes a field, but there is nothing to
cause a trip to the server on that field, default processing and FieldFormula PeopleCode don't
run. They only run when some other event causes a trip to the server.

This means other fields that depend on the first field using FieldFormula or default
PeopleCode are not updated until the next time there is a server trip.

e In application that run on the PeopleSoft portal, external, dynamic hyperlink information must
be placed in RowlInit PeopleCode. If it's placed in FieldChange PeopleCode, it won't work.

@ This consideration doesn't apply to applications that run on Internet Client.

Deferred Processing Mode

When a component is running in deferred processing mode, trips to the server are reduced. When
deploying some pages in the browser, you may want the user to be able to input data with
minimal interruption or trips to the server. Each trip to the server results in the page being
complete refreshed on the browser, which may cause the display to flicker. It can also slow down
your application. By specifying a component as Deferred Processing Mode, you can achieve
better performance.

If you've specified Deferred Processing Mode for a component, you can then specify whether a
page within a component, or a field on a page, will also do their processing in deferred mode. The
default is for all pages and fields to allow deferred processing.

Specifying that a field or page allows deferred processing, then not setting the component to
Deferred Processing Mode, will not start deferred processing mode. You must set the component
first.

@ For more information on how to set Deferred Processing Mode for components, pages or
fields, see the appropriate sections in Application Designer.

The characteristics of this mode are:

1. Field modification processing is deferred.

10-30 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

No field modification processing is done on the browser. FieldEdit and FieldChange
PeopleCode, as well as other edits, such as required field checks, formats, and so on, will not
run until a specific user action occurs. Several actions cause field modification processing to
execute, for example, clicking on a push button or hyperlink, navigating to another page in
the component, and saving the page. The following actions will net cause field processing:

launching an External Link
clicking a List (Search)
clicking a Process push button

Deferred processing mode affects the appearance of pages in significant ways. For example,
related processing will not be done when the user tabs off a field. Consequently, PeopleSoft
recommends avoiding related fields for components that use this mode.

Drop-down list values are static while the page is displayed on the browser.

Drop-down list values will be generated on the application server when generating the HTML
for the page.

If translate values are used to populate the drop-down list and the current record contains an
effective date, that date is static while the page is displayed. This means the drop-down list
values may become out of date.

If prompt table values are used to populate the drop-down list, the high-order key field values
for the prompt table are static while the page is displayed. This means the drop-down list
values may become out of date.

PeopleSoft recommends that drop-down lists used on pages executed in deferred mode
shouldn't have any interdependencies because the lists may become out of date so easily.

No field modification processing is done during prompt button processing.

When the user clicks a prompt button, a trip is made to the application server (if values
weren't already downloaded) to select the search results from the database and to generate the
HTML for the prompt dialog. During this trip to the application server, field modification
processing is not performed because this may cause an error message for another field on the
page, and this may confuse the user. While the page displays the high-order key field values
for the prompt table should be static or not require field modification processing. Display-
only, drop-down list, radio button, and check box fields do not require field modification
processing. Field values that do not require field modification processing are temporarily
written to the Component buffer, without any field modification processing being performed
on them, including FieldEdit and FieldChange PeopleCode. The system restores the original
state of the page processor before returning to the browser.

Field modification processing executes in field layout order.

The entire field modification processing sequence executes in field layout order for each
field. If a field passes the system edits and FieldEdit PeopleCode, the field value is written to
the component buffer. If an error occurs, field modification processing stops and the system
generates new HTML for the page with the field in error highlighted and sent to the browser.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-31

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

5. PeopleCode dependencies between fields on the page will not work as expected.

PeopleSoft recommends avoiding PeopleCode dependencies between fields on pages
displayed in deferred processing mode. Also, avoid FieldChange PeopleCode that changes
the display.

The following are examples of PeopleCode dependencies between fields on the page and the
application server's action. In the following examples, field A comes before field B, which
comes before field C.

= Field A has FieldChange PeopleCode that hides or grays field B. The value in field B of the
page that was submitted from the browser will be discarded.

= Field B has FieldChange PeopleCode that hides or grays field A. The change made by the
user for field A, if any, remains in the Component buffer.

= Field A has FieldChange PeopleCode that changes the value in the Component buffer for
field B. If the value in field B of the page that was submitted from the browser passes the
system edits and FieldEdit PeopleCode, it will be written to the Component buffer,
overriding the change made by field A’s FieldChange PeopleCode.

= Field B has FieldChange PeopleCode that changes the value in the Component buffer for
field A. The change made by field B’s FieldChange PeopleCode overrides the change made
by the user to field A, if any.

= Field A has FieldChange PeopleCode that un-hides or un-grays field B. Field B has the value
that was already in the Component buffer. If the user requests a different page or finishes,
they may not have the opportunity to enter a value into field B and therefore the value may
not be correct.

= Field B has FieldChange PeopleCode that changes the value in the Component buffer for
field A, but field C has FieldChange PeopleCode that hides or grays field B. The change
made by field B’s FieldChange PeopleCode, a field that is now hidden or grayed, overrides
the change made by the user to field A, if any.

There are other examples of PeopleCode dependencies between fields on the page.
PeopleSoft recommends avoiding such dependencies by moving FieldChange PeopleCode
logic from individual fields to save processing for the Component or FieldChange
PeopleCode on a PeopleCode Command push button.

6. Not all push buttons cause field modification processing to execute.

Specifically, External Link, List (Search), and Process push buttons do not cause field
modification processing to execute.

7. A PeopleCode Command push button can be used to cause field modification processing to
execute.

An application can include to have a push button for the sole purpose of causing field
modification processing to execute. The result is a new page showing any display changes
that resulted from field modification processing.

8. A scroll push button (hyperlink) causes field modification processing to execute.

10-32 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

PeopleCode Events

The preceding sections discussed when sequences of PeopleCode events occur, and under what
conditions they trigger PeopleCode programs. The following sections discuss the individual
PeopleCode events.

@ Note on "PeopleCode Types." The term "PeopleCode type" is still frequently used, but it
fits poorly into the new PeopleTools object-based, event-driven metaphor. The term
PeopleCode event should now be used instead. However, it’s often convenient to qualify a
class of PeopleCode programs triggered by a specific event with the event name; for
example, PeopleCode programs associated with the RowInit events are collectively referred
to as Rowlnit PeopleCode.

Activate Event

The Activate event is fired every time the page is activated. This means when the page is first
brought up by the end-user, or if a end-user tabs between different pages in a component. Every
page has its own Activate event.

The main purpose of the Activate event is to segregate the PeopleCode that is related to a specific
page from the rest of your application’s PeopleCode. PeopleCode related to page display or page
processing, such as enabling a field or hiding a scroll, is best put in this event. Also, you can use
this event for security validation: if an user doesn’t have clearance to view a page in a component,
you would put the code for hiding it in this event.

@ PeopleSoft builds a page grid one row at a time. Because the Grid class applies to a
complete grid, you can’t attach PeopleCode that uses the Grid class to events that occur
before the grid is built; the earliest event you can use is the Activate event.

The Activate event isn't associated with a specific row and record at the point of execution.
This means you can't use functions such as GetRecord, GetRow, and so on, that rely on
context, without specifying more context.

Activate PeopleCode can only be associated with pages.

This event is only valid for pages that are defined as Standard or Secondary. This event is not
supported for subpages.

@ For more information see Component Build Processing in Update Modes and Component
Build Processing in Add Modes.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-33

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

FieldChange Event

FieldChange PeopleCode is used to recalculate page field values, change the appearance of page
controls, or perform other processing that results from a field change other than data validation.
To validate the contents of the field, use FieldEdit Event.

The FieldChange event fires on the specific field and row that just changed.

Do not use Error or Warning statements in FieldChange PeopleCode: these statements cause a
runtime error that forces the end-user to cancel the page without saving changes.

FieldChange PeopleCode is often paired with RowInit PeopleCode. In these
RowlInit/FieldChange pairs, the RowlInit PeopleCode checks values in the component and
initializes the state or value of page controls accordingly. FieldChange PeopleCode then rechecks
the values in the component during page execution and resets the state or value of page controls.

To take a simple example, suppose you have a Derived/Work field called PRODUCT, the value
of which is always the product of page field A and page field B. When the component is
initialized you would use RowInit PeopleCode to initialize PRODUCT equal to A * B when the
component starts up or when a new row is inserted. You could then attach FieldChange
PeopleCode programs to both A and B which also set PRODUCT equal to A * B. Whenever the
end-user changes the value of either A or B, PRODUCT would be recalculated.

FieldChange PeopleCode can be associated with record fields and component record fields.

@ For more information see Field Modification.

FieldDefault Event

The FieldDefault PeopleCode event allows you to programmatically set fields to default values
when they are initially displayed. This event is fired on all page fields as part of many different
processes; however it only triggers PeopleCode programs when the following conditions are all
true:

e The page field is still blank after applying any default specified in the record field properties.
(This will be true if there is no default specified, if a null value is specified, or if a 0 is
specified for a numeric field.)

o The field has a FieldDefault PeopleCode program.

In practice, FieldDefault PeopleCode normally defaults fields when new data is being added to
the component; that is, in Add mode and when a new row is inserted into a scroll.

You must attach FieldDefault PeopleCode to the specific field that is being defaulted.

@ An Error or Warning issued from FieldDefault PeopleCode will cause a runtime error and
force cancellation of the component.

10-34 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

FieldDefault PeopleCode can be associated with record fields and component record fields.

@ For more information see Default Processing.

FieldEdit Event

FieldEdit PeopleCode is used to validate the contents of a field, supplementing the standard
system edits. If the data does not pass the validation, the PeopleCode program should display a
message using the Error statement, which redisplays the page, showing an error message and
turning the field red.

If you wish to permit the field edit, but alert the end-user to a possible problem, use a Warning
statement instead of Error. A Warning statement displays a warning dialog with OK and
Explain buttons. It permits field contents to be changed and continues processing as usual after
the end-user clicks OK.

If your validation needs to check the contents of more than one field—that is, if the validation is
checking for consistency across page fields—then you need to use SaveEdit PeopleCode instead
of FieldEdit.

The FieldEdit event fires on the specific field and row that just changed.

FieldEdit PeopleCode can be associated with record fields and component record fields.

@ For more information see Field Modification.

FieldFormula Event

The FieldFormula event is a vestige of early versions of PeopleTools, and is not used in recent
applications. Because FieldFormula PeopleCode fires in many different contexts and triggers
PeopleCode on every field on every row in the component buffer, it can seriously degrade the
performance of your application. In recent PeopleSoft applications, the RowlInit and FieldChange
events are used rather than FieldFormula.

@ In the PeopleSoft Internet Architecture, if an end-user changes a field, but there is nothing to
cause a trip to the server on that field, default processing and FieldFormula PeopleCode
don't run. They only run when some other event causes a trip to the server.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-35

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

10-36

As a matter of convention, FieldFormula is now often used in FUNCLIB__ (function library)
record definitions to store shared functions. This is purely a matter of convention, and in fact you
can store shared functions in any PeopleCode event.

FieldFormula PeopleCode is only associated with record fields.

Important! Do not use FieldFormula PeopleCode in your components. Use it only to store
external PeopleCode functions in FUNLIB _ record definitions.

ItemSelected Event

The ItemSelected event fires whenever the end-user chooses menu item from a pop-up menu. In

pop-up menus ItemSelected PeopleCode executes in the context of the page field from where the
pop-up menu is attached, which means that you can freely reference and change page fields, just
as you could from a push button.

This event, and all it’s associated PeopleCode, will not fire if run from a Component
Interface.

ItemSelected PeopleCode is only associated with pop-up menu items.

For more information see ItemSelected Processing.

PostBuild Event

The PostBuild event fires after all the other component build events have fired. This event is
often used to hide or unhide pages. It’s also used to set component variables.

PostBuild PeopleCode is only associated with components.

PreBuild Event

The PreBuild event fires before the rest of the component build events. This event is often used to
hide or unhide pages. It’s also used to set component variables.

If a PreBuild PeopleCode program issues an error or warning, the end-user is returned to the
search page. If there is no search page, that is, the search record has no keys, a blank
component page displays.

PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The PreBuild event is also used to validate data entered in the search dialog, after a prompt list is
displayed. For example, after the end-user selects key value(s) on the search, your PreBuild
PeopleCode program fires, which catches the error condition and issues an error message. The
end-user receives and acknowledges an error message. The component is cancelled (because of
the error) and the end-user is returned to the Search dialog. PreBuild PeopleCode is only
associated with components.

PrePopup Event

The PrePopup event fires just before the display of a pop-up menu.

You can use PrePopup PeopleCode to control the appearance of the Pop-up menu.

@ This event, and all it’s associated PeopleCode, will not fire if run from a Component
Interface.

PrePopup PeopleCode can be associated with record fields and component record fields.

@ For more information see Pop-up Menu Display and CheckMenultem, UnCheckMenultem,
DisableMenultem, PeopleCode Built-in Functions and Language Constructs E-M,
HideMenultem.

PSControllnit Event

The PSControllnit event fires every time the page is redrawn. This means it fires after the
component buffers are loaded and after a RowlInsert or a RowDelete. It also fires after a end-user
changes a field using a drop down or other prompt, or the end-user moves up or down a row on a
scroll. It fires after a end-user clicks Next or Previous, or any other scroll movement controls.

@ PSControllnit is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.
If you place an ActiveX control in a scroll that has an occurs count greater than one, the
PSControllnit event will fire once for every occurrence. That is, if the scroll has an occurs
count of 3, PSControllnit will fire 3 times.

Because PSControllnit can be fired so often, any PeopleCode associated with this event must be
designed so it isn’t sensitive to how often and when it gets run.

This event is only available with ActiveX controls. The PeopleCode placed in this event should
primarily be used for synchronizing the control with the buffer data. It shouldn’t be used for any
other purpose.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-37

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

=,

10-38

If you need to load data into ActiveX control and want to place that code in the
PSControllnit event, and only want it to run once in the entire session of the page, you
should make sure the code is written in such a way that it is executed only on the first time
the page is drawn but not in subsequent redraws.

This event, and all it’s associated PeopleCode, will not fire if run from a Component
Interface.

PSControllnit PeopleCode is only associated with an ActiveX control.

For more information see Component Build Processing in Update Modes and Component
Build Processing in Add Modes.

PSLostFocus Event

The PSLostFocus event fires for an ActiveX control page field when the end-user removes focus
from the control. For example, the event fires when the end-user tabs off the control.
PSLostFocus does not fire when the end-user tabs from one field to another within the control. It
only fires when the focus completely leaves the control. Use this event to move data from the
control to the component data buffers.

PSLostFocus is only applicable in the Windows client, not in the PeopleSoft Internet
Architecture.

This event, and all it’s associated PeopleCode, will not fire if run from a Component
Interface.

PSLostFocus PeopleCode is only associated with an ActiveX control.

For more information see PSLostFocus Processing.

RowDelete Event

The RowDelete event fires whenever a end-user attempts to delete a row of data from a page
scroll. You can use RowDelete PeopleCode to prevent the deletion of a row (using an Error or
Warning statement) or to perform any other processing contingent on row deletion. For
example, you could have a page field TOTAL on scroll level zero whose value is the sum of all
the EXTENSION page fields on scroll level one. If the end-user deleted a row on scroll level one
you could use RowDelete PeopleCode to recalculate the value of TOTAL.

PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The RowDelete event triggers PeopleCode on any field on the row of data that is being flagged as
deleted.

@ RowDelete does not trigger programs on Derived/Work records.

RowDelete PeopleCode can be associated with record fields and component records.

@ For more information see Row Delete Processing and Errors and Warnings in RowDelete.

Considerations when Deleting all Rows from a Scroll

When the last row of a scroll is deleted, a new, dummy row is automatically added. As part of the
RowInsert event, Rowlnit PeopleCode is run on this dummy row. If a field is changed by RowlInit
(even if it’s left blank) the row is no longer New, and therefore won’t be reused by any of the
ScrollSelect functions or the Select method. In this case, you may want to move your
initialization code from the RowlInit event to FieldDefault.

RowlInit Event

The RowInit event fires the first time the Component Processor encounters a row of data. It is
used for setting the initial state of component controls. This happens during component build
processing and row insert processing. It also happens after a ScrollSelect or related function is
executed.

RowInit is not field-specific: it triggers PeopleCode on all fields and on all rows in the component
buffer.

Do not use Error or Warning statements in RowInit PeopleCode: these cause a runtime error
and force the end-user to cancel the component without saving.

RowInit PeopleCode is often paired with FieldChange PeopleCode. In these
RowlInit/FieldChange pairs, the RowlInit PeopleCode checks values in the component and
initializes the state or value of page controls accordingly. FieldChange PeopleCode then rechecks
the values in the component during page execution and resets the state or value of page controls.

To take a simple example, suppose you have a Derived/Work field called PRODUCT, the value
of which is always the product of page field A and page field B. When the component is
initialized you would use RowlInit PeopleCode to initialize PRODUCT equal to A * B when the
component starts up or when a new row is inserted. You could then attach FieldChange
PeopleCode programs to both A and B which also set PRODUCT equal to A * B. Whenever the
end-user changes the value of either A or B, PRODUCT would be recalculated.

RowInit PeopleCode can be associated with record fields and component records.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-39

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

[0

10-40

For more information see Component Build Processing in Add Modes, Component Build
Processing in Add Modes

Exception to Rowlnit Firing

There is a special instance when RowInit won’t fire for a record. This will only occur if all of the
following are true:

o the fields you’ve placed on the page for that record are all at level 0
o the values for every field you’ve placed on the page are available in the keylist
o cvery field you’ve placed on the page are display only

If all of these conditions are true, the record isn’t loaded into the component buffer. The values
for the fields come from the keylist. To make RowlInit run, you need to add another field from the
record that violates one of these conditions (such as, place an invisible field that isn’t in the
keylist on the page.)

Rowlnsert Event

When the end-user adds a row of data, the Component Processor generates a Rowlnsert event.
You should use RowInsert PeopleCode for processing specific to the insertion of new rows. Do
not put PeopleCode in RowInsert that already exists in RowlInit, because a RowlInit event always
fires after the RowlInsert event, which will cause your code to be run twice.

If none of the fields in the new row are changed after the row has been inserted (either by the
end-user pressing ALT-7 and ENTER, or programmatically), when the page is saved, the new
row isn’t inserted into the database.

The Rowlnsert triggers PeopleCode on any field on the inserted row of data.

Do not use a Warning or Error in RowlInsert: this will cause a runtime error and force
cancellation of the component.

You can prevent the end-user from inserting rows into a scroll area by checking the No Row
Insert box in the scroll bar’s Page Field Properties; however, you can’t prevent row insertion
conditionally.

PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Page Field Properties

Label Use | General I
— Scroll Attibute

Occurs Level: |1 Occurs Count: I‘I

—Field Uze Optiong

™ Inwisible ¥ Defaul Width
™ Noduto Select ™ NoAuto Update
I i [™ MoPRow Delete

r~ Scrall Action Buttan

™ Previous Page [~ MewtPage
I= | Eovlrsert [Row Delete
™ Top ™ Battom

™ Show Row Counter

— Popup Menu

— Field Help Context Mumber:

I < Auto Azsign |

W &llow Deferred Processing

OK I Cancel |

No Row Insert in Properties of the Scroll Bar

@ Rowlnsert does not trigger PeopleCode on Derived/Work fields.

RowInsert PeopleCode can be associated with record fields and component records.

@ For more information see Row Insert Processing.

RowSelect Event

The RowSelect event fires at the beginning of the Component Build process in any of the Update
action modes (Update, Update/Display All, Correction). RowSelect PeopleCode is used to filter
out rows of data as they are being read into the component buffer. This event also occurs after a
ScrollSelect or related function is executed.

A DiscardRow function in RowSelect PeopleCode causes the Component Processor to skip the
current row of data and continue to process other rows. A StopFetching statement causes the
Component Processor to accept the current row of data, then stop reading additional rows. If both
statements are executed, the program skips the current row of data, then stops reading additional
TOWS.

PeopleSoft applications rarely use RowSelect, because it's inefficient to filter out rows of data
after they've already been selected. Recent applications screen out rows of data using search

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-41

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

record views and effective-dated tables, which filter out the rows before they're selected. You
could also use a ScrollSelect or related function to programmatically select rows of data into the
component buffer.

In previous versions of PeopleTools the Warning and Error statements were used instead of
DiscardRow and StopFetching. Warning and Error will still work as before in RowSelect, but
their use is discouraged.

@ In RowSelect PeopleCode, you can only refer to record fields on the record that is currently
being processed.
This event, and all it’s associated PeopleCode, will not fire if run from a Component
Interface.

RowSelect PeopleCode can be associated with record fields and component records.

@ For more information see Row Select Processing.

SaveEdit Event

The SaveEdit event fires whenever the end-user attempts to save the component. You can use
SaveEdit PeopleCode to validate the consistency of data in component fields. Whenever a
validation involves more than one component field, you should use SaveEdit PeopleCode. If a
validation involves only one page field, you should use FieldEdit PeopleCode.

SaveEdit is not field-specific: it triggers associated PeopleCode on every row of data in the
component buffers, except rows flagged as deleted.

An Error statement in SaveEdit PeopleCode displays a message and redisplays the component
without saving data. A Warning gives the end-user a chance to press OK and save the data, or
press Cancel and return to the component without saving.

You can use the SetCursorPos function to set the cursor position to a specific page field following
a Warning or Error in SaveEdit, to show the end-user the specific field (or at least one of the
fields) that is causing the problem. Make sure to call SetCursorPos before the Error or
Warning (because these may terminate the PeopleCode program).

SaveEdit PeopleCode can be associated with record fields and components.

@ For more information see Save Processing.

10-42 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

SavePostChange Event

After the Component Processor updates the database, it fires the SavePostChange event. You can
use SavePostChange PeopleCode to update tables not in your component using the SQLExec
built-in function.

An Error or Warning in SavePostChange PeopleCode will cause a runtime error, forcing the
end-user to cancel the component without saving changes. Avoid Errors and Warnings in the
this event.

The system issues a SQL commit after SavePostChange PeopleCode completes successfully.

If you are executing WorkFlow PeopleCode, bear in mind that if the WorkFlow PeopleCode fails,
SavePostChange PeopleCode will not be executed. If your component has both WorkFlow and
SavePostChange PeopleCode, consider moving the SavePostChange PeopleCode to
SavePreChange or WorkFlow.

If you are doing application messaging, your Publish() PeopleCode should go into this event.

@ Caution! Never issue a SQL Commit or a Rollback manually from within a SQLExec
function. Let the Component Processor issue these SQL commands.

SavePostChange PeopleCode can be associated with record fields, components and component
records.

@ For more information see Save Processing.

SavePreChange Event

The SavePreChange event fires after SaveEdit completes without errors. SavePreChange
PeopleCode gives you one last chance to manipulate data before the system updates the database;
for instance, you could use SavePreChange PeopleCode to set sequential high-level keys. If
SavePreChange runs successfully, a WorkFlow event is generated, then the Component Processor
issues appropriate INSERT, UPDATE, and/or DELETE SQL commands.

SavePreChange PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all
rows of data in the component buffer.

SavePreChange PeopleCode can be associated with record fields, components and component
records.

@ For more information see Save Processing.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-43

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Searchlnit Event

The Searchlnit event is generated just before a search dialog, add dialog, or data entry dialog is
displayed. Searchlnit triggers associated PeopleCode in the search key fields of the search
record. This allows you to control processing before the end-user enters values for search keys in
the dialog. In some cases you wish to set the value of the search dialog fields programmatically.
For example, the following program in Searchlnit PeopleCode on the component search key
record field EMPLID sets the search key page field to the user’s employee ID, grays out the page
field, and enables the user to modify the user’s own data in the component:

EMPLID = %EmployeeId;
Gray (EMPLID) ;
AllowEmplIdChg (true) ;

You can switch on system defaults and system edits during the search dialog by calling
SetSeachDefault and SetSearchEdit in Searchlnit PeopleCode. You can also control the
behavior of the search dialog, either forcing it to display even if all the required keys have been
provided, or skipping it if possible, with the SetSeachDialogBehavior function.

@ This event, and all it’s associated PeopleCode, will not fire if run from a Component
Interface.

Searchlnit PeopleCode can be associated with record fields and component search records.

@ For more information see Search Processing in Update Modes and Search Processing in Add
Modes.

For more information about the functions, see SetSearchDefault, SetSearchEdit, and
SetSearchDialogBehavior.

SearchSave Event

SearchSave PeopleCode is executed for all search key fields on a search dialog, add dialog, or
data entry dialog after the end-user clicks Search. This allows you to control processing after
search key values are entered, but before the search based on these keys is executed. A typical
use of this feature is to provide cross-field edits for selecting a minimum set of key information.
It is also used to force the user to enter a value in at least one field, even if it’s a partial value to
help narrow a search for tables with many rows.

@ SearchSave does not fire when values are selected from the search list. If you need to
validate data entered in the search dialog, use the Component PreBuild event to do so.

10-44 PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

[0

You can use Error and Warning statements in SearchSave PeopleCode to send the end-user
back to the search dialog if the end-user entry does not pass validations implemented in your
PeopleCode.

This event, and all it’s associated PeopleCode, will not fire if run from a Component
Interface.

SearchSave PeopleCode can be associated with record fields and component search records.

For more information see Search Processing in Update Modes and Search Processing in Add
Modes.

Workflow Event

Workflow PeopleCode executes immediately after SavePreChange and before the database
update that precedes SavePostChange. The main purpose of the Workflow event is to segregate
PeopleCode related to Workflow from the rest of your application’s PeopleCode. Only
PeopleCode related to Workflow (such as TriggerBusinessEvent) should be in Workflow
programs. Your program should deal with Workflow only after any SavePreChange processing is
complete.

Workflow PeopleCode is not field-specific: it triggers PeopleCode on all fields and on all rows of
data in the component buffer.

WorkFlow PeopleCode can be associated with record fields and components.

For more information see Save Processing and Writing Workflow PeopleCode.

PeopleCode Execution in Multiple Scroll Pages

Components with multiple occurs levels can have multiple rows of data from multiple primary
record definitions. You need to know the order in which the system processes buffers for this
data, because it applies PeopleCode in the same order.

The Component Processor uses a "depth-first" algorithm to process rows in multiple-scroll pages,
starting with a row at level zero and drilling down to dependent rows on lower levels, then
working its way up the hierarchy until it has processed all the dependent rows of the last row on
the highest level.

For more information see Component Buffer Structure and Contents.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND THE COMPONENT PROCESSOR 10-45

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

10-46

Scroll Level One

When pages have only one scroll bar, the Component Processor processes buffers in a
straightforward manner. It processes record definitions at scroll level zero, then all rows of data
at scroll level one.

Data is retrieved for all rows with a single SELECT statement, and then merged with buffer
structures.

Scroll Level Two

With scroll bars at multiple scroll levels, the system does the same thing for each scroll-level-one
row. It processes a single row of data at scroll level one, then processes all its subordinate rows
of data at scroll level two. After processing all subordinate data at scroll level two, it processes
the next row for scroll level one, and all the subordinate data for that row. It continues in this
fashion until it processes everything.

Scroll Level Three

The Component Processor uses the same method for processing subordinate data at scroll level
three. Data is retrieved for all rows with a single SELECT statement, and then merged with
buffer structures. When it processes a single row of data at scroll level two, it processes all
subordinate data before processing the next scroll-level-two row.

PEOPLECODE AND THE COMPONENT PROCESSOR PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 11

PeopleCode and PeopleSoft Internet
Architecture

The following sections discuss the PeopleCode considerations writing PeopleSoft Internet
Architecture applications.

Using PeopleCode in the PeopleSoft Internet Architecture

You should take the following considerations into account when writing PeopleCode programs
for the PeopleSoft Internet Architecture.

e To help your application run efficiently, you should avoid using field-level PeopleCode events
(that is, FieldEdit and FieldChange).

If you need to use field-level PeopleCode events, such as FieldChange and FieldEdit in your
applications, you should keep the following in mind: each time you execute a field-level
PeopleCode program, it requires a trip to the application server to run the PeopleCode
program.

However, the majority of your PeopleCode programs will naturally run on the application
server as part of the Component build and save process. Don’t hesitate to use PeopleCode for
building and saving your components.

o Certain PeopleCode functions and methods are client-only. No PeopleCode runs on the client
in a PeopleSoft Internet Architecture application, which means that client-only PeopleCode
isn’t supported in a PeopleSoft Internet Architecture application. You can use the Validate
feature to check your application for PeopleCode that won’t run in the PeopleSoft Internet
Architecture.

@ For more information see Client-Only PeopleCode and Validating Projects.

e [f an end-user changes a field, but there is nothing to cause a trip to the server on that field,
default processing and FieldFormula PeopleCode don't run. They only run when some other
event causes a trip to the server.

This means other fields that depend on the first field using FieldFormula or default
PeopleCode are not updated until the next time there is a server trip.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND PEOPLESOFT INTERNET ARCHITECTURE 11-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

e In application that run on the PeopleSoft portal, external, dynamic hyperlink information must
be placed in RowlInit PeopleCode. If it's placed in FieldChange PeopleCode, it won't work.

o Trips to the server are reduced when a component is running in deferred processing mode.
Each trip to the server results in the page being complete refreshed on the browser, which may
cause the display to flicker. It can also slow down your application. By specifying a
component as Deferred Processing Mode, you can achieve better performance.

@ For more information see Deferred Processing Mode.

Avoiding Features Not Supported by PeopleSoft Internet Architecture

PeopleCode events and functions that relate exclusively to features not supported by the
PeopleSoft Internet Architecture cannot, obviously, be used. The following functions and types of
functions aren’t supported:

e Menu PeopleCode. The ItemSelected PeopleCode event isn't not supported, as well as the
CheckMenultem and UnCheckMenultem functions.

¢ Dynamic tree controls. Functions related to this control, such as GetSelectedTreeNode,
GetTreeNodeParent, GetTreeRecordName, RefreshTree and TreeDetaillnNode cannot be
used.

o ActiveX controls. The GetControl and GetControlOccurrence functions cannot be used.
¢ Client-only functions and methods aren’t supported.

e WinEscape

@ For more information see Client-Only PeopleCode.

Using PeopleCode to Populate Search Dialog Key Fields

In a PeopleSoft Internet Architecture application you typically want users to directly access their
own data. To facilitate this, you may want to use Searchlnit PeopleCode to populate and then
gray out standard search dialog key fields. You might assign the search key field a default value
based on the user ID or alias the user entered at logon.

You’ll also need to call AllowEmplIdChg, allowing users to change their own data. This
function takes a single Boolean parameter in which you pass True to allow employees to change
their own data.

Here is a simple example of such a Searchlnit program, using %Employeeld to identify the user:

11-2 PEOPLECODE AND PEOPLESOFT INTERNET ARCHITECTURE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

EMPLID = %Employeeld;
Gray (EMPLID) ;

AllowEmplIdChg (true) ;

Client-Only PeopleCode

Certain PeopleCode built-in functions can run only on the client. If your PeopleSoft Internet
Architecture application calls a client-only PeopleCode function at runtime, an error occurs.

Some built-in functions are always client-only, others are client-only under specific conditions.

Functions That Are Always Client-Only

The following built-in functions are client-only under all circumstances. There are two main
reasons why this is the case. Some functions relate specifically to the user interface, so it only
makes sense to run such functions on the client. Other functions, such as the DOS functions,
could not run on a UNIX application server, and therefore need to run exclusively on the
Windows client.

Client-only PeopleCode programs do not run on PeopleSoft Internet Architecture
applications. Therefore the following PeopleCode functions are not supported on the
PeopleSoft Internet Architecture.

e The DOS functions: ChDir, ChDrive, ExpandEnvVar, GetCwd, GetEnv.

e WinExec is Windows-specific and therefore client-only. The Exec function, which can call an
executable on either a UNIX or NT application server, can be used instead.

¢ OLE automation functions: CreateObject, ObjectDoMethod, ObjectGetProperty,
ObjectSetProperty.

¢ Functions that control menu appearance: CheckMenultem and UnCheckMenultem.

o ScheduleProcess and CreateProcessRequest. These functions, and the ProcessRequest object,
may be client-only, depending on parameter settings.

Functions That Are Client-Only under Specific Conditions

The following built-in function is client-only under specific conditions.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND PEOPLESOFT INTERNET ARCHITECTURE 11-3

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

[0

ScheduleProcess

The ScheduleProcess function has a parameter, run_location, which specifies whether the
scheduled process is to be run on the client or on the server.

If ScheduleProcess is called in a program running on the application server, the process cannot
run on the client; that is, the function’s run_location parameter cannot be set to client (= "1").
This will cause a runtime error and the transaction will be canceled.

If the PeopleCode program where ScheduleProcess is called runs on the application server, then
COBOL and SQR processes must be set to run on the server. If the PeopleCode program runs on
the client (which could happen in either 2-tier or 3-tier mode), then COBOL or SQR processes
can run on either the client or the server.

In PeopleTools 8, the new ProcessRequest class’ method and properties provide the same
functionality as the ScheduleProcess function, and are subject to the same limitations
regarding client/server operation. When the Schedule method is used in a program running
on the application server, the RunLocation property cannot be set to "Client". As well,
COBOL and SQR processes scheduled using the Schedule method from a program running
on the server must also be set to run on the server.

For more information on ScheduleProcess, see ScheduleProcess.

Functions That Behave Differently in Three-Tier Mode

You can use the SendMail built-in function to send an email message from a PeopleSoft panel.
The SendMail function only supports VIM and MAPI email subsystems for two-tier architecture,
and only supports SMTP for three-tier.

For more information see SendMail.

Calling Executables on the Application Server

The WinExec built-in function is Windows-specific and therefore client-only. The Exec function
is compatible with both UNIX and Windows, so it can be used to execute a program on either the
client or the application server.

PEOPLECODE AND PEOPLESOFT INTERNET ARCHITECTURE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=,

[0

The WinExec function has a third parameter that controls the state of the window in which
the called program runs. If you know that the called program is always going to run on the

client, you might want to use WinExec rather than Exec so that you can take advantage of
this functionality.

For more information see Exec.

Calling Dynamic Link Library Functions on the Application Server

To support processes running on an application server, it is possible to declare and call functions
compiled in Windows dynamic link libraries and UNIX shared libraries (or shared objects,
depending on the specific UNIX platform). You can do this either with a special PeopleCode
declaration, or using the Business Interlink framework.

For more information see PeopleSoft Business Interlink Application Developer Guide.

When you call out to a DLL using PeopleCode, on Windows NT application servers, the DLL file
has to be on the path. On UNIX application servers, the shared library file has to be on the library
path (as defined for the specific UNIX platform).

The PeopleCode declaration and function call syntax remains unchanged. For example, the
following PeopleCode could be used to declare and call a function LogMsg in an external library
Testdll.dll on a Windows client or a Windows application server, or a libtestdll.so on an UNIX
application server:

Declare Function LogMsg Library "testdll" (string, string)
Returns integer;

&res = LogMsg("\temp\test.log", "This is a test");

Sample Cross-Platform External Test Function

Following is the C source code for a sample cross-platform test file. It is a bare-bones function
that simply opens a log file and appends a line to it.

This file contains an interface function needed for non-Windows environments. This function is
compiled conditionally: only if you are compiling for a non-Windows environment (i.e. UNIX).
The interface function references a provided header file, pcmext.h. The interface function is
passed type codes that can be optionally used for parameter checking.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PEOPLECODE AND PEOPLESOFT INTERNET ARCHITECTURE 11-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

* Simple test function for calling from PeopleCode.
* This is passed two strings, a file name and a message.
* Tt creates the specified file and writes the message
* to it.
*/

#include <stdlib.hs>

#include <stdio.h>

#include <string.hs>

#ifdef WINDOWS

#define DLLEXPORT _ declspec (dllexport)
#define LINKAGE _ stdcall

#else

#define DLLEXPORT

#define LINKAGE

#endif

DLLEXPORT int LINKAGE LogMsg(char * fname, char * msg);

/**

* PeopleCode External call test function. *

* *
* Parameters are two strings (filename and message) *

* Result is 0 if error, 1 if OK *
* *
* *

* To call this function, the following PeopleCode is *

* used *
* *
* Declare Function LogMsg Library "testdll" *

* (string, string) *
* Returns integer; *

* *
* &res = LogMsg("\temp\test.log", "This is a test"); *

* *

**/

DLLEXPORT int LINKAGE LogMsg(char * fname, char * msg)

FILE *fp;

fp = fopen (fname, "a"); /* append */
if (fp == NULL) return O;

fprintf (fp, "%s\n", msg);

fclose (fp) ;
return 1;

#ifndef WINDOWS

/**

11-6 PEOPLECODE AND PEOPLESOFT INTERNET ARCHITECTURE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

*
*
*

*

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Interface function. *

This is not needed for Windows.... *

**/

#include "pcmext.h"

#include T"assert.h"

void LogMsg intf (int nParam, void ** ppParams, EXTPARAMDESC * pDesc)

{

int re;

/* Some error checking */

assert (nParam == 2);

assert (pDesc [0] .eExtType == EXTTYPE_STRING
&& pDesc[1l] .eExtType == EXTTYPE_STRING
&& pDesc [2] .eExtType == EXTTYPE INT) ;

rc = LogMsg((char *)ppParams[0],
(char *)ppParams[1]) ;
* (int *)ppParams[2] = rc;

#endif

Updating the Installation and PSOPTIONS Tables

When an application updates either the PSOPTIONS or the Installation table it must call
UpdateSysVersion from SavePreChange PeopleCode event. This way the updates will be take
effect at the next panel load. Otherwise, the change will not take effect at the client workstation

until the user logs off and logs back on.

@ Suggestions. Making changes to the Installation and PSOPTIONS tables is not a trivial

matter. Only a database administrator or the equivalent person in your organization should

make changes to these tables.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLECODE AND PEOPLESOFT INTERNET ARCHITECTURE

11-7

CHAPTER 12

Debugging Your Application

The PeopleCode Debugger is an integrated part of the Application Designer. The interface to the
debugger has a visual indicator of breakpoints, an arrow indicating the current line and the ability
to step through code. You can inspect the value of a variable by ‘hovering’ over it and reading
the pop-up bubble help. The debugger also provides variable inspection windows for Globals,
Locals, Function Parameters, and Component scoped variables. It also allows PeopleCode objects
to be "expanded", so you can inspect their component parts.

Accessing the PeopleCode Debugger

You access the Debugger through the Application Designer. You can start a debugging session
either before or after you start a PeopleSoft component.

To start the PeopleCode Debugger

1. Open the Application Designer.

2. Choose Debug, PeopleCode Debugger Mode.

The Local Variables watch window opens. PeopleCode programs that had breakpoints set
from your previous debugging session are opened as well, and the breakpoints are restored.

@ If you’ve already opened the debugger, then closed it, the menu may not morph correctly to
allow you to access the debugger a second time. If this occurs, click on the Local Variables
window, then try the debug menu again.

Y ou must make some adjustments to your system for running the debugger in PeopleSoft
Internet Architecture or with Application Message Subscription PeopleCode.

@ For more information see Setting Up the Debugging Environment.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ Your security administrator has options for allowing users to access different parts of the
Application Designer, including the PeopleCode debugger. If you’re having problems

accessing the debugger, you may need to contact your system administrator concerning your
security access.

PeopleCode Debugger Features

The following is a list of features for the PeopleCode debugger.

Visible Current Line of Execution

The current line indicator (green arrow displayed in left hand gutter) is illustrated below:

!__.' HAMES [Record PeopleCode] M=l E
I PREFERRED_MAME jIHowlnil j

If A4l1(MAME PART) And
HAME_PART = "™ Then
Hide (PREFERRED_NAME)
Else
Hide (DERIVED HE.NAME) :
End-If;

PeopleCode Debugger showing current line of execution

Visible Breakpoints

Visual indicators that signify breakpoint locations is supported. In the example below the current
line indicator (green arrow) is shown at the first line, and the breakpoint (red dot displayed in left
hand gutter) is on line 8:

12-2 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

E'HERIVED_GBL [Record PeopleCode) =]

| ALT_CHAR_NAME_BTN | [Rowinit

[»]|

/% ALT CHAR_NAME BTN Rowlnit */
&0PER = %0peratorId:
G0LExec("select ALT_CHAR ENARLED from P5_OFR_DEF TEL_HR where oprid = :1", &0
If &ALTCHAR = "N™ Then
Hide (ALT CHAR NAME BTN :
Hide (ALT CHAR NAMEZ ETN) ; b

Elze
Ewvaluate %Panel
* Then = PANEL. PERSONAL_DATAL

If None(PERS _DATA EFFDT.NAME AC) Then
UrHide (ALT CHAR NAME BTN) :
Hide (4LT CHAR NAMWEZ BTN :

Else
Hide (ALT CHAR NAME BTN ;
UnHide (ALT CHAR NAMEZ BTN ;

End-If:

Ereak;

hen = PANEL.APP PERZ0ONAL DATAL
TFf WMnne{PFRS NATL FFFOT WLMF 471 Then

4| | 4
PeopleCode Debugger showing breakpoint and current line of execution

All breakpoints are saved when Exit Debug Mode is selected.

@ You can’t set breakpoints on function declarations, variable declarations, or in comments.

Hover Inspect

If your program is already running, you can see the actual values for the variables by "hovering"
over them. The current value will be displayed in a pop-up window.

MPL_CHECKLIST [Record PeopleCode] =]
| CHECKLIST_CD =||FieldChange

H

3|

#* My code*/

sR50 = GetLewelOq):
zR31 = GetRowset():
&R3Z = GetRowset (SCROLL.EMPL_CHELIT_ITHM):

«RS1H = ¢R30.GetRow(l).GetRowset | 3CROLL. CHECKLIST _ITEM) ;

sMYFIELD = CHECKLIST CD:
&MYFIELD = 000003
4| If ALI{HMYFIELD] Then
Fad sR31H.refresh(): */ b
#RE1H. Flushi)

#R31H. Select(RECORD. CHECKLIST_ITEM, "where Checklist CD = :1 and EffDr = |

For &I = 1 To sR32.A4ctiveRowlount
sR32.DeleteRow(l) ;
End-For:

AFOTNMN. = &R=1H GetfurrFFFRAm it FHFCELTST TTFM CHETLST TTEM T Walne -

4] d
PeopleCode Debugger showing hover inspect

Hover inspect is implemented only for simple variables and fields.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Hover inspect is not implemented for object expressions (for example, rowset assignments, array
assignments, and so on.)

Single Debugger

Every PeopleSoft session you’re running on a machine can have its own debugging session.
However, there can only be one instance of the PeopleCode debugger per session. If more than
one instance of Application Designer is running for a session, only one may be the active
debugger at a given time.

From within a running instance of the Application Designer, any component in the same session
is also placed into debug mode.

Once the session is in debug mode, any component that is started, that belongs to that session,
will automatically go into debug mode.

Similarly, Application Engine PeopleCode, Component Interface PeopleCode, and Message
Subscription PeopleCode can be debugged.

Once you exit debug mode, through the Debug, Exit Debug Mode menu or by exiting the
Application Designer, all components in that session go out of debug mode.

If you exit a component, debugging continues with any remaining open and running components.

In the event there is more than one Application Designer session running, the Application
Designer session that is used as a debugger is the first one that had been started.

If you’re in debug mode, a PeopleCode editor window will be opened for every item (for
example, record, component, page, and so on.) that has PeopleCode in it when that PeopleCode is
executed. If a component has more than one event with a PeopleCode program, only one window
will be opened per item.

For example, if you have a record that has PeopleCode in both the SearchSave and RowlInit
events, only one PeopleCode editor window will be opened: first it will contain the SearchSave
PeopleCode program, then the RowInit program. If you have PeopleCode in the RowlInit event
for two different records that are part of the same component, two PeopleCode editor windows
will be opened, one for each RowInit PeopleCode program.

Variables Panes

There are the following types of variables panes:
e Local

e Global

e Component

e Parameter

12-4 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The Local, Global, and Component variable panes show Local, Global, and Component variables,

respectively. The Parameter variable pane shows the value of parameters passed in function
declarations.

From the variables pane you can check the value of the variables you have in your program.
These values are updated as your code executes.

I Variables H= &=
Local Hame Local Walue

&RS0 Rowset

ERS1 Rowset

&R52 Rowset

&RSTH Rowset

EMYFIELD ooooo3

& 2

&FOUND oooots

ECOPYFRMROW =novalue=

ECOPYTROWY =no value=

1]] H

Local Variables Pane

In addition, you can "expand" any of the objects to see its properties by clicking on the plus sign
next to the variable name. In the following example, a level 1 rowset has been expanded. You
can see the properties that are part of the rowset (such as ActiveRowCount or DBRecordName.)

Local Hame | Local Yalue

&RS0

RowCaount 1

ActiveRowCount 1

DeleteEnabled True

InsenEnabled True

Lewvel 1

EffDit

EffSeq 0.00

ParentRows et
ParentRow

Mame EMPL_CHECKLIST
DBRecordMame EMPL_CHECKLIST
IsEditErrar False
TopRowMumhber 1
GetRow...)

&RS2 Rowset

ERS1H Rowset

EMYFIELD =no value=

2l e walias
1]

Local variable pane with rowset object expanded

In addition, some objects "contain" other objects, like a rowset contains rows, rows contain
records or child rowsets, and records contain fields. You can "expand" these secondary objects as

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

well, to see their properties. In the following example, the first row of a rowset has been
expanded, as has the EMPL_CHECKLIST record.

Local Hame Local Walue
Al
RowCourit
ActiveRow Count 1
DeleteEnabled Trug
InzertEnabled Trug
Lewvel 1
EffCt

EffSeq 0.00
ParentRovwset
ParentRow

Marme EMPL CHECKLIST
DBRecordame EMPL CHECKLIST
I=EditError Falze
TopRowMumber 1
Bl GetRow...)
B 11
FecordCourit 4
ChildCourt 1
FowyMumber 1
isible Trug
Selected Falze
lzChanigzd Trug
lzDeleted Falze
Izhleny True
ParentRoveset
I=EclitErrar Falze

Style
= GetRecordi..)
E EMPL CHECKLIET

lsDeleted Falze

lzChanged True

Mame EMPL CHECKLIST
FigldCount 5

1]
Variable pane with rowset, row and record expanded (shown with condensed font)

Field Values

When you look at a field object in the debugger, the value of the field is listed under the Value
column. This way you don’t have to drill-down to the Value property to see the value of a field.

The following example shows the PERSONAL DATA record, and the values of the fields.

12-6 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Local Yanables

Local Hame
EIFERSOMAL_DATA
IsDelated False
IsChanged True
Mame FERSOMAL_DATA
FieldCaunt a3

B FarentR o

RelLangRecHame

|sEditError Falze
E GetField(.)
FH EMPLID 2001
E MAME Schummacher,Sirmom

EF MAME_PREFIX

hir

[MAME_SUFFIx

I LAST_MAME_SRCH SCHUMACHER
FEIFIRST_MAME_SRCH SIMOM
EHADDRESS1 461 Hawen Ct
[ADDREES2

EADDRESS3

FHADDRESSS

HCImy Morana

4

PERSONAL_DATA record field values

General Debugging Tips

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

If you’re having problems determining if the correct data is getting loaded into the component
buffers, you can use the View Component Buffers view window to see all the values currently
in the component buffer. (This is equivalent to putting a GetLevel0 function at the start of a
program.)

Using the &LEVELDO variable, you can drill-down through all the levels of the rowset object,
see the row, records, fields, and so on. This will show you everything that has been loaded
into the component buffers for that component.

While at a breakpoint, if you lose track of the window, or the location within the window, that
is displaying the green execution location arrow, you can use the “Execution Location
Properties” menu item’s ViewCode button to find your current execution location again.

Objects will remain expanded in the variable windows as you step through PeopleCode. This
allows easy and fast inspection of the state of an object as you step through the PeopleCode.
However, there is a performance cost for this feature. If you are finished examining an object,
you may want to collapse it to improve the “stepping” response speed.

If a database transaction has been started (either for you by PeopleTools, or by you in
PeopleCode) other users of that database will be blocked from accessing that database until the
transaction is complete. If you are stepping through PeopleCode while this transaction is open,
you could potentially block other users for an extended period of time. You may want to use a
private database for debugging to avoid blocking other users.

If you want to create a file that contains all the PeopleCode for a project (or database) you can
use the Find In. . .utility, and search for ";". Be sure to check Save PeopleCode to File.

DEBUGGING YOUR APPLICATION 12-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Find In...

Find hat: I'-

Eind

Find Type: ITth string in PeopleCode

g

Eraject: |rRLTLS810

— Search

[
j Cancel
=] wi

08 I Developmeﬂ

(v|Record PeopleCode

[w|rienu PeopleCode

(vMeszage PeopleCode
[w|Component Interfaces PeopleCode
[v]Application Engine PeopleCode
[w|Fage People Code

[v]|Component PeopleCaode

™ Match case

Feady...

Press Cancel to end zearch

Find In . . . dialog box for finding all PeopleCode

DoModal Considerations

JANUARY 2001

If you’ve set the PeopleCode Debugger to Break At Start, and you’re using the DoModal
PeopleCode function, the DoModal window may display behind the PeopleCode debugger
window. This makes it seem as though the debugger has stopped, when it actually hasn’t. Be sure
to check that other windows haven’t opened while you’re debugging your code.

PeopleCode Debugger Options

12-8

After the debugger is running, if you select Debug again, you can select other options:

Eriter, Webug kade
Exit Detug Mode
Abort Bunning Program

Execution Location Properties

v Break at Start Ctrl+F9
Toggle Break at Cursor F3
Edit Breakpaints Alt+F3
Go F5
Step Fa
Step Ower F10

Fiun ta Beturn
Step |nstruction

Yiew Global Yariables
Yiew Component Vanables
Wiew Lozal vanstles
Yiew Function Parameters

Yiew Component Buffers

Dptions

3

PeopleCode Debugger Options

DEBUGGING YOUR APPLICATION

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Exit Debug Mode Quit debug mode. When you exit debug mode, all
breakpoints are automatically saved. If you close
Application Designer, you automatically exit debug mode.

Abort Running Program Stop running the PeopleCode program that is currently
running.

Execution Location Displays the location of the running code in a dialog box.

Properties This includes the record name, field name, event name,

and line number of the code. It also indicates if the code is
executing on the client or server. You can also view the
exact code by selecting View Code.

Execution Location Properties

Frogram: RECORD.PERS_SGEL_SER.FIELD.EMPLID.METHOD SearchS ave
Line numnber: 1
Location: Client Process

Process I1D: 400

Execution Location Properties dialog box

Break at Start Pauses execution of the component on the first line of
every PeopleCode program that executes in the
component. If you've started a component with Break at
Start selected, then start a second component, the
PeopleCode associated with the second component will be
stopped at the first line of the first PeopleCode program as
well, as part of the same debugging session.

Toggle Break at Cursor Remove the breakpoint if the line the cursor is currently
on has a breakpoint. Add a breakpoint if the line the
cursor is currently on does not have a breakpoint.

Edit Breakpoints Brings up a menu that displays the lines that have
breakpoints. From this menu you can bring up the code
that contains the breakpoint, using View Code. You can
also remove one or all of your breakpoints.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Breakpoints

{RECORD.MAMES FIELD. MAME_T¥PE.METHOD FieldChange} line: & K
{RECORD.MNAMES FIELD. MAME_TvPE.METHOD FieldChange} line: 17
Cancel

Wiew Code

Remove all

BRemove

I (e g

| | 2
Edit Breakpoints Menu
Go Continue processing until the next breakpoint. If Break
At Start is enabled, processing pauses at the next
PeopleCode program.
Step Executes the current line of the PeopleCode program,

stepping into functions.

Step Over Steps through each line of the PeopleCode program, one
line at a time, but steps over the functions; the functions
are executed, but not stepped into.

Run to Return Processes past the return of the current function, then
pauses.

Step Instruction Processes low-level pseudo-machine code instructions
internal to PeopleCode. This option is used in conjunction
with Log Options.

View Global Variables Opens a separate window for watching variables declared
as Global.

View Component Variables Opens a separate window for watching variables declared
as Component.

View Local Variables Opens a separate window for watching variables declared
as Local.

View Function Parameters Opens a separate window for watching user-specified
parameters in Function calls.

View Component Buffers Opens a separate window for viewing the current
component buffers. This is equivalent to getting a level 0
rowset for the component.

12-10 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=,

These five windows are continuously updated as the program executes.

Options Allows you chose between opening up a dialog box for
general options or for specifying log options.

General Options

‘Yariable Yiew
’]7 Enable Auta Scrall

" Enable Condersed Font

Cancel

General Options Dialog Box

The General Options dialog lets you specify conditions of
the View windows.

If you have Auto Scroll enabled, and you click on a plus
symbol next to a variable name in a View window, the
variable you clicked 'scrolls' to the top of the View
window.

If you have Condensed Font enabled, all View windows
are displayed with a smaller font.

The default is for both of these options to be selected.

For more information on log options, see Setting PeopleCode Debugger Log Options.

Additional Features

Break at Termination: Once you are in debug mode, generally, any PeopleCode program in the
session that terminates abnormally will first break in the debugger. In addition, the error message
will be displayed in the PeopleCode log in the bottom window of the Application Designer.

Setting Up the Debugging Environment

Before you can use the debugger in 3-tier and the PeopleSoft Internet Architecture, you must
manually create a user account named "PeopleCodeDebugger", with a null password, and
configure the DbgBrkr Class to use this account.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

@ For more information on how to set up this account, see Domain Settings.

If you have problems debugging in a non-2-tier environment, consider the following:
o The Application Server must be on the same computer as PeopleTools and the debugger.

e The Application Server must be setup for PeopleSoft Internet Architecture debugging.

@ Note for Windows Client: A duel machine/debugger configuration can be setup. One
computer can run the Windows client and a debugger for it. Another computer can run the
Application Server and a debugger for it.

Note for Internet Architecture: While the Application Designer and Application Server
must be on the same computer, the browser may be on a different computer or the same
computer.

Debugging Subscription PeopleCode

You can debug Subscription PeopleCode using the following instructions.

To debug Subscription PeopleCode
1. Start Application Designer on the server machine that will be processing the subscription

You must use the same User ID and database as that machine has had its Application Servers
configured to.

2. Start debug mode.

When the subscription server executes the subscription PeopleCode, the debugger will start.

Compiling all PeopleCode Programs

In addition to checking individual programs, you can compile all PeopleCode programs in a
database to check for errors. This option opens and compiles every PeopleCode program. This
option can be run after an upgrade to verify that all the programs were upgraded correctly. It
could also be run on an as-needed basis to check for corruption in your programs.

To compile all PeopleCode programs

1. Open Application Designer while accessed to the database that contains the PeopleCode you
want to check.

2. Select Tools, Compile All PeopleCode.

12-12 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

validate Spntay
Walidate Project

Compile all PeopleCode

Data Administration 3
LChange Control 3
Upgrade 3
Tranzlate 3
Miscellaneous Objects »

Dptions...

Compile All PeopleCode

3. Select Compile on the Compile All PeopleCode dialog box.

Compile All PeopleCode

Caompile: |

Compile all PeopleCode
i the database

Presz Cancel to end Compile

Compile All PeopleCode dialog box

If you have any errors, they'll be displayed in the PeopleCode log display window.

Setting PeopleCode Debugger Log Options

™ Function parameter

PeopleCode Log Dptions
~ Execution Trac i~ Call Trace 1
| |
| o '\ [Esternal Calls !
1 |

[¥ Each statement ‘ ™ Intemal Calls i
. . |

™ Each instruction | T Retums |

| |

| |

| |

r Data Trace
[Assignments I List Pragram
L= I Lag taFile:
i [PSDEBUG LOG
oKk I Cancel |
Log Options Dialog

Use the PeopleCode debugger to view PeopleCode that is executed while you’re stepping through
your application (use Debug, Log Options.) All log information will be displayed in the
PeopleCode Log window, at the bottom of the Application Designer.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

===start Mest=00 . PERS_SGBL_SBR EMPLID SearchSave
=== end Mest=00 . PER=_SGHL_SBR EMPLID SearchSawve Dur[%.DQD
===start Mest=00 . DERIVED_HR.DAN _OF WEEK FieldDefault

A FT Build } Find Ohject Refersnces fi Upgrade j Results i, Ualidate . PeopleGode Log
PeopleCode Log Window

You can also record what you see in a log file. The log results can be customized to record a
variety of online information—from as little as you like to probably more than you need.

If you exit debug mode, but do not close the Application Designer, all the log options you
specified will still be there when you start debug mode again.

When you close the Application Designer, all log options are deselected. The next time you enter
debugging mode, you will have to reselect your debug log options.

Some of the log options are described in the next few sections. For complete details about the log
file, see Interpreting the PeopleCode Debugger Log File.

All the options available in the Log Options dialog are also available in the Configuration
Manager, on the Trace tab, in the PeopleCode Trace section.

@ For more information see Trace.

Execution Trace Options

Execution Trace is set to trace each PeopleCode statement. You can also trace the start of each
program or each program instruction.

Data Trace Options

The Data Trace options are Assignments, Fetches, and Stack. They have the following meanings:
e Assignments. Records each assignment made to a field.

e Fetches. Records the field values retrieved from a PeopleCode fetch.

e Stack. This option gives the contents of the internal machine stack. Typically, only
PeopleSoft staff developing PeopleCode language enhancements use this option.

12-14 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Call Trace Options

The Call Trace options enable you to record the values of External calls, Internal calls, Returns,
and Function parameters. These options have the following meanings:

o External calls. This option traces each call to external (PeopleCode) functions.
e Internal calls. This option records each call to internal subroutines.
e Returns. Logs the occurrence of program returns.

¢ Function parameters. Logs the value of individual PeopleCode function parameters.

Log To File

When you chose this option you must specify the name of a file: you’ll receive an error and
logging to file will be disabled if you don’t specify the name of a file.

If you don’t specify a directory location, the file will be placed in the same directory as the
directory you’re running PeopleTools from.

If you specify the name of an already existing file, you’ll get a warning message, asking whether
to overwrite the file or not. At this point, you must go back into the Log Options and specify a
different file name. If you do not specify a new log file name and start running an application,
your log file will be overwritten.

If you run more than one application and do net exit out of the Application Designer between
times, each trace will be appended the specified log file.

Interpreting the PeopleCode Debugger Log File

You can produce a trace log using any of the following methods:

Log File option in the PeopleCode Debugger

Configuration Manager Trace tab

Built-in functions SetTracePC and SetTraceSQL

PeopleTools Utilities (this is included for backward compatibility purposes only, and in
general, shouldn’t be used.)

The first option, using the Log File, produces essentially the same trace file as using any of the
other options. The only difference is that the other trace files contain timing information, that is,
when each line started processing, and how long it took to execute.

@ For more information see Performance Monitoring.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

JANUARY 2001

The log file produced by the latter options is specified by PeopleTools Trace File option on the
Configuration Manager. All of these options write to the same file. The Log File option writes to
the file you specify, that is, a different file.

Trace files are also produced by the Application Engine. These logs may contain more

information.

For more information see Tracing Application Engine Programs.

Log File Contents

Unless you enjoy wading through program dumps, the log file probably contains some distracting
information, but it does have a wealth of useful information for debugging PeopleCode.

You can view the log using any editor that displays ASCII text, such as Notepad. It has the

following components.
Line Count

Internal Information

Instruction Location

Operation Code

Operation Operands

Specifies a line number within the file.

Contains reference numbers used for internal tracing. You

can ignore this information.

Address of an instruction processed in the program. You
can follow programs and functions using this number.

The operation performed by the program.

Contains information specific to each operation. The table
below lists the possible operations and the operands that
appear for the list and trace options.

The following tables describes how the operation and operands work together:

Operation Operands

Description

ACCEPT

level-1 statement.

Causes control to transfer to the next

ADD

Adds the contents of the top two

items on the stack and pushes the
result onto the stack.

BR TRUE location

Tests the top item on the stack to
determine if it contains a Boolean
value of True. If true, control is
passed to the specified instruction
location.

12-16 DEBUGGING YOUR APPLICATION

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Operation Operands Description

BR FALSE | location Tests the top item on the stack to

determine if it contains a Boolean
value of False. If false, control is
passed to the specified instruction
location.

BRANCH location Control is passed to the specified
instruction location.

BRANCH < | location Tests the top two items on the stack to
determine if the first is less than the
second. If so, control is passed to the
specified instruction location.

BRANCH <= | location Tests the top two items on the stack to
determine if the first is less than or
equal to the second. If so, control is
passed to the specified instruction
location.

BRANCH <> | location Tests the top two items on the stack to
determine if the first is not equal to
the second. If so, control is passed to
the specified instruction location.

BRANCH = | location Tests the top two items on the stack to
determine if the first is equal to the
second. If so, control is passed to the
specified instruction location.

BRANCH > | location Tests the top two items on the stack to
determine if the first is greater than
the second. If so, control is passed to
the specified instruction location.

BRANCH >= | location Tests the top two items on the stack to
determine if the first is greater than or
equal to the second. If so, control is
passed to the specified instruction

location.
BUILTIN function Executes the function specified.
Parms The number of parameters passed to

the function are also shown. The top
elements of the stack are the
parameters to the function.

CALL DLL Calls a dynamic link library module.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-17

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Operation

Operands

Description

int <functionname>
params = nn

Calls the internal PeopleCode
function named functionname. The
number of passed parameters, nn, is
also shown.

ext record.fieldname
progtype

fcn = function name
params = nn

Call the external PeopleCode function
name functionname that is located in
the specified record.fieldname, with
the specified progtype (that is, event
type). The number of passed
parameters, nn, is also shown.

CONCAT

Concatenates the top two items on the
stack and places the result onto the
stack. If the items are not strings,
they will be converted to strings
before concatenation.

DIVIDE

Divides the top two items on the stack
and pushes the result onto the stack.

DUP

Duplicates the value of the top
element or the stack.

ERROR

Stops execution of the PeopleCode
program.

EXIT

Exits the currently executing
PeopleCode program.

FETCH

record.field

Retrieves the value of record.field and
pushes it onto the stack.

Temp# NN

Retrieves the current value of
temporary value NN and pushes it
onto the stack. Temporary variables
are assigned numbers sequentially
starting with zero as they occur in a
program.

Builtin %function

Retrieves the value of the built-in
function and pushes it onto the stack.

MULTIPLY

Multiplies the top two items on the
stack and pushes the result onto the
stack.

NEGATE

Negates the value of the top stack
item.

POP

Removes the top item from the stack.

PUSH

constant

Pushes the specified constant onto the
stack.

12-18 DEBUGGING YOUR APPLICATION

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Operation

Operands

Description

RETURN

Returns control to a calling program
or, if executed from the top-level
PeopleCode program, exits the
program.

SET TRUE

temp #nn

Sets the specified temporary variable
to a TRUE value.

SET FALSE

temp #nn

Sets the specified temporary variable
to a FALSE value.

START

The beginning of a PeopleCode
program.

Field=record

name.field name-type

Specified record and field names of
the program being executed. Type is
one of the PeopleCode program types
or:

Assignment -- Used for all other type
of PeopleCode programs

Temps=NN

Specifies the number of temporary
variables used by the program.

Stack=NN

Specifies the maximum number of
items placed onto the stack at any
point in time. (that is, the maximum
stack depth).

Source=NN

The length of the PeopleCode
program.

START INT
START EXT

functionname
params = nn

Indicates the beginning of a
PeopleCode program. The number of
passed parameters are shown.

STATEMEN
T

Next=location

Marks the beginning of a level-1
statement and specifies the location of
the next statement.

STOP

Marks the end of a PeopleCode
program.

STORE

record.field

Stores the contents of the top element
of the stack into the specified
record.field.

Temp# NN

Stores the contents of the top element
of the stack into the specified
temporary variable.

SUBTRACT

Subtracts the top two elements of the
stack and places the result onto the
stack.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

DEBUGGING YOUR APPLICATION

12-19

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

12-20

JANUARY 2001

Operation

Operands

Description

WARNING

Denotes that a warning statement was
issued. If this is the first warning
issued by the program, the value on
top of the stack is saved as the value
returned by the program. If another
warning has already occurred, then
the top element of the stack is
removed.

Sample Trace File

The following is a sample trace file:

At VOLUNTEER_ORG_TABL.ENG.Activate PCPC:23 Statement:1

(@]

, start

1, statement Next=52

20, builtin

32, store

52, statement

68, stop

0, start

1, statement

20, fetch

36, push

62, builtin

72, store

92, statement

108, stop

0, start

1, statement

20, builtin

32, store

52, statement

Id=VOLUNTEER ORG TBL.GBL.PostBuild Temps=1 Stack=1

&LVLO (temp #0)

Next=68

- GetLevel0 #Parms=0

Id=VOLUNTEER ORG TABL.ENG.Activate Temps=1 Stack=2

Next=92

PAGE.VOLUNTEER ORG_TABL

CHART1

&MYOBJ (temp #0)

Next=108

- GetControl #Parms=2

Id=VOLNTER ORG TBL.DESCR.FieldChange Temps=1 Stack=1

&REC (temp #0)

DEBUGGING YOUR APPLICATION

Next=52

Next=68

- GetRecord #Parms=0

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

68, stop
0, start Id=VOLNTER_ORG TBL.DESCR.SavePreChange Temps=0 Stack=3
1, statement Next=140
20, push VOLNTER ORG_TBL.DESCRSHORT
34, builtin - None #Parms=1
48, br False 140
Branch taken.
140, statement Next=156

156, stop

About Operations and Operands

The real information the trace provides lies in the operations and operands. Operations show
what PeopleCode does, and operands show what the operations use to operate.

Stacks

The Component Processor works with data in buffers it allocates. PeopleCode works with data
on the stack. Throughout the trace, you will see items pushed onto the stack and retrieved from
the stack for operations.

We only mention stacks here for ease of explanation later. You do not need to worry about
maintaining the stack; the PeopleCode evaluator does that for you.

If you really want to see the stack, you can turn that option on. But with a copy of the program in
front of you, you should be able to figure out the appropriate items coming from and going to the
stack.

START

The START operator indicates the beginning of a PeopleCode program. START shows some
basic details of the program:

Id Specifies the component containing the program and the
event.

Temps Number of temporary variables in the program

Stack Maximum items you can place on the stack at any given
time

This example indicates a PostBuild event on the component VOLUNTEER ORG_TBL has
started:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-21

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

0, start Id=VOLUNTEER ORG TBL.GBL.PostBuild Temps=1 Stack=1

@ PeopleCode programs can be associated with many types of components, such as
components, component records, record fields, and so on. You must look carefully at the Id
to verify where exactly the PeopleCode is located. For example, if the Id ends with a market,
such as GBL, it’s a component.

The following example indicates a FieldChange on the record field VOLNTER ORG_TBL has
started.

0, start Id=VOLNTER ORG TBL.DESCR.FieldChange Temps=1 Stack=1

This component also had a PeopleCode program associated with the FieldChange event on the
component record field.

0, start Id:VOLUNTEER_ORG_TBL .GBL.VOLNTER_ORG_ TBL.DESCR. FieldChange Temps=1
Stack=1

STOP

The STOP operator indicates the end of a PeopleCode program. STOP takes no operands.

BRANCH

BRANCH operations evaluate comparisons of the top two items on the stack. PeopleCode uses
multiple flavors of BRANCH, depending on the comparison type. The trace identifies each
Branch type with a comparison operator, such as =, <, or >.

Trace can also use BRANCH without a comparison operator. With some comparison operators (
< and >), it makes a difference what item goes on the left and what item goes on the right. In
those cases, the first item from the stack goes on the left and the second goes on the right.

All BRANCHes use location as an operand. When PeopleCode takes the branch (a true
comparison), it goes to the specified location:

branch <> 428

In the example above, PeopleCode compares the top two items on the stack. If they don’t equal
each other, PeopleCode goes to the instruction at location 428. Location codes help you when
you have a lot of code between two consecutively processed statements.

PUSH

The PUSH operator places a value on the stack. Typically, the operand is a constant. The trace
treats any parameter passed to a PeopleCode function as a constant, so you may see a temporary
variable pushed onto the stack:

push 1

12-22 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

In the example above, PeopleCode puts the value 1 onto the stack.

FETCH

The FETCH operator retrieves a value and pushes it onto the stack. FETCH uses one operand
with three mutually exclusive values.

Location The location of the value PeopleCode should retrieve. If
you opt to show fetched values, you will see a Fetch Field
issued with each fetch of each value.

Temp The temporary variable whose value PeopleCode should
retrieve. Trace does not show the value of temporary
variables.

Builtin The system variable—such as %Page—whose value PeopleCode should retrieve.The
example shows that PeopleCode fetched Country from PERSONAL DATA, and the value was
USA. It pushed the value USA onto the stack.

fetch PERSONAL DATA.COUNTRY
Fetch Field:PERSONAL DATA.COUNTRY Value=USA

In the following, the page VOLUNTEER _ORG _TBL was fetched.
fetch PAGE . VOLUNTEER ORG TABL

Fetch Field: PAGE.VOLUNTEER ORG TABL Value=VOLUNTEER ORG TABL

The example shows that PeopleCode retrieved the value of the current page, using the system
variable %Component. The next line shows the component that was fetched.

fetch Builtin - %Component
fetch COMPONENT . CHECKLIST TABLE1l
BUILTIN

The operator BUILTIN processes a built-in function, including any parameters which the
function requires. BUILTIN uses two operands.

Function The name of the built-in function.

Parms The number of parameters the function requires. The top
items of the stack get passed to the function.

The preceding example fetches the value of the system variable %Page and pushes it onto the
stack. It then pushes two constants, 1 and 8, onto the stack. With those three stack items, it calls
the built-in function Substring, which needs three parameters: a string, a starting point, and a
length.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-23

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

fetch Builtin - %Page
push 1

push 8

builtin - Substring #Parms=3

The PeopleCode that generated this output is:

Substring (%$Page, 1, 8)

CALL

The CALL operator indicates that PeopleCode will perform a function next. CALL has one
operand with three mutually exclusive values.

DLL Calls a dynamic link library.

Int Calls an internal PeopleCode function (part of the same
program). Includes the name of the function and number
of parameters.

Ext Calls an external PeopleCode function. Includes the

record name, field name, program type, name of the
function, and number of parameters.

Params The number of parameters passed to the called function.
The top items of the stack get passed to the function.

The example indicates that PeopleCode will call the function calc_fte on Funclib HR.FTE. This
function requires one parameter:

call ext FUNCLIB_HR.FTE FieldFormula fcn=calc_fte params=1

START EXT

Immediately after CALL with the Ext operand, you will see START EXT. This operation
records the beginning of an external PeopleCode function. It uses two operands.

Function The name of the function starting.

Params The number of parameters passed to the function.

You would see this example at the beginning of processing for the PeopleCode function calc_fte
when another program calls it.

start ext calc_fte params=1

12-24 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

RETURN

The RETURN operator, which takes no operands, indicates a return to a calling program. It
typically represents the end of a called PeopleCode function. If RETURN appears in the top-
level program, it means PeopleCode has terminated the program.

STORE

The STORE operator indicates that the value of the top item in the stack goes into a field or
variable. STORE means something gets updated, so it’s something you will want to pay attention
to when you look through a big trace to find out how in the world a field or temporary variable
could have possibly gotten a value. STORE uses one operand with two mutually exclusive

values.

Field The record.field where the system puts the value of the top
item in the stack. If you opt to show assigned values, you
will see a Store Field. Store Field shows the updated
record.field and its current value.

Temp The name of the temporary variable which receives the

value of the top item in the stack.

The example gets today’s date with a fetch. It then puts the value of today’s date in JOB.EFFDT.
fetch builtin - %Date

store JOB.EFFDT
Store Field:JOB.EFFDT Value=1997-11-11

ERROR

The ERROR operator, which takes no operands signifies that the Component Processor is
terminating the program.

STATEMENT

This operator can mislead you at first until you get used to seeing it. Most of the time in a trace,
you can ignore it. It marks the beginning of a top-level PeopleCode statement—one not part of a
controlling statement like EVALUATE or IF. Its single operand shows the location of the next
top-level statement.

Printed Data Values

When data item values are shown in the trace, the following formats are used:

Data Value Item Description

Int=nnn Displays the value of a numeric field.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-25

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Str = xxx

Displays the first 30 bytes of a string value, or
the value of the function being passed.

Date = yyyy-mm-
dd

Displays a date in Year-Month-Day format.

Bool = true Displays the value of a Boolean variable.
Bool = false

variable = Displays the name of a record.field passed by
record.field reference, and its data value

value = xxx

Temp = #nnn
Value = xxx

Displays the number of a temporary variable
and its data value.

datatype

Displays the data type (such as Record, Row,
Rowset, Array, and so on.) and an internal
value.

Other Items in the Log File

JANUARY 2001

There are several other items that can appear in a debugging trace. The following table describes

those items.

Trace Item

Description

Store Field:record name.field
name Value=xx

Issued when the assignments trace
option is selected. It contains the record

and field names and the value that is
stored.

Fetch Field:recordname.fieldname | Issued when the Fetch Fields option is
Value=xx selected. It contains the record and
field name and the value that is
retrieved.

Fetch Field:recordname.fieldname | Issued when the Fetch Field option is
Contains Null Value selected and the selected record.field
contains a null value.

Fetch Field:recordname.fieldname | Issued when the Fetch Fields option is
Does Not Exist selected and when the field is not found.

Branch Taken Displayed after a branch test when the

branch is taken.

Field Not Found, Statement Displayed whenever a "referenced field
Skipped was not found" error causes the
PeopleCode processor to skip to the
next statement.

12-26 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Trace Item Description
vvvvvv PeopleCode Program Issued when the List Program option is
Listing selected. It marks the beginning of a

PeopleCode program listing.

A PeopleCode Program Issued when the List Program option is
Listing End selected. It marks the end of a
PeopleCode program listing.

Error Return -> NNN Issued when a fatal error condition
terminates the PeopleCode program.

FindIn...

You can use the Application Designer’s Find In feature to search for strings, either in PeopleCode
programs or in SQL definitions. This feature searches:

e All PeopleCode programs and all SQL statements
e Just PeopleCode programs
e Just SQL statements

You can further refine your search by specific project and by item searched, that is, you can
specify if you want record PeopleCode, page PeopleCode, menu PeopleCode, and so on.

All output from the search is placed in an output window. You can save these results to a file,
copy them, clear them or print them.

From the output window, you can immediately open any of the PeopleCode programs or SQL
statements listed.

Also, from the output window, you can insert selected records into a project. Then, if you need to
search those records again, you can search by project.

@ If you want to create a file that contains all the PeopleCode for a project (or database) you
can use the Find In. . .utility, and search for ";". Be sure to check Save PeopleCode to File.

To find a text string in PeopleCode or SQL
1. In Application Designer, choose Edit, Find in

This displays the Find in dialog.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-27

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Find In...

Find hat: || Find

Find Type: ITth string in PeopleCode and 5GL Cancel

i

Ll Led Ll
L

Eroject: I Ertire Database

— Search

(v|Record PeopleCode

[w|rienu PeopleCode

[v|Page People Code

[w|Component PeopleCode
[v]Application Engine PeopleCode
[w|Component Interfaces PeopleCode
(vMeszage PeopleCode
[w]Standalone SOL Objects
[v]&pplication Engine SOL Objects

™ Match case ™ Save PeopleCode to File

KIS E—

Feady... Presz Cancel to end zearch

|
Find in Dialog

Use this dialog to specify a string to be searched for.
Type the search string you want to find in the Find What edit box

If you only want returned those items that match the case of what you typed, check the Match
Case checkbox at the bottom of the dialog.

Specify with the Find Type edit box whether you are searching in PeopleCode and SQL, just
PeopleCode or just SQL.

Select the project you want to search.
You can search the entire data base, or any existing project.
Select the view you want to search (optional)

If you chose to not search the entire database, you can specify if you want to search the
Development view or the Upgrade view. The default is the Development view.

Select the items you want to search
You can search all items that contain either PeopleCode or SQL, or just a subset of items.
Save the search results to a file (optional)

You can save the results of a PeopleCode search to text file, which you can view or print
using a text editor or word processor. The text file will contain the entire PeopleCode
program that contained the string.

If you want to save your results to a file, check the Save PeopleCode to File checkbox at the
bottom of the dialog. The results will be saved to the file, as well as display in the
Application Designer Find In . . . output window

Click the Find button to start the search.

DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

As Find In. . . searches the database, it displays a counter at the bottom of the Find In dialog
indicating the number of PeopleCode programs searched.

You can click on the Cancel button to stop the process.
9. Check Find in Output Window for results.
The results of the search appear in the Find in . . . tab of the output window. Each line shows

where the string was found. You can open any of the programs listed by double-clicking on a
line in the output window.

EEACCOMP_TEL (Record PeopleCode) =]
IACEDMPLISHMENT {field) leealchSave

x|

"a" Then
"SELECT ACCOMP_CATEGORY FROM P35 _ACCOMP TEL WHERE ACCOMPLISHMENT =
11", ACCOMPLISHMENT, «CAT): b
Evaluate %PanellGroup
When = PANELGROUP.TEST TAELE
«CURR_CAT = "T5T";

K

If 5Mode =

EBreak:;
When = PANELGROUP.DEGREE TAELE ;I

Searching for sglexec...

ACCOMP_TBL ACCOMPLISHMENT SearchSave - SQLExec("SELECT ACCOMP_CATEGORY FROM PS_ACCOMP_TBL WWHI
ADJUST_IMY W BUSINESS _UNIT Rovwlnit - SQLExec("select sumiagty), sumigty_base) from ps_physical_iny where bus
ADJUST _ThP_INY ADJUST_QTY SavePreChange - SQLExec("select NETTABLE_FLG fram PS_STOR_LOC_INY where E
ADJUST _ThP_IRY ADJUST_QTY SavePreChange - SQLExec"update PS_LOT_COMTROL_INY set QTY _&WAILABLE = Q

AC U IST ThAD vy 00U IST (T I AT COTROL W oot CITY AW AEIE = 1)

A1, Build A Find Ohject References ?}V\D;gr';}]e A Resus)r\ i?arfi?atenj\ Find In... /
Opening a PeopleCode Program from the Find in Tab

To save records in a project
1. Run Find In to search for a string.

2. Highlight the references you want saved in the output window using click-shift.

Searching for sglexec

st VT AL E

Find in output window with records selected

3. Right-click on the highlighted records and select Insert Into Project.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING YOUR APPLICATION 12-29

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

View Definition
Yiew PeopleCode

Save To File...

Caopy

Clear

Pritit
Find in pop-up menu
All the selected records will be inserted into the current open project. Save your project.

The next time you search, you can just search your project (select a Project on the Find In
dialog box) instead of searching the entire database.

Cross Reference Reports

You may find a situation where a field value changes, and you don’t know how it changed. There
are two ways of finding all references to a field.

¢ Find Object References in Application Designer

o Cross reference reports

@ For more information about Find Object References, see Using Application Designer
Projects.

PeopleTools is delivered with three PeopleCode cross reference reports:

o XRFFLPC. Reports on all fields in the system referenced by other PeopleCode programs. The
report sorts by record names, then field names. XRFFLPC shows the records, fields, and
PeopleCode program types that reference each field.

o XRFPCFL. Reports on the fields that each program references. It sorts the report by record
definition, field name, then PeopleCode type. It shows the records and fields referenced for
each program. This report and XRFFLPC complement each other by using converse
approaches to reporting the cross references.

e XRFPNPC. Reports on pages with PeopleCode. This report show pages containing fields with
PeopleCode attached to them.

You can run these using PeopleSoft Query and either view the reports online or print them out.

12-30 DEBUGGING YOUR APPLICATION PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

4 PUBLIC.QUERY XRFPCFL - Query H= E3
File Edit “iew Go Fawvortes Criteria Help
EEEEEE R A EEEEO R E R
[PUBLIC.QUERY <F | || Fields | Criteria | SEL | Resuls |
@ Record Field Hame Prog Type| Record {Table) Hame PeopleCode H.eferen:e;l
ABSENCE_HIST BEGIN_DT 3 ABSENCE_HIST DURATION_DAYS
ABSEMCE_HIST BEGIN_DT 3 ABSEMCE_HIST RETURM_DT
ABSENCE_HIST BEGIN_DT 3 DERIVED_HR D _OF_WWEEK
ABSEMCE_HIST BEGIN_DT 3 FUMCLIE_HR: DAY _OF _WEEK
€39 B - PSPCMNAN | | ABSENCE_HIST DURATION_DAYS i ABSENCE_HIST BEGIN_DT
5% Expressions ABSENCE_HIST DURATION_DAYE 0 ABSENCE_HIST DURATION_HOURS
L Prompts ABSENCE_HIST DURATION_DAYS i ABSENCE_HIST RETURM_DT
ABSEMCE_HIST RETURN_DT ul ABSEMCE_HIST BEGIN_DT
ABSENCE_HIST RETURR_DT 3 ABSENCE_HIST EEGIN_DT
ABSEMCE_HIST RETURN_DT 3 ABSEMCE_HIST DURATION_DAYE
ACCOMPLISHMENTS | ACCOMPLISHMENT 3 ACCOMPLISHMENTS DESCR
ACCOMPLISHMENTS | ACCOMPLISHMWEMT 3 ACCOMPLISHRMENT S ORG
ACCOMPLISHMENTS | ACCOMPLISHMENT 3 ACCOMP_TEL DESCR
ACCOMPLISHMENTS | ACCOMPLISHMWEMT 5 ACCOMPLISHRMENT S DESCR
l | | | ASCOMPLISHMENTS | ACCOMPLISHMENT] ACCOMPLISHMENTS ORG
@ ACCOMPLISHMENTS | ACCOMPLISHMWEMT 5 ACCOMP_TEL DESCR -
J@ 1] | _»IJ
Ready |Rows Fetched = 22844 | 4
XRFPCFL Query Results

[0

For more information about running queries, see Using PeopleSoft Query.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

DEBUGGING YOUR APPLICATION

12-31

CHAPTER 13

Using Three-Tier and Windows Client

This section covers a number of issues related to the use of PeopleCode methods and built-in
functions when used in a three-tier or windows client architecture. PeopleSoft applications are
written to work in the PeopleSoft Internet Architecture. However, you may have legacy
applications or an environment that requires using this older architecture.

Implementing Dynamic Tree Controls

=,

Dynamic tree controls are a search tool that can be embedded in a page.

Dynamic Tree controls are only available in Windows Client. They are not available in the
PeopleSoft Internet Architecture.

Dynamic trees give the user a view of hierarchical data structures and enable them to drill down
through the hierarchy to a particular row of data. The data in the row can be accessed by a
PeopleCode program, which would most likely be run from a command push button or a pop-up
menu item.

Dynamic trees are only available in Windows client. If you want to use trees in the PeopleSoft
Internet Architecture, use the GenerateTree function.

For more information see Using the GenerateTree Function.

A dynamic tree control is not the same as an ActiveX tree view control or an HTML tree.

There are two types of dynamic tree controls:

o multiple-table dynamic trees, in which the user drills down through a hierarchy of parent and
child records

o recursive single-table dynamic trees, in which the user drills down through rows that have
internal dependencies within a single record

Dynamic tree controls must be at level zero of the page.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-1

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

13-2

Although the nodes in a dynamic tree display a single field, they are in fact bound to an entire
row of data. When the user selects a node in the tree, PeopleCode can retrieve the value of any
record field on that row.

The root node of the tree takes its initial value from a level-zero record field to which it is bound.
If the value of this record field changes, you can use the PeopleCode RefreshTree function to
update the value in the tree’s root node.

For more information see GetSelectedTreeNode, GetTreeNodeRecordName,
GetTreeNodeValue, GetSubContractlnstance, RefreshTree.

To build a multiple-table dynamic tree:

This procedure describes how to build a dynamic tree to access data on multiple tables that are
related to one another hierarchically. The descriptions are illustrated with a simple example, in
which we set up a hierarchy of animal categories, types, and breeds for a veterinary clinic
database.

1. Make sure the tables for the tree are set up hierarchically.

Multiple-table dynamic trees are based on parent-child relationships among multiple records.
Each child node of the tree must be bound to a child record of the record to which its parent
node is bound.

Recall that a child record has all of the key fields belonging to the parent record, plus at least
one more key.

For example, for the animal categories tree, we set up three tables: ANIMALCATEGORY,
ANIMALTYPE, and ANIMALBREED. The key fields in these tables are as follows:

The ANIMALCATEGORY table, the highest level table, has this key field:

Key Field Description

ANIMALCATEGORY | The highest level key, which can have values of either
"Pet" or "Livestock”.

The ANIMALTYPE table is a child of ANIMALCATEGORY::

Key Field Description

ANIMALCATEGORY | The highest level key, which can have values of either
"Pet" or "Livestock"

ANIMALTYPE The general category of veterinary patient, such as
"Dog", "Cat", or "Rodent".

The ANIMALBREED table is a child of ANIMALTYPE:

USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Key Field Description

ANIMALCATEGORY | The highest level key, which can have values of either
"Pet" or "Livestock"

ANIMALTYPE The general category of veterinary patient, such as
"Dog", "Cat", or "Rodent".

ANIMALBREED The breed of animal, such as "German Shepherd" or
"Persian".

@ Note on siblings. At each level of the hierarchy below the root node, you can have two or
more "sibling" records, which must both be child records of the same parent. The example
does not include any siblings.

2. Add the tree and other required objects to a page.

You’ll need the following objects on the dynamic tree control’s page:

Dynamic tree control. After you place and size this control on the page, it appears as a blank
rectangle. The dynamic tree must be added at level zero of the page.

Push button or pop-up menu. The data in the dynamic tree must be accessed by a
PeopleCode program. This program will most likely be in a push button or pop-up menu.

Any other controls your implementation requires. The other objects on the page will
depend on your implementation.

In our example, we use a command push button to run the PeopleCode program, and add two
Derived/Work fields to display and store values for ANIMALTYPE and ANIMALBREED.

3. Edit the dynamic tree control’s properties.

Right-click on the dynamic tree control and choose Page Field Properties to display the Page
Field Properties dialog. Link the root of the tree to the highest key field of the highest-level
record in the record hierarchy. Add child records, binding them the highest key field that
distinguishes them from the parent record.

In our example, we link the root of the tree to
ANIMALCATEGORY.ANIMALCATEGORY, then click Add Child to add a new child
node. We bind this child node to ANIMALTYPE.ANIMALTYPE (the child table of
ANIMALCATEGORY). We then add a child node of ANIMALTYPE, binding it to
ANIMALBREED.ANIMALBREED.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

13-4

Page Field Properties

Recard ILabeI I Use I Generall

~ Tree Definition

z Add Child |

AMIMALTYPE-&NIMALTYPE RaCEE |
AMIMALBREED-AMIMALBREED

Delete Mads |

BecordName: [ANIMALCATEGORY =]
Field Hame: |ANIMALD—‘«TEGDHY j

0k I Cancel |

Page Field Properties of Dynamic Tree Control

Add PeopleCode to a push button or pop-up menu item for accessing data from the dynamic
tree.

The PeopleCode program determines the node that the user has selected using the
GetSelectedTreeNode function. This function returns an Object value that represents the
node that the user has selected. You can pass this value to the All function to determine
whether any node has been selected, and to other functions to retrieve the current nodes
record, value, and parent record.

In our example, the program determines if the current node is bound to the ANIMALBREED

record. If it is, then it copies the values from the currently selected row into the page’s
Derived/Work fields.

&TREENODE = GetSelectedTreeNode (RECORD.ANIMALCATEGORY) ;
/* make sure user has selected a node */
If All (&TREENODE) Then
/* if the user has selected a terminal node */
&RECNAME = GetTreeNodeRecordName (&TREENODE) ;
If &RECNAME = RECORD.ANIMALBREED Then
ANTIMALTYPE = GetTreeNodeValue (&§TREENODE, ANIMALBREED.ANIMALTYPE) ;
ANIMALBREED = GetTreeNodeValue (&TREENODE, ANIMALBREED.ANIMALBREED) ;

End-If;

USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

End-If;

In a multiple-record dynamic tree, you will probably want to take different actions, depending
on the record to which the currently selected node is bound. For example, you may want to
take action only if the user has selected one of the tree’s terminal nodes. To accomplish this,
you can use the GetTreeNodeRecordName function to determine the record to which the
currently selected node is bound and test the value returned by the function in an If or
Evaluate statement.

@ For more information on PeopleCode functions related to dynamic tree controls, see
GetSelectedTreeNode, GetTreeNodeRecordName, GetTreeNodeValue,
GetSubContractInstance, RefreshTree.

5.

Test the control.

To test the page you will of course need to insert it into a component, then associate the
component with a standard menu item. You will also need to assign yourself rights to the
new menu item in Security Administrator.

The example dynamic tree control panel looks like this:

Animal - Inquire - Animal Tree =]
File Edit “iew Go Favortes Setup Inguire Help

H@|@x| =as| &z =

Viewbresds |

=
15|

Sls| el *lvlvele]

== Animal Category: PET
BB Type: CAT
“[*] Breed: PERSIAN
“[1] Breed: SIAMESE
] Breed: TARRY
== Type: DOG
[*] Breed: AUSTRALIAN SHEPHERD
[EBreed: GERMAN SHEPHERD
[*] Ereed: LABRADOR RETRIEVER Animal Type: DOG

(3] Breed: ROTTWEILER
#-[] Type: RODENT esnnd]|

Animal Breed: LAERADOR RETRIEVER

[Wiewbreeds |Update/Display 4
Dynamic Tree Control Example at runtime

The root node in the tree is populated the level-zero record field to which it is bound. When
the user selects a terminal node in the tree (a Breed), then clicks the push button, PeopleCode
copies values from the selected row into the Derived/Work fields on the right. If the user has
not selected a terminal node, then the PeopleCode does nothing.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-5

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Recursive Single-Table Dynamic Trees

Recursive single-table dynamic trees access data on a table containing rows of data that have
internal dependencies. These types of dynamic trees are intended for use in tables where the rows
of data capture relationship between components and subcomponents, and where the same object
can have subcomponents and be a subcomponent of other objects.

The classic application of this type of data structure and tree would be in a bill of materials. In
manufacturing databases, tables of this type can contain very large numbers of rows, and the
hierarchies of objects can be extremely deep. The dynamic tree control generates SQL to select
specific rows from these large hierarchies quickly and efficiently.

A simple example of this type of structure, which is much smaller than a real-world application,
but which will serve to illustrate the basic concepts, would be a database representing objects in
the solar system and their satellites. A planet, for example, is a satellite of a star; a planet may
have its own satellites, moons, which in turn may have their own satellites. For purposes of this
example, let’s assume that Jupiter’s moon Ganymede has two "submoons."

To represent this structure in a single table, you could use these fields:

Field Description
ORBITEE The object around which the satellite revolves.
ORBITER The satellite.

If you populated this table with some data about the solar system, it might look like this:

Orbitee Orbiter
Sun Saturn
Sun Jupiter
Jupiter Amalthea
Jupiter Callisto
Jupiter Ganymede
Ganymede Wally
Ganymede Beaver

A recursive single-table dynamic tree would enable a user to drill down through this hierarchical
data structure to find a specific satellite.
To build a single-table dynamic tree control:

This procedure describes the steps in building a single-table dynamic tree control, illustrated by
an example page that accesses data about celestial bodies and their satellites in the solar system.

1. Make sure the record is set up correctly.

13-6 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

The single record should be structured as described in Recursive Single-Table Dynamic Trees
with fields for components and subcomponents that can store the same values. It can also
have higher-level keys.

In our example, we’ll use STARSYSTEM as a high-level key, ORBITEE as a second key,
and ORBITER as a third field. We’ll also add a field, ORBTYPE to classify the object type
of ORBITEE. The example record, SATELLITES, has these field.

Field Key Search Description

STARSYSTEM Key Search The star system.

ORBITEE Key Search The object about which the
satellite revolves.

ORBITER Non-key Non-search The satellite.

ORBTYPE Non-key Non-search The object type of ORBITEE
(star, planet, etc.)

Notice that SATELLITES has two search keys. The root node of the dynamic tree will take
it’s value from the second key field, ORBITEE. The child node of the dynamic tree will be
bound to ORBITER. Notice that ORBITER is not a key: this is a requirement in a recursive
single-table dynamic tree: the child node of the tree cannot be bound to a key field.

Because ORBITER is not a key, and the ORBITEE field will have duplicate values, the
SATELLITES record would have to permit "duplicate" rows. For example, the following
two rows would be treated as duplicates, because their key values are identical:

STARSYSTEM ORBITEE ORBITER ORBTYPE
SUN JUPITER WALLY PLANET
SUN JUPITER BEAVER PLANET

This makes it difficult to populate the table with data in PeopleTools, which prevents you
from adding rows with duplicate key field values.

There are two ways around this problem. One is to construct a table in which ORBITER is a
key, then base the dynamic tree control on a view (derived from this table) in which
ORBITER is not a key. In our example, assume that the SATELLITES record is such a view.

An alternate solution would be to add another key field to the table, such as ORBITER ID,
and make ORBITER a non-key field. This ensures that the rows are unique, permits data
entry into the table from the page, and also provides a non-key field to which the child node
in the dynamic tree can be bound.

Add controls to the page.
The page must contain:
The dynamic tree control. The dynamic tree control must be at level zero.

A command push button or pop-up menu item to contain a PeopleCode program that accesses
the dynamic tree’s data.

USING THREE-TIER AND WINDOWS CLIENT

13-7

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

e Any other controls required by your implementation.

In our example, we will add a high-level key linked to SATELLITES.STARSYSTEM, a
command push button, and Derived/Work fields to display values from ORBITEE,
ORBITER, and ORBTYPE.

3. Edit the dynamic tree control’s properties.

Right-click in the dynamic tree control and choose Page Field Properties to display the Page
Field Properties dialog.

This type of tree only requires two nodes: one parent and one child. Bind the root of the tree
to the record field that represents the component in the component-subcomponent pair. Then
add a child to the tree and bind it to the subcomponent member of the pair.

In our example, we bind the parent to SATELLITES.ORBITEE and the child to
SATELLITES.ORBITER.

Page Field Properties I

Recard ILabeI I Use I Generall

~ Tree Definition

& g Add Child |
SATELLITES-ORBITER e |
Delete Mads |

Record M ame: I SATELLITES

Led Lo

EieldName: [ORBITEE

Ok I Cancel |
Page Field Properties of Single-Table Tree Control

4. Add PeopleCode to access the dynamic tree data.

In the FieldChange event of the record field to which your push button is bound (or the
ItemSelected event of the menu item if you are using a pop-up menu) add PeopleCode for
accessing the dynamic tree’s data.

In our example, we add the following program, which copies data from the selected row it
into corresponding Derived/Work fields:

13-8 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

&TREENODE = GetSelectedTreeNode (RECORD.SATELLITES) ;

ORBITEE = GetTreeNodeValue (&TREENODE, SATELLITES.ORBITEE) ;

ORBITER = GetTreeNodeValue (&TREENODE, SATELLITES.ORBITER) ;

ORBTYPE = GetTreeNodeValue (&TREENODE, SATELLITES.ORBTYPE) ;

You can use the GetSelectedTreeNode function to return an Object value representing the
currently selected node, then pass this value to the GetTreeNodeValue function to return the
value of a field bound to the node. Notice that you can reference any field on the row, not
just the field displayed in the control.

Test the page.

To test the page you will of course need to insert it into a component, then associate the
component with a standard menu item. You will also need to assign yourself rights to the
new menu item in the Maintain Security pages.

The example panel looks like this:

Sattree - Inguire - 5 atellite Tree [_ (O]
File Edit “iew Go Favortez Setup |nguie Help

ol@ @] ‘ol

Sattree I

alE| glel=] #lvlal ||

Star System: SUN

== Orbitee: SUN
F-[] Orbiter: EARTH

== Orbiter: JURITER
E-[3] Orbiter; AMALTHEA
-2 Orbiter; CALLISTO
1 Orbier. EUROPA Dibitee: GANYMEDE
[= Orhiter: GANYMEDE

5[] Oibiter. BEAVER
-2 Orbiter; WALLY
3 Orbiter; HIMALLA —
2] Orbiter; 10 Orbitee Type: Moon
-3 Orbiter: LEDA,
-] Orbiter: METIS
- Orbiter: MARS -

|»

Orbiter: BEAYER

|Sattree | Update/Display i

Single-Table Tree Control at Runtime

The root node in the tree is populated from the second key field ORBITEE. When the user
expands the tree and selects a node, then clicks the command button, PeopleCode copies
values from the selected row into the Derived/Work fields.

How It Works

A recursive single-table dynamic tree control is built using only two nodes, level 0 (the parent)
and level 1 (the child).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-9

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

13-10

Recall that in tables of this type, there are two ficlds, one representing a "component,” the other a
"subcomponent.”" In our example these fields are ORBITEE and ORBITER. The parent node of
the tree is bound to the component field in the component-subcomponent pair, which in the case
of our example would be ORBITEE. The child node is bound to the subcomponent field, which
in the case of the example would be ORBITER.

When the user expands the root of the tree, an SQL statement uses the "component" record field
value of the row to which the root node is bound, expanding the node by selecting all the
subcomponent rows belonging to that component. In the example, it finds all the satellites of a
celestial body: if the root node were SUN, the SQL statement would expand the node by selecting
all rows where STARSYSTEM = ‘SUN’ and ORBITEE = ‘SUN’:

SELECT STARSYSTEM, ORBITEE, ORBITER, ORBTYPE FROM PS SATELLITES WHERE
STARSYSTEM='SUN' AND ORBITEE='SUN' ORDER BY STARSYSTEM, ORBITEE

When the user selects a node on the next level down, the subcomponent value of that row
becomes the component value in the SQL. For example, if the user expands the JUPITER node,
the value of ORBITER in the row would determine the value for ORBITEE in the SQL query,
which would expand the node by selecting all rows where STARSYSTEM = ‘SUN’ and
ORBITEE = ‘JUPITER’.

SELECT STARSYSTEM, ORBITEE, ORBITER, ORBTYPE FROM PS SATELLITES WHERE
STARSYSTEM='SUN' AND ORBITEE='JUPITER' ORDER BY STARSYSTEM, ORBITEE

This process is repeated as the user expands each subordinate node. If the SQL query doesn’t
return any rows, the node is not expanded.

Controlling the Root Node of the Dynamic Tree

In the preceding examples the root node of the dynamic tree was bound to a record field that
could not be controlled from within the page. If the value of this record field can be changed in
the page, you can add a PeopleCode program that uses the RefreshTree function to update the
value of the root node after changing the value.

To illustrate one way of doing this, suppose that in our first example (To Build a Multiple-Table
Dynamic Tree) we added an editable edit box bound to the same record field as the root node of
the dynamic tree. If this edit box prompted against another table containing the set of animal
categories, the page would look like this:

USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Animal - Inguire - Animal Tree =]
File Edit “iew Go Favortez Setup |nguie Help

Blel@ix| mlaE| Ee == =] @lelo] #lvelvwle]|
Viewhreedsl
Bimsey: T 2

== Animal Category: PET

E-[] Type: CAT

-2 Type: DOG

. [2] Breed: AUSTRALIAN SHEPHERD
[Ereed: GERMAN SHEPHERD
@ FCireed: LAERADOR RETRIEYER
. [Breed: ROTTWEILER
E-E> Type: RODENT

Animal Type: DOG

Animal Breed: LABRADOR RETRIEVER

[Wiewbreeds | Update/Display i

Page Showing User Control of Tree Root Node

If the user changes the value in the edit box, PeopleCode can update the value in the root node of
the dynamic tree using the RefreshTree function:

RefreshTree (RECORD.ANIMALCATEGORY) ;

The most logical place for this program would probably be the FieldChange event of the record
field to which the Animal Category edit box is bound. This way the tree would be updated
whenever the user changes the value in the edit box.

Implementing ActiveX Controls

ActiveX controls present both a visual and programmatic interface to application developers. The
visual interface provides for the selection of controls, painting onto pages, and the setting of
properties.

@ ActiveX controls are only available in Windows Client. They are not available in the
PeopleSoft Internet Architecture.

The programmatic interface has three important aspects:
e properties (Color, Hide, Value, etc.)

¢ methods (RandomFillColumns, Extractlcon, etc.)

o cvents (UserMovedBar, OnLeftClick, etc.)

Access to the properties and methods are through the PeopleCode GetControl function. The
events are accessed through the PeopleCode editor.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-11

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

The inclusion of an ActiveX control in an application requires PeopleCode programming. The
amount of programming depends on the complexity of the control. A control used only for
presentation (i.e., a graph) will require significantly less programming than one that requires a lot
of event handling (i.e., an interactive tree.)

ActiveX controls are not automatically associated with any record. You must use PeopleCode
programming to write any data entered in an ActiveX control to a record if you wish to preserve
or use the information.

PeopleSoft supports the following ActiveX controls
e Microsoft Chart Control (version 6.0)
e Microsoft TreeView Control (version 6.0)

e Microsoft ImageList Control (version 6.0)

@ The ActiveX tree view control is not the same as the dynamic tree control or an HTML tree.

@ For more information see ActiveX Controls in PeopleTools.

After you place an ActiveX control on a page, you must go into the properties and give the
ActiveX control a name before you can save the page. Choose a unique name, like the name of
your company combined with the task of the ActiveX control, like FORD HIST CHART or
MORGAN EMPL DATA TREE. The name must be unique, otherwise the control and its
associated PeopleCode may be lost during upgrade (if PeopleSoft places an ActiveX control on a
page and gives it the exact same name as the one your company has created.)

The ActiveX controls supported by PeopleTools are not UNICODE compliant. This is a
restriction of the controls themselves, not of PeopleTools. This means, if you had some non-
ANSI text (such as Japanese) stored in your UNICODE database, you can only view/edit the text
in a page containing an ActiveX control in machines set up for that language (such as a Japanese
NT machine.)

@ For more information see Globalization.

Manipulating Events for ActiveX Controls

Every PeopleCode program is associated with one component (like an ActiveX control, a record
field, a component, a page, etc.) and one event. To manipulate an ActiveX control during
runtime, you can put your code in any of the existing PeopleCode events (RowInit, Activate,
etc.), the PeopleCode ActiveX events (PSControllnit and PSLostFocus), or one of the specific
events associated with that control.

13-12 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=,

After you put an ActiveX control on a page, you must save the page before you can access
any of the ActiveX control events.

The PSControllnit and PSLostFocus events are only available for ActiveX controls.

PSControllnit

The PSControllnit event fires every time the page is redrawn. This means it fires after the
component buffers are loaded and after a RowlInsert or a RowDelete. It also fires after a user
changes a field using a drop down or other prompt. It fires after a user scrolls up or down in a

page.

This event is only available with ActiveX controls. Generally, you will place PeopleCode that
will synchronize the control with the buffer data. Because this event can be fired many times
during the normal running of a page, any PeopleCode in the PSControllnit event should be
designed so it isn’t sensitive to where and how often it gets run.

If you want to use this event for initially loading data into the control, you should write your code
in such a way that it is only run once. The following code example shows a possible way of doing
this:

Component boolean &RUN;

Local object &MYTREE;

Function PSControlInit ()

&MYTREE = GetControl () ;

If Not (&RUN) Then
/* do initial processing */
&RUN = True;

Else
/* do other processing */

End-If;

End-Function;

PSLostFocus

The PSLostFocus event fires for an ActiveX control page field when the user removes focus
from the control. For example, this event fires when the user tabs off the control. PSLostFocus
does not fire when the user tabs from one field to another within the control. It only fires when

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-13

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

the focus completely leaves the control. Use this event to move data from the control to the
component data buffers.

@ For more information about these events see PeopleCode and the Component Processor.

Control Specific Events

In addition to PSControllnit and PSLostFocus, every ActiveX control also comes with its own set
of events. A set of events is particular to that ActiveX control. For example, the Chart control has
events like OnAxisTitleUpdated, while the TreeView control has events like OnCollapse.

When you put an ActiveX control on a page, PeopleTools creates a blank PeopleCode "template"
with each event, in which the event handler signature is given. In the signature, the variables that
get passed to the event, and what data type those variables are, is listed.

For example, the OnMouseDown event, which is specific to the TreeView control, has the
following code created when the page with the control is first saved:

Function OnMouseDown (&§BUTTON As number, &SHIFT As number, &X As any, &Y As any) ;
/* TODO: Add your code here */

End-Function;

To access ActiveX control events

1. Register your ActiveX control (using Client Workstation Install) and place it ActiveX on
your page.

2. Name the ActiveX control and save the page.

3. Select the ActiveX control, then access the PeopleCode associated with that control.
There are two ways to do this:

e Select View, View PeopleCode
OR

e Left-click and select View PeopleCode from the pop-up menu.

4. Select the right-hand dropdown button just under the title bar.

A list of all the events for that ActiveX control will be displayed.

13-14 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

!_.'Vl] LUNTEER_ORG_TABL. ENG [Panel PeopleCode]

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

| CHARTT [panelfield] j

IFu.nction P3lostFocus ()
#% TODO: Add your code here */
End-Function;

PSLostFocus

PS Cantrollnit

Ot ousetd ove

Ot ouseDown
OrdwizTitlel) pdated
Ozl abellpdated
OrChartéctivated
OnOLED ragQver
Oridistictivated
OrPlotéctivated
OnTitled.chivated
OrPointSelected
OrduisTitleSelected
Orkevlp
CrDbIClick
OréxizSelected
Ok ousellp

Onk ewDown
OnClick
OrPointlabelctivated

OnOLESetDats

List of events for Chart ActiveX control

Manipulating ActiveX Control Properties and Methods

You can manipulate an ActiveX control’s properties and methods either at design time or at

runtime. You can use the PeopleTools ActiveX control property dialog, or the control’s built-in
property dialog, if one is provided by the control vendor. Design time property settings are
persistent, though they may be changed at runtime using PeopleCode, or a user interface provided
by the control.

To access an ActiveX control from your PeopleCode program, you must use the GetControl
function. The GetControl function returns a reference to an ActiveX object, so it can be used

directly with the properties and methods associated with that control. That is, following the

GetControl function call, you can use dot notation to access the properties or methods of that

control.

The GetControl function returns a reference to an ActiveX control. You can’t access any

controls until after the page processor has loaded the page. You shouldn’t use this function
in an event prior to the Activate event.

For example, you can set the font size of a TreeView control with the following code:

&MYTREE = GetControl () ;

&MYTREE.Font.Size = 18;

Or you could retrieve a node that was highlighted by the user:

&MYTREE = GetControl() ;

&MYNODE =

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

&MYTREE.SelectedItem;

USING THREE-TIER AND WINDOWS CLIENT

13-15

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Data Types for Declaring ActiveX Controls

You should use the data type Object when you declare your ActiveX controls, or any other object
instantiated from an ActiveX control.

For example, you can instantiate a node object from a TreeView control, so both are declared as
type Object.

Local Object &MYTREE, &MYNODE;

Component Object &MYCHART;

The purpose of the Object data type is to hold objects during the course of a session so that you
can run its methods.

@ Important! ActiveX controls are not associated with any record field. Object is a valid data
type for variables, but not for record fields. You can store data from the object, different
values, but not the object itself. ActiveX Controls must be initialized every time the page is
activated at runtime.

Initializing an ActiveX Control with Data

You don’t just want to control what a control looks like. You also want to be able to fill it with
data, both when the page is first displayed and when other fields on the page have been changed.

In the following code example, the chart control is loaded with data, based on the data in the
component buffers. This code would be in the PSControllnit event for the ActiveX control:

Function PSControlInit ()
&CONTROL = GetControl ()
&CONTROL.ChartType = 3;
&MAX = ActiveRowCount (SCROLL.ABSENCE HIST) ;
&CONTROL . ColumnCount = 1;
&CONTROL.RowCount = &MAX;
For &I = 1 To ActiveRowCount (SCROLL.ABSENCE HIST)
&VAL = ABSENCE HIST.DURATION DAYS.Value;
&DATE = ABSENCE HIST.BEGIN DT.Value;
&CONTROL.Row = &I;
&CONTROL.Data = &VAL;

&CONTROL .RowLabel = &DATE;

13-16 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

[

End-For;

End-Function;

If the user types a new value into the Days field, you want the chart control to reflect this change.
This code is in the DURATION DAYS record field FieldChange event. It loads the new value
into the chart:

&ROW = CurrentRowNumber () ;

&CHART = GetControl (PAGE.ABSENCE HISTORY, "ACTIVEX1");
&CHART.Row = &ROW;

&CHART .RowLabel = BEGIN DT;

&CHART.Data = DURATION DAYS;
You don’t need to redraw the page: the control is automatically updated when the code is
executed.

Because this code is not in an event that’s part of the ActiveX control, you must specify which
page in the component the ActiveX control sits on, and you must specify the control name.

For more information see GetControl.

Using ScrollSelect Functions

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-17

Normally, when the user opens a page, the page scroll areas are filled with rows automatically,
based on the structure and relationships of the page’s record definitions. ScrollSelect functions
are a special set of functions that enable you to control this process programmatically. These
functions are:

e ScrollSelect

e ScrollSelectNew

e RowScrollSelect

e RowScrollSelectNew

The ScrollSelect functions are kept for backwards compatibility. New applications should
use the data buffer access classes and the appropriate methods and properties instead. For
more information see Data Buffer Access.

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Although these four functions differ from one another significantly in their effect, their syntax
and usage is similar. Once you have mastered one of the functions, you will be able to use all of
them. As an example, let’s look at how to use ScrollSelect, then examine the specific differences
among the four functions.

@ All ScrollSelect functions work with grid controls.

In PeopleTools 8, the rowset class was introduced. This class has two methods, Select and
SelectNew, which, depending on the parameters used with them, act as either ScrollSelect or
RowScrollSelect, or as ScrollSelectNew or RowScrollSelectNew, respectively. The ScrollSelect
functions are still supported, however, PeopleSoft recommends using the new rowset object with
the new methods.

@ For more information, see Using the Select and SelectNew Methods

In addition to these methods there is the record class method SelectByKey that allows you to
select into a record object. If you’re only interested in selecting a single row of data, you may
want to consider this method instead.

@ For more information see SelectByKey.

What ScrollSelect Does

ScrollSelect selects rows from a table or view and adds the rows to a scroll area of a page. Let’s
call the record definition of the table or view that it selects from the select record; and let’s call
the record definition normally referenced by the scroll area (as defined on the page) the default
scroll record.

The select record can be the same as the default scroll record, or it can be a different record
definition that has the same key fields as the default scroll record. If you define a select record
that differs from the default scroll record, you can restrict the number of fields that are loaded into
the buffers on the client work station by including only the fields you actually need.

ScrollSelect automatically places child rows in the target scroll area under the correct parent row
in the next highest scroll area. If it cannot match a child row to a parent row an error will occur.
When a scroll is selected into, any autoselected child scrolls will also be read. The child scrolls
will be read using a where clause that filters the rows according to the where clause used for the
parent scroll, using a subselect.

ScrollSelect also accepts an optional SQL string that can contain a WHERE clause restricting the
number of rows selected into the scroll area. The SQL string can also contain an ORDER BY
clause, enabling you to sort the rows.

13-18 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

ScrollSelect functions generate an SQL SELECT statement at run time, based on the fields in the
select record and WHERE clause passed to them in the function call. This gives ScrollSelect
statements a significant advantage over SQLExec: they allow you to change the structure of the
select record without affecting the PeopleCode, unless the field affected is referred to in the
WHERE clause string. This can make the application easier to maintain.

ScrollSelect Syntax
The syntax of ScrollSelect is:
ScrollSelect (levelnum,
[RECORD. Ievell recname,

[RECORD. Ievel2 recname,]] RECORD.target recname,
RECORD. sel recname

[, sglstr [, bindvars]]

[, turbo]l)

Where bindvars is an arbitrary-length list of bind variables in the form:
bindvarl [, bindvar2]..

Although the syntax is complex, it really does only four things:

o Specifies a target scroll area into which to read the selected rows.

o Specifies the select record from which to select rows.

e Passes a string containing a SQL WHERE clause to restrict the selection of rows and/or an
ORDER BY clause to sort the rows.

¢ Optionally switches on the Turbo ScrollSelect performance optimization.

Let’s examine these parts of the syntax one at a time.

Specifying the Target Scroll Area

The first part of the argument list specifies the page scroll into which rows will be selected, which
we’ll call the target scroll area:

levelnum,
[RECORD. levell recname, [RECORD.Ievel2 recname,]]
RECORD. target recname

The levelnum parameter specifies the scroll level of the target scroll area, which can be 1, 2, or 3.

The RECORD.target recname parameter specifies the default scroll record of the target scroll
area.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-19

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

The syntax of the two optional RECORD.levelx recname parameters works as described in
Scroll Path Syntax with RECORD.recordname.

@ In this function you don’t specify row numbers for higher-level scrolls.

The SQL String

The sqlstr parameter is a string literal containing a SQL WHERE clause and/or ORDER BY
clause:

[, sglstr [, bindvars]]

The WHERE clause explicitly selects rows from the select record; the optional ORDER BY
clause sorts the rows. For example, the following statement selects rows in which EMPLID
matches the level-one key and the charge amount equals or exceeds 200, sorting the rows by
EXPENSE AMT:

ScrollSelect (2, RECORD.BUS EXPENSE PER, RECORD.BUS EXPENSE DTL,
RECORD.BUS EXPENSE DTL, "WHERE EMPLID=:1 AND EXPENSE PERIOD DT=:2 AND
EXPENSE AMT >= 200 ORDER BY EXPENSE AMT", EMPLID, EXPENSE PERIOD DT) ;

To avoid errors, the WHERE clause should explicitly select matching key fields on parent and
child rows. The following statement will result in a "No matching buffer found for level" error:

ScrollSelect (2, RECORD.BUS EXPENSE PER, RECORD.BUS_ EXPENSE DTL,
RECORD.BUS_EXPENSE DTL, "WHERE EXPENSE AMT >= 200 ORDER BY EXPENSE AMT") ;

You can use bind variables in the SQL string, just as you can in a SQLExec statement string.
Bind variables are references within the sqlstr string to optional field specifiers listed in the
bindvars list. Within sqlstr, the bind variables are represented by integers preceded by colons:

1, :2,..

The integers must be in numerical order. Each of these :integers represents a field specifier in the
bindvars list, so that :1 refers to the first field specifier in bindvars, :2 refers to the second field
specifier, and so on. For example, in the following code:

"where deptid between :1 and :2", DEPTID FROM, DEPTID TO

:1 is replaced by the value contained in the page field DEPTID FROM; :2 is replaced by the
value contained in the page field DEPTID TO.

Bind variables in ScrollSelect functions work the same way as bind variables in SQLExec
statements.

@ For more information see SQLExec.

13-20 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

=,

Be aware that the PeopleCode compiler knows nothing about the contents of the SQL string
at compile time. It will not perform standard formatting on the string contents. If there is an
error in your SQL you will get a runtime error.

Specifying the Select Record

The RECORD .sel_recname parameter specifies the select record, from which the ScrollSelect
function will select data. The select record must have the same key fields as the default scroll
record, to assure that dependencies with other records on the page will work correctly. The select
record can be identical to the default scroll record. If it is not, it must be defined and built (that is,
the SQL table created) in Application Designer. The select record cannot be a derived/work
record.

Turbo ScrollSelect

Turbo ScrollSelect is a feature that addresses performance issues. This feature improves the
performance of ScrollSelect verbs (ScrollSelect, ScrollSelectNew, RowScrollSelect,
RowScrollSelectNew), in some cases by 300%. However, it affects the way that RowlInit events
are generated.

To turn on Turbo ScrollSelect, add the furbo parameter with a value of TRUE to the end of your
ScrollSelect function parameter lists. Turbo mode will be invoked only if the optional turbo
parameter is set. This means that existing code will continue to behave as before unless you add
the new parameter. For example, if your code looks like this:

ScrollSelect (2, RECORD.CUST CONVER, RECORD.CUST CONVER DTL,
RECORD.CUST CONVER DTL, "where setid=:1 and cust_id=:2",
CUSTOMER . SETID, CUSTOMER.CUST ID) ;

You should add TRUE to the end, as shown here:

ScrollSelect (2, RECORD.CUST CONVER, RECORD.CUST CONVER DTL,
RECORD.CUST CONVER DTL, "where setid=:1 and cust id=:2",
CUSTOMER.SETID, CUSTOMER.CUST ID, true);

You should exercise caution in implementing Turbo ScrollSelect in existing applications, because
under some circumstances it may produce undesired changes in the behavior of the application.
The areas to look out for are dependencies in the order of PeopleCode execution.

Without Turbo mode, when you call SerollSelect, any RowlInit in the component that has not yet
executed will be executed immediately, even if it is not in the record specified by ScrollSelect.
For example, let’s say you have a component with four RowInit PeopleCode programs at Level 0.
The first Rowlnit program ("A") executes. Then in the second RowlInit program ("B"), you call
ScrollSelect to load a level-one scroll. Before the next line in program B executes, all the
remaining level-zero "C" and "D" RowInits are run, followed by the RowlInits in the level-one
records.

With Turbo mode on, when you call ScrollSelect, only RowlInits on the records specified by
ScrollSelect are executed. In the preceding example, the first RowlInit program ("A") executes as

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-21

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

before. But when the second RowInit program ("B") calls ScrollSelect to load a level-one scroll,
only the RowlInits in the level-one records execute before the next line in Program B. The
remaining level-zero "C" and "D" RowlInits run after RowlInit "B" finishes.

In the example, a behavior change would occur if you have logic in Program B after the
ScrollSelect that assumes that Programs "C" and "D" have already been run.

Other ScrollSelect Functions

The three other ScrollSelect functions, ScrollSelectNew, RowScrollSelect, and
RowScrollSelectNew, are syntactically similar to ScrollSelect, but exhibit one or more of two
functional behaviors that we’ll call New Data behavior and Specific Row behavior. You can
think of these behaviors as features distributed in the following feature matrix:

- Specific Row + Specific Row
- New Data ScrollSelect RowScrollSelect
+ New Data ScrollSelectNew RowScrollSelectNew

New Data Behavior

Functions that end in New mark any rows read into the scroll as new rows, so that when the user
saves the scroll, the scroll record is updated with the new rows. This behavior is useful, for
example, if you want to update rows in the scroll record with rows selected from a different select
record.

Specific Row Behavior

Functions that begin with "Row" read data from the select record into a scroll under a specific
parent row, rather than automatically distributing the rows under the correct parent rows
throughout the buffer. With functions exhibiting this behavior, the programmer must use the
WHERE clause in the SQL string to ensure that only rows that are dependent on the parent row
are read into the scroll from the select record. Otherwise, all rows will be read in under the
specified parent row.

To specify the parent row, you use the additional levelx_row parameter in the function call when
specifying the target record:

[RECORD. levell recname, levell row,
[RECORD. level2 recname, level2 row,]]
RECORD. target recname

This is a common construct in PeopleCode. Frequently the CurrentRowNumber function is
used to determined the row value.

13-22 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

[0

For more information see Referring to Scroll Levels.

Here is an example of RowScrollSelect using CurrentRowNumber to determine the parent row,
and a WHERE clause to ensure that only matching child rows are read into the target scroll:

RowScrollSelect (2, RECORD.BUS EXPENSE PER, CurrentRowNumber (),
RECORD.BUS_EXPENSE DTL, RECORD.BUS EXPENSE DTL, "where EXPENSE PERIOD DT = :1",
EXPENSE_PERIOD_DT) ;

Using OLE Functions

OLE automation is a Microsoft Windows protocol that enables one application to control
another’s operation. The applications communicate by means of an OLE object. One of the
applications (called the automation server) makes available an OLE object that the second
application (the client application) can use to send commands to the server application. The OLE
object has methods associated with it, each of which corresponds to an action that the server
application can perform. The client runs the methods, which cause the server application to
perform the specified actions.

PeopleCode includes a set of functions that enable you to get OLE objects from automation
servers and to run the objects’ methods. In other words, your PeopleCode program can be an
OLE client.

The PeopleCode OLE functions do not work in the PeopleSoft Internet Architecture.

PeopleCode includes a set of functions that enable you to control other Microsoft Windows
applications through Object Linking and Embedding (OLE). You can connect to any application
that’s registered as an OLE automation server and invoke its methods.

Differences in Microsoft Windows applications from one release to the next (that is,
properties becoming methods or vice versa) can cause problems with ObjectGetProperty,
ObjectSetProperty() and ObjectDoMethod().

In addition, some of the objects associated with the ActiveX controls supported by PeopleTools
have special properties that can’t be set using the native property. These properties can only be
set using the PeopleCode ObjectSetProperty built-in function.

This section describes the PeopleCode functions you use to communicate with other applications
through OLE.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-23

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

[0

13-24

For more information about OLE automation and the methods available for a particular OLE
automation server, refer to the documentation for the OLE-automated application.

For more information on OLE functions, see CreateObject, ObjectDoMethod,
ObjectGetProperty, ObjectSetProperty.

Data Types

To support OLE, PeopleCode has a special data type—OBJECT—which it uses for OLE objects.
The purpose of the OBJECT data type is to hold OLE objects during the course of a session so
that you can run its methods. You can’t store OBJECT data for any extended period of time.

Important! OBJECT is a valid data type for variables, but not for record fields. Because
OLE objects are by nature temporary, you can’t store OBJECT data in a record field,
including work record fields.

Some OLE object methods return data to the client. You can use such methods to get data from
the automation server, as long as the method returns the data in a form that PeopleCode can
handle; that is, the data must be in a PeopleCode-supported data type. If the method returns data
in an spreadsheet, for example, you won’t be able to accept the data because PeopleCode doesn’t
support spreadsheets.

ActiveX Controls should also be declared as type Object, but the OLE functions generally
shouldn’t be used with ActiveX controls, outside a few specific exceptions.

Sharing a Single Object Instance

When you need the services of an OLE automation server, you create an instance of its OLE
object, using the CreateObject function. Once you have the object, you can run its methods as
often as you like. You don’t need to create a new instance of the object each time.

In a typical scenario, you have a PeopleSoft component that needs to access Microsoft Excel, or
Word, or some other automation server, perhaps one you have created yourself. Various
PeopleCode programs associated with the component need to run OLE object methods.

Rather than create a new instance of the OLE object in each PeopleCode program, you should
create one instance of the OLE object in a PeopleCode program that runs when the component
starts (such as RowInit) and assign it to a global variable. Then, any PeopleCode program can
reference the object and invoke its methods.

USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

OLE versus WinExec

The WinExec and Exec built-in functions provide another way you can start another application
from PeopleCode. Unlike the OLE functions, however, Exec and WinExec don’t allow you to
control what actions the application takes after you start it. You can start the application—and if
you use the synchronous option you can find out when it closes—but you can’t affect its course
or receive any data in return.

WinExec is appropriate in two situations:
¢ When you just want to start an application and continue processing.
¢ When you have a short, unvarying process that you want to run, such as copying a file.

The Exec function, unlike WinExec and the OLE functions, is not Windows-specific. This
means that you can run it on an application server to call an executable on the application server
platform, which in PeopleTools release 7 can be either Windows NT or UNIX.

@ Important! If you use the WinExec function with its synchronous option, your PeopleCode
program (and the PeopleSoft application) remain paused until the called program is
complete. If you start a program that waits for user input, such as Notepad, your application
will appear hung until the user closes the called program. The synchronous option also
imposes limits on the PeopleCode.

@ For more information about these functions, see Exec and WinExec.

Processing Groups

As of PeopleTools 7 some online processes will run on the client machine, and others on an
application server. This division of labor is called partitioning: processes that exchange a
significant amount of data with the database server run on an application server on or near the
physical location of the database server; processes that do not involve a significant exchange of
data with the database server run on the client computer. This widely accepted three-tier model
provides excellent performance, scalability, and security.

@ In the PeopleSoft Internet Architecture, all processing occurs on the server, so there is no
concept of partitioning or process groups.

All Search API PeopleCode must be run on a server. It cannot be run on a client.

In order to partition application processing between the client and the application server, it is
necessary to define units that, as a whole, run in one location or the other. We call these units
processing groups.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-25

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

In this section we’ll look at all processing groups, paying special attention to those that can be run
in either location at the discretion of the application developer or administrator. These are the
processing groups that you must take into consideration when designing or upgrading an
application for three-tier architecture.

Processing groups can encompass one or more PeopleCode events. There are three processing
groups that can run on either the client or on the application server (Component Build,
Component Save, and FieldChange). Each SaveEdit PeopleCode program, which is normally part
of the Component save processing group, can be specified to run either on the client or the
server. All other PeopleCode processing in PeopleTools 7 and later takes places exclusively on
the client.

Component Build

The Component Build processing group includes all processing done after the key list of a panel
is selected and before the user can interact with the panel. This includes building panel buffers
and running many types of PeopleCode. The types of People Code that can run here, in the
following order, are:

e RowSelect

PreBuild

RowlInit

PostBuild

Activate

PSControllnit (if an ActiveX control is present within the Component)

@ For more information on these events, see Component Build Processing in Update Modes
and Component Build Processing in Add Modes.

The following events do not normally run, but they can run if a InsertRow or DeleteRow
PeopleCode function or method is called elsewhere in the processing group.

o Rowlnsert
e RowDelete
e PSControllnit

By default, all Component Build processing happens on the application server.

FieldChange PeopleCode

The FieldChange event fires after:

13-26 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

1. The user changes a field

2. System validations and FieldEdit PeopleCode validations of the new data have completed
successfully.

FieldChange PeopleCode is logically distinct from FieldEdit PeopleCode:
¢ FieldEdit is used to handle single-field data validation

¢ FieldChange handles other processing triggered by a change to the field, such as recalculation
of other panel field values.

By default, all FieldChange processing happens on the client. For typical FieldChange processes,
such as graying or hiding a field or performing a simple calculation on a panel, the client is the
most efficient location.

However, if a FieldChange program is SQL-intensive, you can improve performance by changing
the program’s location to the application server (see Controlling Process Location). If you do this,
make sure to check the FieldChange program for client-only PeopleCode.

FieldChange programs are associated with either a record field or a Component record field.
Every FieldChange program can have its run location set independently to server, client, or
default.

If either a record field FieldChange or a Component record field FieldChange program is set to
run on the server, and the other is specified as default, then both will run on the server as part of
a single transaction. If one is specified as server and the other as client, then both specifications
will be honored.

The FieldChange program associated with a record field is always run before the Component
record field FieldChange program, regardless of run location.

Field default processing for a field always follows both FieldChange programs. This is generally
performed on the server as part of the same processing group, unless there is a Component record
field FieldChange program that is specified to run on the client. That is, if there is a record field
FieldChange program marked server, and a Component record field FieldChange program
marked client, processing returns to the client for the Component record field FieldChange
program, and field defaults are also done on the client.

Component Save

The Components Save processing group involves all processing after the user has saved the
Component and client-based SaveEdit PeopleCode validations have succeeded. It includes
SavePreChange, WorkFlow, and SavePostChange PeopleCode, as well as updates to the
database. By default, all Component Save processing happens on the application server. It may
include SaveEdit.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-27

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

SaveEdit PeopleCode

The SaveEdit event fires whenever the user attempts to save the Component. SaveEdit
PeopleCode is used to validate the consistency of data in Component fields. If the validation
involves more than one Component field, you should use SaveEdit PeopleCode. If a validation
involves only one panel field, you should use FieldEdit PeopleCode.

SaveEdit PeopleCode is logically distinct from the PeopleCode in the Component Save
processing group because if an error occurs, the Component is redisplayed without the data being
saved. An error in any of the Component Save processing PeopleCode will cause a runtime error,
forcing the user to cancel the Component without saving changes.

By default, all SaveEdit PeopleCode happens on client. For typical SaveEdit processes, such as
performing a simple calculation on the sum of two fields, the client is the most efficient location.

However, if a SaveEdit program is SQL-intensive, you can improve performance by changing the
program’s run location to the application server. You can specify either the individual SaveEdit
PeopleCode program, or that all SaveEdit PeopleCode for the Component be run on the
application server (see Controlling Process Location). If you do this, make sure to check all
SaveEdit PeopleCode programs for client-only PeopleCode.

SaveEdit programs are associated with either a record field or a Component record. Every
SaveEdit program can have its run location set independently to server, client, or default.

A SaveEdit program set to run on the client always runs before server SaveEdit programs,
regardless of whether the program is associated with a record field or a Component record.

If the Component Save processing group is set to save on client, the SaveEdit program run
location is ignored. In all other cases, the specification of client or server is honored.

The meaning of default for a SaveEdit program depends on the Component Save processing
group run location setting. If Component Save processing is server with edits, default for
SaveEdit is server. If Component Save processing is server, default for SaveEdit is client.

All client SaveEdit programs are performed before the application server is invoked. Then all

server SaveEdit programs are performed, then other save processing. This split into client
SaveEdit programs and server SaveEdit programs occurs even if running in 2 tier mode.

Other Processing Groups

The following table summarizes the processing groups that run on the client only:

Processing Group Description

Searchlnit/SearchSave PeopleCode processes that occur immediately before
and after the search dialog, prior to Component Build.

Field Edit PeopleCode that fires after the user changes a field
then moves the focus from the changed field.

Rowlnsert PeopleCode processes that occur after the user
attempts to insert a row.

13-28 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

RowDelete PeopleCode processes that occur after the user
attempts to delete a row.

PrePopup Processes that occur immediately before a pop-up
menu is displayed.

F4 and alt F4 prompts Processes that occur when the user presses F4 or
Alt+F4 in a field that validates against a prompt table
or against the translate table.

ItemSelected Processes that occur immediately after the user
chooses a menu item from a standard or pop-up menu.

Note on External Function Location

Declared PeopleCode functions run in the location from which they are called. In other words, the
location of the processing group where the function call is made determines the location of the
called function.

For example, suppose that a FieldChange PeopleCode program calls an external function
RecalculateTotal, which is stored in the FieldFormula event in some record field in the record
definition FUNCLIB_HR.

e [f the FieldChange PeopleCode runs on the client, then RecalculateTotal runs on the client.

o [f the FieldChange PeopleCode runs on the application server, then RecalculateTotal runs on
the application server.

The fact that RecalculateTotal is stored in a FieldFormula event has no bearing on where the
function runs.

Default Processing Locations

The following table summarizes the locations where the processing groups can occur in three-tier
mode. (Remember that in two-tier mode there is no application server, so all application
processes run on the client.)

Processing Group Location (Default in Bold)
Component Build Client or Application Server
Component Save Client or Application Server
FieldChange Client or Application Server
SaveEdit Client or Application Server
All others Client

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-29

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

Controlling Process Location

13-30

An application or developer can change the default location of a Component Build, Component
Save, or FieldChange processing group. The locations for Component Build and Component
Change are set for the Component as a whole. The location for FieldChange is set for the
individual PeopleCode program. The location for SaveEdit processing is set for the individual
PeopleCode program, or as part of the Component save specification.

Each of the following procedures involves accessing and setting a radio button that determines
the location of a specific processing group. The radio buttons are:

e Default. Specifies that this processing group runs in the default location. (See Default
Processing Locations.)

¢ Client. Specifies that the processing group will run on the client workstation.

e Application Server. Specifies that the processing group will run on the application server, if
the application is running in three-tier mode.

e Application Server (with edits). Specifies that the Component save processing group will run
on the application server, including any SaveEdit PeopleCode programs (unless specifically
marked to run on the client.)

To change the location of a processing group

1. Open the Component in Application Designer.

If the Component is in the current project you can open it from the Project View. Otherwise,
use File, Open.

2. Click the Properties button E on the toolbar, or press ALT+ENTER, display the Component
Properties dialog, then click the Use tab.

USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

Component Properties
General Use | Internetl
—Acce: Action

Search recaord: ™ Add
W Update/Display

Add search recard: I Update/Display Al

I j ™ Comection
™ DataEntry

Detail page:

IPEHSDNAL_DATM j [T Disable 5 aving Page
¥ Include in Mavigation

r— 3-Tier Execution Location

Compaonent Build——— [~ Component Save

' Client " Client

 application serer © Application server

& Default [application server) " Application server [with edits
@ Default [application server)

0K I Cancel

Component Properties Dialog

3. To set a location for the Component Build processing group, choose a radio button under
Component Build. To set a location for the Component Save processing group, choose a
button under Component Save.

4. Optionally document the change in the Comments field on the General dialog page, then
accept the dialog.
To change the location of a FieldChange or SaveEdit processing group

1. From Application Designer, open the PeopleCode Editor for the record field that you want to
change.

There are several ways to do this, but one convenient way is to right-click on the record field
in the project workspace, then choose View PeopleCode.

2. Access the FieldChange or SaveEdit Event for the record field that you want to change.

To do this, choose the FieldChange or SaveEdit event from the right dropdown list at the top
of the PeopleCode Editor.

3. Right-click in the PeopleCode Editor, then choose Object Properties from the context menu.
The PeopleCode Event Properties dialog appears.

4. Click the Use tab.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL USING THREE-TIER AND WINDOWS CLIENT 13-31

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

PeopleCode Event Properties

Use I

|—3-Tier Erecution Location——
| = pplication server
|

ITI Cancel | Sppl |
Use Page of the PeopleCode Event Properties Dialog

5. Choose a radio button to set the 3-Tier Execution Location of the FieldChange or SaveEdit
program, then accept the dialog.

13-32 USING THREE-TIER AND WINDOWS CLIENT PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

Index

@

@ operator 5-22

A

access classes 9-1
accessing

application message PeopleCode 2-17

component PeopleCode 2-11
component record field PeopleCode
component record PeopleCode 2-9
field object 9-12
menu item PeopleCode 2-14
page field PeopleCode 2-13
page PeopleCode 2-12
panel group record field PeopleCode
PeopleCode Debugger 12-1
PeopleCode programs 10-3
record field PeopleCode 2-4
record object 9-10
row object 9-9
rowset object 9-6
SQL editor 4-2
accessing external functions 3-10
accessing level 0 9-5
Activate event 10-33
ActiveX controls
data types for 13-16
events 13-12
implementing 13-11
intializing data 13-16
properties and methods 13-15
ambiguity in field references 8-7
application messages
accessing PeopleCode 2-17
debugging 12-12
application server
DLL functions 11-5
assigning
objects 6-5
attachment functions
subrecord 7-37
using 7-37
work record 7-37

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

B

backing up PeopleCode programs 2-20
Boolean constants 5-13
Boolean operators 5-24
buffer fields
referringto 8-16
Business Interlink
generating PeopleCode 3-14

C

CD-ROM
ordering iii
class
definition of 6-1
client-only PeopleCode 11-3
comments 5-4
comparing rowsets to scrolls ~ 8-3
comparison operators ~ 5-24
compile all PeopleCode programs 12-12
component buffer
contents 8-3
contextual buffer field references 8-7
contextual row references 8-6
current context 8-4
processing order 8-5
record fields 8-3
referring to fields 8-16
resolving ambiguity ~ 8-7
scroll path syntax ~ 8-9
structure 8-1
component build processing
add mode 10-19
update mode 10-16
Component Interface
generating PeopleCode ~ 3-15
component processor 10-1
behavior 10-7
events outside flow 10-1
component processor events 10-33
Activate event 10-33
event order 10-4
FieldChange event 10-34
FieldDefault event 10-34
FieldEdit event 10-35
FieldFormula event 10-35
ItemSelected event 10-36
PostBuild event 10-36

INDEX

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE JANUARY 2001

PreBuild event 10-36 E
PrePopup event 10-37
PSControllnit event 10-37

PSLostFocus event 10-38 errors and warnings
RowDelete event 10-38 restrictions 7-51
Rowlnit event 10-39 Evaluate

RowlInsert event 10-40 more examples 5-7
RowSelect event 10-41 Exec function

SaveEdit events 10-42 OLE automation 13-25
SavePostChange event 10-43 expressions 5-12
SavePreChange events 10-43

SearchInit event 10-44 F

SearchSave event 10-44

Workflow event 10-45
concatenating strings ~ 5-22
conditional statements 5-6
content reference field 7-11
contextual buffer field references 8-7
contextual references

data buffer access classes 9-22

field modification processing 10-20

FieldChange event 10-34
processing groups 13-26

FieldDefault event 10-34

FieldEdit event 10-35

FieldFormula event 10-35

. L. fields
resolving ambiguity ~ 8-7 . .
contextual row references 8-6 converting strings to field references 5-22
naming 5-20

control statements ~ 5-6
controling process location 13-30
copying PeopleCode programs ~ 2-21

reference syntax ~ 5-18
Find In tool 12-27

cross reference reports 12-30 fonlt)s leCode edi 312
current context of component buffer 8-4 copiet-ode e for 3
formatting
CurrentRowNumber
. PeopleCode 3-10
using 8-17 . . .
function execution location 13-29
functions
D calling 5-11
declaring 5-11
data buffer classes parameters 5-11
current context 9-22 return values ~ 5-12
example 9-3
traversing hierarchy example 9-13 G

data buffer model 9-1
data types 5-1

conventional 5-1

object-based 5-2
date and time operators ~ 5-22
debugging

subscription PeopleCode 12-12
default processing

field-level 10-10

panel group level 10-11

GenerateTree function
building HTML tree page 7-20
customizing PeopleCode ~ 7-25
end-user actions 7-24
FieldChange example 7-31
HTML tree 7-19
PostBuild example 7-27
rowset records ~ 7-21

deferred processing mode 10-30 using 7-19
DLL functions

application server 11-5 H
dot notation

syntax 8-9 HTML tree 7-19

dynamic tree controls
implementing 13-1

implementing
ActiveX controls 13-11

INDEX 2 PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

modal transfers ~ 7-8

tree controls 13-1

inserting using PeopleCode 7-18
ItemSelected

event 10-36

processing 10-27

L

language constructs 5-6
legal names

record fields 5-19

logical operators ~ 5-24
loops

For 5-8

Repeat 5-9

scroll levels 8-18

While 5-9

math operators 5-21
Metastrings 5-17
modal transfers
considerations ~ 7-9
implementing 7-8
multiple occurs levels 10-45
multiple scroll levels
effects on PeopleCode execution

N

name
references 5-19
reserved 5-20
numeric constants 5-13

0]

object

assignment 6-5
definition of 6-1
methods 6-3
properties 6-3
working with ~ 6-2
object-based datatypes ~ 5-2
occurs levels

multiple 10-45

OLE automation

data types 13-24
defined 13-23
sharing object instances ~ 13-24
WinExec 13-25
operators

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

10-45

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

@ 5-22

Boolean 5-24

date and time ~ 5-22
math 5-21

relational 5-24

string concatenation ~ 5-22

P

passing objects 6-6
PeopleBooks

CD-ROM, ordering iii
printed, ordering iii
PeopleCode

accessing 2-2

accessing external functions 3-10

client-only 11-3

compiling all programs ~ 12-12
component processor 10-1
current context 8-4

finding strings in ~ 12-27

how programs are triggered ~ 10-2

inserting 7-18

PeopleSoft Internet Architecture applications

11-1

using drag-and-drop 3-13
PeopleCode Debugger

accessing 12-1

DoModal consideration 12-8

environment 12-11

features 12-2

log file interpretation 12-15

log options 12-13

messages 12-12

options 12-8

sample trace file 12-20

single debugger considerations

subscription PeopleCode 12-12

variables panes 12-4
PeopleCode editor

choosing a font 3-12

context-sensitive help 3-12

definition list 3-2

drag-and-drop 3-10

event list 3-6

find and replace 3-8

formatting statements 3-10

functions 3-8

124

generating Business Interlink template

generating Component Interface template

generating definition references
replace dialog box 3-8
using 3-7
validating syntax ~ 3-9
window 3-1

PeopleCode programs
automatic backup 2-20

3-13

3-14
3-15

INDEX

3

PeoPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

INDEX

4

copying 2-21
saving 2-20
PeopleSoft Internet Architecture
deferred processing mode 10-30
processing considerations 10-30
search page 11-2
using GetHTMLText 7-15
using GetJavaScriptURL ~ 7-17
using HTML area 7-14
using PeopleCode 7-12
using Style property 7-12
writing PeopleCode applications 11-1
pop-up menus
processing 10-26
PostBuild event 10-36
PreBuild event 10-36
PrePopup event 10-37
processing
deferred mode 10-30
processing groups 13-25
controlling location 13-30
FieldChange 13-26
other 13-28
Panel Group Build 13-26
Panel Group Save 13-27
SaveEdit 13-28
processing sequences
component build in add mode 10-19
component build in update mode 10-16
default processing 10-10
field modification 10-20
ItemSelected 10-27
pop-up menu 10-26
PSLostFocus 10-27
pushbuttons 10-26
Row Delete 10-24
Row Insert 10-23
Row Select 10-18
Save 10-28
search in add mode 10-14
search in update mode 10-12
PSControllnit event 10-37
PSLostFocus event 10-38
processing 10-27
PSOPTIONS table
considerations 11-7
pushbuttons
processing 10-26

R

record field

legal names 5-19
relational operators ~ 5-24
Remote Call 7-53

and Process Scheduler 7-57

components of 7-55

JANUARY 2001

PeopleCode API 7-55

programming guidelines ~ 7-58

remote program APl 7-56
reserved words 5-20

restrictions on function and method use 7-1

CallAppEngine 7-6

Component Interface 7-6

data buffer fields 7-4

DoSave 7-4

Errors and warnings ~ 7-4

GetControl ~ 7-7

GetGrid 7-7

GetPanel 7-7

Publish method 7-8

record object 7-5

ReturnToServer 7-7

SQL object 7-5

think-time ~ 7-1

WinMessage and MessgeBox ~ 7-2
Row Delete processing 10-24
Row Insert processing 10-23
Row Select processing 10-18
RowDelete event 10-38

considerations 10-39
Rowlnit event 10-39

exception 10-40
RowlInsert event 10-40
rows

referringto 8-15
RowSelect event 10-41
rowset

comparing to scroll ~ 8-3

example 9-17

instantiating using non-panel buffer data

standalone rowsets ~ 7-43

S

Save processing 10-28
SaveEdit event 10-42

processing groups 13-28
SavePostChange event 10-43
SavePreChange event 10-43
saving PeopleCode programs ~ 2-20
scroll levels

looping through ~ 8-18

multiple 10-45

referringto 8-13
scroll path syntax ~ 8-9
ScrollSelect functions

behaviors of 13-22

specifying select record 13-21

SQL string 13-20

syntax of 13-19

target scroll in ~ 13-19

Turbo 13-21

using 13-17

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

9-23

JANUARY 2001

search PeopleCode 12-27
search processing

add mode 10-14
update mode 10-12

Searchlnit event 10-44
SearchSave event 10-44
Select method

child rowsets 7-41
select record 7-42

syntax 7-40
using 7-39
SQL

Metastrings 5-17

SQL definitions 4-2
SQL editor

accessing 4-2
using 4-1,4-6

standalone rowsets ~ 7-43

adding child rowsets ~ 7-45
CopyTo method 7-44

Fill method 7-44

reading from files 7-49
writing to files 7-46

starting

third-party applications from PeopleCode

statements 5-4

string concatenation ~ 5-22
string constants ~ 5-13
subroutines 5-6

syntax

scroll path 8-9
validating with PeopleCode editor

system edits 10-21

T

think-time functions 7-1
three-tier architecture

processing groups 13-25

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

3-9

13-25

PEoOPLETOOLS 8.12 PEOPLECODE DEVELOPER'S GUIDE

time and date operators 5-22
tree controls
controlling root node 13-10
implementing 13-1
multiple-table 13-2
single-table 13-6
Turbo ScrollSelect 13-21
Tuxedo See Remote Call

U

using
attachment functions 7-37
content reference field 7-11
GenerateTree function 7-19
insert 7-18
select method 7-39
standalone rowsets ~ 7-43

vV

validating syntax
PeopleCode editor 3-9
variables
passing to functions 5-17
system 5-17
user-defined 5-16

W

warnings and errors
restrictions 7-51
WinExec function
OLE automation 13-25
Workflow event 10-45

INDEX

5

