e

PeopleSoft PepperCode

PeopleSoft PepperCode
SKU MTPCr8SP1B 1200

PeopleBooks Contributors: Teams from PeopleSoft Product Documentation and
Development.

Copyright © 2001 by PeopleSoft, Inc. All rights reserved.
Printed in the United States of America.

All material contained in this documentation is proprietary and confidential to PeopleSoft,
Inc. and is protected by copyright laws. No part of this documentation may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, including, but not
limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without the
prior written permission of PeopleSoft, Inc.

This documentation is subject to change without notice, and PeopleSoft, Inc. does not warrant
that the material contained in this documentation is free of errors. Any errors found in this
document should be reported to PeopleSoft, Inc. in writing.

The copyrighted software that accompanies this documentation is licensed for use only in
strict accordance with the applicable license agreement which should be read carefully as it
governs the terms of use of the software and this documentation, including the disclosure
thereof.

PeopleSoft, the PeopleSoft logo, PeopleTools, PS/nVision, PeopleCode, PeopleBooks, and
Vantive are registered trademarks, and PeopleTalk and "People power the internet." are
trademarks of PeopleSoft, Inc. All other company and product names may be trademarks of
their respective owners.

Contents

About This PeopleBook

Before YOU Be@INccviiiiiiiiiieiicicceece ettt ettt b e eb e e b e naenrne s Xiv

Related DOCUMENTATIONccueiuieieiieeieieeieeieie ettt te sttt ettt eeesneeneeees Xiv
Documentation on the INternet............coeirieiieiiiiiee st Xiv
Documentation on CD-ROMcccoiiiiiiiiiieeeeee e XV
Hardcopy Documentationc.coeevueruirieninienieneeienie ettt s XV

Typographical Conventions and Visual CUES.........ccccvevviiiieiiiiniienienie e esiee e XV

Comments and SUZGZESTIONSccueruieriiriieiiniieiieeneete sttt et sbe e Xvii

Chapter 1

Understanding PepperCode

Defining PepperCode........ccviiiiiiiiiiecieciecre ettt et tresre s beeebeebeebeeseae s 1-1

Comparing PepperCode and C/CHtcviiiiiiiiiieiieciecie ettt svaesene e 1-3
Comparing PepperCode and C/CH+ ClIaSSeS......cc.eveeruereeieniinieniniieienieeeenie e 1-3
Comparing PepperCode Actions and C/C++ Functions............ccceecveeveenreeneennennens 1-4

Customizing Planning SOtWaTecccceceiiriiriiiiiiiice e 1-5

Chapter 2

Getting Started with PepperCode

Writing Sample PepperCode CONnSLIUCESc.eeoueiuierierieieie et 2-1

Understanding Program EISMEeNntsc.cccveriiiieiiiiiiiieieieie e 2-4

Chapter 3

Understanding PepperCode Basics

WIIING .SPLFILES 1vviieiiiiiicie ettt b e s ebeesbeesbaesraens 3-1

Writing PepperCode #include Statementscc.eeveeveeerierienieireereereeseeseeeveeneesveens 3-1
Rules for Inclusion and Writing #include Statements.............ccccveevveevieenienreeineennens 3-2
Using two files that include each other............cccoccveiiiiiiiniinicceceeeee e, 34
Using #include instead of forward declarations...........c..ccoceveienerieninieneniencncennens 34
#include and Pre-8.0 VEISIONS.........ccvvievvieriieriesieeriereesreesieesreeveeseesseesseessnessseasseens 3-5

Understanding Scopes and Identifierscccvevierieiiiiiiiiieniesiecee e 3-6

Writing PepperCode COMMENTScc.ecvierierieriierieeeieereere e esteesiresereereesseesseesseesseens 3-7
Writing PepperCode Documentation COmMmEentscocuevuereerierienienieneeneneeeennenn. 3-7

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS iii

PEOPLESOFT PEPPERCODE JANUARY 2001

Understanding #document error MESSAZES.....ccvvevvveeveerreerresveerreerreesresneeseenns 3-8
Format for #document COMMENLSccceeveerirrirenieeniienie e esiee e eee e 39
Using --doc and --header with documentation comments.............c.ccceeevvennenn 3-11
Writing PepperCode Notice COMMENLS........c.ccoverieiieiieerienieeseeereereereesveeseneens 3-11
Understanding PepperCode Data TYPeScceveeueririeneniiieniesteiesieeeenieeeeie e 3-11
Understanding PepperCode Performance Considerations............coeecveverveniereeneneenne. 3-14
Using PepperCode Naming CONVENLIONSecvervieerierreerieeseesreeseeseesseesseesssesssesenes 3-15
Chapter 4
Understanding PepperCode Classes
Writing New Class Definitions........cccceverierienirieninieieneee et 4-3
Understanding Default Valuesccocooiiiiiiiiiiiiiieceeceeeeeeeee 4-5
Understanding Multiple Inheritance............ccccooeivieniiiiniiiinineieeeeeneeee 4-5
SPECIALIZING SIOLS ...veevviiiieiiieiie ettt ettt e b e b e b e et e e steestbestbeesbeesbeesbeesssessensnes 4-5
Understanding Dot NOtationco.eevueriiiininiiniineeienesteie sttt 4-6
DEClaring ClaASSES. ... ceuvetiriieiiriieiieieettete sttt ettt sttt sb ettt sttt 4-6
Forward Class DECIarationsccccueecueecueeriieniieniienieeie et esieesieesteseeeseeeeeneeesene s 4-6
Slot Clause List StateMENLS.cc.eeruereeieriieieieeieie et eee ettt see e e e e 4-7
Slot Declaration StatemMEntsceveeeerereeiee ettt ee e ees 4-8
Understanding Instance and Class SLOtScc.eeoieririerinieninieiirceeseetee e 4-9
Writing Temporary ODJECEScovuerieiiriirieiiiieete ettt sttt 4-9
Using Predefined ClasSescccveevieiieiieiieiiesiiesre e ere et steeevreeeveeveesveesveesenesenas 4-10
USINgG INStANCE NAMIESvveveiiiiieiiieieeie ettt ste e eere st e e e steestaestaeesbeesbeesbeessaesssesesesenas 4-12
Chapter 5
Understanding PepperCode Actions
Writing Action Definitionsccooueeieririiiiniiieeeee et 5-2
Incomplete and Forward Declarationscceevvvevieriesreeieenrieieseesve v ereesieens 5-4
Avoiding Incomplete Declarations...........c.cceoerieierinienenieneeeeeeeereeee e 5-6
Matching Parameters and Parameter LiStscccevvveiiieviienienieiiecieesee e 5-6
Using context:, no_context:, and readonly:.........ccccoeevievrienierieiiieniieniesee e eveesieens 5-6
Writing Action Parameterscoouevervieririinieniiieieeieeeseeee et 5-7
Using required: Keyword as Explicit Default Value...........ccccoooovinininninnenns 5-8
Understanding non-local action parameters...........c.ceeevereereeneenieneenieneeneenieeeeneennes 59
Understanding Parameter Defaults...........cccooveviiiiiiiiinieiiccieccecesreesee e 5-9
Understanding How Parameters Behave With Execute.......c..coccoviviininiininenene. 5-11
Action Parameters are No Longer StaticC.........coccevererienirienenieninieceeeeseeeene 5-12
WIItING SCREIMAS.eeviiiiiiitiietieie ettt ere et ev e et e e e e b e ebeesbeebeesaeestbessbessbesssessseesens 5-13
Action Schema Declarations and Definitionsccoccveeeiieienenieiereeecee 5-15
Declaring Actions: Forward (or Incomplete) Action Declarations............ccceeveeennee. 5-15

CONTENTS iv PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

EXECULING ACHONS .. .cuviiiiieitierieiiesiee et e etteeteeste e teestbeeebeeebeesseesseessaesssessseesseesseasssesssennns 5-18
New Rule for InVOKINg ACtION........coevieriiiiiiiieieieeteeee e 5-19
Passing Output in eXecute StatemMENtc.ecvievvierierieeieereesee e e e sreesereeere e 5-20

WITHNE MEthOAS ..ottt st 5-21
Implementing A Method: EXample ©.......cccccvevviiiviinieiiecieeeceee e 5-21
Implementing A Method: Example 2.......cccooceiiiiiiiiiiniiiiiieecceeeeee 5-23
Implementing A Method: EXample 3.......ccccooviiviiiiiiiieiiecieeeecee e 5-27

Understanding CONEEXEcuueiueirierieeirieriiesiesresreeereereesseesseesieesssessseesseesseesseesssesssessnes 5-33

ACCESSING ACION SEALUS ...evvviiviieiieiieeieeieesieesre st eereereereeseesreesteestsessbeessessseesseesseesees 5-40

Understanding How Actions Are EXxecuted..........ccccooivieniniiiininieneneeeceeesee, 5-41

Action Execution & Definitions...........ccoeeveviienierireiiieniiesieeie e 5-42

USing Transaction LOESccveieriiiieiei ettt 5-42

Chapter 6

Writing Control Statements

Writing Assignment STATEIMENESceouereeriiriirierieeierie ettt 6-1

Writing 1f-e1S€ StAtEIMENLScccviiivieiiieiiicie ettt ettt ettt steeeabeesbeebeesraesanessreens 6-2

Writing While StateMENLSceeeiieiiiiieiieiiecee et ere ettt et e stteeeresbeesbeesreestaeerbeesseesseens 6-2

Writing foreach Statementscoeeiiriiiiniiieeeeeete et 6-3

WIItING €XECULE SALETNETILSeouveiiriieiiriteieeieete ettt ettt st s 6-5

Writing succeed, fail, or leave Statements.ceceereeriieiiienienie e 6-5

Writing break and continue in LOOPSccvevvirieiieiieieieeieeeeeeee e 6-6

Writing Enumerations in LOOPS.......cc.eeierieieiieieeeee et 6-7

Using Dot Notation in EXPIeSSIONSc.ccccverierieriiriieieeiieiiesieeste et eieesieeseeseee e ens 6-9

Chapter 7

Writing Osets

Writing Osets with Action Parametersccoeevvevierieiiiiiicieeseesee e sine v 7-4

WIItING OSEtS 1N LOOPS ...eoueeiiiieieieieee ettt ettt ees 7-5

Writing Osets with the foreach Statementccoooieoiiiiiiiiiee e 7-6

Chapter 8

Writing Arrays

WIItING ASSOCIAIVE ATTAYS ...euvveuieieeiitietenteeiteteeieete st ete st et et eate st sbeebesbeestenbesseenae e 8-1

Writing NONASSOCIAtIVE ATTAYS.....cccviivierrierirerireereereesseesteessesssessessseesseesssessseesesssesssenns 8-3

Understanding Array OPEIAtIONSc.eevveerreerieervesivearreesseesseesssesseseseesseessesssesssesssesssenns 8-5

WIIING ATTAYS OF ATTAYS ...eoueiiieiieiiiteeierie ettt ettt ettt sb e sttt be e e 8-5

Writing Statements INVOIVING ATTAYSocueriiriiiiiriiiiee ettt 8-8

WITHNE ATTAY ACCESSESveeuvenrieuieieriieientesitenteeteestesteste et e steeatentesbeeatenbesbtensesbeeneentesbeenees 8-8

Writing Arrays Indexed by Float........c.oooiiiiiiiiiiiiiiiieccece et 8-8

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS \

PEOPLESOFT PEPPERCODE JANUARY 2001

Chapter 9
Understanding Histories And Side Effects
Understanding the History Abstract Data Structureccccoeeeviniinincenenenieneeenn 9-1
Representing Availability of a Capacity Resource..........ccoceevvevereniniicninicncncennns 9-2
Understanding The History Data Structureceoeveeveneerienenienenieicncee e 9-4
Understanding History Data Structure Elementsccccoovvevvieerieieenreennnnn, 9-4
Understanding A History Elements Listc.ccoceviriinininiinnienciceeneene 9-4
Understanding An Example of History Objectcccccoevieviniiicniniicnencene 9-5
Understanding An Example of Interval Implementationcccccooeereneenine 9-5
Understanding GetValue Implementation............cccceeeevenienininicniniicncnceene 9-5
FInding MaXimUI........cecveriiienenieieieeteiesicee ettt st 9-6
Understanding Side Effects and Persistence..........cocvevviievieviieniienieiiiereenieesee e eveeneens 9-8
Understanding The Effect of Supply/Constraint and Capacity/Inventory on
T (S 2 i o1 £ PP SRUSTRRI 9-8
Understanding the Scheduling Classes: Resource and TasK..........c.ccoeevieevieniennnnns 9-9
Understanding the Resource Class..........coceveririeniiiininieninieieneeee e 9-9
Understanding Tasksccceoirieriiniiiininieie et 9-10
Understanding Resource Supplies and Constraints...........c..coceevveeveeereenneennnn. 9-10
Understanding the Effect of Resource Supplies and Constraints
ON HISTOTIES .cvneiieiieieeicetest ettt 9-11
Programming for Side Effects: The side_effect Keywordccccoeeviiiiininncncene 9-12
Understanding SChedules..........cccveiiiiiiiiiiiieieiecie ettt ve e be e e 9-13
Chapter 10
Understanding Operators And Functions
Understanding Infix and Intrinsic Operators and Functions............cocceeceveencniencnnenne. 10-1
Understanding SET_EPSILON and SET_FLOAT FORMATccoceivniennnne. 10-6
Using EQ With StriNGS......cceieiiiiiiieenieeeteeeetee et s 10-8
AccesSING C/CH+ FUNCHONSvvevieiie ittt ettt ev et saressbesabeesbeesvaessneeens 10-8
PepperCode Data Types in cpp_function Statementsc.cceceevereereeneennene 10-9
Rules for Passing ATZUMENLSccvvevveiieiieeniieriiesie e ereesieesereseveesreeveeseeas 10-9
Typedefs Used With CH+ FUnctions..........cccceeeeeevenieneninieneneeicniceeenne 10-10
Using PepperCode Runtime FUNCHONSovueeieniiriiiniiiininieenteceeeceee 10-11
GET _NAME OF CLASS ...ttt 10-22
TYPEP EXAMPIE ...c..eoiiiiiiiiiiiiieieeeeeseee ettt 10-23
Using Expression COMPATISONScceervereeerierierienenieeienieetenienieesiesieseeenaens 10-23
Using Upstairs Objects FUNCLIONSc.cccviiiieiieiieiierieiie et siae e 10-24
Using String Functions for National Language Support.........cccccoceevvenerienencenne. 10-27
Using Postpone Side Effects FUNCtionscocceoeveeniniininincneeccceeeeee, 10-30
Using Functions That Query From PepperCode..........cocevvvvvviiiieniieniienieiieeenens 10-33

CONTENTS vi PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Using HiStory FUNCLIONScccviiiieiieiiiiieieesiiesite ettt saeseveeeveesveesaaesene s 10-35
Using Dump FUNCHIONSc..coieiiiiiiiiiiiiieieeeeeeeeeee e 10-44
Chapter 11
Writing PepperCode Applications
Writing a PepperCode Classcoeeieriirieniiiieieniieieie ettt 11-1
NAMINGZ A CIASS ..ottt ettt ettt 11-1
NaAMING Class SIOLSeeuvirtiriiiiiitieieriereee ettt sttt 11-1
Adding An Action TO A Classcceevvievrierieriecieereere ettt ere e sreesaeesene e 11-1
Adding Default Values To A Class.......coeeieviririeninieneneeeneeeeeeeee e 11-2
Specializing Class SIOtScecuiririeriiieieee ettt 11-2
USING CASHINZ ..vveevreiiiieiieieeteesieesteeetteeereebeeseesteesssessseasseasseesseesseesssesssesssesssessesens 11-5
Writing a PepperCode ACONcccueiiiiiriiiieie ettt 11-6
USING MO CONEEXL .vvevviiiriiiieerieereesreesteesttesseesseeseeseesseessessssessseesseessesssessssesssesssessnes 11-7
Avoiding Static Parameters..........ceevvererierinierienieetenesieete et 11-7
Checking The Output Variable On An ACtiON..........ceevveevieevrienieeniiecieereereereenens 11-8
Grouping Action ParametersS...........c.eevvieriierieiieiie e e ereesieesieeseresneeereesseesseesseens 11-9
Writing A PepperCode Transaction............coeeeeruererienenienienieeienie st 11-11
Starting Transaction Names With transaction_..........ccccceccevevvienenienenceneneennnn 11-12
Using The Action Schema Transaction...........ccccecererieneneenienennieneneene e 11-12
Putting Minimal Code Into A Transaction............c.cccveevreereenreenieeneeseeereesseesneens 11-12
Including No Instances, Classes, Histories, Or ACHONS.........ccceevevieeriiereerieeenenns 11-12
Using Default Values For Input Parameters...........c.cceceverienenieniniencnieneneenne, 11-12
Performing Error CheCKingcocoviiviiiiieiiiciicieeiiesie et 11-13
Using #document and #end_dOCUMENToceverieririeniinieienceteiesicee e 11-17
Writing A PepperCode Methodcc.ooiiiiiiiiiniiiiieieeeeeee e 11-18
Writing Actions That Dispatch The Method............cccoceiiiiininiinnieeee, 11-18
Implementing Input And Output Parameterscocceeerervieninieninencneeienens 11-19
Including The Object AS AN ATZUMENTccveevierieiieriieiieeereereesreesreesieeseneeereens 11-19
Casting The Inner Object To The Classcecevereiereniinienienieniieerceieseeens 11-19
WIItINg @ C ULIIEY . ..eoviiiieeie ettt ettt et e enaee s 11-20
Checking That A Corresponding Function Is Not Defined..........cccccocevienincennin. 11-20
Putting C++ Code In The Proper Locationc.cccvevverieereenieenienie e e 11-20
Capitalizing C++ Function NameS..........cccvevveeiieiiiiienieniesre e ereereesveeseneevne e 11-21
Providing Meaningful PepperCode Typesc.cceeereeveninieninienenieneeceeneenen 11-21
Using RPS IMPORT When Defining External C++ Functions.............c.ccovvenneen. 11-22
Adding and Retrieving DOCUMENTALIONccvieevieiiiiieiieiieiieeveerreereesreesreeseneseneens 11-23
USINg #INCIUAE FIIES ..veivviiiieciiiciecie ettt s eeb e vt beseneesbeens 11-24
Customizing and Displaying Class NAMES.........c.ccevverierrererierrieriienreereesreeseesneeveens 11-25
Customizing PepperCode Methods And ACHONScoeevveriieniineenieninienenienceeene 11-26

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS vii

PEOPLESOFT PEPPERCODE JANUARY 2001

Replacing Standard Method ACHIONSccveivieiieriierieeiie e e ere et esieeseeseeeneereens 11-26
Adding Method SIOtS.......ccuoiiiiiiiiieietee et e 11-28
AdAINg A CONSLIANE....c..eeuiiiieiieiiriieese ettt sttt s be e enee 11-32
Creating the Class Shipset Milestone Constraintcceeeeeveerveevieenieeseesneens 11-33
Writing an Action to Display Informationc..cocceveniinenienininneneneneeeee, 11-34
Writing An Action To Define The Penaltycccoevveviiiiiiiiiieiciecec e 11-34
Writing An Action To Specify The Repair..........cccoevvieviievieiieiieciiciceeecsieeines 11-37
Writing An Action To Specify The Time Intervalccoccoveevininiininiinnene. 11-40
Writing An Action That Creates A Constraint Objectcceevveevierienireenieenienns 11-40
Chapter 12
Compiling And Linking PepperCode
Setting Up and Using Your Own PepperCode SandboxXccceeevveviievienienieeieannens 12-1
Running the CompPiler.........cocooiiiiiiiriiiiieieeesee ettt 12-2
SOLATTS EXAMPLEenveieiiiiiieiieee ettt sttt 12-3
HP-UX @XAMPIE ...vviiriieiiiiieiieciie e ete ettt es e sveseveesreesbe e reestaestaessbessseesseesssenens 12-4
Digital Unix (OSF/1) and Linux eXamplesccccvevverieerrierieenieenreereereesneesenenens 12-4
NT @XAMPLEeeiiieiiieiieie ettt ettt e st e bttt e bt e teessteenteenseeseesseesseesnseans 12-4
Command-line rules in detailccooieiiiiiieiiee e 12-6
Installation and Configuration ISSUESc.cceveviieiiiiiiieiieiie e e 12-6
LD LIBRARY PATH. ..ottt 12-6
List 0f Necessary FIlescocuiiiiiiiiiiiiiiceteee e 12-7
SPITC e ettt st 12-7
Compiler Options (For Use During Installation)ccccceevvevviiciiinienieneesreennnn 12-8
PepperCode Compiler Reference............cocueveiiiiiiiiiiniiiiincee e 12-10
Command-line Rules in Detail...........coooeiiiiiiiiiee e 12-11
Most-Used Compiler OPtiONScoceevuerierierierienieniteienieeeenie ettt 12-11
Options That Dictate Which Compiler or Linker to Run...........c.ccccevvveviiiinannnn. 12-12
Options Used When Compiling PepperCode..........cccvvvvieviienienieiiieiiesieesee e 12-13
Options Used Only When Compiling C++ Source Code.........ccooveveverirecreniennnnns 12-16
Options to be Used With --make program Optioncccccveeveerieeviieneesneeneens 12-16
Machine-Specific ESCape ClauSeccvcvvveiiieiiiiiiiiieniiesiie e ereesree e svveenveens 12-17
Options for Compiler Maintenance..........c..oovevereerereenenieniencee e 12-17
USING HUSK ..ottt ettt sb et estaestaesaneesveens 12-18
Chapter 13

Understanding PepperCode Syntax

CONTENTS viii PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Chapter 14
Debugging PepperCode
Avoiding Common MiIStAKESc..eecueriiriiriiniiieniieteie ettt 14-1
Troubleshooting GUIAEcocueriiiiiriiiieieteeee ettt 14-6
Compiler Frequently Asked Questions (FAQ).....c.cccvvevieeieeiieniieieciecre e 14-6
Q: How does one compile PepperCode files that #include each other?.......... 14-6
Q: Why doesn't an enumeration constant have an integer value?................... 14-7
Q: The rules have changed for declaring actions locally. What about
o] T OSSP 14-7
Error Message Referenceoo.evveiiiiiiiiiiiiiiiceeeeete e 14-9
Errors (That Stop Compilation)cccceveeveneeniineniieninieneeee e 14-9
Warnings (These Don't Stop Compilation)cccceveveerieereeirieneeneeeenenn, 14-20
Using Debugging TOOIScc.eeieriiiiiiniiiieie ettt 14-20
Using The Action INEIPIEterc.ccvvierrieiieiiierieieeiiesreere e v e sieesereeereeseereens 14-21
Using Action Debug TTacingcccoeevueririeriniieieeeeseeieeese et 14-23
Using The Action Debug Tracing Transaction and C++ Function................ 14-24
Setting Action Debug Tracing Behavior............ccccoovevieiciiiciinicciecrece, 14-24
Enabling and Disabling Action Debug Tracing........c.ccoceeeeeverervenencenennen. 14-25
Understanding Action Debug Tracing Outputcccevvevrvenierveireeneeneenn, 14-26
Creating Debug Messages With The MSG Function..........cccceeeveevveeviieneenieennen, 14-29
Using Debugging FUNCHONS........cccoeveriiiiiiiniiienenieeseteecee e 14-31
ESCIIDE ..ttt ettt ettt et 14-32
deSCIIDE Alloiiiiiiiiiiieiiecie e bbb 14-32
dESCIIDE OMNC.....eiiiiiiiiiiieie ettt 14-34
deSCrIDE DY NAIMC.....c.eeiiiieiiiiieriecieetecte ettt streeeveesreebeeva e eaenenas 14-36
deSCriDE DY UId ..icviiiiieiiieciiecie ettt ettt s ev e sve e 14-37
NOW_IMANY 1.ttt 14-39
JISE ODJECLS 1eiuvvieirieirieiiiecire ettt ettt eer e bt e e e te e s eb e e b e e sbeestbesabeesbeebeesanessneenns 14-39
AISPIAY ThISTOTY ..viiviiiiieiiecie ettt s beeabe e ba e eae e 14-40
display_rinitial hiStOTYcccooiiiiiiiiiiiieieece e 14-40
AISPIAY ANISTOTY ..ievviiiieiiieciie ettt ettt sebeerbeebeesbaeeere e 14-40
AISPIAY CHISTOTY ..iivviiiieciiecie ettt ettt r et st erbeebe e aeeseve e 14-40
Other Debugging FUNCHONSccooieriiriiiiiriiieicecteee e 14-41
Using Debugging ACHONS.couevuirieierieniieie sttt sttt 14-41
Understanding Key Termscoceveiieiiinirieniiceieenteceeeceee e 14-41
Setting The Debugging Message Levelooveviiiiiiiiinienieciececeeeeeee e 14-42
Running The Debugging ACtIONS........cccueevviiiieriieriieiienieseeereereereesreesreeseneeere e 14-42
Understanding The Debugging Action Categoriescecceveeveeneeienerieeneneenne. 14-43
Displaying PepperCode Instance Informationccceeceeevieviieniienneennennn, 14-43
Displaying History Informationcccceveeviiiiiiiiiieneecie e 14-43

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS

X

PEOPLESOFT PEPPERCODE JANUARY 2001

Displaying Task Reschedule Information............c.cccceevvevieeiienienienreennnn, 14-43
Debugging Side Effects.......ccccooiriiiininiiieiiceeecceeeee e 14-44
Displaying Time Period Informationc.cccceevveevieniieiiie e 14-44
Miscellaneous Debug@ing ACLIONSccveeveerieviieniiesiieire e ereesreesieeeene e 14-44
Deciding Which Debugging Action To USec.cceceeverieninienenenienienienescene, 14-45
Understanding Debugging Action DesCriptions...........ccveeveeveevieeneesvesneenneenneens 14-46
transaction_describe all...........cccevviiiiiiiiieiiicicceeee e e 14-46
transaction_desCribe OMEcccoeevieriiiiiniiiiieniiiieeetec e 14-46
transaction_describe by NAMEcccvevvieriiiiieriieniie e et stre e 14-47
transaction_describe by Uid.........ccceevviivieiiiiiiiiieiecie e 14-47
transaction._how MANYc..cceerieriiiiinienieieeeceeseet et 14-47
transaction liSt ODJECESccviiriiiiieiiieiiestie et cre et ere et estreeereebeesane e 14-47
transaction_display ThiStOryccccceveviiviiiiieiiecie e 14-47
transaction_display _rinitial hiStory.......ccccooeviniiiniiniiniiiencneceecee, 14-48
transaction_display ahiStOry........cccceevvievieiieiie et 14-48
transaction_display ChiStOIY........cccceiviiiviieiieiie et 14-48
transaction_set_intersect_debug level..........ccoceeviniiiiniiiiniininieeee 14-49
tranSacCtion. PrINtEc.ecviiiiiiieiie ettt eb e b e e beesene e 14-49
transaction_printf with current time.........c.ccceeevievieiciiicieniecie e 14-49
transaction_start Of dayccccovirieieniiiii e 14-49
transaction_end Of daycccevieviiiiiiiicie e 14-49
transaction_start 0f WeeK.........cccvvviiiiiiiiiiiciic e 14-50
transaction_end_of WeeK ..o 14-50
transaction_start of MONth...........cccceovviiviiiiiiiie e 14-50
transaction_end of MONth..........c.cocceeviiiiiiiiiiiee e 14-50
display_violated CONSIAINEScceeeeruiriierieniieieneeieeetee et 14-50
display resource CONSLIAINESc.eevveerieeireereerieestiesreereereesseeseresereesesnes 14-51
display 1reSOUICE SUPPLICS.....ccviivvieriieriiiiriereeieeeiee et ere e sereeveebeesene e 14-51
Tetract_TeSOUICE CONSIIAINT ...eeviruietiriieieriieieettet sttt 14-51
ASSEIt TESOUICE CONSIIAIN ..eevvireriirieireiereereesseesteeereeseesseesereesseesseesssessneenns 14-51
retract reSOUICE SUPPLY .uvivvvieriiirieiiieiiiecre et esieeeteeeeteeereereeteestresereeebeesveeaes 14-52
ASSEIT_TESOUICE SUPPLY -eevvemiiriiiieniiniieienteet ettt 14-52
retract task side effectS.......cccvviiiiiiiiiiiiiiicce e 14-52
assert task side effectS.......covviiiiiiiciiiiiiiece e 14-52
retract_resource_side effectS.......cooivieririininiiii e, 14-53
assert resource Side effectS.......ccooiivviiviiiiiiiiiiicicece e 14-53
TEPAIT TTIC 1..vvievveesreevreseresereesreesseesseesseesssessseesseesseesssesssessseesseesesssessssesssesssesnns 14-53
ODJECE 1S AlIVE...eeuiiiiiiieierie ettt 14-53
TESOUICE INTO....iiiiiiiiiiiiiciecc ettt s r e e eb e b e e beeaneeens 14-54
CIeate SOME ODJECLS .viiviiiieiiieirierieteeteesteesteestreebeesreeteetrestseseneeeseenseesneas 14-54

CONTENTS X PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

delete SOME ODJECLS .vvevvviieiiciiciieieee ettt et esre e 14-54
Understanding Debug Command Filesccocooviniiiininiininiiiininecneeeee 14-55
USING SNty CRECKSccuviiiiiiiiciiciieiiecte ettt str e tb e eab e e b reesteesenesene e 14-61
Understanding What Sanity Checks Do and Don’t Do........ccccooevieniniinininnnne. 14-61
USINg SaNity CRECKSviiviiiiiiiieiieciecee ettt v e veesreestaesene e 14-61
Understanding Each Sanity Check........coccooiiiininiiiiniiiiieneceeeeeee 14-62
A Parent Task Must Have Subtaskscccoeeeviiiciiiiiiiciecceceee e, 14-62
Work Duration Check For Unsplittable Leaf Tasks..........ccccocvevvvevrienrennnnnn. 14-62
A Calendar Must Have Computed Legal Time.........ccccooeeveneniencniencnennne. 14-63
A Resource Constraint Must Have Quantity >= 0.0cccccoccevininininnenne. 14-63
A Resource Supply Must Have Quantity >=0.0.........cccceceveevievrienrienieennnene, 14-63
Start And End Time Checks Of Effective Entries...........ccceevveviivciieiieneennen. 14-63
A Routing Entry Must Have Quantity >= 0.0c.ccoceniniininniininieenens 14-64
A Routing Entry Must Match A Routing Step.........cccoeevvevrievienieireereennenn, 14-64
A Bor Entry Must Have A Valid Equipment Classcccccoccecenirieneneenne. 14-64
A Build Option Must Have At Least One Routing Step........cccccevevveereneenne. 14-65
A Build Option Must Supply An Item (Part) For All Timeccccceeueenee. 14-65
A Build Option Should Have Only One Primary Order Borccc.c....... 14-65
A Build Option Should Have Only One Primary Operation Bor Per
ROULING STEP ...uvieiieiieeie ettt sttt es 14-65
An Inventory Item Must Have A Way To Be Replenished 14-65
A Sales Order Must Have Sales Order Lines..........ccccceveerereeeienieieneeenee, 14-65
A Purchase Order Must Have Purchase Order Lines...........cccoceecvveieenennee. 14-66
An Equipment Resource Must Have Enough Capacity To Repair Any
One Of Its Equipment CONSLraintsccceceereereerieenieenieeneeseeeveeveeveenees 14-66
Understanding Potential Sanity Checksccoceiirieiiiiiiiieeceeeeeeeee 14-66
Every Product Must Map To An Inventory Itemcccceeevievieniennennnne, 14-66
Sourcing Logic Checksccueiiiiiiiiieiieriesee et 14-66
Understanding Sanity Check OUtput...........coeceeiirieiiiieieseeeeeee e 14-67
transaction_mfg_sanity check (:verbose 0 :filename "")ccccccvvervvennnnne. 14-67
transaction_mfg_sanity check(:verbose 0 :filename "")ccceecvverurennnenne. 14-68
transaction_mfg_sanity check(:verbose 1 :filename "")ccoocvevrriennnne. 14-69

Index

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS Xi

ABOUT THIS PEOPLEBOOK

This PeopleBook, PeopleSoft PepperCode, provides you with the information you need to write
programs in the PepperCode programming language.

You should be familiar with navigating around the system and adding, updating, and deleting
information using PeopleSoft windows, menus, and pages. You should also be comfortable using
the Microsoft® Windows 95 or Windows NT graphical user interface.

Because we assume you already know how to navigate around the PeopleSoft system, much of
the information in this book is not procedural. That is, it does not typically provide step-by-step
instructions on using tables, pages, and menus. Instead we provide you with all the information
you need to use the system most effectively, and to customize the documentation to your
organizational or departmental needs. This book expands on the material covered in PeopleSoft
training classes.

Understanding PepperCode provides an overview of PepperCode, also known as the Scheduling
Programming Language (SPL).

Getting Started with PepperCode introduces you to PepperCode with a sample program that
creates two objects representing bicycles. The program tests itself by printing information about
them.

Understanding PepperCode Basics gives basic information about how to write PepperCode (.spl)
files, #include statements, and comments, and it discusses PepperCode data types, performance
considerations, and naming conventions.

Understanding PepperCode Classes explains PepperCode classes, which provide definitions of
the data stored in an object.

Understanding PepperCode Actions explain PepperCode actions, which are similar to C functions
or Pascal procedures, but have very different semantics for memory allocation and the lifetimes
of variables and changes to variables.

Writing Control Statements explains how to write PepperCode control statements, such as
assignment (=), if-else, and while.

Writing Osets explains how to write PepperCode osets, which behave like a list.
Writing Arrays explains how to write PepperCode arrays, which behave like a list.

Understanding Histories And Side Effects explains histories and side effects, and describes how
and when to use the side effect keyword in slot declarations.

Understanding Operators And Functions lists and describes how to use the PepperCode intrinsic
operators and functions. It also describes how to access and use C/C++ functions.

Writing PepperCode Applications provides guidelines for creating PepperCode applications, such
as writing a PepperCode class, action, transaction, and method.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE xiii

PEOPLESOFT PEPPERCODE JANUARY 2001

Compiling And Linking PepperCode describes how to compile your code and link it with existing
Planning software for testing purposes.

Understanding PepperCode Syntax describes the PepperCode syntax recognized by the parser in
the current PepperCode compiler.

Debugging PepperCode explains the debugging tools for PepperCode, including symbolic
debuggers for C++, the debugging functions that you can use to print methods and their
descriptions, and other methods.

This section describes information you should know before you begin working with PeopleSoft
products and documentation, including PeopleSoft-specific documentation conventions,
information specific to PeopleTools, how to order additional copies of our documentation, and so
on.

Before You Begin

To benefit fully from the information covered in this book, you need to have a basic
understanding of how to use PeopleSoft applications. We recommend that you complete at least
one PeopleSoft introductory training course.

You should be familiar with navigating around the system and adding, updating, and deleting
information using PeopleSoft windows, menus, and pages. You should also be comfortable using
the World Wide Web and the Microsoft® Windows or Windows NT graphical user interface.

Related Documentation

PREFACE

To add to your knowledge of PeopleSoft applications and tools, you may want to refer to the
documentation of the specific PeopleSoft applications your company uses. You can access
additional documentation for this release from PeopleSoft Customer Connection
(www.peoplesoft.com). We post updates and other items on Customer Connection, as well. In
addition, documentation for this release is available on CD-ROM and in hard copy.

Important! Before upgrading, it is imperative that you check PeopleSoft Customer
Connection for updates to the upgrade instructions. We continually post updates as we
refine the upgrade process.

Documentation on the Internet

You can order printed, bound versions of the complete PeopleSoft documentation delivered on
your PeopleBooks CD-ROM. You can order additional copies of the PeopleBooks CDs through
the Documentation section of the PeopleSoft Customer Connection Web site:
http://www.peoplesoft.com/

Xiv PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

You’ll also find updates to the documentation for this and previous releases on Customer
Connection. Through the Documentation section of Customer Connection, you can download
files to add to your PeopleBook library. You'll find a variety of useful and timely materials,
including updates to the full PeopleSoft documentation delivered on your PeopleBooks CD.

Documentation on CD-ROM

Complete documentation for this PeopleTools release is provided in HTML format on the
PeopleTools PeopleBooks CD-ROM. The documentation for the PeopleSoft applications you
have purchased appears on a separate PeopleBooks CD for the product line.

Hardcopy Documentation

To order printed, bound volumes of the complete PeopleSoft documentation delivered on your
PeopleBooks CD-ROM, visit the PeopleSoft Press Web site from the Documentation section of
PeopleSoft Customer Connection. The PeopleSoft Press Web site is a joint venture between
PeopleSoft and Consolidated Publications Incorporated (CPI), our book print vendor.

We make printed documentation for each major release available shortly after the software is first
shipped. Customers and partners can order printed PeopleSoft documentation using any of the
following methods:

Internet From the main PeopleSoft Internet site, go to the
Documentation section of Customer Connection. You can
find order information under the Ordering PeopleBooks
topic. Use a Customer Connection ID, credit card, or
purchase order to place your order.

PeopleSoft Internet site: http:// www.peoplesoft.com/.

Telephone Contact Consolidated Publishing Incorporated (CPI) at
800 888 3559.
Email Email CPI at callcenter@conpub.com.

Typographical Conventions and Visual Cues

To help you locate and interpret information, we use a number of standard conventions in our
online documentation.

Please take a moment to review the following typographical cues:

monospace font Indicates PeopleCode.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE XV

PEOPLESOFT PEPPERCODE

Bold

Italics

KEY+KEY

Jump links

Cross-references

e Topic list

Name of Page or

Dialog Box

PREFACE XVi

JANUARY 2001

Indicates field names and other page elements, such as
buttons and group box labels, when these elements are
documented below the page on which they appear. When
we refer to these elements elsewhere in the
documentation, we set them in Normal style (not in bold).

We also use boldface when we refer to navigational paths,
menu names, or process actions (such as Save and Run).

Indicates a PeopleSoft or other book-length publication.
We also use italics for emphasis and to indicate specific
field values. When we cite a field value under the page on
which it appears, we use this style: field value.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the number 0,
not the letter O.

Indicates a key combination action. For example, a plus
sign (+) between keys means that you must hold down the
first key while you press the second key. For ALT+W,
hold down the ALT key while you press W.

Indicates a jump (also called a link, hyperlink, or
hypertext link). Click a jump to move to the jump
destination or referenced section.

The phrase For more information indicates where you can
find additional documentation on the topic at hand. We
include the navigational path to the referenced topic,
separated by colons (:). Capitalized titles in italics
indicate the title of a PeopleBook; capitalized titles in
normal font refer to sections and specific topics within the
PeopleBook. Cross-references typically begin with a
jump link. Here's an example:

For more information, see Documentation on CD-ROM in
About These PeopleBooks: Related Documentation.

Contains jump links to all the topics in the section. Note
that these correspond to the heading levels you'll find in
the Contents window.

Opens a pop-up window that contains the named page or
dialog box. Click the icon to display the image. Some
screen shots may also appear inline (directly in the text).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Y

Text in this bar indicates information that you should pay particular attention to as you work
with your PeopleSoft system. If the note is preceded by Important!, the note is crucial and
includes information that concerns what you need to do for the system to function properly.

Text in this bar indicates For more information cross-references to related or additional
information.

Text within this bar indicates a crucial configuration consideration. Pay very close attention
to these warning messages.

Comments and Suggestions

Your comments are important to us. We encourage you to tell us what you like, or what you
would like changed about our documentation, PeopleBooks, and other PeopleSoft reference and
training materials. Please send your suggestions to:

PeopleTools Product Documentation Manager
PeopleSoft, Inc.

4460 Hacienda Drive

Pleasanton, CA 94588

Or send comments by email to the authors of the PeopleSoft documentation at:
DOC@PEOPLESOFT.COM

While we cannot guarantee to answer every email message, we will pay careful attention to your
comments and suggestions. We are always improving our product communications for you.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE XVii

CHAPTER 1

Understanding PepperCode

This section provides an overview of PepperCode, also known as the Scheduling Programming
Language (SPL).

Defining PepperCode

PepperCode is a high-level, object-oriented programming language. The language is optimized
for use with Planning scheduling applications. It has the following features:

PepperCode is a high-level language, so you can spend more time writing the application and
less time worrying about low-level coding details. For example:

= Pointers and pointer manipulation are invisible to you, which eliminates bugs related to
uninitialized pointers, dangling pointers, and misallocated memory.

= A construct similar to a linked list is built into the language.
= Memory allocation and deallocation are hidden from you.
= All data is automatically initialized so that execution is predictable.

PepperCode provides some constructs aimed specifically at scheduling algorithms. A
mechanism called context makes it easy to try out various combinations of values before
making global changes to the state of the entire system. Each experiment is independent of the
others; when experiments are complete, changes that were part of the failed experiments can be
discarded while changes that represent the optimal combination of values are accepted.

PepperCode provides a more dynamic object-oriented programming environment than
statically compiled languages like C++. You can create new classes by creating subclasses at
execution time, change the default values of members at execution time, and query any class to
get a list of subclasses or instances that currently exist.

PepperCode code is easy to transport to any system that provides a standard C++ compiler,
since PepperCode code is automatically converted to C++ code during compilation.

PepperCode offers a feature called side effects, where a dependent member is computed from
independent members through a side-effect function. Any change to an independent member
causes the dependent member to be recomputed.

Built-in features support a client-server architecture.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE 1-1

PEOPLESOFT PEPPERCODE JANUARY 2001

In addition, Planning software, which is written in PepperCode, has the following features that
make it easy to customize:

e An extensive group of predefined object hierarchies and functions are provided that enable the
easy specialization of the application software.

e Application menus can be changed simply by placing a command in a file.
e Transaction logging enables you to restore a system to its previous state when needed.

A Planning application runs PepperCode code. The application can run PepperCode code when a
user selects a menu item or uses the menu system to run a command file. In addition, during
debugging phases, a diagnostic tool enables you to execute PepperCode code from a command
line.

PepperCode code has two main constructs: classes and actions. Classes define objects. Actions
can create, delete, and modify objects, and can execute other actions. When a PepperCode
application wants to perform an operation, it instructs the PepperCode (or SPL) Action Interpreter
to run an action, as in the following example. An action that is designed to be run in a command
file or to be used by a programmer customizing the software is called a transaction—to
distinguish it from actions that are meant to be hidden within the system. From the viewpoint of
PepperCode, however, there is no distinction between an action and a transaction.

Planning
application

Menu item selected
or command file run

v
PepperCode
(SPL) Action
Interpreter

Execute
transaction

Execute
transaction

Transaction

Execute
action

Example of running PepperCode code

Transaction

Delete
object

Create object

Actions can change the values of a class or create a new class through subclassing. However,
there is no way to delete a class during runtime.

v Because classes can be modified during runtime, you could think of a class as an object.
However, in this documentation, the term object applies only to an instance of a class.

An action can query a parent class to retrieve its child classes, which makes it easier to keep track
of classes in your code and reduces the possibility of errors.

1-2 UNDERSTANDING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Following is an example of how a manufacturing application might enable a user to add a line to
a purchase order. The user chooses a menu item that causes the Action Interpreter to execute
transaction_add_purchase order line. This transaction executes the action
create_purchase_order_line, which creates the object purchase order line. Later, the user
chooses a menu item to delete the line, which causes the Action Interpreter to execute
transaction_delete purchase order line. This transaction deletes the object purchase order_line.

Planning

Menu item selected
or command file run

A 4

PepperCode
(SPL) Action
Interpreter

Execute
transaction

Execute
transaction

Ctransaction_add_purchase_order_lin@ Ctransaction_delete_purchase_order_line)

L Execute action

< create_purchase_order_line)

purchase_
order_line

Manufacturing example

Comparing PepperCode and C/C++

Because PepperCode code is similar to C++ code, it’s easier to look at the differences instead of
the ways they are alike.

Comparing PepperCode and C/C++ Classes
PepperCode classes differ from C++ classes in the following ways:

e PepperCode uses the term slot instead of the C++ data member or member function terms. "A
slot can hold:

= data (like a C++ data member)
= an action (like a C++ member function)
= an instance of a class (like a C++ member of type class)

= another class

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE 1-3

PEOPLESOFT PEPPERCODE JANUARY 2001

Unlike C++, methods are stored on ordinary slots like data values are. All PepperCode slots
are public.

A PepperCode class slot is like a C++ static data member or static member function. All
instances of the class read and write the same value for that slot.

As mentioned earlier, PepperCode is more abstract than C++. It doesn’t provide ways to
specify how class slots are represented in memory in terms of offsets, ordering, addresses, and
so on. Also, PepperCode has no bit fields or unions. As a result, a program is less likely to
have a memory error, since most memory allocation and deallocation is handled by
PepperCode.

Another way PepperCode is safer than C++ is that it has no uninitialized slots. Every slot has a
default value, either specified explicitly in the code or provided by the compiler.

Comparing PepperCode Actions and C/C++ Functions

A PepperCode action is similar to a function in C++, C, or Pascal. As mentioned previously, if a
PepperCode class has a slot of type action, the action on that slot acts like a C++ member
function or method.

PepperCode actions differ from C++ functions in the following ways:

A declaration for a PepperCode action must list local parameters along with other parameters.

A PepperCode action can have more than one output parameter, while a C++ function can have
only one return value.

An action cannot appear within an expression. It must be invoked with the execute statement.

In an action invocation, the parameters can be listed in any order Before each parameter is a
keyword, which is the name for the parameter as it appears in the definition of the action.

Input parameters can have default values, so it’s not necessary to provide all of them. But
defaults behave differently in PepperCode than in C++.

Actions are invoked within other actions by a parameter of type input or local, not by their
original name.

Output values aren’t copied from a formal argument to an actual argument, as in C++. Instead,
the action behaves as if it were a class and the outputs behave as if they were slots on a class.

As mentioned earlier, PepperCode has a powerful feature called context. Changes to the values
of slots on objects can be accepted or rejected at the appropriate time. Binding an action to
multiple contexts lets your application try independent experiments and postpone selecting the
optimum outcome until the experiment is complete.

1-4 UNDERSTANDING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Customizing Planning Software

Your Planning software, written in PepperCode, is customizable so it can meet your own
specialized requirements. You can add new menu items or tailor existing menu items. In
addition, you can create your own custom software, compile it, and link it to the existing Planning
Scheduler product, MFG product, or both.

You can do the following in your custom software:

o Create new transactions. Wrapper transactions extend the behavior of existing transactions:
you simply create a new transaction that calls the existing Planning transaction and add the
additional functionality you need.

e Create new classes that inherit behavior from existing classes in the Planning Scheduler
product, MFG product, or both.

o Create new software to override inherited behavior in classes. This software simply needs to
use the schema specified for the action slot in the class.

This documentation describes how to create actions, classes, and methods for your custom
software.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE 1-5

CHAPTER 2

Getting Started with PepperCode

This section introduces you to PepperCode with a sample program that creates two objects
representing bicycles. The program tests itself by printing information about them.

The example contains some constructs that are familiar to C++ programmers, other constructs
that may be unfamiliar to C++ programmers but familiar to programmers of other object-oriented
languages, and one construct that is unique to PepperCode. PepperCode files use a .spl extension.

Writing Sample PepperCode Constructs

// Include the .spl file containing PepperCode runtime functions.
// By convention, these functions appear in all uppercase letters in code.
#include "cpp utility.spl"
// Create an enumeration containing the possible bike materials.
enum material { STEEL, ALUMINUM, CARBON FIBER, TITANIUM, OTHER };
// Define a basic class for a vehicle.
class Vehicle : Base Class {
int serial number
int passengers
int price
}i
slot Vehicle.passengers { default: 4 };
// Derive the class Bicycle from the class Vehicle.
// Add two new slots, in addition to those from the Vehicle class.
// Override the default number of passengers to a more realistic value
// for a bike.
class Bicycle: Vehicle {

string model name

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL GETTING STARTED WITH PEPPERCODE 2-1

PEOPLESOFT PEPPERCODE

2-2

JANUARY 2001

enum<material> frame material
}i
slot Bicycle.frame material{ default: STEEL };
slot Bicycle.passengers{ default: 1 };
// Define a procedure to create an instance of the Bicycle class
// (or one of its subclasses). The instance of the class is an object.
action create bicycle
(input: int serial number,
input: string model name,
input: string class name,
output: instance<Bicycle> new bike,

no_context:)

// Create an object with the CREATE OBJECT function.

// model name is the name of the object.

// (All named objects must have a unique name.)

// class name is the name of the class the object belongs to.
new bike = CREATE OBJECT (model name, class name) ;

new bike.serial number = serial number;

new_bike.model _name = model_name;

succeed () ;

// Create instances of the classes Atb and Bicycle.
// Test it by generating a list of the instances of Bicycle and iterating
// through the list—printing the serial number of each Bicycle or Atb.
action spl_main

(input: int argc,

input: oset[string] argv,

input: string identity,

GETTING STARTED WITH PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

local: oset[instance<Bicycle>] list)

// Create a subclass at runtime. Atb is the name of the new class,
// which is a subclass of Bicycle.
CREATE_SUBCLASS ("Atb", "Bicycle");
// Create the bicycles. The object names are stumphopper and vamenos.
execute create bicycle(:serial number 44475656,

:model name "stumphopper",

:class_name "Atb");
execute create bicycle(:serial number 55572323,

:model name "vamenos',

:class name "Bicycle");
// As a test, print information about the objects.
// list is an oset of instances that are "filled in."
// The next argument is the name of the class whose descendants
// you want to list.
// 1 specifies that you want instances (as opposed to 0 for classes).
GET DESCENDANTS (list, Bicycle, 1);
foreach item in list

PRINTF ("%s serial number=%d, model name=%s\n",

item.class name, item.serial number, item.model name) ;

succeed () ;

When the program runs, it prints the class an object is derived from, followed by the serial
number and model name (which in this case is the object name) for the object, as follows:

Atb serial number=44475656, model name=stumphopper

Bicycle serial number=55572323, model name=vamenos

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL GETTING STARTED WITH PEPPERCODE 2-3

PEOPLESOFT PEPPERCODE JANUARY 2001

Understanding Program Elements

If this code was compiled and then linked with Planning software modules, and a menu item was
created to execute spl_main, the program would run as illustrated here.

Planning
application

Menu item selected to
i create bike objects

PepperCode
(SPL) Action
Interpreter

Execute
transaction
A

Print

N information o Atb serial 5656, model_

» Bicycle serial number=55572323, model_name=vamenos

Vehicle
class
Create |
subclass e
Bicycle e stump-
i hopper
class o PP
Atb
class

Running the sample code

The first line of the program should be familiar to C++ programmers:
#include "cpp utility.spl"

This statement causes the file cpp _utility.spl to be included in the program. This file contains
declarations, including those for PepperCode runtime functions such as CREATE OBJECT,
CREATE SUBCLASS, GET DESCENDANTS, and PRINTF.

C++ programmers should also recognize the declaration of the enumerated type:

enum material { STEEL, ALUMINUM, CARBON FIBER, TITANIUM, OTHER };

The Bicycle class defined later in the code uses the enumeration for its material value.

Next, two classes are defined: first a basic class for any vehicle and then a more specific class for
bicycles that is derived from the Vehicle class. Classes are the prototypes for object instances;
they can inherit from one or more other classes to provide greater specialization. The data values,
or slots, defined for the Vehicle class apply to the Bicycle class, which inherits from it. So the
Bicycle class contains slots for serial number, passengers, price, model name, and

frame material.

class Vehicle : Base Class {
int serial number

int passengers

2-4 GETTING STARTED WITH PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

int price
}i
slot Vehicle.passengers { default: 4 };
class Bicycle: Vehicle {
string model name
enum<material> frame material
}i
slot Bicycle.frame material{ default: STEEL };

slot Bicycle.passengers{ default: 1 };

There are no uninitialized slots in PepperCode. If you don’t provide a default, PepperCode
provides one for you. In this code, a default is defined for passengers in the Vehicle class. In the
Bicycle class definition, this default is changed to a more appropriate value for a bike; a default is
also provided for frame material. The default initialization of slots is similar to that for C++
members.

Slots are referred to using dot notation—for example, Vehicle.passengers refers to the passengers
slot in the Vehicle class, while Bicycle.passengers refers to the passengers slot in the Bicycle
class.

In addition to classes, the sample program also has two actions, which resemble C++ functions.
Actions can contain declarations for both input parameters and local variables, followed by the
action body containing PepperCode code. To exit an action, a succeed or fail statement is
supplied. This is how the context mechanism is implemented: you can try out various
combinations of values before making global changes to the state of the entire system. Changes
that were part of the failed experiments can be discarded with the fail statement.

The action create bicycle is used in the spl main action to create objects of the Bicycle class:
action create bicycle
(input: int serial number,
input: string model name,
input: string class name,
output: instance<Bicycle> new bike,

no_context:)

new bike = CREATE OBJECT (model name, class name) ;
new bike.serial number = serial number;

new bike.model name = model name;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL GETTING STARTED WITH PEPPERCODE 2-5

PEOPLESOFT PEPPERCODE JANUARY 2001

succeed () ;

action spl_main
(input: int argc,
input: oset[string] argv,
input: string identity,

local: oset[instance<Bicycle>] list)

CREATE_SUBCLASS ("Atb", "Bicycle");
execute create bicycle(:serial number 44475656,
:model name "stumphopper",
:class _name "Atb");
execute create bicycle(:serial number 55572323,
:model name "vamenos',
:class name "Bicycle");
GET DESCENDANTS (1list, Bicycle, 1);
foreach item in list
PRINTF ("%s serial number=%d, model name=%s\n",
item.class_name)),
item.serial number, item.model name) ;

succeed () ;

C++ programmers are likely to be surprised that the program creates a new derived class at
execution time (the call to CREATE SUBCLASS). And although creating instances of a class at
execution time isn’t particularly unusual in C++ (the call to CREATE_OBJECT is similar to the
C++ operator new), the semantics of an instance are very different: C++ has no global or local
variables of type class. All instances of classes are allocated dynamically, and instead of naming
and accessing them with fixed identifiers at compilation time, you can name them and access
them with strings at execution time. The local variable new bike resembles a C++ pointer in the
sense that you can’t use it to access an instance of the class Bicycle until you initialize it to point
to one. In this example, CREATE_OBIJECT initializes new_bike to point to a newly created
instance; alternatively, a call to the GET INSTANCE BY NAME function could determine
which instance to point to.

2-6 GETTING STARTED WITH PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Y

Note: You should normally not use CREATE OBIJECT as in this example. Use the
example shown in Using Instance Names for a better way.

The second action, spl_main, holds a few more surprises for C++ programmers. First, the action
create_bicycle creates two bicycles (the execute statements), one of them using the subclass Atb.
The code doesn’t keep a list of the instances of Bicycle that were created. Instead, when it comes
time to test the program with print statements, GET DESCENDANTS provides a list of
instances. The code uses a foreach statement to iterate over the list. Notice that you aren’t
limited to printing out the data that lies in the slots of an instance, but can also determine the class
an instance belongs to, and can use the identity of that class as an extra piece of information about
the instance. Instead of using a string or enumeration slot to remember that one of the bicycles is
an all-terrain bicycle (ATB), you can rely on the ability of PepperCode to query its class
membership directly.

Users of languages like LISP or SmallTalk may not find these aspects particularly novel, except
for the succeed statement in each action that hints at the mechanism for committing or rolling
back changes that the action has made to the database.

The following sections cover PepperCode in greater detail. The simple example in this section
doesn’t show all the constructs of the language, but it does provide an overview of the material
that the remaining sections will cover.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL GETTING STARTED WITH PEPPERCODE 2-7

CHAPTER 3

Understanding PepperCode Basics

This section gives basic information about the PepperCode language.

Writing .spl Files

PepperCode code should be in files that end in .spl. By convention, the following types of files
are used for PepperCode code; they should be placed in this order in a makefile to ensure that
action declarations are compiled before the action definitions, which depend on those
declarations:

e cpp_filename.spl: C/C++ function declarations

o filename .spl: class definitions

e dcl filename.spl: action declarations

o filename .spl: action definitions

e transaction_filename.spl: transaction definitions

o filename _ui_actions.spl: PC client form actions

In this guide, the different elements of the PepperCode language are discussed without
specifically referring to this file architecture. You should keep in mind that when you write code,
you need to place it in these different files.

Writing PepperCode #include Statements

Pre-compiled header files represent the interface to classes, actions, and enums in a particular
module. This representation is in a very compact form that is quicker and easier for the compiler
to parse.

The following is the syntax of a #include statement:
#include "filename"

#include <filename>

These statements are equivalent. They behave as if the compiler reads in declarations for the
symbols exported by the named file, without actually compiling that file.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE BAsICS 3-1

PEOPLESOFT PEPPERCODE JANUARY 2001

PepperCode has two compiler directives, called #include and #remote include, that allow you to
import declarations and actions from other source files.

The compiler opens the source file and inserts its contents where the statement appears. As with
C/C++ code, filenames in double quotes (" ") should be in the current directory or in the path
specified with the -I command line option, and files enclosed in angle brackets (< >) should be in
a location specified by a search path in the environment.

v When placing filenames in double quotes (" ") for Windows NT, you can use a file delimiter
of "/" instead of "\\".

If an included.spl file includes other files, the directory containing the “outer” included.spl file is
used in the search list for the nested files instead of the current working directory.

Like C/C++, if the PepperCode compiler cannot find the files in the current working directory, it
will search the directories specified with the -I command-line option of the PepperCode compiler.

PepperCode includes are different from C/C++ includes in the following ways:
¢ No white space may precede the pound sign (#).
o The file must end in .spl.

® You cannot start a syntactic construct inside an included file and end it in the outer file, or
vice-versa.

Rules for Inclusion and Writing #include Statements

If you use an action or class in a *.spl file, and the action or class is defined in another *.spl file,
you must #include the other *.spl file.

The following rules apply to #include statements:

o [f <filename> begins with "/" (or, on Windows NT systems, with "\" or a single character
followed by a colon), it is an absolute name; otherwise, it is a relative name.

For example, an absolute path would be "/home/jfarris" on UNIX and "\\Sanma-file-01\c:" on
Windows NT. A relative path would be "./jfarris" on UNIX and "c:\autoexec.bat" on
Windows NT.

o [f <filename> is relative, then the compiler searches for the file using a list of directories. The
first directory in the list is the directory in which the compiler found the file containing the
"#include" statement. The remaining directories are provided by the "--include" and "-I"
options specified on the compiler command line, in order. Note that the current working
directory does not explicitly appear in the list unless you specify it with "--include" or "-I1", or
the file containing the "#include" statement was found in the current working directory.

Example:

3-2 UNDERSTANDING PEPPERCODE BASICS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Suppose you're compiling xyz.spl, a file in "/home/jfarris/spl", and you're including abc.spl.
When you compile xyz.spl, the compiler will look for abc.pchs because the compiler uses pre-
compiled header files (*.pchs) when including *.spl files. If you're using the default compiler
option as follows:

> spl xyz.spl

the compiler will have no problem finding abc.pchs if it is in the same directory as xyz.spl,
"/home/jfarris/spl", because it looks in the directory containing the file you are compiling, by
default. However, if abc.pchs is in another directory (say "/home/jfarris"), the compiler will not
be able to find abc.pchs, and you will get a file-not-found error. If you use the --include compiler
option to include "/home/jfarris" in the include path as follows:

> spl --include "/home/jfarris" xyz.spl //absolute pathname

or

> spl --include ".." xyz.spl //relative pathname

the compiler will be able to find abc.pchs, and in the absense of any other problems, will compile
xyz.spl and the included code.

An alternative to using the --include compiler option (following this example) is to place a path to
abc.pchs in the include statement as follows:

#include "../spl parent.spl" //relative pathname
or

#include "/home/jfarris/spl parent.spl" //absolute pathname

The name under which the compiler finds the file is called the "full name". A full name may be
absolute or relative. For example, the "full name" of spl_parent.spl in the above example is
"/home/jfarris/spl parent.spl".

The name of just the file without the path is called the "base name". For example, the "base
name" of spl parent.spl is "spl_parent.spl".

To break cycles in the graph of file inclusions, the compiler refuses to read two files having the
same "base name". Thus, if two different files in two different directories have the same name, a
compilation will include only one of them, directly or indirectly.

Example:
Suppose you had the following #include statements in xyz.spl:
#include "../spl parent.spl"

#include "../doc/spl parent.spl"

In this case, the compiler will read one #include statement and ignore the other. A further
complication is that there is no absolute rule for determining which #include statement the
compiler chooses. Of course, this aspect of the compiler will only cause a problem if there are
two different *.spl files with the same name in your #include statements.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE BAsICS 3-3

PEOPLESOFT PEPPERCODE JANUARY 2001

The "include" statement is implemented by reading in "precompiled header" files rather than by
reading the actual PepperCode and parsing it, although in concept either implementation would
have the same effect. If a PepperCode source file is named x.spl, the corresponding precompiled
header file is named x.pchs. PepperCode precompiled headers differ from those used by Borland
and Microsoft C++ compilers: the file x.pchs is independent of changes in any source file except
x.spl.

A PepperCode compilation normally generates a precompiled header file unless you use the "--
no_header" option on the command line.

Precompiled header files are architecture-independent.

Using two files that include each other

Normally you must compile any included *.spl file before you compile the file containing the
"#include" statement. If two files include each other, directly or indirectly, you must use the
command line option "--header_only" to generate the precompiled header for the first one; then
you can compile the second, and after that you'll be able to compile the first.

@ For more information and an example that shows what to do when two source files include
each other, see the --header _only compiler option.

Using #include instead of forward declarations

If you use an action or class in a *.spl file, and the action or class is defined in another *.spl file,
you must #include the other *.spl file. The only exception to this is the use of a forward action
declaration in lieu of a #include statement. This is not recommended but is allowed to maintain
backward compatibility.

@ For more information on the use of forward action declarations, see Declaring Actions:
Forward (or Incomplete) Action Declarations.

Action Example:

Using the example from Declaring Actions: Forward (or Incomplete) Action Declarations,
#include columns.spl is used instead of using a forward action declaration:

user.spl
#include "columns.spl"
action spl main(input: float supply, input: float demand,

local: float difference)

{

3-4 UNDERSTANDING PEPPERCODE BASICS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

execute print three columns(:a supply, :b demand, :c (demand - supply));

}

columns.spl:
action print three columns (input: float a, input: float b, input: float c)
{
PRINTF ("%15.5e\t%15.5e\t%15.5e", a, b, c);
}
Classes Example:

In the following example, you must #include the *.spl file containing the definition for
Parent_Class. You cannot use a forward class declaration in a situation like this because you are
referring to slots on the class. Also, please note that you do not need a forward class declaration
for Firstborn_Class. Starting in Release 8.0, it is unnecessary to have forward class or action
declarations for classes or actions that are defined in the same *.spl file.

If Parent_Class were defined in spl_parent.spl, the code would look like this:
#include "spl parent.spl"
action spl main()
{
Firstborn Class.person name = "Cain";
Parent Class.person name = "Adam";

PRINTF ("%s is the parent of %s.\n",
Parent Class.person name,Firstborn Class.person name) ;

}

class Firstborn Class : Parent Class {
}i
The file spl_parent.spl could be as simple as this:

class Parent Class {string person name};

#include and pre-8.0 versions

Included files are processed much differently by the Release 8.0 Compiler than they were in
previous versions. *.h files no longer need to be included because the libraries corresponding to

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE BAsICS 3-5

PEOPLESOFT PEPPERCODE JANUARY 2001

* h files are now included in the substrate. Including *.h files will cause no compiler problems,
but it will generate a warning.

@ For more information on the warning, see No longer necessary to include C++ files ending
in .h.

In Release 7.5, you had to include *.h files to describe human-written C++ functions. In both
Releases 7.5 and 8.0, you have to include *.spl files to describe PepperCode (SPL) functions;
however, in Release 8.0 the apparent inclusion of a *.spl file causes the compiler to actually use
the corresponding *.pchs file. Inclusion of *.spl and *.pchs files is unrelated to the use of .h files
in previous versions of PepperCode.

These changes are largely the result of the 8.0 Compiler's new compilation method. Starting in
Release 8.0, the compiler makes two passes over the source code. In the first pass, the compiler
processes inclusions using pre-compiled header (*.pchs) files. Then, in the second pass, the
compiler compiles the source code to object code.

Understanding Scopes and Identifiers

There are four different kinds of scope:

o Predefined scope: This includes all identifiers which are intrinsic to the language, such as
"Base Class" or "TADD"

e Global scope: This includes all identifiers declared at the outer level, such as action
declarations, enum declarations, and class declarations. It is nested within the predefined scope.

e Local scope: each action creates a local scope. All parameters defined in an action belong to its
local scope. As such, they can only be used in that action or actions that are children of that
action.

e Foreach scope: Each "foreach" statement creates a nested local scope and declares its index
variable within that scope.

An identifier declared within a nested scope may duplicate one which is declared in an outer
scope, in which case it hides the outer declaration for the duration of the nested scope.

Within a scope, an identifier cannot be associated with two different definitions, except in the
case of enumeration constants, as described below.

The program may not refer to an identifier that is not associated with a definition which is
currently in scope, except in the case of slot default values, as described below.

Scope Example:

In the following example, xyz has local scope (3) and foreach scope (4) in action abc. The action
variable abc.o has global scope (2). PRINTF has pre-defined scope (1).

action abc (input: int i,

3-6 UNDERSTANDING PEPPERCODE BASICS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

output: int o,

local: int xyz = 17,

local: oset[string] os)

{
PRINTF ("Outside the loop xyz is an integer: %d", xyz);
foreach xyz in os

{

PRINTF ("Inside the loop xyz is a string: %s", xyz);

}

PRINTF ("Now xyz is an integer again: %d", xyz);

Writing PepperCode Comments

You can format your comments in C or C++ styles. Following is an example of C-style
comments:

/* This is
a multiple line
comment. */

a = /* A partial line comment */ 5;

Here is an example of C++-style comments:
// This is
// a multiple line
// comment.

a = 5; // Cannot be embedded

Writing PepperCode Documentation Comments

You can use #document and #end document to form comments. These comments are a
PepperCode documentation feature. The compiler ignores the text between #document and
#end document, so these comments do not have to be C or C++ style comments. It then writes
these comments to a *.doc file using the --doc compiler option. Each *.spl file containing

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE BAsICS 3-7

PEOPLESOFT PEPPERCODE JANUARY 2001

3-8

comments formed with #document and #end document gets a corresponding .doc file when
compiled.

Here is an example of #document and #end_document.
#document transaction create or set chip env
You put your comments here.
These comments do not have to be enclosed in /* and */.
These comments do not have to begin with //.
These comments can continue for as many lines as you like.

#end document transaction create_or_set_chip_env

Notice that #document is followed by the name of the transaction (in this case,
transaction_create_or set chip_env). When you include the name of the transaction, the
compiler can associate these comments with that transaction, ensuring that the *.doc file tells you
which transaction these comments apply to.

Understanding #document error messages

You must include the transaction name in the #document and #end document statements. If you
don't, you will get the error "Missing transaction name after "#document"." If you include the
transaction name with #document but not with #end document, you will get a mismatch error.

For more information on these errors, see Missing transaction name after "%s".. and
Mismatch between "#document %s" at line %d and "#end document %s"...

If you forget the #end_document statement, you may not get an error at all, but the compiler will
consider the remainder of your *.spl file to be a comment. This could cause logic problems that
may be difficult to diagnose. Conversely if you forget the #document statement, the compiler will
consider your comment text to be code. This could also cause logic problems that may be difficult
to diagnose. Here is the error received when the #document statement was commented out:

hello world.spl:8: parse error

spl main is a pre-defined action that is
(Skipping to ';' at 16:28)

hello world.spl:17: parse error

}

A

UNDERSTANDING PEPPERCODE BASICS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

If you use the --doc compiler option, the compiler writes the text between #document and
#end_document to a file named <filename>.doc for all of the #document blocks in the *.spl file,
where <filename>.spl is the name of your source file. This file will contain the name of the
source file and the line number at which the documentation comments start, so you do not have to
put this into the comments.

Example: Hello World!

hello_world.spl:
#document spl_main
spl main is a pre-defined action that is
executed automatically when the program is run.
It does not have to be called.

#end_document spl_main

action spl main()
{
PRINTF ("Hello, world!\n");
}
hello_world.doc:

#document spl main, "hello world.spl", 6:

spl main is a pre-defined action that is
executed automatically when the program is run.

It does not have to be called.

#end document spl main

Format for #document comments

When you write #document comments for a particular transaction, you should place them just
before the code for that transaction. Use the following format:

Description: Describe the purpose of the transaction here.

Inputs: List the input parameters. For each parameter, list its name and data type, and describe
the parameter.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE BAsICS 3-9

PEOPLESOFT PEPPERCODE JANUARY 2001

Required Inputs: List the names of the required inputs here.

Input Defaults: List the names and default values for each input parameter that has a default
value.

Outputs: List the output parameters. For each parameter, list its name and data type, and describe
the parameter.

Instances Updated: List object instances in the server that are updated or whose slot values are
updated.

Here is an example.

#document transaction add mfg attribute

Description: Adds an attribute.

Inputs: mfg attribute name STRING

The mfg attribute identifier.

class_name STRING

The class name of the attribute instance required. Must be a subclass of
Mfg_Attribute.

Required Inputs: mfg attribute name

Input Defaults: class name "Mfg Attribute"

Outputs: exit _msg STRING

An exit message to be read by the user.

Instances updated: Mfg Attribute instance added.

#end document transaction add mfg attribute
Typically, #document documentation blocks like those in the examples are used only for

transactions. However, they can be used to document anything, and anything documented with
#document blocks will be written to the *.doc files when you use the --doc compiler option.

3-10 UNDERSTANDING PEPPERCODE BASICS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Using --doc and --header with documentation comments

Starting in Release 8.0, *.doc files are generated from #document blocks using the --doc compiler
option instead of the -d option. You can also generate them in standalone mode without actually
compiling the source code containing the #document blocks.

To generate only a *.doc file for a particular *.spl file, use the --header only and --no_header
compiler options in conjunction with this compiler option.

Example:
To generate the file xyz.doc without actually compiling xyz.spl:
> spl --no header --header only --doc xyz.spl
To generate the file xyz.doc along with compiling xyz.spl (to an object file):

> spl --doc xyz.spl

Writing PepperCode Notice Comments

You can use #notice and #end notice to enclose comments. Use these comments to form
a copyright notice. If you don’t include the #notice and #end notice statements, the
compiler will give a warning message.

Here is an example of #notice and #end notice.
#notice
Copyright 1994-1998 by Peoplesoft, Inc.
All U.S. and World rights reserved.

#end notice

If you do not include a #notice statement block, you will receive a warning message.

For more information about the warning message received, see Source file should have a
"#notice" statement..

Understanding PepperCode Data Types

PepperCode has the data types shown in the following table. They are used in slot or action
parameter definitions.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE BAsICS 3-11

PEOPLESOFT PEPPERCODE

PepperCode Data Types

JANUARY 2001

Data type | Syntax C/C++ comparison Description
int int name Corresponds to C long | Stores integer values. Signed two's
In C++, would be complement integer
passed by value
float float name Corresponds to C Stores float values. Doubleprecision
double IEEE floating point
In C++, would be
passed by value
time time name No C equivalent Represents a relative time value, in
In C++, would be seconds, that could be added to or
subtracted from the date type. It can
passed by value . .
be a positive or negative value.
date date name No C equivalent Stores an absolute point in time.
In C++, would be You cannot add date values .together,
but you can add a date and time
passed by value
value to get a new date; for example,
value = ADD(time, date);.
string string name | Equivalent to C char * Stores a sequence of characters (null-
In C++, would be terminated) that"z}'re bounded by
double quotes (" "). Usually used for
passed by value .
text. Null-terminated array of bytes
encoded in the UTF-8 version of
Unicode.
enum declaration: | Similar to C enum, but | * Stores a logical grouping of named
enum PepperCode enums can | constants, for example, enum
be compared to enums | Boolean { TRUE, FALSE }; It can
enum_name . i .
. only, while C enums be used to specify the only valid
{values};
can be compared to values for a slot.
reference: integers, t0o.
enum<enum
_name>
name
instance instance<cla | Corresponds to C++ ** Pointer to an instance of a
ss_name> object of type class PepperCode class (object instance).
name In C++, would be Glyes qulcl.< access to the slots qf an
object and is generally used to link
passed by reference or .
) objects together.
copy Into

3-12

UNDERSTANDING PEPPERCODE BASICS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

class class<class | Corresponds to C++ ** Pointer to a PepperCode class
name> name | type class (object class). Most objects don’t
In C++, would be need to point to a clqss, since they
can query for their direct parent
passed by reference
class.
oset oset[data_ty | Like a linked list Stores an ordered set (list) of a
pe] name specified data type—for example,
oset[int], oset[instance
<Base Type>], and so on. It can
reference any data type besides oset.
An alternative to an oset of osets is
an oset of instances that point to
osets. Note that the list is ordered,
but not sorted.
action For action Similar to C functions | Points to a PepperCode action,
parameters: | and Pascal procedures, | which is an encapsulation of
. . | but provide more than | PepperCode statements with input
action<actio
1 name> the proc'edural ' anq output to the statements. Or
name abstraction of functions pomts to an action schema that
and procedures actions can be based on. To
For action implement a method in a class, you
parameters must specify a schema in the slot.
and slots of
a class:
action<sche
ma_ name>
name
history history<data | No equivalent in any Stores time-varying data of type
_type> language history<int>, history<float>, or
name history<string>. The values of
histories cannot be changed by
PepperCode statements directly;
instead, they are changed by a side
effect mechanism.

* Starting in Release 8.0, two enumerations may use the same constant name(s).

Example:

enum Week { SUN, MON, TUES, WED, THU, FRI, SAT };

enum WorkWeek { MON, TUES, WED, THU, FRI };

** The term "pointer to" in the previous descriptions means that when you declare a variable of

type "instance" (for example) you do not create a PepperCode instance; you merely create a
variable capable of referring to a PepperCode instance which exists independently.

Example of creating a PepperCode instance:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING PEPPERCODE BAsICS

PEOPLESOFT PEPPERCODE

action create bicycle
(input: int serial number = required:,
input: string model name,
input: string class name,
// The following line creates a variable capable of referring
// to a PepperCode instance
output: instance<Bicycle> new bike,
no_context:)
{
// Create an object (instance) with the CREATE OBJECT function.
// model name is the name of the object.
// (All named objects must have a unique name.)
// class name is the name of the class the object belongs to.
new_bike = CREATE OBJECT (model_ name, class_name) ;
new bike.serial number = serial number;
new_bike.model_name = model_name;

succeed () ;

Understanding PepperCode Performance Considerations

The following operations are resource- and computation-intensive processes:

o Creating and deleting objects. Try not to create unnecessary objects. If a feature is
implemented with fewer objects, it will be more efficient.

e List processing.

JANUARY 2001

@ For more information about processing lists more efficiently, refer to Writing Osets.

e Several enums in a tight loop.

3-14 UNDERSTANDING PEPPERCODE BASICS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

[0

For more information about processing enums more efficiently, refer to Writing
Enumerations in Loops.

e String compares. Strings are compared character-by-character.

For more information, refer to Using EQ With Strings.

e Recursion. Because of the overhead involved with calling actions, don’t use recursion with
PepperCode. Instead, use an iterative algorithm or write a C++ function that uses recursion.

Using PepperCode Naming Conventions

A name for a class, action, slot, and parameter is a contiguous set of alphanumeric characters.
Underscores separate characters into “words,” for example, action_name. In addition, a class
name uses a capital letter at the beginning of each word, for example, Spl Class. This helps you
to easily distinguish between class names and action parameters; for example, My Class versus
my_class.

The C++ runtime functions should be in all capital letters.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE BAsICS 3-15

CHAPTER 4

Understanding PepperCode Classes

PepperCode objects are either classes or instances of classes. Often, however, the term "object" is
used loosely to mean "instance" and not "class".

A PepperCode class is a collection of members called "slots". Every slot has these attributes:

® name

data type

initial value

e an attribute called "class_slot:"
e an attribute called "side effect:"

The programmer may declare that a class has a particular slot, or the programmer may declare
that the class inherits slots from zero or more parent classes. A class also has slots that are
predefined by the language itself.

A class implicitly inherits from the predefined class called "Base Class". (Base Class is pre-
defined starting in Release 8.0.)

To form the set of slots belonging to a class, we first make a set of all of the slots belonging to the
first parent class. Then we add all of the slots from the second parent class whose names do no
duplicate those already in the set, and repeat for each additional parent class. Next we add the
slots directly declared in the class. If the name of any of those duplicates that of a slot that is
already in the set, then the directly declared slot is allowed to override certain characteristics of
the parent class. It can change the data type, change the initial value, add the "class_slot"
attribute, or add the "side effect:" attribute (this is called "specialization"). Finally we add any
slots predefined by the language whose names do not duplicate those already in the set.

Thus, if a class has the opportunity to inherit a slot "x" from more than one parent, it inherits that
slot from the parent that appears first in the list, and the remaining parents have no effect on that
slot.

Example:

In the example below, Homer and Marge are the "parents" of Bart and Lisa. Bart inherits
hair_color from Homer because Homer is the first parent on his inheritance list. Likewise, Lisa
inherits hair_color from Marge.

class Homer {

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE CLASSES 4-1

PEOPLESOFT PEPPERCODE JANUARY 2001

string hair color
string favorite_beer
class Marge {
string hair color
string favorite book
// Bart inherits hair color from Homer
class Bart: Homer Marge
// Lisa inherits hair color from Marge

class Lisa: Marge Homer (

Every slot on a class is capable of storing a value. If the programmer specifies a value with an
"default:" clause, the slot is born with that explicit default value; otherwise, the slot is born with
an implicit default value. During execution, the program may assign a new value to a slot
belonging to the class.

The "class_slot:" attribute has no effect on the class itself, but does affect instances of the class.
The "side_effect:" attribute permits the slot to participate in a side effect function.

The programmer may "specialize" a slot which was inherited from a parent class by changing the
default value, or by adding the "class_slot:" attribute, or by adding the "side effect:" attribute.
Such a slot inherits from the parent class those characteristics not specified by the programmer.
The programmer may not "specialize" the data type, because that creates an independent slot
which does not inherit any characteristics from any parent class.

You should use the side_effect slot only when it is needed. The only reason for not using it is that
it wastes memory and disk space. However, severe consequences can occur if you don't use the
side_effect slot when it is needed.

A class is a "first-class" object. The program can manipulate data on the slots of a class, and it
can manipulate variables of type class. A variable of type class is capable of referring to the class
itself or to any subclass of that class.

At runtime, the program can create a new class which inherits from one or more parent classes
(every class will inherit from Base Class whether that is specified explicitly or not). However, it
cannot specialize a slot (although it can change the default value of a slot after the new class has
been created), nor can it create slots other than those inherited from the parents.

4-2 UNDERSTANDING PEPPERCODE CLASSES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

At runtime, the program can refer to the value of a slot on a class, and it can redefine the value of
that slot.

Classes can inherit redefined values. If a class inherited the value of a slot from a parent when it
was born, and the program has not subsequently redefined the slot on the child, then a change at
runtime to the value of the slot on the parent will propagate to the corresponding slot on the child.
In other words, the value of an inherited slot on a class is coupled to that of the slot on the parent
until it is "disconnected", either by specifying an explicit default value for the child slot at its
birth, or by assigning a value to the slot at runtime. The explicit default or the assignment will
"disconnect" the slot even if the redefined value is not different from the parent's value.

An instance of a class is an replica of the class which contains exactly the same set of slots as
does the class.

If a slot has the "class_slot:" attribute, then the instance does not have an independent copy of the
slot; instead, the copy belonging to the class appears as if it also belonged to the instance.
Changing the value of that slot on the class will change the slot on the instance too, and vice
versa.

If a slot does not have the "class_slot:" attribute, then the instance has an independent copy whose
initial value is copied from the corresponding slot on the class. (For this reason, a slot on a class
which does not have the "class_slot:" attribute is often called a "default value slot", because it
provides the initial value for the corresponding slot on the instance.)

Subsequent changes to the slot belonging to the class have no effect on the corresponding slot
belonging to the instance, and vice versa. In particular, once an instance is created, it is not
affected by the inheritance of redefined values described in connection with slots on classes.

The PepperCode object model is very different from the C++ object model:

e (Classes are first-class objects. A C++ programmer may think of a class as incorporating a
special "hidden" instance which contains a copy of all of the slots defined on the class, whereas
true instances contain only the slots which do not have the "class_slot:" attribute.

e All inheritance in PepperCode is "virtual" in C++ terms. In the case of multiple inheritance, a
class contains only one copy of a particular slot, even if it could have inherited that slot from
multiple parents.

e PepperCode classes and instances do not have function members. A slot of type "action"
behaves like a C++ slot of type "pointer to function" in the sense that the program can redefine
it at runtime; it behaves like a C++ "virtual function" in the sense that even when the object is
masquerading as a member of one of its parent classes, the slot will have the action appropriate
to the true, runtime type of the object.

e PepperCode classes and instances exist in a global, dynamically-allocated, environment. There
is no static or automatic allocation for PepperCode objects, and no scoping. There are
automatic, scoped variables capable of pointing to PepperCode objects, however.

Writing New Class Definitions

Following is the syntax for a new class definition:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE CLASSES 4-3

PEOPLESOFT PEPPERCODE JANUARY 2001

4-4

class new _class name : parent class namel [parent class name2 ...] {

data_type slot name n { [class slot:] [side effect:] default: value }

}i

Any class name or slot name is acontiguous set of alphanumeric characters. A
class_name should have underscores and capital letters that separate characters into “words,” for
example, Spl_Class. A slot name can use underscores to create words. This enables you to
easily distinguish between class names and slot names.

One or more parent_class_name(s) can be placed after a colon (:) and are delimited by a blank
space, for example, : Base Class Mid Class High Class. In a new class definition, at least one
parent class must be specified. There must be a space after the colon (:).

Braces ({}), followed by a semicolon (;) contain the slots. If no slots are specified, the braces are
empty; for example:

class Their Class : Base Class { };

In Release 8.0 and later, class definitions can set default values for slots without a separate "slot"
statement.

Example:

The default value for i is assigned a value of 123 in the following class definition:
class c {
int 1 { class_slot: side effects: default: 123 }
}i

In PepperCode versions earlier than 8.0, default slot values must be placed in slot statements.
The value is assigned using the default: keyword. The object system provides default values at
object creation time, so there are no uninitialized slots.

Old syntax:
class new class name : parent class namel [parent class name2 ...] {

data_type slot_name n

bi

slot new class name.slot name n { default: value [class_slot:] [side effect:] };

Note that a class statement and all slot statements for that class must reside in the same file.

UNDERSTANDING PEPPERCODE CLASSES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Understanding Default Values

If you omit slot statements, the compiler provides the following defaults for you:
e integer — 0 (zero)

e string — “default string”

e oset — empty list

e action — nil (attempting to execute this causes a runtime error)

e float— 0.0

o instance — Null Instance

e class — Null Class

You need to decide if these defaults are appropriate in your code. If not, you should provide a
default. For more information on Null Instance and Null_Class, refer to a following section,
“Some Predefined Classes.”

Understanding Multiple Inheritance

When multiple parent classes are specified (called multiple inheritance), classes listed first after
the colon take priority when the new class inherits values and defaults. In other words, for :

Base Class Mid_Class High Class, if Base Class and High Class have specified a data type and
default value for the same slot name, the Base Class type and value would be used.

Specializing Slots

If a slot of type class A is defined in the parent class, you can specialize it in the subclass with a
different type B, provided that B is a subclass of A. For example:

class A {};
class B : A {};
class C {
instance<A> foo
}i
class D : C {
instance foo // specialize slot definition
}i

You cannot specialize a slot of a primitive type, such as int or float, in a subclass declaration.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE CLASSES 4-5

PEOPLESOFT PEPPERCODE JANUARY 2001

Understanding Dot Notation
In slot statements, the slots are referred to as:
class name.slot name

This format is called dot notation. class_name is the name of the class and slot_name is the name
of the slot as specified in the slot definition.

For example:
class c {
int my slot
}i

slot c.my slot { default: 155 };

@ For more information about dot notation, refer to Using Dot Notation in Expressions.

Declaring Classes

The following syntax is for class definitions. Only one definition may exist for a particular class
identifier. If a list of base classes appears, then this is a derived class, and a definition for each of
the base classes must precede this definition.

class <class identifier> { <class body> }
class <class identifier> : <base classes> { <class body> }
The class body consists of a list of slot declarations.
The list of derived-class slots is formed as described at the start of this chapter.

class <class identifiers> ;

This is a forward (or incomplete) class declaration. It is compatible with any other class
declaration having the same identifier.

Forward Class Declarations

Forward class declarations are not recommended in Release 8.0, but they are still allowed to
maintain backward compatibility with previous versions.

Forward class declarations can be used only to inform the compiler of the existence of a class that
is defined elsewhere and only in the manner specified in the first example below. Of course, the

4-6 UNDERSTANDING PEPPERCODE CLASSES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

compiler must have access to the class definition. If they are used for any purpose beyond this
limited use, an error will occur.

The following example illustrates how forward class declarations can be used:

class Second;

class First {
instance<Second> firstslot
}i
The following example illustrates how forward class declarations cannot be used:

class Second;

action spl main (local: string c_name)

{

c_name = Second.name;

}
In this example, execution of the code in this second example causes the following error:

The declaration of "Second" is incomplete.

@ For more information on this type of error, see The declaration of "%s" is incomplete..

Slot Clause List Statements

The following syntax is for slot clause list statements.

slot <classname> . <slotname> { <slot clauses> } ;

A slot clause list statement provides a slot clause list to add attributes to the normal declaration of
a slot which appeared within an earlier class statement. This quietly overrides the corresponding
attributes in the normal declaration. The complete declaration of the class must appear in the
same source file as the slot clause list statement. A default value specified in a slot clause list
statement must be compatible in data type with the normal declaration.

This statement is a convenience for use in situations where a derived class inherits a slot from a
base class but wishes to change only one attribute, such as the default value; it eliminates the need
to repeat the entire slot declaration within the derived class.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE CLASSES 4-7

PEOPLESOFT PEPPERCODE JANUARY 2001

Example:
class base {

int 1 { class_slot: default: 17; }

}i

class derived: base {

}i

slot derived.i { default: 18; }

If the default value is a string or an undefined identifier, and the data type of the slot is "action",
"class", or "instance", then the identifier is assumed to name an action, class, or instance, which
need not be declared in the current compilation. In this circumstance, a class or instance need not
exist until runtime, but it must exist before the first reference to the slot or the first instantiation of
the class containing the slot; otherwise, a runtime error will occur. In this circumstance, the
undeclared action must actually exist in some other compilation which will be linked into the
same program.

Slot Declaration Statements

A slot declaration consists of a data type and the slot name, optionally followed by a slot clause
list. For example:

int slotname
float another slotname { default: 3.5 class _slot: side effect: }

If a slot declaration does not provide a slot clause list, then a subsequent slot clause list statement
may provide one, but there must not be more than one slot clause list for a particular slot in a
particular class.

If the program does not specify an explicit default value for a slot via inheritance, or via a slot
clause list within the declaration, or via a separate slot clause list statement, then the data type
determines the implicit default value according to the following list. (Note that the implicit
default values for slots are different than the implicit default values for action parameters.
Implicit default values for action parameters are listed in Understanding Parameter Defaults.)

integer 0

string "default string"
instance Null_Instance
class Null Class
action<schema name> nil pointer
action<action name> nil pointer

4-8 UNDERSTANDING PEPPERCODE CLASSES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

float 0.0
oset empty list
enum<> nil pointer

Understanding Instance and Class Slots

The value for a slot is by default stored on its object instance and is called an instance slot. You
could also store the value of a slot on the object class; this is called a class slot. For an instance
slot, a copy of'it is created each time an object instance is created. For a class slot, all object
instances use the same slot and value; it can be used for communication between objects. A
PepperCode class slot is like a C++ static data member or static member function—all instances
of the class read and write the same value for that slot.

To create a class slot, put the class_slot: keyword in a slot statement:

slot class name.slot name { class slot: };

For example:
class Spl Class : Base Class {
int value 1
float value 2
string description
bi
slot Spl Class.value 1 { default: 10 class slot: };
slot Spl Class.value 2 { default: 99.345 class slot: };

slot Spl Class.description { default: “default” class slot: };

Writing Temporary Objects

Typically, applications written in PepperCode provide the capability of saving objects to a disk
file called a snapshot. It’s useful to be able to tag certain objects so that the application knows
not to save them. Placing the keyword temporary instances: at the end of the slot definition list
accomplishes this. For example:

class Temp Element : Spl Class {
int count

temporary instances: // This is a temporary object

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE CLASSES 4-9

PEOPLESOFT PEPPERCODE JANUARY 2001

Using Predefined Classes

One of the reasons that PepperCode 8.0 is leaner and faster than the PepperCode of previous
releases is because more of its constructs are predefined. As such, they are in the predefined
scope. The following objects are declared by the compiler to be in the predefined scope:

class Base Class {
string name;
string class name { class_slot: }
string class display name { class_slot: }
bi
class Null Class: Base Class {};
instance<Null Class> Null_Instance;
class Base Enum Class: Base Class {
string enumerator;
string enum display name;
bi

As mentioned earlier, Base Class is the PepperCode root class that has functionality needed by
the object system; for example, it provides utilities for communication to and from the Planning
graphical user interface (GUI). All objects must inherit, either directly or indirectly, from

Base Class.

Every class and instance has a predefined readonly slot of type string called "name" which gives
the name of the class or instance.

The slot "class_ name" gives the name of the class or, if used on an instance, the name of the class
to which the instance belongs. It is a readonly slot.

@ For more information in an example of using the class name slot, see
GET _NAME _OF CLASS.

The slot "class_display_name" is a readonly slot used for internationalization.

When you refer to this slot, the runtime system looks in the local language message table for the
string which corresponds to the name of the class. If found, it returns that string; otherwise, it
returns the name of the class. This slot is not visible from any instance of the class.

A slot "enum_display name" of type string appears on each instance created by an "enum"
statement; it translates the value of the "enumerator" slot, which is the name of an enumeration
constant, into a local language. Otherwise, it has the same behavior and restrictions as

"class display name".

4-10 UNDERSTANDING PEPPERCODE CLASSES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

C and C++ programmers tend to assume that NULL, the integer constant 0, and the value zero are
all interchangeable with the concept of a null pointer. (Actually, however, a C or C++
implementation need not represent a null pointer with the value zero.) In PepperCode, the null
instance isn’t represented by zero: it is a valid instance whose name is Null_Instance. The
PepperCode runtime function GET _NULL INSTANCE returns this instance. Because the
compiler permits you to set an instance either to the null instance or to zero, it’s important to
distinguish between the two. For example, the following action will always fail:

action a (local: instance<cs> ci)
{
ci = GET NULL_INSTANCE () ;
if (EQ(ci, 0))
succeed () ;
ci = 0;
if (EQ(ci, GET NULL_INSTANCE()))
succeed () ;

fail();

@ For more information and a description of GET_NULL INSTANCE, refer to Accessing
C/C++ Functions.

Similarly, the null class is a specific class whose name is Null Class, which isn’t the same as a
class whose value is 0.

Starting in Release 8.0, you are allowed to use the name of a class in an expression. However, we
have maintained backward compatibility in that you can still use the GET CLASS C++
Functions to return the name of a class. Provided the compiler has seen a definition of a

particular class, you can use that class in an expression instead of calling
GET_CLASS BY NAME:

class some class { int some slot };
action spl main ()

{

some_class.some slot = 15;

}

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE CLASSES 4-11

PEOPLESOFT PEPPERCODE JANUARY 2001

Note: Assignment statements that use the name of a class in an expression can only be made
in an action.

Using Instance Names

4-12

All instances of a class have an intrinsic single name slot that is automatically initialized to
provide the name of the instance. Intrinsic, in this case, means that you don’t have to declare a
name slot on the class in order to get this slot. This intrinsic name slot is read-only so you
cannot change it. Each instance of a class should have a unique name; if you try to create a new
class or object with the same name as an existing class or object, the object system generates a
unique name for the object. The following example illustrates how objects are named:

class Named Class { };

action named object test
(local: instance<Named Class> named object,

no_context:)

execute create object (:object name "animal",
:class_name "Named Class");

named object = create object.new object;

PRINTF ("\n%$s\n", named object.name) ;

execute create object (:object name "vegetable",
:class_name "Named Class");

named_object = create object.new object;

PRINTF ("\n%$s\n", named object.name) ;

execute create object (:object name "mineral",
:class name "Named Class");

named_object = create object.new object;

PRINTF ("\n%s\n", named _object.name) ;

succeed () ;

UNDERSTANDING PEPPERCODE CLASSES PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

When you run this, it prints:
Enter an action call: B()
animal
vegetable
mineral
Result: (:RESULT 3)
As was mentioned earlier, slot name is read-only. The following code will fail:
execute create object(:object name "animal",
:class name "Named Class");
named object = create object.new object;
named_object.name = "cat"; // This line will cause failure.

PRINTF ("\n%s\n", named object.name) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE CLASSES 4-13

CHAPTER 5§

Understanding PepperCode Actions

An action is similar to a C function or Pascal procedure, but with very different semantics for
memory allocation and the lifetimes of variables and changes to variables, which is described
later. Following is an example of an action definition:

/* action */

action print simple string

/* action parameters */
(input: string pstring = "Null",
local: int string length = 0,

output: int printed)

/* action body */

printed = 0;

string length = STRLEN (pstring) ;

if (sting length < 2) {
PRINTF ("\nstring < 2");
fail;

}

else {
PRINTF ("\n%s", pstring) ;

printed = 1;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING PEPPERCODE ACTIONS

5-1

PEOPLESOFT PEPPERCODE JANUARY 2001

succeed () ;

An action has a unique name that can be referenced from classes and other actions. It also has a
list of local, input, and output parameters and an action body containing PepperCode statements.

To execute an action from within another action, use an execute statement.

Writing Action Definitions

A PepperCode action is analogous to a C function or Fortran subroutine. It provides formal
parameters, local variables, and a series of executable statements.

Following is the syntax for a new action definition:
action <schema name> action name

(param_type: data type param name 1 = value 1,

param type: data type param name n = value n,

context: | no_context:)

succeed(); | fail(); | leave();
}

Any action name, schema name, or param name is a contiguous set of alphanumeric
characters; the name can have underscores that separate characters into “words,” for example,
spl action.

schema_name is optional. If it is specified, put the name in angle brackets (<>).

Any previous declaration must match with respect to the presence or absence of a schema and (if
the schema has been defined with an action_schema statement) with respect to the name of the
schema.

@ For more information, refer to Writing Schemas.

The action parameter list is a group of parameter definitions enclosed in parentheses (()); if
there are no parameter definitions, empty parentheses are required. However, if you have an
action declaration, no parentheses appear in the action definition. A space separates the data type

5-2 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

from the param name. param type always ends in a colon (:). Except for the last line in
the list, a comma separates each definition from the next. Optional default values are specified
with an equal sign (=); for example, local: string string length = 0.

@ For more information, refer to Declaring Actions: Forward (or Incomplete) Action
Declarations and Writing Action Parameters.

If the optional no_context: keyword is included in the parameter list, no new context is created
when the action is executed. If this keyword is omitted, a new context is created before
execution, since the default is context:.

@ For more information, refer to Understanding Context.

PepperCode statements are placed inside the action body, which is contained by braces ({}). One
of the PepperCode exit statements, either succeed(); , fail();, or leave();, must also appear. These
statements exit the action and specify whether changes made to object values are accepted or
rejected.

@ For more information, refer to Understanding Context.

Following are examples of action definitions. The first example is a simple action that prints
“Hello There.”

action print hello there

() // No action parameters

PRINTF ("\nHello There\n"); // Call C printf
succeed () ;

}

Here is a more general implementation of an action that prints text. It accepts a string to be
printed.

action print_simple string
(input: string pstring, // Pass the string to be printed

no_context:) // Prevent context creation

PRINTF ("\n%s\n", pstring); // Call C printf

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-3

PEOPLESOFT PEPPERCODE JANUARY 2001

succeed () ;

Following is a more complex example, showing an action with various types of action
parameters, defaults, and exit statements.

action print_simple string

(input: string pstring = "Null", // Pass in the string to be printed
local: int string length = 0, // Local variable with a default
output: int printed, // Show that the string was printed
no_context:) // Prevent context creation
{
printed = 0; // Initialize the output parameter
string length = STRLEN (pstring) ; // Call C strlen
if (LT (string_ length, 2)) { // If the length is less than 2,
PRINTF ("\nstring < 2"); // print a warning
fail(); // and fail from the action.
}
else { // If not less than 2,
PRINTF ("\n%s", pstring) ; // call C printf
printed = 1; // set the output variable
succeed () ; // and succeed from the action.

Incomplete and Forward Declarations

PeopleSoft allows two exceptions with regard to the parameter list. First, for backward
compatibility, this definition may omit the parameter list if a previous declaration did not omit the
parameter list; we treat this as if this declaration had the same parameter list as the previous one.

@ For more information, and another example, see Declaring Actions: Forward (or Incomplete)
Action Declarations.

5-4 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Example:
action<schemal> uses_ schemal (input: string s = "It is also the definition.");
// This declaration works because it has a parameter list
// and the definition does not.
action<schemal> uses_ schemal
{
PRINTF ("%$s%s",sl,s);
}i

Second, if the previous declaration has no local parameters, this declaration may have local
parameters.

action <optional schema> <identifiers> ;

This is an incomplete declaration. It declares that an action exists having the specified name, but
we know nothing about its parameter list. Any previous declaration must not have a body or
parameter list, and must match with respect to the presence or absence of a schema and (if the
schema is present) with respect to the name of the schema.

action <optional schema> <identifier> <parameter lists> ;

This is an incomplete declaration. It declares that an action exists having the specified schema
and body. Any previous declaration must match with respect to the presence or absence of a
schema and (if the schema is present) with respect to the name of the schema. Any previous
declaration must either have an equivalent parameter list or no parameter list. Any previous
declaration must not have a body.

It is unnecessary (and undesirable) to put local parameter declarations into an incomplete or
"forward" action declaration. The preferred style is to put all the non-local variables in both the
declaration and definition of the action, but to put local variables in the definition only. For
example:

action a(input: int i, inout: int io, output: int o);

action a(input: int i, inout: int io, output: int o, local: 1)

{

succeed () ;

}

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-5

PEOPLESOFT PEPPERCODE JANUARY 2001

Avoiding Incomplete Declarations

Preferred programming practice is to avoid incomplete declarations by including "*.spl" files. In
fact, if you include the *.spl file containing an action definition, you do not need to make a
forward action declaration for it. Thanks to the "precompiled header" feature of the compiler,
including a "*.spl" file uses far fewer system resources than in previos PepperCode versions.
Because the compiler makes two passes over the source file, it allows the use of an action to
precede the definition if both occur in the same file. This also applies to the use of classes.

As you probably know from C++, a pre-compiled header file contains all of the action and class
header information. These inclusions are resolved and the compiler determines what actions and
classes have been defined in the first pass of the compiler over the source code before
compilation to object starts.

When you do use an incomplete declaration, preferred programming practice is to put all local
declarations in the parameter list belonging to the definition and none in the parameter list
belonging to the incomplete declaration. This allows programmers to add or delete local
parameters without having to edit two different parts of the program; and without changing the
modification date of the file containing the incomplete declaration (assuming the incomplete
declaration and the definition are in separate files).

An incomplete declaration with local parameters will cause a warning message about obsolete
coding practice; so will a definition that omits the parameter list.

Matching Parameters and Parameter Lists

Two parameter lists match if all keyword parameters match, disregarding order.

Two keyword parameters match if their keyword-parameter types, names, data types, and
initializations match.

Using context:, no_context:, and readonly:

Within the action parameter list, only one of the "context:", "no_context:", and "readonly:"
reserved words may appear. The compiler may choose to implement "readonly:" by creating a
context and forcing it to fail at runtime, or by using the parent context but ensuring that no
changes are made.

After taking the union of the set of parameters defined by the action schema and the set of
parameters defined by the action's own parameter list, no two arguments may have the same
name, with one exception: an action may specify either "context:", "no_context:", or "readonly:"
even if one of those words appears in the action schema parameter list. In that case, the action
overrides the action schema.

For example, mutually recursive actions A and B could be coded thus:
action a(input: int 1i);

action b(input: int i) { ... }

5-6 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

action a(input: int i, local: float £f) {

Writing Action Parameters

Here is the syntax for action parameters.
<category> <type decl> <id>
<category> <type decl> <id> = <expressions>
input: <type decls> <id> = required:

inout: <type decls> <id> = required:

PEOPLESOFT PEPPERCODE

The <category> may be "input:", "output:", "inout:", or "local:", indicating the following

behavior:
Scenario input output inout local
Caller can pass | Y Y Y N
actual argument
in invocation?
Caller can alter | N N N N
this using dot
notation?
Caller canread | N Y Y N
this using dot
notation?
Callee can alter | N Y Y Y
this?
Calleecanread | Y Y Y Y
this?
Passing Arguments: Considering Data Type
Output Category Example:
The comments referring to "row" refer to the table above.
action spl main(local: int lo)
{
action output.o = 6; // ERROR (caller cannot alter this) [2™ row]

execute action output (:o0 lo); // Caller can pass arg in invocation [15% row]

PRINTF ("$d", action output.o); // Caller can read result (3™ row]

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING PEPPERCODE ACTIONS

5-7

PEOPLESOFT PEPPERCODE JANUARY 2001

PRINTF ("%d", 1lo);

}

action action output (output: int o)

{

PRINTF ("%d", o) ; // Callee can read this (will see the default) [5%

row]

o =5; // Callee can alter this [4™ row]

Using required: Keyword as Explicit Default Value

The required keyword, new for Release 8.0, is a way of requiring that a value be assigned to
certain input parameters when calling an action. If you use "required:" as the explicit default
value of an action input or inout parameter, the compiler and action interpreter will force the
caller to pass an explicit actual argument.

Example:
The required: keyword is assigned as the default value for quantity.

action counter (input: int quantity = required:)

{

PRINTF ("%d\n", quantity) ;

}

action spl main()

{

execute counter() ;

}
Executing this program causes the following error:

You must supply a value for "required:" parameter "quantity"
If you assign a value to quantity as in the following example, the error goes away:

action counter (input: int quantity = required:)

{

PRINTF ("%d\n", quantity);

}

action spl main()

{

execute counter (:quantity 15);

}

5-8 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Understanding non-local action parameters

If a parameter has type "action", and the parameter is not "local:", then the data type must refer to
an action schema rather than a specific action.

Example:
You are not allowed to do either of the following in a parameter list declaration:
input: action alternate repair

output: action alternate repair

In the action definition for action one_pass_inventory constraint repair, the following input
parameter is declared (this type of parameter list declaration is allowed):

input: action<constraint repair> alternate repair,

In this declaration, "constraint_repair" is an action schema, and "alternate_repair" is not the name
of an actual action but an input variable that can be used to pass an action into action
one_pass_inventory constraint_repair. The action passed in must be an action that has
action_schema "constraint_repair" in its definition.

The action "rm_repair_explode planned orders only" is passed into
one pass_inventory constraint repair using the following execution statement (This execution
statement was copied from action default gs dispatch.):

execute one pass_inventory constraint repair(
:constraint class constraint class,
:deconflict_env deconflict_env,
:use_alternate repair 1,

:alternate repair rm repair explode planned orders only) ;

Notice that this execute statement sets input variable "alternate repair" equal to action
"rm_repair_explode planned orders only." This means that if you say "execute alternate repair”
in action "one_pass_inventory constraint repair," you will execute action

"rm_repair_explode planned orders only" (This is, of course, true only for the execution
statement above and only while it is in the process of execution.).

Understanding Parameter Defaults

If, when an action is invoked, the caller supplies no actual parameter corresponding to a particular
formal parameter, the program attempts to use a default value. This applies to all four categories.
The rules for determining the default value are these (in order):

1. If the declaration of the parameter used the optional "= <expression>" construct, that
expression provides the default value. The <expression> must be a literal or identifier, and its
data type must be one which could legally be assigned to the formal parameter (see

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-9

PEOPLESOFT PEPPERCODE JANUARY 2001

"Assignment"). In the example below, "Ford" is the default for "model name". (It is intended
that the compiler someday permit general constant expressions here.)

If the data type is "instance", the expression may be an undeclared identifier which names an
instance that will be created at runtime (This would be new_car in the example below.);
otherwise, the identifier must name a declared entity. Notice that these rules are stricter than
the corresponding rules for the explicit default value specified by the slot "default:" clause.

Example of <expression> for types string and instance:
action create car (input: string model name = "Ford",

output: instance<Automobile> new car) {<body>}

2. If the default is not specified in the declaration of the parameter, the program uses an implicit
default value determined by the data type as follows.

integer 0

string nil pointer
instance nil pointer
class nil pointer
action<schema name> nil pointer
float 0.0

oset empty list
action<action name> action_name
enum<> nil pointer

Note that the implicit default values for action parameters are different than the implicit
default values for class slots.

@ For more information about implicit default values for class slots, see Slot Declaration
Statements:

3. If the declaration uses the "= required:" construct, the compiler (or, at runtime, the action
interpreter) reports an error.

@ For more information about the error message, see You must supply a value for "required:"
parameter "%s".

It is intended that the caller should read "output:" and "inout:" parameters only after invoking the
action, but such a restriction is not in general enforceable by static analysis. If the caller violates
this restriction, then either it sees the default value, or a runtime error occurs.

5-10 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Understanding How Parameters Behave With Execute

When you invoke an action with an "execute" statement, the parameters shall behave as if the
following steps occurred in order:

1. Assign to formal input: and inout: parameters from any actual parameters provided by the
caller

2. Assign default values to remaining input:, output:, and inout: parameters

3. Invoke the action being called

4. Allocate local: parameters and assign their default values

5. Execute statements in the body of the action being called

6. Deallocate local: parameters

7. Return from the action being called

8. Assign from formal output: parameters to any actual parameters provided by the caller.

Notice that if you specify an actual output parameter in an "execute" statement, and then use the
<action>.<output_parameter> notation in an assignment statement, the assignment generated by
the "execute" statement occurs first. Also notice that the "execute" statement does not assign to an
actual "inout" parameter after returning from the action; this irregularity preserves compatibility
with with original PepperCode compiler.

If an action uses "required:" for any parameter that is not inherited from a schema, then you may
not assign that action to a slot on an object. Also, you may not pass that action as an actual
parameter when invoking another action, because in those cases it would be impossible to supply
the required value when invoking the action via the slot or formal parameter.

In the following example, action "counter" will be evoked by spl_main. What happens in each of
the eight steps above will be explained in the eight steps listed below the example.

action counter (input: int dummy,
input: int quantity = required:,
local: int i,
output: int o)
{
PRINTF ("quantity equals %d (passed in from spl main).\n", quantity);
PRINTF ("dummy equals %d (by default) .\n", dummy) ;
PRINTF ("local parameter i equals %d (by default).\n", 1i);
PRINTF ("default value of o equals %d.\n", o);

// o, which will be passed to spl main, is assigned a value of 5.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-11

PEOPLESOFT PEPPERCODE JANUARY 2001

action spl main(local: int 1lo)
{
PRINTF ("default value of lo equals %d.\n", lo);
// lo =0
execute counter (:quantity 15, :o0 lo);
// lo =5
PRINTF ("After returning from counter successfully, lo equals %d.\n", lo);

}

When the action "counter" is executed in spl_main (following the numbered list above):

1.
2.

Integer "quantity" is assigned a value of 15.
Integer "dummy" is assigned a value of zero by default (see default values list above).
action "counter" is invoked.

Hi"

Space is allocated for local parameter "i", and it is assigned a default value of zero.

PRINTF commands in "counter" are executed, the the output parameter o is assigned a value
of 5.

Local parameter i is deallocated.
action counter returns to spl_main.

lo, which was passed to counter (child action) as the value of counter's output parameter o, is
now passed the value of 5. lo will be assigned this new value only when counter returns
successfully. If counter were to fail, lo would not change to the new value. Possible failure is
the reason that lo keeps its original value until counter returns.

Action Parameters are No Longer Static

In the Release 7.5 (and earlier) compiler, the first call to "non_static" in the example below would
see "5" as the value of "x", but the third call would see "17" because the value "17" was "left
over" from the previous call. In the Release 8.0 compiler, the first and third calls will both see
"5", because that is the default value for "x" wherever you don't specify a value for x in the action
invocation.

action non_static(input: int x = 5,

5-12 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

input: string count)

PRINTF ("This is the %s time non static has been run. x = %d.\n",count,x) ;

}

action spl main()
execute non_static(:count "lst");
execute non_static(:count "2nd", :x 17);

execute non_static(:count "3rd");

Running this program yields the following output:
This is the 1st time non_static has been run. x = 5.
This is the 2nd time non_static has been run. x = 17.

This is the 3rd time non static has been run. x = 5.

By the way, this code will compile and run on the Release 8.0 compiler, as written.

Writing Schemas

A schema is a common structure for action parameters. It allows actions to be grouped by
function or associated by type, and reduces the duplicate definition of parameters. An action can
have action parameters from a schema, from its own parameter list, or both. A schema can also
contain keywords that are placed in a parameter list. A schema is similar to a C typedef for a
pointer to a function type—for example, typedef int (*)(int, char);.

A schema is also used to declare a slot of type action. This type of slot is similar to a C++
function member.

The syntax for a schema definition is the following:

action schema schema name (param list);

A calling action can use either of the following parameter definitions to refer to actions that have
a schema:

local: action<schema name> param name

local: action<schema_name> param name = action name

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-13

PEOPLESOFT PEPPERCODE JANUARY 2001

For example, if you were to define a schema for the action print_simple_string, shown in a
previous section called “Action Definitions,” you could use the following definition:

action schema print_str
(input: string pstring = "Null",
output: int printed,
no_context:);
The action definition could be revised as follows:
action <print str> print simple string

(local: int string length = 0)

{

printed = 0;

string length = STRLEN (pstring) ;

if ((string length < 2) {
PRINTF ("\nstring < 2");
fail();

}

else
PRINTF ("\n%s", pstring) ;
printed = 1;
succeed () ;

}

}

And the parameter definition in the action print_simple_strings could also be revised:

For more information about the original listing of action print_simple_strings, refer to
Writing Action Parameters.

action print_simple strings
(local: action<print str> print string = print simple string,

no_context:)

5-14 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

[0

execute print string();

execute print_ string(:pstring "String Number 1");
execute print string();

execute print string(:pstring "A");

execute print string(:pstring "Null");

execute print string();

succeed () ;

For more information about the use of schemas, refer to Writing Methods.

Action Schema Declarations and Definitions
An action schema describes a set of arguments.
action schema <identifier> <parameter lists> ;

This defines that an action schema exists have the specified parameter list. Any previous
definition must match with respect to the parameter list. No two parameters may have the same
name, and only one of the reserved words "context:", "no_context:", and "readonly:" may appear.

action schema <identifiers ;

This is an incomplete declaration. Using this type of declaration in Release 8.0 PepperCode will
cause a parameter list error.

For more information on the error, see Action should have a parameter list..

Declaring Actions: Forward (or Incomplete) Action Declarations

The use of forward action declarations is not recommended. Because of the compiler's new
method for processing inclusions, forward action declarations are no longer necessary. The
suggested method for gaining access to an action definition (so you can execute the action) is to
include the *.spl file containing it. If the action definition is in the same file, just later on in the
file, you don't need a forward action declaration at all, thanks to the two passes of the Release 8.0
Compiler.

The forward action declarations used in Release 7.5 are still allowed.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-15

PEOPLESOFT PEPPERCODE JANUARY 2001

[0

5-16

For more information on the Release 7.5-type forward action declarations, see Declaring
Actions: Forward (or Incomplete) Action Declarations.

Starting in Release 8.0, there are new rules for local parameter declarations and forward action
declarations. They are simpler and more like C++. Parameter lists may now be placed in both the
action declaration and the action definition. These parameter lists must, however, match with
respect to non-local variables. It is unnecessary (and undesirable) to put local parameter
declarations into an incomplete or "forward" action declaration. The preferred style is to put all
the non-local variables in both the declaration and definition of the action, but to put local
variables in the definition only.

For example:
action a(input: int i, inout: int io, output: int o);
action a(input: int i, inout: int io, output: int o, local: 1)

{ succeed();

}

The Release 8.0 Compiler considers these two declarations to be perfectly compatible, because
the definition is allowed to have local variables that do not appear in the declaration. Keeping
local variables out of the declaration helps avoid unnecessary recompilation when you change
local variables. (Declaring local variables in the forward declaration is allowed but not
recommended.)

Both of the following examples use this new type of forward action declaration. They are very
much like the forward action declarations of previous PepperCode versions. The only difference
between this type and the type used in previous versions is that the action definition and the
action declaration both have parameter lists.

The compiler must see a declaration or definition of "print_three columns" before it can be
called. The compiler can "see" action print_three columns with a forward action declaration in
two different ways:

e Example 1: The *.spl file containing the action declaration is included in the file that executes
the action. This is a C++ style of programming. In this example, this would be
"dcl_columns.spl". Including the action declaration file is discouraged in Release 8.0 for
reasons that are explained in the example.

e Example 2: The forward action declaration is placed in the file where the action is being
executed, in lieu of including the *.spl file containing the action definition.

Example 1: Using a C++ style of programming, we include the file that provides the declaration
of print_three columns instead of the file that provides the definition. C++ doesn't let you include
the file containing the definition here, but PepperCode does, so we could just as well have
included "columns.spl", eliminating the need for "dcl_columns.spl" entirely, and eliminating the
opportunity to cause an error by letting the definition and declaration get out of synch.

user.spl:

UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

#include "dcl columns.spl"

action first_user

(input: float supply,
input: float demand,
local: float difference)

{

execute print three columns(:a supply, :b demand, :c (demand - supply));

}

Anybody who wants to call print_three columns can include this file (which provides a
declaration) instead of columns.spl (which provides a definition). This works only if the
declaration and definition match with respect to all variables but local variables.

dcl _columns.spl:

action print three columns (input: float a, input: float b, input: float c);

By including dcl_columns.spl in columns.spl, we allow the compiler to check that the declaration
and definition match (a mismatch would cause a malfunction in the code which includes

dcl _columns.spl and which invokes print_three columns). If you forget this step, there's a danger
that someone will modify "columns.spl" without modifying "dcl_columns.spl", causing an error
that the compiler cannot possibly detect.

columns.spl
#include "dcl columns.spl"

action print three columns (input: float a, input: float b, input: float c)

{

PRINTF ("%15.5e\t%15.5e\t%15.5e", a, b, ¢);

}

v Since columns.spl includes dcl_columns.spl and dcl_columns.spl cannot be compiled
separately, dcl_columns.spl must be compiled with the --header only option before
compiling columns.spl.

Example 2: We place the forward action declaration in user.spl in lieu of including the *.spl file
containing the action definition.

user.spl

action print three columns (input: float a, input: float b, input: float c);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-17

PEOPLESOFT PEPPERCODE JANUARY 2001

action first user (input: float supply, input: float demand,
local: float difference)
{
execute print three columns(:a supply, :b demand, :c (demand - supply));
}

columns.spl:

action print three columns (input: float a, input: float b, input: float c)
{
PRINTF ("%15.5e\t%15.5e\t%15.5e", a, b, c);

}

Note that in Example 2, we do not have to include dcl_columns.spl in columns.spl. Also, the
forward action declaration in user.spl takes the place of including columns.spl. We are, however,
limited by both of these methods in that the parameter lists for the action declaration and the
action definition must match with respect to non-local variables.

The rules for forward class declarations have not changed. Forward class declarations are very
different than forward action declarations.

@ For more information on forward class declarations, see Forward Class Declarations.

@ For more information on the mismatched parameter error that can be caused by improper

forward action declarations, see the error message Mismatch in parameter "%s" (see
%s5:%d)..

Executing Actions

To execute an action within the action body of another action—referred to as the calling action—
use the following syntax:

execute action name (parameter(s));

In the calling action, action _name must be defined as a local parameter of type action:

local: action<action name> param name

Input parameters are listed by keyword, not position. In addition, you can omit parameters. The
syntax for each input parameter is:

5-18 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

:keyword value

keyword is the name of the parameter as defined in the action that is executed.
The following example illustrates these concepts. Here is an action that will be executed:

action add three_ ints

(input: int argl = 0, // Three input parameters
input: int arg2 = 0,

input: int arg3 = 0,

output: int result, // One output parameter

no_context:)

result = argl + arg2 + arg3;

succeed () ;

The following action executes the action add_three_ints:
action add some ints
(local: action<add three ints> add three ints,

no_context:)

execute add_three ints(:argl 1, :arg2 1, :arg3 2);
PRINTF ("\nResult is: %d\n", add three ints.result);
execute add three ints(:arg2 1, :arg3 2, :argl 1);
// Notice that arguments don’t need to be in positional order
PRINTF ("\nResult is: %d\n", add three ints.result);

succeed () ;

New Rule for Invoking Action
In certain cases, there is no longer a need to declare a local action. However, PeopleSoft has

maintained backward compatibility in that you can still declare a local action in these cases. As
long as you define an action in the current scope and are not using it as a variable, you can invoke

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-19

PEOPLESOFT PEPPERCODE JANUARY 2001

it without declaring it as a local parameter. Please note that this new rule applies only to actions
declared as local. If you want to declare an input, output, or inout variable of type action, you will
have to use an action schema for its data type.

@ For more information and an example of how to do this, see Writing Action Parameters.

Example:
action b();
action a() {
execute b();
}
instead of:
action b();
action a(local: action b) {

execute b();

}

Passing Output in execute Statement

This section explains the new Release 8.0 rule for returning output values in execute statements.
However, we have maintained backward compatibility in that you can still pass output using the
method of previous versions. In an "execute" statement, you can pass an actual argument to an
"output:" parameter instead of writing an explicit assignment after the "execute" statement (for
backward compatibility, you must still write an explicit assignment for an "inout:" parameter.)

Example:
For the action
action some action (output: int o) {<body>};
Starting in Release 8.0, you can pass output in the following way:

action spl main ()

{

execute some_action(:o some_variable) ;

}

In previous releases, you could only pass output in the following way:

5-20 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

action spl main ()
execute some_action() ;

some_variable = some_action.o;

}

Writing Methods

Methods on objects are implemented as a slot that is the name of the method. This slot is usually
a class slot, so it is shared by all instances of the class. The value of the method slot is the name
of a PepperCode action to call that implements this method. Note that the actions that implement
a particular method must share the same action schema.

When PepperCode code calls a method, the underlying code looks up the ActionSchema for the
named action, and creates a C++ method call to the action’s Action Execute() method, passing a
data structure that holds the parsed parameters to the actual C++ code.

In a class definition, a slot of type action is an implementation of a PepperCode method, like a
C++ member function or method:

action<schema_name> name

The action method stored in an action slot can be referenced and executed. Any action of that
schema type can be assigned to that slot.

The dispatch of a method—the process of calling the correct method associated with a class—is
not performed automatically. Instead, the value of a local action parameter is defined and the
action is called through the local parameter.

Following are three examples illustrating these concepts.

Implementing A Method: Example 1

Following is an example of how to implement a PepperCode method. It includes storing actions
on objects and dispatching those actions. The action that will be executed uses the schema
print_str:

action schema print_str
(input: string pstring = "Null",
output: int printed,
no_context:) ;

Here are the actions that use this schema:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-21

PEOPLESOFT PEPPERCODE JANUARY 2001

action<print str> print string

0

PRINTF ("\n%s", pstring) ;
printed = 1;

succeed () ;

action<print str> print indented string

0

PRINTF ("\n %$s", pstring) ; // Indent the string
printed = 1;

succeed () ;

Next, a class has a slot that stores an action of schema type print_str. That slot has a default value
of action print_string:

class Printable Object : Spl Class {
string description
action<print strs> print action
}i
slot Printable Object.description { default: "default description" };

slot Printable Object.print action { default: print string class slot: };

v Note: In the common case, each instance of a particular class will have its action slots set to
the values as every other instance of that class. In that case, it is important to use the
class_slot: keyword on each of those slots to reduce the amount of memory consumed. Only
if different instances will store different actions on the same slot should you omit that
keyword.

Finally, the actions are executed from another action:
action dispatch print string

(input: instance<Printable Object> printable object,

5-22 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

local: action<print_str> print_string action,
output: int printed,

no_context:)

// Retrieve print string from object
print string action = printable object.print action;
// Call the action
execute print_string action
(:pstring printable object.description) ;
// Retrieve and set the output variable
printed = print string action.printed;

succeed () ;

Implementing A Method: Example 2

Here is an example that illustrates both the use of action schemas and polymorphism. A classic
example of polymorphism is a program that draws shapes such as circles, squares, and triangles.
Good object-oriented design suggests that the code that draws a list of objects should not need to
know the shape of each object or how to draw a particular shape. Instead, it should ask each
object to draw itself, and the code packaged within each object should know the shape of that
object and how to draw it.

This example uses an action schema draw to provide the “signature” for a family of actions that
draw shapes. Then it creates three actions belonging to this family: draw_circle, draw_square,
and draw_triangle. In a realistic example, each action would contain code specific to that shape,
but for simplicity this example just prints a message.

The example also creates a parent class shape and three subclasses for the specific shapes.
Default statements associate the appropriate action with each subclass: for example,
draw_triangle is associated with triangle. Notice the use of no_context: in each schema statement
to avoid wasting memory.

The action creator creates an instance of each of the possible shapes and invokes the action
drawer to draw each shape. Notice that drawer merely asks each object to draw itself: it does not
need to know what shape the object has or how to draw that shape. You could add a new kind of
shape such as an ellipse without altering drawer at all, which is evidence that this mechanism
achieves the goals of polymorphism and encapsulation.

// class declaration

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-23

PEOPLESOFT PEPPERCODE JANUARY 2001

class shape;
// See Understanding Operators And Functions for information on the
// PepperCode runtime functions listed here.
cpp_function instance<shape> CREATE OBJECT (string, string) "cpp create object";
cpp_function void PRINTF (string) "printf";
cpp_function void INIT CLASSES (void) "initialize spl objects";
// Generic action to draw a shape
action schema draw
(input: instance<shape> the shape,
no_context:) ;
// Specific action to draw a circle
action<draw> draw circle ()
{
PRINTF ("Draw circle\n") ;

succeed () ;

// Specific action to draw a square

action<draw> draw_square ()

{

PRINTF ("Draw square\n") ;

succeed () ;

// Specific action to draw a triangle

action<draw> draw triangle()

{

PRINTF ("Draw triangle\n") ;

succeed () ;

// Generic class for shape; specific classes for circle, square,

5-24 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

// triangle, each having the appropriate action or "method"
class shape {

action<draw> draw myself
}i
class circle: shape {};
slot circle.draw myself { default: draw circle class _slot: };
class square: shape {};
slot square.draw myself { default: draw_square class_slot: };
class triangle: shape {};
slot triangle.draw myself { default: draw_triangle class slot: };
// Tell the shape to draw itself; this executes draw circle, draw_square,
// or draw_triangle—whichever "method" is associated with this instance
// of the polymorphic shape
action drawer

(input: instance<shape> the shape,

local: action<draw> draw,

no_context:)

draw = the_shape.draw myself;
execute draw(:the shape the_ shape) ;

succeed () ;

// Creates three objects which can draw themselves using the appropriate
// "method"
action creator

(local: instance<shape> chalk,

local: instance<shape> trafalgar,

local: instance<shape> bermuda)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-25

PEOPLESOFT PEPPERCODE

5-26

chalk = CREATE OBJECT ("chalk", "circle");
trafalgar = CREATE OBJECT ("trafalgar", "square");
bermuda = CREATE OBJECT ("bermuda", "triangle");

execute drawer (:the shape chalk) ;
execute drawer (:the shape trafalgar) ;
execute drawer (:the shape bermuda) ;

succeed () ;

To run this code, follow the compilation and linking process.

JANUARY 2001

For more information, refer to Compiling And Linking PepperCode.

First, link it into an existing Production Planning software product that generates an executable
called standalone. Running the program with the command line option -I causes it to prompt on
the keyboard for a transaction to be invoked by the Action Interpreter. Type creator() to invoke
the test case and then :exit to leave the interpreter and end the program:

shell> ./standalone -I

Checking ResponseAgent configuration
System. ..

.. .Done

Setting app name to 'standalone'

Initializing standalone...

Done Initializing Runtime Object

Initializing communication buffer and hash table...MJD...Done

Creating
Creating
Creating
Creating
.. .Done
Entering

Enter an

slot classes...... Done

slot specifier classes......

the Base Class...... Done

form classes...... Done

interpreter mode...

action call: creator ()

Draw circle

UNDERSTANDING PEPPERCODE ACTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Draw square

Draw triangle

Result: (:RESULT 3)

Enter an action call: :exit
...Done.

shell>

Implementing A Method: Example 3

This example of PepperCode code is followed by a section-by-section analysis of that code.
// Forward declaration of the class graphic_object
class Graphic Object;
// Declaration of the type of the method.
action schema Display (input: int file handle, instance<graphic_object> this);
// Definition of the base object class
class Graphic Object {
int x;
int y;
action<Display> print method;
}i
// Define the action that executes for this method for the Graphic Object class
slot Graphic Object.print method {:default value default print};

// Create a subclass of the Graphic Object class. This subclass has a new
member variable.

class Circle : Graphic Object ({

int radius;

}i
// Override the default action with a new one for the print method.
slot Circle.print method {:default value default print};

Create a second subclass of the Graphic Object class. This as 2 new member

variables.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-27

PEOPLESOFT PEPPERCODE JANUARY 2001

class Square : Graphic Object {
int width;
int height;
}i
// Note that you DO NOT override the print method.
// Implement the actual action for the default print method.
action<Display> default print ()
{
FPRINTF (file-handle, “x = %d, y = %d\n”, this.x, this.y);
}i
// Implement the action for the circle print method.
action<Display> circle print (
local: instance<Circle> this circle)
{
this circle = this; // Unsafe cast from graphic object to a circle;

FPRINTF (file-handle, “x = %d, y = %d radius = %d\n”, this.x, this.y,
this circle.radius) ;

}i

// Implement a transaction to test this code out.
action<Transaction> transaction test (

local: instance<Graphic Object> my instance,

local: action<Display> print method)

{

// Assume an action exists to create a graphic object
execute create graphic object (x: 10 y: 15);

// Grab the new object, and cast it to the base class.
my instance = create graphic object.new instance

// Call the method.

//

// Note that a future version of the compiler should support

5-28 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

// execute my_ instance.print_method (file_handle: file handle) ;
//
print method = my instance.print method() ;
execute print_method (this: my instance file_handle: file_handle) ;
// Assume a action exists for creating circles.
Execute create circle (x: 1 y: 2 radius: 3);
// Grab the new object and cast it to the base class.
My instance = create circle.new instance;
// Call the print method
print method = my instance.print method;
execute print_method (this: my instance file_handle: file_handle) ;
// Assume a action exists for creating squares.
Execute create square (x: 4 y: 5 width: 6 height: 7);
// Grab the new object and cast it to the base class.
My instance = create square.new_ instance;
// Call the print method
print method = my instance.print method;
execute print method (file handle: file handle) ;
}i
Following is an explanation of the previous code, one section at a time.
// Forward declaration of the class graphic object
class graphic_object;

This line tells the PepperCode compiler that a class named Graphic Object exists, and that it can
be referenced. This is a declaration only for the compiler to do type checking.

// Declaration of the type of the method.
action schema Display (input: int file handle, instance<graphic_object> this);

Declares an action schema of type Display. This declaration tells the compiler that there is a
family of actions that will all have the same calling structure. Actions that are members of this
family will be interchangeable because the parameter structure is known. This creates a new type
in the PepperCode file that can be used as action<Display>.

// Definition of the base object class

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-29

PEOPLESOFT PEPPERCODE JANUARY 2001

class Graphic Object {

int x;

int y;

action<Display> print method;

}i
// Define the action that executes for this method for the Graphic Object class
slot Graphic Object.print method {:default value default print

:class_slot};

This code declares a PepperCode class of objects. This class has three member variables. One of
those member variables has shared storage that is shared between all instances of the class. This
is designated with the :class_slot keyword in the slot statement. The two member variables x, and
y are simple integer members that hold a coordinate point for any graphic object.

The action<Display> print_method; line declares a slot of type action. This slot will hold the
name of an action to be called as a method. The action that is the value of this slot must be of
type Display—declared as action<Display>. This creates a method on a object, and the name of
the method is the member variable name.

The slot line sets the default value of the method to be the action named default print. Note that
this method has not yet been defined. That is OK since the method is not accessed until the
method is executed at run time. At compile time a member is created to hold the action name and
declare its type.

// Create a subclass of the Graphic Object class. This subclass has a new
member

// variable.
class Circle : Graphic Object ({
int radius;
}i
// Override the default action with a new one for the print method.

slot Circle.print method {:default value default print};

Creates a subclass of the Graphic_Object. Note this class inherits all structure and behavior from
the class Graphic_Object. This example adds a new slot named radius. Since this class has a new
slot, you are going to need a new way of printing the data for the object, so you should override
the print_method with a new action. This is done in the slot statement. Note that the slot
statement changes the default value of this slot for the class Circle. Since this is a class slot—
only one piece of memory shared by all instances—the method is now set for all instances of the
Circle class.

Create a second subclass of the Graphic_Object class. This has two new member variables.

5-30 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

class Square : graphic object {
int width;
int height;
}i
// Note that you DO NOT override the print method.

Creates a second subclass of the Graphic Object class. This new subclass also has new structure.
Since the print_method is not overriden, instances of this class will use the default print method,
and the new structure will not be printed out.

// Implement the actual action for the default print method.
action<Display> default print ()

{

FPRINTF (file-handle, “x = %d, y = %d\n”, this.x, this.y);

}i

// Implement the action for the circle print method.
action<Display> circle print (

local: instance<Circle> this circle)

{

this circle = this; // Unsafe cast from graphic object to a circle;

FPRINTF (file-handle, “x = %d, y = %d radius = %d\n”, this.x, this.y,
this circle.radius) ;

}i

Implements actions for the two version of the method. Note that these actions do very simple
things. They print the slots of the object to a file handle. Later on you can write new methods
that take a file or screen handle and have different behavior.

Note the base method prints out the x and y coordinate, and the circle method prints out the x, y,
and radius slots.

// Implement a transaction to test this code out.
action<Transaction> transaction test (
local: instance<Graphic Object> my instance,

local: action<Display> print method)

{

This routine tests out the code.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-31

PEOPLESOFT PEPPERCODE JANUARY 2001

5-32

It starts by declaring two local variables to the action that will hold instances of Graphic Object,
and a variable to hold the method. The need for the variable to hold the method is because the
compiler doesn’t yet support the desired functionality and will be made obsolete in the future.

// Assume an action exists to create a graphic object
execute create graphic object (x: 10 y: 15);
// Grab the new object, and cast it to the base class.

my instance = create graphic object.new instance

Calls an action named create _graphic object that you have not explicitly written in this example,
but assume it creates an object of the class Graphic_Object and assigns the x and y values passed
in the member variables. An output parameter of this object is the new_instance, which you
retrieve, and assign to the local variable. Note the local variable is of the base class, and so this is
a cast.

You now have a Graphic_Object in the local variable with x = 10, and y = 15.
// Call the method.
//
// Note that in a future version of the compiler it should support
// execute my instance.print method (file handle: file handle);
//
print method = my instance.print method() ;

execute print method (this: my instance file handle: file handle) ;

The local variable print_method gets assigned as its value the value of the method slot
print_method from the object held in my_instance. You then execute the action that is the value
of the local variable, passing it the object, and the file handle parameter. The underlying C++
code that is generated by the PepperCode compiler takes the string value that is the name of the
action which is actually stored in the slot, and looks up a definition of the named action. It then
parses the parameters passed into C++ member slots on that object, and calls the action execute
method on the underlying C++ object, which implements the body of the action. The action
lookup happens in-line with the execute statement in the generated C++ code. This means that
the value of the action slot can be changed at any time up to and including the line before the
execute statement, and this would affect the action actually executed.

The file pointed to by file_handle would get the following text put into it:
x=10,y=15

// RAssume a action exists for creating circles.

Execute create circle (x: 1 y: 2 radius: 3);

// Grab the new object and cast it to the base class.

UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

My instance = create circle.new instance;
// Call the print method
print method = my instance.print method;

execute print_method (this: my instance file_handle: file_handle) ;

Follow the same procedure for a circle object. Note that a different method is executed, because
the value of the print_method slot for Circle objects is circle _method, and this results in the C++
code looking up a different actionschema, and consequently a different function is executed.

// Assume a action exists for creating squares.
Execute create square (x: 4 y: 5 width: 6 height: 7);
// Grab the new object and cast it to the base class.
My instance = create square.new_ instance;

// Call the print method

print method = my instance.print method;

execute print_method (file_handle: file_handle) ;
bi

Do the same thing for squares, but because you did not override the print_method slot for the
square class the default_print action is called to implement this method.

A very important consequence of implementing methods as slots that hold actions is that behavior
of a object can be customized very simply at run time. Suppose you have an object that is deeply
imbedded inside the Planning code. This object has a method that performs a desired operation.
For example, a planning_period object has a consume method that takes a SO, and consumes
forecasts from the planning period. Further you have offered a single action that implements this
method. This action consumes forecast for the sales order from the planning period the sales
order was taken in—at the order date. If the forecast for that period is already consumed to 0,
then no further consumption takes place.

Suppose a service partner wants to customize this code to consume any amount over the periods
forecast from the nearest prior, or later period with unconsumed forecast. This customization is
easy. Write the new Consume method in a customer module, and change the default method on
the planning period to be the new method by using the transaction transaction_set_slot default
(class, slot, value);

Understanding Context

When an action is executed within the body of another action (the calling action), a new context is
created. A context is a mechanism for maintaining objects and their values. You can think of a
context as a collection of all the objects that it creates or deletes, and all the slot values it changes.
A context is valid as long as a calling action has not exited.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-33

PEOPLESOFT PEPPERCODE JANUARY 2001

The PepperCode exit statements determine whether changes made to class and object slots are
accepted or rejected:

e succeed();—Accept changes.

o fail();—Reject changes. The world outside the action is restored to the state it held before the
action started executing.

¢ leave();—Remember changes so they can be restored later, but don’t change the data values. If
the action is executed again with the same context, the remembered values are restored and can
be modified; any one of the exit statements can then be used on that data.

You must execute one of these statements before a context is accepted or rejected. If you have a
hierarchy of calling actions, you can leave several actions; as long as a calling action higher in the
hierarchy has not exited, you can go back to the contexts lower in the hierarchy, as illustrated
here.

Execute
action

Leaving and restoring multiple contexts in a hierarchy of calling actions

For example, you can re-execute Action2 after leaving it and returning to Actionl. On that
second execution, the values of parameters and slots of classes revert to the values they had
before Action2 was left.

Multiple contexts is a powerful feature of PepperCode that enables you to explore possible
solutions. Binding an action to multiple contexts lets you try independent experiments and
postpone selecting the optimum outcome until the experiment is complete.

In addition to an action using the succeed, fail, or leave statements on itself, a parent action can
also pass the succeed or fail functions a context—an action parameter name—to discard or accept
the changes of a child action. For example:

execute var0 () ;
execute varl () ;

if (GT(var0.score, varl.score))

5-34 UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

succeed (var0) ;
else

succeed (varl) ;

In general, actions that do not change data values for an object should use the no_context:
keyword, while actions that do change values probably need a context. The no context: keyword
saves memory and computing resources by not copying object data values.

Although context: is the default, this keyword is useful if, for example, a schema uses no_context:
and you want to override that behavior in an action.

v When changing the value of an object in an action that could fail, always give the action a
context; specifically, don’t use the no_context: keyword.

To illustrate how the context mechanism works, consider this simple example that uses an
instance of an class called gradebook to keep track of the scores on a school examination. A
child action called enter_one_score makes the changes in the gradebook; a parent action called
enter_scores calls the child to enter three different scores.

To show one method of using context, you can arrange for the child to return with a leave
statement. The parent then executes either a succeed statement to accept the child’s changes, or a
fail statement to reject them:

#include "cpp utility.spl"
class gradebook {
oset [int] grades
int average
int high score
int low_score
}i
slot gradebook.high score { default: 0 };
slot gradebook.low score { default: 100 };
//
// This action enters a new score into the gradebook and updates the
// average, the high score, and the low score. Then it returns without
// either committing or retracting the changes that it has made. The
// parent action can then choose whether to accept or reject the changes.

//

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-35

PEOPLESOFT PEPPERCODE JANUARY 2001

5-36

action enter one_score
(input: instance<gradebooks> g,
input: int score,

local: int sum)

g.high score = MAX(g.high score, score);

g.low_score = MIN(g.low_score, score);

g.grades.push (score) ;

sum = 0;

foreach grade in g.grades
sum = ADD (sum, grade) ;

g.average = DIV(sum, g.grades.length());

PRINTF ("average/high/low inside enter one score:\t%d %d %d\n",
g.average, g.high score, g.low_score);

leave; // Let the parent action decide to accept or reject changes

//

// For demonstration purposes, this parent action calls enter one score to
// enter three scores into the gradebook. The first two times, it accepts
// the changes made by the child action. The third time, it rejects the
// changes.

//

action enter scores

(local: instance<gradebooks> g)

// Create a gradebook for chemistry class
g = CREATE OBJECT ("chemistry class", "gradebook") ;
execute enter one score(:g g, :score 99); // Enter a score

PRINTF ("average/high/low outside enter one score:\t%d %d %d\n",

UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

g.average, g.high score, g.low_score);

succeed (enter one_ score) ; // Accept the changes

PEOPLESOFT PEPPERCODE

PRINTF ("average/high/low after accepting changes:\t%d %d %d\n\n",

g.average, g.high score, g.low_score);

execute enter one score(:g g, :score 75); // Enter a score

PRINTF ("average/high/low outside enter one score:\t%d %d %d\n",

g.average, g.high score, g.low_score);

succeed (enter one_ score) ; // Accept the changes

PRINTF ("average/high/low after accepting changes:\t%d %d %d\n\n",

g.average, g.high score, g.low_score) ;

execute enter one score(:g g, :score 50); // Enter a score

PRINTF ("average/high/low outside enter one score:\t%d %d %d\n",

g.average, g.high score, g.low_score);

fail (enter one score) ; // Reject the changes

PRINTF ("average/high/low after rejecting changes:\t%d %d %d\n\n",

g.average, g.high score, g.low_score);

succeed () ;

When you run the example, it prints these results:

average/high/low inside enter one_ score: 99 99 99
average/high/low outside enter one score: 0 0 100
average/high/low after accepting changes: 99 99 99
average/high/low inside enter one_ score: 87 99 75
average/high/low outside enter one score: 99 99 99
average/high/low after accepting changes: 87 99 75
average/high/low inside enter one_ score: 74 99 50
average/high/low outside enter one score: 87 99 75
average/high/low after rejecting changes: 87 99 75

The PRINTF statement for inside enter one score demonstrates that within the child the changes
always take place immediately, as they would in any programming language. But the PRINTF

UNDERSTANDING PEPPERCODE ACTIONS 5-37

PEOPLESOFT PEPPERCODE JANUARY 2001

5-38

statement for outside enter one_score demonstrates that the changes disappear after the child
executes the leave statement.

Only after the parent executes the succeed statement—in the first two cases—do the child’s
changes appear in the parent’s environment. And when the parent executes the fail statement—in
the third case—the child’s changes disappear forever.

The previous example gives the parent control over the child’s changes. Alternatively, the child
can control whether its own changes ever appear in the parent’s environment. Now change the
example slightly to show how this works. This time, the child normally accepts its own changes
with succeed, but if the grade average falls too low, it rejects them with fail:

#include "cpp utility.spl"
cpp_function void INIT CLASSES() "initialize_spl objects";
class gradebook {

oset [int] grades

int average

int high score

int low_score
}i
slot gradebook.high score { default: 0 };
slot gradebook.low score { default: 100 };
//
// This action enters a new score into the gradebook and updates the
// average, the high score, and the low score. Then it returns without
// either committing or retracting the changes that it has made. The
// parent action can then choose whether to accept or reject the changes.
//
action enter one score

(input: instance<gradebooks> g,

input: int score,

local: int sum)

g.high score = MAX(g.high score, score);

g.low_score = MIN(g.low score, score);

UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

g.grades.push (score) ;

sum = 0;

foreach grade in g.grades
sum = sum + grade;

g.average = sum / g.grades.length() ;

PEOPLESOFT PEPPERCODE

PRINTF ("average/high/low inside enter one score:\t%d %d %d\n",

g.average, g.high score, g.low_score);

// If the score brought the average below 80, discard the changes.

if (g.average < 80)
fail();
succeed () ;

}
//

// For demonstration purposes, this parent action calls enter one score

// to enter four scores into the gradebook.

Whether the child's changes

// propagate to the parent depends on how the child returns to the parent.

//

action enter scores

(local: instance<gradebook> g)

// Create a gradebook for chemistry class
g = CREATE_OBJECT ("chemistry class",

execute enter one score(:g g,

:score 99) ;

"gradebook") ;

PRINTF ("average/high/low outside enter one score:\t%d %d %d\n\n",

g.average, g.high score, g.low_score);

execute enter one score(:g g,

:score 75);

PRINTF ("average/high/low outside enter one score:\t%d %d %d\n\n",

g.average, g.high score, g.low_score);

execute enter one score(:g g,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

:score 50) ;

UNDERSTANDING PEPPERCODE ACTIONS

5-39

PEOPLESOFT PEPPERCODE JANUARY 2001

PRINTF ("average/high/low outside enter one score:\t%d %d %d\n\n",
g.average, g.high score, g.low_score);

execute enter one score(:g g, :score 82);

PRINTF ("average/high/low outside enter one score:\t%d %d %d\n\n",
g.average, g.high score, g.low_score) ;

succeed () ;

When you execute this second example, it prints:

average/high/low inside enter one score: 99 99 99
average/high/low outside enter one score: 99 99 99
average/high/low inside enter one_ score: 87 99 75
average/high/low outside enter one score: 87 99 75
average/high/low inside enter one_ score: 74 99 50
average/high/low outside enter one score: 87 99 75
average/high/low inside enter one score: 85 99 75
average/high/low outside enter one score: 85 99 75

Notice that for the first, second, and fourth invocations of enter_one_score, the parent sees the
changes made by the child. But on the third invocation, the child executes the fail statement—
rejecting its own changes—and from the viewpoint of the parent, it seems as if the changes had
never been made.

Accessing Action Status

5-40

The PepperCode compiler predeclares for you an enumeration called Action _Status:

enum Action Status { LEAVE, FAIL, SUCCEED };

For any action that doesn’t already have a parameter named status, the compiler adds an output
parameter of type Action_Status:

output: enum<Action Status> status

You can query this parameter to determine whether the action executed a leave, fail, or succeed
statement. For example:

action child(input: int i)

{

UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

if (i == 5)
succeed () ;
fail();
}
action parent ()
{
execute child(:1 5);
if (child.status == SUCCEED)
PRINTF ("success\n") ;
PRINTF ("failure\n") ;

succeed () ;

Understanding How Actions Are Executed

Many computer languages provide a runtime system that invokes a specific function to start the
program. For example, a C program starts with the main function; a Pascal or Fortran program
starts at a program statement.

The PepperCode runtime system, however, provides an Action Interpreter, which is code that
reads a string containing a human-readable action invocation that is similar to the syntax you use
in a PepperCode execute statement. The Action Interpreter parses the string, invokes the action,
and returns a string containing a human-readable list of output values.

The Action Interpreter is used in several ways:

¢ When you use the GUI interface to the Planning software, it passes strings to the Action
Interpreter to perform commands.

e When you create a command file for use as an input script to the Planning software, the Action
Interpreter reads the action invocations specified in the file.

e When a client invokes a remote procedure on the server, the invocation may involve the Action
Interpreter.

o The Planning software source code defines a cpp function called
SERVER EXECUTE_ACTION that invokes the Action Interpreter.

An execute statement is usually not executed by the Action Interpreter, except in certain client-
server situations when #remote_include is used.

In addition, you can define an Interpreter menu item for debugging.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-41

PEOPLESOFT PEPPERCODE JANUARY 2001

[0

For more information, refer to Using The Action Interpreter.

Action Execution & Definitions

If a PepperCode program contains an action called "spl_main", that action will be called
automatically when the program starts, simulating the statement:

execute spl main() ;

If a PepperCode program lacks such an action, it will not execute any PepperCode statements
until it reads an action invocation from a networked client, a command file, or the keyboard.

You should design spl_main to take three parameters:
action spl_main
(input: int argc,
input: oset[string] argv,
input: string identity)

The argc and argv parameters correspond to their namesakes in the C or C++ main function. The
identity parameter is set to client, server, or standalone, depending on whether the program has
been linked to serve as a client, a server, or a monolithic program.

This plays a role similar to that of the main function in C or C++; because it’s invoked before any
other action, it’s a good place to perform initializations, such as starting the graphical user
interface (GUI).

Every PepperCode-generated program accepts these options (these are options to the generated
program, not to the PepperCode compiler):

-file filename Read action invocations from "filename"
-1 Prompt for action invocations on stdout and read them from stdin

An action invocation inside a file or on stdin looks like an "execute" statement without the
"execute" keyword:

transaction do something(:name "xyz", :value 123)

Using Transaction Logs

5-42

A transaction is an action that is part of the external interface of Planning software. It can be
invoked by the Action Interpreter when a menu item is selected within the Planning software or
when in a command file is run.

UNDERSTANDING PEPPERCODE ACTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

The PepperCode Action Interpreter can log each transaction it executes that changes data on the
server. If you took a snapshot of the data at the beginning of a session with Planning software,
then performed all of the transactions listed in the log file generated by that session, the resulting
changes to the data would be the same as those that occurred during the actual session. So, the
log file can help you to restore the system to the state before a session was executed.

Clients cannot create a transaction log file. The Action Interpreter never logs an action executed
by the client on the client, but it can log an action executed by a client on the server.

The Action Interpreter writes to a log file—as specified in the .rps file—a timestamp and a
human-readable string describing the transaction invocation. Here is an example of a log entry:

// 01/19/95 20:58:15 PST
transaction factorial (:factor 4 :error 0)
Notice that the log entry doesn’t have commas between arguments or a terminating semicolon.

By default, every transaction invoked by the Action Interpreter is written to the log file.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE ACTIONS 5-43

CHAPTER 6

Writing Control Statements

PepperCode has the following types of control statements:
e assignment (=)

o if-else

e while

e foreach

e succeed, fail, or leave

e subaction execution

e cxpressions for executing cpp functions

® cxecute statement

@ For more information about action exits, succeed, fail, and leave, refer to Understanding
Context.

Writing Assignment Statements

<lvalue_expression> = <rvalue_ expressions>;

An assignment statement evaluates the two expressions and assigns the rvalue expression to the
lvalue.

For strings, instances, lists, and classes, the assignment operator behaves like the default
assignment operator for a C pointer: assignment copies the pointer but does not duplicate the
target. If the destination list is a slot on an object, however, it receives a duplicate copy of the
list. If the destination list is an action parameter, both source and destination point to the same
list (no copy is made).

Only an lvalue expression can be the target of an assignment, or the actual parameter
corresponding to a formal parameter which is an "inout:" or "output:". An expression is an lvalue
if it satisfies all of the following:

e [tisa"local:", "output:", or "inout:" parameter of the current action.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING CONTROL STATEMENTS 6-1

PEOPLESOFT PEPPERCODE JANUARY 2001

e ts data type is not "action" (the data type may be "action schema").

Writing if-else Statements

The PepperCode if-else statement is similar to the C++ if-else statement:
if (<expression>) <statements ;

if (<expression>) <statement> else <else stmt> ;

n"non: nn

The expression must evaluate to type "int", "date", "time", "instance", "class", or "string".

<statement> is either one statement or multiple statements within braces ({ }). At least one
statement or an empty block ({ }) is required after the if and, when used, the else.

Following is an example of an if-else statement that could be placed in an action body:

if ((string length < 2) { // If the length is less than 2,
PRINTF ("\nstring < 2"); // print a warning
fail(); // and fail from the action.
}

else // If not less than 2,
PRINTF ("\n%s", pstring) ; // call C printf
succeed () ; // and succeed from the action.

Writing while Statements

The PepperCode while statement is similar to the C++ while statement:

while (<expression>) <statements> ;

n"non: nn

The expression must evaluate to type "int", "date", "time", "instance", "class", or "string".
<statement> is either one statement or multiple statements within braces ({ }).

The expression is evaluated first and then before each iteration. The statement repeats until the
expression evaluates to false.

Here is an example of using the while statement:
cpp_function int PRINTF (string) "printf";

action print n times

6-2 WRITING CONTROL STATEMENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

(input: string message,

input: int counter)

while (counter > 0)

PRINTF ("message") ;

counter = SUB(counter, 1);

Here’s another example:

action a(local: int 1)

while (i < 10)

PRINTF ("%$1d\n", i);

succeed () ;

Writing foreach Statements

The foreach statement iterates over an oset or array:
foreach id in <expressions> <statements ;

foreach id in reverse <expression> <statements> ;

The <expression> must have type oset or array; "id" declares a temporary variable whose type
matches the element type of the oset or array and whose scope is <statement>. For each element
of the oset or array, we assign that element to "id" and then execute <statement>.

For an oset, we visit the elements in order from head to tail (or, for the "in reverse" form, from
tail to head).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING CONTROL STATEMENTS 6-3

PEOPLESOFT PEPPERCODE JANUARY 2001

6-4

For an array, we visit the elements in a repeatable order which is the same for every target
machine, but which may change if one adds or deletes elements. The "in reverse" form is not
allowed.

Adding or deleting elements within <statement> is an error, except that it is safe to delete any
element which has already been assigned to "id".

For more information, refer to Writing Osets and Writing Arrays.

<statement> is either one statement terminated with a semicolon (;) or multiple statements within
braces ({ }).

If the oset is empty, <statement> does not execute.
To move through the list from the last element to first element, use the reverse keyword:

foreach item in reverse oset statement

Here is a straightforward example of the use of foreach to traverse a list of integers, summing
them. Notice that the loop index variable element is declared for you by the compiler:

action sum_int list
(input: oset[int] int list,
output: int sum,

no_context:)

sum = 0;
foreach element in int list
sum = sum + element;

succeed () ;

Here is another example of a foreach statement:
action a
(inout: int i,
input: array[int] 1,

output: int o)

WRITING CONTROL STATEMENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

0=0; // Output variable o
foreach o in 1 // Index variable o
{
i =1+ o; // Index variable o
}
o= 1; // Output variable o
succeed () ;

Writing execute Statements

The execute statement invokes an action.

execute <identifier> (<actual arglist>) ;
Invokes the action specified by <identifier> and pass to it the <actual arglist>. If <identifier>
names a local variable of type action, invoke the corresponding action and save its state in that
variable; if it names an action, create an implicit local variable to save its state.

@ For more information about execute statement, refer to Executing Actions.

Writing succeed, fail, or leave Statements
leave ;
fail ;
succeed ;

Returns from the current action, telling the context mechanism to leave its changes uncommitted;
or to roll back its changes; or to commit them.

succeed (<identifier>) ;

If <identifier> is the name of a local variable that represents an action with uncommitted change,
this statement commits those changes. If there are no uncommitted changes, a runtime error
occurs. The identifier must name an explicit local variable, not an implicit one created by using
the "execute" statement with an action name.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING CONTROL STATEMENTS 6-5

PEOPLESOFT PEPPERCODE

JANUARY 2001

For more information about action exits, succeed, fail, and leave, refer to Understanding

Context.

Writing break and continue in Loops

The break statement breaks out of a loop. Use it in a foreach or while loop to break out of a loop
if a certain condition occurs. For example, the following code prints a list of integers from 1 to
either 100 or to the integer j that is input into this action, whichever is lesser.

action a_break(
input: int j,

local: int 1)

{
i=1;
while (i < 101)
{
PRINTF ("%$1d\n", 1i);
i =1+ 1;
if (i > j) break;
}
succeed () ;
}

The continue statement continues to the end of a loop without breaking out of the loop. Use it in
a foreach or while loop to skip code in a loop if a certain condition occurs. For example, the

following code prints a list of 100 integers. The list will be either the numbers 1 to 100, or if the
integer j is less than 100, the list will be the numbers 1 to j and then j, which is printed 100 minus

j times.
action a_continue (
input: int j,

local: int 1)

while (LT (i, 100))

6-6 WRITING CONTROL STATEMENTS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

if (i > j) continue;
PRINTF ("%1d\n", 1i);
}
succeed () ;

}

Starting in Release 8.0, you cannot use a C++ function statement to declare BREAK or
CONTINUE within PepperCode; these keywords are automatically recognized by the compiler.

The BREAK and CONTINUE statements were originally implemented by users as C++
functions, then added to the compiler as pseudo C++ functions, so in previous releases of
PepperCode the users did not need to define them. The Release 8.0 Compiler provides "break"
and "continue" statements and also BREAK and CONTINUE statements as intrinsic functions
(built-in functions), so these cpp_function declarations are no longer needed.

In version 7.5.2 or earlier, if you use break or continue, you had to include the file cpp_utility.spl
or use the following statements:

cpp_function void BREAK() "break";

cpp_function void CONTINUE () "continue";

Writing Enumerations in Loops

Enumerated types—data type enum—are implemented as named object instances. As a result,
the PepperCode object system looks up the enumeration each time it’s referenced, which is why
many references to an enumeration can be slow. If many lookups are required to execute a piece
of code, that piece of code may perform poorly. For example, the following code looks up the
enumerator instance 100 times:

action slow enumerator

(local: enum<Boolean Flag> the flag,

local: int index)
index = 0;

while (index < 100) {

// The next line creates C++ code that looks up the enumeration

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING CONTROL STATEMENTS 6-7

PEOPLESOFT PEPPERCODE JANUARY 2001

// TRUE by name each time through this loop. This is a classic
// invariant value inside a loop.
the flag = TRUE;

index = index + 1;

Every time the loop is traversed the enumeration TRUE is looked up. This lookup is slow if
executed many times.

An alternate implementation that looks up the enumerator once is as follows:
action slow_enumerator (
(local: enumerator<Boolean Flag> the flag,
local: enumerator<Boolean Flag> true flag,

local: int index)

index = 0;
// The C++ code looks up the enumeration instance and stores its
// value in the local true flag.
true flag = TRUE;
while (index < 100) {
the flag = true flag;

index = index + 1;

The implementation of enumerations will change in future releases, so this coding technique
won’t be required. In addition, this technique is required only if the enumeration is going to be
looked up many times: either inside a loop or inside an action called in a loop. For enumerations
that are accessed only a few times, this technique is not required, since the performance penalty is
not as large for each lookup.

Following is another example. This code references a Boolean enumeration inside of a loop:
foreach item in items ({

if (item.value == TRUE) // slow use of an enum

6-8 WRITING CONTROL STATEMENTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

The above code could be written much more efficiently by assigning TRUE to a
local enum parameter and then using the parameter in the if statement; for
example:

local: enum<Boolean Flag> true_enum,

true _enum = TRUE;
foreach item in items ({

if (item.value == true enum)

Using Dot Notation in Expressions

Within expressions, you use dot notation to access the value stored on a slot of an instance or
class variable:

variable name.slot name. ... slot name

The following example shows that slots accessed with dot notation can be used in the same way
that you would use parameters or literal constants:

class C{
int first slot
int second slot

int third slot

class D{

instance <C> nested
}i
action a

(input: int first parm,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING CONTROL STATEMENTS 6-9

PEOPLESOFT PEPPERCODE

6-10

input: int second parm,
input: instance<C> ic,
input: instance<D> id,

output: int third parm)

third parm = first parm + second parm;

ic.third slot = ic.first slot + ic.second slot;

id.nested.third slot = id.nested.first slot +
id.nested.second slot;

succeed () ;

WRITING CONTROL STATEMENTS

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 7

Writing Osets

As described earlier, an oset behaves like a list.

@ For more information, refer to Understanding PepperCode Data Types.

You can copy an oset with the assignment operator (=):

osetl = oset2

The result of the copy is an independent list—changes to the new list do not effect the old list,
and vice-versa. When an oset is “copied,” only the link list elements of the oset are copied, not
the values of the oset itself.

You can also traverse a list with the foreach or while statement, described later in this section.

@ For more information and a description of foreach and while, refer to Writing Control
Statements.

A list recognizes the operators and functions in this table. index must be an expression that
evaluates to an integer. item evaluates to the type that the list contains.

Oset Operators and Functions

Message Description Return type
list.enque(item) Places item at the end of the list.
list.push(item) Places item at the beginning of the list.

list.push_ordered(item) | Add item to the list so that the list remains sorted
in ascending order, assuming it was sorted to

begin with.
list.pop() Delete the item at the beginning of the list.
list.delete(item) Deletes the first member of the list that matches
1tem.
list.delete first() Delete the head item.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING OSETS 7-1

PEOPLESOFT PEPPERCODE

JANUARY 2001

Message

Description

Return type

list.delete last()

Delete the tail item.

list.nth(index)

Returns the value of the nth element of the list.
index is an integer; the list is numbered starting
with zero.

list.set_nth()

Sets the value of the nth element of the list.

list.first() Returns the value of the first element of the list.

list.last() Returns the value of the last element of the list.

list.empty() If the list is empty, returns 1; otherwise, returns integer
0.

list.length() Returns the number of elements in the list. integer

list.flush() Causes the list to become empty.

The following example illustrates the manipulation of lists. Notice that the local parameter
float list is created by default as a completely legal, but empty list; no initialization is required.

cpp_function void PRINTF (string) "printf";

// Print the list

action print float list

(input: oset[float] float list,

no_context:)

{
if (float list.empty())
PRINTF ("List is empty\n");
else
{
PRINTF ("List contains: ");
foreach item in float list
PRINTF (" %g", item);
PRINTF ("\n") ;
}
succeed () ;
}

// Test various operations on a list

7-2 WRITING OSETS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

action play with list

(local: oset[float] float list)

{
execute print_float_list(:float_list float_list);
float list.push(5.0);
float list.push(6.0);
float_list.push(7.0);
execute print_float_list(:float_list float_list);
float list.enque(8.0);
execute print_float_list(:float_list float_list);
float_list.delete(5.0);
execute print float list(:float list float list);
float_list.delete(143.0);
execute print float list(:float list float list);
PRINTF ("Value of element number 2 is %$g\n", float list.nth(2));
PRINTF ("Value of first element is %g\n", float list.first());
PRINTF ("Value of last element is %g\n", float list.last());
PRINTF ("Length of list is %$1ld\n", float list.length());
float_list.flush();
PRINTF ("Length of list is %1d\n", float list.length());
succeed () ;

}

@ For more information about the process you need to run this code, refer to Compiling And
Linking PepperCode.

Link the code to an existing Planning product, which creates an executable program called
standalone. If you run this particular product with the command-line option -, it prompts on the
keyboard for input to the Action Interpreter. Invoke play with list() and then type :exit to leave
the Action Interpreter:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING OSETS 7-3

PEOPLESOFT PEPPERCODE JANUARY 2001

shell> ./standalone -I

Checking ResponseAgent configuration...... Done Initializing Runtime Object
System. ..

.. .Done
Setting app name to 'standalone'
Initializing standalone...

Initializing communication buffer and hash table...MJD...Done

Creating slot classes...... Done

Creating slot specifier classes...... Done Initializing Schedule...... Done
Creating the Base Class...... Done

Creating form classes...... Done

.. .Done

Entering interpreter mode...
Enter an action call: play with list()
List is empty

List contains: 7 6 5

List contains: 7 6 5 8

List contains: 7 6 8

List contains: 7 6 8

Value of element number 2 is 8
Value of first element is 7
Value of last element is 8
Length of list is 3

Length of list is 0

Result: (:RESULT 3)

Enter an action call: :exit
...Done.

shell>

7-4 WRITING OSETS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Writing Osets with Action Parameters

When using osets, remember that an oset is copied every time it is assigned to an object slot or
action parameter. For this reason, it may be more efficient to store large osets on an object, and
then pass the object from action to action. Here are some examples of when osets are copied:

action transform objects
(input: oset[instance<Spl Class>] old objects,

output: oset [instance<Spl Class>] new objects)

// my objects is copied
execute transform objects(:0ld objects my objects) ;
// new _objects is copied

local parameter = transform objects.new objects;

local: oset[int] temp scores,

local: oset[int] real scores,

temp scores = real scores; // real scores is copied
temp scores.enque (99) ;
real scores = temp scores; // temp scores is copied

object.scores = real scores; // real scores is copied

Writing Osets in Loops

Because osets are implemented as linked lists, accessing the nth element of an oset requires a
linear traversal of the list until the nth element is accessed. If this occurs inside a loop, the linear

traversal of the list may become expensive. The following code is O(nz) in computational
complexity and will perform badly if n is large:

action poor oset use
(input: oset [instance<foo>] the list,
local: instance<foo> item,

local int index,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING OSETS 7-5

PEOPLESOFT PEPPERCODE JANUARY 2001

local: int len)

len = the list.length();

index = 0;

while (index < len) {
// Get the nth item in the list.
// This causes a linear traversal of the list.
item = the list.nth(index) ;
// Do what ever you need to do to the list.
my functon (item);

index = index + 1;

The foreach construct is designed to iterate over every element in an oset—without incurring the
overhead of a linear lookup to find each element of the set. The following code will execute with
o(n) complexity on the list:

action better list_iteration

(input: oset [instance<foo>] the list)

foreach item in the list {

my functon (item);

This code is also much simpler, and clearer in the behavior that it exhibits.

Writing Osets with the foreach Statement

The foreach statement will loop over every item in an oset. The only way to stop the foreach is to
use BREAK. For example, the following code will exit the foreach statement when the value 100
is found in an oset of integers:

local: oset[int] scores, // (67 23 5 1 7 55 100 99 33 25 30 2 1)

7-6 WRITING OSETS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

foreach score in scores {
if (score == 100) {
perfect score found = 1;

BREAK; // stop looping, you found a perfect score

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING OSETS 7-7

CHAPTER 8
Writing Arrays
This section describes arrays for PeopleCode.

Writing Associative Arrays

Here is the syntax for an associative array.

<element_type> [<index type>] <id>

This declares an associative array (that is, a hash table) whose elements have the data type
<element type>, and whose index or key is any expression having the data type <index_type>.
The index type can be any of these types:

e int

e string

e float

¢ instance (implicitly instance<Base Class>)
e class (implicitly class<Base Class>)
e date

e time

The element type can be any of these:
e int

e string

o float

e instance<some particular class>

e class<some particular class>

e date

e time

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING ARRAYS 8-1

PEOPLESOFT PEPPERCODE JANUARY 2001

e <another array>

For example, "local: int[string] x" declares a local variable named "x" which is an associative
array of integers, indexed by keys which are strings.

An associative array is "sparse": indexes need not be integers, and even if they are integers, they
need not be consecutive. For example, here is an associative array with two elements whose
indices (keys) are "a" and "z":

local: float[string] indexed by string...
indexed by string["a"] = 1.5;

indexed by string["z"]

25.6;

As another example, here is an associative array with two elements whose keys are 0 and 5
(elements having keys 1 through 4 simply do not exist):

local: float[int] indexed by int...

indexed by int [0]

1.5;

indexed by int[5] = 25.6;

If you attempt to read an element using a nonexistent key, you get a default value with no error
message. The default value for a particular element type is the same as the implicit default value
for an action formal parameter of that type (an integer element is 0, a string element is nil, etc.)
Using the arrays shown in the preceding examples, the following statement will print zeros
(because the default value for a formal parameter of type float is zero):

PRINTF ("%f %f", indexed by int[1], indexed by string["b"]);

In most cases, by generating a default value instead of a runtime error, the PepperCode language
causes programs to be more reliable. But this does place on the programmer the burden of
detecting the situation where, due to some error, a particular key doesn't exist. The
straightforward method is to use a function called "exists":

if (indexed by string.exists("b"))
execute some_action(:some parameter indexed by string["b"]);
else
exit msg = NLSPRINT ("Element at index 'b' doesn't exist");
fail();

}

However, the preceding example looks up the key in the array twice (once for the "exists"
function and once for the array indexing itself), and that's a relatively expensive operation. If you
know that the value 0.0 can never legally appear in the array, then it's cheaper to test for that:

temp = indexed by string["b"];

8-2 WRITING ARRAYS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

if (0.0 != temp)
execute some_action(:some_parameter temp) ;

else
exit msg = NLSPRINT ("Bad/nonexistent element at index 'b'");
fail();

}

Even if the value 0.0 might legally appear in the array, it's cheaper to test for that first, and to call
"exists" only in the case where you need to distinguish a zero value from a nonexistent entry:

temp = indexed by string["b"];

// Short-circuit || skips the "exists" unless temp is zero

if (0.0 != temp || indexed by string.exists("b"))
execute some action(:some parameter temp) ;

else {
exit msg = NLSPRINT ("Bad/nonexistent element at index 'b'");
fail();

}

Writing Nonassociative Arrays

Here is the syntax for a nonassociative array.

<element type> [] <id>

This declares a nonassociative array (vector) whose elements have the data type <element type>,
and whose index is a nonnegative integer. The array contains a series of contiguous elements
whose indices range from zero to some upper bound. Initially the array is empty, but the upper
bound automatically grows as needed when you store into it, or if you copy another array to it.

The legal element types are the same as the ones allowed for associative arrays.

The initial length of a nonassociative array is zero. The first assignment to the array changes the

upper bound to be the index of that element. Any elements below the upper bound which haven't
yet been assigned to will have a default value which is the same as the implicit default value for

an action formal parameter of that type (zero for int, nil for instance, etc.)

After that, any assignment to an element using an index greater than the upper bound raises the
upper bound and increases the length of the array.

For example, "local: float[] y" declares a local variable named "y" which is a nonassociative array
of floating-point numbers. If you assign the following values to it:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING ARRAYS 8-3

PEOPLESOFT PEPPERCODE JANUARY 2001

y[3] = 30;

y[5] = 50;

then elements y[3] and y[5] come into existence with the values 30 and 50; to keep the array
elements contiguous, y[0], y[1], y[2], and y[4] also come into existence and have the default
value zero.

All elements between zero and the current upper bound are considered to exist, even if no value
has been assigned to them yet. In fact, they do occupy space in memory. This is a significant
difference between nonassociative arrays and associative arrays. In the following example, the
PRINTF statement will say "1 26001":

local: stringlint] associative,

local: string[] vector

associative[26000] = "abc";
vector [26000] = "abc";

PRINTF ("%$d %d", associative.length(), vector.length()) ;

If you use an index outside the bounds of the vector to read an element, that doesn't cause an error
or enlarge the array; instead, it gives you the default value. You may use either the "exists"
function or the "length" function to decide whether an index is out of bounds.

Using the vector "y" shown a few paragraphs ago, reading either y[4] or y[6] will yield the value
0.0, because array elements which haven't been set always return the default value. However, y[4]
exists but y[6] doesn't, because y[4] is below the upper bound but y[6] is above it:

PRINTF ("%f %f\n%d %d", y[4], yl[6], y.exists(4), y.exists(6));
0.0 0.0

1 0

Assigning to y[6] raises the upper bound of the array and causes that element to come into
existence (even if the value you assign to it is zero):

yl6] = 0.0;
PRINTF ("%f %f\n%d %d", y[4], yl[6], y.exists(4), y.exists(6));
0.00.0

1 1

There is an expense associated with enlarging an existing array. Thus, if you know at the outset
what size the array will eventually need to be, it's fastest to assign to the highest-index element at
the outset, so that the array immediately grows to the desired size. If you assign to the elements
in order beginning with index 0 and continuing up to n, the time cost of memory allocation will
be greater by roughly a factor of log2(n) than if you had assigned to index n initially. Therefore,

8-4 WRITING ARRAYS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

even if you don't know at the outset what value to put into element n, it is well worth assigning
some arbitrary value using that index, and then assigning the correct value later on. After you
have established the size of the array, you can access elements within bounds in any order
without incurring any software-imposed time penalty. (Of course, hardware mechanisms like the
processor cache or the demand-paging system may favor one access pattern over another.)

Understanding Array operations

Arrays are similar to osets in their ability to store an arbitrary collection of elements, and certain
operations apply to either data type. For example, "flush()" removes all elements of an array just
as it removes all elements of an oset. Because osets existed first, and used "member function"
notation like "variable.flush()", arrays use the same style of function notation.

Array Operators and Functions

Function Description

delete(i) Remove from an associative array the element having index (key) i. If the
key did not exist, returns 0; otherwise returns 1. For a nonassociative
array, this causes a compilation error.

exists(i) Return 1 if the element having index i exists, else 0. For a nonassociative
array, this tests whether the index is in bounds.

flush() Make the array be empty.

length() Return the number of elements in the array. For a multidimensional array,
this counts only the number of subarrays, and does not walk the subarrays
counting their elements recursively.

rlength() Like "length()", but walks subarrays recursively and counts the number of
leaf elements.
empty() Returns nonzero if length() is zero.

Writing Arrays of Arrays

PepperCode arrays are one-dimensional, but because the element type of an array can be another
array, they provide approximately the effect of multi-dimensional arrays.

For example, the following declaration creates approximately the effect of a two-dimensional
array whose first dimension is indexed by int, whose second dimension is indexed by string, and
whose element type is float.

local: float[int] [string] a
More precisely, that declaration creates an associative array whose index is int and whose

element type is array; each of those elements is is an associative array whose index is string and
whose element type is float.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING ARRAYS 8-5

PEOPLESOFT PEPPERCODE JANUARY 2001

A multidimensional array can mix associative and nonassociative arrays. For example, this is an
associative array indexed by an integer, each of whose elements is a nonassociative array whose
element type is string:

local: string [int][] b

There are some subtle differences between a PepperCode array of arrays and a true

multidimensional array in a language like Fortran or Pascal. A multidimensional array is a perfect
rectangle: each row has the same number of columns. But a PepperCode array of arrays is sparse,
and can have an irregular shape. Suppose that you make the following assignments to associative

nyn,

array "a":
af0]l ["a"] = 27.1;
alo] ["b"] = 28.2;

alll ["w"] = 29.3;

Now a[0] (let's call this the first "row") has two elements ("columns"), while a[1] (the second
"row") has only one. And the "column" keys for the second row are different than either of the
column keys for the first row.

Even if the arrays are nonassociative rather than associative, the result may not be rectangular; in
the following example, the first row once again has two elements while the second row has one:

local: int[][] d2

dz2[o] [0]

I
=

dz[o] [1] = 2;

d2[1] [0]

I
w

The non-rectangular property makes PepperCode arrays useful for storing irregular data. For
example, if you want to use three indices "nation", "state", and "city" to access an integer
representing population, you can declare an associative array of arrays of arrays where each index
has type string. Because a large state like California has many more cities than a small state like
Delaware, a rectangular array dimensioned to suit California would waste considerable unused
space for Delware. Because PepperCode arrays are not constrained to be rectangular, they don't

waste space in that fashion:

local: int [string] [string] [string] population

population["usa"] ["california"] ["pleasanton"] = x;

population["usa"] ["delaware"] ["dover"] = y;

8-6 WRITING ARRAYS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Another implication of the "array of arrays" model is that operator functions like "exists" and
"delete" apply to a particular, one-dimensional array. Here is a function which deletes an element
of the outer array (in other words, it deletes an entire inner array):

population["usa"] .delete ("kansas")

And here is a function which deletes a single element of an inner array:
population["usa"] ["california"] .delete("san mateo")

Here is a function which checks the existence of one element of the outer array:

population["usa"] .exists ("nevada")

And here is a function which checks the existence of one element of an inner array:

population["usa"] ["nevada"] .exists ("reno")

Of course, you can also apply a function to the outermost level of the array of arrays. The
following example tells how many states appear within the "usa" array:

population["usa"] .length()

The "rlength" function travels the array recursively and counts leaf elements. Here we count the
number of cities in California, in the entire US, and in the entire world:

population["usa"] ["california"] .rlength() // length() would work too

population["usa"] .rlength () population.rlength ()

It is not necessary to check whether a particular array exists before applying a function to it: if an
array doesn't exist, then it behaves like an empty array. Thus, the second statement in the
following example quietly returns zero even though the array corresponding to "oregon" no
longer exists:

population["usa"] .delete ("oregon")

population["usa"] ["oregon"] .length ()

If you want to have a nonassociative rectangular array, you can do so by using a technique often
employed in C programs. (Although C provides multidimensional array declarations, their
usefulness is limited because the dimensions are not maintained as variables at runtime and are
not included with the array when you pass the array as an argument to a function.) This technique
declares a one dimensional array and treats it as a two-dimensional array by performing the index
computation explicitly. Here is an example:

input: int[] x, input: int rows, input: int columns

x[i*columns+j] = 10; // Assign to xI[i] [j]

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING ARRAYS 8-7

PEOPLESOFT PEPPERCODE JANUARY 2001

Writing Statements Involving Arrays

You can use a "foreach" statement to traverse an array, and you can use an assignment statement
to copy an array. See the section on the "foreach" statement for an example.

A "foreach" statement guarantees to traverse arrays in an order which, although unspecified, will
be the same on every target machine. (In this implementation, when you use "instance" as the
index type for an array, we actually use the UID of the instance rather than the address of the
instance, to avoid machine dependence.) You may not use the "in reverse" form for arrays.

(In this implementation, if you traverse two identically typed associative arrays with "foreach"
loops, the sequence of indices will be the same for both arrays if you satisfy two requirements: [1]
the set of indices now present must be the same and [2] the maximum size the array has ever had
must be the same. Requirement [1] probably doesn't surprise you, but maybe requirement [2]
does. The reason for [2] is that we traverse the hash buckets in order instead of using additional
memory to remember the order of insertion of the elements. We also automatically increase the
number of hash buckets to maintain good performance as the array grows, which forces us to alter
the function which maps indices onto hash buckets, and to redistribute the elements among the
buckets. But we never reduce the number of buckets when you delete. Maybe that's a bug; if we
did so, then we could eliminate requirement [2].)

An assignment statement makes a complete copy of an array. The right side and left side arrays
must have exactly the same index and element types.

Writing Array Accesses

To access an array as an Ivalue or rvalue, write its name followed by a list of keys or indices, each
enclosed in square brackets:

a[5] ["blue"] [37.2] = al[5] ["red"] [37.2];

Writing Arrays Indexed by Float

Because floating-point numbers are subject to roundoff error, it would be easy to construct a
situation where a program would fail to find an element within an associative array, or would
enter a second element with a slightly different key instead of replacing an existing element.

To avoid this, if the index type of an array is "float", PepperCode discards the low order bits of
any value used to access such an array. This is similar to the "epsilon" feature used in floating
point comparisons, but is implemented differently and is not governed by the "SET EPSILON"
function.

8-8 WRITING ARRAYS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 9

Understanding Histories And Side
Effects

A history is a data structure that represents a value that varies over schedule time. Schedule time
is the time over which the scheduling system is making decisions (not wall clock time). Since
schedules are projecting actions into the future, and these actions can have effects on the value of
many variables in the schedule, a data structure is required to record these changes.

The history data structure has a rich programmatic interface for manipulating values and finding
relevant information about the values of a history over time. This data structure is used to
implement projected on-hand inventory balances, capacity availability, machine state, and any
other time-varying variable.

@ For more information and a listing of the functions used for the history interface, refer to
Using History Functions.

v Note: The history sections in this section contain several code examples. These example are
written in a pseudo-code similar to C++. They are not written in PepperCode.

Understanding the History Abstract Data Structure
A history has the following properties:
e |t has a value at all points in time.
o [t has a single value at any point in time.
e The value at any point in time is a function of the effects that persist at that point in time.
A simple interface to a history object can be the following two functions:
¢ GetValue (History, time) , which returns a history value at the given time.
e SetValue (History, time, value) , which sets the history value at the given time.

These two functions could be used to implement the entire history facility, although that would be
inefficient.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING HISTORIES AND SIDE EFFECTS 9-1

PEOPLESOFT PEPPERCODE JANUARY 2001

v Note: The functions GetValue and SetValue, as was stated earlier, are written in pseudo-
code. They are used here for example only. The real history functions are listed in Using
History Functions.

The following line gets the value of a history at a given point in time.

GetValue (Part A History, “1/2/96 3:48:00 PM”)

The following line initializes a history to have all zero values.
foreach time from -infinity to infinity/{
SetValue (Part A History, time, 0)
}
This could be composed into a function:
History CreateHistory (int initial value)
{
History the history = new History;
foreach time from -infinity to infinity ({
SetValue (the history, time, initial value);

}

return the_ history;

Note that this code would run forever.

Representing Availability of a Capacity Resource

Histories can be used to represent concepts such as the availability of a capacity resource.

Suppose you have a manufacturing work center that has two drills in it. You want to know how
many drills are UNASSIGNED to production tasks at any point in time. If you ever assign more
than two drills, you want to know about that so you can signal a violation. To do this you create a
history to represent the availability of drills in the drill work center (DrillWC).

Histories are written as a list of history elements. Each history element has a time interval and a
value. A history interval is shown as ((start . end) value). A history is a list of history elements
such as (((start_timel . end timel) valuel) ((end timel . end time2) value2)). Adjacent history
elements must meet; that is, the end of the prior history is equal to the start of the following
element. This ensures that all points in time have a value.

To assign an initial value to our history, you could use the function discussed earlier,
CreateHistory.

9-2 UNDERSTANDING HISTORIES AND SIDE EFFECTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

DrillWC = CreateHistory (2);

This sets DrillWC to the following history:
(((-infinity . infinity) 2))

Now suppose a task is scheduled to use a single drill from DrillWC from time 10 to time 20. This
will result in only a single drill being available to be assigned from 10 to 20. The history that
represents this state is as follows:

(((-infinity . 10) 2) ((10 . 20) 1) ((20 . infinity) 2))

There are two drills available up to time 10, then from time 10 to time 20 there is one drill
available, and then two again from 20 to the end of time.

Now suppose a second task from time 15 to time 25 uses two drills. The history would look like
the following:

(((-infinity . 10) 2) ((10 . 15) 1) ((15 . 20) -1) ((20 . 25) 0) ((25 .
infinity) 2))

Task Start End Drills used
T1 10 20 1
T2 15 25 2

From 0 to 10, no one uses the drill, so two are available.
From time 10 to 15, only task T1 uses a drill, so one drill is available.
From time 15 to 20 both T1 and T2 use the drill, for three total, leaving -1 drills available.

From time 20 to time 25, only T2 uses the DrillWC, so zero drills are available, and after 25 both
drills are available.

Given this data structure and the accessors, you can write functions that get useful data, such as
getting every time where this history is over allocated, or getting the next over-allocation after a
given time. For example:

boolean Overallocated (History the history)

{

foreach time from -infinity to infinity {

if (GetValue (the history, time) < 0) return TRUE;

}

return FALSE;

}

time GetNextOverallocation (History the_history, time start_time)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING HISTORIES AND SIDE EFFECTS 9-3

PEOPLESOFT PEPPERCODE JANUARY 2001

{

foreach time from start time to infinity {
if (GetValue (the History, time) < 0) return time;

}

return NEVER; // Special key that means no time found.

bi

Understanding The History Data Structure

The current implementation of histories is a linked list of temporally ordered history elements.
As done before in this section, pseudo code is used to discuss the data structure, but the actual
implementation is in C++ using Lists, and a number of other complications.

Understanding History Data Structure Elements
Each history element has four slots:

o the start time of the interval,

o the end time of the interval,

o the value for that interval,

e and a list of the side effect objects responsible for the value.

The list is known as the changers list. The end time of the preceding element must be equal to the
start time of the following element. This means that the intervals meet. Every history must cover
each point in time between and including the beginning_of time fence to the end of time fence.

Understanding A History Elements List

The list of history elements is a doubly linked list, so it can be traversed in order of either
increasing time or decreasing time.

Because histories are implemented as a doubly linked list, you have some known performance
characteristics for the base accessor functions. Both GetValue(), and SetValue () have linear—
O(n)—speed, where n is the number of distinct history elements generated by the entire set of
changers on the history. Clearly as n becomes large, you expect the performance of histories to
decrease.

When history lookup becomes a bottleneck in the performance of the system, the history

functions will be reimplemented to use a different data structure to index times to values. One
alternative is to use a index similar to ISAM that quickly points a time into roughly the correct
area of the history, and then perform a linear search for the correct time point. This leaves the

9-4 UNDERSTANDING HISTORIES AND SIDE EFFECTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

performance at O(m), where m = n/constant. Another possible implementation is to make the
history elements form a balanced tree, and thus have a better performance.

Understanding An Example of History Object
The History object in C is defined as:
class History {
List<Intervals> rep;
HE_Type type;
bi

This example says that a history is implemented as a class with two member variables. The type
member variable determines the data type of the value of each element. The List<Interval> rep
member is the list of history elements. This doubly-linked list operates with a series of member
functions for controlling the current item in the list, and for moving the current pointer forward
and backward through the list, as well as for inserting and deleting elements. The list data type is
used to implement Osets and histories, as well as many other items in the substrate.

Understanding An Example of Interval Implementation

The implementation of Interval is complicated by the fact that different histories can have
different data types. The following example show the Interval implementation for a double data
type. The actual implementation involves a union of multiple records with multiple data types.
An Interval structure for a double data type looks like the following example:

struct Interval {
Time start;
Time end;
ListVoid changers;

double value;

Understanding GetValue Implementation

The following example is the implementation of GetValue for the history. Note that some of the
additional functions and code are due to the union of the multiple data types.

RPS_FLOAT History get value double(void* h, RPS DATE dt)

{

History* history = (History*)h;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING HISTORIES AND SIDE EFFECTS 9-5

PEOPLESOFT PEPPERCODE JANUARY 2001

9-6

Interval *he;
assert (history->get type()==HE Double) ;
history->find(dt) ;
he = history-scurrent () ;
if (!'he) return 0.0;
return HistoryElement (he) .d->value;
}
To examine this example line by line:
The first line creates a local History variable, and casts the history passed in.
History* history = (History*)h;
The second line declares a local interval pointer.
Interval *he;
The next line is an error check to make sure the history passed in has a data type assigned.
assert (history->get type()==HE Double) ;

The next line uses the find method on the history to set the current pointer in the history to point
to the HistoryElement that contains the time point dt.

history->find(dt) ;

The next line retrieves the interval for the current HistoryElement.
he = history-scurrent () ;

If no element is found then return 0.0 as the value. This value could also represent an error.
if (!'he) return 0.0;

The next line uses the historyElement to look up the value through a union that composes all the
different types of History elements into a single structure. This value is the one returned to the
caller.

return HistoryElement (he) .d->value;

Finding Maximum

GetValue was a simple history accessor. Following is a more complicated example that finds the
quantity of the maximum over allocation that occurs on a history between two time points.

// What is the maximum value that the history is over allocated by from

UNDERSTANDING HISTORIES AND SIDE EFFECTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

// start_time to end time

//

CPP_FLOAT cpp max quantity overallocated (void *history, CPP_DATE start time,
CPP_DATE end time)

{
History *the history = (History*)history;
List<Interval> lhe;
Interval *he;
CPP_FLOAT max overallocated = 0.0;
assert (the history->get type()==HE Double) ;
if (start_time > end_time)
// This should probably print an error message
return O;
the history->get list (lhe);
lhe.reset (BEGIN) ;
he = lhe.current();
while (he) {
// begin checking the quantity in a "legal time period"
if (he->end > start time) {
// staring right at special case
if ((start_time == end time) && (he->start == end time)) {
max overallocated = HistoryElement (he) .d->value;

return rps_abs_d(max overallocated) ;

if (he-s>start > end time) // terminate

return rps_abs_d(max overallocated) ;

if (rps_lt_d(HistoryElement (he) .d->value, max_overallocated))

max overallocated = HistoryElement (he) .d->value;

he = lhe.next () ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING HISTORIES AND SIDE EFFECTS 9-7

PEOPLESOFT PEPPERCODE JANUARY 2001

}

return rps_abs_d(max overallocated) ;

Understanding Side Effects and Persistence

This section discusses how histories are updated from values that change inside PepperCode.
What happens is that a mechanism called a “side effect” watches slot values, and when the values
change, the side effect updates other things, such as histories.

Histories are data structures that contain computed information, based on the values assigned to
schedule tasks.

What exactly is the processing that these supplies and constraints have on histories, and what are
the differences caused by inventory/capacity and consume/supply dimensions? How are the
history values maintained? This section addresses these questions.

Understanding The Effect of Supply/Constraint and Capacity/Inventory on
Side Effects

A side effect computes a dependent variable from a set of independent variables any time one of
the independent variables change. This structure is implemented in the substrate of the
PepperCode system. The performance ramifications are very significant, and can be costly.
Every resource supply and constraint has a side effect with independent variables of the

start time, end_time, quantity, and selected object, and a dependent variable of the history. The
following processing takes place when an independent variable changes:

e cvery side effect attached to that variable has its retract function fired.
o the slot value is changed.
o all the side effects are asserted.

Remember the performance ramifications. For a reasonable-sized BOM, moving a task and
setting its start time and end time slots are relatively expensive operations.

There are two different dimensions of the differences which affect the behavior of side effects:
resource supply vs. resource constraint, and capacity vs. inventory.

The resource supply vs. resource constraint dimension has to do with how to take a value—the
quantity—and combine it with the existing value of the interval. For resource constraints,
subtract the value from the history value. For resource supply, add the value to the interval value.
This combination function can get more complex than addition/subtraction. For histories that
represent time-varying states of an object, the combination function sets the state to the state of
the latest effect in time.

9-8 UNDERSTANDING HISTORIES AND SIDE EFFECTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

The capacity vs. inventory dimension has to do with persistence of the effect, or how long the
effect lasts. For a capacity resource, the effect of the usage of a resource persists from the
start_time to the end_time of the task; then the resource is given back to the pool, and is available
for other uses. For inventory parts, the usage persists forever. That is, once a part is used, it is
never given back to the pool for some one else to use. This difference is encoded by how the side
effect determines the start time and end time for the persistence of the side effect. For a capacity
side effect, the side effect code looks up the start and end of the task, and uses these as the start
and end of the side effect. For an inventory constraint, the side effect looks up the start time of
the task for the start of the side effect, and uses infinity for the end time. A resource supply
inventory side effect uses the end time of the task as the start time of the side effect, and infinity
as the end time of the side effect.

Understanding the Scheduling Classes: Resource and Task

The two PepperCode classes involved with scheduling are resource and task.

Understanding the Resource Class

In PepperCode, there is an object called a Resource. This object is the base class for
Equipment_Resource, and for Inventory Resource. This means all resources share the same
basic structure for manipulating the time varying portion of the behavior. Notice there are two
history slots on this object. The initial history slot is a history that can be used to determine how
much was available for each time period when the resource was created. For a capacity resource
this represents the capacity available for the resource. In any PepperCode function, the
resource_history slot is typically passed as the history value.

class Resource : Named Object Spl Class {
oset [instance<Resource Constraint>] resource constraints
oset [instance<Resource Supply>] resource supplies
float initial amount
enum<Relevant Status> relevant status
history<float> initial history
history<float> resource history
action<substitute> substitute action
action<resource batch> resource batch action
action<calculate duration> calculate_duration_action
action<calculate quantitys> calculate quantity action

action<consumable> consumable action

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING HISTORIES AND SIDE EFFECTS 9-9

PEOPLESOFT PEPPERCODE JANUARY 2001

Understanding Tasks
In PepperCode, tasks look roughly like the following:
class Base Task : Named Object Spl Class {
instance<Base Task> parent
date start_time
date end time
enum<Task Status> status
}i
class Duration Task : Base Task {
oset [instance<Resource Constraint>] resource constraints
oset [instance<Resource Supply>] resource supplies
bi

Duration_task is the basic scheduled task. It is scheduled to run from start time to end time, and
has a list of the resource constraints associated with the task, and a list of resource supplies
associated with the task.

Understanding Resource Supplies and Constraints

A resource constraint represents a usage of either a inventory resource or a capacity resource by
the task. A resource supply represent a supply of either a inventory or capacity resource. Both

resource_constraints and resource_supplies have effects on the history of the object they effect,

but only resource constraints are constraints in the search engine.

The definition of the resource constraints (usages of a resource by the task) and resource supply
(supply of a resource) are shown following. These are fairly straightforward.

class Constraint : Spl Class
float weight // instance weight
float class weight // class weight
action<penalty> penalty action
instance<Spl Class> object

}i

class Repairable Constraint : Constraint {
enum<Relevant Status> relevant status

action<start and end> start and end action

9-10 UNDERSTANDING HISTORIES AND SIDE EFFECTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

action<constraint repair> repair action
action<repair earliest> repair earliest_action
action<earliest violateds> earliest violated action
int start_fall earlier
}i
class Resource Constraint : Repairable Constraint {
int created by user
instance<Duration Task> object
class<Resource> selected object class
instance<Resource> selected object
float quantity
action<duration constraint> duration constraint action
action<inventory constraint> inventory constraint_action
}i
class Resource Supply : Spl Class {
instance<Duration Task> object
instance<Resource> resource

float quantity

Understanding the Effect of Resource Supplies and Constraints on Histories

Refer to the Resource Constraint class in the previous section. The resource constraint object
has the following slots:

a object slot which holds the task that this resource constraint is associated with. This allows
the resource_constraint to get to the start_time, and end_time of the scheduled duration_task.

e a quantity slot, which is the amount of the resource that this task needs to use.
e aselected object slot that holds the Resource object that will be affected.
These slots allow access to all the required information needed to call these history functions:

¢ a function that takes (start time, end time, quantity, and a history) and updates the history to
reflect a usage of quantity from start time to end time.

e a function that updates the history to reflect the removal of a usage of quantity from start time

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING HISTORIES AND SIDE EFFECTS 9-11

PEOPLESOFT PEPPERCODE JANUARY 2001

to end_time.

The two functions in the last two bullets are opposites; they serve to assert and retract the side
effect of a task from a history.

Programming for Side Effects: The side_effect Keyword
You should add the “side effect” keyword to the declaration to a slot that is:
¢ An input or output to a side effect function.

e Any slot which lies along the path leading from the root object of a side effect subtree to an
input or output slot.

Adding the “side effect” keyword consumes memory. Aside from that, there is no harm done if
you add on a slot which is not associated with side effects, but if you do not use it on a slot which
is associated with side effects, a runtime error message will be printed on the server console.

Here is an example of using the side_effect keyword. It is taken from resource.spl.
class Resource Supply : Spl Class {

instance<Duration Task> object

instance<Resource> resource
float quantity
float increment amount // if duration, in seconds,
// otherwise units
int increment type // 0 - none, 1 - duration,

// 2 - quantity

slot Resource Supply.object { side effect: };

slot Resource Supply.quantity { side effect: };

slot Resource Supply.resource { side effect: };

slot Resource Supply.increment amount {default: 0.0 class slot: };
slot Resource Supply.increment type {default: 0 class slot: };

slot Resource Supply.init action { default: resource supply init };

slot Resource Supply.delete action { default: delete resource supply };

9-12 UNDERSTANDING HISTORIES AND SIDE EFFECTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Understanding Schedules

PeopleSoft Planning uses an in-memory representation to allow fast computation. There is no
option of running a consolidation job to compute projected on-hand balances, next requirements,
or any of the other batch processes in MRP systems. PeopleSoft Planning always computes the
ramifications of scheduling an event.

A schedule is a set of inventory and capacity histories that projects the availability of material and
capacity into the future, and a set of tasks that have been scheduled. The tasks change the
projected values for on-hand material and capacity availability.

Any real world event represented in PeopleSoft Planning is a scheduled event in the in-memory
model. The receipt of material based on a scheduled purchase order delivery is a real world event
represented as a PO Delivery task in PeopleSoft Planning. This task is a part of the schedule.
This task has an effect on the projected on hand balance of material for the part that is delivered.
The change in the projected on hand quantity of the delivered material is calculated immediately
when the PO delivery is added to the schedule. No consolidation or netting process is required.

@ For more information on how this technically happens in the software, refer to
Understanding Side Effects and Persistence.

A production operation is a scheduled task. Its materials usage, capacity allocations, and
materials supplied are all effects of scheduling this task. As soon as the production operation is
added to the schedule, its effects are computed on available balances of material and capacity
availability. A Sales Order is another real world event that represents the shipment of material
from a location under PeopleSoft Planning control to a customer. This is represented as a
shipment of material, and changes the projected on hand balance in the future.

A change in a BOM’s effectivity is not a real world event, and so does not directly affect the
schedule. It does indirectly affect the schedule by determining the appropriate BOM’s to add to a
work order, but the resulting mapped materials requirements with the work order operations are
what affect the schedule, not the actual BOM, or its effectivity. Effectivity is a set of dates on the
data, such as the start and end date, that specify when this data is true. For example, if the
effectivity for a part number is today until next Friday, the part number is good until next Friday.

The ramifications of this model of a schedule are not immediately apparent, but they effect every
aspect of thinking about the schedule, or about materials availability, or about the processes that
are used to find information.

For example, there is no transaction to allocate material to an order. Since an order—be it a
production order, or a sales order—is a scheduled task, its effects on materials availability and
capacity are always asserted into the projected on-hand balance for inventory and availability for
capacity. Allocation of material to priority orders is handled by scheduling orders such that they
are predicted to have materials and capacity available when they are scheduled to execute. If
insufficient material is available, and an allocation decision needs to be made, then the conflicting
orders are rescheduled to a time point where the material is anticipated to be available.

Here is a scheduling example.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING HISTORIES AND SIDE EFFECTS 9-13

PEOPLESOFT PEPPERCODE JANUARY 2001

9-14

Part A has five on hand now. Next Monday you project an order for five units to be delivered:
you have a PO Delivery scheduled with a due date of next Monday, and a quantity of five. The
history for Part A will project an on-hand balance of five up through next Monday, and then a
projected balance of ten for the rest of time. At this point, our schedule consists of a single
history for Part A, and one scheduled task for the delivery of the material.

Add two sales orders both due this Friday, both for five part A’s. As soon as the Sales Orders are
entered into the schedule, the effects of these orders are computed on projected on hand balances
and capacity availability. Your schedule now consists of a history for Part A which shows a
projected balance of five units from now till Friday, then -5 units on hand from Friday to
Monday, and 0 units on hand from Monday till the end of time; and three tasks, and one PO
Delivery on next Monday, and two sales order shipments on Friday. Notice that all that happened
was that two sales orders were added. No allocation of either material process or inventory
netting process was executed.

The schedule now has an Inventory violation. You project that there will be a shortage on Friday
of five units. At this point you do not make an inventory allocation of material to an order. You
decide which order to schedule on Friday, and which order to reschedule to Monday, Monday
being when the material is projected to be available. This decision can be made in a number of
ways, but order priority might be a good criteria.

Now our schedule consists of a projected on hand inventory for part A of five till Friday, then 0
from Friday till the end of time; and three tasks, a sales order shipment on Friday, a PO Delivery
Monday morning, and a sales order shipment Monday morning, right after the material delivery.
The inventory violation has been resolved by moving a task.

UNDERSTANDING HISTORIES AND SIDE EFFECTS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 10

Understanding Operators And Functions

This sections lists and describes how to use the PepperCode intrinsic operators and functions. It
also describes how to access and use C/C++ functions.

Understanding Infix and Intrinsic Operators and Functions

There is a new inline notation type for mathematical operations in Release 8.0. It applies to the
operators in the following table. However, we have maintained backward compatibility in that
you can still use prefix notation.

Example:

You can now use the following expression (using inline notation):
i=1+1;

In previous releases, you would have had to code this expression in prefix notation as follows:
i = ADD(i,1);

The following table lists the new Infix notation operators and the data types with which they can
be used.

Each operator allows a limited set of data types for its operands.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OPERATORS AND FUNCTIONS 10-1

PEOPLESOFT PEPPERCODE

PepperCode Infix Notation

JANUARY 2001

Operator Left operand Right operand | Result Coerces?
| int int int N
&&
<= int int int Y
>= float float
< string string
= date date
time time
== int int int Y
=
float float
string string
instance instance
class class
date date
time time
action action
enum enum
~ string string int N
* int int int Y
float float float
int time time
time int time
/ int int int Y
% float float float
time int time
time time int
+ int int int Y
float float float
date time date

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Operator Left operand Right operand | Result Coerces?
time date date
time time time

- int int int
float float float
date time date
time time time

! none--unary int int

date int
time int
string int
instance int
class int

+ none--unary int int

- float float

time time
instance slotname any
class slotname
action out-parmname
enum slotname
oset fcnname
array fcnname

O) cpp_function arglist any
action none
intrinsic fcn any

[] array int any

string
float
instance

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS 10-3

PEOPLESOFT PEPPERCODE JANUARY 2001

Operators && and || perform short-circuit evaluation.

PepperCode has several intrinsic operators and functions derived from C++ operators and

functions, as listed in this table. Most of these operators and functions take two arguments—argl
and arg2, in that order; they all return one value. True is 1 and false is zero. An argument can be
an expression. For logical operations, inputs are TRUE if nonzero, and the output is 1 for TRUE

and zero for FALSE.

Note: Most of the prefix functions have an equivalent in the Infix operators. The prefix

operators are still included to maintain compatibility with any release prior to Release 8.0.
When possible, use the infix operators.

PepperCode Prefix Operators and Functions

Operator or function | Description Number of | Argument Return
arguments | data types type
GT Is argl greater than | 2 int, float, time, | int
arg2? date, string
GT _OR_EQ Is argl greater than | 2 int, float, time, | int
or equal to arg2? date, string
LT Is argl less than 2 int, float, time, | int
arg2? date, string
LT OR_EQ Is argl less than or 2 int, float, time, | int
equal to arg2? date, string
EQ Is argl equal to 2 int, float, time, | int
arg2? date, string,
instance, class,
enum
NE Is argl not equal to 2 int, float, time, | int
arg2? date, string,
instance, enum
ADD Add argl to arg2. 2 int, float, time, | Same as
date argument
SUB Subtract arg2 from 2 int, float, time, | Same as
argl. date argument
MUL Multiply argl by 2 int, float, time, | Same as
arg2. date argument
DIV Divide argl by arg2. | 2 int, float, time, | Same as
date argument

10-4 UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Operator or function | Description Number of | Argument Return

arguments | data types type

AND Logical AND argl 2 int, instance, int
and arg?2. class

OR Logical OR argl and | 2 int, instance, int
arg?2. class

NOT Logical NOT arg. 1 int, time, date, | int

instance, class

NIL Return 1 if the 1 string, oset, int
argument is NIL; instance, class,
otherwise, return action
ZEer0.

MIN Return the minimum | 2 int, float, time, | Same as
of two numbers. date argument

MAX Return the 2 int, float, time, | Same as
maximum of two date argument
numbers.

ABS Return the absolute 1 int, float, time Same as
value—always argument
positive—of arg.

MOD Return the 2 int, float, time, | Same as
remainder of argl date argument
divided by arg?2.

POW Return argl raised to | 2 int, float Same as
the power of arg2. argument

ROUND Round to a float 1 float float
value.

ROUND UP Round a float value | 1 float float
up. The ceiling is an
increase to the next
highest integer
value.)

ROUND DOWN Round a float value | 1 float float

down. The flooris a
decrease to the next
lowest integer
value.)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-5

PEOPLESOFT PEPPERCODE

JANUARY 2001

Operator or function

Description

Number of
arguments

Argument
data types

Return
type

INT TO FLOAT

Convert an integer
to a float.

1

int, date, time

float

INT TO_TIME

Convert an integer
to a time value.

int

time

INT_TO_STRING

Convert an integer
to a string.

int, time

string

FLOAT TO_INT

Convert a float to an
integer.

float

int

FLOAT TO_STRING

Convert a float to a
string.

float

string

STRING TO_INT

Convert a string to
an integer.
cpp_ascii_to_int

scheduler/utils/cpp
spl_misc.h

string

int

STRING TO FLOAT

Convert a string to a
float.

string

float

RETRACT

Fires the retract
method for each side
effect associated
with the slot passed
in as an argument.

slot

int

ASSERT

Fires the assert
method for each side
effect associated
with the slot passed
in as an argument.

slot

int

If you invoke a function with arguments of two different types, the “lower priority” type gets
converted to the “higher priority” type. The following list shows the priority of a data type, from
highest to lowest:

e float

e date

10-6 UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

e time

e int

PEOPLESOFT PEPPERCODE

v Note: The RETRACT and ASSERT functions are meant for use in exceptional

circumstances by programmers who understand fully the side effects mechanism. Normally
the side effect methods are fired automatically as part of the act of assigning a value to a slot,

S0 it is not necessary to invoke these functions. The compiler will issue an error if the
argument which you pass to the function is not a slot.

Understanding SET_EPSILON and SET_FLOAT_FORMAT

Although most of the operators and functions listed in the Intrinsic Operators and Functions table
are self-explanatory to an experienced C/C++ programmer, SET EPSILON and
SET FLOAT FORMAT require further explanation:

SET _EPSILON and SET FLOAT FORMAT

Function

arguments, data
types

Description

SET EPSILON

1, int

When you compare floating point values by
using functions such as EQ, NE,
LT OR _EQ, or LT, PepperCode considers
values to be equal if they differ by less than
a tiny amount, called the epsilon. As a
result, small round-off errors do not prevent
numbers from being considered equal.

This function sets the value of the epsilon to
be approximately 1*10*(-n), where n is the
argument you pass to the function. If the
numbers being compared are greater than
1.0, the system scales the epsilon upward by
multiplying it by the sum of the numbers
being compared.

SET FLOAT FOR
MAT

1, string

This function sets the format that the
FLOAT TO_STRING function uses when it
converts a floating point number to human-
readable form. The argument to

SET FLOAT FORMAT is a string that
must follow the rules for the C language
function printf. For example, the format
could be one of the following:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PEPPERCODE JANUARY 2001

10-8

Function # arguments, data | Description
types

% 15.2f

Create a 15-character string containing a
number that has two digits to the right of the
decimal point, but no exponent.

% .5t

Create a string—just large enough to
represent the number—with five digits to the
right of the decimal point, by no exponent.

% .5e

Create a 15-character string containing a
number that has two digits to the right of the
decimal point and that has an exponent.

% 15¢g

Use 15 digits for the string and use an
exponent only if the number is too big or
small to be represented without one.

Using EQ With Strings

Using EQ on strings is not a pointer comparison, it is a string compare (strcmp). The following
statements do almost exactly the same thing in PepperCode:

input: string string 1,

input: string string 2,

if (EQ (string 1, string 1)) // really a strcmp

if (EQ (STRING COMPARE (string 1, string 1), 0))

strcmp must check every character of one string against every corresponding character of another
string until there is not a match. This can be expensive for strings that begin with the same set of
characters.

UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Accessing C/C++ Functions

In addition to the PepperCode intrinsic operators and functions, you can declare and then use
C/C++ operators and functions from within PepperCode code.

To declare a C or C++ function, use the following syntax:

cpp_function return type SPL_FUNCTION NAME (argument (s)) "cpp function name";

e return_type can be any PepperCode data type or void for C/C++ functions that don’t return
anything.

e SPL_ FUNCTION_NAME is the name that PepperCode actions will use to reference the
C/C++ function. This name should always be in all capital letters so it is easy to identify.
Multiple cpp_function declarations may map different PepperCode identifiers to the same C++
function. However, multiple cpp_function declarations may not map the same PepperCode
identifier to multiple C++ functions

e argument(s) is a list of PepperCode data types, separated by commas, for all arguments. The
data types of the arguments supplied in this arglist must match with those specified in the C++
function. Also, the data types of function calls must match.

e cpp_function name is the actual C/C++ function name, placed inside of double quotes (").

PepperCode Data Types in cpp_function Statements

As these scenarios illustrate, you must provide meaningful PepperCode types in the C++ function
declaration.

The types provided in the C++ function declaration must correspond to the types in the actual
C++ function. Starting in Release 8.0, the PepperCode compiler generates code that allows the
linker to check the argument list data types.

Many of the Release 7.5 cpp_function declarations have already been modified to work in
Release 8.0. For example, in Release 7.5, the SET SLOT_ACTION_ON_INSTANCE function
took class<Spl Class> as the first argument. Since the name of the function specifies an instance,
it obviously requires an instance as an argument instead of a class. So, the cpp_function
declaration was changed to specify the data type "instance<Spl Class>" as the first argument
instead of the data type "class<Spl Class>."

Release 8.0 Function Declaration:

cpp_function void SET SLOT ACTION ON INSTANCE (instance<Spl Class>, string,
string) "cpp set slot action on instance";

Release 7.5 Function Declaration:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OPERATORS AND FUNCTIONS 10-9

PEOPLESOFT PEPPERCODE JANUARY 2001

cpp_function void SET SLOT ACTION ON INSTANCE (class<Spl Class>, string,
string) "cpp set slot action on instance";

Rules for Passing Arguments

The rules for passing arguments in Release 8.0 have not really changed, but argument types are
checked in Release 8.0, and this may require some changes to the way that you declare and use
C++ functions.

The arglist declares the formal arguments of the C++ function using PepperCode data types. Data
types can be preceded by "const:".

Example:

cpp_function int STRING COMPARE (const: string, const: string) "nlstrcmp";

Since argument types were not checked in previous releases, you could have probably gotten by
with:

cpp_function int STRING COMPARE (string, string) "nlstrcmp";
However, this will not work in Release 8.0.
You can also use the symbol "&".
Example:

cpp_function string SYSTEM CALL(string, int &) "cpp system call";
which indicates pass-by-reference...
and the symbol "*".
Example:

cpp_function int LIST FILES IN DIRECTORY (const:
string, oset [string] ,oset [string], string *) "ls to lists";

which indicates pass-by-pointer.
The default is pass-by-value. Only one level of "&" or "*" is currently allowed.

When you pass an actual argument to a formal argument which was declared with "*", the
compiler implicitly takes the address of the actual argument.

The arglist may contain the argument "void" alone, or the arglist may contain no arguments.
These have the same meaning.

Example:

cpp_function date GET EARLY FENCE() "LpExportToSPL getEarlyFence";

10-10 UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

n n n

If the arglist contains at least one argument which is not "void", it may end with "..." or ", ...".

This denotes that the C++ function has a variable argument list.
Example:

cpp_function void LP_LOG(int, int, string, ...) "LpExportToSPL lpLog";

Typedefs Used With C++ Functions

When writing C++ functions to be invoked from PepperCode, the programmer should use the
typedefs which begin with "RPS " in the table below. These "barrier" typedefs provide a small
degree of insulation from changes in the underlying implementation. However, to do anything
meaningful with the data inside the C++ function, you typically need to know what the
underlying C++ declaration is, since mere typedefs (as opposed to classes with methods that
operate on the data) don't allow that; so the table shows them as well.

PepperCode C++ typedefs Underlying type Comments
Int RPS_INT 32-bit int [1]
Float RPS FLOAT double IEEE 64 bits
String RPS _STRING (char *) [4]
Date RPS DATE 32-bit int [2]
Time RPS_TIME 32-bit int [2]
void RPS_VOID (void) [3]
instance<> RPS INSTANCE (rtoe_instance obje
ct *)
class<> RPS CLASS (rtoe_class_object
*)
action<> RPS_ACTION (struct
spl_action_info *)
oset[] RPS OSET (ListVoid *) [5]
enum<> RPS ENUM (rtoe_instance obje
ct *)
history|] RPS HISTORY (History *) [5]
array RPS ARRAY (spl_array *) [5]

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-11

PEOPLESOFT PEPPERCODE JANUARY 2001

PepperCode and C++ typedefs

Notes:

1. For identical behavior on all machines, we intend that all PepperCode implementations
perform 32-bit integer arithmetic on PepperCode type "int", no matter whether the word size
of the underlying machine is 32 or 64 bits. The previous compiler used 64-bit arithmetic on
64-bit machines.

2. Due to loose programming practices in the past, we force PepperCode date and time to
occupy the same amount of space as PepperCode int. C++ programmers should not assume
this is equivalent to C++ "time_t". On some 64-bit machines (DEC Alpha OSF/1 Unix, SGI
Irix) "time_t" uses 32 bits, but on others (HP-UX) it uses 64.

3. This type is used only to indicate that a function has no return value or no arguments. The
"void *" type is not allowed.

4. The declaration "string *" maps to "char **". The declaration "string &" maps to "char *&".
The declaration "const string”" maps to "const char *", not "char *const". It is expected that
the implementation will change to use some "class rps_string" type instead of "char *". At
that point, the restrictions in [5] will apply.

5. The declarations "oset &" and "oset *" are not yet implemented. The C++ programmer
should understand that assigning to "ListVoid *" does not invoke the copy constructor for
ListVoid, and thus causes a memory leak. The same comments apply to "history" and to
"array".

Using PepperCode Runtime Functions

This table lists most of the PepperCode runtime functions. There are also sections following this
one that list PepperCode runtime that are grouped together under specific utilities, such as history
functions.

In the 8.0 and later versions of PepperCode, it is no longer necessary to write a "#include"
statement for a .h file when you declare a cpp_function. Instead, the SPL compiler generates the
C++ declaration based on the cpp_function statement, and the linker will check that the
declaration is consistent with the actual C++ definition. However, if any of the arguments to the
function are const or pointers or references, you must use "const:", "*", and "&" in the declaration
to indicate this. If the function takes a variable-length argument list, you must use "..." to indicate
this.

An example of a declaration using the new syntax:

cpp_function void MYFUNC(int, const: float *, date & ...) "myfunc";

To call a class member function, you must use a non-member wrapper function.

10-12 UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

When you pass an actual argument to a formal argument declared with "*", the compiler
automatically takes the address of the argument for you (there is no "address of" operator in SPL
comparable to the "&" operator in C++). In the table below, you do not have to #include the .h
file in the C++ function Include file column.

For PepperCode before version 8.0, if you use the cpp_function statement to add a new function
to the system, rather than to simply obtain access to an existing one, you must also create a .h file
that contains the C or C++ function prototype declaration. You must use #include to include the
.h file in the PepperCode source file that invokes the function. The PepperCode compiler simply
passes the #include statement through to the C++ compiler when the included filename ends in .h.
This file satisfies the requirement that the C++ compiler must see a prototype for each function it
is asked to invoke. For these versions of PepperCode, in the table below, you have to #include
the .h file in the C++ function Include file column.

PepperCode Runtime Functions

Function signature Description Arguments and C++ function Include
returns file
void Creates a Argumentl: the name | cpp_create_multiply inhe

CREATE MULTIPL
Y INHERITED SU
BCLASS (string,
oset[string])

subclass of an
existing set of
parent classes.

of the new subclass

Argument2: an oset
of parent class names

rited_subclass

scheduler/utils/cpp_spl_
misc.h

String
CREATE NAME F
ROM_OSET/(oset[stri

ng], int)

Creates a
name from an
oset of strings.

Argumentl: an oset
of strings

Argument2: an flag

cpp_create_name_from_o
set

scheduler/utils/cpp_spl_

for specifying a misc.h
unique name (1 =
unique)
instance<Spl Class> | Create an Argumentl: the name | cpp_create object
CREATE OBIJECT(s | instance of an | of the instance you .
. .= scheduler/utils/cpp_spl
tring, string) already want to create - -

existing class.

Argument?2: the name
of the class it belongs
to

Returns: an instance
of the class

misc.h

Void
CREATE SUBCLAS
S (string, string)

Creates a
subclass of an
existing parent
class.

Argumentl: the name
of the new subclass

Argument?2: the name
of the parent class

cpp_create subclass

scheduler/utils/cpp_spl_
misc.h

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-13

PEOPLESOFT PEPPERCODE

10-14

JANUARY 2001

used within a
delete method.

Function signature Description Arguments and C++ function Include
returns file
Date Returns: the current rps_get current time
cu NT_TIME () system date substrate/utilsCC/util.h
String Converts a Argumentl: a date cpp_get date string
DATE TO STRING | date into a .
. . scheduler/utils/cpp_spl
(date) string with .
misc.h
format
"mm/dd/yy
hh:mm:ss"
Void Deletes an Argumentl: an cpp_delete object
DELETE_OBJECT instance. This | instance scheduler/utils/cop sol
(instance<Spl Class> | function . PP_SPL_
misc.h
) should only be

exp function.

Returns: the result of
exp

void DESCRIBE Prints the Argumentl: an rps_describe
(1pstance<Spl_Class> value of every | instance substrate/objectcore/rps.h
, int) slot on an .
hstance Argument?2: a
1ns ’ verbose flag (1 =
verbose, 0 = not
verbose)
float EXP (float) Calls the C Argumentl: a float C function exp

PepperCode compiler
includes .h file for you

int FLOAT TO _INT | Converts a Argumentl: a float rps_float to_int
(float) ﬂoat into an Returns: an integer substrate/utilsSPL/cpp m
integer (the athh
float is '
truncated).
String Converts a rps_float to_string
FLOAT TO _STRIN | floatinto a .
G (float) string, substrate/utilsSPL/cpp_m

ath.h

Class<Spl_ Class>
GET CLASS BY N
AME (string)

Finds a class
when given its
name.

Note: This is
now obsolete.
Use
name.class_na
me instead.

Argumentl: the name
of a class

Returns: a class (if
found), or 0

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Function signature

Description

Arguments and
returns

C++ function Include
file

class<Spl_Class>
GET CLASS OF IN
STANCE
(instance<Spl Class>

)

Gets the class
of an instance.

Argumentl: an
instance

Returns: a class

cpp_get class_of instanc
e

scheduler/utils/cpp_spl
misc.h

Void

GET DESCENDAN
TS
(oset[instance<Spl_Cl
ass>],

class<Spl Class>,

int)

Finds all
descendants of
a class
(including
descendants of
descendants).
The
descendants
can be
instances or
classes. Note
that a class is
considered to
be its own
descendant.

Normally
GET DESCE
NDANTS
returns classes
if the first
argument is an
oset of classes,
or instances if
the first
argument is an
oset of
instances. For
backward
compatibility,
it accepts a
third argument
of type integer
which is 0 for
classes and 1
for instances.

Argumentl: an oset
of instances or
classes that will be
“filled in” during the
function execution.

Argument?: a class

Argument3: a flag for
specifying instances
or classes (1 =
instances, 0 =
classes)

cpp_get _descendants

scheduler/utils/cpp_get d
escendants.h

void
GET DIRECT DES
CENDANTS

Finds only the
direct
descendants of

Argumentl: an oset
of instances or
classes that will be

cpp_get direct descenda
nts

scheduler/utils/cpp spl

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-15

PEOPLESOFT PEPPERCODE

JANUARY 2001

specifying instances
or classes (1 =
instances, 0 =
classes)

Function signature Description Arguments and C++ function Include
returns file
(oset[instance<Spl Cl | a class. The “filled in” during the | misc.h
ass>], descendants function execution.
< >
f:lass Spl_Class>, can be Argument?: a class
int) instances or
classes. Argument3: a flag for

instance<Spl_Class>
GET INSTANCE B
Y NAME (string)

Finds a named
instance when
given its
name.

Argumentl: the name
of an instance

Returns: an instance
(if found), or O

cpp_get _instance by na
me

scheduler/utils/cpp_spl_
misc.h

int
GET MSG LEVEL
0

Returns: the current
message level

get_debug level
substrate/utilsCC/Error.h

string

Gets the name

Argumentl: a class

rps_get name of class

("Nﬁll_Instanc
e")‘

il;g_NAME_OF_CL ofa class.. Returns: a class name | substrate/objectcore/rps.h
(class<Base Class>) Not used in
- Release 8.0 or

later. See

GET NAME

OF CLASS

below.
instance<Base Class | Thisis a Returns: The get null instance
> shortcut for Null Instance object. scheduler/utils/cpp_spl g
GET NULL INSTA | GET INSTA lobals.h -
NCE () NCE ’

BY NAME

void
GET _RANDOM SE
ED (oset[int])

Copies the
random seed
into an
existing oset
of integers.
Any existing
integers in the
oset will
flushed at
execution

Argumentl: an oset
of integers

cpp_get random_seed

scheduler/utils/random.h

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Function signature Description Arguments and C++ function Include
returns file
time.
instance<Spl_Class> | Gets the Argumentl: the If the named instance of
GET TYPED INST | named name of the instance | that type exists, returns
ANCE BY NAME(s | instance of you are looking for. the instance handle;
tl;;lr'lg 1nitance_name, that type. Argument2: the otherwise, returns 0.
string class_name) name of the class of | cpp get typed instance
that instance. by name
scheduler/spl/cpp_utility.
spl
int Checks an Argumentl: an cpp_instance_exists_in_li

INSTANCE EXISTS
_IN_LIST
(instance<Spl_Class>
oset[instance<Spl_Cl
ass>))

oset to see if
an instance (or
class)is a
member of the
oset.

instance (or class)

Argument2: an oset
of instances (or
classes)

Returns: 1 if the
instance (or class) is a
member of the oset, 0
otherwise

st

scheduler/utils/cpp_spl
misc.h

int

LIST FILES IN DI
RECTORY (string,
oset[string]
subdirectories,
oset[string] files)

Returns a list
of
subdirectories
and files that
are the
immediate
children of a
given
directory.

Argumentl: the name
of a directory.

Argument2: an output
giving a list of
subdirectories which
are immediate
children of the
Argumentl directory.

Argument3: an output
giving a list of
subdirectories which
are immediate
children of the
Argumentl directory.

Returns: 0 if fails;
nonzero otherwise.

To read error
messages on a non-
zero return, use the
following code:

CITor =

list_directory
cpp_io.h

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-17

PEOPLESOFT PEPPERCODE

10-18

JANUARY 2001

Function signature

Description

Arguments and
returns

C++ function Include
file

subdirectories.pop();

where error is a
string, and
subdirectories is
Argument?.

int MSG (int, string)

Prints a string
(formatted for
printf) when
the current
message level
is greater than
or equal to the

first argument.

Argumentl: message
level needed to print
Argument?2

Argument2: string
(formatted for printf)

Returns: 1 when the
print was performed,
0 otherwise.

int
OBJECT _IS_ALIVE
(instance<Spl_Class>

)

Checks to see
if an instance
has been
deleted.

GET DESCE
NDANTS and
GET DIREC
T DESCEND
ANTS
automatically
make this
check.

Argumentl: an
instance

Returns: 1 if the
instance is not
deleted, O otherwise

cpp_object is_alive

scheduler/utils/cpp_spl_
misc.h

void PRINF (string)

Prints without
appending a

newline to the
format string.

Argumentl: a string

void PRINTF (string)

Calls the C
printf
function.

PRINTF
appends a
newline to the
format string;
PRINF does
not.

Argumentl: a string

printf

int RANDOM (int)

Returns a
random
number

Argumentl: the upper
bound for the random
number. The random

rps_random

substrate/utilsCC/RpsMat

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Function signature

Description

Arguments and
returns

C++ function Include
file

between 0 and
one less than

number will always
be less than this

h.h

Argumentl. argument.
Returns: a random
integer
void Randomly cpp_randomize seed
RANDOMIZE_SEE | generate a scheduler/utils/random.h
D(random

number seed.

integer REGMATCH
(string, string)

Performs
pattern
matching on a
string.

Argumentl: a string
upon which to
perform pattern
matching.

Argument2: the string
containing the pattern
to match.

For rules about
building this string,
refer to Using
Expression
Comparisons.

Returns: 1 if a match
is found; 0 otherwise.

cpp_regex match

scheduler/utils/cpp_spl_u
tility.h

int RENAME FILE
(string, string)

Renames a
file.

Argumentl: The
name of an existing
file.

Argument: The new
name for the file.

Returns: 0 if
successful; nonzero
otherwise.

To read error
messages on a non-
zero return, use the
STRERROR
function.

rename _file

cpp_io.h

int

Sets the

Argumentl: the new

set_debug level

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-19

PEOPLESOFT PEPPERCODE

JANUARY 2001

(int)

message level.

Returns: the
previous message
level

Function signature Description Arguments and C++ function Include
returns file
SET MSG_LEVEL | current message level substrate/utilsCC/Error.h

(oset[instance<Spl_Cl
ass>))

instances by
name.

This operation is
destructive. The list
passed in is

int Sets the Argumentl: an oset cpp_set random_seed
EIIE)T_R?N?OM_SE random seed. | of integers scheduler/utils/random.h
(oset[int]) Returns: 1 when the
random seed was set,
0 otherwise.
void Sorts an oset Argumentl: An oset | cpp_sort by
SORT _BY NAME of named of named instances. name

scheduler/utils/cpp_spl s
ort.h

destructively
changed.
int STRERROR (int) | Returns an Argumentl: A strerror
error message | nonzero integer value cob ioh
for returned upon failure pp_{0-
RENAME FI | of RENAME FILE.
LE. Returns: The official
OS error message.
int Calls the C Argumentl: a string | C function strcmp
STRING—.COMPARE strcmp Argument?2: a string | PepperCode compiler
(string, string) function. includes h file for vou
Returns: the result of ’ y
strcmp
string Concatenates | Argumentl: an oset cpp_string_concat
STRng_CONCAT a? .oset of of strings substrate/utilsSPL/CppStr
(oset]string]) SHINES. Returns: a ing.h
concatenated string
date Converts a Argumentl: a string | cpp_string to_date
STRING_TO_DATE string of of format ”mm/dd/yy scheduler/utils/cpp._spl
(string) format hh:mm:ss <ch -
“onm/dd/ misc.
m }/3/ Returns: a date
hh:mm:ss
into a date
int STRLEN (string) | Calls the C Argumentl: a string | C function strlen
strlen

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPER

CODE

Function signature

Description

Arguments and
returns

C++ function Include
file

function.

Returns: the length of
a string

PepperCode compiler
includes .h file for you

string STRPRINT
(string, values, ...)

Prints to a
string.

Argumentl: A
formatted string
similar to what is
used in C++ printf.
The formatting
directive must be
%n$x, where n is the
position of the
variable argument
and x is the data type
of the variable. The
type of the argument
is anything you can
use for printf()
(except for the *
precision argument,
such as %.*s). In
addition, you can use
%D, which prints a
date/time value.

Argument2: The
values, if any, for the
formatted string in
argumentl. There
must be a value for
each formatting
directive in the string.

Returns: the string.

strprint

substrate/utilsCC/xOpenP
rint.h

string STRRPL
(string, string, string)

Takes a source
string and
within that
string replaces
every
occurrence of
one string
with another
string.

Argumentl: source
string

Argument?2: string
that will be replaced

Argument3:
replacement string

Returns: string
resulting from
replacing Argument3
with Argument2 in
Argumentl

strrpl

substrate/utilsSPL/CppStr
ing.h

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-21

PEOPLESOFT PEPPERCODE

JANUARY 2001

(string, string)

strstr function.

Argument2: a string

Function signature Description Arguments and C++ function Include
returns file
string STRSTR Calls the C Argumentl: a string | C function strstr

PepperCode compiler

Returns: the result of includes .h file for you

strstr
int STRING TO INT | Converts a Argumentl: a string | cpp_ascii_to int
(string) §tr1ng Into an Returns: an integer scheduler/utils/cpp_spl
Integer. . - T
misc.h
int TYPEP (classl, Determines if | Returns a nonzero
class2) aclassisa value if the second

class is a descendant
of, or equal to, the
first class.

descendant of
another class

GET_NAME_OF_CLASS

The function GET NAME OF CLASS will not be included as an intrinsic or built-in function in
Release 8.0 or later as it is no longer necessary to use this function. You can now use the
"class name" slot in place of GET NAME OF CLASS.

Every class and instance of a class has a predefined readonly slot of type string called

"class name" which gives the name of the class for the class or instance to which it is applied.
The following example demonstrates the use of the "class_name" slot as a replacement for the
GET NAME OF CLASS function.

Example:

This example uses actual Release 7.5 code taken from mfg_change over repair.spl. In the code,
an instance of the CO_Candidate class called co_candidate has just been created, and the name of
its class is to be printed to output. In Release 7.5, we did so with the following line of code:
PRINTF ("\n%s::", GET NAME OF CLASS (GET_ CLASS OF INSTANCE (co_candidate))) ;
In Release 8.0, you could use the following line of code for this purpose:
PRINTF ("\n%s::",

co_candidate.class name) ;

This line of code will print the string "CO_Candidate" to output. The "class name" slot will yield
the name of the class for

¢ An instance of a class (as in the example above)
e A class itself as in the following example.

Example:

10-22 UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

The following line of code (if applied to this example) will print the string "CO_Candidate":

PRINTF ("\n%s::", CO_Candidate.class name) ;

You may not wish to replace all of your GET NAME OF CLASS calls with the class name
slot. If this is so, there is an option. You could use the cpp_function statement to declare

GET _NAME OF CLASS as a C++ function. The following line added to your code will do this
and will save you a lot of work if you use GET NAME OF CLASS a lot:

cpp_function string GET NAME OF CLASS (class<Base Class>)
"rps_get name of class";

TYPEP Example

The following example of TYPEP prints the error message only if the class of the "part" variable
was not of type Inventory Part.

if (NOT(TYPEP (Inventory Part, GET CLASS OF INSTANCE (part)))) {

exit msg =

NLSPRINT ("Unit/Item '%13s/%23s' is not derived from a subclass of '%33s'.",
site name,part name, Inventory Part.class display name) ;

fail();

Using Expression Comparisons

Regular expression comparisons use these rules:

Matches any single character.

A

Matches the beginning of the string.

$ Matches the end of the string.

\x Matches the character x.

[abed] Matches any single character from the set
abcd.

[“abcd] Matches any single character not in the
set abced.

[a-d] Matches any single character between a

and d inclusively.

[“a-d] Matches any single character not between
a and d inclusively.

(regexp) Matches anything that matches regexp.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OPERATORS AND FUNCTIONS 10-23

PEOPLESOFT PEPPERCODE

10-24

JANUARY 2001

* Matches a sequence of 0 or more of the
preceding atom.

Matches a sequence of 1 or more of the
preceding atom.

? Matches 0 or 1 occurrence of the
preceding atom.

elle2 Matches either expression el or

expression e2.

Using Upstairs Objects Functions

When an PepperCode action executes the “fail” statement, it can still return to its caller via output
parameters any data which is scalar—values of type float, int, or string—or which is an oset of
scalars. However, it cannot return any data structure which requires the creation of an object or a
change to any slot on any object, regardless of the data type of the slot, because the context
mechanism rolls back—or “undoes”—such changes.

An object is in jeopardy if it would disappear when a “fail” causes the current context to end.
This is equivalent to saying that the object appears to have been created in the current context.
An object which is in jeopardy may have been created in a child context which ended with a
“succeed”, but it will disappear if the current context ends with a “fail”, because the context
rollback mechanism operates hierarchically. Similarly, the slot changes are in jeopardy, or the
slots appear to have changed in the current context.

The context mechanism records “object-creation” information whenever you invoke
CREATE _OBJECT or CREATE SUBCLASS. The context mechanism records a “slot change”
whenever you use the “=" assignment operator to change a slot on an object.

The following family of C++ functions cause the context mechanism to behave as if an object,
which appears to have been created in the current context, had actually been created in the parent
context. The functions also cause any slot changes, which appear to have occurred on that object
in the current context, to behave as if they had occurred in the parent context instead. These
functions move the object-creation and slot-change information “upstairs” to the parent context,
so that they are no longer in jeopardy and will be unaffected by a “fail” in the current action,
though they will still be rolled back by a “fail” in the parent action.

Upstairs Objects Functions

Function signature Description

C++ function

Arguments and returns

UPSTAIRS INSTANCE
(instance<Base Class, int)
cpp_upstairs_instance

Should be called for each
instance before calling fail.

Instance<Base Class>:
The instance for which this
function is called.

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Function signature

Description
C++ function

Arguments and returns

int: When set to a nonzero
value,

UPSTAIRS INSTANCE
examines each slot on the
object and call itself
recursively if appropriate.

UPSTAIRS CLASS
(class<Base Class, int)
cpp_upstairs_class

Should be called for each
class before calling fail.

Class<Base Class>: The
class for which this
function is called.

int: When set to a nonzero
value, UPSTAIRS CLASS
examines each slot on the
object and call itself
recursively if appropriate.

UPSTAIRS OSET INST
ANCE
(oset[instance<Base Class
], int)
cpp_upstairs_oset_instance

Should be called for each
oset of instances before
calling fail.

Oset[instance<Base Class
>]: The oset of instances
for which this function is
called.

int: When set to a nonzero
value,

UPSTAIRS INSTANCE
examines each slot on the
object and call itself
recursively if appropriate.

UPSTAIRS OSET _CLAS
S (oset[class<Base Class],
int)
cpp_upstairs_oset class

Should be called for each
oset of classes before
calling fail.

Oset[class<Base_Class>]:
The oset of classes for

which this function is
called.

int: When set to a nonzero
value, UPSTAIRS CLASS
examines each slot on the
object and call itself
recursively if appropriate.

To use one of these functions, perform the following steps:

1. Create classes and instances in the normal fashion with CREATE_SUBCLASS or

CREATE OBIJECT.

2. Change slot values in the normal fashion with the

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

c__

assignment operator.

UNDERSTANDING OPERATORS AND FUNCTIONS

10-25

PEOPLESOFT PEPPERCODE JANUARY 2001

3. Just before executing “fail”, invoke the appropriate “upstairs” function on each class or
instance.

The “upstairs” function move to a higher context the information about the creation of the

objects and the changes to their slots, and thereby protects the object-creation and the slot

changes from being undone by the “fail”. Moving the context information protects it from
jeopardy. Do not change any slots on an object after invoking the “upstairs” function and

before executing “fail”, because those changes will not be protected from jeopardy.

When you set the “int” argument to a nonzero value, the function examines each slot on the
object and call itself recursively if appropriate. In other words, if a slot contains an instance or
class which is in jeopardy, then the function will invoke itself recursively on that instance or
class; if a slot contains an oset of instances or an oset of classes, then the function will examine
each element of the oset and invoke itself recursively if that particular instance or class is in
jeopardy. As a safety feature, the function will not invoke itself recursively on an object which is
not in jeopardy, even though some slot changes on that object may themselves be in jeopardy. If
you want to move upstairs some in-jeopardy slot changes on a not-in-jeopardy object, you must
invoke the “upstairs” function explicitly on the not-in-jeopardy object: recursion will not do this.

Notice that recursion is only an issue for slots of type instance, class, oset of instance, or oset of
class. When a function sends a newly created instance upstairs, it also sends upstairs all slot-
changes related to that instance, regardless of the slot data type, and no matter whether a slot was
changed to point to an object created in the current context or to an object which was not created
in the current context. The “recursion” argument determines only whether the function applies
itself recursively to instances and classes which are pointed to by slots on the instance (or class)
originally passed to the function.

It is legal to execute these functions inside any action, provided that after the current context
comes to an end, there will be at least one context remaining below the “workspace” context.
Another way to state this restriction is that an “upstairs” function will refuse to move changes into
the “workspace” context. Thus, it is not legal to execute these functions in a transaction invoked
directly by the action interpreter, whether the action interpreter is operating in the original
workspace context or in a bookmark workspace context. If you attempt to execute an “upstairs”
function in a context that is not far enough below a workspace context, the function will print a
runtime error message and do nothing further.

It is legal to execute these functions inside a “:no_context” action provided there is at least one
context between the workspace context and the current context. In the case of a “:no_context”
action, the behavior of an “upstairs” function is consistent—it moves the context information
upward to the parent context—but it is not necessary what the programmer expects, because in
this case the current context is shared with the parent action, and the parent context is associated
not with the parent action, but with a more remote ancestor action in the call chain. For example,
if a “:no_context” action shares a context with its parent, the “upstairs” function moves the
changes to the context belonging to its grandparent; if a “:no_context” action shares a context
with its grandparent (because the parent is also a “:no_context” action), the “upstairs” function
moves the changes to the context belonging to its great-grandparent; and so on.

It is legal to execute one of these functions explicitly on a class or instance which is not itself in
jeopardy; the function will move upstairs any slot changes on that object which are themselves in

10-26 UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

jeopardy, even though the object is not. Thus an action can change a slot on an object created by
its parent, then call an “upstairs” function on that object to protect the slot change which would
otherwise be in jeopardy, and then “fail” without losing the effect of that slot change.

Following is a short example of using the UPSTAIRS INSTANCE function.
action test upstairs
(local: instance<Base Class> obj)
{
obj = create object (:object name "animal",
:class_name "Named Class");
UPSTAIRS INSTANCE (obj, 1);

fail();

Using String Functions for National Language Support

When you wish to create a version of your program targeted at a particular nation, many—but not
all—string constants in a program need to be translated into the local language of that nation.
Also, string comparisons need to use the algorithms which are appropriate to that language: for
example, comparing strings which contain characters with accents and umlauts may require a
special string-comparison function.

You can use two functions to support languages targeted at a particular nation: NLSPRINT and
NLSTRCMP. Use the following rules to decide when to use these functions:

e Use NLSPRINT to print to a string anything which needs translation to the local language: for
example, an error message to the user. Use STRPRINT, which behaves the same as
NLSPRINT except that it does not do string translation, to print anything which do not need
translation: for example, the name of an action or class.

e Use NLSTR to look up a translation for a string.

e Use NLSTRCMP to compare strings using local-language rules: for example, to sort a list of
strings for presentation to the user. Use STRCMP to compare strings without using local-
language rules: for example, to compare strings for precise equality regardless of language.

The include file to use with the NLS functions is substrate/utilsCC/NLString.h.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OPERATORS AND FUNCTIONS 10-27

PEOPLESOFT PEPPERCODE JANUARY 2001

International Language Functions

Description
Function signature C++ function Arguments and returns

string NLSPRINT (string, | Prints to a string. Allows | Argumentl: A formatted
values, ...) for international string similar to what is
characters. used in C++ printf. The
formatting directive must
be %n$x, where n is the
position of the variable
argument and x is the data
type of the variable. The
type of the argument is
anything you can use for
printf() (except for the *
precision argument, such
as %.*s). In addition, you
can use %D, which prints a
date/time value.

where arg_names is an
optional list of argument nlsprint
names.

Argument2: The values, if
any, for the formatted
string in argumentl. There
must be a value for each
formatting directive in the
string.

Returns: the translated
string.

string NLSTR (string) Look up the translated Argumentl: a string. The
string. string that this function

looks up a translation for.
nlstr

Returns: the translated
string. If no translation
table is loaded or no
translated string is found,
returns the original string.

int NLSTRCMP (string, Compares two strings. Argumentl: a string
string) Allows for international Argument2: a string
characters.

Returns: the result of
NLSTRCMP, which has
the same results as the

strcmp function.

nlstremp

10-28 UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Following is an example NLSPRINT statement.

exit msg = NLSPRINT ("transaction create sales order: Unit '%1$s' does not
exist.", site name);

Run nlscollect to collect the strings for translation tables. These tables allow your code to print
using international languages.

To collect the strings into the translation table, perform the following steps:

1. If you are creating a new translation table, use the following command to copy the given
translation table, rps_nls_collect, to the translation table file nls_translation_table:

cp SRPSHOME/resources/rps nls table translation file name

where translation_file name is the name of the file containing the new translation table.

2. Use the following command to run nlscollect on your spl files. This command will append
the translation table for your code onto the translation table file.

nlscollect *.spl >> translation file name

where translation_file name is the name of the file containing the translation table.
3. Have the translator fill in the translations in the translation table.

4. Have the system administrator add the following lines to the .rps resource file:
TRANSLATION TABLE = translation file name
COLLATION TABLE = collation file name

CHARSET = character_set name

where translation_file name is the name of the file containing the translation table,
collation_file name is the name of the file containing the collation table, and
character_set name is the name of the character set. The translation file name and the
collation file name should have the full pathname where these files are stored. The collation
table should be in SRPSHOME / resources; the default filename is US-ASCII.collation.
The character set name should match the character set name that is listed in the translation
table.

The translation table will contain the collected strings, followed by a line to be filled in by a
translator. A comment in front of each string shows which file contains the string, along with the
line number in the file. The CHARSET line tells what character set name to use (in this case,
US-ASCII). The following is the beginning of a sample translation table.

// 'MSGTRANSLATION-RPS-PRA-2.1

CHARSET=US-ASCII

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OPERATORS AND FUNCTIONS 10-29

PEOPLESOFT PEPPERCODE JANUARY 2001

//mfg_attribute_transactions.spl:988

"transaction add mfg attribute: Mfg Attribute Name cannot be blank.",

//mfg_attribute_transactions.spl:993

"transaction add mfg_attribute: Mfg Attribute '%1$s' already exists.",

nn

The following is the beginning of the same translation table., filled out by a translator. In this
example, the translated strings just have the letter “X” added.

// 'MSGTRANSLATION-RPS-PRA-2.0

CHARSET=US-ASCII

//mfg_attribute_transactions.spl:988
"transaction add mfg attribute: Mfg Attribute Name cannot be blank.",

"Xtransaction add mfg attribute: Mfg Attribute Name cannot be blank."

}
{

//mfg_attribute_transactions.spl:993
"transaction add mfg_attribute: Mfg Attribute '%1$s' already exists.",

"Xtransaction add mfg attribute: Mfg Attribute '%1$s' already exists."

}

10-30 UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Using Postpone Side Effects Functions

You can postpone side effects. When side effects are postponed, subsequent assignments to input

slots do not affect the output slot, and the output slot can be resynchronized later to reflect the
eventual values of the input slots. For example, this could be used the "cancel tasks" feature.

Postpone Side Effect Functions

Function signature

Description
C++ function

Arguments and returns

RETRACT AND POSTP
ONE_SE (slot)

Invokes the “Retract”
method using the current
values of the input slots,
and then postpones further
evaluation of all of the side
effects with which that slot
is associated. Any
subsequent assignment to
that slot will not trigger the
side effects functions
associated with the slot. If
a subsequent assignment
does change the value of
the slot, the histories
associated with these
functions will remain
unchanged and therefore
become inconsistent with
the value of the input slot.

slot: A reference to a slot
that has side effects.

Returns: void

It is an error to invoke this
function on a slot which
has no side effects
associated with it, but it is
harmless to invoke it on a
slot for which some or all
of the side effects are
already postponed. On
error, this function prints a
message on the server
console but allows the
server to continue running.

RESYNCH_SE(slot)

Tells the slot to assert the
side effects functions
associated with the slot, so
that all histories associated
with those side effects
become consistent with the
values of all of their input
slots.

slot: A reference to a slot
that has side effects.

Returns: void

It is an error to invoke this
function on a slot which is
not an input to any side
effects, but it is harmless to
invoke it on a slot whose
side effects are not in the
postponed state. On error,
this function prints a
message on the server
console but allows the
server to continue running.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-31

PEOPLESOFT PEPPERCODE JANUARY 2001

10-32

Description
Function signature C++ function Arguments and returns
int Checks to see if all the side | slot: A reference to a slot

IS ASSERTED_SE(slot) effects associated with a that has side effects.

slot are postponed. Returns: False if all the

side effects associated with
the slot are postponed, true
otherwise.

It is an error to invoke this
function on a slot that is
not associated with any
side effects. On errors,
this function prints a
message on the server
console but allows the
server to continue running.

The PepperCode "succeed", "fail", and "leave" operations will behave normally. If an action
succeeds, slots retain the states they held at the end of execution of the action; if the action fails or
leaves, slots revert to the state they held at the start of execution of the action.

Snapshots will preserve the postponement state of each side effect.

As a side benefit, these functions also eliminate redundant side effect evaluation. The problem is
that if two slots "start_time" and "end_time" are associated with the same side effect, the
"side_effect t::Retract" method gets invoked twice and the "side effect t::Assert" method gets
invoked twice:

x.start_time = 5; // Retract, then assert unnecessarily

x.end_time = 10; // Retract unnecessarily, then assert

Because nobody references the history between the two assignments, it would be sufficient to
invoke the side_effect t::Retract method once—using the values of the two slots prior to the first
assignment—and the side_effect t::Assert method once—using the values of the two slots after
the second assignment.

RETRACT AND POSTPONE SE (x.start time) ;
// Save old value of start time,
// end time, and quantity in
// side_effect t and retract.

RETRACT AND POSTPONE SE (x.end time); // Already postponed, so do nothing

UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

RETRACT AND POSTPONE SE (x.quantity); // Already postponed, so do nothing
x.start_time = 5; // No side effect processing
x.end time = 10; // No side effect processing
X.quantity = 2.0; // No side effect processing
RESYNCH_ SE (x.start_time); // Invoke "Assert" method
// using current values of slots;
// change state to "valid".
RESYNCH SE(x.end time); // Not postponed, so do nothing.

RESYNCH_ SE (x.quantity) ; // Not postponed, so do nothing.

Actually, you only need to invoke RETRACT AND POSTPONE SE and RESYNCH_SE on
one of the input slots:

RETRACT AND POSTPONE SE (x.start time);
x.start_time = 5;
x.end time = 10;
x.quantity = 2.0;

RESYNCH_SE (x.start_time) ;

Using Functions That Query From PepperCode

You can make queries from PepperCode using the same syntax which is available to the client
through the action interpreter. You can also issue a special query which operates on an oset of
candidate instances, instead of starting with a list of classes.

@ For more information about the query language, see Writing Queries within the Using
PepperTools 8.0 Applications PeopleBook.

The PepperCode interfaces are the QUERY and QUERY OSET functions.

The include file to use with these functions is substrate/utilsSPL/NLString.h.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OPERATORS AND FUNCTIONS 10-33

PEOPLESOFT PEPPERCODE

10-34

Query Functions

JANUARY 2001

Function signature

Description
C++ function

Arguments and returns

int QUERY (string,
oset[instance<Base_ Class>

D

Makes a query. Returns
the result set at time of the
query—a list of instances
that satisfy the query. It
does not create an instance
of type “Query,” subscribe
to that instance, and
periodically reevaluate the

query.
ai_spl_query

Argumentl: a string
containing a select
statement.

Argument2: an oset of
instances or classes that
will be “filled in” during
the function execution.
The instances are the ones
that satisfy the query.

Returns: 0 if there is an
error. If there is an error,
the oset in argument?2 is
not changed.

int QUERY OSET
(oset[instance<Base Class
>], string,
oset[instance<Base_ Class>

D

Issues a query against an
existing oset of instances
instead of a list of classes,
as is done in QUERY.

ai_spl query oset

Argumentl: The candidate
instances.

Argument?2: the where and
order-by clauses.

Argument3: the result
instances.

An example of a simple PepperCode function which uses the QUERY function is:

action test query(input: string select statement,

output: oset[instance<Base Class>] results)

{

if (QUERY (select statement, results))

succeed () ;

fail();

}

In QUERY_OSET, the string in argument 2 must contain a “where” clause or an “order-by”

clause with an optional semicolon at the end, as in the following example:

local: oset[instance<Base class>] candidates,

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

output: oset[instance<Base Class>] results

QUERY OSET (candidates, "where quantity > 50 order by display name;", results);

It applies the "where" predicate to the instances in the candidate list, selects the ones which pass
the test, and then sorts the remaining ones using the "order by" keys. The QUERY_ OSET
function returns zero on error, one on success.

Here is an example of a simple PepperCode function which uses the QUERY OSET function to
achieve the same effect as a normal query:

action test oset query(input: string class name,
input: string where and order by clauses,
output: oset[instance<Base Class>] results,
local: oset[instance<Base Class>] candidates)
{
// Get a list of all instances of the specified class
GET DESCENDANTS (candidates, GET CLASS BY NAME (class name), 1);
// Filter them using the specified clauses
if (QUERY OSET (candidates, where and order by clauses, results))
succeed () ;
fail();

}

Using History Functions
The following table lists the history functions. The include file to use with these functions is

scheduler/utils/cpp_spl_history.h. The C++ function is cpp NAME,where NAME is the function
name.

History Runtime Functions

Function signature Description Arguments and returns
float Gets the last history Argumentl: a history.
GET _END OF HISTOR | element in the history.

Return: the value of the

Y VALUE This should be the same as last history element in the

GET VALUE (history,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OPERATORS AND FUNCTIONS 10-35

PEOPLESOFT PEPPERCODE

10-36

JANUARY 2001

Function signature Description Arguments and returns
(history<float>) end of time). history.
int Tests to see if a quantity in | Argumentl: a history.
QUANTITY_OF HISTO | a history always exists A . .

- - . t2: tity.
RY EXISTS over a given length of reuments a quatiity

(history<float>, float, date,
date)

time.

Argument3: start date.
Argument4: end date.

Returns: TRUE if no point
in time between the start
data and the end date has a
value < quantity.

int
QUANTITY OF HISTO
RY EXCEEDS
(history<float>, int, date,
date)

Tests to see if a quantity in
a history exists at all over a
given period of time.

Argumentl: a history.
Argument2: a quantity.
Argument3: start date.
Argument4: end date.

Returns: TRUE if any
point in time between the
start data and the end date
has a value > quantity.

float

MAX QUANTITY OVE
RALLOCATED
(history<float>, date, date)

Finds the maximum
quantity that is
overallocated.
Overallocated means value
<0.

Argumentl: a history
Argument?: start date
Argument3: end date

Returns: The maximum
amount that any point in
time is overallocated
between the start time and
the end time. The absolute
value of the value is
returned. Returns O if no
point in time is
overallocated.

void

GET OVERALLOCATE
D CHANGERS
(oset[instance<Spl_Class>]
, history<float>, date, date)

Fills the changers list with
a list of all resource
constraints that have a side
effect in the changers list
of a history element that is
overallocated.
Overallocated means value
<0.

Argumentl: the changers
list. An oset of instances
that will be filled during
the function execution.

Argument2: a history.
Argument3: start time.

Argument4: end time.

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Function signature Description Arguments and returns

date Searches for a set of Argumentl: a history.
NEXT TIME TO TRY intervals of a given
(history<float>, duration, where the
instance<Spl Class>, float, | calendar is legal, and the
date, int, int, time, date) quantity exists in the
history.

Argument2: a calendar.
This function looks for
intervals where this
calendar is legal.

Argument3: quantity. This
function searches for
intervals where this
quantity exists in this
history.

Argument4: the start date.

Argument5: search
direction. If 1, search later
that the start date. If not 1,
search earlier than the start
date.

Argument6: the splittable
flag. If 1, the returned
intervals do not have to be
contiguous.

Argument7: the duration of
the intervals to search for.

Argument8: an invalid
time.

Returns: the next time to
try. If no intervals are
found, returns the invalid
time.

date Searches for a set of Argumentl: a state history.
STATE NEXT TIME T | intervals of a given
O_TRY (history<string>, | duration, where the
history<string>, string, int, | calendar is legal, and the
date, int, time, date) quantity exists in the state
history.

Argument2: a calendar.
This function looks for
intervals where this
calendar is legal.

Argument3: the name of
the state.

Argument4: flag to use
either the achieve state
match test or the string
match test.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING OPERATORS AND FUNCTIONS 10-37

PEOPLESOFT PEPPERCODE

JANUARY 2001

Function signature

Description

Arguments and returns

Argument5: the start date.

Argument6: search
direction. If 1, search later
that the start date. If not 1,
search earlier than the start
date.

Argument7: the duration of
the intervals to search for.

Argument8: an invalid
time.

Returns: the next time to
try. If no intervals are
found, returns the invalid
time.

float
GET HISTORY VALUE
(history<float>, date)

Returns the value for this
time point in the history

Argumentl: a history.

Argument2: a time point in
this history.

Returns: value at this time
point in the history.

float
AREA UNDER CURVE
(history<float>, date, date)

Computes the sum of
positive area under the
curve of the history passed
in from a start time to an
end time.

For all intervals or partial
intervals:

— if (interval value > 0)
then

(interval end - interval
start) * interval value

else 0

Argumentl: a history.
Argument2: start time.
Argument3: end time.

Returns: the sum of the
positive area under the
curve of the history from
the start time to the end
time.

void

MOST _OVERALLOCAT
ED_CHANGERS
(oset[instance<Spl_Class>]
, history<float>, date, date)

Return the changers for the
most overallocated interval
in the history between st
and et.

Argumentl: the changers
list. An oset of instances
that will be filled during
the function execution.

Argument2: a history.
Argument3: the start time.

Argument4: the end time.

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Function signature

Description

Arguments and returns

float Return the value at the Argumentl: a history.
(;]'ET_H\LIEIAI;_AMOUNT beginning of time. Returns: the value at the
(history<float>) beginning of this history.
float Return the minimum Argumentl: a history.

MIN _HISTORY VALUE
(history<float>, date, date)

history value.

Argument2: start time.
Argument3: end time.

Returns: The minimum
value for all the time
points between the start
time and the end time.

void

ANALYZE HISTORY
(history<float>,
history<float>, oset[int])

Return an analysis of a
history.

Argumentl: a history.

Argument2: the history
that represents the original
values, before anything is
changed.

Argument3: an oset of four
integers that will be filled
during the function
execution. These are:

the number of supply tasks
effecting history,

the number of constraints
effecting history,

the number of history
elements in initial history,
and

the number of history
elements in history.

int STATE_EXISTS
(history<string>, string,
date, date)

Tests to see if a state
exists.

Argumentl: a history.
Argument?: a state.

Argument3: start time.
Argument4: end time.

Returns: TRUE if the state
1s the value of at least one
point in time from the start
time to the end time.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-39

PEOPLESOFT PEPPERCODE

10-40

JANUARY 2001

Function signature

Description

Arguments and returns

date

NEXT LEGAL CALEND
AR_TIME
(history<string>, date,
date)

Gives the date of the next
time when the calendar is
legal.

Argumentl: a calendar.
Argument2: a start time.

Argument3: an invalid
date.

Returns: the date of the
next place after the start
time when the calendar is
legal. If no such time
exists, returns the invalid
date.

int

IS LEGAL CALENDAR
_TIME_FOR_SPLITTING
(history<string>, date, int)

(Note: In the code, this is
shown as a date. However,
int is the proper type to
use.)

Tests a calendar to see if a
time is a legal time to
begin a split child task.

Argumentl: a calendar.
Argument2: start time.

Argument3: search
direction. If 1, search later
that the start time. If not 1,
search earlier than the start
time.

Returns: TRUE only if the
start time is a legal time to
begin a split child task in
the direction indicated.
For example, 8:00 AM is
not legal for a backward
split on a 5 day 2 shift
calendar, but it is legal on
a 5 day 3 shift calendar.
Returns FALSE (0) if it
can not find time.

date

PREVIOUS LEGAL CA
LENDAR TIME
(history<string>, date,
date)

Returns the previous time
that the calendar is legal.

date

PREVIOUS LEGAL CA
LENDAR TIME
(history<string> calendar,
date st, date invalid_date)

Argumentl: a calendar.
Argument2: start time.

Argument3: an invalid
date.

Returns: the date of the
next time before the start

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Function signature

Description

Arguments and returns

time that the calendar is
legal. If none exists,
returns the invalid date.

nt

TIME BETWEEN TWO
POINTS FOR CALEND
AR (history<string>, date,
date)

Computes the duration of
legal time on the calendar.

Argumentl: a calendar.
Argument2: start time.
Argument3: end time.

Returns: the duration of
legal time on this calendar
between the start time and
the end time.

date Finds the next break in the | Argumentl: a calendar.

NEXT CALENDAR BR | calendar. Argument2: a time

EAK (history<string>, ' '

date) Returns: the end time of
the interval that contains
the given time.

date Find the previous break in | Argumentl: a calendar.

PREVIOUS CALENDAR | the calendar. Argument2: a time

_BREAK (history<string>, ' '

date) Returns: the start time of
the interval that contains
the given time.

void Add a quantity to a history | Argumentl: a history.

ADD _TO_HISTORY_ VA
LUE _ON_CALENDAR
(history<float>,
history<string>, float)

at all points in time where
a given calendar is legal.

Argument?2: a calendar.

Argument3: a quantity that
is added to the history
whenever the calendar is
legal.

void

GET INVENTORY ARE
AS (oset[date], oset[date],

oset[float], history<float>,
date, date)

Computes areas of positive
inventory. An areais a
continuous set of time
points where the value is
always positive. The
history is passed in and
calculated from start time
to end time, the results are
passed out such that the
first element in the oset of
start times is the start time
of the first area, the first
element of the oset of end

Argumentl: an oset of start
times for computed areas.
This will be filled during
the function execution.

Argument2: an oset of end
times for computed areas.
This will be filled during
the function execution.

Argument3: an oset of
areas that have a positive
inventory. This will be
filled during the function

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-41

PEOPLESOFT PEPPERCODE

JANUARY 2001

Function signature

Description

Arguments and returns

times is the end time of the
first area, and the first
element in the oset of areas
1s the area—time *
quantity—containing
positive inventory.

execution.
Argument4: a history.

Argument5: start time at
which to compute the
areas.

Argument6: end time at
which to compute the
areas.

int
NUMBER _OF AREAS S
HORT (history<float>,
date, date, float)

Count the number of areas
where the value does not
drop below threshold.

Argumentl: a history.
Argument2: start time.
Argument3: end time.
Argument4: a threshold.

Returns: the number of
areas from start time to end
time in this history where
the value does not drop
below the threshold.

date

GET _DATE OF NEXT
NEGATIVE VALUE
(history<float>, date, date)

Find the next point in time
where the value < 0.

Argumentl: a history.
Argument2: start time.

Argument3: an invalid
date.

Returns: the next time after
the start time where the
history value is < 0. If no
such time is found, returns
the invalid date.

date

GET DATE OF PREVIO
US NOT ENOUGH
(history<float> history,
float enough, date st, date
et)

Find the previous point in
time where the value is not
enough.

Argumentl: a history.

Argument2: a history value
that represents enough
value.

Argument3: a start time.

Argument4: an invalid
time.

Returns: the previous time
before the start time where
the history value is <
enough. If no such time is
found, returns the invalid

UNDERSTANDING OPERATORS AND FUNCTIONS

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Function signature

Description

Arguments and returns

date.

void
ADD TO HISTORY VA
LUE (history<float>, float)

Adds a quantity to the
value for all time points on
history

Argumentl: a history.
During function execution,
a quantity will be added to
the value on all time points
on this history.

Argument2: a quantity to
add to all time points on
the history.

void

GET ALLOCATED CH
ANGERS
(oset[instance<Spl Class>]
, history<float>, date, date)

Return all resource
constraints that have an
effect on history during
intervals where the value >
0.

Argumentl: changers. An
oset of resource constraints
that will be filled during
function execution. These
are all the resource
constraints that have an
effect on the history where
the value > 0.

Argument2: a history.

Argument3: start time at
which to return resource
constraints.

Argument4: end time at
which to return resource
constraints.

Using Dump Functions

The following functions allow you to dump information to a file. The include file to use with
these functions is scheduler/utils/cpp_spl dump.h. The C++ function is cpp NAME, where

NAME is the function name.

Dump Functions

Function signature

Description

Arguments and returns

int
OPEN_DUMP_FILE(strin
g, string)

Opens a file that can be
modified by the dump
functions. Only one file at
a time can be opened by
OPEN DUMP FILE. If

Argumentl: The complete
filename, including the
path, to be opened.

Argument2: The mode of

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-43

PEOPLESOFT PEPPERCODE JANUARY 2001

Function signature Description Arguments and returns
the open fails, the the file open. "w" for
dump fail flag is set to 1. overwrite the existing file,

and "a" for append to the
existing file.

Returns: 1 if successful, 0

if dump failed.
int Closes the file that was Returns: 1 if successful, 0
CLOSE_DUMP_FILE() opened by if dump failed.

OPEN _DUMP FILE.

void DUMP_DATE(date, | Prints a date to the dump Argumentl: The date to be
int, int) file. printed.

Argument2: The number
of characters used in the
print format.

Argument3: A flag to
determine if the output to
the dump file is right-
justified. 0 = left-justified,
1 = right-justified.

void Prints a float to the dump Argumentl: The float to be
DUMP_FLOAT(float, int, | file. printed.
int)

Argument2: The number
of characters used in the
print format.

Argument3: A flag to
determine if the output to
the dump file is right-
justified. 0 = left-justified,
1 = right-justified.

void DUMP_INT(int, int, | Prints an integer to the Argumentl: The integer to
int) dump file. be printed.

Argument2: The number
of characters used in the
print format.

Argument3: A flag to
determine the justification
for the output to the dump
file. 0 = left-justified, 1 =
right-justified.

10-44 UNDERSTANDING OPERATORS AND FUNCTIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

Function signature

Description

Arguments and returns

void
DUMP_NEWLINES(int,
int, int)

Prints newlines to the
dump file.

Argumentl: The number
of newlines to print.

void DUMP_SPACES(int,
int, Int)

Prints spaces to the dump
file.

Argumentl: The number
of spaces to print.

void
DUMP_STRING(string,
int, int)

Prints a string to the dump
file.

Argumentl: The string to
be printed.

Argument2: The number
of characters used in the
print format.

Argument3: A flag to
determine if the output to
the dump file is right-
justified. 0 = left-justified,
1 = right-justified.

void DUMP_TIME(time,
int, int)

Prints a time to the dump
file.

Argumentl: The time to be
printed.

Argument2: The number
of characters used in the
print format.

Argument3: A flag to
determine if the output to
the dump file is right-
justified. 0 = left-justified,
1 = right-justified.

int
DUMP RESET STATUS
0

Resets the dump_failed
flag to 0 and returns 0.

Returns: 0

int
DUMP_TEST RESET ST
ATUS()

Resets the dump_failed
flag to 0 and returns the
previous value of the

dump failed flag. This is
useful if you want to check
the value of the
dump_failed flag.

Returns: The value of the
dump _failed flag (before it
is reset to 0 by this
function).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

UNDERSTANDING OPERATORS AND FUNCTIONS

10-45

CHAPTER 11

Writing PepperCode Applications

This section provides guidelines for creating PepperCode applications.

Writing a PepperCode Class

Here is an example of a class that shows its main elements:

Following are general guidelines for writing a PepperCode class. Although you can use these
guidelines in any order, you could follow them sequentially as you design a class.

Naming A Class

When writing the name of the class, separate and capitalize each “word” of the class name.
This: class Spl Class

Not this: class spl_class

This will allow action parameters to be easily named by using the lowercase version of the class.
For example:

input: instance<Spl Class> spl class,

Naming Class Slots

Use lowercase when naming the slots of a class.
This: action<delete> delete action

Not this: action<delete> Delete Action or action<delete> DELETE ACTION

Adding An Action To A Class

When adding a new action to a class (commonly referred to as a method), make the action slot a
“class slot.”

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-

PEOPLESOFT PEPPERCODE JANUARY 2001

Very little memory is required for a class slot, because the slot is stored on the class and not on
each instance. Here is an example of a class slot:

class Spl Class : Base Class {

action<delete> delete_action

bi

slot Spl Class.delete action { default: delete spl class class_slot: };
Notice that a slot default value is needed for specifying a class slot.

However, when assigning an action to an existing action slot (commonly referred to as
“specializing the method”), using the class_slot: keyword is unnecessary and should not be used
to avoid confusion. For example:

class My Spl Object : Spl Class {

}i

slot My Spl Object.delete action { default: delete my spl object };
delete action isn’t defined at this level, and therefore isn’t called a class slot.

When adding an action to a class, always provide a default method.

v If a default method is not provided, any PepperCode code that accesses and attempts to
execute the action will break.

Adding Default Values To A Class

When defining default values, place the slot statements directly below the class definition, as in
the previous example of Spl_Class.

This will make the class definition readable and easy to modify.

Specializing Class Slots

Specialize slots when possible.

In PepperCode, the data type of a slot can be “specialized” when the slot is inherited from another
class. Specializing slots will prevent unnecessary casting to the needed type. Specializing a slot
does not add an extra slot (or any extra memory) to an object. Only the type of slot is changed.

Here are a few classes and PepperCode statements that demonstrate why specializing slots is a
good idea:

class Basic _Task : Spl Class { // A basic task object

11-2 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

class Child Task : Basic Task { // A child task

int child task information // with some stuff stored on it

class Parent Task : Basic Task { // A parent task
oset [instance<Child Task>] children

// with child tasks stored on it

}i

If you wanted to write new parent and child task classes that inherit from the previous classes,
you could do the following. The new child task class will have additional slot information that
does not exist in the Child Task task. The new parent class will have only instances of the new
child class stored in its children slot. Here are the new classes without slot specialization:

class My Child Task : Child Task { // New child task

string my information // with some new stuff stored on it

}i

class My Parent Task : Parent Task { // New parent task

}i

v Note: In this case, “parent” and “child” refer to part-whole relationships, not to class-
subclass relationships. A Child Task is not a subclass or instance of a Parent Task.

Because only tasks of class My Child Task are stored in the children slot of My Parent Task,
and there is no slot specialization on the children slot of class Parent_Task, the following code
will have to “cast” to the appropriate class before the slot my information can be referenced from
the My Child_Task class:

action find child by using my information
(input: instance<My Parent Task> my parent task,
input: string my information,
local: instance<My Child Task> temp child task,
// Must use a cast variable

output: instance<My Child Task> my child task,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-3

PEOPLESOFT PEPPERCODE JANUARY 2001

no_context:)

my child task = 0; // Specify a default for the output variable.
foreach child task in my parent task.children {
temp child task = child task; // Must cast so that the
// slot my information can be accessed.
if (temp_child task.my information == my information) {
my child task = temp child task;
succeed () ;

}

succeed () ;

Without the above cast from child task to temp_child task, the compiler would not have allowed
the slot my_information to be accessed.

@ For more information about the term “cast,” refer to Using Casting.

If the slot children on the class My Parent Task was specialized to the correct type, as in the
following code, the action find child by using my information could be written without the
cast. To specialize a slot, redefine the existing slot name. In this example, the slot children
does this.

class My Parent Task : Parent Task { // New parent task

oset [instance<My Child Task>] children // Specialize slot.

action find child by using my information
(input: instance<My Parent Task> my parent task,
input: string my information,
output: instance<My Child Task> my_ child_task,

no_context:)

11-4 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

my child task = 0; // default the output variable
foreach child task in my parent task.children {
if (child task.my information == my information) {
// No cast necessary
my child task = child task;

succeed () ;

}

succeed () ;

}

More examples of specializations can be found in the file
scheduler/spl/constraints/constraints.spl. Look at the slot object and how it is specialized on each
resource constraint class.

Using Casting

Casting (or downcasting) means altering the type of an inherited or system-defined parameter.
You do it so that the object which is the binding of the parameter will come to have the proper
slots.

Assume you're writing a method action in the Dog class called go_to _kennel action. It
will become the value of the go_home method defined at the Mammal class level, whose default
action is default go home action. And that default action belongs to a schema,

go _home schema, which provides the input parameter mammal self, representing the
Mammal which goes home. The mammal self input parameter is typed as a Mammal.

(input: instance<Mammal> mammal self, ?)

Since your go_to_kennel action also belongs to the go _home schema—it had better,
or it won't be allowed as the value of the method slot—it also inherits the mammal self
parameter. But your action wants to do something with the Kennel slot on the object passed in
asmammal self. A Dog doesn't just go to any old home: it has to be a kennel. And the
problem is that a generic Mammal instance doesn't have a Kennel slot. For that, you have to be
an instance of Dog. So you have a problem, because if your action refers to the nonexistent slot
Kennel on the object bound to the mammal self parameter, crashes will result. So you have
to (down)cast the binding of mammal self in order to alter its type. This insure that it will be
interpreted as a Dog instance.

The syntax is:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-5

PEOPLESOFT PEPPERCODE JANUARY 2001

action<go_home schema> go to kennel action (local: instance<Dogs>
locvar _dog self, ?)

locvar _dog self = mammal_ self

Once you've done this, and only then, can you confidently refer to Kennel and any other slots that
only a Dog would have on the object passed in as mammal self and now bound to
locvar dog self.

Writing a PepperCode Action
Here is an example of an action definition that shows some main elements:
// Action

action print_simple string

// Action parameters
(input: string pstring = “Null”,
local: int string length = 0,

output: int printed)

// Action body

{

printed = 0;
string length = STRLEN (pstring);
if (string length < 2) {

PRINTF (“\n%s”, pstring);

printed = 1;

succeed () ;

Following are general guidelines for writing a PepperCode action. Although you can use these
guidelines in any order, you could follow them sequentially as you design an action.

11-6 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Using no_context

Use the no_context: keyword appropriately.

Every action generates a new context by default. If the no_context: keyword is used in the
parameter list of an action, then that action will not generate a new context.

Determining when an action should have a context is not always clear. Here are a few rules that
make the decision easier.

An action should generate a new context if it can fail after PepperCode objects have been
modified. In this case, the modification of PepperCode objects includes the following:

¢ slot modification on instances or classes
o the creation of PepperCode instances and classes
o the deletion of PepperCode instances and classes

An action should not generate a new context if no data values are modified, no objects are
created, and no objects are deleted. This is commonly done in reports.

Whenever possible, don't allow actions to generate unnecessary contexts. Extra context
processing is very inefficient.

Avoiding Static Parameters

Beware of static action parameters.

Because static action parameters maintain their values until the calling action exits, it is easy to
introduce bugs while using them. This section lists the action parameter defaults.

@ For more information about action parameters, refer to Writing Action Parameters.

Here are some practical rules that should help. When an action is called multiple times from the
same action, do not rely on its default values unless you reset them before the action exits. An
example of resetting default values is in the action create_object from the file
scheduler/spl/dispatch.spl. The create object action resets the parameter object name before it
succeeds or fails.

action create object

{

if (object name == "") {

PRINTF ("\n\n\nHEY!!! YOU CANNOT CREATE AN OBJECT OF CLASS $%s WITH AN
EMPTY NAME! ! !\n\n\n",

class_name) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-7

PEOPLESOFT PEPPERCODE JANUARY 2001

new object = 0;
object name = " Anonym "; // reset because of static action parameters
fail();
}
else {
new object = CREATE OBJECT (object name, class name) ;
object name = " Anonym "; // reset because of static action parameters

succeed () ;

Checking The Output Variable On An Action

When using an output variable on an action, make sure that it has a value before the action exits.

This will allow other actions to use the output variable, even if the action fails. Default values
cannot always be used reliably for this, because action parameters are static and maintain values
across multiple function calls.

This is the correct way:
action get some value
(input: instance<Some Spl Object> object,
output: int some_value,

no_context:)

some _value = 0; // Provide an output for the output parameter.
//

// Other code here to find and set some value.

//

succeed () ;

Here are two incorrect ways:

action get some value

11-8 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

(input: instance<Some Spl Object> object,
output: int some_value,

no_context:)

// No default provided here

//

// Other code here to find and set some value.

//

succeed () ;

action get some value
(input: instance<Some Spl Object> object,
output: int some value = 0, // Won't work for multiple calls.

no_context:)

//

// Other code here to find and set some value.

//

succeed () ;

Grouping Action Parameters
For readability, group action parameters together by type.
This is the correct way:
action create production in period
(input: instance<Part> part,
input: float quantity,

input: date period start,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-9

PEOPLESOFT PEPPERCODE JANUARY 2001

input: date period end,
input: instance<Equipment Resource> equipment resource,
input: instance<Build Option> build option,
input: int batch method = 0,
input: int return production = 0,
input: string routing class name = "Routing Parent",
local: oset[instance<Spl Class>] objects,
local: oset[string] strings,
local: action<choose build option> choose build option,
local: action<set current resource on bors> set current resource on bors,
local: action<clear_ current_resource_on_bors> clear current_ resource_on_,
local: action<equipment matches any bor> equipment matches any bor,
local: action<production supply in periods> production supply in period,
local: action<create_production> create production,
output: oset [instance<Routing Parent>] new production,
output: string exit msg = "",

no_context:)

This is the incorrect way:

action create production in period

(input: instance<Part> part,
local: oset[instance<Spl Class>] objects,
output: oset [instance<Routing Parent>] new production,
local: oset[string] strings,
input: float quantity,
input: int batch method = 0,
input: int return production = 0,
local: action<choose build option> choose build option,
input: string routing class name = "Routing Parent",

local: action<set current resource on bors> set current resource on bors,

11-10 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

output: string exit msg = "",

local:
input:
local:
input:
local:
input:
local:

input:

action<clear current resource on bors> clear current resource on_,
date period_ start,

action<equipment matches any bor> equipment matches any bor,

date period _end,

action<production supply in period> production supply in period,
instance<Equipment Resource> equipment resource,

action<create production> create_ production,

instance<Build Option> build option,

no_context:)

Writing A PepperCode Transaction

An PepperCode transaction is a type of action. Transactions are special actions for having the
Production Planning interface with the user. Due to this, all transaction inputs are strings, floats,
and ints (for readability’s sake). A transaction is formatted text that represents a command to
execute inside Planning. Transactions exist in many different places, such as:

command files generated by the data bridge,
command files edited in a text editor,
log files sent from the client to the server for normal operations,

and log files sent via the communications API to command the server.

v Note: When placing filenames in double quotes (" ") for Windows NT, you can use a file
delimiter of "/" instead of "\\".

The format of every transaction is as follows:

transaction name (:keywordl valuel :keyword2 value 2)

Transactions are actions that are of type action<transaction>. By convention, they have
transaction as the beginning of their name.

Following are general guidelines for writing a PepperCode transaction. Although you can use
these guidelines in any order, you could follow them sequentially as you design a transaction.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-11

PEOPLESOFT PEPPERCODE JANUARY 2001

11-12

Starting Transaction Names With transaction_

Always use transaction as the first word of the transaction name.

Some of the substrate code depends on the fact that transaction names begin with transaction.
This: transaction_create_sales_order

Not this: create sales_order

Using The Action Schema Transaction

Always use the action schema transaction when writing a transaction.
This schema provides special parameters and behavior for transactions.
This: action<transaction> transaction create sales order

Not this: action transaction_create sales_order

Putting Minimal Code Into A Transaction

Whenever possible, don’t put too much application code in a transaction.

The purpose of a transaction is to collect input, perform error checking, call an action to do the
“real work,” and then provide error, warning, and informational messages.

For example, the transaction transaction_create sales_order does not create a sales order within
its action body. Instead, it calls the action create sales_order which creates the sales order object.

Including No Instances, Classes, Histories, Or Actions

The input parameters for a transaction should never include instances, classes, histories, or
actions.

Using an instance or class as input to a transaction is commonly referred to as “passing a uid” to a
transaction. Passing uids to a transaction as input will cause the reload of a log file to break.

Using Default Values For Input Parameters

Use default values for input parameters whenever possible.

Notice that this advice is different for writing actions. Because transactions are usually called
from the “top level” from a page or menu file, the default values can be trusted. Because
transactions are rarely called from other actions or transactions, the default values will always be
maintained correctly.

WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

[0

For more information, refer to Writing Action Parameters.

Performing Error Checking

Perform error checking on the transaction inputs.

Every transaction must validate its input values. When a problem is discovered, the transaction

should return an error message or warning message through the exit msg output parameter. The
following transactions are good examples of transactions that perform error checking (they are in
the file mfg/spl/sales order/mfg sales order transactions.spl):

transaction create sales order
transaction add sales order line

Here is the transaction transaction create sales order:
action<transaction> transaction create_sales_order

(input: string site name = "",

input: string sales order name,

input: string class name = "Sales Order",
input: string order date = "",

input: string customer = "",

local: instance<Site> site,

local: instance<Environment> environment,
local: date o_date,

local: instance<Customer> customer instance,
local: instance<Sales Orders> so,

output: instance<Sales Order> sales order = 0)
if (site_name == "") {

site name = GET PARENT ENV () .default site.name;

site = GET INSTANCE BY NAME (site name) ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

WRITING PEPPERCODE APPLICATIONS 11-13

PEOPLESOFT PEPPERCODE JANUARY 2001

if (NOT(site)) {
exit msg = NLSPRINT ("Unit '%1$s' does not exist.",site name) ;

fail();

// Check whether the instance comes from right class
if (NOT (TYPEP(Site,GET_CLASS_QF_INSTANCE (site)))) {

exit msg = NLSPRINT ("'%1$s' is not of type

'%2$s'.",site name,Site.class_display name) ;
fail ();
if (class_name == ""))
class name = "Sales Order";

so = GET INSTANCE BY NAME (APPEND STRINGS (site.name, sales order name)) ;
if (so)

exit_msg = NLSPRINT ("Unit/Sales order '%1Ss/%2$s' already

exists.",site name,sales order name) ;

fail();

// ensures class exists, but not that class is appropriate (ie subclass of
Sales Order) .

if (NOT (GET CLASS BY NAME (class name))) {

exit_msg = NLSPRINT("Class '%1$s' does not exist as a Sales Order
class.",class_name) ;

fail();

// Check for the validity of the class.

if (NOT (TYPEP(Sales Order,GET CLASS BY NAME (class name)))) {

exit msg = NLSPRINT ("'%1$s' is not of type Sales Order.",class name);

11-14 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

fail ();

if (EQ(customer, "")) {

exit msg = NLSPRINT ("Customer '%1$s' is Invalid.",customer) ;

fail ();

customer instance = GET INSTANCE BY NAME (customer) ;

if (NOT(customer instance)) {

execute transaction create customer (:name customer) ;

else {
if (NOT (TYPEP (Customer,GET CLASS OF INSTANCE (customer instance)))) {

execute transaction create customer (:name customer) ;

}

customer_instance = GET_INSTANCE_BY NAME (customer) ;

environment = GET PARENT ENV() ;

o _date = STRING TO DATE (order date) ;

if (NOT (o date)) {

exit msg = NLSPRINT ("Order Date '%1$s' is invalid.",order date);

fail();

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-15

PEOPLESOFT PEPPERCODE JANUARY 2001

execute create sales order(:sales order name sales order name,
:site site,
:order date o _date,
:class_name class_name,
:customer customer instance) ;
if (create sales order.status == SUCCEED) {
sales _order = create sales order.new sales order;

succeed () ;

else {

fail();

Here are some basic rules about performing error checking in transactions.

e When referencing a named instance, use the function GET INSTANCE BY NAME.

If GET_INSTANCE BY_ NAME returns 0, the transaction should fail. For an example, see
the error check on the input parameter sales_order name in the transaction
transaction_create sales_order, seen above and in the mfg_sales_order_transactions.spl file.

e When referencing a named class, use the function GET_CLASS BY NAME.

If GET _CLASS BY_ NAME returns 0, the transaction should fail. For an example, see the
error check on the input parameter class_name in the transaction
transaction_create sales order, seen above and in the mfg_sales_order_transactions.spl file.

e When appropriate, provide a default value for date inputs.

Most dates default to early fence, late fence, start of time, or end of time. For an example,
see the error check on the input parameter start time in the transaction
transaction_add_bom_to build option, in the mfg_routing_transactions.spl file). The
following excerpt from that transaction shows only the relevant code.

action<transaction> transaction add bom to build option
(input: string build option name,
input: string part name,
input: string site name = "",

input: int step,

11-16 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

input: float quantity,
input: string constraint_class_name = "Standard RM Constraint",
input: int blowthrough = 0,
input: int configurable = 0,
input: string start time = "",
input: string end time = "",

// locals declared here

// more transaction code goes here.

if (start _time == "") {

s_time = GET PARENT ENV () .start of time;

}

else {

s_time = STRING TO DATE (start time) ;

// remainder of the transaction code goes here

e The function STRING_TO_DATE returns 0 when passed an invalid date string.

If STRING_TO_DATE returns 0 in a transaction, the transaction should fail. For an
example, see the error check on the input parameter order date in the transaction
transaction_create sales order (seen above and in the mfg_sales order transactions.spl file).

Using #document and #end_document

Write documentation by using #document and #end_document.

Use transaction_add sales order line as an example for writing transaction documentation.

@ For more information, refer to Adding and Retrieving Documentation.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-17

PEOPLESOFT PEPPERCODE JANUARY 2001

Always use the primary key of an object for identification.

Writing A PepperCode Method

In a class definition, a slot of type action is an implementation of a PepperCode method, like a
C++ member function or method:

action<schema_ name> name

The action method stored in an action slot can be referenced and executed. Any action of that
schema type can be assigned to that slot.

The “dispatch” of a method—the process of calling the correct method associated with a class—is
not performed automatically. Instead, the value of a local action parameter is defined and the
action is called through the local parameter.

Following are general guidelines for writing a PepperCode method. Although you can use these
guidelines in any order, you could follow them sequentially as you design a method.

Writing Actions That Dispatch The Method

When possible, write an action that dispatches the method.

This will provide a consistent API—application programming interface—for other PepperCode
code to use. For example, the following action delete object dispatches the delete method
for any PepperCode object of type Spl_Class. Notice that the input to the dispatcher action is the
same as the input defined on the delete action schema.

action schema delete schema
(input: instance<Spl Class> object,
no_context:) ;
class Spl Class : Base Class
action<delete schema> delete action
}i
slot Spl Class.delete action { default: default delete class slot: };
// Note: default delete is not shown.
action delete object
(input: instance<Spl Class> object,

local: action<delete schema> delete action,

11-18 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

no_context:)

delete action = object.delete action; // Lookup the delete
method.

execute delete action(:object object) ; // Call the delete method.

succeed () ;

Implementing Input And Output Parameters

Implement all of the input and output parameters in the action schema for the method.

This will allow the dispatch of the method to use a standard AP

Including The Object As An Argument

Always include the object on which the method is stored as an argument to the method.

Because there is no method data type in PepperCode, you use action schemas to implement
methods. Because of this, you have to provide our own backpointer to the object of the method.
In the previous example, the input parameter object serves this purpose.

Casting The Inner Object To The Class

In the body of the method, cast the input object to the PepperCode class that the method assumes.

@ For more information about casting, refer to Using Casting.

For example, here is the delete method for a sales order. Notice that without the cast, you would
not be able to reference any of the specific slots of a Sales_Order (like name and
sales_order_lines).

action<delete> delete_sales_order

(local: instance<Sales Order> sales order)

sales order = object;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-19

PEOPLESOFT PEPPERCODE JANUARY 2001

MSG (25, "\nDeleting Sales Order %s", sales order.name) ;
execute delete object list(:object list sales order.sales order lines);

execute delete object list(:object list sales order.ship sets);

DELETE_OBJECT (sales_order) ;

succeed () ;

Writing a C++ Utility

This section describes how to write C++ utilities that are referenced directly from PepperCode.
Do not confuse this discussion with writing substrate or interface utilities.

Following are general guidelines for writing a C++ utility to use in your PepperCode code.
Although you can use these guidelines in any order, you could follow them sequentially as you
design a C++ utility.

Checking That A Corresponding Function Is Not Defined

Before writing a new C++ function for use in PepperCode, make sure that a corresponding
function has not already been defined.

Most of the existing C++ function declarations can be found in files that begin with cpp_ in the
scheduler/spl/ directory. Also, make sure that a PepperCode intrinsic operator or function does
not exist for the function you need.

@ For more information about the PepperCode intrinsic functions and operators, refer to
Understanding Infix and Intrinsic Operators and Functions.

Putting C++ Code In The Proper Location

Put the C++ code in the proper location.

If you are writing a complex utility involving a C++ class that must be referenced from
PepperCode, use the following files as an example:

scheduler/utils/intersector.h

scheduler/utils/intersector.cc

11-20 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

scheduler/utils/intersector access.h
scheduler/utils/intersector access.cc

scheduler/spl/cpp_intersect.spl

For example, to add a new C++ sorting utility function for the scheduler module, you would do
the following:

o place your function definitions (the body of the code) in scheduler/utils/cpp spl sort.cc, and

e place the top-level function signature (the declaration, showing only the function name and its
parameters) in scheduler/utils/cpp spl sort.h.

Capitalizing C++ Function Names

The declared name for a C++ function should always be in all capital letters.
This: cpp_function void PRINTF (string) "printf";
Not this: cpp_function void printf (string) "printf";

And not this: cpp_function void Printf (string) "printf";

Providing Meaningful PepperCode Types

Provide meaningful PepperCode types in the C++ function declaration.

@ For more information about the types, see Typedefs Used With C++ Functions.

The types provided in the C++ function declaration should correspond to the types in the actual
C++ function. Currently, the PepperCode compiler does not check these types at compile time.

For example, the FLOAT TO_INT function takes one float as an argument and returns the float
as an integer. If you look at the declaration, the input argument types and return types are
obvious.

This:

cpp_function int FLOAT TO INT (float) "rps float to int";
Not this:

cpp_function float FLOAT TO INT (int) "rps float to _int";

cpp_function void FLOAT TO_ INT (string) "rps float to int";
cpp_function time FLOAT TO INT (date) "rps float to int";

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-21

PEOPLESOFT PEPPERCODE JANUARY 2001

11-22

Using RPS_IMPORT When Defining External C++ Functions

You must use the RPS_ IMPORT macro when you define external C++ functions in order to
allow for system patchability.

When you put the definition of an external C++ function "myfunc" into a file "mydir/myfile.cc",
do the following:

o Put an external declaration or "prototype" into a file "myfile.h", and always put #include
"mydir/myfile.h"" into "myfile.cc". (The same rule applies to external C++ variables.)

e Put the macro RPS_INCLUDE in front of a prototype or variable declaration (if you declare a
class, however, put it after the word "class").

o Always put '#include "mydir/rps_import def.h" into "mydir/myfile.h" as the last "#include"
statement.

o [f "myfile.h" or "myfile.cc" needs to include other files, put the inclusions from other
directories first; then the ones from directory "mydir" last. Use the appropriate directory name
in each #include statement.

Here is an example of using the RPS IMPORT macro. This is taken from cpp spl dump.h.
/* Copyright 1994-1997 by PeopleSoft, Inc. */
/* All U.S. and world rights reserved. */
#ifndef CPP_SPL DUMP H

#define CPP_SPL DUMP H

#include <utilsCC/cpp types.hs>

#include <scheduler utils/rps_import def.hs

RPS_IMPORT CPP_INT cpp open dump file (CPP_STRING filename, CPP_STRING mode) ;
RPS_IMPORT CPP_INT cpp close dump file ();

RPS_IMPORT void cpp dump newlines (CPP_INT number) ;

RPS_IMPORT void cpp dump spaces (CPP_INT number) ;

RPS_IMPORT void cpp dump int (CPP_INT int to dump, CPP_INT columns, CPP_INT
right justified);

RPS_IMPORT void cpp dump float (CPP_FLOAT float to dump, CPP_INT columns,
CPP_INT right justified);

RPS_IMPORT void cpp dump float for export (CPP_FLOAT float to dump, CPP_INT
columns,

WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

CPP_INT right justified);

// Write UTF-8 "string to dump" to export file using the appropriate export
// locale's character set. No language translation takes place. String is
// left- or right-justified with enough blanks to occupy specified number of
// "columns". If "columns" is less than 1, the string is printed without

// any padding blanks.

RPS_IMPORT void cpp dump string (CPP_STRING string to dump, CPP_INT columns,

CPP_INT right justified);

RPS_IMPORT void cpp dump date (CPP_DATE date to dump, CPP_INT columns, CPP_INT
right justified);

RPS_IMPORT void cpp dump time (CPP_TIME time to dump, CPP_INT columns, CPP_INT
right justified);

RPS_IMPORT CPP_INT cpp dump test reset status();

RPS_IMPORT CPP_INT cpp dump reset status();

// Like cpp dump string, but uses the translation table to convert the

// "string to dump" argument to the local language and characterset

// specified by the "export" locale.

RPS_IMPORT void nls dump string (CPP_STRING string to dump, CPP_INT columns,

CPP_INT right justified);

#endif

Adding and Retrieving Documentation

PepperCode has a documentation feature which lets you put text into the .spl file for use in
generating documentation. The compiler always ignores the text as if it were a comment, but
optionally it will write the text to a file named sourcefile.doc.

For a transaction named transaction build bicycle, the syntax would be:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-23

PEOPLESOFT PEPPERCODE JANUARY 2001

#document transaction build bicycle
Your description goes here, and continues
for as many lines as you like.

#end document transaction build bicycle
This block of documentation can occur anywhere within the source file.
A -d option causes the compiler to generate the .doc file.

The compiler automatically puts into the .doc file the name of the source file and the line number
at which the comment started, so there’s no need to put that information inside the comment by
hand, where it might easily get out of date if you suddenly need to move some transactions to a
different source file.

Using #include Files

Assume there is a custom module "cus" built on top of the standard "mfg" module. It also
assumes a standard directory structure of:

$RPS_SDK/cus/
SRPS_SDK/cus/spl/ for *.spl files, and

SRPS_SDK/cus/utils/ for *.cc & *.h files

where $RPS_SDK is the partial path from the root of the network file system to the directory
where Planning files reside.

To include Planning spl source files from scheduler or mfg in custom module spl files, use angle-
brackets:

#include <spl/foo.spl>
#include <spl/mfg foo.spl>
To include custom module spl source files in custom module spl files use double quotes:

#include "cus_foo.spl"

To include custom module C++ source (*.cc) files in custom module spl files, use header files
with double quotes:

#include "../utils/cus_cpp foo.h"

A custom module C++ source (*.cc) file (for example, cus_cpp foo.cc) need only include its own
header file with double quotes:

#include "cus_cpp foo.h"

11-24 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

To include Planning C++ source files in custom module C++ header (*.h) files, include the
associated header file using angle-brackets:

#include <string.hs>
#include <utilsSPL/interface History.h>

#include <objectcore/rps.h>

Finally, and this case should be rare, to include custom module C++ source (*.cc) files in custom
module C++ header (*.h) files, include the associated header file using double quotes:

#include "cus_ cpp base.h"

v Note: When placing filenames in double quotes (" ") for Windows NT, you can use a file
delimiter of "/" instead of "\\".

@ For more information about using #include, see Writing PepperCode #include Statements.

Customizing and Displaying Class Names

The Named Object class is not built-in, but it is part of the Planning product.

Named_ Object provides a slot called display name, which you set if you want the user to
see a more descriptive name for a class than the real name of the class. display name is the
name that is displayed to the end user when they display a class; it defaults to the real name of the
class.

For example, a transfer option will have from-unit and to-unit information appended to its class
name. You might want to just display the name of the transfer option, without the unit
information appended to it. Also, a task has appended to its name the build option and the part
being built. You might want to have a display name without the build option in it.

v Note: In some PepperCode files, “site” is often used instead of “unit”.

Following is the code for named_object.
Named Object
class Named Object: Spl Class {
string display name

action <set display name> set display name action

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-25

PEOPLESOFT PEPPERCODE JANUARY 2001

}i
To set display name, you must perform the following tasks:
e Have your class inherit from Named _Object.

e Write the set _display name method for that class, and set the display name slot in
that method.

Customizing PepperCode Methods And Actions

PepperCode can be customized in several ways, some more ambitious than others. It's best to
familiarize yourself with existing facilities before undertaking radical changes.

Since PepperCode is an object-oriented system, much customization involves modifying or
adding to the standard objects supplied by the system. Since these changes are made at run time
only, the standard definitions remain intact. Some customizing techniques, in rough order of
ambitiousness:

* You can modify the values of system slots, thus overriding the local or inherited values. When
the relevant slots are methods, the slot values are actions (functions); so replacement values are
actions which you must supply. Our first example—refer to “Replacing Standard Method
Actions”—shows such replacement of a method slot action, where the purpose is to modify the
system's reporting behavior.

® You can add new data slots to the standard ones supplied by the system. New data slots are
normally added in new subclasses of existing object classes.

* You can add new method slots to those supplied by the system. Like new data slots, new
method slots are often added in new subclasses of existing object classes. If the new action
you supply will share parameters with other actions, you can create an action schema to
manage the sharing. Our first example—refer to “Adding Method Slots”—shows how. It also
shows how to invoke the new method. Our second example extends similar techniques to
create a new subclass of constraints (refer to “Adding a Constraint™). It also demonstrates the
use of a system-defined C++ function—rather than a specialized transaction—to create
instances of the new class.

Replacing Standard Method Actions

11-26

The system presently contains a Dispatch List object used to control the printing (or
“dumping”) of scheduling reports. This object contains a method slot relevant,

human dump_action. The slot's value is the action dispatch 1list dump. Here is its
code:

action<human dump> dispatch list dump

(local: instance<Dispatch List> dispatch list)

WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

dispatch list = object;
DUMP_STRING ("Dispatch List For ", 0, 0);
DUMP_STRING (dispatch list.equipment resource.name, 0, 0);
DUMP_STRING(" From ", 0, 0);
DUMP_DATE (dispatch list.start time, 0, 0);
DUMP_STRING(" To ", 0, 0);
DUMP_DATE (dispatch list.end time, 0, 0);
DUMP_NEWLINES (3) ;
DUMP_SPACES (3) ;
DUMP_STRING ("Production", 40, 0);
DUMP_NEWLINES (1) ;
DUMP_SPACES (3) ;
DUMP_STRING ("——", 40, 0);
DUMP_NEWLINES (1) ;
foreach element in dispatch list.pending elements {
DUMP_NEWLINES (1) ;
DUMP_SPACES (3) ;

execute dump object (:spl object element, :human dump TRUE) ;

succeed () ;

Assume that a different format is desired, and that the following action produces it.
action<human dump> special_dispatch list_ dump

(local: instance<Dispatch List> dispatch list)

dispatch list = object;
DUMP_NEWLINES(3); // This new line adds three blank lines.
DUMP_STRING("DiSpatCh List For ", 0, 0);

DUMP_STRING (dispatch list.equipment resource.name, 0, 0);

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-27

PEOPLESOFT PEPPERCODE JANUARY 2001

// From here on, the code is the same as the original.

}

The problem, then, is to replace the old action with the new one at run time. There's a standard
transaction for this purpose, transaction set action method, with arguments
:class_name—a string, the class object where the slot can be found; : slot name—a string,
the slot in which the new value is to be installed; and : action name—a string, the action
which is to be installed as the new slot value. So all you have to do is to include the following
line in a command file and then arrange to load the file into the system. Loading can be done via
the user interface, or via load files.

execute transaction set action method (:class name "Dispatch List"
:slot _name "human dump action"
:action name "special dispatch list_dump").

A similar modification could be performed on the slot machine dump action, which calls
the standard action dispatch list mdump. The “m” in “mdump” is a convention which
indicates a format readable by machine, as opposed to humans. Further, the slots

machine dump_ action and human dump action are found in the system object
Dispatch Element as well as Dispatch List, with respective standard actions
dispatch element mdump and dispatch element dump.

Adding Method Slots

As you have seen, system behavior can sometimes be modified by replacing existing method
actions with new ones. In other cases, however, you modify by creating new method slots with
brand new actions. As noted, since slots cannot be added to existing objects at run time, new
slots need new classes to hold them. This section demonstrates the second, more ambitious sort
of modification.

A previous section demonstrated the creation of a new subclass in order to add a new slot. This
example is no different with respect to subclass creation, but since the new slot is a method slot
this time, this example also needs to create the action which will become the slot's value.

As background for the exercise, consider the existing class Routing Option. A routing
option is a way of obtaining a needed material for some planning Task. One way of obtaining
material is to build it. The existing Build Option class represents this possibility.

To accommodate a new method for build option instances which can calculate the cost of the
option—the specific goal of the example—the following example adds a new subclass,

Build Option CUS, for “customized” or “customer”, below Build Option. The new
subclass will inherit all of the slots of the parent class and add one more, our new method slot.
Any instances of Build Option CUS would inherit all the old slots plus the new one.

The new method slot will be build cost method. As a default action for the slot, to be
passed—all else equal—to objects lower in the inheritance hierarchy, use an action, or function,

11-28 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

default build cost action. And since actions, like data objects, can be usefully
categorized according to their parameters, the following example also creates a sample schema
upon which the new action can be based, build cost schema. Once all of this machinery is
in place and an instance of Build Option_CUS containing the new method has been made,
the method must be invoked. For illustration, the following example provides a calling action
atp cost.

The following example shows the necessary code in the order required by the compiler: with
dependent code following the code it depends on.

As mentioned, this example provides a default action for the new build cost method.
However, a more specialized action may be appropriate for instances of even more specialized
classes even lower in the hierarchy. In this case, it is possible to override the default action by
replacing it with a specialized action at the lower level. The following example shows a
specialized action build and ship cost action which might replace

default build cost action, asthe value of the build cost method method slot.
For brevity, this example doesn’t show the definition of the lower subclass or the installation of
the code as the new method slot value. The purpose of the specialized action is to include
consideration of the shipping cost when calculating the overall cost of a build option.

Here are the steps in detail.
1. Create an action schema build cost schema.

It expects an input argument object, an instance of the existing class Routing Option. It
has an output parameter cost.

// All Action schema that are designed for use as methods (a slot on an
// object) should have an input argument "object" whose type is the same
// as the object it was designed for (here, Routing Option) .
// Action schema with output parameter cost.
action schema build cost schema

(input: instance<Routing Option> object,

input: string sales order name = "",

input: string site name = "",

output: float cost,

no_context) ;

2. Define a new action default build cost action which uses the new build cost schema action
schema and thus inherits its parameters.

The new default action uses the schema’s input parameter object and its output parameter
cost. The action also uses the slot cumm_cost, which has been defined at the
Routing Option level: it returns the value of the cumm_ cost slot as the cost of an

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-29

PEOPLESOFT PEPPERCODE JANUARY 2001

instance of Build Option CUS. More elaborate procedures for cost calculation are
possible, and can be made to override this default calculation; this will be demonstrated
below.

// New action using the build cost schema action schema and its object and
// cost parameters.
action<build cost schema> default build cost action ()

cost = object.cumm_cost;

succeed () ;

3. Define the class Build Option_ CUS as a subclass of Build Option, adding a method
slotbuild cost method. Make the new default build cost action the
default value of this new method slot.

Class Build Option CUS : Build Option {
action<build cost schema> build cost method //New method slot.
}i

slot Build Option CUS.build cost method
{default: default build cost action}; //Method slot gets default value.

4. Write an action that invokes the newly defined method. Here, the new calling action
atp_ cost takes as input an instance of the Build Option_ CUS class. It gets the value
of the build cost method slot in that instance—an action; makes that value the binding
of the local variable locvar build cost action; and then executes the action by its
local name—within the if expression.

action atp_ cost
(input: instance <Build Option> build option,
input: string sales order name,
input: string site name,
local: instance<Part> part,
local: action<build cost schema> locvar build cost action,
local: action<dku part> dku part action,

output: float cost)

// This function will return the build option cost

11-30 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

// Called by: schedule atp option

// Get behavior.

locvar build cost action = build option.build cost action;

part = build option.part;

dku part action = part.dku part action;

// Execute behavior.

execute dku part action();

if (EQ(dku part action.dku part flag, TRUE)) {

execute locvar build cost action(:object build option,

:sales_order name sales_order name,
:site name site name) ;

}

else {

execute locvar build cost action(:object build option) ;

// Use what behavior returns.
cost = locvar build cost action.cost;

succeed () ;

5. Create a specialized cost-building action, build and ship cost action, which can

be used to override the inherited default action, default build cost action, in the
class Build and Ship Option. Neither the class nor the replacement is shown here,
however. The purpose of the specialized action is to take shipping cost into account when
calculating the cost of a Build Option_ CUS.

// Given a source (site) and destination (customer region),
// return the freight cost.

action<build cost schema> build and ship cost_action

(local: instance<Build Option CUS> build option,
local: instance<Sales Order> sales order,
local: instance<Customer Region> cr,

local: instance<Site> site,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-31

PEOPLESOFT PEPPERCODE JANUARY 2001

local: class<Freight Cost> fc_class,

local: oset[instance<Freight Cost>] FCs)

FCs.flush() ; // superstition
sales_order = GET_INSTANCE BY NAME (sales_order_ name) ;
cr = sales order.customer region;
site = GET INSTANCE BY NAME (site name) ;
fc_class = Freight_Cost;
GET_DESCENDANTS (FCs, fc class, 1);
foreach fc in FCs {
if ((fc.source == site) &&
(fc.destination == cr)) {
// Return freight cost for source/destination shipment.
cost = fc.cost;

succeed () ;

}

// else return default value
cost = 0.0;

succeed () ;

Adding A Constraint

Previous sections have demonstrated (1) replacement at run time of existing method actions in
existing classes and (2) creation of a subclass in order to add a method slot containing a new
action. In this section the example combines elements of both techniques: it creates a new
subclass, but rather than create new method slots, it overrides the values of existing, inherited
method slots with new actions. The previous example used new transactions to enable creation of
instances of the new class. This time, though, the example uses the prepared C++ function
CREATE_OBJECT for instance creation.

The new subclass will represent a new type of scheduling constraint. Constraints are, of course,
represented as objects in PepperCode, like almost everything else. There's an existing constraint

11-32 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

class, Milestone Constraint, which this example intends to specialize. It's a reparable
constraint, meaning that it comes with a repair method as well as an indication of the penalty
which is imposed if the constraint is violated. The goal here is to represent a new subtype of
milestone constraint, namely that all of the lines on a sales order should ship together.

For this purpose, the example creates a constraint subclass,
Shipset Milestone Constraint. The constraint itself will need four actions:

to display information about the constraint;

to define the penalty imposed if the constraint is violated;

to define the repair action if the constraint is violated;

and to specify the time interval within which the constraint must be satisfied.
In addition, the example needs two supporting actions:

e to create an instance of a shipset milestone constraint and make it the value of
the milestone constraint slotin a relevant sales order;

e and to delete a sales order having a shipset milestone constraint, making sure that
the latter constraint is deleted as well to prevent hanging pointers.

The following sections describe the creation of the class and the actions discussed above.

Creating the Class Shipset_Milestone_Constraint

Create the class Shipset Milestone Constraint asa subclass of
Milestone Constraint. Four existing methods get new actions as default slot values.

class Shipset Milestone Constraint : Milestone Constraint {
oset [date] ship dates
}i
slot Shipset Milestone Constraint.display action
{ default: display shipset milestone constraint class_slot: };

slot Shipset Milestone Constraint.penalty action { default:
shipset milestone penalty };

slot Shipset Milestone Constraint.repair action { default:
shipset milestone repair };

slot Shipset Milestone Constraint.start and end action { default:
shipset start and end

class_slot: };

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-33

PEOPLESOFT PEPPERCODE

Writing an Action to Display Information

Write an action to display information about the constraint.

action<display> display shipset milestone constraint

JANUARY 2001

(local: instance<Shipset Milestone Constraint> milestone constraint,

local: instance<Sales Order CUS> sales_order,

local: action<violated> violated check)

milestone_constraint = object;

sales order = milestone constraint.object;

execute violated check(:the constraint milestone constraint) ;

PRINTF ("\n%s", milestone_ constraint.class_name) ;

PRINTF ("\nSales Order: $%$s", sales order.name) ;

PRINTF ("\nPenalty X Weight: %1f X $1f = $1lf\n",
violated check.penalty, violated check.weight,
violated check.penalty times weight) ;

succeed () ;

Writing An Action To Define The Penalty

Write an action to define the penalty imposed if the constraint is violated. Constraint penalties

must be normalized to values between 0 and 1.

// Loop over all sales order lines and determine the set of unique ship dates

// and their frequency of occurrence.

// No violation means either there are no sales order lines for the sales

// order, or that all lines have the same ship date.

action<penalty> shipset milestone penalty

(local: instance<Shipset Milestone Constraint> milestone constraint,

local: oset [instance<Sales Order Line>] sales order lines,

local: instance<Sales Order CUS> sales order,

11-34 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

local: date et, // end time of shipment as scheduled
local: date latest ship, // latest of all et

local: date earliest ship, // earliest of all et

local: oset[date] ship dates,

local: oset[date] dates,

local: int so_line count,

local: string date_ inserted p)

milestone constraint = the constraint;
sales_order = milestone_constraint.object;
sales order lines = sales order.sales order lines;
so_line count = sales order lines.length();
if (sales order lines.empty() == 1) {

penalty = 0.0;

succeed () ;
}// Otherwise examine sales order lines.
// Initialize latest ship date and set of ship dates.
latest ship = sales order lines.first() .shipment.end time;
ship dates.flush() ;
ship dates.push(latest ship);
// Determine distinct scheduled sales order line shipment dates.
foreach sales order line in sales order lines {

et = sales order line.shipment.end time;

if (et == latest ship) {

latest_ship = et; // Update latest_ ship.
ship dates.enque (et);
} // Do next sales order line.
else {

dates.flush(); // Temporary list

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-35

PEOPLESOFT PEPPERCODE JANUARY 2001

date inserted p = "FALSE";
foreach ship date in ship dates ({
if (NOT (date inserted p == "TRUE")) ({
if (et < ship date) {

// Enque new date on list, add existing date

after.
dates.enqgue (et) ;
dates.enque (ship date) ;
date inserted p = "TRUE";
}
else {
if (et == ship date) {
// Save existing date.
dates.enque (ship date) ;
date inserted p = "TRUE";
}
else {
dates.enque (ship date) ;
}
}
}
else {
// Just collect the rest of the ship dates into the
temp list.
dates.enque (ship date) ;
}
}// foreach ship date
ship dates = dates;
}
} // foreach sales order line

11-36 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

earliest ship = ship dates.first();
latest_ship = ship dates.last();
if (earliest ship == latest ship) ({

penalty = 0.0;

}

else
penalty = DIV(SUB(INT TO FLOAT (ship dates.length()), 1.0),
so_line count) ;
milestone constraint.ship dates = ship dates;
}
succeed () ;

Writing An Action To Specify The Repair

Create an action to specify the repair if the constraint is violated.
// Should be in mfg repair.spl
action<constraint repair> shipset milestone repair
(local: instance<Shipset Milestone Constraint> milestone constraint,
local: oset [instance<Sales Order Line>] sales order lines,
local: instance<Sales Order CUS> sales order,

local: instance<Routing Parent> routing parent,

local: date et, // end time of shipment as scheduled
local: date earliest_ship, // earliest of all et

local: date latest ship, // latest of all et

local: date mode_ship, // most common et

local: date new time, // time to move shipset tasks to

local: oset[date] ship dates,
local: oset[int] ship date frequency,

local: int random value,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-37

PEOPLESOFT PEPPERCODE JANUARY 2001

local: int index,
local: int count_index,

local: int count)

ship_dates.flush() ;
ship date frequency.flush();
milestone constraint = the constraint;
ship dates = milestone constraint.ship dates;
sales order = milestone constraint.object;
sales order lines = sales order.sales order lines;
// Initialize earliest ship and latest ship dates.
earliest ship = ship dates.first();
latest_ship = ship dates.last();
// Determine the most common scheduled sales order line shipment date.
foreach sdate in ship dates {
count = 0;
foreach sales order line in sales order lines ({
et = sales order line.shipment.end time;
if (et == sdate) {

count = count + 1;

ship date frequency.enque (count) ;

// Find the max of ship dates (the most common ship date).
index = 0;

count = 0;

count_index = 0;

foreach frequency in ship date frequency {

11-38 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

if (frequency > count) {
count = frequency;

count index = index;

index = index + 1;

mode ship = ship dates.nth(count_ index) ;
// Sometimes move all to mode_ship
// Sometimes move all to latest_ ship
// Sometimes move all to earliest_ship
MSG (25, "\nShipset Milestone Repair") ;
random value = RANDOM(100) ;
if (random value < 40) {

new_time = mode_ ship;

MSG(25, " mode");

}

else {
if (random value < 70) {
new time = latest ship;
MSG (25, " latest™");
}
else {
new time = earliest ship;
MSG (25, " earliest");
}
}
MSG(25, " moving shipset to: %s\n", DATE TO STRING (new_time));

foreach sales order line in sales_order lines {

routing parent = sales_order_ line.shipment;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS

11-39

PEOPLESOFT PEPPERCODE JANUARY 2001

execute reschedule_task(:task routing parent,
:target_time new_time, :st_or et END TIME) ;

status = reschedule task.status;

if (status == SUCCEED) {
MSG (25, " S\n") ;
}
else {
MSG (25, " F\n") ;
fail();
}
}
succeed () ;

Writing An Action To Specify The Time Interval
Write an action to specify the time interval within which the constraint must be satisfied.
action<start and end> shipset start and end

(local: instance<Environment> environment)

environment = GET PARENT ENV () ;
start_time = environment.early fence;
end_time = environment.late_fence;

succeed () ;

Writing An Action That Creates A Constraint Object

Write an action which creates an instance of a Shipset Milestone Constraint, making
the instance the value of the milestone constraint slotin a sales order. This action will
be executed at sales order creation time.

// Create a constraint for each Sales Order at sales order creation time.

11-40 WRITING PEPPERCODE APPLICATIONS PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

action create_shipset _milestone
(input: instance<Sales Order CUS> sales_order,
output: instance<Shipset Milestone Constraints>

shipset_milestone_constraint,

no_context:)

execute create object (:class name "Shipset Milestone Constraint");
shipset milestone constraint = create object.new object;

shipset milestone constraint.object = sales order;

sales order.milestone constraint = shipset milestone constraint;

succeed () ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL WRITING PEPPERCODE APPLICATIONS 11-41

CHAPTER 12

Compiling And Linking PepperCode

This section describes how to compile your code and link it with existing Planning software for
testing purposes.

The directory that contains the PepperCode compiler is /home/v8vm/product/splcompiler. If you
are familiar with the PepperCode Release 7.5 compiler and have written applications using
Release 7.5 PepperCode, the following subsections should get you up to speed on the new
Release 8.0 compiler. This information was derived from refman.txt, a UNIX flat file that can be
found in the same directory that contains the PepperCode compiler, experiments with the
compiler, and conferences with Development.

Starting in Release 8.0, you can write “standalone” PepperCode, compile it, then execute it, and
you don’t have to use RPSMake or The Project Manager (also known as splsh). This is referred to
as standalone mode. To use the Release 8.0 Compiler in standalone mode, you will need a UNIX
account on the PeopleSoft San Mateo Office's UNIX network. Your system administrator can
help you set up your account.

Setting Up and Using Your Own PepperCode Sandbox

At this point, it is suggested that you create a directory for your PepperCode programs. You can
create this directory anywhere on UNIX where you have read, write, and execute permission.
However, it is suggested that you use your own UNIX directories (/home/<your name>). Here,
your programs and their source files will be easier for you to maintain and control.

1. Create a directory to hold your PepperCode progams and their components.

2. Change directories to the directory that you just created, write the following code using your
favorite UNIX text editor, then save it to a file called hello world.spl in your newly created
directory:

action spl main()

{

PRINTF (“Hello, world!\n”);
!

spl_main is a special action in PepperCode that is automatically executed when the program
is run.

3. Remain in your newly created directory and compile hello world.spl. This will generate the

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-1

PEOPLESOFT PEPPERCODE JANUARY 2001

object file hello world.o. Do so with the following command:

> /home/v8vm/product/splcompiler/spl hello world.spl

Note: It is important that you stay and keep all files that the compiler might need in the
newly created directory throughout this procedure.

This compilation will generate the following files and place them in your newly created
directory:

Files Generated by Default Compilation

File(s) Description
hello world.o object file (used in the next step)
hello_world.pchs pre-compiled header file. This file is used

when including PepperCode source files.

For more information, see Writing
PepperCode #include Statements.

hello_ world.cc C++ code that is the PepperCode source
file translated into C++

4, Link the object file you just created to generate the executable hello world with the following
command:

> /home/v8vm/product/splcompiler/spl --make program hello world hello world.o

5. Now, try your new program by typing the program name.

> hello world

You should see the familiar output “Hello, world!” followed by the server output normally
seen when starting the Supply Chain server.

The compiler option --make program along with other compiler options are described in
PepperCode Compiler Reference.

Running the Compiler

The program "spl" can be used to compile one .spl source file and generate an object file; or to
bind one or more object files into a shared library (DLL); or to bind one or more object files and

12-2 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

shared libraries into an executable program. Following is the syntax you use from a Unix
command line:

./spl options filename

filename is the name of the file you want to compile. Only one filename is allowed. If filename
ends in .spl, the compiler expects a PepperCode source file. If filename ends in .cc, the compiler
expects to compile C++ source from a previous PepperCode file compilation.

@ For more information about options, see PepperCode Compiler Reference.

Solaris example

To compile one .spl source file and generate an object file called "myfile.o", on Solaris, for
example:

spl myfile.spl
To build a shared library called "libmylibrary.so":

spl --make library libmylibrary.so myfile.o anotherfile.o

To build a program called "myprogram" using that library plus another object file:

spl --make program myprogram yetanotherfile.o libmylibrary.so

To execute the program, first make sure that your LD _LIBRARY PATH variable is not set (in
the C shell, say "unsetenv LD_LIBRARY PATH"). Then say:

. /myprogram

On Solaris, by default, the program looks for the PepperCode runtime libraries (often called the
"substrate" relative to the directory in which the compiler resides, followed by the current
working directory ".". If you wish, you may use the environment variable LD LIBRARY PATH
to override this, searching first in the directories named by LD _LIBRARY PATH and then in the
compiler's own directories. If you move the runtime libraries to a different location after building
the program (the nightly v8vm server build script does this, for example) or if you use non-
absolute pathnames for your own libraries and you expect to run the server from a directory other
than the current working directory, then you will need to set LD _LIBRARY PATH to specify a
colon-separated list of the directories where the libraries reside.

In the Solaris world, there is only one complexity not shown in the example above. If two
compilations a.spl and b.spl both use "#include" on one another, you must first generate header
files using the "--no_header" option, then compile the files normally:

spl --header only a.spl

spl --header only b.spl

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-3

PEOPLESOFT PEPPERCODE JANUARY 2001

spl a.spl
spl b.spl

(Actually, since there's no need to generate the headers a second time, you could use "--
no_header" on the latter two compilations.)

HP-UX example

HP-UX behaves like Solaris, with two exceptions. First, by convention the shared library suffix is
".sl". Second, 32-bit versions of the operating system use SHLIB_PATH rather than
LD LIBRARY PATH to tell the runtime loader where to find libraries at program-startup time.

Digital Unix (OSF/1) and Linux examples

Digital Unix and Linux behave like Solaris, with one exception: the directories specified by

LD LIBRARY PATH are searched only after the directories specified by the compiler itself. For
most users this works fine (your libraries aren't in the compiler's directories, so searching them
first is a harmless waste of time), but programmers maintaining the substrate libraries will need to
relink with the "--rt_path" option (described later) instead of relying on LD_LIBRARY PATH if
they wish to override the directories normally specified by the compiler.

NT example

To compile one .spl source file and generate an object file called "myfile.obj" on NT:
spl myfile.spl

To build from it a program "myprogram":

spl --make program myprogram.exe myfile.obj

Using shared libraries on NT is more complicated than on Solaris, for two reasons. First, the code
which NT generates to access a symbol generally varies depending on whether the access crosses
the boundary between one library and another. Second, NT does not permit mutual dependency
between two libraries unless you first create at least one "import library" to describe the interface
of one of the libraries. The PepperCode compiler will help handle both problems, but it requires
you to use extra command-line options.

Suppose you want to build three mutually dependent libraries a.dll (based on files a0.spl and
al.spl), b.dll (based on b0.spl and b1.spl), and c.dll (based on c0.spl and c1.spl). Then you want
to link them together with myprogram.obj to generate program myprogram.exe. We'll describe a
general method which extends to an arbitrary number of mutually dependent libraries.

The easy part is to compile myprogram.spl into myprogram.obj as usual:

spl myprogram.spl

12-4 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Next, compile all the library source files with --header only, using the --lib_tag option to tell
each of them which library it will belong to:

spl --header only a0.spl --lib tag a
spl --header only al.spl --lib tag a
spl --header only bO.spl --1lib tag b
spl --header only bl.spl --1lib tag b
spl --header only cO0.spl --lib tag c
spl --header only cl.spl --lib tag c

Now compile the files for library a and then build an import library "a.lib" which describes
interfaces (this does not build a real shared library--we'll do that later). This step implicitly builds
an "export library" called "a.exp" as well:

spl --no header a0.spl --lib tag a
spl --no header al.spl --lib _tag a
spl --make implib a.lib a0.obj al.obj

Repeat the preceding steps for the other libraries, using "--lib_tag b" and "--lib_tag c" as
appropriate:

spl --no header b0O.spl --1lib tag b
spl --no header bl.spl --lib tag b
spl --make implib b.lib b0.obj bl.obj
spl --no header cO.spl --lib tag c
spl --no header cl.spl --lib tag c
spl --make implib c.lib c0.obj cl.obj

Now build the real shared libraries. For each one, specify on the command line the export library
corresponding to the DLL being built, the object files for that DLL, and the the import library
which describes the other DLLs:

spl --make library a.dll a.exp a0.obj al.obj b.lib c.lib
spl --make library b.dll b.exp b0.obj bl.obj a.lib c.lib
spl --make library c.dll c.exp cO.obj cl.obj a.lib b.lib
Finally build the program, specifying the import libraries:
spl --make program myprogram.exe myprogram.obj a.lib b.lib c.lib

NT uses the PATH variable to tell the runtime loader where to find libraries at program-startup
time, so generally you must make sure your PATH variable includes the directory in which the

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-5

PEOPLESOFT PEPPERCODE JANUARY 2001

PepperCode compiler resides (because the PepperCode runtime libraries reside there too). Then
type:

. /myprogram

Command-line rules in detail

As the examples above show, by default the compiler knows what suffixes are appropriate to the
platform on which it is running (for example, on Unix it generates .cc for C++ files and .o for
object files, whereas on NT it generates .cpp for C++ files and .obj for object files). You can
override this using a command-line option like "--object_suffix", as explained later.

Unlike typical Unix compilers, PepperCode does not use file suffixes to decide what a particular
file contains. For example, if you say "spl myfile.obj", the compiler will not automatically decide
that because the file ends in ".obj" it must be an object file. Instead, you must explicitly use "--
make program" or "--make_library" to tell the compiler to generate a library or program instead
of attempting to read PepperCode source code from "myfile.obj". Also, PepperCode will not take
a combination of source and object files in the same command; you must first compile each
source file, one at a time, and then link the objects.

Also unlike typical Unix compiler, PepperCode attempts to remove an output file before
truncating and writing it, so it will succeed if the file is removable but unwritable; and it puts the
object file in the same directory as the source file.

No matter which operating system you are using, a filename or directory name may use either
northwest (NT) or northeast (Unix) slashes.

Installation and Configuration Issues

The Release 8.0 Compiler is very flexible. You can choose to “install” the Release 8.0 compiler
in your own UNIX directories or use the existing installation at /home/v8vm/product/splcompiler.

Look here if you are installing the Release 8.0 Compiler or you wish to customize it.

Installation and configuration of the compiler is much easier and more compact because
PepperCode has been streamlined. Installation and configuration is, however, quite a different
procedure in Release 8.0, so these special instructions are provided here.

LD_LIBRARY_PATH

v Note: The library path variable is different for each target machine. For example, older HP
systems use SHLIB PATH instead of LD _LIBRARY PATH; NT provides no default and
uses PATH instead of LD _LIBRARY PATH; etc.

12-6 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

By default, the compiler looks for *.so libraries that it needs in the directory containing the
compiler and in the current directory. You may override this behavior by setting the

LD LIBRARY_ PATH environment variable. If set, LD LIBRARY PATH must be set to a list
of directories that includes a directory containing the *.so libraries the compiler needs.

You may wish to set your own LD LIBRARY PATH if you move the runtime libraries to a
different location after building the program (the nightly v7vm build does this, for example) or if
you use non-absolute pathnames for your own libraries and you expect to run the server from a
directory other than the current working directory.

LD LIBRARY_ PATH was implemented in this way to allow you more flexibility in your
development efforts. It allows you the choice of either using your own custom-made shared
libraries or using the default libraries that can be found in the same directory as the compiler.

If you want to execute the program using the default path to the libraries that is set by the
compiler, first make sure that your LD _LIBRARY PATH variable is not set (in the C shell, say
"unsetenv LD _LIBRARY PATH"). Then (assuming that myprogram is your program) say:

. /myprogram

List of Necessary Files

This is the list of files that must be present in the same directory for proper operation of the

compiler:

File Name Description

spl or spl.exe the executable compiler

.splrc global configuration file

splrt_stripped.h declarations required by the C++ source
code generated by the compiler

*.s0 or *.dll the "substrate" libraries which provide the
compiler runtime system

auto_timestamp.o startup code to be linked into the
executable program

The global configuration file .splrc contains a series of command-line flags. When the compiler
starts up, it first reads the global configuration file. Then it reads an optional per-user
configuration file SHOME/.splrc (on Unix) or "%USERPROFILE%\Application
Data\PeopleSoft\SPL\.splrc" (on NT). Finally it reads the flags on the actual command line.

.splrc

This is an optional per-user configuration file. With it, you can customize the behavior of the
compiler. Use the options listed below as a guide for modifying .splrc. On UNIX, .splrc will be

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-7

PEOPLESOFT PEPPERCODE JANUARY 2001

12-8

located in the SHOME directory. On Windows NT, it will be located in
%USERPROFILEY%\Application Data\PeopleSoft\SPL.

It is possible to customize the behavior of the compiler by modifying the global .splrc file. For
example, you could change the --cpp_suffix option to use a different suffix for C++ files, or you
could change the -cpp_fmt flag to use a different C++ compiler, or you could use --loud to make
the compiler treat a particular warning as an error. The individual user can often override the
settings in the global .splrc file by specifying different ones in the SHOME/ .splrc file, although
flags like "--cpp_fmt" require great care, and flags like "--include" only allow you to add
directories to the list, not to remove them. It is intended that the compiler will eventually use the
Win32 registry instead of .splrc files when executing on that system. However, this
implementation is not planned for Release 8.0.

Compiler Options (For Use During Installation)

The following options are normally put into .splrc and are used for installing the compiler,
although you are allowed to specify them on the command line if you wish:

--cpp_suffix <suffix>
--object suffix <suffixs>
--dll suffix <suffix>
--ar suffix <suffix>
--implib suffix <suffixs>
--explib suffix <suffix>

--exe suffix <suffix>

These tell the compiler what file suffix to expect for C++ sources, object files, shared library
(DLL) files, archive (static) library files, import library files, export library files, and executables.
The <suffix> should not include a ".". The compiler sets these to default values, so it's not
necessary to specify them in the configuration files unless you want to override the defaults.

On Unix systems which do not use import libraries per se, the "implib_suffix" is normally set to
the suffix of static libraries (e.g. "a"). The explib_suffix is left unset, and the exe suffix is set to
the empty string.

--cpp_fmt <formats>
--cpp_d fmt <formatx>
--cpp_o_fmt <format>
--1lib fmt <format>
--lib d fmt <formats>

--lib o fmt <formats>

COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

--implib fmt <formats>
--implib d fmt <formats
--implib o fmt <formats>
--prog_fmt <format>
--prog _d fmt <formats>

--prog o fmt <formats>

These tell the compiler how to run the C++ compiler, how to build a shared library (DLL), how to
build an import library, and how to build a program. Each comes in three forms: the compiler
uses the " d " form when the --debug flag is in effect, and uses the " o " form when the --
optimize flag is in effect. The format strings use a printf-like syntax, as described earlier in this
section.

--purify fmt <formats>

--quantify fmt <formats

On Unix systems, these provide prefix formats which we prepend to the appropriate "--
prog_* fmt" string if you use "--purify" or "--quantify" along with "--make program".

--verbose

This prints on the console a list of all the flag values in effect. If there are no other flags which
call for the compiler to do work, then it exits. Otherwise, the compiler proceeds to do its normal
work, and when it issues a command to the operating system (e.g. to run the C++ compiler) it first
prints that command on the console.

--no_debug
--warn
--no_optimize

These are opposites of the usual options, provided only so that one can override a configuration
file.

--rt_fmt <list>

This specifies the list of runtime (substrate) libraries, using whatever syntax the target OS
expects. For example, on Solaris, this will probably consist of " -laintpr -Irtoe ...". Note that the
string may not begin with "-", so we usually put a blank at the beginning.

--oslib_fmt <list>

--oslib d fmt <list>

Similar to --rt_fmt, this specifies the list of OS or C++ compiler libraries required in building
programs. --oslib_d_fmt specifies libraries to use when --debug is in effect.

--include fmt <formats>

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-9

PEOPLESOFT PEPPERCODE JANUARY 2001

--define fmt <formats

This tells how to format each --include or --define option before passing it along to the target
machine C++ compiler. The <format> should contain a single "%s" to mark the spot where we
should substitute the directory or macro definition. If the format would begin with "-", put a blank
in front of it (for example, " -1%s" or " -D%s".).

Each of the <format> strings described in the preceding list of options may use the following
printf-like codes:

$* or %* List of all input files

$@ or %@ Output file from --make program, --make_library, --
spl to object, or --cpp_to_object

$w or %w Directory in which the compiler executable resides

$$ Substitute a dollar sign

%% Substitute a percent sign

$r or %r Substitute the list of runtime libraries obtained from the —
rt_fmt flag

$1 or %l Substitute the list of OS and C++ compiler libraries

obtained from the --oslib_fmt or --oslib_d_fmt flag.

$i or %i Substitute all of the --include and --define options,
formatted according to the --include fmt and --define_fmt
strings, here.

$# or Yott Store the list of input files in a temporary file and
substitute the name of the temporary file in place of the
'$#' sequence.

$p or %p Substitute the value of --rt_path

$. or %. Substitute the value of --make program, --make_library, -
-spl_to_object, or --cpp_to_object with suffix removed.

PepperCode Compiler Reference

The procedures for using the new compiler are very different from those for using previous
versions of the compiler. This section explains options for using the Release 8.0 PepperCode
compiler. It provides command line syntax, descriptions of command line syntax, and examples
of command line syntax for the 8.0 compiler.

12-10 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Command-line Rules in Detail

By default the compiler knows what suffixes are appropriate to the platform on which it is
running. For example, on Unix it generates .cc for C++ files and .o for object files, whereas on
NT it generates .cpp for C++ files and .obj for object files. You can override this using a
command-line option like "--object _suffix", as explained in Compiler Options (For Use During
Installation).

Unlike some compilers, PepperCode does not use file suffixes to decide what a particular file
contains. For example, if you say "spl myfile.obj", the compiler will not automatically decide that
because the file ends in ".obj" it must be an object file. Instead, you must explicitly use "--

make program” or "--make library" to tell the compiler to generate a library or program instead
of attempting to read PepperCode source code from "myfile.obj". Also, PepperCode will not take
a combination of source and object files in the same command; you must first compile each
source file, one at a time, and then link the objects.

Also unlike some compilers, PepperCode attempts to remove an output file before truncating and
writing it, so it will succeed if the file is removable but unwritable; and it puts the object file in
the same directory as the source file.

No matter which operating system you are using, a filename or directory name may use either
northwest (NT) or northeast (UNIX) slashes. The following sections give a list of all of the
command-line options, grouped according to their purpose.

Most-Used Compiler Options

These compiler options are used for most compilations.

default (no option switch)

The default generates a single object file from a single PepperCode (*.spl) file. The object file is
given the same name as the *.spl file by default.

Usage:
> spl <PepperCode source files
Example:
> spl myfile.spl
This example creates an object file called myfile.o (myfile.obj on Windows NT). The generated
file is placed in the same directory as the *.spl file.
--make_program

This compiler option generates an executable program file from one or more object files and
libraries.

Usage:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-11

PEOPLESOFT PEPPERCODE JANUARY 2001

> spl --make program <executable file> <object files> [source libraries]
Example:

> spl --make program myprogram myfile.o
This example generates an executable program from the object file generated in the <no option>
example above.
--make_library

This option tells the compiler to convert one or more object files into a shared library and put the
result into file <name>. On Win32 systems it is important that all of those object files were built
with the same --lib_tag option.

Usage:

> spl --make library <shared library name> <one or more object files>
Example:

> spl --make library libmylibrary.so myfile.o

This example makes a shared library libmylibrary.so from myfile.o.

Options That Dictate Which Compiler or Linker to Run

These compiler options let you use the PepperCode compiler as a machine-independent interface
to the C++ compiler when you work with human-written C++ code. They are mutually exclusive
as the compiler does only one thing at a time. As mentioned earlier, the compiler does only one
thing at a time, so the options in this section are mutually exclusive unless otherwise noted.

--spl_to_object <object file name> <PepperCode file name>

This option translates a single *.spl file <PepperCode file name> into an object file called <object
file name>. The object file must end with the standard object suffix. There should be exactly two
filenames on the command line. One must have the .o or .obj object file suffix, and the other must
have the spl suffix. This compiler option is used when you want your object file to have a
different name than your *.spl file.

Example:
> spl --spl _to object y.o x.spl

This option will generate an object file named y.o from spl file x.spl.

12-12 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

--cpp_to_object <object file name> <cpp file name>

This option translates a single C++ source file <cpp file name> into an object file called <object
file name>. The object file must end with the standard object suffix (*.0 on UNIX, *.0obj on
WindowsNT). Instead of running the PepperCode compiler, we run the C++ compiler.

Example:
> spl --cpp _to object y.o x.cc

This option will generate an object file named y.o from C++ file x.cc.

--preprocessor

Applies the C++ preprocessor to a single C++ source file, which must end with the standard C++
suffix (not .h), and write the result to the standard output.

_c--
no_object

Translate a single *.spl file into a C++ source file (.cc or .cpp file) and a pre-compiled header file
(.pchs file). However, no object file is generated when using this option.

--make_implib <name>
Like --make library, but for use on Win32 systems which requires you to generate import

libraries before generating shared libraries or DLLs. This does nothing on other systems.

--debug
--optimize

Generate debuggable or optimized code. These are mutually exclusive. They always affect
PepperCode compilations and C++ compilations, and on some target machines they affect the
creation of libraries and executable programs as well, so it is wise to specify them consistently in
every command.

Options Used When Compiling PepperCode

These options are used when compiling PepperCode. They are ignored otherwise.

--include <directory>
-I<directory>

Add the directory to the list of directories in which we search for "spl" files mentioned in
"#include" statements. The path may use either northwest or northeast slashes.

For an example of how this is used, see Rules for Inclusion and Writing #include Statements. As
mentioned under Options Used Only When Compiling C++ Source Code, you can also use these

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-13

PEOPLESOFT PEPPERCODE JANUARY 2001

options with --cpp_to_object. Note that if you use these options when compiling C++ code, the
list of directories gets passed to the C++ compiler. If you use these options when compiling
PepperCode, the list of directories gets passed to the PepperCode compiler but not to the C++
compiler, since PepperCode-generated code contains only a single, canned "#include" statement

anyway.

--no_warn

Suppress printing of any warnings. This takes effect after any --loud and --quiet options. First the
compiler establishes the severity of each message, and then --no_warn globally suppresses all
messages whose severity is lower than "error".

--loud <integer>
--quiet <integer>

This option raises or lowers the severity of the message specified by <integer> (the integer
corresponding to a particular warning appears after the word "Warning" when the compiler prints
it.) You can use --loud to turn a warning into an error, or you can use --quiet to suppress a
warning (and then you can use --loud to turn it back into a warning again).

You can also use --loud to turn a normal error into a fatal error, which causes the compiler to quit
immediately. You cannot use --quiet to lower the severity of an error or fatal error.

Example:
If you issued the following:
spl --make program --quiet 71

Message number 71 would not appear. This only applies to warnings. If it is an actual error
message, you cannot make it go away in this manner. You will get a compiler message informing
you that this is already an error.

--lib_tag <tag>

When compiling PepperCode, this option generates C++ code for the dynamically linked library
that is associated with string <tag>. This is required only on Win32 systems, although using it on
other operating systems is harmless.

Normally the compiler generates C++ code to be built into the main portion of a program, as
opposed to a shared library or DLL. If you use this option, it generates code to be linked into a
shared library (DLL). The "tag" is a cookie used to distinguish one DLL from another in a
situation where one DLL imports symbols from another: it need not match the name of the DLL
file, but must be different than the "name" you use for any other DLL.

You should specify this whenever compiling a *.spl file whose code will ultimately become part
of a Win32 DLL. In particular it is important to use this option consistently both when compiling
with --header only and with --no_header.

12-14 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

--header_only

This compiler option generates a precompiled header for this source file, but does not attempt to
compile the source file. This is useful when two source files use "#include" on one another. A
precompiled header (a binary file whose name ends in ".pchs") must exist for each "#include"
statement in a source file before you can compile that source file. When two *.spl files include
one another directly or indirectly, you must generate the predefined header for one source file,
then compile the other, and finally compile the first.

Example:

Say you have two files a.spl and b.spl. They include each other in their source code. If you were
to try to compile these files normally with the following command:

spl a.spl

You would get an error. Because you included b.spl in a.spl, the compiler will look for the file
b.pchs. It won’t be able to find this file because it hasn't been generated yet. The same thing
would happen if you tried to compile b.spl. To avoid this error, you must generate a.pchs and
b.pchs before you actually compile. The following is an example of how you would proceed:

spl --header only a.spl //generates a.pchs (needed to generate b.o)
spl --header only b.spl //generates b.pchs, (needed to generate a.o)
spl --no header a.spl //generates a.o using b.pchs (generated above)

spl --no header b.spl //generates b.o using a.pchs (generated above)

Actually, you could compile with no option on the latter two compilations. The no_header option
is being used here because you have already generated header files for a.spl and b.spl in the first
two compilations.

--no_header

If you use this option, you will not generate a precompiled header. When building a program
from scratch, you may find it easier to process all the files first with --header only, then compile
them all with --no_header.

For an example of this, see header only in this section.

--doc

This compiler option generates a *.doc file as specified in the PepperCode Documentation
Comments section. To generate only a *.doc file for a particular *.spl file, use the --header only
and --no_header compiler options in conjunction with this compiler option.

Example:
To generate the file xyz.doc without actually compiling xyz.spl:

> spl --no header --header only --doc xyz.spl

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-15

PEOPLESOFT PEPPERCODE JANUARY 2001

To generate the file xyz.doc along with compiling xyz.spl (to an object file):

> spl --doc xyz.spl

@ For more information on using documentation comments and #document blocks, see Writing
PepperCode Documentation Comments.

Options Used Only When Compiling C++ Source Code

You may use the PepperCode compiler as a machine-independent interface to the C++ compiler.

@ For more information, see Options That Dictate Which Compiler or Linker to Run.

--define <macroname>=<value>

Define the specified macro. This option is ignored if you are compiling a PepperCode source file,
since the PepperCode language itself does not perform macro substitutions. Omitting the
"=<value>" portion sets the macro to "1".

--include <directory>
-I<directory>

Add the directory to the list of directories in which we search for files mentioned in "#include"
statements. The path may use either northwest or northeast slashes.

@ For more information, see Options Used When Compiling PepperCode.

Options to be Used With --make_program Option

These options are used with the --make program compiler option. They are ignored otherwise.

--client

Build a program which lets clients call actions via TCP/IP networking. By default, networking is
disabled, so to call actions at runtime you must either create a main-program action called
"spl_main" (which will be invoked automatically at startup whether or not you built the program
with --client) or you must run the program with the "-I" option, which prompts for action
invocations on the keyboard.

12-16 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

--no_main

Disable automatic generation of a main program. This is useful when employing the PepperCode
compiler as a front end to hide the syntax of the local C++ compiler while linking human-written
C++ code which provides its own "main". In the absence of this option, we generate a main
program which sets a build stamp and invokes certain startup functions in the "substrate"
(PepperCode runtime) libraries.

--no_rt

Disable linking of the "substrate" (PepperCode runtime) libraries. This is useful when employing
the PepperCode compiler as a front end to hide the syntax of the local C++ compiler while
linking human-written C++ code which does not depend on those libraries. Typically --no_rt
requires --no_main, since the automatically generated main program calls functions in those
libraries.

--rt_path <directory>

Adds <directory> to the link-time search list for substrate (runtime) libraries.

—-purify
--quantify

Use these options along with --make program and a list of object files and libraries to prepare a
version of the program which checks the heap (--purify) or generates a performance profile (--
quantify).

Machine-Specific Escape Clause

--quote <argument>

This option passes <argument> to the C++ compiler or linker without interpreting it. This may
appear repeatedly. For example, you could say:

--quote "-O parallel"

to pass "-O parallel” to the C++ compiler or linker. All of the --quote options are passed to the
compiler or linker prior to the first input file name.

Options for Compiler Maintenance

These options are meant to be used only by those that maintain the PepperCode compiler.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-17

PEOPLESOFT PEPPERCODE JANUARY 2001

--keep
-K

Do not delete temporary files and output files in case of error.

--parse_dump

Generate on stdout a diagnostic listing of the syntax tree after parsing but before reading
precompiled headers corresponding to "#include" statements.

--include_dump

Like "--parse_dump", but after reading precompiled headers.

--check_dump

Like "--parse_dump", but after semantic checking.

--pch_dump

Instead of reading the source file, read the corresponding precompiled header (which must
already exist) and print a diagnostic listing on stdout.

@ For more information about some additional options, see Compiler Options (For Use During
Installation).

Using Hush

The Hush feature allows you to remove the executable code within the actions from a
PepperCode source file, while leaving the interface intact to allow other source files to include the
Hushed source file. You use Hush to protect proprietary PepperCode code.

Hush can perform the following tasks:

e Replaces the PepperCode source file, filename. spl, with a PepperCode source file that has
the executable code within the actions deleted. This does not delete the entire action; it
removes the code within the {}, leaving the rest of the action intact. The write-permission bits
are cleared on this file to prevent editing of the source file and recompiling of the object file by
the make command.

e Replaces the C++ source file, filename. cc, with a zero-length non-writable file that has the
same modification time as the C++ source file. This conceals the code and prevents
recompiling of the object file by the make command.

Following is the syntax you use from a UNIX command line:

12-18 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

hush options filename

options can be one or more of the following:

-outfile newfile Do not replace the PepperCode source
file, filename. spl. Instead, put the
PepperCode source file with the deleted
actions into a file named newfile.

-keepcc Do not replace the C++ source file,
filename. cc.

-help Print a help message for the Hush
command.

For example, if you want to share interfaces and object files, but not proprietary code, do the
following:

1. Use the make command to make the directory normally.
2. Using csh, enter the following commands:

foreach x (*.spl)

hush $x

end

If you were to perform Hush upon the sample code in the section Getting Started with
PepperCode, the code would look as follows:

For more information, including a listing of the sample code, see Getting Started with
PepperCode.

// Include the .spl file containing PepperCode runtime functions.
// By convention, these functions appear in all uppercase letters in code.
#include "cpp utility.spl"
// Create an enumeration containing the possible bike materials.
enum material { steel, aluminum, carbon fiber, titanium, other };
// Define a basic class for a vehicle.
class Vehicle : Base Class {
int serial number

int passengers

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-19

PEOPLESOFT PEPPERCODE JANUARY 2001

int price
}i
slot Vehicle.passengers { default: 4 };
// Derive the class Bicycle from the class Vehicle.
// Add two new slots, in addition to those from the Vehicle class.
// Override the default number of passengers to a more realistic value
// for a bike.
class Bicycle: Vehicle {
string model name
enum<material> frame material
}i
slot Bicycle.frame material{ default: steel };
slot Bicycle.passengers{ default: 1 };
// Create an instance of the Bicycle class (or one of its subclasses).
// The instance of the class is an object.
action create_vehicle
(input: int serial number,
input: string model name,
input: string class name,
output: instance<Bicycle> new_bike,

no_context:)

// Create instances of the classes Atb and Bicycle.
// Test it by generating a list of the instances of Bicycle and iterating
// through the list—printing the serial number of each Bicycle or Atb.
action spl main

(input: int argc,

input: oset[string] argv,

12-20 COMPILING AND LINKING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

input: string identity,
local: action<create_vehicle> create_vehicle,

local: oset[instance<Bicycle>] list)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPILING AND LINKING PEPPERCODE 12-21

CHAPTER 13

Understanding PepperCode Syntax

The following grammar describes the syntax recognized by the parser in the current PepperCode
compiler. You will notice a few constructs that are not documented elsewhere in the manual.
Some of these are recognized by the parser but then are rejected later in the compiler; they
represent possible future enhancements to the language. Others are accepted by the compiler;
they represent obsolete features that are still accepted.

The most notable example of the latter involves trailing semicolons. For historical reasons, the
compiler accepts extra semicolons after right braces (}) in certain places where C and C++ do not
require them—for example, after the left brace ({) at the end of an action definition.

<spl_statements>

::= <spl_statement> <spl statements>

| <spl statements>
<spl_statement>

:= <toplevel statement>
<toplevel statement>

::= <class_statement>

| <slot_statements>

| <action statements>

| <enum statement>

| <action scheme statements

| <function statements>

| <function scheme statements

| <cpp_fn_statements>

| <cpp_fn scheme statements

| <directive statement>
<directive statements

::= <include directives

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE SYNTAX 13-1

PEOPLESOFT PEPPERCODE JANUARY 2001

<include_directive>

::= #include <filespec>

| #remote include <filespecs>
<filespec>

:= < <filename> >

| " <filename> "

<keyword_parameter list>

| (<keyword parameter list recurs>)
<keyword parameter list recur>

::= <keyword parameter declaration>

| <keyword parameter list recur> , <keyword parameter declarations
<keyword_parameter_declaration>

::= <keyword parameter types> <type specifier> <identifiers>

<keyword parameter initial value>

| <keyword parameter attributes
<keyword parameter types>

::= input:

| inout:

| local:

| output:

| returntype:
<keyword_parameter_attributes>

:= explain:

| interpret:

| audit:

| audit no replay:

| no context:

| context:

13-2 UNDERSTANDING PEPPERCODE SYNTAX PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

<keyword parameter initial value>

= <constant>

<identifier>

| <empty>

<parameter list>

| (<parameter list recurs>)
<parameter list recurs>
:= <parameter declaration>
| <parameter list recur> , <parameter declarations>
<parameter declaration>
::= <type specifier>
<class_statement>
::= class <identifier> <base_ classes> <class_body semi>
| <CLASS> <identifier> ;
<class_body semi>
:= <class_body> ;
<class body>
::= { <slot_specs> <class_specs> }
| { <class specss> }

| { <slot_specs> }

<base classes>
1= <empty>
| : <base_class id>
| <base classes> <base class_id>
<base class id>
:= <identifier>

<slot_ specs>

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE SYNTAX 13-3

PEOPLESOFT PEPPERCODE JANUARY 2001

::= <slot_spec>
| <slot_ specs> <slot_ spec>
<slot spec>
::= <slot type> <identifiers>
<slot_type>
:= <type specifiers>
<class_specs>
::= <class_spec>
| <class_spec> <class specs>
<class_spec>
::= <after init_spec>
| <class_interface values>
| <temporary instancess
<after_init_spec>
::= after init: <compound after init statementss>
<class_interface_value>
:= class_interface value: <identifiers
<temporary instances>
::= temporary instances:
<compound_after init statements>
:= { <after init statementss> }
I {1
<after init statements>
:= <after init statements> <after init_ statement>
| <after init statements>
<after_init_statement>
:= <if statements>
| <compound after init statementss

| <execute statements

13-4 UNDERSTANDING PEPPERCODE SYNTAX PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

| <while statements>
| <assignment statements>
| <expression statements
| <foreach statements
<enum_statement>
:= enum <identifiers> { <enumerator list> } ;
<enumerator list>
::= <identifiers
| <enumerator list> , <identifiers>
<slot_statement>
::= slot <identifier> . <identifier> <slot_clause_body> ;
<slot clause body>
=)
| { <slot_clauses> }
<slot clauses>
:= <slot _clauses> <slot clause>
| <slot_clause>
<slot clause>
::= <slot_default clause>
| <slot_db clause>
| <slot documentation clauses>
| <slot_cardinality clauses>
| <slot_interface type>
| <slot class slot clause>
<slot_default_clause>
::= default: <slot_default_specifier>
<slot default specifiers
:= <constant>

| <identifiers

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE SYNTAX 13-5

PEOPLESOFT PEPPERCODE JANUARY 2001

| <type specifiers
| new
| new <identifiers
<slot_db clause>
:=db:{}
<slot documentation clauses
::= documentation: <string constants>
<slot_cardinality clause>
:= cardinality: <constants>
<slot_interface_type>
::= slot_interface value: <identifiers
<slot class_slot clause>
:= class_slot:
<cpp_fn statement>
::= cpp_function <type specifier> <identifier> <parameter list>
<string constants> ;
| cpp_function < <identifier> > <identifier> <string constant> ;
<cpp_fn scheme statement>
::= cpp_function schema <type specifier> <identifier> <parameter list> ;
<action_ statement>
:= <action declarations> ;
| <action declaration> <keyword parameter lists> ;
| <action declaration> <action body semis>
| <action declaration> <keyword parameter list> <action body semis
<action declarations
::= action <identifiers
| action < <identifier> > <identifiers>
<action scheme statements>

::= <action scheme declarations> ;

13-6 UNDERSTANDING PEPPERCODE SYNTAX PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

| <action_scheme declarations> <keyword parameter lists ;
<action_ scheme declarations

::= action schema <identifiers
<action_body semi>

:= <compound_action body statements>

| <compound action body statementss> ;
<compound_action body statements>

::= { <action body statementss> }

I {1}
<action body statements>

::= <action body statements> <action body statements

| <action body statements>
<action body statement>

::= <if statement>

| <action body semis>

| <execute statements

| <while statement>

| <exit statements>

| <assignment statements>

| <expression statements

| <foreach statement>
<target statement>

::= <action body statements>
<if statement>

::= <if simple statement>

| <if simple statement> else <target statement>
<if simple statements

:= 1f (<expression>) <target_statement>

<execute_ statement>

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE SYNTAX 13-7

PEOPLESOFT PEPPERCODE

JANUARY 2001

::= execute <first variable> <action keyword list> ;

<foreach statement>

::= foreach <identifier> in <expression> <target statement>

| foreach <identifier> in reverse <expression> <target statement>

<return statement>
:= return (<identifiers) ;

| return (<int constant>) ;

| return (<float constant>) ;

| return (<string constant>) ;
<exit statement>

::= leave ;

| succeed (<first variables>) ;

| succeed () ;

| fail (<first variables>) ;

| fail () ;

<while_statement>

:= <WHILE> (<expression>) <target_statement>

<assignment statements>

::= <expression> = <expressions> ;
<expression statements

:= <expressions> ;

<expression>

1 1= <constant>

| <identifier> <path>
<path>

::= <link> (<arg lists>

| <link>
<link>

::= <path> . <identifiers

13-8 UNDERSTANDING PEPPERCODE SYNTAX

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

| <empty>

<arg list>

| <multi_arg lists)
<multi arg list>

:= <multi arg list> , <expression>

| <expressions
<first variable>

:= <identifier>
<action_keyword list>

::= (<keyword list>)

<keyword list>

::= <keyword list> , <keyword value>

| <keyword values
<keyword value>

:= : <identifier> <expressions>

<type specifiers

::= 1int

| void

| float

| date

| time

| string

| <instance type specifiers

| <class type specifiers

| <function type specifiers

| <cpp_fn type specifiers

| <action type specifiers

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE SYNTAX 13-9

PEOPLESOFT PEPPERCODE

| <oset type specifiers
| <enum type specifiers
| <history type specifiers
<instance type specifiers
:= instance < <identifier> >
<class_type specifiers>
::= class < <identifier> >
<cpp_fn type specifiers
:= cpp_function < <identifiers> >
<action_type_specifiers
::= action < <identifiers >
<enum_type specifiers
:= enum < <identifiers> >
<oset type specifiers
::= oset [<type specifiers]
<history element type specifier>
:= int
| float
| string
| instance
<history type specifiers
::= history < <history element_ type specifier>
<constant>
:= <string constant>
| <int constant>
| <float constants
| - <int constants>
| - <float constant>

<identifier>

13-10 UNDERSTANDING PEPPERCODE SYNTAX

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

::= [A-Za-z] [A-Za-z0-9]*
<int_constant>
c:= [0-9]+
<string constant>
:= "[*n]*"; recognizes the same backslash escape characters as ISO C,
including '\"'.
<float constant>
::= [0-9].[0-9]+
<filename>

recognizes the syntax of a Unix filename

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL UNDERSTANDING PEPPERCODE SYNTAX 13-11

CHAPTER 14
Debugging PepperCode

PepperCode code is converted to C++ code during compilation:

e Actions become C++ instances.

e Parameters become C++ member variables.

To debug PepperCode code, there are a number of tools, including symbolic debuggers for C++

and the debugging functions that you can use to print methods and their descriptions. This
section describes these and other methods of debugging your code.

Avoiding Common Mistakes

Some common mistakes programmers make when writing PepperCode code are the following:
¢ Omitting opening or closing parentheses (()) or braces ({ })
¢ Adding extraneous semicolons (;)

PepperCode doesn’t accept semicolons (;) in all of the places that C and C++ do. The main
exception is within a class definition:

class c {

int i // no semicolon here

float £ // or here

}i
¢ Not including the proper header files or forward declarations

Be sure to include declaration or action files that define needed actions.
e Not declaring an action as a local parameter within the calling action

PepperCode requires you to declare an action as a local parameter before you can invoke it.
The local parameter should be in the form:

action<action name> param name

not:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-1

PEOPLESOFT PEPPERCODE JANUARY 2001

14-2

action<schema_name> param name

The tricky part is that in code the syntax looks very similar, so you could accidentally specify
a schema, as in the following example:

action schema draw() ;

action<draws> draw circle() { ... }

action<draws> draw_square() { ... }

action draw something

(local: action<draws> draw circle)

{
// Will fail at execution time because "draw" is a schema,
// not an action whose schema is draw. draw circle is just a
// parameter and doesn’t refer to an action definition.
execute draw circle() ;

succeed () ;

If the action has one or more parameters, the compiler may be able to detect the problem at
compilation time. In this example, it will complain that size isn’t a parameter in draw. (If the
compiler doesn’t detect the error, this problem results in a segmentation violation at
execution time.)

action schema draw() ;
action<draw> draw_circle
(input: int size)
action<draw> draw_square
(input: int size)
action draw_something

(local: action<draws> draw circle)

execute draw_circle(:size 5); // Compiler issues an error message

succeed () ;

DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

The correct version of draw_something specifies that the local parameter isn’t just an action
whose schema is draw, but is the specific action draw_circle:

action draw_ something

(local: action<draw circle> draw circle)

execute draw _circle(:size 5);

succeed () ;

e Forgetting to reset static action parameters when an action is called multiple times

@ Even local parameters must be reset. For more information, refer to the discussion on static
action parameters in Writing Action Parameters.

e Not assigning a value to an instance input parameter of an action

This will cause the action to break when executed because the value of the instance parameter
will be zero. For example:

action evaluate score
(input: instance<Spl Class> an object,

local: int current score)

current score = an_object.score; // will break when an object = 0

//

// do some other stuff here

//

succeed () ;

execute evaluate score(); // OOPS!!! This will break

e Calling methods directly, instead of calling their corresponding dispatcher actions

o Assuming that expressions are evaluated from left to right (like C/C++)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-3

PEOPLESOFT PEPPERCODE JANUARY 2001

The following code will break when the object is zero. In C/C++, the expression stops
evaluating when it hits the object; in PepperCode, the expression continues to evaluate
(the object.score, 100) aswell. When the object is zero, this code crashes in
PepperCode, but not in C/C++.

if (AND (the object,

EQ (the object.score, 100)))

e Calling C++ functions when corresponding actions exist

For example, CREATE_OBJECT is a C++ function that should never be called directly.
Instead, the action create_object should be used.

Also, DELETE OBJECT should only be called from within delete methods. The action
delete object is the top-level call for deleting an object. This is important because every
PepperCode object has a default delete method that is called if you use delete object.

e Using GET DESCENDANTS on objects that are in a free store

When an object is in a free store, it should not be accessed with GET DESCENDANTS.
One example is spreadsheet row objects.

e Accessing an empty oset

When an oset is empty, any of the oset functions that return values will break. For example:

local: oset[int] scores, // local oset parameter
scores.flush() ; // empty the oset

scores.first(); // This will break !!!

scores.last () ; // so will this !!!

e Modifying an oset while looping over it with foreach

The foreach statement loops over an oset by incrementing the link-list pointers of the oset.
When the link-list pointers are modified during a foreach, the system can break with a “stale
pointer” error. Note that foreach loops over the actual oset, not a copy of the oset. Here is an
example:

// This action is an example of how NOT to modify osets in a foreach.

//

action bad oset usage

14-4 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

(local: oset[int] scores,

no_context:)

scores.flush() ; // clear the oset

scores.enque (1) ; // enque three numbers on the oset
scores.enque (2) ; //

scores.enque (3) ; //

foreach score in scores
if (score == 2)

scores.delete (score) ; // THIS WILL CAUSE THE SYSTEM TO
BREAK

foreach score in scores
if (score == 2)
scores.enque (score) ; // THIS WILL CAUSE THE SYSTEM TO BREAK

succeed () ;

// This action is an example of how to modify osets in a foreach
// by making a copy of the oset.
//
action better oset usage
(local: oset[int] scores,
local: oset[int] temp scores,

no_context:)

scores.flush() ; // clear the oset

scores.enque (1) ; // enque three numbers on the oset
scores.enque (2) ; //

scores.enque (3) ; //

temp scores = scores; // make a copy of the original oset

foreach score in temp_ scores // loop over a copy of the original oset

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-5

PEOPLESOFT PEPPERCODE JANUARY 2001

if (score == 2)
scores.delete (score) ;
foreach score in temp scores // loop over a copy of the original oset
if (score == 2)
scores.enque (score) ;

succeed () ;

}

To avoid this problem when deleting an entire oset of objects in a delete method, use the
action delete_object_list.

o Not checking for errors resulting from the limited type checking PepperCode does

Troubleshooting Guide

This section is meant to help developers resolve errors and other problems encountered in the
development process. It contains a Frequently Asked Questions (FAQ) section and a PepperCode
Error Message Reference. The individual FAQ questions and error messages have links to other
sections of this document that pertain to the particular question or error message.

Compiler Frequently Asked Questions (FAQ)

The following are frequently asked questions whose answers may help you in your transition to
the Release 8.0 compiler:

Q: How does one compile PepperCode files that #include each other?

The pre-compiled header files (*.pchs) are used when *.spl files are included.

@ For more information on inclusion and examples that demonstrate how inclusion works, see
Writing PepperCode #include Statements.

Pre-compiled header files are generated when *.spl files are compiled. The following example is
provided for use in cases where two *.spl files include each other.

You must include a *.spl file in a file you are compiling if you use actions or classes that are
defined in it.

Example:

If two compilations a.spl and b.spl both use "#include" on one another, you must first generate
header files using the "--header _only" compiler option, then compile the files normally or

14-6 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

compile them using the --no_header option. If you were to try to compile these files to an object
file without first generating header files for them, the compiler would look for the header file and
issue an error because of the missing file (See error message Error on "%s": %s..). The following
is an example of how you would proceed:

spl --header only a.spl //generates a.pchs, cannot create a.o yet
spl --header only b.spl //generates b.pchs, cannot create b.o yet
spl --no header a.spl //generates a.o using a.pchs (generated above)

spl --no header b.spl //generates b.o using b.pchs (generated above)

Actually, you could compile with the default option on the latter two compilations. The
no_header option is being used here because you have already generated header files for a.spl and
b.spl in the first two compilations.

To see a functional example of this type of compilation, see --header only.

Q: Why doesn’'t an enumeration constant have an integer value?

A: The same constant can appear in multiple enumerations, but it may not be possible to assign
the same integer constant in each one. If the following statements appear in separate
compilations, green would naturally be "2" in one case and "3" in the other. An expression like
"green.integer" would not tell the compiler which "green" was intended.

enum rgb { red, blue, green };

enum rainbow { red, orange, yellow, green, indigo, violet };

Q: The rules have changed for declaring actions locally. What about classes?
As long as you declare an action, you can invoke it without declaring a local parameter:
action b();
action a() {
execute b();
}
instead of:
action b();
action a(local: action b) {

execute b();

}

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-7

PEOPLESOFT PEPPERCODE JANUARY 2001

A: The simple answer is yes. You can use an existing class as it is named without declaring it
locally or using GET _CLASS BY_ NAME to retrieve it. In fact, you cannot declare a local class
as follows:

action a(local: class b) {<body>}
This will cause an error.

If, however, you want to use a variable to represent the class or use an instance of the class, you
must declare it in the action.

@ For more information, see Using Predefined Classes. For more information on the new rules
for local actions, see New Rule for Invoking Action.

Example:
// The following are class definitions. (No parameters are specified.)

class c {

bi

class cl:c {

bi

class c2:c {

}

action a ()

PRINTF (“%s”, c.name) // This action prints the name of the class.

// The class need not be declared locally.

}

action b (local: class(c) cv,

local: int foo)

if foo =1

14-8 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

cv = ¢
else if foo = 2
cv = cl
else if foo = 3
cv = C2;
endIf
PRINTF (“%8”, cv.name) // This action prints the name of the class.
// The name of the class depends on foo.
// For this to work,
// the class needs to be declared locally.
// if foo = 1, the result is c.
// if foo = 2, the result is cl.

// if foo = 3, the result is c2.

Error Message Reference

This section provides troubleshooting information for error messages that you may encounter
while compiling PepperCode. They are separated into two categories, errors that stop compilation
and warnings that don't stop compilation. They are then listed in alphabetical order in each
section.

Errors (That Stop Compilation)

Y ou must resolve these errors before you continue.

Action should have a parameter list.

This error can occur in an action definition, a forward action declaration, or an action_schema
definition when you don't use a parameter list.

Example:
Say you declare an action schema as follows:

action schema schemal;

Because the parentheses are missing from the action schema declaration, the compiler determines
that the action parameter list, which should be enclosed in the parenthesis, is missing. When an

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-9

PEOPLESOFT PEPPERCODE JANUARY 2001

action is defined later with this action schema, the compiler cannot find the parameter list for the
action schema because of the missing parenthesis, and this error message is generated.

An action schema should be defined as follows:

action schema schemal (<parameter lists);

The actual parameter list is not required, but the parentheses are required.

@ For more information, see Action Schema Declarations and Definitions.

Cannot set local parameter " %s'"' in an execute statement.

This error occurs if you try to set a parameter in an execute statement that is local to the action
being called.

Example:
The following line of code will cause this error if "1" is a local parameter in action_local:

execute action local(:1 5);

Declaration of " %s" conflicts with the declaration in %s: %d.

This can happen when you have more than one action or class definition. The first "%s" is the
action or class in question. The second "%s" is the file name of the file containing the conflicting
declaration. The "%d" is the line number of the line of code where the conflict occurs.

Example:
Declaration of "uses_schemal" conflicts with the declaration in schema_example 3.spl:8.

This happens if the forward action declaration for action uses_schemal has a body. If a forward
action declaration has a body, the compiler cannot tell which declaration is the forward
declaration and which one is the definition. Try taking the body off of your forward action
declaration.

@ For more information, see Declaring Actions: Forward (or Incomplete) Action Declarations.

Deleting output files and stopping due to an error in the compiler itself
This error can be caused by a variety of serious code problems that cause the compiler to stop.
Example:

In a sample run, this error was caused by the following command:

14-10 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

PRINTF ("%d", action output.o) ;

This error occurred because of an attempt to print something that did not yet exist.
action_output.o did not yet exist because action_output had not yet been evoked. This same
command caused no problem after action_output was invoked because action_output.o then
existed.

Error on "%s": %s.

This is a generic error. It is used to pass error messages from a variety of sources to the
PepperCode compiler. The first string ("%s") represents the object that caused the error. The
second string (%s) represents the actual error.

Example:
Error on "./xyz.pchs": No such file or directory.

This error occurs when the compiler cannot find xyz.pchs. The cause is either because the file has
not been generated, or the directory containing xyz.pchs is not in the include path. For more
information, see Writing PepperCode #include Statements and the error message No such file or
directory...

fatal: "%s"': open failed: No such file or directory

The compiler could not find a component necessary for compilation. If the error message refers to
a *.so file (PepperCode Library File), then your LD LIBRARY PATH environment variable has
not been properly set.

Example:

fatal: libshello.so: open failed: No such file or directory

It couldn’t find library libshello.so because the directory containing it was not specified in
LD LIBRARY PATH.

If you are a previous user of Supply Chain products, your LD LIBRARY PATH may be set up
for use with Release 7.5. If you temporarily unset your LD LIBRARY PATH by entering the
command “unsetenv LD LIBRARY PATH, the Release 8.0 default library path
(.:/home/v8vm/product/splcompiler) will be used. In most cases, this will resolve the error.
However, if you wish to use your own components that are not in the default

LD LIBRARY_PATH, you must reset your LD LIBRARY PATH to include
/home/v8vm/product/splcompiler and all other directories containing the components that you
want to use. You can do this temporarily from the command line or permanently in your .cshrc
file with the command “setenv LD LIBRARY PATH <path containing components & default
* 50 libraries>".

Example:
The following will set LD_LIBRARY PATH to the default:

> setenv LD LIBRARY PATH .:/home/v8vm/product/splcompiler

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-11

PEOPLESOFT PEPPERCODE JANUARY 2001

[0

14-12

For more information, see LD LIBRARY PATH.

LNK4049: locally defined symbol ""struct spl_action_info spl_action_info xyz"
imported

Note: This error message applies to Windows NT only.

When you use "#include" to import the PepperCode source file which declares action "xyz", the
compiler and the project manager cooperate to decide whether the action appears a different
shared library (DLL) than the file you are currently compiling, and emits appropriate code. In that
case, this message does not appear.

But if, instead of using "#include", you rely on an incomplete declaration like "action xyz();", or
if you use "default: xyz" to set the default value of a slot without ever declaring the action, then
the compiler must be conservative and guess that the action might be imported from some other
DLL. The message from the Microsoft linker says that the action really appears in the same DLL
as the code which refers to the action, and therefore the compiler did not need to be so
conservative.

Mismatch between "#document %s" at line %d and ""#end_document %s"'.

The transaction name specified after #document does not match the transaction name specified
after #end_document. These transaction names must match.

Example:
If the transaction names were misspelled as follows:

#document transaction foo

#end document transaction who

The following error would occur:

Mismatch between "#document transaction foo" at line 6 and "#end document
transaction who".
Mismatch in parameter " %s"" (see %s:%d).
The parameter lists do not match up with regard to the first "%s". This error can be caused by
e Misspelling parameter names

e Forward action declaration parameter lists that don't match the action definition parameter lists

DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

The first "%s" is, of course, the parameter that doesn't match. The second "%s" is the file in
which the parameter was mismatched, and "%d" is the line of the code in which the error was
found.

Example:
Mismatch in parameter "s" (see schema example 5.spl:6).

This particular error was caused by a forward action declaration parameter list that didn't match
the action definition parameter list. Forward action declarations are no longer recommended
because the compiler now resolved inclusions in a more efficient manner.

@ For more information, see Writing PepperCode #include Statements.

Check your forward action declarations and make sure that the parameters match those listed in
the action definition, or you could include the file containing the action definition. Either of these
solutions should resolve this error without causing other errors.

Missing transaction name after " %s"'.

This error occurs if you forget a transaction name. The string ("%s") tells you where you forgot it.

Example:

If you forget to put the transaction name after the #document statement in a #document block,
you will get the following error:

Missing transaction name after "#document".

No such file or directory.

The compiler couldn’t find the file or directory specified in your code. This message is usually
part of a larger error message. Example: Error on "./xyz.pchs": No such file or directory. For
more information and other examples see the following:

e Error on "%s": %s..

o fatal: "%s": open failed: No such file or directory

Not found: <cpp function> (<type>*, <type>*)

This error usually occurs at link time when you declare a cpp_function but do not describe the
arguments in precisely the same way the C++ code does.

Example:
Say that the following cpp function was declared:

cpp_function int STRING COMPARE (string, string) “nlstrcmp”;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-13

PEOPLESOFT PEPPERCODE JANUARY 2001

This will cause the following error:

Not found: nlstrcmp (char*, char¥)

In the case of the STRING _COMPARE function, the C++ code declares the arguments using
"const char *", so you must add "const:" to the cpp _function statement in PepperCode as follows:

cpp_function int STRING COMPARE (const: string, const: string) “nlstrcmp”;

As an alternative to using the STRING_COMPARE function, you could use the operators "==",
s it<=""or ">=", and the compiler will generate the appropriate C++ function call for you.
For more information on making declarations for and using C++ Functions see Accessing C/C++
Functions.

Nothing named "%s" is in scope here.

This error will occur if you try to use an object ("%s" in the error message above) that hasn't been
defined with regard to scope. It can occur if you have defined the PepperCode object in a local
scope, then try to use it outside the local scope.

To correct the error, define the object that you are trying to use for the scope in which you are
trying to use it. If the object is defined in another source file (*.spl), be sure to #include that
source file in the source file where the object is being used. If the object is defined in a local
scope, i.¢. a local variable, try defining it globally by declaring it in an action or class. For more
information on scope definitions, see Understanding Scopes and Identifiers.

Depending on your situation, you may also receive parse errors and missing type name errors. In
the case of C++ functions, you must first define the C++ function with a cpp_function declaration
(see Accessing C/C++ Functions). If you do not, the compiler will not recognize the C++
function. This can potentially cause parse errors and missing type errors along with this error. The
only exceptions to this rule are the C++ functions that are already included in the substrate.
Declaring them will cause a warning, except in the case of the BREAK and CONTINUE
functions.

In the case of the BREAK and CONTINUE functions, you cannot declare them with cpp
functions. To correct the error (in the case of BREAK or CONTINUE only), remove the cpp
function declarations for BREAK and CONTINUE.

parse error
cpp_function void CONTINUE () "continue";

You may also see one or more of the following type of error messages:

jim.spl:1: Missing type name (e. g. "int", "class<>", etc.)

BREAK and CONTINUE are now built into the compiler as keywords, so the old trick of
declaring them as cpp_functions no longer works. For more information on making declarations
for and using C++ Functions see Accessing C/C++ Functions.

14-14 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Parameter " %s'" should be "output:" or "inout:", not ""%s:"

You are attempting to perform an operation with a parameter that cannot be performed with the
parameter. It can only be performed with an "output" or "inout" parameter.

Example:

The following error occurred because of an attempt to print the value of a local variable that was
from another action:

Parameter "1" should be "output:" or "inout:", not "local:"

parse error

You will get this error if the compiler cannot parse your code. It will not be able to parse your
code if it encounters something that is incompatible with the compiler's rules. Of course, the error
message always indicates the point in the code where the compiler stopped parsing your code.
This is the best indication of the error location. Parse errors are usually due to a syntax problems

or a definition problems.
Example:
parse error
Copyright 1994-1998 by PeopleSoft, Inc.

A

hello world.spl:4: Missing "#notice" for this "#end notice" statement.

Compilation failed with 2 error(s).

In this example, the #notice block was not correct, and the compiler was reading characters that it
didn't understand, code that should have been commented out.

SPL: <class x> is not a subclass of <class_y>

When the source and target class (or instance) of an assignment do not have a proper parent/child
relationship, the Release 8.0 Compiler generates a warning at compilation time, and generates
code to check the relationship at runtime. If the relationship still isn't correct, the runtime code
prints this message: SPL: <class_x> is not a subclass of <class_y>.

The following is an illustration of a typical class/subclass error scenario:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-15

PEOPLESOFT PEPPERCODE JANUARY 2001

Vehicle.tires Class name
v=b OK
(See Ex. 1 below.)
Vehicle

v =instance<Vehilce>
b=instance<Bicy cle>
d=instance<Delivery >

—

Bicy cle.tires Class name Delivery .tires Class name
Bicy cle.is_tandem Delivery.TonLoad
b=v Not OK Bicycle Delivery

(See Ex. 2 below.)
b=d Really Not OK
(See Ex. 3 below.)

Class/Subclass Diagram

The above Class/Subclass Diagram refers to the following examples:
enum Boolean Flag { TRUE, FALSE };
class Vehicle {

int tires;

}i

class Bicycle: Vehicle {

enum<Boolean Flag> is tandem;

}i

class Delivery: Vehicle {
enum<Boolean_Flag> TonLoad;
bi
The code in the following examples refers to the code and diagram above.
Example 1: Assigning a Child Class Type Variable to a Parent Type Variable

LU |

The following assignment is safe because the only slot we can reference using "v" is "tires",
which does exist on "b":

action ok (input: instance<Bicycle> b, output: instance<Vehicles> v)

14-16 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Example 2: Assigning a Parent Class Type Variable to a Child Type Variable

The following assignment is unsafe because a vehicle, such as a delivery van, does not have a slot
called "is_tandem", but once we assign "v" to "b", the compiler cannot prevent us from saying
"b.is_tandem" and accessing a nonexistent slot. It might be safe if "v" is actually a bicycle (e.g. if
we got the value of "v" by calling action "ok" originally), but the compiler can't tell whether the

value of "v" originally came from a bicycle, a delivery vehicle, or something else.

Neither the compiler nor the linker can tell whether this is safe or not, so at runtime (provided you
used --debug and not --optimize when you compiled) the generated code will check for the unsafe
case and issue this error message "SPL: <class1> is not a subclass of <class2>".

action not ok(input: instance<Vehicle> v, output: instance<Bicycle> b)

Example 3: Assigning a Class Type Variable to an Unrelated Class Type Variable

The following assignment is always unsafe because a vehicle, such as a delivery van, has very
few slots in common with a bicycle. It could never have a slot called "is_tandem", and bicycle
could never have a slot called TonLoad. However, once we assign "d" to "b", the compiler cannot
prevent us from saying "b.is_tandem" and accessing a nonexistent slot. Since "d," a delivery van,
cannot be a bicycle, it can never be safe, and the compiler can't tell where the value of "d"
originally came from.

action really not ok(input: instance<Delivery> d, output: instance<Bicycle> b)

Neither the compiler nor the linker can tell whether this is safe or not, so at runtime (provided you
used --debug and not --optimize when you compiled) the generated code will check for the unsafe
case and issue this error message "SPL: <class1> is not a subclass of <class2>".

Remember that "Base Class" works well as a generic data type, because every class is a child of
Base Class, whereas not all classes are related to "Spl_Class" or "Named Object".
Target of ""%s"" is not an Ivalue.

This error occurs because of an attempt to make an assignment that is invalid. You can assign
values only to expressions that are valid lvalues. To determine which values are valid Ivalues, see
Writing Assignment Statements.

Example:

If you examine the following code, you will see that an action is called, then an attempt is made
to assign a value to the called action's input value.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-17

PEOPLESOFT PEPPERCODE JANUARY 2001

execute action input(:i 5); // Caller can pass actual arg in invocation

action input.i = 6; // ERROR (caller cannot alter this)

Since an input value cannot be a valid lvalue, the following error occurs.

Target of "=" is not an lvalue.

For more information, see Writing Action Parameters.

The declaration of "%s" is incomplete.

If %s is a class, this error has occurred because of the improper use of a forward (or incomplete)
class declaration. Forward class declarations are still allowed to maintain backward compatiblity
with previous versions, but they can only be used in the same limited manner as they were used in
previous releases of PepperCode. For example, when a class is declared only with a forward class
declaration in a particular *.spl file, you cannot change or even refer to the slots of that class. You
can only declare an instance of that class.

To correct this error, you can either #include the *.spl file that contains the class definition
(specified by %s in the error message) or remove the code that caused the error. For more
information on forward class declarations and to see examples of the correct and incorrect ways
of using them, see Forward Class Declarations.

Undefined symbol: spl_action_info_abc

The linker issues this error. It occurs if you are using a forward action declaration in lieu of
including the *.spl file that contains the action definition, and you misspell the action name in the
action definition. If you misspell the action name in the forward action declaration you will get an
error in the compiler itself (See Deleting output files and stopping due to an error in the compiler
itself.)

Example:

The file columns.spl contains the action definition for print three columns, and user.spl contains
a forward action declaration for print_three columns, so user.spl can execute the action. If you
misspell "print_three columns" in columns.spl, you will receive the error (from the linker):

Undefined first referenced
symbol in file
spl action print three columns(spl action io*) user.o
1d: fatal: Symbol referencing errors. No output written to user

spl: Command "/disk/u423/compilers/SparcWorks/SUNWspro/bin/CC" failed with
status 256

For historical reasons, the compiler allows you to declare actions by saying "action abc();"

instead of using "#include" to include the PepperCode source file which defines action "abc".
Thus it cannot check for misspellings or missing definitions; the linker will be the first to discover
these.

14-18 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Unterminated string literal.

This error is usually caused by a syntax problem. It occurs if you forget to add a closing quotation
mark when specifying a string.

Example:
s = “string;

will cause this error because there is nothing to tell the compiler where "string" ends. The
following is the correct way to make the assignment:

s = “string”;

You must supply a value for "required:" parameter " %s"’

The required: keyword is new in Release 8.0. You received this error because you did not assign
a value to required: parameter "%s". A parameter becomes required when it is assigned a default
of required: as in the following example:

action counter (input: int quantity = required:)

{

PRINTF ("%d\n", quantity);

}

action spl main()

{

execute counter() ;

}

Executing this program causes the following error:

You must supply a value for "required:" parameter “quantity”

If you assign a value to quantity in your action call, as in the following example, the error goes
away:

action counter (input: int quantity = required:)

{

PRINTF ("%d\n", quantity) ;

}

action spl main()

{

execute counter (:quantity 15);

}

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-19

PEOPLESOFT PEPPERCODE JANUARY 2001

Warnings (These Don't Stop Compilation)

Warnings won't stop you, but they could be the precursor to or an indicator of more serious
problems.

Assignment to "input:" variable " %s".

This warning message will occur if an assignment is made to an input variable in a called
function. The called function can alter an input variable, but the alteration doesn't have any effect
on the calling function. For more information on what data can be passed and where, see Writing
Action Parameters.

cpp_function " %s'"" ignored because it conflicts with a built-in function.

This is a warning message that is caused by making a cpp _function declaration for a function that
is already built into the code. (The function name will appear in the place of %s.) Starting in
Release 8.0, many PepperCode C++ functions are pre-defined. This is one of them.

No longer necessary to include C++ files ending in .h

Including *.h files is an obsolete practice and is no longer a valid action in Release 8.0. If *.h files
are included, this warning message is generated. Their inclusion has no other effect but to cause
this warning message. Starting in Release 8.0, the *.h libraries are built into the substrate, so they
no longer have to be included with a #include statement. For more information, see Writing
PepperCode #include Statements.

Sourece file should have a "#notice" statement.

This warning will occur if you have not included a notice statement in the *.spl file that you are
trying to compile.

You can eliminate this error by placing a notice statement block in each of your *.spl source files.
The following is the #notice statement block that is used for *.spl files:

#notice
Copyright 1994-1998 by Peoplesoft, Inc.
All U.S. and World rights reserved.

#end notice

Using Debugging Tools

Since symbolic debuggers don’t understand the PepperCode language, you will encounter some
limitations when using them to debug PepperCode programs. However, you can use a
combination of techniques to make debugging possible.

14-20 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Using The Action Interpreter

As mentioned earlier, PepperCode has a runtime system that provides an Action Interpreter,
which is code that reads a string containing a human-readable action invocation that is similar to
the syntax you use in a PepperCode execute statement. The Action Interpreter parses the string,
invokes the action, and returns a string containing a human-readable list of output values.

The command line interface to the Action Interpreter executes PepperCode actions that you enter
at the prompt. For example, if you have the following action:

action compare
(input: int 1,
input: int j,

output: int difference)

difference = 1 - j;
if (difference == 0)
fail();
succeed () ;
}
You could invoke compare from another action:
action another

(local: action<compare> compare proc)

execute compare proc(:1 5, :j 6);
if (compare proc.status == FAIL)
fail();
succeed () ;
}
Or you could invoke compare from the Action Interpreter directly through a command line:
compare (:1 5 :j 6)

Notice how the comma and semicolon are removed.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-21

PEOPLESOFT PEPPERCODE JANUARY 2001

@ For more information, see the process outlined in Compiling And Linking PepperCode. For
more information about output from the Action Interpreter, see Writing Methods and
Writing Osets.

To start your server in action interpreter mode, allowing you to use action interpreter commands,
enter the following command:

./server -I

In the window where you are running the server, you will get the following prompt, showing that
you can now enter an action interpreter command:

Enter an action call:
To exit the action interpreter, enter the following command:

rexit
To start the action interpreter from your client, have the Client and Server running and command
files loaded. Then perform the following steps:

1. From the Client, select Help, Tech Support.

The Technical Support form appears.

Technical Support (- =}

For Technical Support Contact:
@ PP

FPeopleSoft, Inc.
Technical Support Services
Phone Mumber: [800) 477-5738

E-MalL: techsupport@pecplesoft. com

L
2 "
-) 5

& L]
¥ pep?

J_tee |

| oK I | Cancel I |

Technical Support Form

2. Click on the pepper in the center of the “Powered by Red Pepper” logo.

The Temp form appears.

14-22 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Temp Form |- [x|
WARMNIMG: This form iz for PeopleSoft Onlpl
WARNIMG: Do not usel

Data Types Form

Action Interpreter [Server Made]

Inspect

|
|
| Edit Task
|
|

Sizing E stimator

| aK || Cancel I | ” Help I

Temp Form

3. Click on Action Interpreter.
In the window where you are running the server, you will get the following prompt:

Enter an action call:

Now you can enter an action interpreter command.

To exit the action interpreter, enter the following command, then click OK on the Temp
Form.

:exit

Using Action Debug Tracing

Action debug tracing helps PepperCode programmers debug problems by tracing the values of
action inputs on entry and action outputs on exit.

Action debug tracing lets you trace a particular action and all of its descendants. Tracing begins
when you first execute the action, and ends when the function returns. In the meantime, tracing
affects every action which you invoke directly from PepperCode code (rather than by using the
action interpreter to parse a string containing an action invocation).

On entry to the action, the trace prints a line similar to this on the server console window—C++
file descriptor stderr—showing the values of all “input:” and “inout:” parameters:

>my first action: (one input: string “abc”)
(another input: float 6.5)

On return from the action, the trace prints a line similar to this, showing the values of all
“output:” and “inout:” parameters. The return status is shown as “F” (fail), “S” (succeed), or “L”
(leave) in parentheses after the action name:

<my first action (S): (one output: oset[int]: list 3 100 200 300)

When one action calls another, the “>" and “<” characters repeat to represent nesting via
indentation:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-23

PEOPLESOFT PEPPERCODE JANUARY 2001

0l>my first action: (one_input: string “abc”)
(another input: float 6.5)

02>child of first: (child input: instance<Base Class>
0id (337 “Detailed Equipment Constraint”))

03>grandchild of_ first: (grandchild input: date 8073996)

03<grandchild of first (S):

02<child_of_ first (S): (child output: class<Base Class>
oid (445 “Deconflict Env”))

02>child of first: (child input: instance<Base Class>
0id (337 “Detailed Equipment Constraint”))

02<child_of_ first (S): (child output: class<Base Class>
oid (445 “Deconflict Env”))

O0l<my first _action (S): (one_output: oset[int]: list 3 100 200 300)

You can ask to trace many different actions, but only the first action you invoke will actually
enable tracing, and, when it returns, disable tracing. While tracing is on, if the program invokes a
different action which you have also asked to trace, or if it invokes recursively the action which
originally enabled tracing, that has no effect on the state of tracing.

Using The Action Debug Tracing Transaction and C++ Function
Action Debug Tracing adds a single transaction:

action action debug trace(input: string action name = 0, input: int enable = 1)

Action Debug Tracing also provides a C++ function which you can call from the command line
of a debugger if you have compiled the program with debugging information and the debugger is
capable of invoking functions from the command line:

void action debug trace(const char *action name, int enable)

Setting Action Debug Tracing Behavior

By setting the action debug_trace input parameters set in the following ways, you can cause the
following behavior. If “enable” isn’t specified, it defaults to 1.

e action_name is set to an action name, “enable” is set to a nonzero value: Enable tracing when
the action is invoked.

e action_name is set to an action name, “enable” is set to zero: Don’t enable tracing when the
action is invoked. This doesn’t tell the action to disable tracing when invoked; this restores the

14-24 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

action to the default state, allowing you to invoke the action without starting the trace facility.

e action_name is set to a nil or zero-length value, “enable” is set to a nonzero value: Disable
action tracing immediately for the current action being traced, and turn it back on the next time
an action is invoked that has action debug tracing enabled. In other words, using "" as the
action name causes the trace now in progress to stop prematurely, but doesn't clear the
"enable" flags which you have turned on with "action_debug_trace" in the past.

v Note: If the server is busy executing an action, it won't stop and prompt on the console for
another action until it is finished. However, if you ran the server inside a debugger, you can
use the debugger to interrupt the server, and then execute the C++ function from the
debugger's user interface.

e action_name is nil or zero-length, “enable” is set to zero: disables tracing immediately. The
next action that is invoked will turn tracing back on, even if that action doesn’t have action
debug tracing enabled. In other words, a new trace is started the next time you invoke any
action, without actually turning on the "enable" flag associated with that action.

e action_name is set to a nonexistent action name: An error message is printed on the sever
window:

action debug trace: no such action “my first_ action”

Enabling and Disabling Action Debug Tracing

There are several ways to enter the command to enable and disable action debug tracing. To
enable, set the enable parameter to a non-zero value; to disable, set it to zero. Some examples of
entering the command are:

e Type the command at the command line prompt in the server console window. Typing the
following will cause tracing on the transaction transaction create inventory part:

action debug trace(:action name "transaction create inventory part")
¢ Invoke the action_debug_trace action within a command file.
¢ Invoke the action debug_trace action using an “execute” statement inside a .spl file.
e (Call the C++ function action_debug_trace from a debugger command line.

When action_debug_trace begins a trace, a confirmation message appears on the server console
window, so that if you view a log file later on, it is clear that human interventions took place:

action debug trace: +my first action
action debug trace: -my first action
action debug trace: +

action debug trace: -

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-25

PEOPLESOFT PEPPERCODE JANUARY 2001

Understanding Action Debug Tracing Output

This example started a server and client. Then it selected Help, Tech Support in the client to get
to the page where Action Interpreter was clicked to start the action interpreter.

Enter an action call: action debug trace(:action name
"transaction create inventory part")

action debug trace: +transaction create inventory part

Enter an action call: :exit

This call to action_debug_trace will trace the transaction transaction_create inventory part. One
way to use that transaction, and therefore trace it, is to add an item.

In this example, click Browse, right-click on item, select add in the popup menu, in the dialog
box type "pedal” as the name, then click Apply. The following trace listing occurs.

Ol>transaction create inventory part:
(site_name: string: "")
(part name: string: "pedal")
(class_name: string: "")
(description: string: "")
(uom: string: "")
(planner code: string: "")
(mps_type: int: 0)
(buyer code: string: "")
(default production area name: string: "")
(on_hand: float: 0)
(configurable: int: 0)
(aggregate demand flag: int: 0)
(quantity precision: int: 0)
(cost: float: 0)
(unit_price: float: 0)
(cost_of goods: float: 0)
(weight: float: 0)
(volume: float: 0)

(inventory cost per day: float: 0)

14-26 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

(demand time fence: time: 0)

(consume sales: int: 1)

(consume production: int: 0)

(consume transfers: int: 0)

02> create_inventory part:

(part _name: string: "pedal")
(class_name: string: "Inventory Part")
(description: string: "")
(uom: string: "Each")
(planner code: string: "")
(buyer code: string: "")
(mps_type: int: 0)
(configurable: int: 0)
(quantity precision: int: 0)
(consume sales: int: 1)
(consume production: int: 0)
(consume transfers: int: 0)
(aggregate demand flag: int: 0)
(demand time fence: time: 0)
(initial_amount: float: 0)
(cost: float: 0)
(weight: float: 0)
(volume: float: 0)
(unit price: float: 0)
(cost_of goods: float: 0)
(inventory cost per day: float: 0)
(site: instance<Base Class>: o0id(1136))
(production area: instance<Base Class>: oid(5))

03> create base part:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-27

PEOPLESOFT PEPPERCODE JANUARY 2001

(part name: string: "pedal")
(class_name: string: "Inventory Part")
(site: instance<Base Class>: 0id(1136))
(initial_amount: float: 0)
(description: string: "")
(uom: string: "Each")
(planner code: string: "")
04> create_resource:
(resource name: string: "pedal")
(class_name: string: "Inventory Part")
(site: instance<Base Class>: 0id(1136))
(initial amount: float: 0)
05> create object:
(object name: string: "SM pedal")
(class name: string: "Inventory Part")
05< create object (S):
(new_object: instance<Base_Class>: 0id(2509))
05> set _object display name:
(object: instance<Base Class>: 0id(2509))
06> default set resource display name:
(object: instance<Base Class>: 0i1d(2509))

06< default set resource display name (S) :

05< set object display name(S) :

04< create resource (S) :

(new resource: instance<Base Class>: 0id(2509))

03< create base part(S):

(new_part: instance<Base_Class>: 0id(2509))

14-28 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

03> encode part consumption flags:
(sales: int: 1)
(transfer: int: 0)
(production: int: 0)
03< encode part consumption flags(S) :
(consumption code: int: 4)
02< create inventory part(S):
(new_part: instance<Base_Class>: 0id(2509))
(output part production area: instance<Base Class>: oid(5))

(exit msg: string: "")

Creating Debug Messages With The MSG Function

You can place the C++ MSG function in your code and use it to print debugging information.
Following is the cpp definition of the function:

cpp_function int MSG (int, string) "dmsg";

Afterward, you can use the function in your code:

MSG (level, message(s));

This function uses the same rules as the printf function, except that the messages appear only if a

global debugging level threshold is set to be greater than or equal to the level specified by the first
argument.

The PepperCode compiler automatically creates code that calls the MSG function so that a
message is printed whenever an action is executed; the messages print whenever the global debug
level is at least 50.

The Planning software has a Preferences menu item called Debug Level that lets you interactively
specify the level. You can also use the GET MSG LEVEL function—as described in “C/C++
Function Access”—to get the current level, and the transaction_set _debug_level transaction to
change the level to a new value and return the old value.

@ For more information about GET MSG_LEVEL, refer to Accessing C/C++ Functions.

The system will accept any integer value as a debug level. However, only levels 0 through 50
have meaning. Following are the debug levels that have significant meaning:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-29

PEOPLESOFT PEPPERCODE JANUARY 2001

Level Meaning
0 Turns off debugging messages.
1 Reports information about serious

PepperCode errors right before a crash.
Level 1 is the default debug level for the
PepperCode system.

2 Reports failures in basic PepperCode
actions.
25 Reports what is happening in the system

from a functional point of view.
Messages at this level should not be
verbose. Instead, they should be simple
messages that explain what the system is
doing.

26 to 49 Reports “how” the “what” is happening.
Messages at this level are detailed
programmer messages.

50 Reports the name of an action before the
action is executed.

When writing PepperCode code, you should provide debugging messages that you can control
with the debug level—especially if there are situations where a symbolic debugger isn’t available.
For example, the following MSG statement prints a message when the debug level is 25:

MSG (25, "\nMoving production task %s to $%s\n",

production task.name, DATE TO STRING (new production time)) ;
Here are some more examples of good debugging messages:

// The software could break because of a missing routing step

//

MSG(1, "\nIn map bor entries...routing step %d not found in parent %s\n",
bor entry.routing step, routing parent.name) ;

// The software could break because an illegal value was returned.

//

MSG (1, "Warning: timeval returned zero value for item %s on resource %s.\n",
part.name, resource.name) ;

// No production can be created when task classes are omitted

//

14-30 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

MSG(2, "\nIn create routing children...No task classes for build option $%s.
build option.name) ;

// Could not enforce a hard temporal constraint between two tasks.

//

MSG (2, "\nCould Not Enforce Temporal Constraint between %s and %s.\n",
taskl.name, task2.name) ;

// Display the name of the production being created.

//

MSG (25, "\nCreating Production %s:", new routing parent.name) ;

// Display the name of the sales order line being deleted.

//

MSG (25, "\nDeleting Sales Order Line (%s %d)",
sales_order_line.sales_order.name, sales_order line.line number) ;

// Display why a task failed in the build query.

//

MSG (25, "\nBuild Query window exceeded for task %s.\n", routing task.name) ;

// Display stuff that interests the programmer (for debugging only) .

//

MSG (26, "\nIn calculate duration from quantity: Calculated duration is %f\,
duration) ;

// Display stuff that interests the programmer (for debugging only) .

//

MSG (30, "\n new_score = 3f current score = %$f delta score = $f\n",

new _score, current score, delta score);

Using Debugging Functions

The following functions can be helpful when you are debugging your code. You can execute
them with a symbolic debugger, such as dbx, or declare them with a cpp_function statement and
use them in your code.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-31

PEOPLESOFT PEPPERCODE JANUARY 2001

In general, the functions can be used with any symbolic debugger, but the exact command you
type to invoke them varies. For example, with dbx, you normally use print to invoke a function;
with the xdb debugger the command is p.

describe functions return the following line:
(class_name uid object_name)
An object name of Anonymous means the object isn’t a named object.
The describe functions display IS to refer to an instance slot and CS to refer to a class slot.

Following are some variable definitions for the functions:

Variable Description

rps_verbose 1 is verbose; zero means that slots that are
lists are not printed.

uid A unique integer identifier. Certain
functions return the uid so you can use it
with other functions.

The rest of this section is a list of the debugging functions you can use.

describe

Description: Prints the slot values of a PepperCode object, including the name and uid of the
object

Syntax: void describe
To run describe with dbx on Solaris, reference either the object name or address:
call describe ((void*)0x1234,1 // 0x1234 is the object address

call describe (imp arg0,1l) // imp arg0 is the object name

describe_all

Description: Calls the describe function on all PepperCode objects of a given class
Syntax: void describe_all (char *class_name, int rps_verbose)

Transaction:

action<transaction> transaction describe all (input: string class name = "",
input: int verbose = 1)

Debugger Example:

(debugger) call describe all("Vendor", 1)

14-32 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

(Vendor 144 Memory Is Us)

name IS: Memory Is Us
editor_class_name CsS: Spl_Class_Form
class_string id CS: none

init action CS: default init

delete action Cs: default delete
display action CS: default display
machine dump action CS: default machine dump
human_dump_action CS: default human dump
compare dump action CS: default compare dump
class_interface value IS: -1

temporary instances Is: 0

(Vendor 145 ACME Chassis Company)

name IS: ACME Chassis_Company
editor_class_name CsS: Spl_Class_Form
class_string id CS: none

init_action CS: default_init
delete_action CS: default_delete
display action CS: default display
machine_ dump_action CS: default_machine_dump
human_dump_action CS: default human dump
compare dump action CS: default compare dump
class_interface value Is: -1

temporary instances Is: 0

(Vendor 146 Joes Monitors)

name IS: Joes_Monitors

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-33

PEOPLESOFT PEPPERCODE

14-34

editor class_name
class_string id

init action

delete action

display action
machine dump action
human_dump_action
compare_dump_action
class_interface value

temporary instances

(Vendor 147 We Sell Everything)

name
editor_class_name
class_string id
init_action

delete action

display action
machine_ dump_action
human _dump action
compare dump_action
class_interface_value
temporary instances

(debugger)

CS:

CS:

CS:

CS:

CS:

CS:

CS:

CS:

IS:

IS:

IS:

CS:

CS:

CS:

CS:

CS:

CS:

CS:

CS:

IS:

IS:

Spl_Class_Form

none

default init

default delete
default display
default machine dump
default human dump
default_compare dump

-1

We_Sell Everything
Spl Class_Form

none

default_init

default delete
default display
default_machine_ dump
default human dump
default compare dump

-1

4 instances of class Vendor were described.

describe_one

Description: Calls the describe function with one object of a given class

Syntax: void describe one (char *class _name, int rps_verbose)

DEBUGGING PEPPERCODE

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

Transaction:

action<transaction> transaction describe one (input:
input: int verbose = 1)

Debugger Example:

PEOPLESOFT PEPPERCODE

(debugger) call describe one("Build Option", 1)

(Build Option 179
name

editor class name
class_string id
init_action

delete action
display action
machine dump_action
human dump action
compare_dump_action
part

purchase option action
build option action
explode action

cost

cumm_cost

backflush step
alternate routings
task classes
class_containers
bom_entries

supply entries

bor entries

orderings

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

IS:

CS:

CS:

CS:

CS:

CS:

CS:

CS:

CS:

IS:

CS:

CS:

CS:

IS:

IS:

IS:

IS:

IS:

IS:

IS:

IS:

IS:

IS:

Computer Routing)

Computer Routing

Spl Class_ Form
build option
default_init

delete build option
display build option
default_machine_ dump
default human dump
default_compare dump
(DKU_Part 176 Computer)
purchase option false
build option true

build explode

0.000000000000000

0.000000000000000

...null list

[ATO Shipment]
[(Class_Container 180 Anonymous)]
[(Bom Entry 181 Anonymous)]
.null list

.null list

.null list

DEBUGGING PEPPERCODE

string class name = "",

14-35

PEOPLESOFT PEPPERCODE JANUARY 2001

class_interface value Is: -1
temporary instances IS: O
(debugger)

describe_by name

Description: Looks up an object by name and calls the describe function
Syntax: void describe by name (char *object name, int rps_verbose)
Transaction:

action<transaction> transaction describe by name (input: string name = "",
input: int verbose = 1)

Debugger Example:

(debugger) call describe by name ("Computer", 1)

(DKU_Part 176 Computer)

name IS: Computer
editor_class_name CS: DKU_Part_Editor
class_string id CS: part

init action CS: default init

delete action CS: delete part

display action CS: display part

machine dump action CS: default machine dump
human_dump_action CS: part_dump

compare dump action CS: default compare dump
resource constraints IS: ...null list
resource supplies IS: ...null list

initial amount IS: 0.000000000000000
relevant status IS: (Relevant Status 13

_Relevant Status RELEVANT REPAIR)
initial_history IS: ...PRKMETH not implemented

resource_history IS: ...PRKMETH not implemented

14-36 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

resource_batch_action CS: resource_batch false
duration_ action CS: default_resource_duration
quantity action CS: default resource quantity
consumable_action CS: consumable_true
production IS: ...null list

sales order line action CS: sales order line false
planning period_action CS: planning period_false
part_action CS: part_true

routing parent container action CS: routing parent container false

description IS: The Customers SPARCstation

routing options IS: [(Build Option 179 Computer Routing)]
phantom part action CS: phantom part false

dku_part_action Cs: dku_part_true

planning part_action CS: planning part_false

inventory part action CS: inventory part false

configurable part action CS: configurable part from slot

buyer code IS: default string

configurable flag IS: 1

planned_orders IS: ...null_list

planning container IS: (Planning Container 257 Anonymous)
all planning parents IS: ...null list

to planning parents IS: ...null list

consume_forecast action CS: part consume_ forecast
class_interface value IS: 2

temporary instances Is: 0

(debugger)

describe_by uid
Description: Looks up an object by uid and calls the describe function

Syntax: void describe by uid (int uid, int rps_verbose)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-37

PEOPLESOFT PEPPERCODE JANUARY 2001

Transaction:

action<transaction> transaction describe by uid (input: int uid = -1, input: int
verbose = 1)

Debugger Example:

(debugger) call describe by uid (257, 1)

(Planning Container 257 Anonymous)

editor_class_name CsS: Spl_Class_Form

class_string id CS: none

init_action CS: default_init

delete_action CS: delete_planning container

display action CS: default display

machine dump_action CS: default_machine_dump
human_dump_action CS: default human dump

compare dump action CS: default compare dump

part IS: (DKU Part 176 Computer)
planning periods IS: [(Planning Period 258 Anonymous)

(Planning Period 259 Anonymous)]

order_to_shipment_ map IS: [1.000000000000000]
class_interface value Is: -1
temporary instances IS: O

(debugger) call describe by uid (257, 0)

(Planning Container 257 Anonymous)

editor_class_name CsS: Spl_Class_Form
class_string id CS: none

init_action CS: default_init
delete_action CS: delete_planning container
display action CS: default display

14-38 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

machine_ dump_action CS: default_machine_dump
human_dump_action CS: default human dump
compare dump action CS: default compare dump
part IS: (DKU Part 176 Computer)
planning periods IS: ...verbose needed to print this value
order to shipment map IS: ...verbose needed to print this value
class_interface value Is: -1
temporary instances Is: 0
(debugger)

how_many

Description: Counts the number of instances and classes of a PepperCode class
Syntax: void how many (char *class name)
Transaction:

action<transaction> transaction how many (input: string class name = "", input:
int verbose = 0)

Debugger Example:
(debugger) call how many ("Vendor")
There are 4 instances of class Vendor.
There are 1 classes of class Vendor. (Vendor included)

(debugger)

list_objects
Description: Displays the class, uid, and name for each instance of a PepperCode class
Syntax: void list objects (char *class name)
Transaction:

action<transaction> transaction list objects (input: string class name = "")
Debugger Example:

(debugger) call list objects("Vendor")

4 instances of class Vendor...

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-39

PEOPLESOFT PEPPERCODE JANUARY 2001

(Vendor 144 Memory Is_Us)

(Vendor 145 ACME Chassis Company)
(Vendor 146 Joes Monitors)
(Vendor 147 We Sell Everything)

(debugger)

display_rhistory

Description: Displays a resource availability history

Syntax: void display_rhistory (char *resource name, int verbose)
Transaction:

action<transaction> transaction display rhistory (input: string resource = "",
input: int verbose = 1)

display_rinitial_history

Description: Displays a resource initial history

Syntax: void display_rinitial history (char *resource_name, int verbose)
Transaction:

action<transaction> transaction display rinitial history (input: string resource
= "", input: int verbose = 1)

display_ahistory

Description: Displays an attribute history

Syntax: void display_ahistory (char *attribute_name, int verbose)
Transaction:

action<transaction> transaction display ahistory (input: string attribute = "",
input: int verbose = 1)

display_chistory

Description: Displays a calendar history

Syntax: void display_chistory (char *calendar name)
Transaction:

action<transaction> transaction display chistory (input: string calendar = "")

14-40 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Other Debugging Functions
display violated constraints
Input: string class name
display resource constraints
Input: string resource_name
transaction display resource supplies
Input: string resource_name
transaction printf
Input: string pstring
transaction printf with current time
Input: string pstring
transaction set intersect debug level

Input: int debug_level = 0

Using Debugging Actions

This section describes PepperCode actions that are used for debugging Planning products
implemented in PepperCode.

PepperCode debugging actions are needed for a variety of reasons. First, it is useful to view the
values of PepperCode instance slots without using a debugger: a debugger may take several
minutes to load, while a debugging action may take a few seconds or less to run. Second, a
debugger may not be available. This occurs frequently at a customer unit, sometimes called
“site”. Third, debugging information may not exist in the current environment. This occurs when
.0 files were not compiled with the -g option, as is the case with our internal and customer
releases. Fourth, when information that is necessary for debugging must be calculated. This is
where debugging actions are very useful because they can be written to display values of specific
data structures, where the values already exist or are calculated in the debugging action.

The actions described in this document are for debugging only!!! Don’t use these actions in the
PepperCode application or in any customization. These actions don’t always conform to current
coding standards, so don’t use them as coding examples.

Understanding Key Terms

e Describe: A PepperCode utility that displays the value of every slot of a PepperCode instance.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-41

PEOPLESOFT PEPPERCODE JANUARY 2001

e History: A C++ data structure that maintains values through time. The history is the backing
data structure behind every part and equipment histogram. For items (or parts) and resources
(or equipment), a history represents availability in float quantities.

o Side Effect: A C++ object that enforces the effect of a PepperCode instance—Ilike a resource
constraint or resource supply—on a History. The side effect automatically “fires” when a
relevant value on the PepperCode instance is changed. For example, changing the quantity of a
resource constraint will cause the side effect for that resource constraint to “fire”, thereby
changing the associated resource history, which could be for an resource or item.

e UID: The unique identifier of a PepperCode instance. The uid of a PepperCode instance is the
value of the “uid” slot.

Setting The Debugging Message Level

The following is some general PepperCode debugging advice.

@ For more information and specific debugging advice, see Deciding Which Debugging
Action To Use.

To understand what the system is doing, set the message level to 25. When the message level is
25, the system displays "what" it is doing and why any failures occur. These messages are
particularly useful when the system isn’t behaving as expected.

To see what actions are being called, set the message level to 50. At message level 50, the system
displays the name of the action that is currently executing.

v WARNING: The system runs significantly slower when message level 50 is used.

Running The Debugging Actions

The debugging actions described in this document are not connected to the GUL. They must be
run from a command file or from the action interpreter.

@ For more information, see Understanding Debug Command Files or run the action
interpreter.

14-42 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Understanding The Debugging Action Categories

There are several different categories of PepperCode debugging actions. Each of these categories
is described below along with the debugging actions that fit the category. Use these categories to
find the debugging action that you need. A short description of each debugging action and its
input parameters is provided in a later section of this document.

Displaying PepperCode Instance Information

The following actions display information about PepperCode instances. Most of these actions
display the values of the slots of instances.

e transaction describe all

e transaction_describe one

transaction_describe_by name

transaction_describe by uid

e transaction_how many

transaction_list objects

Displaying History Information

The following actions display information about C++ history objects. These actions are very
useful for debugging the values of resource (equipment) and item (part) histograms, as well as
debugging side effects.

e transaction_display rhistory
e transaction display rinitial history
e transaction display_ahistory

e transaction_display_chistory

Displaying Task Reschedule Information
Task rescheduling involves the following kinds of operations:

e User reschedules from a task form or gantt chart

Reschedules performed by the optimizer

Compress / Expand from by either the user or optimizer

Build Query reschedules

Generate Initial Schedule reschedules

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-43

PEOPLESOFT PEPPERCODE JANUARY 2001

There is currently only one debugging action that is used to display task reschedule information,
other than setting the message level. It is called transaction_set intersect debug level. This
action is very useful when debugging the various kinds of rescheduling listed above. For
example, the debugging information produced by this action can tell you which resource (part or
equipment resource) causes a task compress to fail.

Debugging Side Effects

The following actions are useful for debugging side effects. These actions allow the side effects
of resource constraints and resource supplies to be asserted and retracted manually. It is
extremely important that you NOT use this code as an example for performing side effect
processing of any kind. These actions should be used for debugging only.

e retract resource constraint
e assert _resource constraint

e retract resource supply

e assert _resource supply

e retract task side effects

e assert task side effects

e retract resource side effects

e assert resource side effects

Displaying Time Period Information

The following actions display information about starting and ending time periods. They are
currently used only for debugging C++ date/time functions for finding the start and end of a time
period (day, week, month).

e transaction_start of day

e transaction end of day

transaction_start of week

transaction_end_of week

transaction_start_of month

transaction_end_of month

Miscellaneous Debugging Actions

The following debugging actions don’t fit into any existing category.

14-44 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

e transaction_printf

e transaction printf with current time
e display violated constraints

e display resource constraints

e display resource supplies

e repair_me

e object is_alive

Deciding Which Debugging Action To Use

This section lists some common debugging situations and which debugging action(s) can be used
to debug the problem.

Deciding Which Debugging Action You Want To Use

Debugging Situation Debugging Action To Use

Need to see the slot values of a transaction_describe by name

PepperCode instance. transaction_describe by uid

Need to see how many instances of a transaction_how_many
PepperCode class currently exist.

Need to see a one-line description of transaction_list objects
every instance of a PepperCode class.

Need to see the availability of a part or transaction_display_rhistory
equipment resource.

The values on a part or equipment transaction_display rhistory
histogram appear to be incorrect.

All equipment constraints are violated and | transaction_display rhistory
the optimizer cannot repair them.

Need to see if a PepperCode instance has | object is_alive
been deleted.

Some PepperCode instances which could | object is_alive
have been deleted are displayed in the
GUL.

The equipment histogram appears to have | transaction display rhistory

been initialized incorrectly. transaction_display_rinitial history

A calendar may have been initialized transaction_display chistory
incorrectly.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-45

PEOPLESOFT PEPPERCODE JANUARY 2001

14-46

Testing a resource constraint side effect. retract_resource constraint

assert_resource constraint

Need to see how long it takes to load a transaction_printf with_current_time
command file.

Need to see a listing of the violated display violated_constraints
constraints without using the scorecard.

Need to see the resource constraints on a | display resource constraints
resource.

Need to see the resource supplies on a display resource supplies
resource.

Need to test a constraint repair without
running the optimizer.

A reschedule operation is failing (such as | transaction_set_intersect debug_level
a user reschedule, compress, expand, or
build query).

Understanding Debugging Action Descriptions

The following is a brief description of each PepperCode debugging action, along with its input
and output parameters.

Note: Site is another name for unit; this name occurs in several of the following
descriptions.

transaction_describe_all
Calls the DESCRIBE function on every instance of a PepperCode class.
action<transaction> transaction describe_all
(input: string class name = "",

input: int verbose = 1)

transaction_describe_one
Calls the DESCRIBE function on one randomly selected instance of a PepperCode class.
action<transaction> transaction describe_one
(input: string class name = "",

input: int verbose = 1)

DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

transaction_describe_by_name
Calls the DESCRIBE function on a named PepperCode instance.

Accepts a site name as input for all objects that have a site. If no “site_name” is entered, only the
“name” parameter is used to look up the PepperCode instance for describe.

action<transaction> transaction describe_ by name
(input: string name = "",
input: string site name = Does Not Apply”,

input: int verbose = 1)

transaction_describe_by_uid
Calls the DESCRIBE function on a PepperCode instance that is referenced by UID.
action<transactions transaction describe by uid
(input: int uid = -1,

input: int verbose = 1)

transaction_how_many

Displays how many objects of a PepperCode class exist in memory. This action doesn’t count
objects that have been deleted in context. When the verbose flag is 1, the number of PepperCode
instances for every subclass of the input class is displayed.

action<transaction> transaction how many
(input: string class name = "",

input: int verbose = 0)

transaction_list_objects
Displays a one-line summary for every instance of a PepperCode class.
action<transaction> transaction list objects

(input: string class name = "")

transaction_display_rhistory

Displays the values of every history element for a given resource history. The resource history
can be a part history, equipment resource history, or standard resource history. When the verbose
flag is 1, the resource constraints of each history element are also displayed.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-47

PEOPLESOFT PEPPERCODE JANUARY 2001

Accepts a site name. If no “site_name” is entered, on the “name” parameter is used to look up the
resource. If no resource is found, the default site is used to look up the resource.

action<transaction> transaction display rhistory
(input: string resource ="",
input: string site name = "",

input: int verbose = 1)

transaction_display_rinitial_history

Displays the values of every history element for a given initial resource history. The resource
history can be an equipment resource history or standard resource history. This transaction
doesn’t really apply to part histories.

Accepts a site name. If no “site_name” is entered, on the “name” parameter is used to look up the
resource. If no resource is found, the default site is used to look up the resource.

action<transaction> transaction display rinitial history
(input: string resource = "",
input: string site name = "",

input: int verbose = 1)

transaction_display_ahistory

Displays the values of every history element for a given attribute history. The values displayed
are state information. When the verbose flag is 1, the changers and dependents of each history
element are also displayed.

action<transaction> transaction display ahistory
(input: string attribute = "",

input: int verbose = 1)

transaction_display_chistory

Displays the values of every history element for a given calendar history. The values represent
the LEGAL and ILLEGAL periods of the calendar.

action<transaction> transaction display chistory

(input: string calendar = "")

14-48 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

transaction_set_intersect_debug_level

Displays the internal values of the intersector during a task reschedule, or during an optimize
"next time to try". The displayed intersector values often show why a task cannot be compressed
to a specific point in time, or why a task reschedule if failing. The debug level values are as
follows:

0 = debugging off
1 = show output only
2 = please show me more than just output
3 = let me have it, show me everything
action<transaction> transaction set intersect debug level

(input: int debug level = 0)

transaction_printf

Displays a given string to the server shell window. This transaction is useful for placing
messages inside of a command file.

action<transaction> transaction printf

(input: string pstring,

transaction_printf_with_current_time

Displays a given string to the server shell window, along with the current system clock time.
This transaction is useful for placing messages inside of a command file. Specifically, this
transaction is great for showing how long command files take to load.

action<transaction> transaction printf with current_time

(input: string pstring,

transaction_start_of_day
Displays the result of calling the PepperCode function START OF DAY on a given date.
action<transaction> transaction start of day
(input: string date string,

output: date start of day)

transaction_end_of_day

Displays the result of calling the PepperCode function END_OF DAY on a given date.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-49

PEOPLESOFT PEPPERCODE JANUARY 2001

action<transaction> transaction end of day
(input: string date_ string,

output: date end of day)

transaction_start_of _week
Displays the result of calling the PepperCode function START OF WEEK on a given date.
action<transaction> transaction start of week
(input: string date string,

output: date start of week)

transaction_end_of week
Displays the result of calling the PepperCode function END OF WEEK on a given date.
action<transaction> transaction end of week
(input: string date string,

output: date end of_ week)

transaction_start_of _month
Displays the result of calling the PepperCode function START OF MONTH on a given date.
action<transaction> transaction start of month
(input: string date_ string,

output: date start_of_ month)

transaction_end_of_month
Displays the result of calling the PepperCode function END OF MONTH on a given date.
action<transaction> transaction end of month
(input: string date string,

output: date end of month)

display_violated_constraints

Displays a short description of all violated constraints of a given PepperCode class. It is assumed
that the PepperCode class is a descendant (or equal to) the class Repairable Constraint.

14-50 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

Now takes a score card as input instead of a constraint class name.
action<transaction> display violated constraints

(input: string score card name = "mfg score card",

display_resource_constraints
Displays the resource constraints of a resource.

Has a parameter for turning on and off the displaying of constraints. This parameter is for
internal use only.

action<transaction> display resource constraints
(input: string resource name,

input: int display constraints = 1,

display_resource_supplies
Displays the resource supplies of a resource.

Has a parameter for turning on and off the displaying of supplies. This parameter is for internal
use only.

action<transaction> display resource supplies
(input: string resource name,

input: int display supplies = 1,

retract_resource_constraint
Retracts the side effect of a resource constraint by calling the PepperCode function RETRACT.
action retract resource constraint

(input: instance<Resource Constraint> resource constraint,

assert_resource_constraint
Asserts the side effect of a resource constraint by calling the PepperCode function ASSERT.
action assert resource constraint

(input: instance<Resource Constraint> resource constraint,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-51

PEOPLESOFT PEPPERCODE JANUARY 2001

14-52

retract_resource_supply
Retracts the side effect of a resource supply by calling the PepperCode function RETRACT.
action retract resource supply

(input: instance<Resource Supply> resource_ supply,

assert_resource_supply
Asserts the side effect of a resource supply by calling the PepperCode function ASSERT.
action assert resource supply

(input: instance<Resource Supply> resource_ supply,

retract_task_side_effects

Retracts the side effects of the resource constraints and resource supplies on a task. The uid or
name of the task can be used to identify the task. If the uid is passed as the value of parameter
“duration_task”, then the “task name” parameter isn’t used to look up the task. Non-zero values
for the parameters “constraints” and “supplies” specify if constraints and supplies will be
retracted.

action retract task side effects
(input: instance<Duration Task> duration task = 0,
input: string task name = "",
input: int constraints = 1,

input: int supplies = 1,

assert_task_side_effects

Asserts the side effects of the resource constraints and resource supplies on a task. The uid or
name of the task can be used to identify the task. If the uid is passed as the value of parameter
“duration_task”, then the “task name” parameter isn’t used to look up the task. Non-zero values
for the parameters “constraints” and “supplies” specify if constraints and supplies will be
asserted. This action assumes that retract task side effects has already been called on
duration_task—the side effects are already retracted.

action assert task side effects
(input: instance<Duration Task> duration task = 0,
input: string task name = "",
input: int constraints = 1,

input: int supplies = 1,

DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

retract_resource_side_effects

Retracts the side effects of the resource constraints and resource supplies on a resource. The uid
or name of the resource can be used to identify the resource. If the uid is passed as the value of
parameter “resource”, then the “resource name” parameter isn’t used to look up the resource.
Non-zero values for the parameters “constraints” and “supplies” specify if constraints and
supplies will be retracted.

action retract resource side effects
(input: instance<Resources> resource = 0,
input: string resource name = "",
input: int constraints = 1,

input: int supplies = 1,

assert_resource_side_effects

Asserts the side effects of the resource constraints and resource supplies on a resource. The uid
or name of the resource can be used to identify the resource. If the uid is passed as the value of
parameter “resource”, then the “resource_name” parameter isn’t used to look up the resource.
Non-zero values for the parameters “constraints” and “supplies” specify if constraints and
supplies will be asserted. This action assumes that retract resource side effects has already been
called on resource—the side effects are already retracted.

action assert resource side effects
(input: instance<Resource> resource = 0,
input: string resource name = "",
input: int constraints = 1,

input: int supplies = 1,

repair_me

Calls the repair method of a repairable constraint. This action is useful for testing constraint
repairs without using optimize.

action repair me
(input: instance<Repairable Constraint> repairable constraint,

input: string deconflict env name = "deconflict env",

object_is_alive

Calls the PepperCode function OBJECT IS ALIVE on a given PepperCode object. The
OBJECT IS ALIVE function makes sure that an object has not been deleted in context. This

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-53

PEOPLESOFT PEPPERCODE JANUARY 2001

action is useful if you think a specific PepperCode object has been deleted, but yet continues to be
used in the system.

action object_is_alive

(input: instance<Spl Class> object,

resource_info

Displays all possible values about a resource that most programmers would ever want to know. If
you plan to use this action, the input parameters should be self-explanatory. Otherwise, you
probably should not use this action.

action<transaction> resource_info
(input: string resource name = "",
input: int describe = 0,
input: int display history = 0,
input: int verbose = 0,
input: int retract constraints before displaying history = 0,
input: int retract supplies before displaying history = 0,
input: int display constraints = 0,

input: int display supplies = 0,

create_some_objects

Creates a given number of PepperCode objects of a given PepperCode class. This action is useful
for testing any situation where PepperCode objects must be created and then deleted—context
problems, command file loads, and efficiency questions. This action can be used with action
delete_some objects.

action create some objects
(input: int number of objects = 100,
input: string class name = "Named Object",

input: string object name = "bogus object",

delete_some_objects

Deletes a given number of PepperCode objects of a given PepperCode class. This action is useful
for testing any situation where PepperCode objects must be created and then deleted—context
problems, command file loads, and efficiency questions. This action can be used with action
create_some objects.

14-54 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

action delete some objects
(input: int number of objects = 100,

input: string class name = "Named Object",

Understanding Debug Command Files

The following command file was run on the standard bike dataset after optimize had reduced all
constraint violations. The output section follows the command file section.

transaction printf with current time (:pstring "Starting Debugging Actions
Example...")

transaction list objects(:class name "Score Card Element")
transaction describe one(:class name "Score Card Element")
transaction describe by name (:name "main environment")
transaction describe by uid(:uid 1000)
transaction how many(:class name "Base Task" :verbose 0)
transaction how many(:class name "Base Task" :verbose 1)

object is alive(:object 1000)

transaction display rhistory(:resource "SM Aluminum" :verbose 0)

transaction display chistory(:calendar "calendar all time")

transaction printf with current time (:pstring "...Finished Debugging Actions
Example")

Following is the output of command file load.
Loading file /home/daun/data/bike/debugging-example.command

(09/11/96 10:24:17)—> Starting Debugging Actions Example...

12 instances of class Score Card Element...

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-55

PEOPLESOFT PEPPERCODE

14-56

(Score_Card_Element
(Score Card Element
(Score_Card_Element
(Score_Card_Element
(Score Card Element
(Score_Card_Element
(Score_Card_Element
(Score Card Element
(Score_Card_Element
(Score_Card_Element
(Score Card Element

(Score_Card_Element

(Score_Card_Element
score_card
constraint class
description

dump_ header
Shipment Start
Order

violated constraints
number_of_violations
penalty

display name

human_dump_action

set _display name action CS:

editor class_ name

init_action

DEBUGGING PEPPERCODE

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1103

Shipment End

JANUARY 2001

request milestone constraint element)
promise milestone constraint element)
fg_constraint_element)
standard rm constraint element)
detailed equipment constraint element)
aggregate equipment constraint element)
inventory target constraint element)
capacity by period element)

change over constraint element)

safety stock constraint element)
excess stock constraint element)

reduce routing wip element)

request milestone constraint element)

IS: (Score Card 1102 mfg score card)
IS: Request Milestone Constraint

IS: Requested Deliveries

IS: Request Date Customer
Shipment Site

IS: ...null list

IS: 0

IS: 0.000000000000000

IS: request milestone constraint element

CS: score_card element dump
default set display name

CS: Spl Class_Form

CS: default_init

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

Sales

JANUARY 2001 PEOPLESOFT PEPPERCODE

delete_action CS: default_delete
display action CS: default display

machine dump action CS: default machine dump
compare_dump_action CS: default_compare_dump
class_interface value -1

temporary instances 0

(Environment 725 main environment)

min system time IS: 01/01/95 00:00:00
max_system time IS: 01/01/96 00:00:00

start of time IS: 01/01/95 00:00:00
end of time IS: 01/01/96 00:00:00
early fence IS: 03/01/95 00:00:00
late fence IS: 06/01/95 00:00:00
current time IS: 03/20/95 00:00:00
leveling fence IS: 01/01/95 00:00:00

old early fence IS: 03/01/95 00:00:00

old late fence IS: 06/01/95 00:00:00
default_site IS: (Plant_Site 723 SM)
task_queue IS: ...null list
msg_level Is: 1

debug slot IS: 0

reschedule env IS: (Reschedule Env 726 reschedule environment)

mfg_env IS: (Mfg Env 729 main mfg environment)
global_constraints IS: ...null list

resource gantt st IS: 03/01/95 00:00:00
resource_gantt_et IS: 06/01/95 00:00:00

max tasks per resource gantt IS: 500

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-57

PEOPLESOFT PEPPERCODE

14-58

display name

set_display name action CS:

editor class_ name
init_action

delete action

display action CS:

machine_ dump_action
human_dump_action
compare_dump_action
class_interface_value -1

temporary instances

IS: main environment
default set display name

CS: Spl Class_Form

CS: default_init

Cs: default delete
default display

CS: default_machine_dump

CS: default_human_ dump

CS: default compare dump

(Generate Method 1000 _ Anonym _ 1000)

generate row_action

IS:

generate site aggregate resource required units

editor_class_name
init_action

delete action

display action CS:

machine_ dump_action
human dump action
compare_dump_action
class_interface_value

temporary instances

Cs: Spl_Class_Form

CS: default_init

CS: default delete
default display

CS: default_machine_dump

CS: default human dump

CS: default_compare_dump

There are 391 instances of class Base Task.

DEBUGGING PEPPERCODE

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

There are 40 classes of class

Base Task

Base Task

Duration Task

Non Split Child Task
Routine Task

Routine Task
Unsplittable Task
Unsplittable_Parent_ Task
Routing Parent
Unsplittable_Leaf Task
Routing Task

Transfer Task

Forecast Task

Transport Task

Shipment Task

Routing Parent_Container
Production Task

Shipment Parent

Shipment Line

Shipment Transport
Forecast Shipment Parent

Negative Supply Task

Other Independent_ Demand_Task

Transfer Parent
Production Parent

Splittable Task

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLESOFT PEPPERCODE

Base Task. (Base_Task included)
391
391
391
391
391
391
98
87
293
137
0
0
11
11
11
126
11
11
0
0
0
0
0
76
0

DEBUGGING PEPPERCODE

14-59

PEOPLESOFT PEPPERCODE

14-60

Downtime Task

Scheduled Downtime_ Task
Co Downtime Task
Purchase_Order Line Delivery
Planned Order

Split Child Task
Milestone Task

Start Milestone

End Milestone

Achiever Task

Assemble Bicycle

Paint Frame

Paint Tandem Bike Frame
Assemble_Tandem Bike

Weld Frame

Object 1000 is ALIVE.

SM_Aluminum History:

(01/01/95 00:00:00 . 03/23/95
(03/23/95 00:00:00 . 03/24/95
(03/24/95 20:59:58 . 03/25/95
(03/25/95 00:59:58 . 03/25/95
(03/25/95 04:59:58 . 04/06/95

(04/06/95 10:59:58 . 01/01/96

calendar_all_time History:

(01/01/95 00:00:00 . 01/01/96

DEBUGGING PEPPERCODE

0
0
0
5

140
0
0
0

0

0
26

46
4
4

46
00:00:00) 0.000000000000000

20:59:58) 14.000000000000000

00:59:58) 10.000000000000000

04:59:58) 6.000000000000000

10:59:58) 2.000000000000000

00:00:00) 0.000000000000000

00:00:00) LEGAL

JANUARY 2001

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

(09/11/96 10:24:18)—> ...Finished Debugging Actions Example

Using Sanity Checks

This section describes the software that verifies the consistency of Planning data models. This
software is often referred to as “sanity checks”.

While the existing Planning transactions perform error checking on input data, they cannot check
the consistency of the data model. For example, the transaction for creating an inventory item (or
part) can verify if the data needed to create a part is correct. However, this same transaction
cannot perform error checking on whether a build option exists for a buildable inventory item. In
this case, the Planning system assumes that a build option will be created later with a different
transaction. If the build option isn’t created, then the buildable inventory item might not be
replenished by the optimizer: for example, there might be unexpected results because of an
inconsistent data model).

It is because of these types of cases that separate error checks are needed after the data model is
loaded into memory.

Understanding What Sanity Checks Do and Don’t Do

The sanity checks perform error checking on specific in-memory data model relationships. The
output of sanity checks is a listing of error conditions. This output can be directed to a file or to
the server shell window (the default).

The sanity checks are NOT used to perform error checking that should occur in transactions. If a
transaction can check for a specific error condition, then that error condition should not be
checked by the sanity code. The one exception to this rule is error checking that is very
expensive to perform (because it is run once for every transaction called).

Using Sanity Checks
The sanity checks are performed by calling one of the following transactions.

e transaction_mfg_sanity_check : Check manufacturing data consistency as well as
project-management (scheduler) data consistency.

e transaction pm_sanity check : Check only project-management (scheduler) data
consistency

Both of these transactions have the same two input parameters, which are described here:

e verbose : The legal values for this parameter are 0 and 1. When 0, only the number of
problems will be displayed. When 1, the objects that are involved in the problems found will
be displayed.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-61

PEOPLESOFT PEPPERCODE JANUARY 2001

o filename : This is the path to an output file. If the value of this parameter is “”, then the
output of the sanity check will be displayed in your server console window. If the value is a
legal filename, then the output of the sanity check will be written to that file.

Currently, there is no GUI for running either of the sanity transactions.

@ For more information including examples, refer to Understanding Sanity Check Output.

Understanding Each Sanity Check

The following is a description of the error checking performed by each sanity check. The first 5
sanity checks are implemented in the scheduler module by transaction_pm_sanity check. The
remaining sanity checks are implemented in the manufacturing module by
transaction_mfg_sanity check.

v transaction_mfg sanity check calls transaction_pm_sanity check. Client Services project
managers can use this calling structure as an example for adding customer specific sanity
checks to a customer module.

A Parent Task Must Have Subtasks

This check ensures that every parent task has at least one subtask, or child task. This is a
requirement of the base scheduling system because the start and end times of a parent task are
derived from its subtasks, or children.

The following is the output of this check.

There are 0 parent tasks without subtasks.

Work Duration Check For Unsplittable Leaf Tasks

This check ensures that every unsplittable leaf task has a work duration that is greater than 0 and
not greater than the “longest” legal calendar interval (of its calendar). This is a requirement of the
base scheduling system.

v This check will be affected by the 2.5 feature “Task Wrapping Around Calendars”.

The following is the output of this check:

There are 0 =zero duration tasks (of class Unsplittable Leaf Task).

14-62 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

There are 0 tasks (of class Unsplittable Leaf Task) that are too long for
their calendars.

A Calendar Must Have Computed Legal Time

This check ensures that every calendar has at least one “legal” time interval. This also includes
making sure that the calendar has been computed by the calendar mechanism. This is a
requirement of the base scheduling system because without at least one legal calendar interval a
calendar cannot be used to reschedule tasks or initialize reusable resources.

The following is the output of this check.
There are 0 calendars that have no LEGAL TIME.

There are 0 calendars that are not COMPUTED.

A Resource Constraint Must Have Quantity >= 0.0

This check ensures that every resource constraint has a quantity that is greater than or equal to
0.0. This is a requirement of the base scheduling system.

The following is the output of this check.

There are 0 resource constraints whose gquantity is less than or equal to 0.0

A Resource Supply Must Have Quantity >= 0.0

This check ensures that every resource supply has a quantity that is greater than or equal to 0.0.
This is a requirement of the base scheduling system.

v Note: Negative supply tasks will be found in this check. Customers using negative supply
tasks (which are non-standard and not generally supported in the product) can ignore this
sanity check.

The following is the output of this check.

There are 0 resource supplies whose quantity is less than or equal to 0.0

Start And End Time Checks Of Effective Entries

This check ensures that the following will be true about every effective entry (bom entry, bor
entry, supply entry, planning bom entry, and transfer option):

o The start time of the effective entry will be less than the end time of the effective entry. This is
important because the start and end times of effective entries specify an interval of time that is
used by the scheduling system (which assumes that it is using legal intervals).

o The start time of the effective entry will be greater than or equal to start of time. This check is

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-63

PEOPLESOFT PEPPERCODE JANUARY 2001

used mainly to find dates that are “out of bounds” and can be ignored. Nothing in the system
will break because of these “out of bounds” cases.

o The end time of the effective entry will be less than or equal to end of time. The same rule
applies here as well concerning “out of bounds” cases.

The following is the output of this check.

There are 0 effective entries whose start times are not less than their end
times.

There are 0 effective entries whose start times are earlier than Start Of
Time.

There are 0 effective entries whose end times are later than End Of Time.

A Routing Entry Must Have Quantity >= 0.0

This check ensures that every routing entry (bom entry, bor entry, and supply entry) has a
quantity that is greater than or equal to 0.0. This will prevent constraints and supply objects from
being created with a quantity of 0.0.

v Note: This check should be eliminated as soon as error checking is added to the create and
modify transactions for bor entries, bom entries, and supply entries.

The following is the output of this check.

There are 0 routing entries whose quantities are not greater than 0.0.

A Routing Entry Must Match A Routing Step

This check ensures that every routing entry (bom entry, bor entry, and supply entry) matches a
step on the routing; the routing_step slot of the routing entry must match the index of some task
entry that is stored on the build option.

The following is the output of this check.

There are 0 routing entries that do not match a routing step.

A Bor Entry Must Have A Valid Equipment Class

This check ensures that every equipment class on a bor entry will have at least one corresponding
equipment resource. Without a corresponding equipment resource, the Bor Entry is useless to
the manufacturing system.

The following is the output of this check.

There are 0 bor entries whose equipment class has no equipment instances.

14-64 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

A Build Option Must Have At Least One Routing Step

This check ensures that every build option will have at least one routing step. The build option
cannot be exploded without a routing step.

The following is the output of this check.

There are 0 build options that have no routing tasks.

A Build Option Must Supply An Item (Part) For All Time

This check ensures that the supply entries of a build option are effective such that the item of the
build option can be supplied at any period of time between the start and end of time. This also
means that at least one effective supply entry must exist on the build option.

The following is the output of this check.

There are 0 build options whose supply entries do not cover the entire
schedule.

A Build Option Should Have Only One Primary Order Bor
This check ensures that every build option should have only one primary order bor.
The following is the output of this check.

There are 0 build options that have multiple Primary Order BORS.

A Build Option Should Have Only One Primary Operation Bor Per Routing Step

This check ensures that every build option should have only one primary operation bor per
routing step.

The following is the output of this check.

There are 0 build options that have multiple Primary Operation BORS.

An Inventory Item Must Have A Way To Be Replenished

This check ensures that every inventory item (or inventory part) has at least one way to be
replenished; the item has at least one purchase option, build option, or transfer option.

The following is the output of this check.

There are 0 inventory items that may not be replenishable (no Build Option,
Purchase Option, or Transfer Option exists).

A Sales Order Must Have Sales Order Lines

This check ensures that every sales order has at least one sales order line.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-65

PEOPLESOFT PEPPERCODE JANUARY 2001

The following is the output of this check.

There are 0 sales orders that do not have sales order lines.

A Purchase Order Must Have Purchase Order Lines
This check ensures that every purchase order has at least one purchase order line.
The following is the output of this check.

There are 0 purchase orders that do not have purchase order lines.

An Equipment Resource Must Have Enough Capacity To Repair Any One Of Its
Equipment Constraints

This check ensures that every equipment resource has enough capacity to repair any individual
equipment constraint that requests it; the maximum availability of the equipment isn’t less than
the maximum equipment constraint quantity. This check is very helpful when the capacity of an
equipment resource did not get initialized properly.

The following is the output of this check.

There are 0 equipment resources without enough capacity to satisfy its
constraints.

Understanding Potential Sanity Checks

The following are some ideas for sanity checks that have not been implemented.

Every Product Must Map To An Inventory Item

This check would make sure that every product (or DKU part) mapped to an inventory item (or
inventory part).

Technical notes: (to help with future implementation).
e Every product must have an effective transfer option.

e Each of these transfer options must have a legitimate part mapping on the from-unit (from-site)
of the transfer option, or an item with the same name exists at the from-unit.

e For the legitimate mapped item, there must be a transfer prep option.

Sourcing Logic Checks
This check would ensure the following:

e For each ratio source template, all descriptor ratios must sum to 1.0.

14-66 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPER

CODE

o For each descriptor on a template, there must be a routing option that matches (by attribute);
the routing option cannot be a transfer prep. Also, the routing option must be legitimate for the

part.

Understanding Sanity Check Output

The following are some examples of the output of transaction_mfg_sanity check. The section
headings represent the syntax of the transaction as it would appear in a command file.

transaction_mfg_sanity_check (:verbose 0 :filename "")

There are

There are

There are

0

0

0

parent tasks without subtasks.
zero duration tasks (of class Unsplittable Leaf Task).

tasks (of class Unsplittable Leaf Task) that are too long for

their calendars.

There are

There are

There are

There are

There are
times.

There are
Time.

There are

There are

There are

There are

There are

There are
schedule.

There are

There are

There are

0

calendars that have no LEGAL_TIME.
calendars that are not COMPUTED.
resource constraints whose quantity is less than or equal to 0.

resource supplies whose quantity is less than or equal to 0.0

0

effective entries whose start times are not less than their end

effective entries whose start times are earlier than Start Of

effective entries whose end times are later than End Of Time.
routing entries whose quantities are not greater than 0.0.
routing entries that do not match a routing step.

bor entries whose equipment class has no equipment instances.
build options that have no routing tasks.

build options whose supply entries do not cover the entire

build options that have multiple Primary Order BORS.
build options that have multiple Primary Operation BORS.

inventory parts that may not be replenishable (no Build Option,

Purchase Option, or Transfer Option exists).

There are

0

sales orders that do not have sales order lines.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE

14-67

PEOPLESOFT PEPPERCODE

14-68

There are

There are

0

0

constraints.

JANUARY 2001

purchase orders that do not have purchase order lines.

equipment resources without enough capacity to satisfy its

transaction_mfg_sanity_check(:verbose 0 :filename "")

There are

There are

There are

1

1

1

parent tasks without subtasks.
zero duration tasks (of class Unsplittable Leaf Task).

tasks (of class Unsplittable Leaf Task) that are too long for

their calendars.

There are

There are

There are

There are

There are
times.

There are
Time.

There are

There are

There are

There are

There are

There are
schedule.

There are

There are

There are

1

calendars that have no LEGAL TIME.

calendars that are not COMPUTED.

resource constraints whose quantity is less than or equal to 0.0
resource supplies whose quantity is less than or equal to 0.0

effective entries whose start times are not less than their end

effective entries whose start times are earlier than Start Of

effective entries whose end times are later than End Of Time.
routing entries whose quantities are not greater than 0.0.
routing entries that do not match a routing step.

bor entries whose equipment class has no equipment instances.
build options that have no routing tasks.

build options whose supply entries do not cover the entire

build options that have multiple Primary Order BORS.
build options that have multiple Primary Operation BORS.

inventory parts that may not be replenishable (no Build Option,

Purchase Option, or Transfer Option exists).

There are

There are

There are

1

1

1

constraints.

DEBUGGING PEPPERCODE

sales orders that do not have sales order lines.
purchase orders that do not have purchase order lines.

equipment resources without enough capacity to satisfy its

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLESOFT PEPPERCODE

transaction_mfg_sanity_check(:verbose 1 :filename "")

Parent tasks without subtasks:

(1523 childless parent)

Zero duration Unsplittable Leaf Tasks:

(1524 no work duration task)

Unsplittable Leaf Tasks that are too long for their calendars:

(1525 too_long task)

Calendars that have no LEGAL TIME:

(1526 no_time_calendar)

Calendars that are not COMPUTED:

(1527 not_ computed calendar)

Resource constraints whose quantity is less than or equal to 0.0:

(1530 SM test resource 0.000000000000000 test task (03/01/95 00:00:00
03/02/95 00:00:00))

Resource supplies whose quantity is less than or equal to 0.0:

(1531 SM test resource 0.000000000000000 test task (03/01/95 00:00:00
03/02/95 00:00:00))

Effective entries whose start times are not less than their end times:

(1534 Bogus Effective Class (05/01/95 00:00:00 . 04/01/95 00:00:00)
(799311600 . 796723200))

(1535 Bogus_Effective Class (05/01/90 00:00:00 . 12/31/69 16:00:00)
(641545200 . 0))

Effective entries whose start times are earlier than Start Of Time:

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE

14-69

PEOPLESOFT PEPPERCODE JANUARY 2001

(1535 Bogus Effective Class (05/01/90 00:00:00 . 12/31/69 16:00:00)
(641545200 . 0))

(1536 Bogus_Effective Class (12/31/69 16:00:00 . 04/01/99 00:00:00) (O
922953600))

Effective entries whose end times are later than End Of Time:

(1536 Bogus Effective Class (12/31/69 16:00:00 . 04/01/99 00:00:00) (0
922953600))

Routing entries whose quantities are not greater than 0.0:

(1539 Bom _Entry SM bogus build option 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1542 Bor Entry SM bogus build option 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1559 Bor Entry SM primary bogus build option 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1560 Bor Entry SM primary bogus build option 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1561 Bor Entry SM primary bogus build option 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1562 Bor_ Entry SM primary bogus build option 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

Routing entries that do not match a routing step:

(1539 Bom Entry SM bogus build option 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1542 Bor Entry SM bogus build option 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

(1544 Supply Entry SM bogus build option A 1.000000000000000 (03/05/95
00:00:00 . 01/01/96 00:00:00) (794390400 . 820483200))

(1546 Supply Entry SM bogus build option M 1.000000000000000 (01/01/95
00:00:00 . 04/01/95 00:00:00) (788947200 . 796723200))

(1547 Supply Entry SM bogus build option M 1.000000000000000 (04/01/95
00:00:00 . 05/01/95 00:00:00) (796723200 . 799311600))

(1548 Supply Entry SM bogus build option M 1.000000000000000 (05/02/95
00:00:00 . 06/01/95 00:00:00) (799398000 . 801990000))

14-70 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLESOFT PEPPERCODE

(1549 Supply Entry SM bogus build option M 1.000000000000000 (06/01/95
00:00:00 . 01/01/96 00:00:00) (801990000 . 820483200))

(1551 Supply Entry SM bogus build option Z 1.000000000000000 (01/01/95
00:00:00 . 06/05/95 00:00:00) (788947200 . 802335600))

(1554 Supply Entry SM bogus build option S 1.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

Bor entries whose equipment class has no equipment instances:

(1542 Bor Entry Bogus_ Equipment Class 0.000000000000000 (01/01/95
00:00:00 . 01/01/96 00:00:00) (788947200 . 820483200))

Build options that have no routing tasks:
(1538 SM bogus_build option)
(1543 SM bogus _build option A)
(1545 SM bogus _build option M)
(1550 SM bogus build option Z)

(1553 SM bogus _build option S)

Build options whose supply entries do not cover the entire schedule:
(1538 SM bogus_build option)
(1543 SM bogus _build option A)
(1545 SM bogus build option M)
(1550 SM bogus_build option Z)
(1553 SM bogus_build option S)

(1555 SM primary bogus build option)

Build options that have multiple Primary Order BORS:

(1555 SM primary bogus build option)

Build options that have multiple Primary Operation BORS:

(1555 SM primary bogus build option)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL DEBUGGING PEPPERCODE 14-71

PEOPLESOFT PEPPERCODE JANUARY 2001

Inventory parts that may not be replenishable (no Build Option, Purchase Option,
or Transfer Option exists):

(1552 SM part not for build option)

Sales orders that do not have sales order lines:

(1563 SM sales order without lines)

Purchase orders that do not have purchase order lines:

(1564 SM purchase order without lines)

Equipment resources without enough capacity to satisfy its constraints:

(1567 SM resource that cannot be repaired)

14-72 DEBUGGING PEPPERCODE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

Index

#

#document 3-7
error messages 3-8
format 3-9

writing comments to a file 3-9

#include

differences in PepperCode prior 8.0

PepperCode compared to C++
rules for writing 3-2

use instead forward declarations
using 11-24

using two files that include each other

writing 3-1
#notice 3-11
warning message 14-20

.spl for PepperCode files 3-1
.splrc
modifying compiler behavior

<

-<directory> 12-13, 12-16

8

8.0 PepperCode

#include differences for prior 8.0

A

action
declaration
forward 5-15

execution
automatic ~ 5-42

parameters 5-7

spl main 12-1

spl_main definition 5-42
action debug tracing 14-23
action interpreter 14-21
Action Interpreter

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

how itisused 5-41

action parameters
see parameters 11-9

Action_Status 5-40

actions 5-1
Action_Status 5-40
actions used for debugging 14-41
adding to aclass 11-1
checking outputs 11-8
context 5-33
customizing 11-26
declaration error 14-10
example 2-5, 5-1
examples 5-3
executing 5-18
executing within another action ~ 5-33
how they are executed 5-41
incomplete and forward declarations 5-4
matching parameter lists ~ 5-6
new rule for invoking 5-19
parameter default values 5-9
parameter list 5-2
parameters 5-7
parameters are no longer static 5-12
parent action passing to child 5-34
PepperCode and C/C++ comparison 1-4
replacing standard method actions 11-26
required input parameter ~ 5-8
running debugging actions 14-42
schema

errors 14-9

schema declarations & definitions ~ 5-15

schemas 5-13

syntax ~ 5-2

transaction logs ~ 5-42

using context and no_context 5-35

writing 11-6

writing to dispatch methods 11-18
ADD TO HISTORY VALUE 10-43
ADD_TO HISTORY_ VALUE ON CALENDAR

10-42

AREA UNDER CURVE 10-39
arrays 8-1

accesses 8-8

arrays of arrays ~ 8-5

associative 8-1

exists function ~ 8-2

bounds
associative 8-2

INDEX

PEOPLESOFT PEPPERCODE

INDEX

2

nonassociative 8-4

enlarging 8-4
functions 8-5
use with arrays of arrays ~ 8-7

indexed by float 8-8
mixing associative and nonassociative 8-6
multidimensional ~ 8-5
nonassociative 8-3
exists function 8-4

use with statements ~ 8-8
assignment statement ~ 6-1
osets 7-1

B

Base Class 4-1,4-10
BREAK 6-7
break statement 6-6

C

-c 12-13
C/C++
compared to PepperCode actions 1-4
compared to PepperCode classes 1-3
C/C++ functions
accessing 10-8
declaring 10-9
passing arguments 10-9
using RPS IMPORT 11-22
using typedefs with 10-10, 11-21
C++ comparison 2-6
C++ functions
checking for corresponding function 11-20
naming 11-21
placing C++ code 11-20
providing PepperCode types 11-21
writing 11-20
C++ header files
not necessary to include warning 14-20
casting 11-5
using with methods 11-19
CD-ROM
ordering iii
changes
class
Using Name of Class in Expression 4-11

--check dump See Index of Compiler Options
Child Task

example 11-3
class

declarations & definitions 4-6

parent and child relationships ~ 14-15

JANUARY 2001

warning at compile time ~ 14-15
class slot 4-9
class slots
seeslots 11-2
class_name
using instead of GET_NAME_OF_CLASS
10-22
classes 4-1
adding a constraint class 11-32
adding and actionto 11-1
adding default values 11-2
changing attribute of derived class 4-7
customizing and displaying names 11-25
declaring 4-6
default values 4-5
example 2-4
forward declarations 4-6
inheriting redefined values 4-3
instance names 4-12
instance of 4-3
multiple inheritance 4-5
naming 11-1
PepperCode and C/C++ comparison 1-3
predefined 4-10
writing 11-1
writing new definitions ~ 4-3
writing parent and child 11-3
--client 12-16
CLOSE DUMP _FILE 10-44
code reading errors 14-15
command line

rules 12-11
syntax 12-10
comments

C++style 3-7
documentation 3-7
format for documentation comments ~ 3-9
generating for an .spl file 3-11
notice 3-11
writing to a file 3-9

compiler
fatal error 14-11
generic error 14-11
severe error 14-10

compiler options
-<directory>
-c 12-13
--client 12-16
compiler maintentance 12-17
compiler or linker to run ~ 12-12
compiling PepperCode 12-13
--cpp_to_object 12-13
--debug 12-13
default (no option switch) 12-11
--define <macroname>=<value> 12-16
--doc 12-15
for C++ source code 12-16
--header only 12-15

12-13, 12-16

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

--include 12-16

--include <directory> 12-13

installation ~ 12-8

--lib_tag 12-14

--loud 12-14

machine specific escape clause 12-17

--make implib 12-13

--make library 12-12

--make program 12-11

mostused 12-11

--no_header 12-15

--no_main 12-17

--no_object 12-13

--no_rt 12-17

--no_warn 12-14

--optimize 12-13

--preprocessor 12-13

--purify 12-17

--quantity 12-17

--quiet 12-14

--quote 12-17

--rt path 12-17

--spl_to object 12-12

used with --make program 12-16
compiling PepperCode

.splre 12-7

command-line rules 12-6, 12-11

HP_UX example 12-4

installation and configuration issues 12-6

LD LIBRARY PATH 12-7

necessary files 12-7

NT example 12-4

OSF/1 and Linus example 12-4

running the compiler 12-2

Solaris example 12-3

to object example 12-1

using as C++ compiler 12-16
context 5-6

example 5-35

multiple 5-34

understanding 5-33
CONTINUE 6-7
continue statement 6-6
contraints

adding 11-32
cpp_function 6-7

error 14-20
--cpp_to_object 12-13
CREATE _MULTIPLE INHERITED SUBCLASS

10-12

CREATE_NAME FROM OSET 10-12
CREATE OBJECT 10-13
CREATE_SUBCLASS 10-13
CURRENT TIME 10-13

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLESOFT PEPPERCODE

D

data type errors 14-15
data types 3-11
DATE _TO_STRING 10-13
--debug 12-13
debugging 14-1
action debug tracing 14-23
action interpreter 14-21
actions used for debugging 14-41
command files 14-55
common mistakes 14-1
debugging action categories 14-43
deciding which debugging actions 14-45
descriptions of debugging actions 14-46
functions used for debugging 14-31
MSG function 14-29
running debugging actions 14-42
setting message level 14-42
declaration incomplete error 14-18
declarations
cpp_function
Not BREAK or CONTINUE 6-7

declarations & definitions

class 4-6
default (no option switch) 12-11
defaults

adding to aclass 11-2

classes 4-5

for uninitialized slots 2-5
--define <macroname>=<value> 12-16
DELETE OBJECT 10-13
DESCRIBE 10-13
--doc 3-9, 12-15

generating for an .spl file 3-11
documentation

adding and retrieving = 11-23
documentation comments ~ 3-7
dot notation

slots 4-6

use in expressions 6-9
dump functions 10-44
DUMP_DATE 10-45
DUMP_FLOAT 10-45
DUMP_INT 10-45
DUMP _NEWLINES 10-45
DUMP RESET STATUS 10-46
DUMP_SPACES 10-45
DUMP_STRING 10-46
DUMP_TEST RESET STATUS 10-46
DUMP _TIME 10-46

E

enumerations

INDEX

PEOPLESOFT PEPPERCODE

INDEX

4

use in loops 6-7

using the same constant names 3-13
error messages 14-9

#document 3-8
execute

actions 5-18

automatic 5-42

parameter behavior 5-11

passing action outputs 5-20
execute statement 6-5
exists

use with associative arrays ~ 8-2

use with nonassociative arrays 8-4
EXP 10-13
expressions

comparisons 10-23

F

FAQ 14-6
files
dumping information to 10-44
type for PepperCode code 3-1
float
indexing arrays with ~ 8-8
FLOAT TO INT 10-13
FLOAT TO STRING 10-14

foreach
arrays 8-8
scope 3-6

foreach statement 6-3

break and continue 6-6

enumerations 6-7

osets 7-5,7-6

forward action declaration 5-15

forward class declarations 4-6

forward declarations

using #include instead of 3-4

functions 10-11

ADD_TO HISTORY_ VALUE 10-43

ADD_TO HISTORY_ VALUE ON CALENDAR
10-42

ANALYZE HISTORY 10-40

AREA UNDER CURVE 10-39

arrays 8-5

CLOSE DUMP_FILE 10-44

CREATE_MULTIPLE INHERITED SUBCLASS
10-12

CREATE NAME _FROM _OSET 10-12

CREATE_OBJECT 10-13

CREATE_SUBCLASS 10-13

CURRENT _TIME 10-13

DATE _TO_STRING 10-13

DELETE_OBJECT 10-13

DESCRIBE 10-13

dump 10-44

DUMP _DATE 10-45

JANUARY 2001

DUMP_FLOAT 10-45

DUMP_INT 10-45

DUMP NEWLINES 10-45

DUMP_RESET STATUS 10-46

DUMP _SPACES 10-45

DUMP_STRING 10-46

DUMP TEST RESET STATUS 10-46

DUMP TIME 10-46

EXP 10-13

FLOAT TO_INT 10-13

FLOAT TO STRING 10-14

functions used for debugging 14-31

GET _ALLOCATED CHAMBERS 10-44

GET CLASS BY NAME 10-14

GET CLASS OF INSTANCE 10-14

GET DATE OF NEXT NEGATIVE VALUE
10-43

GET DATE OF PREVIOUS NOT ENOUGH
10-43

GET DESCENDENTS 10-15

GET DIRECT DESCENDANTS 10-16

GET END OF HISTORY 10-35

GET HISTORY VALUE 10-38

GET _INITIAL AMOUNT 10-39

GET INSTANCE BY NAME 10-16

GET INVENTORY_ AREAS 10-42

GET MSG LEVEL 10-16

GET NAME OF CLASS 10-16

GET NULL INSTANCE 10-16

GET _OVERALLOCATED CHANGERS 10-36

GET RANDOM SEED 10-16

GET TYPED INSTANCE 10-17

history 10-35

INSTANCE EXISTS IN LIST 10-17

IS _ASSERTED 10-32

IS LEGAL CALENDAR_TIME FOR_SPLITTI
NG 10-41

LIST FILES IN DIRECTORY 10-17

MAX_ QUANTITY OVERALLOCATED
10-36

MIN_HISTORY _VALUE 10-39

MOST OVERALLOCATED CHANGERS
10-39

MSG 10-18

NEXT CALENDAR BREAK 10-42

NEXT LEGAL CALENDAR TIME 10-40

NEXT TIME TO TRY 10-37

NLSPRINT 10-28

NLSTR 10-28

NLSTRCMP 10-28

NUMBER_OF AREAS SHORT 10-43

OBIJECT IS ALIVE 10-18

OPEN_DUMP FILE 10-44

postpone side effects 10-30

PREVIOUS CALENDAR BREAK 10-42

PREVIOUS LEGAL CALENDAR TIME
10-41

PRINF 10-18

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PRINTF 10-18

QUANTITY_OF HISTORY_EXCEEDS 10-36

QUANTITY OF HISTORY EXISTS 10-36

QUERY 10-34

QUERY_OSET 10-34

RANDOM 10-19

RANDOMIZE SEED 10-19

REGMATCH 10-19

RENAME FILE 10-19

RESYNCH SE 10-31

RETRACT _AND POSTPONE 10-31

SET MSG LEVEL 10-19

SET RANDOM_SEED 10-20

SORT BY NAME 10-20

STATE_EXISTS 10-40

STATE NEXT TIME TO TRY 10-38

STRERROR 10-20

STRING COMPARE 10-20

STRING_CONCAT 10-20

STRING TO_DATE 10-20

STRING TO INT 10-22

STRLEN 10-20

STRPRINT 10-21

STRRPL 10-21

STRSTR 10-21

TIME BETWEEN_TWO_POINTS FOR_CALEN
DAR 10-41

TYPEP 10-22

upstairs objects 10-24

UPSTAIRS CLASS 10-25

UPSTAIRS INSTANCE 10-24

UPSTAIRS_OSET_CLASS 10-25

UPSTAIRS OSET INSTANCE 10-25

using string functions 10-27

using upstairs objects functions 10-25

G

GET_ALLOCATED CHAMBERS 10-44
GET_CLASS_BY NAME 10-14
GET_CLASS_OF INSTANCE 10-14

GET DATE_OF NEXT NEGATIVE VALUE
10-43
GET_DATE_OF_PREVIOUS_NOT ENOUGH
10-43

GET_DESCENDANTS 10-16
GET_DESCENDENTS 10-15
GET_END_OF HISTORY 10-35

GET _HISTORY_VALUE 10-38
GET_INITIAL_ AMOUNT 10-39
GET_INSTANCE_BY NAME 10-16
GET_INVENTORY AREAS 10-42

GET MSG_LEVEL 10-16

GET NAME_OF CLASS 10-16

GET _NULL_INSTANCE 10-16
GET_OVERALLOCATED CHANGES 10-36
GET_RANDOM SEED 10-16

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLESOFT PEPPERCODE

GET TYPED INSTANCE 10-17
global
scope 3-6

H

--header
use with --doc ~ 3-11

header files
differences for PepperCode prior 8.0 3-5
including 3-1

--header only 12-15

histories 9-1

history functions 10-35

if-else statement 6-2
--include 12-16
--include <directory> 12-13
incomplete declarations
avoiding 5-6
inheritence
multiple 4-5
inout 14-15
inout parameter 5-7
input parameter 5-7
input variable
error assigning to 14-20
installation
compiler options ~ 12-8
instance names 4-12
instance slot 4-9
INSTANCE EXISTS IN LIST 10-17
IS_ASSERTED 10-32
IS LEGAL _CALENDAR _TIME FOR_SPLITTING
10-41

L

LD LIBRARY PATH 12-7
leave

assignment 6-5

leave statement 6-5
--lib_tag 12-14

LIST FILES IN DIRECTORY 10-17
lists

arrays 8-1

osets 7-1

LKN4049 error 14-12
local

scope 3-6

--loud 12-14

INDEX 5

PEOPLESOFT PEPPERCODE

INDEX

6

--make implib 12-13
--make_library 12-12
--make program 12-11

MAX ANALYZE HISTORY 10-40
MAX_QUANTITY_OVERALLOCATED
methods 5-21

adding slots 11-28

customizing 11-26

example 5-21,5-23,5-27

including object 11-19

input and output parameters 11-19

replacing standard method actions

using casting 11-19

writing actions that dispatch ~ 11-18
MIN HISTORY VALUE 10-39
mismatch between #document error
mismatch in parameter error 14-12
missing transaction name error 14-13
MOST OVERALLOCATED CHANGERS
MSG 10-18
MSG function

N

naming conventions 3-15
National Language Support 10-27
NEXT CALENDAR BREAK 10-42
NEXT LEGAL CALENDAR TIME
NEXT TIME TO TRY 10-37
nlscollect 10-29
NLSPRINT 10-28
NLSTR 10-28
NLSTRCMP 10-28
no such file or directory error
no_context 5-3,5-6

using 5-35, 11-7
--no_header 12-15
--no_main 12-17
--no_object 12-13
--no_rt 12-17
--no_warn 12-14
not found error 14-13
nothing named in scope error
notice comments 3-11
Null Instance 4-11
NUMBER_OF_AREAS SHORT

0]

object 4-1
object model

differences in PepperCode and C++ 4-3
OBIJECT IS ALIVE 10-18

10-36

11-26

14-12

10-39

14-29

10-40

14-13

14-14

10-43

JANUARY 2001

objects
temporary 4-9
OPEN DUMP FILE
operators 10-1
--optimize 12-13
osets 7-1
action parameters 7-4
assignment statement ~ 7-1
example of functions 7-2
foreach 7-6
foreach and while ~ 7-5
operators and functions 7-1
output 14-15
output parameter 5-7
output variables
checking for an action 11-8

P

parameter
matching parameter lists ~ 5-6
Parameter %s should be output or inout not %s See
Error Message Reference in back of document
parameters
action
no longer static 5-12

10-44

avoiding static action parameters 11-7
behavior when executes 5-11
casting 11-5
context, no_context, readonly 5-6
default values 5-9
grouping 11-9
local parameter error setting
non-local action 5-9
osets 7-4
required 5-8
schemas 5-13
Parent Task
example 11-3
parse error 14-15
PeopleBooks
CD-ROM, ordering iii
printed, ordering iii
PepeprCode
functions
PepperCode
compared to C/C++ actions 1-4
compared to C/C++ classes 1-3
data types 3-11
debugging 14-1
diagram of example 1-3
diagram of running 1-2
getting started ~ 2-1
Getting Started with Compiling 12-1
making queris from 10-33
naming conventions 3-15

14-10

10-11

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

operators 10-1
overview 1-1
performance considerations 3-14
sample construct 2-1
sample construct diagram ~ 2-4
sample construct explained 2-4
syntax 13-1
performance considerations 3-14
Planning software
customizing 1-5
postpone side effect functions 10-30
predefined classes 4-10
--preprocessor 12-13
PREVIOUS CALENDAR BREAK 10-42
PREVIOUS LEGAL CALENDAR TIME 10-41
PRINF 10-18
PRINTF 10-18
--purify 12-17

Q

--quantity 12-17

QUANTITY_OF HISTORY_EXCEEDS 10-36
QUANTITY_OF HISTORY_ EXISTS 10-36
queries

making form PepperCode 10-33

QUERY 10-34

QUERY_OSET 10-34

--quiet 12-14

--quote 12-17

R

RANDOM 10-19
RANDOMIZE SEED 10-19
readonly 5-6

refman 12-1
REGMATCH 10-19
RENAME FILE 10-19
required 5-8

required error message 14-19
RESYNCH_SE 10-31
RETRACT AND POSTPONE 10-31
RPS_IMPORT 11-22
-rt_path 12-17

S

sanity checks 14-61
schemas 5-13

example 5-14

scope 3-6

SET EPSILON 10-6

SET FLOAT FORMAT 10-6
SET MSG LEVEL 10-19

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

PEOPLESOFT PEPPERCODE

SET RANDOM SEED 10-20
side effects 9-1

postponing 10-30
side_effect slotuse 4-2

slot clause list statements ~ 4-7
slots

adding attributes to previous slot 4-7
adding to methods 11-28
attributes of 4-1
declaration statement ~ 4-8
default values 4-2
defaults 2-5

dot notation 4-6

forming the slots belonging to a class ~ 4-1
method implementation 5-21
naming 11-1
side_effectuse 4-2

slot clause list statements ~ 4-7
specializing 4-2, 4-5
storage of values 4-9
SORT BY NAME 10-20
slots 11-2

spl_main 5-42
--spl_to_object 12-12

splsh 12-1
STATE_EXISTS 10-40
STATE NEXT TIME TO TRY 10-38
statements

arrays 8-8

assignment 6-1

break 6-6

continue 6-6

execute 6-5

foreach 6-3

if-else 6-2

leave 6-5

succeed 6-5

while 6-2

static action parameters

avoiding 11-7
STRERROR 10-20

string functions

using 10-27
STRING_COMPARE 10-20
STRING _CONCAT 10-20
STRING_TO DATE 10-20
STRING TO INT 10-22
STRLEN 10-20
STRPRINT 10-21

STRRPL 10-21

STRSTR 10-21

succeed statement 6-5

T

Target of 14-17
temporary instance 4-9

INDEX

PEOPLESOFT PEPPERCODE

INDEX

8

TIME_BETWEEN_TWO_POINTS_FOR_CALEND
AR 10-41

transaction logs ~ 5-42

transactions

action schema 11-12

error checking 11-13

inputs not touse 11-12

naming 11-12

using input parameter defaults 11-12
writing 11-11

translation tables
collecting strings for

Troubleshooting 14-6

TYPEP 10-22
example 10-23

U

Undefined symbol spl action_info abc
Unterminated string literal. 14-19
upstairs objects

10-29

14-18

JANUARY 2001

functions 10-24

upstairs objects functions

using 10-25

UPSTAIRS_CLASS 10-25
UPSTAIRS INSTANCE 10-24
UPSTAIRS_OSET CLASS 10-25
UPSTAIRS_OSET _INSTANCE 10-25

W

while statement 6-2
break and continue 6-6
enumerations 6-7
while statements

osets 7-5

methods 11-18

V4

zero and null instance 4-11

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

