o

PeopleTools 8.12 Component
Interface PeopleBook

PeopleTools 8.12 Component Interface PeopleBook
SKU MTCIr8SP1 1200

PeopleBooks Contributors: Teams from PeopleSoft Product Documentation and
Development.

Copyright © 2001 by PeopleSoft, Inc. All rights reserved.
Printed in the United States of America.

All material contained in this documentation is proprietary and confidential to PeopleSoft,
Inc. and is protected by copyright laws. No part of this documentation may be reproduced,
stored in a retrieval system, or transmitted in any form or by any means, including, but not
limited to, electronic, graphic, mechanical, photocopying, recording, or otherwise without the
prior written permission of PeopleSoft, Inc.

This documentation is subject to change without notice, and PeopleSoft, Inc. does not warrant
that the material contained in this documentation is free of errors. Any errors found in this
document should be reported to PeopleSoft, Inc. in writing.

The copyrighted software that accompanies this documentation is licensed for use only in
strict accordance with the applicable license agreement which should be read carefully as it
governs the terms of use of the software and this documentation, including the disclosure
thereof.

PeopleSoft, the PeopleSoft logo, PeopleTools, PS/nVision, PeopleCode,
PeopleBooks, Vantive, and Vantive Enterprise are registered trademarks, and
PeopleTalk and "People power the internet." are trademarks of PeopleSoft, Inc. All
other company and product names may be trademarks of their respective owners.

Contents

About This PeopleBook

Before YOU Be@INccviiiiiiiiiieiiiciie ettt sttt b e e b eabaesaeesanesaneeareens vii
Related DOCUMENTATIONcc.eiuiiieeiieieiti ettt ettt et eeentesse et eeesneeneas vii
Documentation on the INteTnet...........ccoeeeiirieiiiieeeeeee e viii
Documentation on CD-ROMccccoiiiiiiieiiee et viii
Hardcopy DoCUmMENtationcceevveeireiiieniieniesie ettt sieeseeeseae e s viii
Typographical Conventions and Visual CUeS..........cceeeerierieiereniee e viii
Comments and SUGEESTIONScc.eevuviriieiierieerieesieseeeteete et esteesseeseeeseseeseeseesseesseesseessenns X
Chapter 1
Component Interface
080T LT (23 USRS 1-1
Component Interface ATrChItECIUIE.ccviiviiiiiiiieiecre ettt 1-2
Attributes of a Component INterface...........cocoeverieiiiiiiiiinicecee e 1-3
Component Interface Nameccceevveviiiiiiiiiieeeeriecee e e 1-3
K Y S et ettt ettt 1-3
Properties and ColleCtions..........cc.coeeieririeninieieneeeseeteeetee e 1-4
Security for PrOPEItIES......cc.ccviiiiiiirieiieiieeieecte ettt ere e sere e eeve e 1-5
1Y 1110 T LT 1-6
Chapter 2
Creating a Component Interface
Views in Application DeSIZNET.........cciriiriiiiiiiiriiiieeceee e 2-1
Component INtErface VIEWccoveviiiiiiiiiiniieiie ettt seveeveerae 2-2
Component Interface View Display........ccccoceeviiiiiininiininiiniieieeie e 2-2
Creating a New Component INterface..........ccoccvvevvieeiiinieniicieciececeeiee e 2-3
Creating PrOPEITICS .. .ccuviiiiirieiieciieciee ettt et e steete v e esteestresereesbeesbaeseseseneesseesseessnens 2-5
Making Properties Read-Only..........ccccooirviininiininiiineeeceeeseee 2-6
Creating CollECtIONSvecviiiiiiecie ettt b e b e e sbeestaeeereesve s 2-6
Adding and Removing KEYSccccviviiiiiiiiiiiiieieecee e 2-7
Which Properties to EXPOSE?cocuoriiiiiiiiiiiiiiiiieeesestee e 2-7

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS iii

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

Guidelines for EXposing COMPONENLS............ccverviereerieereenreereenieeseesneesneenns 2-7
Working with Methodscoooiiiiiiiiiiiie e 2-8
Standard Methodscccoeeireriiiiniiiiiicccee e 2-8
User-Defined Methodscoiviririiniiiiiiiiiineeceeeese e 29
Setting Component Interface SECUTTLYc.everriiriiriiririeriieee e 2-10
Testing a Component INTErface........ocovirieriiiiiiniiieee e 2-13
Getting the Signature of the ItemByKeys Method..........ccccooovvviiiciiniiiiiicieeiee. 2-18
Validating a Component INteTface..........ccceevveririiiiiiiniiiieee e 2-20
Generating Visual Basic TemMPIateccccvvievvieviieriieiiece et 2-20
Generating PeopleCodeccviiiiiiiiiieiicieecee ettt s ev e eb e reesteesane 2-24
Chapter 3
The Component Interface API
Binding Considerationsceceveeierierienieniieteeeitete ettt st 33
COM BINAING ..ottt ettt sttt sttt e 3-3
Third Party AppliCation..........coeeieriiieriniiieieereeetee e 33
External API InStallation...........cccoieerieiiriene et 3-4
C Header Binding.........cooveiuiiiiiiiieienieitee ettt sttt st s 34
Third Party AppliCation..........cceeeeririeriniiieiieeeeeeteee e 34
C Header File ...c.ooueiiiiiiiiiiccce et 3-4
Connecting to a Component INterfacecceovvievieiieiciicieiecce e 3-5
Installing External Client Settings for the APL............ccccoovviiviiiiiiiiieice e, 3-5
Comparing Component Interface and Components...........cccoeeeveererieneneenenenneeneneene. 3-5
Differences in Search Dialog Processing.........cceevvevvievveiieeiveenieenieseeeneeneenns 3-5
Differences in PeopleCode Event and Function Behavior..........coccovevienennce. 3-5
Limitations of Client-Only PeopleCode..........cccoveviiiriiiiiiieiecreereereeeene 3-6
Email from a Component INterface.........cccoevvevieiiieiiinieeniecie e 3-6
WinMessage Unavailable...........cooooieriiiiiiniiiiniieiceeeeeee e 3-6
Calling another Component INterfacecoeevveevieiieiviieniecie e 3-6
Chapter 4
Component Interface Example
PeopleCode EXAMPIE........cccueeiieiiiiieiieciiecteere ettt eve e et staestresvesebeesbeessaesree s 4-2
Java and Active Server Page EXamples........ccoeocieriiiiniiieniniiiecceeeste e 4-4
Active Server Page EXample.......cccoooieiiiiiiiiiiniiiiieete e 4-6
Connecting to the Application SEIVETccccevuirieriirienienieienieeeee e 4-7
Getting an INSTANCE.ccveiieirieiieie ettt strestreeeveeebeebeeaaesenas 4-7

CONTENTS iv PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Finding an EXisting RECOrd..........cccccveiiiiiiiiieiiiiiccie et 4-8
Getting an Instance of Data..........ccccoveeiiiiiiiniiiineeeeee e 4-9
Migrating Through SCrolls..........cccccviiviiiiiiiieiiecie e 4-10
Editing and Accessing Data in an Itemccccooveveieeeieenieniecieceeeeeeee, 4-11
Inserting a Row into @ ColleCtion.........cceveevieririeniiieniinieicceeseeeee 4-11
Deleting a Row from a ColleCtionccceeveeviieriienieeiecrecieeseesee e 4-12
Disconnecting from @ SeSSIONcc.vcvvierieeiieeniieriieeie e ereesteesreereereesseesenes 4-12
Java EXAMPIE ...cuveiiiiiiiiie e e e 4-12
Connecting to the ApPliCation SETVETcccvecvievvieriierieereeireesieesreereereeseeens 4-13
Getting an Instance of the Component Interface...........ccccceeevveviiivienieineenen, 4-13
Finding an Existing Record...........ccccoviriiiiiiiniiiiiiieeeeeeeee 4-13
Getting an Instance of Data...........ccceeieeiiiciiicieicecreee e 4-13
Migrating Through SCrolls..........cccciiviieiiiiieiiecie e 4-14
Editing and Accessing Data in an [temcceeeeveiieiiieniienienieceeceeee, 4-14
Inserting an Item into @ CollECtioN.........cccvvevieriieiiieriereereere e 4-15
Deleting a Row from a ColleCtionccccevevievieiieeiiciecieeeecee e 4-15
Disconnecting from @ SESSI0MNccueeriierireieeiieniieeie et esiee e eee e 4-15
Chapter 5
Component Interface SDK
REQUITEINENES ..ottt ettt sttt et 5-1
The PTSDK Development PrOjECt.........cc.veviiiiiiiiiiieiieeiecsiieciie et sve v eneens 5-1
PTSDK Project ODJECtS.....eciiiiiiiiieiieciieciie ettt et sireseveesveesbeesteesaaeesvessseasseens 5-2
PTSDK RECOTASc.vvieiiieiiieiieitestieete ettt ettt sttt eees 5-2
SDK _BUS EXPENSES Test Page.......ccccceeeieriirieieiieieiececieie e 5-7
Installing the PTSDK ProJect.......c.ccouieviiiiiieiieiiicii ettt cre et sve e sevesiveesveens 5-7
Component Interface Tester and Samplesccoeeeerinieiiiiniiniieeeeee e 5-10
CHt Tester and SAMPIE.......c.ecevieiuieriiiiieiiereere et ereeve bt et reesaesveesseesseas 5-10
Preparing Your C++ Tester and Samplec.ccoceveeviiniriininenicnieeneene 5-11
USING the CA CITESIET .veevvieiieiieciieciieer ettt evae e eve b aeesaaesaneeeveesnes 5-13
Using the CH+ CI SamPIEccuvevviiiiiiiiiieeeesie et 5-14
Visual Basic Tester and Sample..........ccooevieriiriiiininiinnieeceeeeeeeee e 5-15
Preparing Your Visual Basic Tester and Sample.........cccoeeveeevievienienieeneennen. 5-15
Using the Visual Basic CI TeStErccueivvieviiirieiie e e sere e 5-15
Using the Visual Basic CI Samplecccceviiienininiininieeeencceeee 5-16
ASP Tester and SAMPIE........cecoeeiiiiiiiiieieeieeee st ereebeebeesaeees 5-18
Preparing Your ASP Tester and Sample.........cccoevvievienieiieiieeieeieeieeeeeinns 5-19
USING the ASP CI TSIeoveiiieiiiiriieiesieeiteieieetee et 5-19

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CONTENTS \

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

Using the ASP CI SamPIe.......ccecevieriiiiiiiieiiecie et seve e v e 5-20
Java Tester and SAmPLeccoieiriiriiiiniiii e 5-22
Preparing Your Java Tester and Samplecccocvevveeciieiienienieereeeeeeene. 5-22
UsSINg the Java CLTeSter ...ccuviiiiieiiiiiciieciee ettt sr e er e err e v ree e 5-23
Using the Java CI Sampleccooveiiiiniiiiiiiiieeeeeteeeeese e 5-23

Index

CONTENTS vi PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

ABOUT THIS PEOPLEBOOK

This book describes a PeopleSoft component interface that is a PeopleTools object that you create
in Application Designer. It allows access to a PeopleSoft component for synchronous access
from another application. This book includes the following:

Introduction to Component Interface introduces the component interface architecture, including
component interface properties, collections, keys, and methods.

Creating a Component Interface describes how to create a component interface.

The Component Interface API discusses techniques for accessing components from PeopleCode
and through Visual Basic or web-based applications through the Component Interface API.

Component Interface Example shows a sample of creating and calling a component interface.

Component Interface SDK describes how to use the component interface resources in the
Software Development Kit to integrate your PeopleSoft application with third party products.

Before You Begin

To benefit fully from the information covered in this book, you need to have a basic
understanding of how to use PeopleSoft applications. We recommend that you complete at least
one PeopleSoft introductory training course.

You should be familiar with navigating around the system and adding, updating, and deleting
information using PeopleSoft windows, menus, and pages. You should also be comfortable using
the World Wide Web and the Microsoft® Windows or Windows NT graphical user interface.

Related Documentation

To add to your knowledge of PeopleSoft applications and tools, you may want to refer to the
documentation of the specific PeopleSoft applications your company uses. You can access
additional documentation for this release from PeopleSoft Customer Connection
(www.peoplesoft.com). We post updates and other items on Customer Connection, as well. In
addition, documentation for this release is available on CD-ROM and in hard copy.

@ Important! Before upgrading, it is imperative that you check PeopleSoft Customer
Connection for updates to the upgrade instructions. We continually post updates as we
refine the upgrade process.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE vii

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

Documentation on the Internet

You can order printed, bound versions of the complete PeopleSoft documentation delivered on
your PeopleBooks CD-ROM. You can order additional copies of the PeopleBooks CDs through
the Documentation section of the PeopleSoft Customer Connection Web site:
http://www.peoplesoft.com/

You’ll also find updates to the documentation for this and previous releases on Customer
Connection. Through the Documentation section of Customer Connection, you can download
files to add to your PeopleBook library. You'll find a variety of useful and timely materials,
including updates to the full PeopleSoft documentation delivered on your PeopleBooks CD.

Documentation on CD-ROM

Complete documentation for this PeopleTools release is provided in HTML format on the
PeopleTools PeopleBooks CD-ROM. The documentation for the PeopleSoft applications you
have purchased appears on a separate PeopleBooks CD for the product line.

Hardcopy Documentation

To order printed, bound volumes of the complete PeopleSoft documentation delivered on your
PeopleBooks CD-ROM, visit the PeopleSoft Press Web site from the Documentation section of
PeopleSoft Customer Connection. The PeopleSoft Press Web site is a joint venture between
PeopleSoft and Consolidated Publications Incorporated (CPI), our book print vendor.

We make printed documentation for each major release available shortly after the software is first
shipped. Customers and partners can order printed PeopleSoft documentation using any of the
following methods:

Internet From the main PeopleSoft Internet site, go to the
Documentation section of Customer Connection. You can
find order information under the Ordering PeopleBooks
topic. Use a Customer Connection ID, credit card, or
purchase order to place your order.

PeopleSoft Internet site: http://www.peoplesoft.com/.

Telephone Contact Consolidated Publishing Incorporated (CPI) at
800 888 3559.
Email Email CPI at callcenter@conpub.com.

Typographical Conventions and Visual Cues

To help you locate and interpret information, we use a number of standard conventions in our
online documentation.

Please take a moment to review the following typographical cues:

PREFACE viii PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

monospace font Indicates PeopleCode.

Bold Indicates field names and other page elements, such as
buttons and group box labels, when these elements are
documented below the page on which they appear. When
we refer to these elements elsewhere in the
documentation, we set them in Normal style (not in bold).

We also use boldface when we refer to navigational paths,
menu names, or process actions (such as Save and Run).

Italics Indicates a PeopleSoft or other book-length publication.
We also use italics for emphasis and to indicate specific
field values. When we cite a field value under the page on
which it appears, we use this style: field value.

We also use italics when we refer to words as words or
letters as letters, as in the following: Enter the number 0,
not the letter O.

KEY+KEY Indicates a key combination action. For example, a plus
sign (+) between keys means that you must hold down the
first key while you press the second key. For ALT+W,
hold down the ALT key while you press W.

Jump links Indicates a jump (also called a link, hyperlink, or
hypertext link). Click a jump to move to the jump
destination or referenced section.

Cross-references The phrase For more information indicates where you can
find additional documentation on the topic at hand. We
include the navigational path to the referenced topic,
separated by colons (:). Capitalized titles in italics
indicate the title of a PeopleBook; capitalized titles in
normal font refer to sections and specific topics within the
PeopleBook. Cross-references typically begin with a
jump link. Here's an example:

For more information, see Documentation on CD-ROM in
About These PeopleBooks: Related Documentation.

e Topic list Contains jump links to all the topics in the section. Note
that these correspond to the heading levels you'll find in
the Contents window.

Opens a pop-up window that contains the named page or
Name of Page or dialog box. Click the icon to display the image. Some
Dialog Box screen shots may also appear inline (directly in the text).

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL PREFACE ix

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

=,

Text in this bar indicates information that you should pay particular attention to as you work
with your PeopleSoft system. If the note is preceded by Important!, the note is crucial and
includes information that concerns what you need to do for the system to function properly.

Text in this bar indicates For more information cross-references to related or additional
information.

Text within this bar indicates a crucial configuration consideration. Pay very close attention
to these warning messages.

Comments and Suggestions

PREFACE

Your comments are important to us. We encourage you to tell us what you like, or what you
would like changed about our documentation, PeopleBooks, and other PeopleSoft reference and
training materials. Please send your suggestions to:

PeopleTools Product Documentation Manager
PeopleSoft, Inc.

4460 Hacienda Drive

Pleasanton, CA 94588

Or send comments by email to the authors of the PeopleSoft documentation at:
C:\User\Documentum\Export\DOC@PEOPLESOFT.COM

While we cannot guarantee to answer every email message, we will pay careful attention to your
comments and suggestions. We are always improving our product communications for you.

X PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 1

Component Interface

Introduction

Every organization depends on real-world business objects—such as invoices and inventory
items—to conduct its business. In PeopleSoft applications, components represent real-world
business objects. For example, an invoice component is a way to capture, store, and display all
the essential information related to any given invoice—the general billing and shipping
information, plus details about each line item.

Components have keys that enable navigation to a specific instance of a business object, and also
includes the essential information that describes the object (the fields in the component).
Additionally, a component includes an organization’s business rules associated with whatever
type of business object the component represents.

While online, a user can view, enter, and manipulate data about a business object through the use
of a component and its associated pages.

A component interface is a PeopleTools object that you create in Application Designer. It
exposes a PeopleSoft component for synchronous access from another application. External
applications need not be concerned with the details of page structures and component definitions
in order to access the underlying data and business logic through component interfaces.
PeopleSoft components can be accessed from the following applications:

e Microsoft’s Component Object Model (COM)
e (C/C++ shared libraries

e Java

e PeopleCode

An instance of a component interface refers to the object at runtime, populated with a single
group of data that describes a unique business object. In other words, a component interface
refers to a type of business object, such as an invoice, while a component interface instance refers
to a unique version of that business object, such as invoice number 945 versus invoice number
946, and so on.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE 1-1

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

@ Note: In most cases, component interfaces behave exactly the same as their online
counterparts (their associated components). This means that PeopleCode events typically
fire in the same order as the online case, and so on. However, there are Comparing
Component Interface and Components to this behavior that relate both to PeopleCode
processing and search dialog processing.

Component Interface Architecture

The overall component interface architecture includes more than just component interfaces
themselves. There are three fundamental elements to the overall component interface
architecture—components, component interfaces, and the component interface API.

Elements Description

Components One or more pages performing a business transaction that a
component interface is associated with.

Component Interface Exposed aspect of a component. However, unlike components,
component interfaces are readily accessible by internal and
external applications and multiple component interfaces can
reference the same component.

Component Interface Application programming interface for a Microsoft COM (Visual
API Basic) application.
PeopleCode

The following illustration shows the relationship of the basic elements of the component interface

architecture.
PeopleSoft Application
Component Component Interface PeopleCode
Component

Search Keys External Application

PeopleCode
Functions

COM (VB)

C/C++

Properties and
Collections

Fields and Scrolls

Component Interface Architecture

1-2 COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Attributes of a Component Interface

Every component interface has the following four main attributes:
e Component Interface Name

e Keys

e Properties and Collections

e Methods

Component Interface Name

As with every other object in PeopleTools, component interfaces must have a name. The
component interface name is used to access it, and should somehow identify the business object
that it describes, such as LOCATION.

The naming of component interfaces should be consistent and systematic. Also, the name should
not be changed once the component interface is part of a production system—other applications
depend on a consistent name with which to reference the component interface.

If you are changing the structure of a component interface such that an existing program will no
longer be able to access it correctly, create a new component interface rather than updating the
existing one. There is no “version” property on a component interface, so if you need to create a
new version of a delivered component interface, adhere to a standard naming guideline to avoid
confusion. A suggested naming guideline is as follows:

e LOCATION (original component interface)

e LOCATION V2 (version two of the component interface)

Keys

Keys define the values that uniquely identify an instance of a component interface. When you
create a new component interface, component interface keys are created automatically based on
the associated component’s search record. However, you can add or change certain keys, if
desired.

A component interface can have three types of keys:

Key Type Key Characteristics

Get Keys These keys automatically map to fields marked as Srch in the
component’s search record. You need to change Get keys only if you
modify the keys of the underlying component after you’ve created a
component interface.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE 1-3

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

Key Type Key Characteristics

Create Keys These keys get created automatically if the Use tab on the
Component Properties dialog allows the Add action, then Create
keys are generated for the component interface automatically. If the
component has an Add mode search record, then the component
interface uses that search record for the Create keys. Otherwise, the
search record is used to generate the keys.

Find Keys These map to fields marked as both 4/f and Srch in the component
search record. You may remove Find Keys that you do not wish to
make available for searching.

@ Note. Application Designer automatically creates certain component interface keys based on
how some options are set in the component properties, in addition to some of the field
options (A4/t and Srch) referenced by the search record.

Properties and Collections

Properties are the individual data items (fields) that describe a component interface. Each
property maps to a single field in the component interface’s underlying component. A collection
is a type of property—which points to a scroll, instead of of mapping to an individual field, it
points to a scroll.

@ Note: The first item in a component interface collection is always referred to as item one,
not item zero, which is consistent with other PeopleCode processing.

There are two main types of properties: user-defined properties and Standard Properties.

User-Defined Properties

User-defined properties come from a component interface’s associated component, and must be
added manually. They are the specific record fields that you choose to expose to an external
system with the component interface.

Standard Properties

Standard properties are common across all component interfaces and are assigned automatically
when a component interface is created. Standard properties also exist for each collection within a
component interface. The following table lists the standard properties, including collection and
DataRow types. The Application Designer does not display these properties.

1-4 COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Type

Name

What it does...

Standard

CreateKeyInfoCollection

Returns a set of items that describes the
Create keys.

GetKeyInfoCollection

Returns a set of items that describes the
Get keys.

FindKeyInfoCollection

Returns a set of items that describes the
Find keys.

PropertyInfoCollection

Returns a set of items that describes
properties.

GetHistoryltems

Controls whether the component interface
runs in “Update/Display” mode or
“Correction” mode. Applies only to
getting a component interface, not to
creating a component interface.

InteractiveMode

Controls whether to apply values and run
business rules immediately, or whether
items are queued and business rules are run
later, in a single step. Interactive mode is
recommended for most cases where you
use a component interface to establish
“real-time” integration with another
interactive application. However, if you
are using a particular component interface
as part of a batch process in which
thousands of rows are to be inserted,
performance may be improved by not
running in interactive mode.

ComponentName

Returns the name of the component class
as named in Application Designer

Collection

Count

Returns the number of items in a collection

DataRow

ItemNum

Returns the position of the row within the
collection of a DataRow.

@ For more information on properties, including PropertyInfo properties and related
PeopleCode, see Component Interface Classes in the PeopleCode Reference.

Security for Properties

In Application Designer, you control access to user-defined properties by not including the
property in the component definition or by making the property read-only. This is a global

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

COMPONENT INTERFACE

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

1-

6

setting, not related to any individual class or operator ID. PeopleSoft row-level security governs
which data values appear for a given property.

For more information on setting up component interface security, see Setting Component
Interface Security.

Methods

A method is an object that performs a very specific function on a component interface at runtime.
For each component interface, numerous methods are available. For example, if you are working
with a purchase order component interface, you may use a method to approve a specific purchase
order. Likewise, you can use methods to save or create a new purchase order. As with
component interface properties, there are two main types of methods: User-Defined Methods and
Standard Methods.

User-Defined Methods

User-defined methods are those that you can create to meet the requirements of an individual
component interface. A method is simply a PeopleCode function that you wish to make
accessible through the component interface. Each method maps to a single PeopleCode function.

Standard Methods

Standard methods are those that are available on all component interfaces. They are
automatically generated upon the creation of a new component interface in Application Designer,
and provide the basic functions required of any component interface.

As with standard properties, standard methods exist for every component interface, as well as for
each collection within a component interface. The following are standard methods for
component interface:

Standard Methods Action

Cancel Backs out of the current component interface, canceling any
changes made since the last save. Equivalent to clicking the
Cancel button online. Returns “True” on success, and “False”
on failure.

Create Creates a new instance of a component interface. Equivalent to
opening a new record in Add mode online. Returns “True” on
success, and “False” on failure.

Find Performs a partial key search for a particular instance of a
component interface. Returns “True” on success, and “False”
on failure.

COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Standard Methods Action

Get Retrieves a particular instance of a component interface.
Equivalent to opening a record in Update/Display or Correction
mode when online with a PeopleSoft application. Returns
“True” on success, and “False” on failure.

Save Saves an instance of a component interface. Equivalent to File,
Save in the online system. Returns “True” on success, and
“False” on failure.

GetPropertyByName Returns the value of a property specified by name. This

(PropertyName) function typically is used only in applications that cannot get
the names of the component interface properties until runtime.

SetPropertyByName Sets the value of a property specified by name. This function

(PropertyName, typically is used only in applications that cannot set the names

PropertyValue) of the component interface properties until runtime.

GetPropertyInfoByName Returns the information about a property which is specified by

(PropertyName) name. This function typically is used only in applications that
cannot get the names of component interface properties until
runtime or by applications that need to provide a dynamic list of
values that would normally be found in prompt tables.

CopyRowset Enables you to copy rowsets created from the message data in

(from PeopleCode only) your component interface.

CopyRowsetDelta Enables you to copy only the changes created from the message

(from PeopleCode only) data in your component interface.

Item(Index) Takes an item number as a parameter and returns an object of

Collection method

the type stored in the specified row in the collection. For
example, if the collection is a data collection, the return value is
a DataRow. If the return value is a PropertyInfoCollection,
then the return value is a PropertyInfo object, and so on.

Data Collection Methods

Action

Insertltem(Index) Inserts a new item. Equivalent to pressing F7 to insert a
new row when online. It takes the item number as a
parameter, and follows the same conventions for executing
business rules (PeopleCode) as the online system.

Deleteltem(Index) Deletes an item. Equivalent to pressing F8 when online.

Item(Index) Takes an item number as a parameter, and returns the
specified row in the collection.

ItemByKeys(keys) Identifies and finds a specific item based on keys. The

keys will vary according to the design of the collection.
For more information on determining the key signature, see
Getting the Signature of the [temByKeys Method.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

COMPONENT INTERFACE

1-7

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

1-

8

Currentltem: Returns the current effective DataRow in the collection. Its
behavior is consistent with effective date rules used online.
This method works with effective-dated records only.

CurrentltemNum: Returns the item number of the current effective DataRow

in the collection. Its behavior is consistent with effective
date rules used online. This method works with effective-
dated records only.

GetEffectiveltem(DateStri
ng, SeqNum):

Returns a pointer to the DataRow that would be effective
for the specified date and sequence number. A more
general case of the GetCurrentltem function, which returns
the object that is effective at this moment. This method
works with effective-dated records only.

GetEffectiveltemNum(Dat
eString, SeqNum):

Returns the item number within the collection of the
DataRow that would be effective for the specified date and
sequence number. A more general case of the
GetCurrentltemNum function, which returns the number of
the object that is effective at this moment. This method
works with effective-dated records only.

DataRow Methods

Action

GetPropertyByName(Prope
rtyName):

Returns the value of a property specified by name. This
function typically is used only in applications that cannot
get the names of the component interface properties until
runtime.

SetPropertyByName(Proper
tyName, PropertyValue):

Sets the value of a property specified by name. This
function typically is used only in applications that cannot
set the names of the component interface properties until
runtime.

GetPropertyInfoByName(Pr
opertyName):

Returns a PropertyInfo object with the information about a
property that is specified by name. This function typically
is used only in applications that cannot get the names of
component interface properties until runtime or by
applications that need to provide a dynamic list of values
that would normally be found in prompt tables.

Security for Methods

The following methods provide techniques for accessing component interface properties and
property information. Because properties cannot be individually secured within a component

interface, these particular methods also cannot be individually secured.

e GetPropertyByName

e SetPropertyByName

COMPONENT INTERFACE

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

¢ GetPropertylnfoByName
e CopyRowset

e CopyRowsetDelta

@ For more information on setting component interface security, see Setting Component
Interface Security.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE 1-9

CHAPTER 2
Creating a Component Interface

You create and modify component interfaces using Application Designer. This section assumes
that you are already familiar with Application Designer.

Views in Application Designer

When working with a component interface object in Application Designer, you see the
component view on the left and the component interface view on the right.

\'[Application Designer - Untitled - [AES_HIST [Component Interface]]

@Eile Edit Wiew Ingert Buld Debug Tools Go Favorte: Window Help _|ﬁ||1|

EEEEEREEEDE
|! ABSEMCE_HISTORY [Component]
[mgﬁ Untitled &) PERS_SRCH_GBL [View] - Search Re
Ea Serall - Level 0

PERSOMAL_DATA [T able) ;
E Scroll - Level 1 Primary Record: At E| ::’.b FIMDKEYS

----- e EMPLID PERS_SRC.. EMPLID
i NAME PERS_SRC... MAME
gy LAST_MAME.. PERS_SRC.. LAST_MA..
FROPERTIES

-0 ABSEMCE_HI.. ABSEMCE_.

E| a METHODS

----- & Cancel

Record

PERS_SRC.. EMPLID

4] | i3

[L =
AT =T, Build A Find Object References Uparade Resuls , Yalidate f —|

Feady

The Component View and Component Interface View

| | o 7

The component view shows exactly the same hierarchical record structure that you would see if

you had the component open in Application Designer. The Component Interface View shows a
similar structure.

In general, you add individual objects, or groups of objects, to the component interface by
dragging objects from the component view into the component interface view. All objects in the
component view are part of the underlying component interface, and they are accessible through
user-defined methods or through PeopleCode events on the component. However, only the
objects in the component interface view will be exposed to the calling program at runtime.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-1

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

2-2

JANUARY 2001

Component Interface View

The component interface view displays a tree in which each object type is represented by a
unique icon. Some icons are used in both the component view and the component interface view
with slightly different meanings. The tables below explain the meaning of each icon in the

component interface view.

Icon Description
E Component Interface

@ Group of keys

@ Property that is a key field from the underlying record

Ry Alternate search key

"i Group of properties or methods

E Property or method

=l Collection

‘ﬁ Property that is a required field for the underlying record

‘i Identifies an item in a component interface that is no longer
“in sync” with the underlying component. For example, if a
field on which a property depended is deleted from the
component, this icon appears.

Component Interface View Display

Columns What displays...

Name Name of a specific element of a component interface (such as the
name of a property or method).

Record Name of the underlying record upon which a specific element is based.
Note that if this underlying record name changes, the component
interface will continue to point to the appropriate record.

Field Name of the field to which a component interface property points. As
with the record name, the underlying field name can change, and the
component interface will continue to point to the appropriate field.

Read Only Displays whether a specific property or collection has been marked

(Y/N) read-only.

Comment Displays any comments that exist in the Edit Property dialog for the
selected key, property, or collection.

In the component interface view, properties display in the same order as they appear in the
component; that is, they are not sorted alphabetically.

CREATING A COMPONENT INTERFACE

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Creating a New Component Interface

Because each component interface points to a single component, you must know for which
component you are constructing a component interface. You may choose to use an existing
component within your application, or create a new one for the sole purpose of constructing a
component interface. Many parts of the component interface, such as the keys, are created based
on settings in the referenced component.

To create a new component interface
1. Select File, New from the Application Designer menu.

2. Select the Component Interface object type from the New dialog.

Select source Component for Component Interface
Object Type: I Compariett j
— Selection Criteria I LCancel |

Name I Praject IAII Projects j
. Mew Search |
Dezcription I
Market [artarkets |
Objects matching gelection criteria: @
Mame | I arket | Dregcription

|
Selecting a Component for Component Interface

3. Select the component on which this component interface will be based.

Once you select the appropriate component, you’ll see a message asking if you want default
component interface properties to be defined based on the fields of the selected component.

Application Designer

2)

Do you want to default the properties bazed on the ;I
underlying Component definition, 4BSEMCE_HISTORY™?
[123.12) LI

Mo | Explain |

Confirming default property values

4. Click Yes to confirm the default property definitions, or No if you don’t want any default
properties.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-3

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

An untitled component interface displays showing the Get keys and Find keys. However,
Create keys are produced only if the search record of the underlying component is set to run
in Add mode (the example shown below does not have Create keys, because the search record
of the underlying component cannot run in 4dd mode). Application Designer creates the
keys for you as you drag and drop objects.

\I Application Designer - Untitled - [Component Interfacel [Component Interface]]
@ File Edit “iew Inzett Build Debug Toole Go Favortes “Window Help i |E||1|

e e

ABSEMCE_HISTORY [Compe
[Orited &) PERS_SRCH_GEL [View
EE Scroll - Level 0
- PERSONAL_DATA ([& EMPLID PERS_SRC.. EMPLID
- B Somoll- Level 1 Prime =48 FINDKEYS

[& EMPLID PERS_SRC.. EMPLID
----- G NAME FERS_SRC.. MAME
[@ LAST_MaM.. PERS_SRC.. LAST_NA..
B PROPERTIES
=-§8 METHODS

Record

4 | i

Ll

I
[T F T, Buid A Find Object References } Uparade b Results), Yalidate /

Ready ’_I_I—’— A
A New Component Interface

@ Note: You can begin adding properties to a new component interface at any point.
However, you cannot add any methods to the component interface until you have saved the
component interface.

5. Save the component interface.

When you save a new component interface, Application Designer automatically creates the
standard methods Cancel, Find, Get, and Save. Create is not generated automatically unless
the component supports the 4dd mode. Therefore, the Create standard method has not been
generated for the component interface displayed.

Once you have saved the component interface, you can add user-defined methods to it.

6. Add properties, collections, or methods to the component interface.

@ For more information on creating properties, collections, and methods, see Creating
Properties, Creating Collections, and Working with Methods.

7. Set the security.

2-4 CREATING A COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

@ For more information on enabling security, Setting Component Interface Security.

8. Test the component interface.

Application Designer includes a helpful feature for testing any component interface you
create.

@ For more information on testing your component interface, see Testing a Component
Interface.

Creating Properties

To create a property
1. Drag arecord, field, or scroll from the component view to the component interface view.

It does not matter exactly where you drop the object in the component interface view. The
system automatically converts the field or record into a component interface property, and
places it in the appropriate place in the list of Properties. Also, when you drag an object
from the component view into the component interface view, all “child” objects are brought
into the component interface automatically. Once these child properties have been added to
the component interface, you can remove each property individually, if necessary.

Dragging a key from the search records, which precede the level zero record in the page
view, will add a key to all appropriate key collections (Get, Create, and Find) on the
component interface. Because appropriate keys are added automatically when a component
interface is first created, you typically will have to add keys only if the new keys are added to
the underlying component after the creation of the component interface.

To delete a property
1. Select the property and press the Delete key on your keyboard.

You can also right-click on the property and select Delete from the pop-up menu, or highlight
the property and select Edit, Delete from the Application Designer menu. Standard
Windows behavior is employed for selecting multiple properties. That is, you can Shift+click
to select a series of properties or Control+click to select multiple, individual properties.

Property names are automatically named according to the corresponding fields from the
component. However, it’s easy to rename a property if necessary. A renamed property still
references the original field, regardless of the name change.

To rename a property

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-5

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

1.

Click the property name twice in the component interface view.

Use two “slow” clicks, as opposed to double-clicking. You can also right-click on the
property and select Edit Name from the pop-up menu, or select Edit, Edit Name from the
Application Designer menu. In the example below, we’re changing the EMPLID property
name to EmployeelD.

=-J8 PROPERTIES
= rPLID)] PERSOMAL_DA...
@ METHODS
o Find [}g

L g Save

Type in the new property name.

Programs accessing this component interface must reference the new property name.

=-J8 PROPERTIES
© g |EmplayeelD]

PERSONAL_DA...

Making Properties Read-Only

You can make any property (including collections) read-only. At runtime, a read-only property
can be read, but not updated.

To make a property read-only

1.

Highlight the property and select Edit, Toggle Read Only Access from the Application
Designer menu.

You can also right-click on the property in the component interface view, and select Toggle
Read Only Access from the pop-up menu. A “Y” appears in the Read Only (Y/N) column of
the component interface view corresponding to each property that you have selected to be
read-only.

Creating Collections

A collection is a property that points to a scroll, rather than a field, in a component interface’s
underlying component. Creating collections is similar to creating other properties—you drag the
scroll from the component view into the component interface view. There are some important
points to keep in mind when creating scrolls, as follows:

When dragging a scroll into the component interface view, all “child” scrolls come with it.
This is the same behavior you would expect when creating any property. “Child” properties
are always added automatically when you drag a field from the component view to the
component interface view. After the property or collection has been created, you can delete
individual child properties or collections manually, if necessary.

Keys that appear in parent and child scrolls are not added to child collections. In order for
the component interface to function as expected, the keys must remain synchronized at

2-6 CREATING A COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

different levels of the component. Having keys at lower levels, makes it possible to
compromise this synchronization. Therefore, lower-level keys are not introduced into the
component interface.

e When dragging a child scroll into the component interface view, parent collections are
created automatically. For example, if you drag just the level two scroll from the component
view into the component interface view, a level zero collection and a level one collection are
created for you automatically in the component interface. This hierarchy of collections is
necessary so that it’s possible to navigate to the child collection at runtime.

Adding and Removing Keys

Application Designer makes keys automatically when you create a component interface.
Typically, you will have to add keys only if new keys are added to the underlying component
after the creation of the component interface. However, you may want to modify the Find keys—
either to restrict a user from searching on a particular key or to add an alternate search key that
didn’t exist when the component was created.
To add a key
1. Drag the desired key from the component view to the component interface view.
You first will need to expand the Search key collection (the first collection) in the component
view, and then drag the desired key to the component interface view.

To delete a Find key

1. Select the desired Find key in the component interface view and press the Delete key.

Which Properties to Expose?

You easily create component interface by dragging a scroll from the component view into the
component interface view. However, some forethought is required before exposing a component
as a component interface. Certain components, in fact, must be carefully exposed to ensure that
they behave as you would expect.

Guidelines for Exposing Components

The first time you drag a scroll from the component view to the component interface view, the
system follows certain rules to determine what properties to expose.

e Considerations about levels. Keys are exposed only at the highest level collection in which
they first appear. In some cases, this is not desirable. When an effective-dated page that has
the same level zero and level one record is exposed through a component interface, it should be
exposed in exactly the same way it is displayed on the page. In this case, only one key field
typically appears at level zero and the effective-date keys appear at level one. Your component
interface wrapper should expose the page in the same fashion—removing keys that do not

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-7

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

appear on the level zero scroll in the page from the component interface top-level collection,
and manually adding those keys that appear on level one scroll in the page to the second-level
collection.

Typically, you will not want to expose Get or Create keys since these are set before a Get or
Create operation and might be inadvertently changed.

e No Add mode on page. If your page does not support 4dd mode, then typically you will not
want to expose the level zero record of the component, as it will contain data that is not
specific to the component interface you are creating.

¢ Invisible fields. You should not expose fields that are not visible in the component view. The
component optimization code may eliminate unused fields from its buffers in which case an
error will result when that field is accessed by the component interface.

Working with Methods

A method is an object that performs a specific function on a component interface at runtime.
Each method is simply a PeopleCode function made accessible to other programs. As with
properties, methods are saved as part of a component interface definition. There are two main
types of methods: standard methods and user-defined methods.

@ For more information on PeopleCode related to component interface, see Component
Interface Classes in the PeopleCode Reference.

Standard Methods

By default, each component interface is created with the standard methods—Cancel, Find, Get,
Save—enabled. Additionally, the Create standard method is generated if Create keys have been
added to the component interface. When creating a new component interface, you must save the
component interface before the standard methods will be created. Application Designer adds the
standard methods upon the first save of a new component interface.

You can control whether or not standard methods are accessible at runtime. Follow the procedure
below to enable or disable any standard method.

To enable or disable standard methods

1. Select File, Object Properties from the Application Designer menu.

You can also right-click anywhere in the component interface view and select Component
Interface Properties from the pop-up menu. The Object Properties dialog opens.

2. Click the Standard Methods tab.

You can enable or disable any of the standard methods selecting the corresponding checkbox.
Doing so determines whether or not the method is available at runtime when the component

2-8 CREATING A COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

interface is accessed. Create is grayed out in the example below. This is because no Create
keys exist for this component interface, which indicates that the search record for the
underlying component cannot run in 4dd mode.

Properties

General Standard Methods |

7| Create
IV | Find
V| Get
¥ Save

0K I Cancel

Enabling Standard Methods

User-Defined Methods

To create a user-defined method

1. Right-click anywhere in the component interface view, and select View PeopleCode from the
pop-up menu.

You can also highlight any object in the component interface view, and then select View,
View PeopleCode from the Application Designer menu. The PeopleCode editor appears.
With a new component interface, initially there will be no PeopleCode displayed in the
editor, because no user-defined methods have been created yet.

2. Write the required PeopleCode functions.

Any PeopleCode functions you write will be stored in a single PeopleCode program attached
to the component interface. You must set permissions for every user-defined method. If
you've set permission to Full Access, at runtime, that function for the component interface
will be exposed to calling programs as a method.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-9

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

%] Application Designer - Untitled - [WORKLIST.Methods (Component Interface PeopleCode]]

D File Edit “iew Insert Buld Debug Tools Go Fawvortes Window Help ==

INEEEEEEEEE s w(=| B Blelole] ol
W IWDHKLIST [componentinterface] leelhods j
Local Rowset srsfelectMax: -

Local 50L &sqlUpdateMaw, ssqlCheckPooled:
Local Record srecP3WORKLIST;
PanelGroup array of string sUserlist;

,'"*
AddUzserforEntry

A4dd a user to the list L'f user for doentries to be performed.

returns true if succeszsful

*/

Function AddUserforEntry(&User As string)
sUzerList.PushislUser);

End-Function;

J,n’ﬁ‘
DoEntries LI

IErAd Comnanant Interiare walidation |

[[%1}, Buid A Find Okject References } Uparade & Rezulis }, Yalidate / |

Ready lil_’_’—’— A
Creating User-Defined Methods

New user-defined methods do not appear in the list of methods until you save the component
interface.

Setting Component Interface Security

After creating a component interface, you need to set security for it before the component
interface can be tested or accessed. As with other PeopleTools objects, access must specifically
be granted before a component interface is available for use at runtime by any user. Additionally,
before a component interface can be tested, security access must be given to the appropriate class,
so that the desired user(s) can access the component interface.

There are essentially two ways to secure component interfaces:

e Use Maintain Security to set security. Maintain Security addresses component interface
security in the same manner that it addresses security for other PeopleTools objects. You can
use it to control access to individual methods or entire component interfaces.

e Use Application Designer to mark individual properties “read only.” Any property can be
marked “read only” in the component interface design. For more information, see Making
Properties Read-Only.

To set up component interface security

1. From your browser, select PeopleTools, Maintain Security, Use, Permission Lists.

2. Select the permission list to which you want to set security.

2-10 CREATING A COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Permission Lists

Find an Existing Value

FPermission List:l
Basi Search

Add a Mew Value

Search Results

1-21 of 21
Permission List Permission List Description
ALLPANLE hlank

APPSRVE Can start application server
BEMADMIM Benefits Administrator
CCADMIN (blank)

CCOYLP {blank)

CCREST (blank)

CUSTOMER Customer Class
EMPLOYEE Employee Class

HREPMLS {hlank)

INPHLE {blank)

INVPANLS (blank)

POBUYER Purchasing Buyer
PRODREP Production Representative
PTMSG {hlanky

3. Select the Component Interface tab.

General Y Pages | PeopleTools | Process | Sigh-onTimes | Componentinterface | Message Monitor | D

Fermission List. ALLPANLS

Description: |
Permission List General
Navigator Homepage: |PTDMO Diefault Ql

[~ can Start Application Server?

™ Allow Passwordto be Emailed?

Time-out Minutes
& Never Time-out
" Specific Time-out (minutes) I

&l save) Return te Search) Hext tab) Fadd) =)
Component Interface tab in Maintain Security

4. Select the component interface from the list for which you want to set security.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-11

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

2-12

JANUARY 2001

| General ' Pages | PeopleTools | Process Yﬁign—onTimes\llD

Permission List. ALLPANLS

Description: |

Edit Name

Edit ABS_HIST =]
Edit BUS_EXP =1
Edit DISCIPLM_ACTHN =]
Edit MVSRPTS =1
Edit PROCESSREQUEST [=]
Edit PSACTIMTYLOG E|
Edit USER_PROFILE =]

B save I Return to Search) Previous 1ab) Hext 1ab)

2

Component Interface list

If you want to add another component interface to the list, click

interface name in the text box.

First 4 1.7 of 10 I Last

Edit DISCIPLMN_ACTH [+]1[=]
Edit NYSRPTS =
Edit PROCESSREQUEST =]
Edit PSACTMTYLOG [+][=]

Inserting a Component Interface

. Enter the component

The Authorized Component Interface screen appears, showing all methods (both standard
and user-defined) within the component interface and their method access.

CREATING A COMPONENT INTERFACE

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Component Interface Permissions

ABS_HISET

viewal First (4 1.40f 4 [Last Full Access (Al |

Method Method Access

Cancel IFUI_L—g Mo Access (All) |
Find IFUI_L—g
Gat IFUI_L—Q
Save IFULL—ﬂ

Setting Access Permissions for Methods

5. Set the Access Permission for each method.

For each method within the component interface, you can choose between Full Access and
No Access. You must grant Full Access to at least one method to make the component
interface available for testing and other online use. Click OK when done.

Testing a Component Interface

After setting the security parameters for a component interface, you can test the contents and
behavior of that component. When you are working with a test component, real data from the
database is used. Therefore, if you save the information you change by calling the Save method,
it will be changed in the database.

To test a component interface
1. Open the component interface in Application Designer.

2. Select Tools, Test Component Interface from the Application Designer menu.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-13

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

2-14

JANUARY 2001

\'[Application Designer - Untitled - [AB5_HIST [Component Interface]]

E’j File Edit “iew |nzett Build Debug Go Favortes “Window Help - ||5||1|
‘ 0 I Dﬁl Elﬁl él % | I El é Walidate Project
Compile all PeopleCode
% Untitled Walidate for Congistency
omparent Interface PERS_SF.. EMPLID
o 5
[rata Administration PERS SR.. EMPLID
LChange Control 3 FERS SR MAME
Upgrade _ b PERS_SR.. LAST M.
Mizcellaneous Objects 3
Options... . ABSEMCE...
Q&l Development
| [+
l—
B egin validating Companent Interface integrity
Mo emors found.
End Component Interface wvalidation
A>T Buid . Find Object References b Uporade b Results }, Validate
Execute a Componert Interface in test mode i

You can also right-click anywhere in the component interface view and select Test
Component Interface. The Test Component dialog appears. This dialog displays the key
structures (in the left-hand columns) for getting, creating, or finding an instance of the
component interface. The right-hand columns provide a place for you to enter sample key

values for testing.

Component Interface Tester - Enter key values. choose function

—'Get' keys for Component Interface (double-click to zet)
ks EMPLID | 8001 | Get Existing I

= Ereate! keys fon Eomponent hterace [double-click tmeet]

[Ereate [HEew |

‘Find' keys for Component Interface [double-click to set]

“HY EMPLID 8001

kit LAST_MAME_SRCH

ﬁe NAME

Eind |

¥ Interactive Mode [zet propertiss immediately)
™ Get Higtary ltems

Cancel |

Testing a Component Interface

3. Enter key values.

CREATING A COMPONENT INTERFACE

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

To enter a key value, double-click in the column to the right of any displayed keys. You can
then edit the value in the right-hand column. The data used for the test will correspond to the
key values you enter here. In the example above, we’ve entered an employee ID of §001.

Select whether to run in Interactive Mode.

If you select the Interactive Mode box, this means that the component will be sending each
“set property” request to the application server immediately, instead of storing them up to be
sent in batches; is means that edit processing (and other processing, such as FieldChange
PeopleCode) will occur for each transaction.

Whether or not you select this option depends on how you expect a particular component
interface to be used, as well as what you are specifically testing at the moment. In a real
production system, this parameter can significantly affect performance, but it makes little
difference in the test component. In non-interactive mode, errors and properties are not
updated until a method is executed. By default, Interactive Mode is turned on.

Select whether to Get History Items.

Selecting this option determines whether to retrieve “history” data. This option applies to
effective-dated fields only, and is equivalent to running in either Update/Display mode or
Correction mode online. This option is initially turned off.

Decide whether to Get Existing records or to Create New a new one for the test.

The Get Existing option is equivalent to opening a record in Update/Display or Correction
mode online. It tests calling the Get method through the Component Interface API. The
Create New option is equivalent to creating a new record in Add mode online. It tests calling
the Create method through the Component Interface APIL. If your component does not
support the Create method, this button will be disabled.

If you want to enter a partial key, use the Find option. Application Designer will then use the
values in the FindKeyInfoCollection tree to return a set of target components. You then can
choose a single instance by selecting and clicking the Get Selected button. If you do not
enter a partial key before clicking Find, all key values in the database are returned. This is the
same as calling the Find method through the Component Interface API; followed by selecting
a value from the Find results, and then setting the Get key and calling the Get method.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-15

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

8.

2-16

CREATING A COMPONENT INTERFACE

JANUARY 2001

Component Interface Tester - Find Results
— Find Rezultz [click item to select]

MAME Jordan Susan 4]

ABS_HIST [246]
EMPLID S0 Cancel
LAST_NAME_SRCH HAJJAR ;I
MAME Haijar M aricn

ABS_HIST [247]
EMPLID 5002
LAST_MAME_SRCH MaRRIOTT
MAaME I ariott, R obert

ABS_HIST [248]
EMPLID 5003
LAST_MAME_SRCH ROGERS
MAME Rogers.) acqueline

ABS_HIST [249]
EMPLID 5004
LAST_MAME_SRCH TAYLOR e
MAME Taplor.John -

| | Bim

Using the Component Interface Tester’s “Find” Option

After you click either the Get Existing, Create New, or Find button, the Component
Interface Tester dialog appears.

i Component Interface Tester

|Live Component Yiew. Double-click ta change values, Right click to erecute methods.

Itemn Marme

2001
& FindKeylnfoCollection
o EMPLID
-Gy LAST_MAME_SRCH
o NAME
ABSEMCE_HIST
ABSEMCE_HIST [1]
ABSEMCE_HIST [2)
= ABSENCE_HIST [4]

a0
<call failed:
<call failed:

&

DD

=

Using the Component Interface Tester

Test component interface properties.

To change a value, double-click on a value and enter a new value. Note that the test
component interface uses real data. If you save the information you’ve changed by calling
the Save method, the information will be changed in the database (in Interactive Mode).
Some basic validation is done when you leave the field—which is equivalent to tabbing off of
a field in the online case. This validation includes system edit, FieldChange PeopleCode
events, and FieldEdit PeopleCode events. Further validation may be done when the Save
method is called (SaveEdit, SavePreChange, Workflow, and SavePostChange). If errors or
warnings are encountered, they are displayed in the Error Message Log at the bottom of the
window. The Error Message Log displays the same text that would appear in the Session
object PS-Messages collection if you were accessing the component through the Component
Interface API.

Test component interface methods by right-clicking on the component interface name.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

A pop-up menu appears showing the Save and Cancel standard methods, plus any user-
defined methods that exist for the component interface. The Find, Create, and Get standard
methods are not valid for an instantiated component, and therefore are not shown.

If a component interface method requires one or more parameters, a dialog in which you can
enter the parameters will appear. After the method executes, the same dialog appears again,
displaying any change to the parameters caused by the method. The return value of the
function is displayed in the title of the dialog. If a component interface requires no

parameters, you will not see the initial dialog, but will see the return value dialog following
the function call.

! Component Interface Tester [=] I

|Li\-'e Component Yiew. Double-click to change values, Right click to execute methods.

a0m
GetPropertyByt ame
GetPropertylnfoByM ame 8001

G LAST_HAME_SRCH <call faileds
Ao NAME <call failled:
B ABSENCE_HIST

ABSEMCE_HIST [1]
7-f=) ABSENCE_HIST [2]

; ABSENCE_HIST [3]

[

[

| i B

Error Message Log

Testing Component Interface Methods

@ Because the execution of a component interface method can result in a change to the
component interface structure, Application Designer will always redraw the component
interface tree in its collapsed form following a method call.

9. Test collection methods by right-clicking on the collection name.

A pop-up menu appears showing the standard collection methods. Select the collection
method you want to test for this component interface. After you select a collection method to
test, the Enter parameters dialog prompts you to enter an item number for the collection
method you are testing. The index [Number] you enter is used to retrieve, insert, or delete
an item, according to the rules discussed below.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-17

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

Item[). Enter parameters:

|index [Murnber]: I ak I

Cancel

Using the Enter Parameters Dialog

After you enter an index [Number], the result is shown in the dialog. If there is a return
value, it is displayed in the title bar. Otherwise the message “No value” is displayed. Click
OK or Cancel to dismiss the dialog.

The purpose of each collection method is as follows:

e Item(index): Returns the row at the specified index. Only the success or failure of this routine
is of interest from within the test component.

o Insertltem(index): Inserts a new item. Equivalent to pressing the F7 button online. A new
item will be inserted following the index [Number] you specified on the Enter parameters
dialog.

o Deleteltem: Deletes the item number you specified on the Enter parameters dialog.
Equivalent to pressing the F8 button online.

o ItemByKeys(keyl, key2, ...): Returns the row corresponding to the specified keys. Only the
success or failure of this routine is of interest from within the test component.

e Currentltem: This method returns the effective row in an effective-dated record. Only the
success or failure of this routine is of interest from within the test component.

o GetEffectiveltem(DateString, SeqNum): Returns a pointer to the DataRow that would be
effective for the specified date and sequence number. A more general case of the
GetCurrentltem function, which returns the object that is effective at this moment. This
method works with effective-dated records only.

¢ GetEffectiveltemNum(DateString, SeqNum): Returns the item number within the collection
of the DataRow that would be effective for the specified date and sequence number. A more
general case of the GetCurrentltemNum function, which returns the number of the object that
is effective at this moment. This method works with effective-dated records only.

Getting the Signature of the ItemByKeys Method

You can get the signature for the [temByKeys method (or any other method) when testing a
component interface. Open the object, and select Tools, Test Component. Navigate to the

2-18 CREATING A COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

desired collection, right-click on it, and select ItemByKeys from the pop-up menu. A dialog
appears showing you the specific parameters, types, and the order in which you should call
ItemByKeys. This is particularly helpful for the ItemByKeys method, because its signature is
different for each component interface.

In the following example, the keys for ABSENCE_ HIST's ItemByKeys method are
ABSENCE_TYPE (String), BEGIN_DT (String), and EMPLID (String).

* Component Interface Tester [=]
|Li\-'e Component Yiew. Double-click to change values, Right click to execute methods.
Itemn Marme Value -
=R ABS_HIST
EI@ GethevinfoCollection
gl EMPLID a0m
& FindKeylnfoCallection
=
B =py
nzertltem
----- & l l WAL
_____ @ Deleteltem 09/26/1983
emBykeys
..... & ItemByK,
_____ & Currentltem Friday
,,,,, & CurrentlkermMum 13
..... & GelEffectiveltem i]
..... o GetEffectivelterntum a0m
----- & EMPLOVER_APPROWED hd
----- & PAID_UNPAID P
----- & REASOM
----- & RETURN_DT 03/10/1983 ||
- ABSENCE_HIST [2]
[-f= ABSENCE HIST [3] it
| | »
Error Message Log
001: Invoke - [GetPropertyByutame]. [Ernrcrs Pending]
Thiz iz an invalid property 48B5_HIST denize} [31,15)

Getting the Signature of the ltemByKeys Method

ItemByKeys[). Enter parameters:
[\BSENCE_TYPE [Sting] | i3 |
BEGIN_DT [Stringl: | Cancel |
EMPLID [String} |

Viewing the Signature of the ltemByKeys Method

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE 2-19

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

Validating a Component Interface

Validation ensures that a component interface definition has not deviated from its source
component. This can happen whenever a component deletes or adds a record or field. It can also
happen if the key structure is modified by adding or removing keys. Properties and keys that are

no longer synchronized with their associated component are marked with the ‘L icon.

@ With respect to component interfaces, validation is the process of checking whether the
underlying component of a component interface has changed. It does not validate the
PeopleCode associated with a component interface. To validate the PeopleCode, you must
open the component, and then select Tools, Validate from the Application Designer menu.

To correct an invalid component interface, you may have to delete properties for which there are
no longer appropriate fields or records. If the structure of the source component has changed, you
may have to delete old properties and re-add the new properties in their appropriate locations. If
a new property provides the same functionality as a previous property, you can change the name
of the new component interface property back to its original name, which will make it appear to
external applications as though the component interface has not changed. This will work only if
the new component interface is not structurally different than the original component interface.
That is, the properties still appear at the same collection levels.

To validate a component interface
1. Open the component interface in Application Designer.

Validation occurs automatically whenever you open a component interface in Application
Designer.

2. Select Tools, Validate for Consistency from the Application Designer menu to validate an
open component interface.

You can also right-click anywhere in the component interface view and select Validate for
Consistency. As you make changes to components, component interfaces, or other related
objects, you may want to validate a component interface that you already have open in
Application Designer, rather than closing and re-opening the component interface to force
validation to occur. Use this feature to validate a currently open component interface.

Generating Visual Basic Template
After creating and testing the component interface, you can begin coding the run-time portion of

the application. From Application Designer, you can generate a Visual Basic template based on
your component interface. Then you can modify the template as needed.

To generate a Visual Basic Template

1. Open a component interface definition in Application Designer.

2-20 CREATING A COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Right-click anywhere in the definition view to display the pop-up menu.

%] Application Designer - Untitled - [BUS_EXP [Component Interface]]
@Eile Edit “iew |nsert Buld Debug Tools Go Favortes ‘Window Help

DlsEa] 8| 5|=e| = 8|2

= BUSINESS_EXPEN [Mame | Recard | Field | Read Only | Comment |
+-£8) PERS_SACH_C [=-ER BUS_EXP
Ela Scroll - Level D E-cF GETEEYS -
: et
£ PERSONAL & EMPLID v::ﬁ P:;;:;DEZ - EMPLID
IMSTALLAT @ FIMDKE"YS =
=B Sorol- Leve @ EMPLID Edit Property EMPLID
% DERIVE G NAME Edit Name NAME
= BUS_E:| i G LAST_MAME_SRCH | Edit Comment LAST_MNAME_SRCH
E- g Seol-| a PROPERTIES Toggle Bead Only Access
: -Ef) BUS_EXPENSE_FER Delete
=8 METHODS —
Component |nterface Properties
W alidate for Congistency
Test Component Interface
Generate Vizual Bazic Template
KN 2l

Generate Visual Basic Template pop-up

2. Select Generate Visual Basic Template.

When the template is successfully generated, the following message displays:

Application Designer

The ‘izual Basic template file name iz:
CATEMPLWBUS_EXP.bas [123,10)

Explain |

B

-

-]

Generated VB Template message

3. Open the generated file and modify the source code, as needed.

Example of Visual Basic Generated File

The following file is a dynamically generated Visual Basic template you can use as a sample.
You need to replace all <*> notations with valid Visual Basic variables.

Private Sub ABS HIST()

On Error GoTo eMessage

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CREATING A COMPONENT INTERFACE

2-21

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

'*****x Set Object References *****
Dim oCISession As Object

Dim oABS_HIST As Object

Dim oABSENCE_HIST As Object

Dim oABSENCE HISTItem As Object

'*%%%* Set Connect Parameters *****
strAppSeverPath = <*>
strOperatorID = <*>

strPassword = <*>

'***** Create PeopleSoft Session Object *****

Set oCISession = CreateObject ("PeopleSoft.Session")

'***%x* Connect to the App Sever ***x**

oCISession.Connect 1, strAppSeverPath, strOperatorID, strPassword, 0

'xxk*x Get the Component *x***

Set oABS HIST = oCISession.GetCompIntfc ("ABS HIST")

'***%x* Set the Component Interface Mode *****

OABS_HIST.InteractiveMode = False

OABS HIST.GetHistoryItems = True

'**xx*x Set Component Get/Create Keys ***xx

OABS HIST.EMPLID = <*>

Vhkkkk Execute Get Or Create *****

2-22 CREATING A COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

OABS_HIST.Get

%%%%% BEGIN:

txx%x* BEGIN:

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Set Component Interface Propertiesg **x**

Set Component Interface Properties *****

'Set ABSENCE HIST Collection Field Properties -- Parent: PS ROOT Collection

Set oABSENCE HIST

= OABS HIST.ABSENCE HIST

'"For <*> = 1 to oABSENCE HIST.Count

Set OABSENCE HISTItem =

OABSENCE HISTItem

OABSENCE HISTItem.
OABSENCE HISTItem.
OABSENCE HISTItem.
OABSENCE HISTItem.
OABSENCE HISTItem.
OABSENCE HISTItem.
OABSENCE HISTItem.
OABSENCE HISTItem.
OABSENCE HISTItem.

OABSENCE HISTItem.

'Next <*>

Vkk*** END:

T x%xx** END:

OABSENCE HIST.Item(<*>)
EMPLID = <*>
ABSENCE _TYPE = <*>
<*>

BEGIN DT =

RETURN DT = <*>

DURATION DAYS = <*>
DURATION_HOURS = <*>
REASON = <*>

PATD UNPAID = <*>

EMPLOYER APPROVED = <*>

COMMENTS =

<*k>

DAY OF WEEK = <*>

Set Component Interface Properties *****

Set Component Interface Properties **x**

'***%x* Save Component Interface **x**

OABS HIST.Save

OABS HIST.Cancel

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CREATING A COMPONENT INTERFACE

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

Exit Sub

eMessage:
"*x*** Digplay VB Runtime Errors *****

MsgBox Err.Description

'*x*** Digplay PeopleSoft Error Messages ****x*
If oCISession.PSMessages.Count > 0 Then
For 1 = 1 To oCISession.PSMessages.Count
MsgBox oCISession.PSMessages.Item(i) .Text
Next i

End If

End Sub

Generating PeopleCode

After creating and testing the component interface, you can generate the PeopleCode and then
modify it, if needed.
To generate PeopleCode from a component interface
1. Open a component interface definition.
2. Insert the component interface into a project.
Select Insert, Current Object into Project. Save the project.
3. Open the PeopleCode editor.
4. Select the component interface from the project workspace.

Drag and drop the object from the project into the PeopleCode editor.

2-24 CREATING A COMPONENT INTERFACE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

%] Application Designer - TESTER - ABSENCE_HIST.ABSENCE_TYPE.FieldFormula [Record PeopleCode)

File Edit Wiew Insert Buld Debug Tool: Go Favortes Window Help
INEEEEEEEEE S ENE R)

= X
@ TESTER E#ABS_HIST (Component Interface) =13
=]

Camponent Interface FEEABSENCE_HIST [Record) =0
ABS_HIST
----- BUS_ExP =

Record Fields IRecord e |

1
B/ ABSENCE_HIST ABSENCE_TYPE.FieldFormula (Rec... =] E3
IABSENEE_TYPE (field) jIFieIdmeula j

/% End: Zet Component Interface ;I
Properties */

/% Cancel Instance of Component

il_ Interface */
&ABS_HIST.Cancel();

End-If;

End-If: ZI

PeopleCode generated by dragging and dropping ABS_HIST component interface

ﬁ%l’ Development E"'l Upgrade

5. You can make any necessary changes to the PeopleCode in the PeopleCode editor window.

You must replace the “<*>” notations, which are variable place holders, with specific values

for your program before executing the PeopleCode.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL CREATING A COMPONENT INTERFACE

2-25

CHAPTER 3

The Component Interface API

After creating your component interface, you need to create an API which will build the dynamic
link libraries, classes, and registry settings necessary to allow a third party application to
communicate with PeopleSoft. These files reside on the client machine; that is, the web server
for ASP, and the machine running the Java program for Java. The registry file may also need to
be executed to update the registry with the new libraries.

Only external applications, such as COM or C/C++ programs, require a component interface APL.
PeopleCode programs do not require a component interface API, and in fact, we do not
recommend building a Component Interface API if a component interface is to be accessed from
PeopleCode only.

To build a component interface

1. Open any component interface.

2. Select Build, PeopleSoft APIs from the Application Designer menu.

Build PeopleSoft APl Bindings

— COM Type Library
¥ Buid

Target Directon,: Ic:\apps\db\mssql? J

Type Library Template: I

COM Server DLL Location: ID:\pt81 0binsCLIEMT SaineBSE_estapi

AutoFegister v Clean-up Registry v

— C Header Files

™ Build Directory for header file: Ic: Yappshdbimasgl? _I
m-lava Elasse

1= | Bild

irectomny cottaiing FeapES et package: IDZ\PT81 Dhwwebhentapi _I

Select APz to Build: all Naone |

Cancel |

Build PeopleSoft API Bindings dialog

3. Set options for COM Type Library area.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE COMPONENT INTERFACE API 3-1

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

=

3-2

Build Select this checkbox if you are building the API so that it
can be accessed from Visual Basic programs. Otherwise,
the type library will not be built.

Target Directory This is the directory to which the API is built.
Type Library Template Specifies the type library template you want to use.

COM Server DLL Location This identifies the directory in which the PeopleSoft API
Adapter (psapiadapter.dll) resides on the workstation. The
default location is the PeopleTools “bin” directory (set by
the PS HOME variable set in Configuration Manager).

The system creates the following type library files in the
Location you specify:

Peoplesoft Peoplesoft.tlb

Peoplesoft Peoplesoft.reg

Auto Register Select this option to create the registry information
required for the type library and execute it immediately, so
that your workstation’s registry will be immediately
updated without having to restart it.

Clean Up Registry Select this option to set up the clean up registry.

These two files are only on the workstation used to build the API. All other workstations
that will make use of the API must have these files copied to the corresponding directories.
Then, the registry file (Peoplesoft Peoplesoft.reg) must be imported to each workstation’s
registry by executing (double-clicking) the generated registry file. If the directory structure
differs from the original workstation on which the APIs were built, then you must edit the
registry file to change the location of the psapiadpter.dll to reflect the correct directory
structure, and then import the registry file on the workstation.

4. Set options for C programs as required.

If you are building the API so that it can be accessed from C programs, click the Build
checkbox that appears in the C Header Files frame. Otherwise, the header file(s) will not be
built.

The Location identifies the directory in which the header files must reside on the
workstation. The default location is the directory from which you started PeopleTools.

5. Build the APIs.

Currently you cannot select an individual API to be built. If you create a new API or modify
an existing one, you will have to rebuild all the APIs.

THE COMPONENT INTERFACE API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

searchapi Searchuerny :l
zearchapi.SearchR ezultsiew

zearchapi SearchR esult

searchapi. Searchindesltem

Dane
g

AT ET, Build £ Find Object Refersnces , Upgrade Resulls i Validate Jy Image... J
Done message...

Note. The directory containing the PeopleSoft API Adapter (psapiadapter.dll) needs to be set
in the PATH environment variable for C Header Files.

Binding Considerations

This section describes some things to consider depending on the binding type: COM bindings on
a local workstation or web server or C Header file bindings.

COM Binding

When deploying component interface on a local workstation or web server with COM binding,
you need the following:

e Third party application (non-PeopleSoft)

o Type library called PeopleSoft PeopleSoft.tlb. This type library is not specific to a single
database instance—it is specific to those database objects.

e Registry file called PeopleSoft PeopleSoft.reg. This registry file is not specific to a single
database instance. It is specific to the path settings for the typelib and the psapiadapter.dll that
you chose during the Build API. Be aware that often the machine you are deploying to is not
the machine that you ran the Build APIs on.

e External API installation

e PeopleSoft Application Server

PeopleSoft application

Third Party Application

For applications written in Visual Basic, Excel Visual Basic for Applications (VBA), or other
COM languages, note the following:

e If your program is early-binding, there is a direct reference to the path of the typelib in your
code. Therefore, as you deploy you must have the typelib in the same directory on each
machine.

e If your program is late-binding, there is no a direct reference to the path of the typelib in your

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE COMPONENT INTERFACE API 3-3

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

code. Your code will look in the registry for the path to the typelib. Therefore, as you deploy
you can have the typelib in different directories on each machine. You do need to update the
registry settings as part of the deployment. This is a more flexible approach.

External API Installation

You will be doing the External API installation on each workstation that runs the non-PeopleSoft
application.

During the External API install, you will be prompted for the directory that you want the External
API files to go. This needs to be the same directory that you used as the settings for the Build
APIs process.

Note that the External API requires a Java Virtual Machine because the calls to the application
server are done through JOLT because it supports multi-threading.

C Header Binding

When deploying component interface with C Header binding, you need the following:
e Third party application (non-PeopleSoft)

o C Header files: peoplesoft peoplesoft. i.h

o External API installation

e PeopleSoft Application Server

Third Party Application
For applications written in C or C++, note the following:

o The function names generated by the Build APIs process can be quite long. You may want to
consider creating classes within your C++ code to mask this length throughout your program.

e When you create your installation for your C or C++ program, make sure you include the setup
of the path to the psapiadapter.dil.

C Header File

When you do the Build API process in the Component Interface Designer, it creates one
peoplesoft_peoplesoft i.h file for all of the objects in the PeopleSoft database. This C header file
is not specific to a single database instance—it is specific to those database objects.

3-4 THE COMPONENT INTERFACE API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Connecting to a Component Interface

=,

To access a component interface from a Visual Basic, C/C++ application, or PeopleCode, you
must first build the component interface object.

Any workstation, running a Visual Basic program, requiring access to the API must have
DLL files, component interface type library and registry information copied to the
appropriate locations. For a web application the above mentioned files need to be copied on
the Web Server only.

Installing External Client Settings for the API

Before a client machine can access component interfaces with COM, certain environment settings
must be set up on the client workstation. These settings are not required for PeopleCode access to
component interfaces. Each client workstation that accesses component interfaces through an
external (non-PeopleCode) application will need the external API directory installed.

For more information about installing the external client settings, consult the PeopleSoft 8
Installation and Adminstration Guide for your database platform.

Comparing Component Interface and Components

In many ways, accessing a component interface is equivalent to working with an online
component. However, the fact that component interfaces are not equivalent to components means
that there are a few key areas in which you’ll see differences between component interfaces and
components. For example, search dialog processing and some PeopleCode events are different.

Differences in Search Dialog Processing

When you run a component interface, the Searchlnit, SearchSave, and RowSelect events do not
fire. This means that any PeopleCode associated with these events will not run. The first event to
run is RowlInit.

Differences in PeopleCode Event and Function Behavior

PeopleCode events and functions that relate exclusively to GUI and online processing cannot be
used by component interface. These include:

e Menu PeopleCode and pop-up menus. The ItemSelected and PrePopup PeopleCode events
are not supported. In addition, the CheckMenultem, DisableMenultem, EnableMenultem,
HideMenultem, and UncheckMenultem functions aren’t available.

¢ Transfers between components, including modal transfers. The TransferPage,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL THE COMPONENT INTERFACE API 3-5

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

DoModalPageGroup, and IsModalPageGroup functions cannot be used.

¢ Dynamic tree controls. Functions related to this control, such as GetSelectedTreeNode,
GetTreeNodeParent, GetTreeRecordName, RefreshTree and TreeDetaillnNode cannot be
used.

e ActiveX controls. The PSControllnit and PSLostFocus events are not supported, and the
GetControl function cannot be used.

Limitations of Client-Only PeopleCode

e Component interface can run on either the client or the server. A component interface runs on
the client only if both of the following conditions are true: (Otherwise, the component
interface runs on the server.)

= The code calling the component interface is running on a client machine.

= The second parameter of the Connect method is EXISTING.

e Component Interfaces must run either entirely on the server or entirely on the client. To ensure
this restriction, component interface references declared in PeopleCode must be declared as
local variables.

e Some built-in functions are always client-only, others are client-only under specific conditions.

e Some built-in functions behave differently when used in three-tier mode as opposed to two-tier
mode.

@ For more information see Client-Only PeopleCode.

Email from a Component Interface

If you want to use a component interface to send email, use TriggerBusinessEvent PeopleCode
event, and not SendMail.

WinMessage Unavailable

You cannot use WinMessage in a component that will be used to build a component interface.
You should use MsgGet() instead.

Calling another Component Interface

A component interface should not call itself in any of the PeopleCode included within its
component definition, because this may result in an infinite loop of the component interface.

A component interface should not call itself from a user-defined method.

3-6 THE COMPONENT INTERFACE API PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

CHAPTER 4

Component Interface Example

This section describes the steps in creating a sample component interface.

To create a component interface

1. Create a new component interface in Application Designer by selecting File, New,
Component Interface.

The system prompts you to open the component on which the component interface will be
based.

2. Add properties to the component interface by dragging fields, tables, or scrolls over to the
rightmost pane.

The easiest way to add properties is to drag level 1 scrolls to the right side and drop. This
exposes the data that a normal page would have access to in the component.

*J Application Designer - Untitled - [TESTCI2 [Component Interface]]

Z1File Edt View Inset Buld Debug Tooks Go Favoites Window Help =18 x|
| DlzBle] & e =2
[BUSINESS_EXPENSES (Component) Name Fecord Field [Fead. [Com.. |
E. Untitled @ PERS_SRCH_GEL [View| - Search Record E"“ TESTCI2
-8 Scil-LevelD =& GETKEYS

PERSOMAL_DATA [Table) " ¢de EMPLID PEAS_SRCH_GEL EMPLID

E-&% FINDKEYS
& na : BLIS_EX - ¢ EMPLID PERS_SRCH_GBL EMPLID
5_EXPENSE_PER [T able] o NAME PERS_SRACH_GBL ~ MAME
e EMPLID [Record Field) oy LAST_NAME_SRCH PERS_SACH_GBL LAST_NAME_
A EXPENSE_PERIOD_DT [Recon -8 PROPERTIES
@ SUBMIT_FLG (Record Field) -8 METHODS
& INTL_FLG [Fecord Field) & Cancel
e APPR_STATUS [Record Field] i@ Find
- ¢ BPPR_INSTANCE [Recard Field @ Get
- g DESCR [Record Field) L @ Save

[& COMMENTS [Fecord Field]
=-§2) DERIVED_HA [Derived)

L @ BUS_EXPENSE_SUM [Record f
=B Sewl-Level 2 Pimay Record BUS

S BUS_EXPENSE_DTL (T able]

< | o]

Begin walidating Component Interface inteqrity
N erors fourd
End Component Interface validation

‘Ibl\ Build)\ Find Object References)\ Upgrade)\ Resulls)\valinm{'
Reaty] o B
Creating a component interface

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE EXAMPLE

4-1

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

3. Save the component interface with a unique name.

JANUARY 2001

You are ready to build the component interface. Highlight an object in the rightmost pane and

select Build, PeopleSoft APIs.

Build PeopleSoft APl Bindings

— COM Type Library

v Build Target Directory: Is\pt81 0id. mesbintclientwinsS6_exstapi _I

Type Library Template: I

AutoRegister W

COM Server DLL Location: Is\ptB‘I 0id. mssbintclientwins86_exstapi

Cleanup Registy W

— C Header File:

™ Buid Directory for header file: IE:\WINNT\meiles\EHAFlFllS\Deskto J

—dJava Classes

&

Directory containing PeopleSoft package: ID YPSYPTE1014.M5 5 webh extapi _I

Select APls to Build: Al

Mone I

Cancel |

Building the APIs

PeopleCode Example

The following example shows how a PeopleCode program might call a component interface

named ABS_HIST.
rem Declare variables;
Local ApiObject &SESSION;

Local ApiObject &CI;

Local ApiObject &ABS HISTCollection;

Local ApiObject &ABS HISTItem;

rem Establish a PeopleSoft Session;

rem The Connect method connects a session object to a PeopleSoft application

server;

rem Syntax : (version, {”EXISTING” | ConnectID:Port}, OperatorID, Password,

ExtAuth) ;

4-2 COMPONENT INTERFACE EXAMPLE

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

&SESSION = GetSession() ;

If (&SESSION.connect(l, "existing", "", "", 0)) Then
rem Get an instance of the Component Interface;
rem The Component Interface definition should already exist;

&CI = &SESSION.GetComponent (Component.ABS HIST) ;

If (&CI <> Null) Then
rem Set required keys to GET the component;

&CI.EMPLID = "8001";

rem Instantiate the Component Interface;

If (&CI.get()) Then

rem Get a specific row in a collection;
&ABS_HISTCOllection = &CI.ABSENCE HIST;

&ABS HISTItem = &ABS HISTCollection.item(1);

WinMessage (&ABS_HISTItem.BEGIN DT | ", "
&ABS HISTItem.EMPLOYER APPROVED) ;

rem Set properties in the selected row;
If (&ABS HISTItem.BEGIN DT = "09/04/1983") Then
&ABS_HISTItem.BEGIN DT = "09/03/1983";
&ABS HISTItem.EMPLOYER APPROVED = "N";
Else
&ABS_HISTItem.BEGIN DT = "09/04/1983";
&ABS HISTItem.EMPLOYER APPROVED = "Y";

End-If;

rem Save changes to database;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE EXAMPLE 4-3

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

If (&CI.save()) Then
WinMessage ("Successfully Saved Component Interface.");
Else
WinMessage ("Error occured in Save method.") ;
End-If
Else
WinMessage ("Error occured in Get method.") ;
End-If;
Else
WinMessage ("Error occured in GetComponent.") ;
End-If;
Else
WinMessage ("Error occured in connect.");

End-If;

Java and Active Server Page Examples

The Java and Active Server Page (.asp) examples shown in this section use a component interface
on the PTDMO demo database named BUS EXP, which is based on the Business Expenses
Component.

The following business expenses page allows the user to enter information about a type of
expense, the amount, date, currency type, purpose, and so on.

4-4 COMPONENT INTERFACE EXAMPLE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Horme > Administer Workforce » Administer Workforce (GBL) = Use > Business Expenses

{ Business Expenses
BassaniMaria Miss Employee I; 8901
Employee Business Expense Time Wiew All First (4] 1cr 1 [Last
‘Expense Period End Date: IDTIZSIEDDD B ElEl
Expense Period Total: LISD
Business Expense Details Wiew All First [1054 [Last
Charge Dt ‘Expense Code Expense Amount *Currency Business Purpose
Business Unit Department
|nmsrzuuu B | IUSD Q | [+1[=]

IGEIIEIU Q

ﬁ Save QReturn to Search

Business Expenses Page

@ Note. We recommend that before you create a component interface, you be familiar with the
business rules, required fields, and acceptable input for a page. For example, when entering
anew row in a Collection, a third party application needs to be configured so that the user
enters all required fields before attempting to save or commit the row in PeopleSoft. If all
required fields are not entered, the application will error when the user tries to invoke the
Save() method.

The BUS_EXP component interface has two scroll levels just like the Business Expense Page.
Because the NAME and LAST NAME SRCH fields are alternate search keys on the search
record, just as on the page, they are not accessible in the same way as the properties. The Create()
method is not available in the component interface because this page does not have the ‘Add’
mode enabled.

User-defined methods can only take simple types of arguments (such as number, character, and so
on) because they are called from C/C++, COM, Visual Basic, Java, and PeopleCode. More
complex types of arguments like rowset, array, and record are unknown to C/C++, COM and
Visual Basic. All user-defined methods must return a value, even if it is only a dummy value.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE EXAMPLE 4-5

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

4-6

JANUARY 2001

\'[Application Designer - Untitled - [BUS_EXP [Component Interface]]

@Eile Edit Miew |nset Buld Debug Tools Go Favaoites ‘Window Help _Iﬁllﬂ
EEEEEREEEED
: BUSINESS_EXPEMSES (Cot [Mame | Fecord [Fietd |Read. [Com. [
Ejﬁ Untitled @ PERS_SRCH_GEL (Viev | =& BUS_ExP
g Sorall-Level 0 =& GETKEYS
+-2) PERSONAL_DATA | PERS_SRCH_GBL EMPLID
=) INSTALLATION [Tal
Scroll- Level 1 Prim. i EMPLID PERS_SRCH_GBL EMPLID
k=i BUS_EXPENSE g NAME PERS_SPCH_GBL MAME
k=l DERIMED_HR (| 4 LAST_MAME_SRCH PERS_SRCH_GEL LAST_MAME_ .
B Soroll- Level 2 | PROPERTIES
=60 BUS_EXPENSE_PER BLIS_EXPENSE...
e EMPLID BUS_EXPENSE.. EMPLID
¢ EXPENSE_PERIOD_DT BUS_EXPENSE.. EXPENSE_PE...
DERIVED_HR BUS_EXPENS...
B
BUS_EXPENSE.. CHARGE_DT
BUS_EXPENSE.. EXPENSE_CD
BUS_EXPENSE.. EXPENSE_AMT
BUS_EXPENSE.. CURREMCY_CD
BUS_EXPEMSE.. BUSINESS_P...
BUS_EXPENSE.. DEFTID
< | IO
[R5 Buld A Find Object Feferences A Uparade A Fesullz A Validate [|
Ready HUM A

Business Expense Component Interface Definition

Active Server Page Example

In this example, the page prompts the user to search for a record first. For example,

COMPONENT INTERFACE EXAMPLE

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

/J title test - Microsoft Internet Explorer

J File Edit “iew Favortes Tools Help |
j) Al G 3 B 5 HA.P
Back Forward Stop Fiefresh Home Search Favortes History b ail Frint Edit Fieal.com
JAgIdress I@ hitp:#feharniz0 32000/ webpubtest/ext_test/ other/0pening_page.asp j @Go |J Links **
Number of rows :4 2l
Component Interface Demo: ‘
Business Expenses w
Find Employee
¥ | Name IStansWith v[Sch
r | Last Name [Etants With =] |
r | Employee ID [Starts With =] |
SEARCH |
8001 — Schumacher.Sirmon (ASD | |
|&] Dore [| |5% Localintranet _A

Business Expenses Start Page

This page conmprises two HTML forms. When the user enters the search data and clicks Search,
the opening page.asp file populates the dropdown list. The following section shows the Visual
Basic script with comments of the file.

Connecting to the Application Server
To access component interface, you need to establish a PeopleSoft session.

To create a session object, use the server.CreateObject() method. The Connect method, which
takes five parameters, actually logs into a PeopleSoft session. Operator ID and password should
not be hard-coded in the application, rather the user should be prompted at runtime. The
Connect() method connects a session object to a PeopleSoft application server. If you already
have a PeopleSoft session running, you must specify EXISTING, and not the ConnectID:Port. If
you are using an existing connection to the application server, you cannot specify a different
operator ID or password. If you do not specify these values as NULL, you must specify the exact
same operator ID (and password) as the one that originally started the session.

Getting an Instance

Use the GetComponent() method with a session object to get an instance of a previously created
component interface. Next, we want to search for an existing record by performing a search using
primary or alternate search keys.

Code block 1 loads the search criteria from the previous call made by opening page.asp.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE EXAMPLE 4-7

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

N
o°

‘code block 1

SEARCH NAME = Request.Form("SEARCH NAME")

NAME SELECT = Request.Form("NAME SELECT")

NAME STRING = Request.Form("NAME STRING")
SEARCH LAST NAME = Request.Form("SEARCH LAST NAME")
LAST NAME SELECT = Request.Form("LAST NAME SELECT")
LAST NAME STRING = Request.Form("LAST NAME STRING")
SEARCH EMPLID = Request.Form("SEARCH EMPLID")
EMPLID SELECT = Request.Form("EMPLID SELECT")

EMPLID STRING = Request.Form("EMPLID STRING")

Code block 2 makes a connection to the application server and gets the BUS EXP component
interface.
‘code block 2

Set oSession = server.CreateObject ("PeopleSoft.Session")
nStatus = oSession.Connect (1, "//EHARRIS032000:9000", "PTDMO", "PTDMO", 0)

Set oBC = oSession.GetComponent ("BUS_ EXP")

Finding an Existing Record

After getting an instance of the component interface, we recommend you find what data instances
you have access to using the Find() method. In a PeopleSoft search dialog, when a user enters an
employee ID or name into the appropriate field and clicks the search button, the system performs
the search. To accomplish this in a component interface, set the find keys for the component
interface and then invoke the Find() method. This returns an object of type component
interfaceCollection, which can be indexed to extract data such as the GetKeys.

Code block 3 sets the FindKeys for BUS EXP.
‘code block 3
OBC.EMPLID = EMPLID SRCH STRING
OBC.NAME = NAME_SRCH STRING

OBC.LAST NAME SRCH = UCASE (LAST NAME SRCH STRING)

4-8 COMPONENT INTERFACE EXAMPLE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Getting an Instance of Data

GetKeys are the key values required to return a unique instance of existing data. If the keys you
specify allow for more than one instance of the data to be returned, or if no instance of the data
matching the key values is found, there is a runtime error. Therefore, we recommend you use the
Find() method to query the component interface for existing records prior to calling Get().

GetKeys can be set using simple assignment to the properties of the component interface and then
the Get() method can be invoked. This will populate the component interface with data based on
the key values you set; this is what has been referred to here as a data instance. The Get() method
will return a Boolean value depending on its success or failure, however recovering this value for
error handling is difficult in ASP because a failure of Get() causes an immediate runtime error in
the script.

Code block 4 uses the find() method for the BUS EXP object to return a collection of type
BUS_EXPCollection.

‘code block 4
SET BC COLLECTION = oBC.find()
number of rows = BC COLLECTION.COUNT

Response.Write ("
 Number of rows :" & number of rows)

Code block 5 indexes through the collection that BUS EXP.find() returned and uses the EMPLID
and NAME to populate the dropdown list.

‘code block 5

for counter 1 = 1 to number of rows

SET BC TEMP = BC COLLECTION.ITEM(Cint(counter 1))
emplid temp = BC TEMP.EMPLID

empl name = BC TEMP.NAME

lst name srch = BC TEMP.LAST NAME SRCH

NEXT

Code block 6 creates a data instance of the component interface

‘code block 6
OBC.EMPLID = emplid temp

Status = oBC.Get ()

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE EXAMPLE 4-9

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

o°
Y,

Migrating Through Scrolls

After getting a data instance, the next step will be to get access to the data in the component
interface. PeopleSoft organizes data into scrolls so that a first-level scroll might have three rows
of data in it and each of those rows may have several rows of data in them held in a second-level
scroll. A user can examine data by moving the scroll bars up and down and looking at various
data rows in the scrolls.

A scroll bar is similar to a collection in component interface, and rows of data in the collection
are called items. The following screen shows how data is organized in the BUS EXP component
interface. Note the Properties of that component interface: there are two collections in the
BUS_EXP component interface. The first one is BUS EXPENSE PER and the second one,
nested below the first, is BUS EXPENSE DTL.

b [Mame |F|econ:| |Fie|d | Fea.. |Com... [
[= &R Bus_ExP

48 GETKEYS

| legie EMPLID PERS_SRCH_G.. EMPLID

145 FINDKEYS

e EMPLID PERS_SRCH_G.. EMPLID
@ NAME PERS_SRCH_G.. MAME
& LAST_NAME_SRCH PERS_SRCH_G.. LAST NAME..
=-J8 FROFERTIES
EREE IS FXPENSE PER BLIS_FXPENSE
-9 EMPLID BUS EXPENSE.. EMPLID
--@lg EXPENSE_PERIDD... BUS_EMPENSE.. EXPEMSE_F..
¢ BUS_EXPEMSE_S.. DERWED_HR BLS_EXPEN
-8 BUS_EXPENSE_DTL BUS_EXPENSE. .
& CHARGE_DT BUS_EXPENSE.. CHARGE_DT
- EXPENSE_CD BUS_EXPENSE.. EXPEMSE_CD
- & EXPENSE_AMT BUS_EMPENSE.. EXPEMSE A,
-4 CURREMCY_CD BUS_EXPENSE.. CURREMNCY_...
- BUSINESS_PU.. BUS_EXPENSE.. BUSINESS_P
@ DEPTID BUS_EXPENSE.. DEPTID
£ METHODS

R

I

Structure of data in BUS_EXP Component Interface

It is possible to return a BUS_EXPENSE PER collection through simple assignment as shown
below. Then invoke the Count() method to determine how many Items are in the collection and
returns one of those rows using the Item() method. Once we have an item out of a collection,
data can be accessed in that item just as it would be in a page. This item could be used to change
the EMPLID, EXPENSE PERIOD, or BUS EXPENSE SUM of a row of data. Because there
are two scroll levels, it is possible to repeat for a second scroll collection.

OBC.EMPLID = emplid temp

Status = oBC.Get ()

Set oBusExpPerCollection = oBC.BUS_EXPENSE_PER

Number of rows in collection integer = oBusExpPerCollection.Count

Set BusExpPerItem =
oBusExpPerCollection.Item(Cint (some integer variable))

4-10 COMPONENT INTERFACE EXAMPLE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Set BusExpenseDtlCollection = BusExpPerItem.BUS_EXPENSE_DTL
Number_of_ rows_in_collection_integer = BusExpenseDtlCollection.Count

BusExpenseDtlItem = BusExpenseDtlCollection.Item(Cint(some integer variable))

Editing and Accessing Data in an Iltem

Editing a data member of an Item can be accomplished using direct assignment or through the
setPropertyByName() method, which returns a long. In either case, however, it is necessary to
invoke the Save() method on the component interface object to commit changes.

Accessing data in an Item is nearly the same as editing it, and can also be accomplished in two
ways. The first method is to use assignment as in the example below, and the second method is
to use the GetPropertyByName() method. The GetPropertyByName() method usually returns a
string even if that string represents a number.

detRow.EXPENSE CD = expense_cd

detRow.EXPENSE AMT

expense_amt

detRow.CURRENCY CD

currency cd

-
I

detRow.setPropertyByName ("BUSINESS PURPOSE", business purpose)

detRow.setPropertyByName ("DEPTID", deptid)

-
1]

oBC.Save ()

expense cd = detRow.EXPENSE CD
expense_amt = detRow.EXPENSE AMT
currency cd = detRow.CURRENCY CD

oRow.GetPropertyByName ("business purpose")

oRow.GetPropertyByName ("DEPTID")

Inserting a Row into a Collection

Set detRow = detRows.InsertItem(Cint(some integer variable))

Notice that the return value for inserting a new Item into a collection is the Item that was just
inserted. After the row is inserted, edit all of the required fields in the item. If required fields are
blank or data entered violates some business logic, the application will return a runtime error.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE EXAMPLE 4-11

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

Deleting a Row from a Collection
Like inserting items, you can delete items using collection objects.
temp = oRows.DeletelItem(Cint (row_number))

oBC.Save ()

The Deleteltem() method returns a boolean value according to the success or failure of the
method and it is important to invoke the Save() method to commit the change to the database.

Disconnecting from a Session

After a session is no longer needed, disconnect from the application server. This is done by
calling the disconnect() method on the session object.

call oSession.disconnect

set oSession = nothing

Java Example

Creating user interfaces without the limitations of HTML is a benefit to using Java. It is necessary
for the classpath to be correctly set to include the libraries and the proper include statements must
be made at the beginning of the class definition.

&3 Hello World [_ O]
File Edit Insert Help
Bus Purpose|Charge Date|Currency CD| Dept D |Expense AmﬂExpense Co...| Expense Dil |_
Feedback 120041998 LSD nooot 15.649 03 UsD
Mot much 120041998 LSD nooot 369 03 UsD
Air Fare 12/0411988 |USD noooq 5.69 03 USD
Please Choose Search Options Something |12/04/1988 |LISD nooo 15.69 03 UsD
HMame [¥ |Sch Mot much 120471998 |LISD noooq 31.69 03 USD
Last Name[T| |Last Name inserted row [12/0411958 |LISD nooot 15.25 03 UsD
) insered row [12/04/1998 |LISD nooo1 £9.25 03 USD
Emplid [[EmpliD Somerow |12/0411338 |USD 00001 141163 |03 UsD
Search Reset Submit insered row |12/04/1998 |LISD nooo1 £9.25 03 UsD
Some rowe (12041159588 |LISD nooot 141.63 03 UsD |
8001 w Tatal: 1770 4R =
12/112/1998
1 v
| Insert || Edit || Delete ||

ComboBox2 Was changed to Tend date is: 1211211958
ComboBox2 Was changed to 8001 Skipping Cl action
ComboBox2 Was changed to 8001 Skipping €l action
checkbox[0] YWas changed

User Interface for Java Client

4-12 COMPONENT INTERFACE EXAMPLE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Connecting to the Application Server

Connecting to the application server in Java is similar to a connection with an .asp file. A C
Adapter object is created and then used to create a C Session object. Also, the Connect() method
is called as it was in .asp.

import PeopleSoft.ObjectAdapter.*;

import PeopleSoft.Generated.PeopleSoft.*;
import PeopleSoft.Generated.CompIntfc.*;
private ISession oSession;

private CAdapter oAdapter;

oAdapter = new CAdapter() ;

oSession = new CSession(oAdapter.getSession()) ;

oSession.Connect (1,"//EHARRIS032000:9000", "PTDMO", "PTDMO" ,new byte[0]) ;

Getting an Instance of the Component Interface

Getting an instance of a component interface is almost identical in Java and.asp. All of the same
rules apply, and the component interface definition must exist or the application will error.

busExpense = new CBusExp(oSession.GetComponent ("BUS_EXP"));

Finding an Existing Record

You can query a component interface to find what data instances are possible based on primary
and alternate search keys.

busExpense.setName (searchDialogStrings[0 1);
busExpense.setLastNameSrch(searchDialogStrings[1]);
busExpense.setEmplid(searchDialogStrings[2 1);

return (busExpense.Find());

Although it looks different, the code above does the exact same things in Java as code lines did in
.asp.

Getting an Instance of Data
busExpense.setEmplid(getKey) ;

boolean result = busExpense.Get () ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE EXAMPLE 4-13

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

4-14

Migrating Through Scrolls

The following code lines set up the connection to the application server and get the component
interface.

oAdapter = new CAdapter() ;

oSession = new CSession(oAdapter.getSession()) ;

oSession.Connect (1,"//EHARRIS032000:9000", "PTDMO", "PTDMO" ,new byte[0]) ;
busExpense = new CBusExp(oSession.GetComponent ("BUS_EXP"));
busExpense.setEmplid(getKey) ;

boolean result = busExpense.Get () ;

busExpenseFirstScrollItemCollection = busExpense.getBusExpensePer () ;
busExpenseFirstScrollItem = firstScrollCollection.Item(firstScrollIndex) ;

return (busExpenseFirstScrollItem.getBusExpenseDtl());

Editing and Accessing Data in an Iltem

Editing and accessing data in Java is very similar to what is done in .asp, however, accessing
private data members of a given object is not an option due to encapsulation of well written Java
classes. Therefore, Java code will rely on the public members of the class rather than direct
assignment. However, there is still more than one way access data in an Item.

long j = busExpenseSecondScrollCollection.getCount () ;
Object []1[] data = new Object[((int)j + 1) 1[7 1;

for(int 1 = 1; 1 < j + 1 ; i++)

busExpenseSecondScrollItem = busExpenseSecondScrollCollection.Item(i);

datal (1

1)] (o]

busExpenseSecondScrollItem.getBusinessPurpose () ;

datal[(i - 1)]11[1]

busExpenseSecondScrollItem.getChargeDt () ;

datal(i - 1)][2]

busExpenseSecondScrollItem.getCurrencyCd () ;

data[(i - 1)][3] = busExpenseSecondScrollItem.getDeptid() ;

datal[(i - 1)] [4] busExpenseSecondScrollItem.getExpenseAmt () ;

COMPONENT INTERFACE EXAMPLE PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

datal[(i - 1)1I[5] =
busExpenseSecondScrollItem.GetPropertyByName ("ExpenseCd") ;

datal[(i - 1)][6] = busExpenseSecondScrollItem.GetPropertyByName ("CurrencyCd") ;

}return(data);

In the following example, data is accessed using the getNAME OF PRPERTY() method of an
Item or by using the generic getPropertyByName() method. These code lines show how an entire
collection of data can be captured and packaged into an Object for transfer to a calling Object.

busExpenseFirstScrollItem.setEmplid(emplid) ;
busExpenseFirstScrollItem. setExpensePeriodDt (expensePeriodDt) ;

return (busExpense.Save());

Just as before, data is edited using Item objects and using the setNameOfPropery() method of
those Items. Also, note that we needed to call the Save() method on the component interface to
commit the changes.

Inserting an Item into a Collection

busExpenseSecondScrollItem = busExpenseSecondScrollCollection.InsertItem(
secondScrollIndex) ;

Collection objects in Java also have the Insertltem() method where the return value is the Item
just inserted. After a new Item is created, simply edit data in it and then remember to call the
Save() method to commit the changes.
Deleting a Row from a Collection
busExpenseSecondScrollCollection.DeleteItem(secondScrollIndex) ;

boolean result = busExpense.Save() ;
Remember to save after the delete method is called to commit changes.
Disconnecting from a Session

After a session is no longer needed, it should disconnect from the application server. This is done
by calling the disconnect() method on the session object.

oSession.Disconnect () ;

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE EXAMPLE 4-15

CHAPTER 5§

Component Interface SDK

This section lists the steps that create a program calling a component interface to communicate
synchronously with a PeopleSoft application. The PeopleSoft Integration Software Development
Kit (SDK) installed with your application includes a sample project with data and source code
you can use to test your development work.

@ For more information and an overview of the PeopleSoft Integration SDK, see Integration
Software Development Kit.

Requirements

You will need the following to call a PeopleSoft component interface.
e Working understanding of C++, COM or Java.

e Specific description of the component interface being called. If PeopleSoft provides your
component interface, look in the “EIP Catalog” section of the Enterprise Integration
PeopleBook for the description; otherwise, contact the custom component interface developer.

e Connection to the PeopleSoft Object Adapter that is installed on a PeopleSoft Application
Server.

The PTSDK Development Project

PeopleSoft uses the Business Expense component as a working example for the PTSDK
development project. You can import this component into any PeopleSoft database to run all of
the samples provided. The following table lists the files in the PTSDK project and installed in the
PeopleSoft home directory (PS HOME), under sdk\sdkdb.

Name Description

PTSDK Folder containing all the files required to import the PTSDK project
to Application Designer

PTSDKData.dat Sample data to populate SDK_BUS EXP tables

PTSDKDatalmport.d | Data Mover Script to import sdk_data.dat into PeopleSoft
ms

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE SDK 5-1

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

@ The PTSDK project and associated data are for development purposes only and will not be
supported by PeopleSoft.

PTSDK Project Objects

Object Type Name Description
Component SDK BUS EXPENSES Component for SDK
Component SDK BUS EXP Component Interface for component
interface
Message SDK BUS EXP APPR MS | Application Message for component
definition G
Message channel | SDK BUS EXP MSG CHN | Application Message Channel
L
Page SDK BUS EXPENSES HTML page for component
Page SDK PERS SRCH SBP HTML search page

PTSDK Records

Record Field Description

SDK_BUS EXP DTL | SDK_EMPLID Employee ID
SDK EXP PER DT Expense Period Date
SDK CHARGE DT Charge Date
SDK_EXPENSE CD Expense Code
SDK_EXPENSE AMT Amount of expense
SDK_CURRENCY_CD Currency of expense
SDK_BUS PURPOSE Purpose of expense
SDK DEPTID Department ID

5-2 COMPONENT INTERFACE SDK PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

SDK_INTL FLG
SDK_APPR STATUS
SDK_APPR_INSTANCE
SDK_DESCR
SDK_COMMENTS

Record Field Description

SDK BUS EXP PER SDK _EMPLID Employee ID
SDK EXP PER DT Expense Period Date
SDK_SUBMIT_FLG Submitted Flag

Approval Status
Approval Instance
Description

Comments

SDK COMPANY_TBL

SDK_COMPANY

Company Name

SDK EFFDT Effective Date

SDK EFF STATUS Effective Date Status

SDK DESCR Description

SDK_DESCRSHORT Short Description
SDK_COUNTRY_TBL | SDK_COUNTRY Country

SDK DESCR Description

SDK DESCRSHORT Short Description
SDK CUR RT TYPE SDK CUR RT _TYPE Currency Rate Type

SDK_EFFDT Effective Date

SDK_EFF_STATUS Effective Date Status

SDK DESCR Description

SDK DESCRSHORT Short Description

SDK_CURR CD TBL

SDK_CURRENCY CD
SDK_EFFDT
SDK_EFF STATUS
SDK_DESCR
SDK_DESCRSHORT

Currency Code
Effective Date
Effective Date Status
Description

Short Description

SDK_DEPT TBL SBR

SDK_EEO4 FUNCTION

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

COMPONENT INTERFACE SDK

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

5-3

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

JANUARY 2001

SDK_COMPANY
SDK_LOCATION
SDK_MANAGER_ID
SDK. MANAGER POSN
SDK_BUDGET LVL
SDK_DEPT TBL SBR

Record Field Description

SDK DEPT TBL SDK DEPTID Department ID
SDK EFFDT Effective Date
SDK_EFF_STATUS Effective Date Status
SDK_DESCR Description
SDK_DESCRSHORT Short Description

Company Name

Location

Manager ID

Manager Position

Budget Level

Department Table Subrecord

SDK_EMPLID OLD
SDK_EMPLID PROCESS
SDK_BUS_EXP_SUM
SDK_EFFDT
SDK_CAR_MODEL DESC

SDK_DEPT TBL VW | SDK_DEPTID Department ID
SDK_EFFDT Effective Date
SDK_DESCR Description
SDK DESCRSHORT Short Description
SDK DERIVED SDK _EMPLID Employee ID
SDK_EMPL RCD Employee Record

Business Expense Sum
Effective Date

Car Model Description

SDK_INSTALL

SDK_POSITION. MGMT
SDK_COUNTRY
SDK_EXCHNG TO CURR

Position Management
Country

Exchange to Currency

SDK_EFFDT
SDK_EFF_STATUS
SDK_DESCR
SDK_DESCRSHORT

SDK_EXCHNG RT TYPE | Exchange to Rate Type
SDK GER
SDK INTL FLG CD SDK INTL FLG Effective Date

Effective Date Status
Description

Short Description

5-4 COMPONENT INTERFACE SDK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Record Field Description
SDK JOB SDK _EMPLID Employee ID
SDK EMPL RCD Employee Record
SDK_EFFDT Effective Date
SDK EFFSEQ Effective Sequence
SDK DEPTID Department ID
SDK LOCH TBL SDK LOCATION Location
SDK_EFFDT Effective Date
SDK_EFF_STATUS Effective Date Status
SDK_DESCR Description
SDK_DESCRSHORT Short Description
SDK PER SGBLSBR | SDK EMPLID Employee ID
SDK OPERCLASS Operator Class
SDK_EMPL RCD Employee Record
SDK NAME Employee Name
SDK _LAST NAME SRCH | Last Name Search
SDK_ACCESS CD Access Code
SDK PER SRCHGBL SDK PER SGBLSBR
SDK_SSN Social Security Number
SDK_SIN
SDK NAT INS CD
SDK SSN FRA
SDK SIN GER
SDK NATIONAL ID

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE SDK 5-5

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

JANUARY 2001

SDK_LAST NAME SRCH
SDK_FIRST NAME SRC
SDK_PER STATUS
SDK_ORIG_HIRE DT
SDK_SEX
SDK_BIRTHDATE
SDK_BAS DATA CHG
SDK_PER TYPE
SDK_NATIONAL ID
SDK_SSN
SDK_SIN_GER

SDK_SIN
SDK_SSN_FRA
SDK_NAT_INS_CD

Record Field Description
SDK_PERS DATA SDK_EMPLID Employee ID
SDK NAME Employee Name

Last Name Search

First Name Search
Original Hire Date

Employees Sex
Employees Birth Date

Social Security Number

SDK DESCRSHORT

SDK POS DATA SDK POSITION NBR Position Number
SDK_EFFDT Effective Date
SDK_EFF_STATUS Effective Date Status
SDK_DESCR Description
SDK DESCRSHORT Short Description
SDK DEPTID Department ID
SDK PSTREENODE SDK_SETID Setid
SDK TREE NAME Tree Name
SDK_EFFDT Effective Date
SDK TREE NODE NUM | Tree Node Number
SDK_TREE NODE Tree Node
SDK TREE NODE END Tree Node Number End
SDK RT TYPE TBL | SDK RT TYPE Rate Type
SDK DESCR Description

Short Description

5-6 COMPONENT INTERFACE SDK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Record Field Description

SDK SCRTY_ DEPT SDK OPRID Operator ID
SDK DEPTID Department ID
SDK_ACCESS_CD Access Code
SDK_TREE EFFDT Effective Date
SDK_TREE NODE NUM | Tree Node Number
SDK TREE NODE END Tree Node Number End

SDK_BUS_EXPENSES Test Page

Use the SDK test page called SDK_BUS EXPENSES to test whether the component interface
(SDK_BUS EXP) updated the database correctly.

-

Home > Administer Warkforce > Administer Waorkforce (GBL) > Use = Sdk Bus Expenses

® Help & Home S Signof

{ SdkBus Expenses
THIS PAGE IS PART OF THE iSDK AND IS NOT FOR BUSINESS USE
Schurmacher,Simon ID: 8001
‘Expense Period End Date: lD?H 412000 [E”El
Expense Period Total: 5R§ 00 USD
‘Charge Dt Expense Code Expense Amount Business Purpose Department |T||T|
[o7r14iz000] [Meals =] [z4.00 UsD @ [Coporate Meeting [t0400 QJ
_ [+1=1
[o7r8iz000 | [carRental =] [465.00 UsD Q| [Coporate Meeting [oono1 Q)
) 3=
[nim1iz001] [ReferFee =] [12300 UsD @ [Coporate Meeting [noont QJ

B ssve) T Retun to Search

SDK_BUS_EXPENSES page

Installing the PTSDK Project

The following steps describe how to install the objects and create the SDK development database.

To install the sample SDK project:
1. Open Application Designer.

2. Select File, Copy Project From File.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE SDK 5-7

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

[0

5-8

JANUARY 2001

For more information about using Copy Project From File, see Application Designer.

3. Browse to the <PS_HOME>\sdk\sdkdb folder.

Browsze for Folder
E=port Directary
-1 Bin =]
{1 Build
- Chlbin
-{_7 Chlbine
-1 Chlbiru
=] Lib
B Res
IZ—]{:I Sdk
-] Psappmsg
{:l PSCOMPINTFC
SR - b
o Prsdk
LT ke dnes LI
Ok I Cancel |
Finding the Sdkdb Folder
4. Select the folder and click OK.

Copy Project from File
Import Directary: IC:\PTB‘I 4SDEASDEDE
Project Mame:

[" Ovenide Dependencies Copy | Cancel

Copy PTSDK Project from File

5. Select the Project PTSDK that contains all the SDK objects and click Copy.

COMPONENT INTERFACE SDK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Copy

PeopleTools Releaze: 8.10-RC4

— Source
Database Name:

Application Releaze:

Service Pack:

CAPTE10MS DK
Core 8.10.002
]

— Target
Database Name:
Application Releaze:

Service Pack:

PT&10
Core 8.10.000
a

Object Tupels]:

Copy
Cancel

Dptions...

Select Al

el |

Deszelect All

Copy Source to Target Database

6. Click Copy to copy the objects into your database.

The PTSDK project appears in the project window.

To create the database tables:

7. Select Build, Project.

The Build dialog box will appear.

8. Select the Create Tables and Create Views checkboxes.

9. Select Execute SQL Now in the Build Execute Options and click the Build button.

This builds the database tables and views for the SDK.

10. Add the SDK_BUS_EXPENSES component to a menu.

You must do this before the page can be viewed.

11. Give Security Permission to the component and component interface.

Use the Administer Security page to allow access to the SDK BUS EXPENSES component

and to the SDK_BUS EXP component interface.

@ For more information about setting security permissions, see Security.

12. Run the Data Mover script import_script.dms on sdk _data.dat.

Both files can be found in <PS_HOME>\sdk\sdkdb. This step imports sample data into the
database for use during development.

@ For more information about using the Data Mover, see Data Mover.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

COMPONENT INTERFACE SDK

5-9

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Component Interface Tester and Samples

5-10

The SDK includes a component interface, called SDK_BUS EXP, which is part of the sample
development project delivered with the SDK. You can use it as follows:

e The Component Interface (CI) Tester is a simple utility you can use to test your external
connection to SDK_BUS EXP through the PeopleSoft application server.

o The external integration samples also test your connection, but additionally enable you to test
synchronous data entry and retrieval to and from the SDK database using SDK_BUS EXP.

The CI Tester and the samples are provided as source code. They’re available in four different
languages—C++, Visual Basic, ASP, and Java.

The source files mentioned in this section are located relative to the installed PeopleSoft
home directory (PS_HOME). You must install the sample development project to use the
tester and the samples.

For more information about installing PTSDK, the sample development project, see The
PTSDK Development Project .

C++ Tester and Sample

The C++ files include project files, project workspaces, source code and header files. Comments
are listed in the code to explain each function. The file locations listed below are relative to
<PS_HOME>\sdk\pscompintfc\src\C++\samples.

JANUARY 2001

Filename Location Type
pscitester.dsp pscitester Project file
pscitester.dsw pscitester Project workspace
pscitester.cpp pscitester Source file

sdk bus exp.dsp sdk bus exp Project file

sdk bus_exp.dsw sdk bus exp Project workspace
sdk bus exp.cpp sdk bus exp Source file
StdAfx.cpp inc Source file
apiadapterdef.h inc Header file
cidef.h inc Header file

COMPONENT INTERFACE SDK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Filename Location Type
peoplesoft_peoplesoft i.h | inc Header file
StdAfx.h inc Header file

Preparing Your C++ Tester and Sample

To prepare your workstation:

1. Install the external API, EXTAPIL

Refer to the PeopleSoft 8 Installation and Administration Guide, Chapter 11, External

Integration Installations.

2. Set the client path environment variable to point to psapiadapter.dll in EXTAPI.

To configure your compiler for the C++ project:

3. In Visual C++, open the Project Settings dialog box and select the C/C++ tab.

These instructions assume you’re using Microsoft Visual C++. If you use a different

compiler, apply the equivalent settings for that product.

4. Select the General Category and add PS_ WIN32 to the Preprocessor definitions.

Project Settings

Settings Far |win32 Debug
= 5 S_EXP
dk_bus_exp.cpp

General | Debug C/C++

HE
Link. | Flesourcé EE

Category: | General

j Feset |

Preprogessar definitions:

Warning level: Optimizations:

fLevel 3 x| |isate pebug 7]
[~ “Warnings as erors [~ Generate browse info
Debug info:

IF‘rogram Database for Edit and Continue j

Froject Options:

|WIN32,_DEBUG,_CDNSDLE,UNICDDE ETITEE

/mologo /MLd A3 AGm AGK 2] A0d D WINIZY /D .
"_DEBUG" /D "_COMSOLE" /D "UNICODE" /D
UPE_wAM32" fFpDebugledk_bus_exp.pch’ A LI

[ox |

Cancel I

Set Preprocessor definitions for the C/C++ General Category

5. Select the Preprocessor Category and add PS_ WIN32 to the Preprocessor definitions.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

COMPONENT INTERFACE SDK

5-11

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

5-12

Settings For:

wir3z Debug =

Project Settings EH

General | Debug CAC++

Link | Hesourca EE
j Reset |
Freproceszsor definitions:

|WIN32,_DEBUG,_CDNSDLE,UNIEDDE PS
™ Undefine all symbols

Category: IPreprocessor

Undefined spmbols:

Additional include directories:

™ lgrore standard include paths

Project Options:
/nologo AMLd A3 AGm 2GR 21 /0d /D WINIZ /D il

" DEBUG" /D "_COMSOLE" /D "UNICODE" /D
"PE_wWIMN3Z" /Fp"Debualsdk_bus_exp.pch’ M ;I

ok I Cancel I

Set Preprocessor definitions for the C/C++ Preprocessor Category

6. Go to the Link tab, and select the Input Category.

Settings For. [\win32 Debug =

Project Settings [2]

General | Dehbug | AT+ Link | Flesourcé EE

j Feset |

Categary: I Imput

Object library modules:

Ignoare libraries: ™ lgrore all default libraries

Force symbol references:

Additional library path:

Froject Options:
kemel32 lib uzer32.lib gdi32 lib wingpool lib comdlg32.Iib &

advapi3Z lib shell32.lib ole32.lib oleaut32.lib uuid.lib
odbc32 lib odboep32.ib kemel32. Db userd2 lib gdi32 lib LI

ak I Cancel I

Set Object/library modules path (the path shown is example only)

JANUARY 2001

7. Specify the full path to psapiadapter.lib to the Object/library modules.

8. Go to the Resources tab and add DEBUG to the Preprocessor definitions.

COMPONENT INTERFACE SDK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Project Settings EH

Settings For: |'win32 Debug Link Resources | Browse Info I Custam Buila EE

= g B BEser |
| #] sdk_bus_exp.cpp

Rezource file hame: Language:
| |Englsh [United States) =

Additional resource include directaries:

™ lgrore standard includs paths

Freproceszsor definitions:

[

Project Options:

A 0x409 /4" _DEBLUG" ;l
ok I Cancel I

Set Preprocessor definitions on the Resources tab

Using the C++ Cl Tester

The CI tester is run from the command line.

To run the compiled C++ CI Tester:

1. Ina DOS window, change directories to the location of the C++ CI tester directory,
<PS _HOME>\sdk\pscompintfc\src\C++\samples\pscitester.

2. Enter pscitester on the command line.

You’ll be prompted for parameters one at a time.

3. At each prompt, type the appropriate value and press Enter:
Enter The Application Server Name [localmachinename]:
Enter The Application Server Port Number [9000]:
Enter PeopleSoft UserID [PTDMOJ:

Enter PeopleSoft UserID Password [PTDMO]:

If the connection is successfully established, you’ll see the message “Connected to
Appserver. ..”, followed by a system prompt.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE SDK 5-13

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

& C:AWINNT\System32\cmd. exe [_[O]x]

SJOANChpscitestersDebugipscitester

pplication Server Connect Information...

nter The Application Server Name [ROINEZA1819991: ROINEZA181999
nter The Application Server Port Numbher [780881: 78088

nter PeopleSoft UserID [PTDMOI1: PTDMO

nter PeopleSoft UserID Password [PTDMOI1:

IConnected to Appserver...

IC:JOA~CxpscitestersDebug>

4| | AW
Cl tester — C++ version

Using the C++ Cl Sample

This sample is run from the command line.

To run the compiled C++ sample:

1. Ina DOS window, change directories to the location of the C++ sample directory,
<PS_HOME>\sdk\pscompintfc\src\C++\samples\sdk bus_exp.

2. Enter sdk_bus_exp on the command line.
You’ll be prompted for parameters one at a time.

3. At each prompt, type the appropriate value and press Enter:
Enter Server Name [//localmachinename]: (Application Server name)
Enter Port Number [9000]: (Application Server JSL port number)
Enter PeopleSoft User ID [PTDMO]:
Enter PeopleSoft Password [PTDMO]:

Y ou must provide least one of the following three search parameters. If you just press Enter
for all three, the program will exit. Incremental searches are available (e.g. ID=8 will
return all ID’s starting with 8):

Enter Employee ID:

Enter Employee Name <optional>:

Enter Employee Last Name <optional>:

The list of employees produced by the search will appear.
4. Enter the Employee ID of an employee on the list.

The business expense details for the selected employee will be displayed.

5-14 COMPONENT INTERFACE SDK PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

7% C:AWINNT\System32\cmd_exe [_ O] x]
NJOANC sdk_bus_expsDebugrsdk_bus_exp

pplication Server Connect Information.
nter The Application Server Hame [ROINEZRIBi999]
nter The Application Server Port Humbher [988A1:
nter PeopleSoft UserID [PTDMOI]:
nter PeopleSoft UserlID Password [FTDMO]:

earch for Employees...

nter Employee 1D: 88

nter Employee Name C(optionald:

nter Employee Last Mame Coptionald:

mployee Humher Hame Last Mame
8861 Schumacher.Simon ASD
8@52 Avery.Joant AVERY

elect Employee ID from this list.
nter Employee 1D: 8881

xpense Period Number: 1
xpense Period End Date: 11-18-199%9
xpense Period Total: a.88

harge Dt. Expense Code Expense Amount Business Purpose Department

1132888k a.8a

ﬁdate Expenze Period Row <yrsnd [yl:N x
4

Cl sample — C++ version

Visual Basic Tester and Sample

This VB sample has a simple GUI to allow for data entry and retrieval. The file locations listed
below are relative to <PS_HOME>\sdk\pscompintfc\src\com\samples\vb:

Filename Location Type
pscitester.frm pscitester Form definition
pscitester.vbp pscitester Visual project file
SDK BUS EXP.frm sdk bus_exp Form definition
SDK BUS EXP.vbp sdk bus_exp Visual project file

Preparing Your Visual Basic Tester and Sample

To prepare your workstation:

1. Install the external API, EXTAPIL
Refer to the PeopleSoft 8 Installation and Administration Guide, Chapter 11, External
Integration Installations.

2. Set the client path environment variable to point to psapiadapter.dll in EXTAPI.

Using the Visual Basic Cl Tester

To run the compiled Visual Basic CI tester:

1. Ina DOS window, change directories to the location of the VB sample directory,

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE SDK 5-15

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

5-16

JANUARY 2001

<PS_HOME>\sdk\pscompintfc\src\com\samples\VB\pscitester.

2. Enter pscitester on the command line.

The initial form will appear.

. PeopleSoft Component Interface Tester

i~ Connection Information:

Application Server Mame Im
JSL Port Murmnber ISDDD—
User IO IF'TDMU—
User D Passward I“"—

I[=] E3

Cancel |

Cl tester — Visual Basic version

3. Enter the Application Server Name.

4. Enter the application server JSL Port Number (9000).

5. Enter the PeopleSoft User ID (PTDMO).

6. Enter the PeopleSoft User ID Password (PTDMO).

7. Click Connect to test the connection.

If the connection is successfully established, you’ll see the message “Connection to the

Application Server succeeded”.

Component Interface Tester

Conkection to the Application Server succedded.

Visual Basic confirmation message

Using the Visual Basic Cl Sample

To run the compiled Visual basic sample:

1. Ina DOS window, change directories to the location of the VB sample directory,
<PS_HOME>\sdk\pscompintfc\src\com\samples\VB\sdk bus_exp.

2. Enter sdk_bus_exp on the command line.

The initial form will appear.

COMPONENT INTERFACE SDK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

&, SDK Business Expense [_ O] x]
i~ Connection Infarmation:

Application Server: Port Mo.: User ID: Paszword:

I#HDINEZM 01933 |suuu IPTDMD | *****
— Search Keys:

Emplayee ID: ng
Name: I Search |
Last Name: I Cae] |

Search Results:

Last Name

Initial form for the SDK_BUS_EXP Visual Basic sample

Enter the Application Server name.
Enter the application server JSL Port Number (9000).
Enter the PeopleSoft User ID (PTDMO).

Enter the PeopleSoft Password (PTDMO).

Click Search.

The list of employees produced by the search will appear.

Enter at least one of the following: the Employee ID, Name or Last Name.

. 5DK Business Expenze [_ o] =]
— Connection [nfarmation:

Application Semver: Port Mo.: User ID Paszword

IJ:’F!D\NEZM 01933 Isnnn IPTDMD I *****
i~ Search Keyps:

Employee 1D: ng

Mame: I

Laszt Mame: I Cancel

Search Results:

Employes| Name |LastName
80071 =SchumacherSimon | ASD
8052 Awvery,Joan AVERY

Employee search results in the Visual Basic sample

9. Double-click an employee name.

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

COMPONENT INTERFACE SDK

5-17

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

5-18

JANUARY 2001

The business expense details for that employee will appear.

. 5DK Business Expense

(O]]

— Connection |nformation:

Application Server: Fort No.: User ID:

Password:

INFIDINEZATmSSS Isouﬂ IF’TDMD

— Search Keps
Employee ID:

M ame: I

Last Mame: I

Search Results:

Last Name

Business Expense Details for Employee |D:8001
10411/2000

Expense Period End

Expense Period Tota 955
Charge Date
01/01/2000 01
01,/05/2000 01

Expense Code | Expense Amour Business Purpo Departrment

 Inzert Business Expense Details:

Business Expense Period: [10,/11,/2000 'I

Charge Date: Expenze Code: Ewxpenze Amount: Business Purpose:

300 Conference oooot
5b5 Conference nooot
Department 10
Save | Exit

Business expense details for the selected employee

ASP Tester and Sample

The ASP files consists of 6 separate ASP pages. The file paths listed below are relative to
<PS_HOME>\sdk\pscompintfc\src\com\samples\asp:

File Path and Name

Description

pscitester\pscitester.asp

This CI tester form accepts connection
parametersfor testing.

sdk bus exp\SDK BUS EXP.asp

The entry page to sign on to the SDK
Business Expense sample. Upon providing
the Application Server Connect information
and the key field values, a listing of
Employee IDs is created.

sdk bus exp\SDK BUS EXP SEARCH LI
ST.asp

This page lists the Employee IDs for the key
values provided in SDK_BUS EXP.asp

sdk bus exp\SDK BUS EXP ADD DETA
ILS.asp

This page accepts the SDK Business Expense
Details field values and sends the data to
SDK BUS EXP SAVE DETAILS.asp to

COMPONENT INTERFACE SDK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

File Path and Name Description
be saved.
sdk bus exp\SDK BUS EXP LIST DETA | This page to lists all the SDK Business
ILS.asp Expense Periods and details for the selected
Employee ID.
sdk bus exp\SDK BUS EXP SAVE DET | This page performs the insert of the SDK
AILS.asp Business Expense Details line and saves the
data.
sdk bus exp\SDK BUS EXP FUNCLIB.as | This file contains generic functions that are
p used by the other ASP pages.

Preparing Your ASP Tester and Sample

To prepare your workstation:
1. Install the external API, EXTAPIL

Refer to the PeopleSoft 8 Installation and Administration Guide, Chapter 11, External
Integration Installations.

2. Set the client path environment variable to point to <PS_HOME>\bin\client\winx86_extapi.

3. Install Microsoft IIS.

Using the ASP CI Tester

To run the ASP CI tester:
1. Open pscitester.asp in a Web browser.

The initial form will appear.

/] Test Connect to App Server - Microsoft Internet Explorer [_[O]
J File Edit “iew Favoites Tools Help |
- =
s D @ M @B g9 o,
Back Forand Stop Hefresh Home Search Favortes History Mail Frint Edit
| Address @] hitp:roinezal 01333.8080/50K Testerpsciester asp =] @Go
Test Connect to App Server
Commection Information:
Application Server Mame Application Server Joh Port People Sofi User ID User ID Password
[#rainezatolaag] {3000 PTDMO s
|@ Done l_’_tﬂ Local intranet v

Cl tester — ASP version

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE SDK 5-19

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

2. Enter the Application Server Name.

3. Enter the Application Server Jolt Port number (9000).
4. Enter the PeopleSoft User ID (PTDMO).

5. Enter the PeopleSoft User ID Password (PTDMO).
6. Click Submit.

If the connection is successfully established, you’ll see the message “Connect to session

EH
passed”.
J Test Connect to App Server - Microsoft Internet Explorer =] E3
J File Edit View Favortes Tools Help ‘
1 =

s D W@ M PR g .

Back Famyard Stop Refresh Home Search Favantes History Mail Frint Ediit
| Adhess [2] brip:roinezal 01999 B080/SDK Tester/PS T ester. asp ~| 6o

Test Connect to App Server

Connect to session passed

N

|@ Done ’_’_l_!g Local intranet
ASP confirmation message

Using the ASP Cl Sample

To run the ASP sample:
1. Open SDK _BUS EXP.asp in a Web browser.

The initial form will appear.

5-20 COMPONENT INTERFACE SDK PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

3 SDK Business Expenses Sample - Microsoft Internet Explorer [_TO]x]
J File Edit Wiew Favorites Tool: Help ‘
3 =
L R A TR - S - RS S R
Back Fonuard Stop Refresh Home Search Favorites History I il Frint Edit
J Address I hitp: /roinezal 01999, 8080/5DKASPASDE_BUS_EXP. asp j @ Gao
=
SDK B Exp Comp t Interface - Search
Connection Information:
Application Server Mame Application Server Joli Port People Soft User ID User ID Password
[¢froineza101998 {2000 FTOMO s
Search Keys:
Employee ID IEU
Mame I
Last Name I
Okl Cancel
[
‘@ Done ’_’_L!ﬂ Local intranet S

Initial form for the SDK_BUS_EXP ASP sample

Enter the Application Server Name.

Enter the Application Server Jolt Port number (9000).

Enter the PeopleSoft User ID (PTDMO).

Enter the PeopleSoft User ID Password (PTDMO).

Enter at least one of the following: the Employee ID, Name or Last Name.

Click OK.

The search results matching your entered keys will appear.

2} SDK Business Expenses Sample - Microsoft Intemet Explorer [_ (O]]
J File Edt View Favaortes Toolz Help |
5 =
& e D | A 3B g9 .
Back. Farward Stop Refresh Home Search Favoritez Histom bd ail Frint Edit
J Address I http:/roinezal01999: 80B0/SDKASP/SDK,_BUS_EXP.asp j 6’60
SDK B Exp Comp t Interface - List
|Employee m |Name |Last MName |Sel.ect
|SDDI Schumacher, Simon (430 | Select
|8052 |Avery,]oan |AVERY | Select
Click Hete to get back to the main page
|@ Dane ’_’_ti! Lacal intranet A

Employee search results in the ASP sample

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

COMPONENT INTERFACE SDK 5-21

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK JANUARY 2001

8. Click Select next to an employee name.

The business expense details for that employee will appear.

3 50K Business Expenses Sample - MicosoftImemetExplorer MBI
J File Edit “iew Favorites Tools Help |
D QA @I B9 .
Back Fomwand Stop Refresh Home Search Favorites Histom b &l Frint Edit
JAgdressl hitp:/fioineza101 995 8080/5 DKASP/SDE_BUS_EXP_LIST_DETAILS.asp j &G0
=l
SDK Busi Exp Comp t Interface

Listing Details for Employee ID: 8001

Expense Period End Date: 10/11/2000
Expense Period Total: 400

‘C]mrge Dt |Expe1|se Code ‘Expense Amount |El|si.mass Purpose |De]larhnent

[p1/o1rz000 o1 300 [Conference [nooot
[tor11/2000 16 100 [Business 11000
Inser Details

Click Here to get back to the main page

SR

|@ Done ’_’_|_!§ Lacal intranet
Business expense details for the selected employee

Java Tester and Sample

The Java source code is in two files:

o <PS HOME>\sdk\pscompintfc\src\java\samples\pscitester\pscitester.java

e <PS HOME>\sdk\pscompintfc\src\java\samples\sdk bus exp\sdk bus_exp.java

For Java bindings EXTAPI is not required; instead use the Java Object Adapter (JOA) shipped

with your PeopleSoft application.

Preparing Your Java Tester and Sample

To prepare your workstation:

1. On the Environment tab of the System control panel, add the following path to the
CLASSPATH environment variable:

<PS_HOME>\web\psjoa\psjoa.jar

2. Install the Sun JVM.

5-22 COMPONENT INTERFACE SDK PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

Using the Java CI Tester

The CI tester is a command line program.

To run the compiled Java CI Tester:

1. Ina DOS window, change directories to the location of the Java CI tester directory,
<PS_HOME>\sdk\pscompintfc\src\java\samples\pscitester.

2. Launch the executable with:
java pscitester.pscitester
You’ll be prompted for parameters one at a time.

3. At each prompt, type the appropriate value and press Enter:
Enter The Application Server Name:
Enter The Application Server Port Number: (9000)
Enter PeopleSoft UserID: (PTDMO)
Enter PeopleSoft UserID Password: (PTDMO)

If a connection is successfully established, you’ll see a message confirming the connection.

Using the Java Cl Sample

This sample is a command line program.

To run the compiled Java CI Tester:

1. Ina DOS window, change directories to the location of the Java sdk_bus_exp directory,
<PS_HOME>\sdk\pscompintfc\src\java\samples\pscitester.

2. Launch the executable with:
java sdk_bus_exp.sdk bus exp
You’ll be prompted for parameters one at a time.

3. At each prompt, type the appropriate value and press Enter:
Enter The Application Server Name:
Enter The Application Server Port Number: (9000)
Enter PeopleSoft UserID: (PTDMO)

Enter PeopleSoft UserID Password: (PTDMO)

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL COMPONENT INTERFACE SDK 5-23

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

JANUARY 2001

You must provide least one of the following three search parameters. If you press Enter for
all three, the program will exit. Incremental searches are available (e.g. ID=8 will

return all ID’s starting with 8):
Enter Employee ID:
Enter Employee Name (optional):

Enter Employee Last Name (optional):

4. Enter the Employee ID of an employee on the list.

The business expense details for the selected employee will be displayed.

M& C:\WINNT\system32\CMD .EXE - java sdk_bus_exp.sdk_bus_exp

pplication Server Connect Information...
nter The fApplication Server Hame:
OINEZA16819299

EEEP The Application Server Port Humber:
nter PeopleSoft UserlD:

TDMO

nter PeopleSoft UserID Password:

TDMO

earch for Emplovees...

nter Employee ID:

a

nter Employee Mame <optional):

Enter Employee Last Hame <optionall:

Employee 1D Employee HName
af1 Schumacher.Simon
as2 Avery.Joan

Belect Employee ID from this list...
Enter Employee ID:

Kl |

Cl sample — Java version

5-24 COMPONENT INTERFACE SDK

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

Index

A

access to component interface 2-10
from COM programs 3-3
active server page
in component interface 4-6
API for component interface 1-2
architecture
component interface 1-2
attributes of
component interface 1-3

C

CD-ROM
ordering i

collections
component interface 1-4

COM library area
setting options ~ 3-1

component interface
access from COM programs ~ 3-3
access from PeopleCode 4-2
accessto 2-10
active server page example 4-6
adding keys 2-7
and components 1-2
APl 1-2
architecture 1-2
attributes 1-3
building PeopleSoft APIs 3-1
calling another component interface
component interface view 2-2
ComponentName property 1-5
connecting to 3-3
CopyRowsetDelta method 1-7
create method 1-6
CreateKeyInfoCollection property
creating 2-3
creating properties 2-5
Currentltem method 1-8
CurrentltemNum method 1-8
data collection methods 1-8
DataRow methods 1-8
definition 1-1
Deleteltem method 1-7
differences from online behavior
email 3-6
example of creating one 4-1

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

example of VB template file 2-21
extapi directory 3-3
FindKeyInfoCollection property — 1-5
generating PeopleCode 2-24
generating VB template 2-21
GetEffectiveltem method 1-8
GetEffectiveltemNum method 1-8
GetHistoryltems property 1-5
GetKeylInfoCollection property — 1-5
GetPropertyByName method 1-8
GetPropertyInfoByName method 1-7, 1-8
getting [temByKeys signature 2-18
Insertltem method 1-7
InteractiveMode property 1-5
introduction 1-1

Item method 1-7

ItemByKeys method 1-7
ItemByKeys signature ~ 2-18

java example 4-12

keys 1-3

keys, adding and removing ~ 2-7
methods 1-6, 2-8

methods, data collection 1-8
methods, DataRow 1-8

methods, security for 1-8

methods, standard 1-6, 2-8

methods, user-defined 1-6, 2-9
naming 1-3

PeopleCode events and functions 3-5
PeopleCode, client-only limitations 3-6
properties and collections 1-4
properties and collections, security for 1-5
properties to expose 2-7

properties, creating 2-5
PropertylnfoCollection property — 1-5
removing keys ~ 2-7

search dialog processing 3-5

security 2-10

security for methods 1-8

security for properties 1-5

sending email 3-6
SetPropertyByName method 1-7, 1-8
standard methods 1-6, 2-8

standard properties 1-4

testing 2-13

user-defined methods 1-6, 2-9
user-defined properties 1-4
validating 2-20

WinMessage status ~ 3-6

component interface API 1-2
ComponentName property 1-5
components

INDEX

PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

and component interface 1-2
CopyRowsetDelta method 1-7
create method 1-6
CreateKeyInfoCollection property — 1-5
creating component interface 2-3

creating component interface properties ~ 2-5

Currentltem method 1-8
CurrentltemNum method 1-8

D

data collection for component interface 1-8

DataRow methods for component interface
Deleteltem method 1-7

E

email

and component interface 3-6

sending with component interface 3-6
extapi directory 3-3

F

FindKeyInfoCollection property — 1-5

G

1-8

generating VB template in component interface

2-21
GetEffectiveltem method 1-8
GetEffectiveltemNum method 1-8
GetHistoryltems property 1-5
GetKeyInfoCollection property — 1-5
GetPropertyByName method 1-8
GetPropertyInfoByName method 1-7, 1-8
getting [temByKeys signature 2-18

Insertltem method 1-7
InteractiveMode property 1-5
Item method 1-7
ItemByKeys method 1-7
ItemByKeys signature 2-18

J

java example
in component interface 4-12

INDEX 2

JANUARY 2001

K

keys for component interface 1-3

methods 1-6

data collection 1-8
DataRow 1-8
security for 1-8
standard 1-6
user-defined 1-6
methods, standard 2-8
methods, user-defined 2-9

N

naming component interface 1-3
naming conventions
component interface 1-3

0]

options
for COM type library area 3-1

P

PeopleBooks
CD-ROM, ordering ii
printed, ordering i
PeopleCode
client-only limitations 3-6
component interface access 3-6, 4-2
generating for component interface 2-24
PeopleCode events and functions
component interface 3-5
PeopleSoft APIs
building for component interface 3-1
properties
component interface 1-4
properties and collections, security for 1-5
PropertylnfoCollection property 1-5

S

search dialog processing

component interface 3-5
security

component interface 1-8

for component interface properties 1-5
security for component interface 2-10
security for component interface methods 1-8

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL

JANUARY 2001 PEOPLETOOLS 8.12 COMPONENT INTERFACE PEOPLEBOOK

SetPropertyByName method 1-7, 1-8 U
standard methods 2-8
standard methods for component interface 1-6

standard properties 1-4 user-defined methods 1-6, 2-9

user-defined properties 1-4

T
vV
testing

component interface 2-13 validating component interface ~ 2-20

Visual Basic template
example of file 2-21
generating one for component interface 2-21

PEOPLESOFT PROPRIETARY AND CONFIDENTIAL INDEX 3

