
Oracle® Database Lite
Developer's Guide for Java

10g (10.0.0)

Part No. B13811-01

June 2004

Oracle Database Lite Developer’s Guide for Java 10g (10.0.0)

Part No. B13811-01

Copyright © 2003, 2004, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments ... vii

Preface ... ix

Intended Audience.. ix
Documentation Accessibility ... ix
Structure ... ix

1 Overview

1.1 Concepts ... 1-1
1.2 Application Development Steps Overview .. 1-1
1.2.1 Setup Enterprise Data Subset Definition.. 1-1
1.2.2 Develop the Application... 1-2
1.2.3 Package the Application ... 1-3
1.2.4 Publish the Application .. 1-4
1.2.5 Test the Application .. 1-4
1.3 Configuring the Development System .. 1-5
1.3.1 Java Development Kit (JDK) .. 1-5
1.3.2 Install and Configure the Oracle Database or Enterprise Database............................. 1-5
1.3.3 Install the Mobile Server ... 1-5
1.3.4 Configure the Mobile Server .. 1-5
1.3.5 Install the Mobile Development Kit .. 1-5

2 Application Development

2.1 Oracle Database Lite Java Support... 2-1
2.1.1 Java Datatypes.. 2-1
2.1.2 Java Tools .. 2-2
2.1.2.1 loadjava .. 2-2
2.1.3 Oracle Database Lite Java Development Environment.. 2-2
2.1.3.1 Environment Setup... 2-2
2.2 Java Development Tools .. 2-3
2.3 Developing and Testing the Application .. 2-3
2.4 Packaging the Application... 2-3
2.5 Testing .. 2-4
2.6 MSync/OCAPIs/mSyncCom ... 2-4

iv

3 JDBC Programming

3.1 JDBC Compliance ... 3-1
3.2 JDBC Environment Setup .. 3-1
3.3 Connect to Oracle Database Lite... 3-1
3.4 Executing Java Stored Procedures from JDBC ... 3-4
3.4.1 Using the executeQuery Method... 3-4
3.4.2 Using a Callable Statement... 3-5
3.5 Oracle Database Lite Extensions... 3-5
3.5.1 Datatype Extensions.. 3-6
3.5.2 Data Access Extensions... 3-7
3.5.2.1 Reading from a BLOB Sample Program... 3-8
3.5.2.2 Writing to a CLOB Sample Program ... 3-8
3.6 Limitations ... 3-8
3.7 New JDBC 2.0 Features .. 3-9
3.7.1 Interface Connection ... 3-9
3.7.1.1 Methods ... 3-9
3.7.2 Interface Statement ... 3-10
3.7.3 Interface ResultSet .. 3-10
3.7.3.1 Fields ... 3-11
3.7.3.2 Methods .. 3-11
3.7.3.3 Methods that Return False ... 3-13
3.7.4 Interface Database MetaData .. 3-14
3.7.4.1 Methods .. 3-14
3.7.4.2 Methods that Return False ... 3-14
3.7.5 Interface ResultMetaData .. 3-15
3.7.5.1 Methods .. 3-15
3.7.6 Interface PreparedStatement... 3-16
3.7.6.1 Methods .. 3-16

4 Java Stored Procedures and Triggers

4.1 New Features in Oracle Database Lite... 4-1
4.2 Stored Procedures and Triggers Overview... 4-1
4.3 Using Stored Procedures.. 4-2
4.3.1 Model 1: Using the Load and Publish Stored Procedure Development Model 4-3
4.3.1.1 Loading Classes .. 4-3
4.3.1.2 Publishing Stored Procedures to SQL ... 4-6
4.3.1.3 Calling Published Stored Procedures .. 4-8
4.3.1.4 Dropping Published Stored Procedures ... 4-9
4.3.1.5 Example .. 4-10
4.3.2 Model 2: Using the Attached Stored Procedure Development Model 4-11
4.3.2.1 Attaching a Java Class to a Table .. 4-12
4.3.2.2 Table-Level Stored Procedures.. 4-12
4.3.2.3 Row-Level Stored Procedures ... 4-12
4.3.2.4 Calling Attached Stored Procedures... 4-12
4.3.2.5 Dropping Attached Stored Procedures .. 4-13
4.3.2.6 Example .. 4-13
4.3.3 Calling Java Stored Procedures from ODBC .. 4-14

v

4.4 Java Datatypes .. 4-15
4.4.1 Declaring Parameters ... 4-16
4.4.2 Using Stored Procedures to Return Multiple Rows .. 4-16
4.4.2.1 Returning Multiple Rows in ODBC.. 4-17
4.4.2.2 Example... 4-17
4.5 Using Triggers .. 4-17
4.5.1 Statement-Level vs. Row-Level Triggers... 4-18
4.5.2 Creating Triggers .. 4-18
4.5.2.1 Enabling and Disabling Triggers... 4-18
4.5.3 Dropping Triggers .. 4-19
4.5.4 Trigger Example.. 4-19
4.5.5 Trigger Arguments ... 4-20
4.5.6 Trigger Arguments Example .. 4-21

5 Java Support on Windows CE

5.1 Overview.. 5-1
5.2 Sync Class... 5-2
5.3 SyncException Class ... 5-2
5.4 SyncOption Class .. 5-3
5.5 Java Interface SyncParam Settings ... 5-4
5.6 Java Interface TransportParam Parameters .. 5-5
5.7 SyncProgress Listener Service... 5-6

A Stored Procedure Tutorial

A.1 Creating a Stored Procedure and Trigger .. A-1
A.1.1 Start MSQL... A-1
A.1.2 Create a Table .. A-2
A.1.3 Create a Java Class.. A-2
A.1.4 Load the Java Class File .. A-3
A.1.5 Publish the Stored Procedure ... A-3
A.1.6 Populate the Database.. A-4
A.1.7 Execute the Procedure.. A-4
A.1.8 Verify the Email Address .. A-4
A.2 Create a Trigger.. A-4
A.2.1 Testing the Trigger ... A-4
A.2.2 Verify the Email Address .. A-4
A.3 Commit or Roll Back.. A-5

B Sample Programs

B.1 Java Samples Overview .. B-1
B.1.1 JDBC Sample .. B-1
B.1.2 PL/SQL Conversion to Java Samples .. B-1
B.1.3 Java Stored Procedures Sample .. B-1
B.2 Running the Samples... B-3
B.2.1 Running the JDBC Sample ... B-3
B.2.2 Running the PL/SQL Conversion Samples .. B-3

vi

B.2.3 Running the Java Stored Procedures Sample ... B-4

Index

vii

Send Us Your Comments

Oracle Database Lite Developer’s Guide for Java 10g (10.0.0)

Part No. B13811-01

Oracle Corporation welcomes your comments and suggestions on the quality and
usefulness of this publication. Your input is an important part of the information used
for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: helplite_ca@oracle.com

■ FAX: (650) 506-7355. Attn: Oracle Database Lite

■ Postal service:

Oracle Corporation
Oracle Database Lite Documentation
500 Oracle Parkway, Mailstop 1op2
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

viii

ix

Preface

This preface introduces you to the Oracle Database Lite Developer’s Guide for Java,
discussing the intended audience, documentation accessibility, and structure of this
document.

Intended Audience
This manual is intended for application developers as the primary audience and for
database administrators who are interested in application development as the
secondary audience.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Structure
This guide includes the following topics:

■ Chapter 1, "Overview"

This chapter provides an overview of native Java applications for developers.

■ Chapter 2, "Application Development"

This chapter describes how to develop and test Java applications.

■ Chapter 3, "JDBC Programming"

x

This chapter discusses the Oracle Database Lite support for JDBC programming.

■ Chapter 4, "Java Stored Procedures and Triggers"

This chapter describes how to use Java stored procedures and triggers within the
Oracle Database Lite relational model.

■ Chapter 5, "Java Support on Windows CE"

This chapter describes Java support for Windows CE devices using the Java
Interface.

■ Appendix A, "Stored Procedure Tutorial"

This appendix demonstrates how to create a Java stored procedure and trigger.

■ Appendix B, "Sample Programs"

This appendix provides instructions for using the sample Java programs provided
with Oracle Database Lite.

Overview 1-1

1
Overview

This chapter provides an overview of native Java applications for developers. Topics
include:

■ Section 1.1, "Concepts"

■ Section 1.2, "Application Development Steps Overview"

■ Section 1.3, "Configuring the Development System"

1.1 Concepts
Oracle Database Lite facilitates the development, deployment, and management of
offline mobile database applications for a large number of mobile users. An offline
mobile application is an application that can run on mobile devices without requiring
constant connectivity to a server. An offline database application requires a local
database on the mobile device whose content is a subset of data that is stored in the
enterprise data server. The modifications made to the local database by the application
are occasionally reconciled with server data. The technology used for reconciling
changes between the mobile database and the enterprise database is known as data
synchronization.

For more information about Oracle Database Lite concepts, refer the Oracle Database
Lite Developer’s Guide.

1.2 Application Development Steps Overview
This section provides an overview of the Java application development process for
mobile applications. Topics include:

■ Setup Enterprise Data Subset Definition

■ Package the Application

■ Publish the Application

■ Test the Application

1.2.1 Setup Enterprise Data Subset Definition
The enterprise data subset definition setup process can be accomplished by
performing tasks in the phases listed below.

1. Mobile application developers must first define the subset of enterprise data for
users of mobile applications.

Application Development Steps Overview

1-2 Oracle Database Lite Developer’s Guide for Java

2. The enterprise data subset is defined as a publication, which is instantiated as the
Oracle Database Lite schema on the mobile client.

3. The primary data subsetting mechanism of a publication is the publication item,
which is a parameterized query that defines the data subset, based on specified
parameter values.

4. When a publication is instantiated, a snapshot is created for each publication item
(with variables bound to values) in Oracle Database Lite.

Packaging Applications
After completing tasks under phases listed above, mobile application developers can
develop mobile applications against Oracle Database Lite. Upon completion of
application development and testing, developers can package applications to present
them in a format which is ready to be published to Oracle Database Lite.

Provisioning Applications to Users
The provisioning process involves assigning privileges for application usage and
associated data subsets to users. To provision an application to a user, the Mobile
Server Administrator creates a subscription for a user, from the publication that is
associated with an application.

Creating Application Subscriptions
To create a subscription, the Mobile Server Administrator must assign values for the
subscription parameters of the publication. These values collectively determine the
enterprise data subset for a user.

Generating Database Schema
When a user logs into the Mobile Server, the Mobile Server installs Oracle Database
Lite on the client machine and creates a database or schema for each subscription that
is associated with applications that are provisioned to a user. At this stage, database
schema are populated with tables and rows that are retrieved from the server, based
on subscription definitions. The Mobile Server also installs mobile applications on the
client machine.

1.2.2 Develop the Application
Using the Mobile Development Kit, you can develop Java applications. You can build
Java applications using Java Servlets, Java Server Pages (JSP), and Java Beans. After
creating your Java applications, you must perform the following tasks.

1. Create database objects in Oracle Database Lite.

2. Write the application code.

a. Set the CLASSPATH to include required libraries.

b. Compile the Java Servlet and JavaBean.

c. Install the JSP.

3. Compile the application.

4. Define the application and register the servlet.

a. Start the Packaging Wizard in debug mode. Using the Command Prompt,
enter the following:

cd <Oracle_home>\mobile\sdk\bin

Application Development Steps Overview

Overview 1-3

wtgpack -d

The Packaging Wizard appears. Using the Packaging Wizard, create a new
application, select a platform, specify your Java application settings, select
application files, compile JSP files, select your Java application servlets, and
specify registry settings. For more information about the Packaging Wizard,
see the Oracle Database Lite Tools and Utilities Guide.

5. Run the application.

To run your Java application, start the Mobile Client Web Server on the
development computer. Using your Java browser, access your Java application
and connect to the application's URL.

The default port for the Mobile Client Web Server is 7070. To configure the port
that will be used by the Mobile Client Web Server, change the port entry in the
webtogo.ora file.

<Oracle_home>\mobile\sdk\bin\webtogo.ora

For information on how to edit the webtogo.ora file, see Section 11.3, "Editing
the webtogo.ora File," in the Oracle Database Lite Administration and Deployment
Guide.

For additional information about configuration parameters in the webtogo.ora
file, see Appendix B, "Mobile Server Configuration Paramters" in the Oracle
Database Lite Administration and Deployment Guide.

a. Start the Mobile Client Web Server. Using the Command Prompt, enter the
following.

cd <Oracle_home>\mobile\sdk\bin

wtgdebug.exe

The Mobile Client Web Server starts and reports which servlets are loaded. If
your servlets contain any System.out.printIn() statements, the messages
appear in this window.

b. Start your web browser and connect to the following URL.

http://your_machine:7070/

The browser displays a list of applications that are currently known to the
Web-to-Go system.

c. Click your Java application.

The Mobile Development Kit for Web-to-Go always uses Oracle Database Lite as the
development database. You can create one yourself using the CREATEDB statement.

The Mobile Development Kit for Web-to-Go also uses a web server that is referred to
as the Mobile Client Web Server.

During the development phase, your Java application's servlet stores application items
in Oracle Database Lite. During the deployment phase, you must copy the database
objects from Oracle Database Lite to the Oracle database.

1.2.3 Package the Application
To prepare Java applications for publishing to the Mobile Server, you must package
these applications using the Packaging Wizard. The following steps enable you to
publish your Java applications.

1. Define your Java application using the Packaging Wizard.

Application Development Steps Overview

1-4 Oracle Database Lite Developer’s Guide for Java

a. To define Java applications, start the Packaging Wizard using the Command
Prompt and enter the following.

cd <Oracle_home>\mobile\sdk\bin

wtgpack

b. Choose Edit an existing application and select your Java application from the
list displayed.

c. Review application information and settings provided under the platform,
application, files, servlets, and database tabs.

2. Using the Database tab, define the application connection to the Oracle database.

3. Using the Roles tab, define application roles.

4. Using the Snapshots tab, define snapshots for your Java applications. To define
snapshots, import table definitions from the development database.

5. Using the Sequences tab, define sequences that your Java application will use in
offline mode. At a later stage, you can create the actual sequences in the Oracle
database. During synchronization, Web-to-Go automatically creates a local copy of
your Java application's sequence on your client.

6. Create SQL files for your Java application. After you specify sequences, the
Application Definition Completed dialog appears. Using this dialog, you can
choose to generate SQL scripts for database objects.

7. You are now ready to package your Java application. Using the Application
Definition Completed dialog, you can package your Java application into a jar file.

1.2.4 Publish the Application
After packaging your Java applications, you are ready to publish them. The following
steps enable you to publish your Java applications.

1. Create the 'Table Owner' account. The 'Table Owner' is effectively the database
user who will own the Java application that you just packaged.

2. Create database objects in the Oracle database by running the SQL master script.
The script creates your Java application's table and its corresponding sequence.

3. Using the SQL script, start the Mobile Server.

4. Login to the Mobile Server and start the Mobile Manager.

5. Upload the jar file containing your Java application.

1.2.5 Test the Application
Before you can test your Java application, you must administer your Java applications
by creating users, setting application properties, granting user access to applications,
and defining snapshot template values for a user's snapshot template variables.

After administering Java applications as indicated above, you must install the Mobile
Client for Web-to-Go using the Mobile Client Setup program, login to the Mobile
Client for Web-to-Go, and synchronize the Mobile Client for Web-to-Go.

For detailed information on how to develop, package, publish, and test your
applications, refer Chapter 2, "Application Development".

Configuring the Development System

Overview 1-5

1.3 Configuring the Development System
This section discusses how to configure the development system. Topics include:

■ Section 1.3.1, "Java Development Kit (JDK)"

■ Section 1.3.2, "Install and Configure the Oracle Database or Enterprise Database"

■ Section 1.3.3, "Install the Mobile Server"

■ Section 1.3.4, "Configure the Mobile Server"

■ Section 1.3.5, "Install the Mobile Development Kit"

1.3.1 Java Development Kit (JDK)
As part of the development system's configuration, install the Java Development Kit
(JDK) 1.3.1 or higher.

1.3.2 Install and Configure the Oracle Database or Enterprise Database
Install the appropriate Oracle Database or Enterprise Database. For more information,
refer the Oracle Database Lite Installation and Configuration Guide for Windows
NT/2000/XP.

1.3.3 Install the Mobile Server
For more information on how to install the Mobile Server, refer the Oracle Database Lite
Installation and Configuration Guide for Windows NT/2000/XPs.

1.3.4 Configure the Mobile Server
For more information, refer the Oracle Database Lite Installation and Configuration Guide
for Windows NT/2000/XP.

1.3.5 Install the Mobile Development Kit
For more information on how to install the Mobile Development Kit, refer the Oracle
Database Lite Installation and Configuration Guide for Windows NT/2000/XP.

Note: Section 2.2 to Section 2.5 are only required when you
synchronize data between client and server databases.

Configuring the Development System

1-6 Oracle Database Lite Developer’s Guide for Java

Application Development 2-1

2
Application Development

This chapter describes how to develop and test Java applications. Topics include:

■ Section 2.1, "Oracle Database Lite Java Support"

■ Section 2.2, "Java Development Tools"

■ Section 2.3, "Developing and Testing the Application"

■ Section 2.4, "Packaging the Application"

■ Section 2.5, "Testing"

■ Section 2.6, "MSync/OCAPIs/mSyncCom"

2.1 Oracle Database Lite Java Support
This section describes Java interfaces and tools supported by Oracle Database Lite.
Topics include:

■ Section 2.1.1, "Java Datatypes"

■ Section 2.1.2, "Java Tools"

■ Section 2.1.3, "Oracle Database Lite Java Development Environment"

2.1.1 Java Datatypes
Oracle Database Lite performs type conversions between Java and Oracle datatypes as
indicated by the following table. Table 2–1 lists the Java datatypes and the
corresponding SQL datatypes that result from the type conversion.

Table 2–1 Datatype Conversions

Java Datatype SQL Datatype

byte[], byte[][], Byte[] BINARY, RAW, VARBINARY, BLOB

boolean, Boolean BIT

String, String[] CHAR, VARCHAR, VARCHAR2, CLOB

short, short[], short[][], Short, Short[] SMALLINT

int,int[], int[][], Integer, Integer[] INT

float, float[], float[][], Float, Float[] REAL

double, double[], double[][], Double,
Double[]

DOUBLE, NUMBER (without precision)

BigDecimal, BigDecimal[] NUMBER(n)

Oracle Database Lite Java Support

2-2 Oracle Database Lite Developer’s Guide for Java

2.1.2 Java Tools
Oracle Database Lite provides tools to manage Java development. Table 2–2 lists these
Java tools and their descriptions.

2.1.2.1 loadjava
The loadjava utility automates the task of loading Java class and resource files into
Oracle Database Lite. Using loadjava, you can load class and resource files
individually, or in ZIP or JAR archives.

After you load the class, create a call specification for the methods in the class that you
want to make accessible to SQL statements. To create a call specification for a stored
procedure that returns a value, use the SQL CREATE FUNCTION statement. If the
stored procedure does not return a value, use the CREATE PROCEDURE statement.

For unloading classes, Oracle Database Lite provides dropjava, which works in a
similar manner as the loadjava utility.

2.1.3 Oracle Database Lite Java Development Environment
The following tools facilitate Java development for Oracle Database Lite.

■ Oracle Developer 2.1 supports Java stored procedures written in Oracle Database
Lite by users.

■ Oracle JDeveloper also supports Java stored procedures in Oracle Database Lite,
and includes features designed specifically to help develop and deploy Java stored
procedures.

2.1.3.1 Environment Setup
This section describes how to set up your development environment to create Oracle
Database Lite applications. To develop Java applications, you must have the Sun
Microsystems Java Development Kit (JDK), version 1.3.1 (or higher).

To enable Oracle Database Lite to work with the JDK, set your PATH and CLASSPATH
environment variables, after you install Oracle Database Lite. Depending on the
version of JDK that you are using, the PATH and CLASSPATH settings may vary. The
following sections summarize these variations.

java.sql.Date, java.sql.Date[] DATE

java.sql.Time, java.sql.Time[] TIME

java.sql.Timestamp, java.sql.Timestamp[] TIMESTAMP

java.sql.Connection Default JDBC connection to database

Table 2–2 Java Tools

Tool Description

loadjava Loads Java classes into Oracle Database
Lite.

dropjava Removes Java classes from Oracle
Database Lite.

Table 2–1 (Cont.) Datatype Conversions

Java Datatype SQL Datatype

Packaging the Application

Application Development 2-3

If your environment includes a CLASSPATH user variable before you install Oracle
Database Lite, and the user variable does not include the CLASSPATH system variable
(is not specified as CLASSPATH=...;%CLASSPATH%), you must modify the
CLASSPATH user variable to include the OLITE40.JAR file in the <Oracle_
home>\mobile\classes directory.

Setting Variables for JDK 1.3.1
If you are using JDK 1.3.1, the directory with the JDK 1.3.1 Java compiler (javac.exe)
should be in the PATH variable before any other directories that contain other Java
compilers.

Add the directory that contains the Classic Java Virtual Machine (JVM) shared library,
jvm.dll, to the PATH. jvm.dll should be in your JDK_Home\jre\bin\classic
directory.

For example,

set PATH=C:\JDK_Home\bin;c:\JDK_Home\jre\bin\classic

set CLASSPATH=c:\JDK_Home\jrc\lib\rt.jar;c:\<Oracle_
home>\Mobile\classes\olite40.jar

As an alternative to using the Classic JVM, you can use the HotSpot JVM. HotSpot is a
JDK add on module provided by Sun Microsystems. HotSpot is available from the Sun
Microsystems Web site.

After installing HotSpot, set your PATH as given below.

set PATH=c:\jdk1.3.1\bin;c:\jdk1.3.1\jre\bin\hotspot;%PATH%

In the example above, your installation of the JDK and HotSpot is on Drive C. You
should verify the location of your installation before amending your PATH statement.
To test whether your system is set up correctly, run the Java examples in the
<Oracle_home>\Mobile\Sdk\Samples\JDBC directory.

2.2 Java Development Tools
To write and debug Java programs, you can use any Java development tool. However,
you must ensure that you set the CLASSPATH and PATH correctly.

2.3 Developing and Testing the Application
Before synchronizing your database with the Mobile Server, you must create a seed
database by publishing a dummy application and synchronize it to the client machine.
This creates a sample database with the correct schema and table definitions. If you are
not synchronizing your database, you should first create the database with sample
tables and data.

2.4 Packaging the Application
At this stage, you must package and publish the application.

To package Java applications using the Packaging Wizard, refer the Oracle Database Lite
Tools and Utilities Guide.

Note: All command prompt windows must be closed and
reopened to reflect changes made to your CLASSPATH.

Testing

2-4 Oracle Database Lite Developer’s Guide for Java

To publish the application, refer to Section 4.6, "Uploading Applications to the Mobile
Server Repository" in the Oracle Database Lite Administration and Deployment Guide.

2.5 Testing
The publishing phase can be termed as the testing phase for your applications. To test
your Java applications, publish the application using the Packaging Wizard. For more
information, refer Section 4.6, "Uploading Applications to the Mobile Server
Repository" in the Oracle Database Lite Administration and Deployment Guide.

2.6 MSync/OCAPIs/mSyncCom
For more information, refer the Java mSync API Specification.

JDBC Programming 3-1

3
JDBC Programming

This chapter discusses the Oracle Database Lite support for JDBC programming. It
includes the following topics:

■ Section 3.1, "JDBC Compliance"

■ Section 3.2, "JDBC Environment Setup"

■ Section 3.3, "Connect to Oracle Database Lite"

■ Section 3.4, "Executing Java Stored Procedures from JDBC"

■ Section 3.5, "Oracle Database Lite Extensions"

■ Section 3.6, "Limitations"

■ Section 3.7, "New JDBC 2.0 Features"

3.1 JDBC Compliance
JDBC is an application programmer's interface for accessing relational databases from
Java programs. Oracle Database Lite supplies a native JDBC driver that allows Java
applications to communicate directly with Oracle Database Lite's object relational
database engine. Oracle Database Lite's implementation of JDBC complies with JDBC
1.22. In addition, Oracle Database Lite provides certain extensions specified by JDBC
2.0. Oracle Database Lite's extensions are compatible with the Oracle8i JDBC
implementation. For a complete JDBC reference, see the Sun Microsystems web site.

3.2 JDBC Environment Setup
If you are using the client/server model, include the olite40.jar in the 'system'
classpath on the server machine. Include the 'user' classpath on the client machine.

For more information on how to start the Multiuser Oracle Database Lite Database
Service, see Section 2.2.1.2, "Starting a Multi-User Oracle Database Lite Database
Service," in the Oracle Database Lite Developer’s Guide.

3.3 Connect to Oracle Database Lite
JDK 1.3.x or higher is required to connect to Oracle Database Lite.

There are three ways to connect to Oracle Database Lite.

Oracle Database Lite supports two types of drivers namely, Type 2 and Type 4. The
Type 2 driver requires a native code on the client side. The Type 2 driver interfaces
with the Oracle Database Lite ODBC driver through this native code.

Connect to Oracle Database Lite

3-2 Oracle Database Lite Developer’s Guide for Java

The Type 4 JDBC driver is a pure Java driver and uses the Oracle Database Lite
network protocol to communicate with the Oracle Database Lite service. Before using
this driver, ensure that you start Oracle Database Lite. A Java applet can use the Type
4 JDBC driver.

Type 2 Driver Connection URL Syntax
DriverManager.getConnection("jdbc:polite@URL_Name:100:polite","system","admin");

This syntax is used to make a direct connection to a database on a client machine.
Enter the URL definition as given below.

jdbc:polite@host:port:dsn

The following arguments can be made as part of the URL clause or as a separate
key-value pair. There may be none or many occurrences of the key-value pair which
provide additional information to the driver. All information that can be specified in
the URL can be specified as a key-value pair. The information that is specified as a
key-value pair always overrides the information that is specified in the URL.

The URL interpretation and key-value pair options for each argument are described in
the following table.

Note: On the Windows platform, the Type 2 driver uses the
oljdbc40.dll.

Argument Description

jdbc Identifies the protocol as JDBC.

polite Identifies the subprotocol as polite.

uid / pwd The optional user ID and password for Oracle Database Lite. If
specified, this overrides the specification of a user ID and
password. If the database is encrypted, you must include the
password in the key-value pair.

dsn Identifies the data source name (DSN) entry in the odbc.ini file.
This entry contains all the necessary information to complete the
connection to the server.

Note: For a JDBC program, you need not create a DSN if you
have supplied all the necessary values for the data directory and
database through key=value pairs.

On the windows platform, you can use the ODBC administrator
to create a DSN. For more information, refer the Oracle Database
Lite Developer’s Guide.

DataDirectory= Directory in which the .odb file resides.

Database= Name of database as given during its creation.

IsolationLevel= Transaction isolation level: READ COMMITTED, REPEATABLE
READ, SERIALIZABLE or SINGLE USER. For more information
on isolation levels, see the Oracle Database Lite Developer’s Guide.

Autocommit= Commit behavior, either ON or OFF.

CursorType= Cursor behavior: DYNAMIC, FORWARD ONLY, KEYSET
DRIVEN or STATIC. For more information on cursor types, see
the Oracle Database Lite Developer’s Guide.

UID= User name

Connect to Oracle Database Lite

JDBC Programming 3-3

Example
String ConnectMe=("jdbc:polite:SCOTT/tiger:polite;DataDirectory=<Oracle_
home>;Database=polite;IsolationLevel=SINGLE
USER;Autocommit=ON;CursorType=DYNAMIC")

try
 {Class.forName("oracle.lite.poljdbc.POLJDBCDriver")
 Connection conn = DriverManager.getConnection(ConnectMe)
 }
catch (SQLException e)
{

 ...
}

Type2 Client/Server Driver Connection URL Syntax
jdbc:polite[:uid / pwd]@[host]:[port]:dsn [;key=value]*

The URL can be used to connect to the Oracle Database Lite service using the Type 2
JDBC driver. For more information on how to install and start the Multiuser Oracle
Database Lite Database Service, refer to Section 2.2.1.2, "Starting a Multi-User Oracle
Database Lite Database Service," in the Oracle Database Lite Developer’s Guide.

Example
An example of this type of connection is given below.

try {
Connection conn = DriverManager.getConnection(
 "jdbc:polite@yourhostname
 ;DataDirectory=<Oracle_home>
 ;Database=polite
 ;IsolationLevel=SINGLE USER
 ;Autocommit=ON
 ;CursorType=DYNAMIC", "Scott", "tiger")
}

catch (SQLException e)
{

PWD= Password

Argument Description

host The name of the machine that hosts Oracle Database Lite and on
which the Oracle Database Lite service olsv2040.exe runs. This
host name is optional. If omitted, it defaults to the local machine
on which the JDBC application runs.

port The port number at which the Oracle Database Lite service
listens. The port number is optional and if omitted defaults to
port "100".

Argument Description

Executing Java Stored Procedures from JDBC

3-4 Oracle Database Lite Developer’s Guide for Java

You should enclose the getConnection method in a try-catch block to intercept any
SQL exception thrown during the connection attempt. You can insert an exception
handling statement in the catch block.

Type4 (Pure Java) Driver Connection URL Syntax
The URL syntax for the type4 driver is given below.

jdbc:polite4[:uid/pwd]@[host]:[port]:dsn[;key=value]*

The parameter 4 indicates that the type4 driver is being used. For the rest of the
parameters, see the definitions of those parameters for the type2 driver as described
above.

3.4 Executing Java Stored Procedures from JDBC
After creating a Java stored procedure, you can execute the procedure from a JDBC
application by performing the following steps.

■ By passing an SQL SELECT string that executes the stored procedure to the
Statement.executeQuery method.

■ By using a JDBC CallableStatement.

The executeQuery method executes table-level and row-level stored procedures.
CallableStatement currently only supports execution of table-level stored
procedures.

3.4.1 Using the executeQuery Method
To call a stored procedure using the executeQuery method, first create a
Statement object, which you assign the value returned by the createStatement
method of the current connection object. You then execute the
Statement.executeQuery method, by passing the SQL SELECT string that
invokes the Java stored procedure.

For example, suppose you want to execute a row-level procedure SHIP on a table
named INVENTORY with the argument value stored in the variable q. The variable p
contains the product ID for the product (row) for which you want to execute the stored
procedure.

int res = 0;
Statement s = conn.createStatement();
ResultSet r = s.executeQuery("SELECT SHIP(" + q + ")" +
 "FROM INVENTORY WHERE PID = " + p);
if(r.next()) res = r.getInt(1);
r.close();
s.close();
return res;

Note: The URL works with the Oracle Database Lite service only.
For more information on how to start and stop the Oracle Database
Lite service, refer the Oracle Database Lite Developer’s Guide.

Note: For more information on creating stored procedures, see
Chapter 4, "Java Stored Procedures and Triggers".

Oracle Database Lite Extensions

JDBC Programming 3-5

If you need to execute a procedure repeatedly with varying parameters, use
PreparedStatement instead of Statement. Because the SQL statements in a
PreparedStatement are pre-compiled, PreparedStatements execute more
efficiently. Additionally, a PreparedStatement can accept IN parameters,
represented in the statement with a question mark (?). However, if the
PreparedStatement takes a "long" type parameter, such as LONG or LONG RAW,
you must bind the parameter using the setAsciiStream, setUnicodeStream, or
setBinaryStream methods.

In the preceding example, if the procedure SHIP updates the database and the
isolation of the transaction that issues the above query is READ COMMITTED, you must
append the FOR UPDATE clause to the SELECT statement, as given below.

"SELECT SHIP(" + q + ")" +
 FROM INVENTORY WHERE PID = " +
 p + "FOR UPDATE");

3.4.2 Using a Callable Statement
To execute the stored procedure using a callable statement, create a
CallableStatement object and register its parameters as given below.

CallableStatement cstmt = conn.prepareCall(
 "{?=call tablename.methodname() }");
cstmt.registerOutParameter(1, ...);
cstmt.executeUpdate();
cstmt.get..(1);
cstmt.close();

The following restrictions apply to JDBC callable statements.

■ JDBC callable statements can only execute table-level stored procedures.

■ Both IN and OUT parameters are supported. However, not all Java datatypes can
be used as OUT parameters. For more information, see Chapter 4, "Java Stored
Procedures and Triggers".

■ Procedure names correspond to the Java method names, and are case-sensitive.

■ As with prepared statements, if the callable statement has a "long" type, such as:
LONG, LONG VARBINARY, LONG VARCHAR, LONG VARCHAR2, or LONG
RAW, you must bind the parameter using the setAsciiStream,
setUnicodeStream, or setBinaryStream methods.

3.5 Oracle Database Lite Extensions
The Oracle Database Lite JDBC driver supports JDBC 1.22 and provides extensions
that support certain features defined in JDBC 2.0. The extensions include support for
BLOB (large binary object) and CLOB (large character object) datatypes and scrollable
result sets. The Oracle Database Lite JDBC extensions are compatible with the Oracle8i
JDBC implementation. However, Oracle Database Lite does not support the Oracle8i
JDBC datatype extensions, Array, Struct, or REF.

Note: When no longer needed, you should reclaim system
resources by closing JDBC objects, such as Resultset and
Statement objects.

Oracle Database Lite Extensions

3-6 Oracle Database Lite Developer’s Guide for Java

This section lists and describes the Oracle Database Lite datatype and data access
extensions. For details regarding function syntax and call parameters, see the Sun
Microsystems Java 2 specification at the Sun Javasoft website.

3.5.1 Datatype Extensions
BLOBs and CLOBs store data items that are too large to store directly in a database
table. Rather than storing the data, the database table stores a locator that points to the
location of the actual data. BLOBs contain a large amount of unstructured binary data
items and CLOBs contain a large amount of fixed-width character data items
(characters that require a fixed number of bytes per character).

You can select a BLOB or CLOB locator from the database using a standard SELECT
statement. When you select a BLOB or CLOB locator using SELECT, you acquire only
the locator for the large object, not the data itself. Once you have the locator, however,
you can read data from or write data to the large object using access functions.

Table 3–1 lists the methods included in the Oracle Database Lite BLOB class and their
descriptions:

Table 3–2 lists the methods included in the Oracle Database Lite CLOB class and their
descriptions.

Table 3–1 Methods in the Oracle Database Lite BLOB Class

Function Description

length Returns the length of a BLOB in bytes.

getBinaryOutputStream Returns BLOB data.

getBinaryStream Returns a BLOB instance as a stream of bytes.

getBytes Reads BLOB data, starting at a specified point, into a buffer.

getConnection Returns the current connection.

isConvertibleTo Determines if a BLOB can be converted to a particular class.

putBytes Writes bytes to a specified point in the BLOB data.

makeJdbcArray Returns the JDBC array representation of a BLOB.

toJdbc Converts a BLOB to a JDBC class.

trim Trims to length.

Table 3–2 Methods in the Oracle Database Lite CLOB Class

Function Description

length Returns the length of a CLOB in bytes.

getSubString Retrieves a substring from a specified point in the CLOB data.

getCharacterStream Returns CLOB data as a stream of Unicode characters.

getAsciiStream Returns a CLOB instance as an ASCII stream.

getChars Retrieves characters from a specified point in the CLOB data
into a character array.

getCharacterOutputSt
ream

Writes CLOB data from a Unicode stream.

getAsciiOutputStream Writes CLOB data from an ASCII stream.

getConnection Returns the current connection.

Oracle Database Lite Extensions

JDBC Programming 3-7

3.5.2 Data Access Extensions
Oracle Database Lite provides access functions to set and return values of the CLOB
and BLOB datatypes. In addition, stream classes provide functions that enable
stream-format access to large objects.

The large object access functions are located in the OraclePreparedStatement, the
OracleCallableStatement, and the OracleResultSet class.

Table 3–3 lists the data access functions included in the OracleResultSet class.

The stream format access classes are POLLobInputStream, POLLobOutputStream,
POLClobReader, and POLClobWriter.

The POLLobInputStream class includes the following data access function.

The POLLobOutputStream class includes this data access function.

The POLClobReader class extends the class java.io.reader. It includes these data
access functions.

putChars Writes characters from a character array to a specified point in
the CLOB data.

putString Writes a string to a specified point in the CLOB data.

toJdbc Converts a CLOB to a JDBC class.

isConvertibleTo Determines if a CLOB can be converted to a particular class.

makeJdbcArray Returns a JDBC array representation of a CLOB.

trim Trims to length.

Table 3–3 Data Access Functions in the OracleResultSet Class

Function Description

getBLOB Returns a locator to BLOB data.

getCLOB Returns a locator to CLOB data.

Function Description

read Reads from a large object into an array.

Function Description

write Writes from an output stream into a large object.

Function Description

read Reads characters from a CLOB into a portion of an array.

ready Indicates whether a stream is ready to read.

close Closes a stream.

markSupported Indicates whether the stream supports the mark operation.

Table 3–2 (Cont.) Methods in the Oracle Database Lite CLOB Class

Function Description

Limitations

3-8 Oracle Database Lite Developer’s Guide for Java

The POLClobWriter class extends the class java.io.writer. It includes these data
access functions:

3.5.2.1 Reading from a BLOB Sample Program
The following sample uses the getBinaryStream method to read BLOB data into a
byte stream. It then reads the byte stream into a byte array, and returns the number of
bytes read.

// Read BLOB data from BLOB locator.
InputStream byte_stream = my_blob.getBinaryStream();
byte [] byte_array = new byte [10];
int bytes_read = byte_stream.read(byte_array);
...

3.5.2.2 Writing to a CLOB Sample Program
The following sample reads data into a character array, then uses the
getCharacterOutputStream method to write the array of characters to a CLOB.

java.io.Writer writer;
char[] data = {'0','1','2','3','4','5','6','7','8','9'};

// write the array of character data to a CLOB
writer = ((CLOB)my_clob).getCharacterOutputStream();
writer.write(data);
writer.flush();
writer.close();
...

3.6 Limitations
If data truncation occurs during a write, a SQL data truncation exception is thrown. A
SQL data truncation warning results if data truncation occurs during a read.

The Oracle Database Lite JDBC classes and the JDBC 2.0 classes use the same name for
certain datatypes (for example, oracle.sql.Blob and java.sql.Blob). If your
program imports both oracle.sql.* and java.sql.*, attempts to access the
overlapping classes without fully qualifying their names may result in compiler errors.
To avoid this problem, use one of the following steps:

mark Marks the current position in the stream. Subsequent calls to the
reset function reposition the stream to the marked location.

reset Resets the current position in the stream to the marked location.
If the stream has not been marked, this function attempts to
reset the stream in a way appropriate to the particular stream,
such as by repositioning it at its starting point.

skip Skips characters in the stream.

Function Description

write Writes an array of characters to the output stream.

flush Writes any characters in a buffer to their intended destination.

close Flushes and closes the stream.

Function Description

New JDBC 2.0 Features

JDBC Programming 3-9

1. Use fully qualified names for BLOB, CLOB, and data classes.

2. Import the class explicitly (for example, import oracle.sql.Blob).

Class files always contain fully qualified class names, so the overlapping datatype
names do not cause conflicts at runtime.

3.7 New JDBC 2.0 Features
This section describes JDBC 2.0 methods or interfaces that are supported by the Oracle
Database Lite JDBC driver. Topics include:

■ Section 3.7.1, "Interface Connection"

■ Section 3.7.2, "Interface Statement"

■ Section 3.7.3, "Interface ResultSet"

■ Section 3.7.4, "Interface Database MetaData"

■ Section 3.7.5, "Interface ResultMetaData"

■ Section 3.7.6, "Interface PreparedStatement"

3.7.1 Interface Connection
This section describes the JDBC 2.0 Interface methods that are implemented by the
Oracle Database Lite JDBC driver.

3.7.1.1 Methods

Statement
createStatement(int resultSetType, int resultSetConcurrency)

Creates a statement object that generates ResultSet objects with the given type and
concurrency.

Map
getTypeMap()

Gets the TypeMap object associated with this connection.

CallableStatement
prepareCall(String sql, int resultSetType, int
resultSetConcurrency)

Creates a CallableStatement object that generates ResultSet objects with the given type
and concurrency.

PreparedStatement
prepareStatement(String sql, int resultSetType, int
resultSetConcurrency)

Creates a PreparedStatement object that generates ResultSet objects with the given
type and concurrency.

void
setTypeMap(Map map)

New JDBC 2.0 Features

3-10 Oracle Database Lite Developer’s Guide for Java

Installs the given type map as the type map for this connection.

3.7.2 Interface Statement
This section describes the JDBC 2.0 Interface Statement methods that are implemented
by the Oracle Database Lite JDBC driver.

Connection
getConnection()

Returns the Connection object that produced this Statement object.

int
getFetchDirection()

Retrieves the direction for fetching rows from database tables that is the default for
result sets generated from this Statement object. Only FETCH_FORWARD is
supported for now.

int
getFetchSize()

Retrieves the number of result set rows that is the default fetch size for result sets
generated from this Statement object. Only fetch size = 1 is supported for now.

int
getResultSetConcurrency()

Retrieves the result set concurrency. Only CONCUR_READ_ONLY is supported for
now.

int
getResultSetType()

Determine the result set type. Only TYPE_FORWARD_ONLY and TYPE_SCROLL_
INSENSITIVE are supported for now.

void
setFetchDirection(int direction)

Gives the driver a hint as to the direction in which the rows in a result set will be
processed.

void
setFetchSize(int rows)

Gives the JDBC driver a hint as to the number of rows that should be fetched from the
database when more rows are needed.

3.7.3 Interface ResultSet
This section describes the JDBC 2.0 Interface ResultSet methods that are implemented
by the Oracle Database Lite JDBC driver.

New JDBC 2.0 Features

JDBC Programming 3-11

3.7.3.1 Fields
The following fields can be used to implement the Interface ResultSet feature.

static int
CONCUR_READ_ONLY

The concurrency mode for a ResultSet object that may NOT be updated.

static int
CONCUR_UPDATABLE

The concurrency mode for a ResultSet object that may be updated. Not supported for
now.

static int
FETCH_FORWARD

The rows in a result set will be processed in a forward direction; first-to-last.

static int
FETCH_REVERSE

The rows in a result set will be processed in a reverse direction; last-to-first. Not
supported for now.

static int
FETCH_UNKNOWN

The order in which rows in a result set will be processed is unknown.

static int
TYPE_FORWARD_ONLY

The type for a ResultSet object whose cursor may move only forward.

static int
TYPE_SCROLL_INSENSITIVE

The type for a ResultSet object that is scrollable but generally not sensitive to changes
made by others.

static int
TYPE_SCROLL_SENSITIVE

The type for a ResultSet object that is scrollable and generally sensitive to changes
made by others. Not supported for now.

3.7.3.2 Methods
This section describes the JDBC 2.0 ResultSet method implemented by the Oracle
Database Lite JDBC driver.

boolean
absolute(int row)

Moves the cursor to the given row number in the result set.

New JDBC 2.0 Features

3-12 Oracle Database Lite Developer’s Guide for Java

void
afterLast()

Moves the cursor to the end of the result set, just after the last row.

void
beforeFirst()

Moves the cursor to the front of the result set, just before the first row.

boolean
first()

Moves the cursor to the first row in the result set.

Array
getArray(String colName)

Gets an SQL ARRAY value in the current row of this ResultSet object.

BigDecimal
getBigDecimal(int columnIndex)

Gets the value of a column in the current row as a java.math.BigDecimal object with
full precision.

BigDecimal
getBigDecimal(String columnName)

Gets the value of a column in the current row as a java.math.BigDecimal object with
full precision.

int
getConcurrency()

Returns the concurrency mode of this result set.

Date
getDate(int columnIndex, Calendar cal)

Gets the value of a column in the current row as a java.sql.Date object.

int
getFetchDirection()

Returns the fetch direction for this result set.

int
getFetchSize()

Returns the fetch size for this result set.

int
getRow()

Retrieves the current row number.

New JDBC 2.0 Features

JDBC Programming 3-13

Statement
getStatement()

Returns the Statement that produced this ResultSet object.

int
getType()

Returns the type of this result set.

boolean
isAfterLast()

boolean
isBeforeFirst()

boolean
isFirst()

boolean
isLast()

boolean
last()

Moves the cursor to the last row in the result set.

boolean
previous()

Moves the cursor to the previous row in the result set.

void
refreshRow()

Refreshes the current row with its most recent value in the database. Currently does
nothing.

boolean
relative(int rows)

Moves the cursor a relative number of rows, either positive or negative.

3.7.3.3 Methods that Return False
The following three methods always return false because this release does not support
deletes, inserts, or updates.

boolean
rowDeleted()

Indicates whether a row has been deleted.

New JDBC 2.0 Features

3-14 Oracle Database Lite Developer’s Guide for Java

boolean
rowInserted()

Indicates whether the current row has had an insertion.

boolean
rowUpdated()

Indicates whether the current row has been updated.

void
setFetchDirection(int direction)

Gives a hint as to the direction in which the rows in this result set will be processed.

void
setFetchSize(int rows)

Gives the JDBC driver a hint as to the number of rows that should be fetched from the
database when more rows are needed for this result set.

3.7.4 Interface Database MetaData
This section describes the JDBC 2.0 Interface Database MetaData methods that are
implemented by the Oracle Database Lite JDBC driver.

3.7.4.1 Methods
The following methods can be used to implement the Interface Database MetaData
feature.

Connection
getConnection()

Retrieves the connection that produced this metadata object.

boolean
supportsResultSetConcurrecny(int type, int concurrency)

Supports the concurrency type in combination with the given result set type.

boolean
supportsResultSetType(int Type)

Supports the given result set type.

3.7.4.2 Methods that Return False
The following methods return false, because this release does not support deletes or
updates.

boolean
deletesAreDetected(int Type)

Indicates whether or not a visible row delete can be detected by calling
ResultSet.rowDeleted().

New JDBC 2.0 Features

JDBC Programming 3-15

boolean
insertsAreDetected(int Type)

Indicates whether or not a visible row insert can be detected by calling
ResultSet.rowInserted().

boolean
othersDeletesAreVisible(int Type)

Indicates whether deletes made by others are visible.

boolean
othersInsertsAreVisible(int Type)

Indicates whether inserts made by others are visible.

boolean
othersUpdatesAreVisible(int Type)

Indicates whether updates made by others are visible.

boolean
ownDeletesAreVisible(int Type)

Indicates whether a result set's own deletes are visible.

boolean
ownInsertsAreVisible(int Type)

Indicates whether a result set's own inserts are visible.

boolean
ownUpdatesAreVisisble(int Type)

Indicates whether a result set's own updates are visible.

boolean
updatesAreDetected(int Type)

Indicates whether or not a visible row update can be detected by calling the method
ResultSet.rowUpdated.

3.7.5 Interface ResultMetaData
This section lists methods that can be implemented using the Interface ResultMetaData
feature.

3.7.5.1 Methods
The following method can be used to implement the Interface ResultMetaData feature.

String
getColumnClassName(int column)

Returns the fully-qualified name of the Java class whose instances are manufactured if
the method ResultSet.getObject is called to retrieve a value from the column.

New JDBC 2.0 Features

3-16 Oracle Database Lite Developer’s Guide for Java

3.7.6 Interface PreparedStatement
This section describes methods that can be implemented using the Interface
PreparedStatement feature.

3.7.6.1 Methods
The following methods can be used to implement the Interface PreparedStatement
feature.

Result
SetMetaDatagetMetaData()

Gets the number, types and properties of a ResultSet's columns.

void
setDate(int parameter Index, Date x, Calendar cal)

Sets the designated parameter to a java.sql.Date value, using the given Calendar
object.

void
setTime(int parameterIndex, Time x, Calendar cal)

Sets the designated parameter to a java.sql.Time value, using the given Calendar
object.

void
setTimestamp(int parameter Index, Timestamp x, Calendar cal)

Sets the designated parameter to a java.sql.Timestamp value, using the given Calendar
object.

3.7.6.1.1 Limitation currently, the option setQueryTimeOut is not supported.

Java Stored Procedures and Triggers 4-1

4
Java Stored Procedures and Triggers

This chapter describes how to use Java stored procedures and triggers within the
Oracle Database Lite relational model. Topics include:

■ Section 4.1, "New Features in Oracle Database Lite"

■ Section 4.2, "Stored Procedures and Triggers Overview"

■ Section 4.3, "Using Stored Procedures"

■ Section 4.4, "Java Datatypes"

■ Section 4.5, "Using Triggers"

4.1 New Features in Oracle Database Lite
Oracle Database Lite supports the Oracle database server development model for
stored procedures. In this model (referred to as the "load and publish" development
model), instead of attaching classes to tables, you load the Java class into the Oracle
Database Lite database using the loadjava command-line utility or the SQL
statement CREATE JAVA. After loading the class into the database, you use a call
specification to publish the methods in the class that you want to call from SQL. You
use either the CREATE FUNCTION or CREATE PROCEDURE command to create a call
specification. For more information, see "Model 1: Using the Load and Publish Stored
Procedure Development Model".

Oracle Database Lite still supports the traditional model of creating stored procedures.
In the traditional model, you attach the Java class to a table. The static methods in the
class become the table-level stored procedures of the table, and the non-static
(instance) methods become the row-level stored procedures.

Oracle Database Lite now includes the loadjava utility, which automates the task of
loading Java classes into the database. Using loadjava, you can load Java class,
source, and resource files, individually or in archives. For more information, see
"loadjava".

4.2 Stored Procedures and Triggers Overview
A Java stored procedure is a Java method that is stored in Oracle Database Lite. The
procedure can be invoked by applications that access the database. A trigger is a
stored procedure that executes, or "fires", when a specific event occurs, such as a row
update, insertion, or deletion. An update of a specific column can also fire a trigger.

A trigger can operate at the statement-level or row-level. A statement-level trigger
fires once per triggering statement, no matter how many rows are affected. A
row-level trigger fires once for every row affected by the triggering statement. Java

Using Stored Procedures

4-2 Oracle Database Lite Developer’s Guide for Java

stored procedures can return a single value, a row, or multiple rows. Triggers,
however, cannot return a value.

The first step to creating a stored procedure is to create the class that you want to store
in Oracle Database Lite. You can use any Java IDE to write the procedure, or you can
simply reuse an existing procedure that meets your needs.

When creating the class, consider the following restrictions on calling Java stored
procedures from SQL DML statements:

■ When called from an INSERT, UPDATE, or DELETE statement, the method
cannot query or modify any database tables modified by that statement.

■ When called from a SELECT, INSERT, UPDATE, or DELETE statement, the
method cannot execute SQL transaction control statements, such as COMMIT or
ROLLBACK.

Any SQL statement in a stored procedure that violates a restriction produces an error
at run time (when the statement is parsed).

You must provide your class with a unique name for its deployment environment,
since only one Java Virtual Machine is loaded for each Oracle Database Lite
application. If the application executes methods from multiple databases, then the Java
classes from these databases are loaded into the same Java Virtual Machine. By
prefixing the Java class name with the database name, you ensure that the Java class
names are unique across multiple databases.

If a Java stored procedure takes an argument of type java.sql.Connection, then
Oracle Database Lite supplies the appropriate argument value from the current
transaction or row as the first argument to the method. The application executing the
method does not need to provide a value for this parameter. In this case, DMLs
executed inside the procedure are executed in the invoker's transaction context.

4.3 Using Stored Procedures
Oracle Database Lite supports several development models for creating stored
procedures. In the load and publish model, you load the Java class into Oracle
Database Lite, then create a call specification (call spec) for the static methods in the
class that you want to call from SQL. This model is also supported by Oracle database,
which enables you to utilize skills and resources you have already developed in
implementing Oracle database enterprise applications and data.

This model consists of the following steps:

1. Develop a Java class that contains the methods you want to store.

2. Use the loadjava utility or the SQL CREATE JAVA command to load the class
into the Oracle Database Lite.

3. Publish the methods that you want to make accessible to SQL by creating call
specs for those methods. By publishing a method, you associate a SQL name to the
method. SQL applications use this name to invoke the method.

You do not need to publish every procedure that you store in Oracle Database Lite,
only those that should be callable from SQL. Many stored procedures are only called
by other stored procedures, and do not need to be published. For more information on
using this model for developing stored procedures, see "Model 1: Using the Load and
Publish Stored Procedure Development Model". The load and publish model only
supports static methods.

Using Stored Procedures

Java Stored Procedures and Triggers 4-3

In the second model, you attach the class to a table and invoke methods in the class by
name. This is the traditional Oracle Database Lite model for developing stored
procedures. Using this model, you can store both class-level (static) methods and
object-level (non-static) methods.

For this model, follow these steps:

1. Develop a Java class with the methods you want to store.

2. Attach the class to a table using the SQL ALTER TABLE command.

After attaching the class, you can invoke methods in the class directly from SQL. You
identify the method with the following syntax:

table_name.method_name

For more information on attaching Java classes to tables, see "Model 2: Using the
Attached Stored Procedure Development Model".

Oracle Database Lite provides tools and SQL commands for dropping stored
procedures. You should use caution when dropping procedures from the database,
since Oracle Database Lite does not keep track of dependencies between classes. You
must ensure that the stored procedure you drop is not referenced by other stored
procedures. Dropping a class invalidates classes that depend on it directly or
indirectly.

4.3.1 Model 1: Using the Load and Publish Stored Procedure Development Model
This section describes how to create stored procedures using the load and publish
development model. The first step in creating a stored procedure is to write the class.
Make sure that the class compiles and executes without errors. Next, load the class
into Oracle Database Lite. Finally, publish the methods that you want to call from
SQL. In Oracle Database Lite, you cannot publish a method that is mapped to a main
method. Oracle database, on the other hand, permits call specs that publish main
methods.

4.3.1.1 Loading Classes
To load Java classes into the Oracle Database Lite database, you can use either:

■ loadjava

■ the SQL statement CREATE JAVA

The loadjava command-line utility automates the task of loading Java classes into
Oracle Database Lite and Oracle databases. To load Java classes manually, use the SQL
statement CREATE JAVA.

4.3.1.1.1 loadjava loadjava creates schema objects from files and loads them into the
database. Schema objects can be created from Java source files, class files, and resource
files. Resource files may be image files, resources, or anything else a procedure may
need to access as data. You can pass files to loadjava individually, or as ZIP or JAR
archive files.

Note: The load and publish development model only supports
Java static methods. To store static and non-static (instance)
methods, you must attach the class to database tables, as described
in "Model 2: Using the Attached Stored Procedure Development
Model".

Using Stored Procedures

4-4 Oracle Database Lite Developer’s Guide for Java

Oracle Database Lite does not keep track of class dependencies. Make sure that you
load into the database, or place in the CLASSPATH, all supporting classes and
resource files required by a stored procedure. To query the classes that are loaded in
the database, you can query the okJavaObj meta class.

Syntax
loadjava uses the following syntax:

loadjava {-user | -u} username/password[@database]
 [-option_name -option_name ...] filename filename ...

Arguments
This section discusses the loadjava arguments in detail.

User
The user argument specifies a username, password, and database directory in the
following format:

<user>/<password>[@<database>]

For example:

scott/tiger@<Oracle_home>\Mobile\Sdk\OLDB40\Polite.odb

Options
Oracle Database Lite supports the following options that are listed and described in
Table 4–1.

When specifying multiple options, you must separate the options with spaces. For
example:

-force -verbose

Oracle database supports additional options, as described in the Oracle9i Java Stored
Procedures Developer's Guide. If used with Oracle Database Lite, the additional options
are recognized but not supported. Using them does not result in an error.

To view the options supported by Oracle database, see the loadjava help
information using the following syntax.

loadjava {-help | -h}

Note: The table name and column names are case sensitive.

Table 4–1 Options

Option Description

-force | -f Forces files to be loaded, even if a schema object with the same
name already exists in the database.

-verbose | -v Directs loadjava to display detailed status messages while
running.

-meta | -m Creates the meta information in the database but does not load
the classes. This is useful when the classes are in a .jar file and
are not loaded into the database.

Using Stored Procedures

Java Stored Procedures and Triggers 4-5

Filenames
On the command line, you can specify as many class, source, JAR, ZIP, and resource
files as you like, in any order. You must separate multiple file names with spaces, not
commas. If passed a source file, loadjava invokes the Java compiler to compile the
file before loading it into the database. If passed a JAR or ZIP file, loadjava processes
each file in the JAR or ZIP. It does not create a schema object for the JAR or ZIP
archive. loadjava does not process a JAR or ZIP archive within another JAR or ZIP
archive.

The best way to load files is to place them in a JAR or ZIP and then load the archive.
Loading archives avoids the complications associated with resource schema object
names. If you have a JAR or ZIP that works with the JDK, then you can be sure that
loading it with loadjava also works, and you can avoid the complications associated
with resource schema object naming.

As it loads files into the database, loadjava must create a name for the schema
objects it creates for the files. The names of schema objects differ slightly from
filenames, and different schema objects have different naming conventions. Class files
are self-identifying, so loadjava can map their filenames to the names of schema
objects automatically. Likewise, JAR and ZIP archives include the names of the files
they contain.

However, resource files are not self-identifying; loadjava derives the names of Java
resource schema objects from the literal names you enter on the command-line (or the
literal names in a JAR or ZIP archive). Because classes use resource schema objects
while executing, it is important that you specify the correct resource file names on the
command line.

The best way to load individual resource files is to run loadjava from the top of the
package tree, specifying resource file names relative to that directory. If you decide not
to load resource files from the top of the package tree, consider the following
information concerning resource file naming.

When you load a resource file, loadjava derives the name of the resource schema
object from the file name that you enter on the command line. Suppose you type the
following relative and absolute pathnames on the command line:

cd \scott\javastuff
loadjava options alpha\beta\x.properties
loadjava options \scott\javastuff\alpha\beta\x.properties

Although you have specified the same file with a relative and an absolute pathname,
loadjava creates two schema objects:

■ alpha\beta\x.properties

■ \scott\javastuff\alpha\beta\x.properties.

loadjava generates the resource schema object's name from the file names you
entered.

Classes can refer to resource files relatively (for example, b.properties) or
absolutely (for example, \a\b.properties). To ensure that loadjava and the class
loader use the same name for a schema object, pass loadjava the name of the resource
that the class passes to the java.lang.Object.getResource or
java.lang.Class.getResourceAsStream method.

Instead of remembering whether classes use relative or absolute resource names and
changing directories so that you can enter the correct name on the command line, you
can load resource files into a JAR file, as follows:

cd \scott\javastuff

Using Stored Procedures

4-6 Oracle Database Lite Developer’s Guide for Java

jar -cf alpharesources.jar alpha*.properties
loadjava options alpharesources.jar

Or, to simplify further, put both the class and resource files in a JAR, which makes the
following invocations equivalent:

loadjava options alpha.jar
loadjava options \scott\javastuff\alpha.jar

Example
The following loads a class and resource file into Oracle Database Lite. It uses the
force option; if the database already contains objects with the specified names,
loadjava replaces them.

c:\> loadjava -u scott/tiger@c:\Olite\Mobile\Sdk\OLDB40\Polite.odb -f Agent.class\
images.dat

4.3.1.1.2 Using CREATE JAVA

To load Java classes manually, use the following syntax:

CREATE [OR REPLACE] [AND RESOLVE] [NOFORCE]
 JAVA {CLASS [SCHEMA <schema_name>] |
 RESOURCE NAMED [<schema_name>.]<primary_name>}
 [<invoker_rights_clause>]
 RESOLVER <resolver_spec>]
 USING BFILE ('<dir_path>', '<class_name>')

The following apply to the CREATE JAVA parameters:

■ The OR REPLACE clause, if specified, recreates the function or procedure if one
with the same name already exists in the database.

■ For compatibility with the Oracle database, Oracle Database Lite recognizes but
ignores the <resolver_spec> clause. Unlike the Oracle database, Oracle
Database Lite does not resolve class dependencies. When loading classes
manually, be sure to load all dependent classes.

■ Oracle Database Lite recognizes but ignores <invoker_rights_clause>.

Example
The following demonstrates a CREATE JAVA statement. It loads a class named
Employee into the database.

CREATE JAVA CLASS USING BFILE ('c:\myprojects\java',
 'Employee.class');

4.3.1.2 Publishing Stored Procedures to SQL
After loading the Java class into the Oracle Database Lite database using loadjava or
CREATE JAVA, you publish any static method in the class that you want to call from
SQL. To publish the method, create a call specification (call spec) for it. The call spec
maps the Java method's name, parameter types, and return types to SQL counterparts.

You do not need to publish every stored procedure, only those that serve as entry
points for your application. In a typical implementation, many stored procedures are
called only by other stored procedures, not by SQL users.

To create a call spec, use the SQL commands CREATE FUNCTION or CREATE
PROCEDURE. Use CREATE FUNCTION for methods that return a value, and

Using Stored Procedures

Java Stored Procedures and Triggers 4-7

CREATE PROCEDURE for methods that do not return a value. The CREATE
FUNCTION and CREATE PROCEDURE statements have the following syntax.

CREATE [OR REPLACE]
 { PROCEDURE [<schema_name>.]<proc_name> [([<sql_parms>])] |
 FUNCTION [<schema_name>.]<func_name> [([<sql_parms>])]
 RETURN <sql_type> }
 <invoker_rights_clause>
 { IS | AS } LANGUAGE JAVA NAME
 '<java_fullname> ([<java_parms>])
 [return <java_type_fullname>]';
 /

The following apply to this statement's keywords and parameters:

■ <sql_parms> has the following format:

<arg_name> [IN | OUT | IN OUT]
 <datatype>

■ <java_parms> is the fully qualified name of the Java datatype.

■ For compatibility with the Oracle database, Oracle Database Lite recognizes but
ignores the <invoker_rights_clause> clause.

■ <java_fullname> is the fully qualified name of a static Java method.

■ IS and AS are synonymous.

For example, assume the following class has been loaded into the database:

import java.sql.*;
import java.io.*;

public class GenericDrop {
 public static void dropIt (Connection conn, String object_type,
 String object_name) throws SQLException {
 // Build SQL statement
 String sql = "DROP " + object_type + " " + object_name;
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(sql);
 stmt.close();
 } catch (SQLException e) {
 System.err.println(e.getMessage());}
 } // dropIt
} // GenericDrop

Class GenericDrop has one method named dropIt, which drops any kind of
schema object. For example, if you pass the arguments "table" and "emp" to dropIt,
the method drops the database table EMP from your schema.

The following call specification publishes the method to SQL:

CREATE OR REPLACE PROCEDURE drop_it (
 obj_type VARCHAR2,
 obj_name VARCHAR2)
 AS LANGUAGE JAVA
 NAME 'GenericDrop.dropIt(java.sql.Connection,
 java.lang.String, java.lang.String)';
 /

Notice that you must fully qualify the Java datatype parameters.

Using Stored Procedures

4-8 Oracle Database Lite Developer’s Guide for Java

Given that you have a table named TEMP defined in your schema, you can execute the
drop_it procedure from SQL Plus as follows.

Select drop_it('TABLE', 'TEMP') from dual;

You can also execute the drop_it procedure from within a ODBC application using
ODBC CALL statement. For more information, refer Section 4.3.3, "Calling Java Stored
Procedures from ODBC".

4.3.1.3 Calling Published Stored Procedures
After publishing the stored procedure to SQL, you call it by using a SQL DML
statement. For example, assume that this class is stored in the database:

public class Formatter {
 public static String formatEmp (String empName, String jobTitle) {
 empName = empName.substring(0,1).toUpperCase() +
 empName.substring(1).toLowerCase();
 jobTitle = jobTitle.trim().toLowerCase();
 if (jobTitle.equals("analyst"))
 return (new String(empName + " is an exempt analyst"));
 else
 return (new String(empName + " is a non-exempt " + jobTitle));
 }
}

Class Formatter has one method named formatEmp, which returns a formatted
string containing an employee's name and job status. Create a call spec for Formatter
as follows:

CREATE OR REPLACE FUNCTION format_emp (ename VARCHAR2, job VARCHAR2)
 RETURN VARCHAR2
 AS LANGUAGE JAVA
 NAME 'Formatter.formatEmp (java.lang.String, java.lang.String)
 return java.lang.String';
 /

The call spec publishes the method formatEmp as format_emp. Invoke it as follows:

SELECT FORMAT_EMP(ENAME, JOB) AS "Employees" FROM EMP
 WHERE JOB NOT IN ('MANAGER', 'PRESIDENT') ORDER BY ENAME;

This statement produces the following output:

Employees
--
Adams is a non-exempt clerk
Allen is a non-exempt salesman
Ford is an exempt analyst
James is a non-exempt clerk
Martin is a non-exempt salesman
Miller is a non-exempt clerk
Scott is an exempt analyst
Smith is a non-exempt clerk
Turner is a non-exempt salesman
Ward is a non-exempt salesman

Using Stored Procedures

Java Stored Procedures and Triggers 4-9

4.3.1.4 Dropping Published Stored Procedures
To remove classes from Oracle Database Lite, use either of the following:

■ the dropjava utility

■ the SQL DROP JAVA statement

To drop call specifications, use either DROP FUNCTION or DROP PROCEDURE.

4.3.1.4.1 Using dropjava dropjava is a command-line utility that automates the task of
dropping Java classes from Oracle Database Lite and Oracle databases. dropjava
converts file names into the names of schema objects and drops the schema objects.
Use the following syntax to invoke dropjava:

dropjava {-user | -u} username/password[@database]
 [-option] filename filename ...

Arguments
This section describes the arguments to dropjava.

User
The user argument specifies a username, password, and absolute path to the database
file in the following format:

<user>/<password>[@<database>]

For example:

scott/tiger@c:\Olite\Mobile\Sdk\OLDB40\Polite.odb

Option
By specifying the verbose option (-verbose | -v), you can direct dropjava to
produce detailed status messages while running.

Oracle database supports additional options for dropjava, as described in the
Oracle9i Java Stored Procedures Developer's Guide. If used with Oracle Database Lite, the
additional options are recognized but not supported. Using them does not result in an
error.

For a complete list of supported and recognized options, from the command prompt
type:

dropjava -help

Filename
For the filename argument, you can specify any number of Java class, source, JAR,
ZIP, and resource files, in any order. JAR and ZIP files must be uncompressed.
dropjava interprets most file names the same way loadjava does:

■ For class files, dropjava finds the class name in the file and drops the
corresponding schema object.

Note: Oracle Database Lite does not support the Oracle database
SQL CALL statement for invoking stored procedures.

For information on calling stored procedures from C and C++
applications, see "Calling Java Stored Procedures from ODBC".

Using Stored Procedures

4-10 Oracle Database Lite Developer’s Guide for Java

■ For source files, dropjava finds the first class name in the file and drops the
corresponding schema object.

■ For JAR and ZIP files, dropjava processes the archived file names as if they had
been entered on the command line.

If a file name has an extension other than .java, .class, .jar, or .zip, or has no extension,
then dropjava assumes that the file name is the name of a schema object, then drops
all source, class, and resource schema objects with that name. If dropjava encounters
a file name that does not match the name of any schema object, it displays an error
message and then processes the remaining file names.

4.3.1.4.2 Using SQL Commands To drop a Java class from Oracle Database Lite
manually, use the DROP JAVA statement. DROP JAVA has the following syntax:

DROP JAVA { CLASS | RESOURCE } [<schema-name> .]<object_name>

To drop a call specification, use the DROP FUNCTION or DROP PROCEDURE
statement:

DROP { FUNCTION | PROCEDURE } [<schema-name>.]<object_name>

The schema name, if specified, is recognized but not supported by Oracle Database
Lite.

4.3.1.5 Example
The following example creates a Java stored procedure using the load and publish
model.

In this example, you store the Java method paySalary in the Oracle Database Lite.
paySalary computes the take-home salary for an employee.

This example covers the following steps.

■ Step 1: Create the Java Class

■ Step 2: Load the Java Class into the Database

■ Step 3: Publish the Function

■ Step 4: Execute the Function

More examples of Java stored procedures are located in the <Oracle_
home>\Mobile\SDK\samples\jdbc directory.

Step 1: Create the Java Class
Create the Java class Employee in the file Employee.java. The Employee class
implements the paySalary method:

import java.sql.*;
public class Employee {
 public static String paySalary(float sal, float fica, float sttax,
 float ss_pct, float espp_pct) {
 float deduct_pct;
 float net_sal;
 // compute take-home salary
 deduct_pct = fica + sttax + ss_pct + espp_pct;
 net_sal = sal * deduct_pct;
 String returnstmt = "Net salary is " + net_sal;
 return returnstmt;
 } // paySalary
}

Using Stored Procedures

Java Stored Procedures and Triggers 4-11

Step 2: Load the Java Class into the Database
From MSQL, load the Java class using CREATE JAVA, as follows:

CREATE JAVA CLASS USING BFILE ('c:\myprojects\doc',
'Employee.class');

This command loads the Java class located in c:\myprojects\doc into the Oracle
Database Lite.

Step 3: Publish the Function
Create a call spec for the paySalary method. The following call spec publishes the
Java method paySalary as function pay_salary:

CREATE FUNCTION pay_salary (
sal float, fica float, sttax float, ss_pct float, espp_pct float)
RETURN VARCHAR2
AS LANGUAGE JAVA NAME
'Employee.paySalary(float, float, float, float, float)
return java.lang.String';
/

Step 4: Execute the Function
To execute pay_salary in MSQL:

SELECT pay_salary(6000.00, 0.2, 0.0565, 0.0606, 0.1)
FROM DUAL;

To execute pay_salary in ODBC:

SQLExecDirect(hstm,
 "SELECT pay_salary(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL);

Because the arguments to pay_salary are constants, the FROM clause specifies the
dummy table DUAL. This SELECT statement produces the following output:

Net salary is 2502.6

4.3.2 Model 2: Using the Attached Stored Procedure Development Model
This section describes how to create stored procedures by attaching classes to tables.
This information is specific to Oracle Database Lite; you cannot attach classes to Oracle
database tables as described here. The load and publish model for developing stored
procedures, described in "Model 1: Using the Load and Publish Stored Procedure
Development Model", only supports class (static) methods. By attaching classes to
tables, however, you can store and call Java class and instance methods.

To create attached stored procedures, develop the class that you want to attach. Make
sure that the class compiles and executes without errors. Then attach the class to an
Oracle Database Lite table. Once the class is attached, the methods in the class become
the table-level and row-level stored procedures of the table.

Note: The keyword "public class" should not be used in a
comment before the first public class statement.

Using Stored Procedures

4-12 Oracle Database Lite Developer’s Guide for Java

4.3.2.1 Attaching a Java Class to a Table
To attach a Java class to a table, use the SQL command ALTER TABLE. The ALTER
TABLE command has the following syntax:

ALTER TABLE [schema.]table
 ATTACH JAVA {CLASS|SOURCE} "cls_or_src_name "
 IN {DATABASE|'cls_or_src_path '}
 [WITH CONSTRUCTOR ARGS (col_name_list)]

You can attach either a source file or a class file. Source files are compiled by the Java
compiler found in the system path.

cls_or_src_name specifies a fully qualified name of a class or source file. This
includes the package name followed by class name, such as
Oracle.lite.Customer. Do not include the file extension in the class or source file
name. The name is case-sensitive. If you use lowercase letters, enclose the name in
double quotes (" "). Make sure that the source or class is in the package specified by
cls_or_src_name. (The source file of the example class Customer should contain
the line "package Oracle.lite;".) The class file is stored in the database in the
same package. Oracle Database Lite creates the package if it does not already exist.

If you have already attached the Java class to another table in the database, you can
use the IN DATABASE clause. If the class has not yet been attached, specify the
directory location of the class or source file in cls_or_src_path.

Prior to executing a row-level stored procedure, Oracle Database Lite creates a Java
object for the row, if one does not already exist. If the ALTER TABLE statement
includes a WITH CONSTRUCTOR clause, Oracle Database Lite creates the object
using the class constructor that is the best match given the datatypes of the columns
included in col_name_list. If the ALTER TABLE statement does not include a
WITH CONSTRUCTOR clause, Oracle Database Lite uses the default constructor.

You can use the ODBC functions SQLProcedures and SQLProcedureColumns to
retrieve information about methods defined in a table.

4.3.2.2 Table-Level Stored Procedures
Table-level stored procedures are the static methods of the attached Java class.
Therefore, when executing the method, Oracle Database Lite does not instantiate the
class to which it belongs. In a call statement, you refer to table-level stored procedures
as table_name.method_name.

Statement-level triggers and BEFORE INSERT and AFTER DELETE row-level triggers
(see section ""Statement-Level vs. Row-Level Triggers"") must be table-level stored
procedures.

4.3.2.3 Row-Level Stored Procedures
Row-level stored procedures are the non-static methods in the attached Java class. To
execute a row-level stored procedure, Oracle Database Lite instantiates the class to
which the procedure belongs. The arguments to the class constructor determine which
column values the constructor uses as parameters to create the class instances. In a call
statement, you refer to row-level stored procedures as method_name (without the
table qualifier). Row-level triggers can indirectly execute row-level stored procedures.

4.3.2.4 Calling Attached Stored Procedures
After attaching the class to a table using the ALTER TABLE statement, you can call it
with a SELECT statement. Refer to table-level stored procedures as table_name.method_
name and row-level procedures as method_name.

Using Stored Procedures

Java Stored Procedures and Triggers 4-13

For example, to execute a table-level stored procedure:

SELECT table_name.proc_name[arg_list]
 FROM {DUAL|[schema.]table WHERE condition};

The proc_name is the name of the table-level stored procedure. Each argument in
arg_list is either a constant or a reference to a column in the table. If all the
arguments of arg_list are constants, the FROM clause should reference the dummy
table DUAL.

Execute a row-level stored procedure as follows:

SELECT [schema.]proc_name[arg_list]
 FROM [schema.]table
 WHERE condition;

If you call a procedure in the form table_name.method_name, and a table or method with
that name does not exist, Oracle Database Lite assumes that table_name refers to a
schema name and method_name refers to a procedure name. If you reference method_
name only, Oracle Database Lite assumes that the referenced method is a row-level
procedure. If there is no such procedure defined, however, Oracle Database Lite
assumes that method_name refers to a procedure in the current schema.

4.3.2.5 Dropping Attached Stored Procedures
You use the ALTER TABLE command to drop stored procedures. ALTER TABLE has
the following syntax:

ALTER TABLE [schema.]table
 DETACH [AND DELETE] JAVA CLASS "class_name"

Detaching the Java class does not delete it from the database. To delete the Java class
file from the database, use the DETACH AND DELETE statement.

If you delete a Java class from the database after invoking it as a stored procedure or
trigger, the class remains in the Java Virtual Machine attached to the application. To
unload the class from the Java Virtual Machine, commit changes to the database, if
necessary, and close all applications connected to the database. To replace a Java class,
you must close all connections to the database and reload the class.

4.3.2.6 Example
The following example shows how to create a Java stored procedure in Oracle
Database Lite. In this example, you attach the Java method paySalary to the table
EMP. paySalary computes the take-home salary for an employee.

This example covers the following steps:

Note: Oracle Database Lite does not support the Oracle8i SQL
CALL statement for invoking stored procedures.

You can use a callable statement to execute a procedure from
ODBC or JDBC applications. For more information, see Chapter 3,
"JDBC Programming". For additional information, see "Calling Java
Stored Procedures from ODBC".

Note: You must enclose the class name in double quotes (" ") if it
contains lowercase letters.

Using Stored Procedures

4-14 Oracle Database Lite Developer’s Guide for Java

■ Step 1: Create the Table

■ Step 2: Create the Java Class

■ Step 3: Attach the Java Class to the Table

■ Step 4: Execute the Method

Step 1: Create the Table
Create the table using the following SQL command:

CREATE TABLE EMP(Col1 char(10));

Step 2: Create the Java Class
Create the Java class Employee in the file Employee.java. The Employee class
implements the paySalary method:

import java.sql.*;
public class Employee {
 public static String paySalary(float sal, float fica, float sttax,
 float ss_pct, float espp_pct) {
 float deduct_pct;
 float net_sal;
 // compute take-home salary
 deduct_pct = fica + sttax + ss_pct + espp_pct;
 net_sal = sal * deduct_pct;
 String returnstmt = "Net salary is " + net_sal;
 return returnstmt;
 } // paySalary
}

Step 3: Attach the Java Class to the Table
From MSQL, attach the Java class using the ALTER TABLE command:

ALTER TABLE EMP ATTACH JAVA SOURCE "Employee" IN 'C:\tmp';

This command attaches the Java source file for the Employee class, which resides in
the directory C:\tmp, to the EMP table.

Step 4: Execute the Method
To execute the paySalary method in MSQL, type the following statement:

SELECT EMP."paySalary"(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL;

To execute paySalary from ODBC, invoke SQLExecDirect:

SQLExecDirect(hstm,
 "SELECT EMP.\"paySalary\"(6000.00,0.2,0.0565,0.0606,0.1)
 FROM DUAL);

This statement produces the following result:

Net salary is 2502.6

4.3.3 Calling Java Stored Procedures from ODBC
When invoking a Java stored procedure from a multithreaded C or C++ application,
you should load jvm.dll from the application's main function. This resolves a problem

Java Datatypes

Java Stored Procedures and Triggers 4-15

that occurs with the Java Virtual Machine's garbage collection when a C or C++
application creates multiple threads that invoke a stored procedure directly or
indirectly. The Java Virtual Machine runs out of memory because the threads do not
detach from the Java Virtual Machine before exiting. Since Oracle Database Lite cannot
determine whether the Java Virtual Machine or the user application created the thread,
it does not attempt to detach them.

main should load the library before taking any other action, as follows:

int main (int argc, char** argv)
{
 LoadLibrary("jvm.dll");
 ...
}

The library loads the Java Virtual Machine into the application's main thread. It
attempts to detach any thread from the Java Virtual Machine if the thread detaches
from the process. The jvm.dll behaves correctly even if the thread is not attached to a
Java Virtual Machine.

4.4 Java Datatypes
Oracle Database Lite performs type conversion between Java and SQL datatypes
according to standard SQL rules. For example, if you pass an integer to a stored
procedure that takes a string, Oracle Database Lite converts the integer to a string. For
information about row-level triggers arguments, see Trigger Arguments. For a
complete list of Java to SQL datatype mappings, see Chapter 2, "Application
Development", Section 2.1.1, "Java Datatypes", Table 2–1, " Datatype Conversions".

Java does not allow a method to change the value of its arguments outside the scope of
the method. However, Oracle Database Lite supports IN, OUT, and IN/OUT
parameters.

Many Java datatypes are immutable or do not support NULL values. To pass NULL
values and use IN/OUT parameters for those datatypes, a stored procedure can use an
array of that type or use the equivalent object type. Table 4–2 shows the Java integer
datatypes you can use to enable an integer to be an IN/OUT parameter or carry a
NULL value.

You can use mutable Java datatypes, such as Date, to pass a NULL or an IN/OUT
parameter. However, use a Date array if a stored procedure needs to change the
NULL status of its argument.

Note: In Oracle database, DATE columns are created as
TIMESTAMP. You must specify trigger methods accordingly.

Table 4–2 The Java Integer Datatypes

Java Argument Can Be IN/OUT Can Be NULL

int No No

int[] Yes Yes

Integer No Yes

Integer[] Yes Yes

int[][] Yes Yes

Java Datatypes

4-16 Oracle Database Lite Developer’s Guide for Java

4.4.1 Declaring Parameters
The return value of a Java method is the OUT parameter of the procedure. A primitive
type or immutable reference type can be an IN parameter. A mutable reference type or
array type can be an IN/OUT parameter. Table 4–3 shows the Java type to use to make
the corresponding Oracle Database Lite parameter an IN/OUT parameter.

If the stored procedure takes a java.sql.Connection, Oracle Database Lite
automatically supplies the argument using the value of the current transaction or row.
This argument is the first argument passed to the procedure.

4.4.2 Using Stored Procedures to Return Multiple Rows
You can use stored procedures to return multiple rows. You can invoke stored
procedures that return multiple rows only from JDBC or ODBC applications, however.
For a stored procedure to return multiple rows, its corresponding Java method must
return a java.sql.ResultSet object. By executing a SELECT statement, the Java
method obtains a ResultSet object to return. The column names of the ResultSet
are specified in the SELECT statement. If you need to address the result columns by
different names than those used in the table, the SELECT statement should use aliases
for the result columns. For example:

SELECT emp.name Name, dept.Name Dept
 FROM emp, dept
 WHERE emp.dept# = dept.dept#;

Because the return type of a stored procedure that returns multiple rows must be
java.sql.ResultSet, the signature of that stored procedure cannot be used to
obtain the column names or types of the result. Consequently, you should design
additional tables to track the column names or result types for the stored procedures.
For example, if you embed the preceding SELECT statement in a Java method, the
method return type should be java.sql.ResultType, not char Name and char
Dept.

Note: Passing a NULL when the corresponding Java argument
cannot be NULL causes an error.

Table 4–3 Java Types for Oracle Database Lite IN/OUT Parameters

For IN/OUT parameters
of type... Use...

Number Integer[] or int[]

Binary byte[] or byte[][]

String string[]

Note: You can only create Java stored procedures that return
multiple rows using the attached stored procedure development
model, described in "Model 2: Using the Attached Stored Procedure
Development Model".

Using Triggers

Java Stored Procedures and Triggers 4-17

4.4.2.1 Returning Multiple Rows in ODBC
To execute a stored procedure that returns multiple rows in an OBDC application, use
the following CALL statement, in which P is the name of the stored procedure and a1
through an are arguments to the stored procedure.

{CALL P(a1,...,an)}

You use a marker (?) for any argument that should be bound to a value before the
statement executes. When the statement executes, the procedure runs and the cursor
on the result set is stored in the statement handle. Subsequent fetches using this
statement handle return the rows from the procedure.

After you execute the CALL statement, use SQLNumResultCols to find the number of
columns in each row of the result. Use the SQLDescribeCol function to return the
column name and datatype.

4.4.2.2 Example
The following example shows how to use ODBC to execute a stored procedure that
returns multiple rows. This example does not use the SQLNumResultCols or
SQLDescribeCol functions. It assumes that you have created a stored procedure,
which you have published to SQL as PROC. PROC takes an integer as an argument.

rc = SQLPrepare(StmtHdl, "{call PROC(?)}", SQL_NTS);
CHECK_STMT_ERR(StmtHdl, rc, "SQLPrepare");

rc = SQLBindParameter(StmtHdl, 1, SQL_PARAM_INPUT_OUTPUT,
 SQL_C_LONG,SQL_INTEGER, 0, 0, &InOutNum, 0, NULL);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindParameter");

rc = SQLExecute(StmtHdl);
CHECK_STMT_ERR(StmtHdl, rc, "SQLExecute");

/* you can use SQLNumResultCols and SQLDescribeCol here */

rc = SQLBindCol(StmtHdl, 1, SQL_C_CHAR, c1, 20, &pcbValue1);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindCol");

rc = SQLBindCol(StmtHdl, 2, SQL_C_CHAR, c2, 20, &pcbValue2);
CHECK_STMT_ERR(StmtHdl, rc, "SQLBindCol");

while ((rc = SQLFetch(StmtHdl)) != SQL_NO_DATA_FOUND) {
 CHECK_STMT_ERR(StmtHdl, rc, "SQLFetch");
 printf("%s, %s\n", c1, c2);
}

4.5 Using Triggers
Triggers are stored procedures that execute, or "fire", when a specific event occurs. A
trigger can fire when a column is updated, or when a row is added or deleted. The
trigger can fire before or after the event.

Triggers are commonly used to enforce a database's business rules. For example, a
trigger can verify input values and reject an illegal insert. Similarly, a trigger can
ensure that all tables depending on a particular row are brought to a consistent state
before the row is deleted.

Using Triggers

4-18 Oracle Database Lite Developer’s Guide for Java

4.5.1 Statement-Level vs. Row-Level Triggers
There are two types of triggers: row-level and statement-level. A row-level trigger is
fired once for each row affected by the change to the database. A statement-level
trigger fires only once, even if multiple rows are affected by the change.

The BEFORE INSERT and AFTER DELETE triggers can only fire table-level stored
procedures, since a row object cannot be instantiated to call the procedures. The
AFTER INSERT, BEFORE DELETE, and UPDATE triggers may fire table-level or
row-level stored procedures.

4.5.2 Creating Triggers
Use the CREATE TRIGGER statement to create a trigger. The CREATE TRIGGER
statement has the following syntax:

CREATE [OR REPLACE] TRIGGER trigger_name {BEFORE | AFTER} [{INSERT | DELETE |
 UPDATE [OF column_list]} [OR]] ON table_reference
 [FOR EACH ROW] procedure_ref
 (arg_list)

In the CREATE TRIGGER syntax:

■ Use the OR clause to specify multiple triggering events.

■ Use FOR EACH ROW to create a row-level trigger. For a table-level trigger, do not
include this clause.

■ Use procedure_ref to identify the stored procedure to execute.

You can create multiple triggers of the same kind for a table if each trigger has a
unique name within a schema.

In the following example, assume that you have stored and published a procedure as
PROCESS_NEW_HIRE. The trigger AIEMP fires every time a row is inserted into the
EMP table.

CREATE TRIGGER AIEMP AFTER INSERT ON EMP FOR EACH ROW
 PROCESS_NEW_HIRE(ENO);

UPDATE triggers that use the same stored procedure for different columns of a table
are fired only once when a subset of the columns is modified within a statement. For
example, the following statement creates a BEFORE UPDATE trigger on table T, which
has columns C1, C2, and C3:

CREATE TRIGGER T_TRIGGER BEFORE UPDATE OF C1,C2,C3 ON T
 FOR EACH ROW trigg(old.C1,new.C1,old.C2,new.C2,
 old.C3,new.C3);

This update statement fires T_TRIGGER only once:

UPDATE T SET C1 = 10, C2 = 10 WHERE ...

4.5.2.1 Enabling and Disabling Triggers
When you create a trigger, it is automatically enabled. To disable triggers, use the
ALTER TABLE or ALTER TRIGGER statement.

To enable or disable individual triggers, use the ALTER TRIGGER statement, which
has the following syntax:

ALTER TRIGGER <trigger_name> {ENABLE | DISABLE}

Using Triggers

Java Stored Procedures and Triggers 4-19

To enable or disable all triggers attached to a table, use ALTER TABLE:

ALTER TABLE <table_name> {ENABLE | DISABLE} ALL TRIGGERS

4.5.3 Dropping Triggers
To drop a trigger, use the DROP TRIGGER statement, which has the following syntax:

DROP TRIGGER [schema.]trigger

4.5.4 Trigger Example
This example creates a trigger. It follows the development model described in "Model
2: Using the Attached Stored Procedure Development Model". For an example of
creating triggers using the load and publish model, see "Trigger Arguments Example".
In the example, you first create a table and a Java class. Then you attach the class to the
table. And finally, you create and fire the trigger.

The SalaryTrigger class contains the check_sal_raise method. The method
prints a message if an employee gets a salary raise of more than ten percent. The
trigger fires the method before updating a salary in the EMP table.

Since check_sal_raise writes a message to standard output, use MSQL to issue the
MSQL commands in the example. To start MSQL, invoke the Command Prompt and
enter the following.

msql username/password@connect_string

connect_string is JDBC URL syntax. For example, to connect to the default
database as user SYSTEM, at the Command Prompt.

msql system/passwd@jdbc:polite:polite

At the MSQL command line, create and populate the EMP table as follows.

CREATE TABLE EMP(E# int, name char(10), salary real,
 Constraint E#_PK primary key (E#));

INSERT INTO EMP VALUES (123,'Smith',60000);
INSERT INTO EMP VALUES (234,'Jones',50000);

Place the following class in SalaryTrigger.java:

class SalaryTrigger {
 private int eno;
 public SalaryTrigger(int enum) {
 eno = enum;
 }
 public void check_sal_raise(float old_sal,
 float new_sal)
 {
 if (((new_sal - old_sal)/old_sal) > .10)
 {
 // raise too high do something here
 System.out.println("Raise too high for employee " + eno);
 }
 }
}

Using Triggers

4-20 Oracle Database Lite Developer’s Guide for Java

The SalaryTrigger class constructor takes an integer, which it assigns to attribute
eno (the employee number). An instance of SalaryTrigger is created for each row
(that is, for each employee) in the table EMP.

The check_sal_raise method is a non-static method. To execute, it must be called
by an object of its class. Whenever the salary column of a row in EMP is modified, an
instance of SalaryTrigger corresponding to that row is created (if it does not
already exist) with the employee number (E#) as the argument to the constructor. The
trigger then calls the check_sal_raise method.

After creating the Java class, you attach it to the table, as follows:

ALTER TABLE EMP ATTACH JAVA SOURCE "SalaryTrigger" IN '.'
 WITH CONSTRUCTOR ARGS(E#);

This statement directs Oracle Database Lite to compile the Java source file
SalaryTrigger.java found in the current directory, and attach the resulting class to the
EMP table. The statement also specifies that, when instantiating the class, Oracle
Database Lite should use the constructor that takes as an argument the value in the E#
column.

After attaching the class to the table, create the trigger as follows:

CREATE TRIGGER CHECK_RAISE BEFORE UPDATE OF SALARY ON EMP FOR EACH ROW
 "check_sal_raise"(old.salary, new.salary);
/

This statement creates a trigger called check_raise, which fires the check_sal_
raise method before any update to the salary column of any row in EMP. Oracle
Database Lite passes the old value and the new value of the salary column as
arguments to the method.

In the example, a row-level trigger fires a row-level procedure (a non-static method).
A row-level trigger can also fire table-level procedures (static methods). However,
because statement-level triggers are fired once for an entire statement and a statement
may affect multiple rows, a statement-level trigger can only fire a table-level
procedure.

The following command updates the salary and fires the trigger:

UPDATE EMP SET SALARY = SALARY + 6100 WHERE E# = 123;

This produces the following output:

Raise too high for employee 123

4.5.5 Trigger Arguments
If using attached stored procedures, as described in "Model 2: Using the Attached
Stored Procedure Development Model", row-level triggers do not support Java-to-SQL
type conversion. Therefore, the Java datatype of a trigger argument must match the
corresponding SQL datatype (shown in section "Java Datatypes") of the trigger
column. However, if you are using the load and publish model, Oracle Database Lite
supports datatype casting.

Table 4–4 describes how trigger arguments work in each type of column.

Using Triggers

Java Stored Procedures and Triggers 4-21

4.5.6 Trigger Arguments Example
The following example shows how to create triggers that use IN/OUT parameters.

1. First, create the Java class EMPTrigg.

import java.sql.*;

public class EMPTrigg {
 public static final String goodGuy = "Oleg";

 public static void NameUpdate(String oldName, String[] newName)
 {
 if (oldName.equals(goodGuy))
 newName[0] = oldName;
 }

 public static void SalaryUpdate(String name, int oldSalary,
 int newSalary[])
 {
 if (name.equals(goodGuy))
 newSalary[0] = Math.max(oldSalary, newSalary[0])*10;
 }

 public static void AfterDelete(Connection conn,
 String name, int salary) {
 if (name.equals(goodGuy))
 try {
 Statement stmt = conn.createStatement();
 stmt.executeUpdate(
 "insert into employee values('" + name + "', " +
 salary + ")");
 stmt.close();
 } catch(SQLException e) {}
 }
 }

2. Create a new table EMPLOYEE and populate it with values.

CREATE TABLE EMPLOYEE(NAME VARCHAR(32), SALARY INT);
INSERT INTO EMPLOYEE VALUES('Alice', 100);
INSERT INTO EMPLOYEE VALUES('Bob', 100);
INSERT INTO EMPLOYEE VALUES('Oleg', 100);

3. Next, load the class into Oracle Database Lite.

CREATE JAVA CLASS USING BFILE ('c:\myprojects', 'EMPTrigg.class');

Table 4–4 Trigger Arguments

Trigger Argument New Column Access Old Column Access

insert Yes No

delete No Yes

update Yes Yes

Note: Triggers that have a java.sql.Connection object as an
argument may be used only with applications that use the
relational model.

Using Triggers

4-22 Oracle Database Lite Developer’s Guide for Java

4. Use the CREATE PROCEDURE statement to publish the EMPTrigg methods that
you want to call:

CREATE PROCEDURE NAME_UPDATE(
 OLD_NAME IN VARCHAR2, NEW_NAME IN OUT VARCHAR2)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.NameUpdate(java.lang.String, java.lang.String[])';
 /

CREATE PROCEDURE SALARY_UPDATE(
 ENAME VARCHAR2, OLD_SALARY INT, NEW_SALARY IN OUT INT)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.SalaryUpdate(java.lang.String, int, int[])';
 /

CREATE PROCEDURE AFTER_DELETE(
 ENAME VARCHAR2, SALARY INT)
 AS LANGUAGE JAVA NAME
 'EMPTrigger.AfterDelete(java.sql.Connection,
 java.lang.String, int)';
 /

5. Now, create a trigger for each procedure:

CREATE TRIGGER NU BEFORE UPDATE OF NAME ON EMPLOYEE FOR EACH ROW
 NAME_UPDATE(old.name, new.name);

CREATE TRIGGER SU BEFORE UPDATE OF SALARY ON EMPLOYEE FOR EACH ROW
 SALARY_UPDATE(name, old.salary, new.salary);

CREATE TRIGGER AD AFTER DELETE ON EMPLOYEE FOR EACH ROW
 AFTER_DELETE(name, salary);

6. Enter the following commands to fire the triggers and view the results:

SELECT * FROM EMPLOYEE;
UPDATE EMPLOYEE SET SALARY=0 WHERE NAME = 'Oleg';
SELECT * FROM EMPLOYEE;

DELETE FROM EMPLOYEE WHERE NAME = 'Oleg';
SELECT * FROM EMPLOYEE;

UPDATE EMPLOYEE SET NAME='TEMP' WHERE NAME = 'Oleg';
DELETE FROM EMPLOYEE WHERE NAME = 'TEMP';

SELECT * FROM EMPLOYEE;

Java Support on Windows CE 5-1

5
Java Support on Windows CE

This chapter describes Java support for Windows CE devices using the Java Interface.
Topics include:

■ Section 5.1, "Overview"

■ Section 5.2, "Sync Class"

■ Section 5.3, "SyncException Class"

■ Section 5.4, "SyncOption Class"

■ Section 5.5, "Java Interface SyncParam Settings"

■ Section 5.6, "Java Interface TransportParam Parameters"

■ Section 5.7, "SyncProgress Listener Service"

5.1 Overview
Using the Java interface for Mobile Sync client-side synchronization tasks, programs
written in Java can use the functionality provided by the OCAPI library. The Java
interface resides in the oracle.lite.msync package.

The Java interface provides for the following functions:

■ Setting client side user profiles containing data such as user name, password, and
server

■ Starting the synchronization process

■ Tracking the progress of the synchronization process

The Java interface consists of two files, mSync.jar and msync_java.dll. To use the
Java interface, the mSync.jar file must be included in the classpath. The mSync.jar
file is located in the following directory.

<Oracle_home>\Mobile\classes

The msync_java.dll file is located in the following directory.

<Oracle_home>\Mobile\bin

There are four parts to the Java interface. They are:

■ Sync Class

■ SyncException Class

■ SyncOption Class

■ SyncProgressListener Interface

Sync Class

5-2 Oracle Database Lite Developer’s Guide for Java

The following sections describe the Java interface.

5.2 Sync Class
This class initiates synchronization by using the provided synchronization options.
The parameters for the constructor are listed in Table 5–1.

Constructors
Sync(SyncOption option)

Public Methods
To monitor the progress of the synchronization process, the public method
SyncProgressListener adds a progress listener to the object.

SyncProgressListener add(ProgressListener listener)

The parameters for the SyncProgressListener method are described in Table 5–2.

The following code demonstrates how to start a session using the default settings.

try

{
 Sync mySync = new Sync(new SyncOption());
 mySync.doSync();
}
catch (SyncException e)
{
 System.err.println("Sync Error:"+e.getMessage());
}

5.3 SyncException Class
This class signals a non recoverable error during the synchronization process. The
SyncException() Class constructs a "clear" object. The parameters for the
constructor are listed inTable 5–3:

Table 5–1 Sync Class Constructor

Parameter Description

option Instance of the SyncOption Class. This contains all the parameters
needed to perform synchronization.

Table 5–2 Sync Class Public Method

Parameter Description

listener An object that implements the ProgressListener interface. The
synchronization object calls the progress() function of this object
to notify it of the synchronization progress.

void doSync () Starts a synchronization session and blocks that thread until
synchronization is complete.

void abort () Aborts the synchronization session.

SyncOption Class

Java Support on Windows CE 5-3

Constructors
SyncException()

SyncException(int errorCode, string errorMessage)

Public Methods
The methods for the SyncException are listed in Table 5–4.

5.4 SyncOption Class
The SyncOption class is used to define the parameters for the synchronization
process. It can either be constructed manually, or can save or load data from the user
profile.

Constructors
SyncOption()

SyncOption

 (String user,

 String password,

 String syncParam,

 String transportDriver,

 String transportParam)

The parameters for the SyncOption constructor are listed in Table 5–5:

Table 5–3 syncException Constructor Parameter Description

Parameter Description

errorCode The error. Refer the Oracle Database Lite Message Reference.

errorMessage A readable text message that provides extra information.

Table 5–4 SyncExceptionClass Public Methods

Parameters Description

int getErrorCode() Gets the error code.

String getErrorMessage Gets the error message.

Table 5–5 SyncOption Constructors

Parameter Description

user A string containing the name used for authentication by the
Mobile Server.

password A string containing the user's password.

syncParam A string which defines an optional list of parameters for the
synchronization session. See Section 5.5, "Java Interface
SyncParam Settings" for more information.

transportDriver A string containing the name of the transport driver. Currently,
only "HTTP" is supported.

Java Interface SyncParam Settings

5-4 Oracle Database Lite Developer’s Guide for Java

Public Methods
These methods load and save the user profile. The parameters of the public methods
are listed in Table 5–6:

Example
The following code example demonstrates how to start a synchronization session
using the default settings:

SyncOption opt = new SyncOption

("sam","lion","pushonly","HTTP","server=server1;proxy=www-proxy.us.oracle.com;prox
yPort=80");

opt.save();

5.5 Java Interface SyncParam Settings
The syncParam is a string that can be passed when creating the SyncOption object.
It allows support parameters to be specified to the synchronization session. The string
is constructed of name-and-value pairs. For example:

transportParam A string containing all the parameters needed for the specified
driver to operate. See Section 5.6, "Java Interface TransportParam
Parameters" for more information.

priority A boolean value which limits synchronization to server tables
flagged as high priority, otherwise all tables are synchronized.

pushOnly A boolean value which makes synchronization push only.

Table 5–6 Sync Option Public Method Parameters

Parameter Description

void load(String username) This loads the profile for the specified user name.
If the user name is left null, the profile is loaded
for the last user to synchronize.

void save() This saves the settings to the profile for the active
user.

void setUser(String username) This is used to set and get the current user.

String getuser()

void setPassword(String
password)String getPassword()

This is used to set and get the password.

void setSyncParam(String
syncParam) string
getSyncParam()

This is used to set and get the synchronization
parameters.

void setTransportDriver(String
driverName) String
getTransportDriver()

This is used to set and get the driver name. Release
5.0.2 supports the "HTTP" driver.

void setTransportParam(String
transportParam) String
getTransportParam()

Set and get the transport parameters.

Table 5–5 (Cont.) SyncOption Constructors

Parameter Description

Java Interface TransportParam Parameters

Java Support on Windows CE 5-5

"name=value;name2=value2;name3=value3, ...;"

The names are not case sensitive, but the values are. The field names which can be
used are listed in Table 5–7.

Example 1
The first example enables SSL security and disables application deployment for the
current synchronization session:

"security=SSL; noapps;"

Example 2
The second example resets all previous settings, activates upload for the "Dept" table
only:

"reset;pushOnly;tableFlag[TestApp.Emp]=disable;tableFlag[TestApp.Dept]=enable;"

5.6 Java Interface TransportParam Parameters
The format of the TransportParam string is used to set specific parameters using a
string of name-and-value pairs, for example:

"name=value;name2=value2;name3=value3, ...;"

Table 5–7 Java Interface SyncParamSettings

Name Value/Options Description

"reset" N/A Clear all entries in the environment before
applying any remaining settings.

"security" SSL or CAST5 Use the appropriate selection to choose either
SSL or CAST5 stream encryption.

"push only" N/A Use this setting to upload changes from the
client to the server only, do not download.This
is useful when data transfer is one way, client
to server.

"noapps" N/A Do not download any new or updated
applications. This is useful when synchronizing
over slow connection or on a slow network.

"syncDirection" "sendonly"
"receiveonly"

"SendOnly" is the same as "pushonly".

"ReceiveOnly" allows no changes to be posted
to the server.

"noNewPubs" N/A This setting prevents any new publications
created since the last synchronization from
being sent, and only synchronizes data from
the current publications.

"tableFlag" "enable" The "enable" setting allows [Publication.Item]
to be synchronized, "disable" prevents
synchronization.

[Publication.Item] "disable"

"fullrefresh" N/A Forces a complete refresh.

"clientDBMode" "EMBEDDED" or
"CLIENT"

If set to "EMBEDDED", access to the database is
by conventional ODBC, if set to "CLIENT"
access is by multi-client ODBC.

SyncProgress Listener Service

5-6 Oracle Database Lite Developer’s Guide for Java

The names are not case sensitive, but the values are. The field names which can be
used are listed in Table 5–8.

Example
The example directs the Mobile Sync engine to use the server at "test.oracle.com"
through the proxy "proxy.oracle.com" at port 8080:

"server=test.oracle.com;proxy=proxy.oracle.com;proxyPort=8080;"

5.7 SyncProgress Listener Service
The SyncProgressListener is an interface that allows progress updates to be trapped
during synchronization.

This class initiates synchronization by using the provided synchronization options.
The parameters for the method are listed in Table 5–9:

Method
void progress

 (int progressType,

 int completed);

The names of the constants which report the synchronization progress are listed in
Table 5–10.

Table 5–8 TransportParam Parameters

Name Value Description

"reset" N/A Clear all entries in the environment before applying the rest
of the settings.

"server" server hostname The hostname or IP address of the Mobile Server.

"proxy" proxy server
hostname

The hostname or IP address of the proxy server.

"proxyPort" port number The port number of the proxy server.

"cookie" cookie string The cookie to be used for transport.

Table 5–9 SyncProgressListener Abstract Method

Parameter Description

progressType This is set to one of the constants listed in Table 5–10.

completed This is the percentage of completion for specific progressType.

Table 5–10 SyncProgressListener Interface Constants

Constant Name Progress Type

PT_INT States that the synchronization engine is in the initializing stage.
The current and total counts are set to 0.

SyncProgress Listener Service

Java Support on Windows CE 5-7

Example
This simple class implements the SyncProgressListener.

class myProgressTracker implements SyncProgress Listener;

{
 public void progress
 (int progressType,
 int completed)
 {
 System.out.println("Status: "+progressType+"="+ completed+"%");
 } //progress
 }

PT_PREPARE_SEND States that the synchronization engine is preparing local data to
be sent to the server. This includes getting locally modified data.
For streaming implementations this takes a shorter amount of
time.

PT_SEND States that the synchronization engine is sending data to the
network.

The total count equals the number of bytes to be sent, and the
current count equals the byte count being sent currently.

PT_RECV States that the synchronization engine is receiving data from the
server.

The total count equals the number of bytes to be received, and
the current count equals the byte count being received currently.

PT_PROCESS_RECV States that the synchronization engine is applying the newly
received data from the server to the local data stores.

PT_COMPLETE States that the synchronization engine has completed the
synchronization process.

Table 5–10 (Cont.) SyncProgressListener Interface Constants

Constant Name Progress Type

SyncProgress Listener Service

5-8 Oracle Database Lite Developer’s Guide for Java

Stored Procedure Tutorial A-1

A
Stored Procedure Tutorial

This appendix demonstrates how to create a Java stored procedure and trigger. Topics
include:

■ Section A.1, "Creating a Stored Procedure and Trigger"

■ Section A.2, "Create a Trigger"

■ Section A.3, "Commit or Roll Back"

A.1 Creating a Stored Procedure and Trigger
In this tutorial, you create a Java class EMAIL, load the class into Oracle Database Lite,
publish its method to SQL, and create a trigger for the method. The EMAIL class
appears in the source file EMAIL.java, and is available in the Java examples directory
at the following location.

<Oracle_home>\Mobile\Sdk\Samples\JDBC

EMAIL has a method named assignEMailAddress, which generates an email
address for an employee based on the first letter of the employee's first name and up
to seven letters of the last name. If the address is already assigned, the method
attempts to find a unique email address using combinations of letters in the first and
last name.

After creating the class, you load it into Oracle Database Lite using MSQL. For this
example you use the SQL statement CREATE JAVA. Alternatively, you can use the
loadjava utility to load the class into Oracle Database Lite. After loading the class,
you publish the assignEMailAddress method to SQL.

Finally, you create a trigger that fires the assignEMailAddress method whenever a
row is inserted into T_EMP, the table that contains the employee information.

As arguments, assignEMailAddress takes a JDBC connection object, the
employee's identification number, first name, middle initial, and last name. Oracle
Database Lite supplies the JDBC connection object argument. You do not need to
provide a value for the connection object when you execute the method.
assignEMailAddress uses the JDBC connection object to ensure that the generated
e-mail address is unique.

A.1.1 Start MSQL
Start MSQL and connect to the default Oracle Database Lite. Since the Java application
in this tutorial prints to standard output, use the DOS version of MSQL. From a DOS
prompt, type:

msql system/mgr@jdbc:polite:polite

Creating a Stored Procedure and Trigger

A-2 Oracle Database Lite Developer’s Guide for Java

The SQL prompt should appear.

A.1.2 Create a Table
To create a table, type:

CREATE TABLE T_EMP(ENO INT PRIMARY KEY,
 FNAME VARCHAR(20),
 MI CHAR,
 LNAME VARCHAR(20),
 EMAIL VARCHAR(8));

A.1.3 Create a Java Class
Create and compile the Java class EMAIL in the file EMAIL.java in C:\tmp.
EMAIL.java implements the assignEMailAddress method. The code sample given
below lists the contents of this file. You can copy this file from the following location.

<Oracle_home>\Mobile\Sdk\Samples\JDBC

import java.sql.*;

public class EMAIL {
 public static void assignEMailAddress(Connection conn,
 int eno, String fname,String lname)
 throws Exception
 {
 Statement stmt = null;
 ResultSet retset = null;
 String emailAddr;
 int i,j,fnLen, lnLen, rowCount;

 /* create a statement */
 try {
 stmt = conn.createStatement();
 }
 catch (SQLException e)
 {
 System.out.println("conn.createStatement failed: " +
 e.getMessage() + "\n");
 System.exit(0);
 }
 /* check fname and lname */
 fnLen = fname.length();
 if(fnLen > 8) fnLen = 8;
 if (fnLen == 0)
 throw new Exception("First name is required");
 lnLen = lname.length();
 if(lnLen > 8) lnLen = 8;
 if (lnLen == 0)
 throw new Exception("Last name is required");
 for (i=1; i <= fnLen; i++)
 {
 /* generate an e-mail address */
 j = (8-i) > lnLen? lnLen:8-i;
 emailAddr =
 new String(fname.substring(0,i).toLowerCase()+
 lname.substring(0,j).toLowerCase());
 /* check if this e-mail address is unique */
 try {
 retset = stmt.executeQuery(

Creating a Stored Procedure and Trigger

Stored Procedure Tutorial A-3

 "SELECT * FROM T_EMP WHERE email = '"+
 emailAddr+"'");
 if(!retset.next()) {
 /* e-mail address is unique;
 * so update the email column */
 retset.close();
 rowCount = stmt.executeUpdate(
 "UPDATE T_EMP SET EMAIL = '"
 + emailAddr + "' WHERE ENO = "
 + eno);
 if(rowCount == 0)
 throw new Exception("Employee "+fname+ " " +
 lname + " does not exist");
 else return;
 }
 }
 catch (SQLException e) {
 while(e != null) {
 System.out.println(e.getMessage());
 e = e.getNextException();
 }
 }
 }
 /* Can't find a unique name */
 emailAddr = new String(fname.substring(0,1).toLowerCase() +
 lname.substring(0,1).toLowerCase() + eno);
 rowCount = stmt.executeUpdate(
 "UPDATE T_EMP SET EMAIL = '"
 + emailAddr + "' WHERE ENO = "
 + eno);
 if(rowCount == 0)
 throw new Exception("Employee "+fname+ " " +
 lname + " does not exist");
 else return;
 }
}

A.1.4 Load the Java Class File
To load the EMAIL class file into Oracle Database Lite, type:

CREATE JAVA CLASS USING BFILE
 ('c:\tmp', 'EMAIL.class');

If you want to make changes to the class after loading it, you need to:

1. Drop the class from the database, using dropjava or DROP JAVA CLASS

2. Commit your work

3. Exit MSQL

4. Restart MSQL

This unloads the class from the Java Virtual Machine.

A.1.5 Publish the Stored Procedure
You make the stored procedure callable from SQL by creating a call specification (call
spec) for it. Since assignEMailAddress does not return a value, use the CREATE
PROCEDURE command, as follows:

Create a Trigger

A-4 Oracle Database Lite Developer’s Guide for Java

CREATE OR REPLACE PROCEDURE
 ASSIGN_EMAIL(E_NO INT, F_NAME VARCHAR2, L_NAME VARCHAR2)
 AS LANGUAGE JAVA NAME 'EMAIL.assignEMailAddress(java.sql.Connection,
int, java.lang.String,
 java.lang.String)';

A.1.6 Populate the Database
Insert a row into T_EMP:

INSERT INTO T_EMP VALUES(100,'John','E','Smith',null);

A.1.7 Execute the Procedure
To execute the procedure, type:

SELECT ASSIGN_EMAIL(100,'John','Smith')
 FROM dual

A.1.8 Verify the Email Address
To see the results of the ASSIGN_EMAIL procedure, type:

SELECT * FROM T_EMP;

This command produces the following output:

 ENO FNAME M LNAME EMAIL
 ---- ------------------ - -------------------- --------
 100 John E Smith jsmith

A.2 Create a Trigger
To make ASSIGN_EMAIL execute whenever a row is inserted into T_EMP, create an
AFTER INSERT trigger for it. Create the trigger as follows:

CREATE TRIGGER EMP_TRIGG AFTER INSERT ON T_EMP FOR EACH ROW
 ASSIGN_EMAIL(eno,fname,lname);

A trigger named EMP_TRIGG fires every time a row is inserted into T_EMP. The
actual arguments for the procedure are the values of the columns eno, fname, and
lname.

You do not need to specify a connection argument.

A.2.1 Testing the Trigger
Test the trigger by inserting a row into T_EMP:

INSERT INTO T_EMP VALUES(200,'James','A','Smith',null);

A.2.2 Verify the Email Address
Issue a SELECT statement to verify that the trigger has fired:

SELECT * FROM T_EMP;
 ENO FNAME M LNAME EMAIL
 --- -------------------- - -------------------- --------
 100 John E Smith jsmith

Commit or Roll Back

Stored Procedure Tutorial A-5

 200 James A Smith jasmith

A.3 Commit or Roll Back
Finally, commit your changes to preserve your work, or roll back to cancel changes.

Commit or Roll Back

A-6 Oracle Database Lite Developer’s Guide for Java

Sample Programs B-1

B
Sample Programs

This appendix provides instructions for using the sample Java programs provided
with Oracle Database Lite. Topics include:

■ Section B.1, "Java Samples Overview"

■ Section B.2, "Running the Samples"

B.1 Java Samples Overview
The <Oracle_home>\Mobile\SDK\Samples\JDBC directory contains sample
programs that demonstrate the use of Java stored procedures, Java Replication
Classes, and JDBC with Oracle Database Lite.

The Java examples directory contains these files:

1. Stoproex.sql

2. INVENTORY.java

3. JDBCEX.java

4. plsqlex.sql

5. PLSQLEX.java

The following sections describe the samples. Java class, method, and file names are
case-sensitive. When running Java programs from SQL, you must enclose names in
double quotes to preserve their case.

B.1.1 JDBC Sample
The file JDBCEX.java contains a sample Java program that uses JDBC classes to select
the rows of the PRODUCT table and display information.

B.1.2 PL/SQL Conversion to Java Samples
You can convert stored procedures and triggers written in Oracle's PL/SQL language
to Java. Several of the Java programs in PLSQLEX.java correspond to PL/SQL
programs described in the Oracle Server PL/SQL Users Guide and Reference manual.
Plsqlex.sql contains SQL statements that invoke the Java stored procedures.

B.1.3 Java Stored Procedures Sample
The Java stored procedures sample shows how to manually attach a class to an Oracle
Database Lite table. Alternatively, you can load the class into the Oracle Database Lite
database using loadjava, and publish its methods to SQL using the CREATE

Java Samples Overview

B-2 Oracle Database Lite Developer’s Guide for Java

PROCEDURE or CREATE FUNCTION statements. In this model, you do not attach
the class to a database table. For more information on the publish model of developing
stored procedures, see "Model 1: Using the Load and Publish Stored Procedure
Development Model" in Chapter 4, "Java Stored Procedures and Triggers".

The file Stoproex.sql contains SQL statements to create a sample schema. You must
run this script using MSQL before running the Java samples. The sample schema
contains the following three tables:

Stoproex.sql also contains statements that insert rows into the tables, attach a Java
class to the INVENTORY table, and create an AFTER UPDATE trigger in the
INVENTORY table's QTY column.

The Java class attached to the INVENTORY table is defined in the file,
INVENTORY.java. It has one static method called SHIP_PRODUCT, and two
non-static (instance) methods called SHIP and CHECK_INVENTORY.

The SHIP_PRODUCT method takes three arguments: a connection object, a product ID,
and the quantity of the product to be shipped to the customer.

Stoproex.sql invokes the method with the following SQL statement:

SELECT inventory.ship_product(100,1) FROM DUAL FOR UPDATE;

Notice the following:

1. Static methods must be referred to as table_name.method_name. The FROM clause
for static method execution must always refer to the pseudo table DUAL.

2. SQL converts inventory.ship_product into uppercase because the method
name is SHIP_PRODUCT in INVENTORY.java. If you name the table "Inventory"
and the method "shipProduct", you must double-quote both names:
"Inventory"."shipProduct".

3. The connection object is not explicitly given in the arguments to the method.
Oracle Database Lite supplies the current connection for any argument of type
java.sql.Connection.

The Java method SHIP uses JDBC classes to access Oracle Database Lite. It creates a
statement from the connection passed as an argument and executes a SELECT
statement. The SELECT statement executes the Java non-static method SHIP, also
defined in INVENTORY.java.

The method SHIP updates the quantity of products to ship. Since SHIP is a non-static
method, Oracle Database Lite creates an instance of the class INVENTORY before
calling this method. It creates the instance using the constructor that takes the columns
specified in the WITH CONSTRUCTOR ARGS clause of the ATTACH statement.

Since this sample creates an AFTER UPDATE trigger on the QTY column of the
INVENTORY table, each UPDATE executes the CHECK_INVENTORY method. Since
CHECK_INVENTORY is a non-static method, Oracle Database Lite uses the row instance
or creates a new instance if one does not exist.

Table Description

PRODUCT Stores information about products.

PRODUCT_COMPOSITION Stores information about the composition of products. Each
row of the table keeps track of the quantity of a sub-product
required to build the product.

INVENTORY Stores the quantity of products in the warehouse.

Running the Samples

Sample Programs B-3

If the updated quantity-on-hand drops below the inventory threshold, the CHECK_
INVENTORY method uses the PRODUCT_COMPOSITION table to look up the
constituent parts of the product. It also updates the quantity of each to reflect the fact
that a certain quantity of this product must be manufactured to replenish inventory.
This update happens recursively until an end product is reached, at which point
CHECK_INVENTORY places an order for the product.

B.2 Running the Samples
To run the Java samples:

1. Go to the samples directory, <Oracle_home>\Mobile\Sdk\Samples\JDBC.
For example:

cd <Oracle_home>\Mobile\Sdk\Samples\JDBC

2. Add "." (the current directory) to the CLASSPATH, if it is not already included:

set CLASSPATH=.;%CLASSPATH%

3. Execute the SQL scripts using the DOS command-line version of MSQL. For
example:

msql system/mgr@jdbc:polite @stoproex.sql

B.2.1 Running the JDBC Sample
To use the JDBC sample, install the PRODUCT table in Oracle Database Lite by
running the Stoproex.sql script:

msql system/mgr@jdbc:polite @stoproex.sql

Compile the source file using the command:

javac JDBCEX.java

Run the compiled class:

java JDBCEX

B.2.2 Running the PL/SQL Conversion Samples
To run PLSQLEX.java, start MSQL:

msql system/mgr@jdbc:polite

At the MSQL prompt, run the script:

@plsqlex.sql

Attach the Java source file PLSQLEX.java to the table:

alter table temp attach java source "PLSQLEX" in '.';

To execute the table method, type:

select temp."sampleOne"() from dual for update;

To view the results:

select * from temp;

Running the Samples

B-4 Oracle Database Lite Developer’s Guide for Java

See the file PLSQLEX.java for information regarding additional samples. The samples
are named sampleOne to sampleFour.

B.2.3 Running the Java Stored Procedures Sample
Run the Stoproex.sql script to install the tables and stored procedures required for the
stored procedures sample:

msql system/mgr@jdbc:polite @stoproex.sql
select inventory.ship_product(p,q) from dual;

When the script completes, display the contents of the inventory table. At the MSQL
prompt, type:

select * from inventory;

PID QTY THRESHOLD
---- ---- ---------
100 1 1
101 -6 2
102 -26 8
103 -26 8

Negative numbers in the table indicate that parts 101, 102, and 103 need to be
restocked.

Index-1

Index

A
ALTER TABLE statement, 4-12, 4-13, 4-19
ALTER TRIGGER statement, 4-18
Application Development

Oracle Database Lite Support, 2-1
Application Development Overview

Develop the Application, 1-2
Package the Application, 1-3
Publish the Application, 1-4
Test the Application, 1-4

Application Development Steps Overview
Setup Enterprise Data Subset Definition, 1-1

Attaching a Java Class to a Table, 4-12

B
BLOB, 3-6, 3-9

getting values, 3-7
setting values, 3-7

C
call specifications

creating, 4-6, A-3
sample, 4-7, 4-8, 4-11

CallableStatement class, 3-5
Calling Attached Stored Procedures, 4-12
Calling Published Stored Procedures, 4-8
calling stored procedures, 4-14
CLOB, 3-6, 3-9

getting values, 3-7
setting values, 3-7

close method, 3-8
Configuring the Development System, 1-5

Configure the Mobile Server, 1-5
Install and Configure the Oracle Database or

Enterprise Server, 1-5
Install the Mobile Development Kit, 1-5
Install the Mobile Server, 1-5
Java Development Kit (JDK), 1-5

Connect to Oracle Database Lite
Type 2 Client/Server Driver Connection URL

Syntax, 3-3
Type 2 Driver Connection URL Syntax, 3-2
Type 4 (Pure Java) Driver Connection URL

Syntax, 3-4
Connection objects, passed as arguments, 4-16
Create a Trigger

Testing the Trigger, A-4
Verify the Email Address, A-4

CREATE FUNCTION statement, 4-6
CREATE JAVA statement, 4-6, 4-11
CREATE PROCEDURE statement, 4-6
CREATE TRIGGER statement, 4-18
createStatement method, 3-4
Creating a Stored Procedure and Trigger

Create a Java Class, A-2
Create a Table, A-2
Load the Java Class File, A-3
Start MSQL, A-1

Creating Triggers
Enabling and Disabling Triggers, 4-18

D
Data Access Extensions

Reading from a BLOB Sample Program, 3-8
Writing to a CLOB Sample Program, 3-8

datatypes, 2-1
DETACH AND DELETE statement, 4-13
Developing and Testing the Application, 2-3
DROP FUNCTION statement, 4-10
DROP JAVA statement, 4-10
DROP PROCEDURE statement, 4-10
DROP TRIGGER statement, 4-19
dropjava, 2-2

arguments, 4-9
options, 4-9
specifying filenames to, 4-9

Dropping Attached Stored Procedures, 4-13
Dropping Published Stored Procedures, 4-9

Using dropjava, 4-9
Using SQL Commands, 4-10

dropping stored procedures, 2-2, 4-9

E
Environment Setup

Setting Variables for JDK 1.3.1, 2-3
executeQuery method, 3-4
Executing Java Stored Procedures from JDBC

Index-2

Using a Callable Statement, 3-5
Using the executeQuery Method, 3-4

F
flush method, 3-8
force, loadjava option, 4-4

G
getAsciiOutputStream, 3-6
getAsciiStream, 3-6
getBinaryOutputStream, 3-6
getBinaryStream, 3-6
getBLOB, 3-7
getBytes, 3-6
getCharacterOutputStream, 3-6
getCharacterStream, 3-6
getChars, 3-6
getCLOB, 3-7
getConnection, 3-6
getSubString, 3-6

I
Interface Connection

Methods, 3-9
Interface Database MetaData

Methods, 3-14
Methods that Return False, 3-14

Interface PreparedStatement
Methods, 3-16

Interface ResultMetaData
Methods, 3-15

Interface ResultSet
Fields, 3-11
Methods, 3-11
Methods that Return False, 3-13

isConvertibleTo, 3-6, 3-7
isolation level, transaction, 3-5

J
JAR files, loading, 4-5
Java

non-static methods, 4-11
static methods, 4-11

Java Datatypes
Declaring Parameters, 4-16
Example, 4-17
Using Stored Procedures to Return Multiple

Rows, 4-16
Java Development Tools, 2-3
Java Interface SyncParam Settings

Example 1, 5-5
Example 2, 5-5

Java Interface TransportParam Parameters
Example, 5-6

Java Samples Overview
JDBC Sample, B-1

Java Stored Procedures and Triggers, 4-1

Java Datatypes, 4-15
Using Stored Procedures, 4-2
Using Triggers, 4-17

Java Support on Windows CE
Java Interface SyncParam Settings, 5-4
Java Interface TransportParam Parameters, 5-5
Overview, 5-1
Sync Class, 5-2
SyncException Class, 5-2
SyncOption Class, 5-3
SyncProgress Listener Service, 5-6

Java Tools
loadjava, 2-2

Java Virtual Machine (JVM), 4-2, 4-13, 4-15, A-3
JDBC

description, 3-1
extensions, 3-5 to 3-8

JDBC Programming
Connect to Oracle Database Lite, 3-1
Executing Java Stored Procedures from JDBC, 3-4
JDBC Compliance, 3-1
JDBC Environment Setup, 3-1
Limitations, 3-8
New JDBC 2.0 Features, 3-9
Oracle Database Lite Extensions, 3-5

JDBC Sample
Java Stored Procedures Sample, B-1
PL/SQL Conversion to Java Samples, B-1

jvm.dll, 4-14

L
length method, 3-6
Load the Java Class File

Execute the Procedure, A-4
Populate the Database, A-4
Publish the Stored Procedure, A-3
Verify the Email Address, A-4

loading
classes, 2-2, 4-3
JAR files, 4-5
ZIP files, 4-5

Loading Classes, 4-3
loadjava, 4-3
Using CREATE JAVA, 4-6

loadjava, 2-2, 4-3
options, 4-4
specifying filenames to, 4-5
Syntax, 4-4

M
makeJdbcArray, 3-6, 3-7
mark method, 3-8
markSupported method, 3-7
MSync/OCAPIs/mSyncCom, 2-4
multithreaded programs, calling stored procedures

from, 4-14

Index-3

N
naming stored procedures, 4-2
New JDBC 2.0 Features

Interface Connection, 3-9
Interface Database MetaData, 3-14
Interface PreparedStatement, 3-16
Interface ResultMetaData, 3-15
Interface ResultSet, 3-10
Interface Statement, 3-10

O
Oracle Database Lite

Sample Programs, B-1
Oracle Database Lite Extensions

Data Access Extensions, 3-7
Datatype Extensions, 3-6

Oracle Database Lite Java Development Environment
Environment Setup, 2-2

Oracle Database Lite Java Support
Oracle Database Lite Java Development

Environment, 2-2
Oracle Database Lite Support

Java Datatypes, 2-1
Java Tools, 2-2

OracleResultSet class, 3-7
Overview

Application Development Steps Overview, 1-1
Concepts, 1-1

P
Packaging the Application, 2-3
parameters, stored procedures, 3-5
POLClobReader class, 3-7
POLClobWriter class, 3-8
POLLobInputStream class, 3-7
POLLobOutputStream class, 3-7
PreparedStatement class, 3-5
Publishing Stored Procedures, 4-6
publishing stored procedures, A-3
putBytes, 3-6
putChars, 3-7
putString, 3-7

Q
querying

in JDBC, 3-4

R
ready method, 3-7
reset method, 3-8
Row-Level Stored Procedures, 4-12
row-level triggers, 4-1
Running the Samples

Running the Java Stored Procedures Sample, B-4
Running the JDBC Sample, B-3
Running the PL/SQL Conversion Samples, B-3

S
Sample Programs

Java Samples Overview, B-1
Running the Samples, B-3

schema object names, 4-5
SELECT statement, calling stored procedures, 4-13
Setup Enterprise Data Subset Definition

Creating Application Subscriptions, 1-2
Generating Database Schema, 1-2
Packaging Applications, 1-2
Provisioning Applications to Users, 1-2

skip method, 3-8
SQLDescribeCol, 4-17
SQLNumResultCols, 4-17
statement-level triggers, 4-1
Stored Procedure Tutorial

Commit or Roll Back, A-5
Create a Trigger, A-4
Creating a Stored Procedure and Trigger, A-1

stored procedures
calling, 3-5, 4-13
description, 4-1
dropping, 2-2, 4-13
example, 0-x, 4-10, A-1
naming, 4-2
publishing to SQL, A-3

Sync Class
Constructors, 5-2
Example, 5-2
Public Methods, 5-2

SyncException Class
Constructors, 5-3
Public Methods, 5-3

SyncOption Class
Constructors, 5-3
Example, 5-4
Public Methods, 5-4

SyncProgress Listener Service
Example, 5-7
Method, 5-6

T
Table-Level Stored Procedures, 4-12
Testing, 2-4
threads, calling stored procedures from

multiple, 4-14
toJdbc method, 3-6, 3-7
tools

development, 2-2
transactions

isolation levels, 3-5
triggers

creating, A-4
description, 4-1
example, 0-x, A-1
row-level, 4-1
statement-level, 4-1

Index-4

U
Using Stored Procedures, 4-11

Calling Java Stored Procedures from ODBC, 4-14
Load and Publish, 4-3

Using Stored Procedures to Return Multiple
Rows, 4-17

Using Triggers
Creating Triggers, 4-18
Dropping Triggers, 4-19
Statement-Level vs. Row-Level Triggers, 4-18
Trigger Arguments, 4-20
Trigger Arguments Example, 4-21
Trigger Example, 4-19

V
verbose, loadjava option, 4-4

W
write method, 3-7, 3-8

Z
ZIP files, loading, 4-5

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure

	1 Overview
	1.1 Concepts
	1.2 Application Development Steps Overview
	1.2.1 Setup Enterprise Data Subset Definition
	1.2.2 Develop the Application
	1.2.3 Package the Application
	1.2.4 Publish the Application
	1.2.5 Test the Application

	1.3 Configuring the Development System
	1.3.1 Java Development Kit (JDK)
	1.3.2 Install and Configure the Oracle Database or Enterprise Database
	1.3.3 Install the Mobile Server
	1.3.4 Configure the Mobile Server
	1.3.5 Install the Mobile Development Kit

	2 Application Development
	2.1 Oracle Database Lite Java Support
	2.1.1 Java Datatypes
	2.1.2 Java Tools
	2.1.2.1 loadjava

	2.1.3 Oracle Database Lite Java Development Environment
	2.1.3.1 Environment Setup

	2.2 Java Development Tools
	2.3 Developing and Testing the Application
	2.4 Packaging the Application
	2.5 Testing
	2.6 MSync/OCAPIs/mSyncCom

	3 JDBC Programming
	3.1 JDBC Compliance
	3.2 JDBC Environment Setup
	3.3 Connect to Oracle Database Lite
	3.4 Executing Java Stored Procedures from JDBC
	3.4.1 Using the executeQuery Method
	3.4.2 Using a Callable Statement

	3.5 Oracle Database Lite Extensions
	3.5.1 Datatype Extensions
	3.5.2 Data Access Extensions
	3.5.2.1 Reading from a BLOB Sample Program
	3.5.2.2 Writing to a CLOB Sample Program

	3.6 Limitations
	3.7 New JDBC 2.0 Features
	3.7.1 Interface Connection
	3.7.1.1 Methods

	3.7.2 Interface Statement
	3.7.3 Interface ResultSet
	3.7.3.1 Fields
	3.7.3.2 Methods
	3.7.3.3 Methods that Return False

	3.7.4 Interface Database MetaData
	3.7.4.1 Methods
	3.7.4.2 Methods that Return False

	3.7.5 Interface ResultMetaData
	3.7.5.1 Methods

	3.7.6 Interface PreparedStatement
	3.7.6.1 Methods
	3.7.6.1.1 Limitation

	4 Java Stored Procedures and Triggers
	4.1 New Features in Oracle Database Lite
	4.2 Stored Procedures and Triggers Overview
	4.3 Using Stored Procedures
	4.3.1 Model 1: Using the Load and Publish Stored Procedure Development Model
	4.3.1.1 Loading Classes
	4.3.1.1.1 loadjava
	4.3.1.1.2 Using CREATE JAVA

	4.3.1.2 Publishing Stored Procedures to SQL
	4.3.1.3 Calling Published Stored Procedures
	4.3.1.4 Dropping Published Stored Procedures
	4.3.1.4.1 Using dropjava
	4.3.1.4.2 Using SQL Commands

	4.3.1.5 Example

	4.3.2 Model 2: Using the Attached Stored Procedure Development Model
	4.3.2.1 Attaching a Java Class to a Table
	4.3.2.2 Table-Level Stored Procedures
	4.3.2.3 Row-Level Stored Procedures
	4.3.2.4 Calling Attached Stored Procedures
	4.3.2.5 Dropping Attached Stored Procedures
	4.3.2.6 Example

	4.3.3 Calling Java Stored Procedures from ODBC

	4.4 Java Datatypes
	4.4.1 Declaring Parameters
	4.4.2 Using Stored Procedures to Return Multiple Rows
	4.4.2.1 Returning Multiple Rows in ODBC
	4.4.2.2 Example

	4.5 Using Triggers
	4.5.1 Statement-Level vs. Row-Level Triggers
	4.5.2 Creating Triggers
	4.5.2.1 Enabling and Disabling Triggers

	4.5.3 Dropping Triggers
	4.5.4 Trigger Example
	4.5.5 Trigger Arguments
	4.5.6 Trigger Arguments Example

	5 Java Support on Windows CE
	5.1 Overview
	5.2 Sync Class
	5.3 SyncException Class
	5.4 SyncOption Class
	5.5 Java Interface SyncParam Settings
	5.6 Java Interface TransportParam Parameters
	5.7 SyncProgress Listener Service

	A Stored Procedure Tutorial
	A.1 Creating a Stored Procedure and Trigger
	A.1.1 Start MSQL
	A.1.2 Create a Table
	A.1.3 Create a Java Class
	A.1.4 Load the Java Class File
	A.1.5 Publish the Stored Procedure
	A.1.6 Populate the Database
	A.1.7 Execute the Procedure
	A.1.8 Verify the Email Address

	A.2 Create a Trigger
	A.2.1 Testing the Trigger
	A.2.2 Verify the Email Address

	A.3 Commit or Roll Back

	B Sample Programs
	B.1 Java Samples Overview
	B.1.1 JDBC Sample
	B.1.2 PL/SQL Conversion to Java Samples
	B.1.3 Java Stored Procedures Sample

	B.2 Running the Samples
	B.2.1 Running the JDBC Sample
	B.2.2 Running the PL/SQL Conversion Samples
	B.2.3 Running the Java Stored Procedures Sample

	Index

