
Oracle® Database Lite
Developer's Guide

10g (10.0.0)

Part No. B13788-01

June 2004

Oracle Database Lite Developer’s Guide 10g (10.0.0)

Part No. B13788-01

Copyright © 2003, 2004, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs
on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical
data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including
documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable
Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19,
Commercial Computer Software--Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway,
Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Send Us Your Comments ... xvii

Preface ... xix

Intended Audience.. xix
Documentation Accessibility ... xix
Structure ... xix

1 Overview

1.1 Introduction ... 1-1
1.2 Oracle Database Lite 10g Application Model and Architecture .. 1-3
1.2.1 Oracle Database Lite RDBMS... 1-4
1.2.2 Mobile Sync .. 1-4
1.2.3 Mobile Server ... 1-5
1.2.4 Message Generator and Processor (MGP) ... 1-6
1.2.5 Mobile Server Repository ... 1-6
1.3 Mobile Development Kit (MDK) .. 1-7
1.3.1 Mobile SQL (MSQL) .. 1-8
1.3.2 Using the Packaging Wizard.. 1-8
1.4 Supported Platforms... 1-9
1.5 Java Support .. 1-9
1.6 Data Source Name .. 1-9

2 The Oracle Database Lite RDBMS

2.1 Introduction ... 2-1
2.2 Development Interfaces ... 2-1
2.2.1 Development Interface Overview ... 2-2
2.2.1.1 JDBC ... 2-2
2.2.1.2 Starting a Multi User Oracle Database Lite Database Service 2-2
2.2.1.3 Accessing the Multi User Oracle Database Lite 10g Database Service 2-2
2.2.1.4 ODBC.. 2-5
2.2.1.5 SODA.. 2-5
2.2.2 Mobile Sync Client Module Application Programming Interfaces (APIs).................. 2-6
2.2.3 Oracle Database Lite Load APIs .. 2-6
2.2.4 Oracle Database Lite Load Utility (OLLOAD) .. 2-6
2.2.5 ADO.NET.. 2-6

iv

2.3 Using the Starter Database .. 2-6
2.4 Working With Your Database... 2-7
2.4.1 Creating a New Database ... 2-7
2.4.2 Creating a Data Source Name with ODBC Administrator.. 2-7
2.4.3 Creating a New Database Using the Command-Line Utility.. 2-7
2.4.4 Connecting to a New Database.. 2-8
2.5 Creating Multiple Users... 2-8
2.5.1 Pre-defined Roles.. 2-8
2.5.2 Creating Users .. 2-9
2.5.3 Dropping Users.. 2-9
2.5.4 Changing Passwords... 2-9
2.5.5 Granting Roles... 2-10
2.5.6 Granting Privileges... 2-10
2.5.7 Revoking Roles ... 2-10
2.5.8 Revoking Privileges.. 2-10
2.5.9 Building Demo Tables.. 2-10
2.5.10 Populate Your Database Using Mobile SQL... 2-10
2.5.11 Backing Up a Database .. 2-11
2.5.12 Encrypting and Decrypting a Database .. 2-11
2.6 Oracle Database Lite Transaction Support... 2-11
2.6.1 Atomicity.. 2-11
2.6.2 Consistency.. 2-11
2.6.3 Isolation.. 2-12
2.6.3.1 Durability.. 2-13
2.6.3.2 Locking.. 2-13
2.6.3.3 Changing the Default Isolation Level... 2-13
2.6.3.4 Supported Combinations of Isolation Levels and Cursor Types 2-13
2.6.4 Tuning the Application.. 2-14
2.7 Support for Linguistic Sort ... 2-14
2.7.1 Creating Linguistic Sort Enabled Databases... 2-14
2.7.2 How Collation Works .. 2-14
2.7.3 Collation Element Examples ... 2-15
2.7.3.1 Sorting Normal Characters .. 2-15
2.7.3.2 Reverse Sorting of French Accents.. 2-15
2.7.3.3 Sorting Contracting Characters ... 2-15
2.7.3.4 Sorting Expanding Characters... 2-16
2.7.3.5 Sorting Numeric Characters .. 2-16
2.8 Creating Snapshot Definitions ... 2-16
2.8.1 Creating a Snapshot Definition Declaratively .. 2-16
2.8.2 Creating the Snapshot Definition Programmatically .. 2-17
2.9 Using Oracle Database Lite Samples... 2-18
2.9.1 Overview.. 2-18
2.9.2 BLOB Manager Example Notes .. 2-18
2.9.3 Running the Visual Basic Sample Application... 2-19
2.9.3.1 Open Visual Basic.. 2-19
2.9.3.2 View the Sample Application Tables and Data .. 2-19
2.9.3.3 Open the Sample Application.. 2-20

v

2.9.3.4 View and Manipulate the Data in the EMP Table .. 2-20
2.9.4 ODBC Examples.. 2-20
2.9.4.1 What the Examples Do ... 2-20
2.9.4.1.1 odbctbl.. 2-20
2.9.4.1.2 odbcview.. 2-20
2.9.4.1.3 odbcfunc .. 2-21
2.9.4.1.4 odbctype .. 2-21
2.9.4.1.5 long ... 2-21
2.10 Limitations .. 2-21
2.11 Tracing ... 2-21
2.11.1 Enabling Trace Output... 2-22
2.11.2 Basic Functions.. 2-22
2.11.3 SQL Tracing ... 2-23
2.11.3.1 The Tid Output .. 2-23
2.11.3.2 SQL Statement Output.. 2-23
2.11.3.3 Compilation Time Output.. 2-23
2.11.3.4 Bind Values Output... 2-23
2.11.3.5 Explain Plan Output.. 2-24
2.11.3.6 Temporary Table Created Output .. 2-24
2.11.3.7 Table Name Output... 2-24
2.11.3.8 Temporary Table Sorted Output ... 2-24
2.11.3.9 First Fetch Time Output ... 2-24

3 Synchronization

3.1 Overview.. 3-1
3.1.1 Synchronization Concepts.. 3-2
3.1.1.1 Publication Item.. 3-2
3.1.1.2 Publication... 3-2
3.1.1.3 Application .. 3-2
3.1.1.4 Subscription... 3-3
3.1.1.5 Data Subsetting ... 3-3
3.1.1.6 Shared Maps.. 3-3
3.1.2 Synchronization Example... 3-3
3.2 Synchronization Process .. 3-5
3.2.1 Fast Refresh Synchronization... 3-5
3.2.1.1 Client Upload and Download Operations.. 3-6
3.2.1.2 Mobile Server Apply Operation... 3-6
3.2.1.3 Mobile Server Compose Operation.. 3-7
3.2.2 Complete Refresh Synchronization... 3-7
3.2.3 Synchronizing an Encrypted Database... 3-7
3.3 Mobile Sync Application Programming Interfaces (APIs) ... 3-7
3.4 The Publish and Subscribe Model and Oracle Database Lite Synchronization................. 3-8
3.4.1 The Publish and Subscribe Model Step by Step .. 3-9
3.5 Using Consolidator to Define the Sample11.java Example .. 3-9
3.5.1 Sample11.java .. 3-10
3.5.2 Create Required Tables Using Standard JDBC .. 3-12
3.5.3 Connecting to the Mobile Server .. 3-12

vi

3.5.4 Creating Publications ... 3-13
3.5.4.1 CreatePublication .. 3-13
3.5.5 Creating Publication Items .. 3-14
3.5.5.1 CreatePublicationItem .. 3-14
3.5.5.2 Defining Publication Items for Updatable Multi-table Views 3-15
3.5.5.3 Data Subsetting .. 3-15
3.5.6 Sequence Support ... 3-15
3.5.7 Defining Client Subscription Parameters for Publications... 3-16
3.5.7.1 SetSubscriptionParameter .. 3-16
3.5.8 Creating Publication Item Indexes ... 3-17
3.5.8.1 CreatePublicationItemIndex .. 3-17
3.5.8.2 Define Client Indexes.. 3-18
3.5.9 Adding Publication Items to a Publication ... 3-18
3.5.9.1 AddPublicationItem.. 3-18
3.5.9.2 Defining Conflict Rules... 3-19
3.5.9.3 Using Table Weight... 3-20
3.5.10 Creating Users ... 3-20
3.5.10.1 createUser ... 3-20
3.5.11 Drop User... 3-21
3.5.11.1 dropUser ... 3-21
3.5.12 Subscribing Users to a Publication... 3-21
3.5.12.1 CreateSubscription .. 3-21
3.5.13 Instantiating a Subscription .. 3-22
3.5.13.1 InstantiateSubscription ... 3-22
3.6 Other Standard Consolidator Functionality .. 3-22
3.6.1 Client Device Database DDL Operations.. 3-23
3.6.2 Change Password ... 3-23
3.6.2.1 setPassword.. 3-23
3.6.3 Remote Database Link Support .. 3-23
3.6.3.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem.... 3-24
3.6.3.2 Creating a Dependency Hint .. 3-25
3.6.3.3 Remove a Dependency Hint ... 3-26
3.7 Advanced Features for Customizing Consolidator .. 3-26
3.7.1 Compose Phase Customization Using MyCompose .. 3-27
3.7.1.1 Extending MyCompose as a User Defined Sub-Class ... 3-27
3.7.1.2 Primary MyCompose Methods ... 3-27
3.7.1.2.1 needCompose Method .. 3-27
3.7.1.2.2 doCompose Method... 3-28
3.7.1.2.3 init Method.. 3-29
3.7.1.2.4 destroy Method... 3-29
3.7.1.3 Subsidiary MyCompose Methods... 3-30
3.7.1.3.1 getPublication ... 3-30
3.7.1.3.2 getPublicationItem ... 3-30
3.7.1.3.3 getPubItemDMLTableName .. 3-30
3.7.1.3.4 getPubItemPK... 3-30
3.7.1.3.5 getBaseTables .. 3-31
3.7.1.3.6 getBaseTablePK .. 3-31

vii

3.7.1.3.7 baseTableDirty.. 3-31
3.7.1.3.8 getBaseTableDMLLogName... 3-31
3.7.1.3.9 getMapView() ... 3-32
3.7.1.4 Consolidator API Methods for Registering MyCompose Sub-Classes 3-32
3.7.1.4.1 RegisterMyCompose Method... 3-32
3.7.1.4.2 DeRegisterMyCompose... 3-33
3.7.2 Sync Discovery API .. 3-33
3.7.2.1 getDownloadInfo Method.. 3-34
3.7.2.2 DownloadInfo Class Access Methods .. 3-34
3.7.2.3 PublicationSize Class .. 3-35
3.7.3 Map Table Partition APIs .. 3-37
3.7.3.1 Create a Map Table Partition ... 3-38
3.7.3.2 Add Map Table Partitions .. 3-38
3.7.3.3 Drop a Map Table Partition ... 3-39
3.7.3.4 Drop All Map Table Partitions .. 3-39
3.7.3.5 Merge Map Table Partitions... 3-39
3.7.4 Modifying a Publication Item Using AlterPublicationItem 3-40
3.7.4.1 Alter Publication Item... 3-40
3.7.5 Fast Refresh and Update Operation for Multi-Table Publications (Views) 3-41
3.7.5.1 Updatable Parent Tables... 3-41
3.7.5.2 Using Parent Table Hints and INSTEAD OF Triggers... 3-41
3.7.5.2.1 Creating a Parent Hint .. 3-41
3.7.5.2.2 INSTEAD OF Triggers... 3-41
3.7.5.3 Fast Refresh for Views .. 3-42
3.7.5.3.1 PrimaryKeyHint ... 3-42
3.7.5.4 Complete Refresh for Views .. 3-42
3.7.5.4.1 CompleteRefresh .. 3-43
3.7.6 Virtual Primary Key .. 3-43
3.7.6.1 Create Virtual Primary Key Column .. 3-43
3.7.6.2 Drop Virtual Primary Key Column .. 3-43
3.7.7 Caching Publication Item Queries.. 3-44
3.7.7.1 Enabling Publication Item Query Caching ... 3-44
3.7.7.2 Disabling Publication Item Query Caching .. 3-45
3.7.8 Binding User-Defined PL/SQL Procedures ... 3-45
3.7.9 Queue Interface for Customizing Replication .. 3-45
3.7.9.1 Queue Interface Operation... 3-45
3.7.9.2 Queue Creation.. 3-46
3.7.9.3 Queue Interface PL/SQL Procedure... 3-47
3.7.9.4 CreateQueuePublicationItem API... 3-48
3.7.9.5 Defining a PL/SQL Package Outside the Repository .. 3-49
3.7.9.5.1 RegisterQueuePkg.. 3-49
3.7.9.5.2 GetQueuePkg.. 3-49
3.7.9.5.3 UnRegisterQueuePkg .. 3-49
3.7.10 Null Sync Callout.. 3-49
3.7.11 Foreign Key Constraints in Updatable Publication Items .. 3-49
3.7.11.1 Foreign Key Constraint Violation Example... 3-50
3.7.11.2 Avoiding Constraint Violations with BeforeApply and After Apply 3-50

viii

3.7.11.3 Avoiding Constraint Violations with Table Weights... 3-51
3.7.12 Callback Customization for Before and After Compose/Apply 3-51
3.7.13 Callback Customization for DML Operations.. 3-52
3.7.13.1 DML Procedure Example ... 3-52
3.7.14 Restricting Predicate... 3-54
3.7.15 Priority-Based Replication... 3-54
3.7.16 Shared Maps .. 3-54
3.7.16.1 Concepts.. 3-54
3.7.16.2 Performance Attributes... 3-55
3.7.16.3 Usage ... 3-55
3.7.16.4 Compatibility and Migration... 3-56
3.8 Synchronization Errors and Conflicts... 3-56
3.8.1 Versioning.. 3-57
3.8.2 Winning Rules... 3-57
3.8.3 Resolving Conflicts Using the Error Queue.. 3-57
3.8.3.1 Execute Transaction .. 3-57
3.8.3.2 Purge Transaction.. 3-58
3.8.4 Space Constraints.. 3-58
3.9 Mapping Datatypes Between the Oracle Server and Clients .. 3-58
3.9.1 Oracle Database Lite Datatypes.. 3-58

4 Developing Mobile Web Applications

4.1 Setting up the Mobile Client.. 4-1
4.2 Developing and Testing the Application .. 4-1
4.2.1 Building Web-to-Go Applications... 4-2
4.2.1.1 Static Components.. 4-2
4.2.1.2 Dynamic Components ... 4-2
4.2.1.3 Database Components ... 4-2
4.2.1.4 Database Connections.. 4-3
4.2.2 Application Roles... 4-3
4.2.3 Developing JavaServer Pages .. 4-3
4.2.3.1 Mobile Server or Mobile Development Kit Web Server ... 4-3
4.2.3.2 Mobile Client for Web-to-Go .. 4-3
4.2.4 Developing Java Servlets for Web-to-Go ... 4-4
4.2.4.1 Limitations... 4-4
4.2.4.2 Accessing Applications on the Mobile Development Kit for Web-to-Go 4-4
4.2.4.3 Creating a Servlet ... 4-4
4.2.4.3.1 Packages.. 4-5
4.2.4.3.2 Web-to-Go User Context .. 4-6
4.2.4.3.3 Database Connectivity in Java Code .. 4-6
4.2.4.3.4 Accessing the Mobile Server Repository.. 4-6
4.2.4.4 Running a Servlet ... 4-7
4.2.4.4.1 Registering Servlets Using wtgpack.exe .. 4-7
4.2.4.4.2 The webtogo.ora File... 4-8
4.2.4.4.3 Using wtgdebug.exe ... 4-9
4.2.4.4.4 Using WebtoGoServer.class... 4-9
4.2.4.4.5 Controlling Web Server Properties.. 4-10

ix

4.2.4.4.6 Registering MIME Types... 4-10
4.2.4.5 Debugging a Servlet .. 4-11
4.2.4.6 Accessing the Schema Directly in Oracle Database Lite...................................... 4-11
4.2.5 Using Web-to-Go Applets ... 4-11
4.2.5.1 Creating the Web-to-Go Applet .. 4-11
4.2.5.2 Creating the HTML Page for the Applet.. 4-12
4.2.5.2.1 Static HTML Page... 4-12
4.2.5.2.2 HTML Page Generated from a Servlet .. 4-12
4.2.6 Developing Applet JDBC Communication... 4-13
4.2.6.1 getConnection().. 4-13
4.2.6.2 Design Issue.. 4-14
4.2.7 Developing Applet Servlet Communication .. 4-14
4.2.7.1 Creating the Web-to-Go Servlet .. 4-14
4.2.7.1.1 getResultObject() .. 4-15
4.2.7.1.2 setSessionID().. 4-15
4.2.7.1.3 showDocument() .. 4-15
4.2.8 Debugging Web-to-Go Applications ... 4-16
4.2.8.1 Running Sample 1 Using Oracle9i JDeveloper.. 4-16
4.2.8.1.1 Creating a Debug Project... 4-16
4.2.8.1.2 Creating a Library .. 4-18
4.2.8.1.3 Adding Files to the Project.. 4-19
4.2.8.1.4 Running and Debugging... 4-19
4.2.8.1.5 Troubleshooting.. 4-20
4.2.9 Customizing the Workspace Application ... 4-20
4.2.9.1 Web-to-Go Parameters.. 4-21
4.2.9.2 Sample Workspace .. 4-21
4.2.10 Using the Mobile Server Admin API ... 4-21

5 Native Application Development

5.1 Supported Platforms... 5-1
5.2 Java Support .. 5-1
5.3 Data Source Name .. 5-2
5.4 Mobile Sync Application Programming Interfaces (APIs) ... 5-2
5.4.1 COM Interface .. 5-3
5.4.1.1 Features and Components... 5-3
5.4.1.2 ISync Interface... 5-3
5.4.1.3 ISyncOption Interface .. 5-4
5.4.1.4 Selective Synchronization.. 5-5
5.4.1.5 COM Interface SyncParam Settings... 5-6
5.4.1.6 COM Interface TransportParam Parameters.. 5-7
5.4.1.7 ISyncProgressListener Interface ... 5-7
5.4.2 C/C++ Interface... 5-8
5.4.2.1 ocSessionInit .. 5-9
5.4.2.2 ocSessionTerm... 5-9
5.4.2.3 ocSaveUserInfo ... 5-9
5.4.2.4 ocDoSynchronize... 5-10
5.4.2.5 ocSetTableSyncFlag ... 5-11

x

5.4.2.6 ocGetPublication.. 5-12
5.4.2.7 C/C++ Data Structures... 5-13
5.4.2.7.1 ocEnv.. 5-13
5.4.2.7.2 ocTransportEnv .. 5-16
5.5 Using the Packaging Wizard.. 5-17

6 Oracle Database Lite 10g ADO.NET Provider

6.1 Classes .. 6-1
6.1.1 OracleConnection .. 6-1
6.1.2 Transaction Management ... 6-1
6.1.3 OracleCommand.. 6-2
6.1.4 OracleParameter and Prepared Statements ... 6-2
6.1.4.1 Parameters ... 6-2
6.1.5 OracleBlob and Large Object Support .. 6-2
6.1.6 OracleSync and Data Synchronization ... 6-3
6.2 Running the Demo.. 6-5
6.3 Limitations ... 6-6
6.3.1 Thread Safety.. 6-6

7 Developing Mobile Applications for Palm OS Devices

7.1 Installing Oracle Database Lite Runtime on the Device.. 7-1
7.2 Uninstalling or Replacing Oracle Database Lite Runtime .. 7-2
7.3 Running Oracle Database Lite on Palm OS Emulator ... 7-2
7.4 Running Oracle Database Lite on Palm OS Simulator .. 7-2
7.5 Using Oracle Database Lite Base Libraries.. 7-2
7.6 Building a SODA Application... 7-3
7.7 Building a SODA Forms Application .. 7-3
7.8 Building an ODBC Application .. 7-3
7.9 Packaging your Application with Oracle Database Lite Runtime....................................... 7-3
7.10 Customizing Oracle Database Lite Runtime... 7-4
7.11 Palm Shared Library Manager (PSLM).. 7-4

8 Palm Shared Library Manager (PSLM)

8.1 Overview.. 8-1
8.2 Trying out PSLM... 8-1
8.3 Writing a PSLM Library... 8-2
8.4 Building a Shared Library Project .. 8-3
8.5 Calling a PSLM Library from Your Application .. 8-5
8.6 Building an Application Using PSLM.. 8-6
8.7 Exceptions Across Modules... 8-6
8.8 Cloaked Shared Libraries... 8-6
8.9 Patching the CodeWarrior Runtime... 8-7

9 Using Mobile Sync for Palm

9.1 Configuring mSync... 9-1
9.2 Using HotSync to Synchronize Data with the Mobile Server .. 9-2

xi

9.2.1 Configuring HotSync for a PalmOS Device... 9-3
9.2.2 HotSync Timeout Errors ... 9-3
9.2.3 Configuring PalmOS Emulator for HotSync ... 9-3
9.3 Using Network Sync... 9-3
9.3.1 Synchronizing Using a Cradle and Windows Desktop ... 9-4
9.3.2 Network Sync With PalmOS Emulator .. 9-4

10 Building Offline Mobile Applications for Win32: A Tutorial

10.1 Overview... 10-1
10.2 Developing Offline Mobile Applications for Win32... 10-1
10.2.1 Command Sequence... 10-2
10.2.1.1 Step 1. Create TASK Table on the Server Database.. 10-2
10.2.1.2 Step 2. Define a Publication Item and Publish the Application.......................... 10-3
10.2.1.3 Step 3. Create Users and Subscriptions .. 10-5
10.2.1.4 Step 4. Install the Oracle Database Lite 10g Client and the Mobile Field Service

Application and Data 10-6
10.2.1.5 Step 5. Browse the TASK Snapshot and Update a Row....................................... 10-7
10.2.1.6 Step 6. Synchronize the Change with the Server .. 10-7
10.2.1.7 Step 7. Check your changes on the server and modify a server record 10-7
10.2.1.8 Step 8. Synchronize again to get the server changes .. 10-8
10.2.1.9 Step 9. Develop your Mobile Field Service Application Using Oracle Database Lite

10-8
10.2.1.10 Step 10. Republish the Application with the Application Program................... 10-8

11 Building Offline Mobile Applications for Windows CE: A Tutorial

11.1 Overview... 11-1
11.1.1 Before You Start .. 11-1
11.1.1.1 Application Development Computer Requirements ... 11-2
11.1.1.2 Client Device Requirements... 11-2
11.2 Developing the Application ... 11-2
11.2.1 Creating Database Objects in the Oracle Server... 11-2
11.2.1.1 The Pocket PC Transport Application Database Objects..................................... 11-2
11.2.2 Writing the Application Code... 11-4
11.2.2.1 Transport Module (Transport.vb) ... 11-4
11.2.2.2 Main Form (frmMain.vb) ... 11-4
11.2.2.3 View Packages (frmView.vb)... 11-4
11.2.2.4 Create Package (frmNew.vb)... 11-5
11.2.3 Compiling the Application.. 11-6
11.2.3.1 Creating CAB Files .. 11-6
11.2.3.2 Installing the Application from the CAB File.. 11-7
11.3 Packaging and Publishing the Application.. 11-7
11.3.1 Defining the Application Using the Packaging Wizard.. 11-7
11.3.1.1 Creating a New Application .. 11-7
11.3.2 Defining the Application Connection to the Oracle Database Server....................... 11-9
11.3.3 Defining Snapshots... 11-10
11.3.4 Publishing the Application.. 11-13

xii

11.4 Administering the Application .. 11-14
11.4.1 Starting the Mobile Server ... 11-14
11.4.2 Launching the Mobile Manager .. 11-14
11.4.3 Creating a New User .. 11-15
11.4.4 Setting the Application Properties ... 11-16
11.4.5 Granting User Access to the Application .. 11-17
11.4.6 Starting the Message Generator and Processor (MGP)... 11-17
11.5 Running the Application on the Pocket PC ... 11-18
11.5.1 Installing the Oracle Database Lite Mobile Client for Pocket PC 11-18
11.5.2 Installing and Synchronizing the Transport Application and Data........................ 11-19

12 Building Mobile Web Applications: A Tutorial

12.1 Overview... 12-1
12.1.1 Before You Start .. 12-1
12.1.1.1 Development Computer Requirements ... 12-1
12.1.1.2 Client Computer Requirements... 12-2
12.2 Developing the Application ... 12-2
12.2.1 Step 1: Creating Database Objects in Oracle Database Lite.. 12-3
12.2.1.1 The To Do List Application Database Objects... 12-3
12.2.1.2 Required Action... 12-3
12.2.2 Step 2: Compiling the Application ... 12-4
12.2.2.1 Required Action... 12-4
12.2.3 Step 3: Defining the Application and Registering the Servlet.................................... 12-5
12.2.3.1 The Packaging Wizard.. 12-5
12.2.3.2 Required Action... 12-5
12.2.4 Step 4: Conducting a Trial Run... 12-10
12.2.4.1 The Mobile Development Kit for Web-to-Go Web Server 12-10
12.2.4.2 Required Action... 12-10
12.3 Packaging the Application.. 12-12
12.3.1 Step 1: Defining the Application .. 12-12
12.3.1.1 The Packaging Wizard.. 12-12
12.3.1.2 Required Action... 12-12
12.3.2 Step 2: Specifying Database Details ... 12-14
12.3.2.1 Required Action... 12-15
12.3.3 Step 3: Defining the Snapshot ... 12-15
12.3.3.1 The Snapshots Tab... 12-15
12.3.3.2 Required Action... 12-16
12.3.4 Step 4: Defining Sequences.. 12-19
12.3.5 Step 5: Creating SQL Files for the Application... 12-21
12.3.5.1 Required Action... 12-21
12.3.6 Step 6: Package the Application ... 12-21
12.3.6.1 Required Action... 12-21
12.4 Publishing the Application... 12-22
12.4.1 Step1: Create the Table Owner Account.. 12-22
12.4.2 Step 2: Create the Database Objects in the Oracle Database 12-22
12.4.2.1 Required Action... 12-22
12.4.3 Step 3: Start the Mobile Server .. 12-23

xiii

12.4.3.1 Required Action... 12-23
12.4.4 Step 4: Log on to the Mobile Server and Start the Mobile Manager 12-23
12.4.4.1 Required Action... 12-23
12.4.5 Step 5: Upload the Application... 12-25
12.4.5.1 Required Action... 12-25
12.5 Administering the Application .. 12-27
12.5.1 Step 1: Starting the Mobile Manager .. 12-27
12.5.1.1 Required Action... 12-27
12.5.2 Step 2: Using the Mobile Manager to Create a New User 12-28
12.5.2.1 Required Action... 12-28
12.5.3 Step 3: Setting Application Properties ... 12-29
12.5.3.1 Required Action... 12-29
12.5.4 Step 4: Granting User Access to the Application ... 12-30
12.5.4.1 Required Action... 12-30
12.5.5 Step 5: Defining Snapshot Template Values for the User ... 12-31
12.5.5.1 Required Action... 12-31
12.6 Running the Application on the Mobile Client for Web-to-Go....................................... 12-33
12.6.1 Step 1: Installing the Mobile Client for Web-to-Go.. 12-33
12.6.1.1 Required Action... 12-33
12.6.2 Step 2: Logging into the Mobile Client for Web-to-Go ... 12-35
12.6.2.1 Required Action... 12-35
12.6.3 Step 3: Synchronizing the Mobile Client for Web-to-Go... 12-36
12.6.3.1 Required Action... 12-37

13 Building Offline Mobile Web Applications Using BC4J: A Tutorial

13.1 Overview... 13-1
13.1.1 Before You Start .. 13-2
13.1.1.1 Development Computer Requirements ... 13-2
13.2 Developing the Application ... 13-2
13.2.1 Creating the Database Connection... 13-3
13.2.2 Creating the BC4J Component.. 13-11
13.2.3 Configuring the BC4J Component to Use the WTGJdbc Connection..................... 13-13
13.2.4 Building and Deploying the BC4J Component as a Simple Archive 13-13
13.2.5 Writing the JSP Application to Access the BC4J Component 13-14
13.2.6 Deploying the JSP Application as a Simple Archive ... 13-16
13.3 Packaging the JSP Application... 13-16
13.4 Publishing and Configuring the JSP Application from the Mobile Manager.............. 13-18
13.5 Testing the BC4J Application ... 13-18
13.6 Running the BC4J Application on the Mobile Client for Web-to-Go 13-19
13.7 Deploying the Sample Application ... 13-19

A Optimizing SQL Queries

A.1 Optimizing Single-Table Queries .. A-1
A.2 Optimizing Join Queries ... A-2
A.2.1 Create an Index on the Join Column(s) of the Inner Table ... A-2
A.2.2 Bypassing the Query Optimizer ... A-2

xiv

A.3 Optimizing with Order By and Group By Clauses... A-3
A.3.1 IN Subquery Conversion ... A-3
A.3.2 ORDER BY Optimization with No GROUP BY ... A-3
A.3.3 GROUP BY Optimization with No ORDER BY ... A-3
A.3.4 ORDER BY Optimization with GROUP BY.. A-4
A.3.5 Cache Subquery Results .. A-4

B Oracle Database Lite Load Application Programming Interfaces (APIs)

B.1 Overview... B-1
B.2 Oracle Database Lite Load APIs .. B-1
B.2.1 Connecting to the Database: olConnect... B-2
B.2.2 Disconnecting from the Database: olDisconnect.. B-2
B.2.3 Deleting All Rows from a Table: olTruncate .. B-2
B.2.4 Setting Parameters for Load and Dump Operations: olSet .. B-3
B.2.5 Loading Data: olLoad... B-3
B.2.6 Dumping Data: olDump.. B-4
B.2.7 Compiling .. B-4
B.2.8 Linking ... B-4
B.3 File Format .. B-4
B.3.1 Header Format .. B-4
B.3.2 Parameters ... B-5
B.3.3 Data Format ... B-6
B.3.3.1 CSV Format .. B-6
B.3.3.2 FixedAscii Format.. B-6
B.4 Limitations .. B-8

C Web-to-Go Sample Applications

C.1 Introduction .. C-1
C.1.1 The Mobile Server... C-1
C.1.2 The Mobile Development Kit for Web-to-Go ... C-1
C.1.3 Accessing Sample Programs from the Mobile Development Kit for Web-to-Go...... C-1
C.1.4 Accessing Sample Programs from the Mobile Server ... C-2
C.2 Sample 1 - Hello World... C-2
C.2.1 Source Code Location... C-2
C.2.2 Application Files ... C-2
C.3 Sample 3 - Recording Tracker .. C-2
C.3.1 Using Sample 3.. C-2
C.3.2 Sample 3 Database Tables ... C-3
C.3.3 Sample 3 Servlets .. C-3
C.3.4 Sample 3 Resource Bundle .. C-3
C.3.5 Source Code Location... C-3
C.3.6 Application Files ... C-4
C.4 Sample 4 - Hello Applet .. C-4
C.4.1 Sample 4 Servlets .. C-4
C.4.2 Source Code Location... C-5
C.4.3 Application Files ... C-5
C.5 Sample 6 - Image Gallery.. C-5

xv

C.5.1 Source Code Location... C-5
C.5.2 Application Files ... C-5
C.6 Sample 7 - Employee Data Applet... C-6
C.6.1 Source Code Location... C-6
C.6.2 Application Files ... C-7

D ODBC Support on Palm

D.1 ODBC Support.. D-1
D.1.1 SQLAllocConnect.. D-2
D.1.2 SQLAllocEnv ... D-3
D.1.3 SQLAllocHandle ... D-3
D.1.4 SQLAllocStmt .. D-4
D.1.5 SQLFreeConnect ... D-5
D.1.6 SQLFreeEnv... D-5
D.1.7 SQLFreeHandle... D-6
D.1.8 SQLFreeStmt.. D-6
D.1.9 SQLConnect ... D-7
D.1.10 SQLDisconnect .. D-8
D.1.11 SQLBindParameter ... D-8
D.1.12 SQLPrepare.. D-9
D.1.13 SQLExecDirect... D-9
D.1.14 SQLExecute.. D-10
D.1.15 SQLFetch .. D-10
D.1.16 SQLBindCol ... D-11
D.1.17 SQLDescribeCol .. D-11
D.1.18 SQLError .. D-12
D.1.19 SQLGetData... D-13
D.1.20 SQLNumResultCols ... D-13
D.1.21 SQLRowCount .. D-14
D.1.22 SQLTransact .. D-14

Glossary

Index

xvi

xvii

Send Us Your Comments

Oracle Database Lite Developer’s Guide 10g (10.0.0)

Part No. B13788-01

Oracle welcomes your comments and suggestions on the quality and usefulness of this
publication. Your input is an important part of the information used for revision.

■ Did you find any errors?

■ Is the information clearly presented?

■ Do you need more information? If so, where?

■ Are the examples correct? Do you need more examples?

■ What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate
the title and part number of the documentation and the chapter, section, and page
number (if available). You can send comments to us in the following ways:

■ Electronic mail: helplite_ca@oracle.com

■ FAX: (650) 506-7355. Attn: Oracle Database Lite

■ Postal service:

Oracle Corporation
Oracle Database Lite Documentation
500 Oracle Parkway, Mailstop 1op2
Redwood Shores, CA 94065
U.S.A.

If you would like a reply, please give your name, address, telephone number, and
electronic mail address (optional).

If you have problems with the software, please contact your local Oracle Support
Services.

xviii

xix

Preface

This preface introduces you to the Oracle Database Lite Developer’s Guide, discussing the
intended audience, documentation accessibility, and structure of this document.

Intended Audience
This manual is intended for application developers as the primary audience and for
database administrators who are interested in application development as the
secondary audience.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Standards will continue to evolve over
time, and Oracle is actively engaged with other market-leading technology vendors to
address technical obstacles so that our documentation can be accessible to all of our
customers. For additional information, visit the Oracle Accessibility Program Web site
at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation JAWS, a Windows screen reader,
may not always correctly read the code examples in this document. The conventions
for writing code require that closing braces should appear on an otherwise empty line;
however, JAWS may not always read a line of text that consists solely of a bracket or
brace.

Accessibility of Links to External Web Sites in Documentation This documentation
may contain links to Web sites of other companies or organizations that Oracle does
not own or control. Oracle neither evaluates nor makes any representations regarding
the accessibility of these Web sites.

Structure
This guide includes the following topics:

■ Chapter 1, "Overview"

Provides an introduction to Oracle Database Lite 10g and gives an overview of the
application development process using the Mobile Development Kit.

xx

■ Chapter 2, "The Oracle Database Lite RDBMS"

Presents the Oracle Database Lite Relational Database Management System
(RDBMS).

■ Chapter 3, "Synchronization"

Describes synchronization functions between Oracle Database Lite and an Oracle
database using the Mobile Server and the Mobile Sync client application.

■ Chapter 4, "Developing Mobile Web Applications"

Discusses web based mobile application development.

■ Chapter 5, "Native Application Development"

Discusses mobile application development for native platforms.

■ Chapter 6, "Oracle Database Lite 10g ADO.NET Provider"

Discusses ADO.NET support for Windows CE.

■ Chapter 7, "Developing Mobile Applications for Palm OS Devices"

Discusses building Oracle Database Lite 10g applications for Palm devices. Oracle
Database Lite 10g for Palm OS supports Simple Object Database Access (SODA)
and Open Database Connectivity (ODBC) as programming interfaces. This
document also describes how to build and run Oracle Database Lite 10g
applications using Metrowerks CodeWarrior 9.

■ Chapter 8, "Palm Shared Library Manager (PSLM)"

Discusses the Palm Shared Library Manager (PSLM).

■ Chapter 9, "Using Mobile Sync for Palm"

Discusses using Mobile Sync (mSync) for Palm. mSync for PalmOS allows a user
or a developer to synchronize data with the Mobile Server.

■ Chapter 10, "Building Offline Mobile Applications for Win32: A Tutorial"

Guides you through the mobile application development process for the Win32
platform through a tutorial.

■ Chapter 11, "Building Offline Mobile Applications for Windows CE: A Tutorial"

Describes how to build a Visual Basic.NET (Visual Studio.NET 2003) application
using the Oracle Database Lite 10g ADO.NET interface for Pocket PC through a
tutorial.

■ Chapter 12, "Building Mobile Web Applications: A Tutorial"

Guides you through the relevant phases of implementing a web application for
mobile devices through a tutorial.

■ Chapter 13, "Building Offline Mobile Web Applications Using BC4J: A Tutorial"

Enables you to create, deploy, and use a BC4J application through a tutorial.

■ Appendix A, "Optimizing SQL Queries"

Provides tips on improving the performance of your SQL queries.

■ Appendix B, "Oracle Database Lite Load Application Programming Interfaces
(APIs)"

Describes the Oracle Database Lite Load APIs.

■ Appendix C, "Web-to-Go Sample Applications"

xxi

Contains sample Web-to-Go applications.

■ Appendix D, "ODBC Support on Palm"

Describes the Open Database Connectivity (ODBC) support provided in Oracle
Database Lite 10g for the Palm OS Platform.

xxii

Overview 1-1

1
Overview

This chapter provides an introduction to Oracle Database Lite 10g and presents an
overview of the application development process, using the Mobile Development Kit
and its components. This chapter discusses the following topics.

■ Section 1.1, "Introduction"

■ Section 1.2, "Oracle Database Lite 10g Application Model and Architecture"

■ Section 1.3, "Mobile Development Kit (MDK)"

■ Section 1.4, "Supported Platforms"

■ Section 1.5, "Java Support"

■ Section 1.6, "Data Source Name"

1.1 Introduction
Oracle Database Lite 10g facilitates the development, deployment, and management of
offline mobile database applications for a large number of mobile users. An offline
mobile application is an application that can run on mobile devices without requiring
constant connectivity to the server. An offline database application requires a local
database on the mobile device, whose content is a subset of data that is stored in the
enterprise data server. Modifications made to the local database by the application are
occasionally reconciled with the server data. The technology used for reconciling
changes between the mobile database and the enterprise database is known as data
synchronization.

Offline mobile database applications can be developed in many ways. The most
common way is to develop native C or C++ applications for specific mobile platforms.
C++ applications can access the Oracle Database Lite database using the Simple Object
Data Access API (SODA), an easy-to-use C++ interface that is optimized for the
object-oriented and SQL functionality of Oracle Database Lite. For more information
about SODA, refer the SODA API documentation, which is installed as part of the
Mobile Development Kit.

Applications that need a standard interface and work with multiple database engines
can use either the Open Database Connectivity (ODBC) interface, Active Data Object
(ADO) interface, or some other interface built on top of ODBC. ADO.NET can be used
on Windows CE. Another way to develop an offline mobile database application is to
use Java and the Java Database Connectivity (JDBC) interface. Oracle Database Lite
10g also offers a third way to develop offline mobile database applications using the
servlet based web model called Web-to-Go.

Web-to-Go applications can be built using web technologies, such as servlet, Java
Sever Pages (JSP), applet, HTML, and JDBC.

Introduction

1-2 Oracle Database Lite Developer’s Guide

Once the application has been developed, it has to be deployed. Deployment of
applications is concerned with setting up the server system so that end users can easily
install and use the applications. The nerve center of the server system for Oracle
Database Lite 10g applications is the Mobile Server which is where the mobile
applications are deployed. Deployment consists of five major steps:

1. Designing the server system to achieve the required level of performance,
scalability, security, availability, and connectivity. Oracle Database Lite 10g
provides tools such as the "Consperf" utility to tune the performance of data
synchronization. It also provides benchmark data that can be used for capacity
planning for scalability. Security measures such as authentication, authorization,
and encryption are supported using the appropriate standards. Availability and
scalability are also supported by means of load balancing, caching, and the
transparent switch-over technologies of the Oracle9i Application Server
(Oracle9iAS) and the Oracle database server, Oracle9i.

2. Publishing the application to the server. This refers to installing all the
components for an application on the Mobile Server. Oracle Database Lite 10g
provides a tool called the Packaging Wizard that can be used to publish
applications to the Mobile Server.

3. Provisioning the applications to the mobile users. This phase includes determining
user accesses to applications with a specified subset of data. Oracle Database Lite
10g provides a tool called the Mobile Manager to create users, grant privileges to
execute applications, and define the data subsets for them, among others. You can
also use the Java API to provision applications.

4. Testing for functionality and performance in a real deployment environment. A
mobile application system is a complex system involving many mobile device
client technologies (such as, operating systems, form factors, and so on), many
connectivity options (such as, LAN, Wireless LAN, cellular, wireless data, and
other technologies), and many server configuration options. Nothing can
substitute for the real life testing and performance tuning of the system before it is
rolled out. Particular attention should be paid to tuning the performance of the
data subsetting queries, as it is the most frequent cause of performance problems.

5. Determining the method of initial installation of applications on mobile devices
(application delivery). Initial installation involves installing the Oracle Database
Lite 10g client, the application code, and the initial database. The volume of data
required to install applications on a mobile device for the first time could be quite
high, necessitating the use of either a high-speed reliable connection between the
mobile device and the server, or using a technique known as offline instantiation.
In offline instantiation, everything needed to install an application on a mobile
device is put on a CD or a floppy disk and physically mailed to the user. The user
then uses this media to install the application on the device by means of a desktop
machine. Oracle Database Lite 10g provides a tool for offline instantiation.

After deployment, both the application and the data schema may change because of
enhancements or defect resolution. The Oracle Database Lite 10g Mobile Server takes
care of managing application updates and data schema evolution. The only
requirement is that the administrator must republish the application and the data. The
Mobile Server automatically updates the mobile clients that have older version of the
application or the data.

Oracle Database Lite 10g installation provides you with an option to install the Mobile
Server or the Mobile Development Kit. For application development, you will need to
install the Mobile Development Kit on your development machine. However, as
discussed later in this document, the development examples require the Mobile Server
to be running. Hence, if you intend to recreate the sample applications on your system,

Oracle Database Lite 10g Application Model and Architecture

Overview 1-3

you must install the Mobile Server, preferably on a different machine. The installation
of the Mobile Server requires an Oracle database instance to be running. You can use
an existing test database as well. The Mobile Server stores its meta data in this
database.

1.2 Oracle Database Lite 10g Application Model and Architecture
In the Oracle Database Lite 10g application model, each application defines its data
requirements using a publication. A publication is akin to a database schema and it
contains one or more publication items. A publication item is like a parameterized
view definition and defines a subset of data, using a SQL query with bind variables in
it. These bind variables are called subscription parameters or template variables.

A subscription defines the relationship between a user and a publication. This is
analogous to a newspaper or magazine subscription. Accordingly, once you subscribe
to a particular publication, you begin to receive information associated with that
publication. With a newspaper you receive the daily paper or the Sunday paper, or
both. With Oracle Lite you receive snapshots, and, depending on your subscription
parameter values, those snapshots are partitioned with data tailored for you.

When a user logs in to the Mobile Server for the first time, the Mobile Server creates an
Oracle Database Lite database on the client machine for each subscription that is
provisioned to the user. The Mobile Server then creates a snapshot in this database for
each publication item contained in the subscription, and populates it with data
retrieved from the server database by running the SQL query (with all the variables
bound) associated with the publication item. Once installed, Oracle Database Lite is
transparent to the end user; it requires minimal tuning or administration.

As the user accesses and uses the application, changes made to Oracle Database Lite
are captured by the snapshots. At a certain time when the connection to the Mobile
Server is available, the user may synchronize the changes with the Mobile Server.
Synchronization may be initiated by the user using the Oracle Database Lite 10g
Mobile Synchronization application (msync) directly, by programmatically calling the
Mobile Synchronization API from the application, or in the case of Web applications,
the synchronization option can be used from the Web-to-Go workspace to synchronize
the data. The Mobile Synchronization application communicates with the Mobile
Server and uploads the changes made in the client machine. It then downloads the
changes for the client that are already prepared by the Mobile Server.

A background process called the Message Generator and Processor (MGP), which runs
in the same tier as the Mobile Server, periodically collects all the uploaded changes
from many mobile users and then applies them to the server database. Next, MGP
prepares changes that need to be sent to each mobile user. This step is essential
because the next time the mobile user synchronizes with the Mobile Server, these
changes can be downloaded to the client and applied to the client database.

Figure 1–1 illustrates the architecture of Oracle Database Lite 10g applications.

Oracle Database Lite 10g Application Model and Architecture

1-4 Oracle Database Lite Developer’s Guide

Figure 1–1 Oracle Database Lite 10g Architecture

1.2.1 Oracle Database Lite RDBMS
The Oracle Database Lite RDBMS is a small footprint, Java-enabled, secure, relational
database management system created specifically for laptop computers, handheld
computers, PDAs, and information appliances. The Oracle Database Lite RDBMS runs
on Windows 98/NT/2000/XP, Windows CE/Pocket PC, and Palm. Oracle Database
Lite RDBMS provides JDBC, ODBC, and SODA interfaces to build database
applications from a variety of programming languages such as Java, C/C++, and
Visual Basic. These database applications can be used while the user is disconnected
from the database server.

When you install the Mobile Development Kit, the Oracle Database Lite RDBMS and
all the utilities listed in Appendix C are installed on your development machine. In a
production system, when the Mobile Server installs Oracle Database Lite 10g
applications, only the RDBMS, the Mobile Sync, and Mobile SQL applications are
installed on the client machine.

1.2.2 Mobile Sync
Mobile Sync is a small footprint application that resides on the mobile device. Mobile
Sync enables you to synchronize data between handheld devices, desktop and laptop
computers and Oracle databases. Mobile Sync runs on Windows 98/NT/2000/XP,
Windows CE/Pocket PC, and Palm.

Mobile Sync synchronizes the snapshots in Oracle Database Lite with the data in
corresponding Oracle data server. These snapshots are created by the Mobile Server
for each user from the publication items associated with a mobile application. The
Mobile Server also coordinates the synchronization process.

Note: Web-to-Go clients have one additional component, a light
weight HTTP listener that is not shown in the diagram.

Oracle Database Lite 10g Application Model and Architecture

Overview 1-5

The Mobile Sync application communicates with the Mobile Server using any of the
supported protocols (e.g., HTTP or HTTPS). When called by the mobile user, the
Mobile Sync application first collects the user information and authenticates the users
with the Mobile Server. It then collects the changes made to Oracle Database Lite (from
the snapshot change logs) and uploads them to the Mobile Server. It then downloads
the changes for the user from the Mobile Server and applies them to the Oracle
Database Lite.

In addition to this basic function, the Mobile Sync application can also encrypt,
decrypt, and compress transmitted data.

When you install the Mobile Development Kit, the Mobile Sync application is also
installed on your development machine. The Mobile Server also installs the Mobile
Sync on the client machine as part of application installation.

Unlike base tables and views, snapshots cannot be created in Oracle Database Lite by
using SQL statements. They can only be created by the Mobile Server based on
subscriptions which are derived from publication items associated with an application.
This point is discussed further later in this chapter and in Chapter 4.

1.2.3 Mobile Server
The Mobile Server is a mid-tier server that provides the following features.

■ Application Publishing

■ Application Provisioning

■ Application Installation and Update

■ Data Synchronization

The Mobile Server has two major modules called the Resource Manager and the
Consolidator. The Resource Manager is responsible for application publishing,
application provisioning, and application installation. The Consolidator is responsible
for data and application synchronization.

Application publishing refers to uploading your application to the Mobile Server so
that it can be provisioned to the mobile users. Once you have finished developing
your application, you can publish it to the Mobile Server by using the development
tool called the Packaging Wizard.

Application provisioning is concerned with creating subscriptions for users and
assigning application execution privilege to them. Application provisioning can also
be done in one of two ways.

Using the administration tool called the Mobile Manager, you can create users and
groups, create subscriptions for users by assigning values to subscription parameters,
and give users or groups privileges to use the application.

Using the Resource Manager API, you can programmatically perform the above tasks.

End users install mobile applications in two steps. First, as the mobile user, you
browse the setup page on the Mobile Server and choose the setup program for the
platform you want to use. The setup program only runs on Windows 32 platforms. For
Windows 32 based client systems, you can download the setup program directly to the
Windows 32 system and execute it to set up the Oracle Database Lite 10g client. For
Windows CE and Palm devices, you must download the setup program to your
Windows 32 desktop first and execute it there. Then you must use ActiveSync for
Windows CE or Hot Sync for Palm to install the Oracle Database Lite 10g client on the
device.

Oracle Database Lite 10g Application Model and Architecture

1-6 Oracle Database Lite Developer’s Guide

Second, you run the Mobile Sync (msync) command on your mobile device, which
prompts for the user name and password. The Mobile Sync application communicates
with the Consolidator module of the Mobile Server and downloads the applications
and the data provisioned to you.

After the installation of the applications and data, you can start using the application.
Periodically, you will use Mobile Sync or a custom command to synchronize your
local database with the server database. This synchronization will also update all
applications that have changed.

1.2.4 Message Generator and Processor (MGP)
The Consolidator module of the Mobile Server uploads the changes from the client
database to the server, and it downloads the relevant server changes to the client. But
it does not reconcile the changes. The reconciliation of changes and the resolution of
any conflicts arising from the changes are handled by MGP. MGP runs as a
background process which can be controlled to start its cycle at certain intervals.

Each cycle of MGP consists of two phases: Apply and Compose.

The Apply Phase
In the apply phase, MGP collects the changes that were uploaded by the users since
the last apply phase and applies them to the server database. For each user that has
uploaded his changes, the MGP applies the changes for each subscription in a single
transaction. If the transaction fails, MGP will log the reason in the log file and stores
the changes in the error file.

The Compose Phase
When the apply phase is finished, MGP goes into the compose phase, where it starts
preparing the changes that need to be downloaded for each client.

Applying Changes to the Server Database
Because of the asynchronous nature of data synchronization, the mobile user may
sometimes get an unexpected result. A typical case is when the user updates a record
that is also updated by someone else on the server. After a round of synchronization,
the user may not get the server changes.

This happens because the user's changes have not been reconciled with the server
database changes yet. In the next cycle of MGP, the changes will be reconciled with the
server database, and any conflicts arising from the reconciliation will be resolved.
Then a new record will be prepared for downloading the changes to the client. When
the user synchronizes again (the second time), the user will get the record that reflects
the server changes. If there is a conflict between the server changes and the client
changes, the user will get the record that reflects either the server changes or the client
changes, depending on how the conflict resolution policy is defined.

1.2.5 Mobile Server Repository
The Mobile Server Repository (the Repository for short) contains all the information
needed to run the Mobile Server. The information is usually stored in the same
database where the application data reside. The only exception to this is in cases where
the application data resides in a remote instance and there is a synonym defined in the
Mobile Server to this remote instance.

The Repository should only be made using the Mobile Server Mobile Manager or the
Resource Manager API of the Mobile Server.

Mobile Development Kit (MDK)

Overview 1-7

1.3 Mobile Development Kit (MDK)
Before you develop an offline application using Oracle Database Lite 10g, you should
install the Oracle Database Lite 10g Mobile Development Kit (MDK) on the machine
on which you intend to develop your application. for instructions on how to install the
Mobile Development Kit, see the Oracle Database Lite 10g Installation and Configuration
Guide for Windows NT/2000/XP.

The Oracle Database Lite 10g Mobile Development Kit includes the following
components.

■ Oracle Database Lite RDBMS - A lightweight, object-relational database
management system

■ Packaging Wizard - A tool to publish applications to the Mobile Server

■ Mobile Sync - A transactional synchronization engine

■ msql - An interactive tool that enables you to create, access, and manipulate Oracle
Database Lite on laptops and handheld devices.

Using any C or C++ development tool in conjunction with the Mobile Development
Kit for Windows, you can develop your mobile applications for Windows against
Oracle Database Lite, and then publish the applications to the Mobile Server by using
the Packaging Wizard. See Oracle Database Lite 10g Installation and Configuration Guide
for Windows NT/2000/XP for instructions on how to install the Mobile Server.

Once you have published the applications to the Mobile Server, you can use the
Mobile Manager to provision the applications to the mobile users. Provisioning
involves specifying the values of the subscription parameters used for subsetting the
data needed by the application for a particular user. A user to whom an application
has been provisioned can then log in to the Mobile Server and request it to set up
everything the user needs to run the applications on the user's device.

The Mobile Development Kit is installed in <Oracle_home>\Mobile\Sdk. The bin
directory contains, among other things:

■ The Oracle Database Lite RDBMS and its components, including Mobile SQL
(msql.exe), are described in the Oracle Database Lite Tools and Utilities Guide.
Mobile SQL is written in Java. It requires the Java runtime environment JRE 1.3 or
higher to be installed on your system before you can use it. If you have installed
JDK 1.3 or higher, the JRE is already installed in your machine.

■ Mobile Sync, the executable (msync.exe), the COM interface, and the Java
wrapper for it.

■ Packaging Wizard (wtgpack.exe)

■ ODBC data source administrator (odbcad32.exe) that you can use to create
ODBC data sources (DSN).

The Examples directory <Oracle_home>\Mobile\Sdk\Examples directory
contains some sample applications. Chapter 2, "The Oracle Database Lite RDBMS",
Chapter 2.9, "Using Oracle Database Lite Samples" describes the sample programs and
explains how to run them. You should familiarize yourself with the various Oracle
Database Lite 10g features by perusing the source code and running the samples.

The <Oracle_home>\Mobile\Sdk\OLDB40 directory contains a starter database file
named polite.odb.

When you install the Mobile Development Kit, the installer sets the PATH environment
variable to include the bin directory of the Mobile Development Kit. You can use the
Command Prompt on your Windows 32 machine to do the following quick test.

Mobile Development Kit (MDK)

1-8 Oracle Database Lite Developer’s Guide

At the Command Prompt, enter the following.

msql system/manager@jdbc:polite:polite
...
SQL>create table test (c1 int, c2 int);
Table created
SQL>insert into test values(1,2)
1 row(s) created
SQL>select * from test;

 C1 | C2
 ----+----
 1 | 2
SQL>rollback;
Rollback completed
SQL>exit

1.3.1 Mobile SQL (MSQL)
MSQL is an interactive tool that allows you to create, access, and manipulate Oracle
Database Lite on laptops and handheld devices. MSQL installations on laptops cannot
be used to create a database, but can create a database on hand-held devices. Using
MSQL, you can perform the following actions.

■ Create database objects such as tables and views

■ View tables

■ Execute SQL statements

MSQL is installed with the Mobile Development Kit installation. It is also installed
by the Mobile Server as part of application installation. MSQL for the Windows 32
platform is a command line tool that is similar to Oracle's SQL*Plus tool, but does
not provide compatibility with SQL*Plus. MSQL for Windows CE and Palm
supports a graphical user interface.

1.3.2 Using the Packaging Wizard
The Packaging Wizard is a graphical tool that enables you to perform the following
tasks.

1. Create a new mobile application.

2. Edit an existing mobile application.

3. Publish an application to the Mobile Server.

When you create a new mobile application, you must define its components and files.
In some cases, you may want to edit the definition of an existing mobile application's
components. For example, if you develop a new version of your application, you can
use the Packaging Wizard to update your application definition. The Packaging
Wizard also enables you to package application components in a .jar file which can be
published using the Mobile Manager. The Packaging Wizard also enables you to
create SQL scripts which can be used to execute any SQL statements in the Oracle
database.

For detailed information on how to use the Packaging Wizard, see the Oracle Database
Lite Tools and Utilities Guide.

Data Source Name

Overview 1-9

1.4 Supported Platforms
Your development environment must include Oracle Database Lite 10g as the
encompassing platform. For developing native applications on the Oracle Database
Lite 10g platform, the following operating system platforms are supported:

■ Microsoft Windows NT/2000/XP

■ Windows Mobile 2003 Second Edition software for Pocket PCs (Windows CE 4.2)

The following Windows CE chipsets are supported:

■ Pocket PC 2003 (ARM, xScale, Emulator)

■ Pocket PC (ARM)

■ Palm OS 3.5 through 5.2

1.5 Java Support
For more information, refer Chapter 5, "Native Application Development", Section 1.5,
"Java Support".

1.6 Data Source Name
For more information, refer Chapter 5, "Native Application Development", Section 1.6,
"Data Source Name".

Data Source Name

1-10 Oracle Database Lite Developer’s Guide

The Oracle Database Lite RDBMS 2-1

2
The Oracle Database Lite RDBMS

This chapter presents the Oracle Database Lite Relational Database Management
System (RDBMS). It discusses the following topics:

■ Section 2.1, "Introduction"

■ Section 2.2, "Development Interfaces"

■ Section 2.3, "Using the Starter Database"

■ Section 2.4, "Working With Your Database"

■ Section 2.5, "Creating Multiple Users"

■ Section 2.6, "Oracle Database Lite Transaction Support"

■ Section 2.8, "Creating Snapshot Definitions"

■ Section 2.9, "Using Oracle Database Lite Samples"

■ Section 2.10, "Limitations"

■ Section 2.11, "Tracing"

2.1 Introduction
The Oracle Database Lite RDBMS is a small footprint, administration free,
object-relational database management system that supports ODBC, JDBC, and SODA
interfaces. SODA provides access to SQL as well as object-oriented functionality. The
Oracle Database Lite RDBMS supports SQL92 language with some extensions. It is
designed to be used as a local RDBMS for mobile clients. Data stored in the Oracle
Database Lite database can be synchronized with the data stored in Oracle server
databases, such as Oracle9i.

2.2 Development Interfaces
This section provides an overview of the development interface. Topics include:

■ Section 2.2.1, "Development Interface Overview"

■ Section 2.2.2, "Mobile Sync Client Module Application Programming Interfaces
(APIs)"

■ Section 2.2.3, "Oracle Database Lite Load APIs"

■ Section 2.2.4, "Oracle Database Lite Load Utility (OLLOAD)"

■ Section 2.2.5, "ADO.NET"

Development Interfaces

2-2 Oracle Database Lite Developer’s Guide

2.2.1 Development Interface Overview
Oracle Database Lite provides the following interfaces for developing database
applications:

■ For relational database development:

■ JDBC

■ ODBC

■ For object and relational database development:

■ Simple Object Data Access (SODA)

Any interface that supports ODBC or JDBC data sources, such as ADO can also be
used to access Oracle Database Lite. The interfaces can be used either independently
or in combination.

2.2.1.1 JDBC
The Java Database Connectivity (JDBC) interface specifies a set of Java classes that
provide an ODBC-like interface to SQL databases for Java applications. JDBC, part of
the JDK (Java Developer's Kit) core, provides an object interface to relational
databases. Oracle Database Lite supports JDBC through an Oracle Database Lite Type
2 and Type 4 (for multi user version only) JDBC drivers that interpret the JDBC calls
and pass them to Oracle Database Lite.

The following section describes how to start a multi user Oracle Database Lite service.

2.2.1.2 Starting a Multi User Oracle Database Lite Database Service
Oracle Database Lite 10g provides a means to install, start, and stop an Oracle
Database Lite multi user database service. Once started, you can manipulate the local
databases from any machine on the local network. The Branch Office infrastructure
demonstrates the use of a multi user database service. For more information on the
client/server computing architecture, refer to Section15.3 "Architecture" in the Oracle
Database Lite Administration and Deployment Guide.

The following section describes how to install, configure, start, debug, create DSNs,
access the database, and verify the database connection using msql for a multi user
database service.

2.2.1.3 Accessing the Multi User Oracle Database Lite 10g Database Service
This section describes how to install and configure the multi user Oracle Database Lite
database service. Topics include:

■ Installation and Configuration

■ Starting the Service

■ Debugging the Service

■ Creating DSNs

■ Accessing the Database

■ Verifying the Connection Using msql

Installation and Configuration
To install and configure the multiuser Oracle Database Lite 10g database service,
perform the following steps.

Development Interfaces

The Oracle Database Lite RDBMS 2-3

1. Ensure that you install the olsv2040.exe in the following directory.

<Oracle_Lite_home>\Mobile\Sdk\bin

If not already available, please re-install the MDK to retrieve the component. A
sample <Oracle_Lite_home> location is C:\Olite.

2. To install the service, start the Command Prompt and enter the following
command.

Olsv2040.exe/install

3. If you have JDK installed on your PC, ensure that the system PATH variable
includes the following:

■ <Jdk_home>\bin

■ <Jdk_home>\jre\bin

■ <Jdk_home>\jre\bin\hotspot

■ <Oracle_Lite_home>\Mobile\Sdk\bin

For example, the <Jdk_home> directory could be C:\jdk1.3.1_05. Ensure
that you use JDK 1.3.1 variants only.

4. If you have JRE installed on your PC, ensure that the system PATH variable
includes the following:

■ <jre_home>\bin

■ <jre_home>\bin\hotspot

■ <Oracle_Lite_home>\Mobile\Sdk\bin

For example, the <Jre_home> directory could be C:\Program
Files\JavaSoft\JRE\1.3.1_05. Please use JDK 1.3 variants only.

5. Ensure that your system CLASSPATH variable includes the following:

<Oracle_Lite_home>\Mobile\Classes\Olite40.jar and '.'

6. You may change the startup type from the Windows NT service console. Highlight
the Oracle Database Lite 10g Multi User Service and select 'Properties'. When
required, change the startup type to manual. The property also contains startup
parameters but has not been tested.

7. Ensure that the SuggestedSharedAddress and SharedAddress parameters
are not present in the polite.ini file.

8. After changing the above mentioned variables, reboot your PC.

Starting the Service
The Multi User Oracle Database Lite Database Service can be started in many ways. If
the service property "Startup Type" is automatic in the polite.ini file, the multiuser
service is started every time you reboot the machine.

Using the Command Prompt, you can start the multiuser service by entering any one
of the following startup commands.

Note: JRE does not include the Java compiler. Therefore, other
attempts to load a Java source into the database such as the CREATE
JAVA SOURCE command and the loadjava utility will fail.

Development Interfaces

2-4 Oracle Database Lite Developer’s Guide

■ net start "Oracle Lite Multiuser Service"

■ net start "Oracle Lite Multiuser Service"/wdir=<a_working_
directory> /port=nnn

If you use '.' in SQL scripts that load Java classes, you must specify a working
directory. The port parameter defaults to 100.

To stop the service, use the following command.

net stop "Oracle Lite Multiuser Service"

Debugging the Service
If the service the does not start, you can debug the service using the following method.

1. Edit the polite.ini file which is available under %WINDIR%\polite.ini to
add the entry SvTrace=on under the [ALL_DATABASES] section. The
information in this file is not case-sensitive.

2. Start the Command Prompt and enter the following.

olsv2040/debug/port/=nnn

The port parameter in the above command is optional.

3. Should the service fail, the multiuser service generates a log file named olsv.log
in the current working directory. Ensure that the PATH and CLASSPATH variables
are accurate.

4. Correct the cause and retry.

Creating DSNs
To access the database using an ODBC or VB application, you must create the DSN
differently enabled from the embedded connection. When you 'Add' a DSN using the
ODBC administration tool, choose the Oracle Lite 40 ODBC Driver(Client). In this
way, you will create a client DSN. If you are running the service on the same PC where
the client application is running, you can leave the Database Host Name, Database
Port Number, and Database Host DSN value empty. The remaining values must be
included in the same manner as the 'Oracle Lite ODBC Driver' DSN. If you start the
service on a port other than 100, you must specify the Database Port Number.

Accessing the Database
To access the database, you need not make any changes to the ODBC or VB
application. The DSN automatically routes the request to the client via the ODBC
driver olcl2040.dll. For a JDBC application, you must change the URL for the
connect string. The URL syntax is documented in the Oracle Database Lite Developer’s
Guide for Java. It is similar to the one used while connecting to the database using
msql. For more information, refer to Section 3.3, "Connect to Oracle Database Lite," in
the Oracle Database Lite Developer’s Guide for Java.

Verifying the Connection Using msql
Using the Command Prompt, you can verify the connection to the multiuser service in
the following ways.

msql system/passwd@jdbc:polite@::a-dsn

The above command connects to a-dsn on the local host or port 100.

msql system/passwd@jdbc:polite@:1000:a-dsn

The above command connects to a-dsn on a local host on port 1000.

Development Interfaces

The Oracle Database Lite RDBMS 2-5

msql system/passwd@jdbc:polite4@::a-dsn

The above command connects to a-dsn on a local host on port 100 using the Type4
JDBC driver.

For more information on JDBC and Oracle Database Lite, see the Oracle Database Lite
Developer’s Guide for Java.

2.2.1.4 ODBC
Microsoft's Open Database Connectivity (ODBC) interface is a procedural, call-level
interface for accessing SQL databases, and is supported by most database vendors. It
specifies a set of functions that allow applications to connect to databases, prepare and
execute SQL statements at runtime, and retrieve query results. Oracle Database Lite
supports Level 3 compliant ODBC 2.0 and the ODBC 3.5 drivers through Oracle
Database Lite ODBC drivers that interpret the ODBC calls and pass them to Oracle
Database Lite.

For more information on ODBC, see the following:

■ Microsoft's ODBC documentation.

■ The Oracle Database Lite ODBC sample application. For its location in this
document, see Section 2.9, "Using Oracle Database Lite Samples".

■ The Oracle Database Lite Tools and Utilities Guide.

■ Section 4.4.2.1, "Returning Multiple Rows in ODBC", in the Oracle Database Lite
Developer’s Guide for Java.

2.2.1.5 SODA
SODA is a comprehensive and easy interface for Oracle Database Lite development
using C++. It provides object-oriented data access using method calls, relational access
using SQL and object-relational mapping to bridge the gap between the two.

Object functionality is roughly 3 times faster than ODBC for simple operations. It
allows rich datatypes such as arrays and object pointers in addition to standard SQL
columns. A programmer now has an option to just store any data structure in the
database and not worry about relational design or doing joins.

On the other hand, a C++ developer can also use an interface that is similar to JDBC
for executing SQL statements when necessary. The resulting code is much shorter and
clearer than its ODBC equivalent. SQL queries can optionally return objects that can be
examined and modified directly through the object-oriented layer, without calling any
additional SQL statements.

Finally, object-relational mapping allows the application to access relational data as if
it was an object hierarchy. This is essential for replicating rich data types or object
pointers to the database server.

Note: Oracle Database Lite supports Type2 and Type4 JDBC drivers.
Type4 is a pure Java JDBC driver that communicates with the service
in the Oracle Database Lite network protocol. The Type2 JDBC driver
talks to the remote ODBC driver (olcl2040.dll) using a native
oljdbc40.dll (JNI Implementation).

Using the Starter Database

2-6 Oracle Database Lite Developer’s Guide

2.2.2 Mobile Sync Client Module Application Programming Interfaces (APIs)
These APIs allow the application to programmatically control the data synchronization
process. The application invokes the functions in the Mobile Sync APIs to initiate the
data synchronization process and capture error messages generated by the Mobile
Sync APIs. For more information on the Mobile Sync APIs please see Chapter 5,
"Native Application Development", Section 5.4, "Mobile Sync Application
Programming Interfaces (APIs)".

2.2.3 Oracle Database Lite Load APIs
Using the Oracle Database Lite Load APIs, you can develop applications to load data
from an external file into a table in Oracle Database Lite, or to unload (dump) data
from a table in Oracle Database Lite to an external file. The details of the APIs and file
formats are provided in Appendix B, "Oracle Database Lite Load Application
Programming Interfaces (APIs)".

2.2.4 Oracle Database Lite Load Utility (OLLOAD)
The Oracle Database Lite Load Utility enables you to load data from an external file
into a table in Oracle Database Lite, or to unload (dump) data from a table in Oracle
Database Lite to an external file. For more information on OLLOAD see the Oracle
Database Lite Tools and Utilities Guide.

2.2.5 ADO.NET
The Oracle Database Lite ADO.NET Provider implements Microsoft's ADO.NET
specification. Developers can use this programming interface to access Oracle
Database Lite and trigger Data Synchronization in their .NET based applications. The
Oracle Database Lite ADO.NET data provider supports both .NET and Compact .NET
frameworks.

2.3 Using the Starter Database
When you install the Mobile Development Kit, an ODBC data source name (DSN)
POLITE, and a starter database called POLITE.ODB are created. The location of new
database for the DSN POLITE is set to <Oracle_home>\Mobile\Sdk\oldb40.

A default user named SYSTEM is set up for you during installation of the samples.
SYSTEM contains all database privileges and has a no password. You can create a
password for SYSTEM by using the ALTER USER command. (The following section
describes sample syntax.) You can either use the default user name or establish user
names of your own.

You can connect to the Oracle Database Lite starter database using an application such
as Mobile SQL. Mobile SQL is a command line interface. To connect to the POLITE
database, use the following command from the Command Prompt.

C:>msql system/any@jdbc:polite:polite

You can assign SYSTEM a password by entering the following command.

Note: Review the Oracle Database Lite SQL Reference before using
the starter database. This reference describes the Structured Query
Language (SQL) used to manage information in Oracle Database
Lite.

Working With Your Database

The Oracle Database Lite RDBMS 2-7

SQL> ALTER USER SYSTEM IDENTIFIED BY <password>

When connecting to the starter database from an ODBC application, use the default
ODBC DSN POLITE.

2.4 Working With Your Database
This section provides an overview of working with your Oracle Database Lite,
including creating a database, connecting to a database, creating users, and
administering the database.

2.4.1 Creating a New Database
When you create a new database using the POLITE data source name, the new
database file is located in the <Oracle_home>\Monile\Sdk\oldb40 directory. For
ease of maintenance, it is recommended that you use one database directory for all
databases.

You can create a new data source name using the ODBC Administrator. For more
information, refer the following section.

2.4.2 Creating a Data Source Name with ODBC Administrator
The ODBC Administrator is a tool provided by Microsoft to manage the ODBC.INI
file and associated registry entries in Windows 98/NT/2000/XP. It allows you to add a
data source name and specify the database file you want to dedicate as the default for
the data source name. For more information on the ODBC Administrator, and for
instructions on creating a data source name using the tool, refer to Section 3.7, "ODBC
Administrator and the Oracle Database Lite ODBC Driver," in the Oracle Database Lite
Tools and Utilities Guide.

2.4.3 Creating a New Database Using the Command-Line Utility
To create a new database from the command line, use the CREATEDB utility. The
syntax is:

CREATEDB mydsn mydbname

For example:

CREATEDB polite newdb

where mydsn is the DSN name and mydbname is the new database name.

See the Oracle Database Lite Tools and Utilities Guide for more information on CREATEDB.

Note: For more information, see Section 2.5.4, "Changing
Passwords".

Note: All newly created databases contain the user SYSTEM,
which has a NULL password.

Creating Multiple Users

2-8 Oracle Database Lite Developer’s Guide

2.4.4 Connecting to a New Database
To connect to a new database using Mobile SQL (MSQL), connect as the user named
SYSTEM, with the password MANAGER and the data source name. For example:

C:> msql system/manager@jdbc:polite:mydsn

You can replace mydsn with a previously defined ODBC data source name.

2.5 Creating Multiple Users
You can create multiple users in Oracle Database Lite by using the CREATE USER
command. A user is not a schema. When you create a user, Oracle Database Lite
creates a schema with the same name and automatically assigns it to that user as the
default schema. You can access database objects in the default schema without
prefixing them with the schema name.

Users with the appropriate privileges can create additional schemas by using the
CREATE SCHEMA command, but only the user can connect to the database. You cannot
connect to the database using the schema name.

 These schemas are owned by the user who created them and require the schema name
prefix in order to access their objects.

When you create a database using the CREATEDB utility or the CREATE DATABASE
command, Oracle Database Lite creates a special user called SYSTEM, which has all
database privileges and is not assigned a password.

To access data and perform operations in another user's schema, a user must be
granted DBA or ADMIN privileges. Alternatively, the user can access data with the
user name SYSTEM, as this user name automatically holds DBA and ADMIN
privileges.

2.5.1 Pre-defined Roles
Oracle Database Lite combines some privileges into pre-defined roles for convenience.
In many cases it is easier to grant a user a pre-defined role than to grant specific
privileges in another schema. Oracle Database Lite does not support creating or
dropping roles. Following is a list of Oracle Database Lite pre-defined roles:

Table 2–1 Pre-Defined Roles

Role Name Privileges Granted To Role

ADMIN Enables the user to create other users and grant privileges
other than DBA and ADMIN on any object in the schema:

CREATE SCHEMA, CREATE USER, ALTER USER, DROP
USER, DROP SCHEMA, GRANT, REVOKE

DBA Enables the user to issue the following DDL statements which
otherwise can only be issued by SYSTEM:

All ADMIN privileges, CREATE TABLE, CREATE ANY
TABLE, CREATE VIEW, CREATE ANY VIEW, CREATE
INDEX, CREATE ANY INDEX, ALTER TABLE, ALTER VIEW,
DROP TABLE, DROP VIEW, and DROP INDEX.

Creating Multiple Users

The Oracle Database Lite RDBMS 2-9

2.5.2 Creating Users
You can create users if you are connected to the database as "system", or if you are
granted the ADMIN or DBA role. To create a user, issue the following statement:

CREATE USER <user> IDENTIFIED BY <password>

Here, <user> is a unique user name with up to 128 characters, beginning with a letter,
and <password> is a string of up to 128 characters. This statement creates a schema
with the user name and assigns the schema as the default schema for the user.

For encrypted databases, all user names and passwords are written to a file named
mydbname.opw. Each user can then use their own password as a "key" to unlock the
.opw file before the .odb file is accessed. When you copy or back up the database, you
should include the .opw file and the .plg file.

2.5.3 Dropping Users
You can drop users if you are connected to the database as "system", or if you are
granted the ADMIN or DBA role.

To drop a user when the user's schema does not contain any objects, use the syntax:

DROP USER <user>

To drop all objects in the user's schema before dropping the user, use the syntax:

DROP USER <user> CASCADE

For more information on the DROP USER command, see the Oracle Database Lite SQL
Reference.

2.5.4 Changing Passwords
You can change a user's password if you meet one of the following conditions:

■ You are connected to the database as that user

■ You are connected to the database as SYSTEM

■ You are granted the ADMIN or DBA role

 To change a user's password, issue the following statement:

RESOURCE The RESOURCE role grants the same level of control as the DBA
role, but only over the user's own schema. The user can execute
any of the following commands in a SQL statement:

CREATE TABLE, CREATE VIEW, CREATE INDEX, CREATE
CONSTRAINT, ALTER TABLE, ALTER VIEW, ALTER INDEX,
ALTER CONSTRAINT, DROP TABLE, DROP VIEW, DROP
INDEX, DROP CONSTRAINT, and GRANT or REVOKE privileges
on any object under a user's own schema.

General Note: Unlike the Oracle database server, Oracle Database
Lite does not commit data definition language (DDL) commands
until you explicitly issue the COMMIT command.

Table 2–1 (Cont.) Pre-Defined Roles

Role Name Privileges Granted To Role

Creating Multiple Users

2-10 Oracle Database Lite Developer’s Guide

ALTER USER <user> IDENTIFIED BY <password>

2.5.5 Granting Roles
You can grant the ADMIN or DBA roles to users by issuing the following statement:

GRANT <role> TO <user_list>

Here, <user_list> is either one user or a comma separated list of multiple users.

2.5.6 Granting Privileges
You can grant privileges on a database object to users by issuing the following
statement:

GRANT <privilege_list> ON <object_name> TO <user_list>

Here, <privilege_list> is either a comma separated list of the following privileges
or a combination called ALL:

■ ALL

■ INSERT

■ DELETE

■ UPDATE (column_list)

■ SELECT

Object_name is a table name prefixed with a schema name.

If <privilege_list> is ALL, then the user can INSERT, DELETE, UPDATE or
SELECT from the table or view. If <privilege_list> is either INSERT, DELETE,
UPDATE, or SELECT, then the user has that privilege on a table.

2.5.7 Revoking Roles
You can revoke user roles by issuing the following statement:

REVOKE <role> FROM <user_list>

2.5.8 Revoking Privileges
You can revoke privileges on database objects from users by issuing the following
statement:

REVOKE <privilege_list> ON <table_name> FROM <user_list>

2.5.9 Building Demo Tables
Oracle Database Lite comes with a script called POLDEMO.SQL, which enables you
to build the same tables that are in your Oracle Database Lite default starter database
(POLITE.ODB).

2.5.10 Populate Your Database Using Mobile SQL
You can use SQL scripts to create tables and schema, and to insert data into tables. A
SQL script is a text file, generally with a .SQL extension, that contains SQL commands.
You can run the following SQL script from the Mobile SQL prompt.

SQL> @<ORACLE_HOME>\DBS\Poldemo.sql

Oracle Database Lite Transaction Support

The Oracle Database Lite RDBMS 2-11

You can also enter:

SQL> START <filename>

2.5.11 Backing Up a Database
The Oracle Database Lite occupies one file, and has dependent log files which can be
backed up by copying to another location. Before any files can be copied, however,
your database administrator must shut down the database which ensures that log file
changes are applied to the database. Once that has been accomplished, you can copy
the *.odb, *.opw, and *.plg files to another directory to make a backup of the database.

2.5.12 Encrypting and Decrypting a Database
Two utilities, ENCRYPDB and DECRYPDB, enable you to encrypt and decrypt Oracle
Database Lite databases. These utilities enable you to encrypt an Oracle Database Lite
database with a password. The password can be used to prevent unauthorized access
to the database and also to encrypt the database so that the data stored in the database
files cannot be interpreted by examining the files. The password is used to derive a
40-bit encryption key. Oracle Database Lite uses a version of the Data Encryption
Standard (DES) algorithm known as CAST5. A new database created in 10g uses the
Advanced Encryption Standard (AES) encryption. Oracle Database Lite will continue
to support CAST5 for previous databases.

See the Oracle Database Lite Tools and Utilities Guide for more information about these
utilities.

2.6 Oracle Database Lite Transaction Support
When an application connects to Oracle Database Lite, it begins a transaction with the
database. There can be a maximum of 64 connections to Oracle Database Lite. Each
connection to Oracle Database Lite maintains a separate transaction.

2.6.1 Atomicity
A transaction is a sequence of database operations, such as SELECT, UPDATE, DELETE,
and INSERT. All operations either succeed and are committed or are rolled back. This
is called the atomicity property of a transaction.

Oracle Database Lite implements atomicity by not updating the actual database file
until a database commit. During commit, a temporary undo log is created and then the
database file is updated. If an event, such as a power outage, interrupts commit, the
database is restored from the log during the next connection.

2.6.2 Consistency
Transactions preserve database consistency. A transaction transforms a consistent state
of the database into another consistent state, without necessarily preserving
consistency at all intermediate points. Oracle Database Lite does not permit a
transaction to commit if it violates a constraint and would therefore violate
consistency.

Note: You do not need to include the .SQL file extension when
running the script.

Oracle Database Lite Transaction Support

2-12 Oracle Database Lite Developer’s Guide

2.6.3 Isolation
Transactions are isolated from one another. Even though many transactions run
concurrently, a given transaction's updates are concealed from other transactions until
the transaction commits. Oracle Database Lite supports the isolation levels for
transactions listed in Table 2–2:

Table 2–2 Isolation Levels

Isolation Level Description

Read Committed In Oracle Database Lite, a READ COMMITTED transaction first
acquires a temporary database level read lock, materializes the
result of the query into a temporary table, and then releases the
database lock. During this time, no other transaction can
perform a commit operation. No data objects are locked. All
other transactions are free to perform any DML operation
(except commit), during this time. Since a commit operation
locks the database in "intent" exclusive mode, a read
committed transaction, while materializing the query result,
will block another transaction that is trying to commit or vice
versa. A READ COMMITTED transaction gives the highest level
of concurrency as it does not acquire any data locks and does
not block any other transaction from performing any DML
operations. In addition, the re-execution of the same query
(SELECT statement) may return more or less number of rows
based on other transactions made to the data in the result set of
the query.

Note: A SELECT statement containing the FOR UPDATE clause
is always executed as if it is running in a REPEATABLE READ
isolation level.

In Oracle Database Lite, a SELECT statement can execute Java
stored procedures. If the transaction executing the Java stored
procedure is in the READ COMMITTED isolation level and the
Java stored procedure updates the database, then the SELECT
statement to execute the Java stored procedure must have a
FOR UPDATE clause. Otherwise, Oracle Database Lite issues an
error.

Repeatable Read In this isolation level, a query acquires read locks on all its
returned rows. More rows may be read locked because of the
complexity of the query itself, the indexes defined on its tables,
or because of the execution plan chosen by the query
optimizer. The REPEATABLE READ isolation level provides
less concurrency than a READ COMITTED isolation level
transaction because the locks are held until the end of the
transaction.

A "Phantom" read is possible in this isolation level. this
happens when another transaction inserts rows that meet the
search criteria of the current query and the transaction
re-executes the query.

If a FOR UPDATE clause is used in a query, a short-term update
lock is acquired on the current row(s) being selected. If a row is
updated, the lock is converted into an exclusive lock. An
exclusive lock prevents any other transaction running in an
isolation level other than READ COMMITTED to access this row.
If the row is not updated but the next row is fetched, the
update lock is downgraded to a read lock, permitting other
transactions to read the row.

Oracle Database Lite Transaction Support

The Oracle Database Lite RDBMS 2-13

Refer to the documentation for ODBC for more information on isolation levels,
specifically, for the terms "Dirty Read", "Nonrepeatable Read", and "Phantom", which
define transaction isolation levels.

2.6.3.1 Durability
Transactions are guaranteed to be durable. That is, once a transaction commits, all its
changes are persistent in the database file even if the system subsequently fails at any
point. If a transaction fails during a commit or rollback due to some system failure, the
undo log file is required to restore the database to a consistent state.

2.6.3.2 Locking
Oracle Database Lite supports row level locking. Whenever a row is read, it is read
locked. Whenever a row is modified, it is write locked. Different transactions can read
the same row, which is read locked. However, a write locked row cannot be accessed
by another transaction.

2.6.3.3 Changing the Default Isolation Level
In Oracle Database Lite, the READ COMMITTED isolation level is the default.

You can change the default isolation level for a data source name (DSN) by using the
ODBC Administrator, or by manually editing the ODBC.INI file to include:

IsolationLevel = XX

where the value for XX is RC for Read Committed, RR for Repeatable Read, SR for
Serializable, or SU for Single User.

Also, you can establish the isolation level of a transaction by using the SQL statement:

SET TRANSACTION ISOLATION LEVEL <ISOLATION_LEVEL>;

where ISOLATION_LEVEL is READ COMMITTED, REPEATABLE READ,
SERIALIZABLE, or SINGLE USER.

See Section 2.6.3.4, "Supported Combinations of Isolation Levels and Cursor Types",
for more information.

2.6.3.4 Supported Combinations of Isolation Levels and Cursor Types
Table 2–3 shows the supported combinations of isolation levels and cursor types.
Isolation levels appear in the left column and cursor types appear in the top row. "S"
indicates supported, "U" indicates unsupported.

Serializable This isolation level acquires shared locks on all tables
participating in the query. The same set of rows is returned for
the repeated execution of the query in the same transaction.
Any other transaction attempting to update any rows in the
tables in the query is blocked.

SingleUser In this isolation level only one connection is permitted to the
database. The transaction has no locks and consumes less
memory.

Table 2–2 (Cont.) Isolation Levels

Isolation Level Description

Support for Linguistic Sort

2-14 Oracle Database Lite Developer’s Guide

Unsupported combinations generate error messages.

2.6.4 Tuning the Application
Tuning your application design ideally occurs before you begin to implement your
application. Before beginning your design, you should carefully read about each of the
Oracle Database Lite features available and consider which features best suit your
requirements. Also, you should work with your Oracle database administrator to
determine how the Oracle master site can be tuned to accommodate your application.
Some specific design tips to consider are outlined in Appendix A, "Optimizing SQL
Queries".

2.7 Support for Linguistic Sort
Linguistic sort is a new feature for the "ASCII" version of Oracle Database Lite. It
produces culturally acceptable order of strings for a specified language or collation
sequence. The "ASCII" version supports several code pages defined by single-byte
8-bit encoding schemes. Each of these code pages is a super set of 7-bit ASCII, and the
additional accented characters necessary to support a group of European languages
are included in the upper 128 bytes. A new string comparison mechanism is provided
that produces strings in a linguistically correct order by mapping each collation
element of a string to the corresponding 8-bit value of the supported code page.

2.7.1 Creating Linguistic Sort Enabled Databases
The linguistic sort capability must be enabled when the database is created using the
CREATEDB command line utility with the <collation_sequence> enabled.

The behavior of the ORDER_BY clause and the WHERE condition are determined by
how the NLS_SORT parameter is implemented. Binary sorting is the default setting,
and is used unless the <collation_sequence> parameter is set to use the linguistic
sort ordering rules.

Unicode and NLSRT are not supported in the current version of Oracle Database Lite.
Therefore, NCHAR data type and customization of collation sequence are not yet
available. For more information on how collation sequences are enabled using the file
polite.ini, refer the Oracle Database Lite Developers Guide.

2.7.2 How Collation Works
Collation refers to ordering of strings into a culturally acceptable sequence. A collation
sequence is a sequence of all collation elements from an alphabet from smallest
collation order to the largest. Once a collation sequence is given, orders of all strings
from the same alphabet are fixed. As such, the collation sequence encodes the
linguistic requirements on collation. A collation element is the smallest sub-string that
can be used by the comparison function to determine the order of two strings.

Table 2–3 Supported Combinations

Isolation Level Forward Only Static Keyset Driven Dynamic

Read Committed S S U U

Repeatable Read S U S S

Serializable S U S S

Single User S S S S

Support for Linguistic Sort

The Oracle Database Lite RDBMS 2-15

2.7.3 Collation Element Examples
Normally, a collation element is just one character. In binary sorting, only one
property, the code value that represents a character, is used. But in linguistic sorting,
usually three properties. The primary level of difference is the base character. The
secondary level of difference is for diacritical marks on a given base character. The
tertiary level of difference is for the case of a given character. Punctuation can function
as a fourth level of difference, but comparisons for punctuation occur last and are
made at the binary rather than the linguistic level. These are used for each collation
element. The following sections contain examples that demonstrate sorting priorities.

2.7.3.1 Sorting Normal Characters
This section lists a set of examples that describe how to sort normal characters.

Example 1
'a' < 'b'. There is a primary difference between them on the character level.

Example 2
'À' > 'a'. This difference occurs on the secondary level. Note that 'À'and 'a' are
considered "equal" on the primary level.

Example 3
'À' < 'à' in FRENCH but 'À' > 'à' in GERMAN. This difference on the tertiary level.
Note that 'À' and 'à' are considered being "equal" on the primary and secondary level.
Also note that the case convention may be different for different language.

Example 4
'às' < 'at'. This is a difference on the primary level. This example shows the role of
difference levels: the lower level differences are ignored if there is a primary level
difference anywhere in the strings.

Example 5
'+data' < '-data' <'data' <'data-'. If strings are compared and present no
difference on the primary, secondary, or tertiary levels, they are compared for
punctuation.

2.7.3.2 Reverse Sorting of French Accents
Some languages, particularly French, require words to be ordered on the secondary
level according to the last accent difference. This behavior is known as French
secondary sorting or French accent ordering.

Example
'côte' < 'coté' in FRENCH but 'coté' < 'côte' in GERMAN. Note that the secondary
difference of 'e' and 'é' occurred later than those of 'ô' and 'o'.

2.7.3.3 Sorting Contracting Characters
There are some special cases where two or more characters in a group can function as a
single collation element. These types of collation elements are called 'contracting
characters' or 'group characters'. In these cases each of these characters properties are
assigned appropriate values.

Creating Snapshot Definitions

2-16 Oracle Database Lite Developer’s Guide

Example
'h' < 'ch' < 'i' in XCZECH. Here 'ch' is assigned a primary property value which
differentiates it from 'h' and 'i', such that 'h' < 'ch' < 'i'. Note that 'ch' is treated as a
single character.

2.7.3.4 Sorting Expanding Characters
If a letter sorts as if it were a sequence of more than one letter, it is called an 'expanding
character'. For example, in German the sharp s (ß) is treated as if it were a string of two
characters 'ss' when comparing with other letters.

2.7.3.5 Sorting Numeric Characters
Only sorting of single digit characters from '0' to '9' is currently supported. For the
supported European languages a digit character is always sorted as greater than any
alphabetic character. For other languages this may be not the same. Other numeric
characters such as Roman numeric characters and counting sequences, such as "one",
"two", "three", are not supported at this time.

Example
'1' > 'z' in any European language, '1' < 'a' in LATVIAN. Note that this difference
occurs on the primary level.

2.8 Creating Snapshot Definitions
The data that your offline applications operate on is stored in Oracle Database Lite as
either base tables or snapshots. Base tables can be created using the CREATE TABLE
SQL statement. Base table store data that is independent of the server data; changes
made to them are never synchronized with the server database.

Snapshots store a subset of server data. Changes made to a snapshot can be
synchronized with the server data. However, snapshots cannot be created in Oracle
Database Lite by using SQL statements. Snapshots are created by the Mobile Server as
part of the application installation. They are created based on the publication items
defined on the Mobile server. A publication items contains a parameterized SQL query
that defines the subset of server data that needs to be stored in the snapshot.

In most situations, a table or view already exist on the server from which you will
create snapshots for your application to use. The following techniques can be used to
create publication items on the Mobile Server, which then automatically creates
snapshots on the client when you synchronize with the database. The options for
creating publication items/snapshot definitions are:

1. Creating a Snapshot Definition Declaratively - Create publication items using the
Packaging Wizard. This is the recommended method.

2. Creating the Snapshot Definition Programmatically - Create a publication item
programmatically using the Consolidator API.

2.8.1 Creating a Snapshot Definition Declaratively
This method uses the Packaging Wizard, a GUI based tool of Oracle Database Lite. The
convenience of a graphical tool is a safer and less error prone technique for developers
to create a mobile application. Before actual application programming begins, the
following steps must be executed:

■ Verify that the base tables exist on the server database, if not, create one.

Creating Snapshot Definitions

The Oracle Database Lite RDBMS 2-17

■ Use the Packaging Wizard to define an application and the publication items
(snapshot definitions) for it.

■ Use the Packaging Wizard to publish the application to the Mobile Server. This
will create the publication items associated with the application.

■ Use the Mobile Manager to create a subscription for a given user.

Install the application on the development machine.

■ Synchronize the Mobile Client with the Mobile Server to create the client-side
snapshots.

Using the Packaging Wizard, as described in the Oracle Database Lite Tools and Utilities
Guide provides additional details for this approach.

2.8.2 Creating the Snapshot Definition Programmatically
The second way to create a snapshot definition is to use the Consolidator API to
programmatically create the publication items on the Mobile Server. While this
method is more involved, requiring the knowledge of the Oracle Database Lite 10g
application model, it does provide all the features of the product, including creation of
publication items from views, customize code to construct snapshots, which is
described in Chapter 3, "Synchronization". The database base tables must exist before
the Consolidator API can be invoked. The following steps are required to create a a
subscription:

■ Create a publication

■ Create a publication item and add it to the publication

■ Create a user

■ Creating a subscription for the user based on the publication

Creating Publications
Publications are Mobile Server objects that are used to organize other objects such as
publication items, indexes on them, platform specific information, etc., required by an
application. You can create publications using the Consolidator API. You can call the
functions in these APIs from within Java programs as standard function calls.

Creating Publication Items
A publication item is a Mobile Server object that contains the SQL select statement that
specifies which data subset of the parent table or view or synonym is replicated on the
client. A publication item usually corresponds to a snapshot on the client device. You
can create publication items using the Consolidator API. You can call the functions in
this API from within Java programs as standard function calls.

Creating Users
Each client is identified by a user ID. For development purposes, a user must be
created using the Consolidator API in order to assign data subscriptions to a particular
user.

Creating Subscriptions
A subscription is a Mobile Server object that relates a user to a publication. You can
create subscriptions using the Consolidator API. Before a subscription can be used to
create a client database, every parameter of the publication must be given a value. You
can assign a value to each parameter using the SetSubscriptionParameter method of

Using Oracle Database Lite Samples

2-18 Oracle Database Lite Developer’s Guide

the Consolidator API. You can call the functions in this API from within Java programs
as standard function calls. To create publications and subscriptions using Java, see
Section 3.4, "The Publish and Subscribe Model and Oracle Database Lite
Synchronization", in Chapter 3, "Synchronization".

2.9 Using Oracle Database Lite Samples
The following sections provide instructions on how to use Oracle Database Lite
samples.

2.9.1 Overview
After you perform a complete installation of Oracle Database Lite, the samples are
available in your <Oracle_home>\Mobile\Sdk directory. The tools, locations for
samples, and descriptions are listed in Table 2–4.

2.9.2 BLOB Manager Example Notes
To install the BLOB Manager example, open the \SETUP folder in <Oracle_
home>\Lite\Sdk and run setup.exe. After you complete the installation, click the
'Start' button and select 'BLOB Manager' from the 'Programs' menu.

To uninstall the example, click the 'Start' button, select 'Settings', and then 'Control
Panel'. Select 'Add/Remove'. Select 'BLOB Manager' and click the 'Add/Remove'
button.

You need at least Version 3.51.2723.0 of MSJET35.dll to run the example.

Table 2–4 Sample File Directory

Tool Location of Sample Applications Description

Blob
Manager

<Oracle_home>\Mobile\Sdk Demonstrates the use of the
Oracle BLOB datatype and
Visual Basic's ODBC
programming methods and
object manipulation. See
Section 2.9.2, "BLOB Manager
Example Notes" for more
information.

Java <Oracle_home>\Mobile\Sdk Demonstrates programming
with JDBC. See the Oracle
Database Lite Developer’s Guide for
Java for more information.

ODBC <Oracle_home>\Mobile\Sdk Provides ODBC programs
written in C.

Visual Basic <Oracle_home>\Mobile\Sdk Demonstrates the ease of
querying tables in Oracle
Database Lite with Visual Basic
tools. See Section 2.9.3, "Running
the Visual Basic Sample
Application" for more
information.

Note: Most examples use the data source name (DSN) POLITE. If
you need to drop and recreate, use the REMOVEDB and CREATEDB
utilities.

Using Oracle Database Lite Samples

The Oracle Database Lite RDBMS 2-19

Run the 'setup.exe' and 'BLOB Manager' from the 'Programs' menu as stated above
before you open the Visual Basic project file and run it with Visual Basic. Running the
program from the Programs menu will prepare the table in the database for you
automatically.

2.9.3 Running the Visual Basic Sample Application
This example (which uses Visual Basic 5.0 or higher) demonstrates how to develop a
Visual Basic application with Oracle Database Lite. It uses the ODBC DSN, POLITE. To
use the AddNew, Update, and Delete macros you need a unique EMPNO column of the
EMP table. This is the default condition when you connect to the default database.

These instructions for installing and running the Visual Basic sample application
assume that you have already installed Oracle Database Lite and Visual Basic (version
5.0 or higher).

2.9.3.1 Open Visual Basic
Double-click the Visual Basic icon in your Visual Basic program group to open Visual
Basic.

2.9.3.2 View the Sample Application Tables and Data
This step uses the Visual Data Manager, which is available only with Visual Basic 5.0.
If you are using an earlier version of Visual Basic, skip to Step 3.

1. From the Add-Ins menu, select Visual Data Manager. In the VisData window,
select Open Database from the File menu and select ODBC.

2. In the ODBC Logon dialog, enter values as described in Table 2–5.

3. Click OK. The Oracle Database Lite tables are displayed in the Database window.
You can highlight a table and right click to open the table and display the records.

Note: BLOB Manager is for demonstration purposes. It assumes
that you have installed the default database with the default
POLITE ODBC DSN. If this is not the case, you can create the
POLITE DSN using the ODBC Administrator. Also, you must
verify that SYSTEM is a valid user for the database.

Note: If you have not installed Visual Basic and the ODBC
drivers, you need to install them before you begin.

Table 2–5 ODBC Logon Dialog Description

Field Name Value

DSN POLITE

UID SYSTEM

PW Enter at least one
character

Database POLITE

Using Oracle Database Lite Samples

2-20 Oracle Database Lite Developer’s Guide

2.9.3.3 Open the Sample Application
1. To open the sample application, select Open Project from the File menu. In the

dialog box, navigate to your <Oracle_home>\Mobile\Sdk\Examples\VB
directory. Select update.mak, and click Open.

2. From the Run menu, select Start to open the sample application and display the
EMP table.

2.9.3.4 View and Manipulate the Data in the EMP Table
1. To view data in the EMP table:

■ Click Show to show the EMP table data.

■ Click Next to show the next record.

■ Click Previous to show the previous record.

2. To manipulate data in the EMP table, use the Add, Update, and Delete features.

2.9.4 ODBC Examples
These examples are located in <Oracle_home>\Mobile\Sdk.

These examples must be compiled using a C++ complier. To build them, open a
console, switch to the <Oracle_home>\Mobile\Sdk directory and type "nmake".

There are 5 odbc examples namely, odbctbl, odbcview, odbcfunc, odbctype, and
long. You only need the POLITE data source name (DSN) to run these examples. The
POLITE DSN is automatically created during the Mobile Development Kit installation.

To run the examples, execute run.bat in the <Oracle_home>\Mobile\Sdk directory.
The first four examples have their own output windows showing the log of what is
done. Closing the current example window causes the next example to be run. The
output displayed in the example windows is also printed in the log files, odbctbl.log,
odbcview.log, odbcfunc.log, odbctype.log. The long example output is collected in
the output file long.out.

2.9.4.1 What the Examples Do
The following sections describe the functionality of the samples found in <Oracle_
home>\Mobile\Sdk.

2.9.4.1.1 odbctbl This is an ODBC SQL Table example. It shows you how to
manipulate tables using ODBC API. It creates table EMP with columns ID, NAME,
START_DATE, SALARY, populates this table with the data, does an update on the
salary column, selectively deletes some rows, then selects from the resulting table and
shows the results of the fetch operation. At the end, the EMP table is dropped.

2.9.4.1.2 odbcview This is an ODBC SQL View example. It shows you how to
manipulate views using the ODBC API. It creates table EMP (as above) and view
HIGH_PAID_EMP selecting the full name (using the CONCAT scalar function), HIRE_
DATE and SALARY from the EMP table. Then EMP is populated. After that a select is
performed from the HIGH_PAID_EMP view is issued to see the populated data. Then
the salary column of EMP is updated, some rows are deleted from EMP, and again the

Note: If you do not see the file update.mak listed, select Files of
type *.* to show all file types. You should now see the file in the list.

Tracing

The Oracle Database Lite RDBMS 2-21

select from HIGH_PAID_EMP is issued to see how those changes are reflected in the
view. Finally, the view and the table are dropped.

2.9.4.1.3 odbcfunc This is an ODBC SQL Scalar Functions example. It shows you how
to use scalar functions in the ODBC API. It creates table EMP, populates it with the
data, then does select ID, FULL_NAME from EMP, where to calculate full name it uses
odbc scalar function CONCAT with last and first names as arguments. Then it updates
the table converting last name to uppercase and first name to lowercase for IDs < 3
using odbc scalar functions UCASE and LCASE. The new data is selected and
displayed again. At the end the table EMP is dropped.

2.9.4.1.4 odbctype This is ODBC SQL Types Example. It shows you how to manipulate
different data types using ODBC API. This test just creates table EMP, populates it
with data, selects all the rows and displays the result, but the columns are bound
differently from the previous tests. First, it calls SQLNumResultCols to find the
number of result columns. Then, for each result column, it calls SQLDescribeCol to
get all the information about that column, such as column name, column name length,
column type, column length, column scale, etc. This information is then used to bind
the column. This shows how you can get the type information from the database using
the ODBC API.

2.9.4.1.5 long This example exercises the basic read/write functions of SQL LONG
VARCHAR. It first drops, then creates the table LONG_DATA with one LONG
VARCHAR column and inserts the data into the table. For each row the data is put in
frames, where each frame represents a buffer of long varchar data (of length 4096). The
example uses SQLParamData and SQLPutData to send each frame to populate the
row. Then the select from the table is issued to fetch the rows and read long varchar
data from the table. For each row, the data is also read in frames, using SQLGetData
until SQL_NO_DATA_FOUND is returned. These actions are logged into the file
"long.out".

2.10 Limitations
Currently, the Oracle Database Lite engine has a limitation of not being able to sort any
row that exceeds 4040 bytes in length. The selected columns exceed 4040 bytes and the
database engine issues this error. Therefore, queries that use the UNION operation that
are implemented by sorting the intermediate results from the two select clauses in the
query cannot be fixed.

2.11 Tracing
The Oracle Database Lite 10g database is used in conjunction with other products such
as Oracle forms, SQLJ, Web Servers, and OC4J. When an unexpected error is reported
by the software system, users need to identify the location and cause of the error.
Errors can be caused due to problems in code written by users, other Oracle tools such
as forms, SQLJ, OC4J or in the Oracle Database Lite 10g database component. Errors
also occur in simple environments where a user application talks directly to the Oracle
Database Lite 10g database through JDBC or ODBC drivers. At first glance, it may not
be obvious which component is at fault, whether it is the user application, JDBC or
ODBC drivers, or the core database runtime system.

If the optimizer spends too much time evaluating alternative plans or collecting index
statistics, a query may take a long time for compilation. If the execution plan selected
by the optimizer is not optimal, the query may also take a long time during execution.

Tracing

2-22 Oracle Database Lite Developer’s Guide

Based on these criteria, the tracing facility provides the compilation time and the
execution plan.

This section describes how to set the Tracing feature. Topics include:

■ Section 2.11.1, "Enabling Trace Output"

■ Section 2.11.2, "Basic Functions"

■ Section 2.11.3, "SQL Tracing"

2.11.1 Enabling Trace Output
To enable Trace output, perform the following.

Include the following line in the polite.ini configuration file.

OLITE_SQL_TRACE= yes

The parameter name and the value string "yes" are not case sensitive. For example, the
following line also enables trace output.

OLITE_SQL_trace= YeS

2.11.2 Basic Functions
The Tracing facility can be enabled through a configuration parameter in the polite.ini
file. On enabling the trace feature, the information generated is dumped to a trace file
named oldb_trc.txt in the current working directory of the database process. If the file
exists, the trace output is added to it. If it does not exist, a new file is created
automatically. If the database fails to create or update the file, the tracing feature does
not take place. The following information is dumped in a trace file.

1. Each time a SQL statement is prepared, its text is dumped into the trace file. The
text begins with a header titled Statement Text.

2. After the SQL statement is compiled, the compilation time is printed in one line
titled Compilation Time.

3. If there are no errors, the execution plan is printed when available. Only
statements that contain a WHERE clause generate an execution plan. The printed
plan contains the execution order of tables for each sub-select.

4. If a SQL statement contains markers, then the bind value is printed for every line.

5. Each time a temporary table is created, its name is dumped into the trace file. The
text begins with a header titled Temporary Table Created.

6. Each time a table is accessed, the following information is dumped into the trace
file:

1. Table Name: The name of the table been accessed is dumped into the trace file.
The text begins with a header titled Table Name.

2. Access Method: The access method used by the database is dumped into the
trace file. The text begins with a header titled Access Method.

7. Each time a temporary table is sorted, its name and sorting time are dumped into
the trace file. The text begins with a header titled Temporary Table Sorted

Note: Any value other than "yes" disables the tracing feature. The
parameter value is checked once during database startup. Hence,
users must set this value before connecting to the database.

Tracing

The Oracle Database Lite RDBMS 2-23

followed by the sorted temporary table name and the time it takes (in
milliseconds) to sort the table.

8. If the SQL statement is a SELECT statement, the time spent on fetching the first
row is dumped into the trace file. The text begins with a header titled First Fetch
Time.

9. The thread ID is dumped into the trace file in front of some of the dumped
information. The Tid is the title used to represent the Thread ID.

2.11.3 SQL Tracing
SQL trace output is dumped to a trace file named oldb_trc.txt in the current working
directory of the database process. For a database service on Windows, Windows NT or
the Oracle Database Lite daemon for a Linux platform, the current working directory
is specified by the wdir parameter during startup of the database service or daemon.
To implement the Tracing feature, the database process must contain permissions to
create the trace file in the current working directory. The Trace output is always
included in the trace file. If the trace file does not exist, it is created automatically.

The SQL trace facility dumps the following information to the trace file.

1. The thread ID.

2. SQL statements after compilation.

3. Compilation time including optimization.

4. Value of marker as it exists just before execution of the SQL statement.

5. Execution plan as described in the EXPLAIN PLAN statement in the Oracle
Database Lite SQL Reference.

6. The name of the temporary table created.

7. The name of the table being accessed and the access method used.

8. The name of the temporary table been sorted and the sorting time.

9. The time spent on fetching the first row if the SQL statement is a SELECT
statement.

2.11.3.1 The Tid Output
The thread ID of the running operation is printed in front of some of the dumped
information. The thread is displayed in the following format:

Tid: <thread id>

2.11.3.2 SQL Statement Output
Each SQL statement is preceded by the prefix Statement Text. The SQL statement itself
is output without any formatting. If a SQL statement contains a new line character, it is
also included in the SQL statement output.

2.11.3.3 Compilation Time Output
After the SQL statement is compiled, the compilation time is printed in one line. This
line begins with the title Compilation Time.

2.11.3.4 Bind Values Output
The value of markers or bind variables is one per line. This line is displayed in the
following format.

Tracing

2-24 Oracle Database Lite Developer’s Guide

Marker [<number>]: <Value>

Where, <number> is the number of the marker and <value> denotes the value of the
marker just before execution.

2.11.3.5 Explain Plan Output
This output is printed in the same format as printed by the EXPLAIN PLAN SQL
statement.

2.11.3.6 Temporary Table Created Output
The name of the temporary table created is printed if a temporary table is created by
the database system.

2.11.3.7 Table Name Output
The name of the table that is currently being accessed and the method used to access
the table are printed in the following formats.

■ If the table is accessed sequentially, the format is:

Table Name: <table name>

Access Method: Sequential

Where <table name> is the name of the table being accessed.

■ If indices are used, the format is:

Table Name: <table name>

Access Method: Term[<number>], Index No: <index number>,
 IndexName: <index name>

<table name> is the name of the table being accessed.

Term[<number>] is the internal representation of the conjunct search conditions
in the WHERE clause.

<index number> is the index number. Each index has an unique number in the
database.

<index name> is the name of the index if any.

2.11.3.8 Temporary Table Sorted Output
The name of the temporary table sorted and the time it takes to sort the table.

2.11.3.9 First Fetch Time Output
The time the database takes to retrieve the first row when performing a SELECT
operation. The "First Fetch Time" is the time to retrieve the first row in the result set.

Synchronization 3-1

3
Synchronization

This document describes how synchronization functions between Oracle Database Lite
and an Oracle database using the Mobile Server and the Mobile Sync client
application. It also discusses the Consolidator, including the publish and subscribe
model, the use of the Consolidator and Resource Manager APIs to customize
applications, and the advanced features for customizing the Consolidator, among
other topics. The topics that are discussed in this document are the following:

■ Section 3.1, "Overview"

■ Section 3.2, "Synchronization Process"

■ Section 3.3, "Mobile Sync Application Programming Interfaces (APIs)"

■ Section 3.4, "The Publish and Subscribe Model and Oracle Database Lite
Synchronization"

■ Section 3.5, "Using Consolidator to Define the Sample11.java Example"

■ Section 3.6, "Other Standard Consolidator Functionality"

■ Section 3.7, "Advanced Features for Customizing Consolidator"

■ Section 3.8, "Synchronization Errors and Conflicts"

■ Section 3.9, "Mapping Datatypes Between the Oracle Server and Clients"

3.1 Overview
Oracle Database Lite contains a subset of data stored in the Oracle database. This
subset is stored in snapshots in Oracle Database Lite. Unlike a base table, a snapshot
keeps track of changes made to it in a change log. Users can make changes in Oracle
Database Lite while the device is disconnected, and can synchronize them with the
Oracle database.

There are basically three types of publication items that can be used to define
synchronization; fast refresh, complete refresh, and queue based.

The most common method of synchronization is a fast refresh publication item where
changes are uploaded by the client, and changes for the client are downloaded.
Meanwhile, a background process called the Message Generator and Processor (MGP)
periodically collects the changes uploaded by all clients and applies them to database
tables. It then composes new data, ready to be downloaded to each client during the
next synchronization, based on predefined subscriptions.

Another method of synchronization is the complete refresh publication item. During a
complete refresh, all data for a publication is downloaded to the client. For example,
during the very first synchronization session, all data on the client is refreshed from

Overview

3-2 Oracle Database Lite Developer’s Guide

the Oracle database. This form of synchronization takes longer because all rows that
qualify for a subscription are transferred to the client device, regardless of existing
client data.

Lastly, there is the queue based publication item. This can be considered the most
basic form of publication item, for the simple reason that there is no synchronization
logic created with it. The synchronization logic is left entirely in the hands of the
developer. A queue based publication item is ideally suited for scenarios that do not
require actual synchronization but require something somewhere in between. For
instance, data collection on the client. With data collection, there is no need to worry
about conflict detection, client state information, or server side updates. Therefore,
there is no need to add the additional overhead normally associated with a fast refresh
or complete refresh publication item.

3.1.1 Synchronization Concepts
Data is synchronized between Oracle Database Lite and an Oracle database server.
This is accomplished by invoking the Mobile Sync client which interacts with the
Mobile Server. The Mobile Server uses synchronization objects such as users,
publications, publication items, and subscriptions to process client and server data
changes. This is often referred to as the publish and subscribe model.

This section describes the following synchronization concepts. Topics include:

■ Section 3.1.1.1, "Publication Item"

■ Section 3.1.1.2, "Publication"

■ Section 3.1.1.3, "Application"

■ Section 3.1.1.4, "Subscription"

■ Section 3.1.1.5, "Data Subsetting"

■ Section 3.1.1.6, "Shared Maps"

3.1.1.1 Publication Item
A publication item is a Mobile Server object that has a unique name and contains a
SQL query that is defined against an Oracle database table, view, or a synonym. The
query in the publication item can have optional parameters, known as subscription
parameters or template variables, which are used to determine what subset of the data
of the table, view, or synonym is synchronized for each user.

3.1.1.2 Publication
A publication is a Mobile Server object that has a unique name and serves as a
container of publication items. A publication may contain zero or more publication
items, and a publication item may be contained in zero or more publications. A
publication keeps track of all the subscription parameters used in the member
publication items. A publication also contains indexes defined on publication items as
well as platform specific information such as the type of database to be created on the
client.

3.1.1.3 Application
Every Oracle Database Lite application has an associated publication that defines the
data needed by the application.

Overview

Synchronization 3-3

3.1.1.4 Subscription
A subscription relates a publication to a user. A subscription cannot be used unless
and until every parameter of the publication is initialized to a value. When a user
synchronizes with the Mobile Server, an Oracle Database Lite is created for each
subscription. Each publication item of the publication becomes a snapshot in this
database.

3.1.1.5 Data Subsetting
Through established subscriptions, the Mobile Server prepares any new data for each
client which is then downloaded when the client synchronizes. Only the required
subset of data is downloaded to each client. If the publication has been flagged for
complete refresh, all the qualifying data is downloaded.

3.1.1.6 Shared Maps
Shared maps save space on the server by improving the scalability of replication for
multiple users sharing subscription data sets. This feature, which is turned on by
default, reduces the size of the map tables for large lookup publication items. When
multiple users share the same data, usually their query subsetting parameters are
identical.

3.1.2 Synchronization Example
The following steps take you through the components and procedures necessary to
perform a synchronization. These steps assume you are installing the client on a
Windows system. By completing the steps listed, you will be able to synchronize every
time. Steps 1 and 2 may require the assistance of your administrator.

You must download and configure the msync.exe client, and use it to create a local
Oracle Database Lite for a sample user named "S11U1." This user exists as part of the
samples installed.

1. Install and configure an instance of the Mobile Server as described in the Oracle9i
Lite Installation and Configuration Guide for Windows NT/2000/XP.

2. From the command line on the Mobile Server system, run instdemo.bat (instdemo
on Solaris) to create sample applications in the Mobile Server repository.

On Solaris
You can specify the following path to create and store sample applications in the
Mobile Server repository.

<Oracle_home>\Mobile\Server\Samples

On Windows NT
You can specify the following path to create and store sample applications in the
Mobile Server repository.

<Oracle_home>\Mobile\Server\Samples

3. Using a browser, install the Mobile Sync application to connect to your Mobile
Server instance using the following URL.

Note: Replace <Oracle_home> with your actual Oracle Home
directory name.

Overview

3-4 Oracle Database Lite Developer’s Guide

http://<mobile_server>/webtogo/setup

where <mobile_server> is the hostname of your Mobile Server instance. Click
the link which installs the client for "Windows 32" and follow instructions to install
the Mobile Sync application. At this stage, you will be prompted for an installation
directory. This procedure assumes and recommends you install it in your
<Oracle_home> directory.

4. Open your <Oracle_home>\Mobile\Sdk\bin directory and run msync.exe.

5. As Figure 3–1 displays, the mSync dialog appears.

Figure 3–1 mSync Dialog

6. As Table 3–1 describes, enter the appropriate parameters in the corresponding
fields.

7. To save this information, click Apply.

8. To start synchronizing, click Sync.

A progress bar appears to indicate the completion of each synchronization task such as
composing, sending, receiving, and processing. The progress bar also displays the
duration for completion of each task. If synchronization executes successfully, the
message "Sync success" appears. When you see this message, a sample database
orders.odb is created in the <Oracle_home>\Mobile\oldb40\S11U1 directory on
the client system. You can view this database using a SQL viewer such as Mobile SQL.
It contains two tables named ORD_MASTER and ORD_DETAIL.

If synchronization fails, the message "Sync Failed" appears. To determine the cause of
a failed synchronization, the Mobile Server administrator can view tracing information
in the Mobile Server log file.

The preferred way to create synchronization objects such as publications and
publication items is a tool called the Packaging Wizard which is included in the Mobile

Table 3–1 Mobile Sync Parameters

Field Value Description

User s11u1 Mobile Client user name. This field is not
case sensitive.

Password MANAGER Mobile Client password. This field is case
sensitive.

Save Password Select Select this check box to save the
password.

Server Your Mobile Server instance
hostname

The Mobile Server IP address or URL.

Synchronization Process

Synchronization 3-5

Development Kit. For more information on the Packaging Wizard, see the Oracle
Database Lite Tools and Utilities Guide.

Synchronization objects can also be created programmatically using the Consolidator
API and Resource Manager APIs. For more information, see Section 3.4, "The Publish
and Subscribe Model and Oracle Database Lite Synchronization" in Chapter 3,
"Synchronization".

3.2 Synchronization Process
Now that you have performed at least one synchronization, we can look at the
synchronization process in more detail. Oracle Database Lite uses an asynchronous
method for synchronization between Oracle Database Lite clients and the Oracle
database server through the Mobile Server. This means that the Mobile Sync module
operates independently of the MGP as neither component is dependent on the other to
complete its operation.

Figure 3–2 illustrates the fast refresh synchronization process.

Figure 3–2 Fast Refresh Synchronization

3.2.1 Fast Refresh Synchronization
The default synchronization method is the fast refresh mode as displayed in
Figure 3–2. Fast refresh is an incremental refresh where changes are uploaded and
stored in queues during the upload phase. Next, the changes which have been stored
in out queues are downloaded and applied to the client. Meanwhile, the MGP
periodically views the In Queues and takes anything found in an In Queue and applies
it to the database during the apply phase. Changes generated by this client, other
clients, and server-side applications to the Oracle database are then composed and
stored in an out queue until the next time a client is synchronized.

The upload and download phases are performed independently of any apply or
compose phase. An apply phase is not dependent on an upload phase, nor is a
download phase dependent on a compose phase. During any synchronization session,
download occurs after upload, and compose occurs after apply.

A complete refresh is simply an execution of the snapshot query. When application
synchronization performance is slow, application developers must tune the snapshot
query. Complete refresh items such as publication items are not optimized for

Synchronization Process

3-6 Oracle Database Lite Developer’s Guide

performance. Therefore, to improve performance, application developers can use the
fast refresh option. The Consperf utility only analyzes fast refresh publication items.

3.2.1.1 Client Upload and Download Operations
When synchronization is initiated, the client opens a connection to the Mobile Server
via the selected mode of transport, which causes the Mobile Server to open a
connection to the Oracle database server. This process is illustrated in the following
figure.

Figure 3–3 displays the Client Upload and Download phases.

Figure 3–3 Upload/ Download Phases

Changes to Oracle Database Lite records are accumulated and flagged with codes for
the type of Data Manipulation Language (DML) operation performed such as insert,
update, or delete. The data is encrypted, compressed, and sent to the Mobile Server to
populate objects called In Queues. An in queue is a persistent database object created
to store data temporarily during synchronization.

During the same session, snapshots on the client are updated by applying data from
the out queue to the Oracle Database Lite. The difference between an out queue and an
in queue is not a table, but a data structure containing a reference to data contained in
the Oracle database base tables. For more information on customizing the
synchronization process using the In Queue and Out Queues, see Section 3.7.9, "Queue
Interface for Customizing Replication".

3.2.1.2 Mobile Server Apply Operation
For each user, the MGP takes any content of the in queue and applies it to the base
tables on the Oracle database. Any conflicts are detected and resolved at this time. For
more information, see in Section 3.8.3, "Resolving Conflicts Using the Error Queue".
The apply phase is completed when the changes uploaded by all users are processed.

Figure 3–4 illustrates the Apply and Compose phases in MGP.

Mobile Sync Application Programming Interfaces (APIs)

Synchronization 3-7

Figure 3–4 Apply/Compose Phases

3.2.1.3 Mobile Server Compose Operation
After the apply phase, the MGP reviews the base tables. It composes and stores any
changes in the Out Queues to be downloaded to the client.

3.2.2 Complete Refresh Synchronization
During a complete refresh, all contents of the snapshot tables present on the client are
refreshed from the Oracle database tables. The MGP is not involved because all the
contents are refreshed, but this form of synchronization is time consuming and
engages system-resources intensively.

3.2.3 Synchronizing an Encrypted Database
It is possible to encrypt Oracle Database Lite using a utility called ENCRYPDB.
Synchronizing with an encrypted database requires an understanding of how Oracle
Database Lite manages encrypted databases. For more information, see the Oracle
Database Lite Tools and Utilities Guide.

3.3 Mobile Sync Application Programming Interfaces (APIs)
For a detailed description of Mobile Sync Application Programming Interfaces, refer
Section 5, "Native Application Development".

Note: The Message Generator and Processor (MGP) is a
background process which periodically becomes active, looks at the
in queues, and applies the changes to the Oracle database base
tables. Based on how MGP is configured, there may be a delay in
how quickly it composes and readies the out queues to be
downloaded to the client regardless of how frequently you
synchronize. The changes are stored safely in the in queues until
MGP processes them, after which they are downloaded to the client
on the next synchronization process.

The Publish and Subscribe Model and Oracle Database Lite Synchronization

3-8 Oracle Database Lite Developer’s Guide

3.4 The Publish and Subscribe Model and Oracle Database Lite
Synchronization

Mobile Server uses a publish and subscribe model to centrally manage data
distribution between Oracle database servers and Oracle Database Lite clients. Basic
functions such as creating publication items and publications, can be implemented
most easily using the Packaging Wizard. These functions can also be performed using
the Consolidator API and Resource Manager API by writing Java programs to
customize the functions as needed. More advanced functionality can only be enabled
programmatically using the Consolidator API and Resource Manager API.

The publish and subscribe model uses database objects described in Table 3–2:

The publish and subscribe model can be implemented one of two ways:

■ Declaratively, using the Packaging Wizard to package and publish applications.
This is the recommended method. This method is described fully in the Oracle
Database Lite Tools and Utilities Guide.

■ Programmatically, using the Resource Manager API and the Consolidator API can
invoke certain advanced features or customize an implementation. This technique
is recommended for advanced users requiring specialized functionality.

Table 3–2 Publish/Subscribe Model Elements

Item Description

publication item A publication item is a SQL select statement that specifies
which data subset a user can access. A publication item
corresponds to a replica table on the client, making a
publication item a snapshot definition of a table on the server.

publication A publication is a group of publication items.

snapshot A snapshot is a subset of the data in an Oracle database base
table which has been defined by the snapshot definition in a
publication item.

subscription A subscription associates a user with a publication and may
contain subscription parameters. Subscription parameters are
set for all publication items within the publication to which a
client is subscribed.

subscription parameter Subscription parameters use names and string values to
define an individual client's subscription to an individual
publication. Subscription parameters enable clients to
perform data subsetting, and they restrict the number of rows
assigned to each client. Typical subscription parameters can
include user names and application specific values like
employee numbers or area codes.

user A user is defined by a user name and a password. The Mobile
Server synchronizes data according to the client's
subscriptions.

■ A user can use a single user name to synchronize data
from a single client. This is the recommended mode of
use.

■ A user can use a single user name to synchronize data
stored on multiple devices. When the user changes
devices, the Mobile Server performs a complete refresh
of all the user's subscriptions on the new device. This
technique is not recommended for general use.

Using Consolidator to Define the Sample11.java Example

Synchronization 3-9

3.4.1 The Publish and Subscribe Model Step by Step
The publish and subscribe model can be customized programmatically using the
Resource Manager API and the Consolidator API. The basic procedure to invoke
Consolidator to implement the publish and subscribe model involves the following
steps:

1. Create database tables.

2. Connect to Mobile Server.

3. Create publications.

4. Create publication items.

5. Create publication item indexes as required.

6. Create Users

7. Add publication items to publications.

8. Subscribe users to publications.

9. Define user subscription parameters to publications.

10. Instantiate the subscriptions.

3.5 Using Consolidator to Define the Sample11.java Example
To Illustrate how these APIs are used to define Consolidator, the following sections
use a sample Java program included with Oracle Database Lite 10g, called
sample11.java. Entries referring to the Resource Manager package are children of the
Mobile Admin class found in the Web-to-Go API. Entries referring to the Consolidator
class are part of the Consolidator API.

This sample can be found:

On Solaris
<Oracle_home>/mobile/server/samples

On Windows NT
<Oracle_home>\Mobile\Server\Samples

Note: To call the Publish and Subscribe APIs, the following JAR files
must be specified in your classpath.

■ <Oracle_home>\mobile\classes\consolidator.jar

■ <Oracle_home>\mobile\server\bin\webtogo.jar

■ <Oracle_home>\jdbc\lib\classes12.zip

■ <Oracle_home>\mobile\classes\classgen.jar

■ <Oracle_home>\mobile\classes\servlet.jar

■ <Oracle_home>\mobile\classes\xmlparserv2.jar

■ <Oracle_home>\mobile\classes\jssl-1_2.jar

■ <Oracle_home>\mobile\classes\javax-ssl-1_2.jar

■ <Oracle_home>\mobile\classes\devmgr.jar

Using Consolidator to Define the Sample11.java Example

3-10 Oracle Database Lite Developer’s Guide

3.5.1 Sample11.java
 Here is the source code for the program:

import java.sql.SQLException;
import java.sql.*;

import oracle.lite.sync.Consolidator;

public class sample11
{

 static String CONS_SCHEMA;
static String DEFAULT_PASSWORD;

 public static void main(String argv[]) throws Throwable
 {
///
//SAMPLE11
///
 if(argv.length != 2)
 {
 System.out.println("Syntax: java sample11 <Schema> <Password>");
return;
 }
 CONS_SCHEMA = argv[0] ;
 DEFAULT_PASSWORD = argv[1] ;

 //Create Required Tables Using Standard JDBC
 DriverManager.registerDriver ((Driver)Class.forName
("oracle.jdbc.driver.OracleDriver").newInstance ());
 Connection c = null;
 Statement s = null;
 try
 {
 c = DriverManager.getConnection ("jdbc:oracle:oci8:@WEBTOGO.WORLD",
"MASTER", "MASTER");
 s = c.createStatement ();
 s.executeUpdate("create table MASTER.ORD_MASTER("
 + "ID number(9),"
 + "DDATE DATE default TO_DATE('1990-01-01 15:35:40', 'YYYY-MM-DD
HH24:MI:SS'),"
 + "STATUS number(9),"
 + "NAME varchar2(20),"
 + "DESCRIPTION varchar2(20)"
 + ")");

 s.executeUpdate("alter table MASTER.ORD_MASTER add constraint"
 +" orders_pk primary key(ID)");

 s.execute("GRANT ALL ON MASTER.ORD_MASTER to " + CONS_SCHEMA + " WITH GRANT
OPTION");

 s.executeUpdate("create table MASTER.ORD_DETAIL("
 + "ID number(9),"
 + "KEY number(9),"
 + "DDATE DATE default TO_DATE('1995-01-01 15:35:40', 'YYYY-MM-DD
HH24:MI:SS'),"
 + "DESCRIPTION varchar2(20),"

Using Consolidator to Define the Sample11.java Example

Synchronization 3-11

 + "QTYORDERED number(9),"
 + "QTYSHIPPED number(9),"
 + "QTYRECEIVED number(9),"
 + "COST number(9)"
 + ")");

 s.executeUpdate("alter table MASTER.ORD_DETAIL add constraint"
 +" items_pk primary key(ID, KEY)");

 s.execute("GRANT ALL ON MASTER.ORD_DETAIL to " + CONS_SCHEMA + " WITH
GRANT OPTION");
 c.commit ();
 }
 catch (SQLException ee)
 {
 ee.printStackTrace ();
 }
 finally
 {
 if (s!= null) try {s.close ();}catch (SQLException e1){}
 if (c!= null) try {c.close ();}catch (SQLException e2){}
 }

 //Connecting to the Mobile Server
 oracle.mobile.admin.ResourceManager.openConnection(CONS_SCHEMA, DEFAULT_
PASSWORD);
 //Creating Publications
try {
Consolidator.DropPublication("T_SAMPLE11");
} catch (Throwable e) {
//e.printStackTrace(); ignore error
}
Consolidator.CreatePublication("T_SAMPLE11", Consolidator.OKPI_CREATOR_ID,
"OrdersODB.%s", null);

 //Creating Publication Items
try {
Consolidator.DropPublicationItem("P_SAMPLE11-M");
} catch (Throwable e) {
//e.printStackTrace(); ignore error
}
 try
 {
 Consolidator.CreatePublicationItem("P_SAMPLE11-M","MASTER","ORD_MASTER", "F",
"SELECT * FROM MASTER.ORD_MASTER", null, null);
 } catch (Throwable e) {
e.printStackTrace();
}

try {
Consolidator.DropPublicationItem("P_SAMPLE11-D");
} catch (Throwable e) {
//e.printStackTrace();
}
 try
 {
Consolidator.CreatePublicationItem("P_SAMPLE11-D","MASTER","ORD_DETAIL", "F",
"SELECT * FROM MASTER.ORD_DETAIL", null, null);

Using Consolidator to Define the Sample11.java Example

3-12 Oracle Database Lite Developer’s Guide

 //Creating Publication Item Indexes

Consolidator.CreatePublicationItemIndex("P_SAMPLE11M-I1", "P_SAMPLE11-M", "I",
"DDATE");
Consolidator.CreatePublicationItemIndex("P_SAMPLE11M-I2", "P_SAMPLE11-M", "I",
"STATUS");
Consolidator.CreatePublicationItemIndex("P_SAMPLE11M-I3", "P_SAMPLE11-M", "I",
"NAME");
Consolidator.CreatePublicationItemIndex("P_SAMPLE11D-I2", "P_SAMPLE11-D", "I",
"KEY");
Consolidator.CreatePublicationItemIndex("P_SAMPLE11D-I3", "P_SAMPLE11-D", "I",
"DESCRIPTION");

 //Adding Publication Items to a Publication

Consolidator.AddPublicationItem("T_SAMPLE11", "P_SAMPLE11-M", null, null, "S",
null, null);
Consolidator.AddPublicationItem("T_SAMPLE11", "P_SAMPLE11-D", null, null, "S",
null, null);
 }
 catch (Throwable e)
 {
 e.printStackTrace ();
 }

 // Creating Users
try {
oracle.mobile.admin.ResourceManager.Example("S11U1");
} catch (Throwable e) {
//e.printStackTrace(); ignore error
}

oracle.mobile.admin.ResourceManager.Example("S11U1","manager","S11U1","C");

 // Instantiating a Subscription
Consolidator.Example("T_SAMPLE11", "S11U1");
Consolidator.InstantiateSubscription("T_SAMPLE11", "S11U1");

oracle.mobile.admin.ResourceManager.commitTransaction();
oracle.mobile.admin.ResourceManager.closeConnection();

 }
}

3.5.2 Create Required Tables Using Standard JDBC
The first section of the program gets a JDBC connection to database MASTER, and
creates the base tables ORD_MASTER and ORD_DETAIL in the database. This part of
the process can also be done using SQL. If you have gone through the steps described
in Section 3.1.2, "Synchronization Example" in Chapter 3, "Synchronization", these
tables have been created in the Mobile Server repository and on the client.

3.5.3 Connecting to the Mobile Server
The following expression connects to the Mobile Server.

openConnection
For example,

Using Consolidator to Define the Sample11.java Example

Synchronization 3-13

ResourceManager.openConnection(<USERNAME>, <PASSWORD>);
oracle.mobile.admin.ResourceManager.openConnection
 (CONS_SCHEMA,
 DEFAULT_PASSWORD);

For this example, the <USERNAME> is S11U1 and the <PASSWORD> is MANAGER.

3.5.4 Creating Publications
The next step is to create a publication using the Consolidator Class. Publications are
essentially sets of publication items. Sample11.java creates two publications. The
DropPublication command is used first to make certain that the publication being
created doesn't already exist.

Special characters including spaces are supported in publication names.

3.5.4.1 CreatePublication
CreatePublication has the following syntax:

public static void CreatePublication
 (String name,
 int client_storage_type,
 String client_name_template,
 String enforce_ri) throws Throwable

Example
In Sample11.java, the publication being created is T_SAMPLE11:

Consolidator.CreatePublication("T_SAMPLE11", Consolidator.OKPI_CREATOR_ID,
"OrdersODB.%s", null);

The parameters of CreatePublication are listed in Table 3–3:

Table 3–3 CreatePublication Parameters

Parameter Definition

name The name of the publication being created.

client_storage_type A constant which defines the platform type.

client_name_template This is the template for publication item names on client
devices. This can be one of several choices:

■ %s - This is the default setting which causes the
publication item to be stored in the default database,
conscli.odb.

■ <DATABASE>.%s - This option stores the publication
item in a database named <DATABASE>. This option
does not support filename extensions.

■ Instead of using a template, you can use a specific value
for publications containing a single publication item. For
example, you can use "AddressBook" for the Palm OS
Address Book application.

enforce_ri This parameter is reserved for future enhancement and
should always be NULL.

Note: If you use Oracle Database Lite as the client storage type,
the database does not have an extension.

Using Consolidator to Define the Sample11.java Example

3-14 Oracle Database Lite Developer’s Guide

3.5.5 Creating Publication Items
After creating the publication, it is necessary to create the publication item. Publication
items define the snapshot of the base tables which is downloaded to Oracle Database
Lite. The refresh mode of the publication item is specified during creation so it is
pre-configured for fast- or complete-refresh. You can also establish data-subsetting
parameters when creating the publication item, to provide a finer degree of control on
the data requirements for a given client.

Publication item names are limited to twenty-six characters and must be unique across
all publications. The following examples create a publication item named P_
SAMPLE11-M. Before creating the publication item, the sample uses
DropPublicationItem to clean up any prior publication items that might have the
same name.

3.5.5.1 CreatePublicationItem
CreatePublicationItem has the following syntax:

public static void CreatePublicationItem
 (String name,
 String owner,
 String store,
 String refresh_mode,
 String select_stmt,
 String cbk_owner,
 String cbk_name) throws Throwable

The parameters of CreatePublicatonItem are listed in Table 3–4:

Example
In the Sample11.java program, the following commands create snapshot definitions, or
publication items, called P_SAMPLE-M and P_SAMPLE-D, of the ORD_MASTER and
ORD_DETAIL database tables, which were created in the repository earlier.

Consolidator.CreatePublicationItem("P_SAMPLE11-M","MASTER","ORD_MASTER", "F",
"SELECT * FROM MASTER.ORD_MASTER", null, null);

Table 3–4 CreatePublicationItem Sample Parameters

Parameter Definition

name Specifies the publication item name.

owner Specifies the base object schema owner. For example,
MASTER is the owner of the base object ORD_MASTER.

store Specifies the base table or view name in the Oracle database.
The snapshot which is defined is also assigned this name.

refresh_mode Defines the refresh mode as fast or complete. See
Section 3.7.5, "Fast Refresh and Update Operation for
Multi-Table Publications (Views)" for more information.

select_stmt A SQL select statement which identifies data from the
specified columns in the database table.

cbk_owner Specifies the callback package owner. For more information,
see Section 3.7.12, "Callback Customization for Before and
After Compose/Apply".

cbk_name Specifies the callback package name. For more information,
see Section 3.7.12, "Callback Customization for Before and
After Compose/Apply".

Using Consolidator to Define the Sample11.java Example

Synchronization 3-15

Consolidator.CreatePublicationItem("P_SAMPLE11-D","MASTER","ORD_DETAIL", "F",
"SELECT * FROM MASTER.ORD_DETAIL", null, null);

3.5.5.2 Defining Publication Items for Updatable Multi-table Views
Publication items can be defined for both tables and views.

When publishing updatable multi-table views, there are certain restrictions that apply:

■ The view must contain a parent table with a primary key defined.

■ INSTEAD OF triggers must be defined for data manipulation language (DML)
operations on the view. See Section 3.7.5, "Fast Refresh and Update Operation for
Multi-Table Publications (Views)" for more information.

■ All base tables of the view must be published.

3.5.5.3 Data Subsetting
Data subsetting is the ability to create specific subsets of data and assign them to a
parameter name which can then be assigned to a subscribing user. When creating
publication items, a parameterized select statement with a character limit of up to 8k
can be defined. Subscription parameters must be specified at the time the publication
item is created, and are used during synchronization to control the data published to a
specific client.

Creating a Data Subset Example
Consolidator.CreatePublicationItem("CORP_DIR1", "DIRECTORY1", "ADDRLRL4P", "F" ,
 "SELECT LastName, FirstName, company, phone1, phone2, phone3, phone4,
 phone5, phone1id, phone2id, phone3id, displayphone, address, city, state,
 zipcode, country, title, custom1, custom2, custom3,note
 FROM directory1.addrlrl4p WHERE company > :COMPANY", null, null);

In this sample statement, data is being retrieved from a publication named CORP_
DIR1, and is subset by the company.

3.5.6 Sequence Support
Sequence support has been enhanced with the 10g release. The previous
implementation currently exists, but will be deprecated and unsupported.

The Enhancements
The following enhancements to sequence support are available.

■ True sequence support on the client - The Consolidator now supports replication
of true sequence objects to the client.

■ Clear association with a publication - In a manner similar to publication items,
adding sequences to a publication will propagate the corresponding sequence
objects to all subscribing users. Note that a publication and a sequence have a
one-to-many relationship. This means a publication can contain many different
sequences, but a single sequence cannot exist in more than one publication.

■ Online and Offline - There are two types of sequences, online and offline. An
online sequence is designed to support online Web-to-Go applications. This is

Note: Within the select statement, the parameter name for the
data subset must be prefixed with a colon, for example:COMPANY.

Using Consolidator to Define the Sample11.java Example

3-16 Oracle Database Lite Developer’s Guide

accomplished by creating the same sequence object on both the server and the
client. The paired sequences will be incremented by two and started with
staggered values; one will start with an even number and one will start with an
odd number. By using an odd/even window model such as the one described
above, the Consolidator will ensure uniqueness regardless of whether the
application is running in online mode or in offline mode. An offline sequence is
similar to an online sequence except that the server-side sequence is not created
and the developer can specify the increment value. Whether the sequence uses
consecutive numbers or not is up to the application developer.

■ Sequence management - Once the sequences have been defined and associated
with a publication, the Consolidator will manage all aspects of administering them
for subscribing users, including allocation of new windows once predefined
thresholds are met.

■ Complete Application Programming Interface (API) to manage the sequences -
The API enables you to manage the sequences; for example, create/drop a
sequence, add/remove a sequence from a publication, modify a sequence, and
advance a sequence window for a user.

See the Consolidator Admin API Specification (included on the CD) for a complete listing
of the APIs to define and administer sequences.

3.5.7 Defining Client Subscription Parameters for Publications
When a publication uses Data Subsetting parameters, you must set the parameters for
each subscription to the publication. An example of a parameter is "COMPANY" and is
described in Section 3.5.5.3, "Data Subsetting".

3.5.7.1 SetSubscriptionParameter
public static void SetSubscriptionParameter
 (String publication,
 String clientid,
 String param_name,
 String param_value) throws Throwable

The parameters for SetSubscriptionParameter are listed in Table 3–5:

Example
This example sets the subscription parameter for the client DAVIDL, subscribing to the
publication named CORP_DIR1:

Consolidator.SetSubscriptionParameter("CORP_DIR1", "DAVIDL", "COMPANY",
"'DAVECO'");

Table 3–5 SetSubscriptionParameter Sample Parameters

Parameter Definition

publication Defines the publication from which the subset is to be taken.

clientid Defines the client ID which the data subset data is for.

param_name Defines the parameter name.

param_value Defines the parameter value being passed which determines
what data is returned from publication item queries using
this parameter.

Using Consolidator to Define the Sample11.java Example

Synchronization 3-17

3.5.8 Creating Publication Item Indexes
The Mobile Server supports automatic deployment of indexes in Oracle Database Lite
on clients. The Mobile Server automatically replicates primary key indexes from the
server database. The Consolidator API provides calls to explicitly deploy unique,
regular, and primary key indexes to clients as well.

3.5.8.1 CreatePublicationItemIndex
CreatePublicationItemIndex uses the following syntax:

public static void CreatePublicationItemIndex
 (String name,
 String publication_item,
 String pmode,
 String columns) throws Throwable

The parameters of CreatePublicationItemIndex are listed in Table 3–6:

Example 1
In our Sample11.java sample code this takes the following form:

Consolidator.CreatePublicationItemIndex("P_SAMPLE11M-I1", "P_SAMPLE11-M", "I",
"DDATE");
Consolidator.CreatePublicationItemIndex("P_SAMPLE11M-I2", "P_SAMPLE11-M", "I",
"STATUS");
Consolidator.CreatePublicationItemIndex("P_SAMPLE11M-I3", "P_SAMPLE11-M", "I",
"NAME");
Consolidator.CreatePublicationItemIndex("P_SAMPLE11D-I2", "P_SAMPLE11-D", "I",
"KEY");
Consolidator.CreatePublicationItemIndex("P_SAMPLE11D-I3", "P_SAMPLE11-D", "I",
"DESCRIPTION");

Sample11.java creates 5 indexes which establish regular indexes on the "DDATE",
"STATUS", and "NAME" columns of the P_SAMPLE-M publication item, and the
"KEY" and "DESCRIPTION" columns of the P_SAMPLE-D publication item. An index
can contain more than one column. You could also define an index with multiple
columns as follows:

Note: This method should only be used on publications created
using the Consolidator API. To create template variables, a similar
technique is possible using the Packaging Wizard.

Table 3–6 CreatePublicationItemIndex Parameters

Parameter Definition

name Defines the name of the index to be created.

publication_item Defines the index's publication item.

pmode Defines the index mode, I - regular, U - unique, P - primary
key mode. See Section 3.5.8.2, "Define Client Indexes" for
more information.

columns Defines the names of the columns included in the index.
There can be more than one column listed per statement, the
list of columns should be separated by commas and not
contain any spaces.

Using Consolidator to Define the Sample11.java Example

3-18 Oracle Database Lite Developer’s Guide

Example 2
Consolidator.CreatePublicationItemIndex("P_SAMPLE11D-I1", "P_SAMPLE11-D", "I",
"KEY,DESCRIPTION");

3.5.8.2 Define Client Indexes
Client-side indexes can be defined for existing publication items. There are three types
of indexes that can be specified:

■ P - Primary key

■ U - Unique

■ I - Regular

Note: When an index of type 'U' or 'P' is defined on a publication item, there is no
check for duplicate keys on the server. If the same constraints do not exist on the base
object of the publication item, Mobile Sync may fail with a duplicate key violation. See
the Consolidator Admin API Specification for more information.

3.5.9 Adding Publication Items to a Publication
Once you create a publication item, you must associate it with a publication. To
change the definition, you can either drop the publication item and then recreate it
with the new definition, or use schema evolution depending on your requirements.
See "DropPublicationItem" and "AlterPublicationItem" respectively in the Consolidator
Admin API Specification for more information.

3.5.9.1 AddPublicationItem
The syntax for AddPublicationItem is:

public static void AddPublicationItem
 (String publication,
 String item,
 String columns,
 String disabled_dml,
 String conflict_rule,
 String restricting-predicate,
 String weight) throws Throwable

The following examples add a publication item named P_SAMPLE1 to the publication
T_SAMPLE1. The parameters of AddPublicationItem are listed in Table 3–7:

Table 3–7 AddPublicationItem Parameter

Parameter Definition

publication Defines the publication to receive the new item.

item Defines the publication item to be added.

columns Specifies a new name for publication item columns Using
null specifies that no columns are renamed. All columns in
the publication item query must be specified in the proper
order which is either:

■ The order specified in the publication item's select
statement.

■ If you are using a statement with "SELECT * FROM..."
then the column names must be ordered identically to
the order of the base table or view.

Using Consolidator to Define the Sample11.java Example

Synchronization 3-19

Example
Consolidator.AddPublicationItem("T_SAMPLE1", "P_SAMPLE1", null, null, "S", null,
null);

3.5.9.2 Defining Conflict Rules
When adding a publication item to a publication, the user can specify winning rules to
resolve synchronization conflicts in favor of either the client 'C' or the server 'S'. A
Mobile Server synchronization conflict is detected under any of the following
situations:

■ The same row was updated on the client and on the server.

■ Both the client and server created rows with equal primary keys.

■ The client deleted a row and the server updated the same row.

■ The client updated a row and the server deleted the same row. This is considered
a synchronization error for compatibility with Oracle database advanced
replication.

■ For systems with delayed data processing, where a client's data is not directly
applied to the base table (for instance in a three tier architecture) a situation could
occur when first a client inserts a row and then updates the same row, while the
row has not yet been inserted into the base table. In that case, if the DEF_APPLY
parameter in C$ALL_CONFIG is set to TRUE, an INSERT operation is performed,
instead of the UPDATE. It is up to the application developer to resolve the
resulting primary key conflict. If, however, DEF_APPLY is not set, a "NO DATA
FOUND" exception is thrown (see below for the synchronization error handling).

disabled_dml Specifies options for disabling DML. The possible values are:

■ Y - Defines a fully updatable publication item.

■ N - Defines a read-only publication item. You can also
define a read-only publication item by using the "IUD"
option.

■ I - Disables the propagation of individual insert
operations.

■ U - Disables the propagation of individual update
operations.

■ D - Disables the propagation of individual delete
operations.

■ null - Specifies that no options are selected for disabling
DML.

conflict_rule Defines the winner in conflict resolution: either 'C' for client
wins or 'S' for server wins. See Section 3.5.9.2, "Defining
Conflict Rules" for more information.

restricting_predicate Specifies high-priority mode. A restricting predicate can be
assigned to a publication item as it is added to a publication.
When a client is synchronizing in high priority mode, the
predicate is used to limit data pushed to the client. This
parameter can be null. This parameter is for advanced use.

weight Specified as null or an integer to determine priority in
executing Client Operations to master tables. See
Section 3.5.9.3, "Using Table Weight" for more information.
This value must be an integer between 1 and 1023.

Table 3–7 (Cont.) AddPublicationItem Parameter

Parameter Definition

Using Consolidator to Define the Sample11.java Example

3-20 Oracle Database Lite Developer’s Guide

■ All the other errors including nullity violations and foreign key constraint
violations are synchronization errors.

■ If synchronization errors are not automatically resolved, the corresponding
transactions are rolled back and the transaction operations are moved into Mobile
Server error queue in C$EQ, while the data is stored in CEQ$. Mobile Server
database administrators can change these transaction operations and re-execute or
purge transactions from the error queue.

3.5.9.3 Using Table Weight
Table weight is an integer property of association between publications and
publication items. Mobile Server uses table weight to determine which order to apply
Client Operations to master tables within each publication, as follows:

1. Client INSERT operations are executed first, from lowest to highest table weight
order.

2. Client DELETE operations are executed next, from highest to lowest table weight
order.

3. Client UPDATE operations are executed last, from lowest to highest table weight
order.

4. The value assigned must be an integer between 1 and 1023.

Table weight is applied to publication items within a specific publication, for example,
a publication can have more than one publication item of weight "2" which would
have INSERT operations performed after those for any publication item of a lower
weight within the same publication.

3.5.10 Creating Users
Sample11 has you drop users using dropUser(), before creating the new user. This
serves to clear out any spurious user ID's before creating the new one. See
Section 3.5.11, "Drop User" for details. The parameters for this function are not case
sensitive.

3.5.10.1 createUser
The syntax for createUser is:

public static boolean createUser
 (String userName,
 String password,
 String fullName,
 String privilege) throws Throwable;

The parameters of createUser are listed in Table 3–8:

Table 3–8 createUser - Sample Parameters

Parameter Definition

userName Defines the user name for mobile client.

password Defines the password for this user name.

fullName Optional. Specifies the full name for user, for example, John
Smith.

Using Consolidator to Define the Sample11.java Example

Synchronization 3-21

The following example creates a user "S11U1" with the parameters listed in the table:

Example
oracle.mobile.admin.ResourceManager.createUser("S11U1","manager","John Smith","C")

3.5.11 Drop User
You can drop existing Mobile Server users with the dropUser function. The
parameters for this function are not case sensitive.

3.5.11.1 dropUser
The syntax for dropUser is:

The following example drops the user "S11U1":

public static void dropUser(String userName);

The parameters of dropUser are listed in Table 3–9:

Example
oracle.mobile.admin.ResourceManager.dropUser("S11U1");

3.5.12 Subscribing Users to a Publication
You can subscribe users to a publication using the CreateSubscription function.

3.5.12.1 CreateSubscription
CreateSubscription has the following syntax:

public static void CreateSubscription
 (String publication,
 String clientid) throws Throwable

The following examples subscribe the client, S11U1, to the publication, T_SAMPLE11,
with the parameters listed in Table 3–10.

privilege This parameter defines the Mobile Server user privilege. This
value can be one of the following:

■ "O" for publishing an application

■ "U" for connecting to the Mobile Server

■ "A" for administrating the Mobile Server

■ NULL represents no privilege

Table 3–9 dropUser - Sample Parameters

Parameter Definition

userName Specifies user name for mobile client.

Table 3–8 (Cont.) createUser - Sample Parameters

Parameter Definition

Other Standard Consolidator Functionality

3-22 Oracle Database Lite Developer’s Guide

Example
Consolidator.CreateSubscription("T_SAMPLE11", "S11U1");

3.5.13 Instantiating a Subscription
After you subscribe a user to a publication, you then complete the subscription process
by instantiating the subscription. When the Mobile Server instantiates a subscription,
it creates a complete internal representation of the subscription.

3.5.13.1 InstantiateSubscription
The syntax for InstantiateSubscription is:

public static void InstantiateSubscription
 (String publication,
 String clientid) throws Throwable

The parameters for InstantiateSubscription are listed in Table 3–11.

The following example instantiates a client's subscription to a publication, with the
values specified in the table:

Example
Consolidator.InstantiateSubscription("T_SAMPLE1", "DAVIDL");

3.6 Other Standard Consolidator Functionality
The API calls used in Section 3.4, "The Publish and Subscribe Model and Oracle
Database Lite Synchronization" are those necessary when creating publications,
publication items, and subscriptions programmatically. The topics in this section are
used less frequently, but are still important.

■ Section 3.6.1, "Client Device Database DDL Operations"

■ Section 3.6.2, "Change Password"

■ Section 3.6.3, "Remote Database Link Support"

Table 3–10 Create Subscription - Sample Parameters

Parameter Definition

publication Specifies the publication being subscribed to.

clientid Specifies the user subscribing to the publication.

Note: If you need to set subscription parameters for data
subsetting, this must be completed before instantiating the
subscription. See Section 3.5.5.3, "Data Subsetting" for more
information.

Table 3–11 InstantiateSubscription - Sample Parameters

Parameter Definition

publication Specifies the publication being subscribed to.

clientid Specifies the user subscribing to the publication.

Other Standard Consolidator Functionality

Synchronization 3-23

3.6.1 Client Device Database DDL Operations
The first time a client synchronizes, the Mobile Server automatically enables Mobile
Server to create the database objects on the client in the form of snapshots. By default,
the primary key index of a table is automatically replicated from the server. You can
create secondary indexes on the through a publication item. If you do not want the
primary index, you must explicitly drop it from the publication items. See the
Consolidator Admin API Specification, for specific API information.

3.6.2 Change Password
You can change passwords for Mobile Server users with the setPassword() function
which has the following syntax:

3.6.2.1 setPassword
The syntax for setPassword is:

public static void setPassword
 (String userName,
 String newpwd) throws Throwable

The parameters for setPassword are listed in Table 3–12:

The following example changes the password for the user "MOBILE":

Example
ResourceManager.setPassword("MOBILE","MOBILENEW");

3.6.3 Remote Database Link Support
Publication items can be defined for database objects existing on remote database
instances outside of the Mobile Server repository. Local private synonyms of the
remote objects should be created in the Oracle database. Execute the following SQL
script located in the <Oracle_home>\Mobile\server\admin\consolidator_
rmt.sql directory, on the remote schema in order to create Consolidator logging
objects.

 The synonyms should then be published using the CreatePublicationItem API.
If the remote object is a view that needs to be published in updatable mode and/or
fast-refresh mode, the remote parent table must also be published locally. Parent hints
should be provided for the synonym of the remote view similar those used for local,
updatable and/or fast refreshable views.

Two additional APIs have been created, DependencyHint and
RemoveDependencyHint, to deal with non-apparent dependencies introduced by
publication of remote objects.

Remote links to the Oracle database must be established prior to attempting remote
linking procedures, please refer to the Oracle SQL Reference for this information.

Table 3–12 setPassword - Sample Parameters

Parameter Definition

userName Specifies user name for mobile client.

newpwd Specifies the new password for the mobile client.

Other Standard Consolidator Functionality

3-24 Oracle Database Lite Developer’s Guide

3.6.3.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem
The CreatePublicationItem API, used with the following parameters, creates a
new, stand-alone publication item as a remote database object.

Syntax
public static void CreatePublicationItem
 ((String rmt_jdbc_url),
 String name,
 String owner,
 String store,
 String refresh_mode,
 String select_stmt,
 String cbk_owner,
 String cbk_name) throws Throwable

or,

public static void CreatePublicationItem
 ((Connection rmt_jdbc_conn),
 String name,
 String owner,
 String store,
 String refresh_mode,
 String select_stmt,
 String cbk_owner,
 String cbk_name) throws Throwable

The parameters for synonym creation using CreatePublicationItem are listed in
Table 3–13:

Note: The performance of synchronization from remote databases
is subject to network throughput and the performance of remote
query processing. Because of this, remote data synchronization is
best used for simple views or tables with limited amount of data.

Table 3–13 CreatePublicationItem Parameters for Remote Database Linking

Parameter Description

rmt_jdbc_url The string specifying a jdbc URL for the remote database
instance.

rmt_jdbc_conn The connection to the Oracle database where the remote
instance resides.

name A string defining a new publication item name.

owner A string specifying the synonym owner.

store A string specifying the synonym name. Note: to publish a
remote object, a private synonym for it must be created.

refresh_mode A string specifying the refresh mode. F for fast refresh or C for
complete refresh. The default is fast refresh.

select_stmt A string specifying a select statement for the new publication.
This statement my be parameterized. In the example that
follows the parameter is :CAP, defined by placing a colon in
front of the parameter name.

Other Standard Consolidator Functionality

Synchronization 3-25

If the URL string is used, the remote connection is established and closed
automatically. If the connection is null or cannot be established, an exception is
thrown. The remote connection information is used to create logging objects on the
linked database and to extract metadata.

Example
Consolidator.CreatePublicationItem(
 "jdbc:oracle:oci8:@oracle.world",
 "P_SAMPLE1",
 "SAMPLE1",
 "PAYROLL_SYN",
 "F"
 "SELECT * FROM sample1.PAYROLL_SYN"+"WHERE SALARY >:CAP", null, null);

3.6.3.2 Creating a Dependency Hint
This creates a hint for a non-apparent dependency.

Syntax
public static void DependencyHint
 (String owner,
 Sting store,
 String owner_d,
 String store_d) throws Throwable

The parameters for CreateDependencyHint are listed in Table 3–14:

Example
Given remote view definition
 create payroll_view as
 select p.pid, e.name
 from payroll p, emp e
 where p.emp_id = e.emp_id;

cbk_owner Specifies the callback package owner as NULL. For more
information, see Section 3.7.12, "Callback Customization for
Before and After Compose/Apply".

cbk_name Specifies the callback package name as NULL. For more
information, see Section 3.7.12, "Callback Customization for
Before and After Compose/Apply".

Note: Within the select statement, the parameter name for the
data subset must be prefixed with a colon, for example :CAP.

Table 3–14 CreateDependencyHint Parameters

Parameter Description

owner A string specifying the owner of the view.

store A string specifying the name of the view.

owner_d A string specifying the owner of the base table or view.

store_d A string specifying the name of the base table or view.

Table 3–13 (Cont.) CreatePublicationItem Parameters for Remote Database Linking

Parameter Description

Advanced Features for Customizing Consolidator

3-26 Oracle Database Lite Developer’s Guide

Execute locally
 create synonym v_payroll_syn for payroll_view@<remote_link_address>;
 create synonym t_emp_syn for emp@<remote_link_address>;

Where <remote_link_address> is the link established on the Oracle database. Use
DependencyHint to indicate that the local synonym v_payroll_syn depends on
the local synonym t_emp_syn:

Consolidator.DependencyHint("SAMPLE1","V_PAYROLL_SYN","SAMPLE1","T_EMP_SYN");

3.6.3.3 Remove a Dependency Hint
This removes a hint for a non-apparent dependency.

Syntax
public static void RemoveDependencyHint
 (String owner,
 Sting store,
 String owner_d,
 String store_d) throws Throwable

The parameters for RemoveDependencyHint are listed in Table 3–15:

3.7 Advanced Features for Customizing Consolidator
The following features include special functions which are not required for most
application designs. These features may require advanced understanding of both Java
and the design of the database being manipulated, including how queries have been
constructed, how tables have been arranged and any dependencies that apply. The
topics discussed are:

■ Section 3.7.1, "Compose Phase Customization Using MyCompose"

■ Section 3.7.2, "Sync Discovery API"

■ Section 3.7.3, "Map Table Partition APIs"

■ Section 3.7.4, "Modifying a Publication Item Using AlterPublicationItem"

■ Section 3.7.5, "Fast Refresh and Update Operation for Multi-Table Publications
(Views)"

■ Section 3.7.6, "Virtual Primary Key"

■ Section 3.7.7, "Caching Publication Item Queries"

■ Section 3.7.8, "Binding User-Defined PL/SQL Procedures"

■ Section 3.7.9, "Queue Interface for Customizing Replication"

■ Section 3.7.10, "Null Sync Callout"

Table 3–15 RemoveDependencyHint Parameters

Parameter Description

owner A string specifying the view owner.

store A string specifying the view name.

owner_d A string specifying the base object owner.

store_d A string specifying the base object name.

Advanced Features for Customizing Consolidator

Synchronization 3-27

■ Section 3.7.11, "Foreign Key Constraints in Updatable Publication Items"

■ Section 3.7.12, "Callback Customization for Before and After Compose/Apply"

■ Section 3.7.13, "Callback Customization for DML Operations"

■ Section 3.7.14, "Restricting Predicate"

3.7.1 Compose Phase Customization Using MyCompose
The compose phase takes a query on one or more server-side base tables and puts the
generated DML operations for the publication item the query describes into the out
queue to be downloaded into the client. Consolidator manages these DML operations
in a "generic" way using the physical DML logs on the server-side base tables. This can
be resource intensive if the DML operations are complex, for example, if there are
complex data-subsetting queries being used. The tools to customize this process
include an extendable MyCompose with compose methods which can be overridden,
and additional Consolidator APIs to register and load the customized class.

3.7.1.1 Extending MyCompose as a User Defined Sub-Class
MyCompose is an abstract class which serves as the super-class for creating a
user-written sub-class, for example:

ItemACompose
public class ItemACompose extends oracle.lite.sync.MyCompose
{
...
}

The user-written class produces publication item DML operations to be sent to a client
device by interpreting the base table DML logs. The extended MyCompose sub-class is
registered with a publication item, and takes over all compose phase operations for
that publication item. An extended MyCompose class can be registered with more than
one publication item if it is sufficiently generic, however, internally, there is a unique
instance of the extended class for each publication item.

3.7.1.2 Primary MyCompose Methods
The MyCompose class uses the following four methods: needCompose, doCompose,
init, and destroy to customize the compose phase. One or more of these methods
can be overridden in the customized sub-class to customize compose phase
operations. For most users attempting to customize the compose phase for one client
at a time, doCompose and needCompose are sufficient. The init and destroy
methods are used when some process must be performed for all clients, either before
or after individual client processing. There are several more methods described in
Section 3.7.1.3, "Subsidiary MyCompose Methods" that provide useful information for
the use of these four methods.

3.7.1.2.1 needCompose Method

Use this method to identify a client that has changes to a specific publication item to be
downloaded. This method is primarily useful as a way to trigger doCompose.

Syntax
public int needCompose(Connection conn,
 String clientid) throws Throwable

Advanced Features for Customizing Consolidator

3-28 Oracle Database Lite Developer’s Guide

The parameters for needCompose are listed in Table 3–16:

The following example examines a client base table for changes, in this example the
presence of "dirty" records. If there are changes the method returns MyCompose.YES
which triggers the doCompose method.

Example
 public int needCompose(String clientid) throws Throwable{
 boolean baseDirty = false;
 String [][] baseTables = this.getBaseTables();

 for(int i = 0; i < baseTables.length; i++){
 if(this.baseTableDirty(baseTables[i][0], baseTables[i][1])){
 baseDirty = true;
 break;
 }
 }

 if(baseDirty){
 return MyCompose.YES;
 }else{
 return MyCompose.NO;
 }
 }

This sample code overrides the needCompose method, and uses subsidiary methods
discussed in Section 3.7.1.3, "Subsidiary MyCompose Methods", to check if the
publication item has any tables with changes that need to be sent to the client. In this
example, the base tables are retrieved, then checked for changed, or "dirty," records. If
the result of that test is true, a value of "Yes" is returned which triggers the call for
doCompose.

3.7.1.2.2 doCompose Method

This method populates the DML log table for a specific publication item subscribed to
by a client.

Syntax
public int doCompose(Connection conn,
 String clientid) throws Throwable

The parameters for doCompose are listed in Table 3–17:

Table 3–16 needCompose Parameters

Parameter Definition

conn Database connection to the Mobile Server repository.

clientid Specifies the client which is connecting to the database.

Table 3–17 doCompose Parameters

Parameter Definition

conn Database connection to the Mobile Server repository.

clientid Specifies the client which is connecting to the database.

Advanced Features for Customizing Consolidator

Synchronization 3-29

The following example contains a publication item with only one base table and that a
DML (Insert, Update, or Delete) operation on the base table is also performed on the
publication item. This method is called for each client subscribed to that publication
item.

Example
 public int doCompose(Connection conn, String clientid) throws Throwable {
 int rowCount = 0;

 String [][] baseTables = this.getBaseTables();
 String baseTableDMLLogName =
 this.getBaseTableDMLLogName(baseTables[0][0], baseTables[0][1]);
 String baseTablePK =
 this.getBaseTablePK(baseTables[0][0],baseTables[0][1]);
 String pubItemDMLTableName = this.getPubItemDMLTableName();

 String sql = "INSERT INTO " + pubItemDMLTableName
 + " SELECT " + baseTablePK + ", DMLTYPE$$ FROM " +
 baseTableDMLLogName;

 Statement st = conn.createStatement();
 rowCount = st.executeUpdate(sql);
 st.close();
 return rowCount;
 }

This sample code overrides the doCompose method and uses subsidiary methods
discussed in Section 3.7.1.3, "Subsidiary MyCompose Methods" to create a SQL
statement. Using this sample you have MyCompose retrieve the base table, the base
table primary key, the base table DML log name and the publication item DML table
name using the appropriate get methods. You can then use the table names and other
information returned by these methods to create a dynamic SQL statement ("sql")
which performs an insert into the publication item DML table of the contents of the
base table primary key and DML operation from the base table DML log.

3.7.1.2.3 init Method

This method provides the framework for user-created compose preparation processes.
The init method is called once for all clients prior to the individual client compose
phase. The default implementation has no effect.

Syntax
public void init(Connection conn)

The parameters for init are listed in Table 3–18:

3.7.1.2.4 destroy Method

This method provides the framework for user-created compose cleanup processes. The
destroy method is called once for all clients after to the individual client compose
phase. The default implementation has no effect.

Table 3–18 init Parameters

Parameter Definition

conn Database connection to the Mobile Server repository.

Advanced Features for Customizing Consolidator

3-30 Oracle Database Lite Developer’s Guide

Syntax
public void destroy(Connection conn)

The parameters for destroy are listed in Table 3–18:

3.7.1.3 Subsidiary MyCompose Methods
The following methods return information for use by primary MyCompose methods.

3.7.1.3.1 getPublication

This returns the name of the publication.

Syntax
public String getPublication()

3.7.1.3.2 getPublicationItem

This returns the publication item name.

Syntax
public String getPublicationItem()

3.7.1.3.3 getPubItemDMLTableName

Returns the name of the DML table or DML table view, including schema name, which
doCompose or init are supposed to insert into.

Syntax
public String getPubItemDMLTableName()

You can embed the returned value into dynamic SQL statements. The table or view
structure is:

<PubItem PK> DMLTYPE$$

The parameters for getPubItemDMLTableName are listed in Table 3–20:

3.7.1.3.4 getPubItemPK

Returns the primary key for the listed publication in comma separated format in the
form of <col1>,<col2>,<col3>.

Syntax
public String getPubItemPK() throws Throwable

Table 3–19 destroy Parameters

Parameter Definition

conn Database connection to the Mobile Server repository.

Table 3–20 getPubItemDMLTableName View Structure Parameters

Parameter Definition

PubItemPK The value returned by getPubItemPK()

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for
Update.

Advanced Features for Customizing Consolidator

Synchronization 3-31

3.7.1.3.5 getBaseTables

Returns all the base tables for the publication item in an array of two-string arrays.
Each two-string array contains the base table schema and name. The parent table is
always the first base table returned, in other words, baseTables[0]

Syntax
public string [][] getBaseTables() throws Throwable

3.7.1.3.6 getBaseTablePK

Returns the primary key for the listed base table in comma separated format, in the
form of <col1>, col2>,<col3>.

Syntax
public String getBaseTablePK
(String owner,
String baseTable) throws Throwable

The parameters for getBaseTablePK are listed in Table 3–21:

3.7.1.3.7 baseTableDirty

Returns the a boolean value for whether or not the base table has changes to be
synchronized.

Syntax
public boolean baseTableDirty(String owner, String store)

The parameters for baseTableDirty are listed in Table 3–22:

3.7.1.3.8 getBaseTableDMLLogName

Returns the name for the physical DML log table or DML log table view for a base
table.

Syntax
public string getBaseTableDMLLogName(String owner, String baseTable)

The parameters for getBaseTableDMLLogName are listed in Table 3–23:

Table 3–21 getBaseTablePK Parameters

Parameter Definition

owner The schema name of the base table owner.

baseTable The base table name.

Table 3–22 baseTableDirty Parameters

Parameter Definition

owner The schema name of the base table.

store The base table name.

Advanced Features for Customizing Consolidator

3-32 Oracle Database Lite Developer’s Guide

You can embed the returned value into dynamic SQL statements. There may be
multiple physical logs if the publication item has multiple base tables. The parent base
table's physical primary key corresponds to the primary key of the publication item.
The structure of the log is:

<Base Table PK> DMLTYPE$$

The parameters for getBaseTableDMLLogName view structure are listed in
Table 3–24:

3.7.1.3.9 getMapView()

Returns a view of the map table which can be used in a dynamic SQL statement and
contains a primary key list for each client device. The view can be an inline view.

Syntax
public String getMapView() throws Throwable

The structure of the map table view is:

CLID$$CS <Pub Item PK> DMLTYPE$$

The parameters of the map table view are listed in Table 3–25:

3.7.1.4 Consolidator API Methods for Registering MyCompose Sub-Classes
 Once you have created your sub-class, it must be registered with a publication item.
The Consolidator API now has two methods RegisterMyCompose and
DeRegisterMyCompose to permit adding and removing the sub-class from a
publication item.

3.7.1.4.1 RegisterMyCompose Method

The RegisterMyCompose method registers the sub-class and loads it into the Mobile
Server repository, including the class byte code. By loading the code into the
repository, the sub-class can be used without having to be loaded at runtime.

Table 3–23 getBaseTableDMLLogName Parameters

Parameter Definition

owner The schema name of the base table owner.

baseTable The base table name.

Table 3–24 getBaseTableDMLLogName View Structure Parameters

Parameter Definition

Base Table PK The primary key of the parent base table.

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for
Update.

Table 3–25 getMapView View Structure Parameters

Parameter Definition

CLID$$CS This is the client ID column.

Base Table PK The primary key columns of the publication item.

DMLTYPE$$ This can have the values 'I' for insert, 'D' for delete, or 'U' for
Update.

Advanced Features for Customizing Consolidator

Synchronization 3-33

Syntax
public static void RegisterMyCompose
 (String publication,
 String pubItem,
 String className,
 boolean reloadBytecode) throws Throwable

The parameters of RegisterMyCompose are listed in Table 3–26:

3.7.1.4.2 DeRegisterMyCompose

The DeRegisterMyCompose method removes the sub-class from the Mobile Server
repository.

Syntax
public static void DeRegisterMyCompose
 (String publication,
 String pubItem,
 boolean removeBytecode) throws Throwable

The parameters of DeRegisterMyCompose are listed in Table 3–27:

3.7.2 Sync Discovery API
The sync discovery feature is used to request an estimate of the size of the download
for a specific client, based on historical data. The following statistics are gathered to
maintain the historical data:

■ The total number of rows send for each publication item.

■ The total data size for these rows.

■ The compressed data size for these rows.

Table 3–26 RegisterMyCompose Parameters

Parameter Definition

publication The name of the publication the publication item is part of.

pubItem The name of the publication item to which the sub-class is
being registered.

className The name of the customized MyCompose sub-class.

reloadBytecode If this value is true, then the existing byte code for the class in
the Mobile Server repository is overwritten.

Table 3–27 DeRegisterMyCompose Parameters

Parameter Definition

publication The name of the publication the publication item belongs too.

pubItem The name of the publication item the sub-class is being
registered too.

removeBytecode If this value is true, then the existing byte code for the class in
the Mobile Server repository is removed. If the byte code is
removed, all publication items registered with this class have
their registration removed.

Advanced Features for Customizing Consolidator

3-34 Oracle Database Lite Developer’s Guide

3.7.2.1 getDownloadInfo Method
The API consists of the getDownloadInfo method which returns the
DownloadInfo object. The DownloadInfo object contains a set of
PublicationSize objects and access methods. The PublicationSize objects
carry the size information of a publication item. The method Iterator iterator()
can then be used to view each PublicationSize object in the DownloadInfo
object.

Syntax
public DownloadInfo getDownloadInfo
 (String clientid,
 boolean uncompressed,
 boolean completeRefresh)

The parameters of getDownloadInfo are listed in Table 3–28:

Example
DownloadInfo dl = Consolidator.getDownloadInfo("S11U1", true, true);

3.7.2.2 DownloadInfo Class Access Methods
The access methods provided by the DownloadInfo class are listed in Table 3–29:

Table 3–28 getDownloadInfo Parameters

Parameter Description

clientid The name of the client.

uncompressed If set to true, returns the true size of the data object, if false
the size of the data object after being compressed.

completeRefresh If set to true, returns the size of all rows that will be
synchronized during a complete refresh regardless of the
refresh mode.

Table 3–29 DownloadInfo Class Access Methods

Method Definition

public Iterator iterator () This returns an Iterator object so that the user can
traverse through the all the PublicationSize
objects that are contained inside the
DownloadInfo object.

public long getTotalSize () This returns the size information of all
PublicationSize objects in bytes, and by
extension, the size of all publication items
subscribed to by that user. If no historical
information is available for those publication
items, the value returned is '-1'.

public long getPubSize
 (String pubName)

This returns the size of all publication items that
belong to the publication referred to by the string
pubName. If no historical information is available
for those publication items, the value returned is
'-1'.

Advanced Features for Customizing Consolidator

Synchronization 3-35

3.7.2.3 PublicationSize Class
The access methods provided by the PublicationSize class are listed
inTable 3–30:

Sample Code
import java.sql.*;
import java.util.Iterator;
import java.util.HashSet;

import oracle.lite.sync.ConsolidatorManager;
import oracle.lite.sync.DownloadInfo;
import oracle.lite.sync.PublicationSize;

public class TestGetDownloadInfo
{

 public static void main(String argv[]) throws Throwable
 {
// Open Consolidator connection
 try
 {
// Create a ConsolidatorManager object

public long getPubRecCount
 (String pubName)

This will return the number of all records of all
the publication items that belong to the
publication referred by the string pubName, that
will be synchronization during the next
synchronization.

public long getPubItemSize
 (String pubItemName)

This will return the size of a particular
publication item referred by pubItemName. It
follows the following rules in order.

1. If the publication item is empty, it will return
'0'.

2. If no historical information is available for
those publication items, it will return '-1'.

public long getPubItemRecCount
 (String pubItemName)

This will return the number of records of the
publication item referred by pubItemName that
will be synced in the next synchronization.

Table 3–30 PublicationSize Class Access Methods

Parameter Definition

public String getPubName () This will return the name of the publication
containing the publication item.

public String getPubItemName () This will return the name of the publication
item referred to by the PublicationSize
object.

public long getSize () This will return the total size of the publication
item referred to by the PublicationSize
object.

public long getNumOfRows() This will return the number of rows of the
publication item that will be synchronized in
the next synchronization.

Table 3–29 (Cont.) DownloadInfo Class Access Methods

Method Definition

Advanced Features for Customizing Consolidator

3-36 Oracle Database Lite Developer’s Guide

 ConsolidatorManager cm = new ConsolidatorManager ();
// Open a Consolidator connection
 cm.OpenConnection ("MOBILEADMIN", "MANAGER",
 "jdbc:oracle:thin:@server:1521:orcl", System.out);
// Call getDownloadInfo
 DownloadInfo dlInfo = cm.getDownloadInfo ("S11U1", true, true);
// Call iterator for the Iterator object and then we can use that to transverse
// through the set of PublicationSize objects.
 Iterator it = dlInfo.iterator ();
// A temporary holder for the PublicationSize object.
 PublicationSize ps = null;
// A temporary holder for the name of all the Publications in a HashSet object.
 HashSet pubNames = new HashSet ();
// A temporary holder for the name of all the Publication Items in a HashSet
// object.
 HashSet pubItemNames = new HashSet ();
// Traverse through the set.
 while (it.hasNext ())
 {
// Obtain the next PublicationSize object by calling next ().
 ps = (PublicationSize)it.next ();

// Obtain the name of the Publication this PublicationSize object is associated
// with by calling getPubName ().
 pubName = ps.getPubName ();
 System.out.println ("Publication: " + pubName);

// We save pubName for later use.
 pubNames.add (pubName);

// Obtain the Publication name of it by calling getPubName ().
 pubItemName = ps.getPubItemName ();
 System.out.println ("Publication Item Name: " + pubItemName);

// We save pubItemName for later use.
 pubItemNames.add (pubItemName);

// Obtain the size of it by calling getSize ().
 size = ps.getSize ();
 System.out.println ("Size of the Publication: " + size);

// Obtain the number of rows by calling getNumOfRows ().
 numOfRows = ps.getNumOfRows ();
 System.out.println ("Number of rows in the Publication: "
 + numOfRows);
 }

// Obtain the size of all the Publications contained in the
// DownloadInfo objects.
 long totalSize = dlInfo.getTotalSize ();
 System.out.println ("Total size of all Publications: " + totalSize);

// A temporary holder for the Publication size.
 long pubSize = 0;

// A temporary holder for the Publication number of rows.
 long pubRecCount = 0;

// A temporary holder for the name of the Publication.
 String tmpPubName = null;

Advanced Features for Customizing Consolidator

Synchronization 3-37

// Transverse through the Publication names that we saved earlier.
 it = pubNames.iterator ();
 while (it.hasNext ())
 {
// Obtain the saved name.
 tmpPubName = (String) it.next ();

// Obtain the size of the Publication.
 pubSize = dlInfo.getPubSize (tmpPubName);
 System.out.println ("Size of " + tmpPubName + ": " + pubSize);

// Obtain the number of rows of the Publication.
 pubRecCount = dlInfo.getPubRecCount (tmpPubName);
 System.out.println ("Number of rows in " + tmpPubName + ": "
 + pubRecCount);
 }

// A temporary holder for the Publication Item size.
 long pubItemSize = 0;

// A temporary holder for the Publication Item number of rows.
 long pubItemRecCount = 0;

// A temporary holder for the name of the Publication Item.
 String tmpPubItemName = null;

// Traverse through the Publication Item names that we saved earlier.
 it = pubItemNames.iterator ();
 while (it.hasNext ())
 {
// Obtain the saved name.
 tmpPubItemName = (String) it.next ();

// Obtain the size of the Publication Item.
 pubItemSize = dlInfo.getPubItemSize (tmpPubItemName);
 System.out.println ("Size of " + pubItemSize + ": " + pubItemSize);

// Obtain the number of rows of the Publication Item.
 pubItemRecCount = dlInfo.getPubItemRecCount (tmpPubItemName);
 System.out.println ("Number of rows in " + tmpPubItemName + ": "
 + pubItemRecCount);
 }
 System.out.println ();

// Close the connection
 cm.CloseConnection ();
 }
 catch (Exception e)
 {
 e.printStackTrace();
 }
 }
}

3.7.3 Map Table Partition APIs
Consolidator database objects called map tables are used to maintain the state for each
Mobile Client. If there are a large number of clients, and each client subscribes to a

Advanced Features for Customizing Consolidator

3-38 Oracle Database Lite Developer’s Guide

large amount of data, the map tables can become very large creating scalability issues.
Using the following APIs, map tables can be partitioned by clientid, making them
more manageable.

The API allows you to create a map table partition, add additional partitions, drop one
or all partitions, and merge map table partitions. Map table partitions can be
monitored using the ALL_PARTITIONS database catalog view.

3.7.3.1 Create a Map Table Partition
Creates a partition for the referenced publication item's map table. If there is data in
the map table, it is transferred to the partition being created. After the partition has
been successfully created, the map table can be truncated to remove redundant data
using the SQL command TRUNCATE TABLE.

Syntax
public static void PartitionMap
 (String pub_item,
 int num_parts,
 String storage,
 String ind_storage) throws Throwable

The parameters of PartitionMap are listed in Table 3–31.

Example
Consolidator.PartitionMap("P_SAMPLE1", 5, "tablespace mobileadmin", "initrans 10
pctfree 70");

3.7.3.2 Add Map Table Partitions
Adds a partition for the referenced publication item's map table. If there is data in the
map table, it is transferred to the partition being created. After the partition has been
successfully created, the map table can be truncated to remove redundant data using
the SQL command TRUNCATE TABLE.

Syntax
public static void AddMapPartition

Note: This form of partitioning is not related to the partition
functionality provided by Oracle Server, and is used exclusively by
Oracle Database Lite 10g.

Table 3–31 PartitionMap Parameters

Parameter Definition

pub_item The publication item whose map table is being partitioned.

num_parts The number of partitions.

storage A string specifying the storage parameters. This parameter
requires the same syntax as the SQL command CREATE
TABLE. See the Oracle9i SQL Reference for more information.

ind_storage A string specifying the storage parameters for indexes on the
partition. This parameter requires the same syntax as the SQL
command CREATE INDEX. See the Oracle9i SQL Reference for
more information.

Advanced Features for Customizing Consolidator

Synchronization 3-39

 (String pub_item,
 int num_parts,
 String storage,
 String ind_storage) throws Throwable

The parameters of AddMapPartition are listed in Table 3–32:

Example
Consolidator.AddMapPartitions("P_SAMEPLE1",5,"tablespace mobileadmin","initrans 10
pctfree 40");

3.7.3.3 Drop a Map Table Partition
Drops the named partition. In the following example, the partition parameter is the
name of the partition. Partition names must be retrieved by querying the ALL_
PARTITIONS table view CV$ALL_PARTITIONS since partitions are named by
Consolidator.

Syntax
public static void DropMapPartition(String partition) throws Throwable

Example
Consolidator.DropMapPartition("MAP101_1");

3.7.3.4 Drop All Map Table Partitions
Drops all partitions of the map table for the named publication item.

Syntax
public static void DropAllMapPartitions(String pub_item) throws Throwable

Example
Consolidator.DropAllMapPartitions("P_SAMPLE1");

3.7.3.5 Merge Map Table Partitions
Merges the data from one partition into another. Partition names must be retrieved by
querying the ALL_PARTITIONS table view CV$ALL_PARTITIONS, since partitions
are named by Consolidator.

Table 3–32 AddMapPartitions Parameters

Parameter Definition

pub_item The publication item whose map table is being partitioned.

num_parts The number of partitions.

storage A string specifying the storage parameters. This parameter
requires the same syntax as the SQL command CREATE
TABLE. See the Oracle Database Lite SQL Reference for more
information.

ind_storage A string specifying the storage parameters for indexes on the
partition. This parameter requires the same syntax as the SQL
command CREATE INDEX. See the Oracle Database Lite SQL
Reference for more information.

Advanced Features for Customizing Consolidator

3-40 Oracle Database Lite Developer’s Guide

Syntax
public static void MergeMapPartitions
 (String from_partition,
 String to_partiton) throws Throwable

Example
Consolidator.MergeMapPartition(""MAP101_1", "MAP101_2");

3.7.4 Modifying a Publication Item Using AlterPublicationItem
You can add additional columns to existing publication items. These new columns are
pushed to all subscribing clients the next time they synchronize. This is accomplished
through a complete refresh of all changed publication items.

■ An administrator can add multiple columns.

■ This feature is supported for all client formats.

■ The client does not upload snapshot information to the server. This also means the
client cannot change snapshots directly on the client database, for example, you
could not alter a table using Mobile SQL on EPOC.

■ Publication item upgrades will be deferred during high priority synchronizations.
This is necessary for low bandwidth networks, such as wireless, because all
publication item upgrades require a complete refresh of changed publication
items. While the high priority flag is set, high priority clients will continue to
receive the old publication item format.

■ The server needs to support a maximum of two versions of the publication item
which has been altered.

3.7.4.1 Alter Publication Item
This allows additional columns to be added to an existing publication item. The
WHERE clause may also be altered, but additional subscription parameters may not
be added.

Syntax
public static void AlterPublicationItem
 (String name,
 String select_stmt)
 throws Throwable

The parameters for AlterPublicationItem are listed in Table 3–33:

Example
Consolidator.AlterPublicationItem("P_SAMEPLE1", "select * from EMP");

Table 3–33 Alter Publication Item Parameters

Parameter Description

name A character string specifying the publication item name.

select_stmt A new publication item select statement containing
additional columns.

Advanced Features for Customizing Consolidator

Synchronization 3-41

3.7.5 Fast Refresh and Update Operation for Multi-Table Publications (Views)
The Mobile Server supports fast refresh and update operations for complex multiple
table publication items called views, that meet specific criteria. During a fast refresh,
incremental changes are synchronized, during a complete refresh all data is refreshed
with current data. The refresh mode is established when you create the publication
item using the CreatePublicationItem API call. In order to change the refresh
mode you must first drop the publication item and recreate it with the appropriate
mode.

3.7.5.1 Updatable Parent Tables
For a view to be updatable, it must have a parent table. A parent table can be any one
of the view's base tables in which a primary key is included in the view's column list
and is unique in the view's row set. If you want to make a view updatable, you must
provide the Mobile Server with the appropriate hint and the view's parent table before
you create a publication item on the view.

3.7.5.2 Using Parent Table Hints and INSTEAD OF Triggers
To make publication items based on a view updatable, you must use the following two
mechanisms:

■ Parent table hints

■ INSTEAD OF triggers or DML procedure callouts

3.7.5.2.1 Creating a Parent Hint

Parent table hints define the parent table for a given view. Parent table hints are
provided through the ParentHint function which uses the stoats:

public static void ParentHint
 (String owner,
 Sting store,
 String owner_d,
 String store_d) throws Throwable

The parameters for ParentHint are listed in Table 3–34:

Example
Consolidator.ParentHint("SAMPLE3","ADDROLRL4P","SAMPLE3","ADDRESS");

3.7.5.2.2 INSTEAD OF Triggers

INSTEAD OF triggers are used to execute INSTEAD OF INSERT, INSTEAD OF
UPDATE, or INSTEAD OF DELETE commands. INSTEAD OF triggers also map these
DML commands into operations that are performed against the view's base tables.

Table 3–34 ParentHint Parameters

Parameter Description

owner A string specifying the view owner.

store A string specifying the view name.

owner_d A string specifying the base object owner.

store_d A string specifying the base object name.

Advanced Features for Customizing Consolidator

3-42 Oracle Database Lite Developer’s Guide

INSTEAD OF triggers are a function of Oracle database. See the Oracle database
documentation for details on INSTEAD OF triggers.

3.7.5.3 Fast Refresh for Views
Publication items are created for fast refresh by default. Under fast refresh, only
incremental changes are replicated. The advantages of fast refresh are reduced
overhead and increased speed when replicating data stores with large amounts of data
where there are limited changes between synchronization sessions.

The Mobile Server performs a fast refresh of a view if the view meets the following
criteria:

■ Each of the view's base tables must have a primary key.

■ All primary keys from all base tables must be included in the view's column list.

■ If the item is a view, and the item predicate involves multiple tables, then all tables
contained in the predicate definition must have primary keys and must have
corresponding publication items.

The view requires only a unique primary key for the parent table. The primary keys of
other tables may be duplicated. For each base table primary key column, you must
provide the Mobile Server with a hint about the column name in the view. You can
accomplish this by using PrimaryKeyHint.

3.7.5.3.1 PrimaryKeyHint

The syntax for PrimaryKeyHint is:

public static void PrimaryKeyHint
 (String publication_item,
 String column,
 String b_owner,
 String b_store,
 String b_column) throws Throwable

The parameters for PrimaryKeyHint are listed in Table 3–35:

Example
Consolidator.ParentHint("SAMPLE3","ADDROLRL4P","SAMPLE3","ADDRESS");

3.7.5.4 Complete Refresh for Views
Publication items can be created for complete refresh using the Complete Refresh
call from the Consolidator API. When this mode is specified, client data is completely
refreshed with current data from the server after every sync. An administrator can

Table 3–35 PrimaryKeyHint Parameters

Parameter Description

publication_item The name of the publication item the primary key hint is to be
mapped to.

owner A string specifying the view owner.

store A string specifying the view name.

store_d A string specifying the base object owner.

b_column The name of the base table column the hint is using.

Advanced Features for Customizing Consolidator

Synchronization 3-43

force a complete refresh on an entire publication on an entire publication via an API
call. The complete refresh function forces complete refresh of a publication for a given
client.

3.7.5.4.1 CompleteRefresh

The syntax for CompleteRefresh is:

public static void CompleteRefresh
 (String client_id,
 String publication) throws Throwable

The parameters for CompleteRefresh are listed in Table 3–36:

3.7.6 Virtual Primary Key
You can specify a virtual primary key for publication items where the base object does
not have a primary key defined. A virtual primary key can be created for more than
one column, but the API must be called separately for each column you wish to assign
a virtual primary key. The following methods create and drop a virtual primary key.

3.7.6.1 Create Virtual Primary Key Column
This creates a virtual primary key column.

Syntax
public static void CreateVirtualPKColumn
 (String owner,
 String store,
 String column) throws Throwable

The parameters for CreateVirtualPKColumn are listed in Table 3–37:

Example
Consolidator.CreateVirtualPKColumn("SAMPLE1", "DEPT", "DEPT_ID");

3.7.6.2 Drop Virtual Primary Key Column
This allows a virtual primary key to be dropped.

Syntax
public static void DropVirtualPKColumn

Table 3–36 AlterPublicationItem Parameters

Parameter Description

client_id The Consolidator client name.

publication The name of the publication to be refreshed.

Table 3–37 CreateVirtualPKColumn Parameters

Parameter Description

owner A string specifying a the owner of the base table or view.

store A string specifying the base table or view.

column A string specifying the primary key column.

Advanced Features for Customizing Consolidator

3-44 Oracle Database Lite Developer’s Guide

 (String owner,
 String store) throws Throwable

The parameters for DropVirtualPKColumn are listed in Table 3–38:

Example
Consolidator.DropVirtualPKColumn("SAMPLE1", "DEPT");

3.7.7 Caching Publication Item Queries
This feature allows complex publication item queries to be cached. This applies to
queries that cannot be optimized by the Oracle query engine. By caching the query in a
temporary table, the Consolidator template can join to the snapshot more efficiently.

Storing the data in a temporary table does result in additional overhead to MGP
operation, and the decision to use it should only be made after first attempting to
optimize the publication item query to perform well inside the Consolidator template.
If the query cannot be optimized in this way, the caching method should be used.

The following example is a template used by the MGP during the compose phase to
identify client records that are no longer valid, and should be deleted from the client:

UPDATE pub_item_map map
SET delete = true
WHERE client = <clientid>
AND NOT EXISTS (SELECT 'EXISTS' FROM
 (<publication item query>) snapshot
 WHERE map.pk = snapshot.pk);

In this example, when <publication item query> becomes too complex, because
it contains multiple nested subqueries, unions, virtual columns, connect by clauses,
and other complex functions, the query optimizer is unable to determine an acceptable
plan. This can have a significant impact on performance during the MGP compose
phase. Storing the publication item query in a temporary table, using the publication
item query caching feature, flattens the query structure and enables the template to
effectively join to it.

3.7.7.1 Enabling Publication Item Query Caching
The following API enables publication item query caching.

Syntax
public static void EnablePublicationItemQueryCache(String name)
 throws Throwable

The parameters for EnablePublicationItemQueryCache are listed in Table 3–39:

Table 3–38 DropVirtualPKColumn Parameters

Parameter Description

owner A string specifying a the owner of the base table or view.

store A string specifying the base table or view.

Table 3–39 EnablePublicationItemQueryCache Parameters

Parameters Description

name A string specifying the name of the publication item.

Advanced Features for Customizing Consolidator

Synchronization 3-45

Example
Consolidator.EnablePublicationItemQueryCache(
 "P_SAMPLE1");

3.7.7.2 Disabling Publication Item Query Caching
The following API disables publication item query caching.

Syntax
public static void DisablePublicationItemQueryCache(String name)
 throws Throwable

The parameters for DisablePublicationItemQueryCache are listed in Table 3–40:

Example
Consolidator.DisablePublicationItemQueryCache("P_SAMPLE1");

3.7.8 Binding User-Defined PL/SQL Procedures
The Mobile Server synchronization process can be customized in many ways. You can
attach application logic to the Mobile Server by binding PL/SQL procedures to
publication items. The procedures must expose the BeforeCompose,
AfterCompose, BeforeApply, and AfterApply methods of the Consolidator API.
The Mobile Server calls these methods before and after it:

■ Applies client changes to server tables on behalf of Mobile Sync clients.

■ Composes fast-refresh changes for a given publication item.

The Mobile Server passes the current Mobile Sync user name information to these
methods.

User-defined PL/SQL procedures can cache or pre-compute data. They can also
resolve foreign key constraint violation problems. See Section 3.7.11, "Foreign Key
Constraints in Updatable Publication Items" for more information. See Section 3.7.12,
"Callback Customization for Before and After Compose/Apply" for details on using
these calls.

3.7.9 Queue Interface for Customizing Replication
Application developers can manage the replication process programmatically by using
the CreateQueuePublicationItem API. Normally the MGP manages both the in queues
and the out queues, this API allows the application developer to manage queue
operations during a synchronization session using a PL/SQL package described in
Section 3.7.9.3, "Queue Interface PL/SQL Procedure" and by creating the queues
themselves.

3.7.9.1 Queue Interface Operation
When data arrives from the client it is placed in the publication item in queues.
Consolidator calls UPLOAD_COMPLETE once the data has been committed. All
records in the current synchronization session are given the same transaction

Table 3–40 DisablePublicationItemQueryCache Parameters

Parameters Description

name A string specifying the name of the publication item.

Advanced Features for Customizing Consolidator

3-46 Oracle Database Lite Developer’s Guide

identifier. Consolidator has a Queue Control Table (C$INQ+name) that indicates
which publication item in queues have received new transactions using this
transaction identifier. You can refer to this table to determine which queues need
processing.

Before Consolidator begins the download phase of the synchronization session, it calls
DOWNLOAD_INIT. This procedure allows customization of any settings which need
to be set or modified to determine which data is sent to the client. Consolidator finds a
list of the publication items which can be downloaded based on the client's
subscription. A list of publication items and their refresh mode, 'Y' for complete
refresh, 'N' for fast refresh, is inserted into a temporary table (C$PUB_LIST_Q). Items
can be deleted or the refresh status can be modified in this table since Consolidator
refers to C$PUB_LIST_Q to determine which items will be downloaded to the client.

Similar to in queue, every record in the out queue should be associated with it a
transaction identifier (TRANID$$). Consolidator passes the last_tran parameter to
indicate the last transaction that the client has successfully applied. New out queue
records which have not been downloaded to the client before should be marked with
the value of curr_tran parameter. The value of curr_tran is always greater than
that of last_tran, though not necessarily sequential. Consolidator only downloads
records from the out queues when the value of TRANID$$ is greater than last_tran.
When the data is downloaded, Consolidator calls DOWNLOAD_COMPLETE.

3.7.9.2 Queue Creation
You need to create the out queue in the Mobile Server repository manually using SQL.
You may also wish to create the in queue as well although Consolidator creates this if
one does not exist. Connect to your repository and execute the following statements to
create in queues and out queues with the following structure:

Out queue
'CTM$'+name
(
CLID$$CS VARCHAR2 (30),
..
publication_item_store_columns (c1..cN),
..
TRANID$$ NUMBER (10),
DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'),
)

In queue
'CFM$'+name
(
CLID$$CS VARCHAR2 (30),
TRANID$$ NUMBER (10),
SEQNO$$ NUMBER (10),

DMLTYPE$$ CHAR (1) CHECK (DMLTYPE$$ IN ('I','U','D'),
..
publication_item_store_columns (c1..cN),
..
)
Consolidator creates a queue control table, C$INQ, and a temporary table, C$PUB_
LIST_Q. You can examine the queue control table to determine which publication
items have received new transactions.

Advanced Features for Customizing Consolidator

Synchronization 3-47

Queue Control Table
'C$INQ'+name
(
CLIENTID VARCHAR2 (30),
TRANID$$ NUMBER,
STORE VARCHAR2 (30),

)

Temporary Table
'C$PUB_LIST_Q'
(
NAME VARCHAR2 (30),
COMP_REF CHAR(1),
CHECK(COMP_REF IN('Y','N'))

)

The parameters for the manually created queues are listed in Table 3–41:

3.7.9.3 Queue Interface PL/SQL Procedure
The following PL/SQL package specification defines the callouts needed by the queue
interface:

Sample Code

CREATE OR REPLACE PACKAGE CONS_QPKG AS
/*
 * notifies that inq has new transaction
*/
PROCEDURE UPLOAD_COMPLETE(
 CLIENTID IN VARCHAR2,

Table 3–41 Queue Interface Creation Parameters

Parameter Description

CLID$$CS A unique string identifying the client.

TRANID$$ A unique number identifying the transaction.

SEQNO$$ A unique number for every DML language operation per
transaction in the inqueue (CFM$) only.

DMLTYPE$$ Checks the type of DML instruction:

■ 'I' - Insert

■ 'D' - Delete

■ 'U' - Update

Outqueue only.

STORE Represents the publication item name in the queue control
table (C$INQ) only.

NAME The publication item name in the temporary table (C$PUB_
LIST_Q) only.

COMP_REF This value is either 'Y' for yes, or 'N' for no and is a flag used
for determining the refresh mode of publication items.

Advanced Features for Customizing Consolidator

3-48 Oracle Database Lite Developer’s Guide

 TRAN_ID IN NUMBER -- IN queue tranid
);
/*
 * init data for download
*/
PROCEDURE DOWNLOAD_INIT(
 CLIENTID IN VARCHAR2,
 LAST_TRAN IN NUMBER,
 CURR_TRAN IN NUMBER,
 HIGH_PRTY IN VARCHAR2
);
/*
 * notifies when all the client's data is sent
*/
PROCEDURE DOWNLOAD_COMPLETE(
 CLIENTID IN VARCHAR2
);

END CONS_QPKG;
/

3.7.9.4 CreateQueuePublicationItem API
This API call creates a publication item in the form of a queue. This API call registers
the publication item and creates CFM$name table as an in queue, if one does not exist.

Syntax
public static void CreateQueuePublicationItem
 (String name,
 String owner,
 String store,
 String select_stmt,
 String pk_columns,
 String cbk_owner,
 String cbk_name) throws Throwable

The parameters for CreateQueuePublicationItem are listed in Table 3–42:

Table 3–42 CreateQueuePublicationItem Parameters

Parameter Description

name Defines a new publication item/queue name.

owner This is the owner of the base table or view.

store This value specifies the name of the base table or view.

select_stmt A string specifying a select statement for the new publication
item. This statement can include a subscription parameter.

pk_columns A comma separated list which creates virtual primary keys.

cbk_owner Specifies the callback package owner. For more information,
see Section 3.7.12, "Callback Customization for Before and
After Compose/Apply". This is an advanced feature.

cbk_name Specifies the callback package name. For more information, see
Section 3.7.12, "Callback Customization for Before and After
Compose/Apply". This is an advanced feature.

Advanced Features for Customizing Consolidator

Synchronization 3-49

You must provide Consolidator with the primary key of the owner.store in order to
create a queue that can be updated or fast-refreshed. If the store has no primary key,
one can be specified in the pk_columns parameter. If pk_columns is null,
Consolidator uses the primary key of the store.

3.7.9.5 Defining a PL/SQL Package Outside the Repository
The PL/SQL package can be defined outside of the Mobile Server repository if
necessary, although in order to function it must still refer to the in queues, out queues,
queue control table and temporary table, which are defined inside the repository. The
following API calls are used to retrieve the procedure name, register, or remove a
procedure.

3.7.9.5.1 RegisterQueuePkg

This registers the string 'pkg' as the current procedure.

Syntax
public String RegisterQueuePkg(String pkg) throws SQLException

Example
Consolidator.RegisterQueuePkg("ASL.QUEUES_PKG");

3.7.9.5.2 GetQueuePkg

This call returns the name of the currently registered procedure.

Syntax
public String GetQueuePkg() throws SQLException

3.7.9.5.3 UnRegisterQueuePkg

This removes the currently registered procedure.

Syntax
public String UnRegisterQueuePkg() throws SQLException

3.7.10 Null Sync Callout
Mobile Server makes a callout during synchronization indicating whether the client is
attempting a null sync. A null sync refers to the fact that the client has no changes to
upload. This callout can be implemented by creating a PL/SQL procedure within the
Mobile Server repository. The procedure must have the following specification:

create or replace package CUSTOMIZE as procedure
NullSync(p_Client IN varchar2, p_NullSync as boolean);
end CUSTOMIZE;

3.7.11 Foreign Key Constraints in Updatable Publication Items
Replicating tables between Oracle database and clients in updatable mode can result in
foreign key constraint violations if the tables have referential integrity constraints.
When a foreign key constraint violation occurs, the server rejects the client transaction.

Advanced Features for Customizing Consolidator

3-50 Oracle Database Lite Developer’s Guide

3.7.11.1 Foreign Key Constraint Violation Example
For example, two tables EMP and DEPT have referential integrity constraints. The
DeptNum (department number) attribute in the DEPT table is a foreign key in the
EMP table. The DeptNum value for each employee in the EMP table must be a valid
DeptNum value in the DEPT table.

A Mobile Server user adds a new department to the DEPT table, and then adds a new
employee to this department in the EMP table. The transaction first updates DEPT and
then updates the EMP table. However, the database application does not store the
sequence in which these operations were executed.

When the user replicates with the Mobile Server, the Mobile Server updates the EMP
table first. In doing so, it attempts to create a new record in EMP with an invalid
foreign key value for DeptNum. Oracle database detects a referential integrity
violation. The Mobile Server rolls back the transaction and places the transaction data
in the Mobile Server error queue. In this case, the foreign key constraint violation
occurred because the operations within the transaction are performed out of their
original sequence.

3.7.11.2 Avoiding Constraint Violations with BeforeApply and After Apply
You can use a PL/SQL procedure avoid foreign key constraint violations based on
out-of-sequence operations by using DEFERRABLE constraints in conjunction with the
BeforeApply and AfterApply functions. DEFERRABLE constraints can be either
INITIALLY IMMEDIATE or INITIALLY DEFERRED. The behavior of DEFERRABLE
INITIALLY IMMEDIATE foreign key constraints is identical to regular immediate
constraints. They can be applied interchangeably to applications without impacting
functionality.

The Mobile Server calls the BeforeApply function before it applies client transactions
to the server and calls the AfterApply function after it applies the transactions.
Using the BeforeApply function, you can set constraints to DEFFERED to delay
referential integrity checks. After the transaction is applied, call the AfterApply
function to set constraints to IMMEDIATE. At this point, if a client transaction violates
referential integrity, it is rolled back and moved into the error queues.

To prevent foreign key constraint violations using DEFERRABLE constraints:

1. Drop all foreign key constraints and then recreate them as DEFERRABLE
constraints.

2. Bind user-defined PL/SQL procedures to publications that contain tables with
referential integrity constraints.

3. The PL/SQL procedure should set constraints to DEFERRED in the BeforeApply
function and IMMEDIATE in the AfterApply function as in the following
example featuring a table named SAMPLE3 and a constraint named
address.14_fk:

 procedure BeforeApply(clientname varchar2) is
 cur integer;
 begin
 cur := dbms_sql.open_cursor;
 dbms_sql.parse(cur,'SET CONSTRAINT SAMPLE3.address14_fk
 DEFERRED', dbms_sql.native);
 dbms_sql.close_cursor(cur);
 end;
 procedure AfterApply(clientname varchar2) is
 cur integer;
 begin

Advanced Features for Customizing Consolidator

Synchronization 3-51

 cur := dbms_sql.open_cursor;
 dbms_sql.parse(cur, 'SET CONSTRAINT SAMPLE3.address14_fk
 IMMEDIATE', dbms_sql.native);
 dbms_sql.close_cursor(cur);
 end;

3.7.11.3 Avoiding Constraint Violations with Table Weights
Mobile Server uses table weight to determine which order to apply Client Operations
to master tables. Table weight is expressed as an integer, and are implemented as
follows:

1. Client INSERT operations are executed first, from lowest to highest table weight
order.

2. Client DELETE operations are executed next, from highest to lowest table weight
order.

3. Client UPDATE operations are executed last, from lowest to highest table weight
order.

In the example listed in Section 3.7.11.1, "Foreign Key Constraint Violation Example", a
constraint violation error could be resolved by assigning DEPT a lower table weight
than EMP. For example:

(DEPT weight=1, EMP weight=2)

3.7.12 Callback Customization for Before and After Compose/Apply
When creating publication items, the user can specify a customizable package to be
called during the Apply and Compose phase of the MGP background process. Client
data is accumulated in the in queue prior to being processed by the MGP. Once
processed by the MGP, data is accumulated in the out queue before being pulled to the
client by Mobile Sync.

These procedures enable you to incorporate customized code into the process. The
clientname and tranid are passed to allow for customization at the user and
transaction level.

procedure BeforeApply(clientname varchar2)

This procedure must be called after all client's data is applied.

procedure AfterApply(clientname varchar2)

This procedure must be called before client's data with tranid is applied.

procedure BeforeTranApply(tranid number)

This procedure must be called after client's data with tranid is applied.

procedure AfterTranApply(tranid number)

This procedure must be called before out queue is composed.

procedure BeforeCompose(clientname varchar2)

This procedure must be called after out queue is composed.

procedure AfterCompose(clientname varchar2)

Advanced Features for Customizing Consolidator

3-52 Oracle Database Lite Developer’s Guide

3.7.13 Callback Customization for DML Operations
Once a publication item has been created, a user can use Java to specify a customized
PL/SQL procedure which is stored in the Mobile Server repository to be called in
place of all DML operations for that publication item. There can be only one mobile
DML procedure for each publication item. The procedure should be created with the
following structure:

AnySchema.AnyPackage.AnyName(DML in CHAR(1), COL1 in TYPE, COL2 in TYPE, COLn..,
PK1 in TYPE, PK2 in TYPE, PKn..)

The parameters for customizing a DML operation are listed in Table 3–43:

For example, if you want to have a DML procedure for publication item "example",
which is defined by the following query:

select A,B,C from publication_item_example_table

Assuming "A" is the primary key column for "example", then your DML procedure
would have the following signature:

any_schema.any_package.any_name(DML in CHAR(1), A in TYPE, B in TYPE, C in TYPE,A_
OLD in TYPE)

During runtime this procedure will be called with 'I', 'U', or 'D' as the DML type. For
insert and delete operations, A_OLD will be null. In the case of updates, it will be set
to the primary key of the row that is being updated. Once the PL/SQL procedure is
defined, it can be attached to the publication item through the following API call:

Consolidator.AddMobileDmlProcedure("PUB_example","example","any_schema.any_
package.any_name")

where "example" is the publication item name and "PUB_example" is the
publication name.

Please refer to the Consolidator Admin API Specification for more information on calling
this API.

3.7.13.1 DML Procedure Example
The following piece of PL/SQL code defines an actual DML procedure for a
publication item in one of the sample publications. As described below, the ORD_
MASTER table. The query was defined as:

Table 3–43 Mobile DML Operation Parameters

Parameter Description

DML DML operation for each row. Values can be "D" for DELETE,
"I" for INSERT, or "U" for UPDATE.

COL1 ... COLn List of columns defined in the publication item. The column
names must be specified in the same order that they appear n
the publication item query. If the publication item was created
with "SELECT * FROM example", the column order must be
the same as they appear in the table "example".

PK1 ... PKn List of primary key columns. The column names must be
specified in the same order that they appear in the base or
parent table.

Advanced Features for Customizing Consolidator

Synchronization 3-53

SQL Statement
SELECT * FROM "ord_master", where ord_master has a single column primary key on
"ID"

ord_master Table
SQL> desc ord_master
Name Null? Type
--- -------- -------------
ID NOT NULL NUMBER(9)
DDATE DATE
STATUS NUMBER(9)
NAME VARCHAR2(20)
DESCRIPTION VARCHAR2(20)

Code Example
CREATE OR REPLACE PACKAGE "SAMPLE11"."ORD_UPDATE_PKG" AS
 procedure UPDATE_ORD_MASTER(DML CHAR,ID NUMBER,DDATE DATE,STATUS
NUMBER,NAME VARCHAR2,DESCRIPTION VARCHAR2, ID_OLD NUMBER);
END ORD_UPDATE_PKG;
/
CREATE OR REPLACE PACKAGE BODY "SAMPLE11"."ORD_UPDATE_PKG" as
 procedure UPDATE_ORD_MASTER(DML CHAR,ID NUMBER,DDATE DATE,STATUS
NUMBER,NAME VARCHAR2,DESCRIPTION VARCHAR2, ID_OLD NUMBER) is
 begin
 if DML = 'U' then
 execute immediate 'update ord_master set id = :id, ddate = :ddate,
status = :status, name = :name, description = '||''''||'from
ord_update_pkg'||''''||' where id = :id_old'
 using id,ddate,status,name,id_old;
 end if;
 if DML = 'I' then
 begin
 execute immediate 'insert into ord_master values(:id, :ddate,
:status, :name, '||''''||'from ord_update_pkg'||''''||')'
 using id,ddate,status,name;
 exception
 when others then
 null;
 end;
 end if;
 if DML = 'D' then
 execute immediate 'delete from ord_master where id = :id'
 using id;
 end if;
 end UPDATE_ORD_MASTER;
end ORD_UPDATE_PKG;
/

The API call to add this DML procedure is:

Consolidator.AddMobileDMLProcedure("T_SAMPLE11","P_SAMPLE11-M","SAMPLE11.ORD_
UPDATE_PKG.UPDATE_ORD_MASTER")

where "T_SAMPLE11" is the publication name and "P_SAMPLE11-M" is the
publication item name.

Advanced Features for Customizing Consolidator

3-54 Oracle Database Lite Developer’s Guide

3.7.14 Restricting Predicate
A restricting predicate can be assigned to a publication item as it is added to a
publication. When a client is synchronizing in high priority mode, the predicate is
used to limit data downloaded to the client. This parameter can be null. This
parameter is for advanced use. For using a restricting predicate in high-priority
replication, see Section 3.7.15, "Priority-Based Replication".

3.7.15 Priority-Based Replication
With priority-based replication, you can limit the number of rows per snapshot by
setting the flag Priority to 1 (the default is 0).

For example, if you have a snapshot with the following statement:

select * from projects where prio_level in (1,2,3,4)

With the Priority flag set to 0 (the default), all projects with prio_level 1,2,3,4 will be
replicated.

In a high priority situation, the application can set the flag to 1, which will cause MGP
to check for Restricting Predicate. A Restricting Predicate is a conditional expression
in SQL. The developer can set Restricting Predicate in the AddPublicationItem()
method, as in the following example:

prio_level = 1

MGP appends (AND) the expression to the snapshot definitions when composing data
for the client. In this case, the high priority statement would be:

SELECT * FROM projects where prio_level in (1,2,3,4) AND prio_level = 1;
// a restricting predicate snapshot

In this case, only projects with level =1 will be replicated to the client.

This advanced feature is available only through the Consolidator Admin API. It is not
available through the Packaging Wizard.

To summarize, there are two steps to enable this feature:

1. Provide a restricting predicate expression in the AddPublicationItem() function.

2. Set the PRIORITY flag to 1 in the Mobile Sync API.

3.7.16 Shared Maps
This section discusses the shared maps feature in terms of concepts and performance
attributes.

3.7.16.1 Concepts
Shared maps shrink the size of map tables for large lookup publication items and
reduce the MGP compose time. Lookup publication items contain "lookup" data that is
not updatable on the clients and that is shared by multiple subscribed clients. When
multiple users share the same data, their query subsetting parameters are usually
identical.

For example, a query could be the following:

SELECT * FROM WHERE EMP WHERE DEPTNO = :dept_id

Advanced Features for Customizing Consolidator

Synchronization 3-55

In the preceding example, all users that share data from the same department have the
same value for dept_id. The default sharing method is based on subscription
parameter values.

In the following example, the query is:

SELECT * FROM WHERE EMP WHERE DEPTNO = (SELECT DEPTNO FROM
 EMP WHERE EMPNO = :emp_id)

In this example, users from the same departments still share data. Their subsetting
parameters, however, are not equal because each user has a unique emp_id. To
support the sharing of data for these types of queries (as illustrated by the example), a
grouping function can be specified. The grouping function returns a unique group id
based on the client id.

There is also another possible use for shared maps. It is possible to use shared maps
for shared updatable publication items. This type of usage, however, requires
implementation of a custom dml procedure that handles conflict resolution.

3.7.16.2 Performance Attributes
The performance of the MGP compose cycle is directly proportional to:

NC * NPI

where:

NC = number of clients.

NPI = number of publication items that must be composed.

With shared maps, the length of the MGP cycle is proportional to: NC*(NPI - NSPI)
+ NG*NSPI

where:

NSPI = number of shared publication items.

NG = number of groups.

Note that if NG = NC, the MGP performance is similar in both cases. However, with
fewer groups and more shared publication items, the MGP compose cycle becomes
faster.

Also note that map storage requirements are governed by the same factors.

3.7.16.3 Usage
To set up a publication item to be shared, use the AddPublicationItem API and
enable the shared flag. It is also possible to toggle the shared property of a publication
item once it is added to the publication with the SetPublicationItemMetadata
API. Both the AddPublicationItem API and the SetPublicationItemMetadata
API allow users to specify a PL/SQL grouping function. The function signature must
be the following:

(
CLIENT in VARCHAR2,
PUBLICATION in VARCHAR2,
ITEM in VARCHAR2
)return VARCHAR2.

The returned value must uniquely identify the client's group. For example, if client A
belongs to the group GroupA and client B belongs to the group GroupB, the group
function F could return:

Synchronization Errors and Conflicts

3-56 Oracle Database Lite Developer’s Guide

F ('A','SUBSCRIPTION','PI_NAME') = 'GroupA'

F ('B','SUBSCRIPTION','PI_NAME') = 'GroupB'

The implicit assumption of the grouping function is that all the members of the
GroupA group share the same data, and that all the members of the GroupB group
share the same data.. The group function uniquely identifies a group of users with the
same data for a particular PUBLICATION ITEM.

For the query example in Section 3.7.16.1, "Concepts", the grouping function could be:

Function get_emp_group_id (
clientid in varchar2,
publication in varchar2,
item in varchar2
) return varchar2 is
group_val_id varchar2(30);
begin
select DEPTNO into group_val_id
from EMP where EMPNO = clientid ;
return group_val_id;
end;

NOTE: This function assumes that EMPNO is the Consolidator client id. If the group_
fnc is not specified, the default grouping is based on subscription parameters.

3.7.16.4 Compatibility and Migration
Shared maps are not compatible with raw id based clients prior to 5.0.2.

Those clients are supported; however, the map data is private until the clients migrate
to 5.0.2 or later.

The migration of the existing mobile server schema to 10g must be done in the
following steps to minimize the number of client complete refreshes.

1. Run one cycle of MGP.

2. The clients must sync with the server to get the latest changes prepared by the
MGP.

3. Stop the web server and MGP to migrate the server to 10g. This automatically sets
all the nonupdatable publication items to shared items. If any shared publication
items need to use grouping functions or any publication items need to change
their sharing attribute, execute custom code that calls the appropriate consolidator
API. See the SetPublicationItemMetadata API in Section 3.7.16.3, "Usage".

4. The ShrinkSharedMaps consolidator API must be called to set the clients to use
shared map data and remove old redundant data from the maps.

5. Start the web server and MGP.

3.8 Synchronization Errors and Conflicts
With the Mobile Server, a compatibility error with Oracle database advanced
synchronization occurs when the client updates a row at the same time that the server
deletes it. All other errors, such as nullity violations or foreign key constraint
violations, are synchronization errors.

The Mobile Server does not automatically resolve synchronization errors. Instead, the
Mobile Server rolls back the corresponding transactions, and moves the transaction

Synchronization Errors and Conflicts

Synchronization 3-57

operations into the Mobile Server error queue. Later, Mobile Server database
administrators can change these transaction operations and re-execute or purge them
from the error queue.

A Mobile Server synchronization conflict occurs if:

■ The client and the server update the same row.

■ The client and server create rows with the same primary key values.

■ The client deletes the same row that the server updates.

See Section 3.8.3, "Resolving Conflicts Using the Error Queue" for more information on
conflict resolution techniques.

3.8.1 Versioning
The Mobile Server uses internal versioning to detect synchronization conflicts. A
version number is maintained for each client record as well as for each server record.
When a client's changes are applied to the server, the Mobile Server will detect version
mismatches and resolve conflicts according to winning rules.

3.8.2 Winning Rules
The Mobile Server uses winning rules to automatically resolve synchronization
conflicts. The following winning rules are supported:

■ Client wins

■ Server wins

When the client wins, the Mobile Server automatically applies client changes to the
server. When the server wins, the Mobile Server automatically composes changes for
the client.

You can customize the Mobile Server's conflict resolution mechanism by setting the
winning rule to "Client Wins" and attaching BEFORE INSERT, UPDATE, and DELETE
triggers to database tables. The triggers compare old and new row values and resolve
client changes as specified.

3.8.3 Resolving Conflicts Using the Error Queue
For each publication item created, a separate and corresponding error queue is
created. The purpose of this queue is to store transactions that fail due to unresolved
conflicts. The administrator can attempt to resolve the conflicts, either by modifying
the error queue data or that of the server, and then she may attempt to re-apply the
transaction via the ExecuteTransaction API call. The administrator may also
purge the error queues through the PurgeTransaction API call. The Mobile Server
error queue is C$EQ, the data is stored in CEQ$.

3.8.3.1 Execute Transaction
The execute transaction function re-executes transactions in the Mobile Server error
queue.

Syntax
public static void ExecuteTransaction
 (String clientid,
 long tid) throws Throwable

Mapping Datatypes Between the Oracle Server and Clients

3-58 Oracle Database Lite Developer’s Guide

The parameters for ExecuteTransaction are listed in Table 3–44:

Example
Consolidator.ExecuteTransaction("DAVIDL", 100002);

3.8.3.2 Purge Transaction
The purge transaction function purges a transaction from the Mobile Server error
queue.

Syntax
public static void PurgeTransaction
 (String clientid,
 long tid) throws Throwable

The parameters for PurgeTransaction are listed in Table 3–45:

Example
Consolidator.PurgeTransaction("DAVIDL", 100001);

3.8.4 Space Constraints
All synchronization parameters must be set in the POLITE.INI or polite.txt file. To
counter space constraints for the storage card on the WinCE platform, you can utilize
the Temp directory. To begin using the TEMP directory, add the following entry under
the ALL DATABASES section.

TEMPDIR=\Storage Card\Temp

3.9 Mapping Datatypes Between the Oracle Server and Clients
The Oracle database and Oracle Database Lite tables that the Mobile Server
synchronizes must use compatible datatypes. Oracle database datatypes are
compatible with Oracle Database Lite datatypes.

3.9.1 Oracle Database Lite Datatypes
All Oracle Database Lite based snapshots are created by the Mobile Sync during
synchronization. The Mobile Server automatically selects Oracle Database Lite
datatypes depending on data precision in the Oracle database. The data conversion

Table 3–44 ExecuteTransaction Parameters

Parameter Description

clientid The Mobile Sync Client name.

tid The transaction ID. These are generated strings which appear
in the error queue.

Table 3–45 PurgeTransaction Parameters

Parameter Description

clientid The Mobile Server user name.

tid The transaction ID. These are generated strings which appear
in the error queue.

Mapping Datatypes Between the Oracle Server and Clients

Synchronization 3-59

values are listed in Table 3–46. The table lists the Oracle database datatypes in the left
column and displays the Oracle Database Lite datatypes across the top row.

For Oracle Database Lite Datatypes, see Appendix B in the Oracle Database Lite SQL
Reference.

"Y" indicates unconditionally supported and "N" indicates not supported. In the first three
columns that are labeled (because of space limitations), 1 B represents TINYINT, 2 B
represents SMALLINT, and 4 B represents INTEGER.

Table 3–46 Oracle Database Lite Datatypes

Oracle
Database
Datatypes 1 B 2 B 4 B FLOAT DOUBLE NUMBER

DATE
TIME

LONG-
VAR

BINARY VARCHAR

INTEGER Y Y Y Y Y Y
N

 N N

VARCHAR2 N N N N N Y
N

 N Y

VARCHAR N N N N N Y
N

 N Y

CHAR N N N N N Y
N

 N Y

SMALLINT Y Y Y Y Y Y
N

 N N

FLOAT Y Y Y Y Y Y
N

 N N

DOUBLE
PRECISION

 Y Y Y Y Y Y
N

 N N

NUMBER Y Y Y Y Y Y
N

 N N

DATE N N N N N Y
Y

 N N

LONG
RAW

 N N N N N Y
N

 Y N

LONG N N N N N Y
N

 N Y

BLOB N N N N N Y
N

 Y N

CLOB N N N N N Y
N

 N N

Mapping Datatypes Between the Oracle Server and Clients

3-60 Oracle Database Lite Developer’s Guide

Developing Mobile Web Applications 4-1

4
Developing Mobile Web Applications

This document describes how to develop and test web applications. Topics include:

■ Section 4.1, "Setting up the Mobile Client"

■ Section 4.2, "Developing and Testing the Application"

4.1 Setting up the Mobile Client
To install and set up the Mobile Client, see Chapter 12, "Building Mobile Web
Applications: A Tutorial", Section 12.6.1, "Step 1: Installing the Mobile Client for
Web-to-Go".

4.2 Developing and Testing the Application
Web-to-Go provides a high level Java API that provides easy-to-use functionality to
developers of mobile applications. Using this API, developers no longer need to write
code for such functions as replication of database tables, online and offline database
connections, security, directory locations, or deployment of applications to client
devices.

In addition, the Mobile Development Kit allows developers to develop and debug
Web-to-Go applications that contain Java applets, Java servlets, and JavaServer Pages
(JSP).

Figure 4–1 displays the development architecture of the Mobile Server and the Oracle
database.

Figure 4–1 Development Architecture

4-2 Oracle Database Lite Developer’s Guide

The following sections provide a discussion on how to develop mobile applications for
Web-to-Go. Topics include:

■ Section 4.2.1, "Building Web-to-Go Applications"

■ Section 4.2.2, "Application Roles"

■ Section 4.2.3, "Developing JavaServer Pages"

■ Section 4.2.4, "Developing Java Servlets for Web-to-Go"

■ Section 4.2.5, "Using Web-to-Go Applets"

■ Section 4.2.6, "Developing Applet JDBC Communication"

■ Section 4.2.7, "Developing Applet Servlet Communication"

■ Section 4.2.8, "Debugging Web-to-Go Applications"

■ Section 4.2.9, "Customizing the Workspace Application"

■ Section 4.2.10, "Using the Mobile Server Admin API"

4.2.1 Building Web-to-Go Applications
Web-to-Go applications adhere to web standards and use browsers to display user
interface elements in a graphical user interface. Generally, Web-to-Go applications
access and manipulate data stored in databases. These applications contain static,
dynamic, and database components. You can create static and dynamic components
using development tools and use the Packaging Wizard to store them in the Mobile
Server Repository. You can create and store the application's database components in
an object relational database (Oracle Database Lite or Oracle). The following table
provides examples of each component type.

Table 4–1 provides examples of each database component type.

4.2.1.1 Static Components
Static components are HTML files that do not change, such as graphical elements (GIF
files and JPG files), and textual elements (HTML files and templates).

4.2.1.2 Dynamic Components
Java Applets, Java Servlets, and JavaServer Pages (JSP) are dynamic components that
create dynamic web pages. Java applets, create a rich graphical user interface, while
Java servlets and JSPs extend server side functionality.

4.2.1.3 Database Components
Snapshots and sequences are the two database components that Web-to-Go supports.
On the Mobile Server, the snapshot definition incorporates information about the table
whose snapshot was taken. Web-to-Go also executes custom DDLs (Data Definition
Language) statements, enabling the creation of such database objects as views and
indexes.

Table 4–1 Database Component Types

Component Type Example

static HTML files, image files (such as GIF and JPG), HTML templates

dynamic Java servlets, Java applets and JavaServer pages

database tables, snapshots, and sequences

Developing and Testing the Application

Developing Mobile Web Applications 4-3

4.2.1.4 Database Connections
Database connections are both application based and session based. For a given
session, Web-to-Go maintains a separate connection for each application. If an
application runs multiple servlets simultaneously, they use the same connection object.
This may occur if the application uses multiple frames or if a user accesses the
application with two separate browser windows.

4.2.2 Application Roles
It is common for applications to display different functionality depending on the type
of user who is running the application. For example, an application may show
different menu items depending on whether manufacturing managers or shipping
clerks are running the application.

You can accomplish this in Web-to-Go by defining application roles. The application
behavior then changes depending on whether or not a user has a specific role.

In the above example, you can define the application role MANAGER. In your
application code, where you generate the menu, you must check if the user has the
role MANAGER, and display the correct menu items.

You will use the Packaging Wizard to define application roles in Web-to-Go. You can
assign roles to users and groups through the Mobile Manager. However, it is up to the
application developer to determine and implement application behavior, if the user
has a specific role.

You can query the Web-to-Go user context to retrieve a list of roles that are created for
users.

4.2.3 Developing JavaServer Pages
Web-to-Go handles HTTP requests for JavaServer Pages (JSP) using the Mobile Client
Web Server, Mobile Server, and Mobile Client for Web-to-Go.

4.2.3.1 Mobile Server or Mobile Development Kit Web Server
After the Mobile Server receives an HTTP request for a JSP, it checks if the JSP source
file and corresponding class file exist. If the class file exists and is newer than the JSP
source file, the Mobile Server loads the Java class and executes the servlet.

If the class file does not exist, or is older than the JSP source file, the Mobile Server
automatically converts the JSP source file into a Java source file and compiles it into a
Java class under the APP_HOME/_pages. After the JSP has been converted and
compiled, the Mobile Server (or the Mobile Development Kit Web Server) loads the
Java class and executes the servlet.

4.2.3.2 Mobile Client for Web-to-Go
After the Mobile Client for Web-to-Go receives the HTTP request for a JavaServer
page, the corresponding Java class is loaded from the APP_HOME/_pages directory
and is executed. Since the Mobile Client for Web-to-Go assumes that the
corresponding class file exists, you must convert the JSP source file into a class file.
While deploying the application using the Packaging Wizard, you must include both
the JSP source file and the corresponding class file. You can create the class files using

Note: DDLs are only supported on Windows32 and WindowsCE
platforms.

4-4 Oracle Database Lite Developer’s Guide

the Packaging Wizard tool or manually, using the Oracle JSP (OJSP) command line
translator.

List your JSP files in the Files panel of the Packaging Wizard and click Compile under
the Files tab. The Packaging Wizard automatically locates all the JSP files that you
have listed and automatically compiles all of them. The Packaging Wizard adds the
compile class to the application package.

4.2.4 Developing Java Servlets for Web-to-Go
You develop Web-to-Go Java servlets with the Mobile Development Kit. The Mobile
Development Kit for Web-to-Go simplifies the process of writing Mobile Server
servlets. Before using the Mobile Development Kit for Web-to-Go, you must first
install it on the development client. The Mobile Development Kit for Web-to-Go
contains a web server called the Mobile Client Web Server that executes Java servlets.
You can use the Mobile Client Web Server to run and debug Java servlets.

4.2.4.1 Limitations
The Mobile Development Kit for Web-to-Go web server is a scaled down version of the
Mobile Server and has the following limitations.

■ It contains no application repository. As a result, the Mobile Development Kit for
Web-to-Go web server loads all files and classes directly from the file system.

■ Security and access control are disabled.

■ Clients that connect to the Mobile Development Kit for Web-to-Go web server
cannot go off-line.

■ It provides connection management only to Oracle Database Lite. It connects the
user to the schema SYSTEM in the Oracle Database Lite named webtogo.

4.2.4.2 Accessing Applications on the Mobile Development Kit for Web-to-Go
You can access applications on the Mobile Development Kit for Web-to-Go web server
by performing the following steps.

1. To launch the Mobile Development Kit for Web-to-Go web server, start the
Command Prompt and enter the following.

cd <Oracle_home>\mobile\sdk\bin

wtgdebug.exe

2. Use your browser to connect to the Mobile Development Kit for Web-to-Go web
server using the following URL.

http://machine_name:7070/

The Mobile Development Kit for Web-to-Go page displays icons that represent an
application in the Mobile Client Web Server. Note that port 7070 is the default port
for debugging Web-to-Go. For more information, see the file webtogo.ora
under the following location.

<Oracle_home>\mobile\sdk\bin\webtogo.ora

3. Click the icon of the application that you want to access.

4.2.4.3 Creating a Servlet
Web-to-Go uses servlets to handle HTTP client requests. Servlets handle HTTP client
requests by performing one of the following tasks.

Developing and Testing the Application

Developing Mobile Web Applications 4-5

■ Creating dynamic HTML content and returning it to the browser.

■ Processing and submitting HTML forms using an HTTP POST request.

Servlets must extend the HttpServlet abstract class defined in the Java Servlet API.
The following is a servlet example.

import javax.servlet.*;
import javax.servlet.http.*;
import java.io.*;

public class HelloWorld extends HttpServlet
{
 /**
 * Process the HTTP POST method
 */

 public void doPost (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 writeOutput("doPost", request, response);
 }

 /**
 * Process the HTTP GET method
 */
 public void doGet (HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 writeOutput("doGet", request, response);
 }

 /**
 * Write the actual output
 */

 public void writeOutput (String method, HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 PrintWriter out;

 // set content type
 response.setContentType("text/html");

 // Write the response
 out = response.getWriter();

 out.println("<HTML><HEAD><TITLE>");
 out.println("Hello World");
 out.println("</TITLE></HEAD><BODY>");
 out.println("<P>This is output from HelloWorld "+method+"().");
 out.println("</BODY></HTML>");
 out.close();
 }
}

4.2.4.3.1 Packages Web-to-Go provides the following Java package.

oracle.lite.web.applet

4-6 Oracle Database Lite Developer’s Guide

This package contains the classes to be used with Web-to-Go applets. It contains the
AppletProxy class which is used as a proxy for Web-to-Go applets requiring JDBC
connections or communicating with a servlet on the Mobile Server. It also contains a
few more classes which are used by the AppletProxy class to communicate with the
Mobile Server. For more information, see "Using the oracle.lite.web.applet Package" in
the Web-to-Go API Specification.

4.2.4.3.2 Web-to-Go User Context Web-to-Go creates a user context (or user profile) for
every user who logs in to Web-to-Go. Web applications always run within the user's
specific context. Servlets, which are always part of an application, can use the user
context (in which it is running) to access the services provided by Web-to-Go. The user
context can then be used to obtain the following information.

■ Name of the user

■ Mode the user is running in (online or offline)

■ Application that a user is accessing

■ The database connection

■ Roles that the user has for this application

■ Name or value pairs stored in the registry for the user

Servlets can access the user profile through the standard named
java.security.Principal obtained through the getUserPrincipal method of
the javax.servlet.http.HttpServletRequest class.

This object can also be obtained from the HttpSession object. For example,

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{

 // Retrieve the database connection from the User Profile,
 // which can be accessed from the HttpRequest
 HttpSession session = request.getSession(true);
 OraUserProfile profile =
(OraUserProfile)session.getAttribute("x-mobileserver-user");
 .
 .
 .
}

4.2.4.3.3 Database Connectivity in Java Code Servlets can obtain a connection to the
Oracle database, using the following statement.

HttpSession sess = request.getSession();
WTGUser user = (WTGUser)sess.getAttribute("x-mobileserver-user");
Connection conn = user.getConnection() ;

4.2.4.3.4 Accessing the Mobile Server Repository Servlets can open or create a new file in
the application repository. Access to the Mobile Server Repository is provided through
the servlet context, which can be obtained by calling the getServletContext()
from within the servlet. For example:

public void doGet(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException
{
 // Retrieve the servlet context

Developing and Testing the Application

Developing Mobile Web Applications 4-7

 ServletContext ctxt = getServletContext();

 // Open an input stream to the file input.html in the Mobile Server Repository
 // All file names are relative to the application's repository directory
 InputStream in = ctx.getResourceAsStream("input.html");

 // Open an output stream to the file output.html in the Mobile Server Repository
 // All file names are relative to the application's repository directory
 URL url = ctxt.getResource ("output.html");
 URLConnection conn = url.openConnection();
 OutputStream out = conn.getOutputStream();
 .
 .
 .
}

4.2.4.4 Running a Servlet
After you create the Web-to-Go servlet, you must run the servlet.

4.2.4.4.1 Registering Servlets Using wtgpack.exe Before you can access servlets from the
browser, you need to register them with the Mobile Client Web Server. To register
servlets, you must first register the application and then add the servlets to it. As
Web-to-Go enables you to register multiple applications, it displays a list of all
registered applications.

The Mobile Development Kit for Web-to-Go includes the Packaging Wizard, a tool for
registering applications and servlets. You can invoke the Packaging Wizard by
entering the following at the command line.

C:\> wtgpack -d

Initially, you select whether to create a new application or to continue work on an
existing application.

Figure 4–2 displays the Make a Selection dialog.

4-8 Oracle Database Lite Developer’s Guide

Figure 4–2 Make a Selection Panel

After you make your selection and click OK, the Applications dialog appears.

Figure 4–3 displays the Applications dialog.

Figure 4–3 Applications Panel

For detailed instructions on how to use the Packaging Wizard, see Chapter 12,
"Building Mobile Web Applications: A Tutorial".

4.2.4.4.2 The webtogo.ora File The configuration information for the web server and the
Packaging Wizard is stored in the webtogo.ora file.

Table 4–2 describes webtogo.ora parameters.

Developing and Testing the Application

Developing Mobile Web Applications 4-9

For more information, refer the discussion of initialization parameters in the Oracle
Database Lite Administration and Deployment Guide.

4.2.4.4.3 Using wtgdebug.exe 1. Using the Command Prompt, enter wtgdebug.exe.

2. Use a browser to connect to the Mobile Client Web Server located at the following
URL.

http://machine_name:port

This Mobile Client Web Server displays the list of applications that are currently
known to the Mobile Client Web Server. The Mobile Client Web Server retrieves
this list from the XML file. By default, this list includes the sample applications
Servlet Runner and Sample.

3. Select the application to debug. This action launches a new browser window
which you can use to step through the application.

4.2.4.4.4 Using WebtoGoServer.class Because the Mobile Client Web Server is written in
Java, you can run it inside a Java Virtual Machine (JVM), instead of running the
wtgdebug.exe. Running the Mobile Client Web Server in the JVM enables you to
debug Web-to-Go applications by running the Mobile Client Web Server inside a Java
debugger. You can use the class oracle.lite.web.server.WebToGoServer to
start the Java version of the Mobile Client Web Server.

Before you can use the Java version of the Mobile Client Web Server, you need to add
the following jar files to your CLASSPATH.

<Oracle_home>\mobile\sdk\bin\webtogo.jar

<Oracle_home>\mobile\classes\olite40.jar

<Oracle_home>\mobile\classes\xmlparser.jar

<Oracle_home>\mobile\classes\classgen.jar

<Oracle_home>\mobile\classes\ojsp.jar

<Oracle_home>\mobile\classes\jssl-1_2.jar

<Oracle_home>\mobile\classes\javax-ssl-1_2.jar

Table 4–2 Webtogo.ora Parameters

Parameter Name Description

ROOT_DIR The Mobile Server expands all file paths that are relative to its
root directory. You can change the root directory by modifying
the value of the parameter named ROOT_DIR in the
webtogo.ora file. The default parameter value is given below.

<Oracle_home>\mobile\sdk\wtgsdk\root

PORT The port on which the web server listens. The default value is
80. The default value for the Mobile Client Web Server is
7070.

XMLFILE The XML file that contains the application information. The
Packaging Wizard creates and maintains the XML file. You can
modify the XML file using the Packaging Wizard.

Note: If you change and recompile your servlet, you need to restart
the web server. You can stop the web server by pressing Control+C.

4-10 Oracle Database Lite Developer’s Guide

<Oracle_home>\mobile\classes\consolidator.jar

You must add the location of your application classes, such as <Oracle_
home>\mobile\sdk\wtgsdk\root, to the CLASSPATH. For more information, refer
Section 4.2.5, "Using Web-to-Go Applets".

To control and start the Mobile Client Web Server, the file RunWebServer.java
demonstrates how to use the class oracle.lite.web.server.WebToGoServer.
This file is located in the following directory.

<Oracle_home>\mobile\sdk\wtgsdk\src

To start the Mobile Client Web Server, perform the following steps.

1. Using the following command, compile the Java file.

javac RunWebServer.java

2. Run the Mobile Client Web Server using the following command.

java RunWebServer

4.2.4.4.5 Controlling Web Server Properties You can set various properties of the Mobile
Client Web Server dynamically using the method
WebToGoServer.setProperty(). These values override the values in the file
webtogo.ora. The following table lists properties that can be controlled.

Table 4–3 describes Mobile Client Web Server properties.

For example,

WebToGoServer.setProperty ("config_file",
 "d:\\orant\\mobile\\server\\bin\\webtogo.ora");
WebToGoServer.setProperty ("debug", "0");
WebToGoServer.setProperty ("port", "80");

4.2.4.4.6 Registering MIME Types You can create your own servlet that handles all HTTP
requests for files with a particular file extension. For example, you can have a servlet
named ASPHandler which handles all requests that end in 'asp'.

You can register this handler with the Mobile Client Web Server using the method
WebToGoServer.addMIMEHandler(). For example,

Table 4–3 Property Controls

Property Definition

config_file The configuration file to use. For more information, refer
Section 4.2.4.4.2, "The webtogo.ora File".

port The port on which the Mobile Development Kit Web
Server listens.

debug Enables debugging. Set the value as "0" if you want to
view debug messages.

log_file The debug log file. If specified, debug messages are sent to
this file, otherwise the messages are displayed to the
screen.

root_dir The root directory. Overrides ROOT_DIR in webtogo.ora.
For more information, refer Section 4.2.4.4.2, "The
webtogo.ora File".

Developing and Testing the Application

Developing Mobile Web Applications 4-11

WebToGoServer.addMIMEHandler("text/asp", "asp", "ASPHandler")

4.2.4.5 Debugging a Servlet
In software development, debuggers are often used to examine code and fix bugs.
With Web-to-Go, you can use a debugger to test applications containing Java servlets.
By running these servlets inside a Java debugger, you can set breakpoints in the Java
code, view the code, examine threads, and evaluate objects. You can debug Web-to-Go
applications using the WebToGoServer class inside a debugger. For more
information, see Section 4.2.8.1, "Running Sample 1 Using Oracle9i JDeveloper".

4.2.4.6 Accessing the Schema Directly in Oracle Database Lite
The Mobile Development Kit for Web-to-Go automatically creates a database
connection to Oracle Database Lite. This database connection connects to the database
schema SYSTEM. Within your servlet code, you can obtain this connection from the
HTTP request. You can also connect to Oracle Database Lite directly using ODBC.
Connecting to Oracle Database Lite directly by using ODBC is helpful for performing
the following tasks.

■ Creating schema objects such as tables, view and sequences

■ Manually checking the contents table

To connect to Oracle Database Lite, launch msql using the Command Prompt.

msql system/x@jdbc:polite:webtogo

4.2.5 Using Web-to-Go Applets
Web-to-Go supports Java applets. For security reasons, Web-to-Go applets must
communicate with the Mobile Server or the Oracle database by using a proxy class.
The AppletProxy class acts as a proxy for Web-to-Go applets and provides the applet
with the required methods for communicating with the Web-to-Go servlet or for
making a JDBC connection. An instance of the AppletProxy should be created while
instantiating the applet. Once the instance of the AppletProxy class is created, the
AppletProxy object communicates with the Mobile Server and derives all the
requisite information to connect to the server or to make a JDBC connection to the
Oracle database.

4.2.5.1 Creating the Web-to-Go Applet
The Web-to-Go applet extends the java.applet.Applet. When the init()
method initializes the Web-to-Go applet, it creates an instance of the AppletProxy
class by passing the Applet reference as the parameter. Once you create an instance of
the AppletProxy class, you can use different methods of the AppletProxy class for
communicating with the servlet or for establishing a JDBC connection with the Oracle
database. For example,

import oracle.lite.web.applet.*;
public class AppApplet extends Applet
{

 public void init()
 {
 ..
 ..
 // Create Instance and pass Reference of applet as parameter

4-12 Oracle Database Lite Developer’s Guide

 proxy = new AppletProxy(this);
 }
 AppletProxy proxy;
}

The applet can use the following methods to communicate with the servlet. Each
method requires an instance of the AppletProxy class.

■ getResultObject()

■ setSessionId()

■ showDocument()

The applet can use the getConnection() method to establish a JDBC connection
with the database.

4.2.5.2 Creating the HTML Page for the Applet
The Web-to-Go applet is launched from an HTML page that contains the following
tags.

<html>
<body>
<applet ARCHIVE="/webtogo/wtgapplet.jar" CODE="MyApplet.class" WIDTH=200
HEIGHT=100>
<PARAM NAME="ORACLE_LITE_WEB_SESSION_ID" VALUE="123">
</applet>
</body>
</html>

The AppletProxy class uses the value of the ORACLE_LITE_WEB_SESSION_ID
parameter to obtain the SessionID from the Mobile Server. The SessionID is
subsequently added to every request an applet makes to a servlet. You can write the
HTML code in a static HTML page or you can generate it from a servlet.

4.2.5.2.1 Static HTML Page Web-to-Go can automatically add the parameter to any static
page containing the APPLET tag. For this option, you must change the HTML page's
extension to .ahtml as demonstrated in the following syntax.

page_name.ahtml

When the client accesses the HTML page, a Web-to-Go system servlet adds the
required <PARAM> tag for the ORACLE_LITE_WEB_SESSION_ID parameter, to the
HTML output. For example,

<PARAM NAME="ORACLE_LITE_WEB_SESSION_ID" VALUE="123">

The Web-to-Go system servlet sets the VALUE attribute to your Web-to-Go
SessionID.

4.2.5.2.2 HTML Page Generated from a Servlet You can also dynamically generate the
HTML page that contains the <APPLET> tag. When you generate the HTML page
dynamically, you must add the SessionID parameter manually. You can retrieve the
SessionID information from the oraUserProfile as follows.

import oracle.lite.web.html.*;
import oracle.lite.web.servlet.*;

public class AppServlet extends HttpServlet
{

Developing and Testing the Application

Developing Mobile Web Applications 4-13

 public void doGet(HttpServletRequest req, HttpServletResponse resp)
 {
 PrintWriter out = new PrintWriter(resp.getOutputStream());
 out.println("<HTML>");
 out.println("<BODY>");
 out.println("<APPLET ARCHIVE="/webtogo/wtgapplet.jar"
 CODE='MyApplet.class' WIDTH=200 HEIGHT=100>");
 // Add these lines to add one more PARAM tag in html page
 // This code should be added in-between <APPLET> and </APPLET> tag
 OraHttpServletRequest ora_request = (OraHttpServletRequest) req;
 OraUserProfile oraUserProfile = ora_request.getUserProfile();
 out.println(" <PARAM NAME=\"ORACLE_LITE_WEB_SESSION_ID\" VALUE=\""
 +oraUserProfile.getAppletSessionId(req)+"\"> ");
 out.println("</APPLET>");
 out.println("</BODY>");
 out.println("</HTML>");
 out.close();
 }
}

4.2.6 Developing Applet JDBC Communication
You can develop Java applets that access the database using a JDBC connection. Once
you create an instance of the AppletProxy class, you must use the
getConnection()method of the AppletProxy class to obtain a JDBC connection.
The getConnection() method returns the JDBCConnection object.

4.2.6.1 getConnection()
You can use the getConnection() method to obtain a JDBCConnection. The
getConnection() method determines whether the connection mode is online or
offline and provides the correct database connection (Oracle database for online mode
and Oracle Database Lite for offline mode) to the user.

Example
import oracle.lite.web.applet.*;
public class AppApplet extends Applet
{
 public void init()
 {
 ..
 ..
 // Create Instance and pass Reference of applet as parameter
 proxy = new AppletProxy(this);
 }
 public java.sql.Connection getDataBaseConnection()
 {
 java.sql.Connection dBConnection = proxy.getConnection();
 return dBConnection;
 }
 AppletProxy proxy;
}

Note: The AppletProxy class is described in Section 4.2.5.1,
"Creating the Web-to-Go Applet".

4-14 Oracle Database Lite Developer’s Guide

4.2.6.2 Design Issue
The Web-to-Go applet holds the database connection even after the user exits
Web-to-Go. The applet maintains the connection even if the user types a new URL in
the browser or clicks the Back button. Web-to-Go application designers must ensure
that their applications explicitly close the database connection when the user exits
Web-to-Go.

Example
You can close the connection by calling the following statement.

dBConnection.close()

4.2.7 Developing Applet Servlet Communication
You can develop Java applets that communicate with Java servlets in the Web-to-Go
environment. When a client first connects to the Mobile Server, the server generates a
SessionID and sends it back to the client. Each subsequent client request to the
server contains this SessionID. The Mobile Server authenticates the SessionID
before executing the client's request. When applets communicate with Web-to-Go
servlets, each applet request must also contain this SessionID. The setSessionId
method in the AppletProxy class can be used to add the SessionID to each applet
request. The AppletProxy class also contains other methods that provide
communication between applets and servlets.

4.2.7.1 Creating the Web-to-Go Servlet
Servlets must extend the HttpServlet abstract class defined in the Java Servlet API.
The following example creates a servlet called HelloWorld that extends the
HttpServlet class. The servlet sends the Hello World string to the applet that
calls it as an object.

Example
public class HelloWorld extends HttpServlet
{

 public void doGet (HttpServletRequest request, HttpServletResponse response)
 {
 ObjectOutputStream out = new ObjectOutputStream (resp.getOutputStream());
 Object obj = (Object) "Hello World" ;
 out.writeObject(obj);
 out.close();
 }
}

Note: The getResultObject() and showDocument()
methods can be used to communicate with the Java servlet. Use the
setSessionID method if you want to create your own URL
connection object.

Developing and Testing the Application

Developing Mobile Web Applications 4-15

4.2.7.1.1 getResultObject() The Web-to-Go applet uses the getResultObject()
method to communicate with the Web-to-Go servlet by passing the servlet URL and
the ServletParameter object as parameters. The servlet responds to the applet
request with a text string. The ServletParameter object can be either an object that
can be serialized or a string containing name/value pairs. If the servlet accepts
parameters, you can call the getResultObject method and pass the servlet
parameters as one of the arguments.

Example
public Object getResult()
{

 java.net.URL url = new URL("http://www.foo.com/EmpServlet");
 String ServletParameter = "empname=John";
 Object resultObject = proxy.getResultObject(url, ServletParameter);
 return resultObject;
}

4.2.7.1.2 setSessionID() You can use the setSessionID method for adding a
SessionID to an existing URLConnection object. When you write the applet-servlet
communication mechanism, call setSessionID (URLConnection) at the end of the
method. The method adds a SessionID to the passed URLConnection object and
then returns the URLConnection object.

Example
public void YourMethod()
{

 java.net.URL url = new URL("http://www.foo.com/MyServlet");
 java.net.URLConnection con = url.URLConnection();
 ..
 ..
 ..
 // pass the URLConnection to the method setSessionId
 con = proxy.setSessionID(con);
 // Do whatever you want to do with this URLConnection object
 ObjectOutputStream out = new ObjectOutputStream(con.getOutputStream());
 out.writeObject(obj);
 out.flush();
 out.close();
}

4.2.7.1.3 showDocument() The showDocument method displays any static document
including those with a suffix of .html, .doc, .xls, or any other one defined by the
user. The showDocument method retrieves these documents from the Mobile Server
and displays them in the client browser. To display documents, a user must have
access permissions for the document and must have the correct MIME type set in the
Mobile Server. The showDocument (String relativeDocUrl, String winName)
method displays the document in a different browser window identified by a window
name that is passed in the winName parameter. The following method launches the
help file from the server in a browser window named 'helpwin'.

Example
public void showHelp()

4-16 Oracle Database Lite Developer’s Guide

{

 String relativeDocUrl = "Help/HelpIndex.html";
 proxy.showDocument (url, helpWin);
}

To show the document in the same browser window as your applet, use call
showDocument(url) as given below.

public void showHelp()
{

 String relativeDocUrl = "Help/HelpIndex.html";
 proxy.showDocument (url);
}

4.2.8 Debugging Web-to-Go Applications
You can run Web-to-Go applications inside a Java debugger if you have already
installed the Mobile Development Kit for Web-to-Go and a Java debugger, such as the
Oracle9i JDeveloper, Borland's JBuilder, or Visual J++. The example in this section
assumes you are using Oracle9i JDeveloper. However, most of the information
provided is also relevant to other debuggers.

4.2.8.1 Running Sample 1 Using Oracle9i JDeveloper
This section discusses how to configure the Oracle9i JDeveloper to run the Sample 1
application that is bundled with the Mobile Development Kit for Web-to-Go. For
detailed information and full documentation on how to use Oracle9i JDeveloper,
consult the online help in Oracle9i JDeveloper and Oracle9i JDeveloper's
documentation.

4.2.8.1.1 Creating a Debug Project To create a new debug project in Oracle9i JDeveloper,
perform the following steps.

1. Start Oracle9i JDeveloper.

2. To create a new project in Oracle9i JDeveloper, click File, then click New
(assuming you have defined a workspace in Oracle9i JDeveloper).

3. From the Directories menu in the left panel, select Projects, as displayed in
Figure 4–4, then select Empty Project.

Developing and Testing the Application

Developing Mobile Web Applications 4-17

Figure 4–4 Creating a New Project

4. Set the Project Settings for your new project. Right click on Project to retrieve
Project Settings. In the Project Settings dialog, expand Common in the left panel
and select Input Paths. In the right panel, enter the following information in the
Java Source Path field, as displayed in Figure 4–5.

<Oracle_home>\mobile\sdk\wtgsdk\src\sample1\servlets

Leave the Default Package field blank. Do not change the default HTML Root
Directory.

4-18 Oracle Database Lite Developer’s Guide

Figure 4–5 Project Settings - Input Paths

5. Expand Configurations and then Development in the left panel. Select Paths,
which appears below Development in the left panel. In the Output Directory field,
in the right panel, enter the following information.

<Oracle_home>\mobile\sdk\wtgsdk\root\sample1\servlets

4.2.8.1.2 Creating a Library Oracle9i JDeveloper makes it easier to manage sets of .jar
files by using libraries instead of CLASSPATH settings.

Files for the WTGSDK Library
Create a WTGSDK library with the following .jar files and add this library to your
project.

<Oracle_home>\mobile\classes\ojsp.jar

<Oracle_home>\mobile\classes\olite40.jar

<Oracle_home>\mobile\sdk\bin\webtogo.jar

<Oracle_home>\mobile\classes\servlet.jar

<Oracle_home>\mobile\classes\xmlparser.jar

<Oracle_home>\mobile\classes\classgen.jar

<Oracle_home>\mobile\classes\wtgpack.jar

Developing and Testing the Application

Developing Mobile Web Applications 4-19

Creating a WTGSDK Library
Perform the following steps to create a WTGSDK library.

1. Select Libraries in the left panel, then click New in the right panel.

2. The New Library dialog appears, as illustrated in Figure 4–6. In the Library Name
field, enter WTGSDK.

Figure 4–6 The New Library Dialog

3. Click Edit... next to the Class Path field. The File dialog appears.

4. From the appropriate directory, select the six .jar files that are listed above.

5. To add the files, click OK.

4.2.8.1.3 Adding Files to the Project To add the Sample1 files to your project, perform
the following steps.

1. Click the green plus-sign in the Oracle9i JDeveloper System-Navigator to add the
Java sources to the project. The File dialog appears.

2. Select the Java source file Helloworld.java in the directory <Oracle_
home>\mobile\sdk\wtgsdk\src\sample1\servlets, and click Open.

3. Also, add the file RunWebServer.java, which is located in the directory
<Oracle_home>\mobile\sdk\wtgsdk\src, to the project.

4. A dialog appears prompting you to update the project source path. Click No.

4.2.8.1.4 Running and Debugging Set one or more breakpoints in your code by
right-clicking at the statement where you want to break. Select Toggle breakpoint.
The background of the statement becomes red, indicating the breakpoint.

1. Select the file RunWebServer.java in the System-Navigator window.

2. Choose Debug by right clicking on the file that you selected to start the Mobile
Server inside the debugger.

The Mobile Server is now ready for use. You can access it through your web browser,
by accessing the following URL.

http://<machine_name>

Where <machine_name> is the host name of the computer on which you are running
Oracle9i JDeveloper.

4-20 Oracle Database Lite Developer’s Guide

4.2.8.1.5 Troubleshooting This section describes troubleshooting options that you can
implement.

Improving Performance
When you run the Mobile Server inside the Java debugger and access it using a web
browser, performance may decrease. To improve performance, perform the following
tasks.

1. Run the web browser on a different machine.

2. Using the Task Manager, set the priority of the web browser process to LOW after
you start the web browser.

4.2.9 Customizing the Workspace Application
The Mobile Development Kit for Web-to-Go includes a set of APIs that contain a basic
Web-to-Go workspace application. Developers can use these APIs to replace the
standard Web-to-Go workspace application with a customized version. These APIs
provide the following functionality.

■ Login

■ Logoff

■ Synchronize

■ List User Applications

■ Change User's Password

For more information on the APIs used to build a customized Web-to-Go workspace
application, see the Web-to-Go API Specification, which is located in the following
directory.

<Oracle_home>\mobile\doc\javadoc\wtg

After developing the customized Web-to-Go workspace application, the developer
must create an Oracle Database Lite database called webtogo and load the newly
created Web-to-Go workspace application into it. The database acts as the Mobile
Server Repository in the Mobile Client for Web-to-Go. For more information, refer the
file crclient.bat, which is included in the sample Web-to-Go workspace
application.

The developer must then create a webtogo.ora file for the Mobile Client for
Web-to-Go which instructs the Mobile Server to use the customized Web-to-Go
workspace application. For the correct parameter settings in the webtogo.ora file, refer
the section, Section 4.2.9.1, "Web-to-Go Parameters".

As a developer, you must load the webtogo.odb file, which is created by the Mobile
Client for Web-to-Go, the webtogo.ora file for the Mobile Client for Web-to-Go, and
the Web-to-Go workspace itself into the Mobile Server Repository. For more
information, refer to the file crserver.bat, which is included in the sample
Web-to-Go workspace application.

To instruct the Mobile Server to use the new Web-to-Go workspace application, the
administrator must then modify the webtogo.ora file on the server. For the correct
parameter settings in the webtogo.ora, refer the section Section 4.2.9.1, "Web-to-Go
Parameters".

Developing and Testing the Application

Developing Mobile Web Applications 4-21

4.2.9.1 Web-to-Go Parameters
To instruct Web-to-Go to use a customized Web-to-Go workspace application, you
must set the following parameters in the [WEBTOGO] section of the webtogo.ora file.

Table 4–4 describes webtogo.ora parameter settings.

4.2.9.2 Sample Workspace
The Mobile Development Kit for Web-to-Go includes a sample Web-to-Go workspace
application that illustrates how to use the Web-to-Go workspace API. Developers can
use this sample application as a starting point when developing their Web-to-Go
workspace applications. The sample Web-to-Go workspace application is written
using JavaServer Pages (JSP) and .html files. The JSP files are located in the
myworkspace/out directory in the Mobile Development Kit for Web-to-Go. These
files are compiled into class files that are copied into myworkspace/out directory.
This directory also contains all .html files and image files that are used by the sample
Web-to-Go workspace application.

The Mobile Development Kit for Web-to-Go includes the following scripts that
compile the JSP files, create the Oracle Database Lite named webtogo for the Mobile
Client for Web-to-Go, and load all necessary files into the Mobile Server Repository.

Table 4–5 describes scripts available for JSP compilation.

4.2.10 Using the Mobile Server Admin API
The Mobile Server Admin API enables an administrator to manage the application
resources programmatically. Using the Mobile Server Admin API set, administrators

Table 4–4 Setting webtogo.ora Parameters

Parameter Setting

CUSTOM_WORKSPACE YES

CUSTOM_DIRECTORY Repository directory of the Web-to-Go workspace application. For
example, /myworkspace.

DEFAULT_PAGE The entry point of the Web-to-Go workspace application. For
example, myfirstpage.html.

CUSTOM_FIRSTSERVLET The name of the servlet that you want to use in your customized
workspace. For example, CUSTOM_
FIRSTSERVLET=HelloWorld;/hello

Note: Web-to-Go supports only one workspace application per
Mobile Server.

Table 4–5 Scripts for JSP Compilation

Script Name Description

compile.bat Compiles .jsp files and copies the class files to the
myworkspace/out directory.

crclient.bat Copies all files in the myworkspace/out directory into
the webtogo.odb file.

crserver.bat Copies all files in the myworkspace/webtogo
directory to the Mobile Server Repository, including the
webtogo.odb and webtogo.ora files.

4-22 Oracle Database Lite Developer’s Guide

can potentially create their own customized Mobile Manager application to perform
the following functions.

■ Creating and modifying users and user groups

■ Including users and excluding users from group level access to applications

■ Assigning snapshot variables to the user

■ Suspending and resuming applications

■ Publishing a pre-packaged Web-to-Go application

■ Customizing an application's underlying database connections

For more information on using the API to build the Mobile Manager, see the
Web-to-Go API Specification, which is located in the following directory.

<Oracle_home>\mobile\doc\javadoc\wtg

Note: Administrators cannot use the open API set to change the
basic properties of an application, such as snapshot definitions or
servlets. This can only be done through the Packaging Wizard. For
more information, see the Oracle Database Lite Administration and
Deployment Guide.

Native Application Development 5-1

5
Native Application Development

This document discusses mobile application development for native platforms. The
discussion covers the following topics:

■ Section 5.1, "Supported Platforms"

■ Section 5.2, "Java Support"

■ Section 5.3, "Data Source Name"

■ Section 5.4, "Mobile Sync Application Programming Interfaces (APIs)"

■ Section 5.5, "Using the Packaging Wizard"

5.1 Supported Platforms
Your development environment must include Oracle Database Lite 10g as the
encompassing platform. For developing native applications on the Oracle Database
Lite 10g platform, the following operating system platforms are supported:

■ Microsoft Windows NT/2000/XP

■ Windows CE

The following Windows CE chipsets are supported:

■ Pocket PC 2003 (ARM, xScale, Emulator)

■ Pocket PC (ARM, Emulator)

■ Palm OS

5.2 Java Support
Table 5–1 lists the Java support provided in Oracle Database Lite 10g. The heading row
in the table identifies each of the four platforms in which the Java support is available.

Table 5–1 Java Support

Category Windows 32 Web
Windows
32 Native Windows CE Linux (1)

JDBC Yes

Oracle Database Lite
offer three JDBC drivers.
Refer the section JDBC
Drivers given below.

Yes Yes Yes

On Linux, only
JDBC and ODBC
access is
supported.

Data Source Name

5-2 Oracle Database Lite Developer’s Guide

JDBC Drivers
Oracle Database Lite offers the following JDBC drivers.

■ Embedded (native) JDBC driver: JDBC 1.2.2 compliant. Allows Java applications
to communicate directly with Oracle Lite's database engine. Oracle Lite provides a
limited number of extensions specified by JDBC 2.0. These extensions are
compatible with the Oracle Database JDBC implementation.

■ Type 2 driver.

■ Type 4 driver : 100% Java implementation. Requires the multi-user database
version.

5.3 Data Source Name
In Windows 32, the Consolidator on the client side creates the data source name (DSN)
as <username_dbname> after the first synchronization. The Consolidator program
takes the values for <username_dbname> from the publication.

In Windows CE and Palm, DSN = <dbname>.

The DSN does not change after the Consolidator creates it.

5.4 Mobile Sync Application Programming Interfaces (APIs)
There are three methods that a developer can use to create native applications which
invoke synchronization using the underlying libraries, ocapi.dll. These APIs are
provided for application development where a different approach is required than
that provided by the Mobile Sync client, msync.exe. The Palm OS interface is part of
SODA.

■ Section 5.4.1, "COM Interface"

■ Section 5.4.2, "C/C++ Interface"

Java SP/Triggers Yes

Java SP/Triggers are not
supported in the
Web-to-Go application
model. However Java SP
can be replicated using
the Consolidator API.

Yes NA Yes

Java Server Pages 1.1 NA NA NA

Java Servlet 2.2 NA NA NA

BC4J Yes

Latest version of Oracle
JDeveloper 10g.

NA NA NA

Struts Yes NA NA NA

Table 5–1 (Cont.) Java Support

Category Windows 32 Web
Windows
32 Native Windows CE Linux (1)

Mobile Sync Application Programming Interfaces (APIs)

Native Application Development 5-3

5.4.1 COM Interface
The COM Interface is used to program applications that can start the synchronization
process and enable a variety of settings. This interface is modular and extensible. It
uses the ocapi.dll through a wrapper style interface. The interface is designed to allow
applications to be written in Visual Basic, but allows other programming methods
supported by the COM interface including VBScript.

5.4.1.1 Features and Components
The COM Interface supports the following features:

■ Enables users to start the synchronization process.

■ Track progress of the synchronization process.

■ Enables setup of client-side user profiles containing data such as user name,
password, and server.

■ Assign table level synchronization options.

■ Allow a choice of transport.

COM Interface API and samples are now installed in the <ORACLE_
HOME>\Mobile\SDK\Examples\mysncCom subdirectory. The following classes are
contained in the mSync_com.dll library:

■ Section 5.4.1.2, "ISync Interface"

■ Section 5.4.1.3, "ISyncOption Interface"

■ Section 5.4.1.7, "ISyncProgressListener Interface"

The interface is contained in the MSync library. When using the ISync interface, you
should use MSync.ISync as the interface name.

5.4.1.2 ISync Interface
The ISync interface, Msync.ISync allows the user to initiate the synchronization
process. The format for the ISync interface is listed in a table below.

Table 5–2 lists Sync Interface Abstract Method names and their corresponding
description.

Note: There are currently no client-side synchronization
programming interfaces for Sun SPARC Solaris. It is recommended
to use the Windows Operating System for programming with these
interfaces.

Table 5–2 ISync Interface Abstract Methods

Name Description

HRESULT doSync() Start the synchronization process. This blocks access until the
synchronization process is completed.

void abort() Aborts the current synchronization. This can be called from a
progress listener callback.

HRESULT
setOption(ISyncOption
*syncObj)

Sets the pointer to the SyncOption to use for the next
synchronization. If this function is not called before
doSync(), the last saved option will be used.

Mobile Sync Application Programming Interfaces (APIs)

5-4 Oracle Database Lite Developer’s Guide

Example
The following Visual Basic code demonstrates how to start a synchronization session
using default settings.

Dim sync As Msync.sync
Set sync = CreateObject("MSync.Sync")
sync.DoSync

In case no SyncOption is used, the interface loads the last saved information to
perform synchronization.

5.4.1.3 ISyncOption Interface
The ISyncOption class MSync.SyncOption defines the parameters of the
synchronization process. It can be constructed manually. Alternatively, you can use
the data that is loaded or saved from the user profile. The public methods for the
ISyncOption class are listed in a table below.

Table 5–3 lists SyncOption Public Method names and their corresponding description.

The public properties for the ISyncOption class are listed in a table below.

Table 5–4 lists names of ISyncOption Public Properties and their corresponding
description.

Table 5–3 ISyncOption Public Methods

Name Description

void load() Loads the profile of the last synchronization user.

void save() Saves settings to the user profile.

void getPublication
(BSTR app_name, BSTR
* pub_name)

Uses the Web-to-Go application name and returns
the publication name.

void setSyncFlag(BSTR pub_name,
BSTR tbl_name, short syncFlag)

Sets selective sync on table level.

Passing pub_name, null tbl_name, syncFlag = 0
will turn off syncFlag for everytable in that
publication.

Passing pub_name, tbl_name, syncFlag = 1
will turn on syncFlag for that table.

Table 5–4 ISyncOption Public Properties

Name Description

username Name of the user.

password User's password.

syncParam Synchronization preferences. For more information, see
Section 5.4.1.5, "COM Interface SyncParam Settings".

transportType Type of transport to use. Currently, only "HTTP" type is
supported.

transportParam Parameters of the transport.

BSTR app_name(in) Web-to-Go application name.

BSTR& pub_
name(out)

Publication name.

Mobile Sync Application Programming Interfaces (APIs)

Native Application Development 5-5

Example
The following Visual Basic code demonstrates how to start a synchronization session
using default settings.

Set syncOpt = CreateObject("MSync.SyncOption")
' Load last sync info
syncOpt.Load
' Change user name to Sam
syncOpt.usename = "Sam"
Set sync = CreateObject("MSync.Sync")
' Tell ISync to use this option
sync.setOptionObject (syncOpt)
' Do sync
sync.DoSync

5.4.1.4 Selective Synchronization
This feature allows the mobile application to select the way specific tables are
synchronized.

You can implement selective synchronization at the publication level and the table
level by using the mSync.SyncOption interface to determine which publication and
publication items need to be synchronized. The list of tables therefore can be changed
dynamically during runtime allowing the application developer to programmatically
control selective synchronization.

You can use the following method to set selective synchronization:

void setSyncFlag(BSTR pub_name, BSTR tbl_name, short syncFlag)

The first parameter, pub_name, which is for the publication name, is optional. If it is
set to null, the parameter means all publications.

The second parameter, tbl_name, which is for the table name (in the form <client
database>.<table name>), is optional. If it is set to null, the parameter means all
tables.

The third parameter, syncFlag, which is for the synchronization flag, is set to 1 to
turn ON the syncFlag or to 0 to turn OFF the syncFlag.

See the sample code below for an illustration.

Sample Code:
The following sample code shows how to turn OFF synchronization for all but one
table. The table name in this sample is ORD_DETAIL. Note that first the
synchronization flag is set to 0 and then in the next line of code it is set to 1 for the
specified table on which selective synchronization is to be implemented.

Dim syncOpt As MSYNC.SyncOption

syncOpt = CreateObject("MSync.SyncOption")
syncOpt.setSyncFlag("", "", 0) //Turn off sync flag for all tables.
syncOpt.setSyncFlag("", "OrdersODB.ORD_DETAIL", 1) //Turn on sync

Note: On Windows CE, the ISyncOption interface object must
be Dim'ed as follows:

Dim syncOpt as MSync.SyncOption

Mobile Sync Application Programming Interfaces (APIs)

5-6 Oracle Database Lite Developer’s Guide

 flag only for the OrdersODB.ORD_DETAIL table.

5.4.1.5 COM Interface SyncParam Settings
The syncParam is a string that allows support parameters to be specified to the
synchronization session. The string is constructed of name-and-value pairs.

For example,

"name=value;name2=value2;name3=value3, ...;"

The names are not case sensitive, but the values are. The field names which can be
used are listed in a table below.

Example 1
The first example enables SSL security and disables application deployment for the
current synchronization session:

"security=SSL; noapps;"

Example 2
The second example illustrates selective synchronization.

"//turn off the syncFlag for all the tables
syncOpt.setSyncFlag("", "", 0)

//turn on the syncFlag for table OrdersODB.ORD_DETAIL

Table 5–5 COM Interface SyncParam Settings

Name Value/Options Description

"reset" N/A Clears all entries in the environment
before applying any remaining settings.

"security" "SSL"

"CAST5"

Use the appropriate selection to choose
either SSL or CAST5 stream encryption.

"pushonly" N/A Use this setting to upload changes from
the client to the server only, as
download is not allowed. This is useful
when the data transfer is a one way
transmission from the client to server.

"noapps" N/A Do not download any new or updated
applications. This is useful when
synchronizing over a slow connection or
on a slow network.

"syncDirection" "SendOnly'

"ReceiveOnly"

"SendOnly" is the same as "pushonly".

"ReceiveOnly" allows no changes to be
posted to the server.

"noNewPubs" N/A This setting prevents creation of any
new publications, since the last
synchronization from being sent, and
only synchronizes data from current
publications.

"fullrefresh" N/A Forces a complete refresh.

"clientDBMode" "EMBEDDED"

"CLIENT"

If set to "EMBEDDED", access to the
database is by conventional ODBC, if set
to "CLIENT", access is by multi-client
ODBC.

Mobile Sync Application Programming Interfaces (APIs)

Native Application Development 5-7

syncOpt.setSyncFlag("", "OrdersODB.ORD_DETAIL", 1)

5.4.1.6 COM Interface TransportParam Parameters
The format of the TransportParam string is used to set specific parameters using a
string of name-and-value pairs.

For example,

"name=value;name2=value2;name3=value3, ...;"

The names are not case sensitive, but the values are. The field names which can be
used are listed in a table below.

Table 5–6 lists names, values, and the corresponding description of COM Interface
TransportParam parameters.

Example
The following example directs the Mobile Sync engine to use the server at
"test.oracle.com" through the proxy "proxy.oracle.com" at port 8080.

"server=test.oracle.com;proxy=proxy.oracle.com;proxyPort=8080;"

5.4.1.7 ISyncProgressListener Interface
ISync implements a connection point container to allow the synchronization status
information to be tracked. ISyncProgressListener must be implemented to return
updates from the ISync interface. The abstract method for the ISyncProgressListener
is listed in a table below.

Table 5–7 lists the name and corresponding description of the ISyncProgress Listener
Abstract Method.

Table 5–6 COM Interface TransportParam Parameters

Name Value Description

"reset" N/A Clears all entries in the environment before applying
the rest of the settings.

"server" server hostname The hostname or IP address of the Mobile Server.

"proxy proxy server
hostname

The hostname or IP address of the proxy server.

"proxyPort" port number The port number of the proxy server.

"cookie" cookie string The cookie to be used for transport.

Table 5–7 ISyncProgressListener Abstract Method

Name Description

HRESULT progress([in]
int progressType, int
param1, int param2);

Called by the synchronization engine when new progress
information is available. The progressType is set to one of
the progress type constants defined in the
ISyncProgressListener Constants table. Current is the
current count completed, and total is the maximum. When
current value equals the total value, then the stage is
completed. The unit for total and current differs depending on
the progressType.

Mobile Sync Application Programming Interfaces (APIs)

5-8 Oracle Database Lite Developer’s Guide

The ISynchProgressListener is an interface that allows progress updates to be
trapped during synchronization. The names of constants which report the
synchronization progress are listed in a table below.

Table 5–8 lists names and the corresponding progress type description of
IsyncProgressListener Constants.

Example
The following Visual Basic code example demonstrates how to report events.

' Define the ISync object with events
Dim WithEvents sync As MSync.sync

' Create the callback.
' The name of the call back is the name of the ISync object (not the class), and
' underscore and then the function name - progress
Private Sub sync_progress(ByVal progressType As Long, ByVal param1 As Long, ByVal
param2 As Long)
 Desc = ""
 ' Decipher the progressType
 Select Case progressType
 Case PT_SEND
 Desc = "Sending data..."
 Case PT_RECV
 Desc = "Receiving..."
 End Select
End Sub

5.4.2 C/C++ Interface
The C/C++ Interface consists of function calls and a control structure, the definitions
for which can be found in ocapi.h and ocapi.dll which are located in the <Oracle_
home>\Mobile\bin directory. This API allows an application to initiate and monitor
synchronization with a database from a client application rather than requiring that it

Table 5–8 ISyncProgressListener Constants

Name Progress Type

PT_INIT Reports that the synchronization engine is in the initializing
stage. The current and total counts are both set to 0.

PT_PREPARE_SEND Reports that the synchronization engine is preparing local
data to be sent to the server. This includes getting locally
modified data. For streaming implementations, this is much
shorter.

PT_SEND Reports that the synchronization engine is sending data to the
network.

The total count denotes the number of bytes to be sent, and
current is the byte count sent currently.

PT_RECV Reports that the engine is receiving data from the server.

The total count denotes the number of bytes to be received,
and current is the byte count received currently.

PT_PROCESS_RECV Reports that the engine is applying the newly received data
from the server to local data stores.

PT_COMPLETE Reports that the engine has completed the synchronization
process.

Mobile Sync Application Programming Interfaces (APIs)

Native Application Development 5-9

be started from the Mobile Sync application. The default transport mechanism is
HTTP, but other forms of transport can be specified if they are available.

An example C++ program, a makefile, and dependent files are given in the <Oracle_
home>\Mobile\Sdk\Examples\msync\src directory. Peruse the source code in
SimpleSync.cpp to see how this interface is used. The executable SimpleSync.exe
is in the <Oracle_home>\Mobile\Sdk\Examples\msync\bin directory.

5.4.2.1 ocSessionInit
This function is used to initialize the synchronization environment.

Syntax
int ocSessionInit(ocEnv *env);

The parameter for ocSessionInit function is listed in a table below.

Table 5–9 lists the ocSessioninit parameter and its description.

Comments
This call initializes the ocEnv structure and restores any user settings that are saved in
the last ocSaveUserInfo() call. A pointer to an ocEnv structure is passed as a
parameter, and should be allocated by the caller. If the caller wants to overwrite user
preference information after the ocSessionInit() call, it can be done by calling
ocSaveUserInfo(). The caller must allocate memory for the ocEnv structure.

5.4.2.2 ocSessionTerm
 Clears and performs a cleanup of the synchronization environment.

Syntax
int ocSessionTerm(ocEnv *env);

The parameter for ocSessionTerm function is listed in a table below.

Table 5–10 lists the ocSessionTerm parameter and its description.

Comments
De-initializes all the structures and memory created by the ocSessionInit() call.
Users must ensure that they are always called in pairs.

5.4.2.3 ocSaveUserInfo
Saves user settings to the conscli.odb database file.

Table 5–9 ocSessionInit Parameters

Name Description

env Pointer to an ocEnv structure buffer to hold the return
synchronization environment.

Table 5–10 ocSessionTerm Parameters

Name Description

env Pointer to the environment structure returned by
ocSessionInit.

Mobile Sync Application Programming Interfaces (APIs)

5-10 Oracle Database Lite Developer’s Guide

Syntax
int ocSaveUserInfo(ocEnv *env);

The parameter for ocSaveUserInfo function is listed in a table below.

Table 5–11 lists the ocSaveUserInfo parameter and its description.

Comments
This saves or overwrites the user settings into a file or database on the client side. The
following information provided in the environment structure is saved.

1. Username

2. Password

3. SavePassword

4. NewPassword

5. Priority

6. Secure

7. PushOnly

8. SyncApps

9. SyncNewPublication

For more information on how to use these fields, see Section 5.4.2.7, "C/C++ Data
Structures".

5.4.2.4 ocDoSynchronize
Starts the synchronization process.

Syntax
int ocDoSynchronize(ocEnv *env);

The parameter for ocDoSynchronize function is listed in a table below.

Table 5–12 lists the name and description of the ocDoSynchronize parameter.

Comments
This starts the synchronization cycle. A round trip synchronization is activated if
syncDirection is OC_SENDRECEIVE (default). If syncDirection is OC_
SENDONLY, only the upload, or send operation, is performed. If syncDirection is
OC_RECEIVEONLY, only the download, or receive operation is performed.
Performing an upload-only synchronization is useful if the client does not want to
download data from the server.

Table 5–11 ocSaveUserInfo Parameters

Name Description

env Pointer to the synchronization environment.

Table 5–12 ocDoSynchronize Parameters

Name Description

env Pointer to the synchronization environment.

Mobile Sync Application Programming Interfaces (APIs)

Native Application Development 5-11

Return value of 0 indicates that the function has been executed successfully.
Otherwise, the value is an error code.

5.4.2.5 ocSetTableSyncFlag
Update the table flags for Selective Sync. Call this for each table to specify whether it
should be synchronized(1) or not (0) for the next session.

When this option is used, it must occur before ocDoSynchronize.

The default sync_flag setting for ocSetTableSyncFlag is TRUE (1) for all the
tables. By default, all the tables are flagged to be synchronized. If you want to
selectively synchronize specific tables, you must first disable the default setting for
synchronizing all the tables and then enable the selective synchronization for the
specific tables that you want to synchronize.

Syntax
ocSetTableSyncFlag(ocEnv *env, const char* publication_name,
const char* table_name, short sync_flag)

The parameters for the ocSetTableSyncFlag function are listed in a table below.

Table 5–13 lists the name and description of the ocSetTableSyncFlag parameter.

Comments
This function allows client applications to select the way specific tables are
synchronized.

Set sync_flag for each table or each publication. If sync_flag = 0, the table is not
synchronized.

To synchronize specific tables only, you must perform the following steps:

1. Disable the default setting, which is set to 1 (TRUE) for all the tables.

Example:

ocSetTableSyncFlag(&env, <publication_name>,null,0)

Table 5–13 ocSetTableSyncFlag Parameters

Name Description

env Pointer to the synchronization environment.

publication_name The name of the publication which is being synchronized. If
the value for publication_name is "NULL", it means all
publications in the database. This string is same as client_
name_template parameter of the Consolidator
CreatePublication method. In most cases, you will use
"NULL" for this parameter. For more information, see
Section 3.5.4, "Creating Publications" in Chapter 3,
"Synchronization".

table_name This is the name of the snapshot. It is the same as the name of
the store, the third parameter of
CreatePublicationItem(). For more information, see
Section 3.5.5, "Creating Publication Items" in Chapter 3,
"Synchronization".

sync_flag If sync_flag is set to "1", you must synchronize the
publication. If sync_flag is set to "0", then do not synchronize.
The value for sync_flag is not stored persistently. Each
time before ocDoSynchronize(), you must call
ocSetTableSyncFlag().

Mobile Sync Application Programming Interfaces (APIs)

5-12 Oracle Database Lite Developer’s Guide

Where <publication_name> must be replaced by the actual name of your
publication, and where the value null is specified to mean all the tables for that
publication without exception.

2. Enable the selective synchronization of specific tables.

Example:

ocSetTableSyncFlag(&env, <publication_name>,<table_name>,1)

5.4.2.6 ocGetPublication
This function gets the publication name on the client from the Web-to-Go application
name. The Web-to-Go user knows only the application name, which happens when
the Packaging Wizard is used to package an application before publishing it.

Syntax
ocError ocGetPublication(ocEnv* env, const char* application_name,
char* buf, int buf_len);

The parameters for the ocGetPublication function are listed in Table 5–14 below.
The table lists the name of the ocGetPublication parameter and provides a
description of it.

Comments
Return value of 0 indicates that the function has been executed successfully. Any other
value is an error code.

This function gets the publication name from the Web-to-Go application name and
stores it in the buffer.

Example
The following code example demonstrates how to get the publication name.

void sync()
{
 ocEnv env;
 int rc;

 // Clean up ocenv
 memset(&env 0, sizeof(env));

 // init OCAPI
 rc = ocSessionInit(&env);

 strcpy(env.username, "john");
 strcpy(env.password, "john");

Table 5–14 ocGetPublication Parameters

Name Description

ocEnv* env Pointer to an ocEnv structure buffer to hold the return
synchronization environment.

const char* application_
name(in)

This is the name of the application.

char* buf(out) The buffer where the publication name will be stored.

int buf_len(in) The buffer length. It must be at least 32 bytes.

Mobile Sync Application Programming Interfaces (APIs)

Native Application Development 5-13

 // We use transportEnv as HTTP paramters
 ocTrHttp* http_params = (ocTrHttp*)(env.transportEnv.ocTrInfo);
 strcpy(http_params->url, "your_host");

 // Do not sync webtogo applicaton "Sample3"
 charbuf[32];
 rc = ocGetPublication(&env, "Sample3", buf, sizeof(buf));
 rc = ocSetTableSyncFlag(&env, buf, NULL, 0);

 // call sync
 rc = ocDoSynchronize(&env);
 if (rc < 0)
 fprintf(stderr, "ocDoSynchronize failed with %d:%d\n",
 rc, env.exError);
 else
 printf("Sync compeleted\n");

 // close OCAPI session
 rc = ocSessionTerm(&env);
 return 0;
}

5.4.2.7 C/C++ Data Structures
Two data structures are part of the Mobile Sync API, ocEnv and ocTransportEnv.

5.4.2.7.1 ocEnv

The ocEnv is the data structure used by all the Mobile Sync module functions to hold
internal memory buffers and state information. Before using the structure, the
application must pass it to ocSessionInit to initialize the environment. The
parameters for the structure appear in a table below.

Table 5–15 lists the field name, type, usage, and corresponding description of the
ocEnv Structure field parameters.

Table 5–15 ocEnv Structure Field Parameters

Field Type Usage Description

Username char[MAX_
USERNAME]

Caller MUST set these
fields before calling
ocSessionInit.

Name of the user to authenticate.

Password char[MAX_
USERNAME]

Caller MUST set these
fields before calling
ocSessionInit.

User password (clear text).

NewPassword char[MAX_
USERNAME]

Caller can set these fields
optionally after calling
ocSessionInit.

If first character of this string is not null,
in otherwords (char) 0, this string will
be sent to the server to request it to
change the user's password; the
password change will be effective on the
next sync session.

SavePassword Short Caller can set these fields
optionally after calling
ocSessionInit.

If set to 1, the password in the password
field will be saved locally and will be
loaded the next time ocSessionInit is
called.

AppRoot char[MAX_
USERNAME]

Caller can set these fields
optionally after calling
ocSessionInit.

Directory where the application will be
copied to. If first character is null, then it
will use the default directory.

Mobile Sync Application Programming Interfaces (APIs)

5-14 Oracle Database Lite Developer’s Guide

Priority Short Caller can set these fields
optionally after calling
ocSessionInit.

0= OFF (default)

1= ON

Secure Short Caller can set these fields
optionally after calling
ocSessionInit.

If set to 0, no security on transport.
If set to OC_DATA_ENCRYPTION, use
CAST5 synchronization.

If set to OC_SSL_ENCRYPTION, use SSL
synchronization (Win32 only).

SyncDirection Enum Caller can set these fields
optionally after calling
ocSessionInit.

If set to 0 (OC_SENDRECEIVE) then sync
is bi-directional (default).

If set to OC_SENDONLY, then pushes
changes only to the server. This is to
stop the sync after the local changes are
collected and sent. Useful for sync that
requires the engine to separate the
different stages (like floppy based).

If set to OC_RECEIVEONLY, then send
no changes and only receive update
from server. This only performs the
receive and allow changes function to
local database stages.

TrType Enum Must be set before calling
ocSessionInit.

If set to 0 (OC_BUILDIN_HTTP), then
use HTTP built-in transport driver.

If set to OC_USER_METHOD, then use
user provided transport functions.

ExError ocError Read only information
updated by OCAPI.

Extended error code - either OS or
OKAPI error code.

TransportEnv ocTransportEnv Transport buffer. See Section 5.4.2.7.2,
"ocTransportEnv".

ProgressProc FnProgress Caller can set these fields
optionally after calling
ocSessionInit.

If not null, points to the callback for
progress listening.

TotalSendDataLen Long Read only information
updated by OCAPI.

Set by OCAPI informing transport the
total number of bytes sent; set before
first fnSend() is called.

TotalRecieveDataLen Long Read only information
updated by OCAPI.

Set by OCAPI information transport
total number of bytes to receive; should
be set at first fnReceive() call.

UserContext Void* Caller can set these fields
optionally after calling
ocSessionInit.

Can be set to anything by the caller for
context information (such as progress
dialog handle, renderer object pointer,
and so on.

OcContext Void* Reserved.

Logged Short Reserved.

BufferSize Long Reserved (for Wireless/Nettech only).

PushOnly Short Caller can set these fields
optionally after calling
ocSessionInit.

If set to 1, then only push changes to the
server.

Table 5–15 (Cont.) ocEnv Structure Field Parameters

Field Type Usage Description

Mobile Sync Application Programming Interfaces (APIs)

Native Application Development 5-15

The environment structure also contains fields that the caller can update to change the
way Mobile Sync module functions work.

typedef struct ocEnv_s {
 // User infos
char username[MAX_USERNAME]; // Mobile Sync Client id
char password[MAX_USERNAME]; // Mobile Sync Client password for
 // authentication during sync
char newPassword[MAX_USERNAME]; // resetting Mobile Sync Client password
 // on server side if this field is not blank

SyncApps Short Caller can set these fields
optionally after calling
ocSessionInit.

Set to 1 (by default), performs
application deployment.

If set to 0, then no applications will be
received from the server.

SyncNewPublications Short Caller can set these fields
optionally after calling
ocSessionInit.

If set to 1 (default), then receives any
new publication created from the server
since last synchronization.

If set to 0, only synchronizes existing
publications (useful for slow transports
like wireless).

ClientDbMode Enum Caller can set these fields
optionally after calling
ocSessionInit.

If set to OC_DBMODE_EMBEDDED
(default), it will use local Oracle
Database Lite ODBC driver.

If set to OC_DBMODE_CLIENT, it will use
the Branch Office driver.

SyncTimeLog Short Caller can set these fields
optionally after calling
ocSessionInit.

If set to 1, log sync start time is recorded
in the "conscli.odb" file.

UpdateLog Short Caller can set these fields
optionally after calling
ocSessionInit.

Debug only.

If set to 1, logs server side insert and
update row information to the
publication's odb.

Options Short Caller can set these fields
optionally after calling
ocSessionInit.

Debug only. A bitset of the following
flags:

■ OCAPI_OPT_SENDMETADATA

Sends meta-info to the server.

■ or OCAPI_OPT_DEBUG

Enables debugging messages.

■ OCAPI_OPT_DEBUG_F

Saves all bytes sent and received for
debugging.

■ OCAPI_OPT_NOCOMP

Disables compression.

■ OCAPI_OPT_ABORT

If set, OCAPI will try to abort the
current sync session.

■ OCAPI_OPT_FULLREFRESH

Forces OCAPI to purge all existing
data and do a full refresh.

Table 5–15 (Cont.) ocEnv Structure Field Parameters

Field Type Usage Description

Mobile Sync Application Programming Interfaces (APIs)

5-16 Oracle Database Lite Developer’s Guide

short savePassword; // if set to 1, save 'password'
char appRoot[MAX_PATHNAME]; // dir path on client device for deploying files
short priority; // High priority table only or not
short secure; // if set to 1, data encrypted over the wire
enum {
OC_SENDRECEIVE = 0, // full step of synchronize
OC_SENDONLY, // send phase only
OC_RECEIVEONLY, // receive phase only

 // For Palm Only
OC_SENDTOFILE, // send into local file | pdb
OC_RECEIVEFROMFILE // receive from local file | pdb
}syncDirection; // synchronize direction

enum {
OC_BUILDIN_HTTP = 0, // Use build-in Http transport method
OC_USER_METHOD // Use user defined transport method
}trType; // type of transport

ocError exError; // extra error code

ocTransportEnv transportEnv; // transport control information

 // GUI related function entry
progressProc fnProgress; // callback to track progress; this is optional

 // Values used for Progress Bar. If 0, progress bar won't show.
long totalSendDataLen; // set by Mobile Sync API informing transport total
number of
 // bytes to send; set before the first fnSend() is called
long totalReceiveDataLen; // to be set by transport informing Mobile Sync API
 // total number of bytes to receive;
 // should be set at first fnReceive() call.
void* userContext; // user defined context
void* ocContext; // internal use only
short logged; // internal use only
long bufferSize; // send/receive buffer size, default is 0
short pushOnly; // Push only flag
short syncApps; // Application deployment flag
} ocEnv;

5.4.2.7.2 ocTransportEnv

This structure is used to override built-in transport functions. By providing the list of
functions in the structure, applications can define their own implementation for the
transport layer used by the synchronization engine.

typedef struct ocTransportEnv_s {
void* ocTrInfo; // transport internal context
 // for built-in Http, mapped to ocTrHttp
connectProc fnConnect; // plug-in callback to establish a connection from
 // device to server
disconnectProc fnDisconnect; // plug-in callback to dismantle connection
 // from device to server
sendProc fnSend; // plug-in callback to send data
receiveProc fnReceive; // plug-in callback to receive data
}ocTransportEnv;

Using the Packaging Wizard

Native Application Development 5-17

5.5 Using the Packaging Wizard
The Packaging Wizard is a graphical tool that enables you to perform the following
tasks.

1. Create a new mobile application.

2. Edit an existing mobile application.

3. Publish an application to the Mobile Server.

When you create a new mobile application, you must define its components and files.
In some cases, you may want to edit the definition of an existing mobile application's
components. For example, if you develop a new version of your application, you can
use the Packaging Wizard to update your application definition. The Packaging
Wizard also enables you to package application components in a .jar file which can be
published using the Control Center. The Packaging Wizard also enables you to create
SQL scripts which can be run to create base tables in the Oracle database.

For detailed information on how to use the Packaging Wizard, see the Oracle Database
Lite Tools and Utilities Guide.

Using the Packaging Wizard

5-18 Oracle Database Lite Developer’s Guide

Oracle Database Lite 10g ADO.NET Provider 6-1

6
Oracle Database Lite 10g ADO.NET Provider

This document discusses the Oracle Database Lite ADO.NET provider for Microsoft
.NET and Microsoft .NET Compact Framework. The Oracle Database Lite ADO.NET
provider resides in the Oracle.DataAccess.Lite namespace.

The topics that are discussed in this document are the following:

■ Section 6.1, "Classes"

■ Section 6.2, "Running the Demo"

■ Section 6.3, "Limitations"

6.1 Classes
This section describes the classes in the Oracle Database Lite 10g ADO.NET provider.

6.1.1 OracleConnection
This is the primary interface to establish a connection to Oracle Database Lite. This
class implements the System.data.IDBConnection interface. You can pass an
ODBC data source name when constructing an instance of the OracleConnection
class. For example:

IDBConnection conn = new OracleConnection ("POLITE");

conn.Open();

In a general case, it is possible to pass a full connection string as described in Oracle
Database Lite ODBC documentation for the SQLDriverConnect API. For example:

OracleConnection conn = new OracleConnection
("DataDirectory=\\orace;Database=polite;DSN=*;uid=system;pwd=manager");

conn.Open();

You can also construct an empty connection object and set ConnectionString
property later.

With an embedded database, it's recommended to open the connection at the
beginning and leave it open for the lifetime of the program. Note that closing the
connection will also close all the IDataReader cursors using it.

6.1.2 Transaction Management
By default, Oracle Database Lite connection is in autocommit mode. To begin a
transaction, use the BeginTransaction() method in the OracleConnection object.

Classes

6-2 Oracle Database Lite Developer’s Guide

Commit or Rollback on the returned IDbTransaction will do the requested action and
return the database to autocommit mode. You can use SQL syntax to set up, remove
and undo savepoints within a transaction.

For Microsoft Pocket PC-based devices, Oracle Database Lite only supports one
process accessing a given database. When a process tries to connect to a database in
use, the OracleConnectionOpen method will throw an OracleException. You can
temporarily close a connection to allow another process to connect.

6.1.3 OracleCommand
The OracleCommand class implements the System.Data.IDBCommand interface.
The recommended way to create commands is through the CreateCommand()
method of the OracleConnection class. OracleCommand does have constructors
recommended by the ADO.NET manual, for example
OracleCommand(OracleConnection conn, string cmd).

However this use will make it difficult to port the code to, for example, the ODBC
provider on Windows 32. Creating a connection and then using interface methods to
derive other objects will make changing the provider trivial at compile time (or even
using reflection API at runtime).

6.1.4 OracleParameter and Prepared Statements
Parsing a new SQL statement takes a significant time. It's important to use prepared
statements for any performance-critical operations. Although, IDbCommand has an
explicit Prepare method, a statement will also be prepared on the first use. Just reuse
the object repeatedly without calling Dispose or changing the CommandText property.

6.1.4.1 Parameters
Oracle Database Lite uses ODBC-style parameters, such as the "?" character (without
the quotation marks) in the SQL string. Parameter names and data types are ignored
by the driver and are only for the programmer's use.

Example:
Let us assume that you have created the following table:

create table t1(c1 int, c2 varchar(80), c3 data)

You can use the following parameters in the context of the table that you have created.

IDbCommand cmd = conn.CreateCommand();
cmd.CommandText = "insert into t1 values(?,?,?);"
cmd.Parameters.Add("param1", 5);
cmd.Parameters.Add("param2", "Hello");
cmd.Parameters.Add("param3", DateTime.Now);
cmd.ExecuteNonQuery();

The relevant class names are OracleParameter and OracleParameterCollection.

6.1.5 OracleBlob and Large Object Support
Oracle Database Lite 10g includes in its classes the OracleBlob class to support large
objects. Currently, the Oracle Database Lite ADO.NET implementation supports only
the BLOB data type. Create a new OracleBlob object to instantiate (or insert) a new
BLOB object in the database, as follows:

OracleBlob blob = new OracleBlob(conn);

Classes

Oracle Database Lite 10g ADO.NET Provider 6-3

This object can be used in the same way as the objects for the other datatypes. You can
use it in parameterized SQL statements, as follows:

OracleCommand cmd = (OracleCommand)conn.CreateCommand();
cmd.CommandText = "create table LOBTEST(X int, Y BLOB)";
cmd.ExecuteNonQuery();
cmd.CommandText = "insert into LOBTEST values(1, ?)";
cmd.Parameters.Add(new OracleParameter("Blob", blob));
cmd.ExecuteNonQuery();

The Oracle Blob object also can be retrieved using the data reader to query a table
with a BLOB column:

cmd.CommandText = "select * from LOBTEST";
IDataReader rd = cmd.ExecuteReader();
rd.read();
OracleBlob b = (Blob)rd["Y"];

Or you can write the last line of code as follows:

OracleBlob b = (OracleBlob)rd.getvalue(1);

The OracleBlob class supports reading and writing to the underlying BLOB, as well as
retrieving and modifying the BLOB's size. Use the Length property of OracleBlob to
get or to set its size and the following functions to read and write to the BLOB, as
follows:

public long GetBytes(long blobPos, byte [] buf, int bufOffset, int len);
public byte [] GetBytes(long blobPos, int len);
public void SetBytes(long blobPos, byte [] buf, int bufOffset, int len);
public void SetBytes(long blobPos, byte [] buf);

For example:

byte [] data = { 0, 1, 2, 3, 4, 5, 6, 7, 8 };
 blob.SetBytes(0, data); //append data to the blob
byte [] d = blob.GetBytes(5, (int)blob.Length - 5); //get bytes from position 5 up
to the end
blob.Length = 0; //truncate the blob completely

You can use the Connection property of OracleBlob to retrieve the current
OracleConnection. You can also use the GetBytes method of the data reader to read
the BLOB sequentially, but without accessing it as a OracleBlob object. You should
not, however, use the GetBytes method of the reader and retrieve it as a OracleBlob
object at the same time.

6.1.6 OracleSync and Data Synchronization
To programmatically synchronize databases, you can use the OracleSync class.
Instantiate an instance of the OracleSync class, set relevant properties, and call the
Synchronize method to trigger data synchronization.

For example,

OracleSync sync = new OracleSync();
sync.UserName = "JOHN";
sync.Password = "JOHN";
sync.serverURL = "mobile_server;
sync. synchronize();

Classes

6-4 Oracle Database Lite Developer’s Guide

If you want to get Synchronization Progress information, you must set the
SyncEventHandler attribute of the OracleSync class.

For example,

sync.SetEventHandler (new OracleSync.SyncEventHandler (MyProgressHandler), true);

The MyProgress method must have the following signature.

Void MyProgress(SyncStage stage, int Percentage)

The Oracle Database Lite ADO.NET provider offers basic support for synchronization
with the Oracle server database through the launching of the mSync tool. To bring up
the mSync tool's user interface and to enable the user to modify settings before doing a
synchronization, call:

OracleEngine.synchronize(false)

If the settings are already correct and you want to do an automatic synchronization,
call:

OracleEngine.synchronize(true)

To do a regular synchronization with a specific server, you can use the following:

OracleEngine.synchronize("S11U1", "manager", "myserver.mydomain.com")

Finally, you can call the following:

OracleEngine.synchronize(args)

Table 6–1 lists the command line options and "args" (or arguments) that are
recognized.

Note: Construct "args" using the options that are listed in Table 6–1.

Table 6–1 Command Line Options

Option Description

username/password@server[:port]
[@proxy:port]

Automatically synchronize to the
specified server.

/a Automatically sync to saved
preferred server.

/save Save user info and exit.

/proxy:(proxy_server)[:port] Connect by specific proxy server
and port.

/ssl Synchronize with SSL encryption.

/cast5 Synchronize with CAST5
encryption.

/force Force refresh.

/noapp:(application_name) Do not synchronize specific
Web-to-Go application data.
Synchronize with other
applications.

Running the Demo

Oracle Database Lite 10g ADO.NET Provider 6-5

DataException will be thrown if synchronization fails. Note that you need to close all
database connections before doing a synchronization.

6.2 Running the Demo
This release comes with a sample code demo that illustrates working code using the
Oracle Database Lite ADO.NET provider. To run the demo, follow these steps:

1. If you have not already done so, install the .NET Compact Framework on your
device using netcfsetup.msi.

2. Install Oracle Database Lite on your device, for example olite.us.pocket_
pc.arm.CAB from the following directory:

<Oracle_home>\Mobile\Sdk\wince\Pocket_PC\cabfiles

3. Open ClockIn_wce.csdproj from the ADO.NET\ADOCE\Clockin_wce directory
with Visual Studio.NET 2003. Make sure that the Oracle.DataAccess.Lite
reference in the project points to the DLL in the ADO.NET\ADOCE directory.

4. Select Deploy Application from the Project menu to install the ClockIn sample
application on your Pocket PC device.

5. Use the file manager to launch mSQL in the \OraCE directory on your device. Go
to the Tools tab and click Create to create the POLITE database and its
corresponding ODBC data source. Exit mSQL.

6. Use the file manager to start the ClockIn demo in the \Program files directory.

The demo is a minimalist timecard application for a cable technician who might
install, remove, or repair service and keep track of the hours worked. Choose the job
type and time from the drop down lists at the bottom of the screen and Click "Add" to
enter a new work item and update summary on the title bar. Click on an existing work
item's row to remove it. You can also navigate to a different date to review past work
(change date on the device to create some work items first).

/nopub:(publication_name) Do not synchronize specific
publication data. Synchronize with
other publications.

/notable:(table_name)

/notable:(odb_name).(table_name)

Do not synchronize specific table
data. Synchronize with other
tables.

/onlyapp:(application_name) Synchronize only specific
Web-to-Go application data. Do
not synchronize with other
applications.

/onlypub:(publication_name) Synchronize only specific
publication data. Do not
synchronize with other
publications.

/onlytable:(table_name)

/onlytable:(odbc_name).
(table_name)

Synchronize only specific table
data. Do not synchronize with
other tables.

/high_priority Enable high priority data
synchronization.

Table 6–1 (Cont.) Command Line Options

Option Description

Limitations

6-6 Oracle Database Lite Developer’s Guide

Examine MainForm.cs in ClockIn subdirectory. Pay special attention to the following
items:

1. Creating an Oracle Database Lite connection.

2. Using prepared statements and cleaning up at program exit.

3. Using LiteDataAdapter to retrieve data into disconnected ResultSet and delete an
existing row.

4. Using DataGrid to display data on screen.

Now make some changes to become familiar with ADO.NET development:

1. Add checking for overlapping work items and give an appropriate error.

2. Add an ability to edit an existing work item and give arbitrary start/end times
and description by clicking on a row.

3. Add sync support to ClockIn. You will need to define a primary key on ClockIn
table (use a sequence).

To use the Oracle Database Lite ADO.NET provider from your own project, add a
reference to Oracle.DataAccess.Lite_wce.dll.

6.3 Limitations
In this release of the Oracle Database Lite ADO.NET provider, GetSchemaTable only
returns partial data. For example, it claims that all the columns are primary key,
doesn't report unique constraints, and returns null for BaseTableName,
BaseSchemaName and BaseColumnName. It is recommended that you use ALL_
TABLES and ALL_TAB_COLUMNS instead of this call to get Oracle Database Lite
meta information.

6.3.1 Thread Safety
To build a thread-safe program, make sure that different threads use different
IDbCommand and IDataReader objects. The OracleConnection and IDbTransaction
methods can be called concurrently, except for opening and closing the connection.

Developing Mobile Applications for Palm OS Devices 7-1

7
Developing Mobile Applications for Palm OS

Devices

This document discusses building Oracle Database Lite 10g applications for Palm
devices. Oracle Database Lite 10g for Palm OS supports Simple Object Database
Access (SODA) and Open Database Connectivity (ODBC) as programming interfaces.
This document also describes how to build and run Oracle Database Lite 10g
applications using Metrowerks CodeWarrior 9. It includes the following topics:

■ Section 7.1, "Installing Oracle Database Lite Runtime on the Device"

■ Section 7.2, "Uninstalling or Replacing Oracle Database Lite Runtime"

■ Section 7.3, "Running Oracle Database Lite on Palm OS Emulator"

■ Section 7.4, "Running Oracle Database Lite on Palm OS Simulator"

■ Section 7.5, "Using Oracle Database Lite Base Libraries"

■ Section 7.6, "Building a SODA Application"

■ Section 7.7, "Building a SODA Forms Application"

■ Section 7.8, "Building an ODBC Application"

■ Section 7.9, "Packaging your Application with Oracle Database Lite Runtime"

■ Section 7.10, "Customizing Oracle Database Lite Runtime"

■ Section 7.11, "Palm Shared Library Manager (PSLM)"

7.1 Installing Oracle Database Lite Runtime on the Device
You need to install the Runtime\olSetup.prc on the device to run Oracle Database
Lite applications. If you are installing on the emulator, click olSetup icon in the "Oracle
Lite" program group, If you are installing on the device using HotSync, olSetup will be
run automatically.

Note that a sync with mobile server will replace Oracle Database Lite runtime on the
device with whatever is installed on the server. Choose "Ignore apps" option in
synchronization settings to suppress this behavior.

The file tutorial.html walks you through building a small application for Palm. The
file is located in the following directory:

<Oracle_home>\Mobile\Sdk\Palm\doc\tutorial.html

The top-level list of the Palm-specific documentation which contains the links from
which you can access these various documents (including the tutorial and the SODA
API Reference) is located in the following directory:

Uninstalling or Replacing Oracle Database Lite Runtime

7-2 Oracle Database Lite Developer’s Guide

<Oracle_home>\Mobile\Sdk\Palm\doc\index.html

7.2 Uninstalling or Replacing Oracle Database Lite Runtime
Oracle Database Lite Runtime includes deLite, an application that can be used for the
following tasks:

■ Remove all Oracle Database Lite, but leave applications and shared libraries in
place. This option can be used if an Oracle Database Lite became corrupted (the
application crashes or displays invalid data). Do a sync to restore the user's data to
a device.

■ Remove both Oracle Database Lite Runtime and the databases. Use this option if
you no longer need Oracle Database Lite on the device or before manually
installing a new version.

■ Uninstall Oracle Database Lite and then install an up to date version from the
specified mobile server (by default, the same one used for sync. This can be used
to reset the device to known version of Oracle Database Lite or upgrade from a
version prior to 5.0.2.9.0, that doesn't support automatic upgrade.

7.3 Running Oracle Database Lite on Palm OS Emulator
To install Oracle Database Lite runtime on the PalmOS emulator, choose "Install
application/database" from the right-click menu and select olSetup.prc in mobile
client or mobile SDK directory. Run olSetup once to install the Oracle Database Lite
runtime. Now go to emulator debug options and make sure "MemMgr semaphore"
and "Proscribed function calls" checkboxes are cleared. Oracle Database Lite runtime
uses these features properly and the emulator warnings for these conditions should be
disabled or ignored.

Go to Preferences and check "Redirect NetLib calls to Host TCP/IP". This will allow
you to synchronize with the Mobile Server using the emulator.

7.4 Running Oracle Database Lite on Palm OS Simulator
Oracle Database Lite works properly on PalmOS 5.x devices, however the debug
version of the PalmOS Simulator crashes when running olSetup because of a bug in
the simulator. The release version of the simulator works properly.

7.5 Using Oracle Database Lite Base Libraries
Oracle Database Lite comes with several libraries that do not directly provide database
functionality, but are used by the rest of the runtime. Follow the following steps to add
these libraries to your project:

1. Replace the CodeWarrior with cwStartup.lib (or cwStartup4B.lib if using 4 byte
integers). Make sure the library is in the first segment. Add pslm_app.lib to the
first segment as well. See pslm.html for an explanation.

2. Add libc_stub.lib and olstd.lib to any segment of your application.

3. Include olstd.h in your source files

4. If your PilotMain is started with a launch code that allows access to global
variables, call psCLibrary.open(true) before using Oracle Database Lite.

Packaging your Application with Oracle Database Lite Runtime

Developing Mobile Applications for Palm OS Devices 7-3

5. Use Constructor to generate a PREF resource and set stack size of your application
to 8K.

6. Oracle Database Lite interfaces may change between versions. To avoid
compatibility problems, Oracle Database Lite shared libraries will return errors if
the application is not linked with the matching version of the stub library. When
upgrading Oracle Lite runtime, you need to re-link your application with the new
stubs.

These steps allow access to Oracle Database Lite C library, which provides many of the
ANSI C functions which are otherwise missing from the PalmOS platform. Examine
libc.h for a list. olstd.h defines C++ classes such as a hash table, which are documented
as a part of SODA.

Libc.h defines standard I/O functions such as printf for debugging purposes. To see
the output, run "java BigBrother" on the same PC that is running Palm emulator or
"java BigBrother <IP Address>" to capture output from a PalmOS device connected
through PPP. Note that the program will be blocked when it tries to use printf until the
listener is connected.

7.6 Building a SODA Application
To use SODA, add the following libraries to your project: olSDT.lib, okapi_
stub.lib, soda1.lib and soda2.lib. Include 'soda.h' in the source files.

The SODA documents are located in the following directory.

<Oracle_home>\Sdk\soda\index.html

7.7 Building a SODA Forms Application
To use SODA Forms, include all the SODA libraries and also add sodaform.lib and
sodares.rsrc into your application. The later file contains UI resources used by
SODA Forms. Avoid using resource ids above 30000 for your own resources to prevent
conflicts.

Include "sodaform.h" in your source files.

The file sodaforms.htm discusses SODA Forms, a library for rapid development of
data entry applications on Palm. The file is located in the following directory.

<Oracle_home>\Mobile\Sdk\Palm\doc\index.html

7.8 Building an ODBC Application
To use ODBC (actually a subset of standard ODBC that we support on Palm), include
"odbc.h" and link with odbc_stub.lib.

7.9 Packaging your Application with Oracle Database Lite Runtime
The file olSetup.prc is the Oracle Database Lite installer which extracts a number of
.prc files when synchronized with a device or run on the emulator. It is possible to
make a version of olSetup with additional applications by modifying and running
makesetup.bat in the Sdk/setup directory.

The next step is to remove "olSetup application" in ORACLE_
HOME\Mobile\sdk\Palm\sdk\setup directory from the Mobile Server and publish

Customizing Oracle Database Lite Runtime

7-4 Oracle Database Lite Developer’s Guide

another application with the new version of olSetup.prc as one of the deployed files.
The following events will happen on the next sync:

1. Any changes to data will be first pushed to the server.

2. Oracle Database Lite libraries and databases will be uninstalled from the device.

3. New Oracle Database Lite runtime (and any applications you added) will be
installed from olSetup.prc

4. A full synchronization will be done with the server to restore the databases.

This process will upgrade the version of Oracle Database Lite on the device and avoid
any database compatibility problems.

7.10 Customizing Oracle Database Lite Runtime
In addition to adding your application, you might want to customize Oracle Database
Lite runtime itself. The following changes can be made in makesetup.bat:

7.11 Palm Shared Library Manager (PSLM)
For detailed information on the Palm Shared Library Manager (PSLM), refer
Chapter 8, "Palm Shared Library Manager (PSLM)".

Table 7–1

Change Effect

Add olEncryptTransport.prc Enable AES encryption of data during
synchronization. Note that this does not
work with external authentication on
the server side.

Remove olLibCrypto.prc Disable AES encryption altogether,
including database encryption.

Remove olCompressTransport.prc Disable compression during sync. Can
be useful on devices with very little
memory

Remove odbc.prc If you are only using SODA

Remove msql.prc You may not need this tool on end-user
devices

Substitute okapi.prc from Sdk\setup directory
with okapi.prc from Sdk\setup\card
subdirectory (copy okapi.prc from
Sdk\setup\card one level up) and rerun
makesetup.bat

Will create olSetup.prc for the storage
card version of Oracle Database Lite.
Enables you to use the storage card on
palm device to store Oracle Database
Lite databases instead of main memory.
This will greatly relax the limits on the
database size (will be limited only by
storage card size). Olite databases will
be located in OLDB directory of the
storage card. Since storage card support
constitutes different Olite installation,
we do not currently support accessing
both storage card and in-memory
databases from the same application.

Palm Shared Library Manager (PSLM) 8-1

8
Palm Shared Library Manager (PSLM)

This document discusses the Palm Shared Library Manager (PSLM). It includes the
following topics:

■ Section 8.1, "Overview"

■ Section 8.2, "Trying out PSLM"

■ Section 8.3, "Writing a PSLM Library"

■ Section 8.4, "Building a Shared Library Project"

■ Section 8.5, "Calling a PSLM Library from Your Application"

■ Section 8.6, "Building an Application Using PSLM"

■ Section 8.7, "Exceptions Across Modules"

■ Section 8.8, "Cloaked Shared Libraries"

■ Section 8.9, "Patching the CodeWarrior Runtime"

8.1 Overview
PalmOS provides built-in facilities to load and use shared libraries. However, native
support has severe limitations that make it virtually impossible to port existing code of
significant size. The size of native shared libraries is limited to 32-64K, depending on
code structure. In addition, global variables and many important C++ features, such as
virtual functions and exceptions, can not be used. There are a couple of techniques to
overcome these limitations, such as PRC-Tools glib support and CodeWarrior 9
"expanded mode". However, none of them succeeds in making a shared library as easy
to develop as an application.

Oracle's solution, PSLM, allows one to build a shared library as a regular Palm
application. It is possible to use multiple segments, C++ virtual tables and exceptions
and global variables, even ones with constructors and destructors. PSLM doesn't
require any support from the OS and only uses limited compiler support (a patch the
the publicly available sources of the CW runtime library). It does require some extra
code to be written, but the existing code of the application and an existing static library
does not need to be modified.

8.2 Trying out PSLM
There is a sample using the framework in <Oracle_home>\Mobile\Sdk. After you
do "Build All" on the project file, there will be two PRC files in that directory -
SampleLibrary.prc and SampleApp.prc. Install Oracle Database Lite Runtime
using olSetup.If you touch the "PSLM Sample" icon on the Palm now, it will just print

Writing a PSLM Library

8-2 Oracle Database Lite Developer’s Guide

a couple of message boxes and exit. What happens inside is considerably more
interesting. SampleLibrary.prc is a PSLM shared library that has global variables
and even makes use of another shared library, the ANSI C library that comes with
Oracle Database Lite. Look at Sample.cpp for the implementation of the shared
library and AppStart of Starter.cpp to see how it is called.

8.3 Writing a PSLM Library
A PSLM library is a C++ class that extends PSLibrary. It exposes all it's functionality as
virtual functions. Here is how the SampleLibrary class looks like.

class SampleLibrary : public PSLibrary {
protected:
 /*
 * Overloaded PSLM functions.
 */
 virtual pslmError startup();
 virtual void cleanup(bool isFinal);
public:
 /**
 * Increment an internal counter by a specified value and then
 * return a result as a string (global buffer that will be reused
 * on next call).
 */
 virtual const char *getCounter(int incVal);
 /**
 * Reset a counter to the specified value
 */
 virtual void setCounter(int newVal);
};

This library defines two APIs - getCounter and setCounter. The remaining two virtual
methods - startup and cleanup are called by PSLM itself and are very important.
Basically, a PSLM library must use it's startup and cleanup methods rather than
constructor and destructor to manage it's state. Also, it must be able to handle another
startup after cleanup is done. This is one of the few artifacts caused by lack of the
compiler/OS support. The constructor of a shared library is called normally, but must
not use PSLM itself or even call the methods of it's own object. The destructor is
actually not called at all. Note that it's perfectly Ok to have a pointer to another object
that is constructed during startup and deleted during cleanup.

startup() method is the place to do initialization, including loading additional libraries.
Let's look at the startup method of SampleLibrary:

pslmError SampleLibrary :: startup() {
 PSLibContext ps(this); // Establish access to globals
 cleanOrder = 5; // Unload before libraries with clean order 4 and below on
exit
 return psCLibrary.open();
}

The first line of this method is the most important, but we'll come back to it in a
moment. The second line lets you specified the order in which the libraries will be
unloaded on program exit. If B depends on A, A should have a smaller cleanOrder.
The last line loads the C library and returns success or error of that application.

startup() function can fail by returning a value rather than 0. In this case, the library
being loaded is removed and the error is returned to the caller.

Building a Shared Library Project

Palm Shared Library Manager (PSLM) 8-3

cleanup() method should free all the memory, closing network connections, unload
dependencies and so on. However, if the isFinal argument is set to true it must not
unload other libraries because the program is exiting and it will interfere with PSLM
closing libraries correctly. Here is the cleanup method of SampleLibrary:

void SampleLibrary :: cleanup(bool isFinal) {
 PSLibContext ps(this);
 if (!isFinal)
 psCLibrary.close();
}

Let's look at a regular method of SampleLibrary, together with the variables it's using:

class SampleBuf {
 char *buf;
public:
 SampleBuf(int size) : buf(new char[size]) {}
 ~SampleBuf() { delete[] buf; }
 operator char *() { return buf; }
};
SampleBuf myBuf(128);
int counter;
const char * SampleLibrary :: getCounter(int incVal) {
 PSLibContext ps(this);
 counter += incVal;
 sprintf(myBuf, "%d", counter); // Use LibC - another shared library
 return myBuf;
}

Note that this method uses two global variables and one of them even has a
constructor and a destructor. This is Ok, although global constructors and destructors
can only do simple things. They shouldn't call PSLM and shouldn't use other shared
libraries unless you are sure they are always loaded.

Look at the highlighted line, PSLibContext ps(this). Every exposed virtual method of a
PSLM shared library must start with this line. The constuctor of a PSLibContext sets
the context to that of the library passed as an argument. This is what enables a library
to use it's global variables, virtual functions and exceptions. If you omit this line, you
will get crashes, call random places in memory or even introduce hard-to-track
memory corruption. Also, remember to delete the context before calling any callback
in the main program and re-create it afterwards. If you get this right, you have
mastered PSLM.

The last piece to consider is the library's PilotMain, which is very simple:

UInt32 PilotMain(UInt16 cmd, MemPtr cmdPBP, UInt16 launchFlags) {
 if (cmd == psLibLaunchCode)
 psLibInit(cmdPBP, new SampleLibrary()); // Never returns
 return 0;
}

psLibLaunchCode is what PilotMain gets when the library is open. psLibInit takes a
pointer to a subclass of PSLibrary. It never returns directly. Instead, it returns the
control back to the program that opened the library.

8.4 Building a Shared Library Project
The following illustration, Figure 8–1, shows the CodeWarrior project for
SampleLibrary:

Building a Shared Library Project

8-4 Oracle Database Lite Developer’s Guide

Figure 8–1 The CodeWarrior Project for SampleLibrary

First, note that the usual CodeWarrior startup library (PalmOSRuntime_2i_A5.lib) has
been replaced with cwStartup.lib from our distribution. You can use this patched
startup library for any project, but it must be used to build a PSLM shared library. I
tried to avoid requiring a custom runtime, but recent Metrowerks changes and
especially PalmOS5 support made a patch necessary. Use cwStartup4B.lib if you are
building a project using 4-byte integers. Finally, you might want to patch your own
runtime if you are using a version of CodeWarrior newer than 8.3.

Both cwStartup.lib and pslm_lib.lib must be in the first segment of the application,
otherwise it will crash when loaded. Other files can be in any number of segments. In
this case, I included SampleLib.cpp and libc_stub.lib (which is a static helper for ANSI
C shared libraries. Another important point is that a pslm library must not contain any
UI resources, because they will be used instead the corresponding ones of the
application. Be sure to exclude your Starter.rsrc from shared library targets.

The following illustration, Figure 8–2, shows the "PalmRez Post Linker" section of the
SampleLibrary project:

Figure 8–2 The PalmRez Post Linker Section

Calling a PSLM Library from Your Application

Palm Shared Library Manager (PSLM) 8-5

A PSLM library is linked as an application, but we don't want it to show up as a
Launcher icon. Change type and creator of the .PRC file to PSLM in order to hide it.
Also, set the database name to whatever name you are planing to use when you load
the library.

8.5 Calling a PSLM Library from Your Application
To call a shared library from your application, first use a template class to declare a
proxy object for that library:

PSLibObject<SampleLibrary> sampleLib("SampleLibrary");

The quoted SampleLibrary is the Palm Database Name you specified in the project
settings, while the quoteless one if the name of the class that exposes the APIs. You can
make these two different if you want. You can load the library using:

sampleLib.open(true);

In the above statement, "true" argument means that a fatal exception will be displayed
on the device if the library can not be open. For a nicer error handling, and especially if
the library is optional, just do sampleLib.open() without arguments and process the
returned Err value if not errNone.

Once opened, you can pretend that sampleLib is a SampleLibrary * and write code
such as the following:

StrPrintF(buf, "Value after increment by 3: %s", sampleLib->getCounter(3));

This is actually not very convenient if you originally just had a static library that
defined getCounter. Remedy this problem with preprocessor directives like this one:

#define getCounter (sampleLib->getCounter)
#define setCounter (sampleLib->setCounter)

At this point, you can use getCounter(3), same as with a static library.

Should you call sampleLib.close() to unload SampleLibrary? You can if you need to
free the resources immediately. open() and close() keep a use count and only unload
when it drops to 0. Note though that all the libraries will be automatically unloaded
(ordered by increasing cleanOrder) when the program exits.

If you use sampleLib in more than one file in your program, you should load it in your
AppStart and then declare it as follows in other files:

extern PSLibObject<SampleLibrary> sampleLib;

In the other extreme, you can have a function that loads a plugin, lets it do some work
and then unloads it before returning. In this case, you can declare a local variable of
type PSLibObject and even pass a dynamic argument as a library name to support
user-defined plugins.

The last technique is linking statically to the code that was intended to be a shared
library. If you add SampleLib.cpp to the project (comment out it's tiny PilotMain), you
can do sampleLib.init() before open. This will call a statically linked default
constructor of the template argument and then register the object as a fake shared
library. One interesting result is if MAIN loads LIB1 statically and LIB2 dynamically
and then LIB2 tries to load LIB1, it will get a static copy embedded in main and the
dynamic LIB1 doesn't need to be installed on a device. This allows the main program
to determine exactly which components are statically linked.

Building an Application Using PSLM

8-6 Oracle Database Lite Developer’s Guide

8.6 Building an Application Using PSLM
An application using PSLM must be linked with pslm_app.lib and it must reside in the
first segment. Although this example uses cwStartup.lib, applications can use a regular
runtime libraries and only shared libraries need a patched one. Figure 8–3 shows a
PSLM sample application.

Figure 8–3 PSLM Sample Application

8.7 Exceptions Across Modules
You are free to use exceptions inside the shared library, as long as they are also caught
inside. Unfortunately, its currently not possible to throw an exception in a library and
catch it in the main program. What you want to do, is catch the exception at the top
level API method and store it as a private field in the PSLibrary subclass. Then add a
non-virtual method that checks that field and re-throws an exception. Basically,
non-virtual methods are always static. If you use them both in the library and it's
caller, you must link them with both. For this case, it's the easiest to use an inline
method for re-throwing the exception.

8.8 Cloaked Shared Libraries
Certain C++ features, such as global variables and exception handling, allocate large
amounts of dynamic heap when the program is loaded into memory. PSLM has a
feature that allows allocating a shared library's data segment in storage heap instead.
To use this feature, add one more argument to the PSLibObject template:

PSLibObject<SampleLibrary, true> sampleLib("SampleLibrary");

Internally, this will cause PSLibContext to call MemSemaphoreReserve(true) in the
constructor and MemSemaphoreRelease(true) in the destructor to temporarily
un-protect storage heap while a method of the cloaked library is executing. In some
cases, for example if a shared library returns a pointer to its global variable to the
caller, you may need to do it yourself to modify the data. You can declare a variable of
PMLock class on the stack to unprotect the storage heap for the duration of its scope.

Note that you can not get input from the user while the memory semahore is locked.
Anything that calls EvtGetEvent directly or through another system call will hang.
Therefore, cloaked libraries are only suitable for tasks that don't require user's input.

Patching the CodeWarrior Runtime

Palm Shared Library Manager (PSLM) 8-7

8.9 Patching the CodeWarrior Runtime
PSLM requires a patched version of CodeWarrior runtime libraries to link a shared
library. The Oracle Database Lite build includes cwStartup.lib and
cwStartup4B.lib, which are pre-patched versions of the runtime libraries that come
with CodeWarrior 8.3. If you want to make your own patched runtime, you need to
modify PalmOS_Startup.cpp.

This section is much more difficult than the rest of the document. You need some
experience reading system-level code and applying other people's patches to follow it.
Otherwise, you may want to stick with our pre-patched version or ask someone with
the experience for help.

Let's start with a unified diff generated for CodeWarrior 8.3:

--- PalmOS_Startup_old.cpp 2002-07-19 18:41:26.000000000 -0700
+++ PalmOS_Startup.cpp 2002-09-08 15:51:29.000000000 -0700
@@ -396,6 +396,12 @@

 #endif /* SUPPORT_A4_CONST_GLOBALS */

+SysAppInfoPtr pslmGetAppInfo(
+ SysAppInfoPtr *rootAppPP,
+ SysAppInfoPtr *actionCodeAppPP)
+ SYS_TRAP(sysTrapSysGetAppInfo);
+

+

 /*
 * Main entry point for applications
 */
@@ -408,8 +414,9 @@
 SysAppInfoPtr appInfoP;
 Int16 abort_result = 0;
 Boolean globals_are_setup;
- _CW_Features features;
-#if SUPPORT_A4_CONST_GLOBALS
+ _CW_Features lFeatures;
+ static _CW_Features gFeatures;
+ #if SUPPORT_A4_CONST_GLOBALS
 UInt32 originalA4 = GetA4();
 MemPtr originalExtraP;

@@ -435,18 +442,31 @@
 }
 #endif

+

 /*
 * Call the standard system code for allocating and initializing
globals and
 * setting up A5, and getting the command line arguments
 */
- err = SysAppStartup(&appInfoP, &prevGlobalsP, &globalsP);
+ // PSLM - try to find and execute custom startup code
+#define psLibLaunchCode ((UInt16)0xC001)

Patching the CodeWarrior Runtime

8-8 Oracle Database Lite Developer’s Guide

+ typedef Err (*appStartup)(SysAppInfoPtr* appInfoPP, MemPtr*
prevGlobalsPtrP,
+ MemPtr* globalsPtrP);
+ appStartup start = NULL;
+ SysAppInfoPtr uiP, curP;
+ appInfoP = pslmGetAppInfo(&uiP, &curP);
+ if (appInfoP->cmd == psLibLaunchCode)
+ start = (appStartup)appInfoP->extraP;
+ if (start)
+ err = start(&appInfoP, &prevGlobalsP, &globalsP);
+ else
+ err = SysAppStartup(&appInfoP, &prevGlobalsP, &globalsP);
 if (err) {
 ErrDisplay("Error launching application");
 return 0;
 }

 globals_are_setup = (appInfoP->launchFlags & sysAppLaunchFlagNewGlobals)
!= 0;
-

+ _CW_Features &features = globals_are_setup ? gFeatures : lFeatures;
 /* initialize runtime globals */
 #if SUPPORT_A4_CONST_GLOBALS
 originalExtraP = appInfoP->extraP;

If you have a similar version of PalmOS_Startup.cpp, you can place this diff into a
patch program. But a patch will fail if Metrowerks made a lot of code changes. Let me
walk you through the changes so that you can still make a functionally equivalent
patch.

First, we need to declare a prototype of a PalmOS system function that is not declared
in regular Palm SDK. Put the prototype just before __Startup__:

SysAppInfoPtr pslmGetAppInfo(
 SysAppInfoPtr *rootAppPP,
 SysAppInfoPtr *actionCodeAppPP)
 SYS_TRAP(sysTrapSysGetAppInfo);
/*
 * Main entry point for applications
 */
extern "C" UInt32 __Startup__(void)

Next, 8.3 version of __Startup__ declares a local variable of type _CW_Features and
then stores it in a global pointer that is used elsewhere. This is not good for PSLM,
because it will continue calling functions in a shared library after __Startup__ is
removed from the stack (by a longjmp in psLibInit). Find the declaration of the
variable:

_CW_Features features;

Instead we need to declare both a global version (for PSLM) and a local version (for a
sublaunch without access to globals in other projects):

_CW_Features lFeatures;
static _CW_Features gFeatures;

Now, find this line right after the call to SysAppStartup:

globals_are_setup = (appInfoP->launchFlags & sysAppLaunchFlagNewGlobals) != 0;

Patching the CodeWarrior Runtime

Palm Shared Library Manager (PSLM) 8-9

At this point, we know if the program has global access and if it uses a correct version
of features:

globals_are_setup = (appInfoP->launchFlags & sysAppLaunchFlagNewGlobals) != 0;
_CW_Features &features = globals_are_setup ? gFeatures : lFeatures;

Consider the following call:

err = SysAppStartup(&appInfoP, &prevGlobalsP, &globalsP);

The following code shows what the call should be turned into:

#define psLibLaunchCode ((UInt16)0xC001)
 typedef Err (*appStartup)(SysAppInfoPtr* appInfoPP, MemPtr*
prevGlobalsPtrP, MemPtr* globalsPtrP);

 appStartup start = NULL;
 SysAppInfoPtr uiP, curP;
 appInfoP = pslmGetAppInfo(&uiP, &curP);
 if (appInfoP->cmd == psLibLaunchCode)
 start = (appStartup)appInfoP->extraP;
 if (start)
 err = start(&appInfoP, &prevGlobalsP, &globalsP);
 else
 err = SysAppStartup(&appInfoP, &prevGlobalsP, &globalsP);

SysAppStartup initializes global variables and multiple code segments for normally
loaded applications. PSLM libraries are loaded somewhat abnormally and, in PalmOS
5, SysAppStartup can no longer initialize them correctly without messing up the
calling program. An equivalent process is now performed by the code inside PSLM
and we must modify CodeWarrior runtime to call this custom function for a shared
library launch code. To save space, the internal function only does the same work as
PalmOS 1.0, so do npt disable the support for old devices in build options.

Patching the CodeWarrior Runtime

8-10 Oracle Database Lite Developer’s Guide

Using Mobile Sync for Palm 9-1

9
Using Mobile Sync for Palm

This document discusses using Mobile Sync (mSync) for Palm. mSync for PalmOS
allows a user or a developer to synchronize data with the Mobile Server. User can run
the application (which can be found in Oracle Database Lite program group) manually
and configure various settings. He or she can then tap the Sync button to manually
initiate synchronization over the default network connection configured on the PDA.
There are several other ways to invoke sync with pre-configured settings:

■ HotSync will automatically synchronize Oracle Database Lite databases if the
Oracle Database Lite conduit is installed on the desktop.

■ The DBSession::sync() method, which is part of SODA interface, will launch
mSync and attempt to synchronize over the network connection.

■ SODA Forms applications have "Sync data with the mobile server" option in their
"Form" menu.

9.1 Configuring mSync
When mSync is run, it displays a screen with the most commonly used
synchronization settings. Table 9–1 shows the controls for the synchronization settings
that are displayed by mSync.

Table 9–1 List of Controls for Synchronization Settings

Option Use

User Name Case-insensitive user name on the mobile server

Password Case-insensitive password on the mobile server

Change (password) If selected, New and Confirm fields are shown. Enter the new
password twice to guard against typing mistakes. On the next
successful sync, mobile server password will be changed

Save password Tap this checkbox to save the password on the PalmOS PDA.
You will not have to reenter password every time you sync,
however anyone with physical access to your Palm will be able
to sync, and possibly discover your password. This option is
required to use HotSync and automatic sync through SODA or
SODA Forms applications.

Server Enter host name or hostname:port of your mobile server. When
syncing over network, you might consider entering the IP
address instead to work around DNS configuration problems.

Using HotSync to Synchronize Data with the Mobile Server

9-2 Oracle Database Lite Developer’s Guide

mSync also provides the synchronization settings item under its Options menu, which
can be used to adjust some less frequently used settings, as described in Table 9–2.

9.2 Using HotSync to Synchronize Data with the Mobile Server
This section discusses using HotSync to synchronize data with the Mobile Server.

Proxy When this checkbox is active, an additional Proxy field appears
on screen. Enter the hostname or hostname:port of your HTTP
proxy server. This option only applies during HTTP sync. To
configure a proxy server for HotSync, check Internet Explorer
settings on your desktop.

Secure This checkbox activates secure sync over HTTPS rather than
plain HTTP. You need a PalmOS 5.2 or later PDA to do a
secure network sync. However, any device can HotSync using
this option. HTTPS sync normally requires a valid certificate to
be purchased and installed on the mobile server. For
development purposes, you may prepend @! to server's
hostname to test without a valid certificate. This option should
never be suggested to end users, as it undermines the security
provided by HTTPS.

Forced Tap this checkbox to do a complete refresh on the next sync.
This can solve some data consistency problems. Note that this
option is automatically cleared after one sync.

Log button Tap this button to launch LiteLog application. You will be able
to see the log of the recent failed and successful sync attempts,
as well as any crashes or critical errors encountered by Oracle
Database Lite applications.

Sync button This button will start a sync over the default network
connection.

Cancel button This button will exit mSync and re-start the SODA or SODA
Forms application, if any, that initiated it.

Table 9–2 Synchronization Settings in the Options Menu

Option Use

Hangup after sync Hangup the network connection immediately after the sync is
done. Normally, the connection will be left on and
disconnected when the timeout configured in the Network
settings panel expires.

Push only Send locally made changes to the server, but don't get any data
back. This is a quick way to backup local data to the server.

Ignore apps Disable application deployment and auto-upgrade of the
Oracle Database Lite runtime. Tap this checkbox to sync with a
version of mobile server different from the client version
without causing an upgrade.

Remote Hotsync Tap this checkbox when doing a Network hotsync to enable
successful retries if the Palm Desktop times out.

NLS Code Enter an Oracle-supported language code to sync using the
appropriate character set. Most Japanese, Chinese or Korean
devices are automatically detected by Oracle Database Lite, but
some third-party language add-ons are not.

Table 9–1 (Cont.) List of Controls for Synchronization Settings

Option Use

Using Network Sync

Using Mobile Sync for Palm 9-3

9.2.1 Configuring HotSync for a PalmOS Device
To synchronize Oracle Database Lite databases over HotSync, first install Mobile client
for PalmOS on a PC that already has Palm Desktop. Start mSync on PDA and
configure all the sync options, including "Save password" checkbox. Also, find and
enable "Stay on in Cradle" options in PalmOS Prefs application. Now every HotSync
will automatically synchronize Oracle Database Lite data with the Mobile Server. After
HotSync finished, refer to LiteLog on the device or HotSync log on the desktop to
check for errors.

9.2.2 HotSync Timeout Errors
If the mobile server sends a large volume of data to the PDA, Palm Desktop may
timeout during HotSync and you will see a message box on the desktop while the
PDA is still processing sync data. Just dismiss the dialog or let it time out
automatically. mSync will detect this condition and automatically do another HotSync,
which should go through successfully. Note that if you are viewing the HotSync log
when the PDA reconnects and in some other conditions the retry may fail. Generally,
the error can be ignored, except if another application registered a low priority conduit
that is supposed to run after Oracle Database Lite. In this case, do another HotSync
manually.

This timeout is an issue in Palm Desktop software rather than Oracle Database Lite, in
particular SyncCallRemoteModule API that is used by a conduit to invoke an
application on Palm. If the application takes a lot of time to run, Palm Desktop times
out and aborts HotSync. If PalmSource provides a configurable timeout in a future
release of Palm Desktop, the message box can be avoided by increasing it.

9.2.3 Configuring PalmOS Emulator for HotSync
It's possible to do a Network HotSync with the Palm emulator with the following
steps:

1. Enable Network in HotSync tray menu on the desktop running the Palm emulator.

2. Check the "Remote HotSync" checkbox in mSync options menu.

3. Make sure that "Redirect NetLib calls to Host TCP/IP option" is enabled.

4. Run the HotSync application. Click the "Modem" (rather than "Local") push
button.

5. In Modem sync preferences, choose "Network" rather than "Direct to modem".

6. In "Primary PC setup", enter "localhost" as the hostname and "127.0.0.1" as the IP
address.

7. Click on the connection field below the HotSync icon and choose "AT&T
WorldNet" or any other connection.

8. Click on the HotSync icon in the middle of the screen to do a network HotSync.

9.3 Using Network Sync
mSync can also open a direct connection to the mobile server without going through
the Palm Desktop. If you have a valid network connection, for example through a
modem, integrated cellular phone or Bluetooth, just tap the Sync button on the mSync
main screen.

Using Network Sync

9-4 Oracle Database Lite Developer’s Guide

9.3.1 Synchronizing Using a Cradle and Windows Desktop
It's possible to connect a PalmOS device to the network using a cradle connected to
your PC rather than a dedicated modem. First, you need to enable Incoming
Connections. Modern PalmOS devices use a USB cradle, that requires 3rd-party
software to establish a network connection. One such product is Softick PPP, which
can be purchased from http://www.synclive.com/ppp. Note that we don't offer
support for any issues you may encounter with such 3rd-party software.

For serial cradles, follow the following steps:

Setting up the desktop
1. Uncheck "Local Serial" option in the HotSync pop-up menu and leave it off while

you are using the cradle for networking

2. Go to Modem control panel and create a new modem of type "Communications
cable between two computers". Set "Maximum port speed" to 56K and "Flow
control" to Hardware.

3. In Windows XP, open the Network control panel, choose "Create a new
connection", then "Setup a new connection" and finally "Accept incoming
connections". Choose the modem you just added in "Devices for Incoming
Connections". Select at least one user in "Users you allow to connect". When you
get to TCP/IP settings, choose "Allow callers to access my local area network".

4. If your PC is not using DHCP, you need to find two sequential unused IP
addresses on your local subnet and enter them in the fields under "Specify TCP/IP
address.

5. Older versions of Windows have different ways to enable incoming connections.
For example, in Windows NT 4.0 the equivalent functionality is known as "Remote
Access". You may need to adapt the instructions for the version running on your
desktop.

Setting up the device
1. Go to Connections panel in Palm preferences. Edit the "Cradle/Cable" connection

details by setting speed to 56K and flow control to Hardware.

2. In Network panel, create a new service. Enter username and password of the user
you selected while setting up the desktop. Set the "Connection" to "Cradle/Cable".

3. Choose Details/Script for your service. Enter the following script:

Send: CLIENT

Send: CLIENT

Wait For: CLIENTSERVER

4. Test the service by clicking Connect button. Once the connection is successful,
choose Options/View Log from the Preferences menu. Type ping servername or
ping serverip. If the ping succeeds, you should be able to sync with that mobile
server by tapping the appropriate button in mSync.

9.3.2 Network Sync With PalmOS Emulator
To use mSync on the emulator, make sure "Redirect NetLib calls to Host TCP/IP"
option is set in the preferences. To test SSL, run PalmOS simulator version 5.2 or later.

Building Offline Mobile Applications for Win32: A Tutorial 10-1

10
Building Offline Mobile Applications for

Win32: A Tutorial

This document guides you through the mobile application development process for
the Win32 platform through a tutorial. Topics include:

■ Section 10.1, "Overview"

■ Section 10.2, "Developing Offline Mobile Applications for Win32"

10.1 Overview
To demonstrate the steps involved in building offline mobile applications for the
Win32 platform, this tutorial presents a simplified mobile field service example.

10.2 Developing Offline Mobile Applications for Win32
Let us assume that you have a TASK table on the server that contains information
about tasks that must be accomplished by your mobile field service technicians for a
day. Listed below is the TASK table structure. Each row in the TASK table describes
work to be done at a customer site.

■ TASK(ID number(4) primary key

■ Description varchar(40) not null

■ CustName varchar(30) not null

■ CustPhone varchar(12)

■ CustStAddr varchar(40) not null

■ CustCity varchar(40) not null

■ Notes varchar(100)

Let us also assume that you have three service technicians, Tom, Dick, and Harry. You
want to assign all the tasks in the City of Cupertino to Tom, those in the City of
Mountain View to Dick, and those in the City of Palo Alto to Harry. You envision your
application to work as follows:

Each service technician has a laptop that he uses to obtain his task list in the morning.
He will perform the task during the day and will update the Notes column of a task
with information about its status or what he has done. At the end of his work day, the
service technician uploads his changes to the server.

We will assume the following environment for your application.

■ The Mobile Server is installed on the machine called mserver.

Developing Offline Mobile Applications for Win32

10-2 Oracle Database Lite Developer’s Guide

■ The test Oracle database that is used to store the application data and the Mobile
Server Repository is installed on the machine oradbserver with the listener on
port 1521. The Oracle database instance name is orcl. We will assume that you
can log in to the database with the user name master and password master. You
can substitute any user for master so long as the user has the right privileges.

■ You have already installed the Mobile Development Kit on your development
machine.

Our implementation plan is as follows. The exact sequence of commands for each step
is given later.

1. Create the TASK table in the oradbserver and insert some rows into it. This step
is not needed if you already have a database that contains a table similar to TASK.

2. Use the Packaging Wizard to define an application called Mobile Field Service.
Create one publication item based on the TASK table for the application. Publish
the application (which has no application files) to the Mobile Server.

3. Use the Mobile Manager to create users Tom, Dick, and Harry on the Mobile
Server. Grant all users the privilege to execute the Mobile Field Service application
and create a subscription for each of them.

4. Install the Oracle Database Lite 10g client on your development machine in a
separate directory (emulating a technician's machine). Run the Mobile Sync
application to download the Mobile Field Service application (which is currently
empty) and data.

5. On your development machine, use MSQL to look at the rows in the TASK
snapshot and update the rows by entering notes in the Notes column.

6. Synchronize the changes you made in the snapshot with the server database by
running the Mobile Sync application again.

7. Connect to the server database and check that your changes are there. Modify the
Description of one of the rows for the customer in Cupertino.

8. Run the Mobile Sync application again. You will see the changes that you made on
the server are in the snapshot in the client database.

9. Develop a C or C++ program against Oracle Database Lite to:

■ show the tasks to the technician, and

■ let the technician choose a task and enter notes for it

10. Use the Packaging Wizard to update the application to include the above program.

The Mobile Server is now ready for real life testing.

10.2.1 Command Sequence
The following sections describe the command sequence.

10.2.1.1 Step 1. Create TASK Table on the Server Database
We will use the Oracle9i thin JDBC driver to connect to the Oracle database running in
the oradbserver machine. Ensure that the thin JDBC driver (<Oracle_
home>\jdbc\lib\classes12.zip) file is included in your CLASSPATH
environment variable. We will connect as master with password master.

D:>msql master/master@jdbc:oracle:thin:@oradbserver:1521:orcl

Developing Offline Mobile Applications for Win32

Building Offline Mobile Applications for Win32: A Tutorial 10-3

Now create the TASK table in this database. The SQL script to create and populate the
server database is provided in the following directory.

<Oracle_home>\mobile\sdk\samples\odbc\MFS

SQL>create table TASK(

1> ID number(4) primary key,
2> Description varchar(40) not null,
3> CustName varchar(30) not null,
4> CustPhone varchar(12),
5> CustStAddr varchar(40) not null,
6> CustCity varchar(40) not null,
7> Notes varchar(100));

We will now insert four rows into this table.

SQL> insert into task values(1,'Refrigerator not
working','Able','408-999-9999','123 Main St.','Cupertino',null);
SQL> insert into task values(2,'Garbage Disposal
broken','Baker','408-888-8888','234 Central Ave','Cupertino',null);
SQL> insert into task values(3,'Refrigerator makes
noise','Choplin','650-777-7777','1 North St.','Mountain View',null);
SQL> insert into task values(4,'Faucet leaks','Dean','650-666-6666','10 University
St.','Palo Alto','Beware of dogs');
SQL> commit;
SQL> exit

10.2.1.2 Step 2. Define a Publication Item and Publish the Application
We will now use the Packaging Wizard to create a publication item for your
application.

To use the Packaging Wizard, type the following command at the Command Prompt.

d:\> wtgpack

The Packaging Wizard appears.

Select the 'Create a new application' option and click OK.

In the next panel, select the 'Oracle Lite WIN32:US' platform from the list of 'Available
Platforms'. This action prompts the Packaging Wizard to create a Windows 32
application. Click Next.

The next screen is for entering application information. We will call our application
"Mobile Field Service". We will publish it in the /MFS directory on the Mobile Server.
All our application files will be stored in the directory D:\MFSDEV\Win32 on the
development machine. We need to use the Win32 sub-directory under the
development directory for the Windows 32 application. The Oracle Database Lite Tools
and Utilities Guide discusses the directory naming convention used by the Packaging
Wizard.

Enter the following information on the screen.

Application Name: Mobile Field Service

Virtual Path: /MFS

Description: Field Service Task Assignment

Local Application Directory: D:\MFSDEV (note: you don't specify the Win32
subdirectory here)

Developing Offline Mobile Applications for Win32

10-4 Oracle Database Lite Developer’s Guide

Click Next.

The next screen allows you to include any files such as the executable and image files
that the application will need. It will read the D:\MFSDEV\Win32 directory and will
display all the files found there. For now, we only want to create snapshots and so we
will not include any files yet. Click Next.

The next panel is used to enter the database name that is for the client database. Enter
the following:

Client Side

 Database Name: MFS

Click Next.

The next screen enables you to define publication items that will become snapshots on
the client database. We will create the publication based on the TASK table that we
have defined on the server. We do this by importing the table into the Packaging
Wizard. Click the "Import" button towards the bottom of the screen. You will be
prompted to enter the server login information. Enter the following:

User Name: master

Password: master

Database URL: jdbc:oracle:thin:@oradbserver:1521:orcl

Click the OK button.

A dialog appears listing all the tables that are available. Select the TASK table and click
the Add button. Click the Close button. The TASK table is now listed in the
"snapshots" table. Select the row for the TASK table and click the Edit button.

The next screen enables you to enter the subsetting query for the snapshot. We will
create an updatable snapshot that can be refreshed incrementally (fast refresh). If there
is a conflict in updates, we want the server changes to win. So we enter the following
information.

Set the value of Weight to 1 and then click the tab "Win32".

To explain how table weight works. Table weight is an integer property of association
between publications and publication items. The Mobile Server uses table weight to
determine the order in which to apply client Operations to master tables within each
publication as listed below.

1. Client INSERT operations are executed first, from lowest to highest table weight
order.

2. Client DELETE operations are executed next, from highest to lowest table weight
order.

3. Client UPDATE operations are executed last, from lowest to highest table weight
order.

4. The value assigned must be an integer between 1 and 1023.

Table weight is applied to publication items within a specific publication. For example,
a publication can have more than one publication item of weight "2", which would
have INSERT operations performed for any publication item of a lower weight within
the same publication.

Continuing with the steps to package and publish the application, in the next screen
after setting the value of Weight to 1 and clicking the tab "Win 32", enter the following:

Create on Client: check

Developing Offline Mobile Applications for Win32

Building Offline Mobile Applications for Win32: A Tutorial 10-5

Updatable?: check

Conflict resolution: select the "Server Wins" option

Refresh type: select the "Fast Refresh" option

Template: select * from master.task where CustCity = :city

Click OK. This brings you back to the previous screen. The template query contains a
variable (subscription parameter) named "city". Later, when you provision the
application to a user, you will be prompted to enter the value for it.

Click Finish. A dialog appears. Select "Publish the current application" option and
click OK. A dialog appears prompting you to enter information about the Mobile
Server.

Enter the following:

Mobile Server URL: mserver

Mobile Server User Name: Administrator

Mobile Server Password: admin

Repository path: /MFS

Click OK. If you get the message "Application Published Successfully", click the OK
button and then click the EXIT button. You have successfully published an application
that has no files and one publication item.

10.2.1.3 Step 3. Create Users and Subscriptions
To create users on the Mobile Server, you use the Mobile Manager. To use the Mobile
Manager, you must log in to the Mobile Server as administrator. To log in to the
Mobile Server, perform the following actions.

1. Using a browser, browse the Mobile Server page by entering the following URL.

http://<mobile_server>/webtogo

(For historical reasons, the term "webtogo" instead of "mobileserver" is used in the
URL.)

The Logon page appears. Enter the "administrator" as the User Name and "admin"
as the password.

Click the Logon button.

2. The Mobile Server farms page appears. Click your Mobile Server's link. Your
Mobile Server's home page appears. To display your applications, click the
Applications link. Click the Application Name link for which you will add users.
On the Users page, click the Add User button. The Add User page appears.

You will use this screen to create users Tom, Dick and Harry. We will only show
how to create user Tom in the following commands.

3. Enter the following information.

Display Name: Tom Jones

User Name: Tom

Password: tomjones

Password Confirm: tomjones

System Privilege: User

Developing Offline Mobile Applications for Win32

10-6 Oracle Database Lite Developer’s Guide

4. Click the Save button. The Mobile Manager displays a confirmation message.
Click OK.

5. To provide access to these users, click the Access link. The Access page lists
existing applications. Select the Mobile Field Service application by checking the
"Access" box for it. Click the Save button. A message box appears. Click the OK
button on the message box. You have just granted user Tom the permission to
execute the Mobile Field Service application.

6. To create a data subset in your database during application installation, you will
now define subscriptions for these users. Click the Data Subsetting link. The Data
Subsetting parameters page appears. For the Mobile Field Service application, we
have only one publication item and it has only one subscription parameter called
"city". Enter the value "Cupertino" (without the quotes) for the value of "city" and
click the Save button. The Mobile Manager displays a confirmation message.
Click the OK button.

You have successfully created the user Tom, granted him the privilege to execute the
application "Mobile Field Service", and assigned him all the tasks in the City of
Cupertino.

Repeat the above steps for users Dick and Harry.

10.2.1.4 Step 4. Install the Oracle Database Lite 10g Client and the Mobile Field
Service Application and Data
In a production system, mobile users such as Tom, Dick, and Harry would visit the
setup page of the Mobile Server and download the Oracle Database Lite 10g Windows
32 client. They will then run the Mobile Sync application to download the Mobile Field
Service application and the corresponding data subsets. After downloading the
application and data, they will use the Mobile Field Service application and
occasionally run Mobile Sync to synchronize the data with the server.

However, we are still in the development process and the developer has not yet
developed the real Mobile Field Service application. So far, the installation and initial
synchronization will only create a client Oracle Database Lite database that has a
snapshot called TASK in it.

The developer will install and perform the initial synchronization as user Tom to
retrieve an Oracle Database Lite database with a snapshot in it. He will then test the
synchronization process before he develops the application.

On the machine where you installed the Mobile Development Kit, browse the setup
page of the Mobile Server. The URL is http://<your_mobile_
server/webtogo/setup. The setup page displays a list of supported platforms.
Download the Mobile Client for Win32 by clicking on the appropriate link. To install
the client, choose a directory, say D:\MFS. Browse the directory and familiarize
yourself with its structure. Start the Commend Prompt and enter the following:

C:>D:

D:>cd MFS\Mobile\bin

D:\MFS\Mobile\bin>msync

This will run the Mobile Sync application, downloaded as part of the application
installation. (You can also run the Mobile Sync application in your \sdk\bin
directory.) A dialog appears. Enter the following information:

User Name: Tom

Password: tomjones

Developing Offline Mobile Applications for Win32

Building Offline Mobile Applications for Win32: A Tutorial 10-7

Server: mserver

Click the Sync button. A message box appears showing the progress of
synchronization. When the synchronization process is complete, click the Cancel
button on the Mobile Sync application dialog.

You now have an Oracle Database Lite database on your development machine. It
contains a snapshot called TASK which has two rows in it; both rows have "Cupertino"
for the CustCity column. These are the service requests by customers in Cupertino
and Tom has been assigned these tasks.

The initial synchronization process also created an ODBC data source name (DSN)
called tom_mfs (the user name followed by the underscore character followed by the
database name).

10.2.1.5 Step 5. Browse the TASK Snapshot and Update a Row
Start the Command Line and enter the following:

D:>MFS\Mobile\bin>msql system/manager@jdbc:polite:tom_mfs

SQL> select * from task;

The following two rows are displayed.

SQL> update task set Notes ='Replaced the motor:$65' where ID =
1;

1 row(s) updated

SQL> commit;

commit complete

SQL> exit

You have successfully updated a row of the TASK snapshot.

10.2.1.6 Step 6. Synchronize the Change with the Server
Before you synchronize your change with the server, you must ensure that the MGP
process is running. To ensure that the MGP process is running, follow the directions
given in Step 3 and log on to the Mobile Server as administrator. Navigate to your
Mobile Server home page and click the Applications link. Click the Job Scheduler link
in the bottom section of this page and click the MGP Data Synchronization link. Click
the MGP/Apply Compose Cycles link and schedule the MGP process on the
MGP/Apply Compose Cycles page.

On your development machine, run the Mobile Sync application as described in Step
4. When the synchronization is successfully completed, your changes will be reflected
in the server database.

10.2.1.7 Step 7. Check your changes on the server and modify a server record
Connect to the server database and issue the following SQL statements:

D:> msql master/master@jdbc:oracle:thin:@oradbserver:1521:orcl

SQL> select * from task;

You will see your changes reflected in the table. Now we will make a change in this
table.

SQL> update task set description = 'Garbage Disposal Leaking',
Notes= 'Urgent: house is getting flooded' where id = 2;

Developing Offline Mobile Applications for Win32

10-8 Oracle Database Lite Developer’s Guide

1 row(s) updated

SQL> commit;

Commit complete

SQL> exit

10.2.1.8 Step 8. Synchronize again to get the server changes
On your development machine, run the Mobile Sync application as described in Step
4. When the synchronization is successfully completed, perform the following:

D:>MFS\Mobile\bin>msql system/manager@jdbc:polite:tom_mfs

SQL> select * from task;

You will see two rows displayed. The second row displays the changes that you made
on the server.

10.2.1.9 Step 9. Develop your Mobile Field Service Application Using Oracle
Database Lite
An example ODBC program called MFS.exe is provided with the Mobile
Development Kit in the following directory:

<Oracle_home>\Mobile\Sdk\samples\odbc\mfs

(The\src directory contains the source and the makefile for it.)

This example is very simple and does not use any UI widgets. It displays the task list
and prompts the user to enter the Task ID for the chosen task, before entering notes.
When the user enters the Task ID value as -1, the program terminates. For any valid
Task ID, the MFS application prompts the user to enter notes. Enter notes without
using quotes. You can try to improve the example as required.

To publish this program to the Mobile Server, copy the mfs.exe file into the directory
D:\MFSDEV\Win32.

10.2.1.10 Step 10. Republish the Application with the Application Program
Use the Packaging Wizard to republish the application. From the Command Line,
enter the following:

D:>wtgpack

On the first screen, select the "Edit an existing application" option. From the drop
down list, select "Mobile Field Service" and click the OK button.

In the next screen, click the Files tab. You should see the MFS.exe file listed in the "File
Name" window. Click OK.

In the next screen, select the "Publish the current application" option and click OK.
You will be prompted to enter the login information for the Mobile Server. Click the
OK button after entering the information. You will then see a message box warning
you that the application already exists on the Mobile Server and whether you want to
overwrite it. Click the YES button.

If you get the message "Application Published Successfully", click OK and then click
EXIT. You have successfully republished an application that has a file called mfs.exe
and one publication item.

Test your application by using a fresh Windows 32 machine. Follow Step 4 to install
the Oracle Database Lite 10g client and the Mobile Field Service application on the

Developing Offline Mobile Applications for Win32

Building Offline Mobile Applications for Win32: A Tutorial 10-9

machine. Then execute the Mobile Field Service application by executing the
D:\MFS\Mobile\oldb40\TOM\mfs.exe program. Enter notes for one of the tasks.
Then execute D:\MFS\Mobile\bin\msync.exe to synchronize your changes with
the server.

Developing Offline Mobile Applications for Win32

10-10 Oracle Database Lite Developer’s Guide

Building Offline Mobile Applications for Windows CE: A Tutorial 11-1

11
Building Offline Mobile Applications for

Windows CE: A Tutorial

This document describes how to build a Visual Basic.NET (Visual Studio.NET 2003)
application using the Oracle Database Lite 10g ADO.NET interface for Pocket PC. It
enables you to implement offline mobile applications for the Pocket PC using Oracle
Database Lite 10g. It provides you with the complete framework to build, deploy, and
manage offline mobile applications. Oracle Database Lite 10g supports various
application models for the Pocket PC by supporting industry standard interfaces such
as ODBC, JDBC, and ADO.NET. Topics include:

■ Section 11.1, "Overview"

■ Section 11.2, "Developing the Application"

■ Section 11.3, "Packaging and Publishing the Application"

■ Section 11.4, "Administering the Application"

■ Section 11.5, "Running the Application on the Pocket PC"

11.1 Overview
This document guides you through the entire offline mobile application
implementation process using a sample Pocket PC application. The tutorial enables
you to create, deploy, administer, and use a Pocket PC Windows CE application.

The sample Pocket PC application is based on typical activities of delivery personnel
in the Transportation and Logistics industry. The day-to-day operations of such
personnel involve package pick-up and delivery. A delivery person collects the
complete delivery package list and the package delivery destination information for
the day, before he leaves the dispatch center on his Pocket PC. As the truck driver also
carries information related to package pick-up and delivery with him, the delivery
person can work offline and update the package pick-up and delivery status on his
Pocket PC. Later, he can synchronize his updated information with the central server
running in the dispatch center over any wireless network.

11.1.1 Before You Start
This tutorial assumes that the Mobile Server is installed on the same desktop that is
used for Pocket PC application development. Before starting the offline mobile
application development process, you must ensure that the development computer
and the client device meet the requirements specified below.

Developing the Application

11-2 Oracle Database Lite Developer’s Guide

11.1.1.1 Application Development Computer Requirements
You must configure and install the following components on the development
computer.

Table 11–1 lists the configuration and installation requirements for the mobile
application development computer.

11.1.1.2 Client Device Requirements
You must connect the client device to the desktop and install the Oracle Database Lite
10g client for Pocket PC on the device. For more information on how to install the
Mobile Client on the device, see Section 11.5.1, "Installing the Oracle Database Lite
Mobile Client for Pocket PC".

11.2 Developing the Application
This section explains how to develop and test the Pocket PC Transport application
using the Mobile Development Kit for Pocket PC. The Pocket PC Transport application
is written in Visual Basic.NET (Visual Studio.NET 2003).

To develop and test the Pocket PC Transport application, perform the following tasks.

1. Create database objects in the Oracle database.

2. Write the application code.

3. Compile the application.

11.2.1 Creating Database Objects in the Oracle Server
During deployment, the Mobile Server automatically creates the Oracle Database Lite
10g database in the client device along with the requisite tables and data. To publish
the application, users must create database objects in the Oracle database.

11.2.1.1 The Pocket PC Transport Application Database Objects
The Pocket PC Transport application uses the following database objects.

1. Packages Table

2. Routes Table

3. Trucks Table

Table 11–1 Application Development Computer Requirements

Requirement Description

Windows NT/2000/XP
User Login

The login user on the Windows NT/2000 development
computer must have "Administrator" privileges.

Installed Java Components Java Development Kit 1.3.1 or higher.

Installed Oracle Database
Lite 10g Components

Oracle Database 8.1.7 or higher.

The Mobile Server (Oracle Database Lite 10g CD-ROM).

The Mobile Development Kit (Oracle Database Lite 10g
CD-ROM).

Installed Pocket PC
Components

Microsoft Active Sync 3.7.1 or higher.

Microsoft eMbedded Visual Toolkit 3.0

Developing the Application

Building Offline Mobile Applications for Windows CE: A Tutorial 11-3

Table 11–2 lists the columns of packages that enable you to store all information about
the package.

Table 11–3 lists the columns of routes that enable you to store all information about a
route.

Table 11–4 lists columns of trucks that enable you to store all information about the
availability status and destination information for a truck.

To Create Database Objects
1. The master schema is available in the Oracle Database Server. If the master

schema is not available, enter the following command using the Command
Prompt window.

Table 11–2 Packages Table

Column Description

DID Package ID

DDSC Package Description

DWT Package Weight

DSTR Destination Street

DCTY Destination City

DST Destination State

DRTNR Route Number

DRTNM Route Name

DESN Signature

DSTS Package Status

TID Truck Number

PRTY Priority

PTNO Point Number

TIND Delivery 'D', or Pick-up 'P'

Table 11–3 Routes Table

Column Description

ROUTE_NO Route Number (Primary Key)

ROUTE_NM Route Name

EST_TIME Estimated Time

Table 11–4 Trucks Table

Column Description

TRUCK_NO Truck Number (Primary Key)

TRUCK_STATUS Status of the Truck

ALERT_ADDRESS Mobile or Pager address to send alert to
(Portal User Interface)

DRIVER_ID ID of the Truck Driver

Developing the Application

11-4 Oracle Database Lite Developer’s Guide

> msql system/manager@jdbc:oracle:thin:@<HOST>:<PORT>:<Service_Name>
SQL> create user master identified by master;
SQL> grant connect,resource to master;

The variable <HOST> refers to the machine name where the Oracle database is
installed.

The variable <PORT> refers to the Oracle database listener port.

2. Enter the following commands to create database objects in the Oracle Database
Server.

> cd ORACLE_HOME\Mobile\Sdk\samples\ado.net\Transport

> msql master/master@jdbc:oracle:thin:@<HOST>:<PORT>:
 <Service_Name> @create.sql

11.2.2 Writing the Application Code
The Pocket PC Transport application's Visual Basic.NET (Visual Studio.NET 2003) is
readily available with the sample application. The following section explains the code
written for the Transport application and is presented below.

11.2.2.1 Transport Module (Transport.vb)
To open a database connection, you must declare a connection object. In this tutorial,
the connection object is called conn. The scope of the connection object is project level.
The Connect sub-routine in the transport.vb module establishes a connection to a
DSN named TRANSPORT. This DSN name is mentioned in the Packaging Wizard. For
more information refer, Section 11.3.2, "Defining the Application Connection to the
Oracle Database Server".

11.2.2.2 Main Form (frmMain.vb)
The frmMain.vb file implements the main form of the Transport Tutorial application.
This form connects to Oracle Database Lite on Load time and invokes the Create
Package and View Packages forms, using the appropriate command buttons.

11.2.2.3 View Packages (frmView.vb)
This form displays existing packages from the database. It also allows the user to
modify and save existing packages. This form demonstrates the usage of the
OracleDataAdapter and DataSet classes.

When this form is loaded, it creates an instance of the OracleDataAdapter object
and sets the appropriate OracleCommand objects namely, Select, Update, and
Delete. These OracleCommand objects are created by the transport.vb module
during the main form loading process. Once an OracleAdapter object has been

Note: Ensure that the CLASSPATH includes classes12.jar or
classes12.zip.

Note: While entering the above command to create database
objects, you must include a mandatory space between
"<Service_Name>" and "@create.sql".

Developing the Application

Building Offline Mobile Applications for Windows CE: A Tutorial 11-5

created successfully, this form creates a Dataset object and populates it with data
from Oracle Database Lite, using the OracleDataAdapter object that was created.

dba = New OracleDataAdapter
 dba.SelectCommand = cmdSel
 dba.DeleteCommand = cmdDel
 dba.UpdateCommand = cmdUpd

 ' Fill dataset
 '
 dset = New DataSet
 dba.Fill(dset)

Once the Dataset is filled with Oracle Database Lite data, this form populates the UI
controls using data from the DataSet object.

 Dim table As DataTable = dset.Tables(0)
 Dim rows As DataRowCollection = table.Rows
 Dim row As DataRow = rows.Item(index)

 Me.packDesc.Text = row.Item(1).ToString()
 Me.packWeight.Text = row.Item(2).ToString()
 Me.packStreet.Text = row.Item(3).ToString()
 Me.packCity.Text = row.Item(4).ToString()
 Me.packState.Text = row.Item(5).ToString()
 Me.packRoute.Text = row.Item(7).ToString()

When users make changes to the package data, this form uses OracleAdapter's
Update method to save the changes to Oracle Database Lite.

 Dim row As DataRow = table.Rows(index)
 row.BeginEdit()
 row(6) = Me.packPriority.SelectedItem.ToString()
 row(8) = Me.packStatus.SelectedItem.ToString()
 row.EndEdit()
 dba.Update(table)

11.2.2.4 Create Package (frmNew.vb)
This form allows users to create a new package entry in Oracle Database Lite. During
the form's Load duration, this form creates a unique Package ID and populates the
drop down list controls with Truck Numbers and Route Names.

When the user saves this form, it uses the OracleCommand and OracleParameter
classes to save user changes in Oracle Database Lite.

 cmd = GetConnection().CreateCommand()
 rts = Me.packRoute.SelectedItem.ToString()

 ' Obtain route number
 '
 cmd.CommandText = "SELECT ROUTE_NO FROM ROUTES where ROUTE_NM='" &
rts & "'"
 res = cmd.ExecuteReader()
 While res.Read() = True
 rtn = res.GetString(0)
 End While
 res.Close()

 cmd.CommandText = "INSERT INTO PACKAGES
(DID,DDSC,DWT,DSTR,DCTY,DST,DRTNR,DRTNM,DSTS,TID,PRTY,PTNO,TIND) values

Developing the Application

11-6 Oracle Database Lite Developer’s Guide

(?,?,?,?,?,?,?,?,'NEW',?,?,'1','P')"

 ' Set DID
 '
 par = cmd.CreateParameter()
 par.DbType = DbType.String
 par.Direction = ParameterDirection.Input
 par.Value = id
 cmd.Parameters.Add(par)

 ' Set DDSC
 '
 par = cmd.CreateParameter()
 par.DbType = DbType.String
 par.Direction = ParameterDirection.Input
 par.Value = Me.packDesc.Text
 cmd.Parameters.Add(par)

 cmd.ExecuteNonQuery()
 cmd.Dispose()

11.2.3 Compiling the Application
To install the application on the device, you must create a CAB file. The CAB file is
uploaded into the Mobile Server Repository during the application's publish phase.
You can create a CAB file using the Visual Basic.NET (Visual Studio.NET 2003).

11.2.3.1 Creating CAB Files
To build CAB files for the Transport Tutorial application, right click on the 'Transport'
project tree view object on the 'Solution Explorer' window of Visual Studio.NET 2003.
Choose the 'Build CAB File' object from the popup menu.

To create the CAB file, select the Application Install Wizard... submenu from the
Remote Tools option under the Tools menu in the Visual Basic.NET (Visual
Studio.NET 2003) IDE.

1. Open the Project file ".ebp" of the application by entering the following value.

<Oracle_home>\Mobile\Sdk\samples\ado.net\Transport

2. Enter the directory name of the ".vb" file that you created and saved in the
previous section.

3. Enter a directory name to store the CAB files. For example:
"C:\Transportinstall.

4. Select the required processor for which you want to create a CAB file. For
example, ARM 1100.

5. The Application Install Wizard displays default Active X Controls. Accept the
default controls and click Next.

6. The next window prompts you to include additional files such as images to the
application. The current application has two image files namely, ipaq.bmp and
Olite.bmp. Both files are not system files. Click Next.

Packaging and Publishing the Application

Building Offline Mobile Applications for Windows CE: A Tutorial 11-7

7. Enter "Transport" as the value for all fields in the Application Install Wizard
except in the "Company Name" field. Enter "Oracle" as the value for the
"Company Name" field.

8. Click Create Install.

The Application Install Wizard creates CAB files for the selected processors and
saves them under the "C:\Transportinstall\CD1" directory.

To skip the steps in this section for creating a CAB file, a cab.zip file is provided in
the following directory.

<Oracle_home>\Mobile\Sdk\samples\ado.net\Transport

11.2.3.2 Installing the Application from the CAB File
You can download and install the application on the device after packaging and
publishing the application. The following sections describe how to package and
publish the application.

11.3 Packaging and Publishing the Application
This section describes how to package the application and prepare it for publishing
into the Mobile Server. To package and publish the application, you must perform the
following tasks.

1. Define the application using the Packaging Wizard.

2. Define the application connection to the Oracle Database Server.

3. Define the snapshot.

4. Publish the application.

11.3.1 Defining the Application Using the Packaging Wizard
Using the Packaging Wizard, you can select and describe the Transport application.

11.3.1.1 Creating a New Application
Using the Mobile Server's Packaging Wizard, you can create or modify a Pocket PC
application and publish the Pocket PC application into the Mobile Server. For more
information on how to use the Packaging Wizard, see the Oracle Database Lite Tools and
Utilities Guide.

You can select and describe the Pocket PC Transport application by launching the
Packaging Wizard in regular mode.

To launch the Packaging Wizard in regular mode, perform the following steps.

1. Using the Command Prompt, enter the following.

cd ORACLE_HOME\mobile\sdk\bin

wtgpack

As Figure 11–1 displays, the Packaging Wizard displays the Welcome panel. Select
the Create a new application option and click OK.

Packaging and Publishing the Application

11-8 Oracle Database Lite Developer’s Guide

Figure 11–1 Welcome Dialog

2. The Select Platforms panel appears. Choose WinCE from the list displayed and
click Next.

3. The Application panel appears. As Table 11–5 describes, enter the Pocket PC
Transport application settings. Figure 11–2 displays the Applications panel.

Figure 11–2 Applications Panel

Table 11–5 The Pocket PC Transport Application Settings

Field Value

Application Name Transport

Virtual Path /Transport

Packaging and Publishing the Application

Building Offline Mobile Applications for Windows CE: A Tutorial 11-9

4. Click Next. As Figure 11–3 displays, the Files panel appears.

Figure 11–3 Files Panel

The Files panel automatically lists all files that reside in the directory, based on the
'Local Application Directory' specified in the previous Application panel. Ensure
that you select the correct CAB file from the directory in which you saved the CAB
file, using the Application Install Wizard.

For example, in this tutorial, you must select the Transport_PPC.ARM.CAB
because your target device is Pocket PC with the ARM chipset.

11.3.2 Defining the Application Connection to the Oracle Database Server
After selecting the appropriate CAB file, you must define the application connection
details to the Oracle Database Server.

On the Files panel, click Next. As Figure 11–4 displays, the Database panel appears. It
enables you to define the Transport application's connection information to the Oracle
Database Server.

Description Transport and Logistics Management

Local Application
Directory

<Oracle_home>\Mobile\Sdk\samples\ado.net\Transport

Publication Name Leave this field blank.

Table 11–5 (Cont.) The Pocket PC Transport Application Settings

Field Value

Packaging and Publishing the Application

11-10 Oracle Database Lite Developer’s Guide

Figure 11–4 Database Panel

The Client Side Database Name field refers to the Data Source Name (DSN) for the
Oracle Database Lite database file, which is automatically created on the device. In this
filed, enter the value 'transport'.

11.3.3 Defining Snapshots
After specifying the application connection details, you must define the snapshots
used by your mobile application. The Snapshots panel defines database tables that
contain your mobile application data and is used for periodic synchronization. It
enables you to define the synchronization logic for the Transport application. The
Packaging Wizard also enables you to import table definitions from the Oracle
Database Server.

To define snapshots for the Transport application, perform the following steps.

1. On the Database panel, click Next. As Figure 11–5 displays, the Snapshots panel
appears. To import the table definition from the Oracle Database Server, click
Import. The Connect To Database dialog appears. Enter values as specified in
Table 11–6.

Packaging and Publishing the Application

Building Offline Mobile Applications for Windows CE: A Tutorial 11-11

Figure 11–5 Snapshots Panel

2. Click OK. The Tables dialog appears and displays a list of available tables.

Select the Packages, Trucks, and Routes tables. Click Add and click Close. The
Snapshots panel displays the chosen database tables.

3. Select the Packages table and click Edit. As Figure 11–6 displays, the Edit
Snapshots panel appears.

Table 11–6 Connect to Database Dialog Description

Field Description Value

User
Name

Schema name (database user name)
which has the database object

master

Password Password of the schema owner master

URL jdbc:oracle:thin:@<HOST>:<PORT
>:<Service_Name>

jdbc:oracle:thin:@ssinghan-pc
:1521:webtogo

Note: If you do not have the database object on the Oracle Server,
you can still create one using the New button on the Snapshots
panel.

Packaging and Publishing the Application

11-12 Oracle Database Lite Developer’s Guide

Figure 11–6 Edit Snapshots Panel

4. To control the order in which the snapshots are refreshed on the client, you must
change the weight for the Packages table to 1. Clear the Generate SQL box, as you
have already created database objects in the Oracle Database Server and hence, do
not need to create SQL for creating the database.

5. Click the WinCE tab. You must ensure that the Create on Client box is selected,
and the Template field displays the following SQL statement.

SELECT * FROM MASTER.PACKAGES

Note: Ensure that the Create on Client box is selected. If the
Create on Client box is not selected, the corresponding snapshot is
not created on the Oracle Database Lite client.

Note: To update the snapshot on a client, you must ensure that
the Updatable? box is checked. If the Updatable? box is not
checked, the data synchronization will always be unidirectional
from the Oracle Database, and all changes made from the device
will be lost.

Packaging and Publishing the Application

Building Offline Mobile Applications for Windows CE: A Tutorial 11-13

6. Click OK.

7. In the Snapshots panel, select the Routes table and click Edit. The Edit Snapshot
dialog appears.

8. To control the order in which snapshots are refreshed on the client, change the
weight for the Routes table to 2. Clear the General SQL box, as you have already
created database objects in the Oracle Database Server and do not need to create
SQL for creating the database.

9. Ensure that the Create on Client box is selected, and the Template field displays
the following SQL statement.

SELECT * FROM MASTER.ROUTES

10. Repeat steps 8 through 10 for the TRUCKS table. Use 3 as the value for weight.

11. Click Next. The DDLs panel dialog appears.

12. Click Finish. The Application Definition Completed dialog appears.

11.3.4 Publishing the Application
Using the Application Definition Completed dialog, you can package and publish the
Pocket PC Transport application.

To publish the Transport application, perform the following steps.

1. In the Application Definition Completed dialog, select the Publish the Current
Application option and click OK.

2. The Publish the Application dialog appears. As Table 11–7 describes, enter the
specified values.

3. To publish the application in the Mobile Server Repository, click OK. A dialog
displays the application's publishing status. You must wait until the application is
published.

4. To confirm that the application is published successfully, click OK.

Note: As we do not update the Routes and Trucks tables in this
tutorial, users must clear the Updatable? box, but ensure that the
Create on Client box is selected.

Table 11–7 Publish the Application Dialog Description

Field Description Value

Mobile Server URL URL or IP Address of the machine where the
Mobile Server is running.

<Mobile
Server>/webtogo

Mobile Server User
Name

User name of the Mobile Server user with
administrative privileges.

Administrator

Mobile Server
Password

Password of the Mobile Server user with
administrative privileges.

admin

Repository Directory Directory name where all files for this application
will be stored inside the Mobile Server
Repository.

/transport

Public Application Do not select this check box unless you want to
make this application available to all users.

Clear

Administering the Application

11-14 Oracle Database Lite Developer’s Guide

5. To exit the Packaging Wizard, click Exit.

At this stage, you have completed all the development tasks required for packaging or
publishing the application.

11.4 Administering the Application
This section describes how to administer the mobile application published by you into
the Mobile Server. To administer the application, perform the following tasks.

1. Start the Mobile Server.

2. Launch the Mobile Manager.

3. Create a new user.

4. Set application properties.

5. Grant user access to the application.

6. Start MGP.

For more information on the Mobile Manager see the Oracle Database Lite
Administration and Deployment Guide.

11.4.1 Starting the Mobile Server
To start the Mobile Server in standalone mode, enter the following command using the
Command Prompt.

> java -jar oc4j.jar

11.4.2 Launching the Mobile Manager
Using the login user name and password, you can log in to the Mobile Server and
launch the Mobile Manager.

To start the Mobile Manager, perform the following steps.

1. Open your web browser and connect to the Mobile Server by entering the
following URL.

http://<mobile_server>/webtogo

2. Log in as the Mobile Server administrator using administrator as the User
Name and admin as the Password.

3. To launch the Mobile Manager, click the Mobile Manager link in the workspace.
The Mobile Server farms page appears. To display your Mobile Server's home
page, click your Mobile Server link.

Figure 11–7 displays the Mobile Server home page.

Note: You must replace the <mobile_server> variable with
your Mobile Server's host name.

Administering the Application

Building Offline Mobile Applications for Windows CE: A Tutorial 11-15

Figure 11–7 Mobile Server Home Page

11.4.3 Creating a New User
To create a new Mobile Server user, perform the following steps.

1. In the Mobile Manager, click the Users tab.

2. Click Add User. As Figure 11–8 displays, the Add User page appears.

Figure 11–8 Add User Page

3. Enter data as described in Table 11–8.

Administering the Application

11-16 Oracle Database Lite Developer’s Guide

4. Click Save. The Mobile Manager displays a confirmation message.

5. Click OK.

Table 11–8 lists the values that you must enter in the Add User page.

11.4.4 Setting the Application Properties
To set the Pocket PC Transport Application's properties, perform the following steps.

1. In the Mobile Manager, click the Applications tab. As Figure 11–9 displays, The
Applications page appears. You can search the list of available applications by
application name.

Figure 11–9 Applications Page

2. Click Transport. The Transport application page appears. It displays an
application's properties and database connectivity details.

3. In the Platform Name, select Oracle Lite PPC2000 ARM; US. In the Database
Password field, enter "master". This is the default password for the "master"
user schema of the Oracle Server Database.

4. Click Save.

Table 11–8 The Add User Page Description

Field Value

Display Name bob

User Name bob

Password bobhope

Password Confirm Re-enter the password for
confirmation

System Privilege Select the "User" option

Administering the Application

Building Offline Mobile Applications for Windows CE: A Tutorial 11-17

11.4.5 Granting User Access to the Application
To grant user access to the Transport application, perform the following steps.

1. In the Transport application page, click the Access link. As Figure 11–10 displays,
the Access page lists application users and application groups. To grant access to a
user or a group of users to the Transport application, select the corresponding
boxes.

For example, to provide access to a user named BOB, locate the user name "BOB"
in the Users list and select the corresponding box.

2. Click Save. The user "BOB" is granted access to the Transport application.

Figure 11–10 displays the Access page of the Transport application.

Figure 11–10 Access Page

11.4.6 Starting the Message Generator and Processor (MGP)
In the Oracle Database Lite 10g Asynchronous replication model, a client does not wait
for the server to prepare the payload. A payload contains data that will be
synchronized. The Mobile Server prepares the payload for all mobile clients
asynchronously by running the MGP process in the background at all times. Hence,
when a Mobile Client initiates the synchronization process, the Mobile Server uploads
the client payload into an in-queue and picks up the payload for the client from the
corresponding out-queue. The MGP processes payloads in the in-queues and
out-queues and performs database operations with the Oracle Server in the
background.

Running the Application on the Pocket PC

11-18 Oracle Database Lite Developer’s Guide

To start the MGP, perform the following steps.

1. Navigate to the Mobile Manager Home page and click Jobs in the Components
list. The Job Scheduler page appears.

2. Click the Start button.

Figure 11–11 displays the Job Scheduler page.

Figure 11–11 Job Scheduler Page

11.5 Running the Application on the Pocket PC
This section describes how to run the application after creating, testing, deploying,
and administering the application. To run the application, perform the following tasks.

1. Install the Oracle Database Lite Mobile Client for Pocket PC.

2. Install and synchronize the Transport application.

11.5.1 Installing the Oracle Database Lite Mobile Client for Pocket PC
To install the Oracle Database Lite Mobile Client for Pocket PC, perform the following
actions.

1. Open your desktop browser and enter the following URL to connect to the Mobile
Server.

http://<Mobile_Server>/webtogo/setup

Note: You must replace the <Mobile_Server> variable with the
host name or IP address of your Mobile Server.

Running the Application on the Pocket PC

Building Offline Mobile Applications for Windows CE: A Tutorial 11-19

A web page appears displaying links to various Oracle Database Lite Mobile
Clients with different platforms. You can filter the selection by Language and
Platform.

2. Click the hyperlink Oracle Lite PPC2000 ARM to access the setup program for the
Pocket PC device with the ARM chipset.

Figure 11–12 displays the Mobile Client Setup page.

Figure 11–12 Mobile Client Setup Page

3. If you are using Netscape as your browser, choose a location on your desktop to
save the setup program and click OK. Open the Windows Explorer program and
locate the "setup.exe". To run the setup program, double-click "setup.exe".

If you are using Internet Explorer, run the "setup" program from your browser
window. Once started, the setup program asks you to provide the user name and
password to log on to the Mobile Server. Enter BOB as the User Name and
bobhope for the Password. Click OK.

4. The setup program asks you to provide an install directory. Use the default
directory C:\mobileclient\olite, and click OK. To confirm your install
directory, click Yes.

5. The setup program automatically downloads all the required components to the
specified destination on your desktop computer.

6. Assume that you have a Pocket PC device attached to your desktop computer and
are connected with Microsoft's ActiveSync. The installation for your Pocket PC
device starts automatically.

7. Click Yes to confirm installing Oracle Lite PPC ARM; US to the default
application directory. The application's installation starts on the device. Once
completed, the Mobile Client for Pocket PC is installed on your device under the
\ORACE directory.

11.5.2 Installing and Synchronizing the Transport Application and Data
To install the Transport application and data, perform the following steps.

Running the Application on the Pocket PC

11-20 Oracle Database Lite Developer’s Guide

1. On the device, locate and tap the mSync application icon in the programs group.

2. The mSync dialog appears. To download the Transport application and snapshots
for user BOB, enter data as described in Table 11–9.

Figure 11–13 displays the mSync dialog on the Pocket PC.

Figure 11–13 Running mSync on Pocket PC

3. To save these values, tap Apply.

4. To synchronize your application and data to the device, tap the Sync button.

5. After the synchronization process is complete, a transport.odb file is created
under the \OraCE directory and the Transport application is installed on the
Pocket PC automatically.

6. Using the Start menu on the device, locate the Transport application in the
Programs menu.

7. To run the Transport application, tap the Transport icon.

Table 11–9 Values You Must Enter in the mSync Dialog

Name Value

UserName bob

Password bobhope (all lowercase)

Save password box Select

Server Machine name or IP address

Note: Ensure that the device is connected to the desktop or the
network and that the Mobile Server is running.

Building Mobile Web Applications: A Tutorial 12-1

12
Building Mobile Web Applications: A Tutorial

This tutorial guides you through the relevant phases of implementing a web
application for mobile devices. Topics include:

■ Section 12.1, "Overview"

■ Section 12.2, "Developing the Application"

■ Section 12.3, "Packaging the Application"

■ Section 12.4, "Publishing the Application"

■ Section 12.5, "Administering the Application"

■ Section 12.6, "Running the Application on the Mobile Client for Web-to-Go"

12.1 Overview
Using a simple "To Do List" application, this tutorial guides you through the different
phases of implementing a web application for mobile devices, with a detailed
description of the creation, deployment, and administration phases. The To Do List
application allows the user to maintain a list of To Do items. It maintains a status for
each item indicating its completion and stores all items in the Oracle database. The To
Do List application can be accessed by multiple users and displays their corresponding
To Do items.

This overview is followed by five sections, each of which contains several topics that
represent a unique phase in the life cycle of the To Do List application. When you
complete each section, you can either review its contents, view related documentation,
or proceed to the next one.

This tutorial uses a limited set of the functionality that is available. For a complete list
of functionality and limitations, see Chapter 4, "Developing Mobile Web Applications".
For more information on Oracle Database Lite concepts, refer the Oracle Database Lite
Concepts Guide.

12.1.1 Before You Start
This tutorial assumes that you have installed and configured the Mobile Development
Kit for Web-to-Go and the Mobile Server on the same computer. Before you start the
tutorial, ensure that the development computer and the client computer meet the
requirements specified below.

12.1.1.1 Development Computer Requirements
As Table 12–1 describes, the development computer must contain the following
components.

12-2 Oracle Database Lite Developer’s Guide

12.1.1.2 Client Computer Requirements
The client computer is used to test your mobile web applications in online or offline
mode. Using a browser, the client computer must connect to the Mobile Server over a
network.

12.2 Developing the Application
This section describes how to develop and test the To Do List application, using the
Mobile Development Kit for Web-to-Go. As Table 12–2 describes, the To Do List
application contains the following components.

The source code for the ToDoList application is installed along with the Mobile
Development Kit. It can be found at the following location.

ORACLE_HOME\mobile\sdk\wtgsdk\src\tutorial

The javaServer Page
The To Do List JSP generates an HTML page which displays the list of items that must
be completed. You can access the To Do List JSP from the following location.

ORACLE_HOME\mobile\sdk\wtgsdk\src\tutorial\ToDoList.jsp

The JavaBean
The To Do List JSP uses a JavaBean to perform operations with the Oracle database.
You can access the To Do List JavaBean from the following location.

ORACLE_HOME\mobile\sdk\wtgsdk\src\tutorial\ToDoBean.java

The Java Servlet
The To Do List Java Servlet inserts a new To Do Item in the Oracle database, and uses
the To Do List JSP to regenerate the HTML page. You can access the To Do List Java
Servlet from the following location.

ORACLE_HOME\mobile\sdk\wtgsdk\src\tutorial\InsertToDo.java

Table 12–1 Development Computer Requirements

Requirement Description

Windows User Login The Windows login user on the development computer must be
assigned ADMINISTRATOR privileges.

Installed Java Components Java Development Kit 1.3.1 or higher.

Installed Oracle
Components

Oracle Database 8.1.7 or higher.

Mobile Server (Oracle Database Lite CD-ROM)

The Mobile Development Kit for Web-to-Go (Oracle Database
Lite CD-ROM)

Table 12–2 To Do List Application Components

Component Function

Java Servlet Accesses the database and inserts To Do items.

Java Server Page (JSP) Provides the To Do List application user interface in HTML.

JavaBean Provides database access to the JSP.

Developing the Application

Building Mobile Web Applications: A Tutorial 12-3

In this section, the following tasks are discussed.

■ Section 12.2.1, "Step 1: Creating Database Objects in Oracle Database Lite"

■ Section 12.2.2, "Step 2: Compiling the Application"

■ Section 12.2.3, "Step 3: Defining the Application and Registering the Servlet"

■ Section 12.2.4, "Step 4: Conducting a Trial Run"

The Mobile Development Kit for Web-to-Go always uses Oracle Database Lite as the
development database.

The Mobile Development Kit for Web-to-Go also uses a web server that is referred to
as the Mobile Client Web Server.

12.2.1 Step 1: Creating Database Objects in Oracle Database Lite
In this step, you will create the To Do List application's database objects in Oracle
Database Lite.

During the development phase, the To Do List application's servlet stores the To Do
items in Oracle Database Lite. Later, during the deployment phase, you will copy the
database objects from Oracle Database Lite to the Oracle database.

12.2.1.1 The To Do List Application Database Objects
The To Do List application uses the following database objects.

1. The TODO_ITEMS table.

The application stores To Do Items in this database table. As Table 12–3 describes,
the To Do Items table contains the following columns.

2. The TODO_SEQ sequence.

Each time a user inserts a new record in the TODO_ITEMS table, the TODO_SEQ
sequence generates a primary key value for the new record.

12.2.1.2 Required Action
Create the database objects in Oracle Database Lite using MSQL. MSQL is an
interactive tool that allows you to execute SQL statements against Oracle Database
Lite. It is similar to SQL*Plus. To create the database objects, you must run the SQL
script named tutorial.sql. Using the Command Prompt, enter the following
statements.

1. cd ORACLE_HOME\mobile\sdk\wtgsdk\src\tutorial

2. msql system/xyz@jdbc:polite:webtogo @tutorial.sql

Table 12–3 The TODO_ITEMS Table

Column Function

ID Primary key

TODO_ITEM Text describing the To Do item

USERNAME Owner of the To Do item

DONE Indicates whether or not the To Do item has been completed

12-4 Oracle Database Lite Developer’s Guide

12.2.2 Step 2: Compiling the Application
In this step, you will compile the application by performing the following tasks.

1. Set the CLASSPATH to include required libraries.

2. Compile the Java Servlet and JavaBean.

3. Install the JSP.

12.2.2.1 Required Action
1. Set the CLASSPATH.

You must set the CLASSPATH to include the required Java Servlet Development Kit
and Mobile Server libraries. To include these libraries, this tutorial provides a
script called setenv.bat. Using the Command Prompt, enter the following
commands.

cd ORACLE_HOME\mobile\sdk\wtgsdk\bin

setenv.bat

2. Compile the application.

You can compile the application manually or by running the compile.bat script. To
run the script, start the Command Prompt and enter the following commands.

cd ORACLE_HOME\mobile\sdk\wtgsdk\src\tutorial

compile.bat

To compile the application manually, perform the following tasks.

a. Compile the Java Servlet.

Using the Command Prompt, enter the following commands.

cd ORACLE_HOME\mobile\sdk\wtgsdk\src\tutorial

javac -d ..\..\root\tutorial InsertToDo.java

This creates the following servlet class file.

ORACLE_
HOME\mobile\sdk\wtgsdk\root\tutorial\InsertToDo.class

b. Compile the Java Bean.

Using the Command Prompt, enter the following command.

javac -d ..\..\root\tutorial\WEB-INF\classes ToDoBean.java

c. Install the JSP.

Using the Command Prompt, enter the following command.

copy ToDoList.jsp ORACLE_
HOME\mobile\sdk\wtgsdk\root\tutorial\ToDoList.jsp

Note: MSQL requires a user name and password. Enter system
as the User Name and substitute xyz with any alphanumeric
string.

There is a mandatory space between webtogo and
@tutorial.sql.

Developing the Application

Building Mobile Web Applications: A Tutorial 12-5

12.2.3 Step 3: Defining the Application and Registering the Servlet
In this step, you must perform the following tasks.

■ Use the Packaging Wizard to create the To Do List application.

■ Add application files.

■ Register the application's servlet with the Mobile Client Web Server.

In the development environment, every application and its associated servlets must be
registered with the Mobile Client Web Server. You do not need to register the To Do
List JSP or JavaBean.

12.2.3.1 The Packaging Wizard
As a mobile application developer, you can use the Packaging Wizard to create or
modify Web-to-Go applications. During this tutorial, you will first run the Packaging
Wizard in development mode and subsequently in regular mode. In development
mode, you will use the Packaging Wizard to perform the following functions.

■ Define the Web-to-Go application

■ Add files

■ Compile JSP files

■ Register Servlets

Running the Packaging Wizard in development mode disables the panels that it uses
exclusively during deployment. As you will publish the application to your local
machine, you do not have to enter the application's connectivity or database
information in the Packaging Wizard.

For more information on how to use the Packaging Wizard, refer the Oracle Database
Lite Tools and Utilities Guide.

12.2.3.2 Required Action
Define the To Do List application and register its servlet by performing the following
steps.

1. Start the Packaging Wizard in debug mode. Using the Command Prompt, enter
the following commands.

cd ORACLE_HOME\mobile\sdk\bin

wtgpack -d

The Packaging Wizard appears and provides you with the option to create a new
application, edit an existing application, delete an existing application, or open a
packaged application, as displayed in Figure 12–1.

Note: Deleting an existing application merely deletes the application
from the XML file and does not remove the application from the
Mobile Server.

12-6 Oracle Database Lite Developer’s Guide

Figure 12–1 Make a Selection Dialog

2. Select the Create a new application option and click OK.

3. The Select a Platform panel appears. As Figure 12–2 displays, this panel enables
you to specify the platform for your application. Select Oracle Lite WEB;US from
the Available Platform list. Click Next.

Figure 12–2 Selecting a Platform

4. As Figure 12–3 displays, the Application panel appears. Use the Application panel
to modify To Do List application settings. As Table 12–4 describes, enter the
specified values in the corresponding fields.

Developing the Application

Building Mobile Web Applications: A Tutorial 12-7

Figure 12–3 Application Panel

5. Click Next. As Figure 12–4 displays, the Files panel appears. Using the Files panel,
you can select files that are part of the application. The Packaging Wizard uploads
the selected files from the local application directory to the application repository
on the Mobile Server.

The Files panel identifies files that the Packaging Wizard uploads from the local
application directory to the application repository on the Mobile Server.

Table 12–4 The To Do List Application Values

Field Value

Application Name ToDoList

Virtual Path /tutorial

Description This is the To Do List Application

Application Classpath (Leave this field blank)

Default page ToDoList.jsp (this is case sensitive)

Local Application
Directory

ORACLE_HOME\mobile\sdk\wtgsdk\root\tutorial

Publication Name (Leave this field blank)

Icon tutorial.gif

12-8 Oracle Database Lite Developer’s Guide

Figure 12–4 Uploading Application Files

6. Click Compile JSP. The Packaging Wizard compiles all your JSP files to Java
Servlet classes. As Figure 12–5 displays, the following confirmation page appears.

Figure 12–5 JSP Compilation Completion Message

7. As Figure 12–6 displays, the generated files are automatically added to the list of
application files.

Developing the Application

Building Mobile Web Applications: A Tutorial 12-9

Figure 12–6 Including Generated Files to Application Files

8. To view To Do List application servlets, click Next. To register with the Mobile
Client Web Server, the Packaging Wizard automatically detects and selects servlets
in your Local Application Directory. These servlets are registered with the Mobile
Client Web Server.

As Figure 12–7 displays, you can view the To Do List application's servlet in the
Servlets panel. Since the To Do List application contains only one servlet, the
Servlets panel displays a single line.

The Servlets panel enables you to map virtual paths (servlet name) to the
corresponding Java classes (servlet class).

Change the servlet name to insert by selecting the field, which turns white when
selected. The servlet name is case sensitive, and must be in lower case.

Note: Ensure that you change the servlet name.

12-10 Oracle Database Lite Developer’s Guide

Figure 12–7 Registering Servlets

9. At this stage, this tutorial does not use the other tabs that are displayed in the
Packaging Wizard. Click Next till you arrive at the last panel, and click Finish.

12.2.4 Step 4: Conducting a Trial Run
In this step, you will conduct a trial run of the To Do List application by starting the
Mobile Client Web Server on the development computer. You will then access the To
Do List application by launching your web browser and connecting to the
application's URL.

12.2.4.1 The Mobile Development Kit for Web-to-Go Web Server
The Mobile Client Web Server loads the To Do List application information and the
Java servlet that you specified in the Packaging Wizard. Once started, you can access
the Mobile Client Web Server from any web browser, by specifying the URL of the
computer it resides on. The default port for the Mobile Client Web Server is 7070. You
can configure the port used by the Mobile Client Web Server by changing the port
entry in the webtogo.ora file. This file is located in the following directory.

ORACLE_HOME\mobile\sdk\bin\webtogo.ora

For more information on how to edit the webtogo.ora file, see Section 11.3, "Editing
the webtogo.ora file," in the Oracle Database Lite Administration and Deployment Guide.

For additional information regarding configuration parameters in the webtogo.ora file,
see Appendix B, "Mobile Server Configuration Parameters," in the Oracle Database Lite
Administration and Deployment Guide.

12.2.4.2 Required Action
Run the To Do List application by performing the following steps.

1. Start the Mobile Client Web Server.

Using the Command Prompt, enter the following.

cd ORACLE_HOME\mobile\sdk\bin

Developing the Application

Building Mobile Web Applications: A Tutorial 12-11

wtgdebug.exe

The Mobile Client Web Server starts and reports which servlets are loaded. If your
servlets contain any System.out.println() statements, the messages appear
in this window.

2. Start your web browser and connect to the following URL.

http://<your_machine>:7070

As Figure 12–8 displays, the browser displays the list of applications currently
known to the Web-to-Go system.

Figure 12–8 Available Applications Page

Table 12–5 describes the Available Applications page.

Table 12–5 List of Available Applications Description

Application Description

Sample 4 The Hello Applet illustrates how applets and servlets can
communicate with each other. The application is located in the
following directory.

ORACLE_HOME\mobile\sdk\wtgsdk\root\sample4

Sample 6 The Image Gallery shows how to store binary data in the
database without using the LONG datatype. The application is
located in the following directory.

ORACLE_HOME\mobile\sdk\wtgsdk\root\sample6

To Do List The application that you have added to the Mobile Client Web
Server in Step 4.

Sample 1 The Hello World servlet is an example of a basic servlet. The
application is located in the following directory.

ORACLE_HOME\mobile\sdk\wtgsdk\root\sample1

ServletRunner The default application containing all published servlets that
are not assigned to an application.

12-12 Oracle Database Lite Developer’s Guide

3. Click the To Do List application. A new browser window displays the following
information.

■ The list of incomplete To Do items.

■ A simple HTML form that you can use to create new To Do items.

All incomplete To Do items are preceded by the letter 'X'. When you click 'X', the
To Do List application flags the item as complete and removes the item from the
list.

12.3 Packaging the Application
This section describes how to package the application and prepare it for publishing to
the Mobile Server. In this section, you will perform the following tasks.

■ Step 1: Defining the Application

■ Step 2: Specifying Database Details

■ Step 3: Defining the Snapshot

■ Step 4: Defining Sequences

■ Step 5: Creating SQL Files for the Application

12.3.1 Step 1: Defining the Application
In this step, you select and describe the To Do List application using the Packaging
Wizard.

12.3.1.1 The Packaging Wizard
Using the Packaging Wizard, you can create or modify a Web-to-Go application and
publish it to the Mobile Server. In this tutorial, you will use the Packaging Wizard to
complete Steps 4 through 8 of the development phase.

12.3.1.2 Required Action
Select and describe the To Do List application by launching the Packaging Wizard in
regular mode.

1. Using the Command Prompt, enter the following.

a. cd ORACLE_HOME\mobile\sdk\bin

b. wtgpack

The Packaging Wizard appears.

Sample 3 The Recording Tracker demonstrates how servlets can be used
to maintain a database with recording information. The
application is located in the following directory.

ORACLE_HOME\mobile\sdk\wtgsdk\root\sample3

Sample 7 The Employee Data Applet demonstrates the use of JDBC
inside an applet. The application is located in the following
directory.

ORACLE_HOME\mobile\sdk\wtgsdk\root\sample7

Table 12–5 (Cont.) List of Available Applications Description

Application Description

Packaging the Application

Building Mobile Web Applications: A Tutorial 12-13

2. Choose Edit an existing application and select the To Do List application from the
list displayed.

3. Click OK. The Platforms panel appears. As Figure 12–9 displays, the Platforms
panel contains the same information that you entered in Section 12.2.3, "Step 3:
Defining the Application and Registering the Servlet".

Figure 12–9 Selecting a Platform

4. Click the Application tab. As Figure 12–10 displays, the Application tab contains
the same information that you entered in Section 12.2.3, "Step 3: Defining the
Application and Registering the Servlet".

12-14 Oracle Database Lite Developer’s Guide

Figure 12–10 Application Description Panel

5. Describe the To Do List application by performing the following steps.

a. As Table 12–6 describes, verify that the specified values in the following fields
are correct.

b. Click the Files tab. The Packaging Wizard automatically includes all files to
the application.

c. Click the Servlets tab. The Servlets tab appears.

d. Click the Database tab. The Database tab appears.

12.3.2 Step 2: Specifying Database Details
In this step, you will specify the Client Side Database Name.

Figure 12–11 displays the Database tab.

Table 12–6 Application Panel Description

Field Value

Application Name ToDoList

Virtual Path /tutorial

Description This is the To Do List Application

Application Classpath

Default Page ToDoList.jsp

Local Application
Directory

ORACLE_HOME\mobile\sdk\wtgsdk\root\tutorial

Publication Name

Icon tutorial.gif

Packaging the Application

Building Mobile Web Applications: A Tutorial 12-15

Figure 12–11 Database Tab

The Database Name refers to the database file and the corresponding DSN that will be
created for this application on the Mobile Client for Web-to-Go.

12.3.2.1 Required Action
Enter todo as the Client Side Database Name.

Click the Snapshots tab.

12.3.3 Step 3: Defining the Snapshot
In this step, you will deploy the To Do List application's database schema objects using
the Packaging Wizard.

12.3.3.1 The Snapshots Tab
The Snapshots tab defines database tables for which you will create snapshots. Using
the Packaging Wizard, you can import the table definitions from the development
database. These definitions can then be used to define the snapshots for the mobile
application.

Figure 12–12 displays the Snapshots tab.

Note: This tutorial skips Roles because the tutorial application
does not use any special roles.

The Roles tab enables the developer to define roles for the
Web-to-Go application. In general, the developer must build
application roles into the Web-to-Go application, because they do
not occur automatically. For more information on how to build
application roles, see Chapter 4, "Developing Mobile Web
Applications", Section 4.2.2, "Application Roles".

12-16 Oracle Database Lite Developer’s Guide

Figure 12–12 Snapshots Tab

12.3.3.2 Required Action
In the Snapshots tab, import the table definition from the development database by
performing the following steps.

1. Click Import. As Figure 12–13 displays, the Connect to Database dialog appears.
As Table 12–7 describes, enter the following information in the corresponding
fields.

Figure 12–13 Connect to Database Dialog

Table 12–7 Connect to Database Dialog Description

Field Value

User Name system

Password Enter your database password

URL jdbc:polite:webtogo

Packaging the Application

Building Mobile Web Applications: A Tutorial 12-17

2. Click OK. As Figure 12–14 displays, the Tables dialog appears and displays a list
of available tables.

Figure 12–14 Tables Dialog

3. Select the TODO_ITEMS table, click Add, and click Close. The TODO_ITEMS
snapshot appears in the Tables dialog. To view the SQL statement for the
snapshots template, double-click TODO_ITEMS.

4. Select the SQL statement and click Edit. As Figure 12–15 displays, the Edit
Snapshots panel appears.

Note: Importing a table definition within the Packaging Wizard
caches the JDBC Connection information. You cannot re-import a
table definition using a different Connect String as the same
connection information is used and cannot be modified.

12-18 Oracle Database Lite Developer’s Guide

Figure 12–15 Edit Snapshots Panel - Server Tab

5. Change the weight to 1. This parameter controls the order in which snapshots are
refreshed on the client.

6. Change the Owner to master. The Packaging Wizard seeks your confirmation to
change the owner for all the templates. Click OK.

7. Click the Oracle Lite WEB;US tab. Select the Create on client box. Re-enter the
SQL statement in the Template field as given below, and click OK.

SELECT * FROM MASTER.TODO_ITEMS WHERE USERNAME = :USERNAME

Figure 12–16 displays the SQL statement in the Template field.

Packaging the Application

Building Mobile Web Applications: A Tutorial 12-19

Figure 12–16 Edit Snapshots Panel

12.3.4 Step 4: Defining Sequences
The Sequences panel defines sequences that Web-to-Go creates for your client's
applications in offline mode. In this step, you create a new definition of the TODO_SEQ
sequence which the To Do List application uses in offline mode. Later on, you will
create the actual sequences in the Oracle database. During synchronization, Web-to-Go
automatically creates a local copy of the TODO_SEQ sequence on your client.

1. Click the Sequences tab. The Sequences panel appears as displayed in
Figure 12–17. Using the Sequences tab, you can list database sequences for
Web-to-Go applications. To specify how Web-to-Go creates sequences on the
Mobile Client for Web-to-Go, you can include sequence definitions. These
sequences must exist in the database prior to performing this step.

12-20 Oracle Database Lite Developer’s Guide

Figure 12–17 Sequences Tab

2. Click Import. As Figure 12–18 displays, the Sequences dialog appears displaying a
list of available sequences.

Figure 12–18 Sequences Dialog

3. Select the TODO_SEQ sequence. Click Add and click Close.

4. Click OK. The Application Definition Completed panel appears, as displayed in
Figure 12–19.

Packaging the Application

Building Mobile Web Applications: A Tutorial 12-21

Figure 12–19 Application Definition Completed Dialog

12.3.5 Step 5: Creating SQL Files for the Application
Using the Application Definition Completed panel, you can create SQL files for the To
Do List application.

12.3.5.1 Required Action
Select the Create files option and select the Generate SQL scripts for database objects
box. Click OK.

This action generates SQL scripts for database objects.

The Packaging Wizard places the specified files in the following directory.

ORACLE_HOME\mobile\sdk\wtgsdk\root\tutorial\sql

Table 12–8 describes the SQL scripts.

12.3.6 Step 6: Package the Application
Using the Application Definition Completed panel, you can package the To Do List
application into a jar file.

12.3.6.1 Required Action
The Application Definition Completed Dialog remains open for you to initiate
application packaging.

Note: This tutorial application does not use DDLs and therefore
skips the DDLs tab.

Table 12–8 SQL Scripts for Database Objects

File Description

ToDoList.sql The master script that calls other SQL scripts.

tables.sql The script that creates all SQL tables.

sequences.sql The script that creates the Sequences.

ddls.sql This file is empty because no DLLs are defined.

12-22 Oracle Database Lite Developer’s Guide

1. Select the Create files option and select the Package Application into a JAR file
box. Ensure that you select the Generate SQL scripts for database objects box.

2. At this stage, the Save the Application dialog prompts you for the name of the jar
file, as Figure 12–20 displays. The default location is given below.

ORACLE_HOME\Mobile\Sdk\wtgsdk\root\ToDoList.jar

Figure 12–20 Save the Application Dialog

After choosing the JAR file, the jar file is created and contains the application files
and definition.

You have now completed all development tasks that are required for packaging
your application. Your application is packaged.

12.4 Publishing the Application
After packaging your application, you are ready to publish it. The following sections
describe the steps for publishing the application.

12.4.1 Step1: Create the Table Owner Account
In this step, you will create the database user who will own the To Do List application
objects in the Oracle database. If you have installed the samples during your Mobile
Server installation, you can skip this step and continue with the next step. If you have
not installed the samples, enter the following commands using the Command Prompt.

sqlplus system/manager@webtogo.world

create user master identified by master;

grant connect, resource to master;

12.4.2 Step 2: Create the Database Objects in the Oracle Database
In this step, you create database objects of the To Do List application in the Oracle
database.

12.4.2.1 Required Action
Run the SQL master script and enter the following using the Command Prompt.

cd ORACLE_HOME\mobile\sdk\wtgsdk\root\tutorial\sql

sqlplus master/master@webtogo.world @ToDoList.sql

This script performs the following actions on the Oracle database.

■ Creates the TODO_ITEMS table.

■ Creates the TODO_SEQUENCE sequence.

Publishing the Application

Building Mobile Web Applications: A Tutorial 12-23

12.4.3 Step 3: Start the Mobile Server
In this step, you start the Mobile Server.

12.4.3.1 Required Action
To start the Mobile Server, perform the following steps.

1. Using the Command Prompt, go to the following directory.

ORACLE_HOME\mobile_oc4j\j2ee\home

2. To start the Mobile Server for the first time and subsequent occasions, enter the
following command.

java -jar oc4j.jar

12.4.4 Step 4: Log on to the Mobile Server and Start the Mobile Manager
In this step, you will log on to the Mobile Server and start the Mobile Manager.

12.4.4.1 Required Action
To start the Mobile Manager, perform the following steps.

1. Start your web browser and connect to the Mobile Server by enter the following
URL.

http://<mobile_server>/webtogo

2. Log on as the Mobile Server Administrator using administrator as the User
Name and admin as the Password. As Figure 12–21 displays, the Mobile Manager
link appears in the workspace.

Note: Mobile Servers installed on iAS can access the ORACLE_
HOME\j2ee\home directory.

Note: Replace the <mobile_server> variable with the host
name of your Mobile Server.

12-24 Oracle Database Lite Developer’s Guide

Figure 12–21 Launching the Mobile Manager

3. To launch the Mobile Manager, click the Mobile Manager link in the workspace.
As Figure 12–22 displays, the Mobile Server Farms page appears.

Figure 12–22 Mobile Server Farms Page

4. Click your Mobile Server link. As Figure 12–23 displays, the corresponding Mobile
Server home page appears.

Publishing the Application

Building Mobile Web Applications: A Tutorial 12-25

Figure 12–23 Mobile Server Home Page

12.4.5 Step 5: Upload the Application
In this step, you upload the jar file containing the To Do List application.

12.4.5.1 Required Action
To upload an application to the Mobile Server, perform the following steps.

1. Click the Applications link. As Figure 12–24 displays, the Applications page
appears.

12-26 Oracle Database Lite Developer’s Guide

Figure 12–24 Applications Page

2. Click Publish Application. As Figure 12–25 displays, the Publish Application
page appears.

Figure 12–25 Publish Application Page

Administering the Application

Building Mobile Web Applications: A Tutorial 12-27

3. Enter /tutorial as the value for the repository directory.

4. Select the Packaging Wizard JAR File option.

5. Using the Browse button, locate the jar file which you created in Section 12.3.6,
"Step 6: Package the Application". The default location of the jar file is given
below.

ORACLE_HOME\Mobile\sdk\wtgsdk\root\ToDoList.jar

6. To upload the application, click Upload.

At this stage, your application is published.

12.5 Administering the Application
This section describes how to administer the application that you created and
deployed. In this section, you will perform the following tasks.

■ Section 12.5.1, "Step 1: Starting the Mobile Manager"

■ Section 12.5.2, "Step 2: Using the Mobile Manager to Create a New User"

■ Section 12.5.3, "Step 3: Setting Application Properties"

■ Section 12.5.4, "Step 4: Granting User Access to the Application"

■ Section 12.5.5, "Step 5: Defining Snapshot Template Values for the User"

For more information about Mobile Manager tasks described in this tutorial, see the
Oracle Database Lite Administration and Deployment Guide.

12.5.1 Step 1: Starting the Mobile Manager
In this step, you will start the Mobile Manager. This web based application enables
you to easily administer Mobile Server applications.

12.5.1.1 Required Action
To start the Mobile Manager, perform the following steps.

1. Start your web browser and connect to the Mobile Server by entering the
following URL.

http://<mobile_server>/webtogo

2. Log in as the Mobile Server administrator using administrator as the User
Name and admin as the Password.

3. To launch the Mobile Manager, click the Mobile Manager link in the workspace.
The Mobile Server farms page appears. Click your Mobile Server link. Your Mobile
Server home page appears.

Note: You will set the application properties in the following
Section 12.5.3, "Step 3: Setting Application Properties".

Note: Replace the <mobile_server> variable with the host
name of your Mobile Server.

12-28 Oracle Database Lite Developer’s Guide

12.5.2 Step 2: Using the Mobile Manager to Create a New User
In this step, you will create a new user.

12.5.2.1 Required Action
To create a new Mobile Server user, perform the following steps.

1. On the Mobile Manager home page, click the Users link. As Figure 12–26
displays, the Users page appears.

Figure 12–26 Users Page

2. Click Add User. As Figure 12–27 displays, the Add User page appears.

Administering the Application

Building Mobile Web Applications: A Tutorial 12-29

Figure 12–27 Add User Page

3. As described in Table 12–9, enter the following information in the Add User page
and click Save.

12.5.3 Step 3: Setting Application Properties
In this step, you will set the To Do List application's properties.

12.5.3.1 Required Action
To set the To Do List application's properties, perform the following steps.

1. On Mobile Manager home page, click the Applications link. The Applications
page appears.

2. To search for the application that you just published, enter To Do List in the
Application Name field and click Search. The To Do List application appears in
the workspace.

Table 12–9 Add User Page Description

Field Value

Display Name tutorial

User Name tutorial

Password tutorial

Password Confirm tutorial

Privilege User

Note: To display all the available applications, leave the search
field blank and click Search. This action generates a list of all the
available Mobile Server applications in the workspace.

12-30 Oracle Database Lite Developer’s Guide

3. Click the To Do List application link. As Figure 12–28 displays, the Application
Properties page lists application properties and database connectivity details.

Figure 12–28 Application Properties Page

4. In the Database Password field type master. This is the default password for the
Web-to-Go demo schema. Click Apply. The Mobile Manager displays a
confirmation message.

12.5.4 Step 4: Granting User Access to the Application
In this step, you grant the user TUTORIAL access to the To Do List application.

12.5.4.1 Required Action
To grant the user TUTORIAL access to the To Do List application, perform the
following steps.

1. Navigate to the Application Properties page and click the Access link. As
Figure 12–29 displays, the Access page lists groups and users that are associated
with the application. The check boxes on this page indicate whether or not the user
or group has access to the application.

Administering the Application

Building Mobile Web Applications: A Tutorial 12-31

Figure 12–29 Access Page

2. Under the Users table, locate the user TUTORIAL and select the check box
displayed against the user, TUTORIAL.

3. Click Save. The Mobile Manager displays a confirmation message. The user
TUTORIAL has now been granted access to the To Do List application.

12.5.5 Step 5: Defining Snapshot Template Values for the User
In this step, you will define the snapshot template variable for the user, TUTORIAL.
Each Mobile Client for Web-to-Go downloads the same application data when it
synchronizes. In some cases, you may want to specify the data your application
downloads for each user. You can accomplish this by modifying the user's snapshot
template variable.

12.5.5.1 Required Action
To modify a user's Data Subsetting parameters, perform the following steps.

1. Navigate to the Applications page and click the ToDoList application link. The
Application Properties page appears. Click the Data Subsetting link. As
Figure 12–30 displays, the Data Subsetting page appears.

12-32 Oracle Database Lite Developer’s Guide

Figure 12–30 Data Subsetting Page

2. Under the User Name column, click the user name link TUTORIAL. As
Figure 12–31 displays, the Data Subsetting Parameters page appears.

Figure 12–31 Data Subsetting Parameters Page

3. Select the Parameter Name and enter the value TUTORIAL. Click Save.

For more information about Snapshots, refer the Oracle Database Lite Administration and
Deployment Guide.

At this stage, you have successfully administered the To Do List Application.

Running the Application on the Mobile Client for Web-to-Go

Building Mobile Web Applications: A Tutorial 12-33

12.6 Running the Application on the Mobile Client for Web-to-Go
This section describes how to use the application that you created and tested in the
Development section, deployed in the Deployment section, and then administered in
the Administration section. In this section, you will perform the following tasks.

■ Section 12.6.1, "Step 1: Installing the Mobile Client for Web-to-Go"

■ Section 12.6.2, "Step 2: Logging into the Mobile Client for Web-to-Go"

■ Section 12.6.3, "Step 3: Synchronizing the Mobile Client for Web-to-Go"

12.6.1 Step 1: Installing the Mobile Client for Web-to-Go
This section describes how to use the application that you created and deployed.

12.6.1.1 Required Action
To install the Mobile Client for Web-to-Go, perform the following actions.

1. Start your web browser and connect to the Mobile Server by entering the
following URL.

http://<mobile_server>/webtogo/setup

2. As Figure 12–32 displays, the Mobile Client Setup page lists a set of mobile clients
by platform. To download the Mobile Client for Web-to-Go setup program, click
the corresponding Mobile Client link.

Note: You must install the application and test it on a separate
machine from the Mobile Server.

Note: You must install the Mobile Client on a machine which does
not host the Mobile Server installation.

12-34 Oracle Database Lite Developer’s Guide

Figure 12–32 Mobile Client Setup Page

3. If you are using Netscape, choose a location to save the setup program and click
OK. In Windows Explorer, double-click setup.exe to run the setup program.

If you are using Internet Explorer, run the setup program from your browser
window.

4. While installing the Mobile Client, you will be prompted for the user name and
password. Enter administrator as the User Name and admin as the password.

5. The setup program prompts you to choose an installation directory such as
D:\mobileclient and downloads all the required components and starts the
Mobile Client for Web-to-Go on your machine. After completing the installation,
the Mobile Manager login page appears as Figure 12–33 displays.

Note: While installing the Mobile Client, you will be prompted for
the User name and Password. Enter administrator as the user name and
admin as the password.

Running the Application on the Mobile Client for Web-to-Go

Building Mobile Web Applications: A Tutorial 12-35

Figure 12–33 Mobile Manager Login Page

12.6.2 Step 2: Logging into the Mobile Client for Web-to-Go
In this step, you will complete the Mobile Client for Web-to-Go setup process.

12.6.2.1 Required Action
Your browser displays the Web-to-Go logon page. If your browser does not display the
Web-to-Go login page, enter the following URL.

http://localhost/webtogo

1. Log on to Web-to-Go using tutorial as the User Name and tutorial as the
password.

2. As you are logging into the Mobile Client for Web-to-Go for the first time, you
must complete the initial setup process. The client initialization page appears and
displays a confirmation message. "The Web-to-Go Client was installed
successfully! Web-to-Go client will now synchronize your computer with the
Mobile Server."

3. To start downloading your applications and data, click Next. The data
synchronization page appears. This page displays the data synchronization status.

4. Once the synchronization process is finished, the Mobile Client for Web-to-Go is
restarted automatically. The Mobile Server displays the following message: "New
or updated application files have been downloaded. Please wait while Mobile
Client for Web-to-Go is being restarted."

5. After restarting the Mobile Client for Web-to-Go, the workspace portal appears
with a single icon for the To Do List application and a link labeled ToDoList, as
Figure 12–34 displays.

12-36 Oracle Database Lite Developer’s Guide

Figure 12–34 Completion of the Synchronization Process

6. Click the To Do List application icon. As Figure 12–35 displays, Web-to-Go
launches the To Do List application in your browser.

Figure 12–35 The To Do List Application

7. Enter a new To Do item and save it in the database. Click Add.

8. Exit the application by closing the browser window. This action returns you to the
workspace.

12.6.3 Step 3: Synchronizing the Mobile Client for Web-to-Go
In this step, you synchronize the Mobile Client for Web-to-Go.

Running the Application on the Mobile Client for Web-to-Go

Building Mobile Web Applications: A Tutorial 12-37

12.6.3.1 Required Action
To synchronize the Mobile Client for Web-to-Go with the Mobile Server, perform the
following steps.

1. As Figure 12–36 displays, click the Sync tab in the upper right corner of the
workspace.

Figure 12–36 Sync Tab Location

The Mobile Client for Web-to-Go synchronizes the application and all of your data to
the Oracle 10g Database. The workspace appears when the synchronization process
has completed.

12-38 Oracle Database Lite Developer’s Guide

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-1

13
Building Offline Mobile Web Applications

Using BC4J: A Tutorial

This document enables you to create, deploy, and use a BC4J application, using a
tutorial. Topics include:

■ Section 13.1, "Overview"

■ Section 13.2, "Developing the Application"

■ Section 13.3, "Packaging the JSP Application"

■ Section 13.4, "Publishing and Configuring the JSP Application from the Mobile
Manager"

■ Section 13.5, "Testing the BC4J Application"

■ Section 13.6, "Running the BC4J Application on the Mobile Client for Web-to-Go"

■ Section 13.7, "Deploying the Sample Application"

13.1 Overview
Oracle's BC4J (Business Components for Java) is a part of Oracle9i JDeveloper's IDE
(Integrated Development Environment), and provides Java developers with the tools
to create and manage reusable Java components.

BC4J offers a standards based, server side Java and XML framework for developers
who build and deploy reusable business components for high performance Internet
applications, such as e-commerce and business-to-business systems. Applications
which are created using BC4J comprise five basic framework components, namely,
Entity Objects, Associations, View Objects, View Links, and Application Modules.
Each of these components is interrelated to the other components, thereby enabling
you to establish views into database tables. You can combine, filter, and sort data as
needed.

When used in application development, BC4J automatically generates database
oriented components, enabling Web-to-Go developers to focus on the business logic
instead of spending their time on database related components during business
application development.

The sample BC4J application which is used in this tutorial stores its items in a
relational database. It maintains employee details.

Developing the Application

13-2 Oracle Database Lite Developer’s Guide

13.1.1 Before You Start
Before you start developing business components in Java, you must ensure that the
development computer meets the requirements specified below.

13.1.1.1 Development Computer Requirements
Table 13–1 lists configuration and installation requirements for the development
computer.

13.2 Developing the Application
This section enables you to develop the BC4J application for Oracle Database Lite in
phases.

To develop the BC4J application, you must perform the following tasks.

1. Create a database connection.

2. Create the BC4J component.

3. Configure the BC4J component to use the WTGJdbc connection.

4. Build and deploy the BC4J component as a simple archive.

5. Write the JSP application to access the BC4J component.

6. Deploy the JSP application as a simple archive.

7. Deploy the BC4J component into the Mobile Server.

Table 13–1 Development Computer Requirements

Requirement Description

Windows NT/2000/XP User Login The Windows NT/2000/XP login user must
have Administrator privileges on the
development computer.

Installed Java Components Java Development Kit 1.3.1 or higher.

Installed Oracle Components Mobile Server or Mobile Development Kit
(Oracle Database Lite CD-ROM)

Oracle 8.1.7 or higher

Oracle9i JDeveloper, Release 9.0.3.

Note: The BC4J tutorial is shipped with the Mobile Development
Kit as a JAR file named 9iLite_BC4J_Tutorial.jar. The file is located
in the directory <Oracle_Home>\mobile\sdk\wtgsdk\src.
You can use this JAR file to publish the BC4J tutorial to the Mobile
Server and then continue with the rest of the tutorial by following
the steps given in Section 13.7, "Deploying the Sample Application".
If you want to develop the same application (as packaged in 9iLite_
BC4J_Tutorial.jar), follow the steps from Section 13.2, "Developing
the Application" to Section 13.6, "Running the BC4J Application on
the Mobile Client for Web-to-Go", and then continue to Section 13.7,
"Deploying the Sample Application".

Developing the Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-3

13.2.1 Creating the Database Connection
You must create two database connections: tutorialConn and WTGJdbc
respectively. The tutorialConn connection connects to the primary Oracle database
using the oracle.jdbc.driver.OracleDriver for developing and testing the
application. The WTGJdbc connection connects to Oracle Database Lite using the
oracle.lite.web.WTGJdbcDriver. You can change the connection from
tutorialConn to WTGJdbc before deploying the application as a simple archive. The
WTGJdbc connection is used during application deployment and uses a different
driver.

To create the tutorialConn connection, perform the following steps.

1. In JDeveloper's System Navigator panel and as displayed in Figure 13–1,
right-click the Connections node and choose the New Database Connection
option.

Figure 13–1 Choosing a New Database Connection

As displayed in Figure 13–2, the Connection Wizard's Welcome panel appears.

Figure 13–2 Welcome Panel - Connection Wizard

2. Click Next. As displayed in Figure 13–3, the Connection Wizard - Step 1 of 4: Type
panel appears. Create a connection named tutorialConn and choose Oracle
(JDBC) from the Connection Type list.

Developing the Application

13-4 Oracle Database Lite Developer’s Guide

Figure 13–3 Connection Wizard - Step 1 of 4: Type

3. Click Next. As displayed in Figure 13–4, the Connection Wizard - Step 2 of 4:
Authentication panel appears. Enter scott as the user name and tiger as the
password. Select the Deploy Password box.

Figure 13–4 Connection Wizard - Step 2 of 4: Authentication Panel

4. Click Next. As displayed in Figure 13–5, the Connection Wizard - Step 3 of 4:
Connection panel appears. Choose the thin option from the Driver list and enter
your PC Host Name, JDBC Port number, and the database SID in the
corresponding fields. Do not select the Enter Custom JDBC URL box.

Developing the Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-5

Figure 13–5 Connection Wizard - Step 3 of 4: Connection Panel

5. Click Next. As displayed in Figure 13–6, the Connection Wizard - Step 4 of 4: Test
panel appears. Click Test Connection. The Connection Wizard displays a
connection status message.

Figure 13–6 Connection Wizard - Step 4 of 4: Test Panel

6. As displayed in Figure 13–7, you have finished creating the tutorialConnection.

Developing the Application

13-6 Oracle Database Lite Developer’s Guide

Figure 13–7 Connection Wizard - Finish Panel

As displayed in Figure 13–8, The tutorialConnection icon appears in the
System Navigator window under the Connections node.

Figure 13–8 Tutorial Connection Icon in the System Navigator

Table 13–2 summarizes values that you must enter or choose in the Connection
Wizard.

7. To create the WTGJdbc connection, you must configure the project settings and
include the Oracle Database Lite user library named webtogo.jar. Start
JDeveloper and click the Project menu. As displayed in Figure 13–9, select the
Default Project Settings option.

Table 13–2 TutorialConn - Connection Wizard Description

Field Name Value

Connection Name tutorialConn

User name scott

Password tiger

Select a JDBC Driver Thin

SID Your Oracle database SID

Developing the Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-7

Figure 13–9 Choosing Default Project Settings

8. In the Project Settings panel, add a new Library and name the new library as
webtogo. Enter the classpath as given below and displayed in Figure 13–10.

mobile_serverhome/server/bin/webtogo.jar

Figure 13–10 Adding a New Library and Classpath

9. After creating the new user library webtogo, move the library from the Available
Libraries list to the Selected Libraries list as displayed in Figure 13–11.

Developing the Application

13-8 Oracle Database Lite Developer’s Guide

Figure 13–11 Moving the Webtogo Library to the Selected Libraries List

After configuring project settings as mentioned in this step, you can create the
WTGJdbc connection using the same method that you used to create
tutorialConnection.

10. To create the WTGJdbc connection, start JDeveloper and right-click the
Connection object. As displayed in Figure 13–12, the Connection Wizard - Step 1 of
4: Type panel appears. Enter WTGJdbc as the Connection Name and choose Third
Party JDBC Driver as the JDBC Connection Type.

Figure 13–12 Connection Wizard - Step 1 of 4: Type Panel

11. Click Next. As displayed in Figure 13–13, the Connection Wizard - Step 2 of 4:
Authentication panel appears. Do not enter any values in this panel.

Developing the Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-9

Figure 13–13 Connection Wizard - Step 2 of 4: Authentication Panel

12. Click Next. As displayed in Figure 13–14, the Connection Wizard - Step 3 of 4:
Connection panel appears.

Figure 13–14 Connection Wizard - Step 3 of 4: Connection Panel

13. Click New. As Figure 13–15 displays, the Register JDBC Driver dialog appears.
Enter oracle.lite.web.WTGJdbcDriver as the Driver Class. Choose
webtogo from the Library list. Enter the following URL.

jdbc:oracle:webtogo

Developing the Application

13-10 Oracle Database Lite Developer’s Guide

Figure 13–15 JDBC Driver Dialog

14. Click Next. As Figure 13–16 displays, the Connection Wizard - Step 4 of 4: Test
panel appears. To test your WTGJdbc connection, click Test Connection. The
Status box displays that the WTGJdbc connection has been created successfully.

Figure 13–16 Connection Wizard - Step 4 of 4: Test Panel

Table 13–3 describes values that must be entered in the Connection Wizard to create
the WTGJdbc connection.

Table 13–3 WTGJdbc Connection - Connection Wizard Description

Field Name Values

Connection Name WTGJdbc

Select a JDBC Driver Third Party JDBC Driver

Class Name oracle.lite.web.WTGJdbcDriver

Datasource URL jdbc:oracle:webtogo

Developing the Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-11

13.2.2 Creating the BC4J Component
Using Oracle9i JDeveloper, you can create the BC4J component named "tutorialapp".

To create the BC4J component named "tutorialapp", perform the following steps.

1. In Oracle9i JDeveloper, select New from the File menu. In the New dialog box that
appears, the options named "Projects" in the left panel and "Empty Project" in the
right panel are pre-selected as defaults. Click OK. Oracle9i JDeveloper creates a
new empty project named "Project.jpr".

2. Rename "Project.jpr" to "tutorialapp.jpr", which creates a new project by that
name.

3. Right click "tutorialapp.jpr" in the Oracle9i JDeveloper workspace. Select the "New
Business Components Package..." option. The "Business Components Package
Wizard, Welcome" dialog appears. Click Next.

Figure 13–17 displays the Business Components Package Wizard, Welcome dialog.

Figure 13–17 The Business Components Package Wizard, Welcome Dialog

4. The "Business Components Package Wizard, Step 1 of 3: Package Name" dialog
appears, as illustrated in Figure 13–18. In the "Package Name" field, enter tutapp.
Click Next.

Note: In the Connection Wizard, enter values as specified in
Table 13–2 and Table 13–3 only. Retain all other values as default
values.

Developing the Application

13-12 Oracle Database Lite Developer’s Guide

Figure 13–18 Business Components Package Wizard Step 1 of 3: Package Name

5. The "Business Components Package Wizard, Step 2 of 3: Connection" dialog
appears, as depicted in Figure 13–19. Select the values that are listed in Table 13–4
and click Next.

Figure 13–19 Business Components Package Wizard Step 2 of 3: Connection

6. In the "Business Components Project Wizard, Step 3 of 3: Business Components"
dialog, select "EMP" from the list displayed in the left panel and move it to the
"Selected" list, as illustrated by the example in Figure 13–20. Click Finish.

Table 13–4 Values for Business Components Package Wizard, Step 2 of 3: Connection

Field Description

Connection Name tutorialConn

SQL Flavor SQL92

Type Map Oracle

Developing the Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-13

Figure 13–20 Business Components Package Wizard, Step 3 of 3: Business
Components Dialog

7. At this stage, Oracle9i JDeveloper creates the BC4J component named
"tutorialapp".

13.2.3 Configuring the BC4J Component to Use the WTGJdbc Connection
To configure the BC4J component to use the WTGJdbc connection, perform the
following steps.

1. Right-click on the TutorialAppModule and double-click on the
Configurations... option. The 'Configuration Manager' appears.

2. In the Oracle Business Component Configuration dialog, click Edit. Choose
WTGJdbc as the JDBC connection.

3. Click OK. The BC4J component is now configured to use the WTGJdbc
connection.

13.2.4 Building and Deploying the BC4J Component as a Simple Archive
To build and deploy the BC4J component as a simple archive, perform the following
steps.

1. Right-click the tutorialapp.jpr file and select the Create Business Components
Deployment Profiles option. The Business Component Deployment Wizard
appears.

2. Select the Simple Archive Files option from the list displayed and move it to the
Selected list.

3. Click Next. The Business Component Deployment Wizard Step 2 of 2: Simple
Archive Files appears. Under the 'Selected Platform - Simple Archive Files' section,
accept the default Profile name.

4. Click Next. The tutorialapp.bcdeploy file is created under tutorial.jpr.

5. Right-click the file tutorialapp.bcdeploy and select Deploy.

6. JDeveloper creates two jar files namely tutorialappCSCommon.jar and
tutorialappCSMT.jar.

Developing the Application

13-14 Oracle Database Lite Developer’s Guide

13.2.5 Writing the JSP Application to Access the BC4J Component
To write the JSP application that will access the BC4J component, perform the
following steps.

1. In Oracle9i JDeveloper, select the Empty Project option under the 'File' menu.
The system automatically creates a new empty project called MyProject.jpr.

2. Under the 'File' menu, select the Rename... option and rename MyProject.jpr
to tutorialclientapp.jpr.

3. Click the tutorialclientapp.jpr file in the Oracle9i JDeveloper workspace. Click the
File menu and select New. Click the Web Tier option and select JSP for Business
Components. Click OK. The Business Components JSP Application Wizard
appears. Click Next.

4. Click New... . The 'Business Components JSP Application Wizard' appears. Click
Next. The wizard displays the 'Business Components JSP Application Wizard -
Step 1 of 3:Data Definition' dialog.

5. Click New... in the 'Business Components JSP Application Wizard - Step 1 of
3:Data Definition' dialog. The 'BC4J Client Data Model Definition Wizard' appears.

6. Click Next. The 'BC4J Client Data Model Definition Wizard: Step 1 of 2: Definition'
appears, as displayed in Figure 13–21, Figure 13–22, Figure 13–23, and
Figure 13–24.

Figure 13–21 Business Components JSP Application Wizard - Welcome Dialog

Note: To check the location of the .jar files that you created, check
the Deployment Log window in the JDeveloper UI.

Developing the Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-15

Figure 13–22 Business Components JSP Application Wizard - Step 1 of 3: Data
Definition Dialog

Figure 13–23 BC4J Client Data Model Definition Wizard - Welcome Dialog

Figure 13–24 BC4J Client Data Model Definition Wizard, Step 1 of 2: Definition Dialog

7. Verify the default values and click Next. TutappModule appears as the default
definition name in the 'BC4J Client Data Model Definition Wizard - Step 2 of 2:
Definition Name' dialog. Click Next.

Packaging the JSP Application

13-16 Oracle Database Lite Developer’s Guide

8. Click Finish. The 'Business Components JSP Application Wizard' dialog appears.
Click Next.

9. In the 'Business Components JSP Application Wizard - Step 1 of 3: Data Definition'
dialog, select TutappModule as the data model definition, as displayed in
Figure 13–25. Click Next.

Figure 13–25 Business Components JSP Application Wizard - Step 1 of 3: Data
Definition Dialog

10. Accept the default selections and click Next in the two dialog boxes that appear:
'Business Components JSP Application Wizard - Step 2 of 3: View Object Forms'
and 'Business Components JSP Application Wizard - Step 3 of 3: View Link Form'.
The 'Summary' window appears. Click Finish.

13.2.6 Deploying the JSP Application as a Simple Archive
To deploy the JSP application as a simple archive, perform the following steps.

1. In Oracle9i JDeveloper, click the tutorialclientapp.jpr file and select the file named
tutappclient_jpr_war.deploy.

2. Select 'Deploy to WAR file'. The file tutappclient_jpr_war.war gets created. To
track the deployment location, check the 'Deployment Log' text area in Oracle9i
JDeveloper.

13.3 Packaging the JSP Application
To package the JSP application, perform the following steps.

1. Create a sub-directory called bc4jtutapp under the following location.

<Oracle_Home>\Mobile\Sdk\wtgsdk\root

2. Unzip the tutappclient_jpr_war.war file into the bc4jtutapp directory.

3. Edit all the JSP files to delete the following.

:charset=windows-1252

from

<%@page language="Java"errorpage="errorpage.jsp"

ContentType="text/html;charset=windows-1252"%>

Packaging the JSP Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-17

4. Edit the web.xml file and insert the following tag at the end just before closing
</web-app>.

<filter>
<filter-name>CheckSessionFilter</filter-name>
<filter-class>oracle.lite.web.CheckSessionFilter</filter-class>
</filter>

<filter-mapping>
<filter-name>CheckSessionFilter</filter-name>
<url-pattern>/*</url-pattern>
</filter-mapping>

5. Using the Command Prompt window, run the Packaging Wizard and provide the
screen inputs that are listed and described in Table 13–5.

Table 13–6 lists the servlet names and their corresponding classes that are created
in the Packaging Wizard by default.

Table 13–7 lists server side and client side database values that you must specify in
the Packaging Wizard.

Table 13–5 Packaging Wizard Input Details

Screen Input Details

Platform Web-To-Go NA

Application Application Name BC4J 9iLite Tutorial Application

Application Virtual Path /bc4jtutorial

Application Description BC4J 9iLite Tutorial Application

Application Application Classpath no input

Application Default Page main.html

Application Local Application Directory <Oracle_Home>\Mobile\Sdk\wtgsdk\root\bc4jtutapp

Files The Packaging Wizard loads all
files in a directory under the
Local Application Directory.

NA

Table 13–6 Servlet Names and Classes

Screen Servlet Name Servlet Class

Servlet EMDServlet oracle.jbo.server.emd.EMDServlet

Servlet ImageServlet oracle.cabo.image.servlet.ImageServlet

Servlet TecateServlet oracle.cabo.image.servlet.TecateServlet

Servlet BajaServlet oracle.cabo.servlet.BajaServlet

Servlet OrdPlayMediaServlet oracle.ord.html.OrdPlayMediaServlet

Table 13–7 Database Values

Screen Input Details

Database Server side Database User Name scott

Publishing and Configuring the JSP Application from the Mobile Manager

13-18 Oracle Database Lite Developer’s Guide

6. Under the Snapshots section, click "Import...". You can now connect to the Oracle
Database by providing the following values in the "Connect to Database" dialog.

Table 13–8 lists values that you must specify in the Connect to Database dialog.

7. After specifying the Database Connection values, select "Emp" from the list of
tables.

8. Click "Edit" and change the weight to "1" from "0".

9. You must retain the default values for Roles, Sequences, DDLs, and Registry
fields.

10. Package the application into a JAR file.

13.4 Publishing and Configuring the JSP Application from the Mobile
Manager

To configure the JSP application from the Mobile Manager, perform the following
steps.

1. Using the Command Prompt window, enter java -jar oc4j.jar, to start the Mobile
Server.

2. Using the following URL, browse the local host.

http://localhost:portnumber

If the above port number is other than 80, you must specify the appropriate port
number.

3. Login into the Mobile Server using the Administrator's user name and password.

4. Click Mobile Manager.

5. Click the Applications link and publish the JAR file that you just created. In the
Repository Directory field, enter /bc4jtutorial.

13.5 Testing the BC4J Application
To test the BC4J application, login to the Mobile Server as a 'tutorial' user. In the
'tutorial' workspace, double-click the 'BC4J 9iLite Tutorial Application'. The Business

Database Number of Connections 0

Database Share Connections Do not select this check box

Database Client side Database Name Client DB

Table 13–8 Connect to Database Dialog Description

Field Description

User Name scott

Password tiger

Database URL jdbc:oracle:thin:@DatabaseHostMachineName:port:SID

Table 13–7 (Cont.) Database Values

Screen Input Details

Deploying the Sample Application

Building Offline Mobile Web Applications Using BC4J: A Tutorial 13-19

Components JSP Application window appears. Click Emp View and browse through
the employee table records.

13.6 Running the BC4J Application on the Mobile Client for Web-to-Go
To run the BC4J application on the Mobile Client for Web-to-Go, perform the
following steps.

1. Using the following URL, check the Database Server's IP address setup.

http://Server_IP_Address/setup

2. Download and install the Mobile Client for Web-to-Go with BC4J support.

3. Using the following URL, check the local host in the client machine.

http://localhostname

4. Log in to the client machine using 'tutorial' as the user name and password.

5. After the client machine synchronizes the application and data from the server,
click the 'BC4J 9iLite Tutorial Application' link to test the application on the client
machine.

13.7 Deploying the Sample Application
To deploy the sample application, perform the following steps.

1. Log in to the database as a system user. If the SCOTT schema does not exist
already, run the bc4j.sql script.

2. Publish the 9iLite_BC4J_Tutorial.jar file. It is found under the following
directory.

<Oracle_Home>\mobile\Sdk\wtgsdk\src\bc4jtutorial>

Using the Mobile Manager, publish the above .jar file into the Mobile Server and
enter the following virtual path.

/bc4jtutorial

3. Click Mobile Manager and click the Applications link.

4. Click the '9iLite BC4J Application' link. The Properties page appears.

5. Enter tiger as the database password and click Save.

6. Navigate back to the Mobile Manager home page and click the Users link. In
case the user 'tutorial' doesn't exist already, add a user named 'tutorial' and assign
'user' as the privilege.

7. Click the Applications link and click the '9iLite BC4J Application' link. To provide
access to the '9iLite BC4J Application', click the Access link and provide access to
the user named 'tutorial'.

8. Using the following URL, browse the client machine with BC4J support.

http://servername:port/webtogo/setup

9. Download and install the Mobile Client for Web-to-Go.

10. If not started already, start the Mobile Client for Web-to-Go.

11. Log in to the Mobile Client for Web-to-Go with 'tutorial' as the user name and
password.

Deploying the Sample Application

13-20 Oracle Database Lite Developer’s Guide

12. Upon completion of the Synchronization process, the system displays the '9iLite
BC4J Application' link.

13. Click the '9iLite BC4J Application' link to access the BC4J tutorial application.

Optimizing SQL Queries A-1

A
Optimizing SQL Queries

This document provides tips on improving the performance of your SQL queries.
Topics include:

■ Section A.1, "Optimizing Single-Table Queries"

■ Section A.2, "Optimizing Join Queries"

■ Section A.3, "Optimizing with Order By and Group By Clauses"

The tip examples use the database schema listed in Table A–1:

A.1 Optimizing Single-Table Queries
To improve the performance of a query that selects rows of a table based on a specific
column value, create an index on that column. For example, the following query
performs better if the NAME column of the EMP table has an index.

SELECT *
FROM EMP
WHERE NAME = 'Smith';

If the selectivity (selecting more than 10% of the rows) of the indexing columns is poor,
an index may ruin performance. For example, an index on JOB_TITLE may not be a
good choice even if the query is as follows.

SELECT *
FROM EMP

Table A–1 Database Schema Examples

Tables Columns Primary Keys Foreign Keys

LOCATION LOC#

LOC_NAME

 LOC#

EMP SS#

NAME

JOB_TITLE

WORKS_IN

 SS#

WORKS_IN references DEPT (DEPT#)

DEPT DEPT#

NAME

BUDGET

LOC

MGR

DEPT#

LOC references LOCATION (LOC#)

MGR references EMP (SS#)

Optimizing Join Queries

A-2 Oracle Database Lite Developer’s Guide

WHERE JOB_TITLE='CLERK'

A.2 Optimizing Join Queries
The following can improve the performance of a join query (a query with more than
one table reference in the FROM clause).

A.2.1 Create an Index on the Join Column(s) of the Inner Table
In the following example, the inner table of the join query is DEPT and the join column
of DEPT is DEPT#. An index on DEPT.DEPT# improves the performance of the query.
In this example, since DEPT# is the primary key of DEPT, an index is implicitly created
for it. The optimizer will detect the presence of the index and decide to use DEPT as
the inner table. In case there is also an index on EMP.WORKS_IN column the
optimizer evaluates the cost of both orders of execution; DEPT followed by EMP
(where EMP is the inner table) and EMP followed by DEPT (where DEPT is the inner
table) and picks the least expensive execution plan.

SELECT e.SS#, e.NAME, d.BUDGET
FROM EMP e, DEPT d
WHERE e.WORKS_IN = DEPT.DEPT#
AND e.JOB_TITLE = 'Manager';

A.2.2 Bypassing the Query Optimizer
Normally optimizer picks the best execution plan, an optimal order of tables to be
joined. In case the optimizer is not producing a good execution plan you can control
the order of execution using the HINTS feature SQL. For more information see the
Oracle Database Lite SQL Reference.

For example, if you want to select the name of each department along with the name
of its manager, you can write the query in one of two ways. In the first example which
follows, the hint /*+ordered*/ says to do the join in the order the tables appear in
the FROM clause.

SELECT /*+ordered*/ d.NAME, e.NAME
FROM DEPT d, EMP e
WHERE d.MGR = e.SS#

or:

SELECT //ordered// d.NAME, e.NAME
FROM EMP e, DEPT d
WHERE d.MGR = e.SS#

Suppose that there are 10 departments and 1000 employees, and that the inner table in
each query has an index on the join column. In the first query, the first table produces
10 qualifying rows (in this case, the whole table). In the second query, the first table
produces 1000 qualifying rows. The first query will access the EMP table 10 times and
scan the DEPT table once. The second query will scan the EMP table once but will
access the DEPT table 1000 times. Therefore the first query will perform much better.
As a rule of thumb, tables should be arranged from smallest effective number of rows
to largest effective number of rows. The effective row size of a table in a query is
obtained by applying the logical conditions that are resolved entirely on that table.

In another example, consider a query to retrieve the social security numbers and
names of employees in a given location, such as New York. According to the sample
schema, the query would have three table references in the FROM clause. The three

Optimizing with Order By and Group By Clauses

Optimizing SQL Queries A-3

tables could be ordered in six different ways. Although the result is the same
regardless of which order you choose, the performance could be quite different.

Suppose the effective row size of the LOCATION table is small, for example select
count(*) from LOCATION where LOC_NAME = 'New York' is a small set.
Based on the above rules, the LOCATION table should be the first table in the FROM
clause. There should be an index on LOCATION.LOC_NAME. Since LOCATION
must be joined with DEPT, DEPT should be the second table and there should be an
index on the LOC column of DEPT. Similarly, the third table should be EMP and there
should be an index on EMP#. You could write this query as:

SELECT /*+ordered*/ e.SS#, e.NAME
FROM LOCATION l, DEPT d, EMP e
WHERE l.LOC_NAME = 'New York' AND
l.LOC# = d.LOC AND
d.DEPT# = e.WORKS_IN;

A.3 Optimizing with Order By and Group By Clauses
Various performance improvements have been made so that SELECT statements run
faster and consume less memory cache. Group by and Order by clauses attempt to
avoid sorting if a suitable index is available.

A.3.1 IN Subquery Conversion
Converts IN subquery to a join when the select list in the subquery is uniquely
indexed.

For example, the following IN subquery statement is converted to its corresponding
join statement. This assumes that c1 is the primary key of table t2:

SELECT c2 FROM t1 WHERE
c2 IN (SELECT c1 FROM t2);

becomes:

SELECT c2 FROM t1, t2 WHERE t1.c2 = t2.c1;

A.3.2 ORDER BY Optimization with No GROUP BY
This eliminates the sorting step for an ORDER BY clause in a select statement if ALL of
the following conditions are met:

1. All ORDER BY columns are in ascending order or in descending order.

2. Only columns appear in the ORDER BY clause. That is, no expressions are used in
the ORDER BY clause.

3. ORDER BY columns are a prefix of some base table index.

4. The estimated cost of accessing by the index is less than the estimated cost of
sorting the result set.

A.3.3 GROUP BY Optimization with No ORDER BY
This eliminates the sorting step for the grouping operation if GROUP BY columns are
the prefix of some base table index.

Optimizing with Order By and Group By Clauses

A-4 Oracle Database Lite Developer’s Guide

A.3.4 ORDER BY Optimization with GROUP BY
When ORDER BY columns are the prefix of GROUP BY columns, and all columns are
sorted in either ascending or in descending order, the sorting step for the query result
is eliminated. If GROUP BY columns are the prefix of a base table index, the sorting
step in the grouping operation is also eliminated.

A.3.5 Cache Subquery Results
If the optimizer determines that the number of rows returned by a subquery is small
and the query is non-correlated, then the query result will be cached in memory for
better performance. For example:

select * from t1 where
t1.c1 = (select sum(salary)
from t2 where t2.deptno = 100);

Oracle Database Lite Load Application Programming Interfaces (APIs) B-1

B
Oracle Database Lite Load Application

Programming Interfaces (APIs)

This document describes the Oracle Database Lite Load APIs. Each section of this
document presents a different topic. These topics include:

■ Section B.1, "Overview"

■ Section B.2, "Oracle Database Lite Load APIs"

■ Section B.3, "File Format"

■ Section B.4, "Limitations"

B.1 Overview
The Oracle Database Lite Load APIs allow you to load data from an external file into a
table in Oracle Database Lite, or to unload (dump) data from a table in Oracle
Database Lite to an external file. For information on using the command line tool
OLLOAD, see the Oracle Database Lite Tools and Utilities Guide. You can use the API calls
presented in this document to make your own customizations.

B.2 Oracle Database Lite Load APIs
The Oracle Database Lite Load APIs include:

■ Section B.2.1, "Connecting to the Database: olConnect"

■ Section B.2.2, "Disconnecting from the Database: olDisconnect"

■ Section B.2.3, "Deleting All Rows from a Table: olTruncate"

■ Section B.2.4, "Setting Parameters for Load and Dump Operations: olSet"

■ Section B.2.5, "Loading Data: olLoad"

■ Section B.2.6, "Dumping Data: olDump"

The normal mechanism for unloading and loading a table is as follows:

1. Declare local variable, DBHandle.

2. Connect to the database using olConnect.

3. Optionally, set parameters for load or unload.

4. Dump or load the data using olDump or olLoad. You may optionally delete all
rows from a table by calling olTruncate.

5. Disconnect from the database using olDisconnect.

Oracle Database Lite Load APIs

B-2 Oracle Database Lite Developer’s Guide

B.2.1 Connecting to the Database: olConnect
Use this API to connect to the database. This is the first API that you have to call. It
creates a load and unload context that is used in subsequent APIs to influence the load
and unload behavior. This returns an initialized database handle DBHandle.

Syntax
olError olConnect (char *database_path, char *password, DBHandle &dbh);

The arguments for olConnect are listed in Table B–1:

Return Values
(short) integer error code

Values from -1 to -8999 are used for the error codes returned by the database, values
from -9000 and below are used for olLoad-specific error codes.

B.2.2 Disconnecting from the Database: olDisconnect
Disconnects from the database.

Syntax
olError olDisconnect (DBHandle dbh);

The arguments for olDisconnect are listed in Table B–2:

Return Value
(short) integer error code

B.2.3 Deleting All Rows from a Table: olTruncate
This API can be used to delete all rows from an existing table.

Syntax
olError olTruncate (DBHandle dbh, char* table);

The arguments for olTruncate are listed in Table B–3:

Table B–1 olConnect Arguments

Argument Description

database_path The full path to the database file (directory path and filename).

password The password used for the encrypted database, for any other
database the password = NULL.

dbh The application handle for the current database connection.
This allows multiple database connections for one application
thread (each connection has a different handle).

Table B–2 olDisconnect Arguments

Argument Description

dbh The current application handle.

Oracle Database Lite Load APIs

Oracle Database Lite Load Application Programming Interfaces (APIs) B-3

Return Value
(short) integer error code

B.2.4 Setting Parameters for Load and Dump Operations: olSet
This is an optional API. This sets optional parameters for load and unload.

Syntax
olError olSet (DBHandle dbh, char * parameter_name, char *parameter_value);

The arguments for olSet are listed in Table B–4:

Return Value
(short) integer error code

B.2.5 Loading Data: olLoad
OlLoad loads data from a file into a table using current parameter settings.

Syntax
olError olLoad (DBHandle dbh, char *table, char *file);

The arguments for olLoad are listed in Table B–5:

Table B–3 olTruncate Arguments

Argument Description

dbh The current application handle.

tablename The name of the table in the form: owner_name.table_name.

where owner_name is the name of the owner of the table.

Table B–4 olSet Arguments

Argument Description

dbh The current application handle.

parameter_name The name of the given parameter. This is not case sensitive. See
Section B.3.2, "Parameters" for a list of parameter names and
their default values.

parameter_value The value to be set. This is not case sensitive for most
parameters.

Table B–5 olLoad Arguments

Argument Description

dbh The current application handle.

table The table information in the form: owner_name.table_
name(col1,col2,...)

where col1,col2,... is the list of column names to load.

This allows you to load and dump certain columns instead of
the entire table. If the entire table is to be dumped, the column
list need not be specified.

file The path to the file from which loading takes place.

File Format

B-4 Oracle Database Lite Developer’s Guide

Return Value
(short) integer error code

B.2.6 Dumping Data: olDump
OlDump dumps data from a table into a file using current parameter settings.

Syntax
olError olDump (DBHandle dbh, char *table, char *file);

The arguments for olDump are listed in Table B–6:

Return Value
(short) integer error code

B.2.7 Compiling
The declarations for the DBHandle, parameter constants and flags, and error message
codes are given in the file olloader.h in the ORACLE_HOME\Mobile\SDK\include
directory. For compilation of your product include olloader.h in your main source file.

B.2.8 Linking
Linking use the file olloader40.dll and the library file olloader40.lib. Include these
files in your project settings.

B.3 File Format
The Oracle Database Lite Load APIs support three file formats FIXEDASCII, BINARY
and CSV. Each file contains an optional header followed by zero or more rows of data.

B.3.1 Header Format
The header has the following format (comments are in bold):

$$OL_BH$$ [begins header]
VERSION=xx.xx.xx.xx [version number]
TABLE=T1(C1, C2, ...)... [table name with list of column names dumped]
FILEFORMAT=FIXEDASCII
SEPARATOR=,
[any other parameters in the parameter list can be listed here]
$$OL_EH$$ [ends header]

Note: If table = NULL, olLoad tries to find the table description
in the file header.

Table B–6 olDump Arguments

Argument Description

dbh The current application handle.

table The table information in the same form as olLoad.

file The file to which dump data is written.

File Format

Oracle Database Lite Load Application Programming Interfaces (APIs) B-5

The following is a header example:

$$OL_BH$$
VERSION=01.01.01.01
TABLE=T1(EMPNO,SALARY)
FILEFORMAT=BINARY
BITARRAY=TRUE
HEADER=TRUE
RDONLY=FALSE
LOGFILE=
COMMITCOUNT=-1
NOSINGLE=TRUE
$$OL_EH$$

The header lines can be in any order and all lines except $$OL_BH$$ and $$OL_EH$$
can be considered optional. Although, during the dump, if the header flag is on, table
information and all parameter settings are dumped into the header.

When executing load, parameter information in the header overwrites current
parameter settings. If the table argument in olLoad is NULL, the table name and list
of columns in the header prevails, otherwise the table argument of olLoad prevails
over the header.

B.3.2 Parameters
Header file parameters listed in Table B–7 are not case sensitive.

Table B–7 Parameters

Parameter Description

FILEFORMAT Input and output file format. The following formats are
supported:

■ FixedASCII - text file with fixed field width for each
datatype.

■ CSV – comma separated values format.

■ Binary - binary file format.

These key word values are not case sensitive.

SEPARATOR The separator between the values (one character), comma by
default.

QUOTECHAR The quote character for the string datatype values in the file,
single quote (') by default.

LOGFILE The log file name. NULL by default (no log file produced and
loading stops at the first error).

NOSINGLE FALSE for single user mode (the default), or TRUE for no
single user mode.

READONLY FALSE (the default). TRUE to dump the data from read-only
database (such as CD-ROM).

COMMITCOUNT The number of rows processed after which olLoad, olDump,
and olTruncate commit. The default value is -1, not to
commit at all. Value 0 commits at the end of the operation, and
values above 0 commit after the specified number of rows.

HEADER FALSE (the default). TRUE to create a header in the beginning
of the file during olDump.

File Format

B-6 Oracle Database Lite Developer’s Guide

B.3.3 Data Format
The data format can be comma separated value (CSV), fixed ASCII, or binary. The
following cases apply:

B.3.3.1 CSV Format
Each row of the table is represented as a separate line in the file. Each line is separated
by a carriage return and a line feed character on the Windows platform. Each value in
the row is separated by a separator character which by default is a comma.

Each value is also quoted by a quote character. Nulls are represented by an empty
quoted string " ". The number of quoted strings in the file should be the same as the
number of columns in the table, olLoad gives an error otherwise.

B.3.3.2 FixedAscii Format
Each row of the table is represented as a separate line in the file. Each line is separated
by a carriage return and a line feed character on the Windows platform. Each line is of
the same size. The datatype of a column governs its format or representation in the
file. Nulls are represented by a string of n '\0' (null) characters, where n is the fixed
size of the field. Table B–8 describes data representation for each data type. The total
record length for each line in the file should be the same as the sum of field lengths
(precision) of each column, otherwise olLoad returns an error.

BITARRAY TRUE (the default) to support writing and reading nulls in
binary format. During the dump, a bit array with the null
information is dumped before each row. For FALSE olDump
provides an error trying to write nulls in binary.

NONULL TRUE (the default) when trying to read or write nulls olLoad
and olDump return an error. When the flag is set to FALSE
nulls are supported, including binary format since the default
BITARRAY value is TRUE.

DATEFORMAT The string for which date and timestamp columns should be
written into the file and read from the file in FIXED ASCII and
CSV formats. Such formats as "YYYYMMDD",
"YYYY-MM-DD", and "YYYY/MM/DD" are supported. The
default value is empty string (which can also be set using
NULL), and the default date format is "YYYY-MM-DD". (In
Oracle mode, date is treated the same as timestamp so that the
date format is the default timestamp format which is
"YYYY-MM-DD HH:MM:SS.SSSSSS".)

Table B–8 Datatypes

Datatype Description

CHAR(n) Length of the field in n characters. Data is left aligned and
padded with blanks on the right.

VARCHAR(n) Length of the field in n characters. Data is left aligned. It is
padded with a null byte ('\0').

Table B–7 (Cont.) Parameters

Parameter Description

File Format

Oracle Database Lite Load Application Programming Interfaces (APIs) B-7

NUMERIC(p,s) The default mode: length of the field is p+1 characters if scale s
is zero or is not present. Otherwise, the length of the field is
(p+2) characters. The value is right aligned in the output field.
Format is optional negative sign, followed by zeros if required,
followed by significant digits. If there is no negative sign, then
'0' instead, for example, Number(5,2)

12.3 -> ' 012.30'

-12.3 -> '-012.30'

1.23 -> ' 001.23'

-1.23 -> '-001.23'

The custom mode: the field length is one less: p if scale is not
present, or zero and p+1 otherwise. The actual number stored
in the file is of type NUMERIC(p-1, s). Correspondingly,
olDump gives an error trying to insert a number within the
range of NUMERIC(p, s), but out of the range of
NUMERIC(p-1, s). Therefore, the first character in the
NUMERIC field must be '0' or '-'; olLoad gives an error
otherwise.

DECIMAL(p,s) The same as NUMERIC(p,s).

INTEGER Length of the field is 11 characters. A negative sign or space
followed by 10 digits.

Leading digits are filled with zeros.

SMALLINT Field length is 6 characters. Minus sign or space followed by 5
digits.

FLOAT Field length is 23 characters. In Oracle mode, it is minus sign or
space, followed by leading zeroes, followed by some number
of digits, followed by dot, followed by some number of digits.
For example:

0 -> ' 0000000000000000000000'

-12.34 -> '-0000000000000000012.34'

In SQL92 mode the E (exponent) is always present and there is
only 1 digit before the decimal point. For example:

0 -> ' 00000000000000000000E0'

-12.34 -> '-000000000000001.234E10'

REAL The same format as for double precision except that the total
field length is only 16 characters instead of 23.

Table B–8 (Cont.) Datatypes

Datatype Description

Limitations

B-8 Oracle Database Lite Developer’s Guide

B.4 Limitations
Currently olLoad does not support the following features:

■ Columns of the datatype Interval, Time with time zone, Timestamp with time
zone, BLOB, and CLOB.

■ Binary data is not supported.

■ The only "var" type supported is varchar.

DOUBLE PRECISION Field length is 23 characters. Minus sign or space followed by
22 characters which are digits, dot, or E, floating point number
followed by E, followed by the exponent digits. In Oracle
mode, if the number is small enough to fit in the field without
using the exponent, E is not used. In SQL92 mode, E is always
used. There is always one meaningful digit before the floating
point, except 0.

For example, in SQL92 mode:

0 -> ' 00000000000000000000E0'

-1.79E10 -> '-0000000000000001.79E10'

12 -> ' 00000000000000001.2E10'

For example, in Oracle mode:

1.2E75 -> ' 00000000000000001.2E75'

-1.33333 -> '-0000000000000001.33333'

-1.79E10 -> '-0000000000017900000000'

DATE In SQL92 mode: YYYY-MM-DD, 10 characters long, for
example:

October 1, 1999 -> 1999-10-01

In Oracle mode the date is dumped as timestamp.

If it is not the default date format parameter, the date format
corresponds to the specified date format string, for example:

DATEFORMAT = "YYYYMMDD"

October 1, 1999 -> 19991001

TIME HH:MM:SS, 8 characters long, for example:

5:01:58 p.m. is 17:01:58

TIMESTAMP Date format, space, time format, dot, 6 digits after dot
(precision of microseconds), total length of 26 characters:

YYYY-MM-DD HH:MM:SS.SSSSSS

If it is not the default date format parameter, the timestamp
format corresponds to the specified date format string. If no
time is specified in the date format string, the time information
in the timestamp is omitted when dumping into a file.

Table B–8 (Cont.) Datatypes

Datatype Description

Web-to-Go Sample Applications C-1

C
Web-to-Go Sample Applications

This appendix contains Web-to-Go sample applications. Topics include:

■ Section C.1, "Introduction"

■ Section C.2, "Sample 1 - Hello World"

■ Section C.3, "Sample 3 - Recording Tracker"

■ Section C.4, "Sample 4 - Hello Applet"

■ Section C.5, "Sample 6 - Image Gallery"

■ Section C.6, "Sample 7 - Employee Data Applet"

C.1 Introduction
Web-to-Go contains five sample programs that are installed with the Mobile
Development Kit for Web-to-Go or the Mobile Server.

C.1.1 The Mobile Server
You can install the demos during Mobile Server installation or by running the batch
file instdemo.bat. This batch file is located in the following directory.

<Oracle_home>\Mobile\Server\Samples

The command syntax is as follows.

instdemo.bat [SYSTEM_password] [repository_owner] [repository_password]

For example,

instdemo manager mobileadmin manager

C.1.2 The Mobile Development Kit for Web-to-Go
You can install the demos by running the batch file sdkdemos.bat. This batch file is
located in the following directory.

<Oracle_home>\Mobile\sdk\wtgsdk\src\sdkdemos.bat

C.1.3 Accessing Sample Programs from the Mobile Development Kit for Web-to-Go
The Mobile Development Kit for Web-to-Go is bundled with sample programs that
you can access from the following URL.

http://<mobile_server>:7070/

Sample 1 - Hello World

C-2 Oracle Database Lite Developer’s Guide

The browser displays icons for different sample programs. To launch a sample
program, click the required icon for the corresponding program.

C.1.4 Accessing Sample Programs from the Mobile Server
As Table C–1 describes, the Mobile Server automatically creates the following sample
users when you install Web-to-Go demos.

The above listed sample users can access the sample programs by logging on to the
Mobile Server and clicking any of the sample application icons in the workspace.

C.2 Sample 1 - Hello World
Sample 1, Hello World is a servlet that returns a simple HTML page to the browser. It
demonstrates the basic methods of HttpServlet and demonstrates the difference
between the POST and GET methods.

C.2.1 Source Code Location
The source code location varies depending on whether you installed the Mobile Server
or the Mobile Development Kit for Web-to-Go. Table C–2 describes these locations.

C.2.2 Application Files
Sample 1 contains the HelloWorld.java file. It is the source code for the HelloWorld
servlet.

C.3 Sample 3 - Recording Tracker
Sample 3, the Recording Tracker demonstrates how servlets can be used to maintain a
database with recording information. The program allows users to search the database
and enter recordings and tracks for a recording. Although the recordings are stored in
the RECORDINGS table, users can only see their corresponding data when they access
this table.

C.3.1 Using Sample 3
When a user goes offline, Web-to-Go automatically creates snapshots on the local client
to hold a copy of the data. You can choose the rows that are replicated to the snapshot

Table C–1 Sample Users

User Password

john john

jack jack

jane jane

Table C–2 Source Code Locations

Installation Type Source Code Locations

Mobile Server <Oracle_home>\Mobile\Server\samples\sample3\src

Mobile
Development Kit for
Web-to-Go

The Java source code can be found in the following location.

<Oracle_home>\Mobile\Sdk\wtgsdk\src\sample3\servlets

Web-to-Go Sample Applications C-3

by adding a subquery to the snapshot definition. This enables Web-to-Go to
synchronize specific rows for the user to the local client. In Sample 3, both John and
Jack have access to the same data. Jane can only see her own data and no other user
has access to it. For more information on setting up a snapshot subquery, see the Oracle
Database Lite Administration and Deployment Guide.

C.3.2 Sample 3 Database Tables
Sample 3 contains the following database tables.

■ RECORDINGS

■ RECORDING TYPES

■ TRACKS

 As Figure C–1 displays, the database tables are illustrated in the following entity
relationship diagram.

Figure C–1 Entity Relationship Diagram

C.3.3 Sample 3 Servlets
Sample 3 contains six different Java servlets. These servlets demonstrate two ways of
generating HTML. The DisplayRecord servlet uses the oracle.html package to
generate the entire HTML file. The DisplayMasterDetail, ListSearchResults,
and SimpleList servlets generate HTML using the base class
oracle.lite.web.html.TemplateParser and a static HTML template. In both
cases, data is displayed in HTML using the DBTable class. Data changes are
processed by the generic servlet ProcessForm, which is part of the
oracle.lite.web.html package. DeleteDetail and DeleteMasterDetail
extend the class oracle.lite.web.html.DeleteRecords. These servlets execute
a request and then redirect the browser to another URL.

C.3.4 Sample 3 Resource Bundle
The Recording Tracker program also illustrates the use of the ListResourceBundle
class to manage resources for locale specific strings. By isolating all text strings in a
resource bundle, you can write programs that can easily be translated into other
languages, or modified to add support for more languages. See
SampleResources.java for more detailed information.

C.3.5 Source Code Location
The source code location varies depending on whether you installed the Mobile Server
or the Mobile Development Kit for Web-to-Go. Table C–3 describes these locations.

Sample 4 - Hello Applet

C-4 Oracle Database Lite Developer’s Guide

C.3.6 Application Files
Sample 3 contains the following application files.

C.4 Sample 4 - Hello Applet
Sample 4, the Hello Applet illustrates how applets and servlets can communicate with
each other. A Java applet calls a servlet running on the Mobile Server. The servlet
responds by sending a string to the applet, which the applet then displays.

C.4.1 Sample 4 Servlets
Sample 4 contains two servlets. The AppServlet servlet generates HTML that
instructs the browser to launch the applet. This HTML includes applet parameters that

Table C–3 Source Code Locations

Installation Type Source Code Locations

Mobile Server <Oracle_home>\Mobile\Server\samples\sample1\src

Mobile
Development Kit for
Web-to-Go

The Java source code can be found in the following location.

<Oracle_home>\Mobile\Sdk\wtgsdk\src\sample1\servlets

File Description

EnterSearchCriteria.html The Static HTML file.

sample3.gif The Sample 3 icon that appears in the Web-to-Go
workspace.

sample3.html The start page for the application.

sample3.sql The SQL Script that installs the sample3 database objects.

table.sql The SQL script that creates the sample3 database tables.

insert.sql The SQL script that populates the sample3 database tables
with data.

drop.sql The SQL script that drops the sample3 database tables.

SampeProgram3.java The source code that contains static definitions for the
Sample 3 application.

SampleResources.java The source code for the String Resources used by the
servlets.

DisplayMasterDetail.java The source code for the DisplayMasterDetail servlet.

DisplayRecord.java The source code for the DisplayRecord servlet.

SimpleList.java The source code for the SimpleList servlet.

ListSearchResults.java The source code for the ListSearchResults servlet.

DeleteDetail.java The source code for the DeleteDetail servlet.

DeleteMasterDetail.java The source code for the DeleteMasterDetail servlet.

DisplayMasterDetail.html The HTML template, used by the
DisplayMasterDetail Servlet.

ListSearchResults.html The HTML template, used by the ListSearchResults
Servlet.

SimpleList.html The HTML template, used by the SimpleList Servlet.

Web-to-Go Sample Applications C-5

contain the Mobile Server session information. The HelloServlet is called by the
applet as part of the applet/servlet communication.

C.4.2 Source Code Location
The source code location varies depending on whether you installed the Mobile Server
or the Mobile Development Kit for Web-to-Go. Table C–4 describes these locations.

C.4.3 Application Files
Sample 4 contains the following application files.

C.5 Sample 6 - Image Gallery
Sample 6, the Image Gallery demonstrates how to store binary data in the database
without using the LONG datatype. When the sample program uploads images to the
Mobile Server, it separates them into 255 byte chunks. As a result, you can store the
images in a RAW datatype column.

C.5.1 Source Code Location
The source code location varies depending on whether you installed the Mobile Server
or the Mobile Development Kit for Web-to-Go. Table C–5 describes these locations.

C.5.2 Application Files
Sample 6 contains the following application files.

Table C–4 Source Code Locations

Installation Type Source Code Locations

Mobile Server <Oracle_home>\Mobile\Server\samples\sample1\src

Mobile
Development Kit for
Web-to-Go

The Java source code can be found in the following location.

<Oracle_home>\Mobile\Sdk\wtgsdk\src\sample1\servlets

File Description

Sample4.gif The Sample 4 icon that appears in the workspace.

Sample4.html The start page for the application.

HelloApplet.java The Java source code for the applet.

AppServlet.java The Java source code for the AppServlet servlet.

HelloServlet.java The Java source code for the HelloServlet servlet.

Table C–5 Source Code Locations

Installation Type Source Code Locations

Mobile Server <Oracle_home>\Mobile\Server\samples\sample1\src

Mobile
Development Kit for
Web-to-Go

The Java source code can be found in the following location.

<Oracle_home>\Mobile\Sdk\wtgsdk\src\sample1\servlets

Sample 7 - Employee Data Applet

C-6 Oracle Database Lite Developer’s Guide

C.6 Sample 7 - Employee Data Applet
Sample 7, the Employee Data Applet, demonstrates how to use JDBC in an applet. The
applet connects to the database using the
oracle.lite.web.applet.AppletProxy class. This class automatically returns a
database connection to the appropriate database depending on the user's connection
mode. In online mode, the oracle.lite.web.applet.AppletProxy class returns
a connection to the Oracle database. In offline mode, or when using the Mobile
Development Kit for Web-to-Go, the class returns a connection to Oracle Database Lite.

Running Sample 7
To successfully run Sample 7, the client webtogo.ora file must be modified to support
Applet JDBC connections. The webtogo.ora file is available at the following location.

<WebtoGo_Home>\bin\webtogo.ora

Uncomment the following line in the webtogo.ora file.

#APPLET_SUPPORT_ENABLE=YES

Ensure that the file olite40.jar is recognized by the chosen browser as being in the
CLASSPATH.

Normally, the System CLASSPATH is the appropriate location to add the file.
However, on some occasions the browser does not recognize changes to the System
CLASSPATH, but does recognize changes to the User CLASSPATH. You must try the
System CLASSPATH first. As a back up option, you can try the User CLASSPATH.

C.6.1 Source Code Location
The source code location varies depending on whether you installed the Mobile Server
or the Mobile Development Kit for Web-to-Go. Table C–6 describes these locations.

File Description

sample6.gif Icon for the application, used in the Web-to-Go workspace.

loadImage.html HTML form to upload an image.

DeleteImage.java Source code for the DeleteImage servlet.

GetImage.java Source code for the GetImage servlet.

Upload.java Source code for the Upload servlet.

ImageList.java Source code for the ImageList servlet.

ViewImage.java Source code for the ViewImage servlet.

RawImage.java The Source code for the RawImage servlet.

ImageList.html The HTML Template used by the ImageList servlet.

ViewImage.html The HTML Template used by the ViewList servlet.

sample6.sql The SQL script that installs the sample6 database objects.

table.sql The SQL script that creates the sample6 database tables.

drop.sql The SQL script that drops the sample6 database tables.

Web-to-Go Sample Applications C-7

C.6.2 Application Files
Sample 7 contains the following application files.

Table C–6 Source Code Locations

Installation Type Source Code Locations

Mobile Server <Oracle_home>\Mobile\Server\samples\sample1\src

Mobile
Development Kit for
Web-to-Go

The Java source code can be found in the following location.

<Oracle_home>\Mobile\Sdk\wtgsdk\src\sample1\servlets

File Description

sample7.gif The application icon that appears in the workspace.

sample7.ahtml The application start page.

AppApplet.java The Java source code for the applet.

ErrorDialog.java The Java source code for error dialog.

sample7.sql The SQL Script to install the sample7 database objects.

table.sql The SQL script that creates the sample7 database tables.

insert.sql The SQL script that populates the sample7 database tables
with data.

drop.sql The SQL script that drops any old tables.

Sample 7 - Employee Data Applet

C-8 Oracle Database Lite Developer’s Guide

ODBC Support on Palm D-1

D
ODBC Support on Palm

This document describes the Open Database Connectivity (ODBC) support provided
in Oracle Database Lite 10g for the Palm OS Platform. Topics include:

■ Section D.1, "ODBC Support"

D.1 ODBC Support
For the Palm OS platform, Oracle Database Lite 10g supports a subset of the ODBC 3.0
application programming interface standard. Using the ODBC API, applications can
access data stored in Oracle Database Lite from your Palm handheld device.

The Oracle Database Lite ODBC library supports the Dynamic SQL model, in which
applications can construct SQL statements at runtime and execute them directly on the
handheld device.

The supported ODBC API functions are listed in Table D–1.

Table D–1 ODBC API Functions

Function Description

SQLAllocConnect Allocates memory for a connection handle using the specified
environment.

SQLAllocEnv Allocates memory for an environment handle.

SQLAllocHandle A generic function for allocating environment, connection, and
statement handles.

SQLAllocStmt Allocates memory for a statement handle using the specified
connection.

SQLFreeConnect Disconnects from the connected database using the specified
handle, and frees the handle.

SQLFreeEnv Frees the specified handle. Uncommitted transactions
associated with the handle are rolled back.

SQLFreeHandle A generic handle to free environment, connection, and
statement handles.

SQLFreeStmt Frees the specified statement handle and its associated
temporary memory.

SQLConnect Connects to a database and saves information about the
connection in the provided connection handle.

SQLDisconnect Disconnects and closes a previously connected database.

SQLBindParameter Binds a data buffer to a parameter marker in a SQL statement.

ODBC Support

D-2 Oracle Database Lite Developer’s Guide

D.1.1 SQLAllocConnect
Allocates memory for a connection handle using the specified environment, hEnv.

Syntax
RETCODE SQLAllocConnect(hEnv, hDbc)

Arguments
The arguments for SQLAllocConnect are listed in Table D–2:

Usage Note
This function is supported for backward compatibility with ODBC 2.0. New
applications should be coded using the function SQLAllocHandle and the handle
type SQL_HANDLE_DBC. Internally, SQLAllocConnect calls SQLAllocHandle.

Returns
SQLAllocConnect returns SQL_SUCCESS if it is successful. Otherwise, it returns
SQL_ERROR. To find out the specifics about an error, the application can call
SQLError with the specified environment handle.

SQLPrepare Compiles a SQL statement and stores the information in the
provided statement handle.

SQLExecDirect Compiles and executes the specified SQL statement.

SQLExecute Executes the prepared SQL using SQLPrepare.

SQLFetch Reads in a row of data from the result set. After calling the
function, the cursor is positioned to the next row to be read.

SQLBindCol Binds a buffer to a column in the result set.

SQLDescribeCol Retrieves information about a column of the result set.

SQLError Extracts details about the last error associated to the provided
handles.

SQLGetData Reads in a single column from the current row into the
specified buffer.

SQLNumResultCols Returns the number of columns in the result set.

SQLRowCount Returns the number of rows affected by a SQL SELECT,
UPDATE, or DELETE statement.

SQLTransact Requests a commit or rollback for all active operations on all
statements associated with an environment.

Table D–2 SQLAllocConnect Arguments

Type Name Description

SQLHENV hEnv Environment handle. If set to
NULL, creates a new
environment.

SQLHDBC* hDbc Pointer to a connection
handle where the routine
stores the address of the
newly allocated memory.

Table D–1 (Cont.) ODBC API Functions

Function Description

ODBC Support

ODBC Support on Palm D-3

D.1.2 SQLAllocEnv
SQLAllocEnv allocates memory for an environment handle.

To share a single transaction for different connections and statement handles, pass in
the same environment handle to SQLAllocConnection, SQLAllocStmt, or
SQLAllocHandle. This way, the new handles inherit, and share, the same
environment handle. When these handles are freed, the actual connections and
transaction are not freed. The resources are not released until the original environment
handle is freed.

Syntax
RETCODE SQLAllocEnv(hEnv)

Arguments
The arguments for SQLAllocEnv are listed in Table D–3:

Usage Note
This function is supported for backward compatibility with ODBC 2.0. New
applications should be coded using the function SQLAllocHandle and the handle
type SQL_HANDLE_ENV. Internally, SQLAllocEnv calls SQLAllocHandle.

Returns
SQLAllocEnv returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
and pass in NULL as the handle parameter.

D.1.3 SQLAllocHandle
SQLAllocHandle is a generic function for allocating environment, connection, and
statement handles.

This function replaces the old allocation functions for each individual handle types
(SQLAllocEnv, SQLAllocConnection, and SQLAllocStmt).

A transaction table (new OKAPI environment) is created for each new environment
handle. To share a single transaction for different connections and statement handles,
pass in the same environment handle to SQLAllocHandle as the inputHandle
argument. This way, the new handles inherit and share the same environment handle.
When these handles are freed, the actual connections and transaction are not freed.
The resources are not released until the original environment handle is freed. You can
also share a connection using the same method.

Syntax
RETCODE SQLAllocHandle(handleType, inputHandle, outputHandle)

Arguments
The arguments for SQLAllocHandle are listed in Table D–4:

Table D–3 SQLAllocEnv Arguments

Type Name Description

SQLHENV* hEnv Pointer to an environment
handle.

ODBC Support

D-4 Oracle Database Lite Developer’s Guide

Usage Note
An application allocates different handles to use with different API functions. The
handle provides a context for each function. The supported handle types are listed in
Table D–5:

Returns
SQLAllocHandle returns SQL_SUCCESS if it is successful. Otherwise, it returns
SQL_ERROR. To find out the specifics about an error, the application can call
SQLError with the inputHandle argument.

D.1.4 SQLAllocStmt
SQLAllocStmt allocates memory for a statement handle using the specified
connection, hDbc.

Syntax
RETCODE SQLAllocStmt(hDbc, hStmt)

Arguments
The arguments for SQLAllocStmt are listed in Table D–6:

Table D–4 SQLAllocHandle Arguments

Type Name Description

SQLSMALLINT handleType The type of handle to allocate.
See the following "Usage
Note" for more information.

SQLHANDLE inputHandle The handle to base on the
new handle. This is either an
environment or connection
handle.

To create a new handle from
scratch, pass in NULL.

SQLHANDLE* outputHandle Pointer to the storage for the
newly create handle.

Table D–5 Handle Parameters

Handle Type Description

Environment SQL_TYPE_ENV Environment handles are used to create an
environment. Each environment contains generic
information that allows you to access the
database. A new transaction is associated with a
newly-created environment handle.

Connection SQL_TYPE_DBC A connection handle is used to open a connection
to a specific Oracle Database Lite. Connections
can be based on the same environment handle,
hence sharing the same transaction across
multiple database connections. However, a
maximum of eight connections can share a single
environment.

Statement SQL_TYPE_STMT The statement handle contains information about
the compiled SQL statement and its result sets.

ODBC Support

ODBC Support on Palm D-5

Usage Note
This function is supported for backward compatibility with ODBC 2.0. New
applications should be coded using the function SQLAllocHandle, and the handle
type SQL_HANDLE_STMT. Internally, SQLAllocStmt calls SQLAllocHandle.

Returns
SQLAllocStmt returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified connection handle.

D.1.5 SQLFreeConnect
SQLFreeConnect disconnects from the connected database using the specified
handle, and frees the handle.

Syntax
RETCODE SQLFreeConnect(hDbc)

Arguments
The arguments for SQLFreeConnect are listed in Table D–7:

Usage Note
This function is deprecated and is replaced by the new generic function
SQLFreeHandle.

Returns
SQLFreeConnect returns SQL_SUCCESS if it is successful. Otherwise, it returns
SQL_ERROR. To find out the specifics about an error, the application can call
SQLError with the specified environment handle.

D.1.6 SQLFreeEnv
SQLFreeEnv frees the specified handle. Uncommitted transactions associated with
the handle are rolled back.

Syntax
RETCODE SQLFreeEnv(hEnv)

Table D–6 SQLAllocStmt Arguments

Type Name Description

SQLHDBC hDbc The connection handle to
creating the new handle.

SQLHSTMT* hStmt Pointer to a statement
handle.

Table D–7 SQLFreeConnect Arguments

Type Name Description

SQLHDBC hDbc The connection handle to
free.

ODBC Support

D-6 Oracle Database Lite Developer’s Guide

Arguments
The arguments for SQLFreeEnv are listed in Table D–8:

Note
This function is deprecated and is replaced by the new generic function
SQLFreeHandle.

Returns
SQLFreeEnv returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified environment handle.

D.1.7 SQLFreeHandle
SQLFreeHandle is a generic function to free environment, connection, and statement
handles.

The argument handleType is not used, because the handle internally contains
information about how it is last used and therefore how it should be freed.

Syntax
RETCODE SQLFreeHandle(handleType, handle)

Arguments
The arguments for SQLFreeHandle are listed in Table D–9:

Returns
SQLFreeHandle returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified handle.

D.1.8 SQLFreeStmt
SQLFreeStmt frees the specified statement handle and its associated temporary
memory.

Syntax
RETCODE SQLFreeStmt(hStmt, Option)

Arguments
The arguments for SQLFreeStmt are listed in Table D–10:

Table D–8 SQLFreeEnv Arguments

Type Name Description

SQLHENV hEnv Environment handle to free.

Table D–9 SQLFreeHandle Arguments

Type Name Description

SQLSMALLINT handleType The type of handle to free.

SQLHANDLE handle The handle to free.

ODBC Support

ODBC Support on Palm D-7

Usage Note
This function is deprecated and is replaced by the new generic function
SQLFreeHandle.

Returns
SQLFreeStmt returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified environment handle.

D.1.9 SQLConnect
SQLConnect connects to a database and saves information about the connection in
the provided connection handle. The handle must be previously allocated using the
SQLAllocateHandle function.

Syntax
RETCODE SQLConnect(hConn, dbName, dbNameLen, userName, userNameLen, auth, authLen
)

Arguments
The arguments for SQLConnect are listed in Table D–11:

Table D–10 SQLFreeStmt Arguments

Type Name Comments

SQLHSTMT hStmt Statement handle to free.

SQLUSMALLINT Option Use the value SQL-DROP to
free handle. SQL-CLOSE is
ignored.

Table D–11 SQLConnect Arguments

Type Name Description

SQLHDBC hConn Newly allocated connection
handle. If passed a
connection handle that is in
use, the function closes the
existing connection.

SQLCHAR* dbName Name of the database to
connect to.

SQLSMALLINT dbNameLen Length of the database name.

SQLCHAR* userName This argument is not
currently supported and is
ignored.

SQLSMALLINT userNameLen This argument is not
currently supported and is
ignored.

SQLCHAR* auth Database encryption
password.

SQLSMALLINT authLen Database encryption
password length.

ODBC Support

D-8 Oracle Database Lite Developer’s Guide

Returns
SQLConnect returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified connection handle.

D.1.10 SQLDisconnect
SQLDisconnect disconnects and closes a previously connected database.

If the environment used to make the connection is not committed before the
connection is closed, committing afterwards fails.

Syntax
RETCODE SQLDisconnect(hDbc)

Arguments
The arguments for SQLDisconnect are listed in Table D–12:

Returns
SQLDisconnect returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified connection handle.

D.1.11 SQLBindParameter
SQLBindParameter binds a data buffer to a parameter marker in a SQL statement.
Parameter markers are denoted by "?" in the SQL statement.

Syntax
RETCODE SQLBindParameter(hStmt, paramNo, paramType, cType, sqlType, colDef,
scale, value, valueMaxSize, valueSize)

Arguments
The arguments for SQLBindParameter are listed in Table D–13:

Table D–12 SQLDisconnect Arguments

Type Name Description

SQLHDBC hDbc Handle of connection to be
disconnected.

Table D–13 SQLBlindParameter Arguments

Type Name Description

SQLHSTMT hStmt Statement handle.

SQLUSMALLINT paramNo The number of the parameter
marker to bind to. Starts
from 1, counted from left to
right.

SQLSMALLINT paramType The parameter type.
Currently, only SQL_
PARAM_INPUT is
supported.

ODBC Support

ODBC Support on Palm D-9

Returns
SQLBindParameter returns SQL_SUCCESS if it is successful. Otherwise, it returns
SQL_ERROR.

D.1.12 SQLPrepare
SQLPrepare compiles a SQL statement and stores the information in the provided
statement handle.

Syntax
RETCODE SQLPrepare(hStmt, statement, statementLen)

Arguments
The arguments for SQLPrepare are listed in Table D–14:

Returns
SQLPrepare returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified statement handle.

D.1.13 SQLExecDirect
SQLExecDirect compiles and executes the specified SQL statement.

Syntax
RETCODE SQLExecDirect(hStmt, statement, statementLen)

SQLSMALLINT cType The C datatype of the
parameter.

SQLSMALLINT sqlType The SQL datatype of the
parameter.

SQLUINTEGER colDef The precision of the
parameter.

SQLSMALLINT scale The scale of the parameter.

SQLPOINTER value Pointer to the buffer where
the parameter value is stored.

SQLINTEGER valueMaxSize The size of the parameter
buffer.

SQLINTEGER* valueSize Actual size of the parameter
value.

Table D–14 SQLPrepare Arguments

Type Name Description

SQLHSTMT hStmt Statement handle.

SQLCHAR* statement SQL statement string.

SQLINTEGER statementLen Length of the SQL statement
string.

Table D–13 (Cont.) SQLBlindParameter Arguments

Type Name Description

ODBC Support

D-10 Oracle Database Lite Developer’s Guide

Arguments
The arguments for SQLExecDirect are listed in Table D–15:

Returns
SQLExecDirect returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified statement handle.

D.1.14 SQLExecute
SQLExecute executes the prepared SQL using SQLPrepare.

Syntax
RETCODE SQLExecute(hStmt)

Arguments
The arguments for SQLExecute are listed in Table D–16:

Returns
SQLExecute returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified statement handle.

D.1.15 SQLFetch
SQLFetch reads in a row of data from the result set. After calling the function, the
cursor is positioned to the next row to be read.

Application can call SQLGetData to read in the columns of the read-in row.

If the application called SQLBindCol to bind columns, SQLFetch stores data from
the row in the specified buffers.

Syntax
RETCODE SQLFetch(hStmt)

Arguments
The arguments for SQLFetch are listed in Table D–17:

Table D–15 SQLExecDirect Arguments

Type Name Description

SQLHSTMT hStmt Statement handle.

SQLCHAR* statement SQL statement string.

SQLINTEGER statementLen Length of the SQL statement
string.

Table D–16 SQLExecute Arguments

Type Name Description

SQLHSTMT hStmt Statement handle

ODBC Support

ODBC Support on Palm D-11

Returns
SQLFetch returns SQL_SUCCESS if a new row of data is read successfully.

If there are no more rows to be read, SQLFetch returns SQL_NO_DATA_FOUND.

If an error occurs, the function returns SQL_ERROR. To find out specifics about an
error, the application can call SQLError with the specified statement handle.

D.1.16 SQLBindCol
SQLBindCol binds a buffer to a column in the result set. The buffer is updated when
SQLFetch is called. New columns from the result set are then read in.

SQLBindCol can be called after or before the statement is prepared and executed, as
long as it is called before SQLFetch is called.

Syntax
RETCODE SQLBindCol(hStmt, columnNo, targetType, targetValue, targetSize,
actualSize)

Arguments
The arguments for SQLBindCol are listed in Table D–18:

Returns
SQLBindCol returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified statement handle.

D.1.17 SQLDescribeCol
SQLDescribeCol retrieves information about a column of the result set.

Syntax
RETCODE SQLDescribeCol(hStmt, columnNo, columnName, columnNameMaxLen,

Table D–17 SQLFetch Arguments

Type Name Description

SQLHSTMT hStmt Statement handle

Table D–18 SQLBindCol Arguments

Type Name Description

SQLHSTMT hStmt Statement handle.

SQLUSMALLINT columnNo The number of the column of
the result set to bind to.

SQLSMALLINT targetType The C datatype of the buffer.

SQLPOINTER targetValue Pointer to buffer to hold the
column data.

SQLINTEGER targetSize Size of the buffer in bytes.

SQLINTEGER* actualSize Pointer buffer to hold the
size of the data read. Can
pass in NULL if you do not
want the information.

ODBC Support

D-12 Oracle Database Lite Developer’s Guide

datatype, columnNameLen, columnSize, decimalDigits, nullable)

Arguments
The arguments for SQLDescribeCol are listed in Table D–19:

Returns
SQLDescribeCol returns SQL_SUCCESS if it is successful. Otherwise, it returns
SQL_ERROR. To find out the specifics about an error, the application can call
SQLError with the specified statement handle.

D.1.18 SQLError
SQLError extracts details about the last error associated with the provided handles.

Syntax
RETCODE SQLError(hEnv, hConn, hStmt, sqlState, nativeError, messageText,
messageMaxSize, messageLength)

Arguments
The arguments for SQLError are listed in Table D–20:

Table D–19 SQLDescribeCol Arguments

Type Name Description

SQLHSTMT hStmt Statement handle.

SQLUSMALLINT columnNo The number of the column in
the result.

SQLCHAR* columnName Pointer to string buffer to
store the returned name of
the column.

SQLSMALLINT columnNameMaxLen Size of the string buffer.

SQLSMALLINT *columnNameLen Returned size of the column
name in bytes.

SQLSMALLINT* dataType Returned SQL datatype.

SQLUINTEGER* columnSize Returned size of the column.

SQLSMALLINT* decimalDigits Returned precision of the
column.

SQLSMALLINT* nullable Set to 1 if column is nullable,
or 0 if it is not.

Table D–20 SQLError Arguments

Type Name Description

SQLHENV hEnv Environment handle.

SQLHDBC hConn Database handle.

SQLHSTMT hStmt Statement handle.

SQLCHAR* sqlState Pointer to string buffer to
store the returned
SQLSTATE.

SQLINTEGER* nativeError Native error code.

ODBC Support

ODBC Support on Palm D-13

Returns
SQLError returns SQL_SUCCESS if it can retrieve information related to the last
error. If there were no errors associated with the specified handle, the function returns
SQL_NO_DATA_FOUND.

D.1.19 SQLGetData
SQLGetData reads in a single column from the current row into the specified buffer.
The routine attempts to convert the data to the target buffer's type.

Syntax
RETCODE SQLGetData(hStmt, columnNo, targetType, targetValue, targetSize,
actualSize)

Arguments
The arguments for SQLGetData are listed in Table D–21:

Returns
SQLGetData returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified statement handle.

D.1.20 SQLNumResultCols
SQLNumResultCols returns the number of columns in the result set.

Syntax
RETCODE SQLNumResultCols(hStmt, columnCount)

SQLCHAR* messageText Error message text.

SQLSMALLINT messageMaxSize Size of buffer passed in.

SQLSMALLINT* messageLen Length of returned message
text.

Table D–21 SQLGetData Arguments

Type Name Description

SQLHSTMT hStmt Statement handle.

SQLUSMALLINT columnNo The number of the column.

SQLSMALLINT targetType The type of the buffer target
Value.

SQLPOINTER targetValue Pointer to the buffer to store
the result column data.

SQLINTEGER targetSize Size of the buffer.

SQLINTEGER* actualSize Actual number of bytes read
into the specified buffer.

Table D–20 (Cont.) SQLError Arguments

Type Name Description

ODBC Support

D-14 Oracle Database Lite Developer’s Guide

Arguments
The arguments for SQLNumResultCols are listed in Table D–22:

Returns
SQLNumResultCols returns SQL_SUCCESS if it is successful. Otherwise, it returns
SQL_ERROR. To find out the specifics about an error, the application can call
SQLError with the specified statement handle.

D.1.21 SQLRowCount
SQLRowCount returns the number of rows affected by a SQL SELECT, UPDATE, or
DELETE statement.

Syntax
RETCODE SQLRowCount(hStmt, rowCount)

Arguments
The arguments for SQLRowCount are listed in Table D–23:

Returns
SQLRowCount returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified statement handle.

D.1.22 SQLTransact
SQLTransact requests a commit or rollback for all active operations on all statements
associated with an environment.

Syntax
RETCODE SQLTransact(hEnv, hDbc, completionType)

Arguments
The arguments for SQLTransact are listed in Table D–24:

Table D–22 SQLNumResultCols Arguments

Type Name Description

SQLHSTMT hStmt Statement handle.

SQLSMALLINT* columnCount Pointer to buffer to store the
returned number of columns
in the result set.

Table D–23 SQLRowCount Arguments

Type Name Description

SQLHSTMT hStmt Statement handle.

SQLINTEGER* rowCount Number of rows in the result
set.

ODBC Support

ODBC Support on Palm D-15

Returns
SQLTransact returns SQL_SUCCESS if it is successful. Otherwise, it returns SQL_
ERROR. To find out the specifics about an error, the application can call SQLError
with the specified environment handle.

Table D–24 SQLTransact Arguments

Type Name Description

SQLHENV hEnv Environment handle.

SQLHDBC hDbc Connection handle. Not
used.

SQLUSMALLINT completionType The transaction action, which
could be either SQL_
COMMIT or SQL_
ROLLBACK.

ODBC Support

D-16 Oracle Database Lite Developer’s Guide

Glossary-1

Glossary

Apache Server

The Apache Server is a public domain HTTP server derived from the National Center
for Supercomputing Applications (NCSA).

Base Table

A source of data, either a table or a view, that underlies a view. When you access data
in a view, you are really accessing data from its base tables.

Connected

Connected is a generic term that refers to users, applications, or devices that are
connected to a server. The Mobile Client for Web-to-go is "connected" when it is in
online mode.

Database Object

A database object is a named database structure: a table, view, sequence, index,
snapshot, or synonym.

Database Server

The database server is the third tier of the Web-to-go three-tier Web model. It stores
the application data.

Disconnected

Disconnected is a generic term that refers to users, applications, or devices that are not
connected to a server. The Mobile Client for Web-to-go is "disconnected" when it is in
offline mode.

Foreign Key

A foreign key is a column or group of columns in one table or view whose values
provide a reference to the rows in another table or view. A foreign key generally
contains a value that matches a primary key value in another table. See also "Primary
Key".

Index

An index is a database object that provides fast access to individual rows in a table.
You create an index to accelerate the queries and sorting operations performed against
the table's data. You also use indexes to enforce certain constraints on tables, such as
unique and primary key constraints.

Indexes, once created, are automatically maintained and used for data access by the
database engine whenever possible.

Glossary-2

Integrity Constraint

An integrity constraint is a rule that restricts the values that can be entered into one or
more columns of a table.

Java Applets

Java applets are small applications that are executed in the browser that extend the
functionality of HTML pages by adding dynamic content.

JDBC

JDBC (Java Database Connectivity) is a standard set of java classes providing
vendor-independent access to relational data. Modeled on ODBC, the JDBC classes
provide standard features such as simultaneous connections to several databases,
transaction management, simple queries, manipulation of pre-compiled statements
with bind variables, and calls to stored procedures. JDBC supports both static and
dynamic SQL.

JavaServer Pages

JavaServer Pages (JSP) is a technology that enables developers to change a page's
layout without altering the page's underlying content. JSP, which uses HTML and
pieces of Java code to combine the presentation of dynamic content with business
logic.

Java Servlets

Java servlets are protocol and platform-independent server-side components that are
written in Java. Java servlets dynamically extend Java-enabled servers and provide a
general framework for services built using the request-response paradigm.

Java Servlet Development Kit

The Java Servlet Development Kit is a tool provided by JavaSoft for developing Java
servlets.

Java Web Server Development Kit

The Java Web Server Development Kit 1.0.1 is a JavaSoft tool for developing both
JavaServer Pages (JSP) and Java servlets.

Join

A relationship established between keys (both primary and foreign) in two different
tables or views. Joins are used to link tables that have been normalized to eliminate
redundant data in a relational database. A common type of join links the primary key
in one table to the foreign key in another table to establish a master-detail relationship.
A join corresponds to a WHERE clause condition in a SQL statement.

Master-Detail Relationship

A master-detail relationship exists between tables or views in a database when
multiple rows in one table or view (the detail table or view) are associated with a
single master row in another table or view (the master table or view).

Master and detail rows are normally joined by a primary key column in the master
table or view that matches a foreign key column in the detail table or view.

When you change values for the primary key, the application should query a new set
of detail records, so that values in the foreign key match values in the primary key. For
example, if detail records in the EMP table are to be kept synchronized with master
records in the DEPT table, the primary key in DEPT should be DEPTNO, and the
foreign key in EMP should be DEPTNO. See also "Primary Key" and "Foreign Key".

Glossary-3

MIME

MIME (Multipurpose Internet Mail Extensions) is a message format used on the
Internet to describe the contents of a message. MIME is used by HTTP servers to
describe the type of file being delivered.

MIME Type

MIME Type is a file format defined by Multipurpose Internet Mail Extension (MIME).

Mobile Client for Web-to-go

The Mobile Client for Web-to-go is the client tier of the Web-to-go three-tier Web
model. It contains the Mobile Server and Oracle Database Lite. Web-to-go replicates
the user's applications and data to Oracle Database Lite when the user switches to
offline mode. When the user switches back to online mode, Web-to-go replicates any
data changes to the Oracle database.

Mobile Development Kit for Web-to-go

The Mobile Development Kit for Web-to-go enables application developers to develop
and debug Web-to-go applications that consist of Java servlets, JavaServer Pages (JSP),
or Java applets.

Mobile Server

The Mobile Server resides on the application server tier of the three-tier Web-to-go
model and processes requests from the Mobile Client for Web-to-go to modify data in
the database server. The Mobile Server can be configured to run with the Oracle HTTP
Server, the Apache server, and the standalone Mobile Server.

Mobile Server Repository

The Mobile Server repository is a virtual file system. It is a persistent resource
repository that contains all application files and definitions of the applications.

ODBC

ODBC (Open Database Connectivity) is a Microsoft standard that enables database
access on different platforms. You can enable ODBC support on the Mobile Client for
Web-to-go for troubleshooting purposes. ODBC support enables you to view the
client's data, which is stored on the local Oracle Database Lite. To view this
information, you can use Mobile SQL.

Oracle Database

The Oracle database is the database component of the Mobile Server. When the Mobile
Client for Web-to-go is in online mode, it stores applications and data on the Oracle
database.

Oracle Database Lite

Oracle Database Lite is the database component of the Mobile Client for Web-to-go.
When the client is in offline mode, it stores applications and data on Oracle Database
Lite.

Offline Mode

Offline mode is the condition of the Mobile Client for Web-to-go when it is
disconnected from the Mobile Server. In offline mode, the client applications are
executed locally and data is accessed and stored in Oracle Database Lite. See also
"Online Mode".

Glossary-4

Online Mode

Online mode is the condition of the Mobile Client for Web-to-go when it is connected
to the Mobile Server. See also "Offline Mode".

Packaging Wizard

The Packaging Wizard enables administrators to publish Web-to-go applications to the
Mobile Server repository. Administrators can use the Packaging Wizard to create a
new Web-to-go application or to edit an existing application definition.

Positioned DELETE

A positioned DELETE statement deletes the current row of the cursor. Its format is:

DELETE FROM table
 WHERE CURRENT OF cursor_name

Positioned UPDATE

A positioned UPDATE statement updates the current row of the cursor. Its format is:

UPDATE table SET set_list
 WHERE CURRENT OF cursor_name

Primary Key

A table's primary key is a column or group of columns used to uniquely identify each
row in the table. The primary key provides fast access to the table's records, and is
frequently used as the basis of a join between two tables or views. Only one primary
key may be defined per table.

To satisfy a PRIMARY KEY constraint, no primary key value can appear in more than
one row of the table, and no column that is part of the primary key can contain a
NULL value.

Publication Item

A publication item is a SQL select statement that specifies which data subset a client
can access. A publication item usually corresponds to a replica table on the client
device. You can create publication items using the Mobile Server Admin API. This API
contains Java functions that implement the publish/subscribe model. You can call the
functions in this API from within Java programs as standard function calls.

Referential Integrity

Referential integrity is defined as the accuracy of links between tables in a
master-detail relationship that is maintained when records are added, modified, or
deleted.

Carefully defined master-detail relationships promote referential integrity. Constraints
in your database enforce referential integrity at the database (the server in a
client/server environment).

The goal of referential integrity is to prevent the creation of an orphan record, which is
a detail record that has no valid link to a master record. Rules that enforce referential
integrity prevent the deletion or update of a master record, or the insertion or update
of a detail record, that creates an orphan record.

Registry

The registry contains unique Web-to-go name/value pairs. All registry names must be
unique.

Glossary-5

Replication

Replication is the process of copying and maintaining database objects in multiple
databases that make up a distributed database system. Changes applied at one site are
captured and stored locally before being forwarded and applied at each of the remote
locations. Replication provides users with fast, local access to shared data, and protects
the availability of applications because alternate data access options exist. Even if one
site becomes unavailable, users can continue to query or even update the remaining
locations.

Replication Conflict

Replication conflicts occur when contradictory changes to the same data are made.
Web-to-go avoids replication conflicts by using sequence values for disconnected
clients.

Schema

A schema is a named collection of database objects, including tables, views, indexes,
and sequences.

Sequence

A sequence is a schema object that generates sequential numbers. After creating a
sequence, you can use it to generate unique sequence numbers for transaction
processing. These unique integers can include primary key values. If a transaction
generates a sequence number, the sequence is incremented immediately whether you
commit or roll back the transaction. See also "Window Sequence".

Sites

Web-to-go creates a database for each user on the Mobile Client for Web-to-go. This
database is called a site. A client can contain multiple sites, but only one site per user.
Users can have multiple sites on different clients.

Snapshots

Snapshots are copies of application data that Web-to-go captures in real-time from the
Oracle database and downloads to the client before it goes offline. A snapshot can be a
copy of an entire database table, or a subset of rows from the table. The first time a
user goes offline, Web-to-go automatically creates the snapshots on the client machine.
Each subsequent time that a user goes online or offline, Web-to-go either refreshes the
snapshots with the most recent data, or recreates them depending on the complexity of
the snapshot.

SQL

SQL, or Structured Query Language, is a non-procedural database access language
used by most relational database engines. Statements in SQL describe operations to be
performed on sets of data. When a SQL statement is sent to a database, the database
engine automatically generates a procedure to perform the specified tasks.

Switching Modes

Switching modes is the process the Mobile Client for Web-to-go uses to go offline or to
go back online. When the client switches to offline mode, it downloads all of the
applications and data required to work offline on Oracle Database Lite. When the
client switches back to online mode synchronizes data changes on Oracle Database
Lite with the Oracle database.

Glossary-6

Synchronization

Synchronization is the process Web-to-go uses to replicate data between the Mobile
Client for Web-to-go and the Oracle database. Web-to-go replicates the user's
applications and data to Oracle Database Lite when the user switches to offline mode.
When the user switches back to online mode, Web-to-go replicates any data changes to
the Oracle database.

Synonym

A synonym is an alternative name, or alias, for a table, view, sequence, snapshot, or
another synonym.

Table

A table is a database object that stores data that is organized into rows and columns. In
a well designed database, each table stores information about a single topic (such as
company employees or customer addresses).

Three-Tier Web Model

The three-tier Web model is an Internet database configuration that contains a client, a
middle tier, and a database server. Web-to-go architecture follows the three-tier Web
model.

Transaction

A set of changes made to selected data in a relational database. Transactions are
usually executed with a SQL statement such as INSERT, UPDATE, or DELETE. A
transaction is complete when it is either committed (the changes are made permanent)
or rolled back (the changes are discarded).

A transaction is frequently preceded by a query, which selects specific records from
the database that you want to change. See also "SQL".

Unique key

A table's unique key is a column or group of columns that are unique in each row of a
table. To satisfy a UNIQUE KEY constraint, no unique key value can appear in more
than one row of the table. However, unlike the PRIMARY KEY constraint, a unique
key made up of a single column can contain NULL values.

View

A view is a customized presentation of data selected from one or more tables (or other
views). A view is like a "virtual table" that allows you to relate and combine data from
multiple tables (called base tables) and views. A view is a kind of "stored query"
because you can specify selection criteria for the data that the view displays.

Views, like tables, are organized into rows and columns. However, views contain no
data themselves. Views allow you to treat multiple tables or views as one database
object.

Web-to-go

Oracle Web-to-go is a framework for the creation and deployment of mobile,
Web-based, database applications. Web-to-go contains a three-tier database
architecture consisting of the Mobile Client for Web-to-go, the Mobile Server and
Oracle database. It is centrally managed from the server and Web-to-go applications
can be run when Web-to-go connected to the server (online) or disconnected from the
server (offline). When Web-to-go is offline it caches data locally and synchronizes the
data with the server when it goes back online.

Glossary-7

Window Sequence

The window sequence is one of two sequences Web-to-go uses in order to provide
unique primary key values to the Mobile Client for Web-to-go when it is in offline
mode. The window sequence contains a unique range of values. The range of values
never overlaps with those of other clients. When a client uses all the values in the
range of its sequence, Web-to-go recreates the sequence with a new, unique range of
values.

Workspace

The Mobile Server Workspace is a Web page that provides users with access to
Web-to-go applications. Web-to-go generates the Workspace in the user's browser after
the user logs in to Web-to-go. The Workspace displays icons, links, and descriptions of
all applications that are available to the user. An application is available to the user
after the administrator publishes it to the Web-to-go system and grants access
privileges to the user.

Glossary-8

Index-1

Index

A
administration, 11-14, 12-27

defining snapshot values, 12-31
granting user access, 12-30
setting properties, 12-29

ADO.NET, 2-6
ADO.NET Provider

Classes, 6-1
Limitations, 6-6

Thread Safety, 6-6
Running the Demo, 6-5

Advanced Functions for Customizing
Consolidator, 3-40

AlterPublicationItem, 3-40
application

administration, 11-14, 12-27
Web-to-Go, 12-33

application development, 4-1
Application Model and Architecture

Data Source Name, 1-9
Java Support, 1-9
Message Generator and Processor (MGP), 1-6
Mobile Development Kit, 1-7
Mobile Server, 1-5
Mobile Server Repository, 1-6
Mobile Sync, 1-4
Oracle Database Lite RDBMS, 1-4
Supported Platforms, 1-9

applications
building Web applications, 12-1
packaging, 12-12
publishing, 12-22
uploading, 12-25

B
BC4J, 13-2

access by JSP, 13-14
ceating the database connection, 13-3
creating the BC4J component, 13-11
deploying, 13-19
deploying JSPs, 13-16
developing applications, 13-2
overview, 13-1
packaging JSPs, 13-16

publishing, 13-18
testing, 13-18
Web-to-Go, 13-19

BLOB, 2-18
building applications

using BC4J, 13-2
Win32, 10-1, 10-2
Windows CE, 11-1

building Mobile applications
before you start, 12-1
developing, 12-2

building Mobile Web applications, 12-1

C
Caching Publication Item Queries, 3-44
Callback Customization for DML Operations, 3-52
C/C++ Interface, 5-8
Classes

OracleBlob and Large Object Support, 6-2
OracleCommand, 6-2
OracleConnection, 6-1
OracleParameter and PreparedStatements, 6-2
OracleSync and Data Synchronization, 6-3
Transaction Management, 6-1

clients
subscribing to publications, 3-21

COM Interface, 5-3
Complete Refresh for Views, 3-42
conflicts, 3-56
Consolidator API, 3-8
Creating a Dependency Hint, 3-41

D
data source

creating name, 2-7
database

accessing, 2-4
backing up, 2-11
building demo tables, 2-10
connecting, 2-8
creating, 2-7
encrypting and decrypting, 2-11
granting privileges, 2-10
granting roles, 2-10

Index-2

populate, 2-10
revoking roles, 2-10
starter, 2-6

database connection
verification using msql, 2-4

database objects
creating, 11-2

datatypes
mapping, 3-58
Oracle Database Lite, 3-58

decryption
database, 2-11

Developing and Testing the Application, 4-1
developing applications

execution, 12-10
Developing Java Server Pages, 4-3
Developing Mobile Applications for PALM OS

Devices
Building a SODA Application, 7-3
Building a SODA Forms Application, 7-3
Building an ODBC Application, 7-3
Customizing Oracle Database Lite Runtime, 7-4
Installing Oracle Database Lite Runtime on the

Device, 7-1
Packaging your Application with Oracle Database

Lite Runtime, 7-3
Palm Shared Library Manager (PSLM), 7-4
Running Oracle Database Lite on Palm OS

Emulator, 7-2
Running Oracle Database Lite on Palm OS

Simulator, 7-2
Uninstalling or Replacing Oracle Database Lite

Runtime, 7-2
Using Oracle Database Lite Base Libraries, 7-2

Developing Mobile Web Applications, 4-1
development

compiling, 12-4
create database object, 12-3
registration, 12-5

Development and Testing
Building Web-to-Go Applications, 4-2
Customizing the Workplace Application, 4-20
Debugging Web-to-Go Applications, 4-16
Developing Applet JDBC Communication, 4-13
Developing Applet Servlet Communication, 4-14
Developing Java servlets for Web-to-Go, 4-4
Specifying Application Roles, 4-3
Using the Mobile Server Admin API, 4-21
Using Web-to-Go Applets, 4-11

Development Architecture, 4-1
development interfaces, 2-2

for object database development, 2-2
for relational database development, 2-2
JDBC, 2-2
ODBC, 2-5
SODA, 2-5

doCompose Method, 3-28
DSN

creating, 2-4

E
Embedded Visual Tools, 11-1
encryption

database, 2-11
errors, 3-56

F
fast refresh and update, 3-41
Fast Refresh for Views, 3-42
foreign key constraint, 3-50
foreign key constraints, 3-49

violations, 3-50

H
hints, 3-41

I
INSTEAD OF Triggers, 3-41
INSTEAD OF triggers, 3-41
interfaces, 2-2
isolation level

changing, 2-13

J
JDBC driver, 2-2

description, 2-2
JSP

access BC4J component, 13-14
deploying, 13-16

L
linguistic sort, 2-14
Load APIs, 2-6, B-1
Load Utility (OLLOAD), 2-6

M
Message Generator and Processor (MGP)

Applying Changes to the Server Database, 1-6
starting, 11-17
The Apply Phase, 1-6
The Compose Phase, 1-6

Mobile client
synchronizing, 12-36

Mobile Development Kit
Mobile SQL (MSQL), 1-8
Using the Packaging Wizard, 1-8

Mobile Manager
application properties, 12-29
starting, 12-27

Mobile Server
logon, 12-23
overview, 1-5

msql
verifying database connection, 2-4

Index-3

MyCompose, 3-27
doCompose, 3-28
needCompse Method, 3-27

N
Native Application Development

Data Source Name, 5-2
Java Support, 5-1
Supported Platforms, 5-1
Using the Packaging Wizard, 5-17

needCompose Method, 3-27
Null Sync Callout, 3-49

O
OCBC Administrator, 2-7
ODBC

development interfaces, 2-5
ODBC driver, 2-5

description, 2-5
ODBC support

Palm, D-1
openConnection, 3-12
Optimizing SQL Queries

Optimizing Single-Table Queries, A-1
Oracle Database Lite

Application Model and Architecture, 1-3
Introduction, 1-1

Oracle Database Lite Datatypes, 3-58

P
packaging applications, 12-12, 12-21

application connection, 12-14
defining, 12-12
sequences, 12-19
snapshot, 12-15
SQL files, 12-21

Packaging Wizard, 11-7
packaging wizard, 12-12
Palm Shared Library Manager (PSLM)

Building a Shared Library Project, 8-3
Building an Application Using PSLM, 8-6
Calling a PSLM Library from Your

Application, 8-5
Cloaked Shared Libraries, 8-6
Exceptions Across Modules, 8-6
Overview, 8-1
Patching the CodeWarrior Runtime, 8-7
Trying out PSLM, 8-1
Writing a PSLM Library, 8-2

parent tables
hints, 3-41
INSTEAD OF triggers, 3-41
updatable, 3-41

password, 2-11
PL/SQL, 3-45
Pocket PC

installing, 11-18
synchronizing, 11-19

primary key index, 3-23
Programming interfaces

C / C++, 5-8
COM, 5-3

properties
setting, 12-29

publication, 3-8
publication item, 3-8
publication items

adding to publications, 3-18
publications

subscribing clients to, 3-21
publish applications, 12-22

create database account, 12-22
publishing application

create database objects, 12-22
publishing applications

logon to the Mobile Server, 12-23
start the Mobile Server, 12-23
uploading, 12-25

publish/subscribe model, 3-8
purging transactions, 3-58

Q
query optimizer, A-2
Queue Interface, 3-45

R
RDBMS

changing passwords, 2-9
creating multiple users, 2-8
development interfaces, 2-1, 2-2
dropping users, 2-9
introduction, 2-1
linguistic sort, 2-14

Refresh
complete, 3-42
fast, 3-42

Restricting Predicate, 3-54

S
Servlets

registering, 12-5
setPassword, 3-23
snapshot, 3-8
snapshot definitions

creating, 2-16
creating publications, 2-17
declarative, 2-16
programmatic, 2-17

snapshots
defining, 11-10

SQLAllocConnect, D-2
SQLAllocEnv, D-3
SQLAllocHandle, D-3
SQLAllocStmt, D-4
SQLBindCol, D-11
SQLBindParameter, D-8

Index-4

SQLConnect, D-7
SQLDescribeCol, D-11
SQLDisconnect, D-8
SQLError, D-12
SQLExecDirect, D-9
SQLExecute, D-10
SQLFetch, D-10
SQLFreeConnect, D-5
SQLFreeEnv, D-5
SQLFreeHandle, D-6
SQLFreeStmt, D-6
SQLGetData, D-13
SQLNumResultCols, D-13
SQLPrepare, D-9
SQLRowCount, D-14
SQLTransact, D-14
subscription, 3-8
subscription parameters, 3-8

defining, 3-16
Synchronization

Add Map Table Partitions, 3-38
Adding Publication Items to the Publication, 3-18
Advanced Features for Customizing

Consolidator, 3-26
Change Password, 3-23
Client Device Database DDL Operations, 3-23
Complete Refresh Synchronization, 3-7
Compose Phase Customization, 3-27
Create a Map Table Partition, 3-38
CreateSubscription, 3-21
Creating Publication Item Indexes, 3-17
Creating Publication Items, 3-14
Creating Users, 3-20
Defining Client Subscription Parameters, 3-16
Defining Conflict Rules, 3-19
Defining Publication Items, 3-15
DownloadInfo Class Access Methods, 3-34
Drop a Map Table Partition, 3-39
Drop all Map Table Partitions, 3-39
Drop User, 3-21
Extending MyCompose, 3-30
Extending MyCompose as a User Defined

Sub-Class, 3-27, 3-32
Fast Refresh Synchronization, 3-5
getDownloadInfo Method, 3-34
InstantiateSubscription, 3-22
Instantiating the Subscription, 3-22
Map Table Partition APIs, 3-37
Merge Map Table Partitions, 3-39
Mobile Sync APIs, 3-7
Overview, 3-1
Process, 3-5
PublicationSize Class, 3-35
Publish and Subscribe Model, 3-8, 3-9
Publishing Synonyms, 3-24
Remote Database Link Support, 3-23, 3-26
Sequence Support, 3-15
SetSubscription Parameters, 3-16
Subscribing Users, 3-21
Sync Discovery API, 3-33

Synchronizing an Encrypted Database, 3-7
synchronization

conflicts, 3-56
errors, 3-56

synchronizing
Mobile client, 12-36
Pocket PC, 11-19

T
tables

building, 2-10
tracing, 2-21
transactions, 2-11

changing the default isolation level, 2-13
executing, 3-57
locking, 2-13
purging, 3-58
tuning, 2-14

U
user

granting access, 12-30
users

defining snapshot values, 12-31
Using Mobile Sync for Palm

Configuring mSync, 9-1
Using HotSync to Synchronize Data with the

Mobile Server, 9-2
Configuring HotSync for a PalmOS

Device, 9-3
Configuring PalmOS Emulator for

HotSync, 9-3
HotSync Timeout Errors, 9-3

Using Network Sync, 9-3
Network Sync With PalmOS Emulator, 9-4
Synchronizing Using a Cradle and Windows

Desktop, 9-4

V
versioning, 3-57
views

fast refresh and update, 3-41
Virtual Primary Key, 3-43

W
Web-to-Go

install the client, 12-33
introduction, C-1
sample applications, C-1

Web-to-go
client installation, 12-33

Win32
command sequence, 10-2

Windows CE
compilation, 11-6
creating database object, 11-2
developing applications, 11-2

Index-5

packaging, 11-7
publishing, 11-7
using the Packaging Wizard, 11-7
writing application code, 11-4

winning rules, 3-57

Index-6

	Contents
	Send Us Your Comments
	Preface
	Intended Audience
	Documentation Accessibility
	Structure

	1 Overview
	1.1 Introduction
	1.2 Oracle Database Lite 10g Application Model and Architecture
	1.2.1 Oracle Database Lite RDBMS
	1.2.2 Mobile Sync
	1.2.3 Mobile Server
	1.2.4 Message Generator and Processor (MGP)
	1.2.5 Mobile Server Repository

	1.3 Mobile Development Kit (MDK)
	1.3.1 Mobile SQL (MSQL)
	1.3.2 Using the Packaging Wizard

	1.4 Supported Platforms
	1.5 Java Support
	1.6 Data Source Name

	2 The Oracle Database Lite RDBMS
	2.1 Introduction
	2.2 Development Interfaces
	2.2.1 Development Interface Overview
	2.2.1.1 JDBC
	2.2.1.2 Starting a Multi User Oracle Database Lite Database Service
	2.2.1.3 Accessing the Multi User Oracle Database Lite 10g Database Service
	2.2.1.4 ODBC
	2.2.1.5 SODA

	2.2.2 Mobile Sync Client Module Application Programming Interfaces (APIs)
	2.2.3 Oracle Database Lite Load APIs
	2.2.4 Oracle Database Lite Load Utility (OLLOAD)
	2.2.5 ADO.NET

	2.3 Using the Starter Database
	2.4 Working With Your Database
	2.4.1 Creating a New Database
	2.4.2 Creating a Data Source Name with ODBC Administrator
	2.4.3 Creating a New Database Using the Command-Line Utility
	2.4.4 Connecting to a New Database

	2.5 Creating Multiple Users
	2.5.1 Pre-defined Roles
	2.5.2 Creating Users
	2.5.3 Dropping Users
	2.5.4 Changing Passwords
	2.5.5 Granting Roles
	2.5.6 Granting Privileges
	2.5.7 Revoking Roles
	2.5.8 Revoking Privileges
	2.5.9 Building Demo Tables
	2.5.10 Populate Your Database Using Mobile SQL
	2.5.11 Backing Up a Database
	2.5.12 Encrypting and Decrypting a Database

	2.6 Oracle Database Lite Transaction Support
	2.6.1 Atomicity
	2.6.2 Consistency
	2.6.3 Isolation
	2.6.3.1 Durability
	2.6.3.2 Locking
	2.6.3.3 Changing the Default Isolation Level
	2.6.3.4 Supported Combinations of Isolation Levels and Cursor Types

	2.6.4 Tuning the Application

	2.7 Support for Linguistic Sort
	2.7.1 Creating Linguistic Sort Enabled Databases
	2.7.2 How Collation Works
	2.7.3 Collation Element Examples
	2.7.3.1 Sorting Normal Characters
	2.7.3.2 Reverse Sorting of French Accents
	2.7.3.3 Sorting Contracting Characters
	2.7.3.4 Sorting Expanding Characters
	2.7.3.5 Sorting Numeric Characters

	2.8 Creating Snapshot Definitions
	2.8.1 Creating a Snapshot Definition Declaratively
	2.8.2 Creating the Snapshot Definition Programmatically

	2.9 Using Oracle Database Lite Samples
	2.9.1 Overview
	2.9.2 BLOB Manager Example Notes
	2.9.3 Running the Visual Basic Sample Application
	2.9.3.1 Open Visual Basic
	2.9.3.2 View the Sample Application Tables and Data
	2.9.3.3 Open the Sample Application
	2.9.3.4 View and Manipulate the Data in the EMP Table

	2.9.4 ODBC Examples
	2.9.4.1 What the Examples Do

	2.10 Limitations
	2.11 Tracing
	2.11.1 Enabling Trace Output
	2.11.2 Basic Functions
	2.11.3 SQL Tracing
	2.11.3.1 The Tid Output
	2.11.3.2 SQL Statement Output
	2.11.3.3 Compilation Time Output
	2.11.3.4 Bind Values Output
	2.11.3.5 Explain Plan Output
	2.11.3.6 Temporary Table Created Output
	2.11.3.7 Table Name Output
	2.11.3.8 Temporary Table Sorted Output
	2.11.3.9 First Fetch Time Output

	3 Synchronization
	3.1 Overview
	3.1.1 Synchronization Concepts
	3.1.1.1 Publication Item
	3.1.1.2 Publication
	3.1.1.3 Application
	3.1.1.4 Subscription
	3.1.1.5 Data Subsetting
	3.1.1.6 Shared Maps

	3.1.2 Synchronization Example

	3.2 Synchronization Process
	3.2.1 Fast Refresh Synchronization
	3.2.1.1 Client Upload and Download Operations
	3.2.1.2 Mobile Server Apply Operation
	3.2.1.3 Mobile Server Compose Operation

	3.2.2 Complete Refresh Synchronization
	3.2.3 Synchronizing an Encrypted Database

	3.3 Mobile Sync Application Programming Interfaces (APIs)
	3.4 The Publish and Subscribe Model and Oracle Database Lite Synchronization
	3.4.1 The Publish and Subscribe Model Step by Step

	3.5 Using Consolidator to Define the Sample11.java Example
	3.5.1 Sample11.java
	3.5.2 Create Required Tables Using Standard JDBC
	3.5.3 Connecting to the Mobile Server
	3.5.4 Creating Publications
	3.5.4.1 CreatePublication

	3.5.5 Creating Publication Items
	3.5.5.1 CreatePublicationItem
	3.5.5.2 Defining Publication Items for Updatable Multi-table Views
	3.5.5.3 Data Subsetting

	3.5.6 Sequence Support
	3.5.7 Defining Client Subscription Parameters for Publications
	3.5.7.1 SetSubscriptionParameter

	3.5.8 Creating Publication Item Indexes
	3.5.8.1 CreatePublicationItemIndex
	3.5.8.2 Define Client Indexes

	3.5.9 Adding Publication Items to a Publication
	3.5.9.1 AddPublicationItem
	3.5.9.2 Defining Conflict Rules
	3.5.9.3 Using Table Weight

	3.5.10 Creating Users
	3.5.10.1 createUser

	3.5.11 Drop User
	3.5.11.1 dropUser

	3.5.12 Subscribing Users to a Publication
	3.5.12.1 CreateSubscription

	3.5.13 Instantiating a Subscription
	3.5.13.1 InstantiateSubscription

	3.6 Other Standard Consolidator Functionality
	3.6.1 Client Device Database DDL Operations
	3.6.2 Change Password
	3.6.2.1 setPassword

	3.6.3 Remote Database Link Support
	3.6.3.1 Publishing Synonyms for the Remote Object Using CreatePublicationItem
	3.6.3.2 Creating a Dependency Hint
	3.6.3.3 Remove a Dependency Hint

	3.7 Advanced Features for Customizing Consolidator
	3.7.1 Compose Phase Customization Using MyCompose
	3.7.1.1 Extending MyCompose as a User Defined Sub-Class
	3.7.1.2 Primary MyCompose Methods
	3.7.1.3 Subsidiary MyCompose Methods
	3.7.1.4 Consolidator API Methods for Registering MyCompose Sub-Classes

	3.7.2 Sync Discovery API
	3.7.2.1 getDownloadInfo Method
	3.7.2.2 DownloadInfo Class Access Methods
	3.7.2.3 PublicationSize Class

	3.7.3 Map Table Partition APIs
	3.7.3.1 Create a Map Table Partition
	3.7.3.2 Add Map Table Partitions
	3.7.3.3 Drop a Map Table Partition
	3.7.3.4 Drop All Map Table Partitions
	3.7.3.5 Merge Map Table Partitions

	3.7.4 Modifying a Publication Item Using AlterPublicationItem
	3.7.4.1 Alter Publication Item

	3.7.5 Fast Refresh and Update Operation for Multi-Table Publications (Views)
	3.7.5.1 Updatable Parent Tables
	3.7.5.2 Using Parent Table Hints and INSTEAD OF Triggers
	3.7.5.3 Fast Refresh for Views
	3.7.5.4 Complete Refresh for Views

	3.7.6 Virtual Primary Key
	3.7.6.1 Create Virtual Primary Key Column
	3.7.6.2 Drop Virtual Primary Key Column

	3.7.7 Caching Publication Item Queries
	3.7.7.1 Enabling Publication Item Query Caching
	3.7.7.2 Disabling Publication Item Query Caching

	3.7.8 Binding User-Defined PL/SQL Procedures
	3.7.9 Queue Interface for Customizing Replication
	3.7.9.1 Queue Interface Operation
	3.7.9.2 Queue Creation
	3.7.9.3 Queue Interface PL/SQL Procedure
	3.7.9.4 CreateQueuePublicationItem API
	3.7.9.5 Defining a PL/SQL Package Outside the Repository

	3.7.10 Null Sync Callout
	3.7.11 Foreign Key Constraints in Updatable Publication Items
	3.7.11.1 Foreign Key Constraint Violation Example
	3.7.11.2 Avoiding Constraint Violations with BeforeApply and After Apply
	3.7.11.3 Avoiding Constraint Violations with Table Weights

	3.7.12 Callback Customization for Before and After Compose/Apply
	3.7.13 Callback Customization for DML Operations
	3.7.13.1 DML Procedure Example

	3.7.14 Restricting Predicate
	3.7.15 Priority-Based Replication
	3.7.16 Shared Maps
	3.7.16.1 Concepts
	3.7.16.2 Performance Attributes
	3.7.16.3 Usage
	3.7.16.4 Compatibility and Migration

	3.8 Synchronization Errors and Conflicts
	3.8.1 Versioning
	3.8.2 Winning Rules
	3.8.3 Resolving Conflicts Using the Error Queue
	3.8.3.1 Execute Transaction
	3.8.3.2 Purge Transaction

	3.8.4 Space Constraints

	3.9 Mapping Datatypes Between the Oracle Server and Clients
	3.9.1 Oracle Database Lite Datatypes

	4 Developing Mobile Web Applications
	4.1 Setting up the Mobile Client
	4.2 Developing and Testing the Application
	4.2.1 Building Web-to-Go Applications
	4.2.1.1 Static Components
	4.2.1.2 Dynamic Components
	4.2.1.3 Database Components
	4.2.1.4 Database Connections

	4.2.2 Application Roles
	4.2.3 Developing JavaServer Pages
	4.2.3.1 Mobile Server or Mobile Development Kit Web Server
	4.2.3.2 Mobile Client for Web-to-Go

	4.2.4 Developing Java Servlets for Web-to-Go
	4.2.4.1 Limitations
	4.2.4.2 Accessing Applications on the Mobile Development Kit for Web-to-Go
	4.2.4.3 Creating a Servlet
	4.2.4.4 Running a Servlet
	4.2.4.5 Debugging a Servlet
	4.2.4.6 Accessing the Schema Directly in Oracle Database Lite

	4.2.5 Using Web-to-Go Applets
	4.2.5.1 Creating the Web-to-Go Applet
	4.2.5.2 Creating the HTML Page for the Applet

	4.2.6 Developing Applet JDBC Communication
	4.2.6.1 getConnection()
	4.2.6.2 Design Issue

	4.2.7 Developing Applet Servlet Communication
	4.2.7.1 Creating the Web-to-Go Servlet

	4.2.8 Debugging Web-to-Go Applications
	4.2.8.1 Running Sample 1 Using Oracle9i JDeveloper

	4.2.9 Customizing the Workspace Application
	4.2.9.1 Web-to-Go Parameters
	4.2.9.2 Sample Workspace

	4.2.10 Using the Mobile Server Admin API

	5 Native Application Development
	5.1 Supported Platforms
	5.2 Java Support
	5.3 Data Source Name
	5.4 Mobile Sync Application Programming Interfaces (APIs)
	5.4.1 COM Interface
	5.4.1.1 Features and Components
	5.4.1.2 ISync Interface
	5.4.1.3 ISyncOption Interface
	5.4.1.4 Selective Synchronization
	5.4.1.5 COM Interface SyncParam Settings
	5.4.1.6 COM Interface TransportParam Parameters
	5.4.1.7 ISyncProgressListener Interface

	5.4.2 C/C++ Interface
	5.4.2.1 ocSessionInit
	5.4.2.2 ocSessionTerm
	5.4.2.3 ocSaveUserInfo
	5.4.2.4 ocDoSynchronize
	5.4.2.5 ocSetTableSyncFlag
	5.4.2.6 ocGetPublication
	5.4.2.7 C/C++ Data Structures

	5.5 Using the Packaging Wizard

	6 Oracle Database Lite 10g ADO.NET Provider
	6.1 Classes
	6.1.1 OracleConnection
	6.1.2 Transaction Management
	6.1.3 OracleCommand
	6.1.4 OracleParameter and Prepared Statements
	6.1.4.1 Parameters

	6.1.5 OracleBlob and Large Object Support
	6.1.6 OracleSync and Data Synchronization

	6.2 Running the Demo
	6.3 Limitations
	6.3.1 Thread Safety

	7 Developing Mobile Applications for Palm OS Devices
	7.1 Installing Oracle Database Lite Runtime on the Device
	7.2 Uninstalling or Replacing Oracle Database Lite Runtime
	7.3 Running Oracle Database Lite on Palm OS Emulator
	7.4 Running Oracle Database Lite on Palm OS Simulator
	7.5 Using Oracle Database Lite Base Libraries
	7.6 Building a SODA Application
	7.7 Building a SODA Forms Application
	7.8 Building an ODBC Application
	7.9 Packaging your Application with Oracle Database Lite Runtime
	7.10 Customizing Oracle Database Lite Runtime
	7.11 Palm Shared Library Manager (PSLM)

	8 Palm Shared Library Manager (PSLM)
	8.1 Overview
	8.2 Trying out PSLM
	8.3 Writing a PSLM Library
	8.4 Building a Shared Library Project
	8.5 Calling a PSLM Library from Your Application
	8.6 Building an Application Using PSLM
	8.7 Exceptions Across Modules
	8.8 Cloaked Shared Libraries
	8.9 Patching the CodeWarrior Runtime

	9 Using Mobile Sync for Palm
	9.1 Configuring mSync
	9.2 Using HotSync to Synchronize Data with the Mobile Server
	9.2.1 Configuring HotSync for a PalmOS Device
	9.2.2 HotSync Timeout Errors
	9.2.3 Configuring PalmOS Emulator for HotSync

	9.3 Using Network Sync
	9.3.1 Synchronizing Using a Cradle and Windows Desktop
	9.3.2 Network Sync With PalmOS Emulator

	10 Building Offline Mobile Applications for Win32: A Tutorial
	10.1 Overview
	10.2 Developing Offline Mobile Applications for Win32
	10.2.1 Command Sequence
	10.2.1.1 Step 1. Create TASK Table on the Server Database
	10.2.1.2 Step 2. Define a Publication Item and Publish the Application
	10.2.1.3 Step 3. Create Users and Subscriptions
	10.2.1.4 Step 4. Install the Oracle Database Lite 10g Client and the Mobile Field Service Application and Data
	10.2.1.5 Step 5. Browse the TASK Snapshot and Update a Row
	10.2.1.6 Step 6. Synchronize the Change with the Server
	10.2.1.7 Step 7. Check your changes on the server and modify a server record
	10.2.1.8 Step 8. Synchronize again to get the server changes
	10.2.1.9 Step 9. Develop your Mobile Field Service Application Using Oracle Database Lite
	10.2.1.10 Step 10. Republish the Application with the Application Program

	11 Building Offline Mobile Applications for Windows CE: A Tutorial
	11.1 Overview
	11.1.1 Before You Start
	11.1.1.1 Application Development Computer Requirements
	11.1.1.2 Client Device Requirements

	11.2 Developing the Application
	11.2.1 Creating Database Objects in the Oracle Server
	11.2.1.1 The Pocket PC Transport Application Database Objects

	11.2.2 Writing the Application Code
	11.2.2.1 Transport Module (Transport.vb)
	11.2.2.2 Main Form (frmMain.vb)
	11.2.2.3 View Packages (frmView.vb)
	11.2.2.4 Create Package (frmNew.vb)

	11.2.3 Compiling the Application
	11.2.3.1 Creating CAB Files
	11.2.3.2 Installing the Application from the CAB File

	11.3 Packaging and Publishing the Application
	11.3.1 Defining the Application Using the Packaging Wizard
	11.3.1.1 Creating a New Application

	11.3.2 Defining the Application Connection to the Oracle Database Server
	11.3.3 Defining Snapshots
	11.3.4 Publishing the Application

	11.4 Administering the Application
	11.4.1 Starting the Mobile Server
	11.4.2 Launching the Mobile Manager
	11.4.3 Creating a New User
	11.4.4 Setting the Application Properties
	11.4.5 Granting User Access to the Application
	11.4.6 Starting the Message Generator and Processor (MGP)

	11.5 Running the Application on the Pocket PC
	11.5.1 Installing the Oracle Database Lite Mobile Client for Pocket PC
	11.5.2 Installing and Synchronizing the Transport Application and Data

	12 Building Mobile Web Applications: A Tutorial
	12.1 Overview
	12.1.1 Before You Start
	12.1.1.1 Development Computer Requirements
	12.1.1.2 Client Computer Requirements

	12.2 Developing the Application
	12.2.1 Step 1: Creating Database Objects in Oracle Database Lite
	12.2.1.1 The To Do List Application Database Objects
	12.2.1.2 Required Action

	12.2.2 Step 2: Compiling the Application
	12.2.2.1 Required Action

	12.2.3 Step 3: Defining the Application and Registering the Servlet
	12.2.3.1 The Packaging Wizard
	12.2.3.2 Required Action

	12.2.4 Step 4: Conducting a Trial Run
	12.2.4.1 The Mobile Development Kit for Web-to-Go Web Server
	12.2.4.2 Required Action

	12.3 Packaging the Application
	12.3.1 Step 1: Defining the Application
	12.3.1.1 The Packaging Wizard
	12.3.1.2 Required Action

	12.3.2 Step 2: Specifying Database Details
	12.3.2.1 Required Action

	12.3.3 Step 3: Defining the Snapshot
	12.3.3.1 The Snapshots Tab
	12.3.3.2 Required Action

	12.3.4 Step 4: Defining Sequences
	12.3.5 Step 5: Creating SQL Files for the Application
	12.3.5.1 Required Action

	12.3.6 Step 6: Package the Application
	12.3.6.1 Required Action

	12.4 Publishing the Application
	12.4.1 Step1: Create the Table Owner Account
	12.4.2 Step 2: Create the Database Objects in the Oracle Database
	12.4.2.1 Required Action

	12.4.3 Step 3: Start the Mobile Server
	12.4.3.1 Required Action

	12.4.4 Step 4: Log on to the Mobile Server and Start the Mobile Manager
	12.4.4.1 Required Action

	12.4.5 Step 5: Upload the Application
	12.4.5.1 Required Action

	12.5 Administering the Application
	12.5.1 Step 1: Starting the Mobile Manager
	12.5.1.1 Required Action

	12.5.2 Step 2: Using the Mobile Manager to Create a New User
	12.5.2.1 Required Action

	12.5.3 Step 3: Setting Application Properties
	12.5.3.1 Required Action

	12.5.4 Step 4: Granting User Access to the Application
	12.5.4.1 Required Action

	12.5.5 Step 5: Defining Snapshot Template Values for the User
	12.5.5.1 Required Action

	12.6 Running the Application on the Mobile Client for Web-to-Go
	12.6.1 Step 1: Installing the Mobile Client for Web-to-Go
	12.6.1.1 Required Action

	12.6.2 Step 2: Logging into the Mobile Client for Web-to-Go
	12.6.2.1 Required Action

	12.6.3 Step 3: Synchronizing the Mobile Client for Web-to-Go
	12.6.3.1 Required Action

	13 Building Offline Mobile Web Applications Using BC4J: A Tutorial
	13.1 Overview
	13.1.1 Before You Start
	13.1.1.1 Development Computer Requirements

	13.2 Developing the Application
	13.2.1 Creating the Database Connection
	13.2.2 Creating the BC4J Component
	13.2.3 Configuring the BC4J Component to Use the WTGJdbc Connection
	13.2.4 Building and Deploying the BC4J Component as a Simple Archive
	13.2.5 Writing the JSP Application to Access the BC4J Component
	13.2.6 Deploying the JSP Application as a Simple Archive

	13.3 Packaging the JSP Application
	13.4 Publishing and Configuring the JSP Application from the Mobile Manager
	13.5 Testing the BC4J Application
	13.6 Running the BC4J Application on the Mobile Client for Web-to-Go
	13.7 Deploying the Sample Application

	A Optimizing SQL Queries
	A.1 Optimizing Single-Table Queries
	A.2 Optimizing Join Queries
	A.2.1 Create an Index on the Join Column(s) of the Inner Table
	A.2.2 Bypassing the Query Optimizer

	A.3 Optimizing with Order By and Group By Clauses
	A.3.1 IN Subquery Conversion
	A.3.2 ORDER BY Optimization with No GROUP BY
	A.3.3 GROUP BY Optimization with No ORDER BY
	A.3.4 ORDER BY Optimization with GROUP BY
	A.3.5 Cache Subquery Results

	B Oracle Database Lite Load Application Programming Interfaces (APIs)
	B.1 Overview
	B.2 Oracle Database Lite Load APIs
	B.2.1 Connecting to the Database: olConnect
	B.2.2 Disconnecting from the Database: olDisconnect
	B.2.3 Deleting All Rows from a Table: olTruncate
	B.2.4 Setting Parameters for Load and Dump Operations: olSet
	B.2.5 Loading Data: olLoad
	B.2.6 Dumping Data: olDump
	B.2.7 Compiling
	B.2.8 Linking

	B.3 File Format
	B.3.1 Header Format
	B.3.2 Parameters
	B.3.3 Data Format
	B.3.3.1 CSV Format
	B.3.3.2 FixedAscii Format

	B.4 Limitations

	C Web-to-Go Sample Applications
	C.1 Introduction
	C.1.1 The Mobile Server
	C.1.2 The Mobile Development Kit for Web-to-Go
	C.1.3 Accessing Sample Programs from the Mobile Development Kit for Web-to-Go
	C.1.4 Accessing Sample Programs from the Mobile Server

	C.2 Sample 1 - Hello World
	C.2.1 Source Code Location
	C.2.2 Application Files

	C.3 Sample 3 - Recording Tracker
	C.3.1 Using Sample 3
	C.3.2 Sample 3 Database Tables
	C.3.3 Sample 3 Servlets
	C.3.4 Sample 3 Resource Bundle
	C.3.5 Source Code Location
	C.3.6 Application Files

	C.4 Sample 4 - Hello Applet
	C.4.1 Sample 4 Servlets
	C.4.2 Source Code Location
	C.4.3 Application Files

	C.5 Sample 6 - Image Gallery
	C.5.1 Source Code Location
	C.5.2 Application Files

	C.6 Sample 7 - Employee Data Applet
	C.6.1 Source Code Location
	C.6.2 Application Files

	D ODBC Support on Palm
	D.1 ODBC Support
	D.1.1 SQLAllocConnect
	D.1.2 SQLAllocEnv
	D.1.3 SQLAllocHandle
	D.1.4 SQLAllocStmt
	D.1.5 SQLFreeConnect
	D.1.6 SQLFreeEnv
	D.1.7 SQLFreeHandle
	D.1.8 SQLFreeStmt
	D.1.9 SQLConnect
	D.1.10 SQLDisconnect
	D.1.11 SQLBindParameter
	D.1.12 SQLPrepare
	D.1.13 SQLExecDirect
	D.1.14 SQLExecute
	D.1.15 SQLFetch
	D.1.16 SQLBindCol
	D.1.17 SQLDescribeCol
	D.1.18 SQLError
	D.1.19 SQLGetData
	D.1.20 SQLNumResultCols
	D.1.21 SQLRowCount
	D.1.22 SQLTransact

	Glossary
	Index

