
Oracle® Siebel Retail Finance
Screen Orchestrator

Release 8.1.1 for Siebel Branch Teller

E21693-01

March 2011

Oracle Siebel Retail Finance Screen Orchestrator Guide, Release 8.1.1

E21693-01

Copyright © 2005, 2011 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Oracle Siebel Retail Finance Screen Orchestrator Guide, Release 8.1.1

E21693-01

Copyright © 2005, 2011 Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Preface

Oracle’s Siebel Retail Finance Screen Orchestrator tool facilitates design,
implementation and customization of applications to statechart principles.

Audience
This document is intended for the developers to visually draw a statechart
representation of the proposed application and to specify interactively the actual
processes and state types that are used by the application when it runs..

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.
iii

Related Documents
For more information, see the following document from Siebel Bookshelf of Oracle

Technology Network (OTN):

■ Oracle Siebel Retail Finance Branch Teller Guide

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.
iv

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 3

1 What’s New in This Release

2 Screen Orchestrator Overview

About the Screen Orchestrator 11
About Statecharts 11
About the State Machine 12
Why Statecharts and the State Machine Are Used 13
Statechart Notation Explained 14

States 14

Parent and Child States 15

Events 15

State Transitions 16

Self-Transition 17

Pseudo-States 18

Chart Notes 20
A Simple Statechart Example 21
Customizing the Screen Orchestrator 22

3 Basic Screen Orchestrator Drawing

The Main Screen Orchestrator Window 23

The Screen Orchestrator Toolbar 26
The Statechart Drawing Components 27

Drawing States or Pseudo-States 27

Drawing State Transitions 28

Drawing Chart Notes 33
More Drawing State Details 34

Contents

Contents

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 4

Adding Child States 34

Moving States 34

Editing State Details 35

Resizing States 35

Deleting States 36
More Drawing Transition Details 36

About Transition Arrows 36

Drawing Transitions to the Master State 37

Drawing Transitions to and from Parent and Child States 39

Drawing Transitions to and from Unrelated Child States 39

Editing Transition Details 39

Deleting Transitions 39
More Drawing Statechart Details 40

The Statechart Name 40

Renaming the Statechart 40

Saving a Statechart 41

Renaming a Saved Statechart 42

Opening a Statechart 42

Resizing the Statechart Window 42
Miscellaneous Drawing Features 42

Using the Grid and Snap To Features 43

Using the Navigation Panel 44

Printing Statecharts 44

Exporting a Statechart as a GIF File 45

4 The Preview Capability and Web Deployment

The Preview Capability 47
Web Deployment Capability 50

Supported Web Servers 50

Contents

Configuring WAR File Properties for Statecharts 50

Deploying the WAR File 51

Running the Application 51

5 Defining Events with Processes and Guard Conditions

Handling an Event 54
Associating Processes with Events and Transitions 54
Setting the Input Requirements 55
Deleting Input Requirements 56
How the Request DataPackets are Built 56
Defining Guard Conditions 57

NullGuardCondition 57

FixedValueGuardCondition 57

InputBasedGuardCondition 57

ResultBasedGuardCondition 58

TimeoutGuardCondition 59

EmptyResponseGuardCondition 59
Other Controller Classes 59

The SimpleController 59

The AutoViewController 59

Additional Controllers 60

Custom Controllers and Guard Conditions 60
Adding Common Fields to Every Request 60
A Worked Example of Coding an Event 61
Blocking Events from States 64

6 Writing Controller Classes

The Responsibilities of a Controller 67
The IController Interface 67
The SimpleController Class 70
The Main Controller Class 70

Contents

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 6

The Modified Controller Contract 70

The Inputs Object 71
Extending the Controller Class 71
Adding a New Controller to the Screen Orchestrator 74

Creating a Customizer for the Controller 76

7 Writing Guard Condition Classes

The Responsibility of a Guard Condition 77
The IGuardCondition Interface 77
Adding a New Guard Condition to the Screen Orchestrator 77

Creating a Customizer for the Guard Condition 78

8 Writing JSPs

Responsibilities of a JSP 81
Getting Data into the JSP 81

Inputs Bean 81

ProcessExecutionRecords Bean 82

State Bean 82

View Bean 82

RequestContext Bean 83
Firing an Event from a JSP 83

Using the .jsm URL Extension 83

Using the StateMachine URL 83

9 Integrating Processes in the Screen Orchestrator

About Integrating Processes 85
Importing Processes from an Automated Methodology Model 85
Manually Entering Process Information 86
Editing Processes 86
Deleting Processes from the Siebel Processes Panel 87
Assigning Processes to the Statechart 87

Contents

Assigning Processes to a State 87

Adding Processes to a State Transition 87

10 Advanced Drawing

Undoing and Redoing Drawing Instructions 89
Copying, Cutting, and Pasting 90

Example of Cut and Paste Operation 90
Minimizing and Maximizing Parent States 92
Opening Subcharts 93

Handling of Transitions Leaving and Entering Parent States 94

Bringing Subcharts to the Front of the Desktop 96
Multiple User Support 97

Users Working on the Same Files 98

11 Forward Engineering

About Forward Engineering 99
Process of Updating Statecharts 99
Updating Statecharts Using the Forward-Engineering Menu Options 100

Updating a Statechart That Does Not Contain UUIDs 100

Updating a Statechart That Does Contain UUIDs 101
Updating Statecharts Using Commands 101

Updating a Statechart That Does Not Contain UUIDs 101

Updating a Statechart That Does Contain UUIDs 102

12 Writing A Swing Application

About Writing a Swing Application 103
Writing the Application Main Class 104
Writing the ViewContainer Class 105
Writing the View Classes 105

IView Interface 105

StateMachineEventSource Interface 106

Contents

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 8

Managing ViewProperties 106
Adding a View Class to the Screen Orchestrator 106

The JSPView Class 107

The JSPViewBeanInfo Class 112
The Swing Application Requirements 114

The ViewController Interface 114

Setting the Application Properties 115

The State Machine Events 115
Example of a Swing Application 115

13 Validating Input Requirements

Defining the Validation Rules 123
How the State Machine Handles the Validation Check 124

14 Generating JSPs and Swing Panels

About Generating JSPs and Swing Panels 127
Testing Whether JSPs Can Be Compiled 127
Generating JSP and Swing Panel Files 127

15 MCA Services Timing Points

About Timing Points 129
Timing Points in the State Machine 129

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 9

What’s New in Siebel Retail Finance Screen Orchestrator Guide,
Version 8.1.1
This guide was updated to match the Oracle user document look and feel. It was previously published
as Screen Orchestrator Guide, Version 2007.1.

1 What’s New in This Release

Contents

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 10

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 11

This chapter provides an overview of the Screen Orchestrator as well as statechart and state machine
concepts. It includes the following topics:

 About the Screen Orchestrator on page 11

 About Statecharts on page 11

 About the State Machine on page 12

 Why Statecharts and the State Machine are Used on page 13

 Statechart Notation Explained on page 14

 A Simple Statechart Example on page 21

 Customizing the Screen Orchestrator on page 22

About the Screen Orchestrator
Oracle’s Siebel Retail Finance Screen Orchestrator tool facilitates design, implementation and
customization of applications to statechart principles. The Screen Orchestrator allows you to visually
draw a statechart representation of your proposed application and to specify interactively the actual
processes and state types that are used by the application when it runs. The tool allows you to deploy
the visually-drawn statechart to a live HTTP server or application server where the application is run
and controlled by a state machine. The state machine reads the deployed statechart and uses it to
control the actual application.

Understanding statechart principles and notation is a prerequisite to using the Screen Orchestrator
correctly. Therefore, it is extremely important that you read the following topics to get a basic
understanding of statecharts, their notation, and the state machine.

About Statecharts
The Unified Modeling Language (UML) definition of a statechart diagram is as follows:

A statechart diagram represents the behavior of entities capable of dynamic behavior by specifying its
response to the receipt of event instances. Typically, it is used for describing the behavior of class
instances, but statecharts may also describe the behavior of other entities such as use-cases, actors,
subsystems, operations, or methods.

The key concept in understanding why statecharts are used to represent user interfaces is the fact
that statechart diagrams are capable of handling or modeling dynamic behavior through events. Users
interact with a user interface dynamically through events. Statecharts are therefore ideally suited to
describing how a user interacts with a user interface.

For example, consider the following user interaction with a login screen in a user interface:

1 The user enters the username and password.

2 Screen Orchestrator Overview

Screen Orchestrator Overview ■ About the State Machine

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 12

2 The user clicks a login button to activate the login request.

If the login is successful, the user is allowed into the rest of the system. If the login fails, the
user is taken to the login-failed screen.

Clicking the login button is an event that must occur for the request to be processed. The event has
two possible outcomes in this instance: it is either successful, or it fails. The statechart representation
of this user interaction is shown in Figure 1 (the notation is explained in Statechart Notation Explained
on page14).

The statechart in Figure 1 shows how a login user interface can be modeled in statechart notation.
When the user interacts with a screen, an event is created. An event is created when a user clicks a
button, or selects a radio button, or submits a form, or for whatever action you want the user to take.
In terms of the Screen Orchestrator, states are often what the user sees on the computer screen (the
view). In the login example, there are three states or screens, the Login screen itself, the LoginFailed

screen, and the AuthenticatedArea, where one or more screens and hence states, can exist.

In the Screen Orchestrator, you therefore use statecharts to capture the user’s interaction with the
user interface through the modeling of the events that describe the system. This book concentrates
primarily on using statecharts for the design and implementation of user interfaces. However, you can
also use statecharts for other purposes. For example, you can use a statechart to capture the flow of a
process on the server-side of the application. You can use the statechart in long-lived multiple
transitions to route a process from one state of the transition to the next.

About the State Machine
While a statechart is the representation of the modeled user interaction of a user interface, the state
machine is a framework that uses that statechart to control the real user interface. The state machine
framework is based on an open source project, the jstatemachine (www.jstatemachine.org). In Siebel
Retail Finance, this framework has been extended to be aware of Retail Finance processes and is part
of the MCA Services.

Figure 1. Login Statechart Diagram

Screen Orchestrator Overview ■ Why Statecharts and the State Machine Are Used

The state machine framework is loaded and runs on any HTTP server that supports Java servlets and
Java Server Pages (JSPs). The state machine reads a statechart produced by the Screen Orchestrator
and uses that statechart to control the real user interaction coming from the user interface. The key
thing to remember here is that the Screen Orchestrator constructs the statecharts, while the state
machine loads the statechart and uses it to control the actual user interface.

Why Statecharts and the State Machine
Are Used
Any large system’s user interface today is normally designed using a modern integrated development
environment (IDE). While such tools are extremely powerful in building complex user interfaces, user
interface software often has the following characteristics:

 The code can be difficult to understand and review thoroughly.

 The code can be difficult to test in a systematic and thorough way.

 The code can contain bugs even after extensive testing and bug fixing.

 The code can be difficult to enhance without introducing unwanted side effects.

 The quality of the code tends to deteriorate as enhancements are made to it.

Despite the obvious problems associated with user interface development, little effort has been made
to improve the situation. However, the use of statecharts to specify the flow and control of the user
interface is a major step in improving this situation. The user interface design can now be captured,
understood, and interpreted by existing and new developers of the system. You now have the visual
record of the flow of control of the system, and you can see the side effects of any change on the user
interface.

The design of the user interface is too often left almost entirely to the developer and their
understanding of the use cases. Greater design work needs to be done on the user interface so that
the user interface can be more easily understood, developed, and maintained. Statecharts can play a
key part in achieving this design work.

The state machine is an extension of using statecharts. If the user interface is described using a
statechart, then why not use the actual statechart within the user interface application to maintain
control of the actual system? Any changes in the statechart are then automatically reflected back in
the actual application. The state machine does precisely that; it takes the actual statechart and
controls the application directly with the statechart. The user interface developer is then free to
concentrate on building and creating the views for the system.

Statecharts and the state machine enforce the Model-View-Controller (MVC) programming model.

 The Controller of the user interface is the statechart that was drawn, while the state machine is
the run-time environment for that statechart.

 The Views are the views of the application seen by the user. The developer can create views for
the application that contain view code only. In the application, views are implemented by Java
Server Pages (JSP) or Swing panels.

 The Model is defined by the input parameters to the states, events, and transitions. Later topics
describe what is meant by input parameters and the maintaining of the Model details used in the
statecharts).

Screen Orchestrator Overview ■ Statechart Notation Explained

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 14

The state machine and the Screen Orchestrator are aware of Retail Finance processes, so they can
invoke the processes, and more importantly interpret their responses so that you require little or no
control code. This awareness leads to a user interface system that is highly controlled and whose side
effects are easily understood and changed as the system grows and you make enhancements, thus
avoiding the problems sometimes associated with user interface designs.

For more information about the state machine framework, see the MCA Services API documentation.

Statechart Notation Explained
Statechart notation essentially consists of two representations: states and state transitions.

States are represented in the Screen Orchestrator by a rectangular box, while an arrow represents a
state transition. Events, another important statechart element, are not pictorially represented, but
they are identified in a statechart in the labels attached to state transitions.

States
The statechart that you define for the user interface is merely the representation of the possible states
of the interface. A state, in the case of the state machine and the Screen Orchestrator, represents
what the user sees on the computer screen. In terms of the Screen Orchestrator, a screen is termed a
view. A standard state drawn on a statechart in the Screen Orchestrator is shown in Figure 2.

Every state has a title and subtitle. In Figure 2, <<Auto View>> is a title, and Login is a subtitle. The
subtitle on each state indicates the name of the state or view. The title always indicates the type of
state that the state represents. The Screen Orchestrator provides three basic state types:

 An Auto View state. This state indicates that a view is represented by the state but that no
current view is available to be attached to the state. The state machine can generate an automatic
view for this state dependent on the state input parameters and the events leaving the state.

 A View state. This state indicates that a view is represented by the state and that an actual view
can be attached to the state. When the state machine runs the application, the attached view is
displayed to the user.

 A No View state. This state is often used to indicate that the state is a parent state (although an
AutoView and View state can also be parent states). Parent states are used to split the user
interface into subsystems. The No View state is also used to represent server-side states because
these states do not represent any particular view of the system.

Each state type available in the Screen Orchestrator is shown in Figure 3, Figure 4, and Figure 5, each
of which shows one of these states.

The states are color-coded for easy identification.

Figure 2. A Standard State

Screen Orchestrator Overview ■ Statechart Notation Explained

Parent and Child States
You can add a state to other states, so that the added state becomes a child of the enclosing state.
Figure 6 shows the AuthenticatedArea state as a parent state of the child states Page1 and Page2.

States can inherit events and transitions from their parent states. That is, an event or transition
available from the parent state is also available from its child states, with the exception of the case
where a child state has an event of the same name.

Events
When the user interacts with the screen, an event is initiated. An event might be clicking a button,
clicking a radio button, submitting a form, or any action you want the user to take. An event is
identified in the state machine by its source and name. In the example shown in Figure 1, clicking the
login button on the login screen is an event being initiated.

Figure 3. An Auto View State

Figure 4. A View State

Figure 5. A No View State

Figure 6. Parent and Child States

Screen Orchestrator Overview ■ Statechart Notation Explained

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 16

State Transitions
On a statechart, arrows represent the transitions between states. Each transition has a label with the
following syntax (all three parts are optional):

Event [Guard condition]/Action

For example, in the transition Login[Successful]/StoreUserId shown in Figure 8:

 The event is Login.

 The guard condition is Successful.

 The action is StoreUserId.

The event is the user action that fires the transition.

Each transition can be guarded by a condition or set of mutually exclusive conditions that must return
true for a particular transition to be followed. After the event occurs, the guard condition of each
transition possible for that event is tested. One of the conditions returns true and the state machine
follows that transition to the resultant state. The state machine then informs the user interface and
the display is updated to show what is proper for that state. Figure 7 illustrates the login event and its
transitions.

Actions (also termed side effects) are associated with transitions and are considered to be processes
that can occur as a result of a transition. In the login example, you can extend the Login[Successful]
transition to include an action, StoreUserId (as shown in Figure 8).

Figure 7. Identifying Events and Transitions on a Statechart

Screen Orchestrator Overview ■ Statechart Notation Explained

When the user clicks the login button, the Login event is fired. The login results are tested to see
whether the login was successful. If the login was successful, the Login[Successful]/StoreUserId
transition is followed. The action associated with this transition is to take the user’s user ID and store
it in the user’s HTTP session.

Self-Transition
A self-transition behaves exactly as a normal transition does except that its start state and end state
are the same. Figure 9 illustrates how a self-transition is drawn in the Screen Orchestrator.

You use a self-transition when you want to send the user back to the currently displayed screen, if a
certain guard condition is met. In the example in Figure 9, when the Login event is fired, and if the
guard condition TryAgain is met, the Login screen is redisplayed by the state machine.

Figure 8. Extending the Login Example to Include a Transition Action

Figure 9. Self Transition

Screen Orchestrator Overview ■ Statechart Notation Explained

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 18

Pseudo-States
A number of pseudo-states are also available within statechart notation. Pseudo-states represent
special types of state that indicate very specific types of behavior when included on the statechart.
The pseudo-states are described in the following subtopics

Initial State
A solid circle as shown in Figure 10 represents an initial pseudo-state.

An initial pseudo-state indicates the starting point or state for a statechart. Initial pseudo-states are
also used in parent states to indicate where the starting point is within that parent state. Figure 11
shows the login example extended to include child states in the AuthenticatedArea parent state.

The statechart has two initial pseudo-states: one to indicate where the application starts, and the
second to indicate which state is displayed first when the AuthenticatedArea state is entered (for
example, Page1).

History State
A circle enclosing an H as shown in Figure 12 represents a history pseudo-state.

Figure 10. An Initial Pseudo-State

Figure 11. Using Initial Pseudo-States

Figure 12. A History Pseudo-State

Screen Orchestrator Overview ■ Statechart Notation Explained

A history pseudo-state refers to children of a state that have recently been visited by the user. The
history pseudo-state allows the user to return to the state that was the most recently visited
immediate child of a parent state. Figure 13 shows a history pseudo-state in the AuthenticatedArea
state.

In this example, if the user cancels their logout event while on the Confirm state, the user is returned
to the last visited state within the Authenticated area (that is, either Page1 or Page2, depending on
which of the two screens were displayed before the Confirm state was displayed).

History-Star State
A circle enclosing a H* as shown in Figure 14 represents a history-star pseudo-state.

A history-star pseudo-state is very similar to the history pseudo-state. However, the history-star
pseudo-state recursively returns the user to the immediate child of the parent state ending with the
deepest visited state.

For example, if the statechart shown in Figure 13 is modified to use the history-star rather than the
history pseudo-state, the state machine allows the user to return to the last displayed state and its
deepest visited state. So if the user visits Page1 followed by a child state of Page1, the user is
returned to the child state of Page1.

Final State
A solid circle enclosed by an outer circle as shown in Figure 15 represents a final pseudo-state.

Figure 13. The Login Example Extended to Use a History Pseudo-State

Figure 14. A History-star Pseudo-State

Screen Orchestrator Overview ■ Statechart Notation Explained

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 20

The final pseudo-state is used to indicate the final activity allowed on a statechart. It triggers a
transition for leaving the application fired from the connected state to the final pseudo-state.

Exception State
A circle with an X across it as shown in Figure 16 represents an exception pseudo-state.

An exception pseudo-state is not part of the standard UML statechart notation; it was added to the
state machine for exception handling. The state machine recognizes that exceptions can occur during
event processing, and allows you to specify states within your user interface as exception states.
When an exception is thrown, the user interface is placed properly in the appropriate exception state,
with the user session still intact.

Effects of Pseudo-States on State Transitions

Pseudo-states indicate very specific behavior when used on a statechart. Similarly, pseudo-states
have effects on state transitions that you should be aware of. For example, some pseudo-states can
start a state transition but cannot end a state transition. Other pseudo-states cannot start a state
transition but can end a state transition. Table 2 indicates the type of behaviors that are allowed by
pseudo-states when drawing a state transition with them on a statechart.

Table 1. State Transition Behavior for Pseudo-States

Pseudo-state Start State in a Transition End State in a Transition

Initial Yes No

History No Yes

History-star No Yes

Final No Yes

Exception No Yes

Chart Notes
You can add chart notes anywhere within a statechart to visually comment the statechart. The state
machine makes no use of these notes. They are only used to explain the statechart to other users.

Figure 15. A Final Pseudo-State

Figure 16. An Exception Pseudo-State

Screen Orchestrator Overview ■ A Simple Statechart Example

Figure 17 shows a chart note.

A Simple Statechart Example
In the previous topics, a login example was used to demonstrate the statechart notation. In this topic
that example is now extended to produce the statechart as shown in Figure 18. This topic explains
what the statechart means and how to interpret it.

The figure illustrates a simple statechart that represents a user interface that allows a user to log in to
an authenticated area, move around that area, and then to restart the application by logging out of
the application. Initially, when the user starts the application, the Welcome view is displayed as
indicated by the statechart’s initial pseudo-state. On the Welcome screen or view is a Next button.
When the user clicks the Next button, the state machine displays the login view to the user. On the
Login view, the user can enter their username and password. When the user clicks the Login button a
Login event is fired. The state machine handles the result of the login and determines which guard
condition is met.

Figure 17. A Chart Note

Figure 18. A Simple Statechart Example

Screen Orchestrator Overview ■ Customizing the Screen Orchestrator

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 22

 If the guard condition Failed is met, the state machine follows the Login[Failed] transition and
displays the LoginFailed screen to the user. On the LoginFailed view there is a Restart button and
a Try again button. If the user clicks the Try again button, the state machine displays the Login
screen again. However, if the user clicks the Restart button, the state machine displays the
Welcome screen.

 If guard condition Successful is met, the state machine follows the Login[Successful]/StoreUserId
transition, and the state machine performs the StoreUserId action. The StoreUserId action
requires the state machine to take the user ID returned from the login process and to store that
user ID in the user’s HTTP session. When the actions is completed, the state machine enters the
AuthenticatedArea of the application and displays the Page1 view to the user as indicated by the
initial pseudo-state in the AuthenticatedArea.

The user can move between Page1 and Page2 in the AuthenticatedArea by using menu or form
buttons on the AuthenticatedArea screens. The AuthenticatedArea indicates that there is a Logout
event. This event is inherited by the AuthenticatedArea’s child states. This implies that both the Page1
and Page2 screens have a Logout button so that the user can fire the Logout event. The statechart
does not require a Logout state transition arrow to be drawn from Page1 and Page2 to the Confirm
state because Page1 and Page2 automatically inherit the event by being child states of the
AuthenticatedArea state.

Customizing the Screen Orchestrator
The Screen Orchestrator is very flexible in that you can develop new views, controller classes, and
guard condition classes and register them for use within the Screen Orchestrator. This customization
is described in the following chapters:

 Chapter 6, Writing Controller Classes

 Chapter 7, Writing Guard Condition Classes

 Chapter 12, Writing a Swing Application, which contains a section about adding new view classes.

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 23

This chapter introduces the basic drawing capabilities of the Screen Orchestrator. After you work
though this chapter, you should be able to build a standard statechart with the Screen Orchestrator.
This chapter includes the following topics:

 The Main Screen Orchestrator Window on page 23

 The Statechart Drawing Components on page 27

 More Drawing State Details on page 34

 More Drawing Transition Details on page 36

 More Drawing Statechart Details on page 40

 Miscellaneous Drawing Features on page 42

The Main Screen Orchestrator Window
When the Screen Orchestrator starts, the screen in Figure 19 is displayed.

3 Basic Screen Orchestrator Drawing

Figure 19. The Screen Orchestrator Window

Basic Screen Orchestrator Drawing ■ The Main Screen Orchestrator Window

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 24

As shown in Figure 19, The Screen Orchestrator provides a menu and toolbar to access its major
functions. The main drawing components of the Screen Orchestrator, with which you draw statecharts,
are displayed in a palette in the upper-left of the Screen Orchestrator (Figure 20). This component
palette contains components for the states, transitions, and notes that you add to a statechart.

Below the component palette on the main window is a navigation window (Figure 21) that displays a
miniature view of the statechart that you are currently drawing. You can use this window to navigate a

statechart to a particular area within the currently visible statechart window.

Below the navigation window is a further panel, the Siebel Processes panel (see Figure 22). This panel
displays the list of Siebel processes available to you when populating a statechart with process
information.

Figure 20. Component Palette Used in Creating Statecharts

Figure 21. The Navigation Window

Basic Screen Orchestrator Drawing ■ The Main Screen Orchestrator Window

At the bottom of the Siebel Processes panel are two tabs that allow you to toggle between the Siebel
Processes panel and a further panel, the Application Metrics panel (see Figure 23). This panel displays
the number of states, view states, autoviews, events, complex controllers, transitions, and complex
guard conditions in a statechart. You can use this information to determine the complexity of the
statechart, to help with task estimation, and to track progress of the application, that is, the number
of autoviews left to be coded to actual views.

As mentioned previously, this topic concentrates on the basic drawing of statecharts using the Screen
Orchestrator, later topics explain fully the use of the process panel.

The Screen Orchestrator provides a multiple document interface (MDI) desktop in which you can draw
statecharts. The Screen Orchestrator allows you to create or edit a single statechart at a time.
However, you can open larger parent states into smaller subchart windows within the desktop.
Opening parent states as subcharts is explained in detail in Opening Subcharts on page 93.

Figure 22. The Siebel Processes Panel

Figure 23. The Application Metrics Panel

Basic Screen Orchestrator Drawing ■ The Main Screen Orchestrator Window

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 26

The Screen Orchestrator Toolbar
The Screen Orchestrator contains a toolbar that provides icons for tools as described in Table 4.

Table 2. The Screen Orchestrator Toolbar

Icon Equivalent Menu Option Description

File > New Starts a new statechart.

File > Open Opens an existing statechart. For more
information, see Opening a Statechart on
page 42.

File > Open Part Opens a part statechart. For more
information, see Multiple User Support on
page 97.

File > Save XML Saves the statechart. For more information,
see Saving a Statechart on page 41.

No equivalent Opens the preview window for a statechart.
For more information, see The Preview
Capability on page 47.

File > Save XML and Re-generate War Deploys a Web Archive (WAR) file. For
more information, see Deploying the WAR
File on page 51.

No equivalent Tests whether Java Server Pages (JSP) can
be compiled. For more information, see
Testing Whether JSPs Can Be Compiled on
page 127.

No equivalent Generates JSPs of panel files, or both, for a
view. For more information, see Generating
JSP and Swing Panel Files on page 127.

File > Print All Prints all of the currently selected
statechart. For more information, see
Printing Statecharts on page 44.

File > Print to Scale Prints the currently selected statechart to
scale. For more information, see Printing
Statecharts on page 44.

Basic Screen Orchestrator Drawing ■ The Statechart Drawing Components

The Statechart Drawing Components
The statechart drawing components as shown in Figure 24 support the statechart notation as
described in Statechart Notation Explained on page 11.

Drawing States or Pseudo-States
You draw states or pseudo-states by dragging them from the component palette to the statechart
window. When you create a state, you must enter state details. Pseudo-states do not require titles or
require to be configured in any way. You can move a state or pseudo-state at any time by clicking on
the state and dragging the state to any new location within the statechart window. Figure 26
illustrates the statechart window after a state titled Welcome is created.

To create a state or a pseudo-state on the statechart window

1 Click on the required state or pseudo-state in the component palette and drag the state onto the
statechart window.

2 Release the mouse button over an area in the statechart window where you want to drop the state
or pseudo-state.

A state or pseudo-state is created by the Screen Orchestrator on the dropped location in the
statechart. For a state, the Enter State Details screen is displayed.

3 Enter the state’s details; as a minimum type a title, and click OK.

The state is displayed with the appropriate title and state type.

Figure 24. Statechart Notation Components Palette Used for Drawing Statecharts

Basic Screen Orchestrator Drawing ■ The Statechart Drawing Components

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 28

Drawing State Transitions
To connect two states together to represent a state transition, you click on the transition component
(Figure 25) and then drag and drop the component onto the statechart directly over the header of the
state or anywhere over a pseudo-state that is the starting state of a state transition.

To draw a state transition

1 Click on the transition component in the component palette.

The Screen Orchestrator immediately changes the cursor to a cross symbol.

2 Drag and drop the component to the header of the start state of the transition.

3 Move the mouse to the end state or pseudo-state of the transition.

As the mouse is moved about the statechart towards the end state of the transition, a
temporary state transition line is drawn towards the end state.

Figure 25. The State Transition Component

Figure 26. Welcome State Drawn

Basic Screen Orchestrator Drawing ■ The Statechart Drawing Components

4 When the mouse is over the header of the state or anywhere over a pseudo-state, click on the
state.

The cursor is returned to the default cursor, and the state transition is drawn. The Transition
Wizard is then displayed.

5 Enter the event name of the transition or select an existing event on the starting state of the
transition if one already exists.

For example, in the login example used in the statechart concepts topic, if you were drawing a
transition from the Welcome state to the Login state, you would type Next in the Event field.

6 Click Next.

The Enter Transition Details screen is displayed.

7 Enter an action description and guard condition for the state transition.

NOTE: In the state transition from the Welcome state to Login state no action or guard
condition exists.

8 Click Finish.

The state transition is created. For the Login example, the state transition Next[default] shown
in Figure 27 is created.

To draw the Login[Successful]/StoreUserId state transition, you enter the information shown in Figure
28 and Figure 29 in the Transition Wizard. This action creates the state transition shown in Figure 30.

Figure 27. The Next[default] State Transition

Basic Screen Orchestrator Drawing ■ The Statechart Drawing Components

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 30

This section only describes the basics of drawing state transitions; detailed information about coding
events in the Screen Orchestrator and using the Transition Wizard is given in Chapter 5, Coding
Events with Processes and Guard Conditions.

Figure 28. Event Details Screen with Login Event

Basic Screen Orchestrator Drawing ■ The Statechart Drawing Components

Figure 29. Transition Details Screen with StoreUserId Action and Successful Guard Condition

Drawing Self-Transitions
To draw a self-transition, you click on the self-transition component in the component palette (Figure
31) and drag the component onto a state header. You cannot add a self-transition to pseudo-state; a
warning is displayed if you attempt to do so.

When you release the mouse button over a state, the Screen Orchestrator draws a self-transition
around the state and displays the Transition Wizard.

Figure 30. The Login[Successful]/StoreUserId State Transition

Figure 31. The Self-Transition Component

Figure 32. The Login[TryAgain] Self-Transition

Basic Screen Orchestrator Drawing ■ The Statechart Drawing Components

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 32

A self-transition has exactly the same properties as a state transition, except that its start state and
end state are the same. Figure 32 shows a self-transition drawn around a Login state, when the Login
event’s guard condition is TryAgain. If the login fails, the state machine can redisplay the Login state
allowing the user to try logging in again.

State Header
When you drop a transition or self-transition on a state you must drop the drawing component on the
state’s header. Similarly, when you specify the end state of a state transition, you must click on the
state’s header for the Screen Orchestrator to identify the state that is used for the end state of that
transition. The state header is the top rectangular box of the state where the state’s type and name
(or title) is displayed. Figure 33 highlights the header area of a number of states.

The bottom rectangular box of a state is where you can add child states to the state. Adding child
states to a parent state is discussed in Adding Child States on page 34.

Figure 33. The State Header Area

Basic Screen Orchestrator Drawing ■ The Statechart Drawing Components

Drawing Chart Notes
You can add chart notes anywhere in a statechart. To draw a chart note, you click on the chart note
component in the component palette (which is shown in Figure 34) and drag the component onto the
statechart.

A statechart can have as many notes as you want, and you can add them to states just as you can

add any child state to any parent state.

You can also add notes to events and transitions by clicking respectively the Edit Event Details and
Edit Transition Details button in the Transition Wizard (see Figure 28). These notes are added to the
XML file that is produced when you save the statechart.

Figure 34. The Chart Note Component

Figure 35. A Statechart Showing a Chart Note Attached

Basic Screen Orchestrator Drawing ■ More Drawing State Details

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 34

To draw a chart note

1 Click the chart note component in the Component Palette.

2 Drag the chart note to the required location on the statechart.

3 Click in the chart note and type text directly into the note.

The note grows automatically in size as you type more text.

More Drawing State Details
You can create states and pseudo-states and move them anywhere within other states. You can resize
them and edit their details, for example, to change the name, or the state type. The following topics
describe how to perform these actions.

Adding Child States
To add a state or pseudo-state as a child to a parent state, you simply drag and drop a state
component from the component palette onto the parent state’s statechart area.

Every state has a statechart area on which child states can be added as shown in Figure 36.

When you drop a state onto a parent state’s statechart area, the parent state is resized to fit the child
state and any other child states of the parent. If you then move the child state further around the
parent state, the parent state continues to be resized if required.

Moving States
After you create a state or pseudo-state, you can move it to any location in the statechart.

To move any state, simply click anywhere on the state’s header or, if it is a pseudo-state, anywhere
on the body of the pseudo-state, and drag and drop the state to its new location.

If you move a state inside a parent state, the parent state is resized automatically if required. If the
state is outside a parent state but should be inside, dragging the state inside the parent state is
allowed. The state immediately becomes a child state of the parent state. Similarly, the reverse is also
true. If a state is initially located as a child state of some parent state, moving the child state
anywhere outside the parent state immediately releases the state as a child state of the parent state.

Figure 36. Statechart Areas Within a State

Basic Screen Orchestrator Drawing ■ More Drawing State Details

Editing State Details
You can change the details of a state, such as the title, state type, state details, or input parameters
at any time.

To edit state details

1 Right-click on the state header to display the state’s pop-up menu.

2 Navigate to the Edit > Details > Enter State Details screen.

3 Edit the state details as required.

For example, to change the AuthenticatedArea’s state type from an AutoView state type to a
No View or (NONE) state type, select NONE in the State Type list.

4 Click OK to save your changes.

Resizing States
The Screen Orchestrator automatically resizes states when adding child states or moving states within
a parent state. However, you can also specify a state’s actual size.

To resize a state

1 Right-click on the state header to display the state’s pop-up menu.

2 Navigate to the Edit > Size > Enter State Size screen.

The screen indicates the current width and height of the state and indicates the best-fit size
for the state.

Figure 37. Moving the Page2 State into the AuthenticatedArea State

Basic Screen Orchestrator Drawing ■ More Drawing Transition Details

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 36

3 Type the required width and height in the Enter size: and click OK.

Deleting States
You can delete any state or pseudo-state. When you delete a parent state, all its child states,
transitions, and child transitions are also deleted.

To delete a state

1 Right-click on the state header to display the state’s pop-up menu.

2 Click Delete.

3 Click Yes to confirm the deletion.

More Drawing Transition Details
You can draw transitions between any two states; however, you can only draw certain types of
transitions between states and pseudo-states. For information about which transitions are supported
by pseudo-states, see Table 3 on page 20.

About Transition Arrows
When you draw a transition between any two states (regardless of whether a state is a pseudo-state),
the Screen Orchestrator determines how the transition arrow is drawn between them. You have no
real control over how the transition arrow is drawn. However, moving the states that participate in the
transition can alter how the transition arrow is drawn. For example, Figure 38 illustrates the types of
transition arrows that are drawn given the relative locations of the states in the transitions.

Basic Screen Orchestrator Drawing ■ More Drawing Transition Details

If you need to change a transition arrow and how it is drawn, you must adjust the location of one of
the transition’s states. Moving one of the states involved in the transition further away or closer or at
a different angle to the other state forces the transition arrow to be drawn differently.

Drawing Transitions to the Master State
The desktop window that displays the statechart is itself a state and as such you can draw transitions
to it. Within the Screen Orchestrator this state is known as the master or application state. State
transitions are often drawn to the master state to indicate that the application must be restarted. In
the login example described in Chapter 2, a state transition arrow is drawn from the LoginFailed state
and the Confirm state to the master state to indicate that the application must be restarted as a result
of these transitions.

To draw a transaction to the master state

1 Click on the transition component in the component palette.

2 Drag the component to the start state of the transition.

3 Move the mouse to anywhere in the statechart area apart from where a parent or child state
already exists, and click on the statechart.

4 Enter the required details for the transition, and click OK.

Figure 39 indicates the position of the end transition mouse-click for drawing the Restart transition
arrow on the Confirm state.

Figure 38. Types of Transition Arrows Drawn by Screen Orchestrator

Basic Screen Orchestrator Drawing ■ More Drawing Transition Details

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 38

Figure 40 shows the completed Restart transition for the Confirm state.

Figure 39. Creating a Transition from a State to the Master State

Figure 40. The Restart Transition from the Confirm State to the Master State

Basic Screen Orchestrator Drawing ■ More Drawing Transition Details

Drawing Transitions to and from Parent and Child States
You can draw transitions between parent and child states just as you draw a normal state transition.
Dragging the transition component onto the parent state’s header starts the transition and clicking the
mouse on the child state’s header ends the drawing of the transition as normal. Figure 40 shows two
such transitions. The AuthenticatedArea has parent to child transition arrows to the Page1 and Page2
states.

Drawing Transitions to and from Unrelated Child States
You can draw transitions to and from states that are unrelated child states. This capability allows you
to draw a transition arrow between any two states anywhere on the statechart, regardless of whether
they are children of the same parent state, not children, or just child states of the statechart itself.
The only limitation on drawing a transition arrow is when one of the states is a pseudo-state. For
information about which transitions are supported by pseudo-states, see Table 3 on page 20.

Editing Transition Details
You can edit the details for any transition either directly or through the start state for the transition.

To edit transition details directly

1 Right-click on the transition to display the transition’s pop-up menu.

2 Click the Edit label option.

3 Edit the transition’s details as required.

4 Click Finish to save your changes.

To edit transition details from the start state

1 Right-click on the state header of the start state of the transition to display the state’s pop-up
menu.

2 Navigate to the Transitions > Edit option and click the transition’s label option, for example,
Login[Failed].

3 Edit the transition’s details as required.

4 Click Finish to save your changes.

Deleting Transitions
You can delete a transition either directly or through the start state for the transition.

Basic Screen Orchestrator Drawing ■ More Drawing Statechart Details

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 40

To delete a transition directly

1 Right-click on the transition to display the transition’s pop-up menu.

2 Click the Delete label option.

3 Click Yes to confirm the deletion.

To delete transition details from the start state

1 Right-click on the state header of the start state of the transition to display the state’s pop-up
menu.

2 Navigate to the Transitions > Delete option and click the transition’s label option, for example,
Login[Failed].

3 Click Yes to confirm the deletion.

More Drawing Statechart Details
Apart from drawing states and transitions, you can edit details of the statechart itself, as described in
the following topics.

The Statechart Name
Each statechart represents an application. The name of the statechart is also the application name and
the name of the master state of the statechart. The name of the statechart is displayed in the title bar
for the desktop window of the statechart, as shown in Figure 41.

Renaming the Statechart

You can rename statecharts at any time.

Figure 41. Statechart with Name Highlighted

Basic Screen Orchestrator Drawing ■ More Drawing Statechart Details

To rename a statechart

1 Right-click on the statechart in an area where no state is located.

2 Click Edit Application Title from the pop-up menu.

3 Type the new title for the application and statechart.

4 Click Save.

The title bar of the statechart window changes to reflect the new application title.

Saving a Statechart
By default the statechart is saved with a filename that is the same as the statechart’s application title.
You can give a statechart any name, but it is recommended that you save it with the same name as
the application.

When you save the statechart, the title bar of the statechart window is updated to include the
filename of the statechart, see Figure 42.

To save a statechart

 Select File > Save XML to save a statechart to a file with the same filename as the application. If
the statechart was not saved before, you are prompted for a filename for the statechart.

 Select File > Save XML As and enter a new filename, to save a statechart to a file with a different
name from the application.

Figure 42. Statechart Window with Filename of the Statechart Highlighted

Basic Screen Orchestrator Drawing ■ Miscellaneous Drawing Features

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 42

As you add items to a statechart such as states, pseudo-states, and transitions, move any state in the
statechart, or edit any states or transition details, the Screen Orchestrator indicates that a file save is
required by adding an asterisk to the statechart’s window title bar.

Renaming a Saved Statechart
If you started a statechart and built it up over some period of time, you have already named the
statechart and saved it to a file. Over time you might then want to rename the statechart to a more
appropriate name.

When you rename a statechart, the Screen Orchestrator also automatically renames the file associated
with the statechart to match.

Opening a Statechart
You open a statechart by:

 Clicking the Open File button on the toolbar

 Selecting File > Open from the menu bar

 By selecting the file from the recently opened file list on the File menu, if the statechart was
opened recently

If you already have a statechart opened, you are asked to save it (if required) before opening the new
statechart.

Resizing the Statechart Window
You can resize the window in which the statechart is displayed.

To resize a statechart

1 Right-click on the statechart to display the statechart’s pop-up menu.

2 Navigate to the Edit Application Size > Enter State Size screen.

The screen indicates the current width and height of the statechart and indicates the minimum
size for the statechart.

3 Type the required width and height in the Enter size: text boxes, and click OK.

Miscellaneous Drawing Features
The following subtopics describe the remaining important features required for basic drawing with the
Screen Orchestrator. More advanced drawing features are covered in the Advanced Drawing chapter.

Basic Screen Orchestrator Drawing ■ Miscellaneous Drawing Features

Using the Grid and Snap To Features
The Screen Orchestrator’s component palette provides grid and snap to features as shown in Figure
43.

By default the grid feature is off, while the snap to feature is on, when you start the Screen
Orchestrator.

The grid feature allows you to use a visible grid to position and align states drawn on the statechart.
To switch the grid on, click the Show Grid button. The statechart window then displays a grid as
shown in Figure 44.

The Show Grid button is toggled with a Hide Grid button, so that you can hide the grid when required.

Figure 43. The Show Grid and Snap Off Buttons

Figure 44. Statechart Window with Grid Feature On

Basic Screen Orchestrator Drawing ■ Miscellaneous Drawing Features

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 44

NOTE: One side effect of switching on the grid is that specifying transitions is slightly slower.

You can adjust the grid size by moving the grid size slider left or right. Moving the slider left decreases
the grid size down to a minimum of 5 pixels per grid square. Moving the slider to the right allows the
grid size to be increased to a maximum of 50 pixels per grid square. The default grid size is 10 pixels
per grid square.

The snap to tool allows you to locate states on actual grid points regardless of whether the grid is
visible. If you create or move a state while the snap to tool is on, the state is automatically located to
the nearest grid point.

Clicking the Snap Off button switches the snap to feature off. When you create or move states they
are located exactly where they are dropped. Clicking the Snap Off button toggles the button back to a
Snap On button.

Using the Navigation Panel
As a statechart gets larger and moves outside the size of the statechart window, that window becomes
scrollable. To help navigate around the window, the Screen Orchestrator includes a navigation panel
as shown in Figure 45.

The navigation panel displays a miniature representation of the statechart. The red box in the panel
indicates the currently visible area in the statechart’s desktop window. If you click inside the red box,
the cursor changes to a hand and you can drag the box to a new location within the navigation panel.
As you drag, the statechart window is moved and located to correspond with the area visible in the
navigation panel.

Printing Statecharts
You can print a statechart by clicking a Print button on the toolbar or by selecting an option from the
File menu.

To print a statechart

 Select Print All, to print the currently selected statechart to scale, and to print all pages, if it is
larger than a single page.

 Select Print to Scale, to display the Print Dialog screen, then print the statechart to a single page
or multiple pages.

Figure 45. The Navigation Panel for a Scrollable Statechart

Basic Screen Orchestrator Drawing ■ Miscellaneous Drawing Features

 Click Single page to print the statechart on one page. If the statechart is larger than a single
page, the statechart is scaled to fit on a single page.

 Click Multiple pages to print the statechart on multiple pages.

Exporting a Statechart as a GIF File
You can export a statechart as a GIF file by selecting File > Export as a GIF file from the menu bar.

You can then import the GIF file into design documents or send it electronically, which allows users
without a Screen Orchestrator installation to view and analyze the statechart.

Basic Screen Orchestrator Drawing ■ Miscellaneous Drawing Features

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 46

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 47

The application that you model in the Screen Orchestrator is typically Web-based, therefore you must
package the application into a Web Archive (WAR) file and deploy it on a suitable Web server. The
Screen Orchestrator provides functions for creating and deploying a WAR file for Web-based
applications; it also provides a preview window for testing and verifying the statechart design before
deployment.

This chapter includes the following topics:

 The Preview Capability on page 47

 Web Deployment Capability on page 50

The Preview Capability
As you develop a statechart you can preview it by clicking the Preview button, see Figure 46.

4 The Preview Capability and Web
Deployment

Figure 46. Highlighted Preview Button

Figure 46. Highlighted Preview Button

The Preview Capability and Web Deployment ■ The Preview Capability

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 48

The preview window displays the initial state and allows you to fire events to the next state in the
drawn statechart. The preview window does not use the specified view state type but instead uses a
Swing-based autoview to display the state. If the state’s events have the correct controllers and guard
condition classes, you can use the preview to follow the actual transitions that occur in the real
application.

The Screen Orchestrator also allows you to use a special controller with the preview window. If you
use the AutoViewController for events when drawing the statechart, the preview window allows you to
actually select the transition that you want to follow. This capability is extremely useful for verifying all
the statechart’s transitions including those that might represent rare behavior that is difficult to
duplicate.

The figures in this topic use the Login example with AutoViewController, and illustrate the way in
which you can follow the transitions with the preview feature.

The initial state of the Login example application is the Welcome state. You fire the Next event by
clicking the Next button in the preview, see Figure 47.

The Next event takes you to the Login state (Figure 48). This state’s Login event has two possible
transitions. The event is either successful, or it fails. The AutoView Controller is used for this event,
which allows you to select the Successful transition to be followed when you click the Login button.

Figure 47. Statechart Preview: Welcome State

The Preview Capability and Web Deployment ■ The Preview Capability

As shown in Figure 48, the Login was successful, and so the initial state of the AuthenticatedArea is
the Page1 state (Figure 49.) You now click the Logout button to fire the Logout event, and proceed to
the Confirm state (Figure 50).

Figure 48. Statechart Preview: Login State

Figure 49. Statechart Preview: Page1 State

The Preview Capability and Web Deployment ■ Web Deployment Capability

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 50

Web Deployment Capability
You can use the Screen Orchestrator to produce a WAR file for deployment of Web-based applications;
the following subtopics describe how to access and use this feature.

Supported Web Servers
You can deploy the state machine framework on any suitable HTTP server that supports Java servlets
and Java Sever Pages (JSP). The state machine framework and the WAR files produced by the Screen
Orchestrator have been tested on the following application servers:

 JBoss 3.0.x and higher

 JBoss 3.0.x with Tomcat and higher

 BEA WebLogic 6.1 and higher

 IBM WebSphere 5.x and higher (you might need to update the jdom.jar installed with this
application server for the state machine to work correctly)

Configuring WAR File Properties for Statecharts
When you create a new statechart, default WAR file properties are automatically assigned. However,
you can configure the properties for each statechart.

Figure 50. Statechart Preview: Confirm State

The Preview Capability and Web Deployment ■ Web Deployment Capability

To configure the WAR file properties

1 In the Screen Orchestrator navigate to File > War Properties.

The Confirm War Properties screen is displayed. There are two tabs, one showing the default
set of properties and one that allows you to specify a set of properties.

2 If you want to use the default set of properties, click Save Default Properties.

3 If you want to change any properties, complete the details on the Chart Properties tab.

The fields are described in the following table.

Field Comment

Destination Dir Type the directory where the application puts the packaged WAR
file, that is, the webapps folder of the Web server. For example,
for JBoss, specify the \jboss-3.0.x\server\default\deploy directory.
When the WAR file is generated, it is transferred to this location
for deployment. This property is probably the property that you
change most often.

Temp Dir Type the directory where the WAR file is generated and packaged
before it is copied to the Destination Dir value.

Libraries Dir Type the directory where the JAR files that are built into the WAR
file are located.

Classes Dir Type the directory for any additional controllers or guard condition
classes in the application that are to be included in the
application’s WAR file.

HTML Directory Type the directory for any HTML or JSP files that the WAR file
needs. Any additional directories and files such as images and
style sheets must also be located in this directory.

4 Click OK.

NOTE: Chart properties are not saved until you save the statechart.

Deploying the WAR File
When you are happy with the properties for the WAR file, you can deploy the application by selecting
File > Save XML and Re-generate War.

This action creates the WAR file and places it the directory specified in the Destination Dir property in
the WAR file properties. Some application servers have the ability to hot deploy the WAR file, for those
that do not have this facility, you must restart the application server.

Running the Application
Generally, the URL to run the application is of the following format:

http://serverName:portNumber/ApplicationName/StateMachine

The Preview Capability and Web Deployment ■ Web Deployment Capability

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 52

For example, if a file EbankingExample.xml is deployed on an application server installed locally, and
on a port number of 8080, the URL is: http://localhost:8080/EBankingExample/StateMachine.

http://localhost:8080/EBankingExample/StateMachine�

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 53

This chapter describes how to define complex events in the Screen Orchestrator. It describes the
sequence of the state machine when handling an event, and how to add processes and useful guard
conditions to that sequence to control a real user interface.

This chapter includes the following topics:

 Handling an Event on page 53

 Associating Processes with Events and Transitions on page 54

 Setting the Input Requirements on page 55

 Deleting Input Requirements on page 56

 How the Request DataPackets are Built on page 56

 Defining Guard Conditions on page 57

 Other Controller Classes on page 59

 Adding Common Fields to Every Request on page 60

 A Worked Example of Coding an Event on page 61

 Blocking Events from States on page 64

5 Defining Events with Processes
and Guard Conditions

Figure 51. Sequence Diagram for Handling an Event

Figure 51. Sequence Diagram for Handling an Event

Defining Events with Processes and Guard Conditions ■ Handling an Event

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 54

Handling an Event
When the state machine receives an event, it follows the sequence shown in Figure 51.

1 When the event is received, the state machine calls the Controller’s getResult method.

2 The controller calls all the processes associated with the event.

3 The controller calls the checkGuardCondition method for each of the transitions. One of the guard
conditions evaluates to TRUE. The getResult method returns that transition.

4 The state machine calls the doSideEffects method.

5 The controller calls all the processes associated with the transition.

NOTE: This is the sequence followed by the com.bankframe.fe.statemachine.ext.apps.Controller
class. Other controller classes can behave differently.

Associating Processes with Events and
Transitions
You associate processes with events and transitions by dragging the process from the process tree to
the Transition Wizard (Figure 52).

Figure 52. Page 1 of the Transition Wizard

Defining Events with Processes and Guard Conditions ■ Setting the Input Requirements

See Chapter 9 for details about loading and editing processes on the process tree.

The Transition Wizard has two pages. To associate a process with an event, drag the process onto the
InputRequirements table in the first page of the wizard, as shown in Figure 52. To associate a process
with a transition, drag the process onto the second page of the wizard, as shown in Figure 53.

Processes on the event (the first page) are called when the event is received from the user before any
guard conditions are tested, as described in the Handling an Event topic. Processes on the transition
are called after the transition’s guard condition is tested, and only if the guard condition evaluates to
true.

Setting the Input Requirements
When you add a process to an event or transition, the parameters to that process become input
requirements to the event. (The transition does not have independent input requirements, so all
parameters to all processes on an event and all its transitions are considered input requirements to
the event.)

Each input requirement (set in the table on the first page of the Transition Wizard) has the following
attributes:

Figure 53. Page 2 of the Transition Wizard

Defining Events with Processes and Guard Conditions ■ Deleting Input Requirements

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 56

 name. The parameter name. In most cases, the parameter name is a DataPacket key, as used by
a process that the event references.

 description. The optional parameter description.

 defaultValue. The optional default value.

 requirement. The requirement type, which must take one of the following values:

 REQUIRED. Indicates that the user must supply the parameter value.

 OPTIONAL. Indicates that the user can supply the parameter value.

 CONSTANT. Indicates that the parameter value is always the supplied default value.

 CODED. Indicates that customized code supplies the parameter. This option is used very
rarely).

 PROCESS. Indicates that the process definition supplies the parameter value. This option is
used for parameters such as the DATA PACKET NAME and REQUEST_ID.

 validationRule. The optional validation rule for the input requirement. See Chapter 13 for more
information.

NOTE: You can add input requirements that are not required by any process. For example, if you are
using an InputBasedGuardCondition, you can add the parameter being tested by that guard condition
to the input requirements.

Deleting Input Requirements
When events or states no longer use certain input requirements, you can remove them from the input
requirements table.

To delete input requirements

 To delete a single input requirement, right-click on the appropriate entry in the table, and select
Delete Selected Input Requirement.

 To delete all the input requirements, right-click on any entry in the table and select Delete All
Input Requirements.

How the Request DataPackets are Built
To be sure the correct data are sent to the processes, it is important to understand how the Controller
and Process objects build up the DataPackets that are sent through the MCA Services client.

The requirement type specified in the input requirements for each parameter determines the value
that is used, according to these rules:

 REQUIRED. The value is taken from the request received from the user. If the value is not in the
request, a null value is used.

Defining Events with Processes and Guard Conditions ■ Defining Guard Conditions

 OPTIONAL. The value is taken from the request received from the user if possible. If the request
does not contain a parameter of the correct name, the value is the default value for this input
requirement.

 CONSTANT. The value is always the default value for this input requirement.

 CODED. The value must be provided by custom-written Java code in the controller.

 PROCESS. The value is taken from the DataPacket definition in the process.

The DataPackets are built to contain all the keys specified in the DataPacket definitions in the process.

Defining Guard Conditions
After you define processes and ensure that they receive the correct data from the user interface, the
next step is to define the guard conditions on the event’s transitions.

The basic rule you have to remember is: for every event, no matter what inputs are provided from the
user or received from the processes, exactly one of the guard conditions on the event’s transitions
must be true. All other guard conditions must be false.

There is one exception to this rule: if an event has only one transition, that transition is always
followed no matter what the guard condition.

There are various types of guard condition available by default in the Screen Orchestrator; the
following sections describe these guard conditions.

NullGuardCondition
This is a guard condition that always returns an undefined value, neither true nor false. You use this
guard condition only if the event has only one transition, or if you are using a controller that does not
test guard conditions (such as the AutoViewController or SimpleController).

FixedValueGuardCondition
This is a guard condition that always returns either true or false as set in the Transition Wizard. You
can use this guard condition during testing of an application to force it along a particular route to an
area you need to test.

InputBasedGuardCondition
The InputBasedGuardCondition tests some value received from the user or in the user session.

You can set the properties described in Table 5.

Table 3. Guard Condition Properties for InputBasedGuardCondition

Field Description

Input Must Select whether or not the input must contain or
must not contain the specified value.

Defining Events with Processes and Guard Conditions ■ Defining Guard Conditions

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 58

Field Description

Case Sensitive Select whether or not the test should be case-
sensitive.

Input Source Select the input source:

 ANY. Any input source.

 Request

 User Session

 Visit

For more information about these sources, see
The Inputs Object on page 71.

Parameter Name Type the name of the input.

Parameter Value Type the value to test for.

ResultBasedGuardCondition
The ResultBasedGuardCondition tests the result from a process associated with the event.

You can set the properties described in Table 6.

Table 4. Guard Condition Properties for ResultBasedGuardCondition

Field Description

Result Must Select whether or not the result must contain or
must not contain the specified value.

Case Sensitive Select whether or not the test should be case-
sensitive.

Process Name The name of the process that was called.

Response DataPacket Name The name of the DataPacket in the result
DataPackets that should be tested.

DataPacket Key The key part of the key/value pair within the
DataPacket to be tested.

Value The value part of the key/value pair within the
DataPacket to be tested.

NOTE: The DataPacket name and key are always considered case sensitive, and only the value is
tested for case sensitivity.

Defining Events with Processes and Guard Conditions ■ Other Controller Classes

TimeoutGuardCondition
The TimeoutGuardCondition tests whether a timeout has resulted from a process associated with the
event. You can set the properties described in Table 7.

Table 5. Guard Condition Properties for TimeoutGuardCondition

Field Description

Timeout Parameter Type the timeout parameter to test the process
against; for example, TIMEOUT_STARTED would
start counting the timeout from the time the
process started.

Timeout Threshold Type the number of milliseconds that would
constitute a timeout. For example, type 150000
for a timeout of 2.5 minutes.

EmptyResponseGuardCondition
The EmptyResponseGuardCondition tests whether the response from a process associated with the
event is an empty response.

The only field to complete is the Process Name field, in which you type the name of the process that
was called.

Other Controller Classes
The preceding sections assume that you use the com.bankframe.fe.statemachine.ext.apps.Controller
class as the event controller. There are other controller classes that you can use in different
circumstances, and these are described in the following sections.

The SimpleController
The SimpleController class, com.bankframe.fe.statemachine.base.apps.SimpleController, is used to
handle all trivial events. The SimpleController class can handle all events with just one transition and
no associated processes. The SimpleController handles these trivial events faster than the main
Controller class.

The AutoViewController
The AutoViewController class, com.bankframe.fe.statemachine.base.apps.AutoViewController, is used
in conjunction with the AutoView, XSLTAutoView, or preview features to allow you to choose which
transition to follow based on selecting from a list of available transitions.

Defining Events with Processes and Guard Conditions ■ Adding Common Fields to Every Request

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 60

Additional Controllers
The following additional controllers are available in the com.eontec.statemachine.helpers package:

 ChannelClientController. This controller provides a mechanism for specifying what channel
client is used when executing processes. By default, it is set to use HttpClient, and in this mode it
behaves in exactly the same way as the main Controller class.

 DataCollectorController. This controller is a subclass of the ChannelClientController, but it adds
very special behavior in handled DataPackets. DataCollectorController can build multiple
DataPackets from the input request values and can append these DataPackets to any request that
is executed by any process specified by the event or transition.

 MultipleRequestController. This controller is used to handle more complex multiple DataPacket
requests.

 ClearUserSessionController. This controller is a subclass of the ChannelClientController and is
used to clear values in the Inputs object.

 AddToUserSessionController. This controller is a subclass of the ChannelClientController and is
used to add values to the Inputs user session.

For more information about how to use these classes, see the MCA Services API documentation.

Custom Controllers and Guard Conditions
There may be some times when the standard processes, controllers, and guard conditions are not
enough to meet the requirements of the user interface. In that case, you can write controller classes
and guard conditions with custom code to meet the requirements. See Chapter 6, Writing Controller
Classes and Chapter 7, Writing Guard Condition Classes for information about how to write custom
code.

Adding Common Fields to Every Request
The state machine can add common items to every request sent to a Retail Finance server. For
example, an application that uses Entitlements requires the following values to be contained within
every request:

ENTITLEMENTS_CHANNEL_ID

ENTITLEMENTS_ACTOR_ID

ENTITLEMENTS_ACCESS_PROVIDER_ID

ENTITLEMENTS_ACCOUNT_NUMBER

ENTITLEMENTS_BRANCH_CODE

You configure the state machine to add these items to every request by setting values in the
BankframeResource.properties file as follows:

‘# Common Request Items

Defining Events with Processes and Guard Conditions ■ A Worked Example of Coding an Event

#######################

common.request.items.enable=true

common.request.items.fields=ENTITLEMENTS_CHANNEL_ID;

ENTITLEMENTS_ACTOR_ID;ENTITLEMENTS_ACCESS_PROVIDER_ID;

ENTITLEMENTS_ACCOUNT_NUMBER;ENTITLEMENTS_BRANCH_CODE’

These items are not required to be in the process definition, but you must add their key names to the
common.request.items.fields value in the BankframeResource.properties file and then set the
common.request.items.enable value to true. The values for these fields must be available in the
Inputs object used by the state machine to hold user data. If the value for these fields is not in the
Inputs object already, they are put into the request as blank values.

A Worked Example of Coding an Event
This section contains a worked example of how you might code an event with a process call, a result-
based guard condition, and an action on one of the transitions. The resulting transition would appear
as shown in Figure 54.

In the example, the user interface is intended to allow a user to request a funds transfer between two
of their accounts. Users are restricted in the amount they can transfer in any given day, so the system

Figure 54. Worked Example

Defining Events with Processes and Guard Conditions ■ A Worked Example of Coding an Event

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 62

must check whether the amount chosen is above the limit. If it is not above the limit, the transfer
must be performed and the user given a transaction record number.

To support this, two tier-1 methods are defined. The first method determines whether the amount
specified is within the allowed range (CHECK_DAILY_LIMIT_FOR_ACCOUNT process), the second
performs the transfer and returns the record number (MAKE_TRANSFER process).

You must specify two transitions:

1 Transfer[AmountTooHigh]. This transition is followed if the process does not return a DataPacket
called AMOUNT_OK.

1 Transfer[AmountOK]/Perform Transfer. This transition is followed if the process returns a
DataPacket called AMOUNT_OK. The transition also has an associated action, as it must actually
complete the transfer requested by the user.

The two transitions make sure that no matter what is returned from the
CHECK_DAILY_LIMIT_FOR_ACCOUNT process, one of the two guard conditions is true.

To specify the Transfer[AmountTooHigh] transition

1 Drag a self transition from the component palette onto the GatherTransferDetails state.

2 In the Event field type Transfer.

3 In the Controller field select com.bankframe.fe.statemachine.ext.apps.Controller.

4 Drag the CHECK_DAILY_LIMIT_FOR_ACCOUNT process onto the event.

The InputRequirements box is filled with values taken from the process definition.

5 Set the requirement type for each of these inputs, as shown in the following table.

Name Comment

AMOUNT Select REQUIRED as this is supplied
by the user.

BRANCH_CODE Select REQUIRED as this is supplied
by the user.

COMPANY_CODE Select CONSTANT, as the company
code does not change from the value
supplied.

DATA_PACKET_NAME Select PROCESS as this is particular to
the process.

REQUEST_ID Select PROCESS as this is particular to
the process.

SOURCE_ACCOUNT_NUMBER Select REQUIRED as this is supplied
by the user.

6 Click Next.

7 In the Guard Description field, type something meaningful, such as AmountTooHigh.

Defining Events with Processes and Guard Conditions ■ A Worked Example of Coding an Event

8 In the Guard Condition Class field, select ResultBasedGuardCondition and complete the guard
condition properties as described in the following table.

Field Description

Result Must Select: not contain the following.

Case Sensitive Select false.

Process Name Type
CHECK_DAILY_LIMIT_FOR_ACCOUNT.

Result DataPacket Name Type AMOUNT_OK.

DataPacket Key Type DATA PACKET NAME.

Value Type TRANSFER_OK. The data packet
name will be tested, so the key is
DATA PACKET NAME, and the value is
the data packet name to test for.

9 Click Finish.

To specify the Transfer[AmountOK]/PerformTransfer transition

1 Drag a self transition from the component palette onto the GatherTransferDetails state, then click
on the TransferComplete state.

2 In the Event field, select Transfer.

The controller, process and input requirements data are filled as for the
Transfer[AmountTooHigh] transition.

3 Click Next.

4 In the Guard Description field, type something meaningful, such as AmountOK.

5 In the Guard Condition Class field, select ResultBasedGuardCondition and complete the guard
condition properties, as shown in the following table.

Field Description

Result Must Select: contain the following. The
guard condition on this transition is
the opposite of the
Transfer[AmountTooHigh] transition.

Case Sensitive Select false.

Process Name Type
CHECK_DAILY_LIMIT_FOR_ACCOUNT.

Result DataPacket Name Type AMOUNT_OK.

Datapacket Key Type DATA PACKET NAME.

Defining Events with Processes and Guard Conditions ■ Blocking Events from States

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 64

Field Description

Value Type TRANSFER_OK. The data packet
name will be tested, so the key is
DATA PACKET NAME, and the value is
the data packet name to test for.

6 Enter an action description such as PerformTransfer, and drag the MAKE_TRANSFER process onto
the Transition Wizard.

7 Click the Back button.

The InputRequirements table now has extra entries for parameters required by the
MAKE_TRANSFER process:

 The destination account number VO
(FINANCIAL_TRANSACTION_DESTINATION_ACCOUNT_VO_IMPL)

 Some common system attributes VO
FINANCIAL_TRANSACTION_COMMON_ATTRIBUTES_VO_IMPL)

 The source account VO (FINANCIAL_TRANSACTION_SOURCE_ACCOUNT_VO_IMPL)

8 For each of the extra parameters, type REQUIRED in the Requirement field (the user must supply
all of them).

9 Click Next, and then click Finish.

In this worked example you have:

 Created an event with two transitions

 Set guard conditions so that the correct transition is followed

 Added a process to be called before the guard conditions are checked and another process to be
called if one of the transitions is followed.

Blocking Events from States
To block events from states other than the current state, the most important thing is that the
Exception State is used in conjunction with setting the block.states key to true in the
ScreenOrchestrator\resources\BankframeResources.properties file.

block.states=true

In the statechart shown in Figure 55, the states B, C, and D all inherit the Exception event. If an event
is to be drawn to an exception state it must be called Exception (otherwise it does not work). When
the C state is displayed, and the Back button is clicked on the browser, the B state is displayed. If the
E1 event is then clicked, the state machine throws an exception, which forces the application to follow
the Exception event and hence displays the ErrorState view. From the ErrorState the user can reenter
the application through the Home event. The ErrorState can be anything you want, as long as the
ExceptionState is a child of a viewable state.

The one scenario that you cannot block is when the user is on a state and clicks the Back button and
then the Forward button on the browser. In this scenario the user can fire the event. The browser is
back displaying the correct state and therefore the event is allowed.

Defining Events with Processes and Guard Conditions ■ Blocking Events from States

The ScreenOrchestrator\resources\BankframeResources.properties file must set the block.states to
true, but when building the WAR file, double check that the WAR file properties settings can find the
relevant properties file. Also make sure that the directory specified in the Libraries Dir WAR property
contains the current mca.jar file. For more information, see Configuring WAR File Properties for
Statecharts on page 50.

Figure 55. Blocking Event from States Example

Defining Events with Processes and Guard Conditions ■ Blocking Events from States

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 66

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 67

This chapter describes how to write Controller classes. It describes the responsibilities of such classes,
the application programming interfaces (API) to be used, and some of the classes that are provided by
default. The chapter also includes a section on adding your controller classes to the Screen
Orchestrator.

This chapter contains the following topics:

 The Responsibilities of a Controller on page 67

 The IController Interface on page 67

 The SimpleController Class on page 70

 The Main Controller Class on page 70

 The Modified Controller Contract on page 70

 Extending the Controller Class on page 71

 Adding a New Controller to the Screen Orchestrator on page 74

The Responsibilities of a Controller
Controller classes are the implementation of the control logic of the user interface. Controllers are the
event handlers, with every event having a Controller configuration of its own.

Controllers have two basic responsibilities:

 To choose one of the event’s transitions to follow. When the Controller receives an event, it
must look at the data supplied by the user and perhaps request information from the model.
Based on this it must choose one of the event’s transitions to follow. A Controller can choose a
different transition each time the event is received, based on the business logic, the data supplied
by the user, and the state of the model.

 To perform any actions required by that transition. Having chosen a transition, the Controller
must perform any actions that are required by that transition.

As an example, using the worked example of the previous chapter (see Figure 54), an application
might allow a user to make a funds transfer between two accounts if the amount transferred in any
single day is less than some limit. In this case, the Controller first tests that the amount is under the
limit and choose one of the two transitions based on that. If the controller chooses the transition to
the TransferComplete state, it then performs the actions of completing the transfer.

The IController Interface
All Controller classes must conform to the com.bankframe.fe.statemachine.base.apps.IController
interface. This interface defines two methods reflecting the two primary responsibilities of the
Controller classes:

6 Writing Controller Classes

Writing Controller Classes ■ The IController Interface

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 68

 IStateTransition getResult(RequestContext requestContext, IEvent event) throws

StateMachineUserException

This method represents the Controller’s responsibility to choose between the transitions on the
event. The RequestContext object contains all the information about the current user and
request, while the IEvent object is the event that is to be processed. Typically this method is
implemented as a series of calls to the model or tests on the input parameters, followed by a
call to event.getTransition(transitionName) to get the IStateTransition object to return.

 void doSideEffects(RequestContext requestContext, IStateTransition transition)

throws StateMachineUserException

This method represents the Controller’s responsibility to perform any actions required by the
transition. The requestContext object is the same object as passed to the getResult
method, while the transition object is the one returned by the getResult method.
Typically, this method is implemented as a series of if/then/else if/ blocks testing the name of
the transition. Each block contains the code to perform the required actions.

For more information about these methods, see the MCA Services API documentation.

Assuming appropriate processes were deployed, the event might be handled by the following code for
the IStateTransition and doSideEffects methods:

 public IStateTransition getResult(RequestContext requestContext, IEvent event)

throws StateMachineUserException {

 try {

 ChannelClient client = ChannelClientFactory.getChannelClient();

 DataPacket requestData = new

DataPacket("CHECK_DAILY_LIMIT_FOR_ACCOUNT");

 requestData.put(DataPacket.REQUEST_ID, TRANSFERS_REQUEST_ID);

 requestData.put("COMPANY_CODE",

requestContext.getRequest().getParameterValues("COMPANY_CODE")[0]);

 requestData.put("BRANCH_CODE",

requestContext.getRequest().getParameterValues("BRANCH_CODE")[0]);

 requestData.put("SOURCE_ACCOUNT_NUMBER",

requestContext.getRequest().getParameterValues("SOURCE_ACCOUNT_NUMBER")[0]);

 requestData.put("AMOUNT",

requestContext.getRequest().getParameterValues("AMOUNT")[0]);

 Vector requestVector = new Vector(1);

 requestVector.add(requestData);

 Vector responseData = client.send(requestVector);

 if

(((DataPacket)responseData.firstElement()).getName().equals("AMOUNT_OK")) {

 return event.getTransition("AmountOK");

 } else {

Writing Controller Classes ■ The IController Interface

 return event.getTransition("AmountTooHigh");

 }

 } catch (ProcessingErrorException ex) {

 throw new StateMachineUserException(ex);

 }

 }

 public void doSideEffects(RequestContext requestContext, IStateTransition

transition) throws StateMachineUserException {

 if (transition.getName().equals("AmountOK")) {

 try {

 ChannelClient client =

ChannelClientFactory.getChannelClient();

 DataPacket requestData = new DataPacket("TRANSFER_FUNDS");

 requestData.put(DataPacket.REQUEST_ID,

TRANSFERS_REQUEST_ID);

 requestData.put("COMPANY_CODE",

requestContext.getRequest().getParameterValues("COMPANY_CODE")[0]);

 requestData.put("BRANCH_CODE",

requestContext.getRequest().getParameterValues("BRANCH_CODE")[0]);

 requestData.put("SOURCE_ACCOUNT_NUMBER",

requestContext.getRequest().getParameterValues("SOURCE_ACCOUNT_NUMBER")[0]);

 requestData.put("DEST_ACCOUNT_NUMBER",

requestContext.getRequest().getParameterValues("DEST_ACCOUNT_NUMBER")[0]);

 requestData.put("AMOUNT",

requestContext.getRequest().getParameterValues("AMOUNT")[0]);

 Vector requestVector = new Vector(1);

 requestVector.add(requestData);

 Vector responseData = client.send(requestVector);

 } catch (ProcessingErrorException ex) {

 throw new StateMachineUserException(ex);

 }

 }

 }

Writing Controller Classes ■ The SimpleController Class

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 70

The SimpleController Class
The com.bankframe.fe.statemachine.base.apps.SimpleController class is an implementation of
IController that is intended to control events with only one transition and no actions. In many
applications, particularly Web applications, there are many events that are simply navigation events,
that is, they take the user from one screen to another and do nothing else. The SimpleController can
handle all of these events.

The Main Controller Class
The most commonly used Controller class is the com.bankframe.fe.statemachine.ext.apps.Controller
class. This class is a complex and complete implementation of the IController interface that can use
process data, input requirements, and guard condition data entered in the Screen Orchestrator to
carry out all the responsibilities of a Controller.

This class follows the steps:

1 The getResult method calls all of the processes defined for the event in the correct order, using
data from the user input, input requirements, and process definitions as appropriate to build up
the DataPackets to be sent through MCA Services. Results from the process calls are added to the
user session.

2 For each transition on the event, the Controller calls the checkGuardCondition method.
Depending on the configuration of the transition, this could check the user inputs, the results from
the processes, or other data, to decide whether the transition must be followed.

3 One of the transition checkGuardCondition methods should return IGuardCondition.TRUE. This
transition is returned from the Controller’s getResult method.

4 The doSideEffects method calls all of the processes defined for the transition in the correct
order, using data from the user input, input requirements, and process definitions as appropriate
to build up the DataPackets to be sent through MCA Services. Again, results from the process
calls are added to the user session.

The steps in this process should be sufficient to handle the majority of all events that are included in
an application user interface.

For those events that the steps cannot handle, you can extend the Controller class in various ways to
add extra functions.

The Modified Controller Contract
The contract defined by the IController interface is a very general contract that you can use in any
environment. The Controller class in the com.bankframe.fe.statemachine.ext.apps package provides a
different definition of the getResult and doSideEffects methods geared more specifically to the
Automated Methodology:

 IStateTransition getResult(IEvent event, Inputs inputs, RequestContext requestContext) throws
StateMachineUserException, ProcessingErrorException

 void doSideEffects(IEvent event, IStateTransition transition, Inputs inputs, RequestContext
requestContext) throws StateMachineUserException, ProcessingErrorException

Writing Controller Classes ■ Extending the Controller Class

For more information, see the MCA Services API documentation.

The IEvent, IStateTransition, and Inputs objects passed into these methods are all customized.

The IEvent and IStateTransition objects have a getProcesses method that returns an Iterator over all
the processes associated with the event or transition. The IEvent object has a getInputRequirements
method that makes available all the requirements and default values entered in the Screen
Orchestrator. IStateTransition includes a checkGuardCondition method, to test whether the transition’s
guard condition has been met.

The Inputs Object
The Inputs object provides a single view of all the data provided by the user or recorded previously in
the current user’s session. It combines three different data sources:

 The Request, which contains the data entered by the user in the user interface before firing the
current event.

 The Visit, which is generally empty, but can contain data placed there by another Controller or
View. The Visit is intended to store data that might be needed by a View. The visit is stored by the
state machine so that it can be reloaded if there is a return to the same result state through a
History or History-star pseudo-state.

 The User Session, which can store data about the user that might be required anywhere in the
application. This can include details like the user’s name, active role, actor ID, and so on.

The Inputs class provides the following methods for getting and setting parameter values:

 Enumeration getParameterNames()

This method provides an Enumeration over all the names of all the parameters in the three
data sources.

 Object getparameter(String parameterName)

This method provides the value of the named parameter; it looks first in the request, then the
visit, and finally the user session.

 Object getparameter(String parameterName, int inputSource)

This method provides the value of the named parameter in the specified input source. The
input source must be one of INPUT_SOURCE_ANY, INPUT_SOURCE_REQUEST,
INPUT_SOURCE_VISIT or INPUT_SOURCE_USER_SESSION.

 void setParameter(String parameterName, Object parameterValue)

This method sets a parameter value in the request.

 void setParameter(String parameterName, Object parameterValue, int inputSource)

This method sets a parameter in the specified input source.

Extending the Controller Class
In addition to the steps described, the Controller class calls a number of empty methods at different
times during the processing. You can override these empty methods to add extra functionality.

Writing Controller Classes ■ Extending the Controller Class

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 72

The full sequence of method calls is:

 The framework calls getResult.

 The getResult method calls getResultPreProcess. Override getResultPreProcess if you need to
manipulate the user inputs or perform any other tasks before the Controller does anything.

 For each process in the event:

 The getResult method calls modifyProcess. Override modifyProcess to change the
automatically-produced request DataPackets. The modifyProcess method can be called many
times by getResult and by doSideEffects, so make sure you are modifying the correct process
call!

 The getResult method calls executeProcess.

 The getResult method calls chooseTransition. Override chooseTransition if you want to choose the
transition yourself, instead of using the transition.checkGuardCondition methods. You must
override chooseTransition if any of the transition guard conditions might return
IGuardCondition.UNDEFINED.

 The getResult method calls getResultPostProcess. Override getResultPostProcess if you need to
extract certain pieces of information from the process responses, or if you want to change the
default behavior of adding the response data to the user session.

 The getResultPostProcess method calls addResultsToUserSession.

 The getResult method returns the chosen transition to the framework.

 The framework calls doSideEffects.

 The doSideEffects method calls doSideEffectsPreProcess. Override doSideEffectsPreProcess if there
is anything you need to do before the actions are performed.

 For each process in the transition:

 The doSideEffects method calls modifyProcess. This is the same modifyProcess method that is
called by getResult, so be careful when overriding modifyProcess to modify only the processes
that you need to modify.

 The doSideEffects method calls executeProcess.

 The doSideEffects method calls doSideEffectsPostProcess. This is your last chance to change the
behavior of the controller.

 The doSideEffectsPostProcess method calls addResultsToUserSession.

The sequence diagrams illustrated in Figure 56 and Figure 57 show the methods and calling sequence
when a com.bankframe.fe.statemachine.ext.apps.Controller’s getResult and doSideEffect methods are
invoked.

Writing Controller Classes ■ Extending the Controller Class

Figure 56. The com.bankframe.fe.statemachine.ext.apps.Controller Sequence Diagram

EntryServlet

doPost / doGet

delegateToRequestManager

RequestManger

manageRequest

processSingleEvent

Controller GuardCondition

getResult(RequestContext, IEvent)

getResultPreProcess

Process

getDataPackets

modifyProcess

executeProcess

loop for each process

chooseTransition

loop of each transition
until guard condition is satified

checkGuardCondition

getResultPostProcess

addResultsToUserSession

getResult(IEvent , Inputs, RequestContext)

Writing Controller Classes ■ Adding a New Controller to the Screen Orchestrator

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 74

For more information about all of these methods, including the method signatures, see the MCA
Services API documentation.

Adding a New Controller to the Screen
Orchestrator
When you have created a new controller class, you can use the class by typing the name into the
Controller field in the Transition Wizard.

The controller classes that you can select in the Controller field are listed in the statechart.properties
file, which contains the following controllers by default:

 com.bankframe.fe.statemachine.base.apps.SimpleController

 com.bankframe.fe.statemachine.base.apps.AutoViewController

 com.bankframe.fe.statemachine.ext.apps.Controller

 com.eontec.statemachine.helpers.ChannelClientController

Figure 57. The com.bankframe.fe.statemachine.ext.apps.Controller Sequence Diagram (Continued)

EntryServlet RequestManger Controller GuardConditionProcess

doSideEffects(RequestContext, IStateTransition)

doSideEffectsPreProcess

getDataPackets

modifyProcess

executeProcess

loop for each process

doSideEffectsPostProcess

addResultsToUserSession

doSideEffects(IEvent, IStateTransition, Inputs, RequestContext)

Writing Controller Classes ■ Adding a New Controller to the Screen Orchestrator

 com.eontec.statemachine.helpers.DataCollectorController

 com.eontec.statemachine.helpers.ClearUserSessionController

 com.eontec.statemachine.helpers.AddToUserSessionController

 com.eontec.statemachine.helpers.MultipleRequestController

For more information about these controller classes, see Other Controller Classes on page 59.

To add a new controller, type the class name in the Controller field, and click the Register button to
the right of the Controller field (Figure 58). This action adds the new class to the statechart.properties
file. You can then select your new controller class from the list in the Controller field.

Figure 58. Transition Wizard with Register Controller Button Highlighted

Writing Controller Classes ■ Adding a New Controller to the Screen Orchestrator

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 76

Creating a Customizer for the Controller
The Controller Properties box on the Transition Wizard is managed by loading bean customizer classes
for the controller class selected. This allows you to completely control how your controller looks in the
Screen Orchestrator. The controllerProperties contain an entry for each attribute exposed by the bean.

If you create a customizer for your controller class, you must add it to the classpath setting in the
orchestrator-install-dir\run.bat file, and restart the Screen Orchestrator; the Transition Wizard then
loads your customizer.

For information about creating a customizer, see the JavaBeans API documentation.

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 77

This chapter describes how to write guard condition classes. It describes the responsibilities of such
classes, the application programming interfaces (API) to be used, and some of the classes that are
provided by default. The chapter also includes a section on adding your guard condition classes to the
Screen Orchestrator.

This chapter includes the following topics:

 The Responsibility of a Guard Condition on page 77

 The IGuardCondition Interface on page 77

 Adding a New Guard Condition to the Screen Orchestrator on page 77

The Responsibility of a Guard Condition
A guard condition class has a very simple responsibility, namely to decide whether a transition should
be followed in any given case.

The IGuardCondition Interface
All GuardCondition classes must implement the
com.bankframe.fe.statemachine.ext.apploaders.IGuardCondition interface. This interface defines two
methods for you to implement:

 int checkGuardCondition(Inputs inputs, Vector processExecutionRecords,
RequestContext requestContext, IStateTransition stateTransition)

This method must return either IGuardCondition.TRUE or IGuardCondition.FALSE. If it returns
TRUE, the transition is followed, if it returns FALSE, the transition is not followed.

The Inputs, RequestContext and IStateTransition objects supplied are the same as described
for the Controller class. The processExecutionRecords vector contains
com.bankframe.fe.statemachine.ext.apps.ProcessExecutionRecord objects, listing the details
of all the processes executed by the Controller before calling checkGuardCondition.

 void setGuardConditionProperties(Properties guardConditionProperties)

This method is called before checkGuardCondition. The guardConditionProperties object
contains any information provided by the designer.

Adding a New Guard Condition to the
Screen Orchestrator
When you have created a new guard condition class, you can use the class by typing the name into
the Guard Condition Class field in the Transition Wizard, and entering the guard condition properties.

7 Writing Guard Condition Classes

Writing Guard Condition Classes ■ Adding a New Guard Condition to the Screen Orchestrator

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 78

The guard condition classes that you can select in the Guard Condition Class field are listed in the
statechart.properties file, which contains the following guard conditions by default:

 com.bankframe.fe.statemachine.ext.apploaders.bean.ResultBasedGuardCondition

 com.bankframe.fe.statemachine.ext.apploaders.bean.InputBasedGuardCondition

 com.bankframe.fe.statemachine.ext.apploaders.bean.FixedValueGuardCondition

 com.eontec.statemachine.helpers.TimeoutGuardCondition

 com.eontec.statemachine.helpers.EmptyResponseGuardCondition

To add a new guard condition, type the guard condition class name in the Guard Condition Class field,
and click the Register button to the right of the Guard Condition Class field (see Figure 59). This action
adds the new class to the statechart.properties file. You can then select your new guard condition
class from the list in the Guard Condition Class field.

Creating a Customizer for the Guard Condition
The Guard Condition Properties box in the Transitions Wizard is managed by loading bean customizer
classes for the guard condition class selected. This allows you to completely control how your guard

Figure 59. Transition Wizard with Register Guard Condition Button Highlighted

Writing Guard Condition Classes ■ Adding a New Guard Condition to the Screen Orchestrator

condition looks in the Screen Orchestrator. The guardConditionProperties contains an entry for each
attribute exposed by the bean.

If you create a customizer for your guard condition class, you must add it to the classpath setting in
the orchestrator-install-dir\run.bat file, and restart the Screen Orchestrator; the Transition Wizard
then loads your customizer.

For information about creating a customizer, see the JavaBeans API documentation.

Writing Guard Condition Classes ■ Adding a New Guard Condition to the Screen Orchestrator

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 80

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 81

This chapter describes the responsibilities of a Java Server Page (JSP) in the Screen Orchestrator
framework, and the beans and tags available to help build JSPs. It includes the following topics:

 Responsibilities of a JSP on page 81

 Getting Data into the JSP on page 81

 Firing an Event from a JSP on page 83

Responsibilities of a JSP
In the Screen Orchestrator, views can be implemented as JSPs or as Swing panels. In the Screen
Orchestrator framework, a JSP has two very simple responsibilities:

 Displaying data to the user. The JSP is required to format and display the data that the user
expects to see, including all the formatting, framing, branding, and general prettiness that is
required in the user interface.

 Giving the user the opportunity to fire events. For every state the user interface is in, there
are events that the user can fire. The JSP must provide buttons, links, or similar widgets for the
user, to allow events to be fired.

Within these two simple responsibilities, how you code the JSP is very flexible.

CAUTION: You must not include any tests in the JSP that result in loading new pages, forwarding, or
redirecting the JSP. If there is ever a circumstance where you want to redirect or forward to another
JSP based on some test in the JSP, you must change the statechart design so that the test is handled
in a Controller class.

Getting Data into the JSP
The JSP is required to display data to the user. This data is made available to the JSP through the set
of beans described in the following sections.

Inputs Bean
The Inputs bean contains all the data included in the request from the user, the current user session,
and the current state visit.

Load the Inputs bean with the tag:

<jsp:useBean id="Inputs" scope="request"

class="com.bankframe.fe.statemachine.ext.apps.Inputs" />

The scope="request" attribute means that the newly created object is created and bound to the
request object.

It is also useful to import the Inputs class to reference static members:

8 Writing JSPs

Writing JSPs ■ Getting Data into the JSP

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 82

<%@ page import="com.bankframe.fe.statemachine.ext.apps.Inputs" %>

The Inputs bean provides the following methods for getting and setting parameter values:

 Enumeration getParameterNames()

This method provides an Enumeration over all the names of all the parameters in the three
data sources.

 Object getParameter(String parameterName)

This method provides the value of the named parameter. The method looks first in the
request, then the visit, and finally the user session.

 Object getParameter (String parameterName, int inputSource)

This method provides the value of the named parameter in the specified input source. The
input source must be one of INPUT_SOURCE_ANY, INPUT_SOURCE_REQUEST,
INPUT_SOURCE_VISIT or INPUT_SOURCE_USER_SESSION.

 void setParameter(String parameterName, Object parameterValue)

This method sets a parameter value in the request

 void setParameter (String parameterName, Object parameterValue, int inputSource)

This method sets a parameter in the specified input source.

For more information about these methods, see the MCA Services API documentation.

ProcessExecutionRecords Bean
The ProcessExecutionRecords bean is a Vector of ProcessExecutionRecord objects, containing all of the
processes executed while handling the current event. The responses from these processes, available
as Vectors of DataPackets, contain all the data retrieved from the server by the Controller or View
classes.

Load the ProcessExecutionRecords bean with the tag:

<jsp:useBean id="ProcessExecutionRecords" scope="request" class="java.util.Vector" />

State Bean
The State bean is the state that is to be displayed by the JSP. It is possible to use the same JSP to
display different states, and the State bean gives you the current stateId or title.

Load the State bean with the tag:

<jsp:useBean id="State" scope="request"

class="com.bankframe.fe.statemachine.ext.apploaders.IState" />

View Bean
The View bean is the View class that is including the JSP.

Load the View bean with the tag:

Writing JSPs ■ Firing an Event from a JSP

<jsp:useBean id="View" scope="request"

class="com.bankframe.fe.statemachine.ext.connectors.servlet.JSPView" />

RequestContext Bean
The RequestContext bean contains other miscellaneous objects, including the state machine
configuration, the application loader, user session, user session manager, and logger. You will
probably not need this bean in most cases.

Load the RequestContext bean with the tag:

<jsp:useBean id="RequestContext" scope="request"

class="com.bankframe.fe.statemachine.base.RequestContext" />

Firing an Event from a JSP
The JSP does not need to supply the user with buttons or links to fire events. There are two distinct
mechanisms that you can use to fire these events, as described in the following sections.

CAUTION: Do not mix the two mechanisms for firing events. If you start using one of these two
approaches, keep using that approach. Any attempt to mix them causes events to fail.

Using the .jsm URL Extension
The statemachine servlet is configured to respond to all requests that end with .jsm. The servlet
expects the stateId and event name to be supplied in the URL in the form stateID.event name.jsm.

You can use this URL format on both simple links and forms, using the following code:

<a href="<jsp:getProperty name="State" property="id" />.event.jsm"> event

<form action="<jsp:getProperty name="State" property="id" />.event.jsm">

…

</form>

Replace ‘event; in the code samples with the correct event name.

Using the StateMachine URL
The statemachine servlet is also configured to respond to requests with the URL /StateMachine
(relative to the Web application root). You can retrieve the absolute URL from the View bean.

You must supply two parameters called statemachineEventName and statemachineStateName with
this URL. Use the following code as a guide:

<a href="<jsp:getProperty name="View" property="requestURL"

/>?statemachineStateName=<jsp:getProperty name="State" property="id"

/>&statemachineEventName=event">event

<form action="<jsp:getProperty name="View" property="requestURL" />">

Writing JSPs ■ Firing an Event from a JSP

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 84

<input type="hidden" name="statemachineStateName" value="<jsp:getProperty name="State"

property="id" />">

<input type="hidden" name="statemachineEventName" value="event">

…

</form>

Replace ‘event’ in the code samples with the correct event name.

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 85

This chapter describes the integration of processes within the Screen Orchestrator, which allows you
to hook financial processes to the front-end components that the Screen Orchestrator generates.

This chapter includes the following topics:

 About Integrating Processes on page 85

 Importing Processes from an Automated Methodology Model on page 85

 Manually Entering Process Information on page 86

 Editing Processes on page 86

 Deleting Processes from the Siebel Processes Panel on page 87

 Assigning Processes to the Statechart on page 87

About Integrating Processes
In terms of the Screen Orchestrator, a process is a unit of work performed within a deployed session
bean. There can therefore be many processes within one session. In this sense, the Screen
Orchestrator regards a session as an encapsulation of one or many financial processes. The manner in
which the methods are called is controlled by the value of the DATA PACKET NAME key being passed
in.

The integration of processes generally consists of two steps:

1 Importing processes from an external source, either manually or from an Automated Methodology
model.

2 Associating these processes with events, or transitions, or both.

Importing Processes from an Automated
Methodology Model
When you import processes into the Screen Orchestrator from an Automated Methodology model, the
session name, process name, process signature, and process return type are automatically converted
to the key/value pairings required for Request and Response DataPackets. Functional parameter
objects, nonfunctional parameter objects, banking objects, and primary key classes used in the
signature of a process are also automatically converted to the expected Request and Response
DataPacket format. If a parameter is not defined as a result of the import process, it might be that the
class type is not defined correctly in the Automated Methodology model.

9 Integrating Processes in the
Screen Orchestrator

Integrating Processes in the Screen Orchestrator ■ Manually Entering Process Information

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 86

To import processes from an Automated Methodology model

1 Right-click on the root node of the Siebel Processes Panel and select Import new sessions from
model.

2 Click the button to the right of the text field and choose an XML file representing an Automated
Methodology model.

If you want, you can use the sample XML file, RetailAccount.xml, shipped with the application
in the default XML folder.

The process tree is populated with process information.

Manually Entering Process Information
You can add the process information manually.

To import processes manually

1 Right-click on the root node of the Siebel Processes Panel and select Add new session manually.

2 Type a process name, and click Next.

The Set details screen is displayed.

3 Enter all relevant information for the Request DataPacket and the Response DataPacket.

You can add or remove fields using the + and - buttons.

You must supply a DataPacket name value with each process. This is used to name the node
on the tree.

4 Depending on whether or not the response is a vector type or single DataPacket type, select the
Vector check box.

5 There can be many processes in a session; if you want to add another process, click Next and
enter the details for that process.

6 When you have entered the information for all processes, click Finish.

The process information is added to the process tree.

Editing Processes
You can edit the details for a process at any time.

To edit the details of a process

1 Right-click on any process node.

2 Select Edit Process.

3 Edit the process details, and then click OK.

Integrating Processes in the Screen Orchestrator ■ Deleting Processes from the Siebel Processes

Panel

Deleting Processes from the Siebel
Processes Panel
You can delete individual processes from the Siebel Processes panel, or you can delete all of the
processes.

To delete an individual process

1 Right-click on the appropriate node in the Siebel Processes panel.

2 Select Delete Process.

3 Click Yes to confirm that you want to delete the process.

To delete all of the processes from the process list

1 Right-click on any node in the Siebel Processes panel.

2 Select Delete all Sessions.

3 Click Yes to confirm that you want to remove all the process definitions.

Assigning Processes to the Statechart
You can assign processes to a state or to a transition.

For more information on how processes are managed by the state machine framework after they are
assigned, see Chapter 5, Designing Events with Processes and Guard Conditions.

Assigning Processes to a State
You assign a process to a state by dragging it to the state on the statechart.

To assign a process to a state

1 Drag the process from the process tree to the header of a state on the chart.

2 The Enter State Details screen is displayed, with the details of the process.

3 If you want to add further processes to this state, drag and drop them on to the Processes field or
the Input Requirements field in the Enter State Details field.

4 Click OK to save the process details.

Adding Processes to a State Transition
You can also add processes to the transition details (as opposed to the transition event details). This
means that the process is invoked as an action on the transition.

Integrating Processes in the Screen Orchestrator ■ Assigning Processes to the Statechart

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 88

To add processes to a state transition

1 Make a new transition between two states.

The Enter Transition Event Details screen is displayed.

2 Type the event name in the Event field.

3 In the Controller list, select a controller other than SimpleController or AutoViewController, which
are used only for simple state navigation and do not invoke processes.

4 To add processes to this transition, drag and drop them from the process tree to the Processes
field in the Enter Transition’s Event Details screen.

The processes are added to the transition’s event details.

5 To add a process to the transition details (as opposed to the transition event details), click Next
and drag and drop the processes on to the Processes field.

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 89

This chapter describes the advanced drawing capabilities of the Screen Orchestrator. It includes the
following topics:

 Undoing and Redoing Drawing Instructions on page 89

 Copying, Cutting, and Pasting on page 90

 Minimizing and Maximizing Parent States on page 92

 Opening Subcharts on page 93

 Multiple User Support on page 97

Undoing and Redoing Drawing
Instructions
The Screen Orchestrator allows you to undo and redo drawing instructions. If you create, edit, or
delete a state or transition, or move a state, you can undo that instruction. You can undo the last five
drawing instructions.

You can also redo instructions that have been undone, so that the original instruction is done as
originally specified.

To undo or redo instructions, you select the Edit > Undo or Edit > Redo menu options respectively in
the Screen Orchestrator. The textual description of the Undo and Redo menu items change as you
create, and undo, and redo instructions, as shown in Figure 60.

10 Advanced Drawing

Figure 60. The Undo and Redo Menu Options

Advanced Drawing ■ Copying, Cutting, and Pasting

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 90

The textual description shows you the instruction that is undone or redone when you select the Undo
or Redo menu option; in Figure 60, the instruction is “move state state1.” The Redo menu option is
only available after you have selected Undo.

Copying, Cutting, and Pasting
In the Screen Orchestrator, you can cut and paste states to different parts of a statechart and cut and
paste states between different statecharts. When you cut and paste a state, all its child states and
transitions, apart from any transitions either entering or leaving the state, are also cut and pasted.

To cut and paste a state

1 Right-click on the state, and select Edit > Copy or Edit > Cut from the pop-up menu.

2 Right-click on the area to which you want to paste the state.

3 Select Paste to paste the state.

To cut and paste from one statechart to another

1 Open the statechart that you want to copy or cut from.

2 Right-click on the state, and select Edit > Copy or Edit Cut from the pop-up menu.

3 Open the statechart that you want to paste into.

4 Right-click on the area to which you want to paste the state.

5 Select Paste to paste the state.

Example of Cut and Paste Operation
This section illustrates the result of cutting and pasting a parent state and its child states to another
parent state in a statechart. Figure 61 shows the statechart for a sample application.

Figure 62 shows the statechart after the Search state in the OpenAccount parent state is copied and
pasted to the DrawDown parent state.

Figure 63 shows the statechart after the Search state in the OpenAccount parent state is cut and
pasted to the DrawDown parent state.

Note that the Retrieve[default] transition is not copied as this transition leaves the Search state and
hence is ignored when the copying is done. Also note that the initial state transition coming into the
Search state is not copied. These transitions are removed in the case of cutting and pasting from the
OpenAccount state.

Advanced Drawing ■ Copying, Cutting, and Pasting

Figure 61. The OpenAccount Search State

Figure 62. The Search State Copied and Pasted to the DrawDown State

Advanced Drawing ■ Minimizing and Maximizing Parent States

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 92

Minimizing and Maximizing Parent States
When a state becomes a parent state, two new icon buttons appear in the top right of the state’s
header, as illustrated in Figure 64.

Clicking the top button minimizes or maximizes the parent state–the button toggles between the
minimize and maximize functions. When you minimize the parent state, the bottom button is enabled
as shown in Figure 65.

Figure 63. The Search State Cut and Pasted to the DrawDown State

Figure 64. A Parent State with Maximize and Minimize Buttons Highlighted

Figure 65. A Parent State Minimized

Advanced Drawing ■ Opening Subcharts

Opening Subcharts
The Screen Orchestrator allows you to open subcharts from the main statechart. This feature is
extremely useful when the statechart becomes very large, as is the case for an application such as a
teller or call center application (which might have over 200 states and transitions). Building the
statechart becomes increasingly difficult as the application grows in size. Subcharts provide separate
windows to allow you to more easily edit particular parent states, helping to reduce the clutter from
the other states in the application.

Clicking the bottom button on the top right of the parent state opens the parent state in a new
window, that is, as a subchart (see Figure 66).

You can draw on a subchart as if it were a normal statechart. Figure 68 shows a new child state and
transition added to the parent state subchart.

When you close a subchart, and maximize the parent state from the main statechart window, the
states and transitions that you added to the subchart are added to the main statechart. This is shown
in Figure 67.

NOTE: When a parent state is minimized, you cannot add states unless you maximize it.

Figure 66. A Parent State Opened as a Subchart

Advanced Drawing ■ Opening Subcharts

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 94

Handling of Transitions Leaving and Entering Parent States
When parent states are minimized or opened in a separate subchart, the Screen Orchestrator shows
the transitions to child states entering or leaving the parent state in a special way.

Figure 67. The Parent State Maximized with States and a Transition from the Subchart

Figure 68. A Subchart with New States and a Transition Added

Advanced Drawing ■ Opening Subcharts

When parent states are minimized, a blue box is displayed in the upper-left corner of the parent state
and for each transition a line is drawn directly between the other state and the box. For example,
Figure 69 and Figure 70 show how transitions are drawn before and after a parent state is minimized.

Similarly, when a parent state is opened in a subchart, the subchart window indicates which
transitions leave or enter the parent state by means of a small blue box in the upper-left corner of the
subchart window, as shown in Figure 71.

Figure 69. Transitions to and from a Maximized Parent State

Figure 70. Transitions To and From a Minimized Parent State

Advanced Drawing ■ Opening Subcharts

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 96

Bringing Subcharts to the Front of the Desktop
The Screen Orchestrator allows you to open any number of parent states as subcharts in the desktop
area.

Figure 71. Transitions in a Parent State Opened in a Subchart

Figure 72. The Parent State

Advanced Drawing ■ Multiple User Support

If multiple subcharts are open, you can bring any opened window to the front of the desktop by
selecting the Window > Bring To Front from the menu bar. This provides a menu option for each
window opened in the Screen Orchestrator desktop area. To bring a window to the front, select that
window from the menu, see Figure 72.

Multiple User Support
You can use the Screen Orchestrator for defining very large applications involving you and multiple
other users.

You can save parent states opened in subchart windows to separate files linked to the main statechart
XML file. You can then edit and save changes to this parent state independently of other users.

To save a parent state to a separately linked file

1 Open the parent state as a subchart.

2 Navigate to the Window > Save Window To File menu option.

A menu of states that you can save is displayed.

3 Select the substate that you want to save to a separate file.

4 Click Yes.

The state’s window title is updated as shown in Figure 74, and a special icon in the header
indicates that its contents are contained in a linked file, as shown in Figure 73.

The format of the textual description in the Save Window To File menu option is:

Sub-State: State Name

for example:

Sub-State: ParentState.

The format of the filename of the ParentState is:

Application Name.State Name.part

for example:

NewApplication.ParentState.part.

If you rename the application, all its linked state files are also renamed to maintain the link to the
main application statechart file.

NOTE: When you edit the parent state in the subchart window, the application statechart is only
updated when you either save the changes or close the window.

To open a linked file, select File > Open Part on the menu bar.

Advanced Drawing ■ Multiple User Support

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 98

Users Working on the Same Files
The Screen Orchestrator is very much like any other tool in that it produces a number of flat files. Any
user can edit these files and overwrite other user’s changes. The only additional feature provided by
the Screen Orchestrator is that it does not allow statechart files to be saved if they are marked as
read-only. It is your responsibility to make sure that your files are under version control and that you
do not overwrite another user’s work.

Different users can work on the separate part files that are linked to the main application file, which
links all the part files together. A main application file affects all the part files and should only be
maintained and modified by a single person.

Figure 73. The Parent State Displaying the Special Icon

Figure 74. A Parent State Window Title Updated to Show the Filename of the Linked File

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 99

This chapter describes the Forward Engineering functionality of Screen Orchestrator that allows you to
propagate design model changes to existing statecharts.

This chapter includes the following topics:

 About Forward Engineering on page 99

 Process of Updating Statecharts on page 99

 Updating Statecharts Using the Forward-Engineering Menu Options on page 100

 Updating Statecharts Using Commands on page 101

About Forward Engineering
The Screen Orchestrator can compare a statechart XML file with a design model XML file and detect
any changes made in the design model to tier 1 methods, including addition or removal of parameters,
and renaming of parameters or the method itself.

Forward Engineering is facilitated because every tier 1 method and parameter has a Rational Rose
Universal Unique Identifier (UUID), which is output with the design model XML file. When you import
the design model XML file, the Screen Orchestrator builds a process list containing these UUIDs, and
updates the Siebel Processes panel accordingly.

Whenever a new version of the design model is produced, and you are aware that tier 1 methods used
by the statechart have been altered, you must update existing statecharts with the new process list
produced when you import the design model XML file.

Process of Updating Statecharts
Statecharts that were created using previous versions of the Screen Orchestrator do not contain
UUIDs, and a comparison between the design model XML and the statechart XML is not possible.
There are therefore two scenarios for updating statecharts, depending on whether they contain UUIDs.

You can update statecharts either by using options in the Forward Engineering menu in Screen
Orchestrator, or by using the equivalent commands. In the updated statechart, references to
renamed tier 1 methods, and references to parameters that have been removed, added, or renamed,
are all updated. However, you must manually update the statechart for any tier 1 methods that have
been removed.

Statecharts with No UUIDs
If the statecharts do not contain UUIDs, you must:

1 Produce a report of the differences between the statechart and the design model, and resolve any
inconsistencies.

2 Initialize the statechart with UUIDs.

11 Forward Engineering

Forward Engineering ■ Updating Statecharts Using the Forward-Engineering Menu Options

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 100

3 Update the statechart with the design model changes.

Statecharts with UUIDs
If the statechart does contain UUIDs you only need to update the statechart with the design model
changes.

Updating Statecharts Using the Forward-
Engineering Menu Options
Before you update statecharts, use the Model Exporter to produce the design model XML file, see the
Siebel Retail Finance Design Tools Guide for more information.

Updating a Statechart That Does Not Contain UUIDs
If you have statecharts that do not contain UUIDs you must first import the design model XML file and
produce a comparison report. The comparison is made purely on the basis of DataPacket key names
and process names.

After you manually correct any inconsistencies between the process list and the statechart, you must
initialize the statechart. This initialization copies all UUIDs from the processes list into the statechart,
so that future comparisons can be automated.

Finally, you must update the initialized statechart with the changes from the design model.

To update a statechart that does not contain UUIDs

1 Navigate to the Processes > Import new sessions from model > Import Process Definitions screen.

2 Enter the location of the design model XML file, and click OK.

The Siebel Processes panel is updated.

3 Open the statechart to be updated.

4 Navigate to the Forward Engineering > Log Differences > Generate Forward Engineering Report
screen.

5 Enter the location for the report file, and click OK.

6 Using the report, correct any inconsistencies between the statechart and the design model XML.

7 Click Forward Engineering > Initialize State Chart.

A new version of the statechart is created in the \resources\xml\initialize directory. The
currently open statechart is not updated to prevent loss or corruption of data caused by
mistakes that might have been made in the manual updating.

8 Close the current statechart and open the new initialized version of the statechart.

9 Click Forward Engineering > Update State Chart.

Forward Engineering ■ Updating Statecharts Using Commands

The Screen Orchestrator compares the processes in the statechart against the process list
based upon UUIDs, and the updated statechart is saved in the \resources\xml\merge
directory. If Screen Orchestrator finds that a tier 1 method currently in use has been removed
from the model, it generates ands displays a report.

10 Update the new statechart with any methods reported as removed.

Updating a Statechart That Does Contain UUIDs
If you have statecharts that already contain UUIDs, you only need to import the design model XML file
and update the statechart.

To update a statechart that does contain UUIDs

1 Navigate to the Processes > Import new sessions from model > Import Process Definitions screen.

2 Enter the location of the design model XML file, and click OK.

The Siebel Processes panel is updated.

3 Open the statechart to be updated.

4 Click Forward Engineering > Update State Chart.

The Screen Orchestrator compares the processes in the statechart against the process list
based upon UUIDs, and the updated statechart is saved in the \resources\xml\merge
directory. If Screen Orchestrator finds that a tier 1 method currently in use has been removed
from the model, it generates ands displays a report.

5 Update the new statechart with any methods reported as removed.

Updating Statecharts Using Commands
You can use the Forward Engineering functionality in batch mode from the command line.

In each of the commands, you specify the locations of the design model XML file (processes.xml) and
the statechart XML file. For the statechart XML file, you can specify either a statechart file or a
directory. In the case of a directory, Screen Orchestrator processes all of the valid statecharts in the
directory and its subdirectories.

Updating a Statechart That Does Not Contain UUIDs
If the statecharts do not contain UUIDs, you must first initialize them with UUIDs.

To update a statechart that does not contain UUIDs

1 Generate a comparison report by entering the command:

java com.eontec.statechart.forwardeng.ForwardEngApp –report statechart_location

processes.xml_location

Forward Engineering ■ Updating Statecharts Using Commands

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 102

A comparison report is generated in the \resources\xml\reports directory.

2 Using the report, correct any inconsistencies between the statecharts and the design model XML.

3 Initialize the statecharts with UUIDs, by entering the command:

java com.eontec.statechart.forwardeng.ForwardEngApp –setup statechart_location

processes.xml_location

The initialized statecharts are created in the \resources\xml\initialize directory.

4 Updated the initialized statecharts by entering the command:

java com.eontec.statechart.forwardeng.ForwardEngApp statechart_location

processes.xml_location

The updated statecharts are saved in the \resources\xml\merge directory.

Updating a Statechart That Does Contain UUIDs
If you have statecharts that already contain UUIDs, you only need to update the state chart. Enter
the command:

java com.eontec.statechart.forwardeng.ForwardEngApp statechart_location

processes.xml_location

The updated statecharts are saved in the \resources\xml\merge directory.

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 103

This chapter describes briefly what is required for applications deployed using the Swing application
programming interface (API) to use the state machine. It includes the following topics:

 About Writing a Swing Application on page 103

 Writing the Application Main Class on page 104

 Writing the ViewContainer Class on page 105

 Writing the View Classes on page 105

 Managing ViewProperties on page 106

 Adding a View Class to the Screen Orchestrator on page 106

 The Swing Application Requirements on page 114

 Example of a Swing Application on page 115

About Writing a Swing Application
The javax.swing package, which is part of the Java Foundation Classes, provides a set of graphical
user interface (GUI) components. These components are commonly known as Swing components. In
contrast with the Abstract Windows Toolkit (AWT), which Swing has largely supplanted, the Swing
components are written entirely in Java.

The state machine framework supports applications developed using the Swing API as well as those
developed as Web applications using the Servlet API.

Designing Swing applications is virtually identical to designing Web applications. You should give the
same concern to the behavior and flow control through the application in the statechart, and you can
use the same Controller and Process integration classes.

Deploying a Swing application using the state machine requires you to use the classes and interfaces
in the com.bankframe.fe.statemachine.ext.connectors.swing package.

The structure of your application is:

 An application main class acting as a Window or Applet for the application. The main class
contains:

 A ViewContainer, which is a container within which all the application views are displayed

 A StateMachineEventDispatcher, which listens for StateMachineEvents fired from your views

 The View classes, which all implement IView and StateMachineEventSource. Whenever the user
does anything that triggers an event on the statechart, the view must fire a StateMachineEvent.

Processing Sequence
The sequence for processing an event is:

12 Writing A Swing Application

Writing A Swing Application ■ Writing the Application Main Class

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 104

1 The view class fires a StateMachineEvent.

2 The StateMachineEventDispatcher receives the event and forwards it to the RequestManager in
the state machine.

3 The RequestManager returns the new view class.

4 The StateMachineEventDispatcher registers itself as a StateMachineEventListener on the view, so
that it receives the next StateMachineEvent that is fired.

5 The StateMachineEventDispatcher passes the view to the ViewContainer.

6 The ViewContainer displays the new view.

The important classes and interfaces are described in the following sections.

StateMachineEvent Class
The StateMachineEvent class takes on the role of the Request. All user events that are to be processed
by the state machine must be fired from the view as StateMachineEvents.

StateMachineEventSource Interface
The StateMachineEventSource interface must be implemented by all View classes in addition to the
IView interface. The interface contains methods for adding and removing StateMachineEventListeners
to the view.

StateMachineEventDispatcher Class
The StateMachineEventDispatcher manages the StateMachineEvents fired by the views, passing them
into the state machine. StateMachineEventDispatcher also gives the resultant view to the
ViewContainer for display.

ViewContainer Interface
The ViewContainer interface marks the JContainer that holds and displays the views.

Writing the Application Main Class
The application main class has the following responsibilities:

 Creating and Displaying a ViewContainer. The application main class must create and display
some class that implements ViewContainer. This is where all the application views are displayed.

 Creating a StateMachineEventDispatcher. The application main class must create a
StateMachineEventDispatcher. The dispatcher requires a ViewContainer and the state machine
configuration properties. The main class can also set a logger, user session manager, and
application manager if necessary. (In general, these can be loaded automatically based on the
values in the configuration properties.)

 Firing the First Event. To start the application, the application main class must fire the first
StateMachineEvent into the StateMachineEventDispatcher. Create a StateMachineEvent with this

Writing A Swing Application ■ Writing the ViewContainer Class

as the target and a null event name. The state machine locates the start state for the application
and gives the appropriate view to the ViewContainer.

If you complete these steps correctly, it does not matter whether the main class is an applet, frame,
or neither.

Writing the ViewContainer Class
The ViewContainer class has one very simple responsibility; it must display the views that are given to
it through the displayView(IView) method.

The ViewContainer is normally a JPanel or other JContainer. When it receives a view it must check that
the view is a JComponent, remove or hide the previous view, and display the new one.

The view might not be a JComponent, and could be any class. When writing the ViewContainer, be
aware of the types of view that are written for the application, and make sure you have a way of
displaying all of them. For example: another type of view that might be supplied is a JDialog, in which
case the ViewContainer should call the show() method to display the dialog.

NOTE: You should use only modal dialogs.

Writing the View Classes
As in the servlet environment, the view classes have two very simple and closely-related
responsibilities. They must display information suitable to the current state, and they must present
controls (for example, buttons) to the user to allow them to fire events.

The view classes must implement two interfaces, as described in the following sections.

IView Interface
The IView interface includes three methods that you must implement.

 The first method is a variant of the build method inherited from the
com.bankframe.fe.statemachine.base.apps.IView interface. You can define this method with the
following block of code:

public void build(RequestContext requestContext, IState currentState) {

com.bankframe.fe.statemachine.ext.apps.View.

build(requestContext, currentState, this);

}

 The second method is a variant of the build method, defined in the
com.bankframe.fe.statemachine.ext.apps.IView interface. This method must be implemented to
populate the view with the values displayed to the user.

 The third method is the populateFromProperties method, mentioned in Managing ViewProperties
on page 106.

Writing A Swing Application ■ Managing ViewProperties

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 106

StateMachineEventSource Interface
You can implement the two methods in the StateMachineEventSource interface using the standard
code:

// listenerList is an instance of javax.swing.event.EventListenerList

public void addStateMachineEventListener(StateMachineEventListener listener) {

listenerList.add(StateMachineEventListener.class, listener);

}

public void removeStateMachineEventListener(StateMachineEventListener listener) {

listenerList.remove(StateMachineEventListener.class, listener);

}

When you need to fire a StateMachineEvent, use the following code as a guide:

StateMachineEvent event = new StateMachineEvent(this, eventName);

// set the parameters as required in the event.

StateMachineEventDispatcher.fireStateMachineEvent(event, listenerList);

Managing ViewProperties
ViewProperties are the means through which you can include information in the statechart to be used
by the View class. For example, viewProperties contains the jspName for the JSPView and the
stylesheetURI for the XSLTAutoView.

You can use viewProperties by implementing the populateFromProperties method in your view to read
values from the viewProperties and copy them to attributes that are later used in the build method.

Adding a View Class to the Screen
Orchestrator
When you create a state in the Screen Orchestrator, the Enter State Details screen is displayed as
shown in Figure 75.

Using this screen you specify the type of view that this state represents. The State Type field contains
the fully-qualified class name for the view. By default the Screen Orchestrator provides the following
types:

 None

 AutoView (JSP)

 JSPView

 XSLTAutoView

Writing A Swing Application ■ Adding a View Class to the Screen Orchestrator

 AutoView (Swing)

 SwingView

 XSLTSwingView

To add new Swing view classes to your statechart, you enter the fully-qualified class name into the
State Type field in the Enter State Details screen, and click the Register button. This is also the case
for JSP and XSLT views.

A view type class must implement the com.bankframe.fe.statemachine.ext.apps.IView interface.
Additionally, you can define a BeanInfo class for your new view type. The BeanInfo class allows you
to customize the view and is written according to the JavaBeans standard. When you select the new
view type from the State Type field, the BeanInfo class for the view type is loaded by the Screen
Orchestrator and its attributes displayed in the View Details area of the Enter State Details screen.

Examples illustrating how you can create an IView class and an associated BeanInfo class are given in
the following sections.

The JSPView Class
The following code illustrates how the JSPView class was written.

Figure 75. The Enter State Details Screen

Writing A Swing Application ■ Adding a View Class to the Screen Orchestrator

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 108

public class JSPView extends View {

 protected String jspName;

 protected String requestURL;

 /**

 * The JSP can expect an attribute in the request with the key

 * STATE_ATTRIBUTE_NAME that contains the IState implementor for the

 * current state.

 *

 * The value of STATE_ATTRIBUTE_NAME is "State"

 */

 public static String STATE_ATTRIBUTE_NAME = "State";

 /**

 * The JSP can expect an attribute in the request with the key

 * VIEW_ATTRIBUTE_NAME that contains the instance of JSPView that was

 * used.

 * You might use this to build subclasses of JSPView that perform extra

 * processing of the data in the ResponseData, exposing the results of that

 * processing through methods on the view.

 *

 * The value of VIEW_ATTRIBUTE_NAME is "View"

 */

 public static String VIEW_ATTRIBUTE_NAME = "View";

 /**

 * The JSP can expect an attribute in the request with the key

 * INPUTS_ATTRIBUTE_NAME that contains the instance of Inputs that was

 * used.

 *

 * You can use this in the JSP to gain access to the data from the

 * incoming request, the user session, and the response data populated

Writing A Swing Application ■ Adding a View Class to the Screen Orchestrator

 * by the controller.

 *

 * The value of INPUTS_ATTRIBUTE_NAME is "Inputs"

 */

 public static String INPUTS_ATTRIBUTE_NAME = "Inputs";

 /**

 * The JSP can expect an attribute in the request with the key

 * REQUEST_CONTEXT_ATTRIBUTE_NAME that contains the current RequestContext.

 *

 * The value of REQUEST_CONTEXT_ATTRIBUTE_NAME is "RequestContext"

 */

 public static String REQUEST_CONTEXT_ATTRIBUTE_NAME = "RequestContext";

 public static String RESPONSE_DATA_ATTRIBUTE_NAME = "ResponseData";

 /**

 * Constructor for JSPView.

 */

 public JSPView() {

 super();

 }

 /**

* @see com.bankframe.fe.statemachine.ext.apps.View#build(IState, Inputs,

RequestContext)

 */

 public void build(

 IState state,

 Inputs inputs,

 RequestContext requestContext) throws StateMachineUserException {

 HttpServletRequest request = ((Request)inputs.getRequest()).getRequest();

 Response response = (Response)requestContext.getResponse();

 requestURL = request.getRequestURL().toString();

Writing A Swing Application ■ Adding a View Class to the Screen Orchestrator

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 110

 request.setAttribute(STATE_ATTRIBUTE_NAME, state);

 request.setAttribute(VIEW_ATTRIBUTE_NAME, this);

 request.setAttribute(INPUTS_ATTRIBUTE_NAME, inputs);

 request.setAttribute(REQUEST_CONTEXT_ATTRIBUTE_NAME, requestContext);

 request.setAttribute(RESPONSE_DATA_ATTRIBUTE_NAME,

response.getResponseData());

 RequestDispatcher dispatcher = request.getRequestDispatcher(jspName);

 try {

 dispatcher.include(request, response.getResponse());

 } catch (ServletException ex) {

 throw new StateMachineUserException(ex);

 } catch (IOException ex) {

 throw new StateMachineUserException(ex);

 }

 }

 /**

 * Returns the jspName.

 * @return String

 */

 public String getJspName() {

 return jspName;

 }

 /**

 * Sets the jspName.

 * @param jspName The jspName to set

 */

 public void setJspName(String jspName) {

 this.jspName = jspName;

 }

 /**

Writing A Swing Application ■ Adding a View Class to the Screen Orchestrator

 * Returns the jspName.

 * @return String

 * @deprecated

 */

 public String getJSPName() {

 return jspName;

 }

 /**

 * Sets the jspName.

 * @param jspName The jspName to set

 * @deprecated

 */

 public void setJSPName(String jspName) {

 this.jspName = jspName;

 }

 /**

 * Returns the requestURL.

 * @return String

 */

 public String getRequestURL() {

 return requestURL;

 }

 /**

 * @see

com.bankframe.fe.statemachine.ext.apps.IView#populateFromProperties(Properties)

 */

 public void populateFromProperties(Properties viewProperties) {

 if (viewProperties != null) {

 if (viewProperties.getProperty("jspName") != null) {

 setJspName(viewProperties.getProperty("jspName"));

Writing A Swing Application ■ Adding a View Class to the Screen Orchestrator

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 112

 }

 }

 }

}

The JSPViewBeanInfo Class
The following code illustrates how the JSPView class sample was written.

public class JSPViewBeanInfo extends SimpleBeanInfo {

 protected PropertyDescriptor[] propertyDescriptors;

 protected BeanDescriptor beanDescriptor;

 /**

 * Constructor for JSPViewBeanInfo.

 */

 public JSPViewBeanInfo() throws IntrospectionException {

 super();

PropertyDescriptor jspNameDescriptor = new PropertyDescriptor("jspName",

JSPView.class, "getJspName", "setJspName");

PropertyDescriptor requestURLDescriptor = new

PropertyDescriptor("requestURL", JSPView.class, "getRequestURL", null);

propertyDescriptors = new PropertyDescriptor[]{jspNameDescriptor,

requestURLDescriptor};

beanDescriptor = new BeanDescriptor(JSPView.class,

GenericCustomizer.class);

 }

 /**

 * Returns the propertyDescriptors.

 * @return PropertyDescriptor[]

 */

 public PropertyDescriptor[] getPropertyDescriptors() {

 return propertyDescriptors;

 }

Writing A Swing Application ■ Adding a View Class to the Screen Orchestrator

 /**

 * Returns the beanDescriptor.

 * @return BeanDescriptor

 */

 public BeanDescriptor getBeanDescriptor() {

 return beanDescriptor;

 }

}

The JSPViewBeanInfo class allows you to enter the JSP filename for that particular state. When you
select JSPView in the State Type field in the Enter State Details screen, the State Details area is
customized as a result of loading the JSPViewBeanInfo class. This is illustrated in Figure 76 where
welcome.jsp is entered in the jspname field.

Writing A Swing Application ■ The Swing Application Requirements

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 114

The Swing Application Requirements
The state machine comes complete with two different connector packages, designed to allow
deployment of applications within Swing or servlet environments.

This section describes how to write a Swing application based on the state machine.

Before you set up your application you should have already created your statechart for the application
and identified your views and controllers. If your application requires any special controller classes,
read Chapter 6, Creating Controller Classes. On startup there are a few steps your application needs
to take to use the state machine, as described in the following sections.

The ViewController Interface
Your application must designate an object to contain and display the views as they are produced. This
object is probably an instance of JPanel or another JContainer, and must implement the ViewContainer

Figure 76. The Enter State Details Screen Customized with JSPViewBeanInfo

Writing A Swing Application ■ Example of a Swing Application

interface.

The com.bankframe.fe.statemachine.ext.connectors.swing.ViewContainer interface has one method
that must be implemented and that is the displayView(IView view) method. When the state machine
calls this method, the container class that implements the method must display the specified view to
the user.

For more information about using this interface, see the MCA Services API documentation.

Setting the Application Properties
The Swing application then needs to set up the properties required by the
UserSessionManagerFactory, ApplicationManagerFactory, ApplicationManager, and RequestContext.
The default values for these classes when using running a Swing application are:

com.bankframe.fe.statemachine.base.UserSessionManager=

com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionManager

com.bankframe.fe.statemachine.base.ApplicationManager=

com.bankframe.fe.statemachine.ext.apploaders.sax.ApplicationManager

The State Machine Events
After the application properties are set, your Swing application must create an instance of the
StateMachineEvent Dispatcher class passing in the ViewContainer and Properties as parameters to the
constructor of the class. Finally, the applications must create a StateMachineEvent and pass it into the
StateMachineEventDispatcher. The StateMachineEventDispatcher and StateMachine Event classes are
in the com.bankframe.fe.statemachine.ext.connectors.swing package. This initial event can have the
ViewContainer as its target and a null event name. This causes the state machine to load the
application, locate the start state, build the appropriate view, and pass it back into the ViewContainer
through the displayView method.

To complete the circle and make sure all subsequent events are properly handled, there are two
remaining details. The views for the application must be sources of StateMachineEvents, implementing
the StateMachineEventSource interface. The view must be able to recognize those user actions that
are events described on the statechart and fire StateMachineEvents appropriately. The ViewContainer
must make sure that all views it displays have the StateMachineEventDispatcher registered as a
StateMachineEventListener with the view. Hence, when the view fires a StateMachineEvent, the
dispatcher receives it, passes it to the RequestManager, and passes the result view back to the
ViewContainer.

Example of a Swing Application
The Screen Orchestrator provides a preview function for loading the currently opened statechart and
stepping through the statechart. This functionality is provides by using a Swing AutoView class. This
simple example of a Swing application uses the state machine. The PreviewFrame class is used in this
section to provide a simple example of how a Swing application is created using the state machine.

The following is the code for a PreviewFrame class used by the Screen Orchestrator:

/**

Writing A Swing Application ■ Example of a Swing Application

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 116

 * The PreviewFrame class.

 * This class provides a swing frame for running a preview of a drawn statechart.

 * @author Brian O'Byrne

 */

public class PreviewFrame extends JFrame implements ViewContainer {

 private StateMachineEventDispatcher eventDispatcher;

 private JScrollPane scrollPane;

 private JPanel viewportComponent;

 /**

 * The PreviewFrame constructor.

* @param appDoc Document is the XML document representation of the statechart

to be previewed.

 */

 public PreviewFrame(Document appDoc) {

 this(appDoc, "State Chart Editor Preview");

 }

 /**

 * The PreviewFrame constructor.

 * @param app Application is the statechart application to be previewed.

 */

 public PreviewFrame(Application app) {

 this(app, "State Chart Editor Preview");

 }

 /**

 * The PreviewFrame constructor.

 * @param appDoc Document the statechart xml.

 * @param title String

 */

 public PreviewFrame(Document appDoc, String title) {

Writing A Swing Application ■ Example of a Swing Application

 super(title);

 initComponents();

 Properties applicationProperties = new Properties(System.getProperties());

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.ApplicationManag

er", "com.eontec.statechart.preview.ApplicationManager");

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.UserSessionManag

er", "com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionManager");

 applicationProperties.setProperty(RequestManager.VIEW_OVERRIDE_KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView");

 try {

 eventDispatcher = new StateMachineEventDispatcher(this,

applicationProperties);

 ApplicationManager appManager =

(ApplicationManager)eventDispatcher.getApplicationManager();

 appManager.loadApplication(appDoc);

 appManager.getDefaultApplication();

eventDispatcher.handleStatemachineEvent(new StateMachineEvent(this,

null));

 } catch (StateMachineException ex) {

 ex.printStackTrace();

 }

 }

 /**

 * The PreviewFrame constructor.

 * @param app Application the statechart.

 * @param title String

 */

 public PreviewFrame(Application app, String title) {

 super(title);

 initComponents();

 Properties applicationProperties = new Properties(System.getProperties());

Writing A Swing Application ■ Example of a Swing Application

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 118

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.ApplicationManag

er", "com.eontec.statechart.preview.ApplicationManager");

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.UserSessionManag

er", "com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionManager");

 applicationProperties.setProperty(RequestManager.VIEW_OVERRIDE_KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView");

 try {

 eventDispatcher = new StateMachineEventDispatcher(this,

applicationProperties);

 ApplicationManager appManager =

(ApplicationManager)eventDispatcher.getApplicationManager();

 appManager.loadApplication(app);

 appManager.getDefaultApplication();

 eventDispatcher.handleStatemachineEvent(new StateMachineEvent(this,

null));

 } catch (StateMachineException ex) {

 ex.printStackTrace();

 }

 }

 /**

 * This method initializes the frame.

 */

 private void initComponents() {

 addWindowListener(new java.awt.event.WindowAdapter() {

 public void windowClosing(java.awt.event.WindowEvent evt) {

 exitForm(evt);

 }

 });

 this.getContentPane().setLayout(new BorderLayout());

 scrollPane = new JScrollPane();

 JButton closeButton = new JButton();

 closeButton.setActionCommand("CLOSE_BUTTON_CMD");

Writing A Swing Application ■ Example of a Swing Application

 closeButton.setText("Close Preview");

 closeButton.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent actionEvent) {

 exitForm(actionEvent);

 }

 });

 viewportComponent = new JPanel();

 viewportComponent.setLayout(new BorderLayout());

 JPanel viewportComponentFiller = new JPanel();

 viewportComponent.add(viewportComponentFiller, BorderLayout.CENTER, 0);

 viewportComponent.add(new JPanel(), BorderLayout.NORTH, 1);

 scrollPane.setViewportView(viewportComponent);

 scrollPane.setBackground(null);

 this.getContentPane().add(scrollPane, BorderLayout.CENTER);

 this.getContentPane().add(closeButton, BorderLayout.SOUTH);

 this.setIconImage(ImageLoader.getImageIcon("STATE_MACHINE_ICON").getImage());

 this.setSize(new Dimension(550,600));

 }

 /**

 * This method hides the preview frame.

 */

 private void exitForm(java.awt.event.WindowEvent evt) {

 this.hide();

 }

 /**

 * This method hides the preview frame.

 */

 private void exitForm(ActionEvent evt) {

 this.hide();

 }

Writing A Swing Application ■ Example of a Swing Application

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 120

 /**

 * This method will display the specified view in the preview frame.

 * @see

com.bankframe.fe.statemachine.ext.connectors.swing.ViewContainer#displayView(IView)

 */

 public void displayView(IView view) {

 ((StateMachineEventSource)view).addStateMachineEventListener(eventDispatcher);

 viewportComponent.remove(1);

 viewportComponent.add((Component)view, BorderLayout.NORTH, 1);

 validate();

 repaint();

 }

 /**

 * This method adds a StateMachineProcessingListener to the statemachine event

dispatcher.

 * @param listener StateMachineProcessingListener

 */

public void addStateMachineProcessingListener(StateMachineProcessingListener

listener) {

 this.eventDispatcher.addStateMachineProcessingListener(listener);

 }

 /**

 * This method removes a StateMachineProcessingListener to the statemachine

event dispatcher.

 * @param listener StateMachineProcessingListener

 */

public void removeStateMachineProcessingListener(StateMachineProcessingListener

listener) {

 this.eventDispatcher.removeStateMachineProcessingListener(listener);

 }

Writing A Swing Application ■ Example of a Swing Application

 /**

 * This method adds a collection of StateMachineProcessingListeners to the

statemachine event dispatcher.

 * @param listeners Collection

 */

 public void addStateMachineProcessingListener(Collection listeners) {

 this.eventDispatcher.addStateMachineProcessingListener(listeners);

 }

 /**

 * This method removes a collection of StateMachineProcessingListener to the

statemachine event dispatcher.

 * @param listeners Collection

 */

 public void removeStateMachineProcessingListener(Collection listeners) {

 this.eventDispatcher.removeStateMachineProcessingListener(listeners);

 }

}

The important things to look at in the code example are the constructors for the class. They create the
application properties for the state machine and set them specifically for this application. The preview
frame provides its own ApplicationManager; this class is used to load the specified statechart
application or XML document in this instance.

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.ApplicationManag

er", "com.eontec.statechart.preview.ApplicationManager");

applicationProperties.setProperty("com.bankframe.fe.statemachine.base.UserSessionManag

er", "com.bankframe.fe.statemachine.ext.sessionmanagers.inmemory.UserSessionManager");

 applicationProperties.setProperty(RequestManager.VIEW_OVERRIDE_KEY,

"com.bankframe.fe.statemachine.ext.connectors.swing.AutoView");

The code also sets a view override, which informs the state machine that all views specified in the
statechart must be ignored and only the Swing AutoView class must be used as views for the preview
frame. This override is not required in your Swing application, as you want your application to load the
views that you specify.

Next, the constructor creates a StateMachineEventDispatcher using the previously highlighted
properties.

eventDispatcher = new StateMachineEventDispatcher(this, applicationProperties);

Writing A Swing Application ■ Example of a Swing Application

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 122

The PreviewFrame class implements the ViewController interface and can therefore be used in the
constructor of the StateMachineEventDispatcher class.

The displayView method, which is required to be implemented by the PreviewFrame, has the
responsibility of displaying the next view and registering the event dispatcher with the view.

public void displayView(IView view) {

((StateMachineEventSource)view).addStateMachineEventListener(eventDispatcher);

viewportComponent.remove(1);

viewportComponent.add((Component)view, BorderLayout.NORTH, 1);

validate();

repaint();

}

The AutoView instances, which are IView interfaces, fire events to the state machine using the
registered event dispatcher.

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 123

You can use the Screen Orchestrator to define validation rules for various input requirements so that
the state machine can execute these rules before any event is handled. This capability is a very useful
feature for Web-based applications where no validation can be done on the actual JSP (for example no
dynamic scripting is allowed on the page), and the form submitted to the state machine must be
validated before any processing is done.

This chapter includes the following topics:

 Defining the Validation Rules on page123

 How the State Machine Handles the Validation Check on page 124

Defining the Validation Rules
You specify validation rules for input requirements in the Transition Wizard, as shown in Figure 77.

13 Validating Input Requirements

Figure 77. Validation Rules in the Transition Wizard

Validating Input Requirements ■ How the State Machine Handles the Validation Check

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 124

To specify a validation rule for an input requirement

1 Select the Validate event’s input requirements? check box.

2 Double-click in the validationRule cell for the input requirement.

The Specify validation rule for input requirement screen is displayed.

3 Complete the Validation Rule details. The fields are described in the following table.

Field Description

Mandatory Select this check box if the input field is a required field.

Exact Length Select this check box f the input field must be of a required
length.

Maximum Length Type the maximum length for the input.

Rule Select the validation rule to be applied.

Key/Pattern Select if the field must contain a specific value or be of a
particular pattern.

Name of value Displays the parameter name.

4 Click OK.

How the State Machine Handles the
Validation Check
After you have used the Screen Orchestrator to define the validation rules, you can use the state
machine to run the actual application. When an event is submitted to the state machine, the first task
of the state machine is to determine whether validation of the event’s inputs is required before the
event is processed and its transition followed.

If validation is required, the state machine reads the rules for each input requirement and then
validates each input based on the specified rule. Each input is tested in turn and a record is built up of
all the inputs that fail validation. If no input fails validation, the state machine proceeds as normal.
However, if any of the inputs fail validation, the record of failed inputs and their validation exceptions
are added to the request as a collection of FAILED_VALIDATION_ERRORS. The state machine then
returns the user to the last displayed state. The view for that state can then display the failed
validation rules to the user. Figure 78 and Figure 79 show the Screen Orchestrator’s preview frame
running a test application and failing input validations.

Validating Input Requirements ■ How the State Machine Handles the Validation Check

Figure 78. The Screen Orchestrator Preview Frame for Testing an Application

Validating Input Requirements ■ How the State Machine Handles the Validation Check

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 126

Figure 79. The E1 Event Fired and the Validation Failure Results Displayed

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 127

This chapter describes how to generate the Java Server Pages (JSP) and Swing panels associated with
autoviews in the Screen Orchestrator. It contains the following topics:

 About Generating JSPs and Swing Panels on page 127

 Testing Whether JSPs Can Be Compiled on page 127

 Generating JSP and Swing Panel Files on page 127

About Generating JSPs and Swing Panels
The state machine has a concept of autoviews. If no view exists for a particular state, the state
machine can supply an autoview for that state at run time.

Using the Screen Orchestrator, you can generate the actual JSPs or Swing panels that the autoview
would create. The files are very useful for providing initial starting points for view states for
developing the application. You can draw your statechart and generate a starting set of JSPs or Swing
panels from which you can test and develop the initial application. You can then edit the JSPs or Swing
panels as required.

When you generate the JSPs and Swing panels, XSLT style sheets are used, and you can modify these
style sheets to change the look and feel of the files that are generated. The JSP style sheet is the
orchestrator-install-dir\resources\jspTemplate.xsl file, while the Swing panel style sheet is the
orchestrator-install-dir\resources\panelTemplate.xsl file.

When you generate JSPs, the filename for each state is the jspName specified in the JSPView state. If
the state is an autoview, the JSP filename is the state name postfixed with a .jsp extension.

When you generate Swing panels, the filename is based on the fully-qualified classname specified for
each SwingView’s state panelName. If the state is an autoview, the panel name is based on the state
name, and the package name defaults to temp.

Testing Whether JSPs Can Be Compiled
To test whether your JSPs can be compiled, click the JSP button on the Screen Orchestrator toolbar.

This does not generate any JSPs, it only tests whether they can be compiled.

Generating JSP and Swing Panel Files
You can generate all the JSPs and Panels for the currently opened statechart.

To generate JSP and Swing panels

1 Click the generator button (the cog wheel icon) on the Screen Orchestrator toolbar.

14 Generating JSPs and Swing Panels

Generating JSPs and Swing Panels ■ Generating JSP and Swing Panel Files

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 128

The Confirm file generation? screen is displayed.

2 Complete the file generation details as described in the following table.

Field Description

Generate files to following
directory:

If required, click Change and specify a directory if you
want to generate the files to a directory other that the
default directory.

Use chart’s specified HTML
directory

Select this check box to generate the files to the chart’s
specified HTML directory.

JSPs Select the check box to generate the JSPs.

Panels Select the check box to generate the Swing panels.

3 Click OK.

4 If a file that that you specified already exists, confirm whether you want to overwrite that
particular file and all files in the folder.

 Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 129

This chapter describes how you can use timing points at various points in the state machine for
performance testing purposes. It contains the following topics:

 About Timing Points on page 129

 Timing Points in the State Machine on page 129

About Timing Points
A timing point is code that is used to time events or actions within Siebel Retail Finance code. In the
state machine, timing points are used to measure the time taken to handle requests and perform
actions associated with transitions. The data recorded by timing points is logged to file or disk.

For more information about timing points, see the MCA Services Developer Guide and the MCA
Services API documentation.

Timing Points in the State Machine
To record the overall time for a state machine request, use the following timing points:

 In the com.bankframe.fe.statemachine.ext.connectors.servlet.EntryServlet class for
JSP/HTML applications, the public void delegateToRequestManager(HttpServletRequest
req, HttpServletResponse res) throws ServletException, IOException; method records
the overall time to handle an HTML request to the state machine

 In the
com.bankframe.fe.statemachine.ext.connectors.swing.StateMachineEventDispatcher class
for a Swing application, the public void handleStatemachineEvent(StateMachineEvent evt)
method records the overall time to handle a Swing request to the state machine

There are also additional timing points in the com.bankframe.fe.statemachine.ext.apps.Controller
class:

 public com.bankframe.fe.statemachine.base.apploaders.IStateTransition
getResult(RequestContext requestContext, om.bankframe.fe.statemachine.base.apploaders.IEvent
event) throws StateMachineUserException;

 public void doSideEffects(RequestContext requestContext,
com.bankframe.fe.statemachine.base.apploaders.IStateTransition
transition) throws StateMachineUserException;

These timing points determine how long it takes for the state machine to get the correct transition to
follow and to do the actions for that chosen transition.

If any of the methods are overwritten, you should also put the timing code into the overwritten
methods.

Timing points are added in the code as follows:

15 MCA Services Timing Points

MCA Services Timing Points ■ Timing Points in the State Machine

Siebel Retail Finance Screen Orchestrator Guide Version 8.1.1 130

Object[] objects = new Object[]{TimingPointConstants.TIMING_POINT_SUBSYSTEM,

"NAMEOFSUBSYSTEM", TimingPointConstants.TIMING_POINT_TYPE,

"",TimingPointConstants.TIMING_POINT_MAJOR_TYPE,

TimingPointUtil.MAJORTYPE_SERVLET_STRING, TimingPointConstants.TIMING_POINT_REQUEST,

"REQUESTVALUE"};

TimingPoint tp=TimingPointFactory.getTimingPoint(new TimingPointProperties(objects));

The following code is used to exit from the timing point:

tp.exit(this);

The descriptions used in the timing point log for the state machine classes are:

 EntryServlet. request round trip time.

 StateMachineEventDispatcher. request round trip time.

 Controller getResult method. round trip time.

 Controller doSideEffects method. round trip time.

Oracle’s Siebel Retail Finance Multi-Channel Architecture Services application has timing points for
measuring executing MCA requests. To determine the correct state machine round trip time, subtract
this time from the state machine times, if requests are being sent to the EJB server by the state
machine controller classes.

	screen_orchestrator
	About the Screen Orchestrator
	About Statecharts
	About the State Machine
	Statechart Notation Explained
	States
	Parent and Child States
	Events
	State Transitions
	Self-Transition
	Pseudo-States
	Chart Notes

	A Simple Statechart Example
	Customizing the Screen Orchestrator
	The Main Screen Orchestrator Window
	The Screen Orchestrator Toolbar

	The Statechart Drawing Components
	Drawing States or Pseudo-States
	Drawing State Transitions
	Drawing Self-Transitions
	State Header

	Drawing Chart Notes

	More Drawing State Details
	Adding Child States
	Moving States
	Editing State Details
	Resizing States
	Deleting States

	More Drawing Transition Details
	About Transition Arrows
	Drawing Transitions to the Master State
	Drawing Transitions to and from Parent and Child States
	Drawing Transitions to and from Unrelated Child States
	Editing Transition Details
	Deleting Transitions

	More Drawing Statechart Details
	The Statechart Name
	Renaming the Statechart
	Saving a Statechart
	Renaming a Saved Statechart
	Opening a Statechart
	Resizing the Statechart Window

	Miscellaneous Drawing Features
	Using the Grid and Snap To Features
	Using the Navigation Panel
	Printing Statecharts
	Exporting a Statechart as a GIF File

	The Preview Capability
	Web Deployment Capability
	Supported Web Servers
	Configuring WAR File Properties for Statecharts
	Deploying the WAR File
	Running the Application

	Handling an Event
	Associating Processes with Events and Transitions
	Setting the Input Requirements
	Deleting Input Requirements
	How the Request DataPackets are Built
	Defining Guard Conditions
	NullGuardCondition
	FixedValueGuardCondition
	InputBasedGuardCondition
	ResultBasedGuardCondition
	TimeoutGuardCondition
	EmptyResponseGuardCondition

	Other Controller Classes
	The SimpleController
	The AutoViewController
	Additional Controllers
	Custom Controllers and Guard Conditions

	Adding Common Fields to Every Request
	A Worked Example of Coding an Event
	Blocking Events from States
	The Responsibilities of a Controller
	The IController Interface
	The SimpleController Class
	The Main Controller Class
	The Modified Controller Contract
	The Inputs Object

	Extending the Controller Class
	Adding a New Controller to the Screen Orchestrator
	Creating a Customizer for the Controller

	The Responsibility of a Guard Condition
	The IGuardCondition Interface
	Adding a New Guard Condition to the Screen Orchestrator
	Creating a Customizer for the Guard Condition

	Responsibilities of a JSP
	Getting Data into the JSP
	Inputs Bean
	ProcessExecutionRecords Bean
	State Bean
	View Bean
	RequestContext Bean

	Firing an Event from a JSP
	Using the .jsm URL Extension
	Using the StateMachine URL

	About Integrating Processes
	Importing Processes from an Automated Methodology Model
	Manually Entering Process Information
	Editing Processes
	Deleting Processes from the Siebel Processes Panel
	Assigning Processes to the Statechart
	Assigning Processes to a State
	Adding Processes to a State Transition

	Undoing and Redoing Drawing Instructions
	Copying, Cutting, and Pasting
	Example of Cut and Paste Operation

	Minimizing and Maximizing Parent States
	Opening Subcharts
	Handling of Transitions Leaving and Entering Parent States
	Bringing Subcharts to the Front of the Desktop

	Multiple User Support
	Users Working on the Same Files

	About Forward Engineering
	Process of Updating Statecharts
	Updating Statecharts Using the Forward-Engineering Menu Options
	Updating a Statechart That Does Not Contain UUIDs
	Updating a Statechart That Does Contain UUIDs

	Updating Statecharts Using Commands
	Updating a Statechart That Does Not Contain UUIDs
	Updating a Statechart That Does Contain UUIDs

	About Writing a Swing Application
	Writing the Application Main Class
	Writing the ViewContainer Class
	Writing the View Classes
	IView Interface
	StateMachineEventSource Interface

	Managing ViewProperties
	Adding a View Class to the Screen Orchestrator
	The JSPView Class
	The JSPViewBeanInfo Class

	The Swing Application Requirements
	The ViewController Interface
	Setting the Application Properties
	The State Machine Events

	Example of a Swing Application
	Defining the Validation Rules
	How the State Machine Handles the Validation Check
	About Generating JSPs and Swing Panels
	Testing Whether JSPs Can Be Compiled
	Generating JSP and Swing Panel Files
	About Timing Points
	Timing Points in the State Machine

