

Application Storage
Manager (ASM) for Unix

ASM Migration Toolkit Guide

Version 3.5.0

Part Number 313498601

Proprietary Information Statement
The information in this document is confidential and proprietary to Storage
Technology Corporation and may be used only under the terms of the product
license or nondisclosure agreement. The information in this document, including
any associated software program, may not be disclosed, disseminated, or
distributed in any manner without the written consent of Storage Technology
Corporation.

Limitations on Warranties and Liability
This document neither extends nor creates warranties of any nature, expressed or
implied. Storage Technology Corporation cannot accept any responsibility for
your use of the information in this document or for your use of any associated
software program. You are responsible for backing up your data. You should be
careful to ensure that your use of the information complies with all applicable
laws, rules, and regulations of the jurisdictions in which it is used. Warning: No
part or portion of this document may be reproduced in any manner or in any form
without the written permission of Storage Technology Corporation.

Restricted Rights
Use, duplication, or disclosure by the U.S. Government is subject to restrictions as
set forth in subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer
Software clause at DFARS 252.227-7013 or subparagraphs (c)(1) and (2) of the
Commercial Computer Software – Restricted Rights at 48 CFR 52.227-19, as
applicable.

Application Storage Manager (ASM) for Unix Migration Tool Kit, Version
3.5.0, Edition 2, July 15, 2002, Part Number 313498601

This edition applies to the Application Storage Manager (ASM) for Unix
product and to all modifications of that product until otherwise indicated in new
editions or revisions pages. If there are changes in the product or improvements in
the information about the product, this document will be revised and reissued.

Comments concerning the contents of the manual should be directed to:

ASM Product Management
Storage Technology Corporation
One StorageTek Drive, MS 2138
Louisville, CO 80028-2139

Copyright Statement
 Copyright 2002 Storage Technology Corporation. All rights reserved.
StorageTek, the StorageTek logo and Application Storage Manager are
trademarks or registered trademarks of Storage Technology Corporation. Other
products and names mentioned herein are for identification purposes only and
may be trademarks of their respective companies.

ASM for Unix Migration Toolkit v3.5.0

ii

New Features

The ASM Migration Toolkit Guide, Part Number 313498601, supports the ASM
and ASM QFS 3.5.0 releases running on the Solaris 2.6, 2.7, and 2.8 platforms.
No new features were added to this release specifically to support ASM Remote,
but the changes to the default file locations in the ASM and ASM QFS
environments also affect the ASM Remote environment.

ASM for Unix Migration Toolkit v3.5.0

iii

Record of Revision

Version Description

3.3 January 1998. Original printing

3.5 July 2002. Document update

ASM for Unix Migration Toolkit v3.5.0

iv

Table of Contents

Proprietary Information Statement ... ii
Limitations on Warranties and Liability... ii
Restricted Rights ... ii
Application Storage Manager (ASM) for Unix Migration Tool Kit, Version
3.5.0, Edition 2, July 15, 2002, Part Number 313498601 ii
Copyright Statement .. ii

New Features .. iii
Record of Revision... iv

Table of Contents... v

About This Guide...vii
Organization .. vii
StorageTek License... vii
Conventions... vii
StorageTek Publications ..viii

Chapter 1 - ASM Migration Toolkit Overview..................................... 1

ASM Migration Toolkit Library Calls ..3
Migration Interface ...3
ASM Stage Interface..3
Re-Archive Interface ..3
ASM Restore Interface...4

Chapter 2 – Installing the Migration Toolkit....................................... 5

How To Install the ASM Migration Toolkit ...5
Step 1: Verify Existing ASM Software..5
Step 2: License the ASM Migration Toolkit ..5
Step 3: Read the Installation Medium ..6
Step 4: Add the Package ...6
Step 5: Write and Compile ASM Migration Programs7
Step 6: Update the mcf File ...8
Step 7: Shutdown ASM..8
Step 8: Restart ASM ..9
Step 9: Check for ASM Migration Device Entries...10
Step 10: Run the ASM Migration Programs ...10

Chapter 3 – Example Programs .. 11

ASM Migration Toolkit Example Programs - CD-ROM Format11
mig_cd.c ..12
mig_build_cd.c...12

ASM for Unix Migration Toolkit v3.5.0

v

mig_rearch.c ..13
Makefile ...13

Installing the ASM Migration Toolkit Example Programs - CD-ROM
Format ..13

Step 1: Compile the Example Programs..13
Step 2: Add Stranger Device to mcf File ..14
Step 3: Start ASM and Mount Filesystems ..14
Step 4: Insert and Mount CD-ROM..14
Step 5: Build the ASM Migration Entries ..14
Step 6: Access the Stranger Data Files ...15
Step 7: Re-archive the Stranger Data Files Under ASM..............................15

Example Tape ASM Migration Progam ..15
Updating the ASM catalog ...15
Example Program - Migrating Data from Tapes...16

ASM for Unix Migration Toolkit v3.5.0

vi

About This Guide

This guide describes the ASM Migration Toolkit by StorageTek. The ASM
Migration Toolkit is an application programming interface (API) used in
conjunction with the Application Storage Manager (ASM) Filesystem release
3.5.0 or higher for importing data from stranger media to ASM.

The ASM Migration Toolkit is only available to StorageTek channel partners and
authorized service providers (ASPs). The ASM Migration Toolkit enables channel
partners to write conversion programs allowing ASM to read and use non-ASM
data. It is assumed that the channel partner/ASP writing these conversion
programs is an experienced C programmer, has a complete knowledge of the data
storage formats being converted, and is familiar with the theory and operations of
ASM.

Organization
This manual is organized as follows:

Chapter Description
Chapter 1 Provides an overview of the ASM Migration Toolkit.
Chapter 2 Provides step-by-step installation instructions for the ASM Migration

Toolkit.
Chapter 3 Describes the example ASM Migration Toolkit conversion programs

supplied with the software.

Appendix A Printed manual pages for the ASM Migration Toolkit library routines.

StorageTek License
This document and the programs described in it are furnished under license from
StorageTek and may not be used, copied, or disclosed without approval from
StorageTek in accordance with such license.

Conventions
The following conventions are used throughout this document:

Typeface Meaning Example

command The fixed-space courier font denotes literal items such as
commands, files, routines, path names, and messages

/etc/opt/LSCsamfs/m
cf

Boldface
Courier

The boldface courier font denotes text you enter at the
shell prompt

server# sls -D

Italic
Courier

Italics indicate variables in a command line. Replace
variables with a real name or value.

mount mnt_pt

ASM for Unix Migration Toolkit v3.5.0

vii

StorageTek Publications
If you have comments about the technical accuracy, content, or organization of
this document, please tell us. We value your comments and will respond to them
promptly. You can contact us in any of the following ways:

• Send an electronic mail to David Smith, ASM for Unix Product Manager
at David_Smith@storagetek.com

• Send a facsimile with your comments to the attention of David Smith at
fax number: +1303-661-7949.

• Send your written comments to:

Application Storage Manager (ASM) Product Management
StorageTek.
One StorageTek Drive, MS 2138
Louisville, CO 80028-2138
USA

To order additional manuals, please send us a written request using one of the
methods above.

ASM for Unix Migration Toolkit v3.5.0

viii

Chapter 1 - ASM Migration Toolkit Overview

The ASM Migration Toolkit from StorageTek provides a user exit interface to
read and migrate data into the Application Storage Manager (ASM) File System
from non-ASM media. This media (called stranger media throughout the rest of
this document) is read by a program written by an expert who has a thorough
understanding of the data format used to write to the media. Examples of stranger
media include CD-ROMs, tapes written using another vendor’s software
application (including storage management systems other than ASM), or other
media written in a predictable, consistent manner. The ASM Migration Toolkit
supplies a user exit interface that allows you to write a program to restore data
from stranger media into ASM.

The ASM Migration Toolkit requires the following:

• A storage server running the ASM 3.5.0 release or higher;

• The ASM Migration Toolkit software package (labeled LSCmigkit)
supplied by StorageTek;

• The stranger media to be made available for reading and/or migrating data
into ASM; and

• A migration interface program provided by an expert in the stranger media
format in the form of a shared object library (suffixed by .so).

The ASM Migration Toolkit can be used in the following manner:

1) Migration mode, in which an application running in the ASM environment
needs data residing on stranger media but wishes to migrate the data
permanently to ASM. A stage request for a file is processed and the data
is written to ASM disk cache. The data is re-archived to ASM media for
future use, essentially migrating the data from stranger media to ASM.

2) Stage-only mode, in which an application running in the ASM
environment needs data residing on stranger media, a stage request for a
file is processed and the data is written to ASM disk cache. The
application completes and the disk cache copy of the data is released. The
permanent archive file remains on the stranger media.

Note that the ASM Migration Toolkit does not support the volume overflow
feature in ASM. The sam_mig_rearchive(3) routine does not support
spanning multiple volumes.

Figure 1-1 diagrams the flow for a ASM storage server using the ASM Migration
Toolkit. Note the shading of the components indicating StorageTek or the reseller
as the supplier of the programs.

The create and stage library calls are described in the following subsection under
“ASM Restore Interface” and “ASM Stage Interface”, respectively, as well as in

ASM for Unix Migration Toolkit v3.5.0

1

the supplied manpages. The ASM Migration Interface user exit shared library is
described in the next subsection under “ASM Migration Interface”.

ASM
3.5

Create File
API Stage File
API

Migration
Interface

 Shared lib
• Stage Request
• Stage Cancel

3rd Party
Conversion
Application

Create File

Stage File

3rd Party Library

ASM Library
supplied by StorageTek
supplied by reseller

ASM
disk cache

User

Figure 1-1. ASM Migration Toolkit Flow Diagram

ASM for Unix Migration Toolkit v3.5.0

2

ASM Migration Toolkit Library Calls

This section lists the library calls available with the ASM Migration Toolkit. For
more details about each of the library calls, see the corresponding man page.
Printed versions of the manpages are found in Appendix A.

Migration Interface
The migration interface is a thread-safe shared object library consisting of three
entry points. The migration API routines are made available through a vendor-
supplied migration library. Table 1-1 lists the routines available through the
migration API.

Table 1-1. Migration Library Routines

Library Call Description

mig_initialize Initializes the migration library libsam_mig.so
mig_stage_file_req Processes a stage request allowing files to be staged to

ASM disk cache.
mig_cancel_stage_req Cancels a pending stage request.

ASM Stage Interface
The ASM stage interface is a thread-safe set of routines made available to
libsam_mig when the stranger shared object library (.so) is loaded. These
routines are supplied with the ASM Migration Toolkit. Table 1-2 lists the
functions available through the stage API.
Table 1-2. ASM Stage Library Routines

Library Call Description
sam_mig_stage_error Passes a stage error to the file system.
sam_mig_stage_file Prepares to stage data for a stage request.
sam_mig_stage_write Writes data for a stage request from libsam_mig.so

to a ASM file system.
sam_mig_stage_end Completes a stage request.
sam_mig_mount_media Queues a mount media request to a device.
sam_mig_release_device Releases a device from a sam_mig_mount_media

request.

Re-Archive Interface
The re-archive interface consists of a single thread-safe function,
sam_mig_rearchive, that traverses a file system and marks archives residing
on a VSN as needing to be re-archived. The sam_mig_rearchive routine
allows a site to “migrate” files from stranger media to ASM media in a controlled
manner, migrating a few VSNs at a time. Until a stranger file is re-archived, all
access to this file would be through the ASM Migration Toolkit.

ASM for Unix Migration Toolkit v3.5.0

3

ASM Restore Interface
The ASM restore interface consists of single routine,
sam_mig_create_file. This routine restores the name space for a file in a
ASM file system, then creates an off-line ASM file with the stranger API
information in any of the archive copy numbers.

Note that the program calling this function is responsible for creating all
directories in the path before calling the function.

ASM for Unix Migration Toolkit v3.5.0

4

Chapter 2 – Installing the Migration Toolkit

This chapter shows how to install the ASM Migration Toolkit.

How To Install the ASM Migration Toolkit

The ASM Migration Toolkit is released as a separately licensed ASM package in
Solaris pkgadd(1M) format. The package is named LSCmigkit.

Read through all of these instructions prior to installing the Toolkit. While you
can configure ASM devices from which to migrate non-ASM data, you must also
have your conversion programs and libraries completed and compiled. In these
installation instructions, it is assumed that these programs or the sample programs
in chapter 3, “Sample Datan ASM Migration Programs”, are compiled and
available.

All of the steps in this section assume that you are a super-user or are logged in as
root.

Step 1: Verify Existing ASM Software
Verify that the server on which you are installing the ASM Migration Toolkit is
running the ASM 3.5.0 release as follows:
server# pkginfo -l LSCsamfs
If you are not running ASM 3.5.0 or higher, you must upgrade ASM. See the
ASM Administrator’s Guide, for upgrade procedures.

Step 2: License the ASM Migration Toolkit
ASM reads a license key from the file /etc/opt/LSCsamfs/LICENSE at
startup time. This key allows your system to use the ASM Migration Toolkit and
must be updated if you were running ASM only without the ASM Migration
Toolkit. If you need a license key that supports ASM and the ASM Migration
Toolkit, contact your Authorized Service Provider with the following information:

• Company PO number

• Company name, address, phone, and contact

• Host ID on which the ASM Migration Toolkit software is to be licensed.
(To display your machine's Host ID, use the /usr/ucb/hostid
command.)

• Number of storage slots in your system

• The level of Solaris running on your system. (To display your machine’s
Solaris level, use the uname -sr command.)

ASM for Unix Migration Toolkit v3.5.0

5

Once you have your license key, place it , starting in column one, on the first and
only line in /etc/opt/LSCSsamfs/license3.5. No other keywords, host
ids, etc. may appear. The license becomes effective the next time sam-init is
started.

Step 3: Read the Installation Medium
Copy the ASM Migration Toolkit files onto your system. The result is a
pkgadd-format file. Create the directory in which the files will be copied:
server# rm -rf /tmp/migkit
server# mkdir /tmp/migkit
Using the Solaris Volume Manager, enter the following sequence of commands
for each diskette that you receive.
Insert diskette

server# volcheck
server# cd /floppy/floppy0
server# cp * /tmp/migkit
server# cd /tmp/migkit
server# gunzip *.gz
server# eject
 Remove diskette

Step 4: Add the Package
The ASM Migration Toolkit uses the Solaris packaging utilities for adding and
deleting software. As such, you must be logged in as superuser to make changes
to software packages. pkgadd(1M) prompts you to confirm various actions
necessary to install the ASM packages.
server# pkgadd -d /tmp/migkit/sammig
The ASM Migration Toolkit package consists of the following files:

File Description

/etc/opt/LSCsamfs/sam_migd ASM Migration Toolkit daemon binary.
/opt/LSCsamfs/lib/libsam_mig.so ASM Migration Toolkit shared object

library.

Sample ASM Migration programs are included with the ASM Migration Toolkit. These
sample programs include:

AN ASM Migration Toolkit library for reading SunSolve CD-ROM data

A program that reads directories from the CD-ROM and creates new directories within
ASM

A program for creating new archive copies of these files under ASM
A Makefile used to build the examples

ASM for Unix Migration Toolkit v3.5.0

6

Table 2-1 lists the file names and a description of the sample programs. All of the sample
files are located in the /opt/LSCsamfs/migkit directory unless noted.

Table 2-1. ASM Migration Toolkit Sample Programs

File Description

Makefile The Makefile used to build mig_rearch, mig_build_cd,
and the user ASM Migration library, libusam_mig.so.

README A description and installation instructions for the example ASM
Migration Toolkit programs.

mig_build_cd.c Directory building source. Creates directories under ASM from
the CD-ROM directory structure.

mig_cd.c CD-ROM ASM Migration interface source.

mig.h An include file used with the example programs. This file is
located in /opt/LSCsamfs/include.

mig_rearch.c Re-archiving program source.

Step 5: Write and Compile ASM Migration Programs
The ASM Migration programs are coded by an integrator knowledgeable in the
data format of the stranger media. The sample programs supplied by ASM are
discussed in chapter 3, “Example Programs”. In order to get these programs to
run, you must compile them on your system. Chapter 3 gives instructions on
compiling and running these example programs.

The integrator will restore the file names into the ASM file system using their
own program and the ASM restore API (see the previous chapter, “ASM
Migration Toolkit Overview” for a listing of the restore API library calls). The
restore API creates offline files with the information about the location of the
data.

The restore interface needs to have the standard inode information such as file
size, owner and group, etc. It also requires the following stranger media
information, which will be stored in the ASM inode for each file:

media_type This is the two-letter media type beginning with the letter
“z”, for example, “za”. All media types that start with “z”
are identified as stranger media.

creation_time The time that the archive was created.

position_u, position This is an 8 byte field set to any value the integrator needs.
This field is a long_long. The information is passed on to
the shared object library supplied by the programmer.

ASM for Unix Migration Toolkit v3.5.0

7

vsn This is a 32 byte field set to any value needed by the
integrator. This information is passed on to the shared
object library supplied by the programmer.

Thus there is a total of 40 bytes of information that can be placed into the archive
information for a file. This information can be anything that is needed to identify
the location of the data.

An example might be a key into a database. If there is not enough room within
the archive record to completely identify the location of the off-line data, the
restore program written by the integrator will need to build some type of database
where the information may be stored using the position in the inode archive
record as the key in to the database. The sample programs supplied with the ASM
Migration Toolkit do just this.

Step 6: Update the mcf File
The ASM Migration Toolkit uses additional media types to identify stranger
media. As with all ASM devices, the master configuration file
(/etc/opt/LSCsamfs/mcf) defines the devices. The syntax for the stranger
media entry follows:

pathname eq media_type

pathname is the path name the user ASM Migration library (called
/opt/LSCsamfs/lib/libusam_mig.so in the supplied example
programs).

eq is the equipment ordinal for the stranger media device type. eq is an integer
from 1 to 16384 and must be unique for each mcf entry.

media_type is a two-character equipment type for the stranger media. The media
type must start with the character “z” followed by a single character “a” through
“9”. You can have more than one stranger media type defined per system as long
as the second character is unique for each stranger media and it matches the
media_type used when restoring the file names (see
sam_mig_create_file(3X).

An example ASM Migration Toolkit mcf entry follows. This site is using the
ASM Migration Toolkit to read CD-ROMs as in the example programs and for
tapes created in an alternate data format. The mcf entries for these media types
are as follows:

/opt/LSCsamfs/lib/libusam_mig.so 50 za

/opt/LSCsamfs/lib/libusam_mig.so 51 zb

Step 7: Shutdown ASM
To stop ASM you should make sure that no archive processes are writing to tape
or staging files to/from the drives, unmount the file systems, and then kill the
sam-init process.

To stop ASM enter the following:

ASM for Unix Migration Toolkit v3.5.0

8

1) To ensure that no archive or stage processes are active, idle all of the
drives in the library. Enter one of the following:

From samu(1M) enter the following, where eq is the ordinal the drive:

:idle eq

From devicetool(1M) select the drive in the devices panel. Select the
“Change State” button, pull down the menu, and select “Idle”.

The drives will switch from “idle” to “off” when all I/O activity is
completed.

2) Unmount any volumes in the drives. Enter one of the following:

From samu(1M) you can unload the drive by enter the following
command, where eq is the ordinal of the drive:

:unload eq
From previewtool(1M) select the drive in which the VSN is present.
Select the “Unload” button. The robot unloads the medium from the drive
and places it in to its slot.

3) Unmount all of the ASM file systems. Enter the following for each file
system:

umount samfs1

4) Identify the sam-init process id, then kill the process id with an
interrupt signal. Enter the following:

ps -ef | grep sam-init

kill -INT sam-init-pid

Check again for sam-init. Once it is gone, ASM is down.

Step 8: Restart ASM
To restart ASM enter the following:

1) To ensure that no archive or stage processes are active, idle all of the
drives in the library. Enter one of the following:

From samu(1M) enter the following, where eq is the ordinal the drive:

:idle eq

From devicetool(1M) select the drive in the devices panel. Select the
“Change State” button, pull down the menu, and select “Idle”.

The drives will switch from “idle” to “off” when all I/O activity is
completed.

2) Unmount any volumes in the drives. Enter one of the following:

From samu(1M) you can unload the drive by entering the following
command, where eq is the ordinal of the drive:

ASM for Unix Migration Toolkit v3.5.0

9

:unload eq
From previewtool(1M) select the drive in which the VSN is present.
Select the “Unload” button. The robot unloads the medium from the drive
and places it into its slot.

3) Unmount all of the ASM file systems. Enter the following for each file
system:

server# umount samfs1

4) Identify the sam-init process id, then kill the process id with an
interrupt signal. Enter the following:

server# ps -ef | grep sam-init

server# kill -INT sam-init-pid

Check again for sam-init. Once it is gone, ASM is down.

5) Start ASM using the standard startup procedure at your site.

Step 9: Check for ASM Migration Device Entries
Check to see if the ASM Migration device entries are recognized by ASM. Start
samu(1M) and check the following:

• The “s” (status) display should show the newly-configured device entries.
These devices should have a status of “on”.

• The ASM log file (usually located in /var/adm/sam-log unless
you’ve configured /etc/syslog.conf to point to another file)
captures any ASM Migration Toolkit messages.

With the stranger media mounted, you should be ready to use the programs
written for the stranger data formats to stage files using ASM.

Step 10: Run the ASM Migration Programs
You should be able to run the example ASM Migration programs or the programs
written to recognize the stranger data format. See chapter 3, “Example Programs”
for a description and instructions on how to compile and run the example
programs.

ASM for Unix Migration Toolkit v3.5.0

10

Chapter 3 – Example Programs

This chapter provides a complete example of a migration interface developed for
reading data organized in UNIX directories on a CD-ROM. An overview of the
example programs, installation instructions, and a description of each program is
presented.

ASM Migration Toolkit Example Programs - CD-ROM Format

This example uses a Sunsolve CD-ROM as the stranger media from which to
stage data. The programmer wrote a stranger media API to migrate data from the
CD-ROM into ASM.

The program creates off-line files from stranger media in the ASM file system
using the ASM restore API (see the chapter 1, “ASM Migration Toolkit
Overview” and the sam_mig_create_file(3) manpage). The restore API
creates off-line files with the information about the location of the data.

The restore API needs to have the standard inode information such as file size,
owner and group, etc. It also requires the following stranger media API
information which will be stored in the ASM inode for each file:

media_type This is the two-letter media type beginning with the letter
“z”, for example, “za”. All media types that start with “z”
are identified as stranger media.

creation_time The time that the archive was created.

position_u, position This is an 8 byte field set to any value the integrator needs.
This field is a long_long. The information is passed on to
the shared object library supplied by the programmer.

vsn This is a 32 byte field set to any value needed by the
integrator. This information is passed on to the shared
object library supplied by the programmer.

Thus there is a total of 40 bytes of information that can be placed into the archive
information for a file. This information can be anything that is needed to identify
the location of the data.

An example might be a key into a database. If there is not enough room within
the archive record to completely identify the location of the off-line data, the
restore program written by the integrator will need to build some type of database
where the information may be stored using the inode archive record as the key in
to the database. The example programs supplied with the ASM Migration Toolkit
do just this.

ASM for Unix Migration Toolkit v3.5.0

11

Two executables are created in this example. mig_build_cd restores the
directory structure and inodes under ASM and builds a database to track the CD-
ROM files. The archive record within each inode points to the database which in
turn contains the information needed to find the data associated with each file.
Once mig_build_cd is run, files can be accessed and staged using ASM.

mig_rearch archives the staged stranger media data to ASM media.
mig_rearch actually sets the re-archive bit within each inodes so that it will be
a candidate for archiving on the next pass of the archiver.

Unless noted otherwise, all of these files are located in the
/opt/LSCsamfs/migkit directory. The example files include:

• /opt/LSCsamfs/include/mig.h - The include file for stranger
media API.

• mig_cd.c - Source for the stranger media API.

• mig_build_cd.c - Source for the example migration program. The
executable creates directories and files under ASM paralleling the
directories on a CD-ROM.

• mig_rearch.c - Source for the re-archive program.

• README - Information on the programs.

• Makefile - A make file for setting up the example programs.

• mig_mcf - The mcf file used with the example.

mig_cd.c
This library module performs all of the work for retrieving stranger data. You
need to compile and install this module before starting ASM. This module is
called automatically.

mig_build_cd.c
This is the C source code for mig_build_cd. This program reads the UNIX
directory structure from a CD-ROM and builds a corresponding directory
structure under an ASM file system. After running this program, the data on the
CD-ROM can be accessed from ASM and staged as needed.

Once compiled and made executable, mig_build_cd has two arguments as
follows:
mig_build_cd cd-pathname sam-pathname

where cd-pathname is the name of the CD-ROM pathname to duplicate and
sam-pathname is the name of an ASM directory in which to recreate the CD-
ROM paths.

For example, the following command builds entries in the /sam/migdata directory
to access the data from the CD-ROM. The ASM entries will be marked as off-
line, have an archive record of media-type za, on VSN cdrom0:

ASM for Unix Migration Toolkit v3.5.0

12

mig_build_cd /cdrom/cdrom0 /sam/migdata

mig_rearch.c
This is the C source code for mig_rearch. This program sets the re-archive bit
on the ASM files so that they will be re-archived to ASM controlled media. You
would run this program if you wanted to re-archive all the stranger data to new
media.

Once compiled and made executable, mig_build_cd has three arguments as
follows:
mig_rearch sam-mountpoint media-type vsn-list

where sam-mountpoint is the name of an ASM directory with files to re-
archive, media-type is the stranger media type specified for each file, and
vsn-list is the name of the CD-ROM.

The following example causes ASM to re-archive all data in /sam/migdata that
has a media type of za and resides on VSN cdrom0:
mig_rearch /sam za cdrom0

Makefile
This is the make(1) file for the example programs. It contains seven makefile
targets: all, install, clean, libusam_mig.so, mig_cd.o, mig_rearch, and
mig_build_cd.

Make the following change to Makefile before running the make(1) command:

1) Change the “CC” makefile variable to reflect the compiler that you want
to use on your system.

Installing the ASM Migration Toolkit Example Programs - CD-
ROM Format

Once you’ve completed chapter 2, “Installing the ASM Migration Toolkit”, you
can use the example programs for reading a CD-ROM. The following steps
should be run as super-user.

Step 1: Compile the Example Programs
Compile the programs using make(1). Enter the following:
server# cd /opt/LSCsamfs/migkit
server# make clean
server# make
server# make install
The program executables mig_build_cd and mig_rearch are created. If
you encounter errors, you may need to use a compiler other than the one specified
in the Makefile.

ASM for Unix Migration Toolkit v3.5.0

13

Step 2: Add Stranger Device to mcf File
Add the following entry to your /etc/opt/LSCsamfs/mcf file:

/opt/LSCsamfs/lib/libusam_mig.so 200 za

The first field tells where the shared object library is that supports the ASM
Migration Toolkit API calls for retrieving data. The second field is the equipment
ordinal for this device. If 200 is already in use pick another unique integer. The
third field defines an ASM Migration Toolkit media type of “za”.

Step 3: Start ASM and Mount Filesystems
Start ASM and mount the file systems following your normal site procedure.

Step 4: Insert and Mount CD-ROM
Insert a Sunsolve CD-ROM in to the CD-ROM drive. Mount the CD-ROM by
entering the following:
server# volcheck

Step 5: Build the ASM Migration Entries
You need to build the migration entries by executing the example program
mig_build_cd. The following example builds entries in the /sam/migdata
directory (it is assumed that you have already created this directory in an ASM
file system) to access the data from the CD-ROM.
server# /opt/LSCsamfs/migkit/mig_build_cd /cdrom/cdrom0 /sam

The ASM entries will be marked as off-line, have an archive record of media type
“za”, on VSN cdrom0. The following is an example listing of a stranger data file
accessed with ASM. Note the that the creation time, attributes, and residence
fields are set to “none”.

server# cd /opt/LSCsamfs/migkit

server# sls -D samrev.2.5

samrev.2.5:

mode: -rw-r--r-- links: 1 owner: 18621 group: 3900

length: 1717248 inode: 1195

offline; archdone;

copy 1: ---- Dec 29 15:40 e.0 za cdrom0

access: Nov 18 17:01 modification: Nov 18 17:01

changed: Nov 18 17:01 attributes: none

creation: none residence: none

ASM for Unix Migration Toolkit v3.5.0

14

Step 6: Access the Stranger Data Files
The stranger data files are now accessible using ASM. You can stage files to disk
cache as you would with ASM. The following example uses an octal dump to
stage off-line stranger media files to disk:
server# cd /sam/migtest
server# od filename

Step 7: Re-archive the Stranger Data Files Under ASM
The mig_rearch program will set the re-archive bit on files and subsequently re-
archive them, assuming that you have set up your archiver.cmd file properly.
To re-archive the example data files, enter the following:
server# /opt/LSCsamfs/migkit/mig_rearch /sam za cdrom0

Example Tape ASM Migration Progam

This section describes a scenario for importing stranger tapes to your ASM
system, updating the catalog for the stranger tapes, and shows an example
program for reading data from a stranger tape.

Given the fact that stranger tapes probably already exist within your media
library, how does ASM know when to access data from a stranger tape as opposed
to an existing ASM tape? This example program shows how you can use
sam_mig_mount_media(3) and sam_mig_release_device(3) to
cause ASM to mount stranger media.

An additional example program, named mig_tp.c, mounts stranger media and
reads a data file DLT tape. The data that is written to this DLT tape is simply a
file copy using the Solaris dd(1) utility.

Updating the ASM catalog
The ASM library catalog must be updated to reflect that fact that stranger tapes
are present in the library. This can be accomplished using one of the following
methods.

1) Use the import(1M) command. The import command allows you to
import stranger media using the “-n” option. When the medium is
imported to the robot, the catalog will be updated to indicate that a
stranger medium has been loaded.

2) The chmed(1M) command is used to change media attributes in the
catalog. You can use chmed to set or clear the stranger status on the
catalog entry for a medium. See the “+N” and “-N” parameters on the
chmed(1M) manpage for details.

For example, you have just imported a stranger DLT tape (media type
“lt”) in a library (equipment number 30) to slot number 5. Since it
probably will not have an ANSI standard label, you will have a catalog

ASM for Unix Migration Toolkit v3.5.0

15

entry which shows "nolabel". To set the VSN and media type in the
catalog, enter the following:
server# chmed -vsn lt 5 30
Then, to set the stranger attribute on this medium
enter the following:

server# chmed +N 5 0
3) The build_cat(1M) command can be used to load many pieces of

media in to a catalog.

To create entries in the robot catalog for the strange media, you must first
dump_cat(1M) the existing catalog. Entries which correspond to
strange media should either be added or modified so that the media type
begins with "z".

Then, run build_cat(1M), supplying the "-t <media-type>" option.
The media-type you specify must be the physical media type, for example
"lt". Do not use a "z" media type here.

Each of the entries in the newly-built catalog which have "z" media types
in the input file will be marked as strange tapes and will have that media
type replaced with the physical media type supplied in the "-t media-type"
option.

Example Program - Migrating Data from Tapes
The following example reads data from a stranger tape. This stranger tape is
simply a DLT tape with no label that simply has data written using the dd(1)
utility.

This example uses sam_mig_mount_media(3) and
sam_mig_release_device(3) to cause ASM to mount stranger media.
This example is rather limited, as it always reads the first bytes from a fixed VSN.
You will need to do a similar sequence of function calls, and replace the "mt -f ...
rewind" section with code to correctly position the tape.

It is very important to carefully call sam_mig_release_device(3) to free
up the media drive returned by a successful call to
sam_mig_mount_media(3). sam_mig_release_device(3) is called
only after you've finished all your positioning, reading, etc.

Note that you must use the physical type of the media as the media type passed to
sam_mig_mount_media(3).

/*
 * mig_tp.c
 *
 * Library routines to handle processing of third-party data from a CD-ROM.
 *
*/

ASM for Unix Migration Toolkit v3.5.0

16

/*
* ASM_disclaimer_begin
*
* Copyright (c) 1996-1998 StorageTek. All rights reserved.
*
* This file is a product of StorageTek and is provided for unrestricted use
* provided that this header is included on all media and as a part of the
* software program in whole or part. Users may copy, modify or distribute
* this file at will.
*
* This file is provided with no support and without any obligation on the part
* StorageTek to assist in its use, correction, modification or
* enhancement.
*
* THIS FILE IS PROVIDED AS IS WITH NO WARRANTIES OF ANY KIND
INCLUDING THE
* WARRANTIES OF DESIGN, MERCHANTIBILITY AND FITNESS FOR A
PARTICULAR
* PURPOSE, OR ARISING FROM A COURSE OF DEALING, USAGE OR
TRADE PRACTICE.
*
* STORAGETEK SHALL HAVE NO LIABILITY WITH RESPECT TO THE
INFRINGEMENT OF
 * COPYRIGHTS, TRADE SECRETS OR ANY PATENTS BY THIS FILE OR
ANY PART THEREOF.
*
* IN NO EVENT WILL STORAGETEK BE LIABLE FOR ANY LOST
REVENUE OR PROFITS OR OTHER
* SPECIAL, INDIRECT AND CONSEQUENTIAL DAMAGES, EVEN IF
THEY HAVE BEEN
* ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
*
* StorageTek
*
* ASM_disclaimer_end
*/

#ifndef lint
static char rcs_id[] = "@(#)$Id: mig_tp.c,v 1.4 1998/01/16 21:00:22 jlh Dev $";
#endif /* lint */
#pragma ident "$Id: mig_tp.c,v 1.4 1998/01/16 21:00:22 jlh Dev $"

#include <thread.h>
#include <synch.h>
#include <stdio.h>
#include <signal.h>

ASM for Unix Migration Toolkit v3.5.0

17

#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <string.h>
#include <syslog.h>
#include <ndbm.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <sys/ipc.h>
#include <sys/shm.h>
#include <sys/syscall.h>

#include "mig.h"

#define DATA_XFER_SIZE (64 * 1024) /* units of I/O to read */

/* Function prototypes */
void *local_stage_processor(void *);
void local_stage_file(tp_stage_t *);

/* list of stage requests */
typedef struct {
mutex_t mutex;
cond_t cond;
int count;
tp_stage_t *next;
tp_stage_t *last;
}
 local_stage_list_t;

local_stage_list_t local_stage_list;
char *current_database = NULL;
DBM *current_db = NULL;

/*
* sam_mig_initialize
*
* Called by the thirdparty "device" to allow the interface to initialize any
* local structs, threads, etc.
*/

int
usam_mig_initialize(int stage_count)
{

ASM for Unix Migration Toolkit v3.5.0

18

/* Initialize the stage list to USYNC_THREAD (all zero) */
memset(&local_stage_list, 0, sizeof(local_stage_list));

if (thr_create(NULL, 0, local_stage_processor, (void *) NULL,
 (THR_BOUND | THR_DETACHED | THR_NEW_LWP), NULL)) {
syslog(LOG_INFO, "Unable to start local_stage_processor: %m");
return (-1);
}
return (0);
}

/*
* sam_mig_stage_file_req
*
* Called by the thirdparty "device" to inform the interface that the file
* system has requested a stage.
*
* For the simple case, we well just link this request onto our list of stage
* requests. For access to "sequential media" (tape), it would be a better
* idea to keep multiple lists based on physical media and ordered by
* position. This would allow the media to be read in a less random mode.
* This is not a requirement but it does speed up staging many files from one
* tape.
*/

int
usam_mig_stage_file_req(tp_stage_t * stage_req)
{

syslog(LOG_INFO, "in usam_mig_stage_file_req");

/* Use the private data region as the next pointer for the list */
stage_req->tp_data = NULL;

/*
* Link the request onto the list of stage requests. Must get the
* list mutex first to insure that the other threads are not using
* the list.
*/
mutex_lock(&local_stage_list.mutex);

/* Link this stage request onto the list */
if (local_stage_list.count++ == 0) /* no entries on the list */
local_stage_list.next = stage_req;
else /* put it on the end */
local_stage_list.last->tp_data = stage_req;

ASM for Unix Migration Toolkit v3.5.0

19

/* Adjust last to point to the new entry */
local_stage_list.last = stage_req;

/* Wake up local_stage_processor */
cond_signal(&local_stage_list.cond);
mutex_unlock(&local_stage_list.mutex);

return (0);
}

/*
* sam_mig_cancel_stage_req
*
* Called by the thirdparty "device" to inform the interface that the file
* system has canceled a stage request. Most likely the user has terminated
* their request.
*/

int
usam_mig_cancel_stage_req(tp_stage_t * stage_req)
{
 tp_stage_t *sr_p, *last_sr_p = NULL;

mutex_lock(&local_stage_list.mutex);
for (sr_p = local_stage_list.next;
 sr_p != NULL;
 sr_p = (tp_stage_t *) sr_p->tp_data) {
 if (sr_p == stage_req) /* Found it */
 break;
 else
 last_sr_p = sr_p; /* keep last pointer */
 }

 if (sr_p == NULL) { /* not found */
 mutex_unlock(&local_stage_list.mutex);
 return (-1); /* cannot cancel (can't find it) */
 }
 if (last_sr_p == NULL) /* looks like the head of the list */
 local_stage_list.next = (tp_stage_t *) sr_p->tp_data;
 else
 last_sr_p->tp_data = sr_p->tp_data;

 return (0);
}

ASM for Unix Migration Toolkit v3.5.0

20

/*
 * local_stage_processor
 *
 * Wait for stage request to arrive on the list and process them one at a time
 * off the top of the list.
 */

void *
local_stage_processor(void *noarg)
{
 tp_stage_t *stage_req;

 /* Loop forever waiting for a request */
 while (1) {
 mutex_lock(&local_stage_list.mutex);
 /* Wait for the count to go non zero */
 while (local_stage_list.count == 0) /* wait for something */
 cond_wait(&local_stage_list.cond,
&local_stage_list.mutex);

 /* Pull the entry off the list, decrement the count */
 stage_req = local_stage_list.next;
 local_stage_list.count--;
 local_stage_list.next = (tp_stage_t *) stage_req->tp_data;

 /* Release the mutex */
 mutex_unlock(&local_stage_list.mutex);

 /* process the stage */

 local_stage_file(stage_req);

 }
}

/*
* local_stage_file
*
* Find the file in the database and do the stage.
 */

void
local_stage_file(tp_stage_t * stage_req)
{
 int read_fd, position = stage_req->position;
 char *file_data = NULL;

ASM for Unix Migration Toolkit v3.5.0

21

 char *ent_pnt = "local_stage_file";
 offset_t offset;
 int left;
 datum db_key;
 datum db_data;
 char *s;
 char buf[256];

 file_data = malloc(DATA_XFER_SIZE);

 /* Since media needs to be mounted, use the sam_mig_mount_media() API */

 syslog(LOG_INFO, "%s: about to mount lt:XXX", ent_pnt);

 s = sam_mig_mount_media("XXX", "lt");

 syslog(LOG_INFO, "%s: s_m_m_m returns %s, errno %d: %m", ent_pnt,
 s ? s : "NULL", errno);

 sprintf(buf, "/usr/bin/mt -f %s rewind", s ? s : "NULL");
 syslog(LOG_INFO, "%s: about to %s", buf);
 system(buf);

 if ((read_fd = open(s, O_RDONLY)) < 0) {

 syslog(LOG_INFO, "%s: open(%s,O_RDONLY) failed: errno %d: %m",
 ent_pnt, s ? s : "NULL", errno);
 sam_mig_release_device(s);

 } else {

 if (sam_mig_stage_file(stage_req)) {
 /*
 * The file system refused the stage request. This
 * usually happens if the stage requests was
 canceled
 * (ECANCELED) or there is not enough space to stage
 * the file (or the segment if stage never) (ENOSPC).
 */
 syslog(LOG_INFO,
 "%s: sam_mig_stage_file returned error: %m", ent_pnt);

 /* Free resources */
 if (file_data)
 free(file_data);
 close(read_fd);

ASM for Unix Migration Toolkit v3.5.0

22

 sam_mig_release_device(s);

 return;
 }
 left = stage_req->size; /* amount of data left to xfer */
 offset = 0; /* offset for our writes */

 /*
 * Continue the read, stage_write cycle until all requested
 * data has been sent.
 */
 while (left > 0) {
 int amt_read, amt_sent, read_size;
 char *buffer = file_data;

 /*
 * Only read the smaller of whats left or the
 * transfer size
 */
 read_size = left > DATA_XFER_SIZE ?
DATA_XFER_SIZE : left;
 amt_read = read(read_fd, file_data, read_size);
 if (amt_read < 0) { /* read error */
 int hold_err = errno; /* syslog destroys errno */

 syslog(LOG_INFO,
 "%s: Read error %s: %m", ent_pnt,
db_data.dptr);
 /* Free resources */
 close(read_fd);
 free(file_data);

 /* End the stage with the error */
 sam_mig_stage_end(stage_req, hold_err);
 sam_mig_release_device(s);
 return;
 }
 /* Loop sending the data to the file system */

 while (amt_read > 0) {
 amt_sent = sam_mig_stage_write(stage_req, buffer,
 amt_read, offset);
 if (amt_sent <= 0) {
 int hold_err = errno; /* syslog destroys
errno */

ASM for Unix Migration Toolkit v3.5.0

23

 syslog(LOG_INFO, "%s:
sam_mig_stage_write %s: %m", ent_pnt,
 db_data.dptr);
 /* Free resources */
 close(read_fd);
 free(file_data);

 /* End the stage with the error */
 sam_mig_stage_end(stage_req, hold_err);
 sam_mig_release_device(s);
 return;
 }
 buffer += amt_sent; /* adjust data pointer */
 offset += amt_sent; /* adjust data offset */
 amt_read -= amt_sent; /* amount left to send
* this buffer */
 left -= amt_sent; /* amount left to send * for
file */
 }
 }

 /* File has been sent, free resources and clean up messages */
 free(file_data);
 close(read_fd);

 /*
 * Inform file system that this stage request finished
 * without error.
 */
 sam_mig_stage_end(stage_req, 0);
 sam_mig_release_device(s);
 }

}

ASM for Unix Migration Toolkit v3.5.0

24

	Proprietary Information Statement
	Limitations on Warranties and Liability
	Restricted Rights
	Application Storage Manager((ASM) for Unix Migration Tool Kit, Version 3.5.0, Edition 2, July 15, 2002, Part Number 313498601
	Copyright Statement
	New Features
	Record of Revision
	Table of Contents
	About This Guide
	Organization
	StorageTek License
	Conventions
	StorageTek Publications

	Chapter 1 - ASM Migration Toolkit Overview
	ASM Migration Toolkit Library Calls
	Migration Interface
	ASM Stage Interface
	Re-Archive Interface
	ASM Restore Interface

	Chapter 2 – Installing the Migration Toolkit
	How To Install the ASM Migration Toolkit
	Step 1: Verify Existing ASM Software
	Step 2: License the ASM Migration Toolkit
	Step 3: Read the Installation Medium
	Step 4: Add the Package
	Step 5: Write and Compile ASM Migration Programs
	Step 6: Update the mcf File
	Step 7: Shutdown ASM
	Step 8: Restart ASM
	Step 9: Check for ASM Migration Device Entries
	Step 10: Run the ASM Migration Programs

	Chapter 3 – Example Programs
	ASM Migration Toolkit Example Programs - CD-ROM Format
	mig_cd.c
	mig_build_cd.c
	mig_rearch.c
	Makefile

	Installing the ASM Migration Toolkit Example Programs - CD-ROM Format
	Step 1: Compile the Example Programs
	Step 2: Add Stranger Device to mcf File
	Step 3: Start ASM and Mount Filesystems
	Step 4: Insert and Mount CD-ROM
	Step 5: Build the ASM Migration Entries
	Step 6: Access the Stranger Data Files
	Step 7: Re-archive the Stranger Data Files Under ASM

	Example Tape ASM Migration Progam
	Updating the ASM catalog
	Example Program - Migrating Data from Tapes

