
Oracle® Data Integrator
Knowledge Modules Developer's Guide
10g Release 3 (10.1.3)

December 2006
Oracle Data Integrator Knowledge Modules Developer's Guide, 10g Release 3 (10.1.3)

Copyright © 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are provided
under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and
other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs,
except to the extent required to obtain interoperability with other independently created software or as specified by law, is
prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the
documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be
expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the
United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to
U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable
Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure,
modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing
restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth
in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous
applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other
measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability
for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other
names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not
responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the
use of such content. If you choose to purchase any products or services from a third party, the relationship is directly
between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b)
fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty
obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you
may incur from dealing with any third party.

Knowledge Modules Developer's Guide 2/56

Introduction to Knowledge Modules

What is a Knowledge Module?
Knowledge Modules (KMs) are code templates. Each KM is dedicated to an individual task in the overall
data integration process. The code in the KMs appears in nearly the form that it will be executed except
that it includes Oracle Data Integrator (ODI) substitution methods enabling it to be used generically by
many different integration jobs. The code that is generated and executed is derived from the declarative
rules and metadata defined in the ODI Designer module.

- A KM will be reused across several interfaces or models. To modify the behavior of hundreds of
jobs using hand-coded scripts and procedures, developers would need to modify each script or
procedure. In contrast, the benefit of Knowledge Modules is that you make a change once and it
is instantly propagated to hundreds of transformations. KMs are based on logical tasks that will be
performed. They don’t contain references to physical objects (datastores, columns, physical
paths, etc.)

- KMs can be analyzed for impact analysis.
- KMs can’t be executed standalone. They require metadata from interfaces, datastores and

models.

KMs fall into 6 different categories as summarized in the table below:

Knowledge Module Description Where used

Reverse-engineering KM Retrieves metadata to the
Oracle Data Integrator work
repository

Used in models to perform a
customized reverse-
engineering

Check KM Checks consistency of data
against constraints

- Used in models , sub
models and datastores for
data integrity audit

- Used in interfaces for flow
control or static control

Loading KM Loads heterogeneous data to
a staging area

Used in interfaces with
heterogeneous sources

Integration KM Integrates data from the
staging area to a target

Used in interfaces

Journalizing KM Creates the Change Data
Capture framework objects in
the source staging area

Used in models, sub models
and datastores to create, start
and stop journals and to
register subscribers.

Service KM Generates data manipulation
web services

Used in models and
datastores

Oracle Data Integrator supplies more than 100 Knowledge Modules out-of-the-box.

Knowledge Modules Developer's Guide 3/56

The following sections describe each type of Knowledge Module.

Reverse-engineering Knowledge Modules (RKM)
The RKM’s main role is to perform customized reverse engineering for a model. The RKM is in charge of
connecting to the application or metadata provider then transforming and writing the resulting metadata
into Oracle Data Integrator’s repository. The metadata is written temporarily into the SNP_REV_xx tables.
The RKM then calls the Oracle Data Integrator API to read from these tables and write to Oracle Data
Integrator’s metadata tables of the work repository in incremental update mode. This is illustrated below:

Oracle Data Integrator Work Repository
Application or

Metadata Provider

Metadata
Dictionary RKMRKM

SNP_REV_xx
Staging Tables
SNP_REV_xx

Staging Tables
SNP_xx

Repository Tables
SNP_xx

Repository Tables

OdiReverseSetMetaData API

Figure 1: Reverse-engineering Knowledge Module

A typical RKM follows these steps:
1. Cleans up the SNP_REV_xx tables from previous executions using the OdiReverseResetTable

command
2. Retrieves sub models, datastores, columns, unique keys, foreign keys, conditions from the

metadata provider to SNP_REV_SUB_MODEL, SNP_REV_TABLE, SNP_REV_COL,
SNP_REV_KEY, SNP_REV_KEY_COL, SNP_REV_JOIN, SNP_REV_JOIN_COL,
SNP_REV_COND tables.

3. Updates the model in the work repository by calling the OdiReverseSetMetaData API.

Check Knowledge Modules (CKM)
The CKM is in charge of checking that records of a data set are consistent with defined constraints. The
CKM is used to maintain data integrity and participates in the overall data quality initiative. The CKM can
be used in 2 ways:

- To check the consistency of existing data. This can be done on any datastore or within interfaces,
by setting the STATIC_CONTROL option to "Yes". In the first case, the data checked is the data
currently in the datastore. In the second case, data in the target datastore is checked after it is
loaded.

- To check consistency of the incoming data before loading the records to a target datastore. This is
done by using the FLOW_CONTROL option. In this case, the CKM simulates the constraints of
the target datastore on the resulting flow prior to writing to the target.

In summary: the CKM can check either an existing table or the temporary "I$" table created by an IKM.

Knowledge Modules Developer's Guide 4/56

The CKM accepts a set of constraints and the name of the table to check. It creates an "E$" error table
which it writes all the rejected records to. The CKM can also remove the erroneous records from the
checked result set.
The following figures show how a CKM operates in both STATIC_CONTROL and FLOW_CONTROL
modes.

Data Server

Staging Area
Table

E$
Error Table

Declarative
Constraints CKMCKM

Figure 2: Check Knowledge Module (STATIC_CONTROL)
In STATIC_CONTROL mode, the CKM reads the constraints of the table and checks them against the
data of the table. Records that don’t match the constraints are written to the "E$" error table in the staging
area.

Data Server

Staging Area

Target
Table

I$
Flow Table

E$
Error Table

Declarative
Constraints
of the Target

CKMCKM

Figure 3: Check Knowledge Module (FLOW_CONTROL)
In FLOW_CONTROL mode, the CKM reads the constraints of the target table of the Interface. It checks
these constraints against the data contained in the "I$" flow table of the staging area. Records that violate
these constraints are written to the "E$" table of the staging area.

In both cases, a CKM usually performs the following tasks:
1. Create the "E$" error table on the staging area. The error table should contain the same columns

as the datastore as well as additional columns to trace error messages, check origin, check date
etc.

2. Isolate the erroneous records in the "E$" table for each primary key, alternate key, foreign key,
condition, mandatory column that needs to be checked.

Knowledge Modules Developer's Guide 5/56

3. If required, remove erroneous records from the table that has been checked.

Loading Knowledge Modules (LKM)
An LKM is in charge of loading source data from a remote server to the staging area. It is used by
interfaces when some of the source datastores are not on the same data server as the staging area. The
LKM implements the declarative rules that need to be executed on the source server and retrieves a
single result set that it stores in a "C$" table in the staging area, as illustrated below.

LKM

Source Server

A

B

Staging Area

C$ Table
C

Result Set

Declarative Rules
Executed on

Source

Figure 4: Loading Knowledge Module

1. The LKM creates the "C$" temporary table in the staging area. This table will hold records loaded
from the source server.

2. The LKM obtains a set of pre-transformed records from the source server by executing the
appropriate transformations on the source. Usually, this is done by a single SQL SELECT query
when the source server is an RDBMS. When the source doesn’t have SQL capacities (such as flat
files or applications), the LKM simply reads the source data with the appropriate method (read file
or execute API).

3. The LKM loads the records into the "C$" table of the staging area.

An interface may require several LKMs when it uses datastores from different sources. When all source
datastores are on the same data server as the staging area, no LKM is required.

Integration Knowledge Modules (IKM)
The IKM is in charge of writing the final, transformed data to the target table. Every interface uses a single
IKM. When the IKM is started, it assumes that all loading phases for the remote servers have already
carried out their tasks. This means that all remote source data sets have been loaded by LKMs into "C$"
temporary tables in the staging area, or the source datastores are on the same data server as the staging
area. Therefore, the IKM simply needs to execute the "Staging and Target" transformations, joins and
filters on the "C$" tables, and tables located on the same data server as the staging area. The resulting
set is usually processed by the IKM and written into the "I$" temporary table before loading it to the target.
These final transformed records can be written in several ways depending on the IKM selected in your
interface. They may be simply appended to the target, or compared for incremental updates or for slowly
changing dimensions. There are 2 types of IKMs: those that assume that the staging area is on the same
server as the target datastore, and those that can be used when it is not. These are illustrated below:

Knowledge Modules Developer's Guide 6/56

Target Server

IKM

Staging Area

C$0

D

Target
C$1 Result Set

or I$

CKME$

Declarative Rules
Executed on

Staging & Target

Figure 5: Integration Knowledge Module (Staging Area on Target)

When the staging area is on the target server, the IKM usually follows these steps:
1. The IKM executes a single set-oriented SELECT statement to carry out staging area and target

declarative rules on all "C$" tables and local tables (such as D in the figure). This generates a
result set.

2. Simple "append" IKMs directly write this result set into the target table. More complex IKMs create
an "I$" table to store this result set.

3. If the data flow needs to be checked against target constraints, the IKM calls a CKM to isolate
erroneous records and cleanse the "I$" table.

4. The IKM writes records from the "I$" table to the target following the defined strategy (incremental
update, slowly changing dimension, etc.).

5. The IKM drops the "I$" temporary table.
6. Optionally, the IKM can call the CKM again to check the consistency of the target datastore.

These types of KMs do not manipulate data outside of the target server. Data processing is set-oriented
for maximum efficiency when performing jobs on large volumes.

IKM

Staging Area

C$0

D

Target Server

Target
C$1 Result Set

or I$

Declarative Rules
Executed on

Staging & Target

Figure 6: Integration Knowledge Module (Staging Area Different from Target)

Knowledge Modules Developer's Guide 7/56

When the staging area is different from the target server, as shown in Figure 6, the IKM usually follows
these steps:

1. The IKM executes a single set-oriented SELECT statement to carry out declarative rules on all
"C$" tables and tables located on the staging area (such as D in the figure). This generates a
result set.

2. The IKM loads this result set into the target datastore, following the defined strategy (append or
incremental update).

This architecture has certain limitations, such as:
- A CKM cannot be used to perform a data integrity audit on the data being processed.
- Data needs to be extracted from the staging area before being loaded to the target, which may

lead to performance issues.

Journalizing Knowledge Modules (JKM)
JKMs create the infrastructure for Change Data Capture on a model, a sub model or a datastore. JKMs
are not used in interfaces, but rather within a model to define how the CDC infrastructure is initialized. This
infrastructure is composed of a subscribers table, a table of changes, views on this table and one or more
triggers or log capture programs as illustrated below.

Data Server
Staging Area

CDC Infrastructure

Source
Table JKMJKM

Subscribers

J$
Journal Table

CDC Trigger or
Log Capture

JV$
ViewsJV$

Views

Figure 7: Journalizing Knowledge Module

Service Knowledge Modules (SKM)
SKMs are in charge of creating and deploying data manipulation Web Services to your Service Oriented
Architecture (SOA) infrastructure. SKMs are set on a Model. They define the different operations to
generate for each datastore’s web service. Unlike other KMs, SKMs do no generate an executable code
but rather the Web Services deployment archive files. SKMs are designed to generate Java code using
Oracle Data Integrator’s framework for Web Services. The code is then compiled and eventually deployed
on the Application Server’s containers.

Knowledge Modules Developer's Guide 8/56

Oracle Data Integrator Substitution API
KMs are written as templates by using the Oracle Data Integrator substitution API. A detailed reference for
this API is provided in the online documentation. The API methods are java methods that return a string
value. They all belong to a single object instance named "odiRef". The same method may return different
values depending on the type of KM that invokes it. That’s why they are classified by type of KM.

Note: For backward compatibility, the "odiRef" API can also be referred to as "snpRef" API.
"snpRef" and "odiRef" object instances are synonyms. Some examples in this section are still using
the old snpRef notation rather than the new odiRef notation.

To understand how this API works, the following example illustrates how you would write a create table
statement in a KM and what it would generate depending on the datastores it would deal with:

Code inside a KM Create table <%=odiRef.getTable("L", "INT_NAME", "A")%>
(
<%=odiRef.getColList("", "\t[COL_NAME] [DEST_CRE_DT]", ",\n", "", "")%>
)

Generated code for
the PRODUCT
datastore

Create table db_staging.I$_PRODUCT
(

PRODUCT_ID numeric(10),
PRODUCT_NAME varchar(250),
FAMILY_ID numeric(4),
SKU varchar(13),
LAST_DATE timestamp

)

Generated code for
the CUSTOMER
datastore

Create table db_staging.I$_CUSTOMER
(

CUST_ID numeric(10),
CUST_NAME varchar(250),
ADDRESS varchar(250),
CITY varchar(50),
ZIP_CODE varchar(12),
COUNTRY_ID varchar(3)

)

As you can see, once executed with appropriate metadata, the KM has generated a different code for the
product and customer tables.

The following topics cover some of the main substitution APIs and their use within KMs. Note that for
better readability the tags "<%" and "%>" as well as the "odiRef" object reference are omitted in the
examples.

Working with Datastores and Object Names

Knowledge Modules Developer's Guide 9/56

When working in Designer, you should almost never specify physical information such as the database
name or schema name as they may change depending on the execution context. The correct physical
information will be provided by Oracle Data Integrator at execution time.
The substitution API has methods that calculate the fully qualified name of an object or datastore taking
into account the context at runtime. These methods are listed in the table below:

To Obtain the Full
Qualified Name of

Use method Where
Applicable

Any object named
MY_OBJECT

getObjectName("L", "MY_OBJECT", "D") All KMs and
procedures

The target datastore getTable("L", "TARG_NAME", "A") LKM, CKM,
IKM, JKM

The "I$" datastore getTable("L", "INT_NAME", "A") LKM, IKM

The "C$" datastore getTable("L", "COLL_NAME", "A") LKM

The "E$" datastore getTable("L", "ERR_NAME", "A") LKM, CKM, IKM

The checked
datastore

getTable("L", "CT_NAME", "A") CKM

The datastore
referenced by a
foreign key

getTable("L", "FK_PK_TABLE_NAME", "A") CKM

Working with Lists of Tables, Columns and
Expressions
Generating code from a list of items often requires a "while" or "for" loop. Oracle Data Integrator
addresses this issue by providing powerful methods that help you generate code based on lists. These
methods act as "iterators" to which you provide a substitution mask or pattern and a separator and they
return a single string with all patterns resolved separated by the separator.
All of them return a string and accept at least these 4 parameters:

- Start: a string used to start the resulting string.
- Pattern: a substitution mask with attributes that will be bound to the values of each item of the list.
- Separator: a string used to separate each substituted pattern from the following one.
- End: a string appended to the end of the resulting string

Some of them accept an additional parameter (Selector) that acts as a filter to retrieve only part of the
items of the list.
Some of these methods are summarized in the table below:

Method Description Where
Applicable

getColList() The most frequently-used method in Oracle Data
Integrator. It returns a list of columns and expressions
that need to be executed in the context where used.
You can use it, for example, to generate lists like

LKM, CKM,
IKM, JKM, SKM

Knowledge Modules Developer's Guide 10/56

Method Description Where
Applicable

these:
- Columns in a CREATE TABLE statement
- Columns of the update key
- Expressions for a SELECT statement in a

LKM, CKM or IKM
- Field definitions for a loading script

This method accepts a "selector" as a 5th parameter
to let you filter items as desired.

getTargetColList() Returns the list of columns in the target datastore.
This method accepts a selector as a 5th parameter to
let you filter items as desired.

LKM, CKM,
IKM, JKM,SKM

getAKColList() Returns the list of columns defined for an alternate
key.

CKM, SKM

getPKColList() Returns the list of columns in a primary key. You can
alternatively use getColList with the selector
parameter set to "PK" .

CKM,SKM

getFKColList() Returns the list of referencing columns and
referenced columns of the current foreign key.

CKM,SKM

getSrcTablesList() Returns the list of source tables of an interface.
Whenever possible, use the getFrom method instead.
The getFrom method is discussed below.

LKM, IKM

getFilterList() Returns the list of filter expressions in an interface.
The getFilter method is usually more appropriate.

LKM, IKM

getJoinList() Returns the list of join expressions in an interface.
The getJoin method is usually more appropriate.

LKM, IKM

getGrpByList() Returns the list of expressions that should appear in
the group by clause when aggregate functions are
detected in the mappings of an interface. The
getGrpBy method is usually more appropriate.

LKM, IKM

getHavingList() Returns the list of expressions that should appear in
the having clause when aggregate functions are
detected in the filters of an interface. The getHaving
method is usually more appropriate.

LKM, IKM

getSubscriberList() Returns a list of subscribers. JKM

The following examples illustrate how these methods work for generating code:

Using getTargetColList to create a table
Code in Create table MYTABLE

Knowledge Modules Developer's Guide 11/56

your KM
<%=odiRef.getTargetColList("(\n", "\t[COL_NAME] [DEST_WRI_DT]", ",\n",
"\n)")%>

Code
Generated

Create table MYTABLE
(

CUST_ID numeric(10),
CUST_NAME varchar(250),
ADDRESS varchar(250),
CITY varchar(50),
ZIP_CODE varchar(12),
COUNTRY_ID varchar(3)

)

- Start is set to "(\n": The generated code will start with a parenthesis followed by a carriage return
(\n).

- Pattern is set to "\t[COL_NAME] [DEST_WRI_DT]": The generated code will loop over every target
column and generate a tab character (\t) followed by the column name ([COL_NAME]), a white
space and the destination writable data type ([DEST_WRI_DT]).

- The Separator is set to ",\n": Each generated pattern will be separated from the next one with a
comma (,) and a carriage return (\n)

- End is set to "\n)": The generated code will end with a carriage return (\n) followed by a
parenthesis.

Using getColList in an Insert values statement
Code in
your KM

insert into MYTABLE
(
<%=odiRef.getColList("", "[COL_NAME]", ", ", "\n", "INS AND NOT TARG")%>
<%=odiRef.getColList(",", "[COL_NAME]", ", ", "", "INS AND TARG")%>
)
Values
(
<%=odiRef.getColList("", ":[COL_NAME]", ", ", "\n", "INS AND NOT TARG")%>
<%=odiRef.getColList(", ", "[EXPRESSION]", ", ", "", "INS AND TARG")%>
)

Code
Generated

insert into MYTABLE
(
CUST_ID, CUST_NAME, ADDRESS, CITY, COUNTRY_ID
, ZIP_CODE, LAST_UPDATE
)
Values
(
:CUST_ID, :CUST_NAME, :ADDRESS, :CITY, :COUNTRY_ID
, 'ZZ2345', current_timestamp
)

Knowledge Modules Developer's Guide 12/56

In this example, the values that need to be inserted into MYTABLE are either bind variables with the same
name as the target columns or constant expressions if they are executed on the target. To obtain these 2
distinct set of items, the list is split using the selector parameter:

- "INS AND NOT TARG": first, generate a comma-separated list of columns ([COL_NAME])
mapped to bind variables in the "value" part of the statement (:[COL_NAME]). Filter them to get
only the ones that are flagged to be part of the INSERT statement and that are not executed on
the target.

- "INS AND TARG": then generate a comma separated list of columns ([COL_NAME])
corresponding to expression ([EXPRESSION]) that are flagged to be part of the INSERT
statement and that are executed on the target. The list should start with a comma if any items
are found.

Using getSrcTableList
Code in
your KM

insert into MYLOGTABLE
(

INTERFACE_NAME,
DATE_LOADED,
SOURCE_TABLES

)
values
(

'<%=odiRef.getPop("POP_NAME")%>',
current_date,

'' <%=odiRef.getSrcTablesList("|| ", "'[RES_NAME]'", " || ',' || ", "")%>
)

Code
Generated

insert into MYLOGTABLE
(

INTERFACE_NAME,
DATE_LOADED,
SOURCE_TABLES

)
values
(

'Int. CUSTOMER',
current_date,

'' || 'SRC_CUST' || ',' || 'AGE_RANGE_FILE' || ',' || 'C$0_CUSTOMER'
)

In this example, getSrcTableList generates a message containing the list of resource names used as
sources in the interface to append to MYLOGTABLE. The separator used is composed of a
concatenation operator (||) followed by a comma enclosed by quotes (',') followed by the same operator
again. When the table list is empty, the SOURCE_TABLES column of MYLOGTABLE will be mapped to
an empty string ('').

Generating the Source Select Statement

Knowledge Modules Developer's Guide 13/56

LKMs and IKMs both manipulate a source result set. For the LKM, this result set represents the pre-
transformed records according to the mappings, filters and joins that need to be executed on the source.
For the IKM, however, the result set represents the transformed records matching the mappings, filters
and joins executed on the staging area.
To build these result sets, you will usually use a SELECT statement in your KMs. Oracle Data Integrator
has some advanced substitution methods, including getColList, that help you generate this code:

Method Description Where
Applicable

getFrom() Returns the FROM clause of a SELECT statement
with the appropriate source tables, left, right and full
outer joins. This method uses information from the
topology to determine the SQL capabilities of the
source or target technology. The FROM clause is
built accordingly with the appropriate keywords
(INNER, LEFT etc.) and parentheses when supported
by the technology.

- When used in an LKM, it returns the FROM
clause as it should be executed by the source
server.

- When used in an IKM, it returns the FROM
clause as it should be executed by the
staging area server.

LKM, IKM

getFilter() Returns filter expressions separated by an "AND"
operator.

- When used in an LKM, it returns the filter
clause as it should be executed by the source
server.

- When used in an IKM, it returns the filter
clause as it should be executed by the
staging area server.

LKM, IKM

getJrnFilter() Returns the special journal filter expressions for the
journalized source datastore. This method should be
used with the CDC framework.

LKM, IKM

getGrpBy() Returns the GROUP BY clause when aggregation
functions are detected in the mappings.
The GROUP BY clause includes all mapping
expressions referencing columns that do not contain
aggregation functions. The list of aggregation
functions are defined by the language of the
technology in the topology.

LKM, IKM

getHaving() Returns the HAVING clause when aggregation
functions are detected in filters.
The having clause includes all filters expressions
containing aggregation functions. The list of
aggregation functions are defined by the language of
the technology in the topology.

LKM, IKM

Knowledge Modules Developer's Guide 14/56

To obtain the result set from any SQL RDBMS source server, you would use the following SELECT
statement in your LKM:
select <%=odiRef.getPop("DISTINCT_ROWS")%>

<%=odiRef.getColList("", "[EXPRESSION]\t[ALIAS_SEP] [CX_COL_NAME]", ",\n\t", "", "")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getFilter()%>
<%=odiRef.getJrnFilter()%>
<%=odiRef.getJoin()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

To obtain the result set from any SQL RDBMS staging area server to build your final flow data, you would
use the following SELECT statement in your IKM. Note that the getColList is filtered to retrieve only
expressions that are not executed on the target and that are mapped to writable columns.
select <%=odiRef.getPop("DISTINCT_ROWS")%>

<%=odiRef.getColList("", "[EXPRESSION]", ",\n\t", "", "(not TRG) and REW")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getJrnFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

As all filters and joins start with an AND, the WHERE clause of the SELECT statement starts with a
condition that is always true (1=1).

Obtaining Other Information with the API
The following methods provide additional information which may be useful:

Method Description Where
Applicable

getPop() Returns information about the current interface. LKM, IKM

getInfo() Returns information about the source or target server. Any procedure or
KM

getSession() Returns information about the current running session Any procedure or
KM

getOption() Returns the value of a particular option Any procedure or
KM

getFlexFieldValue() Returns information about a flex field value. Not that
with the "List" methods, flex field values can be
specified as part of the pattern parameter.

Any procedure or
KM

Knowledge Modules Developer's Guide 15/56

Method Description Where
Applicable

getJrnInfo() Returns information about the CDC framework JKM, LKM, IKM

getTargetTable() Returns information about the target table of an
interface

LKM, IKM, CKM

getModel() Returns information about the current model during a
reverse-engineering process.

RKM

Advanced Techniques for Code Generation
You can use conditional branching and advanced programming techniques to generate code. The code
generation in Oracle Data Integrator is able to interpret any Java code enclosed between "<%" and "%>"
tags. Refer to http://java.sun.com for a complete reference for the Java language.
The following examples illustrate how you can use these advanced techniques:

Code in the KM or procedure Generated code

<%
String myTableName;
myTableName = "ABCDEF";
%>
drop table
<%=odiRef.getObjectName(myTableName.toLowerCase())%>

drop table SCOTT.abcdef

<%
String myOptionValue=odiRef.getOption("Test");

if (myOption.equals("TRUE"))
{

out.print("/* Option Test is set to TRUE */");
}
else
{
%>
/* The Test option is not properly set */
<%
}
%>
...

When option Test is set to TRUE:
/* Option Test is set to TRUE */
...

Otherwise:
/* The Test option is not
properly set */
...

Create table <%=odiRef.getObjectName("XYZ")%>
(
<%
String s;
s = "ABCDEF";
for (int i=0; i < s.length(); i++)

Create table ADAMS.XYZ
(
A char(1),
B char(1),
C char(1),
D char(1),

Knowledge Modules Developer's Guide 16/56

http://java.sun.com/

{
%>
<%=s.charAt(i)%> char(1),
<%
}
%>
G char(1)
)

E char(1),
F char(1),
G char(1)
)

Knowledge Modules Developer's Guide 17/56

Reverse-engineering Knowledge
Modules (RKM)

RKM Process
Customizing a reverse-engineering strategy using an RKM is normally straightforward. The steps are
usually the same from one RKM to another:

1. Call the OdiReverseResetTable command to reset the SNP_REV_xx tables from previous
executions.

2. Retrieve sub models, datastores, columns, unique keys, foreign keys, conditions from the
metadata provider to SNP_REV_SUB_MODEL, SNP_REV_TABLE, SNP_REV_COL,
SNP_REV_KEY, SNP_REV_KEY_COL, SNP_REV_JOIN, SNP_REV_JOIN_COL,
SNP_REV_COND tables. Refer to section SNP_REV_xx Tables Reference for more information
about the SNP_REVxx tables.

3. Call the OdiReverseSetMetaData command to apply the changes to the current Oracle Data
Integrator model.

As an example, the steps below are extracted from the RKM for Oracle. Refer to the Knowledge Modules
Reference Guide for additional information on this RKM:

Step Example of code

Reset SNP_REV
tables

OdiReverseResetTable -MODEL=<%=odiRef.getModel("ID")%>

Get Tables and
views

/*=======================*/
/* Command on the source */
/*=======================*/
Select t.TABLE_NAME TABLE_NAME,

t.TABLE_NAME RES_NAME,

replace(t.TABLE_NAME,'<%=snpRef.getModel("REV_ALIAS_LTRIM")%>','')
TABLE_ALIAS,
substr(tc.COMMENTS,1,250) TABLE_DESC,
t.NUM_ROWS R_COUNT

From ALL_TABLES t,
ALL_TAB_COMMENTS tc

Where t.OWNER = '<%=snpRef.getModel("SCHEMA_NAME")%>'
and t.TABLE_NAME like '<%=snpRef.getModel("REV_OBJ_PATT")%>'
and tc.OWNER(+) = t.OWNER
and tc.TABLE_NAME(+) = t.TABLE_NAME

/*=======================*/
/* Command on the target */
/*=======================*/
insert into SNP_REV_TABLE

Knowledge Modules Developer's Guide 18/56

Step Example of code

(I_MOD, TABLE_NAME,RES_NAME,TABLE_ALIAS,TABLE_TYPE,TABLE_DESC,
IND_SHOW,R_COUNT)
values
(<%=odiRef.getModel("ID")%>,:TABLE_NAME,:RES_NAME,:TABLE_ALIAS,'T',
:TABLE_DESC,'1',:R_COUNT)

Get Table
Columns

/*=======================*/
/* Command on the source */
/*=======================*/
select
c.TABLE_NAME TABLE_NAME,
c.COLUMN_NAME COL_NAME,
c.DATA_TYPE DT_DRIVER,
substr(cc.COMMENTS,1,250) COL_DESC,
c.COLUMN_ID POS,
decode(C.DATA_TYPE, 'NUMBER', c.DATA_PRECISION,
nvl(c.DATA_PRECISION,c.DATA_LENGTH)) LONGC,
c.DATA_SCALE SCALEC,
decode(c.NULLABLE,'Y','0','1') COL_MANDATORY
from ALL_TAB_COLUMNS c,

ALL_COL_COMMENTS cc,
ALL_OBJECTS o

Where o.OWNER = '<%=snpRef.getModel("SCHEMA_NAME")%>'
and (o.OBJECT_TYPE = 'TABLE' or o.OBJECT_TYPE = 'VIEW')
and o.OBJECT_NAME like '<%=snpRef.getModel("REV_OBJ_PATT")%>'
and cc.OWNER(+) = c.OWNER
and cc.TABLE_NAME(+) = c.TABLE_NAME
and cc.COLUMN_NAME(+) = c.COLUMN_NAME
and o.OWNER = c.OWNER
and o.OBJECT_NAME = c.TABLE_NAME
/*=======================*/
/* Command on the target */
/*=======================*/
insert into SNP_REV_COL
(I_MOD,TABLE_NAME,COL_NAME,DT_DRIVER,COL_DESC,POS,LONGC,SCALEC,COL_MA
NDATORY,CHECK_STAT,CHECK_FLOW)
values
(<%=odiRef.getModel("ID")%>,:TABLE_NAME,:COL_NAME,:DT_DRIVER,:COL_DES
C,:POS,:LONGC,:SCALEC,:COL_MANDATORY,'1','1')

Etc.

Set Metadata OdiReverseSetMetaData -MODEL=<%=odiRef.getModel("ID")%>

Refer to the following RKMs for further details:

RKM Description

RKM Oracle Reverse-engineering Knowledge Module for Oracle

Knowledge Modules Developer's Guide 19/56

RKM Description

RKM Teradata Reverse-engineering Knowledge Module for Teradata

RKM DB2 400 Reverse-engineering Knowledge Module for DB2/400.
Retrieves the short name of tables rather than the long name.

RKM File (FROM EXCEL) Reverse-engineering Knowledge Module for Files, based on a
description of files in a Microsoft Excel spreadsheet.

RKM Informix SE Reverse-engineering Knowledge Module for Informix Standard
Edition

RKM Informix Reverse-engineering Knowledge Module for Informix

RKM SQL (JYTHON) Reverse-engineering Knowledge Module for any JDBC
compliant database. Uses Jython to call the JDBC API.

SNP_REV_xx Tables Reference

SNP_REV_SUB_MODEL
Description: Reverse-engineering temporary table for sub-models.

Column Type Mandatory Description

I_MOD numeric(10) Yes Internal ID of the model

SMOD_CODE varchar(35) Yes Code of the sub-model

SMOD_NAME varchar(100) Name of the sub-model

SMOD_PARENT_CODE varchar(35) Code of the parent sub-model

IND_INTEGRATION varchar(1) Used internally by the
OdiReverserSetMetadata API

TABLE_NAME_PATTERN varchar(35)
Automatic assignment mask used to
distribute datastores in this sub-model

REV_APPY_PATTERN varchar(1) Datastores distribution rule:
0: No distribution
1: Automatic distribution of all datastores
not already in a sub-model
2: Automatic distribution of all datastores

SNP_REV_TABLE
Description: The temporary table for reverse-engineering datastores.

Knowledge Modules Developer's Guide 20/56

Column Type Mandatory Description

I_MOD numeric(10) Yes Internal ID of the model

TABLE_NAME varchar(100) Yes Name of the datastore

RES_NAME varchar(250) Physical name of the datastore

TABLE_ALIAS varchar(35) Default alias for this datastore

TABLE_TYPE varchar(2) Type of datastore:
T: Table or file
V: View
Q: Queue or Topic
ST: System table
AT: Table alias
SY: Synonym

TABLE_DESC varchar(250) Datastore description

IND_SHOW varchar(1) Indicates whether this datastore is
displayed or hidden:
0: Hidden
1: Displayed

R_COUNT numeric(10) Estimated row count

FILE_FORMAT varchar(1) Record format (applies only to files and
JMS messages):
F: Fixed length file
D: Delimited file

FILE_SEP_FIELD varchar(8) Field separator (only applies to files and
JMS messages)

FILE_ENC_FIELD varchar(2) Text delimiter (only applies to files and JMS
messages)

FILE_SEP_ROW varchar(8) Row separator (only applies to files and
JMS messages)

FILE_FIRST_ROW numeric(10) Numeric or records to skip in the file (only
applies to files and JMS messages)

FILE_DEC_SEP varchar(1) Default decimal separator for numeric fields
of the file (only applies to files and JMS
messages)

SMOD_CODE varchar(35) Code of the sub-model this table should be
place in. If null, the table will be placed in
the main model.

SNP_REV_COL
Description: Reverse-engineering temporary table for columns.

Knowledge Modules Developer's Guide 21/56

Column Type Mandatory Description

I_MOD numeric(10) Yes Internal ID of the model

TABLE_NAME varchar(100) Yes Name of the table

COL_NAME varchar(100) Yes Name of the column

COL_HEADING varchar(35) Short description of the column

COL_DESC varchar(250) Long description of the column

DT_DRIVER varchar(35) Data type of the column. This data type
should match the data type code as
defined in Oracle Data Integrator Topology
for this technology

POS numeric(10) Ordinal position of the column in the table

LONGC numeric(10) Character length or numeric precision
radix of the column

SCALEC numeric(10) Decimal digits of the column

FILE_POS numeric(10) Start byte position of the column in a fixed
length file (applies only to files and JMS
messages)

BYTES numeric(10) Numeric of bytes of the column (applies
only to files and JMS messages)

IND_WRITE varchar(1) Indicates whether the column is writable: 0
 No, 1  Yes

COL_MANDATORY varchar(1) Indicates whether the column is
mandatory: 0  No, 1 Yes

CHECK_FLOW varchar(1) Indicates whether to include the
mandatory constraint by default in the flow
control: 0 No, 1 yes

CHECK_STAT varchar(1) Indicates whether to include the
mandatory constraint by default in the
static control: 0  No, 1 yes

COL_FORMAT varchar(35) Column format. Usually this field applies
only to files and JMS messages to explain
the date format.

COL_DEC_SEP varchar(1) Decimal separator for the column (applies
only to files and JMS messages)

REC_CODE_LIST varchar(250) Record code to filter multiple record files
(applies only to files and JMS messages)

COL_NULL_IF_ERR varchar(1) Indicates whether to set this column to null
in case of error (applies only to files and
JMS messages)

Knowledge Modules Developer's Guide 22/56

SNP_REV_KEY
Description: Temporary table for reverse-engineering primary keys, alternate keys and indexes.

Column Type Mandatory Description

I_MOD numeric(10) Yes Internal ID of the model

TABLE_NAME varchar(100) Yes Name of the table

KEY_NAME varchar(100) Yes Name of the key or index

CONS_TYPE varchar(2) Yes Type of key:
PK: Primary key
AK: Alternate key
I: Index

IND_ACTIVE varchar(1) Indicates whether this constraint is active:
0  No, 1 yes

CHECK_FLOW varchar(1) Indicates whether to include this constraint
by default in flow control: 0 No, 1 yes

CHECK_STAT varchar(1) Indicates whether to include constraint by
default in static control: 0 No, 1 yes

SNP_REV_KEY_COL
Description: Temporary table for reverse-engineering columns that form part of a primary key, alternate
key or index.

Column Type Mandatory Description

I_MOD numeric(10) Yes Internal ID of the model

TABLE_NAME varchar(100) Yes Name of the table

KEY_NAME varchar(100) Yes Name of the key or index

COL_NAME varchar(100) Yes Name of the column belonging to the key

POS numeric(10) Ordinal position of the column in the key

SNP_REV_JOIN
Description: Temporary table for reverse-engineering references (foreign keys).

Column Type Mandatory Description

I_MOD numeric(10) Yes Internal ID of the model

Knowledge Modules Developer's Guide 23/56

Column Type Mandatory Description

FK_NAME varchar(100) Yes Name of the reference or foreign key

TABLE_NAME varchar(100) Yes Name of the referencing table

FK_TYPE varchar(1) Type of foreign key:
D: Database foreign key
U: User-defined foreign key
C: Complex user-defined foreign key

PK_CATALOG varchar(35) Catalog of the referenced table

PK_SCHEMA varchar(35) Schema of the referenced table

PK_TABLE_NAME varchar(100) Name of the referenced table

CHECK_STAT varchar(1) Indicates whether to include constraint by
default in the static control: 0  No, 1 
yes

CHECK_FLOW varchar(1) Indicates whether to include constraint by
default in the flow control: 0 No, 1 yes

IND_ACTIVE varchar(1) Indicates whether this constraint is active:
0 No, 1 yes

DEFER varchar(1) Reserved for future use

UPD_RULE varchar(1) Reserved for future use

DEL_RULE varchar(1) Reserved for future use

SNP_REV_JOIN_COL
Description: Temporary table for reverse-engineering columns that form part of a reference (or foreign
key).

Column Type Mandatory Description

I_MOD numeric(10) Yes Internal ID of the model

FK_NAME varchar(100) Yes Name of the reference or foreign key

FK_COL_NAME varchar(100) Yes Column name of the referencing table

FK_TABLE_NAME varchar(100) Name of the referencing table

PK_COL_NAME varchar(100) Yes Column name of the referenced table

PK_TABLE_NAME varchar(100) Name of the referenced table

POS numeric(10) Ordinal position of the column in the
foreign key

Knowledge Modules Developer's Guide 24/56

SNP_REV_COND
Description: Temporary table for reverse-engineering conditions and filters (check constraints).

Column Type Mandatory Description

I_MOD numeric(10) Yes Internal ID of the model

TABLE_NAME varchar(100) Yes Name of the table

COND_NAME varchar(35) Yes Name of the condition or check constraint

COND_TYPE varchar(1) Yes Type of condition:
C: Oracle Data Integrator condition
D: Database condition
F: Permanent filter

COND_SQL varchar(250) SQL expression for applying this condition
or filter

COND_MESS varchar(250) Error message for this condition

IND_ACTIVE varchar(1) Indicates whether this constraint is active:
0 -> No, 1 -> yes

CHECK_STAT varchar(1) Indicates whether to include constraint by
default in the static control: 0 -> No, 1 ->
yes

CHECK_FLOW varchar(1) Indicates whether to include constraint by
default in the flow control: 0 -> No, 1 ->
yes

Knowledge Modules Developer's Guide 25/56

Data Integrity Strategies (CKM)

Standard Check Knowledge Modules
A CKM is in charge of checking the data quality of a datastore according to a predefined set of constraints.
The CKM can be used either to check existing data when used in a "static control" or to check flow data
when used in a "flow control" invoked from an IKM. It is also in charge of removing the erroneous records
from the checked table if specified.
Standard CKMs maintain 2 different types of tables:

- A single summary table named SNP_CHECK_TAB for every data server, created in the work
schema of the default physical schema of the data server. This table contains a summary of the
errors for every table and constraint. It can be used, for example, to analyze the overall data
quality of the data warehouse.

- An error table named E$_<DatastoreName> for every datastore that was checked. The error table
contains the actual records rejected by the data quality process.

The recommended columns for these tables are listed below:

Knowledge Modules Developer's Guide 26/56

Table Column Description

SNP_CHECK_TAB CATALOG_NAME Catalog name of the checked table, where
applicable

SCHEMA_NAME Schema name of the checked table, where
applicable

RESOURCE_NAME Resource name of the checked table

FULL_RES_NAME Fully qualified name of the checked table. For
example <catalog>.<schema>.<table>

ERR_TYPE Type of error:
- ‘F’ when the datastore is checked

during flow control
- ‘S’ when the datastore is checked using

static control

ERR_MESS Error message

CHECK_DATE Date and time when the datastore was checked

ORIGIN Origin of the check operation. This column is
set either to the datastore name or to an
interface name and ID depending on how the
check was performed.

CONS_NAME Name of the violated constraint.

CONS_TYPE Type of constraint:
- ‘PK’: Primary Key
- ‘AK’: Alternate Key
- ‘FK’: Foreign Key
- ‘CK’: Check condition
- ‘NN’: Mandatory column

ERR_COUNT Total number of records rejected by this
constraint during the check process

Knowledge Modules Developer's Guide 27/56

Table Column Description

"E$" Error table [Columns of the
checked table]

The error table contains all the columns of the
checked datastore.

ERR_TYPE Type of error:
- ‘F’ when the datastore is checked

during flow control
- ‘S’ when the datastore is checked using

static control

ERR_MESS Error message related to the violated constraint

CHECK_DATE Date and time when the datastore was checked

ORIGIN Origin of the check operation. This column is
set either to the datastore name or to an
interface name and ID depending on how the
check was performed.

CONS_NAME Name of the violated constraint.

CONS_TYPE Type of the constraint:
- ‘PK’: Primary Key
- ‘AK’: Alternate Key
- ‘FK’: Foreign Key
- ‘CK’: Check condition
- ‘NN’: Mandatory column

A standard CKM is composed of the following steps:
- Drop and create the summary table. The DROP statement is executed only if the designer

requires it for resetting the summary table. The CREATE statement is always executed but the
error is tolerated if the table already exists.

- Remove the summary records from the previous run from the summary table
- Drop and create the error table. The DROP statement is executed only if the designer requires it

for recreating the error table. The CREATE statement is always executed but error is tolerated if
the table already exists.

- Remove rejected records from the previous run from the error table
- Reject records that violate the primary key constraint.
- Reject records that violate any alternate key constraint
- Reject records that violate any foreign key constraint
- Reject records that violate any check condition constraint
- Reject records that violate any mandatory column constraint
- Remove rejected records from the checked table if required
- Insert the summary of detected errors in the summary table.

CKM commands should be tagged to indicate how the code should be generated. The tags can be:
- "Primary Key": The command defines the code needed to check the primary key constraint
- "Alternate Key": The command defines the code needed to check an alternate key constraint.

Knowledge Modules Developer's Guide 28/56

During code generation, Oracle Data Integrator will use this command for every alternate key
- "Join": The command defines the code needed to check a foreign key constraint. During code

generation, Oracle Data Integrator will use this command for every foreign key
- "Condition": The command defines the code needed to check a condition constraint. During code

generation, Oracle Data Integrator will use this command for every check condition
- "Mandatory": The command defines the code needed to check a mandatory column constraint.

During code generation, Oracle Data Integrator will use this command for mandatory column
- "Remove Errors": The command defines the code needed to remove the rejected records from the

checked table.

Extracts from the CKM Oracle are provided below:

Step Example of code Conditions to
Execute

drop check table drop table
<%=snpRef.getTable("L","CHECK_NAME","W")%> Always. Error

Tolerated

create check
table

create table
<%=snpRef.getTable("L","CHECK_NAME","W")%>

(
CATALOG_NAME
<%=snpRef.getDataType("DEST_VARCHAR", "100",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%> ,
SCHEMA_NAME
<%=snpRef.getDataType("DEST_VARCHAR", "100",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%> ,
RESOURCE_NAME
<%=snpRef.getDataType("DEST_VARCHAR", "100",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
FULL_RES_NAME
<%=snpRef.getDataType("DEST_VARCHAR", "100",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
ERR_TYPE
<%=snpRef.getDataType("DEST_VARCHAR", "1",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
ERR_MESS
<%=snpRef.getDataType("DEST_VARCHAR", "250",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%> ,
CHECK_DATE
<%=snpRef.getDataType("DEST_DATE", "", "")%>

<%=snpRef.getInfo("DEST_DDL_NULL")%>,
ORIGIN
<%=snpRef.getDataType("DEST_VARCHAR", "100",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
CONS_NAME
<%=snpRef.getDataType("DEST_VARCHAR", "35",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
CONS_TYPE
<%=snpRef.getDataType("DEST_VARCHAR", "2",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
ERR_COUNT
<%=snpRef.getDataType("DEST_NUMERIC", "10",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>
)

Always. Error
Tolerated

Create the error
table

create table <%=snpRef.getTable("L","ERR_NAME",
"W")%> Always. Error

Tolerated

Knowledge Modules Developer's Guide 29/56

Step Example of code Conditions to
Execute

(
ROW_ID ROWID,
ERR_TYPE
<%=snpRef.getDataType("DEST_VARCHAR", "1",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
ERR_MESS
<%=snpRef.getDataType("DEST_VARCHAR", "250",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
CHECK_DATE
<%=snpRef.getDataType("DEST_DATE", "", "")%>

<%=snpRef.getInfo("DEST_DDL_NULL")%>,
<%=snpRef.getColList("",

"[COL_NAME]\t[DEST_WRI_DT] " +
snpRef.getInfo("DEST_DDL_NULL"), ",\n\t", "", "")%>,

ORIGIN
<%=snpRef.getDataType("DEST_VARCHAR", "100",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
CONS_NAME
<%=snpRef.getDataType("DEST_VARCHAR", "35",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>,
CONS_TYPE
<%=snpRef.getDataType("DEST_VARCHAR", "2",

"")%> <%=snpRef.getInfo("DEST_DDL_NULL")%>
)

Isolate PK errors insert into <%=snpRef.getTable("L","ERR_NAME",
"W")%>
(

ROW_ID,
ERR_TYPE,
ERR_MESS,
ORIGIN,
CHECK_DATE,
CONS_NAME,
CONS_TYPE,
<%=snpRef.getColList("", "[COL_NAME]",

",\n\t", "", "MAP")%>
)
select

rowid,
'<%=snpRef.getInfo("CT_ERR_TYPE")%>',
'<%=snpRef.getPK("MESS")%>',
'<%=snpRef.getInfo("CT_ORIGIN")%>',
<%=snpRef.getInfo("DEST_DATE_FCT")%>,
'<%=snpRef.getPK("KEY_NAME")%>',
'PK',
<%=snpRef.getColList("",

snpRef.getTargetTable("TABLE_ALIAS")+".[COL_NAME]",
",\n\t", "", "MAP")%>
from <%=snpRef.getTable("L", "CT_NAME", "A")%>
<%=snpRef.getTargetTable("TABLE_ALIAS")%>
where (

Primary Key

Knowledge Modules Developer's Guide 30/56

Step Example of code Conditions to
Execute

<%=snpRef.getColList("",snpRef.getTargetTable("TABLE
_ALIAS")+".[COL_NAME]", ",\n\t\t", "", "PK")%>

) in (
select <%=snpRef.getColList("",

"[COL_NAME]", ",\n\t\t\t", "", "PK")%>
from

<%=snpRef.getTable("L","CT_NAME","A")%>
group by

<%=snpRef.getColList("", "[COL_NAME]",
",\n\t\t\t", "", "PK")%>

having count(1) > 1
)

<%=snpRef.getFilter()%>

Remove errors
from checked
table

delete from <%=snpRef.getTable("L", "CT_NAME",
"A")%> T
where T.rowid in (

select ROW_ID
from

<%=snpRef.getTable("L","ERR_NAME", "W")%>
)

Remove Errors

Note:
When using a CKM to perform flow control from an interface, you can define the maximum number of
errors allowed. This number is compared to the total number of records returned by every command in
the CKM of which the "Log Counter" is set to "Error".

Case Study: Customizing a CKM to Dynamically
Create Non-Existing References
In some cases, when loading a data warehouse for example, you may receive records that should
reference data from other tables, but those referenced records do not yet exist.
Suppose, for example, that you receive daily sales transactions records that reference product SKUs.
When a product does not exist in the products table, the default behavior of the standard CKM is to reject
the sales transaction record into the error table instead of loading it into the data warehouse. However, to
meet the requirements of your project you wish to load this sales record into the data warehouse and
create an empty product on the fly to ensure data consistency. The data analysts would then simply
analyze the error tables and complete the missing information for products that were automatically added
to the products table.

Knowledge Modules Developer's Guide 31/56

The following figure illustrates this example.

13.213202/07/06P254

198.6102/04/06P33

123.51202/03/06P22

12.81001/01/06P11

AmountQtyDateSKUID

13.213202/07/06P254

198.6102/04/06P33

123.51202/03/06P22

12.81001/01/06P11

AmountQtyDateSKUID

---<UNKNOWN>P25

Fam2Supp234Pencil HB23P4

Fam2Supp221Wallet XD34P3

Fam3Supp111Bag ER32P2

Fam1Supp212Watch BR24P1

FamilySupplierSizeProductNameSKU

---<UNKNOWN>P25

Fam2Supp234Pencil HB23P4

Fam2Supp221Wallet XD34P3

Fam3Supp111Bag ER32P2

Fam1Supp212Watch BR24P1

FamilySupplierSizeProductNameSKU

13.213202/07/06P254

198.6102/04/06P33

123.51202/03/06P22

12.81001/01/06P11

AmountQtyDateSKUID

13.213202/07/06P254

198.6102/04/06P33

123.51202/03/06P22

12.81001/01/06P11

AmountQtyDateSKUID

FK_SALES_PRODUCT

Const

Invalid SKU reference

Message

04/01/06

Date

13.213202/07/06P254

AmountQtyDateSKUID

FK_SALES_PRODUCT

Const

Invalid SKU reference

Message

04/01/06

Date

13.213202/07/06P254

AmountQtyDateSKUID

Source Flow (I$ Table)

Target Sales Table Products Table

Error Table

FK_SALES_PRODUCT

IKMIKM

CKMCKM

Figure 8: Creating References on the Fly

- The source flow data is staged by the IKM in the "I$" table. The IKM calls the CKM to have it
check the data quality.

- The CKM checks every constraint including the FK_SALES_PRODUCT foreign key defined
between the target Sales table and the Products Table. It rejects record ID 4 in the error table as
product P25 doesn’t exist in the products table.

- The CKM inserts the missing P25 reference in the products table and assigns an ‘<UNKNOWN>’
value to the product name. All other columns are set to null or default values

- The CKM does not remove the rejected record from the source flow I$ table, as it became
consistent

- The IKM writes the flow data to the target

To implement such a CKM, you will notice that some information is missing in the Oracle Data Integrator
default metadata. For example, it could be useful to define for each foreign key, the name of the column of
the referenced table that should hold the ‘<UNKNOWN>’ value (ProductName in our case). As not all the
foreign keys will behave the same, it could also be useful to have an indicator for every foreign key that
explains whether this constraint needs to automatically create the missing reference or not. This additional
information can be obtained simply by adding Flex Fields on the "Reference" object in the Oracle Data
Integrator Security. The FK_SALES_PRODUCT constraint will allow you to enter this metadata as
described in the figure below. For more information about Flex Fields, refer Oracle Data Integrator
documentation.

Knowledge Modules Developer's Guide 32/56

Figure 9: Adding Flex Fields to the FK_SALES_PRODUCT Foreign Key

Now that we have all the required metadata, we can start enhancing the default CKM to meet our
requirements. The steps of the CKM will therefore be:

- Drop and create the summary table.
- Remove the summary records of the previous run from the summary table
- Drop and create the error table. Add an extra column to the error table to store constraint

behavior.
- Remove rejected records from the previous run from the error table
- Reject records that violate the primary key constraint.
- Reject records that violate each alternate key constraint
- Reject records that violate each foreign key constraint
- For every foreign key, if the AUTO_CREATE_REFS is set to "yes", insert missing

references in the referenced table
- Reject records that violate each check condition constraint
- Reject records that violate each mandatory column constraint
- Remove rejected records from the checked table if required. Do not remove records for which

the constraint behavior is set to Yes
- Insert the summary of detected errors in the summary table.

Details of the implementation of such a CKM are listed below:

Step Example of code for Teradata

Create the error
table

create multiset table <%=odiRef.getTable("L","ERR_NAME", "A")%>,
no fallback,
no before journal,
no after journal

(
AUTO_CREATE_REFS varchar(3),
ERR_TYPE varchar(1) ,
ERR_MESS varchar(250) ,
CHECK_DATE timestamp ,
<%=odiRef.getColList("", "[COL_NAME]\t[DEST_WRI_DT] " +

odiRef.getInfo("DEST_DDL_NULL"), ",\n\t", "", "")%>,
ORIGIN varchar(100) ,
CONS_NAME varchar(35) ,
CONS_TYPE varchar(2) ,

)

Isolate FK errors insert into <%=odiRef.getTable("L","ERR_NAME", "A")%>
(

Knowledge Modules Developer's Guide 33/56

Step Example of code for Teradata

AUTO_CREATE_REFS,
ERR_TYPE,
ERR_MESS,
CHECK_DATE,
ORIGIN,
CONS_NAME,
CONS_TYPE,
<%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "", "MAP")%>

)
select '<%=odiRef.getFK("AUTO_CREATE_REFS")%>',

'<%=odiRef.getInfo("CT_ERR_TYPE")%>',
'<%=odiRef.getFK("MESS")%>',
<%=odiRef.getInfo("DEST_DATE_FCT")%>,
'<%=odiRef.getInfo("CT_ORIGIN")%>',
'<%=odiRef.getFK("FK_NAME")%>',
'FK',

[... etc.]

Insert missing
references

<% if (odiRef.getFK("AUTO_CREATE_REFS").equals("Yes")) { %>
insert into <%=odiRef.getTable("L", "FK_PK_TABLE_NAME", "A")%>
(
 <%=odiRef.getFKColList("", "[PK_COL_NAME]", ",", "")%>
, <%=odiRef.getFK("REF_TAB_DEF_COL")%>
)
select distinct
 <%=odiRef.getFKColList("", "[COL_NAME]", ",", "")%>
 ‚'<UNKNOWN>'
from <%=odiRef.getTable("L","ERR_NAME", "A")%>
where

CONS_NAME = '<%=odiRef.getFK("FK_NAME")%>'
And CONS_TYPE = 'FK'
And ORIGIN = '<%=odiRef.getInfo("CT_ORIGIN")%>'
And AUTO_CREATE_REFS = 'Yes'
<%}%>

Remove the
rejected records
from the
checked table

delete from <%=odiRef.getTable("L", "CT_NAME", "A")%>
where exists (

select 'X'
from <%=odiRef.getTable("L","ERR_NAME", "A")%> as E
where

<%=odiRef.getColList("","(("+odiRef.getTable("L", "CT_NAME",
"A")+".[COL_NAME]\t= E.[COL_NAME]) or ("+odiRef.getTable("L",
"CT_NAME", "A")+".[COL_NAME] is null and E.[COL_NAME] is null))",
"\n\t\tand\t", "", "UK")%>

and E.AUTO_CREATE_REFS <> 'Yes'
)
[...etc.]

Knowledge Modules Developer's Guide 34/56

Loading Strategies (LKM)

Using the Agent
The Agent is able to read a result set using JDBC on a source server and write this result set using JDBC
to the "C$" table of the target staging area server. To use this method, your Knowledge Module needs to
include a SELECT/INSERT statement as described Oracle Data Integrator documentation. This method
may not be suited for large volumes as data is read row-by-row in arrays, using the array fetch feature,
and written row-by-row, using the batch update feature.
A typical LKM using this strategy contains the following steps:

Step Example of code

Drop the "C$" table from the
staging area. If the table
doesn’t exist, ignore the error.

drop table <%=odiRef.getTable("L", "COLL_NAME", "A")%>

Create the "C$" table in the
staging area

create table <%=odiRef.getTable("L", "COLL_NAME", "A")%>
(
<%=odiRef.getColList("", "[CX_COL_NAME]\t[DEST_WRI_DT] " +
odiRef.getInfo("DEST_DDL_NULL"), ",\n\t", "","")%>
)

Load the source result set to
the "C$" table using a
SELECT/INSERT command.
The SELECT is executed on
the source and the INSERT on
the staging area. The agent
performs data type translations
in memory using the JDBC
API.

Code on the Source tab executed by the source server:
select <%=odiRef.getPop("DISTINCT_ROWS")%>

<%=odiRef.getColList("", "[EXPRESSION]\t[ALIAS_SEP]
[CX_COL_NAME]", ",\n\t", "", "")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getFilter()%>
<%=odiRef.getJrnFilter()%>
<%=odiRef.getJoin()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

Code on the Target tab executed in the staging area:
insert into <%=odiRef.getTable("L", "COLL_NAME", "A")%>
(

<%=odiRef.getColList("", "[CX_COL_NAME]", ",\n\t",
"","")%>
)
values
(

<%=odiRef.getColList("", ":[CX_COL_NAME]", ",\n\t",
"","")%>
)

After the IKM has finished drop table <%=odiRef.getTable("L", "COLL_NAME", "A")%>

Knowledge Modules Developer's Guide 35/56

integration in the target, drop
the "C$" table. This step can
be made dependent on the
value of an option to give the
developer the option of
keeping the "C$" table for
debugging purposes.

Using Loaders

Using Loaders for Flat Files
When your interface contains a flat file as a source, you may want to use a strategy that leverages the
most efficient loading utility available for the staging area technology, rather than the standard "LKM File
to SQL". Almost all RDBMS have a fast loading utility to load flat files into tables:
When working with Oracle we can use either SQL*LOADER or EXTERNAL TABLE.
Teradata suggests 3 different utilities: FastLoad for loading large files to empty tables, MultiLoad for
complex loads of large files, including incremental loads and TPump for continuous loads of small files.
For LKMs, you simply need to load the file into the "C$" staging area. All transformations will be done by
the IKM in the RDBMS. Therefore, a typical LKM using a loading utility will usually follow these steps:

- Drop and create the "C$" table in the staging area
- Generate the script required by the loading utility to load the file to the "C$" staging table.
- Execute the appropriate operating system command to start the load and check its return code.
- Possibly analyze any log files produced by the utility for error handling.
- Drop the "C$" table once the integration KM has terminated.

The following table gives you extracts from the "LKM File to Oracle (EXTERNAL TABLE)" that uses this
strategy. Refer to the KM for the complete code:

Step Example of code

Create Oracle
directory

create or replace directory dat_dir AS '<%=snpRef.getSrcTablesList("",
"[SCHEMA]", "", "")%>'

Create external
table

create table <%=snpRef.getTable("L", "COLL_NAME", "W")%>
(

<%=snpRef.getColList("", "[CX_COL_NAME]\t[DEST_WRI_DT]", ",\n\t",
"","")%>
)
ORGANIZATION EXTERNAL
(

TYPE ORACLE_LOADER
DEFAULT DIRECTORY dat_dir
ACCESS PARAMETERS

<% if (snpRef.getSrcTablesList("", "[FILE_FORMAT]", "", "").equals("F"))
{%> (

Knowledge Modules Developer's Guide 36/56

RECORDS DELIMITED BY NEWLINE
<%=snpRef.getUserExit("EXT_CHARACTERSET")%>
<%=snpRef.getUserExit("EXT_STRING_SIZE")%>
BADFILE '<%=snpRef.getSrcTablesList("",

"[RES_NAME]", "", "")%>_%a.bad'
LOGFILE '<%=snpRef.getSrcTablesList("",

"[RES_NAME]", "", "")%>_%a.log'
DISCARDFILE '<%=snpRef.getSrcTablesList("",

"[RES_NAME]", "", "")%>_%a.dsc'
SKIP <%=snpRef.getSrcTablesList("",

"[FILE_FIRST_ROW]", "", "")%>
FIELDS
<%=snpRef.getUserExit("EXT_MISSING_FIELD")%>
(

<%=snpRef.getColList("",
"[CX_COL_NAME]\tPOSITION([FILE_POS]\\:[FILE_END_POS])", ",\n\t\t\t",
"","")%>

)
)

<%} else {%> (
RECORDS DELIMITED BY NEWLINE
<%=snpRef.getUserExit("EXT_CHARACTERSET")%>
<%=snpRef.getUserExit("EXT_STRING_SIZE")%>
BADFILE '<%=snpRef.getSrcTablesList("",

"[RES_NAME]", "", "")%>_%a.bad'
 LOGFILE '<%=snpRef.getSrcTablesList("",

"[RES_NAME]", "", "")%>_%a.log'
DISCARDFILE '<%=snpRef.getSrcTablesList("",

"[RES_NAME]", "", "")%>_%a.dsc'
SKIP <%=snpRef.getSrcTablesList("",

"[FILE_FIRST_ROW]", "", "")%>
FIELDS TERMINATED BY '<%=snpRef.getSrcTablesList("",

"[SFILE_SEP_FIELD]", "", "")%>'
<% if(snpRef.getSrcTablesList("", "[FILE_ENC_FIELD]", "",

"").equals("")){%>
<%} else {%>OPTIONALLY ENCLOSED BY

'<%=snpRef.getSrcTablesList("", "[FILE_ENC_FIELD]", "",
"").substring(0,1)%>' AND '<%=snpRef.getSrcTablesList("",
"[FILE_ENC_FIELD]", "", "").substring(1,2)%>' <%}%>

<%=snpRef.getUserExit("EXT_MISSING_FIELD")%>
(

<%=snpRef.getColList("", "[CX_COL_NAME]",
",\n\t\t\t", "","")%>

)
)

<%}%> LOCATION (<%=snpRef.getSrcTablesList("", "'[RES_NAME]'", "",
"")%>)
)
<%=snpRef.getUserExit("EXT_PARALLEL")%>
REJECT LIMIT <%=snpRef.getUserExit("EXT_REJECT_LIMIT")%>
NOLOGGING

Knowledge Modules Developer's Guide 37/56

Using Unload/Load for Remote Servers
When the source result set is on a remote database server, an alternative to using the agent to transfer
the data would be to unload it to a file and then load that into the staging area. This is usually the most
efficient method when dealing with large volumes. The steps of LKMs that follow this strategy are often as
follows:

- Drop and create the "C$" table in the staging area
- Unload the data from the source to a temporary flat file using either a source unload utility (such

as MSSQL bcp or DB2 unload) or the OdiSqlUnload tool.
- Generate the script required by the loading utility to load the temporary file to the "C$" staging

table.
- Execute the appropriate operating system command to start the load and check its return code.
- Optionally, analyze any log files produced by the utility for error handling.
- Drop the "C$" table once the integration KM has terminated.

The "LKM SQL to Teradata (TPUMP-FASTLOAD-MULTILOAD)" follows these steps and uses the generic
OdiSqlUnload tool to unload data from any remote RDBMS. Of course, this KM can be optimized if the
source RDBMS is known to have a fast unload utility.
The following table shows some extracts of code from this LKM:

Step Example of code

Unload data
from source
using
OdiSqlUnload

OdiSqlUnload "-DRIVER=<%=snpRef.getInfo("SRC_JAVA_DRIVER")%>"
"-URL=<%=snpRef.getInfo("SRC_JAVA_URL")%>"
"-USER=<%=snpRef.getInfo("SRC_USER_NAME")%>"
"-PASS=<%=snpRef.getInfo("SRC_ENCODED_PASS")%>"
"-FILE_FORMAT=variable"
"-FIELD_SEP=<%=snpRef.getOption("FIELD_SEP")%>"
"-FETCH_SIZE=<%=snpRef.getInfo("SRC_FETCH_ARRAY")%>"
"-DATE_FORMAT=<%=snpRef.getOption("UNLOAD_DATE_FMT")%>" "-FILE=<%

=snpRef.getOption("TEMP_DIR")%>/<%=snpRef.getTable("L", "COLL_NAME",
"W")%>"

select <%=snpRef.getPop("DISTINCT_ROWS")%>
<%=snpRef.getColList("", "\t[EXPRESSION]", ",\n", "", "")%>
from <%=snpRef.getFrom()%>
where (1=1)
<%=snpRef.getJoin()%>
<%=snpRef.getFilter()%>
<%=snpRef.getJrnFilter() %>
<%=snpRef.getGrpBy()%>
<%=snpRef.getHaving()%>

Oracle Data Integrator delivers the following Knowledge Modules that use this strategy:

Using Piped Unload/Load
When using an unload/load strategy, data needs to be staged twice: once in the temporary file and a
second time in the "C$" table, resulting in extra disk space usage and potential efficiency issues. A more
efficient alternative would be to use pipelines between the "unload" and the "load" utility. Unfortunately,
not all the operating systems support file-based pipelines (FIFOs).

Knowledge Modules Developer's Guide 38/56

When the agent is installed on Unix, you can decide to use a piped unload/load strategy. The steps
followed by your LKM would be:

- Drop and create the "C$" table in the staging area
- Create a pipeline file on the operating system (for example using the mkfifo command on Unix)
- Generate the script required by the loading utility to load the temporary file to the "C$" staging

table.
- Execute the appropriate operating system command to start the load as a detached process

(using "&" at the end of the command). The load starts and immediately waits for data in the FIFO.
- Start unloading the data from the source RDBMS to the FIFO using either a source unload utility

(such as MSSQL bcp or DB2 unload) or the OdiSqlUnload tool.
- Join the load process and wait until it finishes. Check for processing errors.
- Optionally, analyze any log files produced by utilities for additional error handling.
- Drop the "C$" table once the integration KM has finished.

Oracle Data Integrator provides the "LKM SQL to Teradata (piped TPUMP-FAST-MULTILOAD)" that uses
this strategy. To have a better control on the behavior of every detached process (or thread), this KM was
written using Jython. The OdiSqlUnload tool is also available as a callable object in Jython. The following
table gives extracts of code from this LKM. Refer to the actual KM for the complete code:

Step Example of code

Jython function
used to trigger
the
OdiSqlUnload
command

import com.sunopsis.dwg.tools.OdiSqlUnload as JOdiSqlUnload
import java.util.Vector as JVector
import java.lang.String
from jarray import array
...
srcdriver = "<%=snpRef.getInfo("SRC_JAVA_DRIVER")%>"
srcurl = "<%=snpRef.getInfo("SRC_JAVA_URL")%>"
srcuser = "<%=snpRef.getInfo("SRC_USER_NAME")%>"
srcpass = "<%=snpRef.getInfo("SRC_ENCODED_PASS")%>"
fetchsize = "<%=snpRef.getInfo("SRC_FETCH_ARRAY")%>"
...

query = """select <%=snpRef.getPop("DISTINCT_ROWS")%>
<%=snpRef.getColList("", "\t[EXPRESSION]", ",\n", "", "")%>
from <%=snpRef.getFrom()%>
where (1=1)
<%=snpRef.getJoin()%>
<%=snpRef.getFilter()%>
<%=snpRef.getJrnFilter() %>
<%=snpRef.getGrpBy()%>
<%=snpRef.getHaving()%>
"""
...
def odisqlunload():

odiunload = JOdiSqlUnload()

Set the parameters
cmdline = JVector()

Knowledge Modules Developer's Guide 39/56

Step Example of code

cmdline.add(array(["-DRIVER", srcdriver], java.lang.String))
cmdline.add(array(["-URL", srcurl], java.lang.String))
cmdline.add(array(["-USER", srcuser], java.lang.String))
cmdline.add(array(["-PASS", srcpass], java.lang.String))
cmdline.add(array(["-FILE_FORMAT", "variable"],

java.lang.String))
cmdline.add(array(["-FIELD_SEP", fieldsep], java.lang.String))
cmdline.add(array(["-FETCH_SIZE", fetchsize],

java.lang.String))
cmdline.add(array(["-FILE", pipename], java.lang.String))
cmdline.add(array(["-DATE_FORMAT", datefmt], java.lang.String))
cmdline.add(array(["-QUERY", query], java.lang.String))

odiunload.setParameters(cmdline)

Start the unload process
odiunload.execute()

Main function
that runs the
piped load

...

utility = "<%=snpRef.getOption("TERADATA UTILITY")%>"
if utility == "multiload":

utilitycmd="mload"
else:

utilitycmd=utility

when using Unix pipes, it is important to get the pid
command example : load < myfile.script > myfile.log & echo $! >
mypid.txt ; wait $!
Note: the PID is stored in a file to be able to kill the fastload in
case of crash

loadcmd = '%s < %s > %s & echo $! > %s ; wait $!' %
(utilitycmd,scriptname, logname, outname)

...

def pipedload():
Create or Replace a Unix FIFO
os.system("rm %s" % pipename)
if os.system("mkfifo %s" % pipename) <> 0:

raise "mkfifo error", "Unable to create FIFO %s" %
pipename

Start the load command in a dedicated thread
loadthread = threading.Thread(target=os.system,

args=(loadcmd,),
name="snptdataload")

Knowledge Modules Developer's Guide 40/56

Step Example of code

loadthread.start()
now that the fastload thead has started, wait
3 seconds to see if it is running
time.sleep(3)
if not loadthread.isAlive():

os.system("rm %s" % pipename)
raise "Load error", "(%s) load process not started" %

loadcmd

Start the SQLUnload process
try:

OdiSqlUnload()
except:

if the unload process fails, we have to kill
the load process on the OS.
Several methods are used to get sure the process is

killed

get the pid of the process
f = open(outname, 'r')
pid = f.readline().replace('\n', '').replace('\r', '')
f.close()
close the pipe by writing something fake in it
os.system("echo dummy > %s" % pipename)
attempt to kill the process
os.system("kill %s" % pid)
remove the pipe
os.system("rm %s" % pipename)
raise

At this point, the unload() process has finished, so we need
to wait

for the load process to finish (join the thread)
loadthread.join()

Using RDBMS-Specific Strategies
Some RDBMSs have a mechanism for sharing data across servers of the same technology. For example:

- Oracle has database links for loading data between 2 remote oracle servers
- Microsoft SQL Server has linked servers
- IBM DB2 400 has DRDA file transfer

Knowledge Modules Developer's Guide 41/56

Integration Strategies (IKM)

IKMs with Staging Area on Target

Simple Replace or Append
The simplest strategy for integrating data in an existing target table, provided that all source data is
already in the staging area is to replace and insert the records in the target. Therefore, the simplest IKM
would be composed of 2 steps:

- Remove all records from the target table. This step can be made dependent on an option set by
the designer of the interface

- Transform and insert source records from all source sets. When dealing with remote source data,
LKMs will have already prepared "C$" tables with pre-transformed result sets. If the interface uses
source data sets on the same server as the target (and the staging area as well), they will be
joined to the other "C$" tables. Therefore the integration operation will be a straight
INSERT/SELECT statement leveraging all the transformation power of the target Teradata box.

The following example gives you the details of these steps:

Step Example of code

Remove data
from target table.
This step can be
made dependent
on a "check box"
option: "Delete
all rows?"

delete from <%=odiRef.getTable("L","INT_NAME","A")%>

Append the flow
records to the
target

insert into <%=odiRef.getTable("L","INT_NAME","A")%>
(

<%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "", "((INS
and !TRG) and REW)")%>
)
select <%=odiRef.getPop("DISTINCT_ROWS")%>

<%=odiRef.getColList("", "[EXPRESSION]", ",\n\t", "", "((INS
and !TRG) and REW)")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getJrnFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

This very simple strategy is not provided as is in the default Oracle Data Integrator KMs. It can be
obtained as a special case of the "Control Append" IKMs when choosing not to control the flow data.

Knowledge Modules Developer's Guide 42/56

The next paragraph further discusses these types of KMs.

Append with Data Quality Check
In the preceding example, flow data was simply inserted in the target table without any data quality
checking. This approach can be improved by adding extra steps that will store the flow data in a temporary
table called the integration table ("I$") before calling the CKM to isolate erroneous records in the error
table ("E$"). The steps of such an IKM could be:

- Drop and create the flow table in the staging area. The "I$" table is created with the same
columns as the target table so that it can be passed to the CKM for data quality check.

- Insert flow data in the "I$" table. Source records from all source sets are transformed and inserted
in the "I$" table in a single INSERT/SELECT statement.

- Call the CKM for the data quality check. The CKM will simulate every constraint defined for the
target table on the flow data. It will create the error table and insert the erroneous records. It will
also remove all erroneous records from the controlled table. Therefore, after the CKM completes,
the "I$" table will only contain valid records. Inserting them in the target table can then be done
safely.

- Remove all records from the target table. This step can be made dependent on an option value
set by the designer of the interface

- Append the records from the "I$" table to the target table in a single "inset/select" statement.
- Drop the temporary "I$" table.

In some cases, it may also be useful to recycle previous errors so that they are added to the flow and
applied again to the target. This method can be useful for example when receiving daily sales transactions
that reference product IDs that may not exist. Suppose that a sales record is rejected in the error table
because the referenced product ID does not exist in the product table. This happens during the first run of
the interface. In the meantime the missing product ID is created by the data administrator. Therefore the
rejected record becomes valid and should be re-applied to the target during the next execution of the
interface.
This mechanism is fairly easy to implement in the IKM by simply adding an extra step that would insert all
the rejected records of the previous run into the flow table ("I$") prior to calling the CKM to check the data
quality.

This IKM can also be enhanced to support a simple replace-append strategy. The flow control steps would
become optional. The data would be applied to the target either from the "I$" table, if the designer chose
to check the data quality, or from the source sets, e.g. staging "C$" tables.

Some of the steps of such an IKM are described below:

Step Example of code Execute if

Create the flow
table in the
staging area

create table <%=odiRef.getTable("L", "INT_NAME",
"A")%>
(

<%=odiRef.getColList("",
"[COL_NAME]\t[DEST_WRI_DT] " +
odiRef.getInfo("DEST_DDL_NULL"), ",\n\t", "",
"INS")%>
)

FLOW_CONTROL
is set to YES

Insert flow data
in the "I$" table

insert into <%=odiRef.getTable("L","INT_NAME","A")%>
(

<%=odiRef.getColList("", "[COL_NAME]",

FLOW_CONTROL
is set to YES

Knowledge Modules Developer's Guide 43/56

Step Example of code Execute if

",\n\t", "", "((INS and !TRG) and REW)")%>
)
select <%=odiRef.getPop("DISTINCT_ROWS")%>

<%=odiRef.getColList("", "[EXPRESSION]",
",\n\t", "", "((INS and !TRG) and REW)")%>
from <%=odiRef.getFrom()%>
where (1=1)
<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getJrnFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>

Recycle
previous
rejected records

insert into <%=odiRef.getTable("L","INT_NAME","A")%>
(

<%=odiRef.getColList("", "[COL_NAME]",
",\n\t", "", "INS and REW")%>
)
select <%=odiRef.getColList("", "[COL_NAME]",
",\n\t", "", "INS and REW")%>
from <%=odiRef.getTable("L","ERR_NAME", "A")%>
<%=odiRef.getInfo("DEST_TAB_ALIAS_WORD")%> E
where not exists (

select 'X'
from

<%=odiRef.getTable("L","INT_NAME","A")%>
<%=odiRef.getInfo("DEST_TAB_ALIAS_WORD")%> T

where <%=odiRef.getColList("",
"T.[COL_NAME]\t= E.[COL_NAME]", "\n\t\tand\t", "",
"UK")%>

)
and E.ORIGIN =
'<%=odiRef.getInfo("CT_ORIGIN")%>'
and E.ERR_TYPE =
'<%=odiRef.getInfo("CT_ERR_TYPE")%>'

RECYCLE_ERRO
RS is set to Yes

Call the CKM to
perform data
quality check

<%@ INCLUDE CKM_FLOW DELETE_ERRORS%> FLOW_CONTROL
is set to YES

Remove all
records from the
target table

delete from
<%=odiRef.getTable("L","TARG_NAME","A")%> DELETE_ALL is

set to Yes

Insert records. If
flow control is
set to Yes, then
the data will be
inserted from the
"I$" table.
Otherwise it will
be inserted from
the source sets.

<%if
(odiRef.getOption("FLOW_CONTROL").equals("1"))
{ %>
insert into

<%=odiRef.getTable("L","TARG_NAME","A")%>
(

<%=odiRef.getColList("", "[COL_NAME]",
",\n\t", "", "((INS and !TRG) and REW)")%>

<%=odiRef.getColList(",", "[COL_NAME]",

INSERT is set to
Yes

Knowledge Modules Developer's Guide 44/56

Step Example of code Execute if

",\n\t", "", "((INS and TRG) and REW)")%>
)
select <%=odiRef.getColList("", "[COL_NAME]",
",\n\t", "", "((INS and !TRG) and REW)")%>

<%=odiRef.getColList(",", "[EXPRESSION]",
",\n\t", "", "((INS and TRG) and REW)")%>
from <%=odiRef.getTable("L","INT_NAME","A")%>
<% } else { %>
insert into

<%=odiRef.getTable("L","TARG_NAME","A")%>
(

<%=odiRef.getColList("", "[COL_NAME]",
",\n\t", "", "(INS and REW)")%>
)
select <%=odiRef.getPop("DISTINCT_ROWS")%>

<%=odiRef.getColList("", "[EXPRESSION]",
",\n\t", "", "(INS and REW)")%>
from <%=odiRef.getFrom()%>
where <% if (odiRef.getPop("HAS_JRN").equals("0"))
{ %>

(1=1)
<%} else {%>
JRN_FLAG <> 'D'
<% } %>

<%=odiRef.getJoin()%>
<%=odiRef.getFilter()%>
<%=odiRef.getJrnFilter()%>
<%=odiRef.getGrpBy()%>
<%=odiRef.getHaving()%>
<% } %>

Incremental Update
The Incremental Update strategy is used to integrate data in the target table by comparing the records of
the flow with existing records in the target according to a set of columns called the "update key". Records
that have the same update key are updated when their associated data is not the same. Those that don’t
yet exist in the target are inserted. This strategy is often used for dimension tables when there is no need
to keep track of the records that have changed.
The challenge with such IKMs is to use set-oriented SQL based programming to perform all operations
rather than using a row-by-row approach that often leads to performance issues. The most common
method to build such strategies often relies on a temporary integration table ("I$") which stores the
transformed source sets. This method is described below:

- Drop and create the flow table in the staging area. The "I$" table is created with the same
columns as the target table so that it can be passed to the CKM for the data quality check. It also
contains an IND_UPDATE column that is used to flag the records that should be inserted ("I") and
those that should be updated ("U").

- Insert flow data in the "I$" table. Source records from all source sets are transformed and inserted
in the "I$" table in a single INSERT/SELECT statement. The IND_UPDATE column is set by

Knowledge Modules Developer's Guide 45/56

default to "I".
- Add the rejected records from the previous run to the "I$" table if the designer chooses to recycle

errors.
- Call the CKM for the data quality check. The CKM simulates every constraint defined for the target

table on the flow data. It creates an error table and inserts any erroneous records. It also removes
all erroneous records from the checked table. Therefore, after the CKM completes, the "I$" table
will only contain valid records.

- Update the "I$" table to set the IND_UPDATE column to "U" for all the records that have the same
update key values as the target ones. Therefore, records that already exist in the target will have
a "U" flag. This step is usually an UPDATE/SELECT statement

- Update the "I$" table again to set the IND_UPDATE column to "N" for all records that are already
flagged as "U" and for which the column values are exactly the same as the target ones. As these
flow records match exactly the target records, they don’t need to be used to update the target
data. After this step, the "I$" table is ready for applying the changes to the target as it contains
records that are flagged:

o "I": these records should be inserted into the target
o "U": these records should be used to update the target
o "N": these records already exist in the target and should be ignored

- Update the target with records from the "I$" table that are flagged "U". Note that the update
statement should be executed prior to the INSERT statement to minimize the volume of data
manipulated.

- Insert records in the "I$" table that are flagged "I" into the target
- Drop the temporary "I$" table.

Of course, this approach can be optimized depending on the underlying database. For example, in
Teradata, it may be more efficient in some cases to use a left outer join between the flow data and the
target table to populate the "I$" table with the IND_UPDATE column already set properly.

Note:
The update key should always be unique. In most cases, the primary key will be used as an update key.
The primary key cannot be used, however, when it is automatically calculated using an increment such
as an identity column, a rank function, or a sequence. In this case an update key based on columns
present in the source must be used.

Some of the steps of such an IKM are described below:

Step Example of code Execute if

Create the flow
table in the
staging area

create <%=odiRef.getOption("FLOW_TABLE_TYPE")%>
table <%=odiRef.getTable("L", "INT_NAME", "A")%>,
 (

<%=odiRef.getColList("",
"[COL_NAME]\t[DEST_WRI_DT] " +
odiRef.getInfo("DEST_DDL_NULL"), ",\n\t", "",
"")%>,

IND_UPDATE char(1)
)

Determine what
to update (using
the update key)

update <%=odiRef.getTable("L", "INT_NAME", "A")%>
from <%=odiRef.getTable("L", "TARG_NAME", "A")%>
T

INSERT or
UPDATE are set to
Yes

Knowledge Modules Developer's Guide 46/56

Step Example of code Execute if

set IND_UPDATE = 'U'
where <%=odiRef.getColList("",
odiRef.getTable("L", "INT_NAME", "A") +
".[COL_NAME]\t= T.[COL_NAME]", "\nand\t", "",
"UK")%>

Determine what
shouldn’t be
updated by
comparing the
data

update <%=odiRef.getTable("L", "INT_NAME", "A")%>
from <%=odiRef.getTable("L", "TARG_NAME", "A")%>
T
set IND_UPDATE = 'N'
where <%=odiRef.getColList("",
odiRef.getTable("L", "INT_NAME", "A") +
".[COL_NAME]\t= T.[COL_NAME]", "\nand\t", "",
"UK")%>
and <%=odiRef.getColList("","((" +
odiRef.getTable("L", "INT_NAME", "A") + ".[COL_NAME]
= T.[COL_NAME]) or (" + odiRef.getTable("L",
"INT_NAME", "A") + ".[COL_NAME] IS NULL and
T.[COL_NAME] IS NULL))", " \nand\t", "", "((UPD
and !TRG) and !UK) ")%>

UPDATE is set to
Yes

Update the
target with the
existing records

update <%=odiRef.getTable("L", "TARG_NAME", "A")%>
from <%=odiRef.getTable("L", "INT_NAME", "A")%> S
set <%=odiRef.getColList("", "[COL_NAME]\t=
S.[COL_NAME]", ",\n\t", "", "(((UPD and !UK) and !
TRG) and REW)")%>

<%=odiRef.getColList(",",
"[COL_NAME]=[EXPRESSION]", ",\n\t", "", "(((UPD
and !UK) and TRG) and REW)")%>
where <%=odiRef.getColList("",
odiRef.getTable("L", "TARG_NAME", "A") +
".[COL_NAME]\t= S.[COL_NAME]", "\nand\t", "",
"(UK)")%>
and S.IND_UPDATE = 'U'

UPDATE is set to
Yes

Insert new
records

insert into
<%=odiRef.getTable("L","TARG_NAME","A")%>

(
<%=odiRef.getColList("", "[COL_NAME]",

",\n\t", "", "((INS and !TRG) and REW)")%>
<%=odiRef.getColList(",", "[COL_NAME]",

",\n\t", "", "((INS and TRG) and REW)")%>
)
select <%=odiRef.getColList("", "[COL_NAME]",
",\n\t", "", "((INS and !TRG) and REW)")%>

<%=odiRef.getColList(",", "[EXPRESSION]",
",\n\t", "", "((INS and TRG) and REW)")%>
from <%=odiRef.getTable("L","INT_NAME","A")%>
where IND_UPDATE = 'I'

INSERT is set to
Yes

When comparing data values to determine what should not be updated, the join between the "I$" table
and the target table is expressed on each column as follow:
Target.ColumnN = I$.ColumnN or (Target.ColumnN is null and I$.ColumnN is null)

Knowledge Modules Developer's Guide 47/56

This is done to allow comparison between null values, so that a null value matches another null value. A
more elegant way of writing it would be to use the coalesce function. Therefore the WHERE predicate
could be written this way:
<%=odiRef.getColList("","coalesce(" + odiRef.getTable("L", "INT_NAME", "A") + ".[COL_NAME], 0) =
coalesce(T.[COL_NAME], 0)", " \nand\t", "", "((UPD and !TRG) and !UK) ")%>

Notes:
Columns updated by the UPDATE statement are not the same as the ones used in the INSERT
statement. The UPDATE statement uses selector "UPD and not UK" to filter only mappings marked as
"Update" in the interface and that do not belong to the update key. The INSERT statement uses selector
"INS" to retrieve mappings marked as "insert" in the interface.

It is important that the UPDATE statement and the INSERT statement for the target belong to the same
transaction (Transaction 1). Should any of them fail, no data will be inserted or updated in the target.

Slowly Changing Dimensions
Type 2 Slowly Changing Dimension is one of the most well known data warehouse loading strategies. It is
often used for loading dimension tables, in order to keep track of changes that occurred on some of the
columns. A typical slowly changing dimension table would contain the flowing columns:

- A surrogate key calculated automatically. This is usually a numeric column containing an auto-
number such as an identity column, a rank function or a sequence.

- A natural key. List of columns that represent the actual primary key of the operational system.
- Columns that may be overwritten on change
- Columns that require the creation of a new record on change
- A start date column indicating when the record was created in the data warehouse
- An end date column indicating when the record became obsolete (closing date)
- A current record flag indicating whether the record is the actual one (1) or an old one (0)

The figure below gives an example of the behavior of the product slowly changing dimension. In the
operational system, a product is defined by its ID that acts as a primary key. Every product has a name, a
size, a supplier and a family. In the Data Warehouse, we want to store a new version of this product
whenever the supplier or the family is updated in the operational system.

Knowledge Modules Developer's Guide 48/56

Data WarehouseOperational Data

Fam2Supp234Prd4P4

Fam2Supp221Prd3P3

Fam2Supp111Prd2P2

Fam1Supp110Prd1P1

FamilySupplierSizeNameID

Fam2Supp234Prd4P4

Fam2Supp221Prd3P3

Fam2Supp111Prd2P2

Fam1Supp110Prd1P1

FamilySupplierSizeNameID

Fam3Supp123Prd5P5

Fam2Supp234Prd4P4

Fam2Supp221XYZP3

Fam3Supp111Prd2P2

Fam1Supp212Prd1P1

FamilySupplierSizeNameID

Fam3Supp123Prd5P5

Fam2Supp234Prd4P4

Fam2Supp221XYZP3

Fam3Supp111Prd2P2

Fam1Supp212Prd1P1

FamilySupplierSizeNameID

4

3

2

1

SK

Fam2

Fam2

Fam2

Fam1

Family

12-MAR-2006

12-MAR-2006

12-MAR-2006

12-MAR-2006

Start

01-JAN-2400

01-JAN-2400

01-JAN-2400

01-JAN-2400

End

1

1

1

1

Flag

Supp234Prd4P4

Supp221Prd3P3

Supp111Prd2P2

Supp110Prd1P1

SupplierSizeNameID

4

3

2

1

SK

Fam2

Fam2

Fam2

Fam1

Family

12-MAR-2006

12-MAR-2006

12-MAR-2006

12-MAR-2006

Start

01-JAN-2400

01-JAN-2400

01-JAN-2400

01-JAN-2400

End

1

1

1

1

Flag

Supp234Prd4P4

Supp221Prd3P3

Supp111Prd2P2

Supp110Prd1P1

SupplierSizeNameID

101-JAN-240013-MAR-2006Fam3Supp123Prd5P57

101-JAN-240013-MAR-2006Fam3Supp111Prd2P26

101-JAN-240013-MAR-2006Fam1Supp212Prd1P15

4

3

2

1

SK

Fam2

Fam2

Fam2

Fam1

Family

12-MAR-2006

12-MAR-2006

12-MAR-2006

12-MAR-2006

Start

01-JAN-2400

01-JAN-2400

13-MAR-2006

13-MAR-2006

End

1

1

0

0

Flag

Supp234Prd4P4

Supp221XYZP3

Supp111Prd2P2

Supp110Prd1P1

SupplierSizeNameID

101-JAN-240013-MAR-2006Fam3Supp123Prd5P57

101-JAN-240013-MAR-2006Fam3Supp111Prd2P26

101-JAN-240013-MAR-2006Fam1Supp212Prd1P15

4

3

2

1

SK

Fam2

Fam2

Fam2

Fam1

Family

12-MAR-2006

12-MAR-2006

12-MAR-2006

12-MAR-2006

Start

01-JAN-2400

01-JAN-2400

13-MAR-2006

13-MAR-2006

End

1

1

0

0

Flag

Supp234Prd4P4

Supp221XYZP3

Supp111Prd2P2

Supp110Prd1P1

SupplierSizeNameID

Primary Key

Surrogate Key

Natural Key

Overwrite on Change Add New on Change

Start Date End Date

Current Record Flag

Figure 10: Slowly Changing Dimension Example
In this example, the product dimension is first initialized in the Data Warehouse on March 12, 2006. All the
records are inserted and are assigned a calculated surrogate key as well as a fake ending date set to
January 1, 2400. As these records represent the current state of the operational system, their current
record flag is set to 1. After the first load, the following changes happen in the operational system:

1. The supplier is updated for product P1
2. The family is updated for product P2
3. The name is updated for product P3
4. Product P5 is added

These updates have the following impact on the data warehouse dimension:
1. The update of the supplier of P1 is translated into the creation of a new current record (Surrogate

Key 5) and the closing of the previous record (Surrogate Key 1)
2. The update of the family of P2 is translated into the creation of a new current record (Surrogate

Key 6) and the closing of the previous record (Surrogate Key 2)
3. The update of the name of P3 simply updates the target record with Surrogate Key 3
4. The new product P5 is translated into the creation of a new current record (Surrogate Key 7).

To create a Knowledge Module that implements this behavior, you need to know which columns act as a
surrogate key, a natural key, a start date etc. Oracle Data Integrator can set this information in additional
metadata fields for every column of the target slowly changing dimension datastore as described in the
figure below.

Knowledge Modules Developer's Guide 49/56

Figure 11: Slowly Changing Dimension Column Behavior

When populating such a datastore in an interface, the IKM has access to this metadata using the SCD_xx
selectors on the getColList() substitution method.

The way Oracle Data Integrator implements Type 2 Slowly Changing Dimensions is described below:
- Drop and create the "I$" flow table to hold the flow data from the different source sets.
- Insert the flow data in the "I$" table using only mappings that apply to the "natural key", "overwrite

on change" and "add row on change" columns. Set the start date to the current date and the end
date to a constant.

- Recycle previous rejected records
- Call the CKM to perform a data quality check on the flow
- Flag the records in the "I$" table to ‘U’ when the "natural key" and the "add row on change"

columns have not changed compared to the current records of the target
- Update the target with the columns that can be "overwritten on change" by using the "I$" flow

filtered on the ‘U’ flag.
- Close old records – those for which the natural key exists in the "I$" table, and set their current

record flag to 0 and their end date to the current date
- Insert the new changing records with their current record flag set to 1
- Drop the "I$" temporary table

Again, this approach can be adapted to your project’s specific needs. There may be some cases where
the SQL produced requires further tuning and optimization.
Some of the steps of the Teradata Slowly Changing Dimension IKM are listed below:

Step Example of code

Insert flow data
in the I$ table
using an MINUS
statement

insert /*+ APPEND */ into <%=snpRef.getTable("L","INT_NAME","W")%>
(

<%=snpRef.getColList("", "[COL_NAME]", ",\n\t", "", "(((INS OR
UPD) AND NOT TRG) AND REW)")%>,

IND_UPDATE
)
select <%=snpRef.getUserExit("OPTIMIZER_HINT")%>

Knowledge Modules Developer's Guide 50/56

Step Example of code

<%=snpRef.getPop("DISTINCT_ROWS")%>
<%=snpRef.getColList("", "[EXPRESSION]", ",\n\t", "", "(((INS OR

UPD) AND NOT TRG) AND REW)")%>,
<%if (snpRef.getPop("HAS_JRN").equals("0")) {%>

'I' IND_UPDATE
<%}else{%>

JRN_FLAG
<%}%>
from <%=snpRef.getFrom()%>
where (1=1)
<%=snpRef.getJoin()%>
<%=snpRef.getFilter()%>
<%=snpRef.getJrnFilter()%>
<%=snpRef.getGrpBy()%>
<%=snpRef.getHaving()%>
minus
select

<%=snpRef.getColList("","[COL_NAME]", ",\n\t", "", "(((INS OR
UPD) AND NOT TRG) AND REW)")%>,

'I' IND_UPDATE
from <%=snpRef.getTable("L", "TARG_NAME", "A")%>

Flag records that
require an
update on the
target

update <%=snpRef.getTable("L", "INT_NAME", "W")%>
set IND_UPDATE = 'U'
where (<%=snpRef.getColList("","[COL_NAME]", ", ", "", "UK")%>)

in (
select <%=snpRef.getColList("","[COL_NAME]", ",\n\t\t\t",

"", "UK")%>
from <%=snpRef.getTable("L", "TARG_NAME", "A")%>
)

Update the
updatable
columns on the
target

update <%=snpRef.getTable("L", "TARG_NAME", "A")%> T
set (

<%=snpRef.getColList("", "T.[COL_NAME]", ",\n\t", "", "((UPD AND
(NOT UK) AND (NOT TRG)) AND REW)")%>

<%=snpRef.getColList(",", "T.[COL_NAME]", ",\n\t", "", "((UPD
AND (NOT UK) AND TRG) AND REW)")%>

) =
(
select <%=snpRef.getColList("", "S.[COL_NAME]",

",\n\t\t\t", "", "((UPD AND (NOT UK) AND (NOT TRG)) AND REW)")%>
<%=snpRef.getColList(",", "[EXPRESSION]",

",\n\t\t\t", "", "((UPD AND (NOT UK) AND TRG) AND REW)")%>
from <%=snpRef.getTable("L", "INT_NAME", "W")%> S
where <%=snpRef.getColList("", "T.[COL_NAME]

=S.[COL_NAME]", "\n\t\tand\t", "", "UK")%>
)

where (<%=snpRef.getColList("", "[COL_NAME]", ", ", "", "UK")%>)
in (

select <%=snpRef.getColList("", "[COL_NAME]",

Knowledge Modules Developer's Guide 51/56

Step Example of code

",\n\t\t\t", "", "UK")%>
from <%=snpRef.getTable("L", "INT_NAME", "W")%>
where IND_UPDATE = 'U'
)

Insert new
records

insert into <%=snpRef.getTable("L","TARG_NAME","A")%>
(
<%=snpRef.getColList("", "[COL_NAME]", ",\n\t", "", "((INS AND

(NOT TRG)) AND REW)")%>
<%=snpRef.getColList(",", "[COL_NAME]", ",\n\t", "", "((INS AND

TRG) AND REW)")%>
)

select <%=snpRef.getColList("", "[COL_NAME]", ",\n\t", "", "((INS AND
(NOT TRG)) AND REW)")%>

<%=snpRef.getColList(",", "[EXPRESSION]", ",\n\t", "", "((INS
AND TRG) AND REW)")%>
from <%=snpRef.getTable("L","INT_NAME","W")%>
where IND_UPDATE = 'I'

Case Study: Backup Target Table before Load
Suppose that one of your project’s requirements is to backup every data warehouse table prior to loading
the current data. This requirement could, for example, help restore the data warehouse to its previous
state in case of a major problem.
A first solution to this requirement would be to develop interfaces that would duplicate data from every
target datastore to its corresponding backup one. These interfaces would be triggered prior to the ones
that would populate the data warehouse. Unfortunately, this solution would lead to significant development
and maintenance effort as it requires the creation of an additional interface for every target datastore. The
number of interfaces to develop and maintain would be at least doubled!
A more elegant solution would be to implement this behavior in the IKM used to populate the target
datastores. This would be done using a single INSERT/SELECT statement that writes to the backup table
right before the steps that write to the target. Therefore, the backup of the data would become automatic
and the developers of the interfaces would no longer need to worry about it.

This example shows how this behavior could be implemented in the IKM Incremental Update:
- Drop and create the "I$" flow table in the staging area.
- Insert flow data in the "I$" table.
- Recycle previous rejected records.
- Call the CKM for data quality check.
- Update the "I$" table to set the IND_UPDATE column to "U".
- Update the "I$" table again to set the IND_UPDATE column to "N".
- Backup target table before load.
- Update the target with the records of the "I$" table that are flagged "U".
- Insert into the target the records of the "I$" table that are flagged "I"
- Drop the temporary "I$" table.

Knowledge Modules Developer's Guide 52/56

Assuming that the name of the backup table is the same as the target table followed by "_BCK", the code
of the backup step could be expressed as follows:

Step Example of code

Drop the backup
table

Drop table <%=odiRef.getTable("L","TARG_NAME","A")%>_BCK

Create and
populate the
backup table

Create table <%=odiRef.getTable("L","TARG_NAME","A")%>_BCK as
select <%=odiRef.getTargetColList("", "[COL_NAME]", ",", "")%>
from <%=odiRef.getTable("L","TARG_NAME","A")%>

Case Study: Tracking Records for Regulatory Compliance
Some data warehousing projects could require keeping track of every insert or update operation done to
target tables for regulatory compliance. This could help business analysts understand what happened to
their data during a certain period of time.
Even if you can achieve this behavior by using the slowly changing dimension Knowledge Modules, it can
also be done by simply creating a copy of the flow data before applying it to the target table.
Suppose that every target table has a corresponding table with the same columns and additional
regulatory compliance columns such as:

- The Job Id
- The Job Name
- Date and time of the operation
- The type of operation ("Insert" or "Update")

You would then populate this table directly from the "I$" table after applying the inserts and updates to the
target, and right before the end of the IKM. For example, in the case of the Incremental Update IKM, your
steps would be:

- Drop and create the "I$" flow table in the staging area.
- Insert flow data in the "I$" table.
- Recycle previous rejected records.
- Call the CKM for data quality check.
- Update the "I$" table to set the IND_UPDATE column to "U" or "N".
- Update the target with records from the "I$" table that are flagged "U".
- Insert into the target records from the "I$" table that are flagged "I"
- Backup the I$ table for regulatory compliance
- Drop the temporary "I$" table.

Assuming that the name of the regulatory compliance table is the same as the target table followed by
"_RGC", the code for this step could be expressed as follows:

Step Example of code

Backup the I$ insert into <%=odiRef.getTable("L","TARG_NAME","A")%>_RGC

Knowledge Modules Developer's Guide 53/56

Step Example of code

table for
regulatory
compliance

(
JOBID,
JOBNAME,
OPERATIONDATE,
OPERATIONTYPE,
<%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "")%>

)
select <%=odiRef.getSession("SESS_NO")%> /* JOBID */,

<%=odiRef.getSession("SESS_NAME")%> /* JOBNAME */,
Current_timestamp /* OPERATIONDATE */,
Case when IND_UPDATE = 'I' then 'Insert' else 'Update' end
<%=odiRef.getColList("", "[COL_NAME]", ",\n\t", "")%>

from <%=odiRef.getTable("L","INT_NAME","A")%>
where IND_UPDATE <> 'N'

This example demonstrates how easy and flexible it is to adapt existing Knowledge Modules to have them
match even complex requirements, with a very low cost of implementation.

IKMs with Staging Area Different from Target

File to Server Append
There are some cases when your source is composed of a single file that you want to load directly into the
target table using the most efficient method. By default, Oracle Data Integrator will suggest putting the
staging area on the target server and performing such a job using an LKM to stage the file in a "C$" table
and an IKM to apply the source data of the "C$" table to the target table. Obviously, if your source data is
not transformed, you don't need to have the file loaded in the staging "C$" table before being loaded to the
target.
A way of addressing this issue would be to use an IKM that can directly load the file data to the target.
This requires setting the staging area to the source file logical schema. By doing so, Oracle Data
Integrator will automatically suggest to use a "Multi-Connection" IKM that knows how to move data
between a remote staging area and the target.

An IKM from a File to a target table using a loader would have the following steps:
- Generate the appropriate load utility script
- Run the load utility

Server to Server Append

Knowledge Modules Developer's Guide 54/56

When using a staging area different from the target and when setting this staging area to an RDBMS, you
can use an IKM that will move the transformed data from the staging area to the remote target. This kind
of IKM is very close to an LKM and follows almost the same rules.
Some IKMs use the agent to capture data from the staging area using arrays and write it to the target
using batch updates. Others unload from the staging area to a file or FIFO and load the target using bulk
load utilities.
The steps when using the agent are usually straightforward:

- Delete target data made dependent on the value of an option
- Insert the data from the staging area to the target. This step has a SELECT statement in the

"Command on Source" tab that will be executed on the staging area. The INSERT statement is
written using bind variables in the "Command on Target" tab and will be executed for every batch
on the target table.

The steps when using an unload/load strategy usually depend on the type of IKM you choose. However
most of them will have these general steps:

- Use OdiSqlUnload to unload data from the staging area to a file or FIFO pipeline.
- Generate the load utility script
- Call the load utility

Server to File or JMS Append
When the target datastore is a file or JMS queue or topic you will need to set the staging area to a
different place than the target. Therefore, if you want to target a file or queue datastore you will have to
use a "Multi-Connection" IKM that will export the transformed data from your staging area to this target.
The way that the data is exported to the file or queue will depend on the IKM. For example, you can
choose to use the agent to have it select records from the staging area and write them to the file or queue
using standard Oracle Data Integrator features. Or you can use specific unload utilities such as Teradata
FastExport if the target is not JMS based.
Typical steps of such an IKM might be:

- Reset the target file or queue made dependent on an option
- Unload the data from the staging area to the file or queue

Knowledge Modules Developer's Guide 55/56

Guidelines for Developing your own
Knowledge Module

One of the main guidelines when developing your own KM is to never start from scratch. Oracle Data
Integrator provides more than 100 KMs out-of-the-box. It is therefore recommended that you have a look
at these existing KMs, even if they are not written for your technology. The more examples you have, the
faster you develop your own code. You can, for example, duplicate an existing KM and start enhancing it
by changing its technology, or copying lines of code from another one.

When developing your own KM, keep in mind that it is targeted to a particular stage of the integration
process. As a reminder,

- LKMs are designed to load remote source data sets to the staging area (into "C$" tables)
- IKMs apply the source flow from the staging area to the target. They start from the "C$" tables,

may transform and join them into a single "I$" table, may call a CKM to perform data quality
checks on this "I$" table, and finally write the flow data to the target

- CKMs check data quality in a datastore or a flow table ("I$") against data quality rules expressed
as constraints. The rejected records are stored in the error table ("E$")

- RKMs are in charge of extracting metadata from a metadata provider to the Oracle Data Integrator
repository by using the SNP_REV_xx temporary tables.

- JKMs are in charge of creating the Change Data Capture infrastructure.

Be aware of these common pitfalls:
- Too many KMs: A typical project requires less than 5 KMs!
- Using hard-coded values including catalog or schema names in KMs: You should instead use the

substitution methods getTable(), getTargetTable(), getObjectName() or others as appropriate.
- Using variables in KMs: You should instead use options or flex fields to gather information from

the designer.
- Writing the KM completely in Jython or Java: You should do that if it is the only solution. SQL is

often easier to read and maintain.
- Using <%if%> statements rather than a check box option to make code generation conditional.

Other common code writing recommendations that apply to KMs:
- The code should be correctly indented
- The generated code should also be indented in order to be readable
- SQL keywords such as "select", "insert", etc. should be in lowercase for better readability

Knowledge Modules Developer's Guide 56/56

	Introduction to Knowledge Modules
	What is a Knowledge Module?
	Reverse-engineering Knowledge Modules (RKM)
	Check Knowledge Modules (CKM)
	Loading Knowledge Modules (LKM)
	Integration Knowledge Modules (IKM)
	Journalizing Knowledge Modules (JKM)
	Service Knowledge Modules (SKM)

	Oracle Data Integrator Substitution API
	Working with Datastores and Object Names
	Working with Lists of Tables, Columns and Expressions
	Using getTargetColList to create a table
	Using getColList in an Insert values statement
	Using getSrcTableList

	Generating the Source Select Statement
	Obtaining Other Information with the API
	Advanced Techniques for Code Generation

	Reverse-engineering Knowledge Modules (RKM)
	RKM Process
	SNP_REV_xx Tables Reference
	SNP_REV_SUB_MODEL
	SNP_REV_TABLE
	SNP_REV_COL
	SNP_REV_KEY
	SNP_REV_KEY_COL
	SNP_REV_JOIN
	SNP_REV_JOIN_COL
	SNP_REV_COND

	Data Integrity Strategies (CKM)
	Standard Check Knowledge Modules
	Case Study: Customizing a CKM to Dynamically Create Non-Existing References

	Loading Strategies (LKM)
	Using the Agent
	Using Loaders
	Using Loaders for Flat Files
	Using Unload/Load for Remote Servers
	Using Piped Unload/Load

	Using RDBMS-Specific Strategies

	Integration Strategies (IKM)
	IKMs with Staging Area on Target
	Simple Replace or Append
	Append with Data Quality Check
	Incremental Update
	Slowly Changing Dimensions
	Case Study: Backup Target Table before Load
	Case Study: Tracking Records for Regulatory Compliance

	IKMs with Staging Area Different from Target
	File to Server Append
	Server to Server Append
	Server to File or JMS Append

	Guidelines for Developing your own Knowledge Module

