
O R A C L E ® E S S B A S E

R E L E A S E 1 1 . 1 . 1 . 3

A D D E N D U M

This addendum to the Oracle Essbase documentation set describes, in depth, the new features

in Essbase Release 11.1.1.3.

CONTENTS IN BRIEF

Drill-through from Essbase to Oracle Applications . 2

FDM Enhancements . 51

Smart View Enhancements . 52

Calculation Manager Enhancements . 52

Drill-through from Essbase to Oracle Applications
Essbase provides URL-based drill-through access from Essbase client reporting interfaces (such
as Oracle Hyperion Smart View for Office, Fusion Edition or Oracle Hyperion Financial
Reporting, Fusion Edition) to information located on Oracle Enterprise Resource Planning
(ERP) applications and Enterprise Performance Management (EPM) applications.

See these topics:

l “Overview of Drill-through to Oracle Applications” on page 2

l “Drill-through URLs” on page 3

l “Creating and Managing Drill-through URLs” on page 4

l “MaxL Statements” on page 5

l “MaxL Definitions” on page 8

l “C Main API Structure” on page 10

l “C Main API Functions” on page 10

l “C Grid API Structure” on page 19

l “C Grid API Function” on page 20

l “Visual Basic API Structure” on page 21

l “Visual Basic API Functions” on page 22

l “Drill-through Visual Basic API Example” on page 28

l “Administration Services” on page 50

Overview of Drill-through to Oracle Applications
This documentation discusses the ability to drill through to information hosted on Oracle ERP
and EPM applications, which differs from the concept of drill-through as described in Oracle
Essbase Integration Services and Oracle Essbase Studio documentation. In this documentation,
drill-through refers to the ability of an Essbase database cell to link to information contained in
another Oracle application. In Integration Services and Essbase Studio documentation, drill-
through refers to linking a multidimensional database cell to further data; for example, to
transaction-level data that is stored in a relational source.

When you deploy an Essbase database using Oracle General Ledger or Oracle Hyperion EPM
Architect, Fusion Edition, you use the Essbase API to populate the Essbase database with
information about which Essbase database cells are valid regions enabled for drill-through access
to the enterprise-reporting applications.

For each Essbase drillable region of an Essbase database, you enable drill-through access by
means of a URL. Use the Essbase API to populate the Essbase database with the URL information,
as well as the drillable-region information. The URL displays to users of the Essbase client
interfaces as a link associated to a cell which provides access to related information hosted by
Oracle ERP and EPM applications.

2 Addendum

For example, in Smart View, a cell represents actual sales data for Cola in the New York market
in January. Color-coding on the cell indicates that there are reports associated with the cell. This
particular cell could have multiple links associated through which the user can scroll. Each link
is enabled by a URL. When the user clicks on a link, the URL is validated, and a launch page,
hosted by the ERP or EPM application, displays in a Web browser.

Drill-through URLs
ERP and EPM applications create a drill-through URL using Essbase. The drill-through URL is
stored in the Essbase database file as metadata.

Note: It the responsibility of the Administrators of the ERP and EPM applications to define
drill-through definitions and host the Web pages that they wish to use as targets of drill-
through URLs.

Drill-through URLs consist of the following components:

l “Drill-through URL Name” on page 3

l “Drill-through URL XML” on page 3

l “List of Drillable Regions ” on page 3

l “Level-0 Boolean Flag” on page 4

Drill-through URL Name
The drill-through URL name is an identifier to manage the defined drill-through URL This name
can be different from the URL display name visible to the end user through Essbase clients.

Drill-through URL XML
The drill-through URL XML is a block of XML information structured in a protocol that enables
Essbase to link specified database regions to information on Oracle ERP and EPM applications.
This URL XML is transparent to the end users querying the application. The URL XML is
populated by the ERP or EPM applications that deployed the Essbase database. It is not
recommended that the Administrator edit the URL XML; however, Essbase does provide the
interface to edit the URL XML. The XML block contains the drill-through URL display name,
as well as a URL enabling the hyperlink from a cell to a Web interface to occur.

List of Drillable Regions
The list of drillable regions is a member specification defining areas of the database that should
allow drill-through using the specified URL. The administrator defines the list of drillable regions
using a member specification of members from one or more dimensions. Define the member
specification using the same Essbase member-set calculation language that you use for defining
security filters. For example, the following is a valid member specification, indicating all eastern

Addendum 3

states, except New York, for months of Qtr1: @REMOVE(@DESCENDANTS("Eastern
Region"), “New York”), @CHILDREN(Qtr1).

Level-0 Boolean Flag
This flag indicates whether the URL applies only to level-0 descendents of the region specified
by the list of drillable regions.

For example, if the level-0 flag is enabled for drillable region DESCENDANTS("Market"),
@CHILDREN(Qtr1), then the URL is applicable for all states of Market during all months of
Qtr1, and for all level-0 members across remaining dimensions.

Creating and Managing Drill-through URLs
Use the following MaxL statements to manage drill-through URLs:

l create drillthrough

l alter drillthrough

l drop drillthrough

l display drillthrough

See “MaxL Statements” on page 5.

Use the following Essbase API structures and functions to manage the drill-through URLs on
the Essbase outline:

l C Main API Structure:

m ESS_DURLINFO_T

See “C Main API Structure” on page 10.

l C Main API functions:

m EssCreateDrillThruURL

m EssDeleteDrillThruURL

m EssGetDrillThruURL

m EssGetCellDrillThruReports

m EssListDrillThruURLs

m EssMDXIsCellGLDrillable

m EssUpdateDrillThruURL

See “C Main API Functions” on page 10.

l C Grid API structure:

m ESSG_DATA_T

See “C Grid API Structure” on page 19.

l C Grid API function:

4 Addendum

m EssGGetIsCellDrillable

See “C Grid API Function” on page 20.

l Visual Basic API structure:

m ESB_DURLINFO_T

See “Visual Basic API Structure” on page 21.

l Visual Basic API functions:

m EsbCreateDrillThruURL

m EsbUpdateDrillThruURL

m EsbDeleteDrillThruURL

m EsbListDrillThruURLs

m EsbGetDrillThruURL

m EsbGetCellDrillThruReports

See “Visual Basic API Functions” on page 22.

Use the following Oracle Essbase Administration Services topics to manage drill-through URLs:

l “Managing Drill-through Definitions” on page 50

l “Edit Drill-Through Definitions Dialog Box” on page 51

MaxL Statements
The following MaxL statements are for the drill-through to Oracle applications feature.

l Alter Drillthrough

l Create Drillthrough

l Display Drillthrough

l Drop Drillthrough

Alter Drillthrough
Edit drill-through URL definitions used to link to content hosted on Oracle ERP and EPM
applications.

Syntax

Use alter drillthrough in the following ways to edit a URL definition.

Keyword Description

Addendum 5

alter drillthrough Edit drill-through URL metadata.

from xml_file Indicate the path to the local URL XML file that defines the link information.

The URL XML is created by the ERP or EPM application that deployed the
Essbase database. The XML contains the drill-through URL display name and
a URL enabling the hyperlink from a cell to a Web interface to occur. For a
sample URL XML file, see Create Drillthrough.

on {<member-
expression>,...}

Define the list of drillable regions, using the same Essbase member-set
calculation language that is used to define security filters. The list of drillable
regions must be enclosed in {brackets}.

allow_merge Optional: Merge the drillable-region definition instead of replacing it on
update.

Example

alter drillthrough sample.basic.myURL from xml_file "C:/drillthrough/data/
myfile.xml" on {'@Ichildren(“Qtr1”)', '@Ichildren(“Qtr2”)'} allow_merge;

Create Drillthrough
Create a drill-through URL within the active database outline.

For each drillable region of an Essbase database, you can enable drill-through access by means
of a URL to Web content hosted on Oracle ERP and EPM applications.

Syntax

Use create drillthrough to create a drill-through URL definition in the following ways:

Keyword Description

create
drillthrough

Create a drill-through URL as metadata.

from xml_file Indicate the path to the local URL XML file that defines the link information.

The URL XML is created by the ERP or EPM application that deployed the Essbase
database. The XML contains the drill-through URL display name and a URL
enabling the hyperlink from a cell to a Web interface to occur.

The following is a sample URL XML file:

<?xml version="1.0" encoding="UTF-8"?>
<foldercontents path="/">
 <resource name="Assets Drill through Fusion GL"
description="" type="application/x-hyperion-
applicationbuilder-report">
 <name xml:lang="fr">Rapport de ventes</name>
 <name xml:lang="es">Informe de ventas</name>
 <action name="Display HTML" description="Launch
HTML display of Content" shortdesc="HTML">

6 Addendum

 <url>/fusionapp/Assetsdrill.jsp?SSO_TOKEN&
$CONTEXT$&$ATTR(ds,pos,gen,level.edge)$
 </url>
 </action>
 </resource>
</foldercontents>

on {<member-
expression>,...}

Define the list of drillable regions, using the same Essbase member-set calculation
language that is used to define security filters. The list of drillable regions must
be enclosed in {brackets}.

level0 only Optional: Restrict the URL definition to level-0 data.

Example

create drillthrough sample.basic.myURL from xml_file "C:/drillthrough/data/
myfile1.xml" on {'@Ichildren(“Qtr1”)', '@Ichildren(“Qtr2”)'} level0 only;

Display Drillthrough
View drill-through URL definitions used to link to content hosted on Oracle ERP and EPM
applications.

Syntax

You can display URL information in the following ways using display user.

Keyword Description

<dbs-name> Display all drill-through URL definitions on the database.

<dbs-name> to <file-
name-prefix>

Display all drill-through URL definitions on the database, writing the URL
XML content to file names prefixed with the string given as input for FILE-
NAME-PREFIX.

<url-name> Display the specified drill-through URL definition.

<url-name> to <file-
name>

Display the specified drill-through URL definition, writing the URL XML
content to the specified file name.

Example

display drillthrough sample.basic;

Displays all drill-through URL definitions on Sample.Basic.

display drillthrough sample.basic to "urlxmls";

Displays all drill-through URL definitions on Sample Basic, writing the URL XML content to
file names prefixed with urlxmls.

display drillthrough sample.basic."Drill through To EPMI";

Addendum 7

Displays the drill-through URL definition named Drill through To EPMI.

display drillthrough sample.basic."Drill through To EPMI" to "c:/temp/
drillthrough.xml";

Displays the drill-through URL definition named Drill through To EPMI, writing the URL
XML content to the file drillthrough.xml.

Drop Drillthrough
Delete a drill-through URL definition used to link to content hosted on Oracle ERP and EPM
applications.

Syntax

Example

drop drillthrough sample.basic.myURL;

MaxL Definitions
The following MaxL definitions are for the drill-through to Oracle applications feature.

l “FILE-NAME-PREFIX” on page 8

l “MEMBER-EXPRESSION” on page 9

l “URL-NAME” on page 9

FILE-NAME-PREFIX
Prefix for one or more file names to be created (upon display drillthrough DBS-NAME to FILE-
NAME-PREFIX) on the client in the working directory of MaxL execution.

These display output files contain the URL XML content of URL drill-through definitions used
to link to content hosted on ERP and EPM applications.

If the string contains special characters, it must be enclosed in single or double quotation marks.

Type

string

Example

urlxmls

Referenced By

Display Drillthrough

8 Addendum

MEMBER-EXPRESSION
Outline member specification of members from one or more dimensions, member
combinations separated by commas, or member sets defined with functions. Must be enclosed
in single or double quotation marks.

Type

string

Example

'@ANCESTORS(Qtr2)'

If MEMBER-EXPRESSION contains MEMBER-NAMES that begin with numbers or contain
special characters, then enclose those member names in double quotation marks, and the entire
MEMBER EXPRESSION in single quotation marks. For example:

l create or replace filter demo.basic.numfilt no_access on '"2"';

l '@DESCENDANTS("Eastern Region"), @CHILDREN(Qtr1)'

The following example shows how Create Drillthrough uses a member expression to define
the list of drillable regions.

create drillthrough sample.basic.myURL from xml_file "temp.xml" on
{'@Ichildren("Qtr1")', '@Ichildren("Qtr2")'} level0 only;

Referenced By

Alter Drillthrough

Create Drillthrough

URL-NAME
The name of a drill-through URL definition used to link to content hosted on Oracle ERP and
EPM applications.

Syntax

name1.name2.name3

l name1—Application name

l name2—Database name

l name3—URL name

Type

name

Example

Sample.basic.MyURL

Addendum 9

If any part of the name contains special characters, the name must be enclosed in single or double
quotation marks.

Referenced By

Alter Drillthrough

Create Drillthrough

Display Drillthrough

Drop Drillthrough

C Main API Structure
The following C Main API structure is for the drill-through to Oracle applications feature.

ESS_DURLINFO_T
ESS_DURLINFO_T is a data structure for capturing drill-through URL information.

typedef struct url
{
 ESS_CHAR_T bIsLevel0;
 ESS_STR_T cpURLName;
 ESS_USHORT_T iURLXmlSize;
 ESS_BYTE_T* cpURLXml;
 ESS_USHORT_T iCountOfDrillRegions;
 ESS_PSTR_T cppDrillRegions;
} ESS_DURLINFO_T;

Data Type Field Description

ESS_STR_T cpURLName Name of the drill-through URL

ESS_CHAR_T bIsLevel0 If 1, then URL definition is restricted
to level-0 data; if 0, there is no
restriction

ESS_USHORT_T iURLXmlSize Size of the URL XML text

ESS_BYTE_T* cpURLXml Pointer to the URL XML text

ESS_USHORT_T icountOfDrillRegions Number of regions referenced by the
drill-through URL

ESS_PSTR_T cppdrillRegions List of regions referenced by the drill-
through URL

C Main API Functions
The following C Main API functions are for the drill-through to Oracle applications feature.

10 Addendum

l EssCreateDrillThruURL

l EssDeleteDrillThruURL

l EssGetCellDrillThruReports

l EssGetDrillThruURL

l EssListDrillThruURLs

l EssMDXIsCellGLDrillable

l EssUpdateDrillThruURL

EssCreateDrillThruURL
Creates a drill-through URL, with the given link and name, within the active database outline.

Syntax

ESS_FUNC_M EssCreateDrillThruURL (hCtx, pUrl);

Parameter Data Type Description

hCtx ESS_HCTX_T API context handle

pUrl ESS_PDURLINFO_T URL definition

Return Value

l If successful, creates a drill-through URL in the active database outline.

l If unsuccessful, returns an error code.

Access

l Caller must have database Design privilege (ESS_PRIV_DBDESIGN) for the specified
database.

l Caller must have selected the specified database as the active database using EssSetActive().

Example

/* Sample Code for EssCreateDrillThruURL */

ESS_STS_T sts = ESS_STS_NOERR;
ESS_DURLINFO_T url;
ESS_USHORT_T usCountOfURLs, i;
ESS_PDURLINFO_T listOfURLs;
ESS_STR_T urlName = "";
ESS_PDURLINFO_T urlInfo;
ESS_STR_T fileName = "";
ESS_CHAR_T xmlString[XML_CHAR_MAX];

/* Valid case */

memset(&url, '\0', sizeof(ESS_DURLINFO_T));
fileName = "F:\\testarea\\mainapi\\sample1.xml";
GetFileContent(fileName, xmlString);

Addendum 11

printf("\nValid case:\n");
 url.bIsLevel0 = ESS_TRUE;
 url.cpURLName = "Drill Through to EPMI";
 url.cpURLXml = xmlString;
 url.iURLXmlSize = (ESS_SHORT_T) strlen(xmlString)+1;
 url.iCountOfDrillRegions = 2;
sts = EssAlloc (hInst, sizeof(ESS_STR_T) * url.iCountOfDrillRegions,
&(url.cppDrillRegions));
 url.cppDrillRegions[0] = "@idesc(\"Qtr1\")";
 url.cppDrillRegions[1] = "@idesc(\"Qtr2\")";
sts = EssCreateDrillThruURL(hCtx, &url);
printf("EssCreateDrillThruURL sts: %ld\n",sts);

EssDeleteDrillThruURL
Deletes a drill-through URL, with the given URL name, within the active database outline.

Syntax

ESS_FUNC_M EssDeleteDrillThruURL (hCtx, URLName);

Parameter Data Type Description

hCtx ESS_HCTX_T API context handle

URLName ESS_STR_T Drill-through URL name

Return Value

l If successful, deletes the named drill-through URL in the active database outline.

l If unsuccessful, returns an error code.

Access

l Caller must have database Design privilege (ESS_PRIV_DBDESIGN) for the specified
database.

l Caller must have selected the specified database as the active database using EssSetActive().

Example

ESS_STS_T sts = ESS_STS_NOERR;

sts = EssDeleteDrillThruURL(hCtx, "Drill Through to EPMI");
printf("EssDeleteDrillThruURL sts: %ld\n",sts);

EssGetCellDrillThruReports
Gets the drill-through reports associated with a data cell as a list of URL XMLs, given the cell's
member combination.

Syntax

ESS_FUNC_M EssGetCellDrillThruReports (hCtx, noMbrs, pMbrs, nURLXML,
ppURLXMLLen, ppURLXML);

12 Addendum

Parameter Data Type Description

hCtx ESS_HCTX_T API context handle

noMbrs ESS_USHORT_T Number of members in the member list pMbrs

pMbrs ESS_PSTR_T Pointer to the list of member names (or Aliases);
the array size is assumed to be the dimension count

nURLXML ESS_PUSHORT_T Number of URL XMLs returned

ppURLXMLLen ESS_PPUSHORT_T Returns length of URL XML generated

ppURLXML ESS_PPVOID_T Returns pointers to the URL XML byte stream

Notes

The application database must be set to Active for this call. This function must be extended to
support any additional information needed by the clients.

Return Value

l If successful, gets the list of URL XMLs.

l If unsuccessful, returns an error code.

Access

l Caller must have database Read privilege (ESS_PRIV_READ) for the specified database.

l Caller must have selected the specified database as the active database using EssSetActive().

Example

/* Sample Code for EssGetCellDrillThruReports */

ESS_STS_T sts = ESS_STS_NOERR;
ESS_SHORT_T numMbrs = 0;
ESS_STR_T *pMbrs = ESS_NULL;
ESS_USHORT_T numURLXML, i = 0;
ESS_USHORT_T *URLXMLLen = ESS_NULL;
ESS_PPVOID_T *URLXML = ESS_NULL;
ESS_CHAR_T pTmpXML[XML_CHAR_MAX];

/* Valid case */

numMbrs = 5;
sts = EssAlloc (hInst, sizeof(ESS_STR_T) * numMbrs , &pMbrs);
pMbrs[0] = "Jul";
pMbrs[1] = "100-10";
pMbrs[2] = "Actual";
pMbrs[3] = "New York";
pMbrs[4] = "Sales";
sts = EssGetCellDrillThruReports(hCtx, numMbrs, pMbrs, &numURLXML,
&URLXMLLen, &URLXML);
printf("EssGetCellDrillThruReports sts: %ld\n",sts);
 if(!sts)
 {
 printf("\nNumber of URL XML: %d", numURLXML);

Addendum 13

 for (i = 0; i < numURLXML; i++)
 {
 memset(pTmpXML, 0, XML_CHAR_MAX);
 memcpy(pTmpXML, URLXML[i], URLXMLLen[i]);

 if (URLXML[i] != ESS_NULL)
 printf("\tXML [%d] : %s\n", i, pTmpXML);
 else
 printf("\tXML [%d] : NULL STRING \n", i);
 if (URLXML[i] != ESS_NULL)
 EssFree(hInst, URLXML[i]);
 }
 if (URLXML != ESS_NULL)
 EssFree(hInst, URLXML);
 if (URLXMLLen != ESS_NULL)
 EssFree(hInst, URLXMLLen);
 }

EssGetDrillThruURL
Gets the drill-through URL within the active database outline.

Syntax

ESS_FUNC_M EssGetDrillThruURL (hCtx, URLName, &pUrl);

Parameter Data Type Description

hCtx ESS_HCTX_T API context handle

URLName ESS_STR_T Drill-through URL name

pUrl ESS_PDURLINFO_T URL definition

Return Value

l If successful, gets the drill-through URL in the active database outline.

l If unsuccessful, returns an error code.

Access

l Caller must have database Read privilege (ESS_PRIV_READ) for the specified database.

l Caller must have selected the specified database as the active database using EssSetActive().

Example

static void DisplayUrlDefn (ESS_PDURLINFO_T pUrls)
{
 ESS_UINT_T i;

 printf("\tUrlname : %s\n", pUrls->cpURLName);
 if (pUrls->bIsLevel0)
 printf("\tUrl Is Level-0 slice : Yes\n");
 else
 printf("\tUrl Is Level-0 slice : No\n");

14 Addendum

 printf("\tUrlXmlsize : %i\n", pUrls->iURLXmlSize);
 printf("\tUrlXml : %s\n", (ESS_STR_T) pUrls->cpURLXml);

 printf("\tNumber of drill region(s): %d\n", pUrls-
>iCountOfDrillRegions);
 for (i = 0; i < pUrls->iCountOfDrillRegions; i++)
 {
 printf("\t\tDrillRegion[%d]: %s\n", i, pUrls->cppDrillRegions[i]);
 }
 printf("\n");
}
ESS_STS_T sts = ESS_STS_NOERR;
ESS_STR_T urlName = "";
ESS_USHORT_T usCountOfURLs, i;
ESS_PDURLINFO_T urlInfo;

/* Valid case*/

urlName = "Drill Through to EPMI";
sts = EssGetDrillThruURL(hCtx, urlName, &urlinfo);
printf("EssGetDrillThruURL sts: %ld\n",sts);
if(!sts)
 DisplayUrlDefn(urlInfo);

EssFreeStructure (hInst, ESS_DT_STRUCT_URLINFO, 1, (ESS_PVOID_T)urlInfo);

EssListDrillThruURLs
Lists the drill-through URL names within the active database outline.

Syntax

ESS_FUNC_M EssListDrillThruURLs (hCtx, &pCountOfUrls, &pUrls);

Parameter Data Type Description

hCtx ESS_HCTX_T API context handle

pCountOfUrls ESS_PUSHORT_T Count of drill-through URLs

pUrls ESS_PPDURLINFO_T List of URLs

Notes

The ESS_DURLINFO_T structure array must be deallocated by the caller using
EssFreeStructure() with the ESS_DT_STRUCT_URLINFO option.

Return Value

l If successful, lists drill-through URLs in the active database outline.

l If unsuccessful, returns an error code.

Access

l Caller must have database Read privilege (ESS_PRIV_READ) for the specified database.

l Caller must have selected the specified database as the active database using EssSetActive().

Addendum 15

Example

static void DisplayUrlDefn (ESS_PDURLINFO_T pUrls)
{
 ESS_UINT_T i;

 printf("\tUrlname : %s\n", pUrls->cpURLName);
 if (pUrls->bIsLevel0)
 printf("\tUrl Is Level-0 slice : Yes\n");
 else
 printf("\tUrl Is Level-0 slice : No\n");

 printf("\tUrlXmlsize : %i\n", pUrls->iURLXmlSize);
 printf("\tUrlXml : %s\n", (ESS_STR_T) pUrls->cpURLXml);

 printf("\tNumber of drill region(s): %d\n", pUrls-
>iCountOfDrillRegions);
 for (i = 0; i < pUrls->iCountOfDrillRegions; i++)
 {
 printf("\t\tDrillRegion[%d]: %s\n", i, pUrls->cppDrillRegions[i]);
 }
 printf("\n");
}

ESS_STS_T sts = ESS_STS_NOERR;
ESS_USHORT_T usCountOfURLs, i;
ESS_PDURLINFO_T listOfURLs;
ESS_DURLINFO_T url;

/* Valid case*/

sts = EssListDrillThruURLs(hCtx, &usCountOfURLs, &listOfURLs);
printf("EssListDrillThruURLs sts: %ld\n",sts);
if(!sts)
 {
 printf("\tCount of URL: %d\n", usCountOfURLs);
 printf("\tList of URL(s):\n");
 for(i = 0; i < usCountOfURLs; i++)
 {
 DisplayUrlDefn (&listOfURLs[i]);
 }
 }
EssFreeStructure (hInst, ESS_DT_STRUCT_URLINFO, usCountOfURLs, listOfURLs);

EssMDXIsCellGLDrillable
Checks whether the cell is associated with a drill-through URL.

Syntax

ESS_FUNC_M EssMdxIsCellGLDrillable (hQry, hCell, pIsDrillable);

Parameter Data Type Description

hQry ESS_MDX_QRYHDL_T Query handle

hCell ESS_MDX_CELLHDL_T Cell handle

16 Addendum

pIsDrillable ESS_PBOOL_T True, if the cell is associated with a drill-through
URL; False, otherwise

Return Value

l If successful, sets pIsDrillable based on the cell's status.

l If unsuccessful, returns an error message.

Example

#define ESS_MDX_CELLPROP_GLDRILLTHRU 0x00000008

 if ((sts = EssMdxNewQuery(hCtx, qry, &hQry)) != ESS_STS_NOERR)
 {
 printf("EssMdxNewQuery failure: %ld\n", sts);
 exit ((int) sts);
 }
 printf("EssMdxNewQuery sts: %ld\n", sts);

 if ((sts = EssMdxSetQueryCellProperties(hQry,
 (ESS_MDX_CELLPROP_GLDRILLTHRU
)
)) != ESS_STS_NOERR)
 {
 printf("EssMdxSetQueryCellProperties failure: %ld\n", sts);
 exit ((int) sts);
 }
 if ((sts = EssMdxExecuteQuery(hQry)) != ESS_STS_NOERR)
 {
 printf("EssMdxExecuteQuery failure: %ld\n", sts);
 exit ((int) sts);
 }
 printf("EssMdxExecuteQuery sts: %ld\n", sts);

/* To retrieve IsCellGLDrillable property of a cell, use
EssMdxIsCellGLDrillable*/

 if ((sts = EssMdxIsCellGLDrillable(hQry, hCell, &bIsCellGLDT))
 != ESS_STS_NOERR)
 {
 printf("EssMdxIsCellGLDrillable failure: %ld\n", sts);
 exit ((int) sts);
 }
 if (bIsCellGLDT)
 printf(" Is Cell Drillable: TRUE\n");
 else
 printf(" Is Cell Drillable: FALSE\n");

EssUpdateDrillThruURL
Updates a drill-through URL, with the given name, within the active database outline.

Syntax

ESS_FUNC_M EssUpdateDrillThruURL (hCtx, ESS_PDURLINFO_T pUrl);

Addendum 17

Parameter Data Type Description

hCtx ESS_HCTX_T API context handle

pUrl ESS_PDURLINFO_T URL definition

bMerge ESS_BOOL_T l If True, add drill-through region definitions in
pUrl to the existing list of drill-through regions
in the named URL definition

l If False, replace the existing list of drill-through
region definitions with the list in pUrl

Return Value

l If successful, updates the named drill-through URL in the active database by replacing the
URL XML and either updating or replacing the drill-through region list with the
corresponding fields in pUrl.

l If there is no URL with the given name, returns an error code.

Access

l Caller must have database Design privilege (ESS_PRIV_DBDESIGN) for the specified
database.

l Caller must have selected the specified database as the active database using EssSetActive().

Example

/* Sample Code for EssUpdateDrillThruURL */

ESS_STS_T sts = ESS_STS_NOERR;
ESS_DURLINFO_T url;
ESS_PDURLINFO_T urlInfo;
ESS_STR_T fileName = "";
ESS_CHAR_T xmlString[XML_CHAR_MAX];
ESS_BOOL_T bMerge;
ESS_USHORT_T i;

memset(&url, '\0', sizeof(ESS_DURLINFO_T));
fileName = "F:\\testarea\\mainapi\\sample1.xml";
GetFileContent(fileName, xmlString);

/* Update URL*/
url.bIsLevel0 = ESS_TRUE;
url.cpURLName = "Drill Through to EPMI";
url.cpURLXml = xmlString;
url.iURLXmlSize = (ESS_SHORT_T) strlen(xmlString)+1;
url.iCountOfDrillRegions = 1;
sts = EssAlloc (hInst, sizeof(ESS_STR_T) * url.iCountOfDrillRegions,
&(url.cppDrillRegions));

/* With bMerge = ESS_FALSE, update Drill Regions */

bMerge = ESS_FALSE; // replace
url.cppDrillRegions[0] = "Mar";
sts = EssUpdateDrillThruURL(hCtx, &url, bMerge);
printf("EssUpdateDrillThruURL sts: %ld\n",sts);

18 Addendum

C Grid API Structure
The following C Grid API structure is for the drill-through to Oracle applications feature.

ESSG_DATA_T
Describes the format of the data to be sent and received by the Essbase Grid API. Note that calls
returning this structure will return member names in the Member structure. The caller can pass
in the same structure back to the API using the Member structure instead of the pszStr field if
the type is ESSG_DT_MEMBER.

The ESSG_DATA_T data structure defines each cell sent or returned via the grid API. If this
structure is being returned to the caller, pszStr contains string data and dblData contains numeric
data. Use the usType field to determine whether the cell is a member, a number, or text. Similarly,
if the structure is being passed into the API, pszStr should contain a member name or text and
dblData should contain numeric data. Set the usType field to correspond to the data type of the
cell. If the cell data type is unknown, set it to text (ESSG_DT_STRING), and the server
determines whether it is a member.

typedef struct ESSG_DATA_T
{
 ESSG_PVOID_T pAttributes;
 ESSG_DATA_VALUE Value;
 ESSG_USHORT_T usType;
 ESSG_PVOID_T pCellProps;
} ESSG_DATA_T;

ESS_TSA_API_typedef(ESSG_DATA_T *, ESSG_PDATA_T);
ESS_TSA_API_typedef(ESSG_DATA_T **, ESSG_PPDATA_T);

Data Type Field Description

ESSG_PVOID_T pAttributes One of the long integer constants
listed below indicating the cell type
or member type (OUT)

ESSG_DATA_VALUE_T Value The value of the returned grid string

ESSG_USHORT_T usType One of the tag constants listed below
indicating the data type (IN/OUT)

ESSG_PVOID_T pCellProps Stores cell properties; for example,
whether or not cell is associated with
a drill-through URL

Constants for ESSG_DATA_T

The following constants are used by the pAttributes field of the ESSG_DATA_T structure for cell
data types:

ESSG_CA_READONLY
ESSG_CA_READWRITE
ESSG_CA_LINKEDOBJ
ESSG_CA_LINKPARTITION
ESSG_CA_LINKCELLNOTE

Addendum 19

ESSG_CA_LINKWINAPP
ESSG_CA_LINKURL
ESSG_CA_AISDT
ESSG_CA_GLDT

The following constants are used by the pAttributes field of the ESSG_DATA_T structure for
member data types:

ESSG_MA_DIMTOP
ESSG_MA_ZOOMINABLE
ESSG_MA_NEVERSHARE
ESSG_MA_LABELONLY
ESSG_MA_STOREDATA
ESSG_MA_EXPSHARE
ESSG_MA_IMPSHARE
ESSG_MA_DYNCALC
ESSG_MA_FORMULA
ESSG_MA_ATTRIBUTE
ESSG_MA_DIMNUMBITS

The following constants are used by the usType field of the ESSG_DATA_T structure:

ESSG_DT_UNUSED
ESSG_DT_STRING
ESSG_DT_LONG
ESSG_DT_DOUBLE
ESSG_DT_BLANK
ESSG_DT_RESERVED
ESSG_DT_ERROR
ESSG_DT_MISSING
ESSG_DT_ZERO
ESSG_DT_NOACCESS
ESSG_DT_MEMBER
ESSG_DT_FORMULA
ESSG_DT_ZEROwFORMULA
ESSG_DT_DOUBLEwFORMULA
ESSG_DT_BLANKwFORMULA
ESSG_DT_STRINGwFORMULA
ESSG_DT_MISSINGwFORMULA
ESSG_DT_NOACCESSwFORMULA
ESSG_DT_STRINGEX
ESSG_DT_MEMBEREX
ESSG_DT_STRINGEXwFORMULA
ESSG_DT_FORMULAEX
ESSG_DT_MEMBERwKEY

C Grid API Function
The following C Grid API function is for the drill-through to Oracle applications feature.

EssGGetIsCellDrillable
Checks whether a cell is associated with a drill-through URL.

Syntax

20 Addendum

ESS_FUNC_M EssGGetIsCellDrillable (hGrid, pData, pIsDrillable);

Parameter Data Type Description

hGrid ESSG_HGRID_T Grid handle returned by EssGNewGrid()

pData ESS_PDATA_T Pointer to the ESSG_DATA_T structure of the cell

pIsDrillable ESS_PBOOL_T True, if the cell is associated with a drill-through URL;
False otherwise

Return Value

l If successful, sets pIsDrillable accordingly.

l If unsuccessful, returns an error code.

Example

#define ESSG_OP_GET_DRILLTHRU_URLS 41

ESSG_STS_T sts = EssGInit(&InitStruct, &Handle);
sts = EssGNewGrid(Handle, &hGrid);
sts =
EssGConnect(hGrid,Server,UserName,Password,Application,Database,ulOptions);
sts = EssGSetGridOption(hGrid, ESSG_OP_GET_DRILLTHRU_URLS ,(ESSG_PVOID_T)
(ESSG_TRUE));

ppDataIn = BuildQuery(&rRangeDataIn);

sts = EssGBeginRetrieve(hGrid,ESSG_RET_RETRIEVE);
sts = EssGSendRows(hGrid, &rRangeDataIn, ppDataIn);
sts = EssGPerformOperation(hGrid, 0);

/*To retrieve the cell drillable property of a cell*/

EssGGetIsCellDrillable(hGrid, &(cells[ulRow][ulCol]), &bIsDrillable);
 if (bIsDrillable)
 printf("bIsDrillable: true");
 else
 printf("bIsDrillable: false");

Visual Basic API Structure
The following Visual Basic API structure and functions are for the drill-through to Oracle
applications feature.

ESB_DURLINFO_T
A data structure used to capture URL information. The fields are:

Type ESB_DURLINFO_T
 bIsLevel0 As Integer 'consider level-0 members along symmetric
regions
 iURLXMLSize As Integer 'URL XML size
 cpURLName As String * 1024 'URL identifier

Addendum 21

 cpURLXML As String * 8192 'URL XML
End Type

Visual Basic Data Type Field Description

As Integer bIsLevel0 If 1, then URL definition is restricted
to level-0 data; if 0, there is no
restriction

As Integer iURLXMLSize Size of URL XML

As String * 1024 cpURLName Name of URL definition

As String * 8192 cpURLXML Content of URL XML

Note: The regions list is passed as a separate argument, symRegions(), within each Visual Basic
drill-through function.

Visual Basic API Functions
The following Visual Basic API functions are for the drill-through to Oracle applications feature.

l EsbCreateDrillThruURL

l EsbDeleteDrillThruURL

l EsbGetCellDrillThruReports

l EsbGetDrillThruURL

l EsbListDrillThruURLs

l EsbUpdateDrillThruURL

EsbCreateDrillThruURL
Creates a drill-through URL, with the given link and the name, within the active database outline.

Syntax

Declare Function EsbCreateDrillThruURL Lib "esbapin" (ByVal hCtx As Long,
ByRef symRegions() As String, ByRef pUrl As ESB_DURLINFO_T) As Long

Parameter Description

hCtx Visual Basic API context handle

symRegions() Array containing the symmetric region specification

pUrl URL definition

Return Value

l If successful, creates a drill-through URL in the active database outline.

l If unsuccessful, returns an error code.

22 Addendum

Access

l Caller must have database Design privilege (ESB_PRIV_DBDESIGN) for the specified
database.

l Caller must have selected the specified database as their active database using EsbSetActive().

Example

Sub ESB_CreateGLDrillThru()
 Dim sts As Long
 Dim url As ESB_DURLINFO_T
 Dim cppDrillRegions(0 To 1) As String

 '***
 ' Need to create a local context, if files are not on the server
 '***
 url.bIsLevel0 = 0

 cppDrillRegions(0) = "sales"
 cppDrillRegions(1) = "cogs"
 url.cpURLXML = "Testing"
 url.cpURLName = "VB URL7"
 url.iURLXMLSize = 8

 sts = EsbCreateDrillThruURL(hCtx, cppDrillRegions, url)

 Debug.Print "EsbCreateDrillThruURL sts: " & sts
End Sub

See also an extended example in “Drill-through Visual Basic API Example” on page 28.

EsbDeleteDrillThruURL
Deletes a drill-through URL, with the given URL name, within the active database outline.

Syntax

Declare Function EsbDeleteDrillThruURL Lib "esbapin" (ByVal hCtx As Long,
ByVal URLName As String) As Long

Parameter Description

hCtx Visual Basic API context handle

URLName Drill-through URL name

Return Value

l If successful, deletes the named drill-through URL in the active database outline.

l If unsuccessful, returns an error code.

Access

l Caller must have database Design privilege (ESB_PRIV_DBDESIGN) for the specified
database.

Addendum 23

l Caller must have selected the specified database as their active database using EsbSetActive().

Example

Sub ESB_DeleteGLDrillThru()
 Dim URLName As String

 URLName = "VB URL7"
 sts = EsbDeleteDrillThruURL(hCtx, URLName)

 Debug.Print "EsbDeleteDrillThruURL sts: " & sts
End Sub

See also an extended example in “Drill-through Visual Basic API Example” on page 28.

EsbGetCellDrillThruReports
Gets the drill-through reports associated with a data cell as a list of URL XMLs, given the cell's
member combination.

Syntax

Declare Function EsbGetCellDrillThruReports Lib "esbapin" (ByVal hCtx As
Long, ByRef pMbrs() As String, ByRef ppURLXMLLen As Variant, ByRef ppURLXML
As Variant) As Long

Parameter Description

hCtx Visual Basic API context handle

pMbrs List of member names (or Aliases)

ppURLXMLLen Returns length of URL XML generated

ppURLXML Returns pointers to the URL XML byte stream

Notes

The application database needs to be set to Active for this call. This function needs to be extended
to support any additional information needed by the clients.

Return Value

l If successful, gets the list of URL XMLs.

l If unsuccessful, returns an error code.

Access

l Caller must have database Read privilege (ESB_PRIV_READ) for the specified database.

l Caller must have selected the specified database as their active database using EsbSetActive().

Example

Sub ESB_GetCellDrillThruReports()
 Dim intX As Integer
 Dim mbrs(0 To 4) As String
 Dim pURLXMLLens As Variant

24 Addendum

 Dim pURLXMLs As Variant

 mbrs(0) = "sales"
 mbrs(1) = "jan"
 mbrs(2) = "New York"
 mbrs(3) = "actual"
 mbrs(4) = "100-10"

 sts = EsbGetCellDrillThruReports(hCtx, mbrs, pURLXMLLens, pURLXMLs)

 If sts = 0 Then

 Debug.Print "EsbGetCellDrillThruReports sts: " & sts
 For intX = LBound(pURLXMLLens) To UBound(pURLXMLLens)

 Debug.Print "URL XML: " & intX
 Debug.Print "URL XML Len: " & pURLXMLLens(intX)
 Debug.Print "URL XML String: " & pURLXMLs(intX)

 Next
 End If

 mbrs(0) = "profit"
 sts = EsbGetCellDrillThruReports(hCtx, mbrs, pURLXMLLens, pURLXMLs)
 If sts = 0 Then
 Debug.Print "EsbGetCellDrillThruReports sts: " & sts
 For intX = LBound(pURLXMLLens) To UBound(pURLXMLLens)
 Debug.Print "URL XML: " & intX
 Debug.Print "URL XML Len: " & pURLXMLLens(intX)
 Debug.Print "URL XML String: " & pURLXMLs(intX)
 Next
 End If
End Sub

See also an extended example in “Drill-through Visual Basic API Example” on page 28.

EsbGetDrillThruURL
Gets a list of drill-through URL names within the active database outline.

Syntax

Declare Function EsbGetDrillThruURL Lib "esbapin" (ByVal hCtx As Long,
ByVal URLName As String, pUrl As ESB_DURLINFO_T, ByRef symRegions As
Variant) As Long

Parameter Description

hCtx Visual Basic API context handle

URLName Drill-through URL name

pUrl URL definition

symRegions List of symmetric regions

Addendum 25

Return Value

l If successful, gets a list of drill-through URLs in the active database outline.

l If unsuccessful, returns an error code.

Access

l Caller must have database Read privilege (ESB_PRIV_READ) for the specified database.

l Caller must have selected the specified database as their active database using EsbSetActive().

Example

Sub ESB_GetGLDrillThru()
 Dim URLName As String
 Dim url As ESB_DURLINFO_T
 Dim intX As Integer
 Dim cppDrillRegions As Variant

 URLName = "VB URL2"
 sts = EsbGetDrillThruURL(hCtx, URLName, url, cppDrillRegions)

 Debug.Print "EsbGetDrillThruURL sts: " & sts

 If sts = 0 Then
 Debug.Print "URL Name: " & url.cpURLName
 Debug.Print "URL XML: " & url.cpURLXML

 For intX = LBound(cppDrillRegions) To UBound(cppDrillRegions)

 Debug.Print "URL Region: " & cppDrillRegions(intX)

 Next
 End If
End Sub

See also an extended example in “Drill-through Visual Basic API Example” on page 28.

EsbListDrillThruURLs
Lists the drill-through URLs within the active database outline.

Syntax

Declare Function EsbListDrillThruURLs Lib "esbapin" (ByVal hCtx As Long,
ByRef URLNames As Variant) As Long

Parameter Description

hCtx Visual Basic API context handle

URLNames List of URL names

Return Value

l If successful, lists names of drill-through URLs in the active database outline.

l If unsuccessful, returns an error code.

26 Addendum

Access

l Caller must have database Read privilege (ESB_PRIV_READ) for the specified database.

l Caller must have selected the specified database as their active database using EsbSetActive().

Example

Sub ESB_ListGLDrillThru()
 Dim intX As Integer
 Dim URLNames As Variant

 sts = EsbListDrillThruURLs(hCtx, URLNames)

 If sts = 0 Then
 Debug.Print "EsbListDrillThruURLs sts: " & sts

 For intX = LBound(URLNames) To UBound(URLNames)

 Debug.Print "URL Name: " & URLNames(intX)

 Next
 End If
End Sub

See also an extended example in “Drill-through Visual Basic API Example” on page 28.

EsbUpdateDrillThruURL
Updates a drill-through URL, with the given name, within the active database outline.

Syntax

Declare Function EsbUpdateDrillThruURL Lib "esbapin" (ByVal hCtx As Long,
ByRef symRegions() As String, ByRef pUrl As ESB_DURLINFO_T, ByVal bMerge As
Integer) As Long

Parameter Description

hCtx Visual Basic API context handle

symRegions() Array containing the symmetric region specification

pUrl URL definition

bMerge
l If True, add drill-through region definitions in pUrl to the existing list of drill-

through regions in the named URL definition

l If False, replace the existing list of drill-through region definitions with the list
in pUrl

Return Value

l If successful, updates the named drill-through URL in the active database by replacing the
URL XML and either updating or replacing the drill-through region list with the
corresponding fields in pUrl.

l If there is no URL with the given name, returns an error code.

Addendum 27

Access

l Caller must have database Design privilege (ESB_PRIV_DBDESIGN) for the specified
database.

l Caller must have selected the specified database as their active database using EsbSetActive().

Example

Sub ESB_UpdateGLDrillThru()
 Dim sts As Long
 Dim url As ESB_DURLINFO_T
 Dim cppDrillRegions(0 To 1) As String
 Dim bMerge As Integer

 '***
 ' Need to create a local context, if files are not on the server
 '***
 url.bIsLevel0 = 0
 bMerge = ESB_TRUE

 cppDrillRegions(0) = "qtr1"
 url.cpURLXML = "Testing"
 url.cpURLName = "VB URL7"
 url.iURLXMLSize = 8

 sts = EsbUpdateDrillThruURL(hCtx, cppDrillRegions, url, bMerge)

 Debug.Print "EsbUpdateDrillThruURL sts: " & sts
End Sub

See also an extended example in “Drill-through Visual Basic API Example” on page 28.

Drill-through Visual Basic API Example
Attribute VB_Name = "Module3"
Dim sts As Long
 Dim hInst As Long
 Dim hDestInst As Long
 Dim hCtx As Long
 Dim hDestCtx As Long
 Dim Server As String * ESB_SVRNAMELEN
 Dim User As String * ESB_USERNAMELEN
 Dim Password As String * ESB_PASSWORDLEN
 Dim AppName As String * ESB_APPNAMELEN
 Dim DbName As String * ESB_DBNAMELEN

Sub ESB_GetVersion()
 Dim sts As Long
 Dim Release As Integer
 Dim Version As Integer
 Dim Revision As Integer
 sts = EsbGetVersion(hCtx, Release, Version, Revision)
 Debug.Print "EsbGetVersion: sts = " & sts
 Debug.Print "Release: " & Release
 Debug.Print "Version: " & Version
 Debug.Print "Revision: " & Revision

28 Addendum

End Sub

Sub ESB_Init()
 Dim Init As ESB_INIT_T

 ESB_FALSE = 0
 ESB_TRUE = 1

 Init.Version = ESB_API_VERSION
 Init.MaxHandles = 10
 Init.LocalPath = "C:\install\zolahit\products\Essbase\EssbaseClient"
 ' Use default message file
 Init.MessageFile = ""
 ' Use EsbGetMessage to retrieve
 ' messages
 Init.ClientError = ESB_TRUE
 Init.ErrorStack = 100
 'Init.vbCallbackFuncAddress = GetProcAddress(AddressOf EsbErrorHandler)

 sts = EsbInit(Init, hInst)
 'MsgBox ("EsbInit = " & sts)
 Debug.Print "EsbInit: sts = " & sts

 'For copy objects between servers
 'sts = EsbInit(Init, hDestInst)
 'MsgBox ("EsbInit = " & sts)
 'Debug.Print "EsbInit: sts = " & sts
End Sub

Public Function GetProcAddress(ByVal lngAddressOf As Long) As Long
 GetProcAddress = lngAddressOf
End Function

Public Function EsbErrorHandler(ByVal MsgNum As Long, ByVal Level As Long,
ByVal uLog As String, ByVal uMsg As String) As Long
 If Level >= ESB_LEVEL_ERROR Then
 MsgBox "Error: " & MsgNum & " - " & uMsg
 End If

 'MsgBox " Info " & MsgNum & ": Level: " & Level & ": " & uLog & ": " &
uMsg
End Function

Sub ESB_GetMessage()
 Dim DbName As String
 Dim FilterName As String
 Const szMessage = 256
 Dim Message As String * szMessage
 Dim Number As Long
 Dim Level As Integer
 Dim sts As Long
 Dim Object As ESB_OBJDEF_T
 Dim hOutline As Long
 Dim hMemberProfit As Long

 Object.hCtx = hCtx
 Object.Type = ESB_OBJTYPE_OUTLINE

Addendum 29

 Object.AppName = "Temp"
 Object.DbName = "Basic"
 Object.FileName = "Basic"
 sts = EsbOtlOpenOutline(hCtx, Object, ESB_YES, ESB_YES, hOutline)
 Debug.Print "EsbOtlOpenOutline: sts = " & sts

 sts = EsbOtlFindMember(hOutline, "100-10", hMember)
 Debug.Print "EsbOtlFindMember: sts = " & sts

 If sts > 0 Then
 sts = EsbGetMessage(hInst, Level, Number, Message, szMessage)
 Do While Mid$(Message, 1, 1) <> Chr$(0)
 Debug.Print Level
 Debug.Print Number
 Debug.Print Message
 sts = EsbGetMessage(hInst, Level, Number, Message, szMessage)
 Debug.Print "EsbGetMessage: sts = " & sts
 Loop
 End If
End Sub

Sub ESB_Login()
 Dim Items As Integer
 Dim AppDb As ESB_APPDB_T

 Server = "ppamu-pc1"
 User = "essexer"
 Password = "password"
 sts = EsbLogin(hInst, Server, User, Password, Items, hCtx)
 Debug.Print "EsbLogin: sts = " & sts
 'For n = 1 To Items
 ' sts = EsbGetNextItem(hCtx, ESB_LAPPDB_TYPE, AppDb)
 ' Debug.Print "EsbGetNextItem: sts = " & sts
 ' Debug.Print "App Name: "; AppDb.AppName
 ' Debug.Print "Db Name: "; AppDb.DbName
 ' Next

 'For copy objects between servers
 'sts = EsbLogin(hDestInst, "qtfsun1:1501", User, Password, Items,
hDestCtx)
 'Debug.Print "EsbLogin: sts = " & sts
End Sub

Sub ESB_AutoLogin()
 Dim pOption As Integer
 Dim pAccess As Integer

 Server = "localhost"
 'User = "essexer"
 'Password = "Password"
 'AppName = "sample"
 'DbName = "basic"

 'pOption = ESB_AUTO_NODIALOG + ESB_AUTO_NOSELECT
 pOption = ESB_AUTO_DEFAULT
 sts = EsbAutoLogin(hInst, Server, User, Password, AppName, DbName,
pOption, pAccess, hCtx)

30 Addendum

 'MsgBox ("EsbAutoLogin = " & sts)
 Debug.Print "EsbAutoLogin: sts = " & sts
 ' Call Esb_runreport
End Sub

Sub ESB_LoginSetPassword()
 'Dim hInst As Long
 'Dim Server As String * ESB_SVRNAMELEN
 'Dim User As String * ESB_USERNAMELEN
 'Dim Password As String * ESB_PASSWORDLEN
 Dim NewPassword As String * ESB_PASSWORDLEN
 Dim Items As Integer
 Dim AppDb As ESB_APPDB_T

 Server = "stiahp1:1501"
 User = "essexer"
 Password = "password"
 NewPassword = "password2"
 sts = EsbLoginSetPassword(hInst, Server, User, Password, NewPassword,
Items, hCtx)
 Debug.Print "EsbLoginSetPassword: sts = " & sts

 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_LAPPDB_TYPE, AppDb)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "App Name: "; AppDb.AppName
 Debug.Print "Db Name: "; AppDb.DbName
 Next

 'Reset password back to original
 NewPassword = "password"
 sts = EsbLoginSetPassword(hInst, Server, User, Password, NewPassword,
Items, hCtx)
 Debug.Print "EsbLoginSetPassword: sts = " & sts
End Sub

Sub ESB_SetActive()
 Dim AppName As String
 Dim DbName As String
 Dim pAccess As Integer
 Dim sts As Long

 'AppName = "Bugs"
 'DbName = "09129823"

 AppName = "vb"
 DbName = "Basic"

 sts = EsbSetActive(hCtx, AppName, DbName, pAccess)
 Debug.Print "EsbSetActive: sts = " & sts
End Sub

Sub ESb_GetStoresInfo() '(Chnl As String)
 Dim Object As ESB_OBJDEF_T

 Object.hCtx = hCtx
 Object.Type = ESB_OBJTYPE_OUTLINE

Addendum 31

 Object.AppName = AppName
 Object.DbName = DbName
 Object.FileName = DbName
 Dim hMember As Long
 Dim ihMember As Long
 Dim MbrInfo As ESB_MBRINFO_T
 Dim Counts As ESB_MBRCOUNTS_T

 sts = EsbSetActive(hCtx, AppName, DbName, Access)

 Dim hMemberJan As Long
 Dim MbrChldCnt As Long
 Dim x As Integer
 Dim Parent As String
 Dim found As Boolean
 Dim img As Integer
 Dim Member As String
 Dim szAlias As String * ESB_MBRNAMELEN
 Dim Alias As String
 Dim levelnum As String
 Dim ShareStat As Integer

 Dim tLevelName As String * ESB_MBRNAMELEN
 Const AltGroup As String = "ALT_GROUP"
 'Dim LevelName As String * ESB_MBRNAMELEN
 sts = EsbOtlOpenOutline(hCtx, Object, ESB_YES, ESB_YES, hOutline)

 If sts = 0 Then
 sts = EsbOtlFindMember(hOutline, "JOHNSON, ROGER", hMemberJan)
 'sts = EsbOtlFindMember(hOutline, "GMM_A", hMemberJan)
 If hMemberJan = 0 Then
 sts = EsbOtlFindAlias(hOutline, "JOHNSON, ROGER", "default",
hMemberJan)
 End If
 End If

 If sts = 0 And hMemberJan <> 0 Then
 sts = EsbOtlGetMemberInfo(hOutline, hMemberJan, MbrInfo)
 MsgBox ("Member Name = " & MbrInfo.szMember)
 Member = MbrInfo.szMember
 levelnum = MbrInfo.usLevel
 ShareStat = MbrInfo.usShare
 MsgBox ("Shared Member = " & ShareStat)
 End If

 MbrChldCnt = MbrInfo.ulChildCount
 ' If ShareStat <> ESB_SHARE_SHARE Then

 'Do While x <= MbrChldCnt
 For x = 1 To MbrChldCnt
 If x = 1 Then
 sts = EsbOtlGetChild(hOutline, hMemberJan, hMember)
 'sts = EsbOtlGetMemberInfo(hOutline, hMember, MbrInfo)
 'MsgBox ("Child Member Name = " & MbrInfo.szMember)
 Else
 sts = EsbOtlGetNextSibling(hOutline, hMemberJan, hMember)
 ' sts = EsbOtlGetMemberInfo(hOutline, hMember, MbrInfo)

32 Addendum

 ' MsgBox ("Sibling Member Name = " & MbrInfo.szMember)
 End If

 'Next

 sts = EsbOtlGetMemberInfo(hOutline, hMember, MbrInfo)
 MsgBox ("Sibling Member Name = " & MbrInfo.szMember)
 ' szAlias = ""
 'sts = EsbOtlGetMemberAlias(hOutline, hMember, "", szAlias)
 'sts = EsbOtlGetLevelName(hOutline, sRoot, MbrInfo.usLevel,
tLevelName)
 'If sts > 0 Then tLevelName = ""

 'Alias = sTrim(szAlias)
 'Member = sTrim(MbrInfo.szMember)

 Next
End Sub

Sub ESB_Logout()

 sts = EsbLogout(hCtx)
 'MsgBox ("EsbLogout = " & sts)
 Debug.Print "EsbLogout: sts = " & sts
End Sub

Sub ESB_Term()

 sts = EsbTerm(hInst)
 'MsgBox ("EsbTerm = " & sts)
 Debug.Print "EsbTerm: sts = " & sts
End Sub

Public Sub ESB_LROListObjects()
 Dim UserName As String * ESB_USERNAMELEN
 Dim listDate As Long
 Dim Items As Integer
 Dim Desc As ESB_LRODESC_API_T
 Dim i As Integer
 Dim j As Integer
 Dim CutOffDate As Date
 Dim MemberName As String * ESB_MBRNAMELEN

 Const ESB_REFERENCE_DATE = #1/1/1970#
 UserName = "essexer"
 CutOffDate = #9/21/2007#
 'CutOffDate = #1/2/1970#
 listDate = DateDiff("s", CutOffDate, ESB_REFERENCE_DATE)
 'listDate = DateDiff("s", ESB_REFERENCE_DATE, CutOffDate)
 'listDate = -1

 sts = EsbLROListObjects(hCtx, UserName, listDate, Items)
 Debug.Print "EsbLROListObjects: sts = " & sts

 Debug.Print "Number of LRO(s): " & Items

 If sts = 0 Then

Addendum 33

 For i = 1 To Items

 Debug.Print "LRO # " & i; ":"

 sts = EsbGetNextItem(hCtx, ESB_LRO_TYPE, Desc)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "Object Type: " & Desc.ObjType
 Select Case (Desc.ObjType)
 Case 0
 Debug.Print "Cell notes: " & Desc.note
 Case 1
 Debug.Print "Object Name: " & Desc.lroInfo.ObjName
 Debug.Print "Object Description: " & Desc.lroInfo.objDesc
 Case 2
 Debug.Print "Object Name: " & Desc.lroInfo.ObjName
 Debug.Print "Object Description: " & Desc.lroInfo.objDesc
 End Select
 Debug.Print "Member Combination:"
 For j = 1 To Desc.memCount
 sts = EsbLROGetMemberCombo(hCtx, j, MemberName)
 Debug.Print " " & MemberName
 Next j

 Next i
 End If
End Sub

Sub ESB_SetUser()
 Dim sts As Long
 Dim UserInfo As ESB_USERINFO_T

 UserInfo.Name = "Test"
 UserInfo.Type = ESB_TYPE_USER
 UserInfo.Access = ESB_ACCESS_SUPER
 UserInfo.MaxAccess = ESB_ACCESS_SUPER
 UserInfo.PwdChgNow = ESB_TRUE

 sts = EsbSetUser(hCtx, UserInfo)
 Debug.Print "EsbSetUser: sts = " & sts
End Sub

Sub ESB_GetUser()
 Dim sts As Long
 Dim User As String
 Dim UserInfo As ESB_USERINFO_T

 User = "Test"
 '************************
 ' Get User Info structure
 '************************
 sts = EsbGetUser(hCtx, User, UserInfo)
 Debug.Print "EsbGetUser: sts = " & sts
End Sub

Public Sub ESB_LROPurgeObjects()
 Dim UserName As String * ESB_USERNAMELEN
 Dim purgeDate As Long

34 Addendum

 Dim Items As Integer
 Dim Desc As ESB_LRODESC_API_T
 Dim CutOffDate As Date
 Dim i As Integer
 Const ESB_REFERENCE_DATE = #1/1/1970#

 UserName = "essexer"
 CutOffDate = #9/21/2007#
 purgeDate = DateDiff("s", ESB_REFERENCE_DATE, CutOffDate) 'bug
8-651484045
 'purgeDate = DateDiff("s", CutOffDate, ESB_REFERENCE_DATE)
 'purgeDate = -1

 sts = EsbLROPurgeObjects(hCtx, UserName, purgeDate, Items)
 Debug.Print "EsbLROPurgeObjects: sts = " & sts

 If sts = 0 Then
 For i = 1 To Items
 '*******************************
 '* Get the next LRO description
 '* item from the list
 '*******************************
 sts = EsbGetNextItem(hCtx, ESB_LRO_TYPE, Desc)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Next i
 End If
End Sub

Sub ESB_CreateGroup()
 Dim sts As Long
 Dim GroupName As String

 GroupName = "PowerUsers"
 sts = EsbCreateGroup(hCtx, GroupName)
 Debug.Print "EsbCreateGroup: sts = " & sts
End Sub

Sub ESB_GetDatabaseInfo()
 Dim sts As Long
 Dim AppName As String
 Dim DbName As String
 Dim Items As Integer
 Dim N As Integer
 Dim DbInfo As ESB_DBINFO_T
 Dim DbReqInfo As ESB_DBREQINFO_T

 AppName = "Sample"
 DbName = "Basic"
 sts = EsbGetDatabaseInfo(hCtx, AppName, DbName, DbInfo, Items)
 Debug.Print "EsbGetDatabaseInfo: sts = " & sts
 Debug.Print "DbInfo.status: " & DbInfo.Status

 If sts = 0 Then
 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_DBREQINFO_TYPE, DbReqInfo)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Next

Addendum 35

 End If
End Sub

Sub ESB_GetDatabaseAccess()
 Dim Items As Integer
 Dim AppName As String
 Dim DbName As String
 Dim User As String
 Dim UserDb As ESB_USERDB_T
 Dim sts As Long

 AppName = "Sample"
 DbName = "Basic"

 User = "user1"
 sts = EsbGetDatabaseAccess(hCtx, User, AppName, DbName, Items)
 Debug.Print "EsbGetDatabaseAccess: sts = " & sts
 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_USERDB_TYPE, UserDb)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "User: " & User
 Debug.Print "Access: " & UserDb.Access
 Next

 User = "user2"
 sts = EsbGetDatabaseAccess(hCtx, User, AppName, DbName, Items)
 Debug.Print "EsbGetDatabaseAccess: sts = " & sts
 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_USERDB_TYPE, UserDb)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "User: " & User
 Debug.Print "Access: " & UserDb.Access
 Next

 User = "user3"
 sts = EsbGetDatabaseAccess(hCtx, User, AppName, DbName, Items)
 Debug.Print "EsbGetDatabaseAccess: sts = " & sts
 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_USERDB_TYPE, UserDb)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "User: " & User
 Debug.Print "Access: " & UserDb.Access
 Next

 User = "user4"
 sts = EsbGetDatabaseAccess(hCtx, User, AppName, DbName, Items)
 Debug.Print "EsbGetDatabaseAccess: sts = " & sts
 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_USERDB_TYPE, UserDb)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "User: " & User
 Debug.Print "Access: " & UserDb.Access
 Next

 User = "user5"
 sts = EsbGetDatabaseAccess(hCtx, User, AppName, DbName, Items)
 Debug.Print "EsbGetDatabaseAccess: sts = " & sts

36 Addendum

 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_USERDB_TYPE, UserDb)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "User: " & User
 Debug.Print "Access: " & UserDb.Access
 Next

 User = "user6"
 sts = EsbGetDatabaseAccess(hCtx, User, AppName, DbName, Items)
 Debug.Print "EsbGetDatabaseAccess: sts = " & sts
 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_USERDB_TYPE, UserDb)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "User: " & User
 Debug.Print "Access: " & UserDb.Access
 Next
End Sub

Sub ESB_GetDatabaseStats()
 Dim Items As Integer
 Dim AppName As String
 Dim DbName As String
 Dim DbStats As ESB_DBSTATS_T
 Dim DimStats As ESB_DIMSTATS_T
 Dim sts As Long
 AppName = "Sample"
 DbName = "Basic"
 sts = EsbGetDatabaseStats(hCtx, AppName, DbName, DbStats, Items)
 Debug.Print "EsbGetDatabaseStats: sts = " & sts
 'MsgBox ("cluster = " & DbStats.ClusterRatio)
 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_DBSTATS_TYPE, DbStats)
 Next
End Sub

Public Sub ESB_LROAddObject()
 Dim Desc As ESB_LRODESC_API_T
 Dim memCount As Long
 Dim memComb As String
 Dim opt As Integer
 Dim i As Integer

 memCount = 5
 memComb = "Year" & vbCrLf & "Product" & vbCrLf & _
 "Market" & vbCrLf & "Measures" & vbCrLf & "Scenario"
 Desc.UserName = "essexer"

 Desc.ObjType = ESB_LROTYPE_CELLNOTE_API
 Desc.note = "Cell note"
 opt = ESB_NOSTORE_OBJECT_API
 sts = EsbLROAddObject(hCtx, memCount, memComb, opt, Desc)
 Debug.Print "EsbLROAddObject: sts = " & sts

 Desc.ObjType = ESB_LROTYPE_WINAPP_API
 Desc.lroInfo.ObjName = "c:\hyperion\essbase95\bin\essbase.exe"
 Desc.lroInfo.objDesc = "Essbase executable."
 opt = ESB_STORE_OBJECT_API

Addendum 37

 sts = EsbLROAddObject(hCtx, memCount, memComb, opt, Desc)
 Debug.Print "EsbLROAddObject: sts = " & sts

 Desc.ObjType = ESB_LROTYPE_URL_API
 Desc.lroInfo.ObjName = "www.oracle.com"
 Desc.lroInfo.objDesc = "Oracle homepage"
 opt = ESB_NOSTORE_OBJECT_API
 sts = EsbLROAddObject(hCtx, memCount, memComb, opt, Desc)
 Debug.Print "EsbLROAddObject: sts = " & sts

 Desc.ObjType = ESB_LROTYPE_CELLNOTE_API
 Desc.note = "Cell note 2"
 opt = ESB_NOSTORE_OBJECT_API
 sts = EsbLROAddObject(hCtx, memCount, memComb, opt, Desc)
 Debug.Print "EsbLROAddObject: sts = " & sts
End Sub

Public Sub ESB_LROGetCatalog()

 Dim Desc As ESB_LRODESC_API_T
 Dim Items As Integer
 Dim memCount As Long
 Dim memComb As String
 Dim i As Integer

 memCount = 5
 memComb = "Qtr1" & vbCrLf & "Profit" & vbCrLf & _
 "100" & vbCrLf & "East" & vbCrLf & "Scenario"
 'memComb = "Jan" & vbCrLf & "Sales" & _
 ' "Cola" & vbCrLf & "Utah" & _
 ' "Actual"

 sts = EsbLROGetCatalog(hCtx, memCount, memComb, Items)
 Debug.Print "EsbLROGetCatalog: sts = " & sts

 If sts = 0 Then
 For i = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_LRO_TYPE, Desc)
 Debug.Print "Desc.ObjType = " & Desc.ObjType
 Debug.Print "Desc.note = " & Desc.note
 Debug.Print "Desc.lroInfo.objDesc = " & Desc.lroInfo.objDesc
 Debug.Print "Desc.lroInfo.objName = " & Desc.lroInfo.ObjName
 Next i
 End If
End Sub

Sub ESB_CopyObject()
 Dim sts As Long
 Dim SrcApp As String
 Dim SrcDb As String
 Dim SrcObj As String
 Dim DestApp As String
 Dim DestDb As String
 Dim DestObj As String

 SrcApp = "Sample"
 SrcDb = "Basic"

38 Addendum

 SrcObj = "Basic"

 DestApp = "Sample"
 DestDb = "Basic"
 DestObj = "Basic1"
 ObjType = ESB_OBJTYPE_OUTLINE

 sts = EsbCopyObject(hCtx, hDestCtx, ObjType, SrcApp, DestApp, _
 SrcDb, DestDb, SrcObj, DestObj)
 Debug.Print "EsbCopyObject: sts = " & sts
End Sub

Sub ESB_GetAssociatedAttributesInfo()
 Dim sts As Long
 Dim MbrName As String
 Dim AttrDimName As String
 Dim Count As Long
 Dim Attribinfo As ESB_ATTRIBUTEINFO_T
 Dim index As Integer
 Dim tempstring As String

 'MbrName = InputBox("Base member name", "Base Member Name")
 'AttrDimName = InputBox("Attribute Dimension Name (Optional)",
"Attribute Dimension Name")

 MbrName = "em41666"
 AttrDimName = "Job Start Date"
 sts = EsbGetAssociatedAttributesInfo(hCtx, MbrName, AttrDimName, Count)
 Debug.Print "EsbGetAssociatedAttributesInfo: sts = " & sts

 Debug.Print "Associated Attr info for: " & MbrName

 For index = 1 To Count
 sts = EsbGetNextItem(hCtx, ESB_ATTRIBUTEINFO_TYPE, Attribinfo)
 'Debug.Print "Dim Name: " & Attribinfo.DimName
 Debug.Print "Attribute Dim Name: " & Attribinfo.DimName
 Debug.Print "Attribute Mbr Name: " & Attribinfo.MbrName

 ' NOTE: use of select case statement to discern (and act upon) type
of attribute returned
 Select Case VarType(Attribinfo.Attribute)
 Case vbDouble
 Debug.Print "Data Type : Numeric(Double)"
 Debug.Print "Data Value : " & Attribinfo.Attribute
 Debug.Print ""
 Case vbBoolean
 Debug.Print "Data Type : Boolean"
 Debug.Print "Data Value : " & Attribinfo.Attribute
 Debug.Print ""
 Case vbDate
 Debug.Print "Data Type : Date"
 Debug.Print "Data Value : " & Attribinfo.Attribute
 Debug.Print ""
 Case vbString
 Debug.Print "Data Type : String"
 Debug.Print "Data Value : " & Attribinfo.Attribute
 Debug.Print ""

Addendum 39

 End Select
 Debug.Print ""
 Next index
End Sub

Sub ESB_ListConnections()
 Dim Items As Integer
 Dim UserInfo As ESB_USERINFO_T
 Dim sts As Long

 sts = EsbListConnections(hCtx, Items)
 Debug.Print "EsbListConnections: sts = " & sts

 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_USERINFO_TYPE, UserInfo)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Next
End Sub

Sub ESB_ListRequests()
 Dim Items As Integer
 Dim ReqInfo As ESB_REQUESTINFO_T
 Dim sts As Long

 sts = EsbListRequests(hCtx, UserName, AppName, DbName, Items)
 Debug.Print "EsbListRequests: sts = " & sts

 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_REQUESTINFO_TYPE, ReqInfo)
 Debug.Print "EsbGetNextItem: sts = " & sts
 Debug.Print "AppName: " & ReqInfo.AppName
 Debug.Print "DbName: " & ReqInfo.DbName
 Debug.Print "DbRequestCode: " & ReqInfo.DbRequestCode
 Debug.Print "LoginID: " & ReqInfo.LoginId
 Debug.Print "LoginSourceMachine: " & ReqInfo.LoginSourceMachine
 Debug.Print "RequestString: " & ReqInfo.RequestString
 Debug.Print "State: " & ReqInfo.State
 Debug.Print "TimeStarted: " & ReqInfo.TimeStarted
 Debug.Print "Username: " & ReqInfo.UserName
 Next
End Sub

Sub ESB_AddToGroup()
 Dim sts As Long
 Dim GroupName As String
 Dim User As String

 GroupName = "Group1"
 User = "user1"
 sts = EsbAddToGroup(hCtx, GroupName, User)
 Debug.Print "EsbAddToGroup sts: " & sts
End Sub

Sub ESB_GetGroupList()
 Dim Items As Integer
 Dim Group As String
 Dim GroupName As String * ESB_USERNAMELEN

40 Addendum

 Dim sts As Long

 Group = "group1"
 sts = EsbGetGroupList(hCtx, Group, Items)
 Debug.Print "EsbGetGroupList: sts = " & sts

 For N = 1 To Items
 sts = EsbGetNextItem(hCtx, ESB_GROUPNAME_TYPE, ByVal GroupName)
 Debug.Print "EsbGetGroupList: sts = " & sts
 Debug.Print "User Name = " & GroupName
 MsgBox ("User Name = " & GroupName)
 Next
End Sub

Sub ESB_GetDatabaseState()
 Dim sts As Long
 Dim AppName As String
 Dim DbName As String
 Dim DbState As ESB_DBSTATE_T
 AppName = "Sample"
 DbName = "Basic"

 sts = EsbGetDatabaseState(hCtx, AppName, DbName, DbState)
 Debug.Print "EsbGetDatabaseState: sts = " & sts
End Sub

Sub ESB_PartitionReadDefFile()
 Dim sts As Long
 Dim iFileHandle As Long
 Dim pszFileName As String
 Dim DdbCtx As Long
 Dim pDdbCtx As Long
 Dim partDefined As ESB_PART_DEFINED_T
 Dim partInfo As ESB_PART_INFO_T
 Dim partConnectInfo As ESB_PART_CONNECT_INFO_T

 pszFileName = "c:\\hyperion\\essbase95\\app\\sample\\basic\\basic.ddb"
 ' Not public
 sts = EsbPartitionOpenDefFile(hCtx, pszFileName, iFileHandle, pDdbCtx)
 Debug.Print "EsbPartitionOpenDefFile sts: " & sts
 sts = EsbGetNextItem(hCtx, ESB_PART_DEFINED_T, partDefined)
 Debug.Print "EsbGetNextItem sts: " & sts

 sts = EsbGetNextItem(hCtx, ESB_PART_INFO_T, partInfo)
 Debug.Print "EsbGetNextItem sts: " & sts

 sts = EsbGetNextItem(hCtx, ESB_PART_CONNECT_INFO_T, partConnectInfo)
 Debug.Print "EsbGetNextItem sts: " & sts

 sts = EsbGetNextItem(hCtx, ESB_PART_T, partInfo)
 Debug.Print "EsbGetNextItem sts: " & sts

 sts = EsbGetNextItem(hCtx, ESB_PART_T, partInfo)
 Debug.Print "EsbGetNextItem sts: " & sts

 sts = EsbPartitionReadDefFile(hCtx, iFileHandle, DdbCtx)
 Debug.Print "EssPartitionReadDefFile sts: " & sts

Addendum 41

 sts = EsbGetNextItem(hCtx, ESB_PART_DEFINED_T, partInfo)
 Debug.Print "EsbGetNextItem sts: " & sts

 sts = EsbPartitionCloseDefFile(hCtx, iFileHandle)
 Debug.Print "EssPartitionCloseDefFile sts: " & sts

 sts = EsbPartitionFreeDefCtx(hCtx, pDdbCtx)
 Debug.Print "EssPartitionFreeDefCtx sts: " & sts
End Sub

Public Sub ESB_PartitionWriteDefFile()
 Dim SelectPartition As ESB_PARTSLCT_T
 Dim Partition As ESB_PART_INFO_T
 Dim Items As Integer
 Dim i As Integer

 Dim FileName As String
 Dim HostDatabase As ESB_PART_CONNECT_INFO_T
 Dim FileHandle1 As Long
 Dim FileHandle2 As Long
 Dim DdbCtxHandle1 As Long
 Dim DdbCtxHandle2 As Long
 HostDatabase.AppName = "Sample"
 HostDatabase.DbName = "Basic"
 HostDatabase.HostName = "Localhost"

 FileName = "C:\Hyperion\essbase95\app\Sample\Basic\Basic.ddb"
 sts = EsbPartitionOpenDefFile(hCtx, FileName, FileHandle1,
DdbCtxHandle1)
 Debug.Print "EsbPartitionOpenDefFile sts: " & sts

 sts = EsbPartitionReadDefFile(hCtx, FileHandle1, DdbCtxHandle1)
 Debug.Print "EsbPartitionReadDefFile sts: " & sts

 FileName = "C:\Hyperion\essbase95\app\Sample\Basic\Basic.ddn"
 sts = EsbPartitionNewDefFile(hCtx, FileName, HostDatabase, FileHandle2,
DdbCtxHandle2)
 Debug.Print "EsbPartitionNewDefFile sts: " & sts

 sts = EsbPartitionWriteDefFile(hCtx, FileHandle2, DdbCtxHandle1)
 Debug.Print "EsbPartitionWriteDefFile sts: " & sts
 'Debug.Print "Description: " & DdbCtxHandle1.

 sts = EsbPartitionCloseDefFile(hCtx, FileHandle1)
 Debug.Print "EsbPartitionCloseDefFile sts: " & sts

 sts = EsbPartitionCloseDefFile(hCtx, FileHandle2)
 Debug.Print "EsbPartitionCloseDefFile sts: " & sts

 sts = EsbPartitionReplaceDefFile(hCtx) 'It is assumed that .ddn file
must be present in database
 Debug.Print "EsbPartitionReplaceDefFile sts: " & sts

 sts = EsbPartitionFreeDefCtx(hCtx, DdbCtxHandle2)
 Debug.Print "EsbPartitionFreeDefCtx sts: " & sts

 sts = EsbPartitionFreeDefCtx(hCtx, DdbCtxHandle2)

42 Addendum

 Debug.Print "EsbPartitionFreeDefCtx sts: " & sts

End Sub

Public Sub ESB_PartitionReplaceDefFile()

 Dim SelectPartition As ESB_PARTSLCT_T
 Dim Items As Integer
 Dim i As Integer

 Dim FileName As String
 Dim HostDatabase As ESB_PART_CONNECT_INFO_T
 Dim FileHandle1 As Long
 Dim FileHandle2 As Long

 'FileName = "C:\Hyperion\essbase95\app\Sample\Basic\Basic.ddn"
 'sts = EsbPartitionOpenDefFile(hCtx, FileName, FileHandle1,
DdbCtxHandle1)
 'Debug.Print "EsbPartitionOpenDefFile sts: " & sts

 FileName = "C:\Hyperion\essbase95\app\Sample\Basic\Basic.ddb"
 HostDatabase.AppName = "samppart"
 HostDatabase.DbName = "Company"
 HostDatabase.HostName = "LocalHost"

 sts = EsbPartitionNewDefFile(hCtx, FileName, HostDatabase, FileHandle2,
DdbCtxHandle2)
 Debug.Print "EsbPartitionNewDefFile sts: " & sts

 sts = EsbPartitionWriteDefFile(hCtx, FileHandle2, DdbCtxHandle2)
 Debug.Print "EsbPartitionWriteDefFile sts: " & sts

 sts = EsbPartitionReplaceDefFile(hCtx) 'It is assumed that .ddn file
must be present in database
 Debug.Print "EsbPartitionReplaceDefFile sts: " & sts
End Sub

Public Sub ESB_PartitionValidateDefinition()

 pRemoteDDBFileName = "east"
 pSelectVerify.usLoc = ESB_FILE_SERVER
 pszDefFile = "east"

 pSelectVerify.Partition.usType = ESB_PARTITION_OP_TRANSPARENT
 pSelectVerify.Partition.Direction = ESB_PARTITION_DATA_SOURCE
 pSelectVerify.Partition.HostDatabase.HostName = "Localhost"
 pSelectVerify.Partition.HostDatabase.AppName = "Samppart"
 pSelectVerify.Partition.HostDatabase.DbName = "Company"

 'sts = EsbPartitionValidateDefinition(hCtx, pSelectVerify, pszDefFile,
pInvalidComponentCount, InValidComponentsHandle, pRemoteDDBFileName)
 Debug.Print "EsbPartitionValidateDefinition sts: " & sts
End Sub

Sub ESB_PartitionValidateLocal()

 sts = EsbPartitionValidateLocal(hCtx, ValidationFlag)

Addendum 43

 Debug.Print "EsbPartitionValidateDefinition sts: " & sts
End Sub

Public Sub ESB_PartitionReadOtlChangeFile()
 Dim pszChgFileName As String
 'Dim MetaChangeRecord1 As ESB_PARTOTL_READ_T
 'Dim MetaChangeRecord2 As ESB_READ_T

 PartQuery.TimeStamp = DateDiff("s", #1/1/1970#, #6/18/1997#)
 PartQuery.DimFilter = ESB_PARTITION_OTLDIM_ALL
 PartQuery.MbrFilter = ESB_PARTITION_OTLMBR_ALL
 PartQuery.MbrAttrFilter = ESB_PARTITION_OTLMBRATTR_ALL
 pszChgFileName = "c:\hyperion\Essbase95\app\Samppart\Company
\ess00008.chg"

 'sts = EsbPartitionReadOtlChangeFile(hCtx, pszChgFileName, PartQuery,
MetaChangeReadHandle, SourceTime)
 Debug.Print "EsbPartitionReadOtlChangeFile sts: " & sts

 'sts = EsbGetNextItem(hCtx, ESB_PARTOTL_READ_T, MetaChangeRecord1)
 'Debug.Print "EsbGetNextItem sts: " & sts

 'sts = EsbGetNextItem(hCtx, ESB_PARTOTL_READ_T, MetaChangeRecord2)
 'Debug.Print "EsbGetNextItem sts: " & sts

 sts = EsbPartitionFreeOtlChanges(hCtx, MetaChangeReadHandle)
 Debug.Print "EsbPartitionFreeOtlChanges sts: " & sts
End Sub

Sub ESB_CreateLocalContext()
 Dim sts As Long
 Dim User As String
 Dim Password As String
 Dim hCtx As Long

 '*********************
 ' Create Local Context
 '*********************
 sts = EsbCreateLocalContext(hInst, User, Password, hCtx)
End Sub

Sub ESB_Import()
 Dim sts As Long
 Dim Rules As ESB_OBJDEF_T
 Dim Data As ESB_OBJDEF_T
 Dim User As ESB_MBRUSER_T
 Dim ErrorName As String
 Dim AbortOnError As Integer
 Dim hLocalCtx As Long

 '***
 ' Need to create a local context, if files are not on the server
 '***
 sts = EsbCreateLocalContext(hInst, "", "", hLocalCtx)
 Debug.Print "EsbCreateLocalContext sts: " & sts
 Data.hCtx = hLocalCtx
 Data.Type = ESB_OBJTYPE_TEXT

44 Addendum

 Data.AppName = ""
 Data.DbName = ""
 Data.FileName = "F:\\testArea\\VBAPI\\calcdat.txt"

 '*********************************
 ' Rules file resides at the server
 '*********************************
 'Rules.hCtx = hCtx
 'Rules.Type = ESB_OBJTYPE_RULES
 'Rules.AppName = "Demo"
 'Rules.DbName = "Basic"
 'Rules.FileName = "Test"

 '********************************
 ' Data file resides at the server
 '********************************
 'Data.hCtx = hCtx
 'Data.Type = ESB_OBJTYPE_TEXT
 'Data.AppName = "Demo"
 'Data.DbName = "Basic"
 'Data.FileName = "Data"

 '********************************
 ' Specify file to redirect errors
 ' to if any
 '********************************
 ErrorName = "IMPORT.ERR"

 '*************************
 ' Abort on the first error
 '*************************
 AbortOnError = ESB_YES

 '*******
 ' Import
 '*******
 sts = EsbImport(hCtx, Rules, Data, User, ErrorName, AbortOnError)
 Debug.Print "EsbImport sts: " & sts
End Sub

Sub ESB_VerifyFilter()
 Dim sts As Long
 Dim AppName As String
 Dim DbName As String
 Dim Row As String

 AppName = "Sample"
 DbName = "Basic"

 sts = EsbVerifyFilter(hCtx, AppName, DbName)
 Debug.Print "EsbVerifyFilter sts: " & sts

 ' Initialize Filter Row
 Row = "@IDESCENDANTS(Scenario)"
 sts = EsbVerifyFilterRow(hCtx, Row) ' Initialize Filter Row
 Debug.Print "EsbVerifyFilterRow sts: " & sts

Addendum 45

 Row = "@IDESCENDANTS(AAAA)"
 sts = EsbVerifyFilterRow(hCtx, Row)
 Debug.Print "EsbVerifyFilterRow sts: " & sts

 sts = EsbVerifyFilterRow(hCtx, ByVal 0&)
 Debug.Print "EsbVerifyFilterRow sts: " & sts
End Sub

Sub Test()
 strComputer = "."
 Const ForReading = 1
 Const ForWriting = 2
 Const ForAppending = 8
 '==
 Const Data_Path = "F:\Testarea\temp\"
 Const FileName = "process.txt"

 Set fso = CreateObject("Scripting.FileSystemObject")
 If Not fso.FileExists(Data_Path & FileName) Then
 Set f = fso.OpenTextFile(Data_Path & FileName, 2, True)
 Else
 Set f = fso.OpenTextFile(Data_Path & FileName, 8)
 End If

 Set objWMIService = GetObject("winmgmts:" &
"{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2")
 Set colProcessList = objWMIService.ExecQuery("Select * from
Win32_Process")
 For Each objProcess In colProcessList
 f.WriteLine "Process " & objProcess.Name
 Next
End Sub

Sub ESB_CreateGLDrillThru()
 Dim sts As Long
 Dim url As ESB_DURLINFO_T
 Dim cppDrillRegions(0 To 1) As String

 '***
 ' Need to create a local context, if files are not on the server
 '***
 url.bIsLevel0 = 0

 cppDrillRegions(0) = "sales"
 cppDrillRegions(1) = "cogs"
 url.cpURLXML = "Testing"
 url.cpURLName = "VB URL7"
 url.iURLXMLSize = 8

 sts = EsbCreateDrillThruURL(hCtx, cppDrillRegions, url)

 Debug.Print "EsbCreateDrillThruURL sts: " & sts

End Sub

Sub ESB_UpdateGLDrillThru()
 Dim sts As Long

46 Addendum

 Dim url As ESB_DURLINFO_T
 Dim cppDrillRegions(0 To 1) As String
 Dim bMerge As Integer

 '***
 ' Need to create a local context, if files are not on the server
 '***
 url.bIsLevel0 = 0
 bMerge = ESB_TRUE

 cppDrillRegions(0) = "qtr1"
 url.cpURLXML = "Testing"
 url.cpURLName = "VB URL7"
 url.iURLXMLSize = 8

 sts = EsbUpdateDrillThruURL(hCtx, cppDrillRegions, url, bMerge)

 Debug.Print "EsbUpdateDrillThruURL sts: " & sts
End Sub

Sub ESB_DeleteGLDrillThru()
 Dim URLName As String

 URLName = "VB URL7"
 sts = EsbDeleteDrillThruURL(hCtx, URLName)

 Debug.Print "EsbDeleteDrillThruURL sts: " & sts
End Sub

Sub ESB_GetGLDrillThru()
 Dim URLName As String
 Dim url As ESB_DURLINFO_T
 Dim intX As Integer
 Dim cppDrillRegions As Variant

 URLName = "VB URL2"
 sts = EsbGetDrillThruURL(hCtx, URLName, url, cppDrillRegions)

 Debug.Print "EsbGetDrillThruURL sts: " & sts

 If sts = 0 Then
 Debug.Print "URL Name: " & url.cpURLName
 Debug.Print "URL XML: " & url.cpURLXML

 For intX = LBound(cppDrillRegions) To UBound(cppDrillRegions)

 Debug.Print "URL Region: " & cppDrillRegions(intX)

 Next
 End If
End Sub

Sub ESB_ListGLDrillThru()
 Dim intX As Integer
 Dim URLNames As Variant

 sts = EsbListDrillThruURLs(hCtx, URLNames)

Addendum 47

 If sts = 0 Then
 Debug.Print "EsbListDrillThruURL sts: " & sts

 For intX = LBound(URLNames) To UBound(URLNames)

 Debug.Print "URL Name: " & URLNames(intX)

 Next
 End If
End Sub

Sub ESB_GetCellDrillThruReports()
 Dim intX As Integer
 Dim mbrs(0 To 4) As String
 Dim pURLXMLLens As Variant
 Dim pURLXMLs As Variant

 mbrs(0) = "sales"
 mbrs(1) = "jan"
 mbrs(2) = "New York"
 mbrs(3) = "actual"
 mbrs(4) = "100-10"

 sts = EsbGetCellDrillThruReports(hCtx, mbrs, pURLXMLLens, pURLXMLs)

 If sts = 0 Then

 Debug.Print "EsbGetCellDrillThruReports sts: " & sts

 For intX = LBound(pURLXMLLens) To UBound(pURLXMLLens)

 Debug.Print "URL XML: " & intX
 Debug.Print "URL XML Len: " & pURLXMLLens(intX)
 Debug.Print "URL XML String: " & pURLXMLs(intX)

 Next
 End If

 mbrs(0) = "profit"
 sts = EsbGetCellDrillThruReports(hCtx, mbrs, pURLXMLLens, pURLXMLs)

 If sts = 0 Then

 Debug.Print "EsbGetCellDrillThruReports sts: " & sts

 For intX = LBound(pURLXMLLens) To UBound(pURLXMLLens)

 Debug.Print "URL XML: " & intX
 Debug.Print "URL XML Len: " & pURLXMLLens(intX)
 Debug.Print "URL XML String: " & pURLXMLs(intX)

 Next
 End If
End Sub

Sub Main()

48 Addendum

 'Test
 ESB_Init
 'ESB_CreateLocalContext
 'ESB_AutoLogin
 ESB_Login
 'ESB_LoginSetPassword
 ESB_SetActive
 ESB_CreateGLDrillThru
 ESB_UpdateGLDrillThru
 ESB_GetGLDrillThru
 ESB_ListGLDrillThru
 ESB_GetCellDrillThruReports
 ESB_DeleteGLDrillThru
 'ESB_GetGLDrillThru
 'ESB_ListGLDrillThru
 ESB_GetCellDrillThruReports
 'ESB_SetUser
 'ESB_GetUser
 'ESB_GetMessage
 'ESB_Import
 'ESB_GetVersion
 'ESB_GetDatabaseInfo
 'ESB_GetDatabaseState
 'ESB_GetDatabaseStats
 'ESB_GetDatabaseAccess
 'ESB_GetGroupList
 'ESB_ListConnections
 'ESB_ListRequests
 'ESB_GetAssociatedAttributesInfo
 'ESb_GetStoresInfo
 'ESB_OtlGetMemberAlias
 'ESB_AddAliasCombination
 'ESB_CreateGroup
 'ESB_LROAddObject
 'ESB_LROGetCatalog
 'ESB_LROListObjects
 'ESB_LROPurgeObjects

 'ESB_CopyObject
 'ESB_PartitionReadDefFile
 'ESB_PartitionWriteDefFile
 'ESB_PartitionReplaceDefFile
 'ESB_PartitionValidateDefinition
 'ESB_PartitionValidateLocal
 'ESB_PartitionReadOtlChangeFile

 'ESB_AddToGroup
 'ESB_GetGroupList
 'ESB_VerifyFilter
 ESB_Logout
 ESB_Term
End Sub

Addendum 49

Administration Services
The following Administration Services help topics are for the drill-through to Oracle
applications feature.

l “Managing Drill-through Definitions” on page 50

l “Edit Drill-Through Definitions Dialog Box” on page 51

Managing Drill-through Definitions

ä To manage drill-through definitions:

1 In Enterprise View, right-click on a database.

2 Select Edit, and then Drill-through definitions.

3 Perform an action:

l Add a definition

l Modify a definition

l Delete a definition

ä To add or modify a definition:

1 Perform an action:

l To add a definition, in Definitions, select Click here to add a definition.

l To modify a definition, select it in Definitions.

2 Optional: If creating a definition, enter a URL name.

3 Perform an action:

l In XML Contents, enter an XML script.

l Click Load XML from file, and select a file containing an XML script.

l Click Save XML to file to save the XML script.

l Click Export XML to export the XML script.

4 Add one or more regions to include in the definition:

a. In the outline tree, double-click member names to insert them into the formula at the text
marker position. You can perform Find Members operations to locate members
containing specific text.

b. Optional: To view alias names in the outline tree, select Use aliases and select an alias table
from the list.

c. In the Commands and functions tree, double-click an operator or function. The selected
operator or function is inserted in the text area at the text-marker position. Select Insert
arguments to include arguments in the text area as the command or function is inserted.

d. Optional: To include only level-0 members, select Level zero members only.

5 Click Save, and then Close.

50 Addendum

ä To delete a definition:

1 In Definitions, select a drill-through definition.

2 Click Delete definition.

Edit Drill-Through Definitions Dialog Box
You use the Edit Drill-Through Definitions Dialog Box to add, modify, or delete drill-through
definitions.

Select a drill-through definition from Definitions to edit or delete it, or select Click here to add
a new definition.

Information that can be edited in the Edit Drill-through Definitions dialog box for a drill-
through definition:

l URL name—Name of the drill-through definition as it appears in client applications

l XML Contents—Script defining how the client application retrieves data from Essbase

l Regions—Database slices containing information available to the client application.

You add members to Regions by double-clicking them in the member tree. You apply commands
and functions to members in Regions by double-clicking them in Commands and Functions.
Optionally, you use aliases and have Administration Services insert function arguments
automatically by selecting Use aliases or Insert arguments.

You load or export XML scripts for a definition by selecting Load XML from file or Export
XML.

FDM Enhancements
After data or metadata is loaded using Oracle Hyperion Financial Data Quality Management,
Fusion Edition, planners can drill through to the FDM source details of cell data from within
the Oracle Hyperion Planning, Fusion Edition data form. With this release, FDM is automatically
enabled; administrators do not need to enable it as an application setting. Users can also drill-
through to FDM from Smart View or Financial Reporting.

ERP Integrator
Oracle Hyperion Financial Data Quality Management ERP Integration Adapter for Oracle
Applications is a module of FDM that enables you to:

l Integrate metadata and data from an Enterprise Resource Planning (ERP) source system
into an Oracle Hyperion EPM target application.

l Drill through from the EPM application (Oracle Hyperion Financial Management, Fusion
Edition or Planning through web forms, Smart View or Oracle Hyperion Financial
Reporting, Fusion Edition) and view details in the ERP source system.

Addendum 51

For more information about ERP Integrator, see the Oracle Hyperion Financial Data Quality
Management ERP Integration Adapter for Oracle Applications Administrator's Guide.

For information about the versions of Oracle E-Business Suite and PeopleSoft for which general
ledger data is supported, see the Oracle Hyperion Enterprise Performance Management System
Certification Matrix at http://www.oracle.com/technology/products/bi/hyperion-supported-
platforms.html.

Smart View Enhancements
Smart View's drill-through capabilities have been enhanced to include ERP Integrator, Oracle
General Ledger, and FDM:

l If you are connected to Planning or Financial Management via Smart View, you can use the
drill-through capabilities of Oracle Hyperion Smart View for Office, Fusion Edition to drill
through your Planning or Financial Management application to detailed data in Oracle
Hyperion Financial Data Quality Management ERP Integration Adapter for Oracle
Applications or Oracle Hyperion Financial Data Quality Management, Fusion Edition data
sources.

l For applications created in Administration Services, you can drill through to Oracle General
Ledger.

For applications created in Essbase Studio or Oracle Essbase Integration Services, you can
continue to drill through to relational databases. For applications created in Oracle Essbase
Studio, you can also drill through to administrator-configured URLs.

Note: To enable drill-through, all data source providers are front-ended with a proxy server.
See the Oracle Hyperion Enterprise Performance Management System Installation and
Configuration Guide.

Calculation Manager Enhancements
For this release, Hyperion Calculation Manager supports users of Essbase block storage
applications. You can use Calculation Manager to design, launch, and administer Essbase
business rules. These are the new features for this release of Calculation Manager:

Support for Calculation Manager in Classic Applications and
Essbase Block Storage Applications
Calculation Manager may be used by:

l Financial Management and Planning users working with Performance Management
Architect applications

l Financial Management and Planning users working with Classic applications

l Essbase users working with Essbase block storage applications

52 Addendum

http://www.oracle.com/technology/products/bi/hyperion-supported-platforms.html
http://www.oracle.com/technology/products/bi/hyperion-supported-platforms.html

Oracle Hyperion EPM Architect, Fusion Edition applications work with business rules created
in Calculation Manager. Classic Planning, Classic Financial Management, and Essbase block
storage applications work with business rules created with Oracle's Hyperion® Business Rules
or Calculation Manager. (Runtime prompts are not supported in Essbase rules.)

As in the earlier release, you can launch Financial Management business rulesets and Planning
business rules from Oracle Hyperion Financial Management, Fusion Edition and Oracle
Hyperion Planning, Fusion Edition, respectively. Oracle Essbase business rules, however, may
be launched from either Calculation Manager or Oracle Essbase Administration Services.

Templates Enhancements
Template enhancements include those made to system templates and those made to the
Template Designer.

System Templates Enhancements
Hyperion Calculation Manager system templates are now available in wizards instead of in a tab
based user interface. This makes the templates easier to use in a business rule and reduces the
potential calculation script errors.

The options available in system templates are filtered based on the choices users make when
using the wizard. For example, the Aggregation system template does not display the step for
selecting the dense dimensions to aggregate if there are no dense dimensions available for
aggregation. (This happens if all dense dimensions are used in an upper level member range
component.)

System templates can detect upper level member ranges in which they are placed. If a user drops
a system template into a member range component (that is, a Fix statement), then the dimensions
used in the member range are not displayed in the wizard. This reduces the potential for
calculation script syntax errors when using system templates. For example, if the Allocate
template is used in a member range made of entities, the entity dimension is not displayed as a
dimension on which an allocation can be performed.

Template Designer Enhancements
l Wizard designer

When you design custom-defined templates, you can define steps in a wizard that guide
template users through creating and editing a template and its design time prompts. The
templates wizard enables you to organize the display of design time prompts in a template:
you can decide what design time prompts you display in each step and choose to display or
hide a step based on conditions that you define. Conditions can be based on member or
dimension selections made in previous steps or made in an upper Fix statement of the
business rule in which the template is used.

l New Upper POV system design time prompt

Addendum 53

A new system design time prompt, Upper POV, is displayed in the design time prompt list
of each template. This is a member range design time prompt that retrieves the member
ranges used in the rule.

l New design time prompt properties

New properties are available for design time prompts. Design time prompts can be displayed
as read only in the wizard. This is useful when you want to display a member selection made
in a previous step, but not enable users to edit it.

l New DTP Assignment component for assigning values to design time prompts

You can assign a value to a design time prompt using the new component, DTP Assignment,
that is available for custom-defined templates. In the template flow chart, you can place this
component inside a condition component to assign a value to design time prompts based
on conditions. Using the DTP Assignment component in a business rule reduces the
complexity of the template's flow chart and makes the logic of the template easier to develop
and maintain.

Note: The DTP Assignment component is also used in the design of system templates.

l New condition and condition grid in formula and script components

For custom-defined templates, formula and script components have a new condition grid
that enables you to define a condition for enabling the component. This simplifies the flow
chart and prevents you from having to add a separate condition component that can
overload the template's flow chart.

There is also a new condition that lets you test whether a design time prompt type member
is dense or sparse.

Printing Enhancements
Printing enhancements:

l You can define the number of pages you want the flow chart to print across and down. Then
you can specify whether the components in the flow chart should print down (vertically,
like a column), then across (horizontally, like a row) or print across, then down. These
options are helpful when you have business rules with many components.

l You can print components in the order in which they display in the Rule Designer or
Template Designer flow chart.

l You can insert a page break before a new section (that is, the summary section that includes
information about when the rule was created, who owns it, and so on; the variable section
that includes information about the variables used in the rule; and the detail section that
includes detailed information about the components in the rule).

l You can print nested business rules and rulesets.

54 Addendum

Saving Variables Within the Same Application
Using Save As, you can save a variable with a different name to the same application. Before,
you could copy a variable from one application to another, but you could not save a variable to
the same application.

Zoom Mode Enhancements
When you are in any zoom mode within a flow chart, you can select a component and view and
edit its properties. You can also drag a component and drop it into another location in the flow
chart in zoom mode. Before, when components in the flow chart were displayed in small sizes,
the components were represented by bitmaps that were not selectable.

Formula Grid Enhancements
In the formula grid of a component, you can double-click in a formula's cell to display a larger
text box in which to view and edit long formulas.

Addendum 55

COPYRIGHT NOTICE

Essbase Addendum, 11.1.1.3

Copyright © 2009, Oracle and/or its affiliates. All rights reserved.

Authors: EPM Information Development Team

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish or display
any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required
by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any
errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable: U.S. GOVERNMENT RIGHTS: Programs, software, databases, and related
documentation and technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental
regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license
terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract,
the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc.,
500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third party content, products and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third party content, products or services.

	Drill-through from Essbase to Oracle Applications
	Overview of Drill-through to Oracle Applications
	Drill-through URLs
	Creating and Managing Drill-through URLs
	MaxL Statements
	Alter Drillthrough
	Create Drillthrough
	Display Drillthrough
	Drop Drillthrough

	MaxL Definitions
	C Main API Structure
	C Main API Functions
	EssCreateDrillThruURL
	EssDeleteDrillThruURL
	EssGetCellDrillThruReports
	EssGetDrillThruURL
	EssListDrillThruURLs
	EssMDXIsCellGLDrillable
	EssUpdateDrillThruURL

	C Grid API Structure
	C Grid API Function
	EssGGetIsCellDrillable

	Visual Basic API Structure
	Visual Basic API Functions
	EsbCreateDrillThruURL
	EsbDeleteDrillThruURL
	EsbGetCellDrillThruReports
	EsbGetDrillThruURL
	EsbListDrillThruURLs
	EsbUpdateDrillThruURL

	Drill-through Visual Basic API Example
	Administration Services

	FDM Enhancements
	ERP Integrator

	Smart View Enhancements
	Calculation Manager Enhancements
	Support for Calculation Manager in Classic Applications and Essbase Block Storage Applications
	Templates Enhancements
	Printing Enhancements
	Saving Variables Within the Same Application
	Zoom Mode Enhancements
	Formula Grid Enhancements

