
Oracle® BPEL Process Manager
Developer’s Guide

10g (10.1.3.1.0)

B28981-03

January 2007

Oracle BPEL Process Manager Developer’s Guide, 10g (10.1.3.1.0)

B28981-03

Copyright © 2005, 2007, Oracle. All rights reserved.

Primary Author: Deanna Bradshaw and Mark Kennedy

Contributor: Oracle BPEL Process Manager development, product management, and quality assurance
teams

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xxiii

Audience... xxiii
Documentation Accessibility ... xxiii
Related Documents ... xxiv
Conventions ... xxiv

What’s New in Oracle BPEL Process Manager?... xxvii

Part I Introduction and Concepts

1 Introduction to Oracle BPEL Process Manager

What Is BPEL? ... 1-1
What Is Oracle BPEL Process Manager? .. 1-2
What Is Oracle JDeveloper? ... 1-3
How to Use This Guide... 1-4
Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials..... 1-6

What Demonstrations Are Available? .. 1-7
What Activity and Conceptual References Are Available? ... 1-9
What Tutorials Are Available?.. 1-10

Summary ... 1-15

2 Getting Started with Oracle BPEL Process Manager

Overview of Oracle BPEL Process Manager Components ... 2-1
Starting Oracle BPEL Process Manager Components ... 2-2
Overview of the BPEL Designer Environment... 2-3

Overview of BPEL Project Creation and Oracle JDeveloper ... 2-3
Application Navigator ... 2-6
Diagram Window ... 2-7
Source Window ... 2-8
History Window... 2-10
Component Palette .. 2-10
Property Inspector ... 2-12
Structure Window.. 2-12
Log Window ... 2-13
Editing Project Files in Oracle JDeveloper ... 2-14

iv

Overview of Activities.. 2-15
Overview of Partner Links .. 2-16
Overview of Oracle BPEL Server ... 2-17
Overview of Oracle BPEL Control ... 2-17
Overview of Oracle BPEL Process Manager Services .. 2-18
Overview of Oracle BPEL Process Manager Technology Adapters... 2-20
Summary ... 2-21

Part II Reviewing Key BPEL Development Concepts and Code Samples

3 Manipulating XML Data in BPEL

Use Cases for Manipulating XML Data in BPEL ... 3-1
Overview of Manipulating XML Data in BPEL Concepts ... 3-2

How XML Data Works in BPEL... 3-2
About Data Manipulation and XPath Standards .. 3-2

Initializing a Variable with Expression Constants or Literal XML .. 3-4
Copying Between Variables ... 3-5
Accessing Fields Within Element-Based and Message Type-Based Variables............................. 3-6
Assigning Numeric Values ... 3-6
Mathematical Calculations with XPath Standards .. 3-7
Assigning String Literals .. 3-7
Concatenating Strings ... 3-7
Assigning Boolean Values .. 3-8
Assigning Date or Time .. 3-8
Manipulating Attributes ... 3-9
Manipulating XML Data with bpelx Extensions .. 3-10

bpelx:append ... 3-10
bpelx:insertBefore.. 3-11
bpelx:insertAfter.. 3-12
bpelx:remove.. 3-12
bpelx:rename and XSD Type Casting .. 3-13
bpelx:copyList.. 3-15

Validating XML Data with bpelx:validate.. 3-16
Manipulating XML Data Sequences That Use Arrays ... 3-16

Statically Indexing into an XML Data Sequence That Uses Arrays... 3-16
Determining Sequence Size ... 3-17
Dynamically Indexing by Applying a Trailing XPath to an Expression................................. 3-17

Dynamic Indexing Example ... 3-18
Using the bpelx:append Extension to Append New Items to a Sequence 3-18
Merging Data Sequences... 3-19
Dynamically Indexing with the BPEL getElement Function... 3-19
Generating Functionality Equivalent to an Array of an Empty Element 3-20

SOAP-Encoded Arrays Not Supported ... 3-21
Converting from a String to an XML Element... 3-21
Differences Between Document-Style and RPC-Style WSDL Files ... 3-22
Adding a Custom WSIF Provider... 3-23

Task 1: Register the WSDL Extension to the WSDL Reader ... 3-23

v

Task 2: Register the WSIF Provider .. 3-23
Input and Output Message Header Handling... 3-24

Header Handlers ... 3-24
Registering of Header Handlers ... 3-25
Manipulation of partnerLink Properties ... 3-26

Manipulating SOAP Headers in BPEL ... 3-26
Receiving SOAP Headers in BPEL ... 3-26
Sending SOAP Headers in BPEL .. 3-27

Using Binary Attachments in SOAP Messages ... 3-28
Use Case: SOAP Message with Binary Attachment Using MIME... 3-29

WSDL File Contents .. 3-30
BPEL File Contents .. 3-32
Java Client Using SAAJ ... 3-33

Displaying the Attachment Key for Binary Attachments Using the DIME Protocol in
 Oracle BPEL Control.. 3-35

Summary ... 3-36

4 Invoking a Synchronous Web Service

Use Case for Synchronous Web Services... 4-1
Overview of Synchronous Service Concepts .. 4-2

Establishing the Partner Link ... 4-2
Defining the Partner Link in the BPEL Code.. 4-2
Using the WSDL File to Enable the Web Services to Work with a BPEL Process 4-3
Performing Lookups for Services that Use Partner Links... 4-4
Accessing Web Services on Remote Servers ... 4-4

Using the Invoke Activity to Perform a Request... 4-5
Calling a Synchronous Service .. 4-5
Summary .. 4-7

5 Invoking an Asynchronous Web Service

Use Case for Asynchronous Web Services .. 5-1
Overview of Asynchronous Callback Concepts... 5-3

partnerLinkTypes for Asynchronous Services .. 5-3
Calling the Service from BPEL ... 5-4
How the Invoke and Receive Activities Work... 5-5
Managing Multiple Active BPEL Process Instances Using Correlation Methods 5-7

WS-Addressing ... 5-7
Using Correlation Sets to Coordinate Asynchronous Message Body Contents 5-10

Using the Reply Activity to Send Messages in Response to a Receive Activity 5-10
Using Dehydration Points to Maintain Long-Running Asynchronous Processes 5-10

Calling an Asynchronous Service .. 5-11
Step 1: Adding a Partner Link for an Asynchronous Service ... 5-11
Step 2: Adding an Invoke Activity ... 5-12
Step 3: Adding a Receive Activity .. 5-13
Step 4: Performing Additional Activities... 5-14

Using Correlation Sets in an Asynchronous Service.. 5-14

vi

Step 1: Creating a Project ... 5-15
Step 2: Configuring Partner Links and File Adapter Services.. 5-15

Creating an Initial Partner Link and File Adapter Service .. 5-15
Creating a Second Partner Link and File Adapter Service .. 5-17
Creating a Third Partner Link and File Adapter Service ... 5-18

Step 3: Creating Three Receive Activities .. 5-19
Creating an Initial Receive Activity .. 5-19
Creating a Second Receive Activity .. 5-20
Creating a Third Receive Activity ... 5-20

Step 4: Creating Correlation Sets .. 5-21
Creating an Initial Correlation Set... 5-21
Creating a Second Correlation Set... 5-21

Step 5: Associating Correlation Sets with Receive Activities ... 5-22
Associating the First Correlation Set with a Receive Activity... 5-22
Associating the Second Correlation Set with a Receive Activity...................................... 5-22
Associating the Third Correlation Set with a Receive Activity... 5-23

Step 6: Creating Property Aliases ... 5-24
Creating Property Aliases for NameCorr... 5-24
Creating Property Aliases for IDCorr ... 5-24

Step 7: Reviewing WSDL File Content... 5-25
Summary ... 5-26

6 Parallel Flow

Use Case for Parallel Flows .. 6-1
Overview of Parallel Flow Concepts .. 6-1
Defining a Parallel Flow ... 6-2
Customizing the Number of Flow Activities by Using the flowN Activity 6-4

BPEL Code Example of the FlowN Activity .. 6-6
Summary .. 6-7

7 Conditional Branching

Use Case for Conditional Branching .. 7-1
Overview of Conditional Branching Concepts .. 7-1
Using a Switch Activity to Define Conditional Branching.. 7-2
Using a While Activity to Define Conditional Branching ... 7-4
Summary .. 7-5

8 Fault Handling

Use Case for Fault Handling .. 8-1
Defining a Fault Handler.. 8-1
BPEL Standard Faults .. 8-3
Categories of BPEL Faults... 8-3

Business Faults.. 8-3
Run-time Faults .. 8-3

bindingFault... 8-4
remoteFault .. 8-5

vii

replayFault ... 8-5
Catching Run-time Faults Example.. 8-5

Getting Fault Details with the getFaultAsString XPath Extension Function 8-5
Using the Scope Activity to Manage a Group of Activities ... 8-6
Throwing Internal Faults .. 8-6
Returning External Faults ... 8-7

Returning a Fault in a Synchronous Interaction.. 8-7
Returning a Fault in an Asynchronous Interaction... 8-7

Using a Fault Handler within a Scope ... 8-8
Using the Empty Activity to Insert No-Op Instructions into a Business Process..................... 8-8

Using Compensation After Undoing a Series of Operations .. 8-9
Using the Terminate Activity to Stop a Business Process Instance ... 8-10
Fault Handling Example .. 8-10
Summary ... 8-12

9 Incorporating Java and J2EE Code in BPEL Processes

Overview of Java and J2EE Code in BPEL Concepts... 9-1
Using Java Code with WSIF Binding .. 9-1

Java Binding Service Using XML Simple Types... 9-2
Java Binding Service Using Oracle BPEL Process Manager XML Facade.......................... 9-2
Java Binding Service Using XML DOM Elements ... 9-3
Throwing a WSDL Fault from a Java Binding.. 9-4

Using Java Code Wrapped as a SOAP Service .. 9-5
Directly Embedding Java Code in a BPEL Process ... 9-6

Using the bpelx:exec Tag to Embed Java Code Snippets into a BPEL Process 9-6
Using an XML Facade to Simplify DOM Manipulation.. 9-7
bpelx:exec Built-in Methods .. 9-8

Using Java Embedding in a BPEL Process... 9-8
Summary .. 9-9

10 Events and Timeouts

Use Case for Events and Timeouts... 10-1
Overview of Event and Timeout Concepts... 10-1
Using the Pick Activity to Select Between Continuing a Process or Waiting............................ 10-2
Using the Wait Activity to Set an Expiration Time ... 10-4
Setting Timeouts for Synchronous Processes .. 10-4
Defining a Timeout ... 10-4
Summary ... 10-6

11 Invoking a BPEL Process

Use Case for Invoking a BPEL Process.. 11-1
Overview of Invoking BPEL Process Concepts... 11-1
Sending Messages to a BPEL Process from a Java or JSP Application 11-1

Invoking a BPEL Process with the Generic Java API... 11-2
Connecting to Oracle BPEL Process Manager with the Locator Class............................. 11-2
Passing XML Messages Through Java .. 11-3

viii

Invoking a Two-Way Operation Through the Java API .. 11-3
Invoking a One-Way Operation Through the Java API ... 11-4

Retrieving Status or Results from Asynchronous BPEL Processes.. 11-5
Using the Java API from a Remote Client ... 11-5
Invoking a BPEL Process with the Web Service/SOAP Interface ... 11-6

Summary ... 11-6

12 Interaction Patterns

One-Way Message ... 12-1
Synchronous Interaction .. 12-2
Asynchronous Interaction ... 12-3
Asynchronous Interaction with Timeout.. 12-4
Asynchronous Interaction with a Notification Timer .. 12-5
One Request, Multiple Responses... 12-6
One Request, One of Two Possible Responses ... 12-7
One Request, a Mandatory Response, and an Optional Response ... 12-8
Partial Processing .. 12-9
Multiple Application Interactions ... 12-10
Summary ... 12-11

Part III Oracle BPEL Process Manager Services

13 XSLT Mapper and Transformations

Use Case for Transformation... 13-1
Creating an XSL Map File.. 13-1

Creating a New XSL Map File... 13-2
Creating an XSL Map File from Imported Source and Target Schema Files.......................... 13-3

Overview of the XSLT Mapper ... 13-5
Notes on the Mapper .. 13-6

Using the XSLT Mapper ... 13-6
Simple Copy by Linking Nodes.. 13-7
Setting Constant Values ... 13-7
Adding Functions.. 13-8

Editing Function Parameters.. 13-9
Chaining Functions.. 13-10
Named Templates.. 13-10
Importing User-Defined Functions ... 13-10

Editing XPath Expressions... 13-11
Adding XSLT Constructs ... 13-12

Conditional Processing with xsl:if ... 13-12
Conditional Processing with xsl:choose ... 13-13
Handling Repetition or Arrays .. 13-14

Automatically Mapping Nodes .. 13-15
Auto Map with Confirmation .. 13-17

Viewing Unmapped Target Nodes .. 13-18
Generating Dictionaries ... 13-19

ix

Creating Map Parameters and Variables... 13-19
Creating a Map Parameter.. 13-20
Creating a Map Variable ... 13-20

Searching Source and Target Nodes .. 13-21
Ignoring Elements in the XSLT Document.. 13-22
Replacing a Schema in the XSLT Mapper.. 13-23

Testing the Map ... 13-23
Test XSL Map Window .. 13-24
Generating Reports ... 13-26

Correcting Memory Errors When Generating Reports .. 13-27
Sample XML Generation.. 13-27

Summary ... 13-28

14 Oracle BPEL Process Manager Notification Service

Use Cases for Notification Service... 14-1
Overview of Notification Service Concepts... 14-1

Reliable Notification Service.. 14-2
Configuring the Notification Service in Oracle JDeveloper .. 14-3

The E-mail Notification Channel .. 14-4
Setting E-mail Attachments.. 14-5
Formatting the Body of an E-mail Message as HTML ... 14-8

The Fax Notification Channel.. 14-8
The Pager Notification Channel.. 14-10
The SMS Notification Channel.. 14-11
The Voice Notification Channel .. 14-12
Setting E-mail Addresses and Telephone Numbers Dynamically .. 14-13
Selecting Notification Recipients by Browsing the User Directory 14-14
Starting Business Processes with the E-mail Activation Agent.. 14-14
XML Validation Failure with the Notification Service .. 14-15

Summary ... 14-15

15 Oracle BPEL Process Manager Workflow Services

Oracle BPEL Process Manager Workflow Services 10.1.2 and 10.1.3.1.0 Compatibility 15-2
Overview of Workflow Services... 15-2

Workflow Functionality: A Procurement Process Example ... 15-5
Workflow Services Components... 15-6

Use Cases for Workflow Services... 15-8
Assigning a Task to a User or Role... 15-9
Using the Various Participant Types.. 15-9
Escalation, Expiration, and Delegation.. 15-10
Automatic Assignment and Delegation... 15-10
Work Queues and Proxy Support... 15-10
The Oracle BPEL Worklist Application ... 15-10

Participant Types in Workflow Services ... 15-11
Continuing Workflows from Other Workflows ... 15-12

Overview of the Modeling Process.. 15-12

x

Create a Human Task Definition with the Human Task Editor .. 15-12
Associate the Human Task Definition with a BPEL Process .. 15-12
Generate the Task Display Form .. 15-13

Task 1: Creating the Human Task Definition with the Human Task Editor............................ 15-13
Accessing the Human Task Editor ... 15-13

From the Application Navigator ... 15-13
From the Component Palette ... 15-14

Reviewing the Sections of the Human Task Editor.. 15-14
Specifying the Task Title, Priority, Outcome, and Owner .. 15-15

Specifying a Task Title and Priority .. 15-16
Specifying a Task Outcome .. 15-16
Specifying a Task Owner .. 15-18

Specifying the Task Payload Data Structure... 15-21
Assigning Task Participants .. 15-22

Specifying Task Approvers .. 15-23
Configuring the Single Approver Participant Type ... 15-24
Configuring the Group Vote Participant Type.. 15-27
Configuring the Management Chain Participant Type.. 15-30
Configuring the Sequential List of Approvers Participant Type.................................... 15-32
Configuring the FYI Assignee Participant Type ... 15-35
Configuring the External Routing Service Participant Type... 15-36
Allowing All Participants to Invite Other Participants .. 15-37
Abruptly Completing a Condition .. 15-38

Escalating, Renewing, or Ending the Task .. 15-39
Overview or Escalation and Expiration Policy.. 15-39
Never Expire Policy ... 15-41
Expire After Policy... 15-41
Renew After Policy .. 15-42
Escalate After Policy .. 15-42

Specifying Participant Notification Preferences ... 15-43
Notifying Recipients of Changes to Task Status ... 15-44
Editing the Notification Message .. 15-45
Setting Up Reminders ... 15-46
Securing Notifications, Making Messages Actionable, and Sending Attachments 15-46

Specifying Advanced Settings... 15-47
Specifying Escalation Rules .. 15-47
Specifying WordML Style Sheets for Attachments... 15-48
Specifying Style Sheets for Attachments .. 15-48
Specifying Multilingual Settings.. 15-48
Overriding Default System Actions .. 15-49
Overriding Default Exception Management.. 15-51
Specifying Callback Classes on Task Status... 15-51
Allowing Task and Routing Customization in BPEL Callbacks 15-52

Exiting the Human Task Editor and Saving Your Changes ... 15-53
Task 2: Associating the Human Task with a BPEL Process ... 15-53

Associating a Human Worklist Task with a BPEL Process... 15-54
Opening a Human Task Activity Already Associated with a BPEL Process 15-54

xi

Defining the Human Task Activity Title, Initiator, Priority, and Parameter Variables...... 15-55
Specifying the Task Title ... 15-55
Specifying the Task Initiator and Task Priority... 15-55
Specifying Task Parameters.. 15-56

Defining the Human Task Activity Advanced Features .. 15-57
Specifying a Scope Name and a Global Task Variable Name ... 15-58
Specifying a Task Owner .. 15-58
Specifying an Identification Key.. 15-59
Including the Task History of Other Human Tasks ... 15-59
Allowing Task and Routing Customizations in BPEL Callbacks 15-59

Viewing the Generated Human Task Activity ... 15-60
BPEL Callbacks... 15-62
Including the Task History from Other Workflows ... 15-64

Outcome-Based Modeling ... 15-64
Payload Updates .. 15-65
Case Statements for Other Task Conclusions .. 15-65

Task 3: Generating the Task Display Form... 15-66
Overview of Task Display Forms ... 15-66
Selecting a Task Display Form .. 15-66

Preview Release of Task Display Form Support for ADF Data Controls...................... 15-67
Automatically Generating a Simple Task Display Form... 15-68

Payload File for the Autogenerated JSP ... 15-68
Generating a Custom Task Display Form ... 15-74

Autogenerated JSP ... 15-75
Custom JSP.. 15-76
Default JSP .. 15-77
XSL ... 15-77

Deploying Task Display Forms... 15-77
Creating Custom JSP Forms .. 15-78

Adding Update Support in the Custom JSP .. 15-80
How Changes to a Workflow Appear in Worklist Application ... 15-80
Notifications from Workflow Services.. 15-80

Configuring the Notification Channel ... 15-81
Contents of Notification ... 15-82
Configuring Messages in Different Languages .. 15-83
Sending Actionable E-mails... 15-83
Sending Inbound and Outbound Attachments .. 15-84
Sending Inbound Comments... 15-84
Reliability Support .. 15-84
Sending Secure Notifications... 15-85
Channels Used for Notifications... 15-85
Sending Reminders ... 15-85

End-to-End Workflow Examples .. 15-86
Vacation Request Example .. 15-87
Prerequisites... 15-87
Modeling the Vacation Request Process.. 15-88

Creating the Vacation Request Process and Importing the Schema 15-89

xii

Adding a Human Task to the Order Approval Process... 15-89
Assigning Input and Output Parameters for the Human Task 15-92
Creating a Task Form for the Worklist ... 15-94
Modeling the Task Outcome .. 15-94
Validating, Compiling, and Deploying the Order Approval Process............................ 15-95
Running the Order Approval Process .. 15-95

Workflow Services .. 15-97
EJB, SOAP, and Java Support for the Workflow Services... 15-97
Security Model for Services ... 15-98

Security in SOAP Web Services ... 15-98
Security in EJBs... 15-98
Creating Workflow Context on Behalf of a User... 15-99

Task Service.. 15-99
Task Query Service ... 15-101
Identity Service .. 15-102

Creating Users and Groups .. 15-104
Identity Service Providers .. 15-104
User and Role Properties .. 15-106
Multirealm Support ... 15-107
Authentication, Authorization, and Identity Service Providers 15-108

Notification Service... 15-108
Task Metadata Service.. 15-109
User Metadata Service .. 15-109
Runtime Config Service.. 15-111

Internationalization of Attribute Labels ... 15-113
Configuring the Assignment Service .. 15-113

Dynamic Assignment Functions... 15-113
Implementing a Dynamic Assignment Function .. 15-114
Configuring Dynamic Assignment Functions... 15-117
Configuring Display Names for Dynamic Assignment Functions............................... 15-118

Dynamically Assigning Task Participants with the Assignment Service........................... 15-118
Assignment Service Overview... 15-119
Implementing an Assignment Service .. 15-119
Example of Assignment Service Implementation ... 15-120
Deploying a Custom Assignment Service.. 15-121

Custom Escalation Function .. 15-122
Workflow Service and Identity Service Related XPath Extension Functions 15-122

Deprecated Workflow Service and Identity Service Functions.. 15-123
NLS Configuration.. 15-124
Summary ... 15-124

16 Worklist Application

Use Cases for the Worklist Application .. 16-1
Overview of Worklist Application Concepts... 16-2

Worklist Application User Types ... 16-3
Task Components.. 16-3

Features of the Worklist Application... 16-4

xiii

Using the Task Details Page .. 16-8
Task Actions ... 16-10
Request Status ... 16-11
Header Section.. 16-13
Payload Section .. 16-13
Comments and Attachments Section .. 16-13
History Section ... 16-14
Routing .. 16-15
Requesting More Information.. 16-15
Reassignment.. 16-15
Parallel Tasks .. 16-17
Determining Action Permissions... 16-17

Using Advanced Search ... 16-17
Viewing a Bar Chart of Task Status.. 16-19
Using Work Queues.. 16-20
Setting Preferences .. 16-21

Vacation Preferences ... 16-21
My Rules.. 16-22
Group Rules .. 16-24
Custom Views... 16-25
Display Preferences ... 16-26

Using the Administration Functions.. 16-27
Manage Rules ... 16-27
Flex Field Mappings .. 16-28
Application Customization .. 16-32

Creating Reports.. 16-33
Unattended Tasks Report ... 16-34
Tasks Priority Report... 16-35
Tasks Cycle Time Report .. 16-36
Tasks Productivity Report .. 16-37

User and Group Information... 16-39
Accessing the Worklist Application in Local Languages .. 16-39
Customizing the Worklist Application ... 16-41

Worklist Application Architecture ... 16-41
Customizing the Login Page .. 16-44
Customizing Header Information ... 16-44
Customizing the Task Details Page... 16-45
Changing the Client-Service Binding for the Worklist Application............................... 16-45
Deploying the Custom Worklist Application.. 16-46
Customizing the Worklist Application Using Preferences.. 16-48
Configuring Display Names for Task Attributes Using WorkflowLabels.properties . 16-48

Controlling Access to Information and Actions for Different Users 16-48
Enabling the Worklist Application for Single Sign-On ... 16-50

Task 1: Changing the Servlet Code .. 16-50
Task 2: Changing the Application Configuration ... 16-52
Task 3: Reviewing the File Changes.. 16-53
Task 4: Building and Deploying the Application.. 16-53

xiv

Building Clients for Workflow Services... 16-54
Packages and Classes for Building Clients.. 16-55
Workflow Service Client .. 16-56

The IWorkflowServiceClient Interface.. 16-58
Classpaths for Java Clients .. 16-58
EJB References in Web Applications .. 16-59
Initiating a Task ... 16-60

Creating a Task... 16-60
Creating a Payload Element in a Task .. 16-60
Initiating a Task Programmatically ... 16-61

Writing a Worklist Application Using the HelpDeskUI Sample ... 16-62
Summary ... 16-69

17 Sensors

Use Cases for Sensors ... 17-1
Overview of Sensor Concepts... 17-1
Implementing Sensors and Sensor Actions in Oracle JDeveloper.. 17-2

Configuring Sensors ... 17-3
Configuring Sensor Actions... 17-6
Publishing to Remote Topics and Queues... 17-8
Creating a Custom Data Publisher ... 17-8
Registering the Sensors and Sensor Actions in bpel.xml .. 17-11

Sensors and Oracle BPEL Control.. 17-11
Viewing Sensor and Sensor Action Definitions.. 17-11
Viewing Sensor Data .. 17-12

Sensor Integration with Oracle Business Activity Monitoring.. 17-13
Creating a Connection to Oracle BAM Server .. 17-14
Creating a Sensor... 17-15
Creating a BAM Sensor Action ... 17-15

Sensor Public Views ... 17-18
BPM Schema .. 17-18

Sensor Actions XSD File .. 17-23
Summary ... 17-31

18 BPEL Process Integration with Business Rules

Business Rules and Decision Service Concepts .. 18-1
Business Rules and Business Rule Engines ... 18-1
Decision Service... 18-2
Oracle Business Rules with Oracle BPEL Process Manager ... 18-2

Decision Service Architecture... 18-3
Decision Service Components ... 18-4
Interaction with Other Components .. 18-4
Contents of Decision Service Configuration File.. 18-5

Use Cases for Integration of Business Processes and Business Rules .. 18-7
Integration of BPEL Processes with Business Rules .. 18-7

Create Rule Engine Connection Wizard .. 18-7
Decision Service Wizard .. 18-9

xv

Selecting an Invocation Pattern.. 18-10
Selecting a Business Rule .. 18-11
Specifying Input and Output Facts ... 18-12
Importing Schema Files... 18-13

Decide Activity .. 18-14
Mapping Input and Output Facts to BPEL Variables... 18-14

Methodology for Rule Set Modeling and Integration with a BPEL Process 18-17
Recommended Methodology .. 18-17
Methodology One: Modeling Fact Types Based on an XML Schema 18-17

Task 1: Create a Data Model for Rule Authoring.. 18-18
Task 2: Create a New Rule Repository and Dictionary in the Rule Author.................. 18-19
Task 3: Import the XML Schema into the Data Model of the Rule Dictionary 18-20
Task 4: Create a New Rule Set and Model Rules .. 18-23

Methodology Two: Modeling Rules Based on Existing RL or JavaBeans Fact Types 18-28
Task 1: Define a Contract between BPEL and Business Rules .. 18-28
Task 2: Create a New Data Model Using the RL Fact Types... 18-28
Task 3: Create a New Rule Set and Rules... 18-30
Task 4: Create the RL Function Contract.. 18-31

Invoking the Sample Rule Set from a BPEL Process.. 18-33
Task 1: Create a Connection to the Rule Engine.. 18-33
Task 2: Create a BPEL Project... 18-33
Task 3: Create a Decision Service Partner Link ... 18-34
Task 4: Create a Decide Activity .. 18-36

Summary of Methodology... 18-39
Decision Service Deployment and Run Time ... 18-39

Decision Service Partner Link Directory Structure .. 18-39
Deployment.. 18-42
Run Time .. 18-43

Oracle Enterprise Manager 10g Application Server Control Console Support 18-43
Oracle BPEL Control Support .. 18-45

Advanced Decision Service Features... 18-47
Using WSIF Bindings.. 18-47
Enabling Logging of Oracle Business Rules Rule Session Events.. 18-48
Customizing assertXPath... 18-50

Example of BPEL Process Integration with Business Rules ... 18-51
Task 1: Update a Rule Using Oracle Business Rules Rule Author... 18-51
Task 2: Create a Connection to the Business Rule Repository.. 18-53
Task 3: Create a BPEL Process and Import the Schema .. 18-55
Task 4: Create a Decision Service Partner Link .. 18-55
Task 5: Create a Decide Activity ... 18-59

Part IV Development and Deployment Life Cycle

19 BPEL Process Deployment and Domain Management

Compiling and Deploying a BPEL Process .. 19-1
Compiling and Deploying in Oracle JDeveloper ... 19-2

xvi

Compiling Without Deploying in Oracle JDeveloper .. 19-4
BPEL Suitcase JAR File ... 19-5
Deploying to Multiple Environments with Different Configuration Values......................... 19-5

customize ant Task Example .. 19-5
customize ant Task Syntax ... 19-7

Creating and Managing a BPEL Domain.. 19-8
Logging into Domains.. 19-9
Changing Domain Passwords... 19-10
Creating a BPEL Domain ... 19-10
Changing Oracle BPEL Server Mode ... 19-11
Deploying a BPEL Suitcase to a Specific Domain .. 19-11
Undeploying a BPEL Process from a Specific Domain.. 19-12

Managing Processes in Oracle BPEL Control .. 19-12
Dashboard Tab: Viewing Deployed, Running, and Completed Processes 19-13

Viewing and Changing Domains .. 19-13
BPEL Processes Tab: Managing the Process Life Cycle... 19-14

Clearing the WSDL Cache .. 19-14
Deploying New Processes .. 19-14
Performing Manual Recovery .. 19-15
Refreshing the Alarm Table.. 19-15
Viewing the Process Logs ... 19-15
Managing the Process Life Cycle... 19-15

Instances Tab: Viewing Process Instances ... 19-26
Activities Tab: Viewing Process Activities .. 19-27

Build and Command Line Tools... 19-27
ant .. 19-28
bpelc .. 19-28

Examples of ant Tasks ... 19-28
schemac... 19-29

Examples ... 19-30
Summary ... 19-31

20 Testing BPEL Processes

Overview of the BPEL Test Framework .. 20-1
Test Cases Overview... 20-2
Test Suites Overview .. 20-2
Emulations Overview... 20-2
Assertions Overview .. 20-2
Process Code Coverage Overview.. 20-3
JUnit Support Overview .. 20-3

Components of a Test Suite ... 20-3
Process Initiation ... 20-4
Emulations ... 20-4
Assertions ... 20-5
Include Files ... 20-6

Creating Test Suites in Oracle JDeveloper ... 20-6
Creating Test Suites in Oracle JDeveloper... 20-6

xvii

Importing Test Cases in Oracle JDeveloper .. 20-7
Creating Test Cases in Oracle JDeveloper ... 20-9
Editing Test Cases in Oracle JDeveloper ... 20-9

Creating Emulations in Oracle JDeveloper .. 20-10
Creating Assertions in Oracle JDeveloper.. 20-14
Creating External Calls in Oracle JDeveloper.. 20-16

Creating a Test Case from Oracle BPEL Control .. 20-17
Deploying a Test Suite ... 20-19

Deploying from Oracle JDeveloper .. 20-19
Deploying from an ant Task .. 20-20

Running a Test Suite and Viewing Report Results .. 20-21
Running from Oracle BPEL Control... 20-21
Running from an ant Task ... 20-24

Advanced Test Suite Design Features ... 20-27
Setting Dynamic Values at Run Time .. 20-27
Asynchronous Event Emulation ... 20-29
Verifying External Actions .. 20-29
Custom Reporting... 20-29
Database Views ... 20-30

admin_list_td .. 20-30
admin_list_tdef... 20-31

XML Schemas .. 20-32
Client APIs ... 20-32

21 Oracle BPEL Portlets

OracleAS Portal Introduction ... 21-1
Step 1: Installing and Configuring the Required Oracle Application Server Components... 21-3

Configuring Realms (10.1.3.1.0 Only) .. 21-3
Step 2: Deploying the Portlets .. 21-4

Deploying Portlets with dcmctl .. 21-4
Deploying Portlets with Oracle Enterprise Manager 10g Application Server Control
 Console .. 21-4

Step 3: Registering Web Providers with OracleAS Portal ... 21-6
Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources 21-9

Defining Oracle BPEL Control Report Portlet Parameters and Accessing Portlet Data
 Sources ... 21-9

Instance State .. 21-11
Instance Execution Time ... 21-11
Performance.. 21-12
Activity Sensor ... 21-13
Process Time Distribution .. 21-13
Fault Sensor... 21-13

Defining Oracle BPEL Worklist Application Portlet Parameters and Accessing Portlet
 Data Sources.. 21-13

Listing Portlet Customization .. 21-14
Listing Portlet View... 21-16
Analysis Portlet Customization ... 21-17

xviii

Analysis Portlet View.. 21-19
Step 5: Mapping Portlet Parameters with Page Parameters .. 21-20
Summary ... 21-23

22 Oracle BPEL Control Reports

Creating Oracle BPEL Control Reports ... 22-1
Creating Process Reports ... 22-3
Creating Performance Reports .. 22-5
Creating Activity Sensor Reports ... 22-7
Creating Fault Sensor Reports... 22-9
Creating Process Time Distribution Reports... 22-10

Summary ... 22-11

Part V Reference Information

A Troubleshooting and Workarounds

Troubleshooting General Issues... A-1
Setting Properties for BPEL Processes to Successfully Complete and Catch Exception
 Errors.. A-1
Developer Prompt on Windows 2000 .. A-2
Correcting Validation Errors in Complex Processes.. A-2
Handling Long-Running Processes.. A-2
Creating an Empty BPEL Process and Importing a Schema... A-3

Troubleshooting Sensors—The Custom Data Publisher... A-3
Data Publisher Is Not Working... A-3
Data Publisher Works, But Business Process Runs Slowly... A-4
Caching Data in the Data Publisher Is Not Supported.. A-4
Unexpected Errors in the Data Publisher .. A-4
Data Extracted to XML Is Difficult to Work With .. A-4

Troubleshooting Oracle BPEL Worklist Application ... A-5
Not Able to Log In to the Worklist Application ... A-5
Information Is Displayed in a Different Language .. A-5
Dates and Times Are Displayed Incorrectly ... A-5
The User Is Not Permitted to Perform an Action ... A-5
Expected Task Is Not Listed Under Task Titles.. A-5

Summary ... A-6

B BPEL Process Activities and Services

Process Activities Overview .. B-1
Tabs Common to Many Activities .. B-2
Assign Activity .. B-3
Compensate Activity .. B-4
Decide Activity .. B-5
Email Activity .. B-6
Empty Activity .. B-8
Fax Activity .. B-9

xix

Flow Activity ... B-11
FlowN Activity .. B-12
Human Task Activity ... B-12
Invoke Activity .. B-14
Java Embedding Activity ... B-16
Pager Activity .. B-17
Pick Activity... B-19
Receive Activity... B-20
Reply Activity .. B-21
Scope Activity .. B-22
Sequence Activity.. B-24
SMS Activity .. B-25
Switch Activity .. B-27
Terminate Activity .. B-27
Throw Activity .. B-28
Transform Activity.. B-29
Voice Activity .. B-30
Wait Activity.. B-31
While Activity.. B-32

Services Overview... B-33
AQ Adapter.. B-34
Database Adapter.. B-34
Decision Service... B-34
EJB Web Service... B-35
File Adapter ... B-35
FTP Adapter... B-35
Java Web Service ... B-35
JMS Adapter... B-35
MQ Adapter ... B-36
Oracle Applications .. B-36
PartnerLink .. B-36

Validation When Loading a Process Diagram ... B-37
Changes Made In Oracle JDeveloper Do Not Update Automatically..................................... B-38

Summary ... B-38

C Deployment Descriptor Properties

Deployment Descriptor Preference Properties.. C-1
Defining a Preference Property... C-1
Updating a Preference at Run Time ... C-3
Getting the Value of a Preference within a BPEL Process... C-3
Encrypting a Preference Value.. C-3

Deployment Descriptor Configuration Properties ... C-4
Defining a Configuration Property .. C-5

Summary ... C-9

xx

D XPath Extension Functions

Advanced Functions ... D-1
create-nodeset-from-delimited-string .. D-2
generate-guid... D-2
lookup-dvm.. D-2
lookup-xml ... D-3

BPEL Extension Functions ... D-4
getLinkStatus ... D-4
getVariableData... D-4
getVariableProperty.. D-5

BPEL XPath Extension Functions ... D-5
addQuotes .. D-5
appendToList ... D-6
copyList .. D-6
countNodes .. D-7
doc ... D-7
formatDate ... D-8
generateGUID.. D-8
getContentAsString... D-8
getConversationId... D-9
getCreator... D-9
getCurrentDate .. D-9
getCurrentDateTime... D-9
getCurrentTime ... D-10
getDomainId .. D-10
getElement.. D-10
getGroupIdsFromGroupAlias... D-11
getInstanceId.. D-11
getNodeValue .. D-11
getNodes... D-11
getPreference.. D-12
getProcessId ... D-12
getProcessOwnerId... D-12
getProcessURL... D-12
getProcessVersion ... D-13
getUserAliasId ... D-13
integer ... D-13
parseEscapedXML... D-13
processXQuery .. D-14
processXSLT... D-14
processXSQL .. D-15
readBinaryFromFile .. D-15
readFile ... D-15
writeBinaryToFile.. D-16

Database Functions ... D-16
lookup-table ... D-16
query-database .. D-17

xxi

sequence-next-val.. D-17
Date Functions ... D-18

add-dayTimeDuration-to-dateTime... D-18
current-date.. D-18
current-dateTime... D-19
current-time.. D-19
day-from-dateTime ... D-19
format-dateTime.. D-20
hours-from-dateTime ... D-20
implicit-timezone .. D-20
minutes-from-dateTime ... D-21
month-from-dateTime .. D-21
seconds-from-dateTime.. D-21
subtract-dayTimeDuration-from-dateTime .. D-21
timezone-from-dateTime ... D-22
year-from-dateTime.. D-22

Mathematical Functions... D-23
abs.. D-23

Identity Service Functions ... D-23
getDefaultRealmName... D-23
getGroupProperty ... D-24
getManager .. D-24
getReportees... D-25
getSupportedRealmNames.. D-25
getUserProperty .. D-25
getUserRoles .. D-26
getUsersInGroup... D-26
isUserInRole... D-27
lookupGroup ... D-27
lookupUser... D-28

Workflow Service Functions ... D-28
clearTaskAssignees ... D-28
createWordMLDocument .. D-29
getNotificationProperty ... D-29
getNumberOfTaskApprovals.. D-30
getPreviousTaskApprover... D-30
getTaskAttachmentByIndex .. D-30
getTaskAttachmentByName.. D-30
getTaskAttachmentContents ... D-31
getTaskAttachmentsCount .. D-31
getTaskResourceBundleString .. D-31
wfDynamicGroupAssign ... D-32
wfDynamicUserAssign .. D-33

String Functions... D-33
compare .. D-34
compare-ignore-case... D-34
create-delimited-string ... D-35

xxii

ends-with.. D-35
format-string .. D-36
get-content-as-string ... D-36
get-localized-string ... D-36
index-within-string ... D-37
last-index-within-string.. D-37
left-trim ... D-38
lower-case... D-38
matches ... D-39
right-trim .. D-39
upper-case .. D-39

Utility Functions .. D-40
authenticate .. D-40
batchProcessActive ... D-40
batchProcessCompleted ... D-40
format.. D-41
genEmptyElem .. D-41
getChildElement.. D-41
getMessage ... D-42
listUsers .. D-42
max-value-among-nodeset .. D-42
min-value-among-nodeset... D-43
search .. D-43
square-root ... D-43
translateFromNative... D-44
translateToNative.. D-44

Adding a Custom XPath Function.. D-45
Summary ... D-48

E Workflow Services Changes Between 10.1.2 and 10.1.3.1

Backwards Compatibility between 10.1.2 and 10.1.3.1... E-1
Changes Between the Workflow Wizard and the Human Task Editor... E-2
Changes to Configuration Files .. E-6
Changes to Worklist APIs .. E-7
Changes to Task Display Form Deployment ... E-8
Changes to the Oracle BPEL Worklist Application .. E-10
Changes to Oracle BPEL Control.. E-10
Migrating Workflow Definitions from 10.1.2 to 10.1.3.1.. E-11

Index

xxiii

Preface

This manual describes how to use Oracle BPEL Process Manager.

This preface contains the following topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
This manual is intended for anyone who is interested in using Oracle BPEL Process
Manager.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xxiv

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following Oracle resources:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Administrator’s Guide

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide

■ Oracle Application Server Adapter Concepts

■ Oracle Application Server Adapter for Oracle Applications User’s Guide

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, visit the Oracle Technology Network (OTN). You must register online before
using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

To download Oracle BPEL Process Manager documentation, technical notes, or other
collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network
(OTN):

http://www.oracle.com/technology/bpel/

If you already have a username and password for OTN, then you can go directly to the
documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

See the Business Process Execution Language for Web Services Specification, available at the
following URL:

http://msdn.microsoft.com/library/default.asp?url=/library/en-us
/dnbizspec/html/bpel1-1.asp

See the XML Path Language (XPath) Specification, available at the following URL:

http://www.w3.org/TR/1999/REC-xpath-19991116

See the Web Services Description Language (WSDL) 1.1 Specification, available at the
following URL:

http://www.w3.org/TR/wsdl

Conventions
The following text conventions are used in this document:

xxv

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xxvi

What’s New in Oracle BPEL Process
Manager?

The new features of Oracle BPEL Process Manager 10g (10.1.3.1.0) include:

■ Redesign of human task workflow, which includes

– A new design-time interface: a re-entrant Human Task editor for declarative
task configuration

– Metadata-driven workflow with minimal BPEL code generated

– A modeling tool for creating and configuring complex patterns

– Built-in dispatching functions: round-robin, least-busy, and most-productive

– Dynamic assignment APIs for writing custom assignment services

– New demos: OrderApproval, HelpDeskRequest, and ExpenseApproval

See Chapter 15, "Oracle BPEL Process Manager Workflow Services" for more
information.

■ New Worklist Application functionality, which includes

– Support for user profiles: end user, supervisor, process owner, group owner,
and administrator

– Support for custom work queues and proxy support

– Four new reports: Unattended Tasks Report, Tasks Priority Report, Tasks
Cycle Time Report, Tasks Productivity Report

– Ability to define custom vacation rules and delegation rules

– Admin pages for managing rules and flex field mappings

– An improved design that supports enhancements to search capabilities,
identity browser, user and group rules, page customization, and more

See Chapter 16, "Worklist Application" for more information.

■ A comprehensive unit testing framework for BPEL, which enables you to

– Automate testing of BPEL processes

– Emulate partners and services and specify your own return data (instead of
actually invoking those services)

– Create assertions to verify that your process works as expected

– Calculate code coverage and highlight code that was not run
xxvii

– Create unit tests from a BPEL audit trail

– Integrate into Ant-JUnit reports

See Chapter 20, "Testing BPEL Processes" for more information.

■ Integration of Oracle BPEL Process Manager with business rules and the decision
service

– Design-time support for business rules engines with a new decision service
activity and wizard

– Design-time integration for Oracle Business Rules and iLog JRules

See Chapter 18, "BPEL Process Integration with Business Rules" for more
information.

■ Integration of Oracle BPEL Process Manager with JAAS and application server
J2EE security

See the following for more information:

– "Logging into Domains" on page 19-9

– "Oracle BPEL Control and Oracle BPEL Admin Console Users and Roles" of
Oracle BPEL Process Manager Administrator’s Guide

■ Adapter improvements, which include

– File/FTP adapter: using an invoke activity, you can read a file synchronously
using the File adapter or get a file using the FTP adapter

– MQSeries adapter: a new adapter that exposes the JMS functionality provided
by IBM WebSphere MQ and native WebSphere MQ functionality

See the following for more information:

– Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging User’s Guide
for more information on all the adapters.

– The online help in the Adapter Configuration Wizard

■ Oracle JDeveloper enhancements, which enable you to

– Create a custom template from an existing BPEL process

– Generate WSDLs with Java and EJB WSIF bindings automatically

– Import a schema during project creation

– Bookmark specific activities in a BPEL process to locate them quickly

– Search for and jump to a specific activity in a BPEL process, show and hide
types of activities, and zoom in on containers (helpful for large, complex
processes)

– Optimize a BPEL diagram layout

See the online help in Oracle JDeveloper for more information.

■ bpelx extensions for XML data manipulation

See "Manipulating XML Data with bpelx Extensions" on page 3-10 and the online
help in Oracle JDeveloper for more information.

■ Improved clustering support: You can deploy to one node in a cluster with
automatic deployment to all other nodes, because deployment suitcases are now
stored in the dehydration store.
xxviii

See Oracle BPEL Process Manager Installation Guide for more information.

■ Support for standard ant.

■ Deployment to multiple environments with different configuration values using
the customize ant task

The customize ant task enables you to specify the property values for
development and production environments in a single build file location. The
customize task captures the changes between different versions of bpel.xml
using the build file.

See "Deploying to Multiple Environments with Different Configuration Values" on
page 19-5 for more information.
xxix

xxx

Part I
 Introduction and Concepts

This part introduces Oracle BPEL Process Manager.

This part contains the following chapters:

■ Chapter 1, "Introduction to Oracle BPEL Process Manager"

■ Chapter 2, "Getting Started with Oracle BPEL Process Manager"

Introduction to Oracle BPEL Process Manager 1-1

1
Introduction to

Oracle BPEL Process Manager

This chapter provides a brief introduction to the Business Process Execution Language
(BPEL), Oracle BPEL Process Manager, and Oracle JDeveloper, which enables you to
design BPEL processes. An overview of how to use the information in this guide and
references to additional tutorials and demonstrations installed with Oracle BPEL
Process Manager are also provided.

This chapter contains the following topics:

■ What Is BPEL?

■ What Is Oracle BPEL Process Manager?

■ What Is Oracle JDeveloper?

■ How to Use This Guide

■ Getting Started with Demonstrations, Activity and Conceptual References, and
Tutorials

■ Summary

What Is BPEL?
BPEL is an XML-based language for enabling task sharing across multiple enterprises
using a combination of Web services. BPEL is based on the XML schema, simple object
access protocol (SOAP), and Web services description language (WSDL). BPEL
provides enterprises with an industry standard for business process orchestration and
execution. Using BPEL, you design a business process that integrates a series of
discrete services into an end-to-end process flow. This integration reduces process cost
and complexity. The BPEL language enables you to define how to:

■ Send XML messages to, and asynchronously receive XML messages from, remote
services

■ Manipulate XML data structures

■ Manage events and exceptions

Note: Oracle recommends that you perform the tutorials described
in Oracle BPEL Process Manager Quick Start Guide and Oracle BPEL
Process Manager Order Booking Tutorial before using this guide. These
tutorials provide you with an introduction to designing and deploying
BPEL processes.

What Is Oracle BPEL Process Manager?

1-2 Oracle BPEL Process Manager Developer’s Guide

■ Design parallel flows of process execution

■ Undo portions of processes when exceptions occur

What Is Oracle BPEL Process Manager?
Oracle BPEL Process Manager provides a framework for easily designing, deploying,
monitoring, and administering processes based on BPEL standards. Oracle BPEL
Process Manager provides support for the following features:

■ Web service standards such as XML, SOAP, and WSDL

■ Dehydration (enables the states of long-running processes to be automatically
maintained in a database) and correlation of asynchronous messages

■ Service-oriented architecture (SOA)

■ Parallel processing of tasks

■ Fault handling and exception management during both design time and run time

■ Event timeouts and notifications

■ Compensation mechanisms for the implementation of long-running transactions

■ Scalability and reliability of processes

■ Management and administration of processes

■ Version control

■ Audit trails for tracing business flow history

■ Installation on multiple operating systems and integration with multiple
application servers (for example, Oracle Application Server, BEA WebLogic, and
JBoss) and databases.

Oracle BPEL Process Manager adds value and ease of use to BPEL functionality by
providing support for the following in Oracle JDeveloper:

■ Transformations, workflows, worklists, notifications, sensors, and business rules

■ Technology adapters (file, FTP, database, advanced queuing (AQ), Java Messaging
Service (JMS), IBM WebSphere MQ, and Oracle Applications for Oracle E-Business
Suite)

■ Third-party adapters, including J.D. Edwards OneWorld, PeopleSoft, SAP R/3,
Siebel, Tuxedo, CICS, VSAM, IMS/TM, and IMS/DB

Oracle BPEL Process Manager can also be integrated with Oracle Business Activity
Monitoring, Oracle Application Server Portal, Oracle Application Server Integration
B2B, and Oracle Application Server Integration InterConnect.

See Also:

■ http://www.oracle.com/technology/bpel for specific
BPEL details, including links to BPEL specifications, white papers,
product demonstrations, and discussion groups

■ Chapter 3, "Manipulating XML Data in BPEL" through
Chapter 12, "Interaction Patterns" for a review of key BPEL
development concepts and code samples

What Is Oracle JDeveloper?

Introduction to Oracle BPEL Process Manager 1-3

What Is Oracle JDeveloper?
Oracle BPEL Process Manager provides support for using Oracle JDeveloper to
graphically design BPEL processes.

Oracle JDeveloper is an integrated development environment (IDE) for building
applications and Web services using Java, XML, and SQL standards. Oracle JDeveloper
supports the entire development life cycle with integrated features for designing,
coding, debugging, testing, profiling, tuning, and deploying applications. A visual and
declarative development approach and the Oracle Application Development
Framework (ADF) work together to simplify application development and reduce
coding tasks.

Oracle JDeveloper uses BPEL as its native format. This means that processes built with
Oracle JDeveloper are 100% portable. Oracle JDeveloper also enables you to view and
modify the BPEL source without decreasing the usefulness of the tool.

You design BPEL processes by dragging and dropping elements (known as activities)
into the process and editing their property pages. This eliminates the need to write
BPEL code. You integrate BPEL processes with external services (known as partner
links). You also integrate adapters and services such as workflows, transformations,
notifications, sensors, worklist task management, and business rules with the process.
Oracle JDeveloper can deploy the developed processes directly to Oracle BPEL Server.
This facilitates the development and maintenance of BPEL processes.

See Also:

■ "Sensor Integration with Oracle Business Activity Monitoring" on
page 17-13 for details about integrating Oracle BPEL Process
Manager with Oracle Business Activity Monitoring

■ Chapter 21, "Oracle BPEL Portlets" for details about integrating
Oracle BPEL Process Manager with OracleAS Portal

■ Oracle Application Server Integration B2B User’s Guide and the
readme file in the B2B_Oracle_Home\ip\install directory
for details about integrating Oracle BPEL Process Manager with
Oracle Application Server Integration B2B

■ Oracle Application Server Integration InterConnect User’s Guide for
details about integrating Oracle BPEL Process Manager with
Oracle Application Server Integration InterConnect

■ Oracle BPEL Process Manager Quick Start Guide for additional
Oracle BPEL Process Manager introductory details

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide for details about supported technology adapters

■ Oracle Application Server Adapter for Oracle Applications User’s Guide

■ Oracle Application Server Adapter Concepts

■ Oracle BPEL Process Manager Installation Guide for a list of
supported operation systems

■ The following URL for additional details about Oracle BPEL
Process Manager support for third-party adapters:

http://www.oracle.com/technology/products/integration/
adapters/index.html

How to Use This Guide

1-4 Oracle BPEL Process Manager Developer’s Guide

Oracle BPEL Process Manager provides support for the following services and
adapters in Oracle JDeveloper:

■ Transformations, workflows, worklists, notifications, sensors, and business rules

■ Technology adapters (file, FTP, database, AQ, JMS, MQ, and Oracle Applications)

Figure 1–1 shows Oracle JDeveloper with a BPEL process being designed.

Figure 1–1 Oracle JDeveloper

How to Use This Guide
This guide is divided into several parts designed to first familiarize you with key
BPEL development concepts and features and then describe how Oracle BPEL Process
Manager adds value and ease of use to BPEL functionality. This guide layout is
described in Table 1–1.

See Also:

■ "Overview of BPEL Project Creation and Oracle JDeveloper" on
page 2-3 for a description of the sections of Oracle JDeveloper
shown in Figure 1–1

■ Oracle BPEL Process Manager Quick Start Guide and Oracle BPEL
Process Manager Order Booking Tutorial for tutorials that use Oracle
JDeveloper

■ Online Help available from the Help main menu for additional
details about Oracle JDeveloper

How to Use This Guide

Introduction to Oracle BPEL Process Manager 1-5

Table 1–1 Developer’s Guide Contents

Part Description

Part I, "Introduction and
Concepts"

Chapters in this part provide an overview of the following
topics:

■ BPEL specifications, Oracle BPEL Process Manager, and
Oracle JDeveloper

■ Demonstrations, tutorials, and activity and conceptual
references provided with Oracle BPEL Process Manager

■ Starting and stopping key Oracle BPEL Process Manager
components

■ An introduction to Oracle JDeveloper, including an
overview of designer window sections, and a description of
project files and the drag-and-drop activity functionality
you follow to design and deploy a BPEL process

■ Oracle BPEL Control for running deployed BPEL processes

Part II, "Reviewing Key
BPEL Development
Concepts and Code
Samples"

Chapters in this part introduce you to key BPEL development
concepts and associated code samples. These chapters are useful
for any developer interested in understanding the underlying
functionality of BPEL. Specific topics discussed include the
following:

■ XML document manipulation

■ Synchronous and asynchronous services invocation

■ Parallel flows

■ Conditioning branching

■ Fault handling and exception management

■ Java/J2EE code integration in BPEL processes

■ Events and timeouts

■ BPEL process invocation

■ Interaction patterns

Part III, "Oracle BPEL
Process Manager Services"

Once you have gained a solid knowledge of the key BPEL
development concepts described in Part II, you are ready to
learn how Oracle BPEL Process Manager adds value and ease of
use to BPEL functionality to provide support for the following
services:

■ Transformations

■ Notifications

■ Workflows

■ Worklists

■ Sensors

■ Business rules

Part IV, "Development and
Deployment Life Cycle"

Chapters in this part describe how to run and manage deployed
BPEL processes from Oracle BPEL Control, how to test BPEL
processes in a preproduction environment, how to create run
time reports, and how to integrate with OracleAS Portal.

Part V, "Reference
Information"

Appendices in this part provide reference details about
troubleshooting, supported activities, deployment descriptor
properties, and XPath expression functions.

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

1-6 Oracle BPEL Process Manager Developer’s Guide

Getting Started with Demonstrations, Activity and Conceptual
References, and Tutorials

In addition to the contents of this guide, the Oracle BPEL Process Manager Quick Start
Guide, and the Oracle BPEL Process Manager Order Booking Tutorial, a series of
demonstrations, activity and conceptual reference materials, and tutorials are also
provided to increase conceptual knowledge and hands-on experience with Oracle
BPEL Process Manager. These materials are installed with Oracle BPEL Process
Manager in the SOA_Oracle_Home\bpel\samples directory. Review the
README.txt file in the samples directory for instructions on using these samples.

Table 1–2 describes the contents of the samples directory. If you are using Oracle
JDeveloper, you can also access details about this directory from the Start Menu by
selecting Start > All Programs > Oracle - Oracle_Home > Oracle BPEL Process
Manager > Getting Started with Samples.

You can automatically create the BPEL project for a sample by performing the
following steps:

1. Select an application in the Application Navigator.

2. Select Open from the File main menu in Oracle JDeveloper.

3. Go to the directory of the sample you want to use.

4. Select the .jpr file of the sample.

This causes the BPEL project for the selected sample to display in the Application
Navigator.

New samples are periodically added. Visit the Oracle BPEL Process Manager site on
the Oracle Technology Network (OTN) periodically for information about
downloading any new samples:

http://www.oracle.com/technology/products/ias/bpel/index.html

See Also:

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide for specific details about configuring the file, FTP,
database, AQ, MQ, and JMS adapters in a BPEL process

■ Oracle Application Server Adapter for Oracle Applications User’s Guide
for information on using the Oracle Applications adapter

■ Oracle Application Server Adapter Concepts

Note: The samples by default use a password of welcome1 for the
oc4jadmin user. If you are using a different password for this user,
you must follow the instructions in the README.txt file in the
samples directory to make your password compatible with the
samples.

Table 1–2 Tutorials, Demonstrations, and Reference Materials

Directory Description

demos Contains a set of common business scenarios and describes how they are
implemented with BPEL. Table 1–3 on page 1-7 provides descriptions of the
available demonstrations.

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

Introduction to Oracle BPEL Process Manager 1-7

What Demonstrations Are Available?
Table 1–3 describes the BPEL process demonstrations available for use in the demos
directory. See the documentation available in these directories for instructions on
running these demonstrations.

interop Contains a set of BPEL projects showing the interoperability of Oracle BPEL
Process Manager with Web services implemented with the following:

■ Microsoft .Net

■ Apache Axis

■ BEA WebLogic

references Contains activities and concepts defined in the BPEL language. Table 1–4 on
page 1-9 provides descriptions of the available activities and concepts.

tutorials Contains a set of BPEL processes targeting the various BPEL tasks to which
you are exposed. Table 1–5 on page 1-10 provides descriptions of the
available tutorials.

utils Contains a set of building block services shared by the BPEL samples

Table 1–3 demos Directory Contents

Directory Description

AmazonFlow Describes how to integrate an Amazon Web service with a BPEL
process to search for an item.

Attachment Describes how to use binary file attachments in SOAP messages
with the Direct Internet Message Encapsulation (DIME) and
Multipurpose Internet Message Extensions (MIME) protocols.

AutoLoanDemo Describes how to integrate Oracle BPEL Process Manager with a
backend business rules engine. A BPEL process is modeled that
uses the decision service to perform the following:

■ Calculate a credit rating for a customer loan request

■ Provide a recommendation on the bank and APR for the
requested loan

The output of the decision service is passed to a human task for
modification before the loan request is approved or rejected.

BankTransferDemo Describes how to perform a bank transfer. This sample illustrates
the ability of Oracle BPEL Process Manager transaction
management. The sample shows two types of transaction
management:

■ Internal engine-implemented JTA transaction management

■ Explicit compensating transactions modeled in BPEL

BPELTest Describes several of the BPEL test framework features. The test
framework provides a structured way to test BPEL processes and
alleviates common problems like dependencies on complex external
systems and performing data assertions.

CheckoutDemo Describes an interaction between a Java Server Page (JSP) user
interface and a BPEL process

Table 1–2 (Cont.) Tutorials, Demonstrations, and Reference Materials

Directory Description

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

1-8 Oracle BPEL Process Manager Developer’s Guide

DocumentReview Describes how to create a business process for reviewing a
document in parallel. A final reviewer reviews comments from each
of the group reviewers. A worklist application views and acts on
the tasks. This example highlights the use of the following features:

■ Modeling a group vote participant type in the Oracle
JDeveloper environment

■ Using Oracle BPEL Worklist Application to view and act on
tasks

ExpenseRequestAppr
oval

Describes how to approve or reject an expense request from an
employee. This demonstrates management chain approval and use
of the decision service to determine the levels of approval required
for a particular expense request.

GoogleFlow Describes how to invoke a Google Web service from a BPEL process

HelpDeskServiceReq
uest

Describes how to process a help desk service request. The
demonstration uses an ad hoc participant type for accepting or
rejecting a service request.

HotwireDemo This sample illustrates the asynchronous multistep conversation
between two BPEL processes. One BPEL process initiates the
conversation and sends the message to the other BPEL process. The
second process waits for 30 seconds and responds asynchronously.
Then the first process waits for 30 seconds and calls the second
process again. The second process responds again after 30 seconds.

IBMSamples Describes how to execute the BPEL samples shipping with the IBM
Business Process Execution Language for Web Services Java Run
Time (BPWS4J) on Oracle BPEL Server

LoanDemo Describes how to integrate a synchronous credit rating service and
two asynchronous loan processor services into an end-to-end loan
procurement application with a Java Server Page (JSP) user
interface to initiate the process and view loan offer results

LoanDemoPlus Describes how to extend the LoanDemo sample to use Java
embedding exception management, including manual processing
steps and development of a richer custom user interface

ParallelSearch Describes how to use Oracle BPEL Server to perform parallel
synchronous invocations. This sample illustrates how to use the
nonBlockingInvoke property in bpel.xml. This property
enables you to execute a synchronous BPEL process calling multiple
synchronous Web services in flow in real parallel mode. If you set
the nonBlockingInvoke property to false, Oracle BPEL Server
blocks the Web service call until the other is finished.

ResilientDemo Describes how to use a BPEL process to manage fault handling and
run time exceptions

SalesforceFlow Describes how to integrate the Salesforce.com sForce Web services
into a BPEL process (including authentication, session management,
and dynamic load balancing)

SleepBroker Describes how to use a process that receives a number, creates that
number of branches using the flowN activity, and waits for a period
of time based on the index variable setting

This process receives an integer as input. It creates that number of
branches using bpelx:flowN. In each branch, a wait activity is
executed. The wait time is based on the index variable.

Table 1–3 (Cont.) demos Directory Contents

Directory Description

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

Introduction to Oracle BPEL Process Manager 1-9

What Activity and Conceptual References Are Available?
Table 1–4 describes the activity and conceptual references available for review and use
in the references directory. The comment lines in each bpel.xml file and .bpel
file describe the specific context in which the activity is being used.

VacationRequest Describes how to approve or reject a vacation request. The approval
or rejection is a one-step process involving the manager of the user
filing the vacation request. This demonstration also describes the
use of workflow for simple approvals, and the use of a deployment
descriptor preference to replace a static parameter value in the
BPEL process.

XSLMapper Describes how to create a transformation that maps a purchase
order schema to an invoice schema

Table 1–4 references Directory Contents

Directory Activity Description

Assign Shows how to receive an input string, prefix Hello to it using an
assign activity, and asynchronously return the result

BPELTest Illustrates the features of the BPEL test framework. The BPEL test
framework provides emulation and assertion capabilities and eases
the automation of testing BPEL processes.

Catch Shows how an exception can be raised using the throw activity and
managed using a catch activity

CustomXPathFunctio
n

Shows how to use custom XPath functions within assign activities

DynamicPartnerLink Shows how to update dynamic partner links

Event Shows how to enable an asynchronous BPEL process and use event
handlers to receive and process events while waiting for the
asynchronous callback

Flow Shows how to create parallel paths of execution within a BPEL
process

FlowN Shows how to receive an integer and create that number of
branches

Invoke Shows how to invoke a synchronous integer increment service

JavaExec Shows how to use the BPEL exec extension to invoke a Java class
from within a BPEL process

Link Shows how a link defines dependencies between executions of
activities. In this sample, a link in a flow activity sequences the
execution of two service invocations.

Pick Shows how to invoke an asynchronous loan service and use a BPEL
pick activity to receive an asynchronous response or a timeout
message. If the loan amount is more than 10000, it takes about 30
seconds for the server to process it, causing a timeout to be raised.

Receive Shows how to invoke an asynchronous loan service and wait for an
asynchronous callback message using the BPEL receive activity

Replay Shows how to replay an activity, such as a scope

Reply Shows how to receive a string as input, perform an assign, and use
the reply activity to synchronously return the modified string

Table 1–3 (Cont.) demos Directory Contents

Directory Description

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

1-10 Oracle BPEL Process Manager Developer’s Guide

What Tutorials Are Available?
Table 1–5 describes the tutorials available for use in the tutorials directory. See the
documentation available in these directories for instructions on running these
tutorials.

Switch Shows how to use a switch activity to return a different text
message based on whether the input value is greater or less than
zero

Terminate Shows how to invoke a synchronous stock quoting service. The
terminate activity then aborts, causing the final callback invoke
activity to be skipped.

Throw Shows how to throw a BPEL fault (without handling it) and cause
the instance to fault

Wait Shows how to receive input, wait for 60 seconds, and
asynchronously call back a client

While Shows how to invoke an incremental service n times with a while
activity, where n is provided as an input value

Xpath Shows how to receive an invalid application, perform several XPath
copies, and asynchronously return the application. This showcases
the use of namespace-qualified XPath query strings in assign
activities.

XPathFunction Shows how to define and use custom XPath functions within BPEL
assign activities

See Also:

■ Chapter 3, "Manipulating XML Data in BPEL" through
Chapter 12, "Interaction Patterns" for activity development
concepts and code samples

■ Appendix B, "BPEL Process Activities and Services" for specific
details about activities that you drag and drop in Oracle
JDeveloper

Table 1–5 tutorials Directory Contents

Directory Description

101.HelloWorld This sample takes a string as input, appends Hello to it, and
asynchronously generates a greeting as a response.

102.InvokingProce
sses

This sample invokes a variety of processes, including JSPs and
remote method invocations (RMIs).

103.XMLDocuments This sample shows how to use XML variables and the assign activity
to manipulate XML documents.

104.SyncQuoteCons
umer

This sample shows how to use the invoke activity to invoke a
synchronous stock quote service.

105.AsyncComposit
eLoanBroker

This sample shows how to use the receive activity to receive a
callback from an asynchronous loan processor Web service.

106.ParallelFlows This sample shows how to use the flow activity to define parallel
paths of execution within a process. In this sample, two asynchronous
loan processing services are invoked in parallel.

Table 1–4 (Cont.) references Directory Contents

Directory Activity Description

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

Introduction to Oracle BPEL Process Manager 1-11

107.Exceptions This sample shows how to use fault handling to manage faults
generated by invoke and throw activities. The process uses a pick
activity to receive the response from a loan validator. If an exception
message is received, it throws an error that is handled in a catch fault
handler.

108.Timeouts This sample shows how to define and manage timeouts using the
pick activity.

109.CorrelationSe
ts

This sample shows how to use correlation sets to correlate
asynchronous message exchanges between buyer and seller services.
It shows content-based correlation of asynchronous messages.

112.Arrays This sample shows how to design a BPEL process that uses arrays.
This sample illustrates how you can handle array structures present
in your XML payload by using the while activity in the BPEL process.

113.ABCARouting This sample shows how to coordinate the flow of messages across
three services: A, B, and C.

114.XSLTTransform
ations

This sample shows how to invoke XSLT transformations to perform
complex data manipulations. The process takes in complex invoice
data as input. It uses the ora:processXSLT function to pass this
data as input to be the XSLT service and returns the transformed
content.

115.XQueryTransfo
rmations

This sample shows the use of XQuery functions in Oracle BPEL
Process Manager. This sample requires XQuery libraries available
only in the Oracle BPEL Process Manager for OracleAS Middle Tier
installation type or one of the Oracle Application Server SOA
installation types. This sample cannot be used with the Oracle BPEL
Process Manager for Developers installation type.

121.FileAdapter These samples show how to use the file adapter. The following
tutorials are provided:

■ COBOL Copybook — Processes native data defined using a
COBOL copybook

■ Complex structures — Processes native data defined in a custom
format

■ Debatching — Processes native data containing multiple
messages defined in a custom format

■ Flat structure — Processes address book entries from a CSV
(Comma Separated Values) file. This is then transformed to a
new address format (fixed-length format).

■ Opaque with headers — Handles native data in an opaque
format (for example, GIF or JPEG files)

See Also: Oracle Adapters for Files, FTP, Databases, and Enterprise
Messaging User’s Guide

Table 1–5 (Cont.) tutorials Directory Contents

Directory Description

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

1-12 Oracle BPEL Process Manager Developer’s Guide

122.DBAdapter The following samples show how to use the database adapter:

■ advanced—Advanced samples that insert and extract XML data
stored in a database as a CLOB, set up sequencing, and insert
into multiple databases as part of a single transaction

■ Delete — A record is passed to the operation and the database
row with the primary key is deleted.

■ File2StoredProcedure—Data is provided to a stored procedure,
which is then executed.

■ File2Table —The file adapter, XSLT Mapper, and database
adapter take an inbound purchase order, transform it to another
order format, and produce an outbound message.

■ Insert — A record is passed to the operation and inserted into the
database as relational data.

■ InsertWithCatch—Adds fault handling to an insert operation

■ MasterDetail—Replicates data in the table of one database to the
tables of another database

■ Merge —A record is passed to the operation and a database row
is either inserted or updated.

■ PollingControlTableStrategy—An inbound operation polls XML
instances. A control table stores the primary key of every row
that has yet to be processed.

■ PollingLastReadIdStrategy—An inbound operation polls XML
instances. A helper table remembers a sequence value. A
sequence value of 1000 means that every record with a sequence
less than that value has already been processed.

■ PollingLastUpdatedStrategy—An inbound operation polls XML
instances. A helper table remembers the last-updated value.

■ PollingLogicalDeleteStrategy—An inbound operation polls XML
instances. A special field is updated on each row processed. The
WHERE clause is updated at run time to filter out processed rows.

■ QueryByExample—An outbound query by example operation

■ RefCursor—A BPEL process takes user input and executes a
stored procedure. Output from a REF CURSOR is returned.

■ ResultSetConverter—An alternative using REF CURSOR

■ SelectAll—An outbound Select All operation

■ SelectAllByTitle—An outbound SelectAllByTitle operation

■ SelectCount—Pure SQL support in 10.1.3.1

■ SelectGroupBy—Pure SQL support in 10.1.3.1

■ SelectStar—Pure SQL support in 10.1.3.1

■ sql—SQL*Server example

■ Update—A record is passed to the operation and the database
row with the same primary key is updated

■ UpdateAll—Pure SQL support in 10.1.3.1

See Also: Oracle Adapters for Files, FTP, Databases, and Enterprise
Messaging User’s Guide

Table 1–5 (Cont.) tutorials Directory Contents

Directory Description

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

Introduction to Oracle BPEL Process Manager 1-13

123.JMSAdapter This samples shows the ability of the JMS Adapter to process
incoming messages in a JMS destination (a queue) and write the same
message to another JMS destination (a topic).

See Also: Oracle Adapters for Files, FTP, Databases, and Enterprise
Messaging User’s Guide

124.AQAdapter These samples show how to use the AQ adapter:

■ ADT — A message is received from the AQ adapter, the payload
copied to an outbound message, and the AQ adapter invoked
with the outbound message. ADT queues are used.

■ ADT_with_CLOB_Payload — A message is received from the
AQ adapter, the CLOB payload and payload header copied to an
outbound message, and the AQ adapter invoked with the
outbound message.

■ ADT_with_CLOB_Payload_as_Opaque — A process uses a
non-XML CLOB field as a payload field.

■ ADT_with_XMLType_Payload—A process receives a message
from the AQ adapter, copies the payload and PayloadHeader to
an outbound message, and invokes the AQ adapter with the
outbound message.

■ AQ_10_1_3_Supported_ADT_Types— Uses SQL Oracle
primitive and ANSI types supported by the AQ adapter ADT

■ AQMessageRejectionHandler — Rejected messages are handled
through the rejectedMessageHandler property.

■ AQOutboundCorrelation — Correlations are used to correlate an
outbound invoke activity with an inbound receive activity.

■ AQSupportedADTTypes — All SQL primitive types supported
by the AQ adapter ADT are used.

■ File2AQBLOB2File — Reads GIF files from a directory every 10
seconds with the file adapter and enqueues the whole file into a
BLOB column field of an ADT queue using the AQ adapter

■ MulticonsumerInbound — The AQ adapter listens on the
INBOUND_PUBLISHER queue for message recipients named
blue. Any message the adapter retrieves starts a BPEL instance.
The message is sent to the INBOUND_CONSUMED queue. The
queues involved are RAW queues.

■ MulticonsumerOutbound — Sets the AQ recipient in a
multiconsumer queue. The recipient list is set in the
InteractionSpec parameter or the AQ header
recipientlist parameter.

■ Raw — A message is received from the AQ adapter, the payload
copied to an outbound message, and the AQ adapter invoked
with the outbound message. RAW queues are used.

■ RawQueuePayloadUsingNativeFormat — The AQ Adapter and
Native Format Builder wizard are used together. The native
format used is comma-separated value (CSV).

■ RuleBasedSubscription_Header — A rule-based subscriber is
created. The subscriber gets messages and passes them on.

■ RuleBasedSubscription_Payload — A rule-based subscriber
subscribes to a magazine with a specific title. The message
selector rule is used.

■ Simple_XMLType_Payload— Simple XMLType payload use

See Also: Oracle Adapters for Files, FTP, Databases, and Enterprise
Messaging User’s Guide

Table 1–5 (Cont.) tutorials Directory Contents

Directory Description

Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials

1-14 Oracle BPEL Process Manager Developer’s Guide

125.ReportsSchema This sample shows how to build custom reports using the BPEL
Process Manager reports schema.

126.DataAggregato
r

This sample shows how to take a single XML document, divide it
into several smaller documents, perform tasks on each smaller
document, reassemble the smaller documents into a single XML
document, and return the single document to the invoker.

127.OrderBookingT
utorial

This sample shows how to design and execute a sophisticated process
that uses synchronous and asynchronous services, parallel flows of
execution, conditional branching logic, fault handling and exceptions
management, transformations, file adapter and database adapter
functionality, and human workflow, notification, and sensor
functionality.

128.GoogleFlow This sample shows a process that uses an external Web service to
present information to the client. Processes designed with sensors are
also used.

129.FTPAdapter These samples show how to use the file adapter:

■ FTPDebatching—This sample shows how to use the FTP adapter
to process a file containing a batch of business records (invoices
and purchase orders) and transform and write the records to
separate output files.

■ SynchronousRead—This sample shows a midprocess
synchronous read operation through an invoke activity.

See Also: Oracle Adapters for Files, FTP, Databases, and Enterprise
Messaging User’s Guide

130.SendEmailWith
Attachments

This sample shows how to send an e-mail with attachments through
Oracle JDeveloper.

132.UserTasks This process demonstrate a simple user task. The process has a quote
to buy and sell a particular stock and the approver has to select
whether to buy or sell the stock.

133.SecureInvokin
gProcesses

This sample illustrates how to securely invoke a BPEL Process. The
following types of clients are covered in this sample:

■ Invoking from JSP

■ Invoking from HTTP directly

■ Invoking over SOAP

■ Invoking from Java RMI client

140.AdapterFramew
ork

This sample shows how to use dynamic JCA partner links in BPEL

150.AppsAdapter These samples show how to use the Oracle Applications adapter:

■ ChangeOrderAPI—Changes a purchase order in Oracle
E-Business Suite

■ GetPOAckBusinessEvent—Demonstrates outbound business
events

■ OrderImportConcurrentProgram— Imports and creates a
purchase order in Oracle E-Business Suite

■ POAckOutboundXMLGateway—Integrates with Oracle XML
gateway to retrieve a purchase order acknowledgement

■ POInboundXMLGateway—Integrates with Oracle XML gateway
to create a purchase order in Oracle E-Business Suite

701.LargeProcesse
s

This sample shows how support is provided for processes with a
large number of work items (10,000 or more).

Table 1–5 (Cont.) tutorials Directory Contents

Directory Description

Summary

Introduction to Oracle BPEL Process Manager 1-15

Summary
This chapter introduces BPEL, how Oracle BPEL Process Manager supports BPEL, and
how Oracle JDeveloper enables you to design BPEL processes. An overview of how to
use this guide and references to additional tutorials, demonstrations, and other helpful
materials installed with Oracle BPEL Process Manager are also provided.

702.Bindings This sample shows how to:

■ Integrate Enterprise Java Beans (EJB) in a BPEL process

■ Call the HTTP get method from a BPEL process. This tutorial
enables you to call representational state transfer (REST) services
from Oracle BPEL Process Manager.

■ Call a Java method from a BPEL process

See Also: The following guides for additional tutorials you can run:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

Table 1–5 (Cont.) tutorials Directory Contents

Directory Description

Summary

1-16 Oracle BPEL Process Manager Developer’s Guide

Getting Started with Oracle BPEL Process Manager 2-1

2
Getting Started with

Oracle BPEL Process Manager

This chapter describes how to start key Oracle BPEL Process Manager components,
including Oracle JDeveloper, Oracle BPEL Server, and Oracle BPEL Control. An
overview of the main sections of Oracle JDeveloper that you use to design BPEL
processes is also provided. Key BPEL design components such as activities and
partner links and the services and adapters that Oracle BPEL Process Manager
provides to add value and ease of use to standard BPEL functionality are also
described.

This chapter contains the following topics:

■ Overview of Oracle BPEL Process Manager Components

■ Starting Oracle BPEL Process Manager Components

■ Overview of the BPEL Designer Environment

■ Overview of Activities

■ Overview of Partner Links

■ Overview of Oracle BPEL Server

■ Overview of Oracle BPEL Control

■ Overview of Oracle BPEL Process Manager Services

■ Overview of Oracle BPEL Process Manager Technology Adapters

■ Summary

Overview of Oracle BPEL Process Manager Components
The Oracle BPEL Process Manager consists of the three components shown in
Figure 2–1.

Figure 2–1 Oracle BPEL Process Manager Components

Each component enables you to perform a specific set of tasks:

Design Deployment Management

Oracle
BPEL

Control

Oracle
JDeveloper

BPEL
Server

Starting Oracle BPEL Process Manager Components

2-2 Oracle BPEL Process Manager Developer’s Guide

■ The design environment (Oracle JDeveloper) enables you to design and deploy
BPEL processes. You design BPEL processes by dragging and dropping elements
(known as activities) into the process and editing their property pages. You
integrate BPEL processes with external services that you also design and edit
(known as partner links). You also integrate technology adapters and services such
as workflows, worklists, transformations, notifications, sensors, and business rules
with the process.

■ When design is complete, you deploy the process from the design environment to
Oracle BPEL Server.

■ If deployment is successful, you can run and manage the BPEL process from
Oracle BPEL Control.

This chapter provides an overview of getting started with these components.

Starting Oracle BPEL Process Manager Components
Follow the instructions in Table 2–1 to start and stop Oracle BPEL Process Manager
components.

Table 2–1 Starting and Stopping Oracle BPEL Process Manager Components

To Access The... On Windows... On UNIX...

Oracle BPEL Server Select Start > All Programs > Oracle -
Oracle_Home > Start SOA suite

To start Oracle BPEL Server:

From $ORACLE_HOME/bpel/bin:

startorabpel.sh

To stop Oracle BPEL Server:

From $ORACLE_HOME/bpel/bin:

shutdownorabpel.sh

Oracle JDeveloper Click JDev_Oracle_
Home\JDev\bin\jdev.exe or create a
shortcut

$ORACLE_HOME/jdev/bin/jdev

Oracle BPEL
Control

You must first start Oracle BPEL Server.

To start Oracle BPEL Control:

1. Select Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process
Manager > BPEL Control

You can also start Oracle BPEL Control using
the URL for your installation, which can
found in SOA_Oracle_
Home\install\bpelsetupinfo.txt.

First start Oracle BPEL Server.

To start Oracle BPEL Control:

■ Log on to the URL for your installation,
which can found in
bpelsetupinfo.txt.

Overview of the BPEL Designer Environment

Getting Started with Oracle BPEL Process Manager 2-3

Overview of the BPEL Designer Environment
This section provides an overview of the Oracle JDeveloper environment.

Overview of BPEL Project Creation and Oracle JDeveloper
This section provides an overview of Oracle JDeveloper. In this overview, you first
create an application and a project. An application is a container in which to place
projects. A project contains the BPEL process.

1. Create an application by selecting New > Application from the File main menu
and providing the required details in the Create Application window (including
not selecting any application template).

2. Ensure that the directory path of an application does not include any blank spaces.
For example, the following is not permitted:

C:\Program Files\projects\myapplication\Loanflow

3. Click Cancel on the Create Project window.

4. Right-click the newly created application and select New Project.

5. Double-click BPEL Process Project and provide the required details (including
BPEL process name) in the BPEL Project Creation Wizard windows. A single

Developer Prompt Select Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process
Manager > Developer Prompt to open up a
command prompt at the SOA_Oracle_
Home\bpel\samples directory. This
enables you to easily access demonstrations
and start any required Web services.

Set the Developer Prompt (for example, in the
Bourne shell):

$ ORACLE_
HOME=/home/oracle/installs/midtier

$ export ORACLE_HOME

$ PATH=$ORACLE_HOME/bpel/bin:$PATH

$ export PATH

Oracle BPEL
Process Manager
Samples and
Tutorials

For details about BPEL samples and
additional tutorials available for use:

Select Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process
Manager > Getting Started with Samples

Log into the following URL:

$ORACLE_
HOME/bpel/samples/sampleshome.html

Sample Worklist
Application

To access the login window for Oracle BPEL
Worklist Application:

Select Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process
Manager > Sample Worklist Application

You may also start Oracle BPEL Worklist
Application using the URL for your
installation, which is found in SOA_
Oracle_
Home\install\bpelsetupinfo.txt.

First start Oracle BPEL Server.

To start Oracle BPEL Worklist Application:

■ Log on to the URL for your installation,
which is found in bpelsetupinfo.txt.

Note: Always use the Developer Prompt to open an operating
system command prompt when deploying services with ant or
obant. This sets all required paths. Opening an operating system
command prompt in any other way is not supported.

Table 2–1 (Cont.) Starting and Stopping Oracle BPEL Process Manager Components

To Access The... On Windows... On UNIX...

Overview of the BPEL Designer Environment

2-4 Oracle BPEL Process Manager Developer’s Guide

project can contain only one BPEL process. Always use completely unique names
when creating BPEL projects. Do not create:

■ A project name that begins with a number

■ A project name that includes a dash (for example, Loan-Flow)

■ Two projects with the same name, but with different capitalization

After you create the application and project, Oracle JDeveloper displays the sections
shown in Figure 2–2. You can also access this view by selecting View > Application
Navigator and double-clicking the .bpel file of the project. In this example, the project
is an asynchronous type and is named OrderBooking.

Notes:

■ You can also import existing projects into Oracle JDeveloper by
selecting Import > BPEL Process from the File main menu.
However, do not import or add XSD files in a ZIP file into a BPEL
project. Always extract the XSD files from a ZIP file before
importing them.

■ You can also create and select templates of existing projects.
Templates enable you to make copies of BPEL processes. For
example, assume you first design a large and complicated BPEL
process. You then need to design a second BPEL process that is
very similar, but not quite the same, as the previous BPEL process.
Instead of designing the second process completely from scratch,
you can create a template of the first process, then select it when
creating a project for the second BPEL process. This creates the
same BPEL process as the first one. You can then modify the
second process as necessary.

Right click a project, select Mark as Template, and specify a name.
When you create a new BPEL project, you can select the process
name from the Templates list of the BPEL Project Creation
Wizard.

Overview of the BPEL Designer Environment

Getting Started with Oracle BPEL Process Manager 2-5

Figure 2–2 Oracle JDeveloper Sections

Each section of this view enables you to perform specific design and deployment
tasks. Table 2–2 identifies the sections listed in Figure 2–2 and provides references to
sections that describe their capabilities.

Table 2–2 Oracle JDeveloper Sections

Section Location in Figure 2–2 See Section

Application Navigator Upper left "Application Navigator" on
page 2-6

Diagram window, Source
window, and History
window

Middle "Diagram Window" on page 2-7,
"Source Window" on page 2-8,
and "History Window" on
page 2-10

Process Activities selection of
the Component Palette

Upper right "Component Palette" on
page 2-10

Property Inspector section Lower right "Property Inspector" on
page 2-12

Structure Window Lower left "Structure Window" on page 2-12

Log Window Bottom "Log Window" on page 2-13

See Also: Oracle BPEL Process Manager Quick Start Guide and Oracle
BPEL Process Manager Order Booking Tutorial for tutorials in which you
create applications and projects

Overview of the BPEL Designer Environment

2-6 Oracle BPEL Process Manager Developer’s Guide

Application Navigator
The Application Navigator shown in the upper left part of Figure 2–2 displays the
project files. Double-click a node (for example, the Integration Content node) to
display its contents. Right-click a node to display a context-sensitive menu of
commands. The menu commands that are available depend on the node selected. For
example, if you right-click the FulfillOrders project in Figure 2–3, you can compile
and deploy this BPEL process to Oracle BPEL Server.

Figure 2–3 shows the files that appear under the Integration Content folder when you
first create a project in Oracle JDeveloper (in this example, named FulfillOrders inside
an application named myBPELapplication).

Figure 2–3 Application Navigator

Table 2–3 describes these initial project files.

As you design the project, additional files, folders, and elements can appear in the
Application Navigator. For example, Figure 2–4 shows the files that appear for a
project in which you imported schemas (OrderBookingPO.xsd and Orders.xsd),
configured the database adapter (the WriteDBRecord.wsdl file), and created a
transform activity (Transformation_1.xsl under the Integration Content folder). The
Application Sources node contains Java source files. The Java classes are used inside
callouts from the BPEL process. Additional folders can appear, such as BPEL-INF (a
special directory for Java JAR files).

Table 2–3 Initial Project Files

File Description

bpel.xml The deployment descriptor file that defines the locations of the WSDL
files for services to be called by this BPEL process flow. This file
references the public interface for the service.

See Also: Appendix C, "Deployment Descriptor Properties"

FulfillOrder.bpel The source file, which, depending upon the project type you selected,
initially contains a minimal set of activities (if you selected to create an
asynchronous project, then receive and invoke activities appear). You
add syntax to this file when you drag and drop activities, create
variables, create partner links, and so on.

FulfillOrder.wsdl The WSDL client interface, which defines the input and output
messages for this BPEL process flow, the supported client interface and
operations, and other features. This functionality enables the BPEL
process flow to be called as a service.

Overview of the BPEL Designer Environment

Getting Started with Oracle BPEL Process Manager 2-7

Figure 2–4 Application Navigator (Expanded)

Diagram Window
The Diagram window shown in the middle of Figure 2–2 provides a visual view of the
BPEL process that you design. This view displays when you perform one of the
following actions:

■ Double-click the .bpel file name in the Application Navigator

■ Click the Diagram tab at the bottom of the window with the .bpel file selected

Figure 2–5 shows the activities automatically created with an asynchronous project. In
the tutorials described in Oracle BPEL Process Manager Quick Start Guide and Oracle
BPEL Process Manager Order Booking Tutorial, you add to the BPEL process by dragging
and dropping activities, creating variables, creating partner links, and so on.

Figure 2–5 Diagram (After Creation of an Asynchronous Project)

Note: If you want to learn more about the Application Navigator,
place the cursor in this section and press F1 to display online Help.

Overview of the BPEL Designer Environment

2-8 Oracle BPEL Process Manager Developer’s Guide

As you design the project by dragging and dropping activities, creating partner links,
and so on, the Diagram window changes. Figure 2–6 shows the Diagram window
later in the design phase after adding a partner link (in this example, named
WriteDBRecord) and the additional activities (invoke, receive, assign, transform, and
others).

Figure 2–6 Diagram (After Design Phase)

Source Window
Click Source at the bottom to view the syntax inside the BPEL process project files. As
you drag and drop activities and partner links, and perform other tasks, the syntax in
these source files is immediately updated to reflect these changes. For example,
Figure 2–7 shows the property sheet as it is being edited.

Overview of the BPEL Designer Environment

Getting Started with Oracle BPEL Process Manager 2-9

Figure 2–7 CreditRatingService Partner Link Icon and Property Sheet

Click Source at the bottom of the window. Figure 2–8 shows part of the Source of a
.bpel file. Details about the CreditRatingService partner link you created appear in
the file.

Figure 2–8 Source View of a .bpel File

Overview of the BPEL Designer Environment

2-10 Oracle BPEL Process Manager Developer’s Guide

History Window
Click History at the bottom to perform such tasks as viewing the revision history of a
file and viewing read-only and editable versions of a file side-by-side. Figure 2–9
shows the History view for a BPEL file.

Figure 2–9 History View

Component Palette
Activities are the building blocks of the BPEL process. The Process Activities selection
of the Component Palette shown in the upper right part of Figure 2–2 displays a set of
activities that you drag and drop into the Diagram window of the BPEL process. The
Component Palette displays only those pages relevant to the state of the Diagram
window. Process Activities or Services are nearly always visible. However, if you are
designing a transformation in a transform activity, the Component Palette only

See Also: The following documentation for examples and
descriptions of the types of syntax that appear in project files:

■ Chapter 3, "Manipulating XML Data in BPEL" through
Chapter 12, "Interaction Patterns"

■ SOA_Oracle_Home\bpel\samples directory

Note: If you want to learn more about the History view, place the
cursor in this section and press F1 to display online Help.

Overview of the BPEL Designer Environment

Getting Started with Oracle BPEL Process Manager 2-11

displays selections relevant to that activity, such as String Functions, Mathematical
Functions, and Node-set Functions.

Figure 2–10 shows the Process Activities selection of the Component Palette. This list
enables you to select activities to drag and drop into your BPEL process.

Figure 2–10 Component Palette - Process Activities

Figure 2–11 shows the Services selection of the Component Palette. This list enables
you to drag and drop adapters, partner links, or decision services into your BPEL
process.

Figure 2–11 Component Palette - Services

Figure 2–12 shows the String Functions category of the Component Palette that
displays when you work in the transformation window of a transform activity.

Overview of the BPEL Designer Environment

2-12 Oracle BPEL Process Manager Developer’s Guide

Figure 2–12 Component Palette - Functions

Property Inspector
The Property Inspector shown in the lower right part of Figure 2–2 enables you to
view details about an activity. Single-click an activity in the Diagram window. For
example, single-clicking the receiveInput receive activity shown in Figure 2–5 on
page 2-7 displays the information shown in Figure 2–13.

Figure 2–13 Property Inspector

Structure Window
The Structure Window shown in the lower left part of Figure 2–2 offers a structural
view of the data in the project currently selected in the Diagram window. You can
perform a variety of tasks from this section, including:

■ Importing project schemas

■ Defining message types

■ Managing (creating, editing, and deleting) elements such as variables, aliases,
correlation sets, partner links, and sensors

■ Editing activities in the BPEL process flow sequence that displays in the Diagram
window

Note: If you want to learn more about the Component Palette, place
the cursor in this section and press F1 to display online Help.

Overview of the BPEL Designer Environment

Getting Started with Oracle BPEL Process Manager 2-13

Figure 2–14 shows the Structure Window. In this example, the window has been
expanded to display the imported project schemas and the sequence of activities in the
Diagram window for an OrderBooking project.

Figure 2–14 Structure Window (Expanded)

Log Window
You validate, compile, and deploy a process by right-clicking the project name in the
Application Navigator, selecting Deploy, and selecting a deployment method. The
Log Window shown at the bottom of Figure 2–2 then displays messages about the
status of the deployment.

To ensure that a process validates correctly, you must ensure that the following
information is correct:

■ The process must have an input variable.

■ A partner link must be selected.

■ A partner role must be selected.

■ The operation must not be empty.

■ The input variable type must match the partner link operation type.

Figure 2–15 shows a successful deployment message for a BPEL process. You can then
run, monitor, and administer the process from Oracle BPEL Control.

Notes:

■ If you want to learn more about the Structure Window, place the
cursor in this section and press F1 to display online Help.

■ Do not import two schema files with the same name into a project.
Ensure that the files have unique names.

Overview of the BPEL Designer Environment

2-14 Oracle BPEL Process Manager Developer’s Guide

Figure 2–15 Successful Deployment Message

If deployment is unsuccessful, messages appear that describe the type and location of
the error, as shown in Figure 2–16. Double-click the error to navigate directly to the
offending line in the source file referenced.

Figure 2–16 Unsuccessful Deployment Message

Editing Project Files in Oracle JDeveloper
Note the following issues when editing the bpel.xml, WSDL, and BPEL files:

■ The bpel.xml file content is only read into memory when the file is opened.
Therefore, if you change the content of bpel.xml after the file is opened, the
changes are not made in memory. After changing the content of the BPEL file, close
and reopen the file for the changes to take effect.

■ Do not edit the bpel.xml file through a combination of Oracle JDeveloper and a
text editor such as Notepad or Wordpad. Use only a single editing environment
such as Oracle JDeveloper.

■ Do not edit the bpel.xml file, BPEL files, and WSDL files while changing the
design of the process. If you want to edit a file:

1. Ensure that the BPEL files are not being edited in Oracle JDeveloper. If they
are being edited (that is, a tab for that file is visible), close it and save changes
as needed.

2. Edit the required file and save the changes.

Note: If you want to learn more about the Log Window, place the
cursor in this section and press F1 to display online Help.

See Also:

■ "Overview of Oracle BPEL Control" on page 2-17

■ Chapter 19, "BPEL Process Deployment and
Domain Management" for specific details about deploying and
running BPEL processes

Overview of Activities

Getting Started with Oracle BPEL Process Manager 2-15

Overview of Activities
The term activities has been mentioned frequently in both Chapter 1, "Introduction to
Oracle BPEL Process Manager" and in this chapter. Activities are the building blocks of
a BPEL process. Oracle JDeveloper includes a set of activities that you drag and drop
into a BPEL process. You then double-click an activity to define its attributes (property
values). Figure 2–6 on page 2-8 provides an example of this design process. Activities
enable you to perform specific tasks within a process. For example:

■ An assign activity enables you to manipulate data, such as copying the contents of
one variable to another.

■ An invoke activity enables you to invoke a service (identified by its partner link)
and specify an operation for this service to perform.

■ A receive activity waits for an asynchronous callback response message from a
service.

Figure 2–17 shows an example of a property window (for this example, an invoke
activity). In this example, you invoke a partner link named Invoke_FileWrite and
define its attributes.

Figure 2–17 Invoke Activity Example

Overview of Partner Links

2-16 Oracle BPEL Process Manager Developer’s Guide

Overview of Partner Links
The term partner link has also been mentioned frequently in both Chapter 1,
"Introduction to Oracle BPEL Process Manager" and in this chapter. A partner link
enables you to define the external services with which the BPEL process is to interact.
Figure 2–18 shows the partner link icon (in this example, named CreditRating).

Figure 2–18 PartnerLink Icon

A partner link type characterizes the conversational relationship between two services
by defining the roles played by each service in the conversation and specifying the
port type provided by each service to receive messages within the context of the
conversation. Figure 2–6 on page 2-8 shows an example of a partner link named
WriteDBRecord being invoked by a BPEL process.

Figure 2–19 shows an example of the attributes of a partner link for a service named
CreditRating.

See Also:

■ Appendix B, "BPEL Process Activities and Services" for
descriptions of available activities

■ Part II, "Reviewing Key BPEL Development Concepts and Code
Samples" for activity concepts and code examples

■ SOA_Oracle_Home\bpel\samples\references directory for
additional activity code examples

■ Oracle BPEL Process Manager Quick Start Guide and Oracle BPEL
Process Manager Order Booking Tutorial for tutorials in which you
drag and drop activities in BPEL processes and define their
attributes

Overview of Oracle BPEL Control

Getting Started with Oracle BPEL Process Manager 2-17

Figure 2–19 PartnerLink Window

Table 2–4 describes the fields of the PartnerLink window.

Overview of Oracle BPEL Server
After you complete the design of the BPEL process, you compile and deploy the
process to Oracle BPEL Server. If compilation and deployment are successful, you can
run and manage the BPEL process from Oracle BPEL Control.

Deployment sends the Oracle BPEL Process Manager archive (a set of files in a JAR file
with a directory structure similar to the project directory structure) to Oracle BPEL
Server. The deployment operation automatically validates and compiles the project
directory into the BPEL archive.

Overview of Oracle BPEL Control
Oracle BPEL Control enables you to run, monitor, and administer BPEL processes
designed and deployed with Oracle JDeveloper. You can also manage BPEL domains

Table 2–4 PartnerLink Window Fields

Field Description

Name A unique and recognizable name you provide for the partner link.

WSDL File The name and location of the Web Services Description Language
(WSDL) file that you select for the partner link. Click the Service
Explorer flashlight icon (second icon from the left above the WSDL
File field) to access a window for selecting the WSDL file to use.

Partner Link Type The partner link defined in the WSDL file.

Partner Type The role performed by the partner link (in this example, the
CreditRatingService service). In this case, CreditRatingService is the
provider.

My Role The role performed by the BPEL process. In this case, the BPEL process
does not have a role because it is a synchronous process.

See Also: Chapter 19, "BPEL Process Deployment and
Domain Management"

Overview of Oracle BPEL Process Manager Services

2-18 Oracle BPEL Process Manager Developer’s Guide

from Oracle BPEL Control. Access Oracle BPEL Control on Windows by selecting Start
> All Programs > Oracle - Oracle_Home > Oracle BPEL Process Manager > BPEL
Control.

Figure 2–20 shows the main page of Oracle BPEL Control. In this example, a number
of deployed BPEL processes and external services appear in the Dashboard tab.

Figure 2–20 Oracle BPEL Control

Overview of Oracle BPEL Process Manager Services
Oracle BPEL Process Manager and Oracle JDeveloper provide support for services that
add value and ease of use to BPEL functionality.

Table 2–5 identifies and describes the services and provides references to sections of
this guide that describe their capabilities.

See Also:

■ "Starting Oracle BPEL Process Manager Components" on page 2-2
for instructions on accessing Oracle BPEL Control on UNIX

■ Chapter 19, "BPEL Process Deployment and
Domain Management" for specific details about running a
deployed process from Oracle BPEL Control

■ Oracle BPEL Process Manager Quick Start Guide and Oracle BPEL
Process Manager Order Booking Tutorial for tutorials in which you
run deployed BPEL processes

Overview of Oracle BPEL Process Manager Services

Getting Started with Oracle BPEL Process Manager 2-19

Table 2–5 Oracle BPEL Process Manager Services

Types Description See Section

Transformations A transform activity is provided that enables you
to create transformations that map source data to
target data. For example, you can map incoming
purchase order source data into outgoing
purchase order acknowledgment target data.

Chapter 13, "XSLT
Mapper and
Transformations"

"Transform
Activity" on
page B-29

Notification channels Notification channels enable you to send
notifications about an event to a user, group, or
destination address. You can send a notification
by e-mail, voice mail, fax, pager, or short
message service (SMS).

Chapter 14,
"Oracle BPEL
Process Manager
Notification Servic
e"

Appendix B,
"BPEL Process
Activities and
Services"

Workflows Workflow enables you to integrate systems and
services with human workflow into a single
process flow.

A Human Task editor is provided that enables
you to specify human task settings, such as task
outcome, payload structure, task participants,
assignment and routing policy, expiration and
escalation policy, notification settings, and so on.

The criteria that you define with the Human
Task editor enables you to use the Oracle BPEL
Worklist Application when you run the BPEL
process.

Chapter 15,
"Oracle BPEL
Process Manager
Workflow
Services"

"Human Task
Activity" on
page B-12

Oracle BPEL Worklist
Application

Oracle BPEL Worklist Application takes actions
on tasks such as approving an employee
vacation request, evaluating a job applicant, or
escalating a purchasing decision. Based on the
user profile, you access a URL that enables you
to see all the tasks relevant to you and specify
search criteria for displaying tasks.

Chapter 16,
"Worklist
Application"

Sensors You create sensors that you assign to activities,
variables, and faults that you want to monitor
during BPEL process run time.

Chapter 17,
"Sensors"

Business rules You integrate BPEL processes with the rules
defined in a business rule engine.

Chapter 18, "BPEL
Process Integration
with Business
Rules"

See Also: The following documentation for tutorials that describe
how to design BPEL processes that use the services described in
Table 2–5

■ Oracle BPEL Process Manager Order Booking Tutorial

■ "Getting Started with Demonstrations, Activity and Conceptual
References, and Tutorials" on page 1-6

Overview of Oracle BPEL Process Manager Technology Adapters

2-20 Oracle BPEL Process Manager Developer’s Guide

Overview of Oracle BPEL Process Manager Technology Adapters
The Partner Link Window shown in Figure 2–19 on page 2-17 also enables you to take
advantage of another key feature that Oracle BPEL Process Manager and Oracle
JDeveloper provide. Click the Define Adapter Service icon shown in Figure 2–21 to
access the Adapter Configuration wizard.

Figure 2–21 Defining an Adapter

Adapters enable you to integrate the BPEL processes with access to file systems, FTP
servers, database tables, database queues, Java Message Services (JMS), MQ, and
Oracle E-Business Suite. This wizard enables you to configure the types of adapters
shown in Figure 2–22 for use with the BPEL process:

Figure 2–22 Adapter Types

When you select an adapter type, the Service Name window shown in Figure 2–23
prompts you to enter a name. For this example, File Adapter was selected in
Figure 2–22. When the wizard completes, a WSDL file by this service name appears in
the Application Navigator for the BPEL process (for this example, named
ReadFile.wsdl). This file includes the adapter configuration settings you specify with
this wizard. Other configuration files (such as header files and files specific to the
adapter) are also created and display in the Application Navigator.

Summary

Getting Started with Oracle BPEL Process Manager 2-21

Figure 2–23 Adapter Service Name

The Adapter Configuration wizard windows that appear after the Service Name
window are based on the adapter type you selected.

Summary
This chapter describes how to start key Oracle BPEL Process Manager components,
including Oracle JDeveloper, Oracle BPEL Server, and Oracle BPEL Control. An
overview of the main sections of Oracle JDeveloper that you use to design BPEL
processes is also provided. Key BPEL design components such as activities and
partner links and the services and adapters that Oracle BPEL Process Manager
provides to add value and ease of use to standard BPEL functionality are also
described.

See Also:

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide for specific details about configuring the file, FTP,
database, AQ, MQ, and JMS adapters in a BPEL process with the
Adapter Configuration wizard

■ Oracle Application Server Adapter for Oracle Applications User’s Guide
for information on using the Oracle Applications adapter for
Oracle E-Business Suite

■ "PartnerLink" on page B-36

■ Oracle BPEL Process Manager Order Booking Tutorial for tutorials
that describe how to design BPEL processes that use the database
adapter and the file read and write functionality of the file adapter

Summary

2-22 Oracle BPEL Process Manager Developer’s Guide

Part II
Reviewing Key BPEL Development

Concepts and Code Samples

This part introduces key BPEL development concepts and code samples.

This part contains the following chapters:

■ Chapter 3, "Manipulating XML Data in BPEL"

■ Chapter 4, "Invoking a Synchronous Web Service"

■ Chapter 5, "Invoking an Asynchronous Web Service"

■ Chapter 6, "Parallel Flow"

■ Chapter 7, "Conditional Branching"

■ Chapter 8, "Fault Handling"

■ Chapter 9, "Incorporating Java and J2EE Code in BPEL Processes"

■ Chapter 10, "Events and Timeouts"

■ Chapter 11, "Invoking a BPEL Process"

■ Chapter 12, "Interaction Patterns"

Manipulating XML Data in BPEL 3-1

3
Manipulating XML Data in BPEL

This chapter describes how to manipulate XML data in BPEL, including the use of
XPath expressions.

This chapter contains the following topics:

■ Use Cases for Manipulating XML Data in BPEL

■ Overview of Manipulating XML Data in BPEL Concepts

■ Initializing a Variable with Expression Constants or Literal XML

■ Copying Between Variables

■ Accessing Fields Within Element-Based and Message Type-Based Variables

■ Assigning Numeric Values

■ Mathematical Calculations with XPath Standards

■ Assigning String Literals

■ Concatenating Strings

■ Assigning Boolean Values

■ Assigning Date or Time

■ Manipulating Attributes

■ Manipulating XML Data with bpelx Extensions

■ Validating XML Data with bpelx:validate

■ Manipulating XML Data Sequences That Use Arrays

■ Converting from a String to an XML Element

■ Differences Between Document-Style and RPC-Style WSDL Files

■ Adding a Custom WSIF Provider

■ Input and Output Message Header Handling

■ Manipulating SOAP Headers in BPEL

■ Using Binary Attachments in SOAP Messages

■ Summary

Use Cases for Manipulating XML Data in BPEL
This chapter covers a variety of use cases for manipulating XML data. Topics include
how to work with variables, sequences, and arrays, and how to perform tasks such as

Overview of Manipulating XML Data in BPEL Concepts

3-2 Oracle BPEL Process Manager Developer’s Guide

mathematical calculations. The explanations are largely by example, and provide an
introduction to the supported specifications.

Most of the examples in this chapter assume that the WSDL file defining the associated
message types is document-literal style rather than the RPC style. There is a difference
in how XPath query strings are formed for RPC-style WSDL definitions. If you are
working with a type defined in an RPC WSDL file, see "Differences Between
Document-Style and RPC-Style WSDL Files" on page 3-22.

Overview of Manipulating XML Data in BPEL Concepts
This section covers the following topics:

■ How XML Data Works in BPEL

■ About Data Manipulation and XPath Standards

How XML Data Works in BPEL
In a BPEL process, every piece of data is in XML forms. This includes the messages
passed to and from the BPEL process, the messages exchanged with external services,
and local variables used by the process. You define the types for these messages and
variables with the XML schema, usually in the WSDL file for the flow, the WSDL files
for the services it invokes, or the XSD file referenced by those WSDL files. Therefore,
all variables in BPEL are XML data, and any BPEL process uses much of its code to
manipulate these XML variables. This typically includes performing data
transformation between representations required for different services, and local
manipulation of data (for example, to combine the results from several service
invocations).

About Data Manipulation and XPath Standards
The starting point for data manipulation in BPEL is the assign activity, which builds on
the XPath standard. XPath queries, expressions, and functions play a large part in this
type of manipulation. In addition, more advanced methods are available that involve
using XQuery, XSLT, or Java, usually to do more complex data transformation or
manipulation.

This section provides a general overview of how to manipulate XML data in BPEL. It
summarizes the key building blocks used in various combinations and provides
examples. The remaining sections in this chapter discuss and illustrate how to apply
these building blocks to perform specific tasks.

You use the assign activity to copy data from one XML variable to another, or to
calculate the value of an expression and store it in a variable. A copy element within
the activity specifies the source and target of the assignment (what to copy from and
to), which must be of compatible types. The formal syntax as shown in the Business
Process Execution Language for Web Services Specification is as follows:

<assign standard-attributes>
 standard-elements
 <copy>+
 from-spec
 to-spec

See Also: The sample files located at

■ SOA_Oracle_
Home\bpel\samples\tutorials\103.XMLDocuments

Overview of Manipulating XML Data in BPEL Concepts

Manipulating XML Data in BPEL 3-3

 </copy>
</assign>

This syntax is described in detail in that specification. The from-spec and to-spec
typically specify a variable or variable part, as in:

<assign>
 <copy>
 <from variable="c1" part="address"/>
 <to variable="c3"/>
 </copy>
</assign>

When you use Oracle JDeveloper, you supply assign activity details in a Copy
Operation window that includes a From section and a To section. This reflects the
preceding BPEL source code syntax.

Rather than repeating all syntax details, this chapter shows and describes excerpts
taken primarily from sample projects provided in the SOA_Oracle_
Home\bpel\samples\references directory.

XPath standards play a key role in the assign activity. Brief examples are shown here
as an introduction; examples with more context and explanation are provided in the
sections that follow.

■ XPath queries: An XPath query selects a field within a source or target variable
part. The from or to clause can include a query attribute whose value is an XPath
query string. For example:

<from variable="input" part="payload"
 query="/p:CreditFlowRequest/p:ssn"/>

For XPath version 1.0, the value of the query attribute must be a location path that
selects exactly one node. You can find further details about the query attribute and
XPath standards syntax in the Business Process Execution Language for Web Services
Specification (section 14.3) and the XML Path Language (XPath) Specification,
respectively.

■ XPath expressions: You use an XPath expression (specified in an expression
attribute in the from clause) to indicate a value to be stored in a variable. For
example:

<from expression="100"/>

The expression can be any general expression—that is, an XPath expression that
evaluates to any XPath value type. For more information about XPath expressions,
see section 9.1.4 of the XML Path Language (XPath) Specification.

Within XPath expressions, you can call the following types of functions:

■ Core XPath functions: XPath supports a large number of built-in functions,
including functions for string manipulation (such as concat), numeric functions
(like sum), and others.

<from expression="concat('string one', 'string two')"/>

For a complete list of the functions built into XPath standards, see section 4 of the
XML Path Language (XPath) Specification.

■ BPEL XPath extension functions: BPEL adds several extension functions to the
core XPath core functions, enabling XPath expressions to access information from
a process. The extensions are defined in the standard BPEL namespace

Initializing a Variable with Expression Constants or Literal XML

3-4 Oracle BPEL Process Manager Developer’s Guide

http://schemas.xmlsoap.org/ws/2003/03/business-process/ and
indicated by the prefix bpws:

<from expression= "bpws:getVariableData('input', 'payload', '/p:value') + 1"/>

For more information, see sections 9.1 and 14.1 of the Business Process Execution
Language for Web Services Specification.

■ Oracle BPEL XPath extension functions: Oracle provides some additional XPath
functions that use the capabilities built into BPEL and XPath standards for adding
new functions.

These functions are defined in the namespace
http://schemas.oracle.com/xpath/extension and indicated by the
prefix ora:.

■ Custom functions: You can also create custom XPath functions. If you do, you
must register them in the BPEL process deployment descriptor or in the following
XML files:

– SOA_Oracle_Home\bpel\system\config\xpath-functions.xml
(system level)

– SOA_Oracle_
Home\bpel\domains\default\config\xpath-functions.xml
(domain level)

Then, package the source implementing them into a BPEL suitcase or Oracle BPEL
Process Manager startup environment. For more information about writing
custom XPath functions, refer to:
http://www.oracle.com/technology/bpel

Sophisticated data manipulation can be difficult to perform with the BPEL assign
activity and the core XPath functions. However, you can perform complex data
manipulation and transformation by using XSLT, Java, or a bpelx operation under an
assign activity (See "Manipulating XML Data with bpelx Extensions" on page 3-10), or
as a Web service. For more information on calling Java code from within BPEL, see the
tutorial under the BPEL Tutorials link at
http://www.oracle.com/technology/bpel. For XSLT, Oracle BPEL Process
Manager includes XPath functions that execute these transformations.

The following sections show related definitions in the BPEL and WSDL files that help
explain the examples.

Initializing a Variable with Expression Constants or Literal XML
It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a
variable before copying dynamic data into a specific field within the XML data content
for the variable. This is also useful for testing purposes when you want to hard code
XML data values into the process.

See Also: Appendix D, "XPath Extension Functions"

See Also: The following XPath and XQuery transformation code
examples:

■ SOA_Oracle_
Home\bpel\samples\tutorials\114.XSLTTransformations

■ Chapter 13, "XSLT Mapper and Transformations"

Copying Between Variables

Manipulating XML Data in BPEL 3-5

This example assigns a literal result element to the payload part of the output
variable:

<assign>
 <!-- copy from literal xml to the variable -->
 <copy>
 <from>
 <result xmlns="http://samples.otn.com">
 <name/>
 <symbol/>
 <price>12.3</price>
 <quantity>0</quantity>
 <approved/>
 <message/>
 </result>
 </from>
 <to variable="output" part="payload"/>
 </copy>
</assign>

Copying Between Variables
When you copy between variables, you copy directly from one variable (or part) to
another variable of a compatible type, without needing to specify a particular field
within either variable. In other words, there is no need to specify an XPath query.

The following example performs two assignments, first copying between two
variables of the same type and then copying a variable part to another variable with
the same type as that part.

<assign>
 <copy>
 <from variable="c1"/>
 <to variable="c2"/>
 </copy>
 <copy>
 <from variable="c1" part = "address"/>
 <to variable="c3"/>
 </copy>
</assign>

The BPEL file defines the variables as follows:

<variable name="c1" messageType="x:person"/>
<variable name="c2" messageType="x:person"/>
<variable name="c3" element="x:address"/>

The WSDL file defines the person message type as follows:

<message name="person" xmlns:x="http://tempuri.org/bpws/example">
 <part name="full-name" type="xsd:string"/>
 <part name="address" element="x:address"/>
</message>

See Also: The following samples:

■ SOA_Oracle_Home\bpel\samples\references\Assign

See Also: Section 9.3.2 of the Business Process Execution Language for
Web Services Specification for this code example

Accessing Fields Within Element-Based and Message Type-Based Variables

3-6 Oracle BPEL Process Manager Developer’s Guide

Accessing Fields Within Element-Based and Message Type-Based
Variables

Given the types of definitions present in most WSDL and XSD files, you must go down
to the level of copying from or to a field within part of a variable based on the element
and message type, which in turn uses XML schema complex types. To do this, you
specify an XPath query in the from or to clause of the assign activity.

This example copies the ssn field from the CreditFlow process’s input message into
the ssn field of the credit rating service’s input message.

<assign>
 <copy>
 <from variable="input" part="payload"
 query="/tns:CreditFlowRequest/tns:ssn"/>
 <to variable="crInput" part="payload" query="/tns:ssn"/>
 </copy>
</assign>

The BPEL file defines the variables involved in this assignment as follows:

<variable name="input" messageType="tns:CreditFlowRequestMessage"/>
<variable name="crInput"
 messageType="services:CreditRatingServiceRequestMessage"/>

The crInput variable is used as an input message to a credit rating service. Its
message type, CreditFlowRequestMessage, is defined in
CreditFlowService.wsdl as follows:

<message name="CreditFlowRequestMessage">
<part name="payload" element="tns:CreditFlowRequest"/>
</message>

CreditFlowRequest is defined with a field named ssn. The message type
CreditRatingServiceRequestMessage is defined in
CreditRatingService.wsdl as follows:

<message name="CreditRatingServiceRequestMessage">
 <part name="payload" element="tns:ssn"/>
</message>

Assigning Numeric Values
You can assign numeric values in XPath expressions. The following example shows
how to assign an XPath expression with the integer value 100.

<assign>
 <!-- copy from integer expression to the variable -->
 <copy>
 <from expression="100"/>
 <to variable="output" part="payload" query="/p:result/p:quantity"/>
 </copy>
</assign>

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\utils\CreditRatingService

Concatenating Strings

Manipulating XML Data in BPEL 3-7

Mathematical Calculations with XPath Standards
You can use simple mathematical expressions like the one in the following example,
which increments a numeric value.

In this example, the BPEL XPath function getVariableData retrieves the value
being incremented. The arguments to getVariableData are equivalent to the
variable, part, and query attributes of the from clause (including the last two
arguments, which are optional).

<assign>
 <copy>
 <from expression="bpws:getVariableData('input', 'payload',
 '/p:value') + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

You can also use $variable syntax:

<assign>
 <copy>
 <from expression="$input.payload + 1"/>
 <to variable="output" part="payload" query="/p:result"/>
 </copy>
</assign>

Assigning String Literals
This example copies an expression evaluating from the string literal 'GE' to the
symbol field within the indicated variable part. (Note the use of the double and single
quotes.)

<assign>
 <!-- copy from string expression to the variable -->
 <copy>
 <from expression="'GE'"/>
 <to variable="output" part="payload" query="/p:result/p:symbol"/>
 </copy>
</assign>

Concatenating Strings
Rather than copy the value of one string variable (or variable part or field) to another,
you first can perform string manipulation, such as concatenating several strings
together. An example is shown in the following syntax. The concatenation is
accomplished with the core XPath function named concat; in addition, the variable

See Also: The following sample:

■ SOA_Oracle_Home\bpel\samples\references\Assign

See Also: The following sample:

■ SOA_Oracle_Home\bpel\samples\references\Assign

See Also: The following sample:

■ SOA_Oracle_Home\bpel\samples\references\Assign

Assigning Boolean Values

3-8 Oracle BPEL Process Manager Developer’s Guide

value involved in the concatenation is retrieved with the BPEL XPath function
getVariableData.

In this example, getVariableData fetches the value of the name field from the
input variable’s payload part. The string literal 'Hello ' is then concatenated to
the beginning of this value.

<assign>
 <!-- copy from XPath expression to the variable -->
 <copy>
 <from expression="concat('Hello ',
 bpws:getVariableData('input', 'payload', '/p:name'))"/>
 <to variable="output" part="payload" query="/p:result/p:message"/>
 </copy>
</assign>

Other string manipulation functions available in XPath are listed in section 4.2 of the
XML Path Language (XPath) Specification.

Assigning Boolean Values
In this example of assigning Boolean values, the XPath expression in the from clause
is a call to XPath’s Boolean function true, and the specified approved field is set to
true. The function false is also available.

<assign>
 <!-- copy from boolean expression function to the variable -->
 <copy>
 <from expression="true()"/>
 <to variable="output" part="payload" query="/result/approved"/>
 </copy>
</assign>

The XPath specification recommends that you use the "true()" and "false()"
functions as a method for returning Boolean constant values.

If you instead use "boolean(true)" or "boolean(false)", the true or false
inside the Boolean function is interpreted as a relative element step, and not as any
true or false constant. This means it attempts to select a child node named true under
the current XPath context node. In most cases, the true node does not exist. Therefore,
an empty result node set is returned and the boolean() function in XPath 1.0
converts an empty node set into a false result. This result can be potentially confusing.

Assigning Date or Time
You can assign the current value of a date or time field by using the Oracle BPEL
XPath function getCurrentDate, getCurrentTime, or getCurrentDateTime,
respectively. In addition, if you have a date-time value in the standard XSD format,
you can convert it to characters more suitable for output by calling the Oracle BPEL
XPath function formatDate.

See Also: The following sample:

■ SOA_Oracle_Home\bpel\samples\references\Assign

See Also: The following sample:

■ SOA_Oracle_Home\bpel\samples\references\Assign

Manipulating Attributes

Manipulating XML Data in BPEL 3-9

For related information, see section 9.1.2 of the Business Process Execution Language for
Web Services Specification.

<!-- execute the XPath extension function getCurrentDate() -->
<assign>
 <copy>
 <from expression="ora:getCurrentDate()"/>
 <to variable="output" part="payload"
 query="/invoice/invoiceDate"/>
 </copy>
</assign>

In the next example, the formatDate function converts the date-time value provided
in XSD format to the string 'Jun 10, 2005' (and assigns it to the string field
formattedDate).

<!-- execute the XPath extension function formatDate() -->
<assign>
 <copy>
 <from expression="ora:formatDate('2005-06-10T15:56:00',
 'MMM dd, yyyy')"/>
 <to variable="output" part="payload"
 query="/invoice/formattedDate"/>
 </copy>
</assign>

Manipulating Attributes
You may want to copy to or from something defined as an XML attribute. An at sign
(@) in XPath query syntax refers to an attribute instead of a child element.

The following code example fetches and copies the custId attribute from this XML
data:

 <invalidLoanApplication xmlns="http://samples.otn.com">
 <application xmlns = "http://samples.otn.com/XPath/autoloan">
 <customer custId = "111" >
 <name>
 Mike Olive
 </name>
 ...
 </customer>
 ...
 </application>
 </invalidLoanApplication>

The following example selects the custId attribute of the customer field and assigns
it to the variable custId:

<assign>
 <!-- get the custId attribute and assign to variable custId -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/@custId"/>
 <to variable="custId"/>

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\references\XPathFunction

Manipulating XML Data with bpelx Extensions

3-10 Oracle BPEL Process Manager Developer’s Guide

 </copy>
</assign>

The namespace prefixes in this example are not integral to the example.

The WSDL file defines a customer to have a type in which custId is defined as an
attribute, as follows:

<complexType name="CustomerProfileType">
 <sequence>
 <element name="name" type="string"/>
 ...
 </sequence>
 <attribute name="custId" type="string"/>
</complexType>

Manipulating XML Data with bpelx Extensions
You may want to perform various operations on XML data in assign activities. The
following bpelx extension types provide this functionality:

■ bpelx:append

■ bpelx:insertBefore

■ bpelx:insertAfter

■ bpelx:remove

■ bpelx:rename and XSD Type Casting

■ bpelx:copyList

bpelx:append
The bpelx:append extension in an assign activity enables a BPEL process to append
the contents of one variable, expression, or XML fragment to another variable’s
contents.

<bpel:assign>
 <bpelx:append>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:append>
</bpel:assign>

The from-spec query within bpelx:append yields zero or more nodes. The node
list is appended as child nodes to the target node specified by the to-spec query.

The to-spec query must yield one single L-Value element node. Otherwise, a
bpel:selectionFailure fault is generated. The to-spec query cannot refer to a
partner link.

The following example consolidates multiple bills of material into one single bill of
material by appending multiple b:part’s for one BOM to b:parts of the
consolidated BOM.

<bpel:assign>
 <bpelx:append>

See Also: The following sample:

■ SOA_Oracle_Home\bpel\samples\references\XPath

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in BPEL 3-11

 <from variable="billOfMaterialVar"
 query="/b:bom/b:parts/b:part" />
 <to variable="consolidatedBillOfMaterialVar"
 query="/b:bom/b:parts" />
 </bpelx:append>
</bpel:assign>

bpelx:insertBefore
The bpelx:insertBefore extension in an assign activity enables a BPEL process to
insert the contents of one variable, expression, or XML fragment before another
variable’s contents.

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertBefore>
</bpel:assign>

The from-spec query within bpelx:insertBefore yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

The to-spec query of the insertBefore operation points to one or more single
L-Value nodes. If more than one node is returned, the first node is used as the
reference node. The reference node must be an element node. The parent of the
reference node must also be an element node. Otherwise, a
bpel:selectionFailure fault is generated. The node list generated by the
from-spec query selection is inserted before the reference node. The to-spec query
cannot refer to a partner link.

The following example shows the syntax before the execution of <insertBefore>.
The value of addrVar is:

<a:usAddress>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After the execution of the following syntax in the BPEL process file:

<bpel:assign>
 <bpelx:insertBefore>
 <bpelx:from>
 <a:city>Redwood Shore></a:city>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:state" />
 </bpelx:insertBefore>
</bpel:assign>

The value of addrVar now becomes:

<a:usAddress>
 <a:city>Redwood Shore</a:city>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

Manipulating XML Data with bpelx Extensions

3-12 Oracle BPEL Process Manager Developer’s Guide

bpelx:insertAfter
The bpelx:insertAfter extension in an assign activity enables a BPEL process to
insert the contents of one variable, expression, or XML fragment after another
variable’s contents.

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:insertAfter>
</bpel:assign>

This operation is similar to the functionality described for "bpelx:insertBefore" on
page 3-11, except for the following:

■ If multiple L-Value nodes are returned by the to-spec query, the last node is
used as the reference node.

■ Instead of inserting nodes before the reference node, the source nodes are inserted
after the reference node.

This operation can also be considered a macro of conditional-switch + (append
or insertBefore).

The following example shows the syntax before the execution of <insertAfter>.
The value of addrVar is:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After execution of the following syntax in the BPEL process file:

<bpel:assign>
 <bpelx:insertAfter>
 <bpelx:from>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 </bpelx:from>
 <bpelx:to "addrVar" query="/a:usAddress/a:addressLine[1]" />
 </bpelx:insertAfter>
</bpel:assign>

The value of addrVar becomes:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

The from-spec query within bpelx:insertAfter yields zero or more nodes. The
node list is appended as child nodes to the target node specified by the to-spec
query.

bpelx:remove
The bpelx:remove extension in an assign activity enables a BPEL process to remove
a variable.

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in BPEL 3-13

<bpel:assign>
 <bpelx:remove>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:append>
</bpel:assign>

Node removal specified by the XPath expression is supported. Nodes specified by the
XPath expression can be multiple, but must be L-Values. Nodes being removed from
this parent can be text nodes, attribute nodes, and element nodes.

The XPath expression can return one or more nodes. If the XPath expression returns
zero nodes, then a bpel:selectionFailure fault is generated.

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation.

The following example shows addrVar with the following value:

<a:usAddress>
 <a:addressLine>500 Oracle Parkway</a:addressLine>
 <a:addressLine>Mailstop 1op6</a:addressLine>
 <a:state>CA</a:state>
 <a:zipcode>94065</a:zipcode>
</a:usAddress>

After executing the following syntax in the BPEL process file, the second address line
of Mailstop is removed:

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine[2]" />
 </bpelx:remove>
</bpel:assign>

After executing the following syntax in the BPEL process file, both address lines are
removed:

<bpel:assign>
 <bpelx:remove>
 <target variable="addrVar"
 query="/a:usAddress/a:addressLine" />
 </bpelx:remove>
</bpel:assign>

bpelx:rename and XSD Type Casting
The bpelx:rename extension in an assign activity enables a BPEL process to rename
an element through use of XSD type casting.

<bpel:assign>
 <bpelx:rename elementTo="QName1"? typeCastTo="QName2"?>
 <bpelx:target variable="ncname" part="ncname"? query="xpath_str" />
 </bpelx:rename>
</bpel:assign>

The syntax of bpelx:target is similar to and a subset of to-spec for the copy
operation. The target must return a list of one more element nodes. Otherwise, a
bpel:selectionFailure fault is generated. The element nodes specified in the
from-spec are renamed the QName specified by the elementTo attribute. The

Manipulating XML Data with bpelx Extensions

3-14 Oracle BPEL Process Manager Developer’s Guide

xsi:type attribute is added to those element nodes to cast those elements to the
QName type specified by the typeCastTo attribute.

Assume you have the following employee list:

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp>
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

Promotion changes are now applied to Peter Smith in the employee list:

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
</bpel:assign>

After executing the above casting (renaming), the data looks as follows with
xsi:type info added to Peter Smith:

<e:empList>
 <e:emp>
 <e:firstName>John</e:firstName><e:lastName>Dole</e:lastName>
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Jane</e:firstName><e:lastName>Dole</e:lastName>
 <e:approvalLimit>3000</e:approvalLimit>
 <e:managing />
 <e:emp>
 <e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
 <e:emp>
 <e:firstName>Mary</e:firstName><e:lastName>Smith</e:lastName>
 <e:emp>
</e:empList>

The employee data of Peter Smith is now invalid, because <approvalLimit> and
<managing> are missing. Therefore, <append> is used to add that information.

<bpel:assign>
 <bpelx:rename typeCastTo="e:ManagerType">
 <bpelx:target variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:rename>
 <bpelx:append>

Manipulating XML Data with bpelx Extensions

Manipulating XML Data in BPEL 3-15

 <bpelx:from>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
 </bpelx:from>
 <bpelx:to variable="empListVar"
 query="/e:empList/e:emp[./e:firstName='Peter' and
 ./e:lastName='Smith'" />
 </bpelx:append>
</bpel:assign>

With the execution of both rename and append, the corresponding data looks as
follows:

<e:emp xsi:type="e:ManagerType">
 <e:firstName>Peter</e:firstName><e:lastName>Smith</e:lastName>
 <e:approvalLimit>2500</e:approvalLimit>
 <e:managing />
<e:emp>

bpelx:copyList
The bpelx:copyList extension in an assign activity enables a BPEL process to
perform a copyList operation of the contents of one variable, expression, or XML
fragment to another variable.

<bpel:assign>
 <bpelx:copyList>
 <bpelx:from ... />
 <bpelx:to ... />
 </bpelx:copyList>
</bpel:assign>

The from-spec query can yield a list of either all attribute nodes or all element nodes.
The to-spec query can yield a list of L-value nodes — either all attribute nodes or all
element nodes.

All the element nodes returned by the to-spec query must have the same parent
element. If the to-spec query returns a list of element nodes, all element nodes must
be contiguous.

If the from-spec query returns attribute nodes, then the to-spec query must return
attribute nodes. Likewise, if the from-spec query returns element nodes, then the
to-spec query must return element nodes. Otherwise, a
bpws:mismatchedAssignmentFailure fault is thrown.

The from-spec query can return zero nodes, while the to-spec query must return
at least one node. If the from-spec query returns zero nodes, the effect of the
copyList operation is similar to the remove operation.

The copylist operation provides the following features:

■ Removes all the nodes pointed to by the to-spec query

■ If the to-spec query returns a list of element nodes and there are leftover child
nodes after removal of those nodes, the nodes returned by the from-spec query
are inserted before the next sibling of the last element specified by the to-spec
query. If there are no leftover child nodes, an append operation is performed.

■ If the to-spec query returns a list of attribute nodes, those attributes are removed
from the parent element. Then, the attributes returned by the from-spec query
are appended to the parent element.

Validating XML Data with bpelx:validate

3-16 Oracle BPEL Process Manager Developer’s Guide

Validating XML Data with bpelx:validate
The bpelx:validate function enables you to verify code and identify invalid XML
data. Use this extension as follows:

■ With the validate attribute in an assign activity:

<assign bpelx:validate="yes|no">
...
</assign>

■ In <bpelx:validate> as a standalone extended activity that can be used
without an assign activity:

<bpelx:validate variables="NCNAMES" />

For example:

<bpelx:validate variables="myMsgVariable myPOElemVar" />

If you want to verify the validity of XML data, set the validateXML property to true in
the Manage BPEL Domain window of Oracle BPEL Control.

Manipulating XML Data Sequences That Use Arrays
Data sequences are one of the most basic data models used in XML. However,
manipulating them can be nontrivial. One of the most common data sequence patterns
used in BPEL processes are arrays. Based on the XML schema, the way you can
identify a data sequence definition is by its attribute maxOccurs being set to a value
of more than one or marked as unbounded. See the XML Schema Specification at
http://www.w3.org/TR for more information.

The examples in this section illustrate several basic ways of manipulating data
sequences in BPEL. However, there are other associated requirements, such as
performing looping or dynamic referencing of endpoints. For additional code samples
and further information regarding real-world use cases for data sequence
manipulation in BPEL, see http://www.oracle.com/technology/bpel.

Each of the following sections describes a particular requirement for data sequence
manipulation. For a code example that describes all data sequences, see
ArraySample.bpel, which takes a data sequence as input and loops through it,
adding together individual line items in each data sequence element into a total value.

Statically Indexing into an XML Data Sequence That Uses Arrays
The following two examples illustrate how to use XPath functionality to select a data
sequence element when the index of the element you want is known at design time. In
these cases, it is the first element.

In the following example, addresses[1] selects the first element of the addresses
data sequence:

<assign>
 <!-- get the first address and assign to variable address -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application

See Also: The ArraySample.bpel sample file located at:

■ SOA_Oracle_Home\bpel\samples\tutorials\112.Arrays

Manipulating XML Data Sequences That Use Arrays

Manipulating XML Data in BPEL 3-17

 /autoloan:customer/autoloan:addresses[1]"/>
 <to variable="address"/>
 </copy>
</assign>

In this query, addresses[1] is equivalent to addresses[position()=1], where
position is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path
Language (XPath) Specification). The query in the next example calls the position
function explicitly to select the first element of the addresses data sequence. It then
selects that address’s street element (which the activity assigns to the variable
street1).

<assign>
 <!-- get the first address's street and assign to street1 -->
 <copy>
 <from variable="input" part="payload"
 query="/tns:invalidLoanApplication/autoloan:application
 /autoloan:customer/autoloan:addresses[position()=1]
 /autoloan:street"/>
 <to variable="street1"/>
 </copy>
</assign>

If you review the definition of the input variable and its payload part in the WSDL file,
you go several levels down before coming to the definition of the addresses field.
There you see the maxOccurs="unbounded" attribute. The two XPath indexing
methods are functionally identical; you can use whichever method you prefer.

Determining Sequence Size
If you need to know the run-time size of a data sequence—that is, the number of nodes
or data items in the sequence—you can get it by using the combination of the XPath
built-in count() function and the BPEL built-in getVariableData() function.

This example calculates the number of elements in the item sequence and assigns it to
the integer variable lineItemSize:

<assign>
 <copy>
 <from expression="count(bpws:getVariableData(’outpoint’, ’payload’,
 '/p:invoice/p:lineItems/p:item')"/>
 <to variable="lineItemSize"/>
 </copy>
</assign>

Dynamically Indexing by Applying a Trailing XPath to an Expression
Often a dynamic value is needed to index into a data sequence—that is, you need to
get the nth node out of a sequence, where the value of n is defined at run time. This
section covers the following methods for dynamically indexing by applying a trailing
XPath into expressions:

See Also: The following sample:

■ SOA_Oracle_Home\bpel\samples\references\XPath

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\references\XPathFunction

Manipulating XML Data Sequences That Use Arrays

3-18 Oracle BPEL Process Manager Developer’s Guide

■ Dynamic Indexing Example

■ Using the bpelx:append Extension to Append New Items to a Sequence

■ Merging Data Sequences

■ Dynamically Indexing with the BPEL getElement Function

■ Generating Functionality Equivalent to an Array of an Empty Element

Dynamic Indexing Example
The dynamic indexing method shown here applies a trailing XPath to the result of
bwps:getVariableData(), instead of using an XPath as the last argument of
bpws:getVariableData(). The trailing XPath references to an integer-based index
variable within the position predicate (that is, [...]):

<variable name="idx" type="xsd:integer"/>
...
<assign>
 <copy>
 <from expression="bpws:getVariableData('input','payload'
)/p:line-item[bpws:getVariableData('idx')]/p:line-total" />
 <to variable="lineTotalVar" />
 </copy>
</assign>

Assume at run time that the idx integer variable holds 2 as its value. The preceding
expression within the from is equivalent to:

<from expression="bpws:getVariableData('input','payload'
)/p:line-item[2]/p:line-total" />

There are some subtle XPath usage differences, when an XPath used trailing behind
the bwps:getVariableData() function is compared with the one used inside the
function.

Using the same example (where payload is the message part of element
"p:invoice"), if the XPath is used within the getVariableData() function, the
root element name ("/p:invoice") must be specified at the beginning of the XPath.

For example:

bpws:getVariableData('input', 'payload',
'/p:invoice/p:line-item[2]/p:line-total')

If the XPath is used trailing behind the bwps:getVariableData()function, the root
element name does not need to be specified in the XPath.

For example:

bpws:getVariableData('input', 'payload')/p:line-item[2]/p:line-total

This is because the node returned by the getVariableData() function is already the
root element. Specifying the root element name again in the XPath is redundant and is
standard XPath semantics.

Using the bpelx:append Extension to Append New Items to a Sequence
The bpelx:append extension in an assign activity enables BPEL processes to
append new elements to an existing parent element:

 <assign name="assign-3">
 <copy>

Manipulating XML Data Sequences That Use Arrays

Manipulating XML Data in BPEL 3-19

 <from expression="bpws:getVariableData('idx')+1" />
 <to variable="idx"/>
 </copy>
 <bpelx:append>
 <bpelx:from variable="partInfoResultVar" part="payload" />
 <bpelx:to variable="output" part="payload" />
 </bpelx:append>
 ...
 </assign>

The bpelx:append logic in this example appends the payload element of the
partInfoResultVar variable as a child to the payload element of the output
variable. In others words, the payload element of output variable is used as the
parent element.

Merging Data Sequences
You can merge two sequences into a single data sequence. This pattern is common
when the data sequences are in an array (that is, the sequence of data items of
compatible types).

The following two append operations under assign demonstrate how to merge data
sequences:

<assign>
 <!-- initialize "mergedLineItems" variable
 to an empty element -->
 <copy>
 <from> <p:lineItems /> </from>
 <to variable="mergedLineItems" />
 </copy>
 <bpelx:append>
 <bpelx:from variable="input" part="payload"
 query="/p:invoice/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
 <bpelx:append>
 <bpelx:from variable="literalLineItems"
 query="/p:lineItems/p:lineitem" />
 <bpelx:to variable="mergedLineItems" />
 </bpelx:append>
</assign>

Dynamically Indexing with the BPEL getElement Function
If you do not want to use the two-step process of creating an XPath query to
dynamically index into a sequence, you can use the XPath function getElement

See Also: The following samples:

■ "Assign Activity" on page B-3 for details about using multiple
copies of this extension in a single assign activity

■ SOA_Oracle_
Home\bpel\samples\tutorials\126.DataAggregator\Ag
gregationTutorial

See Also: The ArraySample.bpel sample file located at:

■ SOA_Oracle_Home\bpel\samples\tutorials\112.Arrays

Manipulating XML Data Sequences That Use Arrays

3-20 Oracle BPEL Process Manager Developer’s Guide

instead. This function takes a sequence and an index (which can be a dynamic value,
such as a variable) and returns the appropriate sequence element.

<variable name="lineItemIndex" type="xsd:int"/>
...
<!-- execute the XPath extension function getElement(arrayOfElements[],
index) to fetch one element from an array of elements
-->
<assign>
 <copy>
 <from expression="ora:getElement('output', 'payload',
 '/invoice/lineItems/item',
 bpws:getVariableData('lineItemIndex'))"/>
 <to variable="myLineItem"/>
 </copy>
</assign>

Generating Functionality Equivalent to an Array of an Empty Element
The genEmptyElem function generates functionality equivalent to an array of an
empty element to an XML structure. This function takes the following arguments:

genEmptyElem('ElemQName',int?, 'TypeQName'?, boolean?)

Note the following issues:

■ The first argument specifies the QName of the empty elements.

■ The optional second integer argument specifies the number of empty elements. If
missing, the default size is 1.

■ The third optional argument specifies the QName, which is the xsi:type of the
generated empty name. This xsi:type pattern matches the SOAPENC:Array. If
it is missing or is an empty string, the xsi:type attribute is not generated.

■ The fourth optional Boolean argument specifies whether the generated empty
elements are XSI - nil, provided the element is XSD-nillable. The default value
is false. If missing or false, xsi:nil is not generated.

The following example shows an append statement initializing a purchase order (PO)
document with 10 empty <lineItem> elements under po:

<bpelx:assign>
 <bpelx:append>
 <bpelx:from expression="ora:genEmptyElem('p:lineItem',10)" />
 <bpelx:to variable="poVar" query="/p:po" />
 </bpelx:append>
</bpelx:assign>

The genEmptyElem function in this example can be replaced with an embedded
XQuery expression:

ora:genEmptyElem('p:lineItem',10)

Note: The XPath function getElement is being deprecated in a
future release.

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\references\XPathFunction

Converting from a String to an XML Element

Manipulating XML Data in BPEL 3-21

== for $i in (1 to 10) return <p:lineItem />

The empty elements generated by this function are typically invalid XML data. You
perform further data initialization after the empty elements are created. Using the
same example above, you can perform the following:

■ Add attribute and child elements to those empty lineItem elements.

■ Perform copy operations to replace the empty elements. For example, copy from a
Web service result to an individual entry in this equivalent array under a flowN
activity.

SOAP-Encoded Arrays Not Supported
Oracle BPEL Process Manager does not support SOAP-encoded arrays
(soapenc:arrayType).

Use one of the following workarounds:

■ Apache Axis supports document-literal style services. This means you can change
the service to not use soapenc:arrayType.

■ A wrapper can be placed around the service (also using Apache Axis) so that the
BPEL process talks to the document literal wrapper service, which in turn calls the
underlying service with soapenc:arrayType.

■ Call a service with soapenc:arrayType from BPEL, but construct the XML
message more manually in the BPEL code. This enables you to avoid changing or
wrapping the service. However, each time you want to call that service from BPEL,
you must take extra steps.

Converting from a String to an XML Element
Sometimes a service is defined to return a string, but the content of the string is
actually XML data. The problem is that, although BPEL provides support for
manipulating XML data (using XPath queries, expressions, and so on), this
functionality is not available if the variable or field is of type string. With Java, you use
document object model (DOM) functions to convert the string to a structured XML
object type. You can use the BPEL XPath function parseEscapedXML to do the same
thing. This function takes XML data, parses it through DOM, and returns structured
XML data that can be assigned to a typed BPEL variable. For example:

<!-- execute the XPath extension function
parseEscapedXML('<item>') and assign to a variable
-->
<assign>
 <copy>
 <from expression="ora:parseEscapedXML(
 '<item xmlns="http://samples.otn.com"
 sku="006">
 <description>sun ultra sparc VI server
 </description>
 <price>1000
 </price>
 <quantity>2
 </quantity>
 <lineTotal>2000
 </lineTotal>

See Also: "genEmptyElem" on page D-41

Differences Between Document-Style and RPC-Style WSDL Files

3-22 Oracle BPEL Process Manager Developer’s Guide

 </item>')"/>
 <to variable="escapedLineItem"/>
 </copy>
</assign>

Differences Between Document-Style and RPC-Style WSDL Files
The examples shown up to this point have been for document-style WSDL files, in
which a message is defined with an XML schema element, as in the following
example:

<message name="LoanFlowRequestMessage">
<part name="payload" element="s1:loanApplication"/>
</message>

This is in contrast to RPC-style WSDL files, in which the message is defined with an
XML schema type, as in:

<message name="LoanFlowRequestMessage">
<part name="payload" type="s1:LoanApplicationType"/>
</message>

This affects the material in this chapter because there is a difference in how XPath
queries are constructed for the two WSDL message styles. For an RPC-style message,
the top-level element (and therefore the first node in an XPath query string) is the part
name (payload in the previous example). In document-style, the top-level node is the
element name (for example, loanApplication).

The following example shows what an XPath query string looks like if the
LoanServices used in BPEL demo applications (such as LoanFlow) were RPC style.

RPC-Style WSDL File
<message name="LoanServiceResultMessage">
 <part name="payload" type="s1:LoanOfferType"/>
</message>

<complexType name="LoanOfferType">
 <sequence>
 <element name="providerName" type="string"/>
 <element name="selected" type="boolean"/>
 <element name="approved" type="boolean"/>
 <element name="APR" type="double"/>
 </sequence>
</complexType>

RPC-Style BPEL File
<variable name="output"
 messageType="tns:LoanServiceResultMessage"/>
...
<assign>
 <copy>
 <from expression="9.9"/>
 <to variable="output" part="payload" query="/payload/APR"/>
 </copy>

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\references\XPathFunction

Adding a Custom WSIF Provider

Manipulating XML Data in BPEL 3-23

</assign>

Adding a Custom WSIF Provider
You can add a custom WSIF provider to Oracle BPEL Process Manager by performing
the following tasks:

■ Task 1: Register the WSDL Extension to the WSDL Reader

■ Task 2: Register the WSIF Provider

Task 1: Register the WSDL Extension to the WSDL Reader
1. Create your WSDL extension object model by following the Java WSDL extension

included in the Apache WSIF package. An extensionRegistry class, such as
JavaExtensionRegistry.java in the WSIF Java package, is needed to register
the WSDL extension.

2. Create a SOA_Oracle_Home\bpel\system\classes\WSDLExtensions file if
it does not currently exist.

3. Add the name of the class on its own line in the file.

My.package.MyWSDLExtensionRegistry

This file is picked up by the WSDL reader and enables your custom WSDL
extension to be recognized when the WSDL is parsed.

Task 2: Register the WSIF Provider
1. Develop your custom WSIF provider by following the example of any providers

included with the Apache WSIF package.

2. Modify the wsif-providers entry in the SOA_Oracle_
Home\bpel\system\config\collaxa-config.xml file as follows:

 <property id="wsif-providers">
 <name>Custom WSIF providers for Oacle BPEL server</name>
 <value>provider-class-name</value>
 <comment>
 <![CDATA[The value should be a comma separated list of WSIF provider
 class names.]]>
 </comment>
 </property>

3. Start Oracle BPEL Server.

4. Go to Oracle BPEL Admin Console:

http://localhost:port/BPELAdmin/server.jsp

See Also: The following samples:

■ SOA_Oracle_
Home\bpel\samples\utils\AsyncLoanService
(LoanServices)

■ SOA_Oracle_
Home\bpel\samples\demos\LoanDemo\LoanFlow (BPEL
demo application)

Input and Output Message Header Handling

3-24 Oracle BPEL Process Manager Developer’s Guide

5. Log in as oc4jadmin/password when prompted.

6. Click the WSIF tab.

The loaded WSIF providers display in a table.

Input and Output Message Header Handling
Oracle BPEL Process Manager uses WSIF to call Web services. The WSIF API is simple
to invoke. When you invoke a Web service operation, you perform
operation.invoke(input, output).

However, input and output messages sometimes do not contain all the information
that is transferred over the transport layer. In this case, the WSIF API appears
oversimplified. However, WSIF provides a MessageContext that you can set to the
operation to perform. You can bind extra information (that is, SOAP headers and
HTTP headers) to the context; the WSIF provider can send this information to the
service.

Header Handlers
The following header handlers in the Web services invocation layer of Oracle BPEL
Process Manager are provided.

■ An inputHeaderHandler is invoked before calling the WSIF provider.

■ An outputHeaderHandler is invoked after calling the WSIF provider.

 Figure 3–1 shows this functionality.

Figure 3–1 Message Header Handler

The input and output handlers must implement the following interface.

public interface HeaderHandler {
 invoke(CXPartnerLink partnerLink,
 String operationName,
 Map payload,
 Map headers,
 Map callProps);
}

The payload is the input or output message. The header is a map that contains
messages that are used as SOAP headers.

BPEL Process

InputHeaderHandler OutputHeaderHandler

WSIF Provider

WSIF Invocation Layer

Input and Output Message Header Handling

Manipulating XML Data in BPEL 3-25

The partnerLink is the object model. The input header handler can get information
from the partnerLink and set it to the context. The output header handler can
extract information from the context and bind it to the partnerLink.

The following example shows the use of a RequestHeaderHandler:

public class MyTestRequestHeaderHandler {
 public void invoke(CXPartnerLink partnerLink, String operationName,
 Map payload, Map header, Map callProps)
 {
 System.out.println("in MyTestRequestHeaderHandler ...");
 Map httpHeaders = (Map) callProps.get("http-request-headers");
 if (httpHeaders == null)
 {
 httpHeaders = new HashMap();
 callProps.put("httpRequestHeaders", httpHeaders);
 }
 httpHeaders.put("myHeader1", partnerLink.getProperty("myHeader1"));
 httpHeaders.put("myHeader2", partnerLink.getProperty("myHeader2"));
 }
}

The header information bound to the context is still abstract in that it is transport
agnostic. The underlying WSIF provider must recognize this information from the
context and set and get it correctly in the transport layer.

Registering of Header Handlers
The registration of the header handlers is performed in the bpel.xml deployment
descriptor file:

<BPELSuitcase>
 <BPELProcess src="QuoteConsumer.bpel" id="QuoteConsumer">
 <partnerLinkBindings>
 <partnerLinkBinding name="client">
 <property name="wsdlLocation">QuoteConsumer.wsdl</property>
 </partnerLinkBinding>
 <partnerLinkBinding name="StockQuoteService">
 <property name="wsdlLocation">
 http://glennmi:9700/orabpel/default/StockQuoteService/StockQuoteServ
 ice?wsdl
 </property>
 <property name="requestHeaderHandlers">
 my.custom.MyRquestHeaderHandler
 </property>
 <property name="responseHeaderHandlers">
 my.custom.MyResponseHeaderHandler
 </property>
 </partnerLinkBinding>
 </partnerLinkBindings>
 <configurations>
 <!-- Optional property used to customize the BPEL console test form. -->
 <property name="testIntroduction">
 This sample shows how to use the BPEL invoke activity to invoke
 a synchronous stock quote service.
 </property>
 </configurations>
 </BPELProcess>
</BPELSuitcase>

Manipulating SOAP Headers in BPEL

3-26 Oracle BPEL Process Manager Developer’s Guide

Manipulation of partnerLink Properties
The headers are bound to the partnerLink. Some use cases require partnerLink
properties to be retrieved and set in the BPEL process. The partnerLink properties
are not described in the Business Process Execution Language for Web Services
Specification, but an extension can perform this task:

<process …>
 <assign>
 <copy>
 <from partnerLink="p1" bpelx:property="sessionId"/>
 <to partnerLink="p2" bpelx:property="sessionId"/>
 </copy>
 <copy>
 <from variable="var"/>
 <to partnerLink="p2" bpelx:property="sessionId"/>
 </copy>
 </BPELProcess>
</process>

Manipulating SOAP Headers in BPEL
BPEL's communication activities (invoke, receive, reply, and onMessage) receive and
send messages through specified message variables. These default activities permit
one variable to operate in each direction. For example, the invoke activity has
inputVariable and outputVariable attributes. You can specify one variable for
each of the two attributes. This is enough if the particular operation involved uses only
one payload message in each direction.

However, WSDL supports more than one message in an operation. In the case of
SOAP, multiple messages can be sent along the main payload message as SOAP
headers. However, BPEL's default communication activities cannot accommodate the
additional header messages.

Oracle BPEL Process Manager solves this problem by extending the default BPEL
communication activities with the bpelx:headerVariable extension. The extension
syntax is as follows:

<invoke bpelx:inputHeaderVariable="inHeader1 inHeader2 ..."
 bpelx:outputHeaderVariable="outHeader1 outHeader2 ..."
 .../>

<receive bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<onMessage bpelx:headerVariable="inHeader1 inHeader2 ..." .../>
<reply bpelx:headerVariable="inHeader1 inHeader2 ..." .../>

Receiving SOAP Headers in BPEL
This section provides an example of how to create BPEL and WSDL files to receive
SOAP headers.

1. Create a WSDL file that declares header messages and the SOAP binding that
binds them to the SOAP request.

<message name="MessageIDHeader">
 <part name="MessageID" element="wsa:MessageID"/>
 </message>
 <message name="ReplyToHeader">
 <part name="ReplyTo" element="wsa:ReplyTo"/>
 </message>

Manipulating SOAP Headers in BPEL

Manipulating XML Data in BPEL 3-27

 <!-- custom header -->
 <message name="CustomHeaderMessage">
 <part name="header1" element="tns:header1"/>
 <part name="header2" element="tns:header2"/>
 </message>

 <binding name="HeaderServiceBinding" type="tns:HeaderService">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate">
 <soap:operation style="document" soapAction="initiate"/>
 <input>
 <soap:header message="tns:ReplyToHeader" part="ReplyTo"
 use="literal"/>
 <soap:header message="tns:MessageIDHeader" part="MessageID"
 use="literal"/>
 <soap:header message="tns:CustomHeaderMessage"
 part="header1" use="literal"/>
 <soap:header message="tns:CustomHeaderMessage"
 part="header2" use="literal"/>
 <soap:body use="literal"/>
 </input>
 </operation>
 </binding>

2. Create a BPEL source file that declares the header message variables and uses
bpelx:headerVariable to receive the headers.

<variables> <variable name="input"
 messageType="tns:HeaderServiceRequestMessage"/>
 <variable name="event"
 messageType="tns:HeaderServiceEventMessage"/>
 <variable name="output"
 messageType="tns:HeaderServiceResultMessage"/>
 <variable name="customHeader"
 messageType="tns:CustomHeaderMessage"/>
 <variable name="messageID"
 messageType="tns:MessageIDHeader"/>
 <variable name="replyTo"
 messageType="tns:ReplyToHeader"/>
</variables>

<sequence>
 <!-- receive input from requestor -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:HeaderService" operation="initiate"
 variable="input"
 bpelx:headerVariable="customHeader messageID replyTo"
 createInstance="yes"/>

Sending SOAP Headers in BPEL
This section provides an example of how to send SOAP headers.

1. Define the partnerLinkBinding definition in bpel.xml to refer to the
HeaderService WSDL.

2. Define the custom header variable, manipulate it, and send it using
bpelx:inputHeaderVariable.

<variables>

Using Binary Attachments in SOAP Messages

3-28 Oracle BPEL Process Manager Developer’s Guide

 <variable name="input" messageType="tns:HeaderTestRequestMessage"/>
 <variable name="output" messageType="tns:HeaderTestResultMessage"/>
 <variable name="request" messageType="services:HeaderServiceRequestMessage"/>
 <variable name="response" messageType="services:HeaderServiceResultMessage"/>
 <variable name="customHeader"messageType="services:CustomHeaderMessage"/>
 </variables>
...
<!-- initiate the remote process -->
 <invoke name="invokeAsyncService"
 partnerLink="HeaderService"
 portType="services:HeaderService"
 bpelx:inputHeaderVariable="customHeader"
 operation="initiate"
 inputVariable="request"/>

Using Binary Attachments in SOAP Messages
There are two supported methods for transferring opaque data in a SOAP call:

■ Embedding data

This method embeds opaque data as element or attribute content. XML supports
opaque data as content through either base64 or hexadecimal text encoding. XML
schema's two binary data types, xs:base64Binary and xs:hexBinary, are
used with this method. Since the opaque data is converted to a basic XML schema
type, it can be manipulated like other XML data in a BPEL process in terms of
being assigned, sent, and received in standard BPEL activities.

Data encoded in base64 format expands by a factor of 1.33 times the original size.
Hexadecimal encoded data expands by a factor of 2 times. This is assuming an
underlying UTF-8 text encoding is used in both cases; if the underlying text
encoding used is UTF-16, these numbers double. To achieve better performance at
both the SOAP layer and BPEL execution layer, keep the original data as it is when
transferring it through SOAP. The second method described below, SOAP with an
attachment, provides a technique for doing this.

■ SOAP with an attachment

SOAP with an attachment can be achieved through use of HTTP with the
Multipurpose Internet Mail Extensions (MIME) or Direct Internet Message
Encapsulation (DIME) protocols. The SOAP envelope and opaque data are
wrapped in MIME or DIME sections.

The following example shows a message using SOAP with an attachment through
use of the MIME protocol. The attachment is passed by reference through use of an
identifying key, instead of being copied. Note that with MIME, the XML part and
the binary part must appear in separate parts. The XML part contains a reference
to the binary attachment part. This differs from DIME, which does not have this
restriction.

MIME-Version: 1.0
Content-Type: Multipart/Related; boundary=MIME_boundary;
 type=text/xml; start="<mymessage.xml@collaxa.com>"
Content-Description: A SOAP Envelope with pdf

--MIME_boundary
Content-Type: text/xml; charset=UTF-8
Content-Transfer-Encoding: 8bit
Content-ID: <mymessage.xml@collaxa.com>

Using Binary Attachments in SOAP Messages

Manipulating XML Data in BPEL 3-29

<s:Envelope xmlns:s='http://www.w3.org/2002/12/soap-envelope' >
 <s:Body>
 <m:applyLoan xmlns:m='http://samples.Collaxa.com/MIMEService' >
 <customerName>John Doe</customerName>
 <pdf data="1234567890" />
 </m:applyLoan>
 </s:Body>
</s:Envelope>

--MIME_boundary
Content-Type: application/pdf
Content-Transfer-Encoding: binary
Content-Location: 1234567890
fd a5 8a 29 aa 46 1b 24
--MIME_boundary

The binary data is still typed as base64binary or hexBinary. However, the
data remains in binary format through transporting and processing. There is no
overhead added with encoding and decoding.

Use Case: SOAP Message with Binary Attachment Using MIME
This section provides a use case and describes design implementation issues. You
cannot currently model a SOAP message with an attachment through Oracle
JDeveloper. You must manually edit the necessary BPEL and WSDL files.

In this use case:

■ The BPEL process acts as a service to receive and reply to a SOAP message with an
attachment.

■ The BPEL process acts as a client to send and receive a response to a SOAP
message with an attachment.

■ Binary data is assigned to another variable.

■ Binary data is read from a URL.

■ Binary data is saved to a local file.

Two BPEL processes are constructed:

■ MIMEService is essentially an echo service of a SOAP message with an
attachment. This process does the following:

– Receives a SOAP message with an attachment and saves the opaque data to a
local file.

Note: If you use large binary attachment files in SOAP messages
with Oracle Database Lite, your BPEL process may not complete
processing, which can cause you to run out of system memory. Oracle
Database Lite is largely for testing purposes. To use large binary
attachment files in SOAP messages, use an Oracle Database as your
dehydration store.

See Also:

■ SOA_Oracle_Home\bpel\samples\demos\Attachment for
demonstrations of using SOAP with an attachment through
MIME and DIME

Using Binary Attachments in SOAP Messages

3-30 Oracle BPEL Process Manager Developer’s Guide

– Assigns the opaque data to an output variable.

– Uses the output variable to reply to a SOAP message with an attachment to
the invoker.

■ MIMERequester is the client of the first service. This process does the following:

– Reads the binary data from a URL and assigns it to a variable.

– Uses the variable as input to perform an invoke on the first process.

– Receives a SOAP message with an attachment.

WSDL File Contents
The following WSDL file defines MIMEService. This file uses the WSDL binding
MIME extension to define the SOAP message with an attachment.

<?xml version="1.0" encoding="UTF-8"?>
<definitions
. . .
. . .
 <types>
 . . .
 . . .
 <schema xmlns="http://www.w3.org/2001/XMLSchema">
 <import namespace="http://schemas.xmlsoap.org/ws/2003/03/addressing"
 schemaLocation="http://gmi-pc:9700/orabpel/xmllib/ws-addressing.xsd" />
 </schema>
 </types>

 <message name="ReplyToHeader">
 <part name="ReplyTo" element="wsa:ReplyTo" />
 </message>
 <message name="MessageIDHeader">
 <part name="MessageID" element="wsa:MessageID" />
 </message>
 <message name="RelatesToHeader">
 <part name="RelatesTo" element="wsa:RelatesTo" />
 </message>
 <message name="MIMEServiceRequestMessage">
 <part name="payload" type="xsd:int"/>
 <part name="bin" type="xsd:anyType"/>
 </message>
<message name="MIMEServiceResponseMessage">
 <part name="payload" type="xsd:int"/>
 <part name="bin" type="xsd:anyType"/>
 </message>

 <portType name="MIMEService">
 <operation name="initiate">
 <input message="tns:MIMEServiceRequestMessage"/>
 </operation>
 <operation name="process">
 <input message="tns:MIMEServiceRequestMessage"/>
 <output message="tns:MIMEServiceResponseMessage"/>
 </operation>
 </portType>
 <portType name="MIMEServiceCallback">
 <operation name="onResult">
 <input message="tns:MIMEServiceResponseMessage"/>
 </operation>

Using Binary Attachments in SOAP Messages

Manipulating XML Data in BPEL 3-31

 </portType>

 <binding name="MIMEServiceBinding" type="tns:MIMEService">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="initiate">
 <soap:operation style="rpc" soapAction="initiate"/>
 <input>
 <mime:multipartRelated>
 <mime:part>
 <soap:header message="tns:MessageIDHeader"
 part="MessageID" use="literal"/>
 <soap:header message="tns:ReplyToHeader"
 part="ReplyTo" use="literal"/>
 <soap:body parts="payload" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="bin" type="binary"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 </operation>
 <operation name="process">
 <soap:operation style="rpc" soapAction="process"/>
 <input>
 <mime:multipartRelated>
 <mime:part>
 <soap:header message="tns:RelatesToHeader"
 part="RelatesTo" use="literal"/>
 <soap:body parts="payload" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="bin" type="binary"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 <output>
 <mime:multipartRelated>
 <mime:part>
 <soap:body parts="payload" use="literal"/>
 </mime:part>
 <mime:part>
 <mime:content part="bin" type="binary"/>
 </mime:part>
 </mime:multipartRelated>
 </output>
 </operation>
 </binding>
 <binding name="MIMEServiceCallbackBinding" type="tns:MIMEServiceCallback">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="onResult">
 <soap:operation style="rpc" soapAction="onResult"/>
 <input>
 <mime:multipartRelated>
 <mime:part>
 <soap:header message="tns:RelatesToHeader"
 part="RelatesTo" use="literal"/>
 <soap:body use="literal" />
 </mime:part>

Using Binary Attachments in SOAP Messages

3-32 Oracle BPEL Process Manager Developer’s Guide

 <mime:part>
 <mime:content part="bin" type="binary"/>
 </mime:part>
 </mime:multipartRelated>
 </input>
 </operation>
 </binding>

 <plnk:partnerLinkType name="MIMEService">
 <plnk:role name="MIMEServiceProvider">
 <plnk:portType name="tns:MIMEService"/>
 </plnk:role>
 <plnk:role name="MIMEServiceRequester">
 <plnk:portType name="tns:MIMEServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>
</definitions>

In this WSDL, the schema type of the binary data is xsd:anyType. This ensures that
payload validation is successful when using xsd:anyType with either MIME or
DIME data.

BPEL File Contents
The MIMERequester.bpel file shows how to use binary data in BPEL:

<process . . .
. . .
. . .
 <sequence>
 <!-- receive input from requestor -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:MIMERequester"
 operation="initiate" variable="input"
 createInstance="yes"/>

 <!-- initialize the input of MIMEService -->
 <assign>
 <copy>
 <from variable="input" part="payload" query="/tns:value"/>
 <to variable="request" part="payload" query="/payload"/>
 </copy>
 <copy>
 <from expression="ora:readBinaryFromFile('request.bin')"/>
 <to variable="request" part="bin"/>
 </copy>
 </assign>
 <invoke name="invoke" partnerLink="MIMEService"
 portType="services:MIMEService"
 operation="initiate" inputVariable="request"/>

 <receive name="receive" partnerLink="MIMEService"
 portType="services:MIMEServiceCallback"
 operation="onResult" variable="response"/>
 <assign>
 <copy>
 <from variable="response" part="payload" query="/payload"/>
 <to variable="request" part="payload" query="/payload"/>
 </copy>
 <copy>
 <from expression="ora:writeBinaryToFile('response', 'bin',

Using Binary Attachments in SOAP Messages

Manipulating XML Data in BPEL 3-33

 'C:/Temp/response.bin')"/>
 <to variable="response" part="bin"/>
 </copy>
 <copy>
 <from expression="ora:readBinaryFromFile('request2.bin')"/>
 <to variable="request" part="bin"/>
 </copy>
 </assign>
 <invoke name="invoke" partnerLink="MIMEService"
 portType="services:MIMEService"
 operation="process" inputVariable="request"
 outputVariable="response"/>
 <assign>
 <copy>
 <from variable="response" part="payload" query="/payload"/>
 <to variable="output" part="payload" query="/tns:result"/>
 </copy>
 <copy>
 <from expression="ora:writeBinaryToFile('response', 'bin',
 'C:/Temp/response2.bin')"/>
 <to variable="response" part="bin"/>
 </copy>
 </assign>
<!-- respond output to requestor -->
 <invoke name="replyOutput" partnerLink="client"
 portType="tns:MIMERequesterCallback"
 operation="onResult" inputVariable="output"/>
 </sequence>
</process>

In this example, XPath extension function ora:readBinaryFromFile() reads the
binary file and ora:writeBinaryToFile() writes the binary content to a file.

The binary data can be assigned to another variable like a normal XML document by
using the standard BPEL assign activity. The BPEL assign activity is extended here to
accommodate the binary data.

Java Client Using SAAJ
MIMEService can be accessed from a Java client. There are two access options:

■ Java API for XML-Based RPC (JAX-RPC)

■ SOAP with Attachments API Java (SAAJ)

Example 3–1 uses Axis’ implementation of SAAJ to invoke MIMEService. This
example is used to unit test the interoperability of the created service. The sample
request sent by this example is shown in Example 3–2 on page 3-35.

Example 3–1 SAAJ Example

public boolean initiateUsingSAAJ(String filename) throws Exception {
 String endPointURLString = "http://localhost:" +opts.getPort() +
 "/orabpel/default/MIMEService/1.0";

 SOAPConnectionFactory soapConnectionFactory =
 javax.xml.soap.SOAPConnectionFactory.newInstance();
 SOAPConnection soapConnection =
 soapConnectionFactory.createConnection();

 MessageFactory messageFactory =

Using Binary Attachments in SOAP Messages

3-34 Oracle BPEL Process Manager Developer’s Guide

 MessageFactory.newInstance();
 SOAPMessage soapMessage =
 messageFactory.createMessage();
 MimeHeaders hd = soapMessage.getMimeHeaders();
 hd.addHeader("SOAPAction", "initiate");

 SOAPPart soapPart = soapMessage.getSOAPPart();
 SOAPEnvelope requestEnvelope =
 soapPart.getEnvelope();
 SOAPBody body = requestEnvelope.getBody();
 SOAPBodyElement operation = body.addBodyElement
 (requestEnvelope.createName("initiate"));

 Vector dataHandlersToAdd = new Vector();
 dataHandlersToAdd.add(new DataHandler(new FileDataSource(new
 File(filename))));

 javax.xml.soap.SOAPElement element1 =
 operation.addChildElement(requestEnvelope.createName("payload"));
 element1.addTextNode("1");

 if (dataHandlersToAdd != null) {
 ListIterator dataHandlerIterator =
 dataHandlersToAdd.listIterator();

 while (dataHandlerIterator.hasNext()) {
 DataHandler dataHandler = (DataHandler)
 dataHandlerIterator.next();
 javax.xml.soap.SOAPElement element =
 operation.addChildElement(requestEnvelope.createName("bin"));
 javax.xml.soap.AttachmentPart attachment =
 soapMessage.createAttachmentPart(dataHandler);
 soapMessage.addAttachmentPart(attachment);
 element.addAttribute(requestEnvelope.createName
 ("href"), "cid:" + attachment.getContentId());
 }
 }
 javax.xml.soap.SOAPMessage returnedSOAPMessage =
 soapConnection.call(soapMessage, endPointURLString);
 if (returnedSOAPMessage == null)
 return true;
 Iterator iterator = returnedSOAPMessage.getAttachments();
 if (!iterator.hasNext()) {
 //The wrong type of object that what was expected.
 System.out.println("Received problem response from server");
 throw new AxisFault("", "Received problem response from server", null,
 null);

 }
 //Still here, so far so good.
 //Now lets brute force compare the source attachment
 // to the one we received.

 DataHandler rdh = (DataHandler)
 ((AttachmentPart)iterator.next()).getDataHandler();

 //From here we'll just treat the data resource as file.
 String receivedfileName = rdh.getName();//Get the filename.

 if (receivedfileName == null) {

Using Binary Attachments in SOAP Messages

Manipulating XML Data in BPEL 3-35

 System.err.println("Could not get the file name.");
 throw new AxisFault("", "Could not get the file name.", null, null);
 }

 System.out.println("Going to compare the files..");
 boolean retv = compareFiles(filename, receivedfileName);

 java.io.File receivedFile = new java.io.File(receivedfileName);
 receivedFile.delete();

 return retv;
 }
}

Example 3–2 shows the sample request sent by the SAAJ program:

Example 3–2 Sample Request

POST /orabpel/default/MIMEService/1.0 HTTP/1.0Content-Type: multipart/related;
 type="text/xml"; start="<F090DFD56421FD84AAF98C386AD50A44>"; boundary="----=_
Part_0_27211574.1133404205718"Accept: application/soap+xml, application/dime,
 multipart/related, text/*User-Agent: Axis/1.2.1Host: gmi-pc:1234Cache-Control:
 no-cachePragma: no-cacheSOAPAction: "initiate"Content-Length: 9307------=_Part_0_
27211574.1133404205718Content-Type: text/xml;
 charset=UTF-8Content-Transfer-Encoding: binaryContent-Id:
 <F090DFD56421FD84AAF98C386AD50A44><?xml version="1.0"
 encoding="UTF-8"?><soapenv:Envelope
 xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"><soapenv:Body><initiate
 xmlns=""><payload xmlns="">1</payload><bin
 href="cid:1A744998BA8527BD121CAE96C022109F"
 xmlns=""/></initiate></soapenv:Body></soapenv:Envelope>------=_Part_0_
27211574.1133404205718Content-Type:
 application/octet-streamContent-Transfer-Encoding: binaryContent-Id:
 <1A744998BA8527BD121CAE96C022109F>
.....................

Displaying the Attachment Key for Binary Attachments Using the DIME Protocol in
Oracle BPEL Control

The optSoapShortcut parameter value defaults to true in Oracle BPEL Control. This
setting causes BPEL processes with SOAP message binary attachments that use the
Direct Internet Message Encapsulation (DIME) protocol to not display their attachment

See Also: The following documentation:

■ http://www.xml.com/pub/a/2003/02/26/binaryxml.html
 for XML, SOAP, and Binary Data

■ http://msdn.microsoft.com/msdnmag/issues/02/12/DIME
/default.aspx for DIME: Sending Files, Attachments, and SOAP
Messages Via Direct Internet Message Encapsulation

■ http://gotdotnet.com/team/xml_
wsspecs/dime/WSDL-Extension-for-DIME.htm for WSDL
Extension for SOAP in DIME

■ http://www.w3.org/TR/wsdl.html for Web Services
Description Language (WSDL) Specification 1.1

Summary

3-36 Oracle BPEL Process Manager Developer’s Guide

key in the Oracle BPEL Control audit trail for the process instance. This is because the
binary attachment file is not saved to the dehydration database. Instead, an HTML file
displays in the audit trail. For example:

<PutCompanyInfo>
. . .
. . .
<report href="C:\orabpel\domains\default\tmp\.bpel_DIMERequester_
1.0.jar\report.html"
/>
</PutCompanyInfo>

As a workaround, set optSoapShortcut to false in Oracle BPEL Control. This enables
the file to be saved to the dehydration store and the attachment key to display in the
audit trail for the instance (instead of the HTML file). Copy and paste the attachment
key into the Attachment Key field at the bottom of the audit trail window and click
download to save it as a file for viewing. If you do this, note that the File Download
message initially prompts you to save the attachment key as a JSP file type. Instead,
save the file as an HTML file type.

Summary
This chapter provides an overview of the role of XML data in BPEL processes,
including describing the large role that XPath expressions play in manipulating XML
data.

Invoking a Synchronous Web Service 4-1

4
Invoking a Synchronous Web Service

Synchronous Web services provide an immediate response to a query. BPEL can
connect to synchronous Web services through a partner link, send data, and then
receive the reply using a synchronous callback.

This chapter contains the following topics:

■ Use Case for Synchronous Web Services

■ Overview of Synchronous Service Concepts

■ Calling a Synchronous Service

■ Summary

Use Case for Synchronous Web Services
Using synchronous Web services is demonstrated in 104.SyncQuoteConsumer. This
sample shows a BPEL process sending a stock code to a Web service and receiving a
stock quote in return. It examines how synchronous functionality is defined in the
stock quote Web service’s CreditRatingService.wsdl file (the Web service to be
called) and the client’s QuoteConsumer.bpel file and bpel.xml deployment
description file.

This chapter demonstrates how to establish a partner link and set up a synchronous
callback. It discusses the components necessary to perform a synchronous callback,
examines how these components are coded, and shows how to set up a synchronous
callback.

See Also: The following files are used as examples in this chapter.

■ SOA_Oracle_
Home\bpel\samples\tutorials\104.SyncQuoteConsumer\bpel
\QuoteConsumer.bpel

■ SOA_Oracle_
Home\bpel\samples\tutorials\104.SyncQuoteConsumer\bpel
\bpel.xml

■ SOA_Oracle_
Home\bpel\samples\tutorials\104.SyncQuoteConsumer\bpel
\QuoteConsumer.wsdl

■ SOA_Oracle_
Home\bpel\samples\utils\104.StockQuoteService\bpel\Sto
ckQuoteService.wsdl

Overview of Synchronous Service Concepts

4-2 Oracle BPEL Process Manager Developer’s Guide

Overview of Synchronous Service Concepts
A synchronous callback requires the following components:

■ Partner link: Defines the location and the role of the Web services that the BPEL
process connects to in order to perform tasks, as well as the variables used to carry
information between the Web service and the BPEL process. A partner link is
required for each Web service that the BPEL process calls.

■ Invoke activity: Opens a port in the BPEL process to send and receive data. It uses
this port to submit the required data and receive the response. In the credit rating
service example, the invoke activity submits the stock code entered by the
customer to the stock quote service and receives a stock quote in return. For
synchronous callbacks, only one port is needed for both the send and receive
functions.

Each domain has the attribute syncMaxWaitTime. This attribute has a default of 45
seconds, but can be reconfigured by the domain administrator. If the BPEL process
does not receive a reply within the specified time, then the activity fails.

Establishing the Partner Link
This section covers the following topics:

■ Defining the Partner Link in the BPEL Code

■ Using the WSDL File to Enable the Web Services to Work with a BPEL Process

■ Performing Lookups for Services that Use Partner Links

■ Accessing Web Services on Remote Servers

Defining the Partner Link in the BPEL Code
In the BPEL code, the partner link defines the link name and type, and the role of the
BPEL process in interacting with the partner service.

From the BPEL source code, the StockQuoteService partner link definition is as
follows:

<partnerLinks>
 <!--
 The 'client' role represents the requester of this service. It is
 used for callback. The location and correlation information associated
 with the client role are automatically set using WS-Addressing.
 -->
 <partnerLink name="client" partnerLinkType="samples:QuoteConsumer"
 myRole="QuoteConsumerProvider" partnerRole="QuoteConsumerRequester"/>
 <partnerLink
name="StockQuoteService"partnerLinkType="services:StockQuoteService"
 partnerRole="StockQuoteServiceProvider"/>
</partnerLinks>

Following the partner link are global variable definitions that are accessible
throughout the BPEL process. The types for these variables are defined in the WSDL
for the process itself.

<variables>
 <!-- Reference to the message passed as input during initiation -->
 <variable name="input" messageType="tns:QuoteConsumerRequestMessage"/>

See Also: Oracle Application Server Performance Guide for additional
details about syncMaxWaitTime

Overview of Synchronous Service Concepts

Invoking a Synchronous Web Service 4-3

 <!-- Reference to the message that will be sent back to the
 requestor during callback
 -->
 <variable name="output" messageType="tns:QuoteConsumerResultMessage"/>
 <variable name="request" messageType="services:StockQuoteServiceRequest"/>
 <variable name="response" messageType="services:StockQuoteServiceResponse"/>
</variables>

The WSDL file defines the interface to your BPEL process—the messages that it
accepts and returns, operations that are supported, and other parameters.

Using the WSDL File to Enable the Web Services to Work with a BPEL Process
The Web service’s QuoteConsumer.wsdl file contains two sections that enable it to
work with BPEL processes:

■ partnerLinkType Section of the QuoteConsumer.wsdl File

■ portType Section of the QuoteConsumer.wsdl File

partnerLinkType Section of the QuoteConsumer.wsdl File
The partnerLinkType section of the QuoteConsumer.wsdl file defines the
following characteristics of the conversion between a BPEL process and the loan
application approver Web service:

■ The role (operation) played by each

■ The portType provided by each for receiving messages within the context of the
conversation

<!--
 PartnerLinkType definition
 -->
 <!-- the QuoteConsumer partnerLinkType binds the service and
 requestor portType into an asynchronous conversation.
 -->
 <plnk:partnerLinkType name="QuoteConsumer">
 <plnk:role name="QuoteConsumerProvider">
 <plnk:portType name="tns:QuoteConsumer"/>
 </plnk:role>
 <plnk:role name="QuoteConsumerRequester">
 <plnk:portType name="tns:QuoteConsumerCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

portType Section of the QuoteConsumer.wsdl File
A port type is a collection of related operations implemented by a participant in a
conversation. A port type defines what information is passed back and forth, the form
of that information, and so forth. A synchronous callback requires only one port type
that both sends a request and receives the response, while an asynchronous callback
(one where the reply is not immediate) requires two port types, one to send the
request, and another to receive the reply when it arrives.

View the portType section of the QuoteConsumer.wsdl file. This is the stock quote
Web service to which the client submits the stock code that the customer has entered.

<!--
 PortType definition
 -->

 <!-- portType implemented by the QuoteConsumer BPEL process -->

Overview of Synchronous Service Concepts

4-4 Oracle BPEL Process Manager Developer’s Guide

 <portType name="QuoteConsumer">
 <operation name="initiate">
 <input message="tns:QuoteConsumerRequestMessage"/>
 </operation>
 </portType>

 <!-- portType implemented by the requester of QuoteConsumer BPEL process
 for asynchronous callback purposes
 -->
 <portType name="QuoteConsumerCallback">
 <operation name="onResult">
 <input message="tns:QuoteConsumerResultMessage"/>
 </operation>
 </portType>

Synchronous services have one port type. The port initiates the synchronous process
and calls back the client with the response. In this example, the portType
CreditRatingService receives the stock code and returns the stock quote.

Performing Lookups for Services that Use Partner Links
A Universal Description, Discovery, and Integration (UDDI) browser is provided for
looking up services when creating a partner link. Web Services Inspection Language
(WSIL) and UDDI assist in the publishing and discovery of services.

UDDI is a Web-based distributed directory that enables businesses to list themselves
on the Internet and discover each other, similar to a traditional phone book’s yellow
and white pages. The specification provides a high level of functionality through the
sample object access protocol (SOAP) by specifically requiring an infrastructure to be
deployed.

WSIL approaches service discovery in a decentralized fashion, where service
description information can be distributed to any location using a simple extensible
XML document format. Unlike UDDI, it is not concerned with business entity
information, nor does it specify a particular service description format. WSIL works
under the assumption that you are already familiar with the service provider, and
relies on other service description mechanisms such as WSDL.

To access this registry when creating a partner link, you must first create a connection
to the UDDI registry:

1. Right-click UDDI Registry in the Connection Navigator of Oracle JDeveloper.

2. Select New UDDI Registry Connection.

3. Follow the wizard steps to create a connection.

Accessing Web Services on Remote Servers
When creating a partner link, you can also select Web services on remote servers. To
specify the remote location, edit

SOA_Oracle_Home\bpel\system\services\install\config\inspection.wsil

The Web service is then accessible from Oracle JDeveloper. Click the Service Explorer
icon when creating a partner link on the Create Partner Link window. This displays
the Service Explorer window, which enables you to select the remote Web service.

See Also: "PartnerLink" on page B-36

Calling a Synchronous Service

Invoking a Synchronous Web Service 4-5

Using the Invoke Activity to Perform a Request
The invoke activity includes the request global input variable defined in the
variables section. The credit rating Web service uses this request global input
variable. This variable contains the customer’s social security number. The response
variable contains the credit rating returned by the credit rating service.

<sequence>
<!-- Receive input from requestor. Note: This maps to operation defined in
QuoteConsumer.wsdl
-->
<receive name="receiveInput" partnerLink="client" portType="samples:QuoteConsumer"
operation="initiate" variable="input" createInstance="yes"/>
<assign>
<copy>
<from variable="input" part="payload" query="/tns:symbol"/>
<to variable="request" part="symbol" query="/symbol"/>
</copy>
</assign>
<!-- Generate content of output message based on the content of the input message.
-->
<invoke name="invokeStockQuoteService" partnerLink="StockQuoteService"/>
<assign>
<copy>
<from variable="response" part="result" query="/result"/>
<to variable="output" part="payload" query="/tns:result"/>
</copy>
</assign>
<!-- Asynchronous callback to the requester. Note: the callback location and
correlation id is transparently handled using WS-addressing. -->
<invoke name="replyOutput" partnerLink="client"
portType="samples:QuoteConsumerCallback" operation="onResult"
inputVariable="output"/>
</sequence>

Calling a Synchronous Service
This section examines a synchronous callback operation using the
QuoteConsumer.bpel file. For a more step-by-step approach, see
http://www.oracle.com/technology/bpel and download the files under
Training Material.

Figure 4–1 shows the diagram of the QuoteConsumer.bpel file, which defines a
simple application with five activities.

See Also: "Invoke Activity" on page B-14

Calling a Synchronous Service

4-6 Oracle BPEL Process Manager Developer’s Guide

Figure 4–1 Diagram of QuoteConsumer.bpel

The following actions take place:

1. The receiveInput receive activity receives input from the user (client), as defined
in the QuoteConsuter.wsdl file.

2. The first assign activity packages the data from the client so that it can be accepted
by the invokeStockQuote service.

3. The invokeStockQuoteService activity sends the repackaged data to the
StockQuoteService service and receives a response.

4. A second assign activity repackages this response into a replyOutput activity so
that it can be accepted by the client application.

5. The replyOutput activity sends the repackaged response back to the client.

The following BPEL code performs the synchronous callback:

<assign>
 <copy>
 <from variable="input" part="payload" query="/tns:symbol"/>
 <to variable="request" part="symbol" query="/symbol"/>
 </copy>
</assign>
<invoke name="invokeStockQuoteService" partnerLink="StockQuoteService"
 portType="services:StockQuoteService" operation="process"
 inputVariable="request" outputVariable="response"/>

Summary

Invoking a Synchronous Web Service 4-7

<!-- Generate content of output message based on the content of the input message.
-->
 <assign>
 <copy>
 <from variable="response" part="result" query="/result"/>
 <to variable="output" part="payload" query="/tns:result"/>
 </copy>
 </assign>

Summary
This chapter describes the concepts for a BPEL process that invokes a synchronous
Web service and adds a partner link. This service takes a stock code as input from a
client and synchronously returns a stock quote.

Summary

4-8 Oracle BPEL Process Manager Developer’s Guide

Invoking an Asynchronous Web Service 5-1

5
Invoking an Asynchronous Web Service

This chapter describes how to call an asynchronous Web service. Asynchronous
messaging styles are very useful for environments in which a service, such as a loan
processor, can take a long time to process a client request. Asynchronous services also
provide a more reliable fault-tolerant and scalable architecture than synchronous
services.

This chapter contains the following topics:

■ Use Case for Asynchronous Web Services

■ Overview of Asynchronous Callback Concepts

■ Calling an Asynchronous Service

■ Using Correlation Sets in an Asynchronous Service

■ Summary

Use Case for Asynchronous Web Services
United Loan publishes an asynchronous Web service that processes a client’s loan
application request and then returns a loan offer. This use case discusses how to
integrate a BPEL process with this asynchronous loan application approver Web
service.

This use case illustrates the key design concepts for requesting information from an
asynchronous service, and then receiving the response. The asynchronous United
Loan service in this example is another BPEL process. However, the same BPEL call
can interact with any properly designed Web service. The target Web service WSDL
file contains the information necessary to request and receive the desired information.

Figure 5–1 provides an overview of how this BPEL process works with the
asynchronous loan processor Web service.

Use Case for Asynchronous Web Services

5-2 Oracle BPEL Process Manager Developer’s Guide

Figure 5–1 Asynchronous Service Invocation

For the asynchronous Web service, which is indicated within the dotted rectangle
between the BPEL process’s receive and reply activities, the following actions take
place:

1. An assign activity (prepare LoanApp) prepares the loan application.

2. An invoke activity (initiate service) initiates the loan request. The contents of this
request are put into a request variable. This request variable is sent to the
asynchronous loan processor Web service.

When the loan request is initiated, a correlation ID unique to the client and partner
link initiating the request is also sent to the loan processor Web service. The
correlation ID ensures that the correct loan offer response is returned to the
corresponding loan application requester.

3. The loan processor Web service then sends the correct response to the receive
activity (Wait for callback), which has been tracked by the correlation ID.

4. An assign activity (Read offer) reads the loan application offer.

The remaining sections in this chapter provide specific details about the asynchronous
functionality shown in Figure 5–1.

Async
Loan

Processor
Service

WSDL

d3

d4

Deployment Descriptor
(bpel.xml)

BPEL Process

<receive>

WSDL
Client

PartnerLink

prepare
loanApp
<assign>

Initiate
service

<invoke>

Wait for
callback

<receive>

Read
offer

<assign>

Oracle
BPEL

 Control

Client
Application

<reply>

Input
<variable>

Output
<variable>

Response
<variable>

Request
<variable>

d1

d2

LoanService
PartnerLink

Initiate Port

Callback Port

Dehydration Point
For scalability and reliability,
in-flight instances are pushed
to DB until callback is received

Overview of Asynchronous Callback Concepts

Invoking an Asynchronous Web Service 5-3

Overview of Asynchronous Callback Concepts
This section examines how asynchronous functionality is defined in the loan
application approver Web service’s LoanService.wsdl file (the Web service to be
called) and the client’s LoanBroker.bpel file and bpel.xml deployment
description file. It covers the following topics:

■ partnerLinkTypes for Asynchronous Services

■ Calling the Service from BPEL

■ How the Invoke and Receive Activities Work

■ Managing Multiple Active BPEL Process Instances Using Correlation Methods

■ Using the Reply Activity to Send Messages in Response to a Receive Activity

■ Using Dehydration Points to Maintain Long-Running Asynchronous Processes

partnerLinkTypes for Asynchronous Services
The following sections in the Web service’s LoanService.wsdl file enable it to work
with BPEL processes:

■ portType Section of the LoanService.wsdl File

■ partnerLinkType Section of the LoanService.wsdl File

portType Section of the LoanService.wsdl File
The portType section of the LoanService.wsdl file defines the ports to be used for
the asynchronous service.

Asynchronous services have two port types. Each port type performs a one-way
operation: one port type initiates the asynchronous process and the other calls back the
client with the asynchronous response. In this example, the portType LoanService
receives the client’s loan application request and the portType
LoanServiceCallback asynchronously calls back the client with the loan offer
response.

See Also: The following sample file for examples of an asynchronous
Web service that is not a BPEL process:

■ SOA_Oracle_
Home\bpel\samples\interop\axis\BPELCallingAsyncAXIS

See Also: The following files are used as examples in this chapter.

■ SOA_Oracle_
Home\bpel\samples\utils\AsyncLoanService\LoanServic
e.wsdl

■ SOA_Oracle_
Home\bpel\samples\tutorials\105.AsyncCompositeLoanB
roker\bpel\LoanBroker.bpel

■ SOA_Oracle_
Home\bpel\samples\tutorials\105.AsyncCompositeLoanB
roker\bpel\bpel.xml

See Also: "PartnerLink" on page B-36

Overview of Asynchronous Callback Concepts

5-4 Oracle BPEL Process Manager Developer’s Guide

 <!-- portType implemented by the LoanService BPEL process -->
 <portType name="LoanService">
 <operation name="initiate">
 <input message="tns:LoanServiceRequestMessage"/>
 </operation>
 </portType>

 <!-- portType implemented by the requester of LoanService BPEL process
 for asynchronous callback purposes
 -->
 <portType name="LoanServiceCallback">
 <operation name="onResult">
 <input message="tns:LoanServiceResultMessage"/>
 </operation>
 </portType>

partnerLinkType Section of the LoanService.wsdl File
The partnerLinkType section of the LoanService.wsdl file defines the following
characteristics of the conversation between the BPEL process and the loan application
approver Web service:

■ The role (operation) played by each

■ The portType provided by each for receiving messages within the context of the
conversation

Partner link types in asynchronous services have two roles: one for the Web service
provider and one for the client requester.

In this conversation, the LoanServiceProvider role and LoanService portType
are used for client request messages and the LoanServiceRequester role and
LoanServiceCallback portType are used for asynchronously returning (calling
back) response messages to the client.

<!-- the LoanService partnerLinkType binds the service and
 requestor portType into an asynchronous conversation.
 -->
 <plnk:partnerLinkType name="LoanService">
 <plnk:role name="LoanServiceProvider">
 <plnk:portType name="tns:LoanService"/>
 </plnk:role>
 <plnk:role name="LoanServiceRequester">
 <plnk:portType name="tns:LoanServiceCallback"/>
 </plnk:role>
 </plnk:partnerLinkType>

Two port types are combined into this single asynchronous BPEL process:
portType="services:LoanService" of the invoke activity and
portType="services:LoanServiceCallback" of the receive activity. Port
types are essentially a collection of operations to be performed. For this BPEL process,
there are two operations to perform: initiate in the invoke activity and onResult
in the receive activity.

Calling the Service from BPEL
To call the service from BPEL, you need the following files to define how the process
interfaces with the Web service:

Overview of Asynchronous Callback Concepts

Invoking an Asynchronous Web Service 5-5

■ Partner Links Section in the .bpel File

■ Deployment Descriptor File

Partner Links Section in the .bpel File
View the partnerLinks section of the LoanBroker.bpel file. The services with
which a process interacts are designed as partner links. Each partner link is
characterized by a partnerLinkType.

Each partner link is named. This name is used for all service interactions through that
partner link. This is critical in correlating responses to different partner links for
simultaneous requests of the same type.

Asynchronous processes use a second partner link for the callback to the client. In this
example, the second partner link, LoanService, is used by the loan application
approver Web service.

 <!-- This process invokes the asynchronous LoanService. -->

 <partnerLink name="LoanService"
 partnerLinkType="services:LoanService"
 myRole="LoanServiceRequester"
 partnerRole="LoanServiceProvider"/>
 </partnerLinks>

The attribute myRole indicates the role of the client. The attribute partnerRole role
indicates the role of the partner in this conversation. Each partnerLinkType has a
myRole and partnerRole attribute in asynchronous processes.

Deployment Descriptor File
Open the bpel.xml deployment descriptor file of
samples\tutorials\105.AsyncCompositeLoanBroker. The loan application
approver Web service appears. This properties id information is added to the file
when you create a second partner link type.

<?xml version="1.0"?>
<bpel-process id="LoanBroker" src="LoanBroker.bpel"
 wsdlLocation="LoanBroker.wsdl">
 <properties id="LoanService">
 <property name="wsdlLocation">
 http://hslattertest-pc:9700/orabpel/default/UnitedLoan/UnitedLoan?wsdl</property>
 </properties>

How the Invoke and Receive Activities Work
View the variables and sequence sections of the LoanBroker.bpel file. Two
areas of particular interest concern the invoke and receive activities:

■ An invoke activity invokes a synchronous Web service (as discussed in
Chapter 4, "Invoking a Synchronous Web Service") or initiates an asynchronous
service.

The invoke activity includes the request global input variable defined in the
variables section. The request global input variable is used by the loan

See Also:

■ "Step 1: Adding a Partner Link for an Asynchronous Service" on
page 5-11 for instructions on creating a partner link

■ Appendix C, "Deployment Descriptor Properties"

Overview of Asynchronous Callback Concepts

5-6 Oracle BPEL Process Manager Developer’s Guide

application approver Web service. This variable contains the contents of the initial
loan application request document.

■ A receive activity that waits for the asynchronous callback from the loan
application approver Web service. The receive activity includes the response
global output variable defined in the variables section. This variable contains
the loan offer response. The receive activity asynchronously waits for a callback
message from a service. While the BPEL process is waiting, it is dehydrated, or
compressed and stored, until the callback message arrives.

 <variables>

 <variable name="request"
 messageType="services:LoanServiceRequestMessage"/>
 <variable name="response"
 messageType="services:LoanServiceResultMessage"/>
 </variables>

 <sequence>

 <!-- initialize the input of LoanService -->
 <assign>
 <!-- initiate the remote process -->
 <invoke name="invoke" partnerLink="LoanService"
 portType="services:LoanService"
 operation="initiate" inputVariable="request"/>

 <!-- receive the result of the remote process -->
 <receive name="receive_invoke" partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="response"/>

When an asynchronous service is initiated with the invoke activity, a correlation ID
unique to the client request is also sent, using WS-Addressing (described in
"WS-Addressing" on page 5-7). Because multiple processes may be waiting for service
callbacks, Oracle BPEL Server must know which BPEL process instance is waiting for a
callback message from the loan application approver Web service. The correlation ID
enables Oracle BPEL Server to correlate the response with the appropriate requesting
instance.

Using the createInstance Attribute to Start a New Instance
You may have noticed a createInstance attribute in the initial receive activity of
the sequence section of the LoanBroker.bpel file. In this initial receive activity,
the createInstance element is set to yes. This starts a new instance of the BPEL
process. At least one instance startup is required for a conversation. For this reason,
you set the createInstance variable to no in the second receive activity.

The source code for the createInstance attribute appears as follows:

See Also: The following sections for instructions on creating invoke
and receive activities:

■ "Step 2: Adding an Invoke Activity" on page 5-12

■ "Step 3: Adding a Receive Activity" on page 5-13

■ "Invoke Activity" on page B-14

■ "Receive Activity" on page B-20

Overview of Asynchronous Callback Concepts

Invoking an Asynchronous Web Service 5-7

 <!-- receive input from requestor -->
 <receive name="receiveInput" partnerLink="client"
 portType="tns:LoanBroker"
 operation="initiate" variable="input"
 createInstance="yes"/>

Managing Multiple Active BPEL Process Instances Using Correlation Methods
Because there can be many active instances at any given point in time, Oracle BPEL
Server must be able to direct Web service responses to the correct BPEL process
instance. You can use the following correlation methods to identify asynchronous
messages to ensure that asynchronous callbacks locate the appropriate client:

■ WS-Addressing

■ Using Correlation Sets to Coordinate Asynchronous Message Body Contents

WS-Addressing
Web Services Addressing (WS-Addressing) is a public specification and is the default
correlation method supported by Oracle BPEL Process Manager. You do not need to
edit the .bpel and .wsdl files to use WS-Addressing. WS-Addressing uses simple
object access protocol (SOAP) headers for asynchronous message correlation.
Messages are independent of the transport or application used. Figure 5–2 provides an
overview.

Figure 5–2 Callback with WS-Addressing Headers

Figure 5–2 shows how messages are passed along with WS headers so that the
response can be sent to the correct destination.

Initiate
service

<invoke>

Wait for
callback

<receive>

Async
Loan

Processor
Service

BPEL Process
HelloWorld.bpel

WSDL
LoanService
PartnerLink

d3

loanApp
<variable>

d3

loanOffer
<variable>

WS-Addressing Header:
· callback location
· correlation id (relatesTo)

d4

WS-Addressing Header:
· correlation id (relatesTo)

Note 1: the correlation id allows
the BPEL server to know which
instance of the process is
waiting for this callback
messages.

Note 2: The alternative
approach is to use
content-based correlation
using <correlationSet>

d3

[2.05] receive
[2.06] process
[2.22] callback

Initiate Port

Callback Port

Overview of Asynchronous Callback Concepts

5-8 Oracle BPEL Process Manager Developer’s Guide

The example in this chapter uses WS-Addressing for correlation. To view the
messages, you can use TCP tunneling, which is described in "Using TCP Tunneling to
See Messages Exchanged Between Programs" on page 5-8.

WS-Addressing defines the following information typically provided by transport
protocols and messaging systems. This information is processed independently of the
transport or application:

■ Endpoint location (reply-to address): The reply-to address specifies the location at
which a BPEL client is listening for a callback message.

■ Conversation ID: Use TCP tunneling to view SOAP messages exchanged between
the BPEL process flow and the Web service (including those containing the
correlation ID). You can see the exact SOAP messages that are sent to, or received
from, services with which a BPEL process flow communicates.

You insert a software listener between your BPEL process flow and the Web
service. Your BPEL process flow communicates with the listener (called a TCP
tunnel). The listener forwards your messages to the Web service, and also displays
them. Responses from the Web service are returned to the tunnel, which displays
and forwards them back to the BPEL process.

Using TCP Tunneling to See Messages Exchanged Between Programs
The messages that are exchanged between programs and services can be seen through
TCP tunneling. This is particularly useful with Web services and BPEL processes when
you want to see the exact SOAP messages exchanged between the BPEL process flow
and Web services.

To monitor the SOAP messages, insert a software listener between your flow and the
service. Your flow communicates with the listener (called a TCP tunnel) and the
listener forwards your messages to the service, as well as displaying them. Likewise,
responses from the service are returned to the tunnel, which displays them and then
forwards them back to the flow.

To see all the messages exchanged between Oracle BPEL Server and a Web service,
you need only a single TCP tunnel for synchronous services because all the pertinent
messages are communicated in a single request and reply interaction with the service.
For asynchronous services, you must set up two tunnels, one for the invocation of the
service and another for the callback port of the flow.

Setting up a TCP Listener for Synchronous Services Follow these steps to set up a TCP
listener for synchronous services initiated by an Oracle BPEL Process Manager
process:

1. Start your TCP listener to listen on a port such as 1234 and send on a port such as
9700 (port 9700 is used in this example and is the default after Oracle BPEL
Process Manager for Developers installation). If you installed Oracle BPEL Process
Manager as part of an Oracle Application Server SOA install type, substitute the
correct port number throughout these instructions. For example, you can use the
TCP tunnel included with Apache Axis (bundled with Oracle BPEL Process
Manager) by executing the following from the operating system command
prompt:

prompt> obsetenv
prompt> java -classpath %OB_CLASSPATH% orabpel.apache.axis.utils.tcpmon 1234
 localhost 9700

2. Add a location property in the bpel.xml deployment descriptor file for your
flow to override the endpoint of the service. For example, to see the messages

Overview of Asynchronous Callback Concepts

Invoking an Asynchronous Web Service 5-9

exchanged between the LoanFlow demo sample and the CreditRatingService that
it calls, change the definition of the CreditRatingService location as shown below
in the LoanFlow deployment descriptor in SOA_Oracle_
Home\bpel\samples\demos\LoanDemo\LoanFlow\bpel.xml:

<partnerLinkBinding name="creditRatingService">
 <property name="wsdlLocation">
 http://localhost:9700/orabpel/default/CreditRatingService/
 CreditRatingService?wsdl
 </property>
 <property name="location">
 http://localhost:1234/orabpel/default/CreditRatingService
 </property>
</partnerLinkBinding>

3. Compile and deploy the LoanDemo from the operating system command prompt:

prompt> cd SOA_Oracle_Home\bpel\samples\demos\LoanDemo
prompt> ant

Note that while the CreditRatingService is also a BPEL process, the same
technique can be used to see the SOAP messages passed to invoke a BPEL process
as a Web service from another tool kit such as Axis or .NET.

Setting up a TCP Listener for Asynchronous Services Follow these steps to set up a TCP
listener to display the SOAP messages for callbacks from asynchronous services:

1. Start a TCP listener to listen on a port such as 9710 and to send on the Oracle
BPEL Process Manager port (for example, 9700 is the default after installation of
Oracle BPEL Process Manager for Developers).

2. Turn off the optimization of local SOAP calls performed by Oracle BPEL Process
Manager to see the impact of changing the callback port:

a. Click Manage BPEL Domain in the upper right of Oracle BPEL Control.

b. Scroll down to the optSoapShortcut property.

c. Change the value from true to false.

3. Access Oracle BPEL Admin Console at:

http://localhost:port/BPELAdmin

4. Scroll down to the SoapServerUrl property on the Configuration tab.

5. Change this property to http://localhost:9710.

6. Click the Apply button.

7. Restart Oracle BPEL Server to initialize these changes and initiate any flow that
invokes asynchronous Web services (for example the LoanFlow demonstration).
You can combine this with the synchronous TCP tunneling configuration to send
the UnitedLoan service initiation request through your first TCP tunnel.

The callbacks from the asynchronous services are shown in the TCP listener, such
as the UnitedLoan service callback.

If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to
see SOAP messages for both synchronous and asynchronous services.

See Also: The TCP Monitor tool located in the following directory:

SOA_Oracle_Home\bpel\bin\obtunnel.bat

Overview of Asynchronous Callback Concepts

5-10 Oracle BPEL Process Manager Developer’s Guide

Using Correlation Sets to Coordinate Asynchronous Message Body Contents
Correlation sets are a BPEL mechanism that provides for the correlation of
asynchronous messages based on message body contents. To use this method, define
the correlation sets in your .bpel file. This method is designed for services that do not
support WS-Addressing or for certain sophisticated conversation patterns, for
example, when the conversation is in the form A > B > C > A instead of A > B >
A.

Using the Reply Activity to Send Messages in Response to a Receive Activity
The reply activity enables the business process to send a message in reply to a
message that was received through a receive activity. The combination of a receive
and a reply forms a request-response operation on the WSDL portType for the
process.

 <reply partnerLink="ncname" portType="qname" operation="ncname"
 variable="ncname"? faultName="qname"?
 standard-attributes>
 standard-elements
 <correlations>?
 <correlation set="ncname" initiate="yes|no"?>+
 </correlations>
 </reply>

Using Dehydration Points to Maintain Long-Running Asynchronous Processes
To automatically maintain long-running asynchronous processes and their current
state information in a database while they wait for asynchronous callbacks, you use a
database as a dehydration store. Storing the process in a database preserves the
process and prevents any loss of state or reliability if a system shuts down or a
network problem occurs. This feature increases both BPEL process reliability and
scalability. You can also use it to support clustering and failover.

You insert this point between the invoke activity and receive activity. Figure 5–1 on
page 5-2 shows an example of a dehydration point in the loan application approver
Web service.

See Also:

■ Web Services Addressing (WS-Addressing) Specification for complete
details about WS-Addressing, which is accessible from
http://www.oracle.com/technology/bpel

■ SOA_Oracle_Home/bpel/samples/demos/LoanDemo for the
LoanFlow demo used in this section

See Also: The following correlation set examples:

■ "Using Correlation Sets in an Asynchronous Service" on page 5-14
for a tutorial on creating correlations sets in Oracle JDeveloper

■ SOA_Oracle_
Home\bpel\samples\tutorials\109.CorrelationSets

See Also:

■ "Returning External Faults" on page 8-7

■ "Reply Activity" on page B-21

■ SOA_Oracle_Home\bpel\samples\references\Reply

Calling an Asynchronous Service

Invoking an Asynchronous Web Service 5-11

Calling an Asynchronous Service
To add asynchronous functionality to a BPEL process, complete the tasks in this
section:

■ Step 1: Adding a Partner Link for an Asynchronous Service

■ Step 2: Adding an Invoke Activity

■ Step 3: Adding a Receive Activity

■ Step 4: Performing Additional Activities

Step 1: Adding a Partner Link for an Asynchronous Service
These instructions describe how to create a partner link named LoanService for the
loan application approver Web service.

1. Double-click LoanBroker.bpel in the Application Navigator.

2. In the diagram window, right-click either side of the BPEL process (under
Services).

3. Select Create Partner Link.

The Create Partner Link window appears.

4. Enter the following details to create a second partner type and select the loan
application approver Web service:

■ Name: Enter a name for the partner link.

■ Process: The BPEL process name

■ WSDL File: Enter the name of the WSDL file to use. Click the Service
Explorer icon above this field to locate the correct WSDL.

■ Partner Link Type: Refers to the external service with which the BPEL process
is to interface. Select from the list.

■ Partner Role: Refers to the role of the external source, for example, provider.
Select from the list.

■ My Role: Refers to role of the BPEL process in this interaction, for example,
requester. Select from the list.

5. Click OK.

Calling an Asynchronous Service

5-12 Oracle BPEL Process Manager Developer’s Guide

A new partner link for the loan application approver Web service (United Loan)
appears in the Services area of the .bpel file’s diagram window.

Step 2: Adding an Invoke Activity
Follow these instructions to create an invoke activity and a global input variable
named request. This activity initiates asynchronous BPEL process activity with the
loan application approver Web service (United Loan). The loan application approver
Web service uses the request input variable to receive the loan request from the client.

1. Drag an invoke activity from the Component Palette to beneath the receive
activity.

2. In the .bpel file’s diagram window, right-click either side of the BPEL process
and select View > Variables from the menu.

The Variables window appears.

3. In the Variables window, select the second Variables folder in the navigation tree,
and click Create.

The Create Variable dialog box appears.

4. Enter the variable name and select Message Type from the options provided:

■ Simple Type: This option lets you select an XML schema simple type, for
example, string, Boolean, and so on.

■ Message Type: This option enables you to select a WSDL message file
definition of a partner link or of the project WSDL file of the current BPEL
process (for example, a response message or a request message). You can
specify variables associated with message types as input or output variables
for invoke, receive, or reply activities.

To display the message type, select the Message Type option, and then select
its flashlight icon to display the Type Chooser window. From here, expand the
Message Types navigation window to select Message Types > Partner Links >
Loan Service > United Loan > Message Types > LoanServiceRequest
Message.

■ Element: This option lets you select an XML schema element of the project
schema file or project WSDL file of the current BPEL process, or of a partner
link.

See Also:

■ "partnerLinkTypes for Asynchronous Services" on page 5-3 for
conceptual details about partner links

■ "PartnerLink" on page B-36

Calling an Asynchronous Service

Invoking an Asynchronous Web Service 5-13

5. Click OK, then click Close.

6. Double-click the invoke activity to display the Invoke window.

7. In the Invoke window, select the LoanService partner link from the Partner Link
list and initiate from the Operation list.

8. Select the input variable you created in Step 4, by clicking the second icon to the
right of the Input Variable field.

The Variable Chooser window appears, where you can select the variable.

There is no output variable specified because the output variable is returned in the
receive operation. The invoke activity and the global input variable are created.

9. Click OK.

Step 3: Adding a Receive Activity
Follow these steps to create a receive activity and a global output variable named
response. This activity waits for the loan application approver Web service’s callback
operation. The loan application approver Web service uses this output variable to send
the loan offer result to the client.

1. From the Component Palette, drag a receive activity to the location right after the
invoke activity you created in "Step 2: Adding an Invoke Activity" on page 5-12.

2. Create a variable to hold the receive information by invoking the Create Variable
window, as you did in Step 2 through Step 5, starting on page 5-12.

See Also:

■ "How the Invoke and Receive Activities Work" on page 5-5 for
conceptual details about the invoke activity

■ "Invoke Activity" on page B-14

Using Correlation Sets in an Asynchronous Service

5-14 Oracle BPEL Process Manager Developer’s Guide

3. Double-click the receive activity and change its name to receive_invoke.

4. Select LoanService from the Partner Link list and onResult from the Operation
list. Do not select the Create Instance check box.

5. Select the variable you created in Step 2 through Step 5, starting on page 5-12.

6. Click OK.

The receive activity and the output variable are created. Because the initial receive
activity in the LoanBroker.bpel file created the initial BPEL process instance, a
second instance does not need to be created.

Step 4: Performing Additional Activities
In addition to the asynchronous-specific tasks, you must perform the following tasks.

■ Create an initial assign activity for data manipulation in front of the invoke
activity that copies the client’s input variable loan application request document
payload into the loan application approver Web service’s request variable
payload.

■ Create a second assign activity for data manipulation after the receive activity that
copies the loan application approver Web service’s response variable loan
application results payload into the output variable for the client to receive.

Using Correlation Sets in an Asynchronous Service
This tutorial describes how to use correlation sets in an asynchronous service with
Oracle JDeveloper. Correlation sets enable you to correlate asynchronous messages
based on message body contents. You define correlation sets when interactions are not
simple invoke-receive activities. This example illustrates how to use correlation sets
for a process having three receive activities with no associated invoke activities.

This section contains the following topics:

See Also: "Receive Activity" on page B-20

See Also: The following documentation for information on creating
and defining an assign activity:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service 5-15

■ Step 1: Creating a Project

■ Step 2: Configuring Partner Links and File Adapter Services

■ Step 3: Creating Three Receive Activities

■ Step 4: Creating Correlation Sets

■ Step 5: Associating Correlation Sets with Receive Activities

■ Step 6: Creating Property Aliases

■ Step 7: Reviewing WSDL File Content

Step 1: Creating a Project
1. Right-click your application in the Application Navigator section of the designer

window.

2. Select New Project.

3. Double-click BPEL Process Project in the Items window to display the BPEL
Project Creation Wizard window.

4. Enter an appropriate name in the Name field (for this example, MyCorrelationSet
is used).

5. Select Asynchronous BPEL Process from the Template list.

6. Click Finish.

Step 2: Configuring Partner Links and File Adapter Services
You now create three partner links that use the adapter services.

This section contains these topics:

■ Creating an Initial Partner Link and File Adapter Service

You create an initial partner link with an adapter service for reading a loan
application.

■ Creating a Second Partner Link and File Adapter Service

You create a second partner link with an adapter service for reading an application
response.

■ Creating a Third Partner Link and File Adapter Service

You create a third partner link with an adapter service for reading a customer
response.

Creating an Initial Partner Link and File Adapter Service
1. Select Services from the Component Palette.

2. Drag and drop an initial PartnerLink activity onto the right side of the designer
window anywhere beneath the header Services.

3. Enter FirstReceivePL in the Name field.

4. Click the third icon at the top (the Define Adapter Service icon). This starts the
Adapter Configuration Wizard.

Using Correlation Sets in an Asynchronous Service

5-16 Oracle BPEL Process Manager Developer’s Guide

5. Click Next on the Welcome window.

6. Select File Adapter on the Adapter Type window and click Next.

7. Enter FirstReceive in the Service Name field on the Service Name window and
click Next.

8. Select Read File as the Operation Type on the Operation window and click Next.
The Operation Name field is automatically filled in with Read.

9. Select Directory Names are Specified as Physical Path.

10. Click Browse next to the Directory for Incoming Files (physical path) field.

11. Select a directory from which to read files (for this example,
C:\files\receiveprocess\FirstInputDir is selected).

12. Click Select.

13. Click Next.

14. Enter appropriate file filtering parameters in the File Filtering window.

15. Click Next.

16. Enter appropriate file polling parameters in the File Polling window.

17. Click Next.

18. Click Browse next to the Schema Location field in the Messages window to
display the Type Chooser window.

19. Select an appropriate XSD schema file. For this example, Book1_4.xsd is the
schema and LoanAppl is the schema element selected.

20. Click OK.

The Schema Location field (Book1_4.xsd for this example) and the Schema
Element field (LoanAppl for this example) are filled in.

21. Click Next.

22. Click Finish.

You are returned to the Partner Link window. All other fields are automatically
completed. The window looks as follows:

Field Value

Name FirstReceive

WSDL File file:/c:OraJDev/jdev/mywork/myapplication/MyCorrelationSet/bpel/F
irstReceive.wsdl

where c:/OraJDev represents the Oracle JDeveloper home directory for
this example.

Partner Link Type Read_plt

Partner Role Leave unspecified.

My Role Read_role

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service 5-17

23. Click OK.

Creating a Second Partner Link and File Adapter Service
1. Drag and drop a second PartnerLink activity below the FirstReceivePL partner

link activity.

2. Enter SecondReceivePL in the Name field.

3. Click the third icon at the top (the Define Adapter Service icon).

4. Click Next on the Welcome window.

5. Select File Adapter in the Adapter Type window and click Next.

6. Enter SecondFileRead in the Service Name field on the Service Name window
and click Next. This name must be unique from the one you entered in Step 7 on
page 5-16.

7. Select Read File as the Operation Type in the Operation window

8. Change the name in the Operation Name field to Read1.

9. Click Next.

10. Select Directory Names are Specified as Physical Path.

11. Click Browse next to the Directory for Incoming Files (physical path) field.

12. Select a directory from which to read files (for this example,
C:\files\receiveprocess\SecondInputDir is entered).

13. Click Select.

14. Click Next.

15. Enter appropriate file filtering parameters in the File Filtering window.

16. Click Next.

17. Enter appropriate file polling parameters in the File Polling window.

18. Click Next.

19. Click Browse next to the Schema Location field in the Messages window to
display the Type Chooser window.

20. Select an appropriate XSD schema file. For this example, Book1_5.xsd is the
schema and LoanAppResponse is the schema element selected.

21. Click OK.

The Schema Location field (Book1_5.xsd for this example) and the Schema
Element field (LoanAppResponse for this example) are filled in.

22. Click Next.

23. Click Finish.

You are returned to the Partner Link window. All other fields are automatically
completed. The window looks as follows:

Field Value

Name SecondReceive

Using Correlation Sets in an Asynchronous Service

5-18 Oracle BPEL Process Manager Developer’s Guide

24. Click OK.

Creating a Third Partner Link and File Adapter Service
1. Drag and drop a third PartnerLink activity below the SecondReceivePL partner

link activity.

2. Enter ThirdReceivePL in the Name field.

3. Click the third icon at the top (the Define Adapter Service icon).

4. Click Next on the Welcome window.

5. Select File Adapter in the Adapter Type window and click Next.

6. Enter ThirdFileRead in the Service Name field of the Service Name window and
click Next. This name must be unique from the one you entered in Step 7 on
page 5-16 and Step 6 on page 5-17.

7. Select Read File as the Operation Type in the Operation window

8. Change the name in the Operation Name field to Read2. This name must be
unique.

9. Click Next.

10. Select Directory Names are Specified as Physical Path.

11. Click Browse next to the Directory for Incoming Files (physical path) field.

12. Select a directory from which to read files (for this example,
C:\files\receiveprocess\ThirdInputDir is entered).

13. Click Select.

14. Click Next.

15. Enter appropriate file filtering parameters in the File Filtering window.

16. Click Next.

17. Enter appropriate file polling parameters in the File Polling window.

18. Click Next.

19. Click Browse next to the Schema Location field in the Messages window to
display the Type Chooser window.

20. Select an appropriate XSD schema file. For this example, Book1_6.xsd is the
schema and CustResponse is the schema element selected.

21. Click OK.

The Schema Location field (Book1_6.xsd for this example) and the Schema
Element field (CustResponse for this example) are filled in.

WSDL File file:/c:OraJDev/jdev/mywork/myapplication/MyCorrelationSet/bpel/
SecondFileRead.wsdl

where c:/OraJDev represents the Oracle JDeveloper home directory for
this example.

Partner Link Type Read1_plt

Partner Role Leave unspecified.

My Role Read1_role

Field Value

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service 5-19

22. Click Next.

23. Click Finish.

You are returned to the Partner Link window. All other fields are automatically
completed. The window looks as follows:

24. Click OK.

When complete, the designer window looks as follows:

Step 3: Creating Three Receive Activities
You now create three receive activities; one for each partner link. The receive activities
specify the partner link from which to receive information.

This section contains the following topics:

■ Creating an Initial Receive Activity

■ Creating a Second Receive Activity

■ Creating a Third Receive Activity

Creating an Initial Receive Activity
1. Drag and drop a Receive activity from the Process Activities list of the

Component Palette section into the designer window.

2. Double-click the receive icon to display the Receive window.

3. Enter the following details to associate the first partner link (FirstReceivePL) with
the first receive activity:

Field Value

Name ThirdReceive

WSDL File file:/c:OraJDev/jdev/mywork/myapplication/MyCorrelationSet/bpel/
ThirdFileRead.wsdl

where c:/OraJDev represents the Oracle JDeveloper home directory for
this example.

Partner Link Type Read2_plt

Partner Role Leave unspecified.

My Role Read2_role

Using Correlation Sets in an Asynchronous Service

5-20 Oracle BPEL Process Manager Developer’s Guide

The Operation (Read) field is automatically filled in.

4. Click the first icon to the right of the Variable field. This is the automatic variable
creation icon.

5. Click OK on the Create Variable window that appears.

A variable named receiveFirst_Read_InputVariable is automatically created in
the Variable field.

6. Ensure that you selected the Create Instance check box, as mentioned in Step 3.

7. Click OK.

Creating a Second Receive Activity
1. Drag and drop a second Receive activity from the Component Palette section to

below the receiveFirst receive activity.

2. Double-click the receive icon to display the Receive window.

3. Enter the following details to associate the second partner link (SecondReceivePL)
with the second receive activity:

The Operation (Read1) field is automatically filled in.

4. Click the first icon to the right of the Variable field.

5. Click OK on the Create Variable window that appears.

A variable named receiveSecond_Read1_InputVariable is automatically created
in the Variable field.

6. Click OK.

Creating a Third Receive Activity
1. Drag and drop a third Receive activity from the Component Palette section to

below the receiveSecond receive activity.

2. Double-click the receive icon to display the Receive window.

3. Enter the following details to associate the third partner link (ThirdReceivePL)
with the third receive activity:

Field Value

Name receiveFirst

Partner Link FirstReceivePL

Create Instance Select this check box.

Field Value

Name receiveSecond

Partner Link SecondReceivePL

Create Instance Do not select this check box.

Field Value

Name receiveThird

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service 5-21

The Operation (Read2) field is automatically filled in.

4. Click the first icon to the right of the Variable field.

5. Click OK on the Create Variable window that appears.

A variable named receiveThird_Read2_InputVariable is automatically created in
the Variable field.

6. Click OK.

Each receive activity is now associated with a specific partner link.

Step 4: Creating Correlation Sets
You now create correlation sets. A set of correlation tokens is a set of properties shared
by all messages in the correlated group.

This section contains the following topics:

■ Creating an Initial Correlation Set

■ Creating a Second Correlation Set

Creating an Initial Correlation Set
1. Right-click Correlation Sets and select Expand All Child Nodes in the Structure

window of Oracle JDeveloper.

2. Right-click Correlation Sets and select Create Correlation Set.

3. Enter CorrelationSet1 in the Name field of the Create Correlation Set window.

4. Click Add in the Properties section to display the Property Chooser window.

5. Select Properties, then click Create (first icon at the top) to display the Create
Correlation Set Property window.

6. Enter NameCorr in the Name field and click the flashlight icon to the right of the
Type field.

7. Select string in the Type Chooser window and click OK.

8. Click OK to close the Create Correlation Set Property window, the Property
Chooser window, and the Create Correlation Set window.

Creating a Second Correlation Set
1. Return to the Correlation Sets section in the Structure window of Oracle

JDeveloper.

2. Right-click Correlation Sets and select Create Correlation Set.

3. Enter CorrelationSet2 in the Name field of the Create Correlation Set window.

4. Click Add in the Properties section to display the Property Chooser window.

5. Select Properties, then click Create to display the Create Correlation Set Property
window.

Partner Link ThirdReceivePL

Create Instance Do not select this check box.

Field Value

Using Correlation Sets in an Asynchronous Service

5-22 Oracle BPEL Process Manager Developer’s Guide

6. Enter IDCorr in the Name field and click the flashlight icon to the right of the
Type field.

7. Select double in the Type Chooser window and click OK.

8. Click OK to close the Create Correlation Set Property window, the Property
Chooser window, and the Create Correlation Set window.

Step 5: Associating Correlation Sets with Receive Activities
You now associate the correlation sets with the receive activities. You perform the
following correlation set tasks:

■ For the first correlated group, the first and second receive activities are correlated
with the CorrelationSet1 correlation set.

■ For the second correlated group, the second and third receive activities are
correlated with the CorrelationSet2 correlation set.

This section contains the following topics:

■ Associating the First Correlation Set with a Receive Activity

■ Associating the Second Correlation Set with a Receive Activity

■ Associating the Third Correlation Set with a Receive Activity

Associating the First Correlation Set with a Receive Activity
1. Double-click the receiveFirst receive activity to display the Receive window.

2. Click the Correlations tab.

3. Click Add, select CorrelationSet1, then click OK.

4. Set the Initiate column to yes. When set to yes, the set is initiated with the values
of the properties occurring in the message being exchanged.

5. Click OK.

Associating the Second Correlation Set with a Receive Activity
1. Double-click the receiveSecond receive activity to display the Receive window.

2. Click the Correlations tab.

3. Click Add, select CorrelationSet2, then click OK.

4. Set the Initiate column to yes.

5. Click Add and select CorrelationSet1.

6. Click OK.

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service 5-23

7. Set the Initiate column to no for CorrelationSet1.

8. Click OK.

This groups the first and second receive activities into a correlated group.

Associating the Third Correlation Set with a Receive Activity
1. Double-click the receiveThird receive activity to display the Receive window.

2. Click the Correlations tab.

3. Click Add and select CorrelationSet2.

4. Click OK.

5. Set the Initiate column to no for CorrelationSet2.

6. Click OK.

This groups the second and third receive activities into a second correlated group.

Using Correlation Sets in an Asynchronous Service

5-24 Oracle BPEL Process Manager Developer’s Guide

Step 6: Creating Property Aliases
Property aliases enable you to map a global property to a field in a specific message
part. This enables the property name to become an alias for the message part and
location. The alias can be used in XPath expressions.

This section contains the following topics:

■ Creating Property Aliases for NameCorr

■ Creating Property Aliases for IDCorr

Creating Property Aliases for NameCorr
You create the following two property aliases for the NameCorr correlation set.

■ Map NameCorr to the LoanAppl message type part of the receiveFirst receive
activity. This receive activity is associated with the FirstReceivePL partner link
(defined by the FirstReceive.wsdl file).

■ Map NameCorr to the incoming LoanAppResponse message type part of the
receiveSecond receive activity. This receive activity is associated with the
SecondReceivePL partner link (defined by the SecondFileRead.wsdl file).

1. Right-click Property Aliases in the Structure section of Oracle JDeveloper.

2. Select Create Property Alias.

3. Select NameCorr in the Property list.

4. Expand and select Message Types > Partner Links > FirstReceivePL >
FirstReceive.wsdl > Message Types > LoanAppl_msg > Part - LoanAppl.

5. Press Ctrl and then the space bar in the Query field to define the following XPath
expression:

/ns2:LoanAppl/ns2:Name

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for NameCorr.

8. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

9. Press Ctrl and then the space bar in the Query field to define the following XPath
expression:

/ns4:LoanAppResponse/ns4:APR

Creating Property Aliases for IDCorr
You create the following two property aliases for the IDCorr correlation set.

■ Map IDCorr to the LoanAppResponse message type part of the receiveSecond
receive activity. This receive activity is associated with the SecondReceivePL
partner link (defined by the SecondFileRead.wsdl file).

■ Map IDCorr to the CustResponse message type part of the receiveThird receive
activity. This receive activity is associated with the ThirdReceivePL partner link
(defined by the ThirdFileRead.wsdl file).

1. Right-click Property Aliases in the Structure section.

2. Select Create Property Alias.

3. Select IDCorr in the Property list.

Using Correlation Sets in an Asynchronous Service

Invoking an Asynchronous Web Service 5-25

4. Expand and select Message Types > Project WSDL Files > SecondFileRead.wsdl
> Message Types > LoanAppResponse_msg > Part - LoanAppResponse.

5. Press Ctrl and then the space bar in the Query field to define the following XPath
expression:

/ns4:LoanAppResponse/ns4:APR

6. Click OK.

7. Repeat Step 1 through Step 3 to create a second property alias for IDCorr.

8. Expand and select Message Types > Project WSDL Files > ThirdFileRead.wsdl >
Message Types > CustResponse_msg > Part - CustResponse.

9. Press Ctrl and then the space bar in the Query field to define the following XPath
expression:

/ns6:CustResponse/ns6:APR

Design is now complete.

Step 7: Reviewing WSDL File Content
The NameCorr and IDCorr correlation set properties are defined in the
MyCorrelationSet_Properties.wsdl file in the Application Navigator of Oracle
JDeveloper:

<definitions
 name="properties"
 targetNamespace="http://xmlns.oracle.com/MyCorrelationSet/correlationset"
 xmlns="http://schemas.xmlsoap.org/wsdl/"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <bpws:property name="NameCorr" type="xsd:string"/>
 <bpws:property name="IDCorr" type="xsd:double"/>
</definitions>

The property aliases are defined in the MyCorrelationSet.wsdl file:

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns3:LoanAppl_msg"
 part="LoanAppl" query="/ns2:LoanAppl/ns2:Name"/>

<bpws:propertyAlias propertyName="ns1:NameCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns5:LoanAppResponse_msg"
 part="LoanAppResponse" query="/ns4:LoanAppResponse/ns4:APR"/>

<bpws:propertyAlias propertyName="ns1:IDCorr"
 messageType="ns7:CustResponse_msg"
 part="CustResponse" query="/ns6:CustResponse/ns6:APR"/>

Because the BPEL process is not created as a Web services provider in this example,
the MyCorrelationSet.wsdl file is not referenced in the BPEL process. Therefore,
you must import the MyCorrelationSet.wsdl file inside the
FirstReceive.wsdl file to reference the correlation sets:

Summary

5-26 Oracle BPEL Process Manager Developer’s Guide

<import namespace="http://xmlns.oracle.com/MyCorrelationSet"
location="MyCorrelationSet.wsdl"/>

Summary
This chapter describes the concepts for a BPEL process that invokes an asynchronous
Web service. This service takes a loan application request document as input from a
client and asynchronously returns an approved loan offer. An example of how to
create correlation sets in Oracle JDeveloper is also provided.

Parallel Flow 6-1

6
Parallel Flow

Parallel flows enable a BPEL process to perform multiple tasks at the same time, which
is especially useful when you need to perform several time-consuming and
independent tasks.

This chapter contains the following topics:

■ Use Case for Parallel Flows

■ Overview of Parallel Flow Concepts

■ Defining a Parallel Flow

■ Customizing the Number of Flow Activities by Using the flowN Activity

■ Summary

Use Case for Parallel Flows
In Chapter 5, "Invoking an Asynchronous Web Service" you learned how to call an
asynchronous Web service for the United Loan service. Because the United Loan
service can take up to several days to return a loan offer but you need to collect
another loan offer from Star Loan, you can define your BPEL process so both tasks run
in parallel.

This use case shows how to program the BPEL flow to perform two asynchronous
callbacks to loan services in parallel.

Overview of Parallel Flow Concepts
Sometimes a BPEL process must gather information from multiple asynchronous
sources. Because each callback can take an undefined amount of time (hours or days),
it may take too long to call each service one at a time. By breaking the calls into a
parallel flow, a BPEL process can invoke multiple Web services at once, and receive
the responses as they come in. This method is much more time efficient.

Figure 6–1 provides an overview of a BPEL process performing a parallel flow to
retrieve loan offers from two different Web services. Here, two asynchronous callbacks
execute in parallel, so that one callback does not have to wait for the other to complete
first. Each response is stored in a different global variable.

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\tutorials\106.ParallelFlows

Defining a Parallel Flow

6-2 Oracle BPEL Process Manager Developer’s Guide

Figure 6–1 Parallel Flow Invocation

Defining a Parallel Flow
A flow activity typically contains a number of sequence activities, and each
sequence is performed in parallel. A flow activity can also contain other activities
(although not in this example). For example:

<flow name="flow-1">
 <sequence>

<scope name="UnitedLoan">
 <sequence>

<invoke name="invoke-2" partnerLink="unitedLoan"
 portType="services:LoanService" operation="initiate"
 inputVariable="loanApplication"/>
 <receive createInstance="no" name="receive-1"
 partnerLink="unitedLoan"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="loanOffer1"/>
 </sequence>
 </scope>
 </sequence>
 <sequence>
 <scope name="StarLoan">
 <sequence>
 <invoke name="invoke-1" partnerLink="StarLoan"
 portType="services:LoanService" operation="initiate"
 inputVariable="loanApplication"/>

<pick name="pick-1">.
.
.

</pick>
</sequence>

</scope>
</sequence>

</flow>

This example shows two sequences, but the flow activity can have many sequences.

Star
Loan

United
Loan

Initiate
service

<invoke>

Wait for
callback

<receive>

Wait for
callback

<receive>

<flow>

<sequence> <sequence>

BPEL
Process

WSDLWSDL

Initiate
service

<invoke>

Defining a Parallel Flow

Parallel Flow 6-3

The following instructions explain how to create a flow activity and a global input
variable named request. This activity initiates an asynchronous BPEL process
activity with a loan offer Web service (United Loan). The loan offer service uses the
request input variable to receive the loan request from the client.

This example shows how to create a flow activity in Oracle JDeveloper.

1. Drag and drop a flow activity into a scope activity.

2. Click the + sign to expand the flow activity.

A scope activity is a container for a group of activities that you want to process as
one unit. "Using the Scope Activity to Manage a Group of Activities" on page 8-6
describes scope activities in detail.

3. The flow activity includes two branches, each with a box for functional elements.
Populate these boxes as you do a scope activity, either by building a function or
dragging activities from the Process Activities list into the boxes.

At this point, you can drag and drop activities onto each side of the flow in order
to invoke multiple services at once.

Customizing the Number of Flow Activities by Using the flowN Activity

6-4 Oracle BPEL Process Manager Developer’s Guide

Customizing the Number of Flow Activities by Using the flowN Activity
In the flow activity, the BPEL code determines the number of parallel branches.
However, often the number of branches required is different depending on the
available information. The flowN activity creates multiple flows equal to the value of
N, which is defined at run time based on the data available and logic within the
process. An index variable increments each time a new branch is created, until the
index variable reaches the value of N.

The flowN activity performs activities on an arbitrary number of data elements. As the
number of elements changes, the BPEL process adjusts accordingly.

The branches created by flowN perform the same activities, but use different data.
Each branch uses the index variable to look up input variables. The index variable can
be used in the XPath expression to acquire the data specific for that branch.

For example, suppose there is an array of data. The BPEL process uses a count
function to determine the number of elements in the array. Then the process sets N to
be the number of elements. The index variable starts at a preset value (zero is the
default), and flowN creates branches to retrieve each element of the array and perform
activities using data contained in that element. These branches are generated and
performed in parallel, using all the values between the initial index value and N.
flowN terminates when the index variable reaches the value of N. For example, if the
array contains 3 elements, N is set to 3. Assuming the index variable begins at 1, the
flowN activity creates three parallel branches with indexes 1, 2, and 3.

The flowN activity can use data from other sources as well, including data obtained
from Web services.

Figure 6–2 shows an Oracle BPEL Control view of a flowN activity that looks up three
hotels. This is different from the view because instead of showing the BPEL process, it
shows how the process has actually executed. In this case, there are three hotels, but
the number of branches changes to match the number of hotels available.

See Also: The following documentation for examples of creating
flow activities in Oracle JDeveloper:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Flow Activity" on page B-11

■ "Sequence Activity" on page B-24

Customizing the Number of Flow Activities by Using the flowN Activity

Parallel Flow 6-5

Figure 6–2 An Oracle BPEL Control View of the Execution of a flowN activity

Figure 6–3 shows how a flowN activity appears in Oracle JDeveloper.

Figure 6–3 FlowN Activity Setup in the Diagram Window

Figure 6–4 shows the flowN Window, which appears when you double-click the
flowN activity.

Customizing the Number of Flow Activities by Using the flowN Activity

6-6 Oracle BPEL Process Manager Developer’s Guide

Figure 6–4 flowN Window

The flowN windows enables you to name the flowN activity, enter an expression for
calculating the value of N, and define the index variable.

BPEL Code Example of the FlowN Activity
The following code is a reference implementation from a .bpel file that uses the
flowN activity to look up information on an arbitrary number of hotels. The following
actions take place:

1. First, you name the sequence:

 <sequence name="main">
 <!-- Received input from requestor.
 Note: This maps to operation defined in NflowHotels.wsdl
 The requestor send a set of hotels names wrapped into the "inputVariable"
 -->

2. The receive activity calls the client partner link to get the information that the
flowN activity needs to define N and look up hotel information:

 <receive name="receiveInput" partnerLink="client"
 portType="client:NflowHotels" operation="initiate" variable="inputVariable"
 createInstance="yes"/>
 <!--
 The 'count()' Xpath function is used to get the number of hotelName
 noded passed in.
 For lisibility, an intermediate varaible called "NbParallelFlow" is
 used to store the number of N flows being executed
 -->
 <assign name="getHotelsN">
 <copy>
 <from
expression="count(bpws:getVariableData('inputVariable','payload','/client:Nflow
HotelsProcessRequest/client:ListOfHotels/client:HotelName'));"/>
 <to variable="NbParallelFlow"/>
 </copy>
 </assign>
 <!-- Initiating the FlowN activity
 The N value is initialized with the value stored in the
 "NbParallelFlow" variable
 The variable call "Index" is defined as the index variable
 NOTE: Both "NbParallelFlow" and "Index" variables have to be declared

See Also: "FlowN Activity" on page B-12

Summary

Parallel Flow 6-7

 -->

3. The flowN activity begins next. After defining a name for the activity of flowN, N
is defined as a value from the inputVariable, which is the number of hotel
entries. The activity also assigns index as the index variable.

<bpelx:flowN name="FlowN" N="bpws:getVariableData('NbParallelFlow')"
indexVariable="Index">
 <sequence name="Sequence_1">
 <!-- Fetching each hotelName by indexing the "inputVariable" with the
 "Index" variable.
 Note the usage of the "concat()" Xpath function to create the
 expression accessing the array element.
 -->

4. Next, the following copy rule uses the index variable to concatenate the hotel
entries into a list:

<assign name="setHotelId">
 <copy>
 <from expression=
"bpws:getVariableData('inputVariable','payload',concat('/client:Nflo
wHotelsProcessRequest/client:ListOfHotels/client:HotelName[',
bpws:getVariableData('Index'),']'))"/>
 <to variable="InvokeHotelDetailInputVariable" part="payload"
 query="/ns2:hotelInfoRequest/ns2:id"/>
 </copy>
 </assign>

5. Using the hotel information, an invoke activity looks up detailed information for
each hotel through a Web service:

 <!-- For each hotel, invoke the Web service giving detailed information
 on the hotel
 -->
 <invoke name="InvokeHotelDetail" partnerLink="getHotelDetail"
 portType="ns2:getHotelDetail" operation="process"
 inputVariable="InvokeHotelDetailInputVariable"
 outputVariable="InvokeHotelDetailOutputVariable"/>
 <!-- This procees doesn't do anything with the retrieved inforamtion.
 In the real life, it could be then used to continue the process.
 Note: Meanwhile an indexing variable is used, unlike a while loop, the
 activities a executed in parallel, not sequentially.
 -->
 </sequence>
 </bpelx:flowN>

6. Finally, the BPEL process sends detailed information on each hotel to the client
partner link:

 <invoke name="callbackClient" partnerLink="client"
 portType="client:NflowHotelsCallback" operation="onResult"
 inputVariable="outputVariable"/>
 </sequence>
 </sequence>

Summary
This chapter shows how to create a parallel flow using the flow activity to perform
multiple tasks simultaneously. This BPEL process performs two asynchronous

Summary

6-8 Oracle BPEL Process Manager Developer’s Guide

callbacks in parallel, which can take considerably less time than performing the two
callbacks in series. Another activity, called a flowN activity, allows Oracle BPEL
Process Manager to use data to spawn the necessary number of parallel flows at run
time, and to perform the same activities on multiple data elements. Therefore, as the
information available to the BPEL process changes, so does the behavior of the
process.

Conditional Branching 7-1

7
Conditional Branching

This chapter describes conditional branching. Conditional branching introduces
decision points to control the flow of execution of a BPEL process.

This chapter contains the following topics:

■ Use Case for Conditional Branching

■ Overview of Conditional Branching Concepts

■ Using a Switch Activity to Define Conditional Branching

■ Using a While Activity to Define Conditional Branching

■ Summary

Use Case for Conditional Branching
The BPEL process you created in Chapter 6, "Parallel Flow" collected two loan offers,
one from United Loan and another from Star Loan. This chapter describes how to
design the BPEL process to select the loan with the lowest annual percentage rate
(APR) automatically.

Overview of Conditional Branching Concepts
BPEL applies logic to make choices through conditional branching. You can use either
of the following activities to design your code to select different actions based on
conditional branching:

■ Switch activity: In this method, you set up two or more branches, with each
branch in the form of an XPath expression. If the expression is true, then the
branch is executed. If the expression is false, then the BPEL process moves to the
next branch condition, until it either finds a valid branch condition, encounters an
otherwise branch, or runs out of branches. If more than one branch condition is
true, then BPEL executes the first true branch. "Using a Switch Activity to Define
Conditional Branching" on page 7-2 explains how to create switch activities.

■ While activity: You can use a while activity to create a while loop to select
between two actions. "Using a While Activity to Define Conditional Branching" on
page 7-4 describes while activities.

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\demos\LoanDemo\LoanFlow

Using a Switch Activity to Define Conditional Branching

7-2 Oracle BPEL Process Manager Developer’s Guide

A number of branches are set up, and each branch has a condition in the form of an
XPath expression.

You can program a conditional branch to have a timeout. That is, if a response cannot
be generated in a specified period of time, the BPEL flow can stop waiting and resume
its activities. Chapter 10, "Events and Timeouts" explains this feature in detail.

Using a Switch Activity to Define Conditional Branching
In Chapter 6, the flow activity of the BPEL process gathered two loan offers at the
same time, but did not compare either of the offers. Each offer was stored in its own
global variable. To compare the two offers and make decisions based on that
comparison, the BPEL flow requires a switch activity.

Figure 7–1 provides an overview of a BPEL conditional branching process that has
been defined in a switch activity.

Figure 7–1 Conditional Branching

A switch activity, like a flow activity, has multiple branches. In this example, there are
only two branches. The first branch, which selects a loan offer from United Loan, is
executed if a case condition containing an XPath Boolean expression is met. Otherwise,
the second branch, which selects the Star Loan loan offer, is executed. By default, the
switch activity provides two switch cases, but you can add more if you want.

<switch name="switch-1">
<case condition="bpws:getVariableData('loanOffer1','payload',
'/autoloan:loanOffer/autoloan:APR') <;
bpws:getVariableData('loanOffer2','payload','/autoloan:loanOffer/autoloan:APR
')">

<assign name="selectUnitedLoan">
<copy>

<from variable="loanOffer1" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>

</copy>
</assign>

</case>
<otherwise>

Select
starLoan
<assign>

<switch>

<case
conditon 1>

<otherwise>

BPEL
Process

condition 1 Boolean XPATH Expression

Select
unitedLoan
<assign>

?

Using a Switch Activity to Define Conditional Branching

Conditional Branching 7-3

<assign name="selectStarLoan">
<copy>
<from variable="loanOffer2" part="payload">
</from>
<to variable="selectedLoanOffer" part="payload"/>

</copy>
</assign>

</otherwise>
</switch>

Adding a Switch Activity
To add a switch activity to your BPEL flow in Oracle JDeveloper:

1. Drag a switch activity from the Process Activities list of the Component Palette
into your BPEL flow.

2. Click the + sign to expand the switch activity.

The switch activity has two switch case branches by default, each with a box for
functional elements. If you want to add more branches, select the entire switch
activity, right-click, and select Add Switch Case from the menu.

3. Right-click the first branch and select Edit from the menu.

The Switch Case window appears.

4. Enter an XPath Boolean expression in the Expression field by pressing the Ctrl key
and then the space bar to start the XPath Building Assistant. For example:

bpws:getVariableDate(’loanOffer1’,’payload’,’/loanOffer/APR’) >
bpws:getVariableData(’loanOffer2’,’payload’,’/loanOffer/APR’)

5. Enter this expression on one line. To use the XPath Expression Builder, click the
XPath Expression Builder icon above the Expression field.

The two loan offers that the LoanFlow tutorial uses are stored in the global
variables loanOffer1 and loanOffer2. Each loan offer variable contains the
loan offer’s APR. The BPEL flow must choose the loan with the lower APR. One of
the following switch activities takes place:

■ If loanOffer1 has the higher APR, then the first branch selects loanOffer2
by assigning loanOffer2’s payload to selectedLoanOffer’s payload.

Using a While Activity to Define Conditional Branching

7-4 Oracle BPEL Process Manager Developer’s Guide

■ If loanOffer1 does not have the lower APR than loanOffer2, then the
otherwise case assigns loanOffer1’s payload to selectedLoanOffer’s
payload.

Using a While Activity to Define Conditional Branching
Another way to design your BPEL code to select between multiple actions is to use a
while activity to create a while loop. The while loop repeats an activity until a
specified success criteria is met. For example, if a critical Web service is returning a
service busy message in response to requests, you can use the while activity to keep
polling the service until it becomes available. The condition for the while activity is
that the latest message received from the service is busy, and the operation within the
while activity is to check the service again. Once the Web service returns a message
other than service busy, the while activity terminates and the BPEL process continues,
ideally with a valid response from the Web service.

To create a while activity in Oracle JDeveloper:

1. Drag and drop a while activity from the Process Activities list of the Component
Palette into your BPEL flow.

The while activity has icons to allow you to build condition expressions and to
validate the while definition. It also provides an area for you to drop an activity to
define the while loop.

2. Drag the activity that you want to use to define the while condition onto the Drop
Activity Here area of the while activity.

The activity can be an existing activity or a new activity, such as an invoke activity
to launch a task.

See Also: The following documentation for examples of creating
switch activities in Oracle JDeveloper:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Switch Activity" on page B-27

■ SOA_Oracle_Home\bpel\samples\references\Switch

Summary

Conditional Branching 7-5

Summary
This chapter discusses the concepts and procedures for creating a switch activity
conditional flow that selects different behavior based on comparing two pieces of
information. The BPEL process in this example considers two loan offers, and selects
the offer with the lower APR. This chapter also discusses the while looping conditional
activity.

See Also: The following documentation for examples of defining a
while activity in Oracle JDeveloper:

■ "While Activity" on page B-32

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\While

Summary

7-6 Oracle BPEL Process Manager Developer’s Guide

Fault Handling 8-1

8
Fault Handling

Fault handling allows a BPEL process to handle error messages or other exceptions
returned by outside Web services, and to generate error messages in response to
business or run-time faults.

This chapter contains the following topics:

■ Use Case for Fault Handling

■ Defining a Fault Handler

■ BPEL Standard Faults

■ Categories of BPEL Faults

■ Getting Fault Details with the getFaultAsString XPath Extension Function

■ Using the Scope Activity to Manage a Group of Activities

■ Throwing Internal Faults

■ Returning External Faults

■ Using a Fault Handler within a Scope

■ Using Compensation After Undoing a Series of Operations

■ Using the Terminate Activity to Stop a Business Process Instance

■ Fault Handling Example

■ Summary

Use Case for Fault Handling
This chapter uses an example of a credit rating service returning a negative credit
message instead of a credit rating number. You also learn how to add a fault handler to
a BPEL process to handle the message.

Defining a Fault Handler
Fault handlers define how the BPEL process responds when the Web services return
data other than what is normally expected (for example, returning an error message

See Also: The following samples:

■ SOA_Oracle_
Home\bpel\samples\tutorials\107.Exceptions

■ SOA_Oracle_Home\bpel\samples\demos\ResilientDemo

8-2 Oracle BPEL Process Manager Developer’s Guide

instead of a number). An example of a fault handler is where the Web service normally
returns a credit rating number, but instead returns a negative credit message.

Figure 8–1 shows how a fault handler sets the credit rating variable at -1000.

Figure 8–1 Fault Handling

The following code segment defines the fault handler for this operation:

<faultHandlers>
 <catch faultName="services:NegativeCredit" faultVariable="crError">
 <assign name="crin">
 <copy>
 <from expression="-1000">
 </from>
 <to variable="input" part="payload"
 query="/autoloan:loanApplication/autoloan:creditRating"/>
 </copy>
 </assign>
 </catch>
</faultHandlers>

The faultHandlers tag contains the fault handling code. Within the fault handler is
a catch activity, which defines the fault name and variable, and the copy instruction
that sets the creditRating variable to -1000.

When you select Web services for the BPEL process, determine the possible faults that
may be returned and set up a fault handler for each one.

BPEL
Process

<receive>

Credit
Rating
Service

Negative
Credit

<scope>

WSDL

prepare
crin

<assign>

<scope>

credit to
-1000

<assign>

Read
crOut

<assign>

WSDL

d1

d3

f1

<reply>d2

call
service

<invoke>

Categories of BPEL Faults

Fault Handling 8-3

BPEL Standard Faults
The Business Process Execution Language for Web Services Specification defines the
following standard faults in the namespace of
http://schemas.xmlsoap.org/ws/2003/03/business-process/:

■ selectionFailure

■ conflictingReceive

■ conflictingRequest

■ mismatchedAssignmentFailure

■ joinFailure

■ forcedTermination

■ correlationViolation

■ uninitializedVariable

■ repeatedCompensation

■ invalidReply

Standard faults are defined as follows:

■ Typeless, meaning they do not have associated messageTypes

■ Not associated with any WSDL message

■ Caught without a fault variable:

<catch faultName="bpws:selectionFault">

Categories of BPEL Faults
A BPEL fault has a fault name called a Qname (name qualified with a namespace) and
a possible messageType. There are two categories of BPEL faults:

■ Business faults

■ Run-time faults

Business Faults
Business faults are application-specific faults that are generated when there is a
problem with the information being processed (for example when a social security
number is not found in the database). A business fault occurs when an application
executes a throw activity or when an invoke activity receives a fault as a response. The
fault name of a business fault is specified by the BPEL process. The messageType, if
applicable, is defined in the WSDL. A business fault can be caught with a
faultHandler using the faultName and a faultVariable.

<catch faultName="ns1:faultName" faultVariable="varName">

Run-time Faults
Run-time faults are the result of problems within the running of the BPEL process or
Web service (for example, data cannot be copied properly because the variable name is
incorrect). These faults are not user-defined, and are thrown by the system. They are
generated if the process tries to use a value incorrectly, a logic error occurs (such as an

8-4 Oracle BPEL Process Manager Developer’s Guide

endless loop), a SOAP fault occurs in a SOAP call, an exception is thrown by Oracle
BPEL Server, and so on.

Oracle BPEL Server includes several run-time faults. These faults are included in the
http://schemas.oracle.com/bpel/extension namespace. These faults are
associated with the messageType RuntimeFaultMessage. The following WSDL
file defines the messageType:

<?xml version="1.0" encoding="UTF-8" ?>
<definitions name="RuntimeFault"
 targetNamespace="http://schemas.oracle.com/bpel/extension"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <message name="RuntimeFaultMessage">
 <part name="code" type="xsd:string" />
 <part name="summary" type="xsd:string" />
 <part name="detail" type="xsd:string" />
 </message>
</definitions>

If a faultVariable (of messageType RuntimeFaultMessage) is used when
catching the fault, the fault code can be queried from the faultVariable, along with
the fault summary and detail.

bindingFault
A bindingFault is thrown inside an activity if the preparation of the invocation
fails. For example, the WSDL of the process fails to load. A bindingFault is not
retryable. This type of fault usually must be fixed by human intervention. Table 8–1
describes the fault codes.

Table 8–1 bindingFault Fault Codes

Fault Code Description of Fault

VersionMismatch The processing party found an invalid namespace
for the SOAP envelope element.

MustUnderstand An immediate child element of the SOAP header
element that was either not understood or not
obeyed by the processing party contained a SOAP
MustUnderstand attribute with a value of 1.

Client.GenericError Generic error on the client side

Client.WrongNumberOfInputParts Input message part number mismatch

Client.WrongNumberOfOutputParts Output message part number mismatch

Client.WrongTypeOfInputPart Input message part type error

Client.WrongTypeOfOutputPart Output message part type error

Server.GenericError Generic error on the server side

Server.NoService Server is up, but there is no service

Server.NoHTTPSOAPAction Request is missing the HTTP SOAP action

Server.Unauthenticated Request is not authenticated

Server.Unauthorized Request is not authorized

Getting Fault Details with the getFaultAsString XPath Extension Function

Fault Handling 8-5

remoteFault
A remoteFault is also thrown inside an activity. It is thrown because the invocation
fails. For example, a SOAP fault is returned by the remote service. A remoteFault
can be configured to be retried. Table 8–2 describes the fault codes.

replayFault
A replayFault replays the activity inside a scope. At any point inside a scope, this
fault is migrated up to the scope. Oracle BPEL Server then re-executes the scope from
the beginning.

Catching Run-time Faults Example
BPEL run-time faults can be caught as a named BPEL fault. The bindingFault and
remoteFault can be associated with a message. This enables the faultHandler to
get details about the faults.

The following procedure shows how to use the provided examples to generate a fault
and define a fault handler to catch it. In this case, you modify a WSDL file to generate
a fault, and create a catch attribute to catch it.

1. Import RuntimeFault.wsdl into your process WSDL (located under the SOA_
Oracle_Home\bpel\system\xmllib directory).

2. Declare a variable with messageType bpelx:RuntimeFaultMessage.

3. Catch it using

 <catch faultName="bpelx:remoteFault" | "bpelx:bindingFault"
faultName="varName">

Getting Fault Details with the getFaultAsString XPath Extension Function
The catchAll activity is provided to catch possible faults. However, BPEL does not
provide a method for obtaining additional information about the captured fault. Use
the getFaultAsString() XPath extension function to obtain additional
information.

<catchAll>
 <sequence>
 <assign>
 <from expression="bpelx:getFaultAsString()"/>
 <to variable="faultVar" part="message"/>
 </assign>
 <reply faultName="ns1:myFault" variable="faultVar" .../>
 </sequence>
</catchAll>

Table 8–2 remoteFault Fault Codes

Fault Code Description of Fault

ConnectionRefused Remote server is unavailable

WSDLReadingError Failed to read the WSDL

GenericRemoteFault Generic remote fault

See Also: The following sample, which describes how to handle
run-time binding faults:

■ SOA_Oracle_Home\bpel\samples\demos\ResilientDemo

8-6 Oracle BPEL Process Manager Developer’s Guide

Using the Scope Activity to Manage a Group of Activities
The scope activity provides a container and a context for other activities. A scope
provides handlers for faults, events, and compensation, as well as data variables and
correlation sets. Using a scope activity simplifies a BPEL flow by grouping functional
structures together. This allows you to collapse them into what appears to be a single
element in Oracle JDeveloper.

The following code example shows a scope activity. In this case, the process for getting
a credit rating based on a customer’s social security number has been placed inside a
scope named getCreditRating. This identifies functional blocks of code and sets
them apart visually. In Oracle JDeveloper, you can collapse the activities contained
inside the scope into a single visual element, or expand them when necessary.

<scope name="getCreditRating">
<variables>

<variable name="crError"
 messageType="services:CreditRatingServiceFaultMessage"/>

</variables>
<assign name="assign-2">

<copy>
<to variable="input" part="payload"
query="/autoloan:loanApplication/autoloan:creditRating"/>

</copy>
</assign>

</sequence>
</scope>

To add a scope activity:

1. Click and drag a scope activity into the BPEL process diagram.

2. Open the scope by double-clicking it or by single-clicking the + sign.

3. Drag activities from the Component Palette to build the function within the scope.

Throwing Internal Faults
A BPEL application can generate and receive fault messages. The throw activity has
three elements: its name, the name of the faultName, and the faultVariable. If
you add a throw activity to your BPEL process, it automatically includes a copy rule
that copies the fault name and type into the output payload. The fault thrown by a
throw activity is internal to BPEL. You cannot use a throw activity on an
asynchronous process to communicate with a client. Here is a code sample of a throw
activity, which includes the fault elements, name, and partner link of the service to
which the BPEL process sends the fault, and the copy rule that packages the message:

<throw name="delay" faultName="fault-1" faultVariable="fVar"/>
<invoke name="invokeStockQuoteService" partnerLink="StockQuoteService"/>
<assign>
 <copy>

<from variable="response" part="result" query="/result"/>
<to variable="output" part="payload" query="/tns:result"/>

See Also: The following documentation for examples of creating
scope activities in Oracle JDeveloper:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ "Scope Activity" on page B-22

Returning External Faults

Fault Handling 8-7

</copy>
</assign>

Returning External Faults
A BPEL process can send a fault to another application to indicate a problem, as
opposed to throwing an internal fault. In a synchronous operation, the reply activity
can return the fault. In an asynchronous operation, the invoke activity performs this
function.

Returning a Fault in a Synchronous Interaction
The syntax of a reply activity that returns a fault in a synchronous interaction is as
follows:

<reply partnerlinke="partner-link-name"
 portType="port-type-name"
 operation="operation-name"
 variable="variable-name" (optional)
 faultName="fault-name">
</reply>

Always returning a fault in response to a synchronous request is not very useful. It is
better to make the activity part of a conditional branch, where the first branch is
executed if the data requested is available. If the requested data is not available, then
the BPEL process returns a fault with this information.

Returning a Fault in an Asynchronous Interaction
In an asynchronous interaction, the client does not wait for a reply. The reply activity is
not used to return a fault. Instead, the BPEL process returns a fault using a callback
operation on the same port type that normally receives the requested information,
with an invoke activity.

See Also: The following documentation for examples of creating
throw activities:

■ "Throw Activity" on page B-28

■ SOA_Oracle_Home\bpel\samples\references\Throw

See Also:

■ Chapter 7, "Conditional Branching" for more information on
setting up the conditional structure

■ Chapter 4, "Invoking a Synchronous Web Service" for more
information on synchronous interactions

■ "Reply Activity" on page B-21

See Also:

■ Chapter 5, "Invoking an Asynchronous Web Service" for more
information on asynchronous interactions

■ "Invoke Activity" on page B-14

8-8 Oracle BPEL Process Manager Developer’s Guide

Using a Fault Handler within a Scope
If a fault is not handled, it creates a faulted state that migrates up through the
application and can throw the entire process into a faulted state. To prevent this,
contain the parts of the process that have the potential to receive faults within a scope.
As described earlier, the scope activity includes fault handling capabilities. The catch
activity works within a scope to catch faults and exceptions before they can throw the
entire process into a faulted state.

You can use specific fault names in the catch activity to respond in a specific way to an
individual fault. To catch any faults that are not already handled by name-specific
catch activities, use the catchAll activity.

Using the Empty Activity to Insert No-Op Instructions into a Business Process
There is often a need to use an activity that does nothing. An example is when a fault
must be caught and suppressed. In this case, you can use the empty activity to insert a
no-op instruction into a business process. The syntax to use an empty activity is as
follows:

 <empty standard-attributes>
 standard-elements
 </empty>

If no catch or catchAll is selected, the fault is not caught by the current scope and
is rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown
to) the global process scope, and there is no matching fault handler for the fault at the
global level, the process terminates abnormally. This is as though a terminate
activity (described in "Using the Terminate Activity to Stop a Business Process
Instance" on page 8-10) had been performed.

Consider the following example:

<faulthandlers>
 <catch faultName="x:foo">
 <empty/>
 </catch>
 <catch faultVariable="bar">
 <empty/>
 </catch>
 <catch faultName="x:foo" faultVariable="bar">
 <empty/>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
</faulthandlers>

Assume that a fault named x:foo is thrown. The first catch is selected if the fault
carries no fault data. If there is fault data associated with the fault, the third catch is
selected if the type of the fault's data matches the type of variable bar. Otherwise, the
default catchAll handler is selected. Finally, a fault with a fault variable whose type

See Also: The following documentation for examples of creating
fault handling:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ "Scope Activity" on page B-22

■ SOA_Oracle_Home\bpel\samples\references\Catch

Using Compensation After Undoing a Series of Operations

Fault Handling 8-9

matches the type of bar and whose name is not x:foo is processed by the second
catch. All other faults are processed by the default catchAll handler.

Using Compensation After Undoing a Series of Operations
Compensation occurs when the BPEL process cannot complete a series of operations
after some of them have already completed, and the BPEL process must backtrack and
undo the previously completed transactions. For example, if a BPEL process is
designed to book a rental car, a hotel, and a flight, it may book the car and the hotel
and then be unable to book a flight for the right day. In this case, the BPEL flow
performs compensation by going back and unbooking the car and the hotel.

You can invoke a compensation handler by using the compensate activity, which
names the scope for which the compensation is to be performed (that is, the scope
whose compensation handler is to be invoked). A compensation handler for a scope is
available for invocation only when the scope completes normally. Invoking a
compensation handler that has not been installed is equivalent to using the empty
activity (it is a no-op). This ensures that fault handlers do not have to rely on state to
determine which nested scopes have completed successfully. The semantics of a
process in which an installed compensation handler is invoked more than once are
undefined.

If an invoke activity has a compensation handler defined inline, then the name of the
activity is the name of the scope to be used in the compensate activity. The syntax is as
follows:

<compensate scope="ncname"? standard-attributes>
 standard-elements
 </compensate>

The ability to explicitly invoke the compensate activity is the underpinning of the
application-controlled error-handling framework of Business Process Execution
Language for Web Services Specification. You can use this activity only in the following
parts of a business process:

■ In a fault handler of the scope that immediately encloses the scope for which
compensation is to be performed.

■ In the compensation handler of the scope that immediately encloses the scope for
which compensation is to be performed.

For example:

<compensate scope="RecordPayment"/>

If a scope being compensated by name was nested in a loop, the BPEL process invokes
the instances of the compensation handlers in the successive iterations in reverse
order.

If the compensation handler for a scope is absent, the default compensation handler
invokes the compensation handlers for the immediately enclosed scopes in the reverse
order of the completion of those scopes.

The compensate form, in which the scope name is omitted in a compensate activity,
explicitly invokes this default behavior. This is useful when an enclosing fault or

See Also:

■ "Scope Activity" on page B-22

■ "Empty Activity" on page B-8

8-10 Oracle BPEL Process Manager Developer’s Guide

compensation handler must perform additional work, such as updating variables or
sending external notifications, in addition to performing default compensation for
inner scopes. The compensate activity in a fault or compensation handler attached to
the outer scope invokes the default order of compensation handlers for completed
scopes directly nested within the outer scope. You can mix this activity with any other
user-specified behavior except for the explicit invocation of the nested scope within
the outer scope. Explicitly invoking a compensation for such a scope nested within the
outer scope disables the availability of default-order compensation.

Using the Terminate Activity to Stop a Business Process Instance
The terminate activity immediately terminates the behavior of a business process
instance within which the terminate activity is performed. All currently running
activities must be terminated as soon as possible without any fault handling or
compensation behavior. The terminate activity does not send any notifications of the
status of a BPEL process. If you are going to use the terminate activity, first program
notifications to the interested parties.

The syntax for the terminate activity is as follows:

<terminate standard-attributes>
 standard-elements
</terminate>

Fault Handling Example
The ResilientDemo sample demonstrates failover fault handling and retry fault
handling. Failover allows multiple service implementations to be configured for a
partner link. If a retryable run-time fault occurs, then the server tries other service
implementations. In retry fault handling, the server retries based on a specified retry
interval and retry count. Another kind of fault, a binding fault, can occur if the Web
service has been upgraded and the interface has changed. In the ResilientDemo
sample, when a binding fault occurs, the document is placed in a dead letter queue
using a JMS service. The diagram of ResilientFlow.bpel is shown in Figure 8–2.

See Also:

■ "BankTransferDemo" on page 1-7 for a demonstration that uses
a compensate activity

■ "Compensate Activity" on page B-4

See Also: The following documentation for examples of creating
terminate activities:

■ "Terminate Activity" on page B-27

■ SOA_Oracle_Home\bpel\samples\references\Terminate

Fault Handling Example

Fault Handling 8-11

Figure 8–2 Diagram Window of ResilientFlow.bpel

The invokeRatingService activity shows the failover feature. The partner link of this
invoke has two possible implementations, which are configured in the deployment
descriptor file as follows:

<properties id="RatingService">
 <property name="wsdlLocation">
 http://localhost:8080/axis/services/RatingService1?wsdl
 </property>
 <property name="location">
 http://localhost:1234/axis/services/RatingService1
 http://localhost:8080/axis/services/RatingService2
 </property>
</properties>

The preceding code sample shows that two endpoint locations are configured for the
RatingService partner link. The first endpoint is a bad URL and the second endpoint is
a good URL. Because a remote exception like this is retryable, and there is a second
endpoint, Oracle BPEL Server tries to call the second endpoint, at which point, the call
succeeds.

The invokeFlakyService activity, expanded in Figure 8–3, shows system retry.

8-12 Oracle BPEL Process Manager Developer’s Guide

Figure 8–3 Retry with FlakyService

The partner link of this invoke is configured as follows:

<properties id="FlakyService">
 <property name="wsdlLocation">
 http://localhost:8080/axis/services/FlakyService?wsdl</property>
 <property name="location">
 http://localhost:2222/axis/services/FlakyService</property>
 <property name="retryMaxCount">2</property>
 <property name="retryInterval">60</property>
</properties>

If the service is not listening on port 2222, then the invoke fails with a
ConnectionRefused run-time fault. Because this is a retryable fault, and the
retryMaxCount (set to 2) and retryInterval parameters (set to 60) are defined,
Oracle BPEL Server retries twice, with 60 second intervals between each attempt. The
second retry is successful.

Summary
BPEL supports fault handlers to cope with faults, errors, or exceptions returned by the
called Web services. This chapter demonstrates the application of a fault handler, a
fault handler’s structure, and how to create a fault handler in a BPEL process.

See Also: The following sample:

■ SOA_Oracle_Home\bpel\samples\demos\ResilientDemo

■ SOA_Oracle_
Home\bpel\samples\demos\ResilientDemo\ResilientFl
ow\ResilientFlow.pdf for instructions

Incorporating Java and J2EE Code in BPEL Processes 9-1

9
Incorporating Java and J2EE Code

in BPEL Processes

You can embed sections of Java code into a BPEL process.

This chapter contains the following topics:

■ Overview of Java and J2EE Code in BPEL Concepts

■ Using Java Embedding in a BPEL Process

■ Summary

Overview of Java and J2EE Code in BPEL Concepts
This chapter explains how you can embed sections of Java code into a BPEL process.
This is particularly useful when there is already Java code that can perform the desired
function, and you want to use the existing code rather than start over with BPEL.

You can incorporate Java code using any of the following methods:

■ Using Java Code with WSIF Binding

■ Using Java Code Wrapped as a SOAP Service

■ Directly Embedding Java Code in a BPEL Process

Using Java Code with WSIF Binding
If the Java application has a BPEL-compatible interface, you either use Web Services
Inspection Language (WSIF) binding or wrap the Java code as a SOAP service to use it
in a BPEL process.

WSIF binding is the most common way of using Java code in a BPEL process. This
method enables a BPEL process to invoke an Enterprise Java Bean through native J2EE
protocol (local or remote method invocation (RMI)). With WSIF binding, a section of
the WSDL file defines the protocol for communicating between Java and XML. This
approach maintains Java’s transactionality and does not sacrifice performance. It is
also quicker for you to add WSIF binding to an existing Java application rather than
starting over in Oracle BPEL Process Manager. However, WSIF binding has the
following drawbacks:

■ Less tool support than SOAP services

■ Less interoperability, because each application server needs a specific binding

Currently, you must write the binding manually.

Overview of Java and J2EE Code in BPEL Concepts

9-2 Oracle BPEL Process Manager Developer’s Guide

Oracle BPEL Process Manager’s Java binding implementation is based on the Apache
WSIF package's Java binding. Java binding enables a BPEL process to invoke
user-defined Java classes.

All data used internally in a BPEL process is of a W3C DOM element. Therefore, data
marshalling must be performed between a BPEL process and the user-defined Java
classes. Oracle BPEL Process Manager’s Java binding implementation currently
supports Java classes that use the following data types:

■ XML simple type

■ XML complex type using Oracle BPEL Process Manager facade data type

■ DOM element

Java Binding Service Using XML Simple Types
Most XML simple types can be mapped to Java types, and vice versa. The data
mapping can be defined in the WSDL file using the format extension. For example, a
Java method is defined as follows:

public float getQuote (String symbol) throws Exception;

The format:typeMap definitions are defined as follows:

<binding name="JavaBinding" type="tns:StockquotePT">
 <java:binding/>
 <format:typeMapping encoding="Java" style="Java">
 <format:typeMap typeName="xsd:string" formatType="java.lang.String" />
 <format:typeMap typeName="xsd:float" formatType="java.lang.float" />
 </format:typeMapping>
 <operation name="getQuote">
 <java:operation methodName="getQuote"/>
 <input/>
 <output/>
 </operation>
</binding>

Java Binding Service Using Oracle BPEL Process Manager XML Facade
An XML facade is an Oracle BPEL Process Manager technology that provides a Java
bean-like interface on top of an XML DOM element. Given the XML schemas, facade
classes can be generated using the Oracle BPEL Process Manager schemac tool. In the
following example, the classes use XML facade classes in the method:

public CommentsType addComment(CommentsType payload, CommentType comment)
 throws JavaBindingException;

The WSDL Java binding is defined as follows:

<binding name="JavaBinding" type="tns:HelperService">
 <java:binding/>
 <format:typeMapping encoding="Java" style="Java">
 <format:typeMap typeName="tns:commentType"
 formatType="com.otn.services.CommentType" />
 <format:typeMap typeName="tns:commentsType"
 formatType="com.otn.services.CommentsType" />
 </format:typeMapping>

See Also: SOA_Oracle_
Home\samples\demos\IBMSamples\simple for a sample of using
XML simple types

Overview of Java and J2EE Code in BPEL Concepts

Incorporating Java and J2EE Code in BPEL Processes 9-3

 <operation name="addComment">
 <java:operation methodName="addComment"/>
 <input/>
 <output/>
 <fault name="CommentException"/>
 </operation>
 <operation name="testFault">
 <java:operation methodName="testFault"/>
 <input/>
 <output/>
 <fault name="CommentException"/>
 </operation>
</binding>

The Java types CommentType and CommentsType are XML facade classes.

Java Binding Service Using XML DOM Elements
Oracle BPEL Process Manager internally uses an XML DOM element. If a Java binding
class uses XML DOM elements, data marshalling is not needed. For example, in the
following example, the addComment() method is defined:

public Element addComment(Element payload, Element comment)
 throws JavaBindingException;

The Java binding of the WSDL file is defined as follows:

<binding name="JavaBinding2" type="tns:HelperService2">
 <java:binding/>
 <format:typeMapping encoding="Java" style="Java">
 format:typeMap typeName="tns:commentType"
 formatType="org.w3c.dom.Element"/>
 <format:typeMap typeName="tns:commentsType"
 formatType="org.w3c.dom.Element"/>
 </format:typeMapping>
 <operation name="addComment">
 <java:operation methodName="addComment"/>
 <input/>
 <output/>
 <fault name="CommentException"/>
 </operation>
 <operation name="testFault">
 <java:operation methodName="testFault"/>
 <input/>
 <output/>
 <fault name="CommentException"/>
 </operation>
</binding>

With the Java class using a DOM element type, Java binding can support any XML
data type.

See Also:

■ "Using an XML Facade to Simplify DOM Manipulation" on
page 9-7

■ "schemac" on page 19-29 for details about the schemac tool and
XML facades

Overview of Java and J2EE Code in BPEL Concepts

9-4 Oracle BPEL Process Manager Developer’s Guide

Throwing a WSDL Fault from a Java Binding
As a Web service, a Java binding can throw a fault. The fault can be defined in the
WSDL file as a Web service.

<message name="CommentFaultMessage">
 <part name="payload" type="tns:commentType"/>
</message>

<portType name="HelperService2">
 <operation name="testFault">
 <input message="tns:TestFaultRequestMessage"/>
 <output message="tns:TestFaultResponseMessage"/>
 <fault name="CommentException" message="tns:CommentFaultMessage" />
 </operation>
</portType>
<binding name="JavaBinding2" type="tns:HelperService2">
...
 <operation name="testFault">
 <java:operation methodName="testFault"/>
 <input/>
 <output/>
 <fault name="CommentException"/>
 </operation>
</binding>

To throw a Web service fault, the Java class must declare to throw a predefined fault
type com.collaxa.cube.ws.wsif.providers.java.JavaBindingException
or its subclass.

In the following example, the Java file has a function that throws this exception:

public CommentType testFault(CommentType payload)
 throws JavaBindingException

 {
 System.out.println("testFault : " + payload);
 if (payload != null) {
 JavaBindingException ex = new JavaBindingException();
 ex.setFaultName("CommentException");
 ex.setPart("payload", payload);
 System.out.println(" throwing exception " + ex);
 throw ex; } else {
 return payload;
 }
 }

In a different Java file, there is a similar function:

public Element testFault(Element payload)
 throws JavaBindingException

 {
 System.out.println("testFault2: " + payload);
 if (payload != null) {
 JavaBindingException ex = new JavaBindingException();
 ex.setFaultName("CommentException");
 ex.setPart("payload", payload);
 System.out.println(" throwing exception " + ex);
 throw ex;
 } else {
 return payload;

Overview of Java and J2EE Code in BPEL Concepts

Incorporating Java and J2EE Code in BPEL Processes 9-5

 }
 }

If such an exception is thrown from the Java binding class, the BPEL WSIF layer
converts it into a Web service exception that can be caught by the BPEL source as
follows:

<variables>

 <variable name="fault" messageType="services:CommentFaultMessage"/>
 </variables>

 <faultHandlers>
 <catch faultName="services:CommentException" faultVariable="fault">
 <assign>
 <copy>
 <from expression="string('CommentException')"/>
 <to variable="output" part="payload"
 query="/types:comments/types:item[1]/types:message"/>
 </copy>
 </assign>
 </catch>
 <catchAll>
 <empty/>
 </catchAll>
 </faultHandlers>

Using Java Code Wrapped as a SOAP Service
As an alternative to WSIF binding, you can wrap the Java code as a SOAP service. As
with WSIF binding, this method requires that the Java application have a
BPEL-compatible interface. A Java application wrapped as a SOAP service appears as
any other Web service, which can be used by many different kinds of applications.
There are also tools available for writing SOAP wrappers.

However, a Java application wrapped as a SOAP service has the following drawbacks:

■ It loses performance, because interactions are constantly being mapped back and
forth between the Java code and the SOAP wrapper.

■ It loses interoperability, that is, the ability to perform several operations in an
all-or-none mode (such as debiting one bank account while crediting another,
where either both transactions must be completed, or neither of them).

See Also:

■ Chapter 8, "Fault Handling" for additional details about faults

■ SOA_Oracle_
Home\bpel\samples\tutorials\702.Bindings for
examples of WSIF bindings for EJB, HTTP, and Java. Bindings
must be written to match the application server.

■ SOA_Oracle_
Home\bpel\samples\demos\BankTransferDemo\BankTran
sferFlow

Overview of Java and J2EE Code in BPEL Concepts

9-6 Oracle BPEL Process Manager Developer’s Guide

Directly Embedding Java Code in a BPEL Process
Another way to use Java in a BPEL process is to embed the code directly into the BPEL
process using the Java BPEL exec extension bpelx:exec. The benefits of this
approach are speed and transactionality. However, you can incorporate only fairly
small segments of code. If you want to incorporate larger segments of code, or if the
project requires the Java code to have the same look and feel throughout all the BPEL
processes being created, consider using WSIF binding or wrapping it as a SOAP
service.

Using the bpelx:exec Tag to Embed Java Code Snippets into a BPEL Process
The BPEL tag bpelx:exec enables you to embed a snippet of Java code within a
BPEL process. The server executes any snippet of Java code contained within a
bpelx:exec activity, within its Java Transaction API (JTA) transaction context.

The BPEL tag bpelx:exec converts Java exceptions into BPEL faults and then adds
them into the BPEL process.

The Java snippet can propagate its JTA transaction to session and entity beans that it
calls.

For example, a SessionBeanSample.bpel file uses the following bpelx:exec tag
to embed the invokeSessionBean Java bean:

 <bpelx:exec name="invokeSessionBean" language="java" version="1.4">
 <![CDATA[
 try {
 Object homeObj = lookup("ejb/session/CreditRating");
 Class cls = Class.forName(
 "com.otn.samples.sessionbean.CreditRatingServiceHome");
 CreditRatingServiceHome ratingHome = (CreditRatingServiceHome)
 PortableRemoteObject.narrow(homeObj,cls);
 if (ratingHome == null) {
 addAuditTrailEntry("Failed to lookup 'ejb.session.CreditRating'"
 + ". Please make sure that the bean has been"
 + " successfully deployed");
 return;
 }
 CreditRatingService ratingService = ratingHome.create();

 // Retrieve ssn from scope
 Element ssn =
 (Element)getVariableData("input","payload","/ssn");

 int rating = ratingService.getRating(ssn.getNodeValue());
 addAuditTrailEntry("Rating is: " + rating);

 setVariableData("output", "payload",
 "/tns:rating", new Integer(rating));
 } catch (NamingException ne) {
 addAuditTrailEntry(ne);
 } catch (ClassNotFoundException cnfe) {
 addAuditTrailEntry(cnfe);
 } catch (CreateException ce) {
 addAuditTrailEntry(ce);
 } catch (RemoteException re) {
 addAuditTrailEntry(re);
 }
]]>
 </bpelx:exec>

Overview of Java and J2EE Code in BPEL Concepts

Incorporating Java and J2EE Code in BPEL Processes 9-7

Using an XML Facade to Simplify DOM Manipulation
You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process
Manager provides a lightweight Java Architecture for XML Binding (JAXB)-like Java
object model on top of XML (called a facade). An XML facade provides a Java
bean-like front end for an XML document or element that has a schema. Facade classes
can provide easy manipulation of the XML document and element in Java programs.

You add the XML facade by using a createFacade method within the bpelx:exec
statement in the .bpel file. For example:

 <bpelx:exec name= ...
 <![CDATA
 ...
 Element element = ...
 (Element)getVariableData("input","payload","/loanApplication/"):
 //Create an XMLFacade for the Loan Application Document
 LoanApplication xmlLoanApp=
 LoanApplicationFactory.createFacade(element);
 ...

To generate the facade classes, use the schemac tool, which is provided with Oracle
BPEL Process Manager. You can find the schemac tool in the following locations:

■ SOA_Oracle_Home\bpel\bin

To use schemac, run a command similar to the following to generate the facades from
WSDL or XSD files:

C:\BPEL_project_dir\> schemac *.wsdl /*.xsd

After you run schemac, it creates a src folder for a HelperService.java service
and a com folder for the generated Java classes. Oracle provides a sample in the
following directories that showcases the use of facade classes in Java bindings:

■ SOA_Oracle_
Home\bpel\samples\tutorials\702.Bindings\JavaBinding

When it generates the facade, schemac uses the following files:

■ Using build.xml, schemac generates the source of the facade classes.

■ The schemac tool creates a Java binding provider class HelperService.java,
which in the 702.Bindings example is located under
702.Bindings\JavaBinding\src\com\otn\services. It has one method,
which uses the facade classes CommentsType and CommentType:

public CommentsType addComment(CommentsType payload, CommentType comment)

■ To map the XML types to the corresponding facade classes, a Java binding service
is defined in the HelperService.wsdl file. See the format:typeMapping
section of Java binding:

<format:typeMapping encoding="Java" style="Java">
 <format:typeMap typeName="tns:commentType"
 formatType="com.otn.services.CommentType" />
 <format:typeMap typeName="tns:commentsType"
 formatType="com.otn.services.CommentsType" />
</format:typeMapping>

See Also: "schemac" on page 19-29

Using Java Embedding in a BPEL Process

9-8 Oracle BPEL Process Manager Developer’s Guide

bpelx:exec Built-in Methods
Table 9–1 lists a set of bpelx:exec built-in methods that you can use to read and
update scope variables, instance metadata, and audit trails.

Using Java Embedding in a BPEL Process
In Oracle JDeveloper, you can add the bpelx:exec activity, and copy the code
snippet into a dialog box, as follows:

1. Drag and drop the Java Embedding activity (with the coffee cup icon) from the
Component Palette.

2. Double-click the Java Embedding activity to display the Java Embedding window.

Table 9–1 Built in Methods for bpelx:exec

Method Name Description

Object lookup(String name) JNDI access

Locator getLocator() BPEL Process Manager Locator

long getInstanceId() Unique ID associated with each instance

String setTitle(String title) /
String getTitle()

Title of this instance

String setStatus(String status) /
String getStatus()

Status of this instance

void setIndex(int i, String value)
/ String getIndex(int i)

Six indexes can be used for search

void setPriority(int priority) /
int getPriority()

Priority

void setCreator(String creator) /
String getCreator()

Who initiated this instance

void setCustomKey(String customKey
) / String getCustomKey()

Second primary key

void setMetadata(String metadata)
/ String getMetadata ()

Metadata for generating lists

String getPreference(String key) Access preference defined in bpel.xml

void addAuditTrailEntry(String
message, Object detail)

Add an entry to the audit trail

void addAuditTrailEntry(Throwable t) Access file stored in the suitcase

Object getVariableData(String name)
throws BPELFault

Access and update variables stored in the
scope

Object getVariableData(String name,
String partOrQuery) throws BPELFault

Object getVariableData(String name,
String part, String query)

void setVariableData(String name,
Object value)

void setVariableData(String name,
String part, Object value)

void setVariableData(String name,
String part, String query, Object
value)

Summary

Incorporating Java and J2EE Code in BPEL Processes 9-9

3. Name the Java Embedding activity.

4. In the Code Snippet field, enter (or cut and paste) the Java code.

For example, the bpel:exec code example described under "Using the bpelx:exec
Tag to Embed Java Code Snippets into a BPEL Process" on page 9-6 appears as
follows:

Summary
This chapter demonstrates how you can embed sections of Java code into a BPEL
process using one of the following techniques:

■ If the Java application has a BPEL-compatible interface, you can use WSIF binding
or wrap the Java code in a SOAP service.

■ You can directly embed the Java code by including an inline code snippet using
bpelx:exec. This snippet is executed within the transaction context of Oracle
BPEL Server. This method allows you to propagate that transaction to your own
session and entity beans. You can use a set of built-in methods to enable the
bpelx:exec snippet to read and update variables, change instance meta data,
and throw faults. To simplify DOM manipulation, use an XML facade.

See Also: "Java Embedding Activity" on page B-16 for additional
details about this activity, including adding JAR files to classpaths

Summary

9-10 Oracle BPEL Process Manager Developer’s Guide

Events and Timeouts 10-1

10
Events and Timeouts

This chapter describes how to use events and timeouts. Because Web services can take
a long time to return a response, a BPEL process must be able to time out and continue
with the rest of the flow after a period of time.

This chapter contains the following topics:

■ Use Case for Events and Timeouts

■ Overview of Event and Timeout Concepts

■ Using the Pick Activity to Select Between Continuing a Process or Waiting

■ Using the Wait Activity to Set an Expiration Time

■ Setting Timeouts for Synchronous Processes

■ Defining a Timeout

■ Summary

Use Case for Events and Timeouts
In this use case, you program a BPEL process to wait one minute for a response from
the Star Loan Web service. If Star Loan does not respond in one minute, then the BPEL
process automatically selects the United Loan offer. In the real world, the time limit is
more like 48 hours. However, for this example, you do not want to wait that long to
see if your BPEL process is working properly.

Overview of Event and Timeout Concepts
Because asynchronous Web services can take a long time to return a response, a BPEL
process must be able to time out, or give up waiting, and continue with the rest of the
flow after a certain amount of time. You can use the pick activity to configure a BPEL
flow to either wait a specified amount of time or to continue performing its duties. To
set an expiration period for the time, you can use the wait activity.

If you plan to set timeouts for synchronous processes that connect to a remote
database, you need to set the syncMaxWaitTime timeout property in the
domain.xml file.

See Also: The following sample file:

■ SOA_Oracle_
Home\bpel\samples\tutorials\108.Timeouts

10-2 Oracle BPEL Process Manager Developer’s Guide

Using the Pick Activity to Select Between Continuing a Process or
Waiting

The pick activity provides two branches, each one with a condition. The branch that
has its condition satisfied first is executed. In the following example, one branch’s
condition is to receive a loan offer, and the other branch’s condition is to wait a
specified amount of time.

Figure 10–1 provides an overview. The following activities take place:

1. An invoke activity initiates a service, in this case, a request for a loan offer from
Star Loan.

2. The pick activity begins next. It has the following conditions:

■ onMessage: This condition has code for receiving a reply in the form of a loan
offer from the Star Loan Web service. The onMessage code is the same as the
code for receiving a response from the Star Loan Web service before a timeout
was added.

■ onAlarm: This condition has code for a timeout of one minute. This time is
defined as PT1M, which means to wait one minute before timing out. In this
timeout setting, S stands for seconds, M for one minute, H for hour, D for day,
and Y for year. In the unlikely event that you want a time limit of 1 year, 3
days, and 15 seconds, you enter it as PT1Y3D15S. The remainder of the code
sets the loan variables selected and approved to false, sets the annual
percentage rate (APR) at 0.0, and copies this information into the loanOffer
variable.

For more detailed information on the time duration format, see the duration
section of the most current XML Schema Part 2: Datatypes document at:

http://www.w3.org/TR/xmlschema-2/#duration

3. The pick activity condition that completes first is the one that the BPEL process
executes. The other branch then is not executed.

Using the Pick Activity to Select Between Continuing a Process or Waiting

Events and Timeouts 10-3

Figure 10–1 Overview of the Pick Activity

The following code segment defines the pick activity for this operation:

 <pick>
 <!-- receive the result of the remote process -->
 <onMessage partnerLink="LoanService"
 portType="services:LoanServiceCallback"
 operation="onResult" variable="loanOffer">

 <assign>
 <copy>
 <from variable="loanOffer" part="payload"/>
 <to variable="output" part="payload"/>
 </copy>
 </assign>

 </onMessage>
 <!-- wait for one minute, then timesout -->
 <onAlarm for="PT1M">
 <assign>
 <copy>
 <from>
 <loanOffer xmlns="http://www.autoloan.com/ns/autoloan">
 <providerName>Expired</providerName>
 <selected type="boolean">false</selected>
 <approved type="boolean">false</approved>
 <APR type="double">0.0</APR>
 </loanOffer>
 </from>
 <to variable="loanOffer" part="payload"/>
 </copy>
 </assign>
 </onAlarm>
</pick>

Initiate
service

<invoke>

Wait for
callback

<onMessage>

Logic
Post

Callback

Star
Loan

Logic
Post

Timeout

Time out
in 1M

<onAlarm>

<pick>

BPEL
Process

WSDL

10-4 Oracle BPEL Process Manager Developer’s Guide

Using the Wait Activity to Set an Expiration Time
The wait activity allows a process to wait for a given time period or until a time limit
has been reached. Exactly one of the expiration criteria must be specified.

<wait (for="duration-expr" | until="deadline-expr") standard-attributes>
 standard-elements
 </wait>

Setting Timeouts for Synchronous Processes
For synchronous processes that connect to a remote database, you must increase the
syncMaxWaitTime timeout property in the SOA_Oracle_
Home\bpel\domains\default\config\domain.xml file:

<property id="syncMaxWaitTime">
 <name>Delivery result receiver maximum wait time</name>
 <value>45</value>
 <comment>
 <![CDATA[The maximum time the process result receiver will wait for a
result before returning. Results from asynchronous BPEL processes are
retrieved synchronously via a receiver that will wait for a result from the
container.
 <p/>
 The default value is 45 seconds.]]>
 </comment>
 </property>

Defining a Timeout
To define a timeout, follow these steps:

1. Drag and drop a Pick activity into a BPEL process.

The Pick activity includes the onMessage (envelope icon) and onAlarm (alarm
clock icon) branches.

See Also: The following samples:

■ "107.Exceptions" on page 1-11 for a tutorial that uses a pick
activity

■ "108.Timeouts" on page 1-11 for a tutorial that uses a pick
activity

■ "Pick Activity" on page B-19

■ SOA_Oracle_Home\bpel\samples\references\Pick

See Also: The following documentation for examples of defining a
wait activity:

■ "SleepBroker" on page 1-8 for a demonstration that uses a wait
activity

■ "Wait Activity" on page B-31

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\Wait

Defining a Timeout

Events and Timeouts 10-5

2. Double-click the OnAlarm branch of the onAlarm activity and set its time limit to
1 minute instead of 1 hour.

3. Click OK.

4. Double-click the onMessage activity, and edit its attributes to receive the response
from the loan service.

10-6 Oracle BPEL Process Manager Developer’s Guide

Summary
Instead of performing multiple operations at the same time as with the flow attribute,
you can use the pick activity to define a number of operations such that only the first
one to complete is executed. The example in this chapter is of a pick activity where one
branch is an asynchronous callback from a loan service, and the other branch is a
timeout set at one minute.

See Also: "Pick Activity" on page B-19

Invoking a BPEL Process 11-1

11
Invoking a BPEL Process

This chapter shows how a Java or JSP application can call a BPEL process to perform
functions or use services.

This chapter contains the following topics:

■ Use Case for Invoking a BPEL Process

■ Overview of Invoking BPEL Process Concepts

■ Sending Messages to a BPEL Process from a Java or JSP Application

■ Summary

Use Case for Invoking a BPEL Process
In this use case, you learn how to invoke synchronous and asynchronous BPEL
processes through either the simple object access protocol (SOAP) or Java. The BPEL
process accepts a social security number and sends a credit rating in return. The user
Web interface is provided by a JSP file, which takes the input and passes it to a BPEL
process to get back a credit rating.

Overview of Invoking BPEL Process Concepts
A Java or a JSP application can call a BPEL process to perform functions or use
services. A BPEL process is itself a Web service, defining and supporting a client
interface through WSDL and SOAP. However, you can make BPEL processes
deployed on Oracle BPEL Process Manager available to clients through a Java API.

Sending Messages to a BPEL Process from a Java or JSP Application
You can invoke a BPEL process as a Web service through a WSDL or SOAP interface,
or as a Java component through its client Java interface. The application puts the
request in the form of a payload that then goes to the BPEL process. The BPEL process
receives the payload and responds with a payload containing the information that the
application requested.

See Also: The following sample file:

■ SOA_Oracle_
Home\bpel\samples\tutorials\102.InvokingProcesses

See Also: The tutorial at
http://www.oracle.com/technology/products/ias/bpel/p
df/orabpel-Tutorial7-InvokingBPELProcesses.pdf

Sending Messages to a BPEL Process from a Java or JSP Application

11-2 Oracle BPEL Process Manager Developer’s Guide

Figure 11–1 shows how an application interacts with a BPEL process through a client
partner link, using one of a number of possible protocols.

Figure 11–1 Application Interaction with a BPEL Process

Invoking a BPEL Process with the Generic Java API
You can invoke a BPEL process by using a generic Java API. Oracle provides classes
that enable your BPEL process to use a generic Java API to connect to Oracle BPEL
Process Manager and to pass XML messages through a generic Java API. You can use
these classes to perform either two-way or one-way invoke operations.

This section covers the following topics:

■ Connecting to Oracle BPEL Process Manager with the Locator Class

■ Passing XML Messages Through Java

■ Invoking a Two-Way Operation Through the Java API

■ Invoking a One-Way Operation Through the Java API

Connecting to Oracle BPEL Process Manager with the Locator Class
Oracle provides a com.oracle.bpel.client.Locator class that supports a
flexible client interface without being affected by server clustering and other
production details. Use this class to do the following:

■ Connect to Oracle BPEL Process Manager, authenticating if required

■ Obtain handles to services provided by Oracle BPEL Server

For example, the Locator class can connect to the default domain on a local Oracle
BPEL Process Manager and fetch a list of BPEL processes deployed on that server. In
this case, the Locator class returns a handle to a
com.oracle.bpel.client.dispatch.IDeliveryService instance.

The following instance can invoke or initiate BPEL processes on Oracle BPEL Server:

import com.oracle.bpel.client.Locator;
import com.oracle.bpel.client.dispatch.IDeliveryService;

// Connect to domain "default" using password “bpel”
// null IP address means local server

BPEL Process

<receive>

WSDL
Client

PartnerLinkSOAP /
WSDL

Java
Business
Delegate

<reply>

Sending Messages to a BPEL Process from a Java or JSP Application

Invoking a BPEL Process 11-3

Locator locator = new Locator("default", "welcome1", null);

IDeliveryService deliveryService = (IDeliveryService)locator.lookupService
 (IDeliveryService.SERVICE_NAME);

Passing XML Messages Through Java
Because all Web services, including BPEL processes, accept and return XML messages,
any Java API using Web services needs a way to pass XML data through Java. You can
use the Oracle BPEL Process Manager client class
com.oracle.bpel.client.NormalizedMessage to activate an XML message
dynamically.

For example, to activate an input message for the CreditRatingService from static
string XML data, you can use the following code:

import com.oracle.bpel.client.NormalizedMessage;
String xml =
"<ssn xmlns=\"http://services.otn.com\">123456789</ssn>";

NormalizedMessage nm = new NormalizedMessage();
nm.addPart("payload", xml);

In practice, you activate NormalizedMessages more dynamically. For full
documentation of the NormalizedMessage class, see the Oracle BPEL Process
Manager Javadocs in:

■ SOA_Oracle_Home\bpel\docs\apidocs

Invoking a Two-Way Operation Through the Java API
After a delivery service has been instantiated, it can initiate a BPEL process with a
NormalizedMessage XML message. You can use one of the
IDeliveryService.request() methods to invoke a two-way Web service
operation, which has an input message and returns a result synchronously.

The IDeliveryService.request() method is overloaded. To find out more about
its available versions, refer to the Oracle BPEL Process Manager Javadoc. In this
version, the request() method has the following signature:

public NormalizedMessage request(java.lang.String processId,
 java.lang.String operationName,
 NormalizedMessage message)
 throws java.rmi.RemoteException

The following code example (provided with the Oracle BPEL Process Manager
samples) demonstrates how to use this API to invoke the CreditRatingService
BPEL process.

<%@page import="java.util.Map" %>

<%@page import="com.oracle.bpel.client.Locator" %>
<%@page import="com.oracle.bpel.client.NormalizedMessage" %>
<%@page import="com.oracle.bpel.client.dispatch.IDeliveryService" %>
<html>

Note: This instance code example uses welcome1 as the domain
password. Update the instance with the correct password for your
environment.

Sending Messages to a BPEL Process from a Java or JSP Application

11-4 Oracle BPEL Process Manager Developer’s Guide

<head>
<title>Invoke CreditRatingService</title>
</head>
<body>
<%
String ssn = request.getParameter("ssn");
if(ssn == null)
ssn = "123-12-1234";
String xml = "<ssn xmlns=\"http://services.otn.com\">"
+ ssn + "</ssn>";
Locator locator = new Locator("default","bpel",null);
IDeliveryService deliveryService =
(IDeliveryService)locator.lookupService
(IDeliveryService.SERVICE_NAME);
// construct the normalized message and send to oracle bpel process
manager
NormalizedMessage nm = new NormalizedMessage();
nm.addPart("payload", xml);
NormalizedMessage res =
deliveryService.request("CreditRatingService", "process", nm);
Map payload = res.getPayload();
out.println("BPELProcess CreditRatingService executed!
");
out.println("Credit Rating is " + payload.get("payload"));
%>

Invoking a One-Way Operation Through the Java API
A one-way invoke operation has only an input message and does not return a result.
The procedure for invoking a one-way BPEL operation through the Java API is very
similar to how you invoke two-way operations. The difference is that you use the
IDeliveryService.post() method instead of IDeliveryService.request().
This method is overloaded; its methods invoke a one-way operation on a BPEL
process and thus return void because a response is not expected (at least not a
synchronous response).

From the Javadoc for
com.oracle.bpel.client.dispatch.IDeliveryService:

public void post(java.lang.String processId,
 java.lang.String operationName,
 NormalizedMessage message)
 throws java.rmi.RemoteException

In the following example, the post() method is very similar to the request()
method shown in the two-way example discussed earlier, except that it returns void.

<%@page import="com.oracle.bpel.client.Locator" %>
<%@page import="com.oracle.bpel.client.NormalizedMessage" %>
<%@page import="com.oracle.bpel.client.dispatch.IDeliveryService" %>
...
Locator locator = new Locator("default", "bpel", null);
...
NormalizedMessage nm = new NormalizedMessage();
nm.addPart("payload" , xml);
deliveryService.post("HelloWorld", "initiate", nm);

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\tutorials\102.InvokingProcesses
\jsp\invokeCreditRatingService.jsp

Sending Messages to a BPEL Process from a Java or JSP Application

Invoking a BPEL Process 11-5

out.println("BPELProcess HelloWorld initiated!");
%>

Retrieving Status or Results from Asynchronous BPEL Processes
If you use the Java API to initiate an asynchronous BPEL process, you must often
consider how to receive the result of the process, because a typical Java client cannot
be called back the same way as a Web service. You can handle this problem by using
the following strategies:

■ Have your code inform users of the progress of the process. For example, the
LoanFlowPlus BPEL demonstration application (located in SOA_Oracle_
Home\bpel\samples\demos\LoanDemoPlus) informs users of the progress
through a user task, such as manually approving the final loan offer. You also can
have the process send some sort of notification, such as an e-mail message or a
JMS message, when it completes.

■ For asynchronous BPEL processes, have the Java client poll the result. In this
case, the client needs a handle to fetch status information for a particular instance.
The post() method does not automatically return such a handle, but it does
allow the client to specify a conversation ID. This ID can be any unique identifier
that the client can later use to identify a specific instance and retrieve status
information for it. See the Oracle BPEL Javadocs for the
com.oracle.bpel.client.NormalizedMessage class to find the specific
field name for the conversation ID and other properties, which you can set at the
time a BPEL process is instantiated through the Java API. You can also use the
com.oracle.bpel.client.Locator.lookupInstance(String key)
method to locate a specific instance based on a conversation ID.

You also can use the NormalizedMessage properties to specify the address of a
Web service for the callback. This initiates an asynchronous BPEL process from
Java, but receives a SOAP/XML callback to a Web service listener.

It is also possible using the supported NormalizedMessage properties to specify the
address of a Web service for the callback and therefore initiate an asynchronous BPEL
process from Java, but receive a SOAP/XML callback to a Web service listener.

Contact Oracle Support Services for more information on how to retrieve status or
results from an asynchronous BPEL process in your specific environment.

Using the Java API from a Remote Client
The code examples described in previous sections are executed within the same
application server container in which the Oracle BPEL Process Manager is running.
You can run these APIs from a remote client, however, and use them through a remote
method invocation (RMI) from a remote application server. The RMI client code you
use depends on the application server in which the client is running. Work with Oracle
Support Services regarding how to use the Oracle BPEL Process Manager Java API
over RMI for your specific client configuration and environment.

See Also: The following sample:

■ SOA_Oracle_
Home\bpel\samples\tutorials\102.InvokingProcesses
\jsp\invokeHelloWorld.jsp

Summary

11-6 Oracle BPEL Process Manager Developer’s Guide

Invoking a BPEL Process with the Web Service/SOAP Interface
After you deploy a BPEL process to Oracle BPEL Server, it is automatically published
as a Web service. This means that the process can be accessed through its
XML/SOAP/WSDL interface without any additional developer effort. Supporting a
standard Web services interface means that BPEL processes can be invoked from any
client technology that supports Web services. This includes Microsoft .NET, Sun’s
JAX-RPC implementation, Apache Axis, Oracle JDeveloper, and many other Web
services tool kits. In addition, it means that BPEL and Oracle BPEL Process Manager
can publish Web services. Those services, both synchronous and asynchronous, can be
invoked from applications and services implemented with nearly any technology and
language.

You access a BPEL process through its Web service interface in the standard way you
access any Web service: by writing a client that uses the BPEL process WSDL interface
definition and SOAP as a protocol.

Summary
Once deployed, a BPEL process is exposed through both a WSDL or SOAP interface
and a business delegate Java interface. The Java business delegate interface allows Java
and JSP applications to initiate new instances of a BPEL process.

The Java business delegate can be used locally or remotely using RMI. The Java
business delegate is JTA-aware, allowing the initiation of a process to be part of a
broader transaction.

Interaction Patterns 12-1

12
Interaction Patterns

This chapter identifies common interaction patterns between a BPEL process and
another application, and shows the best use practices for each.

This chapter contains the following topics:

■ One-Way Message

■ Synchronous Interaction

■ Asynchronous Interaction

■ Asynchronous Interaction with Timeout

■ Asynchronous Interaction with a Notification Timer

■ One Request, Multiple Responses

■ One Request, One of Two Possible Responses

■ One Request, a Mandatory Response, and an Optional Response

■ Partial Processing

■ Multiple Application Interactions

■ Summary

One-Way Message
In a one-way message, or fire and forget, the client sends a message to the service, and
the service does not need to reply. Figure 12–1 provides an overview.

Synchronous Interaction

12-2 Oracle BPEL Process Manager Developer’s Guide

Figure 12–1 One-Way Message

BPEL Process as the Client
As the client, the BPEL process needs a valid partner link and an invoke activity with
the target service and the message. As with all partner activities, the WSDL file defines
the interaction.

BPEL Process as the Service
To accept a message from the client, the BPEL process needs a receive activity.

Synchronous Interaction
In a synchronous interaction, a client sends a request to a service, and receives an
immediate reply. The BPEL process can be at either end of this interaction, and must
be coded based on its role as either the client or the service. Figure 12–2 provides an
overview.

Deployment Descriptor
(bpel.xml)

Client BPEL Process
WSDL

PartnerLink

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>d1<invoke>

Asynchronous Interaction

Interaction Patterns 12-3

Figure 12–2 Synchronous Interaction

BPEL Process as the Client
When the BPEL process is on the client side of a synchronous transaction, it needs an
invoke activity. The port on the client side both sends the request and receives the
reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process as the Service
When the BPEL process is on the service side of a synchronous transaction, it needs a
receive activity to accept the incoming request, and a reply activity to return either the
requested information or an error message (a fault).

Asynchronous Interaction
In an asynchronous interaction, a client sends a request to a service and waits until the
service replies. Figure 12–3 provides an overview.

See Also: Chapter 4, "Invoking a Synchronous Web Service"

Deployment Descriptor
(bpel.xml)

BPEL Process
WSDL
Client

PartnerLink
d1

d2

f1

Call
service

<invoke>

Deployment Descriptor
(bpel.xml)

BPEL Process

<receive>

<reply>
OR

Asynchronous Interaction with Timeout

12-4 Oracle BPEL Process Manager Developer’s Guide

Figure 12–3 Asynchronous Interaction

BPEL Process as the Client
When the BPEL process is on the client side of an asynchronous transaction, it needs
an invoke activity to send the request and a receive activity to receive the reply. As
with all partner activities, the WSDL file defines the interaction.

BPEL Process as the Service
As with a synchronous transaction, when the BPEL process is on the service side of an
asynchronous transaction, it needs a receive activity to accept the incoming request
and an invoke activity to return either the requested information or a fault.

Asynchronous Interaction with Timeout
In an asynchronous interaction with a timeout, a client sends a request to a service and
waits until it receives a reply, or until a certain time limit is reached, whichever comes
first. Figure 12–4 provides an overview.

See Also: Chapter 5, "Invoking an Asynchronous Web Service"

Deployment Descriptor
(bpel.xml)

Client BPEL Process
WSDL

PartnerLink

d2

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<invoke>
Get

response
<receive>

<receive>d1
Call

service
<invoke>

Asynchronous Interaction with a Notification Timer

Interaction Patterns 12-5

Figure 12–4 Asynchronous Interaction with Timeout

BPEL Process as the Client
When the BPEL process is on the client side of an asynchronous transaction with a
timeout, it needs an invoke activity to send the request and a pick activity with two
branches: an onMessage branch and an onAlarm branch. If the reply comes after the
time limit has expired, the message goes to the dead letter queue. As with all partner
activities, the WSDL file defines the interaction.

BPEL Process as the Service
The behavior of the service BPEL process is the same as with the asynchronous
interaction with the BPEL process as the service, as described in "BPEL Process as the
Service" on page 12-4.

Asynchronous Interaction with a Notification Timer
In an asynchronous interaction with a notification time, a client sends a request to a
service and waits for a reply, although a notification is sent after a timer expires. The
client continues to wait for the reply from the service even after the timer has expired.
Figure 12–5 provides an overview.

See Also: "Using the Pick Activity to Select Between Continuing a
Process or Waiting" on page 10-2

Deployment Descriptor
(bpel.xml)

Wait for
callback

<onMessage>

Logic
Post

Callback

Logic
Post

Timeout

Time out
in 1M

<onAlarm>

<pick>

Client BPEL Process

WSDL
PartnerLink

d1

d2

Call
service

<invoke>

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

<invoke>

One Request, Multiple Responses

12-6 Oracle BPEL Process Manager Developer’s Guide

Figure 12–5 Asynchronous Interaction with a Notification Time

BPEL Process as the Client
When the BPEL process is on the client side of this transaction, it needs a scope activity
containing an invoke activity to send the request, and a receive activity to accept the
reply. The onAlarm handler of the scope activity has a time limit and instructions on
what to do when the timer expires. For example, wait 30 minutes, then send a warning
indicating that the process is taking longer than expected. As with all partner
activities, the WSDL file defines the interaction.

BPEL Process as the Service
The behavior for the service BPEL process is the same as with the asynchronous
interaction with the BPEL process as the service, as described in "BPEL Process as the
Service" on page 12-4.

One Request, Multiple Responses
In this interaction type, the client sends a single request to a service and receives
multiple responses in return. For example, the request can be to order a product
online, and the first response can be the estimated delivery time, the second response a
payment confirmation, and the third response a notification that the product has
shipped. In this example, the number and types of responses are expected. Figure 12–6
provides an overview.

Deployment Descriptor
(bpel.xml)

BPEL Process

WSDL
PartnerLink

d1

d2

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

<invoke>

<scope>

Call
service

<invoke>

<onAlarm>

Notify
Someone

Wait for
Callback
<receive>

One Request, One of Two Possible Responses

Interaction Patterns 12-7

Figure 12–6 One Request, Multiple Responses

BPEL Process as the Client
When the BPEL process is on the client side of this transaction, it needs an invoke
activity to send the request, and a sequence activity with three receive activities, one
for each reply. As with all partner activities, the WSDL file defines the interaction.

BPEL Process as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
sequence attribute with three invoke activities, one for each reply.

One Request, One of Two Possible Responses
In an interaction using one request and one of two possible responses, the client sends
a single request to a service and receives one of two possible responses. For example,
the request can be to order a product online, and the first response can be either an
in-stock message, or an out-of-stock message. Figure 12–7 provides an overview.

Deployment Descriptor
(bpel.xml)

Client BPEL Process

Call
service

<invoke>

<sequence>

<receive>

<receive>

d1

d3

d2

d4

<receive>

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

<sequence>

</sequence> </sequence>

<invoke>

<invoke>

<invoke>

WSDL
Client

PartnerLink

One Request, a Mandatory Response, and an Optional Response

12-8 Oracle BPEL Process Manager Developer’s Guide

Figure 12–7 One Request, One of Two Possible Responses

BPEL Process as the Client
When the BPEL process is on the client side of this transaction, it needs the following:

■ An invoke activity to send the request

■ A pick activity with two branches: one onMessage for the in-stock response and
instructions on what to do if an in-stock message is received

■ A second onMessage for the out-of-stock response and instructions on what to do
if an out-of-stock message is received

As with all partner activities, the WSDL file defines the interaction.

BPEL Process as the Service
The BPEL service needs a receive activity to accept the message from the client, and a
switch activity with two branches, one with an invoke activity sending the in-stock
message if the item is available, and a second branch with an invoke activity sending
the out-of-stock message if the item is not available.

One Request, a Mandatory Response, and an Optional Response
In this type of interaction, the client sends a single request to a service and receives one
or two responses. Here, the request is to order a product online. If the product is
delayed, the service sends a message letting the customer know. In any case, the
service always sends a notification when the item ships. Figure 12–8 provides an
overview.

See Also: "Using the Pick Activity to Select Between Continuing a
Process or Waiting" on page 10-2

Deployment Descriptor
(bpel.xml)

<onMessage A>

Logic A Logic B

<onMessage B>

<pick>

Client BPEL Process

WSDL
PartnerLink

d1
Call

service
<invoke>

Deployment Descriptor
(bpel.xml)

Service BPEL Process

Item in stock?

<invoke>
Msg A

<invoke>
Msg B

<otherwise>

<switch>

<receive>

Msg A
or

Msg B

Partial Processing

Interaction Patterns 12-9

Figure 12–8 One Request, a Mandatory Response, and an Optional Response

BPEL Process as the Client
When the BPEL process is on the client side of this transaction, it needs a scope activity
containing the invoke activity to send the request, and a receive activity to accept the
mandatory reply. The onMessage handler of the scope activity is set to accept the
optional message and instructions on what to do if the optional message is received
(for example, notify you that the product has been delayed). The client BPEL process
waits to receive the mandatory reply. If the mandatory reply is received first, the BPEL
process continues without waiting for the optional reply. As with all partner activities,
the WSDL file defines the interaction.

BPEL Process as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke
activity to send the mandatory shipping message, and the scope’s onAlarm handler to
send the optional delayed message if a timer expires (for example, send the delayed
message if the item is not shipped in 24 hours).

Partial Processing
In partial processing, the client sends a request to a service and receives an immediate
response, but processing continues on the service side. For example, the client sends a
request to purchase a vacation package, and the service sends an immediate reply

Deployment Descriptor
(bpel.xml)

Client BPEL Process

WSDL
PartnerLink

d1

<scope>

Call
service

<invoke>

<onMessage A>

Notify User
of Delay

Wait for
Callback

<receive Msg B>

Msg B

Msg A
(maybe)

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

When
product
ships...

<invokes>
Msg B

Delay?

<invoke>
Msg A

<otherwise>

<switch>

Multiple Application Interactions

12-10 Oracle BPEL Process Manager Developer’s Guide

confirming the purchase, then continues on to book the hotel, the flight, the rental car,
and so on. This pattern can also include multiple shot callbacks, followed by
longer-term processing. Figure 12–9 provides an overview.

Figure 12–9 Partial Processing

BPEL Process as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and a
receive activity for each reply for asynchronous transactions, or just an invoke activity
for each synchronous transaction. Once those transactions are complete, the remaining
work is handled by the service. As with all partner activities, the WSDL file defines the
interaction.

BPEL Process as the Service
The BPEL service needs a receive activity for each request from the client, and a reply
activity for each response. Once the responses are finished, the service BPEL process
can continue with its processing, using the information gathered in the interaction to
perform the necessary tasks without any further input from the client.

Multiple Application Interactions
In some cases, there are more than two applications involved in a transaction, for
example, a buyer, seller, and shipper. In this case, the buyer sends a request to the
seller, the seller sends a request to the shipper, and the shipper sends a notification to
the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at
once. Therefore, a mechanism is required for keeping track of which message goes
where. Figure 12–10 provides an overview.

As with all partner activities, the WSDL file defines the interaction.

<receive>
<receive>

<receive>
<receive>

Deployment Descriptor
(bpel.xml)

Client BPEL Process
WSDL

PartnerLink

d2

d4

Deployment Descriptor
(bpel.xml)

Service BPEL Process

<receive>

<receive>d1
Call

service
<invoke>

<receive>

d3<invoke>

<receive>

<receive>

<invoke>

<receive>

Summary

Interaction Patterns 12-11

Figure 12–10 Multiple Party Interactions

Summary
BPEL processes can serve as both clients or services, and this chapter lists several
common interaction patterns and describes best practices for implementing these
interactions.

See Also: "Managing Multiple Active BPEL Process Instances Using
Correlation Methods" on page 5-7 for more information about
WS-addressing and correlation sets

BPEL Process A
Buyer WSDL

PartnerLink

WSDL
PartnerLink

WSDL
PartnerLink

BPEL Process B
Seller

<receive>
C

d1<invoke>
B

<invoke>
C

<receive>
A

BPEL Process C
Shipper

<invoke>
A

<receive>
BC

d3 d2

Summary

12-12 Oracle BPEL Process Manager Developer’s Guide

Part III
Oracle BPEL Process Manager Services

This part describes how Oracle BPEL Process Manager adds value and ease of use to
key BPEL development concepts to support the following services.

This part contains the following chapters:

■ Chapter 13, "XSLT Mapper and Transformations"

■ Chapter 14, "Oracle BPEL Process Manager Notification Service"

■ Chapter 15, "Oracle BPEL Process Manager Workflow Services"

■ Chapter 16, "Worklist Application"

■ Chapter 17, "Sensors"

■ Chapter 18, "BPEL Process Integration with Business Rules"

XSLT Mapper and Transformations 13-1

13
XSLT Mapper and Transformations

This chapter describes features of the XSLT Mapper and provides step-by-step
instructions for mapping a sample purchase order schema to an invoice schema.

This chapter contains the following topics:

■ Use Case for Transformation

■ Creating an XSL Map File

■ Overview of the XSLT Mapper

■ Using the XSLT Mapper

■ Testing the Map

■ Summary

Use Case for Transformation
Transformation use is demonstrated in several Oracle BPEL Process Manager use
cases.

Creating an XSL Map File
Transformations are performed in an XSL map file in which you map source schema
elements to target schema elements. This section describes two methods for creating
the XSL map file:

■ Creating a New XSL Map File

■ Creating an XSL Map File from Imported Source and Target Schema Files

See:

■ SOA_Oracle_home\bpel\samples\demos\XSLMapper

■ SOA_Oracle_
home\bpel\samples\tutorials\114.XSLTTransformatio
ns

■ Oracle BPEL Process Manager Order Booking Tutorial

Note: You can also create an XSL map file from an XSL stylesheet.
Click New > General > XML > XSL Map From XSL Stylesheet from
the File main menu in Oracle JDeveloper.

Creating an XSL Map File

13-2 Oracle BPEL Process Manager Developer’s Guide

Creating a New XSL Map File
A transform activity enables you to create a transformation using the XSLT Mapper
tool. This tool enables you to map source elements to target elements. For example,
you can map incoming source purchase order schema data to outgoing invoice schema
data.

1. Drag and drop a transform activity from the Component Palette into your BPEL
process diagram.

2. Double-click the transform activity.

The Transform window appears.

3. Specify the following information:

■ Source variable from which to map elements

■ Source part of the variable (for example, a payload schema consisting of a
purchase order request) from which to map

■ Target variable to which to map elements

Creating an XSL Map File

XSLT Mapper and Transformations 13-3

■ Target part of the variable (for example, a payload schema consisting of an
invoice) to which to map

4. Specify a map file name or accept the default name in the Mapper File field. The
map file is the file in which you create your mappings using the XSLT Mapper
transformation tool.

5. Click the magic wand icon (second icon) to create a new mapping. If the file
already exists, click the note pad icon (third icon) to edit the mapping.

The XSLT Mapper appears.

6. Go to "Overview of the XSLT Mapper" on page 13-5 for an overview of using the
XSLT Mapper.

Creating an XSL Map File from Imported Source and Target Schema Files

The following steps provide a high level overview of how to create an XSL map using
the existing po.xsd and invoice.xsd files in the SOA_Oracle_
home\bpel\samples\demos\XSLMapper directory.

1. In Oracle JDeveloper, select the application project in which you want to create the
new XSL map.

2. Import the po.xsd and invoice.xsd files into the project (for example, by
right-clicking Schemas and selecting Import Schemas in the Structure section of
Oracle JDeveloper).

3. Right-click the selected project and select New.

The New Gallery window appears.

4. In the Categories tree, expand General and select XML.

5. In the Items list, double-click XSL Map.

The Create XSL Map File window appears. This window enables you to create an
XSL map file that maps a root element of a source schema file or WSDL file to a
root element of a target schema file or WSDL file.

– Schema files that have been added to the project appear under Project
Schema Files.

– Schema files that are not part of the project can be imported using the
Import Schema File facility. Click the Import Schema File icon (first icon
to the right and above the list of schema files).

6. Enter a name for the XSL map file in the File Name field.

7. Under Source, expand Project Schema Files > po.xsd > PurchaseOrder as the root
element for the source.

Note: If you select a file with a.xslt extension such as
xform.xslt, it opens the mapper pane to create a new XSL file
named xform.xslt.xsl, even though your intension was to use the
existing xform.xslt file. A .xsl extension is appended to any file
that does not already have a .xsl extension, and you must create the
mappings in the new file. As a workaround, ensure that your files first
have an extension of .xsl. If the XSL file has an extension of .xslt,
then rename it to .xsl.

Creating an XSL Map File

13-4 Oracle BPEL Process Manager Developer’s Guide

8. Under Target, expand Project Schema files > invoice.xsd > Invoice as the root
element for the target.

9. Click OK.

A new XSL map is created.

10. Save and close the file now or begin to design your transformation. Information on
using the XSLT Mapper tool is provided in "Overview of the XSLT Mapper" on
page 13-5.

11. Drag and drop a transform activity from the Component Palette into your BPEL
process.

12. Double-click the transform activity.

13. Specify the following information:

■ Source variable from which to map elements

Overview of the XSLT Mapper

XSLT Mapper and Transformations 13-5

■ Source part of the variable (for example, a payload schema consisting of a
purchase order request) from which to map

■ Target variable to which to map elements

■ Target part of the variable (for example, a payload schema consisting of an
invoice) to which to map

14. Click the flashlight icon (first icon) to the right of the Mapper File field to browse
for the map file name you specified in Step 6.

15. Click Open.

16. Click OK.

The XSLT Mapper displays your XSL map file.

17. Go to "Overview of the XSLT Mapper" on page 13-5 for an overview of using the
XSLT Mapper.

Overview of the XSLT Mapper
You use the XSLT Mapper transformation tool to create the contents of a map file.
Figure 13–1 shows the layout of the XSLT Mapper.

Figure 13–1 Layout of the XSLT Mapper

The Source and the Target schemas are represented as trees and the nodes in the trees
are represented using a variety of icons. The displayed icon reflects the schema or
property of the node. For example:

■ An XSD attribute is denoted with an icon that is different from an XSD element

■ An optional element is represented with an icon that is different from a mandatory
element

Using the XSLT Mapper

13-6 Oracle BPEL Process Manager Developer’s Guide

■ A repeating element is represented with an icon that is different from a
nonrepeating element, and so on

The various properties of the element and attribute are displayed in the Property
Inspector in the lower right of Figure 13–1 (for example, type, cardinality, and so on).
The Functions Palette in the upper right of Figure 13–1 is the container for all
functions provided by the XSLT Mapper. The mapper pane or canvas is the actual
drawing area for dropping functions and connecting them to source and target nodes.

The XSLT Mapper provides three separate context sensitive menus:

■ One in the source panel

■ One in the target panel

■ One in the mapper pane or canvas in the middle

Right-click each of the three separate panels to see what the context menus look like. A
full set of Undo Auto Map, Redo, Delete, and Delete All functions are also available.

Notes on the Mapper
■ A node in the target tree can be linked only once (that is, you cannot have two

links connecting a node in the target tree).

■ An incomplete function and expression does not result in an XPath expression in
the source view. If you switch from the design view to the source view with one or
more incomplete expressions, the Mapper Messages window displays warning
messages.

■ When you map duplicate elements in the XSLT Mapper, the style sheet becomes
invalid and you cannot work in the Design view. The Log Window shows the
following error messages when you map an element with a duplicate name:

Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/ns0:rel"
 Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:ind"
 Error: This Node is Already Mapped :
"/ns0:rulebase/for-each/ns0:if/ns0:atom/choice_1/ns0:var"

The workaround is to give each element a unique name.

Using the XSLT Mapper
The following sections describe how to use the XSLT Mapper:

■ Simple Copy by Linking Nodes

■ Setting Constant Values

■ Adding Functions

■ Editing XPath Expressions

■ Adding XSLT Constructs

■ Automatically Mapping Nodes

■ Viewing Unmapped Target Nodes

■ Generating Dictionaries

■ Creating Map Parameters and Variables

Using the XSLT Mapper

XSLT Mapper and Transformations 13-7

■ Searching Source and Target Nodes

■ Ignoring Elements in the XSLT Document

■ Replacing a Schema in the XSLT Mapper

Simple Copy by Linking Nodes
To copy an attribute or leaf-element in the source to an attribute or leaf-element in the
target, drag and drop the source to the target. Copy the element PurchaseOrder/ID to
Invoice/ID and the attribute PurchaseOrder/OrderDate to Invoice/InvoiceDate, as
shown in Figure 13–2.

Figure 13–2 Linking Nodes

Setting Constant Values
Perform the following steps to set a constant value.

1. Select a node in the target tree.

2. Invoke the context menu by right-clicking the mouse.

3. Select the Set Text menu option.

4. Enter text in the Set Text window (for example, Discount Applied, as shown in
Figure 13–3).

5. Click OK to save the text.

A T icon is displayed next to the node that has text associated with it.

6. If you want to remove the text associated with the node, right click the node to
invoke the Set Text window again. Delete the contents and click OK.

Figure 13–3 Set Text Window

Using the XSLT Mapper

13-8 Oracle BPEL Process Manager Developer’s Guide

Adding Functions
In addition to the standard XPath 1.0 functions, the Mapper provides a number of
prebuilt extension functions and has the ability to support user-defined functions and
named templates. The extension functions are prefixed with xp20 or orcl and mimic
XPath 2.0 functions.

Perform the following steps to view function definitions and use a function:

1. Select a category of functions (for example, String Functions) from the
Component Palette.

2. Right-click an individual function (for example, lower-case).

3. Select Help. A window with a description of the function appears. You can also
click a link at the bottom to access this function’s description at the World Wide
Web Consortium at www.w3.org.

4. Drag a concat function into the mapper pane. This function enables you to connect
the source parameters from the source tree to the function and the output of the
function to the node on the target tree.

5. Concatenate PurchaseOrder/ShipTo/Name/First and
PurchaseOrder/ShipTo/Name/Last. Place the result in Invoice/ShippedTo/Name
by dragging threads from the first and last names and dropping them on the left
side on the concat function. Also drag a thread from the ShippedTo name and
connect it to the right side on the concat function, as shown in Figure 13–4.

See Also: The online Help for the Set Text window for detailed
information

Using the XSLT Mapper

XSLT Mapper and Transformations 13-9

Figure 13–4 Using the Concat Function

Editing Function Parameters
To edit the parameters of the concat function, double-click the function icon to launch
the Edit Function - concat window. This window enables you to add, remove, and
reorder parameters. If you want to add a new comma parameter so that the output of
the concat function is Last, First, then click Add to add a comma and reorder the
parameters to get this output.

Figure 13–5 Editing Function Parameters

See Also: The documentation for the XPath extension functions,
which is described in Appendix D, "XPath Extension Functions"

Using the XSLT Mapper

13-10 Oracle BPEL Process Manager Developer’s Guide

Chaining Functions
Complex expressions can be built by chaining functions. To remove all leading and
trailing spaces from the output of the above concat function, use the left-trim and
right-trim functions and chain them as shown in the Figure 13–6.

The chaining function can also be defined by dragging and dropping the function to a
connecting link.

Figure 13–6 Chaining Functions

Named Templates
Some complicated mapping logic cannot be represented or achieved by visual
mappings. For these situations, named templates are useful. Named templates enable
you to share common mapping logic. You can define the common mapping logic as a
named template and then use it as often as you want.

You define named templates in the source view, and they appear in the User Defined
Named Templates list of the Component Palette. You can use named templates in
almost the same way as you use other functions. The only difference is that you cannot
link the output of a named template to a function or another named template; you can
only link its output to a target node in the target tree.

To write named templates, you must be familiar with the XSLT language. See any
XSLT book or visit the following URL for details about writing named templates:

http://www.w3.org/TR/xslt

Importing User-Defined Functions
You can import your own set of Java functions, which appear in the function palette
under the User Defined Extension Functions category. They can be used like any
other function. To add functions, select Preferences > XSL Maps from the Tools main
menu.

See Also: The online Help for the Edit Function window by clicking
the Help button to see how to add, remove, and reorder function
parameters

See Also: SOA_Oracle_
home\bpel\samples\demos\XSLMapper\ExtensionFunctions
\README.txt for detailed instructions

Using the XSLT Mapper

XSLT Mapper and Transformations 13-11

Editing XPath Expressions
To use an XPath expression in a transformation mapping, select Advanced Functions
from the Component Palette and drag and drop xpath-expression from the list into
the transformation window, as shown in Figure 13–7.

Figure 13–7 Editing XPath Expressions

When you double-click the icon, the Edit XPath Expression window appears, as shown
in Figure 13–8. You can press the Ctrl key and then the spacebar to invoke the XPath
Building Assistant.

Figure 13–8 Edit XPath Expression Window

Figure 13–9 shows the XPath Building Assistant.

Using the XSLT Mapper

13-12 Oracle BPEL Process Manager Developer’s Guide

Figure 13–9 The XPath Building Assistant

Adding XSLT Constructs
While mapping complex schemas, it is sometimes essential to conditionally map a
source node to a target or map an array of elements in the source to an array of
elements in the target. The XSLT Mapper provides various XSLT constructs in the
context sensitive menu of the target tree for the preceding scenarios. To add an XSLT
element like for-each, if, or choose to a schema element, select the element in the
target tree. Right-click and select Add XSL Node to bring up the context menu and
choose the required XSLT element in the menu.

Conditional Processing with xsl:if
Note that HQAccount and BranchAccount are part of a choice in the PurchaseOrder
schema; only one of them exists in an actual instance. To illustrate conditional
mapping, copy PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/AccountNumber only if it exists. To do this:

1. Select Invoice/BilledToAccount/AccountNumber in the target tree and right-click
to bring up the context sensitive menu.

2. Select Add XSL Node, and then if and connect
PurchaseOrder/HQAccount/AccountNumber to Invoice/BilledToAccount/if.

3. Connect PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/if/AccountNumber.

Figure 13–10 shows the results.

See Also: The online Help for the Edit XPath Expression window,
which includes a link to instructions on using the XPath Building
Assistant

Note: Elements that display in the XSLT Constructs list and
http://www.w3.org/1999/XSL/Transform list of the Component
Palette cannot be dragged and dropped into the designer window.

See Also: Oracle BPEL Process Manager Order Booking Tutorial for an
example of using a for-each node

Using the XSLT Mapper

XSLT Mapper and Transformations 13-13

Figure 13–10 Conditional Processing with xsl:if

Conditional Processing with xsl:choose
You can copy PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/AccountNumber, if it exists. Otherwise, copy
PurchaseOrder/BranchAccount to Invoice/BilledToAccount/AccountNumber as
follows:

1. Select Invoice/BilledToAccount/AccountNumber in the target tree and right-click
to bring up the context sensitive menu.

2. Select Add XSL Node, and then choose and connect
PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/choose/when to define the condition.

3. Connect PurchaseOrder/HQAccount/AccountNumber to
Invoice/BilledToAccount/choose/when/AccountNumber.

4. Select XSL Add Node and then choose in the target tree and right-click to bring up
the context sensitive menu.

5. Select Add XSL node and then otherwise from the menu.

6. Connect PurchaseOrder/BranchAccount/AccountNumber to
Invoice/BilledToAccount/choose/otherwise/AccountNumber.

Figure 13–11 shows the results.

Using the XSLT Mapper

13-14 Oracle BPEL Process Manager Developer’s Guide

Figure 13–11 Conditional Processing with xsl:choose

Handling Repetition or Arrays
The XSLT Mapper allows repeating elements on the source to be copied to repeating
elements on the target. For example, copy
PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/Item as
follows:

1. Select Invoice/ShippedItems/Item in the target tree and right-click to bring up the
context sensitive menu.

2. Select Add XSL Node, and then for-each and connect
PurchaseOrder/Items/HighPriorityItems/Item to Invoice/ShippedItems/for-each
to define the iteration.

3. Connect PurchaseOrder/Items/HighPriorityItems/Item/ProductName to
Invoice/ShippedItems/for-each/Item/ProductName.

4. Connect PurchaseOrder/Items/HighPriorityItems/Item/Quantity to
Invoice/ShippedItems/for-each/Item/Quantity.

5. Connect PurchaseOrder/Items/HighPriorityItems/Item/USPrice to
Invoice/ShippedItems/for-each/Item/PriceCharged.

Figure 13–12 shows the results.

Figure 13–12 Handling Repetition or Arrays

Using the XSLT Mapper

XSLT Mapper and Transformations 13-15

Automatically Mapping Nodes
Mapping nonleaf nodes starts the auto map feature. The system automatically tries to
link all relevant nodes under the selected source and target. Try the auto map feature
by mapping PurchaseOrder/ShipTo/Address to Invoice/ShippedTo/Address. All
nodes under Address are automatically mapped, as shown in Figure 13–13.

Figure 13–13 Auto Mapping

The behavior of the auto map can be tuned by altering the settings in Oracle
JDeveloper preferences or by right-clicking the transformation window and selecting
Auto Map Preferences. This displays the window shown in Figure 13–14.

Figure 13–14 Auto Map Preferences

This window enables you to customize your auto mapping as follows:

Note: Executing an auto map automatically inserts xsl:for-each. To
see the auto map in use, drag and drop
PurchaseOrder/Items/LowPriorityItems to Invoice/UnShippedItems;
for-each is automatically created.

Using the XSLT Mapper

13-16 Oracle BPEL Process Manager Developer’s Guide

■ Invoke the automatic mapping feature, which attempts to automatically link all
relevant nodes under the selected source and target. When disabled, you must
individually map relevant nodes.

■ Display and review all potential source-to-target mappings detected by the XSLT
Mapper, and then confirm to create them.

■ Be prompted to customize the auto map preferences before the auto map is
invoked.

■ Select the Basic or Advanced method for automatically mapping source and target
nodes. This enables you to customize how the XSLT mapper attempts to
automatically link all relevant nodes under the selected source and target.

■ Manage your dictionaries. The XSLT Mapper uses the rules defined in a dictionary
when attempting to automatically map source and target elements.

To see potential source mapping candidates for a target node, right-click the target
node, select Show Matches, and click OK in the Auto Map Preferences window. The
Auto Map window appears, as shown in Figure 13–15.

See Also: The online Help for the Auto Map Preferences window by
clicking the Help button to see a description of the fields

Using the XSLT Mapper

XSLT Mapper and Transformations 13-17

Figure 13–15 Auto Mapping Candidates

Auto Map with Confirmation
When the Confirm Auto Map Results check box shown in Figure 13–14 is selected, a
confirmation window appears. If matches are found, the potential source-to-target
mappings detected by the XSLT Mapper are displayed, as shown in Figure 13–16. The
window enables you to filter one or more mappings.

See Also: The online Help for the Auto Map window by clicking the
Help button to see a description of the fields

Using the XSLT Mapper

13-18 Oracle BPEL Process Manager Developer’s Guide

Figure 13–16 Auto Map with Confirmation

Viewing Unmapped Target Nodes
You can view a list of target nodes that are currently unmapped to source nodes. Right
click in the mapper pane and select Completion Status. This window provides
statistics at the bottom about the number of unmapped target nodes. This window
enables you to identify and correct any unmapped nodes before you test your
transformation mapping logic on the Test XSL Map window. Select a target node in the
list. The node is highlighted. A check mark indicates that the target node is required to
be mapped. If not required, the check box is empty.

Figure 13–17 provides an example of the Completion Status window.

See Also: The online Help for the Auto Map window by clicking the
Help button to see a description of the fields

Using the XSLT Mapper

XSLT Mapper and Transformations 13-19

Figure 13–17 Completion Status

Generating Dictionaries
A dictionary is an XML file that captures the synonyms for mappings. Right-click the
mapper pane and select Generate Dictionary. This prompts you for the dictionary
name and the directory in which to place the dictionary. The XSLT Mapper uses the
rules defined in the dictionary when attempting to automatically map source and
target elements. For example, you may want to map a purchase order to a purchase
order acknowledgment, then reuse most of the map definitions later:

1. Build all the mapping logic for the purchase order and purchase order
acknowledgment.

2. Generate a dictionary for the created map.

3. Create a new map using a different purchase order and purchase order
acknowledgment.

4. Load the previously created dictionary by selecting Preferences > XSL Maps >
Auto Map in the Tools main menu of Oracle JDeveloper.

5. Perform an automatic mapping from the purchase order to the purchase order
acknowledgment.

Creating Map Parameters and Variables
You can create map parameters and variables. You create map parameters in the
source tree and map variables in the target tree.

Note the following issues:

■ Parameters are created in the source tree, are global, and can be used anywhere in
the mappings.

Using the XSLT Mapper

13-20 Oracle BPEL Process Manager Developer’s Guide

■ Variables are created in the target tree, and are either global or local. Where they
are defined in the target tree determines if they are global or local.

– Global variables are defined immediately below the <target> node and
immediately above the actual target schema (for example, POAcknowledge).
Right-click on the <target> node to create a global variable.

– Local variables are defined on a specific node below the actual target schema
(for example, subnode name on schema POAcknowledge). Local variables
can have the same name as long as they are in different scopes. Local variables
can only be used in their scopes, while global variables can be used anywhere
in the mappings.

Creating a Map Parameter
1. Right-click the source tree root and select Add Parameter.

The Create Parameter window appears.

2. Specify details:

3. Click OK.

Creating a Map Variable
1. Right-click the target tree root and select Add Variable. If you right-click a node

below the target tree root, select Insert Variable.

The Create Variable window appears.

2. Specify details:

Using the XSLT Mapper

XSLT Mapper and Transformations 13-21

3. Click OK.

Searching Source and Target Nodes
You can search source and target nodes. For example, you can search in a source node
named invoice for all occurrences of the subnode named price.

1. Right-click a source or target node.

2. Enter a keyword for which to search.

3. Specify additional details, as necessary. For example:

■ Select Search Annotations if you want annotations text to also be searched.

■ Specify the scope of the search. You can search the entire source or target tree,
search starting from a selected position, or search within a selected subtree.

Using the XSLT Mapper

13-22 Oracle BPEL Process Manager Developer’s Guide

The first match found is highlighted, and the Find window closes. If no matches
are found, a message displays on-screen.

4. Select the F3 key to find the next match in the direction specified. To search in the
opposite direction, select the Shift and F3 keys.

Ignoring Elements in the XSLT Document
When the XSLT Mapper encounters any elements in the XSLT document that cannot be
found in the source or target schema, it is unable to process them and displays an
Invalid Source Node Path error. XSL map generation fails. You can create and
import a file that directs the XSLT Mapper to ignore and preserve these specific
elements during XSLT parsing by selecting Preferences > XSL Maps in the Tools main
menu of Oracle JDeveloper.

For example, preprocessing may create elements named myElement and
myOtherElementWithNS that you want the XSLT Mapper to ignore when it creates
the graphical representation of the XSLT document. You create and import a file with
these elements to ignore that includes the following syntax:

<elements-to-ignore>
 <element name="myElement"/>
 <element name="myOtherElementWithNS" namespace="NS"/>
</elements-to-ignore>

You must restart Oracle JDeveloper after importing the file.

Note: You cannot search on functions or text values set with the Set
Text option.

Testing the Map

XSLT Mapper and Transformations 13-23

Replacing a Schema in the XSLT Mapper
You can replace the map source schema and map target schema that currently display
in the XSLT Mapper. Right click in either the source or target panel and select Replace
Schema. This opens the Select Source and Target Schema window shown in
Figure 13–18, which enables you to select the new source or target schema to use.

Figure 13–18 Replacing a Schema

Testing the Map
The XSLT Mapper provides a test utility to test the style sheet or map. The test tool can
be invoked by selecting the Test menu item from the mapper, as shown in
Figure 13–19.

Testing the Map

13-24 Oracle BPEL Process Manager Developer’s Guide

Figure 13–19 Invoking the Test Window

Test XSL Map Window
The Test XSL Map window shown in Figure 13–20 enables you to test the
transformation mapping logic you designed with the XSLT Mapper. The test settings
you specify are stored and do not need to be entered again the next time you test. Test
settings must be entered again if you close and reopen Oracle JDeveloper.

Testing the Map

XSLT Mapper and Transformations 13-25

Figure 13–20 Test XSL Map Window

1. Choose to allow a sample source XML file to be generated for testing or click
Browse to specify a different source XML file in the Source XML File field.

When you click OK, the source XML file is validated. If validation passes,
transformation occurs, and the target XML file is created.

If validation fails, no transformation occurs and a message displays on-screen.

2. Select the Generate Source XML File check box to create a sample XML file based
on the map source XSD schema.

3. Select the Show Source XML File check box to display the source XML file for the
test. The source XML file displays in an Oracle JDeveloper XML editor.

If the map has defined parameters, the Parameters table appears. If you want to
specify a value, click Specify Value and make appropriate edits to the Type and
Value columns.

4. Enter a file name in the Target XML File field or browse for a file name in which to
store the resulting XML document from the transformation.

5. Select the Show Target XML File check box to display the target XML file for the
test. The target XML file displays in an Oracle JDeveloper XML editor.

6. If you select to show both the source and target XML, you can customize the
layout of your XML editors. Select Enable Auto Layout in the upper right corner
and click one of the patterns.

7. Click OK.

The test results appear.

For this example, the source XML and target XML display side-by-side, with the
XSL map underneath (the default setting). You can right-click an editor and select
Validate XML to validate the source or target XML against the map source or
target XSD schema.

Testing the Map

13-26 Oracle BPEL Process Manager Developer’s Guide

Generating Reports
You can generate an HTML report with the following information:

■ XSL map file name, source and target schema file names, their root element names,
and their root element namespaces

■ Target document mappings

■ Target fields not mapped (including mandatory fields)

■ Sample transformation map execution

To generate a report, right-click the transformation window and select Generate
Report. The Generate Report window appears in the transformation window, as
shown in Figure 13–21. Note that if the map has defined parameters, the Parameters
table appears.

Testing the Map

XSLT Mapper and Transformations 13-27

Figure 13–21 The Generate Report Window

Correcting Memory Errors When Generating Reports
If you attempt to generate a report and receive an out-of-memory error, increase the
heap size of the JVM as follows:

1. Open the JDev_Oracle_Home\jdev\bin\jdev.conf file.

2. Go to the following section:

Set the maximum heap to 512M
#
AddVMOption -Xmx512M

3. Increase the size of the heap as follows (for example, to 1024)

AddVMOption -Xmx1024M

In addition, you can also uncheck the Open Report option on the Generate Report
window before generating the report.

Sample XML Generation
You can customize sample XML generation by specifying the following parameters.
Select Preferences > XSL Maps in the Tools main menu of Oracle JDeveloper to
display the Preferences window.

■ Number of repeating elements

Specifies how many occurrences of an element are created if the element has the
attribute maxOccurs set to a value greater than 1. If the specified value is greater
than the value of the maxOccurs attribute for a particular element, the number of
occurrences created for that particular element is the maxOccurs value, not the
specified number.

See Also: The online Help for the Generate Report window by
clicking the Help button to see detailed information

Summary

13-28 Oracle BPEL Process Manager Developer’s Guide

■ Generate optional elements

If selected, any optional element (its attribute minOccurs set to a value of 0) is
generated the same way as any required element (its attribute minOccurs set to a
value greater than 0).

■ Maximum depth

To avoid the occurrence of recursion in sample XML generation caused by
optional elements, specify a maximum depth in the XML document hierarchy tree
beyond which no optional elements are generated.

Summary
This chapter describes features of the XSLT Mapper, such as:

■ Creating an XSL map file

■ Copying by linking nodes

■ Creating functions

■ Chaining functions

■ Editing XPath expressions

■ Adding XSLT constructs such as if, choose, otherwise, and for-each

■ Automatically mapping target and source nodes

■ Viewing unmapped target nodes

■ Generating dictionaries

■ Creating map parameters and variables

■ Searching source and target nodes

■ Ignoring elements in an XSLT document

■ Replacing schemas in the XSLT Mapper

■ Testing mappings

■ Generating mapping reports

This chapter shows these features by providing step-by-step instructions for mapping
a sample purchase order schema to an invoice schema.

Oracle BPEL Process Manager Notification Service 14-1

14
Oracle BPEL Process Manager

Notification Service

The notification service in Oracle BPEL Process Manager enables you to send
notifications from a BPEL process using a variety of channels. Oracle BPEL Process
Manager can deliver these notifications by e-mail, voice message, fax, pager, or short
message service (SMS).

This chapter contains the following topics:

■ Use Cases for Notification Service

■ Overview of Notification Service Concepts

■ Configuring the Notification Service in Oracle JDeveloper

■ Summary

Use Cases for Notification Service
Various scenarios may require sending e-mail messages or other types of notifications
to users as part of the process flow. For example, certain types of exceptions that
cannot be handled automatically may require manual intervention. In this case, Oracle
JDeveloper uses the notification service to alert users by voice, SMS, fax, pager, or
e-mail. In an approval workflow (for example, an expense report approval), you can
send notifications to the task assignee when a specific task requires action, or you can
notify the task creator by e-mail when the approval is complete. In some cases, contact
information (e-mail address or telephone number) is obtained dynamically as part of
the process and in other cases the details are looked up from a user directory.

The tutorial 130.SendEmailWithAttachments demonstrates how to model a
notification in Oracle JDeveloper and send an e-mail with an attachment.

The OrderBooking tutorial demonstrates how to add an e-mail notification to the
POAcknowledge process.

Overview of Notification Service Concepts
Terms used for the notification service include:

See: SOA_Oracle_
Home\bpel\samples\tutorials\130.SendEmailWithAttachments

See: Oracle BPEL Process Manager Order Booking Tutorial

Overview of Notification Service Concepts

14-2 Oracle BPEL Process Manager Developer’s Guide

■ Notification—an asynchronous message sent to a user by a specific channel. The
message can be sent as an e-mail message, a voice message, a fax message, a pager
message, or an SMS message.

■ Actionable notification—a notification to which the user can respond. For
example, workflow sends an e-mail message to a manager to approve or reject a
purchase order. The manager approves or rejects the request by replying to the
e-mail with appropriate content.

■ Oracle Application Server Wireless—the wireless and voice component of Oracle
Application Server. OracleAS Wireless includes a messaging component that
handles the sending and receiving of messages to and from devices. When you
install OracleAS Wireless, you can specify one of the following notification service
options:

– Connect to an external server to deliver messages, such as e-mail, SMS, fax,
voice, or pager.

– Use Oracle's hosted service at

http://messenger.oracle.com/

Oracle BPEL Process Manager is preconfigured to send notifications using Oracle's
hosted wireless service.

– The notification service supports sending e-mail through the SMTP protocol
and receiving e-mail from IMAP- and POP-based e-mail accounts.

Figure 14–1 shows the notification service interfaces and supported service types.

Figure 14–1 Notification Service Interfaces and Supported Service Types

Reliable Notification Service
Oracle BPEL Process Manager provides support for the reliable notification service.
The outbound notification service creates a notification message with a unique
notification ID and stores the message and unique ID in the dehydration store. It then
enqueues this unique ID in the JMS queue and commits the transaction. A message
driven-bean (MDB) listening on this queue dequeues the message and sends a
notification to the user. If there is any notification failure, the notification service retries
three times. If the retries all fail, it marks this notification as errored.

Oracle Application Server
Wireless Server

E-mail
Server

Java
Interface

Web Services
Interface

SMTP
IMAP/
POP

SOAP
call

Notification
Service

Fax
Server

SMS
Server

Voice
Gateway

Pager

Configuring the Notification Service in Oracle JDeveloper

Oracle BPEL Process Manager Notification Service 14-3

To send an error notification after resolving the problem, you must write a script to
update the BPELNotification table status to SEND. For example:

UPDATE BPELNotification
 SET status = 'RETRY',
 ATTEMPTEDNUMBER = 0
 WHERE ID = <notification id>

By default, the notification service retries three time. If you want to add more retries
(for example, 5), add the following property in SOA_Oracle_
Home/bpel\system\services\config\wf_config.xml and restart Oracle
BPEL Server:

<property name="oracle.bpel.services.notification.maxattempt" value="5" />

The notification thread that is running tries to send the notification every 15 minutes.
You can change this interval by adding the following property in wf_config.xml.
For example, to retry every 10 minutes:

<property name="oracle.bpel.services.notification.publisher_interval" value="10"
/>

Configuring the Notification Service in Oracle JDeveloper
The diagram window in Oracle JDeveloper includes the notification channels in the
Component Palette, as shown in Figure 14–2.

Figure 14–2 Diagram Window in Oracle JDeveloper—Notification Activity

To use a notification channel, do the following:

1. Select Process Activities from the Component Palette list.

2. Drag and drop a notification channel from the Component Palette list:

■ Email

■ Fax

■ Pager

Configuring the Notification Service in Oracle JDeveloper

14-4 Oracle BPEL Process Manager Developer’s Guide

■ SMS

■ Voice

3. See the following section based on the notification channel you selected.

The E-mail Notification Channel
When you select Email from the Component Palette, the Edit Email window appears.
Figure 14–3 shows the required e-mail notification parameters.

Figure 14–3 Edit Email Window

1. Enter information for each field as described in Table 14–1.

If You Selected... See...

Email "The E-mail Notification Channel" on page 14-4 to configure e-mail
notification

Fax "The Fax Notification Channel" on page 14-8 to configure fax notification

Pager "The Pager Notification Channel" on page 14-10 to configure pager
notification

SMS "The SMS Notification Channel" on page 14-11 to configure SMS
notification

Voice "The Voice Notification Channel" on page 14-12 to configure voice message
notification

Table 14–1 E-mail Notification Parameters

Name Description

From Account The name of the account used to send this message. The
configuration details for this e-mail account name must exist on
Oracle BPEL Server.

Configuring the Notification Service in Oracle JDeveloper

Oracle BPEL Process Manager Notification Service 14-5

2. Click OK.

The BPEL fragment that invokes the notification service to send the e-mail
message is created.

Setting E-mail Attachments
When you send e-mail attachments, you mark the e-mail as a multipart message and
set the number of attachments to send. The number of attachments includes the body
plus the attachments. (For example, to send an e-mail message with one file as an
attachment, set the number to 2.) When sending attachments, set the content body to
have a MultiPart element that contains as many BodyPart elements as the number
of attachments. Each BodyPart has three elements: ContentBody, MimeType, and
BodyPartName. All three elements must be set for each attachment.

To add one attachment to an e-mail message, do the following:

1. Select Email as the notification channel from the Component Palette.

2. Specify values for To, Subject, and Body.

3. Select Multipart message and enter 2 for the number of attachments. (Note that
the number of attachments must include the body part.)

The MultiPart element with two body parts is generated. The first body part is
for the message body and the other is used for the attachment. The BPEL fragment
with an assign activity with multiple copy rules is generated. One of the copy
rules copies the attachment, as follows:

To The e-mail address to which the message is to be delivered. This
can be a) a static e-mail address entered at the time the message
is created, or b) an e-mail address looked up using the identity
service, or c) a dynamic address from the payload. The XPath
Expression Builder can be used to get the dynamic e-mail
address from the input. See "Setting E-mail Addresses and
Telephone Numbers Dynamically" on page 14-13.

CC and Bcc The e-mail addresses to which the message is copied and blind
copied. This can be a static or dynamic address as described for
the To address.

Reply To The e-mail address to use for replies. This can be a static or
dynamic address as described for the To address.

Subject Subject of the e-mail message. This can be free text or dynamic
text. The XPath Expression Builder can be used to set dynamic
text based on data from process variables that you specify.

Body Message body of the e-mail message. This can be plain text,
XML, free text, or dynamic text, as described for the Subject
parameter.

Multipart message with n
attachments

Select to specify e-mail attachments. See "Setting E-mail
Attachments" on page 14-5.

The number of attachments if Multipart message is selected.
The number includes the body. For example, if you have a body
and one attachment, specify 2 here.

See Also: Oracle BPEL Process Manager Administrator’s Guide for
details about e-mail configuration instructions to perform outside of
Oracle JDeveloper

Table 14–1 (Cont.) E-mail Notification Parameters

Name Description

Configuring the Notification Service in Oracle JDeveloper

14-6 Oracle BPEL Process Manager Developer’s Guide

<assign name="Assign">
 <copy>
 <from expression="string('Default')"/>
 <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:FromAccountName"/>
 </copy>
...
<!-- copy statements relate to body and attachment -->
 <copy>
 <from>
 <Content xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MimeType
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">multipart/mixed
 </MimeType>
 <ContentBody
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MultiPart
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <BodyPart
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MimeType
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 <ContentBody
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 <BodyPartName
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 </BodyPart>
 <BodyPart
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 <MimeType
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 <ContentBody
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 <BodyPartName
 xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"/>
 </BodyPart>
 </MultiPart>
 </ContentBody>
 </Content>
 </from>
 <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content"/>
 </copy>
 <copy>
 <from expression="string('text/html')"/>
 <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:
MultiPart/ns1:BodyPart[1]/
ns1:MimeType"/>
 </copy>
 <copy>
 <from expression="string('NotificationAttachment1.html')"/>
 <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:
MultiPart/ns1:BodyPart[1]/ns1:BodyPartName"/>
 </copy>
 <copy>
 <from expression="string(‘This is a test message from John Cooper')"/>
 <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:

Configuring the Notification Service in Oracle JDeveloper

Oracle BPEL Process Manager Notification Service 14-7

MultiPart/ns1:BodyPart[1]/
ns1:ContentBody"/>
 </copy>
 <copy>
 <from expression="string('text/html')"/>
 <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:
MultiPart/ns1:BodyPart[2]/
ns1:MimeType"/>
 </copy>
 <copy>
 <from expression="string('NotificationAttachment2.html')"/>
 <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:
MultiPart/ns1:BodyPart[2]/
ns1:BodyPartName"/>
 </copy>
 <copy>
 <from expression="string('message2')"/>
 <to variable="varNotificationReq" part="EmailPayload"
 query="/EmailPayload/ns1:Content/ns1:ContentBody/ns1:
MultiPart/ns1:BodyPart[2]/
ns1:ContentBody"/>
 </copy>
</assign>

4. Search for BodyPart[2] and set the required values. The steps to send the
attachment MyImage.gif, for example, are as follows:

a. Search for BodyPart[2] MimeType and change the from expression to
copy ’image/gif’ as the MimeType (instead of the autogenerated
’text/html’).

b. Search for BodyPart[2] BodyPartName and change the from
expression to copy ’MyImage.gif’ (instead of the autogenerated
’NotificationAttachment2.html’).

c. Search for BodyPart[2] ContentBody and change the from expression
to copy the content of MyImage.gif (instead of the autogenerated expression
string(’message2’)).

You can use the readFile XPath function to read the contents of the file:

ora:readFile(‘<name of the file in the project | HTTP URL | File URL>’)

Examples:

ora:readFile(‘MyImage.gif’) will read the file from the bpel project
directory
ora:readFile(‘file:///c:/MyImage.gif’) will read file from c:\ directory
ora:readFile(‘http://www.oracle.com/MyImage.gif’)

The new BPEL copy statement is as follows:

<copy>
 <from expression="string('image/gif')"/>
 <to variable="varNotificationReq" part="EmailPayload" query=
"/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/ns1:MimeT
ype"/>
 </copy>
 <copy>
 <from expression="string('MyImage.gif')"/>

Configuring the Notification Service in Oracle JDeveloper

14-8 Oracle BPEL Process Manager Developer’s Guide

 <to variable="varNotificationReq" part="EmailPayload" query=
"/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/ns1:BodyP
artName"/>
 </copy>
 <copy>
 <from expression="ora:readFile(‘file:///c:/MyImage.gif’)"/>
 <to variable="varNotificationReq" part="EmailPayload" query=
"/EmailPayload/ns1:Content/ns1:ContentBody/ns1:MultiPart/ns1:BodyPart[2]/ns1:Conte
ntBody"/>
 </copy>

Formatting the Body of an E-mail Message as HTML
You can format the body of an e-mail message as HTML rather than as straight text. To
do this, apply an XSLT transform to generate the e-mail body. Add in the XSLT tag
you want to use. Tools such as XMLSpy can provide assistance in writing and testing
the XSLT. The MIME type should be string(’text/html;charset=UTF-8’).

The e-mail notification assignment should look as follows:

<copy>
 <from
expression="ora:processXSLT('TransformPositionSummary7.xslt',bpws:
getVariableData('ClientPositionSummary'))"/>
 <to variable="varNotificationReq" part="EmailPayload"
query="/EmailPayload/ns9:Content/ns9:ContentBody"/>
</copy>

The Fax Notification Channel
When you select Fax from the Component Palette, the Edit Fax window appears.
Figure 14–4 shows the required fax notification parameters.

See: SOA_Oracle_
Home\bpel\samples\tutorials\130.SendEmailWithAttachments
for an example of sending attachments using e-mail

Configuring the Notification Service in Oracle JDeveloper

Oracle BPEL Process Manager Notification Service 14-9

Figure 14–4 Edit Fax Window

1. Enter information for each field as described in Table 14–2.

2. Click OK.

The BPEL fragment that invokes the notification service for fax notification is
created.

Table 14–2 Fax Notification Parameters

Name Description

Fax Number The fax number to which the message is to be delivered. This
can be a) a static fax number entered at the time the message is
created, or b) a fax number looked up using the identity service,
or c) a dynamic fax number from the payload. The XPath
Expression Builder can be used to get the dynamic fax number
from the input.

Cover Page The cover page name. The cover page details must exist on the
server. The cover page can be in PDF, Microsoft Word, HTML, or
plain text format. (This field is optional.) The XPath Expression
Builder can be used to set dynamic text based on data from
process variables that you specify.

Body Fax message body. This must be plain text or HTML. This can be
free text or dynamic text as described for the Cover page
parameter.

See Also: Oracle BPEL Process Manager Administrator’s Guide for
details about fax configuration instructions to perform outside of
Oracle JDeveloper

Configuring the Notification Service in Oracle JDeveloper

14-10 Oracle BPEL Process Manager Developer’s Guide

The Pager Notification Channel
When you select Pager from the Component Palette, the Edit Pager window appears.
Figure 14–5 shows the required pager notification parameters.

Figure 14–5 Edit Pager Window

1. Enter information for each field as described in Table 14–3.

2. Click OK.

The BPEL fragment that invokes the notification service for pager notification is
created.

Table 14–3 Pager Notification Parameters

Name Description

From Number The pager number from which the message is to be sent. This
can be a) a static pager number entered at the time the message
is created, or b) a dynamic pager number from the payload. The
XPath Expression Builder can be used to get the dynamic pager
number from the input.

Pager Number The number of the recipient of this message. This can be a) a
static pager number entered at the time the message is created,
or b) a pager number looked up using the identity service, or c) a
dynamic pager number from the payload. The XPath Expression
Builder can be used to get the dynamic pager number from the
input.

Body Pager message body. This must be plain text. This can be free
text or dynamic text as described for the From Number
parameter.

Configuring the Notification Service in Oracle JDeveloper

Oracle BPEL Process Manager Notification Service 14-11

The SMS Notification Channel
When you select SMS from the Component Palette, the Edit SMS window appears.
Figure 14–6 shows the required SMS notification parameters.

Figure 14–6 Edit SMS Window

1. Enter information for each field as described in Table 14–4.

See Also: Oracle BPEL Process Manager Administrator’s Guide for
details about pager configuration instructions to perform outside of
Oracle JDeveloper

Table 14–4 SMS Notification Parameters

Name Description

From number The telephone number from which to send the SMS notification.
This can be a static telephone number entered at the time the
message is created or a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input. See "Setting E-mail
Addresses and Telephone Numbers Dynamically" on page 14-13.

Telephone number The telephone number to which the message is to be delivered.
This can be a) a static telephone number entered at the time the
message is created, or b) a telephone number looked up using
the identity service, or c) a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input.

Subject Subject of the SMS message. This can be free text or dynamic
text. The XPath Expression Builder can be used to set dynamic
text based on data from process variables that you specify.

Body SMS message body. This must be plain text. This can be free text
or dynamic text as described for the Subject parameter.

Configuring the Notification Service in Oracle JDeveloper

14-12 Oracle BPEL Process Manager Developer’s Guide

2. Click OK.

The BPEL fragment that invokes the notification service for SMS notification is
created.

The Voice Notification Channel
When you select Voice from the Component Palette, the Edit Voice window appears.
Figure 14–7 shows the required voice notification parameters.

Figure 14–7 Edit Voice Window

1. Enter information for each field as described in Table 14–5.

2. Click OK.

See Also: Oracle BPEL Process Manager Administrator’s Guide for
details about SMS configuration instructions to perform outside of
Oracle JDeveloper

Table 14–5 Voice Notification Parameters

Name Description

Telephone number The telephone number to which the message is to be delivered.
This can be a) a static telephone number entered at the time the
message is created, or b) a telephone number looked up using
the identity service, or c) a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input.

Body Message body. This can be plain text or XML. Also, this can be
free text or dynamic text. The XPath Expression Builder can be
used to set dynamic text based on data from process variables
that you specify.

Configuring the Notification Service in Oracle JDeveloper

Oracle BPEL Process Manager Notification Service 14-13

The BPEL fragment that invokes the notification service for voice notification is
created.

Setting E-mail Addresses and Telephone Numbers Dynamically
You may need to set e-mail addresses or telephone numbers dynamically based on
certain process variables. You can also look up contact information for a specific user
using the built-in XPath functions for the identity service.

■ To get the e-mail address or telephone number directly from the payload, use the
following XPath:

bpws:getVariableData('<variable name>', '<part>','<input xpath to get an
address>')

For example, to get the e-mail address from variable inputVariable and part
payload based on XPath /client/BPELProcessRequest/client/mail:

<%bpws:getVariableData('inputVariable','payload','/client:BPELProcessRequest/cl
ient:email')%>

You can use the XPath Expression Builder to select the function and enter the
XPath expression to get an address from the input variable.

■ To get the e-mail address or telephone number dynamically from the payload, use
the following XPath:

ids:getUserProperty(userName, attributeName, realmName)

The first argument evaluates to the user ID. The second argument is the property
name. The third argument is the realm name. Table 14–6 lists the property names
that can be used in this XPath function.

The following example gets the e-mail address of the user identified by the
variable inputVariable, part payload, and query
/client:BPELProcessRequest/client:userID:

ids:getUserProperty(bpws:getVariableData(‘inputVariable’,
‘payload’,‘/client:BPELProcessRequest/client:userid’), ‘mail’)

If realmName is not specified, then the default realm name is used. For example, if
the default realm name is jazn.com, the following XPath expression searches for
the user in the jazn.com realm:

ids:getUserProperty('jcooper', 'mail');

See Also: Oracle BPEL Process Manager Administrator’s Guide for
details about voice configuration instructions to perform outside of
Oracle JDeveloper

Table 14–6 Properties for the Dynamic User XPath Function

Property Name Description

mail Look up a user’s e-mail address

telephoneNumber Look up a user’s telephone number

mobile Look up a user’s mobile telephone number

homephone Look up a user’s home telephone number

Configuring the Notification Service in Oracle JDeveloper

14-14 Oracle BPEL Process Manager Developer’s Guide

The following XPath expression provides the same functionality as the one above.
In this case, however, the realm name of jazn.com is explicitly specified:

ids:getUserProperty('jcooper', 'mail', 'jazn.com');

Selecting Notification Recipients by Browsing the User Directory
You can select users or groups to whom you want to send notifications by browsing
the user directory (OID, JAZN/XML, LDAP, and so on) that is configured for use by
Oracle BPEL Process Manager. Click the first icon (the flashlight) to the right of To (or
any recipient field) on any assignee window to start the Identity lookup dialog.

Starting Business Processes with the E-mail Activation Agent
Activation agents define process agents that initiate a process. You use the e-mail
activation agent element activationAgents to start business processes by e-mail.
The following steps are required to design a business process to start by e-mail.

1. Create a business process.

2. Add the e-mail activation agent activationAgents element to bpel.xml.

– See Table 14–7, " E-mail Activation Element and Respective Attributes in
bpel.xml" and "The activationAgents Element Structure in bpel.xml" on
page 14-14.

3. Include a corresponding account name configuration file in the project.

– Name the file the same as the name of the accountName attribute of
activationAgents in bpel.xml. See "The accountName XML File
Structure" on page 14-15.

Table 14–7 describes the activationAgents element and activationAgent
attributes of the activation fragment contained in the bpel.xml file.

The activationAgents Element Structure in bpel.xml
The following code example shows the structure of the activationAgents element
contained in bpel.xml.

<activationAgents>
 <activationAgent

className="com.collaxa.cube.activation.mail.MailActivationAgent"
 heartBeatInterval="60">

See Also: Chapter 15, "Oracle BPEL Process Manager Workflow
Services" for additional details about using the Identity lookup dialog

Table 14–7 E-mail Activation Element and Respective Attributes in bpel.xml

Element/Attribute Name Description

/activationAgents/activationA
gent[className]

Name of the activation agent class. Use the
com.collaxa.cube.activation.mail.MailActivationAgent
class as the activation agent.

/activationAgents/activationA
gent[heartBeatInterval]

Polling interval of the messages in seconds

/activationAgents/activationA
gent/property
name=”accountName”

Name of the e-mail configuration file. For example, if the account name
is test_account, then the test_account.xml file is included in all
the e-mail-related information.

Summary

Oracle BPEL Process Manager Notification Service 14-15

 <property name="accountName">test_account</property>
 </activationAgent>
</activationAgents>

The accountName XML File Structure
The following code example shows the structure of the accountName XML file.

<mailAccount xmlns="http://services.oracle.com/bpel/mail/account">
 <userInfo>
 <displayName>[display name]</displayName>
 <organization>[organization name]</organization>
 <replyTo>[replyTo email address]</replyTo>
 </userInfo>

 <outgoingServer>
 <protocol>smtp</protocol>
 <host>[outgoing smtp server]</host>
 <authenticationRequired>false</authenticationRequired>
 </outgoingServer>

 <incomingServer>
 <protocol>pop3</protocol>
 <host>[incoming pop3 server]</host>
 <email>[pop user name]</email>
 <password>[plain text email password]</password>
 </incomingServer>

 <!-- IMAP server config -->
 <!--
 <incomingServer>
 <protocol>imap</protocol>
 <host>[incoming imap server]</host>
 <email>[imap user name]</email>
 <password>[plain text email password]</password>
 <folderName>InBox</folderName>
 </incomingServer>
 -->

</mailAccount>

XML Validation Failure with the Notification Service
If you set the validateXML property to true (the default is false) on the Manage BPEL
Domain window of Oracle BPEL Control, each message exchanged with each of the
Web services is validated against its schema. However, notification services fail during
XML validity checks at run time. This is because the BPEL variables exchanged with
the notification service are not completely initialized in the BPEL process. Part of the
initialization happens in the service itself.

Summary
This chapter describes how you can send an e-mail, voice, fax, pager, or short message
service (SMS) message from Oracle BPEL Process Manager.

Summary

14-16 Oracle BPEL Process Manager Developer’s Guide

Oracle BPEL Process Manager Workflow Services 15-1

15
Oracle BPEL Process Manager Workflow

Services

A company's business processes drive the integration of systems and people that
participate in it. The business process and associated systems have a life cycle and
certain behavior. The users who participate in the business process have roles and
privileges to perform tasks in the business process. Using the workflow services of
Oracle BPEL Process Manager, you can blend the integration of systems and services
with human workflow into a single end-to-end process flow, while providing visibility
and enabling exception handling and optimization at various levels.

This chapter contains the following topics:

■ Oracle BPEL Process Manager Workflow Services 10.1.2 and 10.1.3.1.0
Compatibility

■ Overview of Workflow Services

■ Use Cases for Workflow Services

■ Participant Types in Workflow Services

■ Overview of the Modeling Process

■ Task 1: Creating the Human Task Definition with the Human Task Editor

■ Task 2: Associating the Human Task with a BPEL Process

■ Task 3: Generating the Task Display Form

■ How Changes to a Workflow Appear in Worklist Application

■ Notifications from Workflow Services

■ End-to-End Workflow Examples

■ Workflow Services

■ Configuring the Assignment Service

■ Workflow Service and Identity Service Related XPath Extension Functions

■ NLS Configuration

■ Summary

Oracle BPEL Process Manager Workflow Services 10.1.2 and 10.1.3.1.0 Compatibility

15-2 Oracle BPEL Process Manager Developer’s Guide

Oracle BPEL Process Manager Workflow Services 10.1.2 and 10.1.3.1.0
Compatibility

Workflows that you designed in 10.1.2 with the workflow wizard can be deployed and
run in 10.1.3.1.0. However, you must use the old worklist URL to access these tasks:

http://localhost:9700/integration/oldworklistapp/Login

For release 10.1.3.1.0, the workflow wizard has been replaced by a Human Task editor.
This editor enables you to specify task settings such as task outcome, payload
structure, task participants, assignment and routing policy, expiration and escalation
policy, notification settings, and so on.

You cannot use the Human Task editor to edit 10.1.2-based workflows. To use any new
10.1.3.1.0 functionality, the task scope of the workflow must be manually migrated to
use the new workflow metadata.

Note also that this is the last release in which you can deploy workflows designed
with 10.1.2.

Overview of Workflow Services
Workflow services enable you to interleave human interactions with connectivity to
systems and services within an end-to-end process flow. As shown in Figure 15–1,
workflow services are linked to a BPEL process through a WSDL contract, like any
other Web service. The process assigns a task to a user or role and waits for a response.
The users act on the task using Oracle BPEL Worklist Application.

Figure 15–1 High-Level View of Workflow Services in Oracle BPEL Process Manager

Terms used in workflow services include:

■ Task—work that needs to be done by a user, role, or group

See Also:

■ Oracle BPEL Process Manager Administrator’s Guide for the
organizational hierarchy of the demonstration user community
used in examples throughout this chapter

■ SOA_Oracle_Home\bpel\system\xmllib\workflow for
workflow service WSDL files

■ Oracle BPEL Process Manager Workflow Services API Reference
available in SOA_Oracle_
Home\bpel\docs\workflow\index.html

See Also: Appendix E, "Workflow Services Changes Between 10.1.2
and 10.1.3.1" for specific details

Assign Task

Task Complete

Workflow
Services

Worklist
Application

Update
Task

WSDL

Users

BPEL
Process

Overview of Workflow Services

Oracle BPEL Process Manager Workflow Services 15-3

■ Notification—an e-mail, voice, fax, pager, or short message service (SMS) message
that is sent when a user is assigned a task or informed that the status of the task
has changed

■ Worklist—an enumeration of the tasks, or work items, assigned to or of interest to
a user

■ Human Task editor—A tool that enables you to specify task settings such as task
outcome, payload structure, task participants, assignment and routing policy,
expiration and escalation policy, notification settings, and so on

■ .task file —The metadata task configuration file that stores the task settings
specified with the Human Task editor

■ routing slip—Contains information about the flow pattern for the workflow,
assignees, escalation policy, expiration duration, signature policy, sequence in
which the participants interact in the task, and so on.

Features of workflow services include:

■ Work queues

– Standard work queues — high priority tasks, tasks due soon, new tasks, and
so on

– Custom work queues — Users can define new work queues based on specific
search criteria

– Proxy work queues — can grant access to other users to selected work queues.
Other users can act on your behalf on those tasks

■ Rules Integration

– User rules — can define custom delegation, auto-approval, or vacation rules

– Group rules — can define auto-assignment rules for roles or groups; for
example, round-robin, least-busy, and so on.

■ Task assignment and routing—includes creating tasks from the business process
and assigning the tasks to users or roles. Other task assignment and routing
features include:

– Support for task expiration and automatic renewal

– Support for task delegation, escalation, and reapproval

– Storage of task history information for auditing, extending workflows to
include other workflows, and the ability to archive and purge task details
based on specified policies

– Support for creating custom task escalation rule functions

– Override and restrict default system actions

– Specify callback classes on task status

– JSP-based forms for viewing and updating task details

– Dynamic assignment functions

See Also:

■ "Participant Types in Workflow Services" on page 15-11

■ "Dynamic Assignment Functions" on page 15-113

Overview of Workflow Services

15-4 Oracle BPEL Process Manager Developer’s Guide

■ Built-in reports — Priority reports, productivity reports, cycle time reports, and
unattended tasks report

■ Participant types—consists of single approver, group vote, management chain,
sequential list of approvers, FYI assignees, and external routing services.

■ Identity service—interacts with back-end identity management systems to capture
all user information from Java AuthoriZatioN (JAZN) and LDAP. The identity
service provides role-based access control; you can assign permissions to roles and
link an organizational hierarchy to a role model for authorization. You can also do
the following:

– Assign worklist privileges to users, roles, or groups

– Maintain user properties such as name, location, phone, fax, and e-mail.

– Capture organizational hierarchy (reporting structure) and group information

– Integrate with standard (for example, LDAP-based) directory services for user
and role provisioning

■ Notification service

– Send notifications to specified users on specified task changes

– Notifications through different delivery channels (e-mail, phone, fax, voice,
and SMS)

– Ability to customize content of notifications for different types of tasks

– Perform actions on tasks through e-mail

■ The Oracle BPEL Worklist Application

– Out-of-the-box fully customizable worklist

– Support for various user profiles – end user, supervisor, task owner, group
owner, administrator

– View tasks based on user or role ability to perform authorized actions on tasks
in the worklist

– Ability to filter tasks in worklist view based on various criteria

– Ability to acquire and check out shared tasks

See Also: "Participant Types in Workflow Services" on page 15-11

See Also:

■ "Identity Service" on page 15-102 for identity service concepts

■ Oracle BPEL Process Manager Administrator’s Guide for identity
service configuration instructions

See Also:

■ "Notification Service" on page 15-108 for notification service
concepts

■ Chapter 14, "Oracle BPEL Process Manager Notification Service"

■ Oracle BPEL Process Manager Administrator’s Guide for notification
service configuration instructions

Overview of Workflow Services

Oracle BPEL Process Manager Workflow Services 15-5

– Support for custom work queues

– Define custom vacation rules and delegation rules

– Provide access to selected worklist views to other users (proxy support)

– Complete workflow history and audit trail

– Out-of-the-box productivity reports

Workflow Functionality: A Procurement Process Example
The functionality of workflow services can be illustrated using a simple order
approval business process to approve or reject an order, as shown in Figure 15–2.
requested items. Approval and rejection is a two-step process involving an initial
approver and the manager of the initial approver. The order is first assigned to the
Supervisor role. Once a user belonging to the Supervisor role approves the order, it is
sent to this user’s manager for final approval.

Figure 15–2 BPEL Workflow

See Also: Chapter 16, "Worklist Application"

<receive>
Purchase List

<invoke>
Vendor Pricing

Service

<receive>
Get Outcome via

Task Service

<invoke>
Employee
Notification

<invoke>
Vendor Order

Service

?
RejectedApproved

Business Process

<scope>

<invoke>
Assign Task via

Task Service

Overview of Workflow Services

15-6 Oracle BPEL Process Manager Developer’s Guide

Workflow Services Components
Figure 15–3 shows the following workflow services components:

■ Task Service

The task service provides task state management and persistence of tasks. In
addition to these services, the task service exposes operations to update a task,
complete a task, escalate and reassign tasks, and so on. The task service is used by
the Oracle BPEL Worklist Application to retrieve tasks assigned to users. This
service also determines if notifications are to be sent to users and groups when the
state of the task changes. The task service consists of the following services.

– Task Routing Service

The task routing service offers services to route, escalate, and reassign the task.
The service makes these decisions by interpreting a declarative specification in
the form of the routing slip.

– Task Query Service

The task query service queries tasks for a user based on a variety of search
criterion such as keyword, category, status, business process, attribute values,
history information of a task, and so on.

– Task Metadata Service

The task metadata service exposes operations to retrieve metadata information
related to a task.

■ Identity Service

The identity service is a thin Web service layer on top of the Oracle Application
Server 10g security infrastructure or any custom user repository. It enables
authentication and authorization of users and the lookup of user properties, roles,
group memberships, and privileges.

■ Notification Service

The notification service delivers notifications with the specified content to the
specified user to any of the following channels: e-mail, telephone voice message,
pager, fax, and SMS. See "Notifications from Workflow Services" on page 15-80 for
more information.

■ User Metadata Service

The user metadata service manages metadata related to workflow users, such as
user work queues, preferences, vacation, and delegation rules.

■ Runtime config service

The runtime config service provides methods for managing metadata used in the
task service run time environment. It principally supports management of task
payload flex field mappings.

See Also: Oracle BPEL Process Manager Order Booking Tutorial for
instructions on designing an order approval business process to
approve or reject an order

Overview of Workflow Services

Oracle BPEL Process Manager Workflow Services 15-7

Figure 15–3 Workflow Services Components

Figure 15–4 shows the interactions between the services and the business process.

Identity
Management

Portal

Worklist

E-mail Client

User
Metadata
Service

Task
Metadata
Service

Task
Assignment

Service

Identity
Service

Task
Query
Service

Notification
Service

Database
· OID
· LDAP
· JAZN

Notification
Channels
· E-mail
· Application Server Wireless
 - Voice
 - SMS
 - Fax
 - Pager

Task
Service

Workflow Services

Users

BPEL
Process

Use Cases for Workflow Services

15-8 Oracle BPEL Process Manager Developer’s Guide

Figure 15–4 Workflow Services and Business Process Interactions

Use Cases for Workflow Services
Using workflow services is demonstrated in the VacationRequest, AutoLoanDemo,
ExpenseRequestApproval, LoanDemoPlus, DocumentReview,
HelpDeskServiceRequest, and OrderApproval demos.

See Also: Oracle BPEL Process Manager Administrator’s Guide for
identity service details

See Also:

■ "End-to-End Workflow Examples" on page 15-86

■ SOA_Oracle_Home\bpel\samples\demos

Worklist application
Web application to search
for tasks, view tasks, and
act on tasks

User Metadata Service
Manages metadata related
to workflow (user work
queues, preferences,
vacation, and delegation
rules)

Oracle
Internet

Directory

User Directory
(one of)

JAZN
XML

LDAP,
Custom

Oracle BPEL Server

Runtime Config Services
Provides methods for
managing metadata used
in the task service runtime
environment

Identity Service
· user / group / role lookup
· user authentication
· authorization
· organization hierarchy

Task Assignment Service
Offers services to route,
escalate, and reassign
tasks

Notification Service
Sends notifications to
users by e-mail, voice
message, pager, fax, or
short message service

Task Metadata Service
Exposes operations to
retrieve metadata
information related to
a task

Task Query Service
Queries tasks for a user
based on keyword,
category, status,
business process,
attribute values,
task history information,
and so on

Task Service
Provides task persistence
and exposes operations
to update a task, complete
a task, escalate and
reassign tasks,
and so on

Use Cases for Workflow Services

Oracle BPEL Process Manager Workflow Services 15-9

The following sections describe multiple use cases for workflow services.

Assigning a Task to a User or Role
A vacation request process may start with getting the vacation details from a user and
then routing the request to their manager for approval. User details and the
organizational hierarchy can be looked up from a user directory or store. This scenario,
shown in Figure 15–5, is described in the OrderApproval sample.

Figure 15–5 Assigning Tasks to a User or Role from a Directory

Using the Various Participant Types
A task can be routed through multiple users with a group vote, management chain, or
sequential list of approvers participant type. For example, consider a loan request that
is part of the loan approval flow. The loan request may first be assigned to a loan agent
role. After a specific loan agent acquires and accepts the loan, the loan may be routed
further through multiple levels of management if the loan amount is greater that
$100,000. This scenario, shown in Figure 15–6, is described in the LoanDemoPlus
sample.

Figure 15–6 Flow Patterns and Routing Policies

See "Participant Types in Workflow Services" on page 15-11 for the various flow types
supported by workflow services. You can use these types as building blocks to create
complex workflows.

Assign Task

Task Complete

Workflow
ServicesBPEL

Process

OID

LDAP

Change Routing

Get Approvals

All Approvals
Complete

BPEL
Process

Various
Routing
Patterns

Workflow Service

Use Cases for Workflow Services

15-10 Oracle BPEL Process Manager Developer’s Guide

Escalation, Expiration, and Delegation
A high-priority task can be assigned to a certain user or role based on the task type.
However, if the user does not act on it in a certain time, the task may expire and in
turn be escalated to the manager for further action. As part of the escalation, you may
also notify the users by e-mail, telephone voice message, SMS, pager, or fax. Similarly,
a manager may delegate tasks from one reportee to another to balance the load
between various task assignees. All tasks defined in BPEL have an associated
expiration date. Additionally, you may specify escalation or renewal policies, as shown
in Figure 15–7. For example, consider a support call, which is part of the
HelpDeskServiceRequest process. A high-priority task may be assigned to a certain
user and if the user does not respond in two days, then the task is routed to the
manager for further action.

Figure 15–7 Escalation and Notification

Automatic Assignment and Delegation
A user may decide to have another user perform tasks on their behalf. Tasks can be
explicitly delegated from the Oracle BPEL Worklist Application or can be
automatically delegated. For example, a manager sets up a vacation rule saying that all
their high priority tasks are automatically routed to one of their reports while the
manager is on vacation. In some cases, tasks can be routed to different individuals
based on the content of the task. Another example of automatic routing is to allocate
tasks among multiple individuals belonging to a group. For example, a help desk
supervisor decides to allocate all tasks for the western region based on a round robin
basis or assign tasks to the individual with the lowest number of outstanding tasks
(the least busy).

Work Queues and Proxy Support
It is often required that one user be provided with access to part of another user’s
worklist. For example, an executive decides to provide access to expense approvals
within a certain limit to their secretary. Work queues allow you to create a custom view
to group a subset of tasks in the worklist (say high priority tasks, tasks due in 24
hours, expense approval tasks, and so on). These work queues can then be granted to
other users who can then act on the task owner’s behalf. For example, in the scenario
described above, the executive can create a delegated expense approvals work queue
for expenses below $5000.

The Oracle BPEL Worklist Application
Users typically access tasks assigned to them by using the Oracle BPEL Worklist
Application, as shown in Figure 15–8. A worklist consists of tasks assigned to the user

Notify Manager

Escalate Task
Workflow Services

1 2 3 4 5 6

87 9 10 11 12 13

1514 16 17 18 19 20

2221 23 24 25 26 27

2928 30 CalendarTask Resolved

BPEL
Process

Notification

Participant Types in Workflow Services

Oracle BPEL Process Manager Workflow Services 15-11

as well as the groups to which they belong. A task may also include forms and
attachments in addition to other task details such as history, comments, and approval
sequence. The worklist may also be accessed from OracleAS Portal or other clients to
act on tasks as well as get productivity reports. The Oracle BPEL Worklist Application
can be customized and extended based on the specific needs of an application. See
Chapter 16, "Worklist Application" for details about worklist functionality and the
sample Oracle BPEL Worklist Application.

Figure 15–8 Oracle BPEL Worklist Application—Access Tasks, Forms, Attachments, and
Reports

Participant Types in Workflow Services
Oracle BPEL Process Manager provides a library of participant types (known in
previous releases as workflow patterns). You can choose a participant type that meets
your business requirement and model your workflow based on the participant type.
Oracle BPEL Process Manager supports the following participant types:

■ Single Approver — used for a single user to act on a task. If the task is assigned to
a role or group with multiple users, one of the members must claim the task and
act on it. Based on the user's action, you define what the business process does.

■ Group Vote — used when multiple users, working in parallel, must take action
simultaneously, such as in a hiring situation when multiple users vote to hire or
reject an applicant. You specify the voting percentage that is needed for the
outcome to take effect, such as a majority vote or a unanimous vote.

■ Management Chain—used to route tasks for approval to multiple users in a
management chain hierarchy. You specify the task participants as a management
chain list or a list of users.

■ Sequential list of approvers (extension of a sequential workflow)—used to create a
list of sequential participants for a workflow. This type is similar to the
management chain participant type, except that with that type, the users are part
of an organization hierarchy. For the sequential list of approvers participant type,
they can be any list of users or groups.

■ FYI assignee — used when a task is sent to a user, but the business process does
not wait for a user response; it just continues. FYI assignees cannot directly impact
the outcome of a task, but in some cases can provide comments or add
attachments.

Complete Task

List Work Items
Workflow Services

Get Weekly
Productivity

Report Task Details
and History

Overview of the Modeling Process

15-12 Oracle BPEL Process Manager Developer’s Guide

■ External Routing Service —used to configure an external routing service that
dynamically determines the participants in the workflow. If this participant type is
specified, all other participant types are ignored. It is assumed that the external
routing service provides a list of participant types (single approver, list of
approvers, group vote, and so on) at run time to determine the routing of the task.

Continuing Workflows from Other Workflows
You can have situations where you need to continue a previous workflow task in the
current workflow task. Oracle BPEL Process Manager enables you to include the task
history, comments, and attachments from the previous task. This provides you with a
complete end-to-end audit trail.

Overview of the Modeling Process
The modeling process consists of creating a human task, associating it with a BPEL
process, and generating the format for displaying the human task during run time in
the Oracle BPEL Worklist Application. This section provides a brief overview of these
modeling tasks and provides references to specific modeling instructions.

■ Create a Human Task Definition with the Human Task Editor

■ Associate the Human Task Definition with a BPEL Process

■ Generate the Task Display Form

Create a Human Task Definition with the Human Task Editor
The Human Task editor enables you to define the metadata for the task. This editor
enables you to specify human task settings, such as task outcome, payload structure,
task participants, assignment and routing policy, expiration and escalation policy,
notification settings, and so on. This information is saved to a metadata task
configuration file with a .task extension.

Associate the Human Task Definition with a BPEL Process
You associate the .task file that consists of the human task settings with a BPEL
process. Association is made with a human task activity that you drag and drop into
your BPEL process for configuring. You also define the task definition, task initiator,
task priority, and map the task parameter that carries the input data to a BPEL
variable. You can also define advanced features, such as the scope and global task
variables names (instead of accepting the default names), task owner, identification
key, BPEL callback customizations, and whether to extend the human task to include
other workflow tasks.

When association is complete, a Task Service partner link is created. The Task Service
exposes the operations required to act on the task.

See Also: "Including the Task History of Other Human Tasks" on
page 15-59

See Also: "Task 1: Creating the Human Task Definition with the
Human Task Editor" on page 15-13 for specific instructions

See Also: "Task 2: Associating the Human Task with a BPEL
Process" on page 15-53 for specific instructions

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-13

Generate the Task Display Form
You generate the layout of the task display form used for displaying the task header,
body (task payload), and footer details at run time in Oracle BPEL Worklist
Application. The task display form defines the display mechanism for the task payload
(data in the task) in the Oracle BPEL Worklist Application. Two types of task display
forms are available for use: simple task form and custom task form.

Task 1: Creating the Human Task Definition with the Human Task Editor
The Human Task editor enables you to define the metadata for the task. This editor
enables you to specify human task settings, such as task outcome, payload structure,
task participants, assignment and routing policy, expiration and escalation policy,
notification settings, and so on.

When human task creation is complete, the following folder and file are created:

■ A folder with the human task name you specify in the Human Task Name field in
"Accessing the Human Task Editor" on page 15-13 is created under the Integration
Content folder of your BPEL process in the Application Navigator

■ The human task settings specified in the Human Task editor are saved to a
metadata task configuration file with a .task extension. This file is stored in the
human task name folder. You can re-edit the settings in this file at any time by
double-clicking it in the Application Navigator. This reopens the .task file in the
Human Task editor.

This section contains the following topics:

■ Accessing the Human Task Editor

■ Reviewing the Sections of the Human Task Editor

■ Specifying the Task Title, Priority, Outcome, and Owner

■ Specifying the Task Payload Data Structure

■ Assigning Task Participants

■ Escalating, Renewing, or Ending the Task

■ Specifying Participant Notification Preferences

■ Specifying Advanced Settings

■ Exiting the Human Task Editor and Saving Your Changes

Accessing the Human Task Editor
When you are ready to begin creation of a human task, the Human Task editor can be
accessed in several ways in Oracle JDeveloper:

■ From the Application Navigator

■ From the Component Palette

From the Application Navigator
This method enables you to create a human task that you can later associate with a
BPEL process through use of a human task activity.

See Also: "Task 3: Generating the Task Display Form" on page 15-66
for specific instructions

Task 1: Creating the Human Task Definition with the Human Task Editor

15-14 Oracle BPEL Process Manager Developer’s Guide

1. Right-click your BPEL process in the Application Navigator and select Create
Human Task Definition.

The Add a Human Task window appears.

2. Enter a name in the Human Task Name field.

The name you enter is added to the directory path in the Location field.

SOA_Oracle_Home/jdev/mywork/my_application/my_process/bpel/
Human_task_directory/Human_task_name.task

3. Click OK.

The Human Task editor appears.

4. Go to section "Reviewing the Sections of the Human Task Editor" on page 15-14.

From the Component Palette
This method enables you to create a human task activity with which you immediately
associate a BPEL process through use of a human task activity.

1. Select Process Activities from the Component Palette.

2. Drag and drop a Human Task activity into your BPEL process.

The Add a Human Task window appears.

3. Click the second icon to the right of the Task Definition field.

4. Enter a name in the Human Task Name field.

The name you enter is added to the directory path in the Location field.

SOA_Oracle_Home/jdev/mywork/my_application/my_process/bpel/
Human_task_directory/Human_task_name.task

5. Click OK.

The Human Task editor appears.

6. Go to section "Reviewing the Sections of the Human Task Editor" on page 15-14.

Reviewing the Sections of the Human Task Editor
The Human Task editor consists of the following main sections shown in Figure 15–9.
These sections enable you to create a human task.

Note: You can also create a human task that you later associate with a
BPEL process by selecting New from the File main menu, then
selecting Integration Tier > Human Tasks > Human Task Definition.

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-15

Figure 15–9 Human Task Editor

Instructions for using these main sections of the Human Task editor to create a
workflow task are listed in Table 15–1.

Specifying the Task Title, Priority, Outcome, and Owner
Figure 15–10 shows the Task Configuration section of the Human Task editor.

This section enables you to specify details such as the task title, task priority, task
outcomes, and task owner.

Table 15–1 Human Task Editor

For This Main Section... See...

Task Configuration

(title, outcomes, priority, and owner)

"Specifying the Task Title, Priority, Outcome, and
Owner" on page 15-15

Parameters "Specifying the Task Payload Data Structure" on
page 15-21

Assignment and Routing Policy "Assigning Task Participants" on page 15-22

Expiration and Escalation Policy "Escalating, Renewing, or Ending the Task" on
page 15-39

Notification Settings "Specifying Participant Notification Preferences" on
page 15-43

Advanced Settings

(for specifying custom escalation
rules, custom style sheets for
attachments, multilingual settings,
custom task actions, error messages,
and callback classes)

"Specifying Advanced Settings" on page 15-47

Task 1: Creating the Human Task Definition with the Human Task Editor

15-16 Oracle BPEL Process Manager Developer’s Guide

Figure 15–10 Human Task Editor — Task Configuration Section

Instructions for configuring the following subsections of the Task Configuration
section are listed in Table 15–2:

Specifying a Task Title and Priority
1. Enter the following details.

Specifying a Task Outcome
Task outcomes capture the possible outcomes of a task. The Oracle BPEL Worklist
Application displays the outcomes you specify here as the possible actions to perform
during run time. You can specify the following types of task outcomes:

■ Select a seeded outcome

■ Enter a custom outcome

The task outcomes can also have run time display values that are different from the
actual outcome value specified here. This permits outcomes to be displayed in a
different language in the Oracle BPEL Worklist Application. See "Specifying
Multilingual Settings" on page 15-48 for more information about internationalization.

1. Click the flashlight icon to the right of the Outcomes field.

The Outcomes window displays the possible outcomes for tasks. APPROVE and
REJECT are selected by default.

Table 15–2 Human Task Editor — Task Configuration Section

For This Subsection... See...

Title

Priority

"Specifying a Task Title and Priority" on page 15-16

Outcomes "Specifying a Task Outcome" on page 15-16

Owner "Specifying a Task Owner" on page 15-18

Field Description

Title Enter an optional task title. The task title displays in the Oracle BPEL
Worklist Application. If you enter a title in the Task Title field of the
General tab of the Human Task window described in "Specifying the
Task Title" on page 15-55, the title you enter here is overridden.

Priority Specify the priority of the tasks. Priority can be 1 through 5, with 1
being the highest. By default, the priority of a task is 3. The priority can
be used to sort tasks in the Oracle BPEL Worklist Application. This
priority value is overridden by any priority value you select in the
General tab of the Add a Human Task window.

See Also: "Specifying the Task Initiator and Task Priority" on
page 15-55 for instructions on specifying a priority value in the Add a
Human Task window

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-17

2. Select additional task outcomes or deselect the default outcomes.

3. Enter any custom outcomes separated by commas in the Custom Outcomes field.

4. Click OK to return to the Human Task editor.

Your selections display in the Outcomes field.

The seeded and custom outcomes selected here display for selection in the
Majority Voted Outcome section of the group vote participant type.

Displaying Custom Outcomes in a Human Task Activity The method by which you create a
human task definition determines whether custom outcomes initially display in a
switch activity. If you perform the following tasks:

1. Drag and drop a human task activity into the design window.

2. Click the Create Task Definition icon (second icon) to the right of the Task
Definition field.

3. Create a human task definition with custom outcomes.

4. Expand the human task activity.

Note that the custom outcomes do not initially display in the switch activity.

As a workaround, perform the following steps:

1. Click the human task activity to display the Human Task window.

2. Click OK.

3. Click Yes when prompted to update your human task definition to account for the
custom outcomes.

4. Click Source.

5. Click Diagram.

6. Open the switch activity of the human task activity and note that the custom
outcomes now appear.

Or, always create human task definition files as follows:

See Also: "Specifying Group Voting Details" on page 15-29

Task 1: Creating the Human Task Definition with the Human Task Editor

15-18 Oracle BPEL Process Manager Developer’s Guide

1. Right-click the BPEL process in the Application Navigator.

2. Select Create Human Task Definition.

3. Design a human task definition.

4. Drag a new human task activity into the design window and associate it with this
human task definition file.

5. Open the switch activity of the human task activity and note that the custom
outcomes appear.

Specifying a Task Owner
The task owner can view the tasks belonging to business processes they own and
perform operations on behalf of any of the assigned task participant types.
Additionally, the owner can also reassign, withdraw, or escalate tasks. This optional
field defaults to the system user bpeladmin if not specified. The task owner can also
be specified in the Advanced tab of the Human Task window described in "Specifying
a Task Owner" on page 15-58. The task owner specified in the Advanced tab overrides
any task owner you enter here.

1. Select a method for specifying the task owner:

■ Specifying a Task Owner By Browsing the User Directory

■ Specifying a Task Owner Dynamically

Specifying a Task Owner By Browsing the User Directory

Task owners can be selected by browsing the user directory (Oracle Internet Directory
(OID), JAZN/XML, LDAP, and so on) that is configured for use with Oracle BPEL
Process Manager.

1. Click the first icon to the right of the Owner field to display the Identity lookup
dialog.

2. Search for the owner by entering a search string such as jcooper, j*, *, and
so on. Clicking Lookup fetches all the users that match the search criteria.

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-19

One or more users or groups can be highlighted and selected by clicking Select.

3. View the hierarchy of a user by highlighting the user and clicking Hierarchy.
Similarly, clicking Reportees displays the reportees of a selected user or group.

Task 1: Creating the Human Task Definition with the Human Task Editor

15-20 Oracle BPEL Process Manager Developer’s Guide

4. View the details of a user or group by highlighting the user or group and clicking
Detail.

5. Click OK to return to the Identity lookup dialog.

6. Click Select to add the user to the Selected user section.

7. Click OK to return to the Human Task editor.

Your selection displays in the Owner field.

Specifying a Task Owner Dynamically

Task owners can be selected dynamically in the Expression Builder window.

1. Click the second icon to the right of the Owner field to display the Expression
Builder window:

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-21

2. Browse the available variable schemas and functions to create a task owner.

3. Click OK to return to the Human Task editor.

You selection displays in the Owner field.

Specifying the Task Payload Data Structure
Figure 15–11 shows the Parameters section of the Human Task editor.

This section enables you to define the structure (message attributes) of the task
payload (the data in the task). Task payload data consists of one or more elements or
types. Based on your selections, an XML schema definition is created for the task
payload.

Figure 15–11 Human Task Editor — Parameters Section

1. Click the + sign to display the Add Task Parameter window.

2. Enter the following details:

See Also:

■ Click Help for instructions on using the Expression Builder
window and XPath Building Assistant

■ "Workflow Service and Identity Service Related XPath Extension
Functions" on page 15-122 and Appendix D, "XPath Extension
Functions" for information about workflow service dynamic
assignment functions and identity service functions

Field Description

Parameter Type Select Type or Element and click the flashlight icon to display the
Type Chooser window for selecting the task parameter.

Name Accept the default name or enter a custom name. This field only
displays if Type is the selected parameter type.

Task 1: Creating the Human Task Definition with the Human Task Editor

15-22 Oracle BPEL Process Manager Developer’s Guide

3. Click OK to return to the Human Task editor.

Your selection displays in the Parameters section.

4. If you want to edit your selection, highlight it and click the first icon in the upper
right part of the Parameters section.

Assigning Task Participants
Figure 15–12 shows the Assignment and Routing Policy section of the Human Task
editor.

This section enables you to select a participant type that meets your business
requirement. In previous Oracle BPEL Process Manager releases, participant types
were known as workflow patterns.

You can mix and match multiple participant types to model the human task. This
enables you to extend the functionality of a previously configured human task to
model more complex workflows.

Each of the participant types has an associated editor that you use for configuration
tasks. The sequence in which the assignees are added indicates the execution
sequence.

Figure 15–12 Human Task Editor — Assignment and Routing Policy Section

1. Click the + sign to display the Add Participant Type window.

This enables you to select a specific participant type.

2. Select a participant type from the Type list.

Modifiable via worklist Select this check box to enable users to edit task payload data in the
footer of the Oracle BPEL Worklist Application. For example, the
approver in the application may need to add approver comments.

Note: You can only define payload flex field mappings in the Oracle
BPEL Worklist Application for payload parameters that are simple
XML types.

Field Description

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-23

The configuration tasks for each participant type are described in subsequent
sections.

3. See the following section based on your selection:

4. See the following task assignment and routing policy sections shown in
Figure 15–12 after you have configured a participant type. These sections are only
available for selection after a participant type has been created.

Specifying Task Approvers
Users and groups for each of the participant types can be specified either statically or
dynamically.

When the users and groups are specified statically (or by browsing the identity
service), the values can be either of the following:

■ A single user or group (for example, jstein), which in the case of a single
approver, is captured as follows:

 <participant name="Assignee1">
 <resource isGroup="false" type="STATIC">jstein</resource>
 </participant>

■ A delimited string of users or groups (for example, jstein, wfaulk, cdickens),
which in the case of a single approver, is captured as follows:

For This Subsection... See...

Add Participant Type

■ Single approver

■ Group vote

■ Management chain

■ Sequential list of
approvers

■ FYI assignee

■ External routing
service

"Configuring the Single Approver Participant Type" on page 15-24

"Configuring the Group Vote Participant Type" on page 15-27

"Configuring the Management Chain Participant Type" on page 15-30

"Configuring the Sequential List of Approvers Participant Type" on
page 15-32

"Configuring the FYI Assignee Participant Type" on page 15-35

"Configuring the External Routing Service Participant Type" on
page 15-36

For This Subsection... See...

Allow all participants
to invite other
participants

"Allowing All Participants to Invite Other Participants" on page 15-37

Enable abrupt
completion condition

"Abruptly Completing a Condition" on page 15-38

Task 1: Creating the Human Task Definition with the Human Task Editor

15-24 Oracle BPEL Process Manager Developer’s Guide

<participant name="Assignee1">
 <resource isGroup="false" type="STATIC">jstein, wfaulk, cdickens</resource>
</participant>

You may have a business requirement to create a dynamic list of task approvers
specified in a payload variable. This XPath expression can resolve to zero or more
XML nodes. Each node value can be either of the following:

■ A single user or group

■ A delimited string of users or groups. For example, the following task shows that
the payload message attribute is of type xsd:String and its value is a
comma-delimited string of approvers. This node can be used to specify the
participants.

<task>
 . . .
 <payload>
 <approvers>jstein,wfaulk,cdickens</approvers>
 </payload>
</task>

The default delimiter for the assignee delimited string is a comma (,). This delimiter
can be changed using the assigneeDelimiter XML element in the
wf-config.xml file. This delimiter applies to all workflows in the system.

Specifying participants in this manner is applicable to all participant types, although
they are interpreted differently for each type. For example:

■ In a single user participant type, the task is assigned to everyone evaluated.

■ In a sequential list of approvers participant type, the task is sequentially assigned
to users and groups evaluated in the list.

■ In a group vote participant type, a task is created for each user and group
evaluated in the list.

This interpretation of resource XPath expressions provides
orcl:create-nodeset-from-delimited-string-equivalent functionality to
enable you to specify a dynamic list of one or more task approvers (resource element
members) from the payload variable.

Configuring the Single Approver Participant Type
Figure 15–13 displays the Single Approver window.

This participant type requires a single user to act on a task. If the task is assigned to a
role or group with multiple users, one of the members must claim the task and act on
it. Based on the user's action, you define what the business process does.

For example, a vacation request is assigned to a manager. The manager must act on the
request task three days before the vacation starts. If the manager formally approves or
rejects the request, the employee is notified with the decision. If the manager does not
act on the task, the request is treated as rejected. Notification actions similar to the
formal rejection are taken.

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-25

Figure 15–13 Add Participant Type — Single Approver

1. Enter a recognizable label for this participant in the Label field. This label must be
unique within this workflow (for example, Approval Manager, Primary
Reviewers, and so on).

Instructions for configuring the following subsections of the Add Participant Type
- Single Approver window are listed in Table 15–3:

Assigning Participants to the Single Approver Task

1. Select a method for assigning a user or group to participate in performing actions
on this task.

■ By name

Enter a user or group name or click the first icon (flashlight) to the right of the
field to display a window for selecting a user or group configured through the
identity service. The identity service enables user authorization and the

Table 15–3 Add Participant Type — Single Approver

For This Subsection... See...

Requires action from one of the
participants below

"Assigning Participants to the Single Approver Task" on
page 15-25

Specify skip rule "Bypassing a Task Participant" on page 15-26

Limit allocated duration to "Specifying a Time Limit for Acting on a Task" on
page 15-26

Allow this participant to invite
other participants

"Inviting Additional Participants to a Task" on
page 15-26

Task 1: Creating the Human Task Definition with the Human Task Editor

15-26 Oracle BPEL Process Manager Developer’s Guide

lookup of user properties, roles, group memberships, and privileges. User
information is obtained from Java AuthoriZatioN (JAZN) or an LDAP server
such as Oracle Internet Directory. You can use wild cards (*) to search for IDs.

■ By expression

Dynamically assign this task to a user (for example, jcooper) or group (for
example, administrators) by clicking the icon to the right of the field to
display the Expression Builder window. Users who are members of a group
are assigned this task. For a user to act on a task assigned to a group, they
must first claim the task in the Oracle BPEL Worklist Application during run
time.

The XPath expressions for specifying assignees must follow these rules:

– They must be based off the task XSD. This includes the payload as defined
in the payload section. For example,
/task:task/task:payload/order:orderAssignee is an example of an XPath
expression based of the task XSD.

– The XPath expressions cannot contain BPEL-specific XPath functions such
as bpws:getVariableData(), and so on because these XPath expressions are
not evaluated from the context of a BPEL instance.

– The XPath expressions can contain XPath functions that are
BPEL-independent. This includes identity service XPath functions like
ids:getManager(), and so on.

Bypassing a Task Participant

1. Select the Specify skip rule check box if you want the user or group to be
bypassed if a specific condition is satisfied. This action displays an icon for
accessing the Expression Builder window for building a condition. For example, if
a user submits a business trip expense report that is below a specific amount, no
approval is required by their manager.

The expression to bypass a task participant must evaluate to a Boolean value. For
example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath
expression for skipping a participant.

Specifying a Time Limit for Acting on a Task

1. Click the + sign to expand the Advanced section shown in Figure 15–13.

2. Select Limit allocated duration to.

3. Specify the amount of time a user or group receives to act on a task. If the user or
group does not act in the time specified, the global escalation and renewal policies
that you set in the Expiration and Escalation Policy section (known as the routing
slip level) of the Human Task editor are applied. For example, if the global policy
is set to escalate the task and this participant does not act in the duration provided,
the task is escalated to the manager or another user, as appropriate.

Inviting Additional Participants to a Task

1. Click the + sign to expand the Advanced section (if not already expanded).

See Also: "Escalating, Renewing, or Ending the Task" on page 15-39
for instructions on setting the global escalation and renewal policies in
the Expiration and Escalation Policy section of the Human Task
editor

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-27

2. Select the Allow this participant to invite other participants check box if you
want this task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow. For example, assume the approval
workflow goes from James Cooper to John Steinbeck. If this option is checked,
James Cooper can decide to first route it to Irving Stone before it goes to John
Steinbeck.

Configuring the Group Vote Participant Type
Figure 15–14 displays the Group Vote window.

This participant type is used when multiple users, working in parallel, must take
action simultaneously, such as in a hiring situation when multiple users vote to hire or
reject an applicant. You specify the voting percentage that is needed for the outcome to
take effect, such as a majority vote or a unanimous vote.

For example, a business process collects the feedback from all interviewers in the
hiring process, consolidates it, and assigns a hire or reject request to each of the
interviewers. At the end, the candidate is hired if the majority of interviewers vote for
hiring instead of rejecting.

Figure 15–14 Add Participant Type — Group Vote

1. Enter a recognizable label for this participant in the Label field. This label must be
unique within this workflow (for example, Approval Manager, Primary
Reviewers, and so on).

Task 1: Creating the Human Task Definition with the Human Task Editor

15-28 Oracle BPEL Process Manager Developer’s Guide

Instructions for configuring the following subsections of the Add Participant Type
- Group Vote window are listed in Table 15–4:

Assigning Participants to the Group Vote Task

1. Select a method for assigning a user or group to participate in this task. The
assigned participants must establish a consensus on when a task is considered
complete.

■ By name

Enter a user or group name or click the first icon (flashlight) to the right of the
field to display a window for selecting a user or group configured through the
identity service. The identity service enables user authorization and the
lookup of user properties, roles, group memberships, and privileges. User
information is obtained from Java AuthoriZatioN (JAZN) or an LDAP server
such as Oracle Internet Directory. You can use wild cards (*) to search for IDs.

■ By expression

Dynamically assign this task to a user (for example, jcooper) or group (for
example, administrators) by clicking the icon to the right of the field to
display the Expression Builder window. Users who are members of a group
are assigned this task. For a user to act on a task assigned to a group, they
must first claim the task in the Oracle BPEL Worklist Application during run
time.

Bypassing a Task Participant

1. Select the Specify skip rule check box if you want the user or group to be
bypassed if a specific condition is satisfied. This action displays an icon for
accessing the Expression Builder window for building a condition. For example, if
a user submits a business trip expense report that is below a specific amount, no
approval is required by their manager. The expression must evaluate to a Boolean
value.

Table 15–4 Add Participant Type — Group Vote Window

For This Subsection... See...

Required consensus between the
participants below: 50

"Assigning Participants to the Group Vote Task" on
page 15-28

Specify skip rule "Bypassing a Task Participant" on page 15-28

Share attachments and comments "Sharing Attachments and Comments with Task
Participants" on page 15-29

Default Outcome

Consensus Percentage

Immediately trigger voted outcome
when minimum percentage is met

Wait until all votes are in before
triggering outcome

"Specifying Group Voting Details" on page 15-29

Limit allocated duration to "Specifying a Time Limit for Acting on a Task" on
page 15-29

See Also: "Assigning Participants to the Single Approver Task" on
page 15-25 for rules to follow when specifying assignees with XPath
expressions

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-29

Sharing Attachments and Comments with Task Participants

1. Select the Share attachments and comments check box if you want all group
voters or workflow participants to share comments and attachments for this task.
This information typically displays in the footer region of the Oracle BPEL
Worklist Application.

Specifying Group Voting Details

1. Specify a method for selecting the outcome for the final task. If you select By
Expression from the lists below, you can dynamically specify the details by
clicking the icon to the right of the field to display the Expression Builder window.

■ Default Outcome

Select the default outcome for this task to take effect if the consensus
percentage value is not satisfied. This happens if there is a tie or if all
participants do not respond before the task expires. Seeded and custom
outcomes that you entered in the Outcomes window in "Specifying a Task
Outcome" on page 15-16 display in this list.

■ Consensus Percentage

Select a percentage value required for the outcome of this task to take effect;
for example, a majority vote (51) or a unanimous vote (100). For example,
assume there are two possible outcomes (ACCEPT and REJECT) and five
subtasks. If two subtasks are accepted and three are rejected, and the required
acceptance percentage is 50%, the outcome of the task is rejected.

2. Specify additional group voting details:

■ Immediately trigger voted outcome when minimum percentage is met

If selected, the outcome of the task can be computed early with the outcomes
of the completed subtasks, enabling the pending subtasks to be withdrawn.
For example, assume four users are assigned to act on a task, the default
outcome is APPROVE, and the consensus percentage is set at 50. If the first
two users approve the task, the third and fourth users do not need to act on
the task, since the consensus percentage value has already been satisfied.

■ Wait until all votes are in before triggering outcome

If selected, the workflow waits for all responses before an outcome is initiated.

Specifying a Time Limit for Acting on a Task

1. Click the + sign to expand the Advanced section shown in Figure 15–14.

2. Select Limit allocated duration to.

3. Specify the amount of time a user or group receives to act on a task. If the user or
group does not act in the time specified, the global escalation and renewal policies
that you set in the Expiration and Escalation Policy section (known as the routing
slip level) of the Human Task editor are applied. For example, if the global policy
is set to escalate the task and this participant does not act in the duration provided,
the task is escalated to the manager or another user, as appropriate.

See Also: "Bypassing a Task Participant" on page 15-26 for an
example of a valid XPath expression for skipping a participant

Task 1: Creating the Human Task Definition with the Human Task Editor

15-30 Oracle BPEL Process Manager Developer’s Guide

Configuring the Management Chain Participant Type
Figure 15–15 displays the Management Chain window.

This participant type routes tasks for approval to multiple users in a management
chain hierarchy. You specify the task participants as a management chain list or a list of
users.

For example, a purchase order is assigned to a manager. If the manager approves the
order, it is assigned to their manager. If that manager approves it, it is assigned to their
manager, and so on until three managers approve the order. If any of the managers
reject the request or the request expires, the order is rejected.

Figure 15–15 Add Participant Type — Management Chain

1. Enter a recognizable label for this participant in the Label field. This label must be
unique within this workflow (for example, Approval Manager, Primary
Reviewers, and so on).

Instructions for configuring the following subsections of the Add Participant Type
- Management Chain window are listed in Table 15–5:

See Also: "Escalating, Renewing, or Ending the Task" on page 15-39
for instructions on setting the global escalation and renewal policies in
the Expiration and Escalation Policy section of the Human Task
editor

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-31

Assigning Participants to the Management Chain Task

1. Select a method for assigning a user or group to participate in this task.

■ By name

Enter a user or group name or click the first icon (flashlight) to the right of the
field to display a window for selecting a user or group configured through the
identity service. The identity service enables user authorization and the
lookup of user properties, roles, group memberships, and privileges. User
information is obtained from Java AuthoriZatioN (JAZN) or an LDAP server
such as Oracle Internet Directory. You can use wild cards (*) to search for IDs.

■ By expression

Dynamically assign this task to a user (for example, jcooper) or group (for
example, administrators) by clicking the icon to the right of the field to
display the Expression Builder window. Users who are members of a group
are assigned this task. For a user to act on a task assigned to a group, they
must first claim the task in the Oracle BPEL Worklist Application during run
time.

Bypassing a Task Participant

1. Select the Specify skip rule check box if you want the user or group to be
bypassed if a specific condition is satisfied. This action displays an icon for
accessing the Expression Builder window for building a condition. For example, if
a user submits a business trip expense report that is below a specific amount, no
approval is required by their manager. The expression must evaluate to a Boolean
value.

Specifying the Number of Approvers

Table 15–5 Add Participant Type - Management Chain

For This Subsection... See...

Requires management chain
approval of one of the participants
below

"Assigning Participants to the Management Chain Task"
on page 15-31

Specify skip rule "Bypassing a Task Participant" on page 15-31

Maximum Number of Chain Levels
Up

Highest Title of Approver

"Specifying the Number of Approvers" on page 15-31

Limit allocated duration to "Specifying a Time Limit for Acting on a Task" on
page 15-32

Allow this participant to invite
other participants

"Inviting Additional Participants to a Task" on
page 15-32

See Also: "Assigning Participants to the Single Approver Task" on
page 15-25 for rules to follow when specifying assignees with XPath
expressions

See Also: "Bypassing a Task Participant" on page 15-26 for an
example of a valid XPath expression for skipping a participant

Task 1: Creating the Human Task Definition with the Human Task Editor

15-32 Oracle BPEL Process Manager Developer’s Guide

1. Specify the following task routing parameters. When both parameters are
specified, task routing is determined by both parameters. The routing continues
until one of these parameters is satisfied. If you select By Expression from the lists
below, you can dynamically specify the details by clicking the icon to the right of
the field to display the Expression Builder window.

■ Maximum Number of Chain Levels Up

Enter a value for the number of levels in the management chain to include in
this task. For example, if set to 2 and the task is initially assigned to user
jcooper, both the user jstein (manager of jcooper) and the user wfaulk
(manager of jstein) are included in the list (apart from jcooper, the initial
assignee). This is a mandatory field.

■ Highest Title of Approver

Select the title of the last (highest) user in the management chain. The title is
retrieved from the identity service.

Specifying a Time Limit for Acting on a Task

1. Click the + sign to expand the Advanced section shown in Figure 15–15.

2. Select Limit allocated duration to.

3. Specify the amount of time a user or group receives to act on a task. If the user or
group does not act in the time specified, the global escalation and renewal policies
that you set in the Expiration and Escalation Policy section (known as the routing
slip level) of the Human Task editor are applied. For example, if the global policy
is set to escalate the task and this participant does not act in the duration provided,
the task is escalated to the manager or another user, as appropriate.

Inviting Additional Participants to a Task

1. Click the + sign to expand the Advanced section (if not already expanded).

2. Select Allow this participant to invite other participants if you want this task
assignee to invite other participants into the workflow before routing it to the next
assignee in this workflow. For example, assume the approval workflow goes from
James Cooper to John Steinbeck. If this option is checked, James Cooper can
decide to first route it to Irving Stone before it goes to John Steinbeck.

Configuring the Sequential List of Approvers Participant Type
Figure 15–16 displays the Sequential List of Approvers window.

This enables you to create a list of sequential participants for a workflow. For example,
if you want a document to be reviewed by John, Mary, and Scott in sequence, use this
participant type. This is similar to the management chain participant type, except that

See Also: "Escalating, Renewing, or Ending the Task" on page 15-39
for instructions on setting the global escalation and renewal policies in
the Expiration and Escalation Policy section of the Human Task
editor

Note: For the management chain participant type, the additional
participants can be invited only by the last user in the management
chain.

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-33

with that type, the users are part of an organization hierarchy. For the sequential list of
approvers participant type, they can be any list of users or groups.

Figure 15–16 Add Participant Type — Sequential List of Approvers

1. Enter a recognizable label for this participant in the Label field. This label must be
unique within this workflow (for example, Approval Manager, Primary
Reviewers, and so on).

Instructions for configuring the following subsections of the Add Participant Type
- Sequential List of Approvers window are listed in Table 15–6.

Assigning Participants to the Sequential List of Approvers Task

1. Select a method for assigning a user or group to participate in this task.

■ By name

Table 15–6 Add Participant Type — Sequential List of Approvers

For This Subsection... See...

Requires sequential approval of all
participants below

"Assigning Participants to the Sequential List of
Approvers Task" on page 15-33

Specify skip rule "Bypassing a Task Participant" on page 15-34

Limit allocated duration to "Specifying a Time Limit for Acting on a Task" on
page 15-34

Allow this participant to invite
other participants

"Inviting Additional Participants to a Task" on
page 15-34

Task 1: Creating the Human Task Definition with the Human Task Editor

15-34 Oracle BPEL Process Manager Developer’s Guide

Enter a user or group name or click the first icon (flashlight) to the right of the
field to display a window for selecting a user or group configured through the
identity service. The identity service enables user authorization and the
lookup of user properties, roles, group memberships, and privileges. User
information is obtained from Java AuthoriZatioN (JAZN) or an LDAP server
such as Oracle Internet Directory. You can use wild cards (*) to search for IDs.

■ By expression

Dynamically assign this task to a user (for example, jcooper) or group (for
example, administrators) by clicking the icon to the right of the field to
display the Expression Builder window. Users who are members of a group
are assigned this task. For a user to act on a task assigned to a group, they
must first claim the task in the Oracle BPEL Worklist Application during run
time.

Bypassing a Task Participant

1. Select the Specify skip rule check box if you want the user or group to be
bypassed if a specific condition is satisfied. This action displays an icon for
accessing the Expression Builder window for building a condition. For example, if
a user submits a business trip expense report that is below a specific amount, no
approval is required by their manager. The expression must evaluate to a Boolean
value.

Specifying a Time Limit for Acting on a Task

1. Click the + sign to expand the Advanced section shown in Figure 15–16.

2. Click Limit allocated duration to.

3. Specify the amount of time a user or group receives to act on a task. If the user or
group does not act in the time specified, the global escalation and renewal policies
that you set in the Expiration and Escalation Policy section (known as the routing
slip level) of the Human Task editor are applied. For example, if the global policy
is set to escalate the task and this participant does not act in the duration provided,
the task is escalated to the manager or another user, as appropriate.

Inviting Additional Participants to a Task

1. Click the + sign to expand the Advanced section (if not already expanded).

2. Select Allow this participant to invite other participants if you want this task
assignee to invite other participants into the workflow before routing it to the next
assignee in this workflow. For example, assume the approval workflow goes from

See Also: "Assigning Participants to the Single Approver Task" on
page 15-25 for rules to follow when specifying assignees with XPath
expressions

See Also: "Bypassing a Task Participant" on page 15-26 for an
example of a valid XPath expression for skipping a participant

See Also: "Escalating, Renewing, or Ending the Task" on page 15-39
for instructions on setting the global escalation and renewal policies in
the Expiration and Escalation Policy section of the Human Task
editor

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-35

James Cooper to John Steinbeck. If this option is checked, James Cooper can
decide to first route it to Irving Stone before it goes to John Steinbeck.

Configuring the FYI Assignee Participant Type
Figure 15–17 displays the FYI Assignee window.

This participant type is used when a task is sent to a user, but the business process
does not wait for a user response; it just continues. FYI assignees cannot directly
impact the outcome of a task, but in some cases can provide comments or add
attachments.

For example, a magazine subscription is due for renewal. If the user does not cancel
the current subscription before the expiration date, the subscription is renewed. This
user is reminded weekly until the request expires or the user acts on it.

Figure 15–17 Add Participant Type — FYI Assignee

1. Enter a recognizable label for this participant in the Label field. This label must be
unique within this workflow (for example, Approval Manager, Primary
Reviewers, and so on).

Instructions for configuring the following subsections of the Add Participant Type
- FYI Assignee window are listed in Table 15–7:

Assigning Participants to the FYI Assignee Task

Note: For the sequential list of approvers participant type, the
additional participants can be invited only by the last user in the
management chain.

Table 15–7 Add Participant Type - FYI Assignee

For This Subsection... See...

Send an FYI copy of this task to all
participants below

"Assigning Participants to the FYI Assignee Task" on
page 15-35

Share attachments and comments "Sharing Attachments and Comments with Task
Participants" on page 15-36

Task 1: Creating the Human Task Definition with the Human Task Editor

15-36 Oracle BPEL Process Manager Developer’s Guide

1. Select a method for assigning a user or group to participate in this task.

■ By name

Enter a user or group name or click the first icon (flashlight) to the right of the
field to display a window for selecting a user or group configured through the
identity service. The identity service enables user authorization and the
lookup of user properties, roles, group memberships, and privileges. User
information is obtained from Java AuthoriZatioN (JAZN) or an LDAP server
such as Oracle Internet Directory. You can use wild cards (*) to search for IDs.

■ By expression

Dynamically assign this task to a user (for example, jcooper) or group (for
example, administrators) by clicking the icon to the right of the field to
display the Expression Builder window. Users who are members of a group
are assigned this task. For a user to act on a task assigned to a group, they
must first claim the task in the Oracle BPEL Worklist Application during run
time.

Sharing Attachments and Comments with Task Participants

1. Select the Share attachments and comments check box if you want all group
voters or workflow participants to share comments and attachments for this task.
This information typically displays in the footer region of the Oracle BPEL
Worklist Application.

Configuring the External Routing Service Participant Type
Figure 15–18 displays the External Routing Service window.

This participant type enables you to configure an external routing service that
dynamically determines the participants in the workflow. If this participant type is
specified, all other participant types are ignored. It is assumed that the external
routing service provides a list of participant types (single approver, list of approvers,
group vote, and so on) at run time to determine the routing of the task.

See Also: "Assigning Participants to the Single Approver Task" on
page 15-25 for rules to follow when specifying assignees with XPath
expressions

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-37

Figure 15–18 Add Participant Type — External Routing Service

1. Enter a recognizable label for this participant in the Label field. This label must be
unique within this workflow (for example, Approval Manager, Primary
Reviewers, and so on).

Specifying a Class Name

1. Enter the fully qualified class file name or click the flashlight icon to select the
name (for example, the org.mycompany.tasks.RoutingService class name).
This class must implement the
oracle.bpel.services.workflow.task.IAssignmentService interface.

2. Click the + sign to add name and pair value parameters that can be passed to the
external service.

Allowing All Participants to Invite Other Participants
After you configure a participant type and are returned to the Human Task editor, the
Allow all participants to invite other participants check box is enabled, as shown in
Figure 15–19.

Figure 15–19 Human Task Editor — Assignment and Routing Policy Section

See Also: "Dynamically Assigning Task Participants with the
Assignment Service" on page 15-118 for details about using this
interface

Task 1: Creating the Human Task Definition with the Human Task Editor

15-38 Oracle BPEL Process Manager Developer’s Guide

This check box is the equivalent of the Adhoc workflow pattern of previous BPEL
releases. This applies when there is at least one participant. In this case, each user
selects users or groups as the next assignee when approving the task.

1. If you want this task assignee to invite other participants into the workflow before
routing it to the next assignee in this workflow, select the Allow all participants to
invite other participants check box.

Abruptly Completing a Condition
After you configure a participant type and are returned to the Human Task editor, the
Enable abrupt completion condition check box is enabled, as shown in Figure 15–19.

1. If you want to specify conditions under which to complete the task early,
regardless of the other participants in the workflow, select the Enable abrupt
completion condition check box.

The Abrupt Completion Details window appears.

For example, assume an expense report goes to the manager, and then the director.
If the first participant (manager) rejects it, you can end the workflow without
sending it to the next participant (director).

There are two methods for specifying the abrupt completion of a task:

■ Outcomes

■ XPath expression routing condition

If outcomes are specified, any time the selected task outcome occurs, the task
completes. If both outcome and routing condition are specified, the workflow
service performs a logical OR on the two.

2. Select appropriate outcomes and click the > button. To select all, click the >>
button.

3. Click the icon to the right of the Routing Condition field to display the Expression
Builder window for dynamically creating a condition under which to complete
this task early. For example, if a user submits a business trip expense report that is
below a specific amount, no approval is required by their manager.

4. Click OK to return to the Human Task editor.

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-39

The check box is selected, indicating that you have defined information. You can
click the icon to the right of the Enable abrupt completion condition check box to
edit this information.

Escalating, Renewing, or Ending the Task
Figure 15–20 shows the Expiration and Escalation Policy section of the Human Task
editor.

You can specify expiration duration of a task in this global policy section (also known
as the routing slip level). If expiration duration is specified at the routing slip level
instead of at the participant type level, then this duration is the expiration duration of
the task across all the participants. However, if you specify expiration duration at the
participant type level (through the Limit allocated duration to field), then those
settings take precedence over settings specified in the Expiration and Escalation
Policy section (routing slip level).

Figure 15–20 Human Task Editor — Expiration and Escalation Policy Section

Overview or Escalation and Expiration Policy
This section provides an overview of how specifying the expiration duration at this
level makes this setting the expiration duration of the task across all the participants.

For example, participant LoanAgentGroup and participant Supervisor have 3 days to
act on the task between them, as shown in Figure 15–21:

Figure 15–21 Expire After Policy

If there is no expiration specified at either the participant level or this routing slip
level, then that task has no expiration duration.

Task 1: Creating the Human Task Definition with the Human Task Editor

15-40 Oracle BPEL Process Manager Developer’s Guide

If expiration duration is specified at any of the participant’s level, then for that
participant the participant expiration duration is used. However, the global expiration
duration is still used for the participants that do not have participant level expiration
duration. The global expiration duration is always decremented by the time elapsed in
the task.

The policy to interpret the participant level expiration for the participants is described
below:

■ Management Chain — Each participant in the management chain gets the same
expiration duration. The duration is not for all the assignments resulting from this
assignment. If the task expires at any of the assignments in the management chain,
the task expires and the escalation and renewal policy is applied.

■ Sequential list of approvers — Each assignment in the management chain gets the
same expiration duration as the one specified in the sequential list of approvers.
Note that the duration is not for all the assignments resulting from this
assignment. If the task expires at any of the assignments in the management chain,
the task expires and the escalation and renewal policy is applied.

■ Group vote

– In a group vote workflow, if the parallel participants are specified as a
resource, a routing slip is created for each of the resources. The expiration
duration of each created routing slip follows these rules:

* The expiration duration is the same as the expiration duration of the
parallel participant if it has an expiration duration specified.

* The expiration duration that is left on the task if it was specified at the
routing slip level.

* No expiration duration, otherwise.

– If parallel participants are specified as routing slips, then the expiration
duration for the parallel participants are determined by the routing slip.

In the following routing slip sample, participant Loan Agent Group has an
expiration duration of 1 day and participant Loan Agent Supervisor does not
have any expiration duration on the task, even though an expiration duration is
specified at the routing slip level. In this example, the routing slip is treated just as if
there were no expiration duration specified at the routing slip level.

<routingSlip xmlns="http://xmlns.oracle.com/pcbpel/workflow/routingslip">
 <expirationDuration>PT10D </expirationDuration>

 <participants>

 <participant name="Loan Agent 1" expirationDuration="PT2D">
 <resource isGroup="true" type="STATIC">jcooper</resource>
 </participant>
 <participant name="Loan Agent 2">
 <resource isGroup="true" type="STATIC">jstein</resource>
 </participant>

 <managementChain name="Loan Approval Chain"

Note: When the parent task expires in a parallel task, the subtasks
are withdrawn if those tasks have not expired or completed.

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-41

 expirationDuration="PT2D">
 <resource isGroup="true" type="STATIC">wfaulk</resource>
 <levels type="STATIC">1</levels>
 <title type="STATIC">Vice President</title>
 </managementChain>

 <participant name="Reviewer">
 <resource isGroup="true" type="STATIC">sfitzger</resource>
 </participant>
 </participants>

</routingSlip>

Table 15–8 demonstrates the expiration policy. Note that the management chain in the
above example evaluates to two users — wfaulk and cdickens (manager of
wfaulk).

1. Select an escalation and expiration policy. You can enter a fixed time or a dynamic
time by clicking the icon to the right of the By Expression field to display the
Expression Builder window.

Never Expire Policy
1. If you never want the task to expire, select Never Expire from the list shown in

Figure 15–20 on page 15-39.

Expire After Policy
1. If you want the task to expire, select Expire after from the list shown in

Figure 15–20 on page 15-39.

2. Specify the maximum time period for the task to remain open.

When the task expires, either the escalation policy or the renewal policy at the
routing slip level is applied. If neither is specified, the task expires. The expiration
policy at the routing slip level is common to all the participants.

The expiration policy for parallel participants is interpreted as follows.

■ If parallel participants are specified as resources in parallel elements, there is
no expiration policy for each of those participants.

■ If parallel participants are specified as routing slips, then the expiration policy
for the routing slip applies to the parallel participants.

Table 15–8 Expiration Policy

Participant Expiration
Actual Time Taken to
Approve

Loan Agent 1 – jcooper 2 days (participant level) One day

Loan Agent 2 – jstein 9 days (10 – 1 days) (global
level)

One day

Loan Approval Chain –
wfaulk (first user in chain)

2 days (participant level) One day

Loan Approval Chain –
cdickens (second user in
chain)

2 days (participant level) One day

Reviewer - sfitzger 6 days (10 – 4 days) (global
level)

Task 1: Creating the Human Task Definition with the Human Task Editor

15-42 Oracle BPEL Process Manager Developer’s Guide

Figure 15–22 indicates that the task expires in 3 days.

Figure 15–22 Expire After Policy

Renew After Policy
1. If you want to extend the expiration period when the user does not respond

within the allotted time, select Renew after from the list shown in Figure 15–20 on
page 15-39.

2. Specify the maximum number of times to continue renewing this task.

The renewal policy specifies the number of times the task can be renewed on
expiration and the renewal duration. In Figure 15–23, when the task expires, it is
renewed at most 3 times. It does not matter if the task expired at the
LoanAgentGroup participant or the Supervisor participant.

Figure 15–23 Renew After Policy

Escalate After Policy
1. If you want to escalate the task (for example, to the user’s manager) if the user

does not respond within the allotted time, select Escalate after from the list shown
in Figure 15–20 on page 15-39.

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-43

2. Specify the following additional values:

■ Maximum Escalation Levels

Number of management levels to which to escalate the task

■ Highest Approver Title

The title of the highest approver (for example, self, manager, director, or CEO).

The escalation policy specifies the number of times the task can be escalated on
expiration and the renewal duration. In Figure 15–24, when the task expires, it is
escalated at most 3 times. It does not matter if the task expired at the
LoanAgentGroup participant or the Supervisor participant.

Figure 15–24 Escalate After Policy

Specifying Participant Notification Preferences
Figure 15–25 shows the Notification Settings section of the Human Task editor (when
fully expanded).

Notifications indicate when a user is assigned a task or informed that the status of the
task has changed. Notifications can be sent through e-mail, voice message, fax, pager,
or SMS. Notifications are sent to different types of participants for different actions.
Notifications are configured by default with default messages. For example, a
notification message is sent to indicate that a task has completed and closed. You can
create your own or modify existing configurations.

Task 1: Creating the Human Task Definition with the Human Task Editor

15-44 Oracle BPEL Process Manager Developer’s Guide

Figure 15–25 Human Task Editor — Notification Settings Section

1. Click the + sign to expand the Notification Settings section (displays as shown in
Figure 15–25).

Instructions for configuring the following subsections of the Notification Settings
section are listed in Table 15–9.

Notifying Recipients of Changes to Task Status
Three default status types display in the Task Status column: Assign, Complete, and
Error. You can select other status types for which to receive notification messages.

1. Click a type in the Task Status column to display the complete list of task types:

■ Assign—when the task is assigned to users or a group. This action captures
the following actions:

– Task is assigned to a user

– Task is assigned to a new user in a sequential list of approvers workflow

– Task is renewed

– Task is delegated

– Task is reassigned

– Task is escalated

Table 15–9 Human Task Editor — Notification Settings Section

For This Subsection... See...

Task Status

Recipient

"Notifying Recipients of Changes to Task Status" on
page 15-44

Notification Header "Editing the Notification Message" on page 15-45

Reminders "Setting Up Reminders" on page 15-45

Make notifications secure (exclude
details)

Make e-mail messages actionable

Send task attachments with email
notifications

"Securing Notifications, Making Messages Actionable,
and Sending Attachments" on page 15-46

See Also: "Notifications from Workflow Services" on page 15-80

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-45

– Information for a task is submitted

■ Complete

■ Error

■ Expire

■ Request Info

■ Update Outcome

■ Suspend

■ Withdraw

2. Select a task status type.

Notifications can be sent to users involved in the task in various capacities. This
includes when the task is assigned to a group, each user in the group is sent a
notification if there is no notification endpoint available for the group.

3. Click an entry in the Recipient column to display a list of possible recipients for
the notification message.

■ Assignees—the users or groups to whom the task is currently assigned

■ Initiator—the user who created the task

■ Approvers—the users who have approved the task so far. This applies in a
sequential list of approvers participant type where multiple users have
approved the task and a notification must be sent to all of them.

■ Owner—the task owner

Editing the Notification Message
A default notification message is available for delivery to the selected recipient. If you
want, you can modify the default message text.

1. Click the icon in the Notification Header column to modify the default
notification message.

The Edit Notification Message window appears.

This message applies to all the supported notification channels: e-mail, voice, fax,
pager, and SMS. E-mail and fax messages can also include the worklist task detail

See Also: "Configuring the Notification Channel" on page 15-81

Task 1: Creating the Human Task Definition with the Human Task Editor

15-46 Oracle BPEL Process Manager Developer’s Guide

defined in this message. The channel by which the message is delivered is based
upon the notification preferences you specify.

2. Modify the message wording as necessary.

3. Click OK to return to the Human Task editor.

Setting Up Reminders
You can send task reminders, which can be based on the time the task was assigned to
a user or the expiration time of a task. The number of reminders and the interval
between the reminders can also be configured.

1. Select the number of reminders to send from the Remind list.

2. If you selected to remind the assignee one, two, or three times, select the interval
between reminders, and whether to send the reminder before or after the
assignment.

Securing Notifications, Making Messages Actionable, and Sending Attachments
You can perform additional notification tasks in this section.

1. Select the corresponding check box for functionality you want to use.

See Also: "Notifications from Workflow Services" on page 15-80 for
notification preference details

See Also: "Sending Reminders" on page 15-85

Field Value

Make notifications secure (exclude
details)

Select to make the notification message secure. If
selected, a default notification message is used.
There are no HTML worklist task details,
attachments, or actionable links in the e-mail. Only
the task number is in the message.

See Also: "Sending Secure Notifications" on
page 15-85

Make e-mail messages actionable Select to make e-mail notifications actionable. This
enables you to perform task actions through e-mail.

See Also: "Sending Actionable E-mails" on
page 15-83 for additional configuration details

Send task attachments with e-mail
notifications

Select to send task attachments with the notification
message.

See Also: "Sending Inbound and Outbound
Attachments" on page 15-84

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-47

Specifying Advanced Settings
This section enables you to specify advanced human task features, such as specifying
custom escalation rules, custom style sheets for attachments, multilingual settings,
custom task actions and error messages, and callback classes.

Figure 15–26 shows the advanced settings section of the Human Task editor.

Figure 15–26 Human Task Editor — Advanced Settings Section

Table 15–10 describes the sections available.

Specifying Escalation Rules
This option allows a custom escalation rule to be plugged in for a particular workflow.
For example, to assign the task to a current user’s department manager on task
expiration, you can write a custom task escalation function, register it with the
workflow service, and use that function in task definitions.

The default escalation rule is to assign a task to the manager of the current user. To add
a new escalation rule, follow the steps below.

Table 15–10 Advanced Settings Sections

Section See...

Specify escalation rule "Specifying Escalation Rules" on page 15-47

Specify WordML Stylesheet
for attachments

"Specifying WordML Style Sheets for Attachments" on
page 15-48

Specify stylesheet for
attachments

"Specifying Style Sheets for Attachments" on page 15-48

Specify multilingual settings "Specifying Multilingual Settings" on page 15-48

Override default system
actions

"Overriding Default System Actions" on page 15-49

Override default exception
management

"Overriding Default Exception Management" on page 15-51

Specify callback class on task
status

"Specifying Callback Classes on Task Status" on page 15-51

Allow task and routing
customization in BPEL
callbacks

"Allowing Task and Routing Customization in BPEL
Callbacks" on page 15-51

Task 1: Creating the Human Task Definition with the Human Task Editor

15-48 Oracle BPEL Process Manager Developer’s Guide

1. Implement interface
oracle.bpel.services.workflow.assignment.dynamic.IDynamicTask
EscalationFunction. This implementation has to be available in the classpath
for the server.

2. Change the file SOA_Oracle_
Home\bpel\system\services\config\wf-dynamic-assign-cfg.xml to
add a new function:

<dynamicAssignmentFunctions>

 <function name="MANAGERS_MANAGER"
 classpath="oracle.bpel.services.workflow.assignment.dynamic.patterns.
 TaskEscalationManagersManager">
 </function>

</dynamicAssignmentFunctions>

3. Enter the function name as defined in the wf-dynamic-assign-cfg.xml file
for the escalation rule in the Specify Escalation Rule field.

Specifying WordML Style Sheets for Attachments
This option allows dynamic creation of Microsoft Word documents for the purpose of
sending them as e-mail attachments using a WordML XSLT stylesheet. The XSLT
stylesheet is applied on the task document.

1. Click the flashlight icon to select a WordML style sheet as an attachment.

Specifying Style Sheets for Attachments
This option allows creation of e-mail attachments using an XSLT stylesheet. The XSLT
stylesheet is applied on the task document.

1. Click the flashlight icon to select a stylesheet as an attachment.

Specifying Multilingual Settings
You can specify resource bundles for displaying task details in different languages in
the Oracle BPEL Worklist Application. Resource bundles are supported for the
following task details.

■ Displaying the value for task outcomes in plain text or with the message(key)
format

■ Displaying the XML element and attributes names in the payload display of the
Oracle BPEL Worklist Application. The key name in the resource bundle must be
the same as the name of the XML element and attributes for internationalization of
XML element names in the Oracle BPEL Worklist Application.

■ Making e-mail notification messages available in different languages. At run time,
specify the XPath extension function
hwf:getTaskResourceBundleString(taskId, key, locale?) to obtain
the internationalized string from the specified resource bundle. The locale of the
notification recipient can be retrieved with the function
hwf:getNotificationProperty(propertyName).

See Also: "Custom Escalation Function" on page 15-122

See Also: Oracle Application Server Developer’s Guide for Microsoft
Office Interoperability for specific details

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-49

1. Click Configure Resource.

The Resource Details window appears.

2. Enter the name of the resource used in the resource bundle.

3. Click the flashlight icon to select the JAR or ZIP resource bundle file to use. The
resource bundle can be part of your BPEL suitcase.

4. Click OK to return to the Human Task editor.

Overriding Default System Actions
The actions performed from the Oracle BPEL Worklist Application are common to all
business processes. However, you can restrict some actions in a particular business
process.

For example, assume that in a loan approval process, the business requirement is to
never suspend a loan application. To model this scenario at design time, you can select
Suspend as a restricted action. When an action is selected as restricted, the Oracle
BPEL Worklist Application does not display the action for this task.

By default, these actions are available on all tasks based on the user's privileges. The
task owner or bpeladmin administrator can always perform any of these actions on
processes they own.

1. Click Configure Actions.

2. Select the system actions allowed on a task. By default, all are selected and
available (unrestricted).

See Also: "Configuring Messages in Different Languages" on
page 15-83

Task 1: Creating the Human Task Definition with the Human Task Editor

15-50 Oracle BPEL Process Manager Developer’s Guide

The following system actions can be restricted by unselecting them:

■ Suspend — Enables task owners (or users with the BPMWorkflowSuspend
privilege) to put a workflow temporarily on hold. Task expiration and
escalation do not apply until the workflow is resumed. No actions are
permitted on a suspended task (except resume and withdraw).

■ Push back — Sends the task one level back in the workflow. For example,
assume the task was routed to the LoanAgentGroup and then to jstein. If
jstein now pushes the task back, it goes back to the LoanAgentGroup.

■ Renew — If a task is about to expire, a task assignee can renew the task and
request more time to perform the task. This operation is not allowed if the
process designer has restricted task renewal on the workflow.

■ Skip current assignment — Skips the current assignment and moves to the
next assignment or picks the outcome as set by the previous approver if there
are no more assignees.

■ Adhoc Route — Enables a user to enter an outcome and then route the task in
an adhoc fashion to the next user who must review the task.

■ Request Information — Any workflow participant can request information
from the task initiator or any of the prior approvers of the task. When the
requested information is submitted, the task is assigned to the user who
requested the information.

■ Delegate — Any workflow participant can delegate the task to another user.
In this case, the other user is acting on behalf of the current assignee. When the
task is delegated, it resides on both users’ worklists until the original assignee
or the delegated person acts on it.

■ Reassign — Enables the current assignee of the task to transfer it to another
user or group. In this case, the task is moved from the worklist of the current
assignee to the new assignee.

■ Escalate — Escalates a task to their manager for further action.

■ Withdraw — Enables the task initiator to withdraw any pending task if they
no longer want to send it through the workflow. A task owner can also
withdraw a task on behalf of the initiator. When a task is withdrawn, the

Task 1: Creating the Human Task Definition with the Human Task Editor

Oracle BPEL Process Manager Workflow Services 15-51

business process is called back with the state attribute of the task set to
Withdrawn.

3. Click OK to return to the Human Task editor.

Overriding Default Exception Management
Tasks can error due to incorrect assignments. Incorrect assignments can occur for any
of the following reasons:

■ Invalid assignees — The task assignee user or group is not a valid user in the
system.

■ Invalid dynamic assignment — When assignees are specified to be dynamic, the
dynamic XPath expression is not evaluated.

In the above cases, the task is marked as errored. By default, the life cycle of the task is
completed with that action.

During modeling of workflow tasks, you can specify error assignees for the workflow.
If error assignees are specified, they are evaluated and the task is assigned to them.
The error assignee can perform one of the following actions:

■ Adhoc route — route the task to the actual users assigned to the task. Adhoc route
allows the task to be routed to users in sequence, parallel, and so on.

■ Reassign — reassign the task to the actual users assigned to this task

■ Error task — indicate that this task cannot be rectified.

If there are any errors in evaluating the error assignees, the task is marked as errored.

This window enables you to specify the users or groups to whom the task is assigned
if an error in assignment has occurred.

1. Click Configure Assignment.

2. Select the error assignees.

Specifying Callback Classes on Task Status
You can register callbacks for the workflow service to call during the life cycle of a
task. The callback class has to implement the interface
oracle.bpel.services.workflow.task.IRoutingSlipCallback. Make the
callback class available in the classpath of the server.

Task 1: Creating the Human Task Definition with the Human Task Editor

15-52 Oracle BPEL Process Manager Developer’s Guide

1. Click Configure Callbacks.

2. Click the + sign to add a callback to the table. A callback named OnAssigned is
automatically added to the Callback column.

3. Click OnAssigned to display a list of additional callback values to select for this
column.

The following callbacks are available:

■ onCompleted — This callback is invoked when the task is completed, expired,
withdrawn, or errored.

■ onAssigned — This callback is invoked when the task is assigned to a new set
of assignees due to the following actions:

– outcome update

– skip current assignment

– override routing slip

■ onUpdated — This callback is invoked for any other update to the task that
does not fall in the onTaskComplete or onTaskAssigned callback. This
includes updates on a task due to request for information, submit information,
escalation, reassign, and so on.

■ onSubtaskUpdated — This callback is invoked for any update to a subtask.

4. Click Java in the Type column to display a list of additional values for this column.

5. Click the empty field in the Value column to enter a value. The value is the
complete class name of the Java class that implements
oracle.bpel.services.workflow.task.IRoutingSlipCallback.

6. Click OK.

Allowing Task and Routing Customization in BPEL Callbacks
The Allow task and routing customization in BPEL callbacks check box must be
selected if you select the check box of the same name on the Human Task - Advanced
tab shown in Figure 15–28 on page 15-58. Selecting both check boxes updates the
metadata for callbacks.

See Also: "Allowing Task and Routing Customizations in BPEL
Callbacks" on page 15-59 for details on using callbacks

Task 2: Associating the Human Task with a BPEL Process

Oracle BPEL Process Manager Workflow Services 15-53

Exiting the Human Task Editor and Saving Your Changes
You can save your human task changes at any time. The task can be re-edited at a later
time by clicking the metadata task configuration .task file in the Application
Navigator.

1. Select Save from the File main menu or click the X sign to close the .task
metadata task configuration file.

2. If you click the X sign, select Yes when prompted to save your changes.

Task 2: Associating the Human Task with a BPEL Process
You must associate the .task file that consists of the human task settings with a BPEL
process. When association is complete, a Task Service partner link is created. The Task
Service exposes the operations required to act on a task.

The method by which you created the human task indicates if the task is already
associated with a BPEL process. Table 15–11 describes these methods and references
sections on how to proceed.

Note: Note that regardless of whether you have already associated
the human task with a BPEL process, you must still define key human
task activity properties, including the task title, task initiator, task
priority, and task parameter variables. These tasks are described in
"Defining the Human Task Activity Title, Initiator, Priority, and
Parameter Variables" on page 15-55 and "Defining the Human Task
Activity Advanced Features" on page 15-57.

Table 15–11 Human Task Association with the BPEL Process

Human Task Creation Method Then... See...

1. Right-clicked the BPEL process in the
Application Navigator.

2. Selected Create Human Task Definition.

You must associate the
human task with your
BPEL process.

"Associating a Human
Worklist Task with a
BPEL Process" on
page 15-54

1. Dragged and dropped a human task
activity into the BPEL process.

2. Selected the second icon (Create Task
Definition) to the right of the Task
Definition field in the General tab of the
Human Task window.

The human task is
already associated
with the BPEL process

"Opening a Human
Task Activity Already
Associated with a
BPEL Process" on
page 15-54

See Also: "Task 1: Creating the Human Task Definition with the
Human Task Editor" on page 15-13 for instructions on creating a
human task

Task 2: Associating the Human Task with a BPEL Process

15-54 Oracle BPEL Process Manager Developer’s Guide

Associating a Human Worklist Task with a BPEL Process
1. Select the BPEL process with which to associate the .task file of the human task

in the Application Navigator.

2. Select Process Activities from the Component Palette.

3. Drag and drop a new Human Task activity into your BPEL process.

The Add a Human Task window appears.

4. Click the first icon to the right of the Task Definition field.

The Choose Task Definition File appears.

5. Select the .task file and click Open. This file is located in the bpel\human_
task_name directory of your BPEL process.

The .task file is added to the Task Definition field.

6. See the following sections to configure the human task activity:

■ Defining the Human Task Activity Title, Initiator, Priority, and Parameter
Variables

■ Defining the Human Task Activity Advanced Features

Opening a Human Task Activity Already Associated with a BPEL Process
1. Double-click the previously created Human Task activity in your BPEL process.

The Human Task window appears.

2. Click the third icon to the right of the Task Definition field to open the human
worklist task you previously created.

3. See the following sections to configure the human task activity:

■ Defining the Human Task Activity Title, Initiator, Priority, and Parameter
Variables

■ Defining the Human Task Activity Advanced Features

Note: When you first drag and drop this activity into Oracle
JDeveloper, the window is named Add a Human Task. After you finish
specifying details on this window and click OK, the name of this
window changes to simply Human Task.

Task 2: Associating the Human Task with a BPEL Process

Oracle BPEL Process Manager Workflow Services 15-55

Defining the Human Task Activity Title, Initiator, Priority, and Parameter Variables
Figure 15–27 shows the General tab.

Figure 15–27 Human Task — General Tab

The General tab of the Human Task activity enables you to perform the tasks shown in
Table 15–12:

Specifying the Task Title
1. Enter the task title in the Task Title field through one of the following methods.

This is a mandatory field. Your entry in this field overrides the task title you
entered in the Title field of the Human Task editor described in "Specifying a Task
Title and Priority" on page 15-16. The title displays the task in the Oracle BPEL
Worklist Application during run time.

■ Enter the title manually.

■ Click the icon to the right of the field to display the Expression Builder
window to dynamically create the title.

You can also mix static text and dynamic expressions in the same title. To include
dynamic text, place your cursor at the appropriate point in the text and click the
icon on the right to invoke the Expression Builder window.

Specifying the Task Initiator and Task Priority
1. Enter the initiator (for example, jcooper) or click the icon to the right of the

Initiator field to display the Expression Builder window for dynamically
specifying an initiator. This field is optional.

Table 15–12 Human Task - General Tab

For this Field... See...

Task Title "Specifying the Task Title" on page 15-55

Initiator

Priority

"Specifying the Task Initiator and Task Priority" on page 15-55

Task Parameters "Specifying Task Parameters" on page 15-56

See Also: "Assigning Input and Output Parameters for the Human
Task" on page 15-92 for an example of specifying the task title name

Task 2: Associating the Human Task with a BPEL Process

15-56 Oracle BPEL Process Manager Developer’s Guide

The initiator is the user who initiates a task. The initiator can view their created
tasks from the Oracle BPEL Worklist Application and perform specific tasks
defined in the System Action Details window, such as withdrawing or suspending
a task. If not specified, the initiator defaults to the task owner specified on the
Advanced tab of the Human Task window. The initiator defaults to bpeladmin if
a task owner is also not specified.

2. Select a priority value between 1 (the highest) and 5 from the Priority list. This
field is provided for user reference and does not make this task a higher priority
during run time. The priority can be used to sort tasks in the Oracle BPEL Worklist
Application. This priority value overrides the priority value you select in the
Priority list of the Human Task editor.

Specifying Task Parameters
The task parameter table displays a list of task parameters after you complete the Task
Title and Initiator fields.

1. Click the flashlight in the BPEL Variable column to map the task parameter to
the BPEL variable. You must map only the task parameters that carry input data.
For output data that is filled in from the worklist, you do not need to map the
corresponding variables.

The Task Parameters window appears.

2. Expand the Variables navigation tree and select the appropriate task variable.

See Also: "Specifying a Task Title and Priority" on page 15-16 for
instructions on specifying the priority in the Human Task editor

Task 2: Associating the Human Task with a BPEL Process

Oracle BPEL Process Manager Workflow Services 15-57

3. Click OK.

The Human Task window appears as follows.

4. Click Apply.

5. If you want to define advanced features for the human task activity, click the
Advanced tab and go to section "Defining the Human Task Activity Advanced
Features" on page 15-57. Otherwise, click OK to close the Human Task window.

Defining the Human Task Activity Advanced Features
Figure 15–28 shows the Advanced tab.

Task 2: Associating the Human Task with a BPEL Process

15-58 Oracle BPEL Process Manager Developer’s Guide

Figure 15–28 Human Task — Advanced Tab

The Advanced tab of the Human Task activity enables you to perform the tasks shown
in Table 15–13:

Specifying a Scope Name and a Global Task Variable Name
You are automatically provided with default scope and global task variable names
during human task activity creation. However, you can specify custom names that are
used to name the scope and global variable during human task activity creation.

1. Enter the name for the BPEL scope to be generated in the Scope Name field.

This BPEL scope encapsulates the entire interaction with the workflow service and
BPEL variable manipulation.

2. Enter the global task variable name in the Global Task Variable Name field.

This is the name of the BPEL task variable used for the workflow interaction.

Specifying a Task Owner
1. Enter the task owner name in the Owner field or click the icon to the right to use

the Expression Builder to dynamically specify the owner of this task.

Table 15–13 Human Task - Advanced Tab

For this Field... See...

Scope Name

Global Task Variable Name

"Specifying a Scope Name and a Global Task Variable
Name" on page 15-58

Owner "Specifying a Task Owner" on page 15-58

Identification Key "Specifying an Identification Key" on page 15-59

Include task history from "Including the Task History of Other Human Tasks" on
page 15-59

Allow task and routing
customization in BPEL callbacks

"Allowing Task and Routing Customizations in BPEL
Callbacks" on page 15-59

Task 2: Associating the Human Task with a BPEL Process

Oracle BPEL Process Manager Workflow Services 15-59

The task owner can view tasks belonging to business processes they own and
perform operations on behalf of any of the task assignees. Additionally, the owner
can also reassign, withdraw, or escalate tasks.

If you do not specify a task initiator on the General tab of the Human Task
window, it defaults to the owner specified here. If an owner is not specified, it
defaults to the bpeladmin administrator.

Specifying an Identification Key
1. Enter an optional identification key value in the Identification Key field.

The identification key can be used as a user-defined ID for the task. For example, if
the task is meant for approving a purchase order, the purchase order ID can be set
as the identification key of the task. Tasks can be searched from the Oracle BPEL
Worklist Application using the identification key. This attribute has no default
value.

Including the Task History of Other Human Tasks
This feature enables one workflow to be continued with another workflow.

1. Select the Include task history from check box to extend a previous workflow task
in the BPEL process. Selecting this check box includes the task history, comments,
and attachments from the previous task. This provides you with a complete
end-to-end audit trail.

When a workflow task is continued with another workflow, the following
information is carried over to the new workflow:

■ Task payload and the changes made to the payload in the previous workflow

■ Task history

■ Comments added to the task in the previous workflow

■ Attachments added to the task in the previous workflow

In the Include task history from list, all existing workflows are listed. Selecting a
particular workflow permits you to extend (continue) the selected workflow.

For example, a hiring process is used to hire new employees. Each interviewer
votes to hire or not hire a candidate. If 75% of the votes are to hire, then the
candidate is hired; otherwise, the candidate is rejected. If the candidate is to be
hired, an entry in the HR database is created and the human resources contact
completes the hiring process. The HR contact also needs to see the interviewers
and the comments they made about the candidate. This process can be modeled
using a group vote for the hiring. If the candidate is hired, a database adapter is
used to create the entry in the HR database. After this, a simple workflow can
include the task history from the group vote so that the hiring request, history, and
interviewer comments are carried over. This simple workflow is assigned to the
HR contact.

Allowing Task and Routing Customizations in BPEL Callbacks
1. Select the Allow task and routing customizations in BPEL callbacks check box to

notify the BPEL process using OnMessage callbacks every time a task is routed to
a different user or when the task status changes. You must also select the check

See Also: "Including the Task History from Other Workflows" on
page 15-64

Task 2: Associating the Human Task with a BPEL Process

15-60 Oracle BPEL Process Manager Developer’s Guide

box of the same name in the Advanced Settings section of the Human Task editor
shown in Figure 15–26 on page 15-47 in order to update the metadata for callbacks.

In these callbacks, you can call the Task Service to change the routing or update
the current assignees. This option impacts the BPEL code generated to interact
with the Task Service.

If this option is not selected, the client process gets notified only when the task
completes or when it expires or errors out.

2. Click OK to close the Human Task window.

3. Go to the Human Task editor for this human task (the .task file).

4. Expand the Advanced Settings section at the bottom of the editor.

5. Click Allow task and routing customization in BPEL callbacks.

This check box must be selected to use callbacks. This enables you to update the
metadata.

Viewing the Generated Human Task Activity
When you have completed modeling the human task activity, the human task is
generated in the designer window.

Figure 15–29 shows how a workflow interaction is modeled in Oracle BPEL Process
Manager. Figure 15–29 also illustrates the interaction when no BPEL callbacks are
modeled. In this case, once a task is complete, the BPEL process is called back with the
completed task. No intermediary events are propagated to the BPEL process instance.
It is recommended that any user customizations be done in the first assign,
AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

See Also:

■ "Allowing Task and Routing Customization in BPEL Callbacks" on
page 15-52

■ "BPEL Callbacks" on page 15-62

Task 2: Associating the Human Task with a BPEL Process

Oracle BPEL Process Manager Workflow Services 15-61

Figure 15–29 Workflow Interaction Modeling

Figure 15–30 shows a workflow interaction in Oracle JDeveloper.

AssignTaskAttributes
Captures the user-defined attributes of the task
such as title, payload, creator, priority, and so on

InitiateTask
Initiates the task by invoking the task service

ReceiveCompletedTask
Receives the completed task from the task service

AssignSystemTaskAttributes
Captures the system task attributes such as
process id, process version, and so on

Task 2: Associating the Human Task with a BPEL Process

15-62 Oracle BPEL Process Manager Developer’s Guide

Figure 15–30 Workflow Interaction Modeling in Oracle JDeveloper

BPEL Callbacks
If intermediary events need to be propagated to the BPEL process instance, select the
Allow task and routing customization in BPEL callbacks check box in both the
Advanced tab of the Human Task window and the Advanced Settings section of the
Human Task editor. When these options are selected, the workflow service invokes
callbacks in the BPEL instance during each update of the task. The callbacks are listed
in the TaskService.wsdl file and described below:

■ onTaskCompleted — This callback is invoked when the task is completed,
expired, withdrawn, or errored.

■ onTaskAssigned — This callback is invoked when the task is assigned to a new
set of assignees due to the following actions:

– Outcome update

– Skip current assignment

– Override routing slip

■ onTaskUpdated — This callback is invoked for any other update to the task that
does not fall in the onTaskComplete or onTaskAssigned callback. This
includes updates on tasks due to request for information, submit information,
escalation, reassign, and so on.

Task 2: Associating the Human Task with a BPEL Process

Oracle BPEL Process Manager Workflow Services 15-63

■ onSubTaskUpdated — This callback is invoked for any update to a subtask.

Figure 15–31 shows how a workflow interaction with callbacks is modeled in Oracle
BPEL Process Manager. Once this task is initiated, a while loop is used to receive
messages until the task is complete. The while loop contains a pick with four
onMessage branches — one for each of the above-mentioned callback operations. The
workflow interaction works fine even if nothing is changed in the onMessage
branches, meaning that customizations in the onMessage branches are not required.

In this scenario, a workflow context is captured in the BPEL instance. This context can
be used for all interaction with the workflow services. For example, if you want to
reassign a task if it is assigned to a group, then you need the workflow context for the
reassignTask operation on the Task Service.

It is recommended that any user customizations be done in the first assign,
AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.

Figure 15–31 Workflow Interaction Modeling (with Callbacks)

AssignTaskAttributes
Captures the user-defined attributes of the task
such as title, payload, creator, priority, and so on

InitiateTask
Initiates the task by invoking the task service

AssignWorkflowContext
Assigns the workflow context to use for
interactions with the workflow service

AssignSystemTaskAttributes
Captures the system task attributes such as
process id, process version, and so on

Pick
activity

Receive
onTaskCompleted
message

Receive
onTaskAssigned
message

Receive
onTaskUpdated
message

Receive
onSubTaskUpdate
message

User
customizations

User
customizations

User
customizations

User
customizations

While the task is not
completed/expired/errored

Task 2: Associating the Human Task with a BPEL Process

15-64 Oracle BPEL Process Manager Developer’s Guide

Figure 15–32 shows a workflow interaction in Oracle JDeveloper.

Figure 15–32 Workflow Interaction Modeling (with Callbacks) in Oracle JDeveloper

Including the Task History from Other Workflows
When the task history is included in a workflow, the generated BPEL process
described in the previous two sections is similar, with the following differences:

■ The BPEL variable from the workflow whose task history is to be included is
reused and no new BPEL variable is created.

■ The first invoke activity invokes the reinitiate operation instead of the initiate
operation.

Outcome-Based Modeling
In many cases, the outcome of a task determines the flow of the business process. To
facilitate modeling of the business logic, when a user task is generated, a BPEL switch
activity is also generated with prebuilt BPEL case activities. By default, one case
branch is created for each outcome selected during creation of the task. An otherwise
branch is also generated in the switch to represent cases when the task is withdrawn,
expired, or errored.

See Also: "Including the Task History of Other Human Tasks" on
page 15-59

Task 2: Associating the Human Task with a BPEL Process

Oracle BPEL Process Manager Workflow Services 15-65

Payload Updates
The task carries a payload in it. If the payload is set from a business process variable,
then an assign activity with the name copyPayloadFromTask is created in each of
the case and otherwise branches to copy the payload from the task back to its source. If
the payload is expressed as other XPath expressions (such as ora:getNodes(...)),
then this assign is not created because of the lack of a process variable to copy the
payload back. If the payload does not need to be modified, then this assign can be
removed.

Case Statements for Other Task Conclusions
By default, the switch activity contains case statements for the outcomes only. The
other task conclusions are captured in the otherwise branch. These conclusions are as
follows:

■ The task is withdrawn

■ The task is errored

■ The task is expired

If business logic must be added for each of these other conclusions, then case
statements can be added for each of the preceding conditions. The case statements can
be created as shown in the following BPEL segment. The XPath conditions for the
other conclusions in the case activities for each of the preceding cases are shown in
bold.

<switch name="taskSwitch">
 <case condition="bpws:getVariableData('SequentialWorkflowVar1',
'/task:task/task:state') = 'COMPLETED' and
bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:conclusion') =
'ACCEPT'">
 <bpelx:annotation>
 <bpelx:pattern>Task outcome is ACCEPT
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
'WITHDRAWN'">
 <bpelx:annotation>
 <bpelx:pattern>Task is withdrawn
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
'EXPIRED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is expired
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <case condition=
"bpws:getVariableData('SequentialWorkflowVar1', '/task:task/task:state') =
'ERRORED'">
 <bpelx:annotation>
 <bpelx:pattern>Task is errored

Task 3: Generating the Task Display Form

15-66 Oracle BPEL Process Manager Developer’s Guide

 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </case>
 <otherwise>
 <bpelx:annotation>
 <bpelx:pattern>Task is EXPIRED, WITHDRAWN or ERRORED
 </bpelx:pattern>
 </bpelx:annotation>
 ...
 </otherwise>
</switch>

Task 3: Generating the Task Display Form
The task display form defines the display mechanism for the task payload in the
Oracle BPEL Worklist Application. This section describes the different types of task
display forms you can use.

This section contains the following topics:

■ Overview of Task Display Forms

■ Selecting a Task Display Form

■ Automatically Generating a Simple Task Display Form

■ Generating a Custom Task Display Form

■ Deploying Task Display Forms

■ Creating Custom JSP Forms

Overview of Task Display Forms
The task display form for the human task can be automatically generated and then
customized or developed completely from the beginning using the workflow APIs. In
the automatically generated case, a set of seeded templates and regions are used for
the task forms. There are two methods for generating forms associated with the task
definition:

■ Automatically generate a simple task form — JSP-based forms that use the
standard header, body, and footer template.

■ Custom task form — enables you to select one of the existing templates and
regions to create a task form. You can also specify which task parameters to
display in the form.

When task display forms are generated, a .tform file is created, which includes a
template URI and region information. The .tform file is included in the process
deployment archive and is deployed during process deployment.

Selecting a Task Display Form
Follow these instructions to generate a task display form for the human task.

1. Go to the Application Navigator in Oracle JDeveloper.

See Also: "Automatically Generating a Simple Task Display Form"
on page 15-68 for an example of a .tform file

Task 3: Generating the Task Display Form

Oracle BPEL Process Manager Workflow Services 15-67

2. Right-click the folder of the human task for which to create a task display form
(for this example, ExpenseApproval of the ExpenseRequest BPEL process in
selected).

The following menu of selections appears.

3. See the following sections for details about generating the different types of task
forms:

Preview Release of Task Display Form Support for ADF Data Controls
A preview release of task display form support for application development
framework (ADF) data controls is provided. Very minimal support is provided with
this preview release. Note the following limitations:

■ There is no support for complex XSDs with recursive elements.

■ Task forms generated with ADF data controls cannot be edited.

Follow these procedures to use this preview release:

1. Open an operating system command prompt.

2. Open Oracle JDeveloper in preview mode:

JDev_Oracle_Home\jdev\bin\jdev.exe -J"-Dpreview_mode=true"

Note that Auto Generate Task Form With ADF Datacontrols now appears as a
menu option when you right-click the folder of the human task, as shown in Step 2
of "Selecting a Task Display Form" on page 15-67.

3. Open the SOA_Oracle_Home\j2ee\OC4J_Home\config\server.xml file.

where OC4J_Home is the name of the OC4J container for your install type:

– home — for the Oracle Application Server SOA Basic install type

– OC4J_SOA — if you accepted the default value for the Oracle Application
Server SOA Advanced install types

4. Add the following line under the <shared-library
name="oracle.bpel.common" version="10.1.3"> section:

<import-shared-library name="adf.oracle.domain"/>

5. Restart Oracle Application Server SOA Suite for the changes to take effect.

Selection See...

Auto Generate Simple Task Form "Automatically Generating a Simple Task
Display Form" on page 15-68

Custom Task Form "Generating a Custom Task Display Form" on
page 15-74

Task 3: Generating the Task Display Form

15-68 Oracle BPEL Process Manager Developer’s Guide

Automatically Generating a Simple Task Display Form
This option enables you to automatically generate a task form based on the default
task parameters and three regions.

1. Select Auto Generate Simple Task Form from the list shown in Step 2 on
page 15-67.

The default layout is based on the following three region template:

■ Header region — this region has standard task attributes such as title, priority,
created date, assignee, and expiration date. This information is contained in
the Header1.jsp file.

■ Body region — this region is generated based on the task parameters.
Depending on the XSD used in the task, it is either generated as a list of values
or as a table (for repeating items). If you specified the parameter to be
modifiable through the worklist on the Add Task Parameter window in Step 2
on page 15-21, it displays as an editable field in the form. Otherwise, the field
displays as read-only. The information for this region is contained in the
payload-body.jsp file and the payload-body.xml mapping file. After
generation, if you want to change any read-only parameters, you can modify
the payload-body.xml file.

■ Footer region — this region has an area for comments, attachments, and a
short history of the task routing. This information is contained in the
Footer1.jsp file.

A .tform file is generated. The contents of this file are as follows:

<?xml version = '1.0' encoding = 'UTF-8'?>
<taskDisplay
 targetNamespace="http://xmlns.companyABC.com/workflow/orderTaskDisplay"
 generateInternationlizedJSP="false"
 xmlns:task="http://xmlns.oracle.com/bpel/workflow/task"
 xmlns="http://xmlns.oracle.com/bpel/workflow/taskDisplay">
 <taskDefinitionId>${domain_id}_${process_id}_${process_revision}_
Workflow_Name</taskDefinitionId>
 <applicationName>worklist</applicationName>
 <template>${http_url}/${domain_id}/${process_id}/${process_
revision}/Workflow_Name/Template_Name.jsp</template>
 <regions>
 <defaultJSP regionName="Header">
 <jspURI>Header1.jsp</jspURI>
 </defaultJSP>
 <autoGeneratedJSP regionName="Body" editable="true">
 <jspURI>payload-body.jsp</jspURI>
 <messageAttribute
 editable="false">Workflow_NameProcessRequest</messageAttribute>
 </autoGeneratedJSP>
 <defaultJSP regionName="Footer">
 <jspURI>Footer1.jsp</jspURI>
 </defaultJSP>
 </regions>
</taskDisplay>

Payload File for the Autogenerated JSP
Two files are automatically generated to display the payload for the autogenerated
JSP:

Task 3: Generating the Task Display Form

Oracle BPEL Process Manager Workflow Services 15-69

■ A default JSP file named payload-body.jsp. This file is added to the HTML
root directory of your project, which is by default the public_html directory.

■ A mapping XML file named payload-body.xml. This file is added to the same
directory of your project as payload-body.jsp.

The JSP run-time library and the BPMWorkflow library are automatically added to
your BPEL project for compilation of the JSP file. The default JSP is designed with two
goals in mind:

■ To present you with a simple form; that is, an XSD tree with a depth of more than
three must be shown in a more readable way in the JSP.

■ The default JSP must require minimum modification. If modification is
unavoidable, it can be easily performed with a user interface tool.

To attain these goals, instead of presenting a tree structure that mimics the payload
XSD structure, the default JSP groups the entire payload structure in sections. It
groups simple types that belong to the same parents and makes them sections.

For example, assume you provide the following payload XSD:

<schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="http://www.mycompany.com/mycompany"
 xmlns:mp="http://www.mycompany.com/mycompany">

 <element name="myCompany" type="mp:myCompanyType"/>

 <complexType name="myCompanyType" >
 <sequence>
 <element name="board" type="mp:boardType" />
 <element name="CEO" type="string"/>
 <element name="department" type="mp:departmentType" maxOccurs="unbounded"/>
 </sequence>
 </complexType>

 <complexType name="boardType">
 <sequence>
 <element name="size" type="int" />
 <element name="head" type="string" />
 </sequence>
 </complexType>

 <complexType name="departmentType">
 <sequence>
 <element name="size" type="int" />
 <element name="head" type="string" />
 <element name="function" type="string" />
 </sequence>
 </complexType>

Note: If you select Custom Task Form in Step 2 on page 15-67, you
can specify a unique file name for the autogenerated JSP. The mapping
XML file is created based on the JSP file name. You can also select the
payload elements to include in the autogenerated JSP. For example, if
the JSP file is named autogenerate-body.jsp, then the mapping
XML file is named autogenerate-body.xml.

See "Generating a Custom Task Display Form" on page 15-74 for
details.

Task 3: Generating the Task Display Form

15-70 Oracle BPEL Process Manager Developer’s Guide

</schema>

This XSD has the structure shown in Figure 15–33.

Figure 15–33 Structure of the XSD for myCompanyType

In the default JSP, based on the structure of the leaf nodes, there are three sections:
{size, head}, {CEO}, and {size, head, function}. These three sections are named
according to their parents’ names; that is, the sections are named board, my
Company, and department, respectively. In the board section, there are two fields,
size and head. Each of these fields are in an editable HTML input type.

The section department is different from other sections and can have multiple
occurrences (maxOccurs > 1). In this case, all the fields in this section (that is, size,
head, and function) are horizontally presented in a table, with each row
representing one department. This is called a table section. There is a plus (+) button
for adding a row (department) and a minus (-) button for subtracting a row
(department) for the department table section.

Unlike a regular section, it is not necessarily true that all the fields belong to the same
XSD parent in a table section. For example, suppose the head element has two
elements: employeeNumber and dateOfBirth. Since these two elements have
maxOccurs set to less than or equal to 1, they are shown in the same department
table section. This is a desired behavior, because adding a row in the department
table not only adds a size and a function field, but also adds the head information
fields in the same department row. This makes it easy to move through complicated
payload instances.

Nested multiple (maxOccurs > 1) elements are supported. Assume the department
element has a groupMember child element whose maxOccurs is unbounded. In that
case, the parent element department is presented in a table section while the child
groupMember elements are presented in different child table sections. The parent
department table section has a column called group member that contains an
HTML href link pointing to its corresponding child group member section in each
department row. Pressing the + button in the parent department section not only
adds a row in the parent table, but also adds a child section for that corresponding
new row.

Task 3: Generating the Task Display Form

Oracle BPEL Process Manager Workflow Services 15-71

The default JSP in the current release has the following limitations:

■ XSDs that contain recursive elements are not supported.

■ The default JSP shows all the simple types defined in the payload XSD. If multiple
simple types belong to the same XSD choice block, all these simple types are
shown in the default JSP. Although simple types are preserved in the JSP, XSD
restrictions are not relevant.

■ Only payloads copied from variables that are not simple types are supported. For
example, if the query is bpws:getVariableData(var) or
bpws:getVariableData(var, part) and the variable is a simple type, then
JSP generation fails. Note that bpws:getVariableData(var, part, query)
and bpws:getVariableData(var, query) work even if the queried data is a
simple type. You only need to make sure the variable itself is not a simple type.

■ XSI extensions are not supported

■ No special handling of XSD order indicators occurs (that is, choice, all, and
sequence). For example, the default JSP does not check if you entered both
firstname and lastname:

<xs:element name="person">
 <xs:complexType>
 <xs:all>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:all>
 </xs:complexType>
</xs:element>

Customizing the Autogenerated JSP The autogenerated default JSP is generic, and so may
require changes to improve its look and feel. The JSP works in conjunction with the
mapping file to determine which elements in the payload are displayed in the form.

Customizing the Mapping File The mapping file gives you control of the presentation. The
mapping file is an XML file that contains a list of viewable fields. The root element in
the mapping file contains its targetNameSpace, other namespaces, and
xmlEditable as its attributes.

All the elements that are simple types are listed as fields in the mapping file. Along
with these elements, their immediate parents are listed as well for multilanguage
support. Each field has three properties defined in the mapping file. They are xpath,
editable, and resource_key.

The xpath property defines the XPath of this field. It is always prefixed by
/ns0:task/ns0:payload. This is the XPath to the root of the payload object. When
maxOccurs is greater than 1, it is denoted by [*]. For example,
/ns0:task/ns0:payload/company[*]/ceo shows that maxOccurs is greater
than 1 for the company field.

The editable property defines if this field is editable. It defaults to true. If the value
of this field is changed to false, the default JSP shows a disabled text field that
disallows value changes.

Note: Do not modify this XPath field because it is also a unique key
that determines the identity of the field.

Task 3: Generating the Task Display Form

15-72 Oracle BPEL Process Manager Developer’s Guide

The resource_key property is for multilanguage support. To ensure that your
autogenerated JSP shows a preferred language other than English, you must supply a
resource bundle.

Follow these steps to add a resource bundle:

1. Create a bundle file (for example, MyBundle). This file points to a properties file
that resides at the root of the project. The following code shows an example of
MyBundle_en-US.properties:

ACCEPT_MSG = Accept0
REJECT_MSG = Reject0
FLEX_STRING1_MSG = Flex String1
FLEX_LONG1_MSG = Flex Long1
FLEX_DATE1_MSG = Flex Date1
TASK_TITLE = i18n Task

In this case, if a field is defined in your mapping file as follows

 <field>
 <xpath>/ns0:task/ns0:payload/taskTitle</xpath>
 <editable>true</editable>
 <resourceKey>TASK_TITLE</resourceKey>
 </field>

then calling

FormUtil.getElementDisplayName("/ns0:task/ns0:payload/taskTitle", ,
form, context.getLocale(), task)

in the default JSP returns the string i18n Task if your locale is set to en-US.
Similarly, if your locale is set to French, the proper properties file (MyBundle_
fr.properties) is picked up.

2. Specify the resource bundle name and location in the Resource Details window of
the Human Task editor, as shown in "Specifying Multilingual Settings" on
page 15-48.

Customizing the Default JSP

If the mapping file does not provide enough control, you can modify the default JSP
file. Only modify the section after the label:

/* Modify the code below when necessary */

Most JSP modifications can be made in the JSP design view of Oracle JDeveloper.

By default, all the fields are set to text field. If you want to change a text field to a text
area, you can do the following.

1. Select Text Area in the Component Palette, as shown in Figure 15–34.

Task 3: Generating the Task Display Form

Oracle BPEL Process Manager Workflow Services 15-73

Figure 15–34 Oracle JDeveloper JSP Design View

2. Drop it into the position of the text field you want to replace.

3. Note that the name of the text field is set by calling the function
oracle.bpel.services.workflow.worklist.payload.PayloadFormGen
erator.constructName(String xpath), and the value of the field is set by
PayloadFormGenerator.selectNodeValue(Element payload, String
xpath, Map namespace). These functions must be used to construct form field
names and to retrieve form field values.

4. Set the text area’s name and value to the same name and value as the text field.

5. Delete the text field.

6. In the place you want to insert text or other HTML elements that are not in a table,
add text by typing it or add an HTML element by dragging and dropping the
HTML component from the Component Pallet.

7. If the place you want to insert HTML elements is in an HTML table, to insert text
or a horizontal rule, first add a table row by clicking a row, right-clicking, and
selecting Insert Row. After a row is inserted, you may need to merge all the cells
in the row by selecting all the cells in the row and right-clicking to select Merge
Cells. Then you can either type your text or drag and drop your HTML
component.

8. If you want to change the layout of the table or form, highlight the section you
want to modify, right-click, and select table or form.

9. If you want to format the text, use the toolbar’s color and style buttons.

It is recommended that you modify the default JSP’s look and feel only. You
should preserve the functions being used in the JSP. You must not alter the hidden
parameters being submitted in the HTML form, because the Update button
invokes form submission to the WFTaskUpdate that expects certain values. If

Task 3: Generating the Task Display Form

15-74 Oracle BPEL Process Manager Developer’s Guide

your change is complicated and has programming logic in it, you must switch to
the source view and modify the JSP code directly.

By putting the statement <%@ page pageEncoding="UTF-8" %> in the default
JSP, UTF-8 is set as the default encoding.

Displaying a Check Box on the Worklist Payload JSP Follow these instructions if you want
to customize the JSP page to display a selectable check box instead of a text box.

1. Note that the input for the status is generated as follows.

<input
name="<%=PayloadFormGenerator.constructName("/ns0:task/ns0:payload/ns1:holds/ns
1:holdCodes[" + i3 + "]/ns1:status")%>"
 value="<%=PayloadFormGenerator.selectNodeValue(payload,
 "/ns0:task/ns0:payload/ns1:holds/ns1:holdCodes[" + i3 + "]/ns1:status",
 form.getNamespaceMap())%>" dataType="string" <%=thisDisabled%> ></input>

2. Substitute the entire code block shown in Step 1 with the following code block:

String checked = "";
 String status = PayloadFormGenerator.selectNodeValue(payload,
 "/ns0:task/ns0:payload/ns1:holds/ns1:holdCodes[" + i3 + "]/ns1:status",
 form.getNamespaceMap());
 if(status != null && status.equals("true"))
 {
 checked = "checked";
 }

 <input type="CHECKBOX"
 name="<%=PayloadFormGenerator.constructName
 ("/ns0:task/ns0:payload/ns1:holds/ns
1:holdCodes[" + i3 + "]/ns1:status")%>" value="<%=status%>" <%=checked%>
 onClick="changeStatusValue(this)" ></input>

3. Add the following JavaScript. This is required because the value for the check
box field in JavaScript is always the value defined in the input element.

function changeStatusValue(obj)
 {
 obj.value = obj.checked;
 }

Generating a Custom Task Display Form
For this release, task display forms are generated by using templates consisting of
different regions. Oracle JDeveloper automatically includes three templates and two
default JSPs:

The three templates are as follows:

■ Three Region JSP — Consists of the header, body and footer regions. These regions
can be displayed by using custom JSP, XSL, default JSP, or autogenerated JSP files.
The automatically generated JSP displays the body region.

■ Two Region JSP — Consists of the header and footer regions

See Also: The HelpDeskServiceRequest demo in SOA_Oracle_
Home\bpel\samples\demos for an example of an autogenerated
JSP and how to change the payload presentation

Task 3: Generating the Task Display Form

Oracle BPEL Process Manager Workflow Services 15-75

■ One Region JSP — Consists of the body region

The two default JSPs are as follows:

■ The header JSP displays task attributes such as task number, priority, title, and so
on.

■ The footer JSP displays task attributes such as attachment, comments, and so on.

The custom task display form enables you to select the template and rendering type
for displaying task details.

1. Select Custom Task Form from the list shown in Step 2 on page 15-67.

The Task Form Display window appears.

2. Select a template from the Current Template list. Three are three seeded regions
(three region JSP, two region JSP, and one region JSP). After selecting a region, you
can specify how to render it.

3. See the following sections for details about generating the different types of
custom task display forms:

Autogenerated JSP
This option enables you to automatically generate a form for the payload of the task.
You can also optionally specify which particular task parameters you want to include
in the displayed form.

1. Select Auto JSP from the Body list in the Rendering section.

An icon displays to the right of Body.jsp in the Source section.

2. Click the icon.

The Payload Mapping window appears.

Type See...

Auto JSP "Autogenerated JSP" on page 15-75

Custom JSP "Custom JSP" on page 15-76

Default JSP "Default JSP" on page 15-77

XSL "XSL" on page 15-77

Task 3: Generating the Task Display Form

15-76 Oracle BPEL Process Manager Developer’s Guide

This window enables you to select message attributes.

3. Select message attributes to include in the autogenerated JSP.

4. Click OK to return to the Task Form Display window.

Custom JSP
This option enables you to invoke an external custom JSP to display the task details.
You can also specify URL parameters to pass to this JSP at run time. Three parameters
are passed in by default — taskID, version, and workflowContext. Additional
parameters must be explicitly specified.

1. Select Custom JSP from the Header list in the Rendering section.

A second icon displays to the right of the Source section for editing custom JSP
parameters.

2. Enter the custom JSP file name in the Source field or click the first icon to select the
JSP file to use. This JSP is used in the project and deployed with the other JSP files.

3. Click the second icon to specify run time JSP parameters.

The Payload Mapping window appears. This window enables you to add input
JSP parameters.

Task 3: Generating the Task Display Form

Oracle BPEL Process Manager Workflow Services 15-77

4. Add a parameter by clicking the + sign.

5. Add a name in the Name column.

6. Click the icon to the right of the row to display the Expression Builder window to
dynamically enter a value for the XPath column.

For this example, the custom JSP is using a parameter named PRIORITY to
receive the task ID from the request. Therefore, PRIORITY is specified as the
name and /tns:task/tns:systemAttributes/tns:PRIORITY is specified as the XPath
expression.

Default JSP
This option provides the default Header1.jsp and Footer1.jsp files to display the
header and footer regions, respectively.

XSL
This option enables you to specify an XSL to convert the task XML document into an
HTML document for the form. Note that this is useful only to create read-only forms.

1. Enter the HTTP location in the Source field or click the first icon to select the input
XSL file to use.

Deploying Task Display Forms
Workflow task display forms are deployed by using the deployTaskForm ant target.
This target is executed when you deploy the BPEL process from Oracle JDeveloper or
from the command prompt. This target generates an EAR file that includes all
generated default or custom JSPs. This generated EAR file is deployed as a child of the
Oracle BPEL Process Manager application.

See Also: "Creating Custom JSP Forms" on page 15-78 for details
about explicitly passing parameters

Task 3: Generating the Task Display Form

15-78 Oracle BPEL Process Manager Developer’s Guide

The following directory structure is generated.

JDev_Oracle_Home\jdev\mywork\application_name\project_name\public_html\human_task_
name\form

The following subdirectories and files are created:

■ A J2EE enterprise archive directory named ear is created. EAR deployment
descriptors are generated and stored in the META-INF subdirectory.

■ A Web archive (WAR) directory named war is created. This directory contains the
following files and subdirectories:

– Style sheets and Java server page files for the header (Header1.jsp), footer
(Footer1.jsp), and body (payload-body.jsp and payload-body.xml)
are generated and stored in the war directory.

– Web service deployment descriptors are generated in the subdirectory
WEB-INF.

You can delete all form-related files by right-clicking the human task folder in the
Application Navigator and selecting Delete Task Form files.

Creating Custom JSP Forms
As described earlier, you can register a custom JSP for rendering the task details in the
worklist. The BPEL worklist invokes any custom JSP that has been registered.

Follow these instructions to create a custom JSP form.

1. Get the task ID, version, and context ID from the request.

2. Get the workflow context object based on the context ID.

3. Get the task object based on the task ID and version. Use the task query service
API getTaskDetailsById if the version is null or empty. Otherwise, use the
getTaskVersionDetails API.

4. Use the task object methods to get the values you want to display in the JSP.

5. In the case of update support, generate the hidden HTML type for the following
parameters, so that the update servlet can read these parameter values:

■ oracle.bpel.service.workflow.worklist.api.payload.PayloadCon
stants.WORKLIST_NEXT_PAGE_PARAMETER_NAME

■ oracle.bpel.service.workflow.worklist.api.payload.PayloadCon
stants.WORKLIST_LOGIN_PAGE_PARAMETER_NAME

■ oracle.bpel.service.workflow.worklist.api.payload.PayloadCon
stants.WORKLIST_ERROR_PAGE_PARAMETER_NAME

You can get the values for these parameters in the custom JSP servlet request
object. Run time invokes the custom JSP by passing these parameters.

The following custom JSP code shows how to use these steps to write a custom JSP
that uses the local query service and verification APIs. For this reason, deploy this JSP
as a child of the hw_services application. If you do not want to deploy to the same
application server, replace local APIs with remote APIs.

<%@ page contentType="text/html;charset=UTF-8"%>
 <%@ page import="java.util.*,
 java.net.URLEncoder,
 java.io.UnsupportedEncodingException,
 java.text.*,

Task 3: Generating the Task Display Form

Oracle BPEL Process Manager Workflow Services 15-79

 oracle.bpel.services.workflow.query.impl.TaskQueryService,
 oracle.bpel.services.workflow.query.ITaskQueryService,
 oracle.bpel.services.workflow.verification.IWorkflowContext,

oracle.bpel.services.workflow.verification.IVerificationService,
 oracle.bpel.services.workflow.verification.impl.VerificationService,
 oracle.bpel.services.workflow.task.model.Task,
 oracle.bpel.services.workflow.task.model.IdentityType,
 oracle.bpel.services.workflow.task.model.CommentType,
 oracle.bpel.services.workflow.task.model.AttachmentType,
 oracle.bpel.services.workflow.task.model.IdentityType,
 oracle.bpel.services.workflow.worklist.display.Resource,
 oracle.bpel.services.workflow.worklist.display.ResourceKeyConstants,
 oracle.bpel.services.workflow.worklist.servlet.Constants,
 oracle.bpel.services.workflow.worklist.api.util.WorklistUtil,
 oracle.bpel.services.workflow.worklist.api.payload.PayloadConstant;"%>

 <%
 String taskId = request.getParameter(Constants.WORKLIST_TASKID_PARAMETER_
NAME);
 String strTaskVersion = request.getParameter(Constants.WORKLIST_TASK_
VERSION_PARAMETER_NAME);
 String contextId = request.getParameter(Constants.WORKLIST_CONTEXT_
PARAMETER_NAME);

 int taskVersion = 0;
 // incase strTaskVersion is null means user wants latest version
 // from WFTask table
 // else it wants from the WFTaskHistory table
 if(strTaskVersion != null && !strTaskVersion.trim().equals(""))
 {
 try
 {
 taskVersion = Integer.parseInt(strTaskVersion);
 }
 catch(NumberFormatException exc)
 {
 //TO DO throw the exception
 taskVersion = 1;
 }
 }

 //no need to use Notm to get the task
 Task task = (Task)session.getAttribute(Constants.SESSION_CURRENT_TASK_
OBJECT);

 IVerificationService verificationService =
 VerificationService.getVerificationService();
 IWorkflowContext context = verificationService.getContext(contextId);

 if(task == null)
 {
 ITaskQueryService queryService = TaskQueryService.getInstance();
 if(taskVersion == 0)
 {
 task = queryService.getTaskDetailsById(context, taskId);
 }
 else
 {

How Changes to a Workflow Appear in Worklist Application

15-80 Oracle BPEL Process Manager Developer’s Guide

 task = queryService.getTaskVersionDetails(context,taskId,taskVersion);
 }
 }
 Locale locale = context.getLocale();

 // get the TaskId and use above object
 SimpleDateFormat dfshort = new SimpleDateFormat("MM/dd/yy");
 SimpleDateFormat dflong = new SimpleDateFormat("MM/dd/yy hh:mm a");

 String nextPage = request.getParameter(Constants.WORKLIST_NEXT_PAGE_
PARAMETER_NAME);
 String loginPage = request.getParameter(Constants.WORKLIST_LOGIN_PAGE_
PARAMETER_NAME);

 %>

Adding Update Support in the Custom JSP
To add update support in the custom JSP, you can write the servlet that uses the
remote task service APIs to update the custom JSP task values:

1. Get the task object by using the same steps as used in the custom JSP.

2. Query the task object and set the values based on the custom JSP form.

For example, if the custom JSP form allows a user to update the priority attribute,
then get the priority JSP form value and call task.setPriority(newvalue);.

3. Use the remote task service API to update the task.

4. Get the value from servlet parameter WORKLIST_NEXT_PAGE_PARAMETER_NAME,
which the custom JSP page includes as a hidden parameter.

5. Redirect the page to the URL.

How Changes to a Workflow Appear in Worklist Application
Changes made in Oracle BPEL Control to a BPEL process that includes a human task
impact how tasks display in Oracle BPEL Worklist Application:

■ If you abort an active BPEL process instance on the Instances tab, associated tasks
are marked as Stale in the Status column of the Oracle BPEL Worklist Application
home page.

■ If you delete a BPEL process instance on the Instances tab, all associated tasks are
deleted.

■ If you undeploy a BPEL process on the BPEL Process tab, associated tasks are
marked as Stale in the Status column of the Oracle BPEL Worklist Application
home page.

Notifications from Workflow Services
Notifications are sent to alert users of changes to the state of a task. Notifications can
be sent through any of the following channels: e-mail, telephone voice message, fax,
pager, or SMS.

This section contains the following topics:

■ Configuring the Notification Channel

■ Contents of Notification

Notifications from Workflow Services

Oracle BPEL Process Manager Workflow Services 15-81

■ Configuring Messages in Different Languages

■ Sending Actionable E-mails

■ Sending Inbound and Outbound Attachments

■ Sending Inbound Comments

■ Reliability Support

■ Sending Secure Notifications

■ Channels Used for Notifications

■ Sending Reminders

Configuring the Notification Channel
After configuring the notification service for e-mail and other channels in Oracle
JDeveloper, set the NotificationMode parameter for the notification service to
either ALL or EMAIL in the SOA_Oracle_
Home\bpel\system\services\config\ns_emails.xml file.

By default, this value is set to NONE, meaning that no notifications are sent. The
possible values for the NotificationMode attribute are:

■ ALL – the e-mail, SMS, voice, fax, and pager channels are configured and
notification is sent through any channel.

■ EMAIL – Only the e-mail channel is configured for sending notification messages.

■ NONE – No channel is configured for sending notification messages. This is the
default setting.

The notifications for a task can be configured during the creation of a task in the
Human Task editor. Notifications can be sent to different types of participants for
different actions. The actions for which a task notification can be sent are as follows:

■ Assigned — when the task is assigned to users or a group. This action captures the
following task actions — acquire, adhoc route, delegate, escalate, information for a
task is submitted, push back, reassign, release, and resume.

■ Task is completed

■ Task is errored

■ Task is expired

■ Information is requested for a task

■ Task outcome is updated

■ Task is suspended

■ Task is withdrawn

Notifications can be sent to users involved in the task in various capacities. This
includes:

■ Assignees – the users or groups to whom the task is currently assigned

■ Initiator - the user who created the task

■ Creator – the user who created the task

■ Approvers – the users who have approved the task so far

Notifications from Workflow Services

15-82 Oracle BPEL Process Manager Developer’s Guide

– This applies to a sequential list of approvers participant type where multiple
users have approved the task and a notification must be sent to all.

■ Owner – the owner of the task

When the task is assigned to a group, each user in the group is sent a notification if no
notification endpoint is available for the group.

Contents of Notification
Each e-mail notification can contain the following parts:

■ The notification message

■ The HTML content from the worklist application — This is a read-only view of the
worklist application on the task.

■ Task attachments — If the notification includes task attachments

■ Actionable links

Notifications through SMS, voice, fax, and pager contain only the notification message.

The notification message is an XPath expression that can contain static text and
dynamic values. In creating the messages, only the task BPEL variable is available for
dynamic values. This restriction is because the messages are evaluated outside the
context of the BPEL process. The payload in the task variable is also strongly typed to
contain the type of the payload for XPath tree browsing. The XPath extension function
hwf:getNotificationProperty(propertyName) is available to get properties
for a particular notification. The function evaluates to corresponding values for each
notification. The propertyName can one of the following values:

■ recipient — The recipient of the notification.

■ recipientDisplay — The display name of the recipient.

■ taskAssignees — The task assignees.

■ taskAssigneesDisplay — The display names of the task assignees.

■ locale — The locale of the recipient.

■ taskId — The ID of the task for which the notification is meant.

■ taskNumber — The number of the task for which the notification is meant.

■ appLink — The HTML link to the worklist application task details page.

The following example demonstrates the use of hwf:getNotificationProperty
and hwf:getTaskResourceBundle together:

concat('Dear ', hwf:getNotificationProperty('recipientDisplay'), ' Task ',
/task:task/task:systemAttributes/task:taskNumber, ' is assigned to you. ',

See Also:

■ "Specifying Participant Notification Preferences" on page 15-43 to
configure task notifications in the Human Task editor

■ Chapter 14, "Oracle BPEL Process Manager Notification Service"

■ Service Configuration chapter of the Oracle BPEL Process Manager
Administrator’s Guide for details about editing the ns_
emails.xml file and (for the JAZN XML provider)
users-properties.xml file

Notifications from Workflow Services

Oracle BPEL Process Manager Workflow Services 15-83

hwf:getTaskResourceBundleString(/task:task/task:systemAttributes/task:taskId,
'CONGRATULATIONS', hwf:getNotificationProperty('locale')))

This results in a message similar to the following:

Dear Cooper, James Task 1111 is assigned to you. Congratulations

Configuring Messages in Different Languages
It is possible to get internationalized messages in the notification content using one of
the following methods.

■ If you want to use values from the resource bundle specified during the task
definition, use the XPath extension function
hwf:getTaskResourceBundleString(taskId, key, locale?). This
function returns the internationalized string from the resource bundle specified in
the task definition.

– The locale of the notification recipient can be retrieved with the function
hwf:getNotificationProperty(‘locale’).

– The task ID corresponding to a notification can be retrieved with the function
hwf:getNotificationProperty(‘taskId’).

■ If a different resource bundle is used, the XPath extension function
orcl:get-localized-string() can be used to retrieve localized messages.

Sending Actionable E-mails
Task actions can be performed through e-mail if the task is set up to enable actionable
e-mail (the same actions can also be performed from the Oracle BPEL Worklist
Application). An actionable e-mail account is the account in which task action-related
e-mails are received and processed. This e-mail account name is identified by the
element actionableEmailAccountName in the configuration file SOA_Oracle_
Home\bpel\system\services\config\wf_config.xml.

Ensure that you select Make e-mail messages actionable in the Notification Settings
section of the Human Task editor to make e-mail notifications actionable. (See
Figure 15–25 on page 15-44.) This enables you to perform task actions through e-mail.

If a notification is actionable, the e-mail contains links for each of the custom
outcomes. Clicking on the links invokes the compose window of the e-mail client. You
do not have to change anything in the subject or the body in this e-mail. If you change
the content with the NID substrings, the e-mail is not processed.

Figure 15–35 shows an actionable e-mail sample:

See Also: "Specifying Multilingual Settings" on page 15-48

Notifications from Workflow Services

15-84 Oracle BPEL Process Manager Developer’s Guide

Figure 15–35 Actionable E-mails

Sending Inbound and Outbound Attachments
If the include attachments flag is checked; only e-mail is sent. The e-mails include all
the task attachments as e-mail attachments. Select Send task attachments with e-mail
notifications in the Notification Settings section of the Human Task editor. (See
Figure 15–25 on page 15-44.)

In the actionable e-mail reply, the user can add attachments in the e-mail and these
attachments are added as task attachments.

Sending Inbound Comments
In the actionable e-mail reply, the user can add comments in the e-mail between
Comments[[‘ and ‘]] and those contents are added as task comments. For
example, Comments[[looks good]].

Reliability Support
In previous releases, the workflow outbound notification was not reliable. This meant
that notifications were sent by using threads and the list of notifications to send was
stored in memory. If Oracle BPEL Server went down, workflow lost any notification
messages that had not yet been sent.

With release 10.1.3, the workflow outbound notification service uses queues with the
persistency service to send notifications to users.

See Also: "Securing Notifications, Making Messages Actionable, and
Sending Attachments" on page 15-46

See Also: "Securing Notifications, Making Messages Actionable, and
Sending Attachments" on page 15-46

Notifications from Workflow Services

Oracle BPEL Process Manager Workflow Services 15-85

Whenever a workflow needs to send a notification to a user, it stores the task
information such as notification ID, task ID, version, and so on in the dehydration
store and enqueues the notification ID to the queue. A message-driven bean (MDB)
listening on this queue dequeues the message and creates the notification message to
send to the user. It then uses the notification service to send this message, which uses
the queue with the dehydration store.

Sending Secure Notifications
If a notification is marked as secure in the Notification Settings section of the Human
Task editor, a default notification message is used. (See Figure 15–25 on page 15-44.)
The default notification message includes a link to the task in the Oracle BPEL
Worklist Application. You must log in to see task details.

Channels Used for Notifications
The channel through which a user is notified is determined by the notification
preference attribute of the user specified in JAZN. The notification preference is
identified by the attribute orclWorkflowNotificationPreference. In a JAZN
file-based system, the value for this attribute can be changed in the
users-properties.xml file located at SOA_Oracle_
Home\bpel\system\services\config.

In an Oracle Internet Directory-based system, the user properties can be changed using
the Oracle Delegated Administration Service. If this attribute is not set, the e-mail
channel is used as the default.

Sending Reminders
Tasks can be configured to send reminders, which can be based on the time the task
was assigned to a user or the expiration time of a task. The number of reminders and
the interval between the reminders can also be configured. The message used for
reminders is the message that is meant for ASSIGNEES when the task is marked as
ASSIGNED.

You set reminders in the Notification Settings section of the Human Task editor. (See
Figure 15–25 on page 15-44.) Reminder configuration involves these parameters.

■ Recurrence — The recurrence specifies the number of times reminders are sent.
The possible values for recurrence are EVERY, NEVER, 0, 1, 2 …, 10.

■ RelativeDate — The relativeDate specifies if the reminder duration is
computed relative to the assigned date or to the expiration date of the task. The
possible values for the relativeDate are ASSIGNED and EXPIRATION.

■ Duration — The duration from the relativeDate and the first reminder and
each reminder since then. The data type of duration is xsd:duration, whose
format is defined by ISO 8601 under the form PnYnMnDTnHnMnS. The capital

See Also: Chapter 14, "Oracle BPEL Process Manager
Notification Service" for additional details about the reliable
notification service

See Also: "Securing Notifications, Making Messages Actionable, and
Sending Attachments" on page 15-46

See Also: Oracle Identity Management Guide to Delegated
Administration for more information on the Oracle Delegated
Administration Service

End-to-End Workflow Examples

15-86 Oracle BPEL Process Manager Developer’s Guide

letters are delimiters and can be omitted when the corresponding member is not
used. Examples include PT1004199059S, PT130S, PT2M10S, P1DT2S, -P1Y, or
P1Y2M3DT5H20M30.123S.

The following examples illustrate when reminders are sent.

■ The relativeDate is ASSIGNED, the recurrence is EVERY, and the reminder
duration is PT1D. If the task is assigned at 3/24/2005 10:00 AM, then
reminders are sent at 3/25/2005 10:00 AM, 3/26/2005 10:00 AM,
3/27/2005 10:00 AM, and so on until the user acts on the task.

■ If the relativeDate is EXPIRATION, the recurrence is 2, the reminder
duration is PT1D, and the task expires at 3/26/2005 10:00 AM, then reminders
are sent at 3/24/2005 10:00 AM and 3/25/2005 10:00 AM if the task was
assigned before 3/24/2005 10:00 AM.

■ If the relativeDate is EXPIRATION, the recurrence is 2, the reminder
duration is PT1D, the task expires at 3/26/2005 10:00 AM, and the task was
assigned at 3/24/2005 3:00 PM, then only one reminder is sent at 3/25/2005
10:00 AM.

End-to-End Workflow Examples
Table 15–14 shows the end-to-end workflow examples included with Oracle BPEL
Process Manager. Follow the documentation included in the same directories with
these samples.

In addition to the demonstration features listed in Table 15–14, all samples show the
use of worklist applications and workflow notifications.

See Also: "Setting Up Reminders" on page 15-46

Table 15–14 End-to-End Examples

Sample Location Description Demonstrates

AutoLoanDemo SOA_Oracle_
Home\bpel\sample
s\demos

Review and approve a
loan request

■ Single approval

■ Integration with a
business rule engine

DocumentReview SOA_Oracle_
Home\bpel\sample
s\demos

Review and approve a
document

■ Group vote

■ Adding attachments
to tasks

ExpenseRequestA
pproval

SOA_Oracle_
Home\bpel\sample
s\demos

The ExpenseRequest
business process is
used to approve and
reject an expense
request from an
employee

■ Management chain
approval

■ Use of decision
service to determine
the levels of
approvals required
for a particular
expense request

■ Microsoft Office
integration

HelpDeskService
Request

SOA_Oracle_
Home\bpel\sample
s\demos

Approval of a help
desk service

■ Adhoc approval

■ Custom worklist user
interface

■ Promotion of task
payload message
attributes

End-to-End Workflow Examples

Oracle BPEL Process Manager Workflow Services 15-87

Vacation Request Example
This example describes how to create a vacation request business process. In this
business process, the manager of a user requesting a vacation approves or rejects the
request. The approval or rejection is a one-step process.

This example highlights the use of the following:

■ Modeling a single approval workflow using Oracle JDeveloper

■ Using the Oracle BPEL Worklist Application to view and respond to tasks

Prerequisites
This example assumes the following:

■ You are familiar with basic BPEL constructs, including BPEL activities and partner
links, and basic XPath functions. Familiarity with Oracle JDeveloper—the
environment for creating and deploying BPEL processes—is also assumed.

■ You must configure the e-mail server settings for the account Default to enable
e-mail notifications. The Default account is used to send e-mails. The e-mail
server configuration is in

SOA_Oracle_Home\bpel\system\services\config\ns_emails.xml

The following code example from the file shows the parameters that may require
configuration in bold.

<EmailAccount>
 <Name>Default</Name>
 <GeneralSettings>
 <FromName>Oracle BPM</FromName>
 <FromAddress>accountId@yourdomain.com</FromAddress>
 </GeneralSettings>
 <OutgoingServerSettings>
 <SMTPHost>yourdomain.com</SMTPHost>
 <SMTPPort>25</SMTPPort>
 </OutgoingServerSettings>
 <IncomingServerSettings>

LoanDemoPlus SOA_Oracle_
Home\bpel\sample
s\demos

Approval of a loan
application

■ Group assignment (in
StarLoan process)

■ Custom worklist user
interface (in
LoanFlowPlusUI and
StarLoanUI)

■ FYI tasks (in
LoanFlowPlus
process)

OrderApproval SOA_Oracle_
Home\bpel\sample
s\tutorials\127.
OrderBookingTuto
rial

Approve or reject a
purchase order

■ Sequential workflow

VacationRequest SOA_Oracle_
Home\bpel\sample
s\demos

Vacation request
approval or denial

■ Simple workflow

Table 15–14 (Cont.) End-to-End Examples

Sample Location Description Demonstrates

End-to-End Workflow Examples

15-88 Oracle BPEL Process Manager Developer’s Guide

 <Server>yourdomain.com</Server>
 <Port>110</Port>
 <Protocol>pop3</Protocol>
 <UserName>accountId</UserName>
 <Password ns0:encrypted="false"
 xmlns:ns0="http://xmlns.oracle.com/ias/pcbpel/NotificationService">
 password</Password>
 <UseSSL>false</UseSSL>
 <Folder>Inbox</Folder>
 <PollingFrequency>1</PollingFrequency>
 <PostReadOperation>
 <MarkAsRead/>
 </PostReadOperation>
 </IncomingServerSettings>
 </EmailAccount>

■ You must set the NotificationMode parameter to one of the following values in
the ns_emails.xml file:

– ALL – If you have the e-mail, SMS, voice, fax, and pager channels set up.

– EMAIL – If you have only the e-mail channel set up.

For example:

<EmailAccounts xmlns="http://xmlns.oracle.com/ias/pcbpel/NotificationService"
 EmailMimeCharset=""
 NotificationMode="EMAIL">

■ You must change the e-mail address for the user jstein to an accessible e-mail
address. If the XML-based JAZN provider is used, these properties can be changed
in:

SOA_Oracle_Home\bpel\system\services\config\users-properties.xml

The following XML segment from the users-properties.xml file shows
where the e-mail is configured:

<userObject>
 <name>jstein</name>
 <description>Demo User</description>
 <email>user1@dlsun4254.us.oracle.com</email>
 <title>Manager2</title>
 <firstName>John</firstName>
 <lastName>Steinbeck</lastName>
 <manager>wfaulk</manager>
 <timeZone>America/Los_Angeles</timeZone>
 <languagePreference>en-US</languagePreference>
 <notificationPreferences>Mail</notificationPreferences>
</userObject>

■ You must restart Oracle BPEL Process Manager after making any of the preceding
changes.

Modeling the Vacation Request Process
In this phase of the tutorial, you create a new project, OrderApproval, and define the
human workflow process, a single approver workflow in which the order is approved
or rejected. The order is first assigned to the Supervisor role. After a user with the
Supervisor role approves the order, it is sent to the user’s manager for final approval.

This section contains these tasks:

End-to-End Workflow Examples

Oracle BPEL Process Manager Workflow Services 15-89

■ Creating the Vacation Request Process and Importing the Schema

■ Adding a Human Task to the Order Approval Process

■ Assigning Input and Output Parameters for the Human Task

■ Creating a Task Form for the Worklist

■ Modeling the Task Outcome

■ Validating, Compiling, and Deploying the Order Approval Process

■ Running the Order Approval Process

Creating the Vacation Request Process and Importing the Schema
1. Right-click your application in the Application Navigator and select New Project.

2. Select BPEL Process Project.

3. Create an asynchronous BPEL process with the name VacationRequest.

4. Click Next.

5. Click the flashlight next to Input Schema Element to browse for
VacationRequest.xsd in

SOA_Oracle_Home\bpel\samples\demos\VacationRequest\bpel

6. Click Open.

The Type Chooser window appears.

7. Expand and select Imported Schemas > VacationRequest.xsd >
VacationRequestProcessRequest.

8. Click OK.

9. Click the flashlight next to Output Schema Element.

10. Expand and select Imported Schemas > VacationRequest.xsd >
VacationRequestProcessResponse.

11. Click Finish.

The schemas are now imported into the project. VacationRequest.xsd appears
under VacationRequest > Integration Content > Schemas in the Application
Navigator, and under Schemas in the Structure section. The BPEL process—a
Receive activity (receiveInput) and an Invoke activity (callbackClient)—is
displayed.

12. Select Save from the File main menu.

Adding a Human Task to the Order Approval Process

1. Drag and drop a Human Task activity between receiveInput and callbackClient.

2. Click the Create Task Definition icon (second icon).

Summary: When you define the human task, the
VacationApproval.task file—the task configuration metadata
file—is created.

End-to-End Workflow Examples

15-90 Oracle BPEL Process Manager Developer’s Guide

3. Enter VacationApproval for the human task name and click OK. (Accept the
default location.)

The VacationApproval.task file is created.

The Human Task editor is displayed.

4. For Title, enter Vacation Approval.

5. Accept the default values for Priority and Outcomes.

6. For Parameters, click the + icon on the right side of the window.

The Add Task Parameter window is displayed.

7. Click Element and then the flashlight icon.

8. In the Type Chooser window, expand and select Project Schema Files >
VacationRequest.xsd > VacationRequestProcessRequest, and click OK.

End-to-End Workflow Examples

Oracle BPEL Process Manager Workflow Services 15-91

9. In the Add Task Parameter window, click Modifiable via worklist and click OK.

This ensures that you can modify task data using the Oracle BPEL Worklist
Application.

10. In the Assignment and Routing Policy section, click the + icon on the right side of
the window.

The Add Participant Type window is displayed.

11. For Type, select Single Approver.

This participant type acts alone on the task.

12. For Label, enter Vacation Approver.

13. Click By expression.

In this example, you assign the task to the manager of the vacation requester.

14. Click the icon to the right of the Dynamic User Xpath field to display the
Expression Builder window.

15. Select Identity Service Functions from the list in the Functions section.

16. Double-click getManager.

17. Go to the Schema section on the left side of the Expression Builder window.

18. Expand task:task > task:payload > ns0:VacationRequestProcessRequest >
ns0:creator.

19. Click Insert Into Expression.

The Expression Builder window appears as follows:

End-to-End Workflow Examples

15-92 Oracle BPEL Process Manager Developer’s Guide

20. Click OK to return to the Add Participant Type window.

21. Click OK to return to the Human Task editor.

22. Click the + sign to expand the Expiration and Escalation Policy section.

23. Select Expire after from the drop-down list.

24. Click Fixed Duration and select 1 from the Day list.

25. Select Save from the File main menu.

26. Click the X next to VacationApproval.task to close the Human Task editor.

Assigning Input and Output Parameters for the Human Task

1. Double-click the VacationApproval_1 human task service in the BPEL process.

This displays the Human Task window.

2. In the Task Title field, enter the word for after the words Vacation Approval.

3. Click the icon at the right to display the Expression Builder window.

4. In the BPEL Variables section, expand and select inputVariable> payload >
client:VacationRequestProcessRequest > client:creator.

5. Click Insert Into Expression.

Summary: Map the fields to the variables in the BPEL process.

End-to-End Workflow Examples

Oracle BPEL Process Manager Workflow Services 15-93

The XPath expression appears in the Expression section.

6. Click OK.

The XPath expression is appended to the task title.

7. Click the icon to the right of the Initiator field to display the Expression Builder
window.

8. Repeat Steps 4 through 6 to insert the same XPath expression in the Initiator field.

9. Click the flashlight icon under the BPEL Variable column.

The Task Parameters window appears.

10. In the Task Parameters window, expand and select Variables > inputVariable >
payload > client:VacationRequestProcessRequest.

11. Click OK.

12. In the Human Task window, click OK.

End-to-End Workflow Examples

15-94 Oracle BPEL Process Manager Developer’s Guide

13. Select Save from the File main menu.

Creating a Task Form for the Worklist

1. In the Application Navigator, right-click the VacationApproval folder and select
Auto Generate Simple Task Form.

This automatically generates a task form file.

2. Close payload-body.jsp by clicking the X sign at the top.

Modeling the Task Outcome

1. Double-click VacationRequest.bpel.

2. Expand the taskSwitch Switch activity.

3. Drag and drop an Assign activity to below the copyPayloadFromTask Assign
activity in the <case Task outcome is APPROVE> section of the Switch activity.

4. Double-click the Assign icon to display the Assign window.

5. Click the General tab.

6. Enter assignVacationApproval1 in the Name field.

7. Click Apply.

8. Click the Copy Operation tab.

9. Click Create and select Copy Operation.

10. Enter the following details:

11. Click OK to close the Create Copy Operation window and the Assign window.

Summary: An autogenerated task form, payload-body.jsp, is
created.

Summary: The Switch activity reflects the possible outcomes, or
cases, specified previously, Approve and Reject. It also has an
Otherwise case to represent other outcomes, such as errored, stale, or
expired. Inside each of the cases, you can add activities to complete
modeling of the business process. The copyPayloadFromTask Assign
activities copy the payload back to its source.

Field Value

From

■ Type Expression

■ Expression string(’Approved’)

To

■ Type Variable

■ Variables Expand and select Variables > outputVariable > payload >
client:VacationRequestProcessResponse > client:result

Note: The namespace number values (for example, client, ns1) can
vary. Use the namespace values that automatically appear.

End-to-End Workflow Examples

Oracle BPEL Process Manager Workflow Services 15-95

12. Repeat Steps 3 through 11 to create an Assign activity below the
copyPayloadFromTask Assign activity in the <case Task outcome is REJECT>
section. Enter the same details as described above, with the following exceptions:

■ Name it assignVacationApproval2

■ Set the Expression field to string(’Rejected’)

13. Repeat Steps 3 through 11 to create an Assign Activity below the
copyPayloadFromTask Assign activity in the <otherwise> section. Enter the same
details as described above, with the following exceptions:

■ Name it assignVacationApproval3

■ Set the Expression field to string(’Rejected’)

14. The process looks as follows:

15. Select Save from the File main menu.

16. Click the - sign to close the taskSwitch Switch activity.

Validating, Compiling, and Deploying the Order Approval Process
1. Go to the Application Navigator section.

2. Right-click VacationApproval.

3. Select Deploy > my_integration_server_connection > Deploy to default domain.

This compiles the BPEL process. Check for errors by clicking the buttons at the
bottom of the window. If there are no errors, deployment was successful.

Running the Order Approval Process
1. Log into Oracle BPEL Control by selecting Start > All Programs > Oracle -

Oracle_Home > Oracle BPEL Process Manager > BPEL Control.

The Dashboard tab of Oracle BPEL Control appears.

2. Enter the following details to log into Oracle BPEL Control and click Login:

End-to-End Workflow Examples

15-96 Oracle BPEL Process Manager Developer’s Guide

3. Click VacationApproval in the Deployed BPEL Processes list.

4. Enter jcooper for the creator of the vacation.

5. Enter appropriate values for the remaining fields.

6. Click Post XML Message.

The BPEL Processes tab displays a message similar to the following:

Test Instance Initiated

7. Click the Instances tab at the top.

8. Click the OrderApproval instance.

A message appears indicating that the instance is active.

9. Select Start > All Programs > Oracle - Oracle_Home > Oracle BPEL Process
Manager > Sample Worklist Application to access the login window for Oracle
BPEL Worklist Application:

10. Log in as jstein/welcome1.

The user jstein is the manager of jcooper. This displays Oracle BPEL Worklist
Application. A task waiting to be approved appears.

11. Select Claim in the Actions list for the task to approve.

12. Click Go.

The task details and payload information appear.

13. Review the information. For example, the following information appears if you
copied and pasted in the contents of OrderBookingPO_1.xml.

14. Select Approve from the Task Action list and click Go.

15. Log out as user jcooper.

16. Log into Oracle BPEL Worklist Application as jstein/welcome1.

17. Select Approve from the Actions list and click Go.

After processing, no tasks appear in Oracle BPEL Worklist Application.

18. Log out.

19. Return to Oracle BPEL Control.

20. Click the Instances tab at the top.

21. Click the VacationApproval instance.

A message appears indicating that the instance has completed.

22. Click the Audit and Flow links to observe additional details about the completed
OrderApproval process.

Field Value

Username oc4jadmin

Password welcome1

Workflow Services

Oracle BPEL Process Manager Workflow Services 15-97

Workflow Services
Workflow services and functions are responsible for a variety of tasks. This section
describes the responsibilities of the following workflow services:

■ EJB, SOAP, and Java Support for the Workflow Services

■ Security Model for Services

■ Task Service

■ Task Query Service

■ Identity Service

■ Notification Service

■ Task Metadata Service

■ User Metadata Service

■ Runtime Config Service

EJB, SOAP, and Java Support for the Workflow Services
Table 15–15 lists the type of SOAP, EJB, and Java support provided for the task
services.

Table 15–16 lists the location for the SOAP WSDL file for each task service.

See Also: "Workflow Services Components" on page 15-6

Table 15–15 EJB, SOAP, and Java Support

Service Name
Supports SOAP
Web Services

Supports
Remote EJB

Supports
Local EJB

Supports Plain
Java APIs

Task Service Yes Yes Yes

Task Query Service Yes Yes Yes Yes

Task Metadata Service Yes Yes Yes Yes

Task Reports Service Yes

User Metadata Service Yes Yes Yes Yes

Runtime Config Service Yes Yes Yes Yes

Identity Service:

■ BPM Authentication
Service

Yes Yes

■ BPM Authorization
Service

Yes Yes

Table 15–16 SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Task Service http://host:port/integration/services/TaskServi
ce/TaskServicePort?WSDL

Task Metadata Service http://host:port/integration/services/TaskMetad
ataService/TaskMetadataServicePort?WSDL

Task Query Service http://host:port/integration/services/TaskQuery
Service/TaskQueryService?WSDL

Workflow Services

15-98 Oracle BPEL Process Manager Developer’s Guide

Security Model for Services
With the exception of the identity service, all services that use the above-mentioned
APIs (SOAP, remote EJB, local EJB, and Java WSIF) require authentication to be
invoked. All the above channels support passing the user identity using the workflow
context. The workflow context contains either of the following:

■ Login and password

■ Token

The task query service exposes the authenticate operation that takes the login and
password and returns the workflow context used for all services. Optionally, with each
request, you can pass the workflow context with the login and password.

The authenticate operation also supports the concept of creating the context on behalf
of a user with the admin ID and admin password. This enables you to create the
context for a logged-in user to the Oracle BPEL Worklist Application if the password
for that user is not available.

Security in SOAP Web Services
SOAP Web services also support Web service security. When Web service security is
used, the workflow context does not need to be present in the SOAP input. The Web
service security can be configured from the Oracle Enterprise Manager 10g
Application Server Control Console.

Security in EJBs
The workflow service EJBs also take a workflow context parameter that is used for
authentication and authorization.

User Metadata Service http://host:port/integration/services/UserMetad
ataService/UserMetadataService?WSDL

Runtime Config Service http://host:port/integration/services/RuntimeCo
nfigService/RuntimeConfigService?WSDL

Identity Service http://host:port/integration/services/IdentityS
ervice/configuration?WSDL

http://host:port/integration/services/IdentityS
ervice/identity?WSDL

Notification Service http://host:port/integration/services/Notificat
ionService/NotificationService?WSDL

Note: Workflow service SOAP clients cannot be used when Web
service security is used.

See Also: "Configuring Single Sign-on Using SAML" in the Oracle
Application Server Web Services Security Guide for details about
propagating the identity of a user from a Web application to the Web
service

Table 15–16 (Cont.) SOAP WSDL Location for the Task Services

Service name SOAP WSDL location

Workflow Services

Oracle BPEL Process Manager Workflow Services 15-99

Creating Workflow Context on Behalf of a User
The authenticate API operation on the task query service can create the workflow
context on behalf of a user by passing the user ID and password of an admin user in
the request. An admin user is a user who has the BPMWorkflowAdmin role. This
created context is as if it was created using the password on behalf of the user.

In this example, the workflow context is created for user jcooper.

ITaskQueryService taskQueryService = ….
String realm = …;
IWorkflowContext wfCtx =
 taskQueryService.authenticate(‘bpeladmin’, ‘welcome1’, realm, ‘jcooper’);

Task Service
The task service exposes operations to act on tasks. Table 15–17 describes the
operations of the task service. Package oracle.bpel.services.workflow.task
corresponds to the task service.

Table 15–17 Task Service Methods

Method Description

acquireTask Acquire a task.

acquireTasks Acquire a set of tasks.

addAttachment Add an attachment to a task.

addComment Add a comment to a task.

delegateTask Delegate a task to a different user. Both the current assignee and
the user to whom the task is delegated can view and act on the
task.

errorTask Cause the task to error. This operation is typically used by the
error assignee.

escalateTask Escalate a task. The default escalation is to the manager of the
current user. This can be overridden using escalation functions.

getApprovers Get the previous approvers of a task.

getFutureParticipants Get the future participants of a task. The future participants are
returned in the form of a routing slip that contains simple
participants — (participant node and parallel nodes that
contain routing slips in them).

getUsersToRequestInfo
ForTask

Get the users from whom a request for information can be
requested.

initiateTask Initiate a task.

mergeAndUpdateTask Merge and update a task. Use this operation when a partial task
should be updated. A partial task is one in which not all the
task attributes are present. In this partial task, only the
following task attributes are interpreted:

■ Task payload

■ Comments

■ Task state

■ Task outcome

overrideRoutingSlip Override the routing slip of a task instance with a new routing
slip. The current task assignment is nullified and the new
routing slip is interpreted as its task is initiated.

Workflow Services

15-100 Oracle BPEL Process Manager Developer’s Guide

pushBackTask Push back a task to the previous approver or original assignees.
The original assignees do not need to be the approver as they
may have reassigned the task, escalated the task, and so on. The
property pushbackAssignee in wf_config.xml controls
whether the task is pushed back to the original assignees or the
approvers.

reassignTask Reassign a task.

reinitiateTask Reinitiate a task. Reinitiating a task causes a previously
completed task to be carried forward so that the history,
comments, and attachments are carried forward in a new task.

releaseTask Release a previously acquired task.

releaseTasks Release a set of previously acquired tasks.

removeAttachment Remove a task attachment.

renewTask Renew a task to extend the time it takes to expire.

requestInfoForTask Request information for a task.

requestInfoForTaskWith
Reapproval

Request information for a task with reapproval. For example,
assume jcooper created a task and jstein and wfaulk
approved the task in the same order. When the next approver,
cdickens, requests information with reapproval from
jcooper, and jcooper submits the information, jstein and
wfaulk approve the task before it comes to cdickens. If
cdickens requests information with reapproval from jstein,
and jstein submits the information, wfaulk approves the
task before it comes to cdickens.

resumeTask Resume a task. Operations can only be performed by the task
owners (or users with the BPMWorkflowSuspend privilege) to
remove the hold on a workflow. After a workflow is resumed,
actions can be performed on the task.

resumeTasks Resume a set of tasks.

routeTask Allow a user to route the task in an adhoc fashion to the next
user(s) who must review the task. The user can specify to route
the tasks in sequential, parallel, or simple assignment. Routing
a task is permitted only when the workflow permits adhoc
routing of the task.

skipCurrentAssignment Skip the current assignment and move to the next assignment
or pick the outcome as set by the previous approver if there are
no more assignees.

submitInfoForTask Submit information for a task. This action is typically
performed after the user has made the necessary updates to the
task or has added comments or attachments containing
additional information.

suspendTask Allows task owners (or users with the BPMWorkflowSuspend
privilege) to put a workflow on hold temporarily. In this case,
task expiration and escalation do not apply until the workflow
is resumed. No actions are permitted on a task that has been
suspended (except resume and withdraw).

suspendTasks Suspend a set of tasks.

updateOutcomeOfTasks Update the outcome of a set of tasks.

updateTask Update the task.

updateTaskOutcome Update the task outcome.

Table 15–17 (Cont.) Task Service Methods

Method Description

Workflow Services

Oracle BPEL Process Manager Workflow Services 15-101

Task Query Service
The task query service queries tasks based on a variety of search criterion such as
keyword, category, status, business process, attribute values, history information of a
task, and so on. Table 15–18 describes the operations of the task query service,
including how to use the service over SOAP. Package
oracle.bpel.services.workflow.query corresponds to the task query service.

updateTaskOutcomeAndR
oute

Update the task outcome and route the task. Routing a task
allows a user to route the task in an adhoc fashion to the next
user(s) who must review the task. The user can specify to route
the tasks in sequential, parallel, or simple assignment. Routing
a task is permitted only when the workflow permits adhoc
routing of the task.

withdrawTask The creator of the task can withdraw any pending task if they
are no longer interested in sending it further through the
workflow. A task owner can also withdraw a task on behalf of
the creator. When a task is withdrawn, the business process is
called back with the state attribute of the task set to
Withdrawn.

withdrawTasks Withdraw a set of tasks.

See Also: Oracle BPEL Process Manager Workflow Services API
Reference located in the SOA_Oracle_Home\bpel\docs\workflow
directory

Table 15–18 Task Query Service Methods

Method Description

authenticate Authenticates a user with the identity authentication service
and passes back a valid IWorkflowContext object.
Authentication can optionally be made on behalf of another
user.

createContext Creates a valid IWorkflowContext object from a
preauthenticated HTTP request.

getWorkflowContext Gets a workflow context with the specified context token.

destroyWorkflowContext Cleans up a workflow context that is no longer needed. This
method is typically used when a user logs out.

getTaskDetailsById Gets the details of a specific task from the task's taskId
property.

getTaskDetailsByNumber Gets the details of a specific task from the task's task number
property.

getTaskHistory Gets the last of the task versions for the specified task ID.

getTaskVersionDetails Gets the specific task version details for the specified task ID
and version number.

Table 15–17 (Cont.) Task Service Methods

Method Description

Workflow Services

15-102 Oracle BPEL Process Manager Developer’s Guide

Identity Service
This section describes the identity service component of Oracle BPEL Process
Manager. The identity service is a thin Web service layer on top of the Oracle
Application Server 10g security infrastructure, namely OracleAS JAAS Provider

queryTasks Returns a list of tasks that match the specified filter conditions.
Tasks are listed according to the ordering condition specified (if
any). The entire list of tasks matching the criteria can be
returned or clients can execute paging queries, in which only a
specified number of tasks in the list are retrieved. The filter
conditions are as follows:

■ assignmentFilter — Filters tasks according to whom
the task is assigned, or who created the task. Possible
values for the assignment filter are as follows:

ADMIN — No filtering; returns all tasks regardless of
assignment or creator.

ALL — No filtering; returns all tasks regardless of
assignment or creator.

CREATOR — Returns tasks where the context user is the
creator.

GROUP — Returns tasks that are assigned to one of the
groups of which the context user is a member.

MY — Returns tasks that are assigned to the context user.

MY_AND_GROUP — Returns tasks that are assigned to
either the context user, or one of the groups of which they
are a member.

OWNER — Returns tasks where the context user is the task
owner.

PREVIOUS — Returns tasks the context user previously
updated.

REPORTEES — Returns tasks that are assigned to reportees
of the context user.

■ keywords — An optional search string. This only returns
tasks where the string is contained in the task title, task
identification key, or one of the task text flex fields.

■ predicate — An optional
oracle.bpel.services.workflow.repos.Predica
te object that allows clients to specify complex, SQL-like
query predicates.

Note: To use the task query service over SOAP, call
Predicate.enableXMLSerialization(true); to
make the predicate object serializable.

queryViewTasks Returns a list of tasks according to the criteria in the specified
view. The entire list or paged list of tasks can be returned.
Clients can specify additional filter and ordering criteria to
those in the view.

See Also: Oracle BPEL Process Manager Workflow Services API
Reference located in the SOA_Oracle_Home\bpel\docs\workflow
directory

Table 15–18 (Cont.) Task Query Service Methods

Method Description

Workflow Services

Oracle BPEL Process Manager Workflow Services 15-103

(JAZN), or any custom user repository. It enables authentication and authorization of
users and the lookup of user properties, roles, group memberships, and privileges.

Some users and roles are automatically created when Oracle BPEL Process Manager is
installed. Seeded users include:

■ guest

■ default

■ bpeladmin

■ oc4jadmin

The identity service predefines the following roles, which can be granted to users to
perform workflow-related operations:

■ PUBLIC—This role is an implicit JAZN role; it does not need to be granted
explicitly to any of the users. If any user can authenticate with the worklist, then
they can see tasks assigned to them or groups they belong to and act on these
tasks.

■ BPMWorkflowReassign—This role enables a user to reassign tasks to any other
user in the organization. A manager can always delegate tasks to any users under
him in the organization hierarchy without any Reassign privileges. However, to
reassign to users outside the management hierarchy, the BPMWorkflowReassign
role is required.

■ BPMWorkflowSuspend—This role enables users to suspend a process. If a
process is suspended, then the expiration time does not apply. When the process is
resumed, the expiration date is recomputed. Users cannot suspend the workflow if
the process designer has designated Suspend as a restricted action, even if the
user has the BPMWorkflowSuspend role.

■ BPMWorkflowViewHistory—In general, a user can see only the task assignment
sequence as part of their worklist. This role enables a user to drill down further
into the BPEL business process audit trail from the task approval sequence.

■ BPMWorkflowAdmin—This role enables a user to perform system actions on any
workflow in the system. This role does not allow you to change the outcome of the
task (such as approve or reject); it only allows you to perform actions such as
delegate, escalate, and suspend. Only the task assignee or the task owner can
change the outcome of the task.

■ BPMSystemAdmin—Both BPMWorkflowAdmin and BPMSystemAdmin have the
same level of workflow privileges.

■ BPMDefaultDomainAdmin—This role provides a user with access to the default
domain through Oracle BPEL Control.

Note: The BPMPublic role can be used and explicitly granted to
each user if a third-party provider does not support an implicit
PUBLIC role.

See Also: Oracle BPEL Process Manager Administrator’s Guide for
instructions on configuring the identity service and additional details
about the BPMSystemAdmin and BPMDefaultDomainAdmin roles

Workflow Services

15-104 Oracle BPEL Process Manager Developer’s Guide

Some of these roles are nested. The BPMWorkflowReassign,
BPMWorkflowSuspend, and BPMWorkflowViewHistory roles are granted to the
BPMWorkflowAdmin role. The BPMSystemAdmin role is granted to the seeded
bpeladmin user.

The following table represents the relationship between the grantees and roles:

Creating Users and Groups
You use directory-specific tools to create realms, users, or groups. For example:

■ To create users and groups when using OID, you use the Oracle Delegated
Administration Services tools. See Oracle Identity Management Guide to Delegated
Administration for more information.

■ To create user and group credentials when using the XML-based JAZN provider,
you use the JAZN Admintool to modify the jazn-data.xml file. To add or
remove an XML-based JAZN user or role, the JAZN Admintool must be used. You
can manually edit the users-properties.xml file to specify detailed user
properties that JAZN does not support.

For example, to add a user to a specified realm, issue the following command:

java -jar jazn.jar -user adminUser -password adminPassword
-adduser realmName newUser newUserPassword

The JAZN Admintool provides different command options. You can list all the
options and their syntax with the -help option, as in:

java -jar jazn.jar -help

■ If you are using a third-party LDAP server or a custom user repository, you must
use the specific tools available for that directory.

Identity Service Providers
Oracle BPEL Process Manager identity service supports three types of providers:
JAZN, third-party LDAP, or custom plug-in, as shown in Figure 15–36.

Role\Grantee bpeladmin default guest BPMWorkflowAdmin BPMSystemAdmin

BPMSystemAdmin Directly -- -- -- --

BPMWorkflowAdmin Indirectly through
BPMSystemAdmin

-- -- -- Directly

BPMWorkflowReassign Indirectly through
BPMSystemAdmin

-- -- Directly Indirectly through
BPMWorkflowAdmin

BPMWorkflowSuspend Indirectly through
BPMSystemAdmin

-- -- Directly Indirectly through
BPMWorkflowAdmin

BPMWorkflowViewHistory Indirectly through
BPMSystemAdmin

-- -- Directly Indirectly through
BPMWorkflowAdmin

BPMDefaultDomainAdmin Indirectly through
BPMSystemAdmin

Directly -- -- Directly

See Also: Oracle Containers for J2EE Security Guide for instructions on
using the JAZN Admintool

Workflow Services

Oracle BPEL Process Manager Workflow Services 15-105

Figure 15–36 Identity Service Providers

The identity service providers perform the following operations:

■ Authentication—authenticates users given their username and password

■ Authorization—determines roles and group memberships for a specific user.
These roles are then used to control access to various work items and operations
on the worklist.

■ Retrieve user properties—includes contact information such as first name, last
name, phone, e-mail, preferred notification channel, language preference, time
zone, and organization details such as manager name and reportees.

The JAZN Provider The JAZN provider mode, which is preconfigured, delegates all
authentication and authorization inquires to the JAZN layer. Two JAAS providers are
supplied as part of the OC4J security infrastructure: the XML-based file and
LDAP-based OID.

■ XML-Based JAZN Provider Type — The XML-based provider type is used for
lightweight storage of information in the XML files. All the user names, roles, and
permissions are stored in XML files. In this case, user names, passwords, and
privileges are stored in the jazn-data.xml file. In addition, Oracle BPEL Process
Manager uses a user-properties.xml file that works in conjunction with this
file to store detailed user properties such as name, e-mail, phone, and manager.

■ LDAP-Based JAZN Provider Type (Oracle Internet Directory) — The LDAP-based
provider type is based on the Lightweight Directory Access Protocol (LDAP) for
centralized storage of information in a directory. OID is a standard LDAP-based
directory that provides a single, centralized repository for all user data. It allows
sites to manage user identities, roles, authorization, and authentication credentials,
as well as application-specific preferences and profiles in a single repository.

Third-Party LDAP Server The third-party LDAP provider mode enables identity service
to work with third-party LDAP servers such as Sun Directory Server (iPlanet),
Microsoft Active Directory, or openLDAP. In this mode, identity service assumes that
the directory is the central repository of all user data, including authentication
credentials, roles, and profiles. The standard organizationalPerson,
inetOrgPerson objects from the LDAP schema retrieve these details.

Custom User Repository Plug-ins This mode enables you to plug in a non-LDAP-based
user repository by registering a custom identity service provider. The custom identity

See Also: Oracle Application Server Containers for J2EE User’s Guide

Oracle BPEL Process Manager

Identity Service

Third-party
LDAP

Directories

JAZN Provider CUSTOM
Repository

Plug-insLDAP-Based
Provider (OID)

XML-Based
Provider

Provider Plug-ins

Workflow Services

15-106 Oracle BPEL Process Manager Developer’s Guide

service plug-in must implement the BPMIdentityService interface (see Javadoc).
This identityservice class name must be registered in is_config.xml.

User and Role Properties
The identity service supports the following user properties:

■ Display name

■ Given name, middle name, and last name

■ Description

■ Title

■ E-mail address

■ Telephone number

■ Home phone number

■ Mobile phone number

■ Fax number

■ Pager number

■ Manager ID

■ Owners (applies to groups and roles, but not users)

■ Time zone

■ Language preference (Java locale)

■ Notification preference (preferred notification channel)

The preceding properties are optional for Oracle BPEL Process Manager users.
However, some features, such as task notification, are not available if the contact
information is not present in the directory or in the users-properties file for the
JAZN XML-based provider. Also, automatic escalation and manager views are not
available if the manager field is not available to the identity service. If the user is not
listed among the owners of the group, they cannot modify the rule defined for the
group.

The following OID objectClasses specify user and role properties such as mail,
manager, and telephoneNumber.

■ top

■ person

See Also:

■ "User and Role Properties" on page 15-106 for more information.

■ Identity service configuration instructions in Oracle BPEL Process
Manager Administrator’s Guide

■ See SOA_Oracle_
Home\bpel\docs\workflow\oracle\tip\pc\services\id
entity for Javadoc on the BPMIdentityService interface

See Also: The service configuration chapter of Oracle BPEL Process
Manager Administrator’s Guide for instructions on defining group
ownership

Workflow Services

Oracle BPEL Process Manager Workflow Services 15-107

– cn

– sn

– description

– telephoneNumber

■ organizationalPerson

– title

– telephoneNumber

– facsimileTelephoneNumber

■ inetOrgPerson

– uid

– displayName

– givenName

– manager

– mail

– homePhone

– mobile

– pager

– preferredLanguage

■ orclUserV2

– middleName

– orclTimeZone

– orclWorkflowNotificationPref

■ groupOfUniqueNames

– description

– owner

– uniqueMember

■ orclGroup

– displayName

– mail

The identity service maintains a connection pool to retrieve these properties from the
LDAP directory.

If you are using the XML-based JAZN provider, the same entries are represented as
XML elements in the users-properties.xml file in

SOA_Oracle_Home\bpel\system\services\config

Multirealm Support
The identity service enables you to specify multiple configuration settings (to express
identity contexts, supported realms, and so on) in the is_config.xml file. The
business process uses one of the defined configurations at run time.

Workflow Services

15-108 Oracle BPEL Process Manager Developer’s Guide

The configuration must specify the realm name to enable a business process to resolve
the context at run time. For the JAZN provider, the realm name must match one of
supported JAZN realm names. Otherwise, a run time exception is thrown. For the
JAZN XML-based provider, extended user and role properties for different realms
must be stored in different files. For the LDAP provider, the realm name can be any
unique name, while the context is defined by the LDAP URL, user search base, and
role search base nodes in the LDAP server tree. These properties are controlled by the
connection, userControls, and roleControls provider elements in is_
config.xml.

If the is_config.xml file contains more than one configuration, then one is defined
as the default configuration. The default context is used by the BPEL process if no
specific context information is found at run time. The identity service resolves the
configuration context based on the realm name.

Authentication, Authorization, and Identity Service Providers
The identity service supports authentication, authorization, and identity service
providers. The identity service provider is the default pseudoservice provider. It must
be defined for each configuration in the is_config.xml file. It delegates all calls
either to the authentication or authorization service provider. By default, all three
service providers share the same context setting defined in the identity provider.

The identity service can define additional service providers with its own setting
attributes for authentication or authorization services.

If the provider service attribute is set to Authentication, the setting and the
provider context are used only for all authentication calls for the configuration. If the
provider service attribute is set to Authorization, the setting and provider context
are used only for authorization calls.

Notification Service
The notification service exposes operations that can be invoked from the BPEL
business process to send notifications through e-mail, voice, fax, pager, or short
message service (SMS) channels.

See Also: The service configuration chapter of the Oracle BPEL
Process Manager Administrator’s Guide for configuration instructions

See Also: The multiple service providers section of the service
configuration chapter of the Oracle BPEL Process Manager
Administrator’s Guide for an example of a configuration with two
providers:

■ The JAZN XML-based identity service provider is used for all
calls, except authentication

■ The custom plug-in provider is used only for authentication calls

See Also:

■ "Notifications from Workflow Services" on page 15-80

■ Chapter 14, "Oracle BPEL Process Manager Notification Service"

■ Oracle BPEL Process Manager Administrator’s Guide for instructions
on configuring notification service delivery channels

Workflow Services

Oracle BPEL Process Manager Workflow Services 15-109

Task Metadata Service
Task metadata service exposes operations to retrieve metadata information related to a
task. Table 15–19 describes these methods. Package
oracle.bpel.services.workflow.metadata corresponds to the task metadata
service.

User Metadata Service
The user metadata service provides methods for managing metadata specific to
individual users and groups. It is used for getting and setting user worklist
preferences, managing user custom views, and managing workflow rules for users
and groups.

For most methods in the user metadata service, the authenticated user can query and
update their own user metadata. However, they cannot update metadata belonging to
other users.

In the case of group metadata (for example, workflow rules for groups), only a user
designated as an owner of a group (or a BPMWorkflowAdmin user) can query and
update the metadata for that group. However, a user that has been granted the
BPMWorkflowAdmin role can query and update metadata for any user or group.

Table 15–20 describes the methods in the user metadata service. Package
oracle.bpel.services.workflow.user corresponds to the user metadata
service.

Table 15–19 Task Metadata Service Methods

Method Description

getOutcomes Get the permitted outcomes of a task. The outcomes are returned
with their display values.

getResourceBundleInfo Get the resource bundle information of the task. The resource
bundle information contains the location and the name of the
bundle.

getRestrictedActions Get the actions that are restricted for a particular task.

getTaskAttributes Get the task message attributes.

getTaskAttributesForT
askDefinition

Get the message attributes for a particular task definition.

getTaskDefinition Get the task definition associated with the task.

getTaskDefinitionById Get the task definition by the task definition ID.

getTaskDefinitionOutc
ome

Get the outcomes given the task definition ID.

getTaskDisplay Get the task display for a task.

getTaskDisplayRegion Get the task display region for a task.

getVersionTrackedAttr
s

Get the task attributes that when changed causes a task version
creation.

listTaskMetadata List the task definitions in the system.

See Also: Oracle BPEL Process Manager Workflow Services API
Reference located in the SOA_Oracle_Home\bpel\docs\workflow
directory

Workflow Services

15-110 Oracle BPEL Process Manager Developer’s Guide

Table 15–20 User Metadata Service Methods

Method Description

setVacationInfo Sets a date range over which the user is unavailable for the
assignment of tasks. (Dynamic assignment functions do not assign
tasks to a user that is on vacation.)

getVacationInfo Retrieves the date range (if any) during which a user is unavailable
for the assignment of tasks.

getRuleList Retrieves a list of rules for a particular user or group.

getRuleDetail Gets the details for a particular workflow rule.

createRule Creates a new rule.

updateRule Updates an existing rule.

deleteRule Deletes a rule.

increaseRulePriorit
y

Increases the priority of a rule by one. Rules for a user or group are
maintained in an ordered list of priority. Higher priority rules
(those closer to the head of the list) are executed before rules with
lower priority. This method does nothing if this rule already has
the highest priority.

decreaseRulePriorit
y

Decreases the priority of a rule by one. This method does nothing if
this rule already has the lowest priority.

getRuleSetInfo Returns information relating to the Oracle Business Rules rule set
being used to store the rules for a particular user or group. This is
useful if a client wants to make use of the rules SDK directly for
manipulating rules, rather than using the user metadata service.

getUserTaskViewList Gets a list of the user task views that the user owns.

getGrantedTaskViewL
ist

Gets a list of user task views that have been granted to the user by
other users. Users can use granted views for querying lists of tasks,
but they cannot update the view definition.

getStandardTaskView
List

Gets a list of standard task views that ship with the workflow
service, and are available to all users.

getUserInboxView Gets a special view to store configuration information, allowing
users to personalize their main inbox list of tasks.

getUserTaskViewDeta
ils

Gets the details for a single view.

createUserTaskView Creates a new user task view.

updateUserTaskView Updates an existing user task view.

deleteUserTaskView Deletes a user task view.

updateGrantedTaskVi
ew

Updates details of a view grant made to this user by another user.
Updates are limited to hiding or unhiding the view grant (hiding a
view means that the view is not listed in the main inbox page of the
worklist application), and changing the name and description that
the granted user sees for the view.

getUserPreferences Gets a list of user preferences for the user. User preferences are
simple name-value pairs of strings. User preferences are private to
each user (but can still be queried and updated by
BPMWorkflowAdmin).

setUserPreferences Sets the user preference values for the user. Any preferences that
were previously stored and are not in the new list of user
preferences are deleted.

Workflow Services

Oracle BPEL Process Manager Workflow Services 15-111

Runtime Config Service
The runtime config service provides methods for managing metadata used in the task
service run time environment. It principally supports management of task payload
flex field mappings.

The task object used by the task service contains a number of flex field attributes,
which can be populated with information from the task payload. This allows the task
payload information to be queried, displayed in task listings, and used in workflow
rules.

The runtime config service allows administrators to create mappings between simple
task payload attributes and these flex field attributes.

Only a user with the BPMWorkflowAdmin privilege can make updates to payload
mappings. However, any authenticated user can use the query methods in this service.

An administrator can create attribute labels for the various flex field attributes. These
attribute labels provide a meaningful label for the attribute (for example, a label
Location may be created for the flex field attribute TextAttribute1). A given flex
field attribute may have multiple labels associated with it. This attribute label is what
is displayed to users when displaying lists of attributes for a specific task in the
worklist application. The attribute labels for a specific task type can be determined by
calling the getTaskAttributesForTaskDefinition method on the task metadata
service.

When defining attribute labels, the following fields are automatically populated by the
service. You do not need to specify values for these attributes when creating or
updating attribute labels:

■ Id

■ CreatedDate

■ WorkflowType

■ Active

getPublicPreference
s

Gets a list of public preferences for the user. Public preferences are
similar to user preferences, except any user can query them.
However, only the user that owns the preferences, or the
BPMWorkflowAdmin, can update them. Public preferences are
useful for storing application wide preferences (preferences can be
stored under a dummy user name, such as MyAppPrefs).

setPublicPreference
s

Sets the public preferences for the user.

See Also:

■ Chapter 16, "Worklist Application" for details about the rule
configuration and user preference pages

■ Oracle BPEL Process Manager Administrator’s Guide for details on
how to designate a user as a group owner

■ Oracle BPEL Process Manager Workflow Services API Reference
located in the SOA_Oracle_Home\bpel\docs\workflow
directory

Table 15–20 (Cont.) User Metadata Service Methods

Method Description

Workflow Services

15-112 Oracle BPEL Process Manager Developer’s Guide

Valid values for the task attribute field are as follows:

■ TextAttribute1 through TextAttribute10

■ FormAttribute1 through FormAttribute5

■ UrlAttribute1 through UrlAttribute5

■ DateAttribute1 through DateAttribute5

■ NumberAttribute1 through NumberAttribute5

Mappings can then be created between task payload fields and the attribute labels. For
example, the payload field customerLocation can be mapped to the attribute label
Location. Different task types can share the same attribute label. This allows payload
attributes from different task types that have the same semantic meaning to be
mapped to the same attribute label.

The runtime config service also provides methods for querying the dynamic
assignment functions supported by the server.

Table 15–21 describes the methods in the runtime config service. Package
oracle.bpel.services.workflow.runtimeconfig corresponds to the runtime
config service.

Note: Only payload fields that are simple XML types can be
mapped.

Table 15–21 Runtime Config Service

Method Description

GetWorkflowPayloadMap
pings

Gets a list of all the flex field mappings for a particular workflow
task definition.

CreateAttributeLabel Creates a new attribute label for a particular task flex field
attribute.

updateAttributeLabel Updates an existing attribute label.

DeleteAttributeLabel Deletes an existing attribute label.

getAttributeLabelUsag
es

Gets a list of attribute labels (either all attribute labels, or labels
for a specific type of attribute) for which mapping (if any) the
labels are currently used.

createPayloadMapping Creates a new mapping between an attribute label and a task
payload field.

deletePayloadMapping Deletes an existing payload mapping.

getUserDynamicAssignm
entFunctions

Returns a list of the dynamic assignment functions that can
select a user that are implemented on this server.

getGroupDynamicAssign
mentFunctions

Returns a list of the dynamic assignment functions that can
select a group that are implemented on this server.

Configuring the Assignment Service

Oracle BPEL Process Manager Workflow Services 15-113

Internationalization of Attribute Labels
Attribute labels provide a method of attaching a meaningful label to a task flex field
attribute. It can be desirable to present attribute labels that are translated into the
appropriate language for the locale of the user.

To achieve this, you can add entries to the WorkflowLabels.properties resource
property file, and associated resource bundles in other languages. This file exists in the
SOA_Oracle_Home\bpel\system\services\config\wfresource directory.

Entries for flex field attribute labels must be of the form:

FLEX_LABEL.[label name]=Label Display Name

For instance, the entry for a label named Location is:

FLEX_LABEL.Location=Location

Note that adding entries to these files for attribute labels is optional. If no entry is
present in the file, the name of the attribute label as specified using the API is used
instead.

Configuring the Assignment Service
This section describes how to configure the assignment service.

This section contains the following topics:

■ Dynamic Assignment Functions

■ Dynamically Assigning Task Participants with the Assignment Service

■ Custom Escalation Function

Dynamic Assignment Functions
Dynamic assignment functions select a particular user or group from either a group, or
from a list of users or groups.

The selection is made according to criteria specific to the particular dynamic
assignment function. The three dynamic assignment functions shown in Table 15–22
are included with Oracle BPEL Process Manager:

See Also:

■ "Dynamic Assignment Functions" on page 15-113 for additional
details

■ Chapter 16, "Worklist Application" for details about flex field
mapping

■ Oracle BPEL Process Manager Workflow Services API Reference
located in the SOA_Oracle_Home\bpel\docs\workflow
directory

Table 15–22 Dynamic Assignment Functions

Function Description

ROUND_ROBIN Picks each user or group in turn.

least-busy Picks the user or group with the least number of tasks currently
assigned to it.

Configuring the Assignment Service

15-114 Oracle BPEL Process Manager Developer’s Guide

These functions all check a user’s vacation status. A user that is currently unavailable
is not automatically assigned tasks.

These dynamic assignment functions can be called using the custom XPath functions
in a BPEL process or task definition.

■ wfDynamicUserAssign

■ wfDynamicGroupAssign

These XPath functions must be called with at least two, and optionally more
parameters:

■ The name of the dynamic assignment function being called.

■ The name of the group on which to execute the function (or a list of users or
groups).

■ (Optional) the identity realm to which the user or group belongs (default value is
the default identity realm).

■ Additional optional parameters specific to the dynamic assignment function. In
the case of the most-productive assignment function, this is the length of time
(in days) to calculate a user’s productivity. The two other functions do not use
additional parameters.

In addition, workflow rules created for a group can use dynamic assignment functions
to select a member of that group for reassignment of a task.

In addition to the three functions, a dynamic assignment framework is provided that
allows you to implement and configure your own dynamic assignment functions.

Implementing a Dynamic Assignment Function
To implement your own dynamic assignment function, write a Java class that
implements one or both of the following interfaces:

oracle.bpel.services.workflow.assignment.dynamic. IDynamicUserAssignmentFunction
oracle.bpel.services.workflow.assignment.dynamic. IDynamicGroupAssignmentFunction

If your dynamic assignment function selects users, implement the first interface. If it
selects groups, implement the second interface. If it allows the selection of both users
and groups, implement both interfaces.

The two interfaces above both extend the interface
oracle.bpel.services.workflow.assignment.dynamic.IDynamicAssignm
entFunction.

Your Java class should also implement the methods in that interface.

These interfaces as shown below:

public interface IDynamicAssignmentFunction
{
 /**
 * Sets the initialization parameters required by the function (if any)
 * This function is called automatically by the DynamicAssignmentRegistry
 * on registration of a new function. Initialization parameters can be

most-productive Picks the user or group that has completed the most tasks over a
certain time period (by default, the last seven days).

Table 15–22 (Cont.) Dynamic Assignment Functions

Function Description

Configuring the Assignment Service

Oracle BPEL Process Manager Workflow Services 15-115

 * specified in the xml definition of the function in the dynamic assign
 * config file
 * @param initParams Map of String parameter values keyed by String parameter
 * names
 * @throws DynamicAssignmentException if implementation of method finds invalid
 * parameters
 */
 public void setInitParams(Map initParams) throws DynamicAssignmentException;

 /**
 * Gets the name of this Dynamic Assignment Function
 * @return String the name of the Dynamic Assignment Function
 */
 public String getFunctionName();

 /**
 * Gets a description of this Dynamic Assignment Function
 * @return String description of function
 */
 public String getDescription();
}
public interface IDynamicGroupAssignmentFunction extends
 IDynamicAssignmentFunction
{
 /**
 * This method contains the implementation of the Assignment Function
 * Given a group name, it will return a subgroup in that group,
 * according to the assignment pattern implemented
 * @return String name of group
 * @param groupName String name of group to select group from
 * @param realm String name of Identity Service realm the group belongs
 * to. If realm is null, the default Identity Service realm will be used.
 * @param parameters String[] optional array of parameter values.
 * Use of parameter values is implementation-specific.
 */
 public String getGroupAssignment(String groupName, String realm, String[]
 parameters)
 throws DynamicAssignmentException;
 /**
 * This method contains the implementation of the Assignment Function
 * Given an arbitrary list of groups, it will return a group in that
 * list, according to the assignment pattern implemented
 * @return String name of group
 * @param groupNames List of groups to select from
 * @param realm String name of Identity Service realm the groups belong
 * to. If realm is null, the default Identity Service realm will be used.
 * @param parameters String[] optional array of parameter values.
 * Use of parameter values is implementation-specific.
 */
 public String getGroupAssignment(List groupNames, String realm, String[]
 parameters)
 throws DynamicAssignmentException;
}
public interface IDynamicUserAssignmentFunction extends IDynamicAssignmentFunction
{
 /**
 * This method contains the implementation of the Assignment Function
 * Given a group name, it will return a user in that group,

Configuring the Assignment Service

15-116 Oracle BPEL Process Manager Developer’s Guide

 * according to the assignment pattern implemented
 * @return String username of user
 * @param groupName String name of group to select user from
 * @param realm String name of Identity Service realm the group belongs
 * to. If realm is null, the default Identity Service realm will be used.
 * @param parameters String[] optional array of parameter values.
 * Use of parameter values is implementation-specific.
 */
 public String getUserAssignment(String groupName, String realm, String[]
 parameters)
 throws DynamicAssignmentException;
 /**
 * This method contains the implementation of the Assignment Function
 * Given an arbitrary list of users, it will return a user in that
 * list, according to the assignment pattern implemented
 * @return String username of user
 * @param usernames List of usernames to select user from
 * @param realm String name of Identity Service realm the users belong
 * to. If realm is null, the default Identity Service realm will be used.
 * @param parameters String[] optional array of parameter values.
 * Use of parameter values is implementation-specific.
 */
 public String getUserAssignment(List usernames, String realm, String[]
 parameters)
 throws DynamicAssignmentException;
}

The dynamic assignment framework also provides the utility class
oracle.bpel.services.workflow.assignment.dynamic.DynamicAssignme
ntUtils.

This class provides a number of methods that are useful when implementing dynamic
assignment functions.

These include:

 /**
 * Method returns a list of users belonging to the specified group
 * that are available (i.e. not on vacation etc.)
 * @return List of String usernames of available users
 * @param group - name of group to lookup users for
 * @throws DynamicAssignmentException if error encountered looking up
 * group, or checking users.
 */
 public static List getAvailableUsersFromGroup(String group, String realm)
 throws DynamicAssignmentException
 /**
 * Method returns a list of users from the specified list
 * that are available (i.e. not on vacation etc.)
 * @return List of String usernames of available users
 * @param usernames - List of String usernames to check
 * @param realm - realm that users belong to
 * @throws DynamicAssignmentException if error encountered looking up
 * group, or checking users.
 */
 public static List getAvailableUsersFromList(List usernames, String realm)
 throws DynamicAssignmentException
 /**
 * Method uses the specified group name to lookup the sub-groups belonging to
 * that group using the identity service.
 * @return List of String names of groups

Configuring the Assignment Service

Oracle BPEL Process Manager Workflow Services 15-117

 * @param groupName name of group to lookup
 * @param realm to lookup group in - if null, then use identity service default
 * @realm
 * @batam boolean - directsOnly: if true return only the direct sub-groups
 * of this group. If false, return all groups belonging to this group.
 * @throws DynamicAssignmentException if group could not be found
 */
 public static List getGroupsFromGroup(String groupName
 , String realm
 , boolean directsOnly)
 throws DynamicAssignmentException
 /**
 * Method uses the specified group name to lookup the users belonging to that
 * group using the identity service.
 * @return List of String usernames of user
 * @param groupName String name of group to lookup
 * @param realm to lookup group in - if null, then use identity service default
 * @realm
 * @throws DynamicAssignmentException if group could not be found
 */
 public static List getUsersFromGroup(String groupName, String realm)
 throws DynamicAssignmentException
 /**
 *Method returns the default identity management realm for the Identity Service
 *Instance.
 */
 public static String getIDServiceDefaultRealm() throws
 DynamicAssignmentException

 /**
 * Method checks WF Schema to determine if the specified user is available
 * (i.e. they are not on vacation etc.).
 * @return true if user is available, false if they are on vacation
 * @param username
 * @param realm
 */
 public static boolean isUserAvailable(String username, String realm)
 throws DynamicAssignmentException

Configuring Dynamic Assignment Functions
Dynamic assignment functions are configured using the
wf-dynamic-assign-cfg.xml file in the SOA_Oracle_
Home\bpel\system\services\config directory.

Each dynamic assignment function must have an entry in this file, in the form of a
<function> tag.

The function tag must contain two attributes:

■ name — the name of the function.

■ classpath — the classpath of the class that implements the function.

In addition, the function tag can optionally contain any number of <property> tags.
These tags pass initialization parameters to the dynamic assignment function. Each
property tag must contain a name attribute. The value of the property is specified in
the body of the tag.

The property values specified in these tags are passed as a map (indexed by the value
of the name attributes) to the setInitParameters method of the dynamic
assignment functions.

Configuring the Assignment Service

15-118 Oracle BPEL Process Manager Developer’s Guide

Two of the functions have initialization parameters. These are:

■ ROUND_ROBIN — The parameter MAX_MAP_SIZE specifies the maximum number
of sets of users or groups for which the function can maintain ROUND_ROBIN
counts. The dynamic assignment function holds a list of users and groups in
memory for each group (or list of users and groups) on which it is asked to execute
the ROUND_ROBIN function.

■ most-productive — The parameter DEAFULT_TIME_PERIOD specified the
length of time (in days) over which to calculate the user’s productivity. This value
can be overridden when calling the most-productive dynamic assignment
function. Use an XPath function by specifying an alternative value as the third
parameter in the XPath function call.

Configuring Display Names for Dynamic Assignment Functions
The runtime config service provides methods for returning a list of available user and
group dynamic assignment functions. These functions return both the name of the
function, and a user-displayable label for the function. The functions support
localization of the display name, so that it displays in the appropriate language for the
context user. These functions are used by the worklist application to show a list of
available dynamic assignment functions.

To specify display names (and appropriate translations) for your dynamic assignment
functions, add entries to the resource property file WorkflowLabels.properties,
and associated resource property files in other languages. This file exists in the SOA_
Oracle_Home\bpel\system\services\config\wfresource directory.

Entries for dynamic assignment functions must be of the form:

DYN_ASSIGN_FN.[function name]=Function Display Name

For instance, the entry for the ROUND_ROBIN function is:

DYN_ASSIGN_FN.ROUND_ROBIN = Round Robin

Note that adding entries to these files for dynamic assignment functions is optional. If
no entry is present in the file, then the name of the function (for example, ROUND_
ROBIN’) is used instead.

Dynamically Assigning Task Participants with the Assignment Service
Workflow task participants are specified declaratively in a routing slip. The routing
slip guides the workflow by specifying the participants and how they participate in
the workflow task (for example, management chain hierarchy, sequential list of
approvers, and so on).

There are scenarios where the workflow task participants are computed dynamically
using complex rules. To support such dynamic assignment, an assignment service is
used. The assignment service is responsible for determining the task assignees. You
can also implement your own assignment service and plug in that implementation for
use with a particular workflow.

This section contains the following topics:

■ Assignment Service Overview

■ Implementing an Assignment Service

■ Example of Assignment Service Implementation

■ Deploying a Custom Assignment Service

Configuring the Assignment Service

Oracle BPEL Process Manager Workflow Services 15-119

Assignment Service Overview
The assignment service determines the following task assignment details in a
workflow:

■ The assignment when the task is initiated

■ The assignment when the task is reinitiated

■ The assignment when a user updates the task outcome. When the task outcome is
updated, the task can either be routed to other users or completed.

■ The assignees from whom information for the task can be requested

■ If the task supports reapproval from the Oracle BPEL Worklist Application, a user
can request information for reapproval.

■ The users who reapprove the task if reapproval is supported.

The workflow service identifies and invokes the assignment service for a particular
task to determine the task assignment.

For example, a simple assignment service iteration is as follows:

1. A client initiates an expense approval task whose routing is determined by the
assignment service.

2. The assignment service determines that the task assignee is jcooper.

3. When jcooper approves the task, the assignment service assigns the task to
jstein. The assignment service also specifies that a notification must be sent to
the creator of the task, jlondon.

4. jstein approves the task and the assignment service indicates that there are no
more users to which to assign the task.

Implementing an Assignment Service
The assignment service is implemented with the IAssignmentService interface.
The workflow service passes the following information to the assignment service to
determine the task assignment:

■ Task document — The task document that is executed by the workflow. The task
document contains the payload and other task information like current state, and
so on.

■ Map of properties — When an assignment service is specified, a list of properties
can also be specified to correlate callbacks with backend services that determine
the task assignees.

■ Task history — The task history is a list of chronologically ordered task documents
to trace the history of the task. The task documents in this list contain a subset of
attributes in the actual task (such as state, updatedBy, outcome,
updatedDate, and so on).

Configuring the Assignment Service

15-120 Oracle BPEL Process Manager Developer’s Guide

Example of Assignment Service Implementation

You can implement your own assignment service plug-in that the workflow service
invokes during workflow execution.

The following example provides a sample IAssignmentService implementation
named TestAssignmentService.java.

/* $Header: TestAssignmentService.java 24-may-2006.18:26:16 rarangas Exp $ */
/* Copyright (c) 2004, 2006, Oracle. All rights reserved. */
/*
 DESCRIPTION
 Interface IAssignmentService defines the callbacks an assignment
 service will implement. The implementation of the IAssignmentService
 will be called by the workflow service
 PRIVATE CLASSES
 <list of private classes defined - with one-line descriptions>
 NOTES
 <other useful comments, qualifications, etc.>
 MODIFIED (MM/DD/YY)
 rarangas 01/30/06 -
 */
/**
 * @version $Header: IAssignmentService.java 29-jun-2004.21:10:35 rarangas Exp
 $
 * @author rarangas
 * @since release specific (what release of product did this appear in)
 */
package oracle.bpel.services.workflow.test.workflow;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
import oracle.bpel.services.workflow.metadata.routingslip.model.*;
import oracle.bpel.services.workflow.metadata.routingslip.model.Participants;
import oracle.bpel.services.workflow.metadata.routingslip.model.ParticipantsType.*;
import oracle.bpel.services.workflow.task.IAssignmentService;
import oracle.bpel.services.workflow.task.ITaskAssignee;
import oracle.bpel.services.workflow.task.model.Task;
public class TestAssignmentService implements
 oracle.bpel.services.workflow.task.IAssignmentService {
 static int numberOfApprovals = 0;
 static String[] users = new String[]{"jstein", "wfaulk", "cdickens"};
 public Participants onInitiation(Task task,
 Map propertyBag) {
 return createParticipant();
 }

Notes:

■ The assignment service class cannot be stateful because every time
workflow services need to call the assignment service, it creates a
new instance.

■ The getAssigneesToRequestForInformation method can
be called multiple times because one of the criteria to show the
request-for-information action is that there are users to request
information. Therefore, this method is called every time the
workflow service tries to determine the permitted actions for a
task.

Configuring the Assignment Service

Oracle BPEL Process Manager Workflow Services 15-121

 public Participants onReinitiation(Task task,
 Map propertyBag) {
 return null;
 }
 public Participants onOutcomeUpdated(Task task,
 Map propertyBag,
 String updatedBy,
 String outcome) {
 return createParticipant();
 }
 public Participants onAssignmentSkipped(Task task,
 Map propertyBag) {
 return null;
 }
 public List getAssigneesToRequestForInformation(Task task,
 Map propertyBag) {
 List rfiUsers = new ArrayList();
 rfiUsers.add("jcooper");
 rfiUsers.add("jstein");
 rfiUsers.add("wfaulk");
 rfiUsers.add("cdickens");
 return rfiUsers;
 }
 public List getReapprovalAssignees(Task task,
 Map propertyBag,
 ITaskAssignee infoRequestedAssignee) {
 List reapprovalUsers = new ArrayList();
 reapprovalUsers.add("jstein");
 reapprovalUsers.add("wfaulk");
 reapprovalUsers.add("cdickens");
 return reapprovalUsers;
 }
 private Participants createParticipant() {
 if (numberOfApprovals > 2) {
 numberOfApprovals = 0;
 return null;
 }
 String user = users[numberOfApprovals++];

 ObjectFactory objFactory = new ObjectFactory();
 Participants participants = objFactory.createParticipants();
 Participant participant = objFactory.createParticipantsTypeParticipant();
 participant.setName("Loan Agent");
 ResourceType resource2 = objFactory.createResourceType(user);
 resource2.setIsGroup(false);
 resource2.setType("STATIC");
 participant.getResource().add(resource2);

 participants.getParticipantOrSequentialParticipantOrAdhoc().
 add(participant);
 return participants;
 }

}

Deploying a Custom Assignment Service
You must use one of the following methods to make an assignment service
implementation class and its related classes available in the class path of Oracle BPEL
Process Manager:

Workflow Service and Identity Service Related XPath Extension Functions

15-122 Oracle BPEL Process Manager Developer’s Guide

■ Load your classes in the SOA_Oracle_Home\bpel\system\classes directory
and unzip your JAR files in the same directory.

■ Change the Oracle BPEL Process Manager shared library to include your JAR files.

Custom Escalation Function
The custom escalation function enables you to integrate a custom rule in a workflow.
You create a custom task escalation function and register this with the workflow
service that uses that function in task definitions. The Advanced Settings section of
the Human Task editor enables you to integrate the rule in a human task.

Workflow Service and Identity Service Related XPath Extension Functions
Oracle BPEL Process Manager provides XPath extension functions for use with the
workflow services and the identity service. XPath extension functions mimic XPath 2.0
standards. Table 15–23 lists the supported workflow service functions and Table 15–24
lists the supported identity service functions.

Note:

■ You cannot create different versions of the assignment service for
use in different BPEL processes unless you change package names
or class names.

■ Java classes and JAR files in the suitcase are not available in the
class path and therefore cannot be used as a deployment model
for the assignment service.

■ The steps must be repeated for each node in a cluster.

See Also: "Specifying Escalation Rules" on page 15-47 for details

Table 15–23 Workflow Service Functions

Function Description See

hwf:clearTaskAssignees
()

Clears the task assignees in a
task.

"clearTaskAssignees" on
page D-28

hwf:createWordMLDocume
nt()

Creates a Word document by
transforming the given XSLT to
WordML

"createWordMLDocument"
on page D-29

hwf:getNotificationPro
perty()

Gets properties for a particular
notification.

"Contents of Notification"
on page 15-82

"getNotificationProperty"
on page D-29

hwf:getNumberOfTaskApp
rovals()

Gets the number of task
approvals.

"getNumberOfTaskApprov
als" on page D-30

hwf:getPreviousTaskApp
rover()

Gets the previous task approver. "getPreviousTaskApprover"
on page D-30

hwf:getTaskAttachmentB
yIndex()

Gets the task attachment by
attachment index.

"getTaskAttachmentByInde
x" on page D-30

hwf:getTaskAttachmentB
yName()

Gets the task attachment by
attachment name.

"getTaskAttachmentByNam
e" on page D-30

Workflow Service and Identity Service Related XPath Extension Functions

Oracle BPEL Process Manager Workflow Services 15-123

Deprecated Workflow Service and Identity Service Functions
Table 15–25 lists the workflow and identity service functions that are deprecated for
this release.

hwf:getTaskAttachmentC
ontents()

Gets the task attachment contents
by attachment name.

"getTaskAttachmentConten
ts" on page D-31

hwf:getTaskAttachments
Count()

Gets the number of task
attachments.

"getTaskAttachmentsCount
" on page D-31

hwf:getTaskAttachmentB
yIndex()

Gets the resource string for a
particular task

"getTaskAttachmentByInde
x" on page D-30

hwf:wfDynamicGroupAssi
gn()

Gets the name of an identity
service group, selected according
to the specified assignment
pattern.

"wfDynamicGroupAssign"
on page D-32

hwf:wfDynamicUserAssig
n()

Gets the name of an identity
service user, selected according
to the specified assignment
pattern.

"wfDynamicUserAssign" on
page D-33

Table 15–24 Identity Service Functions

Function Description See

ids:getDefaultRealmNam
e()

Gets the default realm name. "getDefaultRealmName" on
page D-23

ids:getGroupProperty() Gets a group property. "getGroupProperty" on
page D-24

ids:getManager() Gets the manager of a given user. "getManager" on page D-24

ids:getReportees() Gets the direct reportees of the
user.

"getReportees" on
page D-25

ids:getSupportedRealmN
ames()

Gets the supported realm names. "getSupportedRealmName
s" on page D-25

ids:getUserProperty() Gets a user property. "getUserProperty" on
page D-25

ids:getUserRoles() Gets the user roles. "getUserRoles" on
page D-26

ids:getUsersInGroup() Gets the users in a group. "getUsersInGroup" on
page D-26

ids:isUserInRole() Verifies if a user has a given role. "isUserInRole" on
page D-27

ids:lookupGroup() Gets the group object. "lookupGroup" on
page D-27

ids:lookupUser() Gets the user object. "lookupUser" on page D-28

Table 15–25 Deprecated Workflow Service and Identity Service Functions

Workflow Function Identity Service Functions

ora:getNumberOfTaskApprovals() ora:getGroupProperty()

Table 15–23 (Cont.) Workflow Service Functions

Function Description See

NLS Configuration

15-124 Oracle BPEL Process Manager Developer’s Guide

NLS Configuration
You can specify resource bundles for displaying task details in different languages in
Oracle BPEL Worklist Application.

In addition, the resource property file WorkflowLabels.properties can be used
for setting display names for the following:

■ Dynamic assignment functions

■ Payload mapping attribute labels

■ Task attributes

Summary
This chapter describes how you can integrate systems and services with human
workflow into a single end-to-end process flow using Oracle BPEL Process Manager.
The predefined workflow participant types are described, as are the components of
workflow services—the task service, task routing service, identity service, worklist
service, notification service, and others.

ora:getPreviousTaskApprover() ora:getManager()

ora:getTaskAttachmentByIndex() ora:getReportees()

ora:getTaskAttachmentByName() ora:getUserRoles()

ora:getTaskAttachmentContents() ora:getUsersInGroup()

ora:getTaskAttachmentCount() ora:isUserInRole()

ora:lookupGroup()

ora:lookupUser()

ora:getUserProperty()

See Also:

■ "Specifying Multilingual Settings" on page 15-48 for details about
resource bundles

■ "Internationalization of Attribute Labels" on page 15-113 and
"Configuring Display Names for Dynamic Assignment Functions"
on page 15-118 for additional details about the resource property
file WorkflowLabels.properties.

Table 15–25 (Cont.) Deprecated Workflow Service and Identity Service Functions

Workflow Function Identity Service Functions

Worklist Application 16-1

16
Worklist Application

The Oracle BPEL Worklist Application (Worklist Application) is a Web interface that
enables users to act on their assigned human workflow tasks. This chapter discusses
the sample Worklist Application that is provided with Oracle BPEL Process Manager,
and how you can modify it to create your own worklist application.

This chapter contains the following topics:

■ Use Cases for the Worklist Application

■ Overview of Worklist Application Concepts

■ Features of the Worklist Application

■ Accessing the Worklist Application in Local Languages

■ Customizing the Worklist Application

■ Building Clients for Workflow Services

■ Summary

Use Cases for the Worklist Application
You can use the Web interface of the Worklist Application for any activity that requires
you to act on tasks in a BPEL process. A manager can approve employee vacation
requests or a loan agent can review a loan application, each of which has been
submitted as part of a BPEL process. Supervisors or group administrators can use the
Worklist Application to analyze tasks assigned to the group and route them
appropriately. Worklist Application users can also update payloads, attach documents
or comments, and route the task to other users, in addition to completing tasks by
providing conclusions such as approvals or rejections.

The Worklist Application is demonstrated in the following use cases:

■ Vacation Request—In this use case, an employee files a vacation request that is
routed to his manager for approval. The manager sees the task in the Worklist
Application in the My Tasks tab.

■ Document Review—In this use case, an author submits a document for review by
multiple reviewers in parallel.

■ Expense Request Approval—In this use case, an employee’s expense request is
automatically routed to his manager for approval. The manager sees the task in
the Worklist Application in the My Tasks tab. After the manager’s approval, the
task may be routed further up the management chain, depending on the content of
the expense request. The BPEL process uses a decide activity to define the
approval chain for a human workflow task dynamically, using Oracle Business

Overview of Worklist Application Concepts

16-2 Oracle BPEL Process Manager Developer’s Guide

Rules. The business rules determine the approval level required for the expense
request, based on factors such as the amount of the request and the type of
expense. The sample demonstrates how the approval chain for each expense
report can be different, and how users can change the rules governing the
approvals at run time.

■ Help Desk Service Request—In this use case, the supervisor resolves a service
request by assigning it to any of his reportees using ad hoc routing. The assignee
then approves the task after he responds to the service request.

■ Loan Demo Plus—In this use case, a loan application is assigned to the LoanAgent
role. All loan agents see the task in their My & Group tasks view. One of the loan
agents claims the task and reviews it. If the loan agent approves it, and if the loan
amount is greater than $100,000, then the task is routed further, to two levels of
management approval. When the loan agent’s managers log in to their worklists,
they see tasks that were routed to them and the actions performed by the previous
approvers (for example, suggested APR, comments, or attachments).

Sample applications that are built with the workflow service APIs and demonstrate
common features such as listing, updates, approvals, and login and logout are also
provided.

The OrderBooking tutorial also demonstrates how to use the Worklist Application to
approve a purchase order manually.

Overview of Worklist Application Concepts
Chapter 15, "Oracle BPEL Process Manager Workflow Services" discussed how BPEL
workflow services enable you to interweave human interactions along with
connectivity to systems and services into an end-to-end process flow. The workflow
service provides a programmatic interface to view and manage tasks from the BPEL
process. The tasks displayed depend on the user’s profile, and the actions allowed
depend on the user’s privileges. This Worklist Application is layered on top of the
BPEL workflow service.

See: SOA_Oracle_Home\bpel\samples\demos for the following
directories:

■ VacationRequest

■ DocumentReview

■ ExpenseReportApproval

■ HelpDeskServiceRequest

■ LoanDemoPlus

See: SOA_Oracle_Home\bpel\samples\ for the following:

■ demos\ExpenseReportApproval

■ demos\LoanDemoPlus

■ tutorials\132.UserTasks

■ utils\AsyncLoanService\ StarLoanUI

See: Oracle BPEL Process Manager Order Booking Tutorial

Overview of Worklist Application Concepts

Worklist Application 16-3

Worklist Application User Types
The Worklist Application recognizes different types of users, as listed in Table 16–1.

See "Identity Service" on page 15-102 for more information about predefined roles in
the identity service.

Task Components
A work item or task that is assigned to a user has the following components:

■ Task attributes—Includes task title, number, status, priority, expiration,
identification key, assignees, and other flex fields.

■ Task form—Consists of detailed information (the payload) about the task; for
example, a loan application in the LoanDemoPlus sample or support ticket details
in the HelpDeskServiceRequest sample.

■ Task comments—Comments entered by various users who have participated in
the workflow.

■ Task attachments—Other documents or reference URLs that are associated with a
task. These are typically associated with the workflow by the BPEL process or
attached and modified by any of the participants in the workflow.

■ Task history—Consists of the approval sequence and the update history for the
task. The history maintains an audit trail of the actions performed by the
participants in the workflow and a snapshot of the task payload and attachments
at various points in the workflow.

The types of actions that users can perform on a task include:

■ Update task details—The task form can include content that needs to be added or
modified by the task reviewer. The reviewer can modify the task priority, include
comments, or add attachments to the task.

■ Change outcome for the task—As part of the process model, the workflow
designer can include various custom outcomes for the task (for example, approve
or reject, acknowledge, defer). If a user modifies a task outcome, it is removed
from his worklist and routed to the next approver or back to the business process
based on the workflow pattern.

Table 16–1 Worklist Application User Types

Type of User Access

End user Acts on tasks assigned to him or his group and has access to system and custom
actions, routing rules, and custom views

Supervisor (manager) Acts on the tasks, reports, and custom views of his reportees, in addition to his own
end-user access

Process owner Acts on tasks belonging to the process but assigned to other users, in addition to his
own end-user access

Group administrator Manages group rules and dynamic assignments, in addition to his own end-user
access

Workflow administrator Administers tasks that are in an errored state, for example, tasks that must be
reassigned or suspended. The workflow administrator can also change application
preferences and map flex fields, and manage rules for any user or group, in addition
to his own end-user access.

Features of the Worklist Application

16-4 Oracle BPEL Process Manager Developer’s Guide

■ Perform system actions—In addition to the custom actions specified as part of
workflow modeling, the user can perform other system actions such as escalate or
delegate. These actions are available on all tasks based on the user’s privileges.
The process owner or workflow administrator can always perform any of these
operations on processes that they own. See "Task Actions" on page 16-10 for more
information about system actions.

Features of the Worklist Application
Use Internet Explorer 6.0 or Mozilla Firefox 1.0.4 to access the Worklist Application.

1. Open a Web browser.

2. Go to the following URL:

http://hostname:portnumber/integration/worklistapp/Login

■ hostname is the name of the host on which Oracle BPEL Process Manager is
installed

■ The portnumber used at installation (typically 9700 or 8888) is noted in
bpelsetupinfo.txt, at

SOA_Oracle_Home\install\

You can also select Start, then All Programs, then Oracle - Oracle_Home, then
Oracle BPEL Process Manager, and then Worklist Application.

3. Type the username and password, and click Login.

You can use jstein and welcome1 to access the sample Worklist Application.

The username and password must exist in the user community provided to JAZN.
See Oracle BPEL Process Manager Administrator’s Guide for the organizational
hierarchy of the demonstration user community used in examples throughout this
chapter. See "Identity Service" on page 15-102 for information on JAZN.

The Worklist Application displays tasks specific to the logged-in user based on the
user’s permissions and assigned groups and roles. Figure 16–1 shows the Worklist
Application for the user jstein, who is a manager and is responsible for approving or
rejecting his reportees’ vacation requests.

Features of the Worklist Application

Worklist Application 16-5

Figure 16–1 Worklist Application—Task Listing (Home) Page

All task interactions—listing tasks, viewing task details, reassigning tasks, performing
actions on tasks, setting outcomes, and so on—are initiated from the Task Listing
(home) page. As Figure 16–1 shows, when jstein logs in to the Worklist Application, he
sees the Task Listing (home) page, which shows the tasks assigned to him and to the
group to which he belongs. Because jstein is a manager, the My Staff Tasks tab also
appears. For tasks assigned to jstein, he selects an action from the Actions list to
participate in the workflow. For tasks assigned to a group to which jstein belongs, he
must claim the task before selecting an action. The task is not available to other users
until jstein releases it back to the group.

From the home page, you can retrieve worklist tasks by using the Search field to do a
keyword search or by using the Category, Priority, and Status fields to specify search
criteria. The category filters that are available depend on which tab is selected. From
the My Tasks tab, the category filters are My, Group, My & Group, and Previous
(tasks worked on in the past). From the My Staff Tasks tab, the only category filter is
Reportees. From the Initiated Tasks tab, the only category filter is Creator. In addition
to the My Tasks, My Staff Tasks, and Initiated Tasks tabs, other tabs may be
displayed, depending on the role granted to the logged-in user, as described in
Table 16–2 (Tabs). From the Administration Tasks tab, the category filter is Owner if
the user (who has been granted the BPMWorkflowAdmin role in order to see this tab)
owns the tasks and Admin otherwise.

Table 16–2 describes the salient features of the Task Listing (home) page of the Worklist
Application shown in Figure 16–1.

Features of the Worklist Application

16-6 Oracle BPEL Process Manager Developer’s Guide

Table 16–2 Contents of the Worklist Application My Tasks Page

Location in
Figure 16–1 Page Element

Top left Tabs—The tabs displayed depend on the role granted to the logged-in user. Everyone sees My
Tasks and Initiated Tasks. Managers also see My Staff Tasks. A user with the
BPMWorkflowAdmin role also sees the Administration Tasks, Manage Rules, Flex Field
Mappings, and Application Customization tabs. See "Using the Administration Functions" on
page 16-27 for more information.

Welcome jstein [jazn.com]—In the banner area, the logged-in user’s name appears. Click the user
name to display information. See "User and Group Information" on page 16-39 for more
information.

Top right Reports link—The following reports are available: Unattended Tasks Report, Tasks Priority
Report, Tasks Cycle Time Report, Tasks Productivity Report. See "Creating Reports" on page 16-33
for more information.

Preferences link—Manages the logged-in user’s preferences, including setting vacation and other
workflow rules, managing custom views, and customizing worklist displays. See "Setting
Preferences" on page 16-21 for more information.

Left pane Work Queues—Standard, custom, and proxy views. See "Using Work Queues" on page 16-20 for
more information.

Features of the Worklist Application

Worklist Application 16-7

This section contains the following topics:

■ Using the Task Details Page

■ Using Advanced Search

■ Viewing a Bar Chart of Task Status

■ Using Work Queues

■ Setting Preferences

■ Using the Administration Functions

Center pane Show (Hide) Chart button—Toggles to show or hide a bar chart of the listed tasks in the selected
task filter, broken down by status. See "Viewing a Bar Chart of Task Status" on page 16-19 for more
information.

Center pane,
Search area

Search Keyword field—Enter a keyword to search task titles, comments, identification keys, and
the flex string fields of tasks that qualify for the specified filter criterion.

Category—Select from the following:

■ My—Retrieves tasks directly assigned to the logged-in user

■ Group—Tasks assigned to the groups to which the logged-in user belongs

■ My & Group—Tasks assigned to the user and the groups to which the logged-in user belongs

■ Previous—Tasks that the logged-in user has updated

Priority—Select from Any or 1 through 5, where 1 is the highest priority.

Status—Select from the following: Any, Assigned, Completed, Suspended (can be resumed later),
Withdrawn, Expired, Errored (while processing), Information Requested

Advanced Search link—Provides additional search filters. See "Using Advanced Search" on
page 16-17 for more information.

Center pane,

task list area

The default display shows the following columns. You can change the display from the
Preferences link. See "Display Preferences" on page 16-26 for more information.

Task Number—The task number generated when the BPEL process was created.

Title—The title specified when the human workflow task was created. Tasks associated with a
purged or archived process instance do not appear. See "Specifying the Task Title, Priority,
Outcome, and Owner" on page 15-14 for more information.

Priority—The priority specified when the human workflow task was created. See "Reviewing the
Sections of the Human Task Editor" on page 15-14 for more information.

Assigned Users—The assignments specified when the human workflow task was created. See
"Assigning Task Participants" on page 15-22 for more information.

Assigned Groups—The assignments specified when the human workflow task was created. See
"Assigning Task Participants" on page 15-22 for more information.

State—One of the following: Assigned, Completed, Errored, Expired, Info Requested, Stale,
Suspended, and Withdrawn. See "Overriding Default System Actions" on page 15-49 for more
information.

Created Date—Date and time the task was created using Oracle BPEL Process Manager

Expiration Date—Date and time the tasks expires, specified when the human workflow was
created.

Actions—The group action (Claim) and the custom actions (for example, Accept and Reject) that
were defined for the workflow. Other possible actions for a task, such as system actions, are
displayed on the Task Details page for a specific task. See "Using Advanced Search" on page 16-8
for more information.

Table 16–2 (Cont.) Contents of the Worklist Application My Tasks Page

Location in
Figure 16–1 Page Element

Features of the Worklist Application

16-8 Oracle BPEL Process Manager Developer’s Guide

■ Creating Reports

■ User and Group Information

Using the Task Details Page
If you click a task in the Task Title column, the Task Details page for that task is
displayed, as shown in Figure 16–2.

Features of the Worklist Application

Worklist Application 16-9

Figure 16–2 Task Details Page

Features of the Worklist Application

16-10 Oracle BPEL Process Manager Developer’s Guide

This section describes the following elements of the Task Details page:

■ Task Actions

■ Request Status

■ Header Section

■ Payload Section

■ Comments and Attachments Section

■ History Section

■ Routing

■ Requesting More Information

■ Reassignment

■ Parallel Tasks

■ Determining Action Permissions

Task Actions
Figure 16–3 shows a Task Action list. The actions in the list depend on the task design,
the state of the task (for example, if the task has been completed, then no actions are
listed), and the roles assigned to the logged-in user. Custom actions (actions defined in
the BPEL process), such as Accept or Reject, are listed first. System actions, such as
Escalate or Suspend, are listed below a separator line.

Figure 16–3 Task Actions List

You act on tasks using either the Task Action list or a button. The Task Action list
contains actions that do not require additional input, such as accept, reject, renew, and
suspend. Buttons are provided for actions that require additional input, such as
reassignment and requests for information.

System actions are available on all tasks based on the user’s privileges. Table 16–3 lists
system actions.

Features of the Worklist Application

Worklist Application 16-11

After you select one of the actions, the task is routed to the next step, depending on
how the business process was designed. When a task is completed, all actions and
form elements are disabled.

Request Status
For every update request (custom or system action) that you submit, the status of the
request is displayed in the left portion of the header. If a request is successful, then you
see a confirming message, as shown near the top of the page in Figure 16–4.

Table 16–3 System Task Actions

Action Description

Claim If a task is assigned to a group or multiple users, then the task must be claimed first.
Claim is the only action available in the Task Action list for group or multiuser
assignments. After a task is claimed, all applicable actions are listed.

Escalate If you are not able to complete a task, you can escalate it and add an optional
comment in the Comments area. The task is reassigned to your manager.

Pushback Use this action to send a task up one level in the workflow to the previous assignee.

Reassign If you are a manager, you can delegate a task to reportees. A user with
BPMWorkflowReassign privileges can delegate a task to anyone.

Release If a task is assigned to a group or multiple users, it can be released if the user who
claimed the task cannot complete the task. Any of the other assignees can claim and
complete the task.

Renew If a task is about to expire, you can renew it and add an optional comment in the
Comments area. The task expiration date is extended one week. A renewal appears in
the task history. The renewal duration for a task can be controlled by an optional
parameter, oracle.tip.worklist.samples.taskactin.renew.duration, in
the file pc.properties, which appears in SOA_Oracle_
Home\bpel\system\services\config. The default value is P7D (seven days).

Submit More Information
and Request More
Information

Use these actions if another user requests that you supply more information or if you
want to request more information from the task creator or any of the previous
assignees. If reapproval is not required, then the task is assigned to the next approver
or the next step in the business process.

Suspend and Resume If a task is not relevant at present, you can suspend it. These options are available
only to users who have been granted the BPMWorkflowSuspend role. Other users
can access the task by selecting Previous in the task filter or by looking up tasks in the
Suspended status. Buttons that update a task are disabled after suspension.

Withdraw If you are the creator of a task and do not want to continue with it, for example, you
want to cancel a vacation request, you can withdraw it and add an optional comment
in the Comments area. The business process determines what happens next. You can
use the Withdraw action on the home page by using the Creator task filter.

Features of the Worklist Application

16-12 Oracle BPEL Process Manager Developer’s Guide

Figure 16–4 A Successful Update Request

If a request is not successful, then you see an error message, as shown in Figure 16–5.
You can click the link for additional information about the error.

Figure 16–5 Error Message Display

The error shown in Figure 16–5 occurs when a user has attempted an action that is not
permitted. This is possible in the following scenarios:

■ The task expired between the time the user loaded the page and actually
performed the action.

■ The task was claimed and updated concurrently by another user (such as a
manager, owner, or administrator) between the time the user loaded the page and
actually performed the action.

Features of the Worklist Application

Worklist Application 16-13

Errored tasks are not assigned to a specific user. They are only assigned to the
bpeladmin user. If you are a user other than bpeladmin and want to see these
errors, select All in the Category list and Errored or Any in the Status list.

Header Section
Figure 16–6 shows the header section. Header information includes the task number
and title; the state, outcome, and priority of the BPEL process, and information about
who created, updated, claimed, or is assigned to the task. It also displays dates related
to task creation, last modification, and expiration.

Figure 16–6 Header Section of the Task Details Page

Payload Section
Figure 16–7 shows the payload section for the Vacation Request Process Request
workflow. The fields displayed—Creator, From Date, To Date, Reason—reflect how
the BPEL process for vacation approval was designed, using the autogenerated JSP.

Figure 16–7 Payload Section

See "Automatically Generating a Simple Task Display Form" on page 15-68 for
information on using the autogenerated JSP in your workflow design.

Comments and Attachments Section
Figure 16–8 shows where you add or delete comments and attachments. To add or
delete a comment or attachment, you must have permission to update the task.

Features of the Worklist Application

16-14 Oracle BPEL Process Manager Developer’s Guide

Figure 16–8 Adding a Comment or Attachment

A newly added comment and the comment writer’s username are appended to the
existing comments. A trail of comments is maintained throughout the life cycle of the
task. When adding attachments, you can use an absolute path name or browse for a
file or provide a URL.

History Section
Figure 16–9 shows the short history for a vacation approval task.

Figure 16–9 History Section of the Task Details Page

The short history for a task lists all versions created by the following tasks:

■ Initiate task

■ Reinitiate task

■ Update outcome of task

■ Completion of task

■ Erroring of task

■ Expiration of task

■ Withdrawal of task

■ Alerting of task to the error assignee

You can include the following actions in the short history list by modifying the
shortHistoryActions element in

SOA_Oracle_Home\bpel\system\services\config\wf_config.xml

■ Acquire

■ Adhoc route

Features of the Worklist Application

Worklist Application 16-15

■ Auto release of task

■ Delegate

■ Escalate

■ Information request on task

■ Information submit for task

■ Override routing slip

■ Update outcome and route

■ Push back

■ Reassign

■ Release

■ Renew

■ Resume

■ Skip current assignment

■ Suspend

■ Update

The full history lists all version changes in a task.

Routing
If there is no predetermined sequence of approvers or if the workflow was designed to
permit ad hoc routing, then the task can be routed in an ad hoc fashion. For such tasks,
a Route button appears on the Task Details page. From the Routing page, you can look
up one or more users for routing. When you specify multiple assignees, you can
choose whether the list of assignees is for simple (group assignment to all users),
sequential, or parallel assignment. In the case of parallel assignment, you provide the
percentage of votes required for approval.

Requesting More Information
From the Task Details page, you can request more information by using the Request
Info button. The Reapproval Needed field appears if previous approvers must
reapprove given the additional information, assuming that the process was designed
to support reapproval. You can also add comments. After you have requested
additional information, the task is assigned to the user from whom the additional
information is needed. The user from whom additional information is requested uses
Submit More Info to fulfill the request.

Reassignment
From the Task Details page, you can reassign a task using the Reassign button. As
Figure 16–10 shows, you can either reassign (transfer) or delegate:

Features of the Worklist Application

16-16 Oracle BPEL Process Manager Developer’s Guide

Figure 16–10 Reassigning Tasks

■ Reassign (transfer task to another user or group)—The task is moved from the
assignee’s worklist to another user’s worklist. The newly assigned user then acts
on the task, rather than the original user.

■ Delegate (allow specified user to act on my behalf)—The task is delegated to
another user, but it shows up in both the original user’s and the delegated user’s
worklists. The delegated user can act on behalf of the original assignee.

Use the Search button to find assignees and the up and down arrows to select or
deselect assignees. Wildcard search is supported.

A supervisor can always reassign tasks to any of his reportees. Users with the
BPMWorkflowReassign role can assign tasks to any users in the organization.

Features of the Worklist Application

Worklist Application 16-17

Parallel Tasks
Parallel tasks are created when a parallel flow pattern is specified for scenarios such as
voting. In this pattern, the parallel tasks have a common parent. The parent task is
visible to a user only if the user is an assignee or an owner or creator of the task. The
parallel tasks themselves (referred to as subtasks) are visible to whomever the task is
assigned, just like any other task. It is possible to view the subtasks from a parent task.
In such a scenario, the Task Details page of the parent task contains a View SubTasks
button. The SubTasks page lists the corresponding parallel tasks. In a voting scenario,
if any of the assignees updates the payload or comments or attachments, the changes
are visible only to the assignee of that task. A user who can view the parent task (such
as the final reviewer of a parallel flow pattern), can drill down to the subtasks and
view the updates made to the subtasks by the participants in the parallel flow.

Determining Action Permissions
A user can view a task when associated with the task as one of the following: current
assignee (directly or by group membership), current assignee’s manager, creator,
owner, or a previous actor.

A user’s profile determines his group memberships and roles. The roles determine a
user’s privileges. Apart from the privileges, the exact set of actions a user can perform
is also determined by the state of the task, the custom actions, and restricted actions
defined for the task flow at design time.

The following algorithm is used to determine the actions a user can perform on a task:

1. Get the list of actions a user can perform based on the privileges granted to him.

2. Get the list of actions that can be performed in the current state of the task.

3. Create a combined list of actions that appear on the preceding lists.

4. Remove any action on the combined list that is specified as a restricted action on
the task.

The resulting list of actions is displayed in the listing page and the Task Details page
for the user. When a user requests a specific action, such as claim, suspend, or reassign,
the workflow service ensures that the requested action is contained in the list
determined by the preceding algorithm.

Step 2 in the preceding algorithm deals with many cases. If a task is in a final,
completed state (after all approvals in a sequential flow), an expired state, a
withdrawn state, or an errored state, then no further update actions are permitted. In
any of the these states, the task, task history, and subtasks (parent task in parallel flow)
can be viewed. If a task is suspended, then it can only be resumed or withdrawn. A
task that is assigned to a group must be claimed before any actions can be performed
on it.

See "Identity Service" on page 15-102 for information about the identity service and
how privileges can be assigned to users.

Using Advanced Search
If you click the Advanced Search link, the page shown in Figure 16–11 is displayed.

Features of the Worklist Application

16-18 Oracle BPEL Process Manager Developer’s Guide

Figure 16–11 Advanced Search Page

When you search on a task type, the Select Workflow Task Type page is displayed.
From this page, you select a task type and are returned to the Advanced Search page.

As Figure 16–12 shows, you can filter the search by adding conditions.

Features of the Worklist Application

Worklist Application 16-19

Figure 16–12 Adding Conditions to an Advanced Search

Conditions can be AND operations (the All of the following option) or OR operations
(the Any of the following option). Each filter specifies a combination of attribute,
operator, and value. The operator and value are tied to the type of the attribute and
change based on the attribute chosen. For example, for identity fields such as Created
By or Updated By, a flashlight icon appears so that you can search for names using the
identity browser. For date fields, a calendar icon appears so that you an pick a date.

Viewing a Bar Chart of Task Status
When you click the bar chart icon, a bar chart of the tasks is displayed, as shown in
Figure 16–13.

Features of the Worklist Application

16-20 Oracle BPEL Process Manager Developer’s Guide

Figure 16–13 My Tasks Page with Chart Displayed

The bar chart shows the tasks broken down by status, with a count of how many tasks
in each status category.

Using Work Queues
The Work Queues pane, shown in Figure 16–14, is displayed by default. (Use the work
queues icon to reopen a closed pane.)

Features of the Worklist Application

Worklist Application 16-21

Figure 16–14 Work Queues Pane

The Work Queues pane displays the following:

■ Inbox—Shows all tasks that qualify for the user-chosen filter. The default shows
all tasks, including high priority tasks, tasks due soon, new tasks, and so on.

■ My Work Queues—Shows standard work queues, and custom work queues that
users have defined based on specific search criteria.

■ Proxy Work Queues—Shows queues to which a user has granted access to other
users. Other users can act on those tasks on behalf of the user who granted access.

Setting Preferences
From the Preferences link, the following kinds of preferences are available:

■ Vacation Preferences

■ My Rules

■ Group Rules

■ Custom Views

■ Display Preferences

Vacation Preferences
Use the vacation preferences to make yourself unavailable for task assignments. As
Figure 16–15 shows, you specify a vacation date range, and optionally create a rule.
Based on the rules you specify, tasks can be approved automatically or reassigned to
someone else, for example.

Features of the Worklist Application

16-22 Oracle BPEL Process Manager Developer’s Guide

Figure 16–15 Setting a Vacation Preference in the Worklist Application

As Figure 16–16 shows, when creating a rule, you can specify which task the rule
applies to, add conditions, and delegate or reassign the task to another user or a group.

Figure 16–16 Creating a Rule in the Worklist Application

My Rules
Use a rule to specify conditions which, if true, cause an automatic action on a task.
Examples include vacation rules, as discussed in the previous section, or a rule in
which certain types of tasks are approved automatically. As Figure 16–16 shows, you
can specify the following when creating a rule:

■ Rule name and description

■ Which task the rule applies to—If unspecified, then the rule applies to all tasks.

■ When the rule applies

Features of the Worklist Application

Worklist Application 16-23

■ Conditions on the rule—These are filters that further define the rule, such as
specifying that a rule acts on priority 1 tasks only, or that a rule acts on tasks
created by a specific user. The conditions can be based on standard task attributes
as well as any flex fields that have been mapped for the specific tasks. See "Using
the Administration Functions" on page 16-27 for information about mapping flex
fields.

Figure 16–17 shows how you add conditions to a rule.

Figure 16–17 Adding Conditions on a Rule

■ Actions

– Reassign to—You can reassign tasks to subordinates or groups you manage. If
you have been granted the BPMWorkflowReassign role, then you can reassign
tasks to any user or group.

– Delegate to—You can delegate to any user or group.

– Set outcome to—You can specify an automatic outcome if the workflow task
was designed for those outcomes, for example, accepting or rejecting the task.
The rule must be for a specific task type. If a rule is for all task types, then this
option is not displayed.

– Take no action—Use this action to prevent other more general rules from
applying. For example, if you want to reassign all your tasks to another user
while you are on vacation, with the exception of loan requests, for which you
want no action taken, then create two rules. The first rule specifies that no
action is taken for loan requests; the second rule specifies that all tasks are
reassigned to another user. The first rule will prevent reassignment for loan
requests.

Figure 16–18 shows the Rules List page. Rules are executed in the order in which they
are listed. Use the Move Up and Move Down buttons to reorder rules. If a rule meets
its filter conditions, then it is executed and no other rules are evaluated. For your rule
to execute, you must be the only user assigned to that task. If the task is assigned to
multiple users (including you), the rule does not execute.

Features of the Worklist Application

16-24 Oracle BPEL Process Manager Developer’s Guide

Figure 16–18 Setting User Rules in Worklist Preferences

Figure 16–18 also shows the following:

■ You can create, delete, and edit rules (click the rule name).

■ A rule is active (see the Active column in Figure 16–18) if the date range you
specified when you created the rule is current.

Group Rules
Use a group rule to specify how a workflow rule applies to members of a group.
Examples of group rules include:

■ Assigning tasks from a particular customer to a member of the group

■ Ensuring an even distribution of task assignments to members of a group by using
round-robin assignment

■ Ensuring that high-priority tasks are routed to the least busy member of a group

Creating a group rule is similar to creating other rules (see Figure 16–16, "Creating a
Rule in the Worklist Application"); only some of the actions are different. For group
rules, you can specify the following actions:

■ Reassign via—You can specify a criterion to determine which member of the
group gets the assignment. This dynamic assignment criterion can include
round-robin assignment, assignment to the least busy group member, or
assignment to the most productive group member. You can also add your custom
functions for allocating tasks to users in a group. See the following for more
information:

– "Runtime Config Service" on page 15-111 for more information about dynamic
assignment

– "Implementing a Dynamic Assignment Function" on page 15-114 for more
information about custom functions

■ Reassign to—As with user rules, you can reassign tasks to subordinates or groups
you directly manage. If you have been granted the BPMWorkflowReassign role,
then you can reassign tasks to any user or group (outside your management
hierarchy).

■ Take no action—As with user rules, you can create a rule with a condition that
prevents a more generic rule from being executed.

Features of the Worklist Application

Worklist Application 16-25

The group Rules List page is similar to the user Rules List page, with the addition of a
list of the groups that you (as the logged-in user) manage. You can select from this list
to specify the group for which you are creating a rule.

Custom Views
Use a custom view to customize your task list display. Examples of custom displays
include:

■ Ordering the task list in a particular way

■ Displaying only those tasks that meet a particular condition

■ Displaying specific attributes (columns) in your task list

You can also grant other users access to your views.

Figure 16–19 shows the Custom Views page.

Figure 16–19 The Custom Views Page

The following functionality is available:

■ You can create, edit, copy, and delete views, and choose to make the view visible
or not in the My Views section of the Work Queues pane.

■ For each view in the Granted Views list, you can choose to make the view visible
or not in the Delegated Views section of the Work Queues pane on the Task List
page.

■ Details are available for granted views. You can rename a view granted to you.

Figure 16–20 shows the Create Custom View page.

Features of the Worklist Application

16-26 Oracle BPEL Process Manager Developer’s Guide

Figure 16–20 Creating a Custom View

You can specify the following when creating a custom view:

■ General—You must specify a name for your view.

■ Columns—You can specify which columns you want to display in your task list.
The columns in the views can be standard task attributes as well as any flex fields
that have been mapped for the specific task type. See "Using the Administration
Functions" on page 16-27 for information about mapping flex fields.

The default columns are the same as the columns in your inbox. You can also
choose to show tasks actions in your task list and select ascending or descending
order for a single column.

■ Filter—You can specify which task categories you want to display, for example,
My, Group, My & Group, and so on. You can also add conditions, for example, a
condition that displays a task only when the title contains the words loan request.

■ Sharing—You can grant access to this view to another user; for example, if jstein
grants access to a My & Group category of tasks to jcooper, then jcooper will see
jstein’s tasks and group tasks. Sharing a view with another user is similar to
delegating all tasks that correspond to that view to the other user; that is, the other
user can act on your behalf. Shared views are visible in the Proxy Work Queues
section of the worklist (shown in Figure 16–14, "Work Queues Pane").

Display Preferences
Use display preferences to customize how tasks are displayed in your worklist. As
Figure 16–21 shows, you can use the following options to customize the display:

■ Maximum number of tasks per page

■ Page height in pixels

■ Default ordering of tasks

■ Show the following columns in the inbox view

■ Show task actions in task list

Features of the Worklist Application

Worklist Application 16-27

Figure 16–21 Setting Display Preferences in the Worklist Application

Using the Administration Functions
Administrators are users who have been granted the BPMWorkflowAdmin role.
Administrators see the following tabs on the Worklist Application home page:

■ Manage Rules

■ Flex Field Mappings

■ Application Customization

Manage Rules
An administrator uses the Manage Rules tab, shown in Figure 16–22, to view or edit
the rules for any user or group.

Features of the Worklist Application

16-28 Oracle BPEL Process Manager Developer’s Guide

Figure 16–22 The Manage Rules Tab

This tab is useful if an administrator is needed to fix a problem with a rule. Also, for a
user who no longer works for the company, administrators can set up a rule for that
user so that all tasks assigned to the user are automatically assigned to another user or
group.

Flex Field Mappings
An administrator uses the Flex Field Mappings tab, shown in Figure 16–23, to promote
data from the payload to inline attribute flex fields. By promoting data to flex fields,
the data becomes searchable and can be displayed as columns in the Task Listing
(home) page.

Figure 16–23 The Flex Field Mappings Tab

Creating Labels To create a flex field mapping, an administrator first defines a semantic
label, which provides a more meaningful display name for the flex field attribute.
Click Create Label to use the Create Payload Mapping Label interface, as shown in
Figure 16–24.

Features of the Worklist Application

Worklist Application 16-29

Figure 16–24 Creating a Label

As the figure shows, the label amount is mapped to the flex field NumberAttribute1,
The payload attribute is also mapped to the label. In this example, the Number
attribute type is associated with the amount label. The end result is that the value of
the Number attribute is stored in the NumberAttribute1 column, and amount is the
column label for that value as displayed in the user’s task list. Labels can be reused for
different task types. You can delete a label only if it is not used in any mappings.

A mapped payload attribute can also be displayed as a column in a custom view, and
used as a filter condition in both custom views and workflow rules. The display name
of the payload attribute is the attribute label that is selected when doing the mapping.

Browsing All Mappings When this option is selected, all flex field mappings defined for
all task types are displayed, as shown in Figure 16–25.

Figure 16–25 Browsing Mappings

To display all the payload attributes mapped to a particular label, click the respective
row in the label table.

Features of the Worklist Application

16-30 Oracle BPEL Process Manager Developer’s Guide

Editing Mappings by Task Type When this option is selected, administrators can view or
edit flex field mappings for a particular task type.

To edit mappings by task type:

1. Select Edit mappings by task type and click the flashlight icon.

2. Select a task type and click Select, as shown in Figure 16–26.

Figure 16–26 Selecting a Task Type

3. With the task type displayed in the Edit mappings by task type field, click Go.

All current mappings for the task type are displayed, as shown in Figure 16–27.

Features of the Worklist Application

Worklist Application 16-31

Figure 16–27 Selecting a Label

4. Select a mapping label and click Select.

Figure 16–28 shows a completed mapping.

Figure 16–28 Flex Field Mapping Created

If you want to create a new label, click Create Label and provide a label name, as
shown in Figure 16–29. Note that the data type will be restricted based on the data
type of the payload attribute.

Features of the Worklist Application

16-32 Oracle BPEL Process Manager Developer’s Guide

Figure 16–29 Creating a Payload Mapping Label

5. To add a new mapping, click Add Row (if needed) and select a payload attribute
from the list.

6. Click the flashlight icon and select a label.

Restrictions Note the following restrictions:

■ Only simple type payload attributes can be mapped. Mapping specific simple
types within a complex type is not supported.

■ A flex field (and thus a label) can be used only once per task type.

■ Data type conversion is not supported for the number or date data types. For
example, you may not map a payload attribute of type string to a label of type
number.

Application Customization
An administrator uses the Application Customization tab, shown in Figure 16–30, to
customize the appearance of the Worklist Application.

Features of the Worklist Application

Worklist Application 16-33

Figure 16–30 The Application Customization Tab

Values can be specified for the following parameters:

■ Login page realm label—If the identity service is configured with multiple realms,
then the Worklist Application login page displays a list of realm names. LABEL_
LOGIN_REALM specifies the resource bundle key used to look up the label to
display these realms. The term realm can be changed to fit the user
community—terms such as country, company, division, or department may be more
appropriate. Administrators can customize the resource bundle, specify a resource
key for this string, and then set this parameter to point to the resource key.

See "Customizing the Login Page" on page 16-44 for information on customizing
the image on the login page.

■ Branding image location—This is the image displayed in the top left corner of
every page of the Worklist Application. (The Oracle logo is the default.)
Administrators can provide a .gif, .png, or .jgp file for the logo. This file must
be in the public_html directory of the Worklist Application.

See "Customizing Header Information" on page 16-44 for information about the
header.

■ Application resource bundle classname—A resource bundle provides the strings
displayed in the Worklist Application. By default, this is the class at:

oracle.bpel.services.workflow.resource.WorkflowResourceBundle

Administrators can change the strings shown in the application by copying
WorkflowResourceBundle and creating their own. This parameter allows
administrators to specify the classpath to this custom resource bundle.

Creating Reports
The Worklist Application offers the following reports from the Reports link:

■ Unattended Tasks Report

■ Tasks Priority Report

■ Tasks Cycle Time Report

■ Tasks Productivity Report

To create a report:
1. Click the Reports link.

2. Click the name of the report you want.

3. Provide inputs to define the search parameters of the report.

Features of the Worklist Application

16-34 Oracle BPEL Process Manager Developer’s Guide

See the following sections on each report type for information about input
parameters.

4. Click Run.

As shown in Figure 16–31, report results (for all report types) are displayed in both a
table format and a bar chart format. The input parameters used to run the report are
displayed under Report Inputs, in the lower-left corner (may require scrolling to
view).

Figure 16–31 Report Display—Table Format, Bar Chart Format, and Report Inputs

Unattended Tasks Report
This report provides an analysis of tasks assigned to users' groups or reportees' groups
that have not yet been claimed (unattended tasks). Use the following input parameters
to define the report:

■ Assignee—The tasks analyzed are based on the category chosen as it applies to the
user; that is, tasks assigned to the user's groups, tasks assigned to the reportee's
groups, tasks where the user is a creator, and tasks where the user is an owner.

■ Creation Date (range)

■ Expiration Date (range)

■ Task State

■ Priority

See Table 16–2 on page 16-6 for descriptions of Creation (or Created) Date, Expiration
Date, Task State (or Status), and Priority.

Figure 16–32 shows an example of an Unattended Tasks Report.

Features of the Worklist Application

Worklist Application 16-35

Figure 16–32 Unattended Tasks Report

The report shows that the California group has 15 unattended tasks, the Supervisor
group has 7 unattended tasks, and the LoanAgentGroup has 11 unattended tasks. The
unattended (unclaimed) tasks in this report are all DocumentReview tasks. If more
than one type of unattended task exists when a report is run, all task types are
included in the report, and the various task types are differentiated by color.

Tasks Priority Report
This report provides an analysis of the number of tasks assigned to a user, reportees, or
their groups, broken down by priority. Use the following input parameters to define
the report:

■ Assignee—Depending on the assignee that you choose, this includes tasks
assigned to you (My), tasks assigned to you and groups that you belong to (My &
Group), or tasks assigned to groups to which your reportees belong.

■ Creation Date (range)

■ Ended Date (range)—This is the end dates of the tasks to be included in the report.

■ Priority

See Table 16–2 on page 16-6 for descriptions of Creation (or Created) Date and Priority.

Figure 16–33 shows an example of a Tasks Priority Report.

Features of the Worklist Application

16-36 Oracle BPEL Process Manager Developer’s Guide

Figure 16–33 Tasks Priority Report

The report shows that the California group, the Supervisor group, and the
LoanAgentGroup each have 16 tasks of normal priority. The users rsteven and jcooper
have 5 and 22 tasks, respectively, all normal priority. Priorities (highest, high, normal,
low, lowest) are distinguished by different colors in the bar chart.

Tasks Cycle Time Report
This report provides an analysis of the time taken to complete tasks from creation to
completion based on users' groups or reportees' groups. Use the following input
parameters to define the report:

■ Assignee—Depending on the assignee that you choose, this includes your tasks or
tasks assigned to groups to which your reportees belong.

■ Creation Date (range)

■ Ended Date (range)—This is the end dates of the tasks to be included in the report.

■ Priority

See Table 16–2 on page 16-6 for descriptions of Creation (or Created) Date and Priority.

Figure 16–34 shows an example of a Tasks Cycle Time Report.

Features of the Worklist Application

Worklist Application 16-37

Figure 16–34 Tasks Cycle Time Report

The report shows that it takes 1 hour and 6 minutes on average to complete
DocumentReview tasks, and 1 hour and 28 minutes on average to complete
VacationApproval tasks. The bar chart shows the average cycle time in milliseconds.

Tasks Productivity Report
This report provides an analysis of assigned tasks and completed tasks in a given time
period for a user, reportees, or their groups. Use the following input parameters to
define the report:

■ Assignee—Depending on the assignee that you choose, this includes your tasks or
tasks assigned to groups to which your reportees belong.

■ Creation Date (range)—The default is one week.

■ Task Type—Use the flashlight icon to select from a list of task titles. All versions of
a task are listed on the Select Workflow Task Type page, as shown in Figure 16–35.

Features of the Worklist Application

16-38 Oracle BPEL Process Manager Developer’s Guide

Figure 16–35 Select Workflow Task Type

Figure 16–36 shows an example of a Tasks Productivity Report.

Figure 16–36 Tasks Productivity Report

The report shows the number of tasks assigned to the California, LoanAgentGroup,
and Supervisor groups. For individual users, the report shows that jcooper has 22
assigned tasks. In addition to his assigned tasks, jcooper has completed 2 tasks. The
report shows that mtwain and rsteven have completed 6 and 11 tasks respectively. In
the bar chart, the two task states—assigned and completed—are differentiated by
color.

Accessing the Worklist Application in Local Languages

Worklist Application 16-39

User and Group Information
In the banner area, the logged-in user’s name appears, as in Welcome jstein
[jazn.com]. Click the user name to display information such as the user’s full name,
telephone number, e-mail address, manager, reportees, groups to which the user
belongs, and roles that have been granted, as shown in Figure 16–37.

Figure 16–37 User Information

The roles that have been granted control the actions that the user can perform in the
application. The user can click the manager and reportee links to get user information
by traveling up and down the management chain. Clicking a group displays the
Group Info page for that group. The Group Info page displays the list of direct and
indirect users (users contained in child groups of the current group).

Accessing the Worklist Application in Local Languages
The identity service determines a user’s preferred language and time zone. This
information is extracted from either the JAZN file-based community or from an
external directory service such as Oracle Internet Directory. If no preference
information is available, then the user’s preferred language and time zone are set to
the system default (en_US and America/Los_Angeles, as shown in the following
sample code).

Using the sample worklist configured with the user community in the JAZN XML file,
you can set the user's preferred language and time zone in the
demo-users-properties.xml file as follows:

<timeZone>America/Los_Angeles</timeZone>
<languagePreference>en_US</languagePreference>

Accessing the Worklist Application in Local Languages

16-40 Oracle BPEL Process Manager Developer’s Guide

The demo-users-properties.xml file is found in

SOA_Oracle_Home\bpel\system\services\config

The Worklist Application supports the locales shown in Table 16–4.

If an LDAP-based provider such as OID is used, then language settings are changed in
the OID community.

When a user opens a browser and logs in to the Worklist Application, the worklist
screens are rendered in the browser’s locale and time zone. Most strings in the
Worklist Application come from the worklist application bundle. By default, this is the
class

oracle.bpel.services.workflow.resource.WorkflowResourceBundle

However, this can be changed to a custom resource bundle by setting the appropriate
application preference. See "Using the Administration Functions" on page 16-27 for
more information.

For task attribute names, flex field attribute labels, and dynamic assignment function
names, the strings come from configuring the resource property file
WorkflowLabels.properties. This file exists in the wfresource subdirectory of
the services config directory. See Chapter 15, "Oracle BPEL Process Manager Workflow
Services" for information on adding entries to this file for dynamic assignment
functions and attribute labels.

For custom actions and task titles, the display names come from the message bundle
specified in the task configuration file. If no message bundle is specified, then the
values specified at design time are used. See Chapter 15, "Oracle BPEL Process
Manager Workflow Services" for information on how to specify message bundles so
that custom actions and task titles are displayed in the preferred language.

Table 16–4 Languages and Java Locales Supported by the Worklist Application

Language Java Locale

English (en)

English (United States) (en_US)

German (de)

Spanish (International) (es)

Spanish (Spain) (es_ES)

French (fr)

French (Canada) (fr_CA)

Italian (it)

Japanese (ja)

Korean (ko)

Portuguese (pt)

Portuguese (Brazil) (pt_BR)

Chinese (Simplified) (zh_CN)

Chinese (Traditional) (zh_TW)

Customizing the Worklist Application

Worklist Application 16-41

Customizing the Worklist Application
The sample Worklist Application described in this chapter is fully functional. Use it as
a starting point to create a customized Worklist Application to suit your specific needs.
This section discusses the architecture of the Worklist Application and provides
specific details for customizing it.

The Worklist Application is available in the samples directory at

SOA_Oracle_Home\bpel\samples\hw\worklistapp

Worklist Application Architecture
The Worklist Application follows the standard model-view-controller approach, as
shown in Figure 16–38.

Figure 16–38 Worklist Application Architecture

A request coming from the browser is handled by a servlet. The servlet validates the
request and calls the appropriate workflow service client API to query or update data.
The worklist client APIs support a variety of different protocols (local and remote
EJBs, direct java invocation, SOAP) for invoking the underlying workflow service. The
clients send the API request to the workflow services, using the appropriate protocol.
After the API call, the servlet stores the data required for rendering the next page in
the session. The JSP picks up the data from the session, renders the data, and removes
it from the session. Hence the servlets and the JSPs have different functions. The
servlets are responsible for making the back-end API calls and the JSPs are responsible
for formatting the data.

The Worklist Application servlets are at

SOA_Oracle_Home\bpel\samples\hw\worklistapp\src\worklistapp\servlets

All servlets extend the class worklistapp.servlets.BaseServlet. This class
implements common functionality required by all servlets, such as authentication.

The JSPs are at

SOA_Oracle_Home\bpel\samples\hw\worklistapp\public_html

The workflow client API is a public interface made available by the workflow services.
The interface is at

oracle.bpel.services.workflow.client.IWorkflowServiceClient

An instance of the API interface can be obtained by invoking the
getWorkflowServiceClient method on

oracle.bpel.services.workflow.client.WorkflowServiceClientFactory

Workflow
Service

Workflow
Service Client

Browser

JSP

Java
Local EJB

Remote EJB
SOAP

Servlet

Customizing the Worklist Application

16-42 Oracle BPEL Process Manager Developer’s Guide

See Chapter 15, "Oracle BPEL Process Manager Workflow Services" for more
information.

A typical page flow sequence is shown in Figure 16–39.

Figure 16–39 A Typical Page Flow Sequence

This sequence encompasses logging in to the application to view the details of a task.
The first time a user enters the login URL, the login servlet redirects the page to the
login JSP that is sent to the browser. The user enters a username and password and the
login servlet calls the authenticate method on the task query service. If successful,
it redirects to the TaskList servlet URL. The browser's request then goes to the TaskList
servlet that calls the queryTasks method on the task query service for getting the
tasks that the user should see. Then it redirects the page to the TaskList JSP that is sent
to the browser. When a user clicks a task link, the request is handled by the TaskDetails
servlet. This calls the getTaskDetailsById method on the task query service and
redirects the page to the TaskDetails JSP that is sent to the browser. Page flows for
other functionality, such as updating the payload, adding an attachment, reassigning a
task, viewing history, and updating user preferences, are similar.

The separation of responsibility—between servlets that handle API calls and
processing, and JSPs that handle formatting of the data—facilitates customizing the
application. The page flow requirements for many customer requirements are
probably similar to the page flow for the sample Worklist Application. Therefore, it

queryTasks

Servlet
Login

Servlet
Login

Browser

User enters
username /
password

JSP
Login

Servlet
TaskList

User clicks
on a task
link

JSP
TaskList

Workflow Service
(Task Query Service)

Workflow Service
(Task Query Service)

getTaskDetailsById
Servlet

TaskDetailsBrowser

JSP
TaskDetails

authenticate
Browser

Workflow Service
(Task Query Service)

Customizing the Worklist Application

Worklist Application 16-43

may be sufficient to modify the JSPs (and the Java class HTMLFormatter.java used
for formatting HTML data).

Table 16–5 lists the Worklist Application JSPs.

Table 16–5 Worklist Application JSPs

JSP Servlet Notes

AdminPrefs.jsp Admin Application customization preferences

AdvancedSeach.jsp TaskList Advanced query for tasklist

Branding.jsp -- Branding information displayed in the top
left corner of every page

ColumnSelectIncludes.jsp -- Control that allows users to select a list of
columns. Used in DisplayPrefs.jsp and
ViewEdit.jsp

DisplayPrefs.jsp Preferences User display preferences

Error.jsp -- All servlets redirect to this page when the
exception is caught

FilterForm.jsp -- Control that allows users to define
advanced task queries. Used in
AdvancedSearch.jsp and ViewEdit.jsp

FilterIncludes.jsp -- Control that allows users to define task
filtering criteria, used in FilterForm.jsp
and RuleEdit.jsp

Footer.jsp -- Appears at the bottom of every page

GetHWTaskHistory.jsp -- --

Header.jsp -- Appears at the top of every page

HeaderIncludes.jsp -- Used to include common Javascript
function into the page headers

Home.jsp Admin Used as a container for the administrator
pages

IdentityBrowser.jsp IdentityBrowserPopup Control that allows users to select users
and groups

IdentityBrowserPopup.jsp IdentityBrowserPopup Pop-up window that includes the identity
browser control

Login.jsp Login Application login page

PayloadMapping.jsp Admin Flex field payload mapping

PayloadMappingBrowser.jsp PayloadMappingBrowser Flex field payload mapping

PayloadMappingBrowserPopup.jsp PayloadMappingBrowserPopup Flex field payload mapping

PayloadMappingEditor.jsp -- Flex field payload mapping

PayloadMappingLabelPopup.jsp -- Flex field payload mapping

PopUpHeader.jsp -- Header displayed in pop-up windows

Preferences.jsp Preferences Used as a container for the user
preferences pages

ReportChart.jsp Reports Task reporting

ReportEdit.jsp Reports Task reporting

ReportInput.jsp Reports Task reporting

Customizing the Worklist Application

16-44 Oracle BPEL Process Manager Developer’s Guide

The following sections discuss how to customize some commonly used pages.

Customizing the Login Page
You can customize the image on the login page (the default is an image of people). In
Login.jsp, replace the portion of the image tag shown in bold (people.jpg) with
your own image:

See "Application Customization" on page 16-32 for information on customizing the
login page realm label.

Customizing Header Information
The header section appears on every page above the bread crumb navigation. You can
customize the header by modifying the Header.jsp file. The logo and the name of
the application in the left corner are contained in the Branding.jsp file that is
included in the header.

See "Application Customization" on page 16-32 for information on changing the
branding image.

ReportOutput.jsp Reports Task reporting

Reports.jsp Reports Container page for the task reporting
pages

RequestInfo.jsp RequestInfo Task request info requests

RuleCreate.jsp Preferences Create a new workflow rule

RuleEdit Preferences Edit workflow rule details

RuleList.jsp Preferences Listing of workflow rules

SubTasks.jsp SubTasks View task subtasks

TaskAssignees.jsp TaskAssignee Handle task reassignment

TaskDetails.jsp TaskDetails Display task details

TaskHistory.jsp TaskHistory Display task history

TaskList.jsp TaskList Main application page. Displays lists of
tasks

TaskRouting.jsp TaskRouting Handle updates to task routing

TaskTypeDetails.jsp TaskType Display details for workflow tasktype

TaskTypeList.jsp TaskType Display a list of task types in a pop-up
window

UserInfo.jsp UserInfo Display user information

UserInfoContent.jsp UserInfo Display user information

Vacation.jsp Preferences User vacation preference

ViewDetails.jsp Preferences Details for delegated user task views

ViewEdit.jsp Preferences Edit details for owned user task views

ViewList.jsp Preferences Listing of user task views

Table 16–5 (Cont.) Worklist Application JSPs

JSP Servlet Notes

Customizing the Worklist Application

Worklist Application 16-45

The upper-right area contains HTML controls for filters and search criteria for
retrieving tasks. The filters can be customized to include only those choices that are
relevant to the application.

Customizing the Task Details Page
The Task Details page is used to examine the contents of the task and view or update
the payload. The layout of the details page consists of the actions and buttons at the
top, a header section, the payload section, and the footer section consisting of optional
contents such as comments and attachments. The information displayed on this form
is typically defined by the task definition for the task being displayed (and the format
is controlled by the workflow task designer). You can customize the Task Details page
by modifying the TaskDetails.jsp file. See "Generating a Custom Task Display
Form" on page 15-74 for information on how to customize this file.

Changing the Client-Service Binding for the Worklist Application
The workflow services client interfaces can use a number of protocols to communicate
with the workflow services. The client implementations encapsulate all the
communication details, and users of the client interfaces do not need to be concerned
with the details.

The Worklist Application is deployed in the same container as the workflow services,
by default, and the application uses the Java client.

To switch the client type used by the Worklist Application, modify the init method in
BaseServlet.java as follows:

public void init(ServletConfig config) throws ServletException
{
 super.init(config);
 try
 {
 wfSvcClient
 = WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.JAVA_CLIENT);
 }
 catch (Exception e)
 {
 wlSvcError = getStackTraceString(e);
 }
}

Also, change WorkflowServiceClientFactory.JAVA_CLIENT to one of the
following:

■ WorkflowServiceClientFactory.SOAP_CLIENT—to use the SOAP-based
Web services interface

■ WorkflowServiceClientFactory.LOCAL_CLIENT—to use the local EJB
interface

■ WorkflowServiceClientFactory.REMOTE_CLIENT—to use the remote EJB
interface

In addition, ensure that the wf_client_config.xml file is correctly set up for the
client type that you select.

Customizing the Worklist Application

16-46 Oracle BPEL Process Manager Developer’s Guide

Deploying the Custom Worklist Application
The top-level directory of the sample Worklist Application contains an ant script,
build.xml, that can be used to build and deploy the Worklist Application. This ant
script makes use of the properties file orabpel.properties that exists in the same
directory. The instructions in this section also provide fixes to some incorrect files in
the sample Worklist Application source files configuration.

This section contains the following topics:

■ Task 1: Changing the Application Configuration

■ Task 2: Changing the Build File

■ Task 3: Reviewing the File Changes

■ Task 4: Building and Deploying the Application

Task 1: Changing the Application Configuration

The sample web.xml and worklist-taglib.tld file files are not currently in sync
with the ones in the deployed Worklist Application and must be overwritten.

1. Copy the web.xml file from:

SOA_Oracle_Home\j2ee\OC4J_instance_name\applications\hw_
services\worklistapp\WEB-INF\

to:

SOA_Oracle_Home\bpel\samples\hw\worklistapp\config\

2. Copy the worklist-taglib.tld file from:

SOA_Oracle_Home\j2ee\OC4J_instance_name\applications\hw_
services\worklistapp\WEB-INF\

to:

SOA_Oracle_Home\bpel\samples\hw\worklistapp\public_html\WEB-INF\

3. Ensure that the EJB Server URL in the following file is the same as the value you
specify for the oc4j.ormi.url property in Step 5 of "Task 2: Changing the Build
File" on page 16-47.

SOA_Oracle_Home\bpel\system\services\config\wf_client_config.xml

Task 2: Changing the Build File

You must update the SOA_Oracle_
Home\bpel\samples\hw\worklistapp\build.xml file for your process.

1. Update the path element that specifies the classpath to contain the following:

<path id="classpath">
 <pathelement location="${orabpel.home}/system/services/lib/
 bpm-services.jar"/>
 <pathelement location="${orabpel.home}/lib/bpm-infra.jar" />
 <pathelement location="${orabpel.home}/lib/orabpel.jar" />
 <pathelement location="${orabpel.home}/lib/bicmn.jar" />
 <pathelement location="${orabpel.home}/lib/bipres.jar" />

See Also: "Enabling the Worklist Application for Single Sign-On" on
page 16-50 after performing these tasks if you want to secure the
Worklist Application to be Java single sign-on (JSSO)-enabled

Customizing the Worklist Application

Worklist Application 16-47

 <pathelement location="${j2ee.home}/../../lib/xml.jar" />
 <pathelement location="${j2ee.home}/../../lib/xmlparserv2.jar" />
 <pathelement location="${j2ee.home}/jazncore.jar" />
 <pathelement location="${custom.classpath}" />
 </path>

2. Update the deploy target deploy.oc4j to include the following:

<target name="deploy.oc4j" depends="validate.properties,worklist.ear">
 <!-- Deploy application ear -->
 <java jar="${j2ee.home}/admin_client.jar" dir="${j2ee.home}" fork="true">
 <arg line="${oc4j.ormi.url} ${oc4j.admin.username}
 ${oc4j.admin.password} -deploy -file
 ${worklist.classes.dir}/customworklist.ear -deploymentName
 customapp -parent orabpel" />
 </java>
 <java jar="${j2ee.home}/admin_client.jar" dir="${j2ee.home}" fork="true">
 <arg line="${oc4j.ormi.url} ${oc4j.admin.username}
 ${oc4j.admin.password}
 -bindAllWebApps -appName customapp" />
 </java>
</target>

3. Update the target worklistapp.ear to include the following:

<target name="worklist.ear" depends="worklist.war">
 <ear compress="true" earfile="${worklist.classes.dir}/customworklist.ear"
 appxml="${worklist.config.dir}/application.xml">
 <fileset dir="${worklist.classes.dir}">
 <include name="**/*.war"/>
 <exclude name="**/*.ear"/>
 </fileset>
 <fileset dir="${worklist.config.dir}">
 <include name="**/META-INF/orion-application.xml"/>
 </fileset>
 </ear>
</target>

4. Open the SOA_Oracle_
Home\bpel\samples\hw\worklistapp\orabpel.properties file.

5. Change OC4J-related properties to the following:

#Standalone OC4J related properties
#oc4j.ormi.url=deployer:oc4j:hostname:ormiport
oc4j.ormi.url=deployer:oc4j:opmn://host_name:OPMN_request_port/home
oc4j.admin.username=oc4jadmin
#oc4j.admin.password=password
oc4j.admin.password=welcome1

Task 3: Reviewing the File Changes

Verify that you have correctly made the changes described in "Task 1: Changing the
Application Configuration" through "Task 2: Changing the Build File" before
attempting to build and deploy the application.

1. Verify that you correctly updated the following files in the SOA_Oracle_
Home\bpel\samples\hw\worklistapp directory:

■ config\web.xml

■ build.xml

Customizing the Worklist Application

16-48 Oracle BPEL Process Manager Developer’s Guide

■ orabpel.properties

2. Verify that you correctly updated the SOA_Oracle_
Home\bpel\samples\hw\worklistapp\public_
html\WEB-INF\worklist-taglib.tld file.

Task 4: Building and Deploying the Application

1. Ensure all the properties in orabpel.properties have been updated to reflect
your environment.

2. Build and deploy the customized Worklist Application from the command line:

ant deploy.oc4j

3. Access the customized Worklist Application at the following URL:

http://host:port/integration/customapp/

4. Log in to the Worklist Application.

The task list page appears.

Customizing the Worklist Application Using Preferences
The Worklist Application offers a number of ways to customize its look-and-feel
without editing the JSP code or changing the application servlets.

Every worklist user is able to customize the columns displayed in his inbox, the size of
the worklist page, and how many tasks to display at a time. See "Setting Preferences"
on page 16-21 for more information.

Worklist administrators can also change a number of preferences that influence the
appearance of the Worklist Application for all users, such as the branding image.
Administrators can specify a different resource bundle and change the label for the list
of realms on the login screen. See "Using the Administration Functions" on page 16-27
for more information.

Configuring Display Names for Task Attributes Using WorkflowLabels.properties
You can change the names used for various task attributes in the application by
updating the following file (and its associated translations):

SOA_Oracle_Home/bpel/system/services/config/wfresource/WorflowLabels.properties

Note that this changes the labels returned by the task metadata service methods
getTaskAttributes and getTaskAttributesForTaskDefinition. Any
service clients that use these methods will be affected.

Controlling Access to Information and Actions for Different Users
The workflow service uses the identity service that supports the JAZN file-based
community or LDAP communities such as Oracle Internet Directory. A static set of
role-actions (privileges) has been defined and assigned to roles. Users then get those
privileges by way of roles assigned to them. The most important of the role-actions
currently defined include:

See Also: "Enabling the Worklist Application for Single Sign-On" on
page 16-50 if you now want to secure the Worklist Application to be
Java single sign-on (JSSO)-enabled

Customizing the Worklist Application

Worklist Application 16-49

■ CLAIM

■ WITHDRAW

■ ESCALATE

■ RENEW

■ RELEASE

■ REQUEST_INFO

■ SUBMIT_INFO

■ CUSTOM

■ ADMIN

■ REASSIGN

■ SUSPEND

■ RESUME

■ VIEW_TASK_HISTORY

The role-actions apply globally; that is, at the application level and not at the process
level or instance level.

You can customize the Worklist Application so that the information viewed and the
actions performed on a given page are altered for different sets of users. The first part
consists of creating new roles and assigning them to the required users. Then, in the
JSP, the identity service can be used to check if the user has the granted role and to
determine which code path to take.

For example, you can create a new role called BPMProcessingManager in
jazn-data.xml. This file is at

SOA_Oracle_Home\bpel\system\appserver\oc4j\j2ee\home\config

The required users must be assigned this role, as shown in the following code
example:

...
 <role>
 <name>BPMProcessingManager</name>
 <members>
 <member>
 <type>user</type>
 <name>jstein</name>
 </member>
 </members>
 </role>
...

If an LDAP-based service such as OID is used, then these roles must be created and
granted to users in that service.

The JSP code can be customized using the identity service as follows.

import="oracle.tip.pc.services.common.ServiceFactory"
import="oracle.tip.pc.services.identity.*"

boolean canEditTaskHeaderPriority = false;
// get info from identity service
try

Customizing the Worklist Application

16-50 Oracle BPEL Process Manager Developer’s Guide

{
 BPMAuthorizationService authorizationService =
 ServiceFactory.getAuthorizationServiceInstance(realm);
 // lookup user based on worklist context user
 BPMUser bpmUser = authorizationService.lookupUser(user);

 // check for BPMProcessManager role
 if (bpmUser.isInRole("BPMProcessingManager "))
 canEditTaskHeaderPriority = true;
 }
 catch (Exception e)
 {
 out.println("Could not get information from identity service");

 }
 // use the canEditTaskHeaderPriority flag to control HTML behavior
 if (canEditTaskHeaderPriority)
 // display the priority information & edit controls
 else
 // just display the priority information

Enabling the Worklist Application for Single Sign-On
The 10.1.3.1 Worklist Application by default uses a custom authentication mechanism
through its own login page. The Worklist Application does not run under OC4J
container security and is not Java single sign-on (JSSO)-enabled. The Worklist
Application source files are located in the SOA_Oracle_
Home\bpel\samples\hw\worklistapp directory. This section describes how to
secure the Worklist Application with JSSO.

This section contains the following topics:

■ Task 1: Changing the Servlet Code

■ Task 2: Changing the Application Configuration

■ Task 3: Reviewing the File Changes

■ Task 4: Building and Deploying the Application

Task 1: Changing the Servlet Code
1. Open the SOA_Oracle_

Home\bpel\samples\hw\worklistapp\src\worklistapp\servlets\Bas
eServlet.java file.

2. Remove the following code fragment that begins on line 218 in the
validateSession() method:

else
{
 // forward request to login page, if user session is null
 //(not if session store or wfCtx is null, as login servlet will set them)
 if (userSession == null)
 {
 RequestDispatcher rd = getServletContext().getRequestDispatcher(
 WorklistappConstants.PAGE_LOGIN_JSP);

Note: Before performing the tasks in this section, ensure that you
have completed the Worklist Application deployment tasks in
"Deploying the Custom Worklist Application" on page 16-46.

Customizing the Worklist Application

Worklist Application 16-51

 if (rd != null)
 {
 rd.forward(request,response);
 return false;
 }
 }
}

3. Open the Login.java file in the same directory.

4. Replace the code up to the end of the try{} block in the handleRequest()
method with the following:

String user = getParameter(request,WorklistappConstants.PARAM_LOGIN_USER);
String password = getParameter(request,WorklistappConstants.PARAM_LOGIN_
 PASSWORD);
String realm = getParameter(request,WorklistappConstants.PARAM_LOGIN_REALM);
String redirectURL = getParameter(request,WorklistappConstants.PARAM_REDIRECT_
 URL);
HttpSession userSession = request.getSession(true);
SessionStore sessStore = new SessionStore(userSession);
String remoteUser = request.getRemoteUser();

if ((user == null) && (password == null) && (remoteUser == null))
{
 pageRedirect(request, response, WorklistappConstants.PAGE_LOGIN_JSP);
 return;
}

try
{
 IWorkflowContext wfCtx = null;

 if (user != null)
 {
 //Authenticate the supplied credentials
 wfCtx = wfSvcClient.getTaskQueryService().authenticate(user, password, realm,
 null);
 }
 else
 {
 //Create context using remoteUser in request (pre-authenticated request)
 wfCtx = wfSvcClient.getTaskQueryService().createContext(request);
 }

 initSessionAttributes(sessStore, wfCtx);
 initRequestStatus(sessStore);

 if (redirectURL != null)
 response.sendRedirect(redirectURL);
 else
 response.sendRedirect(WorklistappConstants.SERVLET_TASK_LIST);
}

5. Open the Logout.java file in the same directory.

6. Add the following private method:

 //When logging out, we need to know if oc4j SSO util class
 //exists in classpath
 private static boolean oc4jSSOExists = false;
 static

Customizing the Worklist Application

16-52 Oracle BPEL Process Manager Developer’s Guide

 {
 //Try and load the class
 try
 {
 Class.forName("oracle.security.jazn.sso.util.JSSOUtil");

 //Class was found
 oc4jSSOExists = true;
 } catch (ClassNotFoundException e)
 {
 oc4jSSOExists = false;
 }
}

7. Replace the code inside the try{} block in the handleRequest() method with
the following:

// destroy context not needed anymore
wfSvcClient.getTaskQueryService().destroyWorkflowContext(wfCtx);
//If we're running in oc4j, ensure SSO knows we've logged out...
if (oc4jSSOExists)
{
 oracle.security.jazn.sso.util.JSSOUtil.logout(response,
 request.getContextPath()+"/"+WorklistappConstants.SERVLET_LOGIN);
}
//Invalidate the session
if (userSession != null)
{
userSession.invalidate();
}
//If we're not running in oc4j, handle the redirect to the login page ourselves
if (!oc4jSSOExists)
{
response.sendRedirect(WorklistappConstants.SERVLET_LOGIN);
}

Task 2: Changing the Application Configuration
1. Go to the SOA_Oracle_Home\bpel\samples\hw\worklistapp\config

directory.

2. Create a directory named META-INF.

3. Go into the META-INF directory and create a file named
orion-application.xml.

4. Enable deployment by adding the following syntax to
orion-application.xml.

<?xml version='1.0' encoding='windows-1252' ?>
<orion-application>
 <jazn provider="XML">
 <jazn-web-app auth-method="CUSTOM_AUTH"/>
 </jazn>
 <security-role-mapping name="PUBLIC">
 <group name="{{PUBLIC}}" />
 </security-role-mapping>
</orion-application>

The sample web.xml file is not currently in sync with the one in the deployed
Worklist Application and must be overwritten.

Customizing the Worklist Application

Worklist Application 16-53

5. Add the following code to web.xml in the config directory.

<login-config>
 <auth-method>BASIC</auth-method>
</login-config>

<security-role>
 <role-name>{{PUBLIC}}</role-name>
</security-role>

<security-constraint>
 <web-resource-collection>
 <web-resource-name>worklistpages</web-resource-name>
 <url-pattern>/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>{{PUBLIC}}</role-name>
 </auth-constraint>
</security-constraint>

6. If you are using multiple realms, the SOA_Oracle_
Home\bpel\system\services\config\wf_client_config.xml file must
contain the correct entry for the realm in the following element:

<portal>
 <realmMapping>jazn.com</realmMapping>
</portal>

Task 3: Reviewing the File Changes
Verify that you have correctly made the changes described in "Task 1: Changing the
Servlet Code" through "Task 2: Changing the Application Configuration" before
attempting to build and deploy the application.

1. Verify that you correctly updated the following files in the SOA_Oracle_
Home\bpel\samples\hw\worklistapp directory:

■ src\worklistapp\servlets\BaseServlet.java

■ src\worklistapp\servlets\Login.java

■ src\worklistapp\servlets\Logout.java

2. Verify that you correctly updated the SOA_Oracle_
Home\bpel\system\services\config\wf_client_config.xml file.

3. Verify that you correctly created the SOA_Oracle_
Home\bpel\samples\hw\worklistapp\config\META-INF\orion-applic
ation.xml file.

Task 4: Building and Deploying the Application
1. Ensure all the properties in orabpel.properties have been updated to reflect

your environment.

2. Build and deploy the customized Worklist Application from the command line:

ant deploy.oc4j

3. Access the customized Worklist Application at the following URL:

http://host:port/integration/customapp/

You are prompted with the SSO login page.

Building Clients for Workflow Services

16-54 Oracle BPEL Process Manager Developer’s Guide

4. Log in to the Worklist Application.

After you are authenticated, you see the task list page.

5. Log out of the Worklist Application.

The SSO login page again appears.

Building Clients for Workflow Services
You can build clients for workflow services using the APIs exposed by the workflow
service. The APIs enable clients to communicate with the workflow service using local
and remote EJBs, SOAP, and HTTP.

You can start with the sample Worklist Application to build your own application.

The typical sequence of calls when building a simple worklist application is as follows:

1. Get a handle to IWorklistServiceClient from
WorkflowServiceClientFactory.

2. Get a handle to ITaskQueryService from IWorklistServiceClient.

3. Authenticate a user by passing a username and password to the authenticate
method on ITaskQueryService. Get a handle to IWorkflowContext.

4. Query the list of tasks using ITaskQueryService.

5. Get a handle to ITaskService from IWorklistServiceClient.

6. Iterate over the list of tasks returned, performing actions on the tasks using
ITaskService.

Example 16–1 demonstrates how to build a client for workflow services. A list of all
tasks assigned to jstein is queried. A task whose outcome has not been set is approved.

Example 16–1 Building a Client for Workflow Services—Setting the Outcome to Approved

try
 {
 //Create JAVA WorflowServiceClient
 IWorkflowServiceClient wfSvcClient =

WorkflowServiceClientFactory.getWorkflowServiceClient(WorkflowServiceClientFactory.JAVA_CLIENT);

 //Get the task query service
 ITaskQueryService querySvc = wfSvcClient.getTaskQueryService();

 //Login as jstein
 IWorkflowContext ctx = querySvc.authenticate("jstein",
 "welcome1",
 null, //Use default realm
 null);//Not logging in on behalf of another user
 //Set up list of columns to query
 List queryColumns = new ArrayList();
 queryColumns.add("TASKID");
 queryColumns.add("TASKNUMBER");
 queryColumns.add("TITLE");
 queryColumns.add("OUTCOME");
 //Create a predicate to query tasks that have a null outcome
 String outcome = null;
 Predicate predicate = new Predicate(TableConstants.WFTASK_OUTCOME_COLUMN,
 Predicate.OP_EQ,

Building Clients for Workflow Services

Worklist Application 16-55

 outcome);
 //Create an ordering to order tasks by task number
 Ordering ordering = new Ordering(TableConstants.WFTASK_TASKNUMBER_COLUMN
 ,true //Ascending order
 ,false //Nulls last
);
 //Query a list of tasks assigned to jstein
 List tasks = querySvc.queryTasks(ctx,
 queryColumns,
 null, //Do not query additional info
 ITaskQueryService.ASSIGNMENT_FILTER_MY,
 null, //No keywords
 predicate, //Only tasks with no outome set
 ordering, //Order by ascending task number
 0, //Do not page the query result
 0);
 //Get the task service
 ITaskService taskSvc = wfSvcClient.getTaskService();
 //Loop over the tasks, outputting task information, and approving tasks
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 String taskId = task.getSystemAttributes().getTaskId();
 //Set the outcome
 taskSvc.updateTaskOutcome(ctx,taskId,"APPROVED");
 System.out.println("Task #"+taskNumber+" ("+title+") is APPROVED");
 }

 }
 catch (Exception e)
 {
 //Handle any exceptions raised here...
 System.out.println("Caught workflow exception: "+e.getMessage());
 }
}

Packages and Classes for Building Clients
Use the following packages and classes for building clients:

■ oracle.bpel.services.workflow.metadata.config.model

The classes in this package contain the object model for the workflow
configuration in the task definition file. The ObjectFactory class can be used to
create objects.

■ oracle.bpel.services.workflow.metadata.routingslip.model

See Also:

■ The following samples, which demonstrate how to write a custom UI for
the Worklist Application:

SOA_Oracle_home\bpel\samples\utils\AsyncLoanService\StarLoanUI
SOA_Oracle_home\bpel\samples\demos\HelpDeskServiceRequest\HelpDeskUI
SOA_Oracle_home\bpel\samples\demos\ExpenseRequestApproval\
ExpenseRequestUI

■ SOA_Oracle_Home\bpel\docs\workflow\index.html for Javadoc
that describes the workflow service APIs

Building Clients for Workflow Services

16-56 Oracle BPEL Process Manager Developer’s Guide

The classes in this package contain the object model for the routing slip. The
ObjectFactory class can be used to create objects.

■ oracle.bpel.services.workflow.metadata.taskdisplay.model

The classes in this package contain the object model for the task display. The
ObjectFactory class can be used to create objects.

■ oracle.bpel.services.workflow.metadata.taskdefinition.model

The classes in this package contain the object model for the task definition file. The
ObjectFactory class can be used to create objects.

■ oracle.bpel.services.workflow.client.IWorkflowServiceClient

Interface for the workflow service client.

■ oracle.bpel.services.workflow.client.WorkflowServiceClientFacto
ry

The factory for creating the workflow service client.

■ oracle.bpel.services.workflow.metadata.ITaskMetadataService

The interface for task metadata service.

■ oracle.bpel.services.workflow.task.ITaskService

The interface for task service.

■ oracle.bpel.services.workflow.task.IRoutingSlipCallback

The interface for callback class to receive callbacks during task processing.

■ oracle.bpel.services.workflow.task.IAssignmentService

The interface for the assignment service.

Workflow Service Client
Any worklist application accesses the various workflow services through the
workflow service client. The workflow service client code encapsulates all the logic
required for communicating with the workflow services using different local and
remote protocols. After the worklist application has an instance of the workflow
service client, it does not need to consider how the client communicates with the
workflow services.

The advantages of using the client are as follows:

■ Hides the complexity of the underlying connection mechanisms such as
SOAP/HTTP and EJB

■ Facilitates changing from using one particular invocation mechanism to another,
for example from SOAP/HTTP to remote EJB

■ Helps to program with Java APIs for service input/outputs instead of XML
inputs/outputs for SOAP/HTTP or Java WSIF invocation mechanism

The following class is used to create instances of the IWorkflowServiceClient
interface:

oracle.bpel.services.workflow.client.WorkflowServiceClientFactory

WorkflowServiceClientFactory has a single method,
getWorkflowServiceClient, which takes a single parameter, the client type. The
client type can be one of the following:

Building Clients for Workflow Services

Worklist Application 16-57

■ WorkflowServiceClientFactory.JAVA_CLIENT—The client uses Java to
invoke the workflow services directly.

■ WorkflowServiceClientFactory.LOCAL_CLIENT—The client uses a local
EJB interface to invoke the workflow services.

■ WorkflowServiceClientFactory.REMOTE_CLIENT—The client uses a
remote EJB interface to invoke workflow services located remotely from the client.

■ WorkflowServiceClientFactory.SOAP_CLIENT—The client uses SOAP to
invoke Web service interfaces to the workflow services, located remotely from the
client.

Through the factory, it is possible to get the client libraries for all the workflow
services. Table 16–6 shows the clients available for each of the services.

The client classes use the configuration file wf_client_config.xml for the service
end points. This file is at

SOA_Oracle_Home/bpel/system/services/config

In the client classpath, this file should be in the classpath directly, meaning the
containing directory should be in the classpath. The wf_client_config.xml file
contains:

■ A section for EJB configuration

 <ejb>
 <serverURL>ormi://localhost/hw_services</serverURL> <!-- for stand alone -->
 <!--serverURL>opmn:ormi://localhost:home/hw_services</serverURL--> <!-- for
 opmn managed instance -->
 <user>oc4jadmin</user>
 <password>welcome1</password>

<initialContextFactory>oracle.j2ee.rmi.RMIInitialContextFactory</initialContextFac
tory>
 </ejb>

■ A section for SOAP end points for each of the services

<taskService>

Table 16–6 Clients Available for the Workflow Services

Service Name
Supports SOAP
Web Services

Supports
Remote EJB

Supports
Local EJB

Supports Plain
Java APIs

Task Service Yes Yes Yes

Task Query Service Yes Yes Yes Yes

Task Metadata Service Yes Yes Yes Yes

Task Reports Service Yes

User Metadata Service Yes Yes Yes Yes

Runtime Config Service Yes Yes Yes Yes

Identity Service:

■ BPM Authentication
Service

Yes Yes

■ BPM Authorization
Service

Yes Yes

Building Clients for Workflow Services

16-58 Oracle BPEL Process Manager Developer’s Guide

<soapEndPoint>http://localhost:9700/integration/services/TaskService/
 TaskServicePort</soapEndPoint>
</taskService>

The IWorkflowServiceClient Interface
The IWorkflowServiceClient interface provides methods, summarized in
Table 16–7, for obtaining handles to the various workflow services interfaces.

Classpaths for Java Clients
The following JAR files are necessary for the Java client classpath.

■ $BPEL_HOME/bpel/lib/bpm-infra.jar

■ $BPEL_HOME/bpel/lib/orabpel-common.jar

■ $BPEL_HOME/bpel/lib/orabpel-thirdparty.jar

■ $BPEL_HOME/bpel/lib/orabpel.jar

■ $BPEL_HOME/bpel/system/appserver/oc4j/j2ee/home/jazncore.jar

■ $BPEL_
HOME/bpel/system/appserver/oc4j/j2ee/home/oc4jclient.jar

■ $BPEL_HOME/bpel/system/appserver/oc4j/lib/xml.jar

■ $BPEL_HOME/bpel/system/appserver/oc4j/lib/xmlparserv2.jar

■ $BPEL_
HOME/bpel/system/appserver/oc4j/webservices/lib/orasaaj.jar

See Also: The following for more information about task services:

■ Table 15–16, " SOAP WSDL Location for the Task Services" on
page 15-97

■ Table 15–17, " Task Service Methods" on page 15-99

■ Table 15–18, " Task Query Service Methods" on page 15-101

■ Table 15–19, " Task Metadata Service Methods" on page 15-109

■ Table 15–20, " User Metadata Service Methods" on page 15-110

■ Table 15–21, " Runtime Config Service" on page 15-112

Table 16–7 IWorkflowServiceClient Methods

Method Interface

getTaskService oracle.bpel.services.workflow.task.ITaskService

getTaskQueryService oracle.bpel.services.workflow.query.ITaskQueryService

getTaskReportService oracle.bpel.services.workflow.report.ITaskReportService

getTaskMetadataService oracle.bpel.services.workflow.metadata.ITaskMetadataService

getUserMetadataService oracle.bpel.services.workflow.user.IUserMetadataService

getRuntimeConfigService oracle.bpel.services.workflow.runtimeconfig.IRuntimeConfigService

getAuthenticationService oracle.tip.pc.services.identity.BPMAuthenticationService

getAuthorizationService oracle.tip.pc.services.identity.BPMAuthorizationService

Building Clients for Workflow Services

Worklist Application 16-59

■ $BPEL_
HOME/bpel/system/appserver/oc4j/webservices/lib/soap.jar

■ $BPEL_HOME/bpel/system/services/config

■ $BPEL_HOME/bpel/system/services/lib/bpm-services.jar

■ $BPEL_HOME/bpel/system/services/schema

■ wsclient_extended.zip

See the chapter "Web Service Client APIs and JARs" in the section "Simplifying the
Classpath with wsclient_extended.jar" in Oracle Application Server Web Services
Developer's Guide 10g Release 3 (10.1.3), at

http://www.oracle.com/technology/documentation

EJB References in Web Applications
If a Web application uses the workflow service local EJBs, then the client application
must do the following:

■ The application must be a child application of the hw_services application.

■ The application must define the EJB local references in its web.xml file. The local
references for each of the services are shown in Example 16–2 and Example 16–3.

Example 16–2 Task Service

<ejb-local-ref id="EjbRef_TaskServiceBean_Message">
 <ejb-ref-name>ejb/local/TaskServiceBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>oracle.bpel.services.workflow.task.ejb.TaskServiceLocalHome</local-home>
 <local>oracle.bpel.services.workflow.task.ejb.TaskServiceLocal</local>
 <ejb-link>TaskServiceBean</ejb-link>
</ejb-local-ref>

Example 16–3 Task Metadata Service

<ejb-local-ref id="EjbRef_TaskMetadataServiceBean_Message">
 <ejb-ref-name>ejb/local/TaskMetadataServiceBean</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <local-home>oracle.bpel.services.workflow.metadata.ejb.TaskMetadataServiceLocalHome</local-home>
 <local>oracle.bpel.services.workflow.metadata.ejb.TaskMetadataServiceLocal</local>
 <ejb-link>TaskMetadataServiceBean</ejb-link>
</ejb-local-ref>

See Chapter 15, "Oracle BPEL Process Manager Workflow Services" for more
information on the task query service, task report service, user metadata service, and
runtime config service.

Note: The wsclient_extended.jar file is available as a separate
download from the Oracle Technology Network at

http://download.oracle.com/otn/java/oc4j/1013/
wsclient_extended.zip

Note: Only child applications can use local EJBs. This restricts
standalone Java clients to using either remote EJBs or SOAP clients.

Building Clients for Workflow Services

16-60 Oracle BPEL Process Manager Developer’s Guide

Initiating a Task
Tasks can be initiated programmatically, in which case the following task attributes
must be set:

■ taskDefinitionURI

■ title

■ payload

■ priority

The following task attributes are optional, but are typically set by clients:

■ creator

■ ownerUser—Defaults to bpeladmin if empty

■ processInfo

■ identificationKey—Tasks can be queried based on the identification key from
the TaskQueryService

Creating a Task
The task object model is available in the package

oracle.bpel.services.workflow.task.model

To create objects in this model, use the ObjectFactory class.

Creating a Payload Element in a Task
The task payload can contain multiple payload message attributes. Since the payload
is not well defined until the task definition, the Java object model for the task does not
contain strong type objects for the client payload. The task payload is represented by
the AnyType Java object. The AnyType Java object is created with an XML element
whose root is payload in the namespace

http://xmlns.oracle.com/bpel/workflow/task

The payload XML element contains all the other XML elements in it. Each XML
element defines a message attribute.

Example 16–4 shows how to set a task payload.

Example 16–4 Setting a Task Payload

import oracle.bpel.services.workflow.task.model.AnyType;
import oracle.bpel.services.workflow.task.model.ObjectFactory;
import oracle.bpel.services.workflow.task.model.Task;
..........

Document document = //createXMLDocument
Element payloadElem = document.createElementNS("http://xmlns.oracle.com/bpel/workflow/
 task", "payload");
Element orderElem = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "order");
Element child = document.createElementNS("http://xmlns.oracle.com/pcbpel/test/order", "id");
 child.appendChild(document.createTextNode("1234567"));
 orderElem.appendChild(child);
 payloadElem.appendChild(orderElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

Building Clients for Workflow Services

Worklist Application 16-61

Initiating a Task Programmatically
Example 16–5 shows how to initiate a vacation request task programmatically.

Example 16–5 Initiating a Vacation Request Task Programmatically

 // create task object
 ObjectFactory objectFactory = new ObjectFactory();
 Task task = objectFactory.createTask();

 // set title
 task.setTitle("Vacation request for jcooper");

 // set creator
 task.setCreator("jcooper");

 // set task definition URI
 task.setTaskDefinitionURI("http://localhost:9700/orabpel/default/VacationRequest/1.0/
 VacationApproval/VacationApproval.task");

 // create and set payload
 Document document = XMLUtil.createDocument();
 Element payloadElem = document.createElementNS(TASK_NS, "payload");
 Element vacationRequestElem = document.createElementNS(VACATION_REQUEST_NS,
 "VacationRequestProcessRequest");

 Element creatorChild = document.createElementNS(VACATION_REQUEST_NS, "creator");
 creatorChild.appendChild(document.createTextNode("jcooper"));
 vacationRequestElem.appendChild(creatorChild);

 Element fromDateChild = document.createElementNS(VACATION_REQUEST_NS, "fromDate");
 fromDateChild.appendChild(document.createTextNode("2006-08-05T12:00:00"));
 vacationRequestElem.appendChild(fromDateChild);

 Element toDateChild = document.createElementNS(VACATION_REQUEST_NS, "toDate");
 toDateChild.appendChild(document.createTextNode("2006-08-08T12:00:00"));
 vacationRequestElem.appendChild(toDateChild);

 Element reasonChild = document.createElementNS(VACATION_REQUEST_NS, "reason");
 reasonChild.appendChild(document.createTextNode("Hunting"));
 vacationRequestElem.appendChild(reasonChild);

 payloadElem.appendChild(vacationRequestElem);
 document.appendChild(payloadElem);

 task.setPayloadAsElement(payloadElem);

 IWorkflowServiceClient workflowServiceClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.SOAP_CLIENT);
 ITaskService taskService = workflowServiceClient.getTaskService();
 IInitiateTaskResponse iInitiateTaskResponse = taskService.initiateTask(task);
 Task retTask = iInitiateTaskResponse.getTask();
 System.out.println("Initiated: " + retTask.getSystemAttributes().getTaskNumber() + " - " +
 retTask.getSystemAttributes().getTaskId());

Note: The AnyType.getContent() element returns an
unmodifiable list of XML elements. You cannot add other message
attributes to the list.

Building Clients for Workflow Services

16-62 Oracle BPEL Process Manager Developer’s Guide

 return retTask;

See "Vacation Request Example" on page 15-87 for more information.

Writing a Worklist Application Using the HelpDeskUI Sample
The following example shows how to modify the help desk interface that is part of the
HelpDeskServiceRequest demo found at

SOA_Oracle_home\bpel\samples\demos\HelpDeskServiceRequest\HelpDeskUI

To write a Worklist Application
1. Create the workflow context by authenticating the user.

// get workflow service client
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.JAVA_CLIENT);

//get the workflow context
IWorkflowContext wfCtx =
wfSvcClient.getTaskQueryService().authenticate(userId, pwd,
oracle.tip.pc.services.identity.config.ISConfiguration.getDefaultRealmName(),
null);

This is Step 3 in "Building Clients for Workflow Services" on page 16-54.

The login.jsp file of HelpDeskServiceRequest uses the preceding API to
authenticate the user and create a workflow context. After the user is
authenticated, the statusPage.jsp file displays the tasks assigned to the
logged-in user. Example 16–6 shows sample code from the login.jsp file.

Example 16–6 Login.jsp

<%@ page import="javax.servlet.http.HttpSession"
 import="oracle.bpel.services.workflow.client.IWorkflowServiceClient"
 import="oracle.bpel.services.workflow.client.WorkflowServiceClientFactory"
 import="java.util.Set"
 import="java.util.Iterator"
 import="oracle.bpel.services.workflow.verification.IWorkflowContext"
 import="oracle.tip.pc.services.identity.config.ISConfiguration"%>
<%@ page contentType="text/html;charset=windows-1252"%>

<html>
<head>
<title>Help desk request login page</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
</head>

<body bgcolor="#F0F0F0" text="#000000" style="font: 12px verdana; line-height:18px">
<center>
<div style="width:640px;padding:15px;border-width: 10px; border-color: #87b4d9; border-style:
 solid;
background-color:white; text-align:left">

 <!-- Page Header, Application banner, logo + user status -->
 <jsp:include page="banner.jsp"/>

 <!-- Initiate Meta Information -->

Building Clients for Workflow Services

Worklist Application 16-63

 <div style="background-color:#F0F0F0; border-top:10px solid white;border-bottom:
 10px solid white;padding:10px;text-align:center" >
 Welcome to the HelpDesk application
 </div>

 <%
 String redirectPrefix = "/HelpDeskUI/";
 // Ask the browser not to cache the page
 response.setHeader("Pragma", "no-cache");
 response.setHeader("Cache-Control", "no-cache");

 HttpSession httpSession = request.getSession(false);
 if (httpSession != null) {

 IWorkflowContext ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }
 else
 {
 String authFailedStr = request.getParameter("authFailed");
 boolean authFailed = false;
 if ("true".equals(authFailedStr))
 {
 authFailed = true;
 }
 else
 {
 authFailed = false;
 }

 if (!authFailed)
 {
 //Get page parameters:
 String userId="";
 if(request.getParameter("userId") != null)
 {
 userId = request.getParameter("userId");
 }
 String pwd="";
 if(request.getParameter("pwd") != null)
 {
 pwd = request.getParameter("pwd");
 }

 if(userId != null && (!("".equals(userId.trim())))
 && pwd != null && (!("".equals(pwd.trim()))))
 {
 try {
 HttpSession userSession = request.getSession(true);

 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient
 (WorkflowServiceClientFactory.JAVA_CLIENT);
 IWorkflowContext wfCtx =
 wfSvcClient.getTaskQueryService().authenticate(userId, pwd,
 oracle.tip.pc.services.identity.config.ISConfiguration.getDefaultRealmName(), null);
 httpSession.setAttribute("workflowContext", wfCtx);
 response.sendRedirect(redirectPrefix + "statusPage.jsp");
 }

Building Clients for Workflow Services

16-64 Oracle BPEL Process Manager Developer’s Guide

 catch (Exception e)
 {
 String worklistServiceError = e.getMessage();
 response.sendRedirect(redirectPrefix + "login.jsp?authFailed=true");
 out.println("error is " + worklistServiceError);
 }
 }
 } else
 {
 out.println("Authentication failed");
 }
 }
 }
 %>

 <form action='<%= request.getRequestURI() %>' method="post">
 <div style="width:100%">
 <table cellspacing="2" cellpadding="3" border="0" width="30%" align="center">
 <tr>
 <td>Username
 </td>
 <td>
 <input type="text" name="userId"/>
 </td>
 </tr>
 <tr>
 <td>Password
 </td>
 <td>
 <input type="password" name="pwd"/>
 </td>
 </tr>
 <tr>
 <td>
 <input type="submit" value="Submit"/>
 </td>
 </tr>
 </table>
 </form>
 </div>
</div>
</center>
 </body>
</html>

2. Query tasks using the queryTask API from TaskQueryService.

//add list of attributes to be queried from the task
List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");
 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 // get the list of tasks

Building Clients for Workflow Services

Worklist Application 16-65

 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (wfCtx,
 displayColumns,
 null,
 ITaskQueryService. ASSIGNMENT_FILTER_MY_AND_GROUP,
 null,
 null,
 null,
 0,
 0);
 // create listing page by using above tasks
 //add href links to title to display details of the task by passing taskId
 as input parameter
 Use getTaskDetailsById(IWorkflowContext wftx, String taskId);

This is Step 4 in "Building Clients for Workflow Services" on page 16-54.

The statusPage.jsp file of HelpDeskServiceRequest is used to display the
status of help desk requests. Example 16–7 shows the statusPage.jsp example
code.

Example 16–7 statusPage.jsp

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/html4/loose.dtd">
<%@ page import="oracle.tip.pc.services.identity.BPMAuthorizationService,
 oracle.bpel.services.workflow.verification.IWorkflowContext,
 oracle.tip.pc.services.common.ServiceFactory,
 oracle.bpel.services.workflow.client.IWorkflowServiceClient,
 oracle.bpel.services.workflow.client.WorkflowServiceClientFactory,
 oracle.bpel.services.workflow.query.ITaskQueryService,
 oracle.bpel.services.workflow.task.model.Task,
 oracle.bpel.services.workflow.task.model.IdentityType,
 oracle.tip.pc.services.identity.BPMUser,
 java.util.List,
 java.util.Calendar,
 java.text.SimpleDateFormat,
 java.util.ArrayList"%>
<%@ page contentType="text/html;charset=UTF-8"%>
<html>
 <head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
 <title>RequestPage</title>
 <style TYPE="text/css">
 Body, Form, Table, Textarea, Select, Input, Option
 {
 font-family : tahoma, verdana, arial, helvetica, sans-serif;
 font-size : 9pt;
 }
 table.banner
 {
 background-color: #eaeff5;
 }
 tr.userInfo
 {
 background-color: #eaeff5;
 }
 tr.problemInfo
 {
 background-color: #87b4d9;
 }

Building Clients for Workflow Services

16-66 Oracle BPEL Process Manager Developer’s Guide

 </style>
 </head>
 <body bgcolor="White">
 <%
 HttpSession httpSession = request.getSession(false);
 httpSession.setAttribute("pageType","STATUSPAGE");
 %>
 <table bordercolor="#eaeff5" border="4" width="100%">
 <tr><td> <jsp:include page="banner.jsp"/> </td></tr>
 </table>
 <%
 BPMUser bpmUser = null;
 String redirectPrefix = request.getContextPath() + "/";
 IWorkflowContext ctx = null;
 if (httpSession != null) {

 ctx = (IWorkflowContext) httpSession.getAttribute("workflowContext");
 if (ctx != null) {
 bpmUser = getAuthorizationService(ctx.getIdentityContext()).
 lookupUser(ctx.getUser());
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 }
 else
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 if(bpmUser == null)
 {
 response.sendRedirect(redirectPrefix + "login.jsp");
 return;
 }
 String status = (String)httpSession.getAttribute("requeststatus");
 if(status != null && !status.equals(""))
 {
 %>
 <p></p>
 <div style="text-align:left;color:red" >
 <%= status %>
 </div>
 <%
 }
 httpSession.setAttribute("requeststatus",null);
 IWorkflowServiceClient wfSvcClient =
 WorkflowServiceClientFactory.getWorkflowServiceClient(
 WorkflowServiceClientFactory.JAVA_CLIENT);
 List displayColumns = new ArrayList();
 displayColumns.add("TASKNUMBER");
 displayColumns.add("TITLE");
 displayColumns.add("PRIORITY");
 displayColumns.add("STATE");
 displayColumns.add("UPDATEDDATE");
 displayColumns.add("UPDATEDBY");
 displayColumns.add("CREATOR");
 displayColumns.add("OUTCOME");

Building Clients for Workflow Services

Worklist Application 16-67

 displayColumns.add("CREATEDDATE");
 displayColumns.add("ASSIGNEEUSERS");
 displayColumns.add("ASSIGNEEGROUPS");
 List tasks = wfSvcClient.getTaskQueryService().queryTasks
 (ctx,
 displayColumns,
 null,
 ITaskQueryService.ASSIGNMENT_FILTER_CREATOR,
 null,
 null,
 null,
 0,
 0);
 %>
 <p></p>
 <div style="text-align:left;color:green" >

 Previous help desk request

 </div>
 <p></p>
 <div style="text-align:center" >
 <table cellspacing="2" cellpadding="2" border="3" width="100%">
 <TR class="problemInfo">
 <TH>TaskNumber</TH>
 <TH>Title</TH>
 <TH>Priority</TH>
 <TH>CreatedDate</TH>
 <TH>Assignee(s)</TH>
 <TH>UpdatedDate</TH>
 <TH>UpdatedBy</TH>
 <TH>State</TH>
 <TH>Status</TH>
 </TR>
 <%
 SimpleDateFormat dflong = new SimpleDateFormat("MM/dd/yy hh:mm a");
 for(int i = 0 ; i < tasks.size() ; i ++)
 {
 Task task = (Task)tasks.get(i);
 int taskNumber = task.getSystemAttributes().getTaskNumber();
 String title = task.getTitle();
 int priority = task.getPriority();
 String assignee = getAssigneeString(task);
 Calendar createdDate = task.getSystemAttributes().getCreatedDate();
 Calendar updateDate = task.getSystemAttributes().getUpdatedDate();
 String updatedBy = task.getSystemAttributes().getUpdatedBy().getId();
 String state = task.getSystemAttributes().getState();
 String outcome = task.getSystemAttributes().getOutcome();
 if(outcome == null) outcome = "";
 String titleLink = "http://" + request.getServerName() +
 ":" + request.getServerPort() +
 "/integration/worklistapp/TaskDetails?taskId=" +
 task.getSystemAttributes().getTaskId();
 %>
 <tr class="userInfo">
 <td><%=taskNumber%></td>
 <td><a href="<%=titleLink%>" target="_blank"><%=title%></td>
 <td><%=priority%></td>
 <td><%=dflong.format(createdDate.getTime())%></td>
 <td><%=assignee%></td>

Building Clients for Workflow Services

16-68 Oracle BPEL Process Manager Developer’s Guide

 <td><%=dflong.format(updateDate.getTime())%></td>
 <td><%=updatedBy%></td>
 <td><%=state%></td>
 <td><%=outcome%></td>
 <tr>
 <%
 }
 %>
 </table>
 </div>
 <%!
 private BPMAuthorizationService getAuthorizationService(String identityContext)
 {
 BPMAuthorizationService authorizationService =
ServiceFactory.getAuthorizationServiceInstance();
 if (identityContext != null)
 authorizationService = ServiceFactory.getAuthorizationServiceInstance(identityContext);

 return authorizationService;
 }
 private String getAssigneeString(Task task) throws Exception
 {
 List assignees = task.getSystemAttributes().getAssigneeUsers();
 StringBuffer buffer = null;
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(U)");
 }
 assignees = task.getSystemAttributes().getAssigneeGroups();
 for(int i = 0 ; i < assignees.size() ; i++)
 {
 IdentityType type = (IdentityType)assignees.get(i);
 String name = type.getId();
 if(buffer == null)
 {
 buffer = new StringBuffer();
 }
 else
 {
 buffer.append(",");
 }
 buffer.append(name).append("(G)");
 }
 if(buffer == null)
 {
 return "";
 }
 else
 {
 return buffer.toString();

Summary

Worklist Application 16-69

 }
 }
 %>
 </body>
</html>

Summary
This chapter describes how to access a user's tasks, view task details, and perform
actions on the tasks in the sample Oracle BPEL Worklist Application. It also discusses
how you can create and share custom views, manage user and group rules, customize
task display settings, and perform administrative tasks such as flex field mapping and
application customization. Instructions are provided for customizing the Worklist
Application (including a number of language settings) and for building your own
Worklist Application using the workflow service APIs.

Summary

16-70 Oracle BPEL Process Manager Developer’s Guide

Sensors 17-1

17
Sensors

Using sensors, you can specify BPEL activities, variables, and faults that you want to
monitor during run time. This chapter describes how to use and set up sensors for a
BPEL process. This chapter also describes how to create sensor actions in Oracle BPEL
Process Manager to publish sensor data as data objects in an Oracle BAM Server.

This chapter contains the following topics:

■ Use Cases for Sensors

■ Overview of Sensor Concepts

■ Implementing Sensors and Sensor Actions in Oracle JDeveloper

■ Sensors and Oracle BPEL Control

■ Sensor Integration with Oracle Business Activity Monitoring

■ Sensor Public Views

■ Sensor Actions XSD File

■ Summary

Use Cases for Sensors
Using sensors is demonstrated in the sample 125.ReportsSchema. The sample uses
sensors to identify key data during an employee update process and a sensor action to
publish information about the update to the database.

Inserting sensors on activities is also demonstrated in the OrderBooking tutorial.

Overview of Sensor Concepts
You can define the following types of sensors, either through Oracle JDeveloper or
manually by providing sensor configuration files.

■ Activity sensors

Activity sensors are used to monitor the execution of activities within a BPEL
process. For example, they can be used to monitor the execution time of an invoke
activity or how long it takes to complete a scope. Along with the activity sensor,
you can also monitor variables of the activity.

See: SOA_Oracle_
Home\bpel\samples\tutorials\125.ReportsSchema

See: Oracle BPEL Process Manager Order Booking Tutorial

Implementing Sensors and Sensor Actions in Oracle JDeveloper

17-2 Oracle BPEL Process Manager Developer’s Guide

■ Variable sensors

Variable sensors are used to monitor variables (or parts of a variable) of a BPEL
process. For example, variable sensors can be used to monitor the input and
output data of a BPEL process.

■ Fault sensors

Fault sensors are used to monitor BPEL faults.

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables.

When you model sensors in Oracle JDeveloper, two new files are created as part of the
BPEL process suitcase:

■ sensor.xml—contains the sensor definitions of a BPEL process

■ sensorAction.xml—contains the sensor action definitions of a BPEL process

See "Configuring Sensors" on page 17-3 and "Configuring Sensor Actions" on
page 17-6 for how these files are created.

After you define sensors for a BPEL process, you must configure sensor actions to
publish the data of the sensors to an endpoint. You can publish sensor data to the
BPEL reports schema, which is located in the BPEL dehydration store, to a JMS queue
or topic, or to a custom Java class.

The following information is required for a sensor action:

■ Name

■ Publish type

The publish type specifies the destination where the sensor data must be
presented. You can configure the following publish types:

– Database—used to publish the sensor data to the reports schema in the
database. The sensor data can then be queried using SQL.

– JMSQueue—used to publish the sensor data to a JMS queue

– JMSTopic—used to publish the sensor data to a JMS topic

– Custom—used to publish the data to a custom Java class

– JMS Adapter—uses the JMS adapter to publish to remote queues or topics and
a variety of different JMS providers. The JMS Queue and JMS Topic publish
types only publish to local JMS destinations.

■ List of sensors—the sensors for a sensor action

Implementing Sensors and Sensor Actions in Oracle JDeveloper
In Oracle JDeveloper, sensor actions and sensors are displayed as part of the process
tree structure, as shown in Figure 17–1.

Implementing Sensors and Sensor Actions in Oracle JDeveloper

Sensors 17-3

Figure 17–1 Sensors and Sensor Actions Displayed in Oracle JDeveloper

You typically add or edit sensors as part of the BPEL modeling of activities, faults, and
variables. You can add sensor actions by right-clicking the Sensor Actions folders and
selecting Create > Sensor Action. To add activity sensors, variable sensors, or fault
sensors, expand the Sensors folder, right-click the appropriate Activity, Variable, or
Fault subfolder, and click Create.

Using LoanDemoPlus as an example, the following sections describe how to
configure sensors and sensor actions.

Configuring Sensors
If you are monitoring the LoanFlow application, you may want to know when the
getCreditRating scope is initiated, when it is completed, and, at completion, what
the credit rating for the customer is. The solution is to create an activity sensor for the
getCreditRating scope in Oracle JDeveloper, as shown in Figure 17–2. Activities
that have sensors associated with them are identified with a magnifying glass in
Oracle JDeveloper.

See Also: The LoanDemoPlus tutorial, at SOA_Oracle_
Home\bpel\samples\demos

Implementing Sensors and Sensor Actions in Oracle JDeveloper

17-4 Oracle BPEL Process Manager Developer’s Guide

Figure 17–2 Creating an Activity Sensor

The Evaluation Time attribute shown in Figure 17–2 controls the point at which the
sensor fires. You can select from the following:

■ Activation—The sensor fires just before the activity is executed.

■ Completion—The sensor fires just after the activity is executed.

■ Fault—The sensor fires if a fault occurs during the execution of the activity. Select
this value only for sensors that monitor simple activities.

■ Compensation—The sensor fires when the associated scope activity is
compensated. Select this value only for sensors that monitor scopes.

■ Retry—The sensor fires when the associated invoke activity is retried.

■ All—Monitoring occurs during all of the preceding phases.

A new entry is created in the sensor.xml file, as follows:

<sensor sensorName="CreditRatingSensor"

classname="oracle.tip.pc.services.reports.dca.agents.BpelActivitySensorAgent"
 kind="activity"
 target="getCreditRating">

 <activityConfig evalTime="all">
 <variable outputNamespace="http://www.w3.org/2001/XMLSchema"
 outputDataType="int"
 target="$crOutput/payload//services:rating"/>
 </activityConfig>
</sensor>

If you want to record all the incoming loan requests, create a variable sensor for the
variable input, as shown in Figure 17–3.

Implementing Sensors and Sensor Actions in Oracle JDeveloper

Sensors 17-5

Figure 17–3 Creating a Variable Sensor

A new entry is created in the sensor.xml file, as follows:

<sensor sensorName="LoanApplicationSensor"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelVariableSensorAgent"
 kind="variable"
 target="$input/payload">
 <variableConfig outputNamespace="http://www.autoloan.com/ns/autoloan"
 outputDataType="loanApplication"/>
</sensor>

If you want to monitor faults from the identity service, create a fault sensor, as shown
in Figure 17–4.

Figure 17–4 Creating a Fault Sensor

A new entry is created in the sensor.xml file, as follows:

<sensor sensorName="IdentityServiceFault"
 classname="oracle.tip.pc.services.reports.dca.agents.BpelFaultSensorAgent"
 kind="fault"

Implementing Sensors and Sensor Actions in Oracle JDeveloper

17-6 Oracle BPEL Process Manager Developer’s Guide

 target="is:identityServiceFault">
 <faultConfig/>
</sensor>

Configuring Sensor Actions
When you create sensors, you identify the activities, variables, and faults you want to
monitor during run time. If you want to publish the values of the sensors to an
endpoint (for example, you want to publish the data of LoanApplicationSensor to
a JMS queue), then create a sensor action, as shown in Figure 17–5, and associate it
with the LoanApplicationSensor.

Figure 17–5 Creating a Sensor Action

A new entry is created in the sensorAction.xml file, as follows:

<action name="BAMFeed"
 enabled="true"
 publishType="JMSQueue"
 publishTarget="jms/bamTopic">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 jms/QueueConnectionFactory
 </property>
</action>

If you want to publish the values of LoanApplicationSensor and
CreditRatingSensor to the reports schema in the database, create an additional
sensor action, as shown in Figure 17–6, and associate it with both
CreditRatingSensor and LoanApplicationSensor.

Figure 17–6 Creating an Additional Sensor Action

A new entry is created in the sensorAction.xml file, as follows:

Implementing Sensors and Sensor Actions in Oracle JDeveloper

Sensors 17-7

<action name="PersistingAction"
 enabled="true"
 publishType="BPELReportsSchema">
 <sensorName>LoanApplicationSensor</sensorName>
 <sensorName>CreditRatingSensor</sensorName>
</action

The data of one sensor can be published to multiple endpoints. In the two preceding
code samples, the data of LoanApplicationSensor is published to a JMS queue
and to the reports schema in the database.

If you want to monitor loan requests for which the loan amount is greater than
$100,000, you can create a sensor action with a filter, as shown in Figure 17–7.

Figure 17–7 Creating a Sensor Action with a Filter

A new entry is created in the sensorAction.xml file, as follows:

<action name="BigMoneyBAMAction"
 enabled='true'
 filter="boolean(/s:actionData/s:payload
 /s:variableData/s:data
 /autoloan:loanAmount > 100000)"
 publishType="JMSQueue"
 publishTarget="jms/bigMoneyQueue">
 <sensorName>LoanApplicationSensor</sensorName>
 <property name=“JMSConnectionFactory“>
 jms/QueueConnectionFactory
 </property>
</action>

If you have special requirements for a sensor action that cannot be accomplished by
using the built-in publish types (database, JMS queue, JMS topic, and JMS Adapter),
then you can create a sensor action with the custom publish type, as shown in
Figure 17–8. The name in the Publish Target field denotes a fully qualified Java class
name that must be implemented.

Note:

■ You must specify all the namespaces that are required to configure
an action filter in the sensor action configuration file.

■ You must specify the filter as a Boolean XPath expression.

Implementing Sensors and Sensor Actions in Oracle JDeveloper

17-8 Oracle BPEL Process Manager Developer’s Guide

Figure 17–8 Using the Custom Publish Type

Publishing to Remote Topics and Queues
The JMS Queue and JMS Topic publish types only publish to local JMS destinations. If
you want to publish sensor data to remote topics and queues, use the JMS adapter
publish type, as shown in Figure 17–9.

Figure 17–9 Using the JMS Adapter Publish Type

In addition to enabling you to publish sensor data to remote topics and queues, the
JMS adapter supports a variety of different JMS providers, including:

■ Third-party JMS providers such as Tibco JMS, IBM WebSphere MQ JMS, and
SonicMQ

■ Oracle Enterprise Messaging Service (OEMS) providers such as memory/file and
database

If you select the JMS Adapter publish type, you must create an entry in the
oc4j-ra.xml file. Use the JMS connection name property in the Sensor Actions
dialog to point to the proper entry in the oc4j-ra.xml file.

Creating a Custom Data Publisher
To create a custom data publisher, double-click your BPEL project in Oracle
JDeveloper and do the following:

1. Select Project Properties > Libraries > Add Jar/Directory from the Tools main
menu.

2. Browse and select SOA_Oracle_Home\bpel\lib\orabpel.jar.

See Also: Oracle Application Server Adapter for Files, FTP, Databases,
and Enterprise Messaging User’s Guide for details about the JMS adapter

Implementing Sensors and Sensor Actions in Oracle JDeveloper

Sensors 17-9

3. Create a new Java class.

The package and class name must match the publish target name of the sensor
action.

4. Implement the com.oracle.bpel.sensor.DataPublisher interface.

This updates the source file and fills in the methods and import statements of the
DataPublisher interface.

5. Using the Oracle JDeveloper editor, implement the publish method of the
DataPublisher interface, as shown in the following sample custom data
publisher class.

Implementing Sensors and Sensor Actions in Oracle JDeveloper

17-10 Oracle BPEL Process Manager Developer’s Guide

6. Ensure that the class compiles successfully.

The next time that you deploy the BPEL process, the Java class is added to the
BPEL suitcase and deployed to Oracle BPEL Process Manager.

Sensors and Oracle BPEL Control

Sensors 17-11

Registering the Sensors and Sensor Actions in bpel.xml
Oracle JDeveloper automatically updates the process deployment file bpel.xml to
include appropriate properties for sensors and sensor actions, as follows:

<configurations>
 …
 <property name="sensorLocation">sensor.xml</property>
 <property name="sensorActionLocation">sensorAction.xml</property>
 …
 <property name="SLACompletionTime">P0YT1.5S</property>
</configurations>

You can specify additional properties with <property name= ...>, as shown in the
preceding code sample.

Sensors and Oracle BPEL Control
The console provides support to view the metadata of sensors and sensor actions as
well as the sensor data created as part of the process execution. Access Oracle BPEL
Control at

http://localhost:port/BPELConsole

You can also select Start > All Programs > Oracle - Oracle_Home > Oracle BPEL
Process Manager > BPEL Control.

Viewing Sensor and Sensor Action Definitions
After the BPEL process is deployed to Oracle BPEL Process Manager, you can view the
definitions of sensors and sensor actions without going back to Oracle JDeveloper. In
Oracle BPEL Control, click the BPEL Processes tab and choose the process for which
you want to see sensor definitions. Click the Sensors link. A page similar to
Figure 17–10 is displayed.

Note: Ensure that additional Java libraries needed to implement the
data publisher are in the CLASSPATH of the Oracle BPEL Server.

Oracle BPEL Process Manager can execute multiple process instances
simultaneously, so ensure that the code in your data publisher is
thread safe, or add appropriate synchronization blocks. To guarantee
high throughput, do not use shared data objects that require
synchronization.

Sensors and Oracle BPEL Control

17-12 Oracle BPEL Process Manager Developer’s Guide

Figure 17–10 Sensor Data on the BPEL Processes Tab of Oracle BPEL Control

Viewing Sensor Data
The console provides support to monitor sensors for which a BpelReportsSchema
sensor action is defined. In Oracle BPEL Control, click the Instances tab and choose
the process instance for which you want to see the sensor data created as the result of
process execution. A page similar to Figure 17–11 is displayed.

Sensor Integration with Oracle Business Activity Monitoring

Sensors 17-13

Figure 17–11 Sensor Data on the Instances Tab of Oracle BPEL Control

Sensor Integration with Oracle Business Activity Monitoring
Oracle Business Activity Monitoring (BAM) enables you to monitor business services
and processes in an enterprise, correlate key performance indicators (KPIs), and
change business processes or take corrective actions if the business environment
changes.

Oracle BAM enables you to build real-time operational dashboards and monitoring
and alerting applications over the Web. Using this technology, you build interactive,
real-time dashboards and proactive alerts to monitor business services and processes.

You can create sensor actions in Oracle BPEL Process Manager to publish sensor data
as data objects on an Oracle BAM Server. When you create the sensor action, you can
select an Oracle BPEL Process Manager variable or activity sensor that you want to
monitor and the data object in Oracle BAM Server in which you want to publish the

Note: Only sensors associated with a database sensor action are
displayed in Oracle BPEL Control. Sensors associated with a JMS
queue, JMS topic, or custom sensor action are not displayed.

Sensor Integration with Oracle Business Activity Monitoring

17-14 Oracle BPEL Process Manager Developer’s Guide

sensor data. Oracle BAM Server publishes the data objects and types information in
WSDL files. It uses basic HTTP authentication to enable access to these files.

This section contains the following topics:

■ Creating a Connection to Oracle BAM Server

■ Creating a Sensor

■ Creating a BAM Sensor Action

These instructions assume you have installed and configured Oracle BAM.

Creating a Connection to Oracle BAM Server

You must create a connection to Oracle BAM Server to browse the available data
objects. This connection information is automatically used during deployment.

1. Select Connection Navigator from the View main menu in Oracle JDeveloper.

2. Right click BAM Server.

3. Select New BAM Server Connection.

4. Click Next on the Welcome page.

5. Provide a name for connecting to the server.

6. Click Next.

7. Enter the following connection information about the Oracle BAM Server host.

8. Click Next.

9. Test the connection by clicking Test Connection. If the connection was successful,
the following message appears:

Success.

See Also: Oracle Business Activity Monitoring Administrator’s Guide

Note: Only one Oracle BAM Server per BPEL project is currently
supported.

Field Description

Host Name Enter the name of the host on which Oracle BAM Server is
installed. Depending on your organization's security policy, the
fully-qualified host name may be required.

Port Number Enter the port number or accept the default value of 80.

User Name Enter your Windows domain user name. Oracle BAM Server
uses the Windows domain for authentication.

Password Enter the password of the domain user name.

Domain Name Enter the domain name in which the Oracle BAM Server host is
located. This field is case sensitive. If you do not enter the correct
case sensitive name, you receive an authentication failure error.

Use secure HTTP protocol Select this check box if you want to use secure HTTP (HTTP/S)
to connect to the Oracle BAM Server. Otherwise, HTTP is used.

Sensor Integration with Oracle Business Activity Monitoring

Sensors 17-15

10. Click Finish.

Oracle JDeveloper reserves the following property names. These property names
define values for the Oracle BAM Server connection you just created.

■ bamserver.hostname

■ bamserver.protocol

■ bamserver.username

■ bamserver.password

■ bamserver.port

■ bamserver.domain

These property names are added in the Preferences tab of the Deployment Descriptor
Properties window. If your BPEL process uses a BAM sensor action and you want run
time to use a different Oracle BAM Server than the one used during design time, you
must update these values prior to BPEL process deployment. If you have already
deployed the process, then you can use Oracle BPEL Control to update these values.

Creating a Sensor
You must create one of the following types of sensors prior to creating a BAM sensor
action:

■ A variable sensor. Since you map the sensor data to Oracle BAM Server data
objects, only one variable is allowed for the sensor. If the variable has message
parts, then there should be only one message part. This variable must not be
defined inline in the WSDL. Only XSD element definitions are supported.

■ An activity sensor containing exactly one sensor variable.

Creating a BAM Sensor Action
When you create the sensor action, you select the BPEL variable or activity sensor that
you want to monitor and the data object in Oracle BAM Server in which you want to
publish the sensor data.

1. Right click Sensor Actions in the Structure section of Oracle JDeveloper.

2. Select Create > BAM Sensor Action.

The Create Sensor Action window appears. You create BAM sensor actions to
publish sensor data to data objects on Oracle BAM Server.

See Also:

■ Chapter 19, "BPEL Process Deployment and
Domain Management"

■ Appendix C, "Deployment Descriptor Properties"

See Also: "Implementing Sensors and Sensor Actions in Oracle
JDeveloper" on page 17-2 for instructions on creating sensors

Sensor Integration with Oracle Business Activity Monitoring

17-16 Oracle BPEL Process Manager Developer’s Guide

3. Enter the following details:

Field Description

Action Name Enter a unique and recognizable name for the sensor action.

Select Sensor Select a BPEL sensor to monitor. This is the sensor that you created in
"Creating a Sensor" on page 17-15 for mapping sensor data to a data
object in Oracle BAM Server.

Data Object Click the flashlight icon to open the BAM Data Object Chooser window
to select the data object in Oracle BAM Server in which you want to
publish the sensor data. You must have already created a connection to
Oracle BAM Server in order to select data objects.

Enable Batching The data cached by default by the Oracle BAM component of the Oracle
BPEL Process Manager run time is flushed (sent) to Oracle BAM Server
periodically. The decision to periodically send the data is based on
upper and lower limit parameter settings on the Set Batch Parameters
window. The Oracle BAM component may decide to send data prior to
a batch timeout if the cache has a number of data objects between the
lower and upper limit values. Disable batching by unselecting this
check box.

To modify the batch parameters, click Set Batch Parameters. See Step 4
on page 17-17 for additional details.

Sensor Integration with Oracle Business Activity Monitoring

Sensors 17-17

4. If you want to specify custom batch parameter settings, click Set Batch
Parameters.

The Set Batch Parameters window appears.

5. Deselect the Use Default Batch Parameters check box and provide customized
values in the fields below. If you provide customized values and then select this
check box again, the settings revert to the default values.

6. Enter the following details:

Operation Select to Delete, Update, Insert, or Upsert a row in the Oracle BAM
Server database. Upsert first attempts to update a row if it exists. If the
row does not exit, it is inserted.

Available
Keys/Selected Keys

If you selected the Delete, Update, or Upsert operation, you must also
select a column name in the Oracle BAM server database to use as a key
to determine the row with which this sensor object corresponds. A key
can be a single column or a composite key consisting of multiple
columns. Select a key and click the > button. To select all, click the >>
button.

Map File Provide a file name to create a mapping between the sensor (selected in
the Select Sensor list) and the Oracle BAM Server data object (selected
in the Data Object list). You can also invoke a mapper window by
clicking the Create Mapping icon (second icon) or Edit Mapping icon
(third icon).

WARNING: If you restart Oracle BPEL Server, any messages
currently being batched are lost. Ensure that all messages have
completed batching before restarting Oracle BPEL Server.

Notes: After you click the Create Mapping or Edit Mapping or OK
button on the Create Sensor Action window, you must explicitly save
the BPEL file.

Field Description

Batch size lower
limit

Use the default value of 1000 or specify a lower batch limit. This
parameter controls the minimum number of rows in the cache. With
this parameter, the data remains in the Oracle BPEL Process Manager
run-time cache until the queue size reaches at least this limit or a
timeout occurs.

Field Description

Sensor Public Views

17-18 Oracle BPEL Process Manager Developer’s Guide

7. Click OK to close the Set Batch Parameters window and the Create Sensor Action
window.

Sensor Public Views
The sensor framework of Oracle BPEL Process Manager provides the functionality to
persist sensor values created by processing BPEL instances in a relational schema
stored in the dehydration store of Oracle BPEL Process Manager. The data is used to
display the sensor values of a process instance in Oracle BPEL Control.

A set of public views is exposed to allow SQL access to sensor values from literally any
application interested in the data.

BPM Schema
The database publisher persists the sensor data in a predefined relational schema in
the database. The following public views can be used from a client (Oracle Warehouse,
OracleAS Portal, and so on) to query the sensor values using SQL.

BPEL_PROCESS_INSTANCES
This view provides an overview of all the process instances of Oracle BPEL Process
Manager.

Batch size upper
limit

Use the default value of 5000 or specify an upper batch limit. This
parameter controls the maximum number of rows in the cache. With
this parameter, the Oracle BPEL Process Manager run time flushes the
data to Oracle BAM Server prior to the upper limit being reached.

Batch timeout
(milliseconds)

Specify the timeout in minutes. The default value is 50 milliseconds.
When the timeout occurs, the BPEL run time flushes any data in the
queue to Oracle BAM Server.

Note: In Table 17–1 through Table 17–5, the Indexed or Unique?
column provides unique index names and the order of the attributes.
For example, U1,2 means that the attribute is the second one in a
unique index named U1. PK means primary key.

Table 17–1 BPEL_PROCESS_INSTANCES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

INSTANCE_KEY NUMBER -- PK N Unique instance ID

BPEL_PROCESS_
NAME

NVARCHAR2 100 -- N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 -- N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 -- N Oracle BPEL Process Manager domain
name

TITLE VARCHAR2 50 -- Y User-defined title of the BPEL process

STATE NUMBER -- -- Y State of the BPEL process instance

STATE_TEXT VARCHAR2 -- -- Y Text presentation of the state attribute

Field Description

Sensor Public Views

Sensors 17-19

BPEL_ACTIVITY_SENSOR_VALUES
This view contains all the activity sensor values of the monitored BPEL processes.

PRIORITY NUMBER -- -- Y User-defined priority of the BPEL
process instance

STATUS VARCHAR2 100 -- Y User-defined status of the BPEL
process

STAGE VARCHAR2 100 -- Y User-defined stage property of a BPEL
process

CONVERSATION_
ID

VARCHAR2 100 -- Y User-defined conversation ID of a
BPEL process

CREATION_DATE TIMESTAMP -- -- N Creation time stamp of the process
instance

MODIFY_DATE TIMESTAMP -- -- Y Time stamp when the process instance
was modified

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

EVAL_TIME NUMBER -- -- Y Evaluation time of the process instance
in milliseconds

SLA_
COMPLETION_
TIME

NUMBER -- -- Y SLA completion time in milliseconds.
This is populated with the value of an
optional property you can set in
bpel.xml. For example,

<configurations>
...
<property
name="SLACompletionTime">POYT1.5S
</property>

SLA_SATISFIED VARCHAR2 1 -- Y Y means SLA satisfied: SLA_
COMPLETION_TIME < EVAL_TIME.

N means SLA not satisfied; SLA_
COMPLETION_TIME > EVAL_TIME.

Table 17–2 BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N ID of process instance

BPEL_PROCESS_
NAME

NVARCHAR2 100 -- N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 -- N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 -- N Oracle BPEL Process Manager domain
name

SENSOR_NAME NVARCHAR2 100 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 256 -- N The target of the fired sensor

Table 17–1 (Cont.) BPEL_PROCESS_INSTANCES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Sensor Public Views

17-20 Oracle BPEL Process Manager Developer’s Guide

BPEL_FAULT_SENSOR_VALUES
This view contains all the fault sensor values.

ACTION_NAME NVARCHAR2 100 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 256 -- Y The filter of the action

CREATION_DATE TIMESTAMP -- -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP -- -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL, Y, or N

ACTIVITY_NAME NVARCHAR2 100 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

ACTIVITY_
STATE

VARCHAR2 30 -- Y The state of the BPEL activity

EVAL_POINT VARCHAR2 20 -- N The evaluation point of the activity
sensor

ERROR_MESSAGE NVARCHAR2 2000 -- Y An error message

RETRY_COUNT NUMBER -- -- Y The number of retries of the activity

EVAL_TIME NUMBER -- -- Y Evaluation time of the activity in
milliseconds

Table 17–3 BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

BPEL_PROCESS_
NAME

NVARCHAR2 100 -- N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 -- N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 -- N Oracle BPEL Process Manager domain
name

SENSOR_NAME NVARCHAR2 100 U1,2 N The name of the sensor that fired

SENSOR_TARGET NVARCHAR2 256 -- N The target of the fired sensor

ACTION_NAME NVARCHAR2 100 U1,3 N The name of the sensor action

ACTION_FILTER NVARCHAR2 256 -- Y The filter of the action

CREATION_DATE TIMESTAMP -- -- N The creation date of the activity sensor
value

MODIFY_DATE TIMESTAMP -- -- Y The time stamp of last modification

TS_DATE DATE -- -- Y Date portion of modify_date

Table 17–2 (Cont.) BPEL_ACTIVITY_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Sensor Public Views

Sensors 17-21

BPEL_VARIABLE_SENSOR_VALUES
This view contains all the variable sensor values.

TS_HOUR NUMBER -- -- Y Hour portion of modify_date

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL if no action filter specified; Y if
action filter is specified and evaluates
to true; N otherwise

ACTIVITY_NAME NVARCHAR2 100 -- N The name of the BPEL activity

ACTIVITY_TYPE VARCHAR2 30 -- N The type of the BPEL activity

MESSAGE CLOB -- -- Y The fault message

Table 17–4 BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

INSTANCE_KEY NUMBER -- U1,1 N BPEL process ID

BPEL_PROCESS_
NAME

NVARCHAR2 100 -- N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 -- N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 -- N Oracle BPEL Process Manager domain
name

SENSOR_NAME NVARCHAR2 100 U1,2 N Name of the sensor that fired

SENSOR_TARGET NVARCHAR2 256 -- N Target of the sensor

ACTION_NAME NVARCHAR2 100 U1,3 N Name of the action

ACTION_FILTER NVARCHAR2 256 -- Y Filter of the action

ACTIVITY_
SENSOR

NUMBER -- -- Y ID of corresponding activity sensor
value

CREATION_DATE TIMESTAMP -- -- N Creation date

TS_DATE DATE -- -- N Date portion of creation_date

TS_HOUR NUMBER -- -- N Hour portion of creation_date

VARIABLE_NAME NVARCHAR2 256 -- N The name of the BPEL variable

EVAL_POINT VARCHAR2 30 -- Y Evaluation point of the corresponding
activity sensor

CRITERIA_
SATISFIED

VARCHAR2 1 -- Y NULL, Y, or N

TARGET NVARCHAR2 256 -- -- --

UPDATER_NAME NVARCHAR2 100 -- N The name of the activity or event that
updated the variable

UPDATER_TYPE NVARCHAR2 100 -- N The type of the BPEL activity or event

SCHEMA_
NAMESPACE

NVARCHAR2 256 -- Y Namespace of variable sensor value

Table 17–3 (Cont.) BPEL_FAULT_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Sensor Public Views

17-22 Oracle BPEL Process Manager Developer’s Guide

BPMERRORS
This view provides an overview of all errors from BPM services.

SCHEMA_
DATATYPE

NVARCHAR2 256 -- Y Datatype of the variable sensor value

VALUE_TYPE SMALLINT -- -- N The value type of the variable
(corresponds to java.sql.Types
values)

VARCHAR2_
VALUE

NVARCHAR2 2000 -- Y The value of string-like variables

Table 17–5 BPMERRORS View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

ID NUMBER -- PK N Unique ID

BPEL_PROCESS_
NAME

NVARCHAR2 100 U1,1 N Name of the BPEL process

BPEL_PROCESS_
REVISION

VARCHAR2 50 U1,2 N Revision of the BPEL process

DOMAIN_ID VARCHAR2 50 U1,3 N Oracle BPEL Process Manager domain
name

CREATION_DATE TIMESTAMP -- -- N Creation date of the activity sensor
value

TS_DATE DATE -- -- N Date portion of creation_date

TS_HOUR NUMBER -- -- N Hour portion of creation_date

ERROR_CODE NUMBER -- -- N Error code

EXCEPTION_
TYPE

NUMBER -- -- N Type of the error

EXCEPTION_
SEVERITY

NUMBER -- -- N Severity of the error

EXCEPTION_
NAME

NVARCHAR2 200 -- N Name of the error

EXCEPTION_
DESCRIPTION

NVARCHAR2 2000 -- Y A short description of the error

EXCEPTION_FIX NVARCHAR2 2000 -- Y A description on how to fix the error

EXCEPTION_
CONTEXT

VARCHAR2 4000 -- Y The context of the error

COMPONENT NUMBER -- -- N The BPM component that caused the
error

THREAD_ID VARCHAR2 200 -- N The Java thread name in which the
error occurred.

STACKTRACE CLOB -- -- N The Java stack trace

Table 17–4 (Cont.) BPEL_VARIABLE_SENSOR_VALUES View

Attribute Name SQL Type
Attribute
Size

Indexed or
Unique? Null? Comment

Sensor Actions XSD File

Sensors 17-23

Sensor Actions XSD File
The section provides a sample sensor action schema that you can import into Oracle
JDeveloper. This schema is also relevant to custom data publishers.

<?xml version="1.0" encoding="utf-8"?>
<!--
 This schema contains the sensor definition. Sensors monitor data
 and execute callbacks appropriately.
-->
<xsd:schema blockDefault="#all" elementFormDefault="qualified"
 targetNamespace="http://xmlns.oracle.com/bpel/sensor"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:tns="http://xmlns.oracle.com/bpel/sensor">

 <xsd:simpleType name="tSensorActionPublishType">
 <xsd:annotation>
 <xsd:documentation>
 This enumeration lists the possibe publishing types for probes.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="BpelReportsSchema"/>
 <xsd:enumeration value="JMSQueue"/>
 <xsd:enumeration value="JMSTopic"/>
 <xsd:enumeration value="Custom"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tSensorActionProperty">
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="name" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>

 <!--
 Attributes of a sensor action
 -->
 <xsd:attributeGroup name="tSensorActionAttributes">
 <xsd:attribute name="name" type="xsd:string" use="optional"/>
 <xsd:attribute name="enabled" type="xsd:boolean" use="optional"
 default="true"/>
 <xsd:attribute name="filter" type="xsd:string"/>
 <xsd:attribute name="publishName" type="xsd:string" use="required"/>
 <xsd:attribute name="publishType" type="tns:tSensorActionPublishType"
 use="required"/>
 <!--
 the name of the JMS Queue/Topic or custom java API, ignored for other
 publishTypes
 -->
 <xsd:attribute name="publishTarget" type="xsd:string" use="optional"/>
 </xsd:attributeGroup>

 <!--
 The sensor action type. A sensor action consists:
 + unique name
 + effective date
 + expiration date - Optional. If not defined, the probe is active
 indefinitely.

Sensor Actions XSD File

17-24 Oracle BPEL Process Manager Developer’s Guide

 + filter (to potentially suppress data publishing even if a sensor marks
 it as interesting). - Optional. If not defined, no filter is
 used.
 + publishName A name of a publisher
 + publishType What to do with the sensor data?
 + publishTarget Name of a JMS Queue/Topic or custom publisher.
 + potentially many sensors.
 -->
 <xsd:complexType name="tSensorAction">
 <xsd:sequence>
 <xsd:element name="sensorName" type="xsd:string" minOccurs="1"
 maxOccurs="unbounded"/>
 <xsd:element name="property" minOccurs="0" maxOccurs="unbounded"
 type="tns:tSensorActionProperty"/>
 </xsd:sequence>
 <xsd:attributeGroup ref="tns:tSensorActionAttributes"/>
 </xsd:complexType>

 <!--
 define a listing of sensor actions in a single document. It might be a good
 idea to
 have one sensor action list per business process.
 -->
 <xsd:complexType name="tSensorActionList">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:simpleType name="tSensorKind">
 <xsd:restriction base="xsd:string">
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="variable"/>
 <xsd:enumeration value="activity"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:complexType name="tActivityConfig">
 <xsd:annotation>
 <xsd:documentation>
 The configuration part of an activity sensor comprises of a mandatory
 'evalTime' attribute
 and an optional list of variable configurations
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:sequence>
 <xsd:element name="variable" type="tns:tActivityVariableConfig"
 maxOccurs="unbounded" minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="evalTime" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tAdapterConfig">
 <xsd:annotation>
 <xsd:documentation>

Sensor Actions XSD File

Sensors 17-25

 The configuration part of a adapter activity extends the activty
 configuration with additional attributes for adapters
 </xsd:documentation>
 </xsd:annotation>
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityConfig">
 <xsd:attribute name="headerVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="partnerLink" use="required" type="xsd:string"/>
 <xsd:attribute name="portType" use="required" type="xsd:string"/>
 <xsd:attribute name="operation" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig">
 <xsd:attribute name="outputDataType" use="required" type="xsd:string"/>
 <xsd:attribute name="outputNamespace" use="required" type="xsd:string"/>
 <xsd:attribute name="queryName" use="optional" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tActivityVariableConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableConfig">
 <xsd:attribute name="target" type="xsd:string" use="required"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tFaultConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tSensorConfig"/>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tNotificationSvcConfig">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityConfig">
 <xsd:attribute name="inputVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="outputVariable" use="required" type="xsd:string"/>
 <xsd:attribute name="operation" use="required" type="xsd:string"/>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <xsd:complexType name="tSensorConfig">
 <xsd:sequence>
 <xsd:element name="action" type="tns:tInlineSensorAction" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tInlineSensorAction">
 <xsd:complexContent>
 <xsd:restriction base="tns:tSensorAction"/>
 </xsd:complexContent>
 </xsd:complexType>

Sensor Actions XSD File

17-26 Oracle BPEL Process Manager Developer’s Guide

 <xsd:complexType name="tSensor">
 <xsd:sequence>
 <xsd:element name="activityConfig" type="tns:tActivityConfig"
 minOccurs="0"/>
 <xsd:element name="adapterConfig" type="tns:tAdapterConfig" minOccurs="0"/>
 <xsd:element name="faultConfig" type="tns:tFaultConfig" minOccurs="0"/>
 <xsd:element name="notificationConfig" type="tns:tNotificationSvcConfig"
 minOccurs="0"/>
 <xsd:element name="variableConfig" type="tns:tVariableConfig"
 minOccurs="0"/>
 </xsd:sequence>
 <xsd:attribute name="sensorName" use="required" type="xsd:string"/>
 <xsd:attribute name="kind" use="required" type="tns:tSensorKind"/>
 <xsd:attribute name="classname" use="required" type="xsd:string"/>
 <xsd:attribute name="target" use="required" type="xsd:string"/>
 </xsd:complexType>

 <xsd:complexType name="tSensorList">
 <xsd:sequence>
 <xsd:element name="sensor" type="tns:tSensor" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tRouterData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tHeaderInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element name="sensor" type="tns:tSensor"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tActivityData" minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tFaultData" minOccurs="0"/>
 <xsd:element name="adapterData" minOccurs="0" type="tns:tAdapterData"/>
 <xsd:element name="variableData" type="tns:tVariableData" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="notificationData" type="tns:tNotificationData"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tFaultData">
 <xsd:sequence>
 <xsd:element name="activityName" type="xsd:string"/>
 <xsd:element name="activityType" type="xsd:string"/>

Sensor Actions XSD File

Sensors 17-27

 <xsd:element name="data" type="xsd:anyType" minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tActivityData">
 <xsd:sequence>
 <xsd:element name="activityType" type="xsd:string"/>
 <xsd:element name="evalPoint" type="xsd:string"/>
 <xsd:element name="errorMessage" nillable="true" minOccurs="0"
 type="xsd:string"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 xml type that will be provided to sensors for variable Datas. Note the
 any element represents variable data.
 -->
 <xsd:complexType name="tVariableData">
 <xsd:sequence>
 <xsd:element name="target" type="xsd:string"/>
 <xsd:element name="queryName" type="xsd:string"/>
 <xsd:element name="updaterName" type="xsd:string" minOccurs="1"/>
 <xsd:element name="updaterType" type="xsd:string" minOccurs="1"/>
 <xsd:element name="data" type="xsd:anyType"/>
 <xsd:element name="dataType" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tNotificationData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="messageID" type="xsd:string" minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="fromAddress" type="xsd:string" minOccurs="0"/>
 <xsd:element name="toAddress" type="xsd:string" minOccurs="0"/>
 <xsd:element name="deliveryChannel" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>

 </xsd:complexType>
 <xsd:complexType name="tAdapterData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="endpoint" type="xsd:string"/>
 <xsd:element name="direction" type="xsd:string"/>
 <xsd:element name="adapterType" type="xsd:string"/>
 <xsd:element name="priority" type="xsd:string" minOccurs="0"/>
 <xsd:element name="messageSize" type="xsd:string" minOccurs="0"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!--
 The header of the document contains some metadata.
 -->
 <xsd:complexType name="tSensorActionHeader">
 <xsd:sequence>

Sensor Actions XSD File

17-28 Oracle BPEL Process Manager Developer’s Guide

 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processVersion" type="xsd:string"/>
 <xsd:element name="processID" type="xsd:long"/>
 <xsd:element name="midTierInstance" type="xsd:string"/>
 </xsd:sequence>
 <xsd:attribute name="actionName" use="required" type="xsd:string"/>
 </xsd:complexType>

 <!--
 Sensor Action data is presented in the form of a header and potentially many
 data elements depending on how many sensors associated to the sensor action
 marked the data as interesting.
 -->
 <xsd:complexType name="tSensorActionData">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tHeaderInfo"/>
 <xsd:element name="payload" type="tns:tSensorData" minOccurs="1"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
<!--
 <xsd:simpleType name="tActivityEvalPoint">
 <xsd:restriction>
 <xsd:enumeration value="start"/>
 <xsd:enumeration value="complete"/>
 <xsd:enumeration value="fault"/>
 <xsd:enumeration value="compensate"/>
 <xsd:enumeration value="retry"/>
 </xsd:restriction>
 </xsd:simpleType>

 <xsd:simpleType name="tNotificationAction">
 <xsd:restriction>
 <xsd:enumeration value="creation"/>
 <xsd:enumeration value="statusUpdate"/>
 </xsd:restriction>
 </xsd:simpleType>
-->

 <!--
 The process sensor value header comprises of a timestamp
 where the sensor was triggered and the sensor metadata
 -->
 <xsd:complexType name="tProcessSensorValueHeader">
 <xsd:sequence>
 <xsd:element name="timestamp" type="xsd:dateTime"/>
 <xsd:element ref="tns:sensor"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Extend tActivityData to include more elements
 -->
 <xsd:complexType name="tProcessActivityData">
 <xsd:complexContent>
 <xsd:extension base="tns:tActivityData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"

Sensor Actions XSD File

Sensors 17-29

 maxOccurs="1"/>
 <xsd:element name="evalTime" type="xsd:long" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="retryCount" type="xsd:int" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tVariableData to include more elements
 -->
 <xsd:complexType name="tProcessVariableData">
 <xsd:complexContent>
 <xsd:extension base="tns:tVariableData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tFaultData to include more elements
 -->
 <xsd:complexType name="tProcessFaultData">
 <xsd:complexContent>
 <xsd:extension base="tns:tFaultData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tAdapterData to include more elements
 -->
 <xsd:complexType name="tProcessAdapterData">
 <xsd:complexContent>
 <xsd:extension base="tns:tAdapterData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>

 <!--
 Extend tNotificationData to include more elements

Sensor Actions XSD File

17-30 Oracle BPEL Process Manager Developer’s Guide

 -->
 <xsd:complexType name="tProcessNotificationData">
 <xsd:complexContent>
 <xsd:extension base="tns:tNotificationData">
 <xsd:sequence>
 <xsd:element name="creationDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 <xsd:element name="modifyDate" type="xsd:dateTime" minOccurs="0"
 maxOccurs="1"/>
 </xsd:sequence>
 </xsd:extension>
 </xsd:complexContent>
 </xsd:complexType>
 <!--
 Copy of tSensorData type with some modified types.
 -->
 <xsd:complexType name="tProcessSensorData">
 <xsd:sequence>
 <xsd:element name="activityData" type="tns:tProcessActivityData"
 minOccurs="0"/>
 <xsd:element name="faultData" type="tns:tProcessFaultData" minOccurs="0"/>
 <xsd:element name="adapterData" minOccurs="0"
 type="tns:tProcessAdapterData"/>
 <xsd:element name="variableData" type="tns:tProcessVariableData"
 minOccurs="0" maxOccurs="unbounded"/>
 <xsd:element name="notificationData" type="tns:tProcessNotificationData"
 minOccurs="0"/>
 </xsd:sequence>
 </xsd:complexType>
 <!--
 A single process sensor value comprises of the sensor value metadata
 (sensor and timestamp) and the payload (the value) of the sensor
 -->
 <xsd:complexType name="tProcessSensorValue">
 <xsd:sequence>
 <xsd:element name="header" type="tns:tProcessSensorValueHeader"/>
 <xsd:element name="payload" type="tns:tProcessSensorData"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 Process instance header.
 -->
 <xsd:complexType name="tProcessInstanceInfo">
 <xsd:sequence>
 <xsd:element name="processName" type="xsd:string"/>
 <xsd:element name="processRevision" type="xsd:string"/>
 <xsd:element name="domain" type="xsd:string"/>
 <xsd:element name="instanceId" type="xsd:integer"/>
 </xsd:sequence>
 </xsd:complexType>

 <!--
 The list of sensor values comprises of a process header describing the
 BPEL process with name, cube instance id etc. and a list of sensor values
 comprising of sensor metadata information and sensor values.
 -->
 <xsd:complexType name="tProcessSensorValueList">
 <xsd:sequence>
 <xsd:element name="process" type="tns:tProcessInstanceInfo" minOccurs="1"

Summary

Sensors 17-31

 maxOccurs="1"/>
 <xsd:element name="sensorValue" type="tns:tProcessSensorValue" minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 </xsd:complexType>

 <!-- The sensor list is the root element of the sensor.xml document in the
 bpel process suitcase and is used to define sensors. -->
 <xsd:element name="sensors" type="tns:tSensorList"/>

 <!-- A sensor is used to monitor a particular aspect of a bpel process -->
 <xsd:element name="sensor" type="tns:tSensor"/>

 <!-- The actions element is the root element of the sensorAction.xml document
 in the bpel process suitcase and is used to define sensor actions.
 Sensor actions define how to publish data captured by sensors -->
 <xsd:element name="actions" type="tns:tSensorActionList"/>

 <!-- actionData elements are produced by the sensor framework and sent to the
 appropriate data publishers when sensors 'fire' -->
 <xsd:element name="actionData" type="tns:tSensorActionData"/>

 <!-- This element is used when the client API is used to query sensor values
 stored in the default reports schema -->
 <xsd:element name="sensorValues" type="tns:tProcessSensorValueList"/>
</xsd:schema>

Summary
This chapter describes how to set up and use sensors to monitor BPEL activities,
variables, and faults during run time. This chapter also describes how to create sensor
actions in Oracle BPEL Process Manager to publish sensor data as data objects in an
Oracle BAM Server.

Summary

17-32 Oracle BPEL Process Manager Developer’s Guide

BPEL Process Integration with Business Rules 18-1

18
BPEL Process Integration with Business

Rules

This chapter describes how to build adaptive business processes by using a decision
service to integrate BPEL processes with a business rule engine.

This chapter contains the following topics:

■ Business Rules and Decision Service Concepts

■ Decision Service Architecture

■ Use Cases for Integration of Business Processes and Business Rules

■ Integration of BPEL Processes with Business Rules

■ Methodology for Rule Set Modeling and Integration with a BPEL Process

■ Decision Service Deployment and Run Time

■ Advanced Decision Service Features

■ Example of BPEL Process Integration with Business Rules

Business Rules and Decision Service Concepts
This section provides an overview of Oracle BPEL Process Manager support for
business rules and business rule engines.

This section contains the following topics:

■ Business Rules and Business Rule Engines

■ Decision Service

■ Oracle Business Rules with Oracle BPEL Process Manager

Business Rules and Business Rule Engines
Business rules are statements that describe the policies of a company. Examples of
business rules can include the following:

■ All customers that buy more than $100 worth of products at one time or who are
over the age of 65 receive a 10% discount.

See Also: The AutoLoanDemo tutorial, which describes how to
design a BPEL process that integrates with business rules and uses
human workflow:

SOA_Oracle_Home\bpel\samples\demos\AutoLoanDemo

Business Rules and Decision Service Concepts

18-2 Oracle BPEL Process Manager Developer’s Guide

■ A sales department is notified when inventory quantity is lower than ten and there
are more than five pending orders on a given day.

■ If the annual income of a customer is less than $10,000, a loan request is denied.

■ If a customer submitted a late payment for a previous purchase, an additional
charge of 2% is added to their next purchase.

A business rule engine is a system that manages and executes business rules. A
business rule system typically consists of a rule repository, rule author, and rule
engine. The rule author allows business rules to be specified separately from
application code. Separating the business rules from code allows business analysts to
change business policies quickly with graphical tools. The rule engine evaluates the
business rule and returns decisions or facts that are then used in the business process.
The rules are typically stored in a rule repository in a database or file system.

Decision Service
Oracle BPEL Process Manager provides support for a decision service. A decision
service is a mechanism for publishing rules and rule sets as a reusable service that can
be invoked from multiple business processes. The decision service is a standalone
deployment unit that consists of the following components:

■ A Web service that wraps the rule session to the underlying rule engine. This
service lets business processes assert and retract facts as part of the process. In
some cases, all facts can be asserted from the business process as one unit. In other
cases, the business process can incrementally assert facts and eventually consult
the rule engine for inferences. Therefore, the service has to support both stateless
and stateful interactions.

■ Rules that are evaluated by the decision service using the rule engine. These are
defined using the rule author and loaded into the rule repository.

■ Metadata that describes facts required for specific rules to be evaluated. Each rule
exposed as a service uses different types of facts. These facts must be exposed
through XSD definitions. Appropriate WSDL operations must be exposed for rule
evaluation.

For example, a credit rating rule set may expect a customer’s SSN, previous loan
history, and so on as facts, but a pension payment rule may expect an employee’s
years of service, salary, age, and so on as facts.

Oracle Business Rules with Oracle BPEL Process Manager
Oracle BPEL Process Manager provides support for Oracle Business Rules. Oracle
Business Rules is a component included with Oracle Application Server. Business
analysts use Oracle Business Rules to create and change business rules that are
separate from the application code. This enables analysts to change business rules
without stopping business processes or having to involve programmers.

In Oracle Business Rules, facts are data objects asserted in the Oracle Business Rules
Rules Engine. For example:

■ For a car rental company to create a rule to match a driver's age, the driver's age
represents the fact used in the rule.

■ For a loan company to create a rule denying a loan request to customers whose
incomes fall below a specific level, the income level represents the fact used in the
rule.

See Also: "Decision Service Architecture" on page 18-3

Decision Service Architecture

BPEL Process Integration with Business Rules 18-3

Each data object instance corresponds to a single fact. Rules are expressions that can be
evaluated on this factual information.

If an object is re-asserted (whether or not it has changed), the Oracle Business Rules
Rules Engine is updated to reflect the new state of the object. Re-asserting the object
does not create a new fact. In order to have multiple facts of a particular fact type,
separate object instances must be asserted.

Using the Oracle Business Rules Rule Author, you create rules that operate on facts
that are part of a data model. You make business objects and their methods known to
Oracle Business Rules using fact definitions.

Oracle Business Rules consist of the following key components:

■ Oracle Business Rules Rule Author — A Web browser-based tool that provides a
point-and-click interface to create and edit rules.

■ Oracle Business Rules Rules Engine — A Java library that applies rules to facts and
defines and processes rules. The Oracle Business Rules Rules Engine defines a
declarative rule language, provides a language processing engine, and provides
debugging tools.

Oracle BPEL Process Manager provides support for the following Oracle Business
Rules Rules Engine repositories that store the business rules:

– Oracle Rules Engine File Repository — Stores rules in a file repository.

– Oracle Rules Engine WebDav Repository — Stores rules in a Web Distributed
Authoring and Versioning (WebDAV) repository.

A repository stores dictionaries. A dictionary is a set of XML files that stores the
application's rule sets and the data model. Rule sets are a group of business rules
that are typically evaluated together and generated as one unit. Dictionaries can
have different versions. Dictionaries and dictionary versions can be created,
deleted, exported, and imported into a repository.

■ Oracle Business Rules SDK — A Java library that provides business rule
management features to use for writing customized rules programs.

■ Oracle Business Rules RL Language —A language that defines the syntax for
Oracle Business Rules Rules Engine programs. Oracle Business Rules RL
Language includes an intuitive Java-like syntax for defining rules that supports
Java semantics.

Decision Service Architecture
This section describes the components that comprise the decision service.

This section contains the following topics:

■ Decision Service Components

■ Interaction with Other Components

See Also:

The following documentation:

■ Oracle Business Rules User’s Guide

■ Oracle Business Rules Java API Reference

■ Oracle Business Rules Language Reference Guide

Decision Service Architecture

18-4 Oracle BPEL Process Manager Developer’s Guide

■ Contents of Decision Service Configuration File

Decision Service Components
The decision service consists of the following components:

■ Rule Provider Interface (RPI) — An interface used by decision service design time
clients such as Oracle JDeveloper. The RPI hides the details of a concrete rule
engine implementation. This enables the RPI to interface with any rule engine
from any provider. The main purpose of the RPI is to expose a uniform view of
rule engine metadata such as fact types, rule sets, dictionaries, and so on.

A design time component (such as Oracle JDeveloper) can use the RPI to browse
the metadata of a backend rule engine. According to what you model, metadata
information for a decision service partner link can be materialized in the decision
service configuration file.

■ Decision Service Builder — Reads the metadata information from a decision
service configuration file and creates a self-contained J2EE enterprise archive that
can be deployed to an application server.

■ Decision Service Runtime — A JAX-RPC Web service that is the Web service
enabler for business rule engines such as Oracle Business Rules. The run time itself
consists of the following components:

– Decision Service Cache — Maintains metadata information about the rule data
model used by the service. This includes metadata about the fact types, rule
set, and decision service configuration. In addition, all stateful rule sessions
are stored in that cache. Oracle Java Object Cache (JOC) is used. Therefore, the
cache can be configured to run in clustered environments.

– Fact Converter — Converts data coming from and going to Oracle BPEL
Process Manager to a format understood by a rule engine. For the Oracle
Business Rules Rules Engine, the fact converters use the JAXB 1.0 tech stack to
convert BPEL variable data (XML) to and from Java objects.

– Execution Unit — Executes the various steps defined by the interaction
pattern at the backend rule engine. The execution unit uses the RPI for
executions.

Interaction with Other Components
Figure 18–1 shows how the decision service interacts with other components.

See Also: Oracle Containers for J2EE Services Guide for cache
configuration options to use in clustered environments

Decision Service Architecture

BPEL Process Integration with Business Rules 18-5

Figure 18–1 Decision Service Component Interaction

1. The rule author is used for rule modeling

The rule model is saved to a rule repository. The rule repository can be a file or a
directory at a WebDav backend.

2. The RPI of the decision service is used by the Decision Service wizard to create a
connection to the rule repository and browse the repository metadata.

3. The Decision Service wizard creates the decision service metadata configuration
file. The metadata consists of information about the backend rule engine being
used (rule provider) and the interaction patterns (together with fact type
information) modeled for the partner link.

4. The decision service builder creates the decision service enterprise archive for
deployment into an application server. As part of this, a WSDL is created with
message types and operations adjusted to what you modeled in Step 3.

5. The decide activity uses decision service metadata information to present you with
a list of available operations of the service and detailed information on the number
and types of facts used for an interaction with the rule engine

6. The decide activity completes generation of a new BPEL scope in the BPEL process
model. Appropriate assign activities are created to convert the data from BPEL
variables to data that the decision service (and more importantly the backend rule
engine) expects.

7. The BPEL process is deployed to Oracle BPEL Process Manager during
deployment time.

8. The decision service enterprise archive is deployed to the application server.

9. The BPEL process instance invokes the JAX-RPC decision service at run time,
which then interacts with the backend rule engine, executes rule sets, invokes
functions, and so on. Results are eventually returned to the BPEL process.

Contents of Decision Service Configuration File
The decision service configuration file (decisionservices.xml) defines the
contract between the various components involved in the interaction of the decision
service with the design time and a backend rule engine.

The decision service configuration file consists of two parts:

Design
Time

Deployment
Metadata

Runtime

Model Rules

Rule
Repository

Decision Service
Partner Link

JAX-RPC
Web Service

Decision Service
Enterprise Archive

Process
Instance

BPEL
Process

Decide
Activity

decisionservices.decs

4

Decision Service Architecture

18-6 Oracle BPEL Process Manager Developer’s Guide

■ The first part specifies metadata about the rule engine connections.

■ The second part provides the metadata for specific interaction patterns with a
backend rule engine.

For example:

<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules">
 <ruleEngineProvider provider="Oracle" name="CreditRatingRuleRepository">
 <repository type="File">
 <file>
/D:/bpeldev/10.1.3/demo/LoanDemoPlusRules/repository/CreditRatingRepository
 </file>
 </repository>
 </ruleEngineProvider>
 <ruleEngineProvider provider="Oracle" name="LoanAdvisorRepository">
 <repository type="File">
 <file>
/D:/bpeldev/10.1.3/demo/LoanDemoPlusRules/repository/CarLoanBrokerRepository
 </file>
 </repository>
 </ruleEngineProvider>
 <decisionService name="CreditRatingAgent"
 targetNamespace="http://cr.org/CreditRatingAgent"
 ruleEngineProviderReference="CreditRatingRuleRepository">
 <catalog>RatingFY06</catalog>
 <catalogVersion>Approved_060205</catalogVersion>
 <ruleset>PrivateCustomerRatingRules</ruleset>
 <pattern name="AssertExecuteWatchStateless">
 <arguments>
 <assert>creditrating.Ratingrequest</assert>
 <watch>creditrating.Rating</watch>
 </arguments>
 </pattern>
 </decisionService>
 <decisionService name="LoanAdvisorAgent"
 targetNamespace="http://laa.org/LoanAdvisorAgent"
 ruleEngineProviderReference="LoanAdvisorRepository">
 <catalog>LoanOfferings</catalog>
 <catalogVersion>REVIEWED_060518</catalogVersion>
 <pattern name="CallFunctionStateless">
 <arguments>
 <call>DM.computeAdvisePrivateFinancing</call>
 </arguments>
 </pattern>
 </decisionService>
</decisionServices>

The configuration file includes the following elements:

■ ruleEngineProvider — Specifies metadata about a backend rule engine
connection. Apart from the rule engine provider, information on the rule
repository is specified. You distinguish between these types of repositories:

– File — The rule repository is stored in a file or directory.

– WebDav — The rule repository is stored in a WebDav location.

■ decisionService — Consists of a name, an optional target namespace, and a
mandatory reference to the rule engine to use for the interaction. A complete
interaction with the rule engine is specified, which includes the catalog and
catalog version to use, and the rule set to execute. Various interaction patterns are

Integration of BPEL Processes with Business Rules

BPEL Process Integration with Business Rules 18-7

supported. Apart from the name of the pattern, the pattern signature is specified
in terms of input and output facts or function names.

Use Cases for Integration of Business Processes and Business Rules
Oracle BPEL Process Manager and business rules are complementary technologies.
Oracle BPEL Process Manager focuses on orchestration of systems, services, and
people. Business rules focus on decision making and policies.

Some examples of where decision service can be used include:

■ Dynamic processing — Rules can perform intelligent routing within the business
process based on service level agreements or other guidelines. For example, if the
customer requires response within one day, send the loan application to the
StarLoan loan agency only. If the customer can wait longer, then route the request
to three different loan agencies.

■ Externalize decision points in the process — There are typically many conditions
that must be evaluated as part of a business process. However, the parameters to
these can be changed independent of the process. For example, you provide loans
only to customers with a credit score of at least 650. This value may be changed
dynamically based on new guidelines set by business analysts.

■ Data validation and constraint checks — Rules can validate input documents or
apply additional constraints on requests. For example, a new customer request
must always be accompanied with an employment verification letter and bank
account details.

■ Human workflow — Rules are frequently used in the context of human tasks in
the business process:

– Policy-based task assignments dispatch tasks to specific roles or users. For
example, a process that handles incoming requests from a portal can route
loan requests and insurance quotes to a different set of roles.

– Load balancing of tasks among users – When a task is assigned to a set of
users or a role, each user in that role acquires a set of tasks and acts on them in
a specified time. For new incoming tasks, policies may be applied to set
priorities on the task and put them in specific user queues. For example, a
specific loan agent is assigned a maximum of 10 loans at any time.

Integration of BPEL Processes with Business Rules
Oracle BPEL Process Manager provides the following design-time components that
enable you to integrate BPEL processes with business rules.

■ Create Rule Engine Connection Wizard

■ Decision Service Wizard

■ Decide Activity

Create Rule Engine Connection Wizard
The Create Rule Engine Connection wizard enables you to create a connection to a rule
engine. This connection enables you to browse and select rule sets and functions
available in rule dictionaries of a rule repository in the business rule engine. You only

See Also: "Example of BPEL Process Integration with Business
Rules" on page 18-51

Integration of BPEL Processes with Business Rules

18-8 Oracle BPEL Process Manager Developer’s Guide

need to create one connection to the rule engine. Once created, this connection is
shared between multiple BPEL projects.

1. Select Connection Navigator from the View main menu in Oracle JDeveloper.

2. Right-click Rule Engines and select New Rule Engine Connection.

3. Click Next on the Welcome window.

4. Enter a name. When creation of the rule engine connection is complete, this name
displays in the Connection Navigator under Rule Engines.

5. Select the type of repository in which the rule sets and functions are stored in the
repository of the business rule engine. For this release, the Oracle Business Rules
Rules Engine is supported.

6. Click Next.

7. Click the folder icon to select a file repository directory. If you selected Oracle
Rules Engine WebDav Repository, you are instead prompted to select a WebDav
connection to the repository.

Integration of BPEL Processes with Business Rules

BPEL Process Integration with Business Rules 18-9

8. Click Next.

The Test Connection window appears.

9. Click Test.

If the connection to the business rule repository is successful, the following
message appears:

Success

If the connection is unsuccessful, click Details to view the reason for failure. Take
appropriate corrective actions.

10. Click Finish.

The connection name displays in the Connection Navigator under Rule Engines.
If you need to edit the connection, double-click the connection name to display
configuration details.

Decision Service Wizard
The Decision Service wizard enables you to integrate your BPEL process with a
business rule (for example, a rule set or function) that you created in the Oracle
Business Rules Rules Engine. This enables you to make business decisions based on
these rules.

Figure 18–3 provides an overview of this integration process.

Figure 18–2 Decision Service

This wizard performs the following tasks:

■ Guides you through the selection of a rule set or function from a repository and
the invocation pattern (operation) to perform

■ Converts your selection into a Web service to use in the BPEL process

A new decision service partner link for this Web service is automatically created that
interfaces with the Oracle Business Rules Rules Engine. A WSDL file based on the rule
set is generated.

The Decision Service wizard provides the following benefits:

Note: You can create a WebDav connection by right-clicking
WebDAV Server and selecting New WebDAV Connection in the
Connection Navigator.

Rules
Repository

Rule Author

Rules
Engine

Decision
Service

Integration of BPEL Processes with Business Rules

18-10 Oracle BPEL Process Manager Developer’s Guide

■ Dynamic processing (provides for intelligent routing, validation of policies within
a process, and constraint checks)

■ Integration with adhoc workflows (provides policy-based task assignment,
various escalation policies, and load balancing of tasks)

■ Integration with business activity monitoring (sends alerts based on certain
policies and dynamic processing-based key performance indicator (KPI)
reasoning)

The following sections describe Decision Service wizard functionality in further detail:

■ Selecting an Invocation Pattern

■ Selecting a Business Rule

■ Specifying Input and Output Facts

■ Importing Schema Files

Selecting an Invocation Pattern
The Decision Service wizard enables you to select an invocation pattern that describes
how to interact with the business rule engine.

1. Drag and drop a Decision Service from the Services list of the Component Palette
onto either side of the designer window beneath the header Services.

2. Enter a name in the Service Name field. When complete, this name is used as the
partner link name. A WSDL file of the same name is also created.

The Namespace field is automatically completed with your entry from the Service
Name field. You must have a unique namespace for each WSDL in your project.
This is because some BPEL variables are generated from elements in the WSDL
files.

3. Select an invocation pattern for invoking the rule set or function. The wizard
creates rule sessions based on the invocation pattern you select. You do not have
the option of selecting between stateful or stateless rule sessions.

The following invocation patterns are available for selection:

■ Execute Ruleset

Integration of BPEL Processes with Business Rules

BPEL Process Integration with Business Rules 18-11

■ Execute function

4. Click the flashlight next to the Ruleset or Function field. The name of this field is
based on your selection in the Invocation Pattern field. This opens the Explorer
window.

Selecting a Business Rule
1. Click Show All Versions to display all the catalog versions of rule dictionaries in

the rule repository of the business rule engine.

2. Expand and select the dictionary (RatingFY06), dictionary version (Approved_
0600205), and rule set (PrivateCustomerRatingRules).

3. Click OK.

You are returned to the Select a Ruleset or a Function window.

Notes:

■ If you have not created a connection to the rule engine, you cannot
access the rule sets and functions in the rule repository. Click the
first icon in the upper right to start the Create Rule Engine
Connection wizard.

■ An alternative to creating a connection to a file-based rule
repository is to directly import a file into a project. Note that each
BPEL project must physically copy the repository file to the
project at the time of Web service creation. After the file is copied,
any changes to the original file are not reflected in the Web
service. Click the second button in the upper right to browse for
the file to import. The file must be a valid Oracle rule repository
file. Otherwise, an error appears.

Integration of BPEL Processes with Business Rules

18-12 Oracle BPEL Process Manager Developer’s Guide

Specifying Input and Output Facts
Based on the type of invocation pattern you selected, the Select a Ruleset or a Function
window displays a table with different details at the bottom of the window.

■ Rule Sets

■ Functions

Rule Sets

The table displays the facts in the data model of the catalog from which you selected
the rule set. You select the facts to assert (that is, set the value from the BPEL variable
to the fact) and retrieve the results to return. Note that the columns that appear are
based on whether the selected pattern asserts facts, retrieves facts, or does both.

1. Specify the input (assert) and (optionally) the output (watch) facts. The assert facts
enable you to assert a fact to the rule set or function (send factual data to the
business rule engine). The watch facts enable you to return results from the rule
set or function. Watch facts only appear if you selected an invocation pattern that
retrieves results.

The Check here to assert all descendants from the top level element check box
enables you to assert all the descendants of the selected rule set or function. For
example, assume that a purchase order rule set contains three fact types. If this
check box is selected, the purchase order and all three fact types are asserted. If
this check box is not selected, only the purchase order is asserted.

2. Click Next.

Functions

The table displays the input parameters and parameter types to return.

Integration of BPEL Processes with Business Rules

BPEL Process Integration with Business Rules 18-13

1. Click Next.

Importing Schema Files
1. Review the on-screen messages to ensure that all necessary XSD schema files for

this project are imported from the repository by the wizard.

The wizard attempts to identify all the schema files in the repository that must be
imported into this project. Based on this attempt, this window can display the
following status messages:

■ If the Decision Service Wizard finds the schema files to import, the directory
paths to the files display at the top of this window. No action is required on
your part.

■ If the Decision Service Wizard cannot find the schema files to import, the
directory paths to the files display at the top of this window. You must
manually copy these files to the specified directory.

■ If this XSD schema file includes or imports other schema files, ensure that
those files are copied into the bpel\rules\xsd subdirectory of your BPEL

Integration of BPEL Processes with Business Rules

18-14 Oracle BPEL Process Manager Developer’s Guide

project indicated on-screen. Ensure that you use only relative directory paths
for these schema files.

2. Click Next.

The decision service partner link is created. A directory named
decisionservices is also created in the BPEL project. A directory with the
same name as the service name is created inside the decisionservices
directory.

Decide Activity
The decide activity enables you to create a BPEL process activity that invokes the
decision service partner link you created with the Decision Service wizard. This
activity also enables you to create copy operation assignments between the fact data in
your rule set or function and BPEL variables.

When complete, a decide activity consisting of assign and invoke activities to the
decision service partner link is created.

Figure 18–3 provides an overview of this integration process.

Figure 18–3 Decide Activity

Mapping Input and Output Facts to BPEL Variables
1. Drag and drop a Decide activity from the Process Activities list of the Component

Palette into your BPEL process.

2. Enter a name.

See Also: "Decision Service Partner Link Directory Structure" on
page 18-39 for specific details about directories and files created with
the decision service partner link

Rules
Repository

!

Rule Author

BPEL
Process

Rules
Engine

Decision
Service

Integration of BPEL Processes with Business Rules

BPEL Process Integration with Business Rules 18-15

3. Select the decision service partner link you created. If you have not created a
decision service, click the first icon to the right of the Decision Service field.

4. Select the operation of the invocation pattern to perform. The operations available
for selection are based on the invocation pattern you selected in Step 3 on
page 18-10.

■ If you selected Execute Ruleset

– Assert facts only — Select the rule engine facts you want to assert (send
factual data to the rule engine) in the future. You assign the required data
for the facts with a BPEL assign activity. The underlying rule session must
be stateful. Otherwise, the asserted facts are not visible to subsequent rule
engine invocations.

– Retrieve results — Retrieve a result from the business rule engine. The
values of these results may have changed by past execution of a rule set
acting on these facts. The wizard assumes that it has a stateful rule session
in its cache from which a result can be retrieved. This is the case if the
invocation pattern Assert facts and execute rule set operation was
executed before in the BPEL process.

– Assert facts and execute rule set — The same as Assert facts only, except
that the rule set is executed after the facts are asserted. The wizard creates
(or uses) a stateful rule session. Otherwise, the result of executing this
pattern is lost. No results are retrieved from the business rule engine.

– Assert facts, execute rule set, and retrieve results — The same as Assert
facts and execute rule set, except that the results are retrieved from the
business rule engine. You map the results of rule set execution to BPEL
variables with an assign activity. The rules session remains active. This
enables you to reuse previously asserted facts.

– Assert facts, execute rule set, retrieve results, and reset the session —
The same as Assert facts, execute rule set, and retrieve results, except that
the results are reset for the next time that you invoke the Web service.
Resetting the session clears the previously asserted fact values.

■ If you selected Execute function

– Execute function — Executes a function. Functions are also defined in
dictionaries. For rule sets, you select input and output facts. For functions,
there are a fixed set of input parameters and a single return value.

– Execute function and reset the session — The same as Execute function,
except that a stateful rule session is created for this pattern. All fact values
are reset after retrieving the return value of the function.

5. Click Assign Input Facts, then click Create to create mappings for the input facts.
This enables you to assign BPEL variables to the facts to be asserted or to the
function input parameters.

Integration of BPEL Processes with Business Rules

18-16 Oracle BPEL Process Manager Developer’s Guide

This enables you to create assignments that map BPEL input variables to
automatically created BPEL variables that correspond to the input (assert) fact
type shown in "Specifying Input and Output Facts" on page 18-12 (for this
example, Ratingrequest).

6. If you selected an invocation pattern that retrieves results, click Assign Output
Facts, then click Create to create mappings for the output facts. This enables you to
assign values from a function return value or rule set result to a BPEL variable.

This enables you to create assignments that map automatically created BPEL
variables that correspond to the output (watch) fact type shown in "Specifying
Input and Output Facts" on page 18-12 (for this example, Rating) to BPEL input
variables.

7. Click OK when complete.

A decide activity consisting of assign and invoke activities to the decision service
partner link is created.

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-17

Methodology for Rule Set Modeling and Integration with a BPEL Process
Rule sets are a group of business rules that are typically evaluated together and
generated as a single unit. This section describes two methodologies for modeling rule
sets in a rule author.

After you model a rule set, you can integrate it with a BPEL process in Oracle
JDeveloper. You must have an existing rule repository prior to creating a decision
service partner link in Oracle JDeveloper.

This section contains the following topics:

■ Recommended Methodology

■ Methodology One: Modeling Fact Types Based on an XML Schema

■ Methodology Two: Modeling Rules Based on Existing RL or JavaBeans Fact Types

■ Invoking the Sample Rule Set from a BPEL Process

■ Summary of Methodology

Recommended Methodology
Oracle recommends that you follow these steps when modeling rule sets in a rule
author.

■ Create a data model for rule authoring based on the XML schema.

■ Create a new rule repository and dictionary in the rule author.

■ Import the XML schema into the data model of the rule dictionary as XML facts.

■ Create a new rule set and model rules.

■ Use the Decision Service wizard to create a partner link.

Methodology One: Modeling Fact Types Based on an XML Schema
This section describes how to model a simple rule for a credit rating:

■ Task 1: Create a Data Model for Rule Authoring

■ Task 2: Create a New Rule Repository and Dictionary in the Rule Author

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-18 Oracle BPEL Process Manager Developer’s Guide

■ Task 3: Import the XML Schema into the Data Model of the Rule Dictionary

■ Task 4: Create a New Rule Set and Model Rules

After completion, you use the Decision Service wizard to integrate your rule set with a
BPEL process.

Task 1: Create a Data Model for Rule Authoring
The first step in rule modeling is to define a data model. Data models based on XML
schema are supported. This example begins with a simple data model for credit rating
and defines two elements:

■ ratingrequest

 <xsd:element name="ratingrequest">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="date" type="xsd:date" maxOccurs="1"/>
 <xsd:element name="SSN" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="name" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="age" type="xsd:int" maxOccurs="1"/>
 <xsd:element name="amount" type="xsd:double" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

■ rating

 <xsd:element name="rating">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="date" type="xsd:date" maxOccurs="1"/>
 <xsd:element name="SSN" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="rating" type="xsd:int" maxOccurs="1"/>
 <xsd:element name="risk" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="maxAmount" type="xsd:double" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>

An alternative model (with the same semantics) is to define the following XML
schema:

 <xsd:element name="ratingrequest" type="tRatingRequest"/>
 <xsd:element name="rating" type="tRating"/>
 <xsd:complexType name="tRatingRequest">
 <xsd:sequence>
 <xsd:element name="date" type="xsd:date" maxOccurs="1"/>
 <xsd:element name="SSN" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="name" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="age" type="xsd:int" maxOccurs="1"/>

See Also: "Invoking the Sample Rule Set from a BPEL Process" on
page 18-33

Note: It is important to understand that rule modeling is performed
at the XML schema type level, whereas the data transfer from BPEL to
the decision service is at the element level.

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-19

 <xsd:element name="amount" type="xsd:double" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

 <xsd:complexType name="tRating">
 <xsd:sequence>
 <xsd:element name="date" type="xsd:date" maxOccurs="1"/>
 <xsd:element name="SSN" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="rating" type="xsd:int" maxOccurs="1"/>
 <xsd:element name="risk" type="xsd:string" maxOccurs="1"/>
 <xsd:element name="maxAmount" type="xsd:double" maxOccurs="1"/>
 </xsd:sequence>
 </xsd:complexType>

1. Open a text editor.

2. Save either schema to a file named CreditRatingTypes.xsd. Ensure that you
add the appropriate opening and closing header and footer information to the
schema file.

Task 2: Create a New Rule Repository and Dictionary in the Rule Author
You now create a new rule repository and dictionary in the rule author.

1. Copy the SOA_Oracle_Home\rules\fileRepositories\ruleRepository
file to a location within your file system. For example:

C:\CreditRatingRules\model\CreditRatingRepository

You are now ready to open a new repository in the rule author, log in to the rule
author, and connect to the new repository.

2. Log in to the rule author and connect to the new repository.

http://hostname:8888/ruleauthor

3. Enter oc4jadmin/password.

where password is the password you specified for the oc4jadmin user during
installation.

4. Click Repository.

The Connect page appears.

5. Select File from the Repository Type list.

6. Click Browse to the right of the File Location field.

7. Select the repository file location specified in Step 1.

8. Click Create.

A message indicates that a repository connection has been created.

9. Click the Create subtab.

The Create Dictionary page appears.

10. Enter SampleDictionary in the New Dictionary Name field and click Create.

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-20 Oracle BPEL Process Manager Developer’s Guide

A message indicates that the dictionary has been imported.

You now import the XML schema data model into the rule dictionary.

Task 3: Import the XML Schema into the Data Model of the Rule Dictionary
For a given rule dictionary, you can define the underlying data model to use for rule
authoring.

1. Click the Definitions tab.

2. Click XMLFact in the Definitions tree on the left.

The XMLFact Summary page appears.

3. Click Create.

The XML Schema Selector page appears.

4. Enter the following details:

5. Click Add Schema.

6. Expand the Generated JAXB Classes tree at the bottom.

Field Value

XML Schema Enter the absolute path to the CreditRatingTypes.xsd file
you created in Step 2 of "Task 1: Create a Data Model for Rule
Authoring" on page 18-19. For this example, the second schema
file model described in that step was used.

JAXB Class Dictionary Enter a directory in which to create the JAXB classes.

Target Package Name Enter a Java package name to use for the XML fact types (for
example, creditrating).

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-21

7. Specify the objects in the schema to import. For this example, Ratingrequest,
Rating, TRatingRequest, and TRating are selected.

8. Click Import.

A confirmation message displays indicating that four classes or packages have
been imported.

You can now specify meaningful aliases for your data model. This action is
optional, but considered a good practice for rule modeling.

9. Click XMLFact in the Definitions tree.

10. Select creditrating.TRatingRequest from the XML Fact Summary table.

11. Click Edit.

The Properties section appears.

12. Enter appropriate text in the Alias column for the SSN, age, amount, date, and
name properties.

13. Click OK.

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-22 Oracle BPEL Process Manager Developer’s Guide

As part of the data model, RL functions can be specified. It is a convenient way to
simplify rule action handling by externalizing the logic of a rule action into a RL
function. In this case, the purpose of the rules is to accept a rating request for
which rules are applied. The result of rule execution is a new rating object
consisting of the data calculated by the rules. Therefore, it is convenient to create
an RL function that creates a new rating object and asserts it with the rule engine.

14. Click RLFunction in the Definitions tree.

The RLFunction Summary page appears.

15. Click Create.

The RLFunction page appears.

16. Enter the following details:

The page looks as follows:

Notes: Oracle Business Rules use Oracle JAXB 1.0 for XML fact
types. As a result, certain limitations apply:

■ Use different names for elements and complex types. Although
the XML schema specification allows the same name for an
element and a type, the JAXB class generator does not support it.

■ Use different target package names for every XML schema
imported into the rule author. As part of JAXB class generation, a
factory class ObjectFactory is created. If you import a second
XML schema and specify the same target package name, the JAX
generator overwrites the factory class from the first import. This
results in unexpected behavior from the rule engine.

As a result of using JAXB for fact types, rule modeling needs to
happen on the XML schema type level (complexType level). This is
because for XML elements, JAXB generates marker interfaces only and
the rule author cannot introspect the attributes and methods of these
interfaces for rule modeling.

Field Value

Name DM.assertRating

Alias assertRating

Return Type void

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-23

17. Enter the following function in the Function Body section:

// Create a new Rating object using JAXB ObjectFactory
creditrating.ObjectFactory of = new creditrating.ObjectFactory();
creditrating.Rating rating = of.createRating();
// Get a calendar instance for the current date
java.util.Calendar calendar = java.util.Calendar.getInstance();
// Set Rating object attributes
rating.setSSN(req.getSSN());
rating.setDate(calendar);
rating.setRating(cr);
rating.setRisk(crisk);
rating.setMaxAmount(cmax);
// Assert Rating object in working memory
assert (rating);

18. Click Apply.

The following confirmation message appears:

This entity has been updated successfully.

Task 4: Create a New Rule Set and Model Rules
After the data model is defined, you can create the rules for the credit rating.

1. Click the Rulesets tab.

2. Click Create in the RuleSet Summary page.

The Ruleset page appears.

3. Enter SampleRuleset in the Name field.

4. Enter an optional description in the Description field.

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-24 Oracle BPEL Process Manager Developer’s Guide

5. Click OK.

6. Select SampleRuleset in the RuleSets tree on the left.

7. Click Create in the Rules section.

8. Enter the following details:

When complete, the Rule page appears as follows:

9. Click New Pattern to define the If pattern of the rule (the rule matching part).

The Pattern Definition page appears asking for the pattern of the young customer
rule.

10. Enter an optional name for the expected fact to match in the Choose Pattern
section.

11. Select TRatingRequest from the drop-down list.

It now becomes clear what it means to model the rules on the XML schema type
level, and not on the element level.

12. Click Create in the Define Test for Pattern section.

13. Select the appropriate operands from the Field column.

Field Value

Name YoungCustomers

Description Rule for young customers

Priority 0

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-25

14. Specify several matching statements for the rule. For this example, the young
customer rule is executed if the following statements are satisfied:

■ If the rating request comes from a customer at least 18 years of age and less
than 35 years of age.

■ If the requested loan amount is less than 20,000.

15. Click Apply.

16. Specify the Then section of the rule.

As part of the action, you want to retract (remove) the original rating request
object from the working memory of the rule engine and create and assert a new
rating object.

17. Click New Action in the Then section of the Rule page to retract the original
request object (the object that caused the rule to be invoked).

18. Select Retract from the Action Type list.

19. Select request from the Fact Instance list.

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-26 Oracle BPEL Process Manager Developer’s Guide

20. Click OK.

21. Click New Action again and select Call from the Action Type list.

22. Select assertRating from the Function list. This is the function created in Step 16
on page 18-22.

23. Provide values for the function parameters. For this example, ratingrequest,
credit_rating, credit_risk, and credit_max_amount). The values for ratingrequest
and credit_max_amount cause the rule to be invoked and can be used in the rule
action part.

24. Click OK.

The rule appears as follows:

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-27

25. Double-check the rule and confirm by clicking OK.

It is a good practice to model a rule with no if statement pattern (simply
accepting the fact) and an action that generates a well-defined result for the case
where no other rule is invoked. For example:

■ Set the priority to -10 in the Priority field to ensure that this rule is not
invoked if other rules match the pattern of the fact instance.

■ Accept the fact (request is a TRatingRequest in the If section) without
specifying any additional test pattern.

■ Provide a dummy result that can be checked later from Oracle BPEL Process
Manager (Call assertRating(request, 0, "Unknown", 0.0) in the Then section).

26. Click Save Dictionary in the upper right corner.

27. Enter a name for the dictionary when prompted and click Save.

The rule set modeling process is now complete. The rules can now be used in a
BPEL process.

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-28 Oracle BPEL Process Manager Developer’s Guide

Methodology Two: Modeling Rules Based on Existing RL or JavaBeans Fact Types
In "Methodology One: Modeling Fact Types Based on an XML Schema", you modeled
fact types based on an XML schema for integration with Oracle BPEL Process
Manager. This methodology describes the case in which the rules are modeled already
based on RL or JavaBean fact types.

The following methodology is taken:

■ Model the contract between BPEL and the business rules using an XML schema.

■ Create an RL function in the rule author that accepts parameters of the modeled
XML schema. Then, perform the following procedures:

– Convert the parameter values to RL or Java fact type objects.

– Execute the rule set in question (rules are modeled on top of the RL or Java
data model).

– Convert the resulting fact object (RL or Java) to an object of the RL function
return type.

■ Use the Call Function pattern (the invocation pattern you can select) from Oracle
JDeveloper.

This section describes how to model a rule set in which the rules are already modeled
based on RL or JavaBean fact types:

■ Task 1: Define a Contract between BPEL and Business Rules

■ Task 2: Create a New Data Model Using the RL Fact Types

■ Task 3: Create a New Rule Set and Rules

■ Task 4: Create the RL Function Contract

Task 1: Define a Contract between BPEL and Business Rules
You must define a contract between the process modeled in BPEL and the business
rules. Assume the contract is defined as follows:

■ Input — A rating request document of element ratingrequest

■ Output — A rating document of element rating

■ Rule set — Execute rules for the credit rating

The contract can be expressed in terms of an RL function calculateCreditRating
with the following signature:

creditrating.Rating calculateCreditRating(creditrating.Ratingrequest request)

Before creating the function in the rule author, you define a new data model based on
RL fact types and a new rule set based on the RL fact type data model.

Task 2: Create a New Data Model Using the RL Fact Types
You create a new data model for the credit rating using RL fact types.

1. Load the sample dictionary from the "Methodology One: Modeling Fact Types
Based on an XML Schema" into the rule author.

See Also: "Invoking the Sample Rule Set from a BPEL Process" on
page 18-33 to integrate the rule set with a BPEL process

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-29

2. Click the Definitions tab.

3. Select RLFact in the Definitions tree.

4. Create a new RL fact type named MyRatingRequest.

5. Create a new RL fact type named MyRating.

6. Click OK.

For the function to work properly, you must create a global variable to use as a
placeholder to carry the result of rule execution.

7. Select Variable in the Definitions tree.

8. Select Create.

9. Create a variable named theResult of type mr.

This is the alias of RL fact type MyRating.

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-30 Oracle BPEL Process Manager Developer’s Guide

Task 3: Create a New Rule Set and Rules
1. Click the Rulesets tab.

2. Click Create in the RuleSet Summary page.

3. Enter AlternateRuleset in the Name field.

4. Enter an optional description in the Description field.

5. Click OK.

6. Select AlternateRuleset in the RuleSets tree on the left.

7. Click Create in the Rules section.

8. Click New Pattern to enter the If pattern of the rule (the rule matching part).

9. Specify several matching statements for the rule. For this example:

■ If the rating request comes from a customer at least 18 years of age and less
than 35 years of age.

■ If the requested loan amount is less than 20,000.

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-31

As part of the action, you want to retract (remove) the original request object.

10. Click OK.

11. Click New Action in the Then section.

12. Select Retract from the Action Type list.

13. Select req from the Fact Instance list.

14. Click OK.

15. Set the global variable to an appropriate value. For an overview of how to set
global variables, see Step 7 through Step 9 on page 18-29.

Task 4: Create the RL Function Contract
You now create an RL function.

1. Select Definitions.

2. Select RLFunction in the Definitions tree.

The RLFunction Summary window appears.

3. Click Create.

4. Enter the following details:

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-32 Oracle BPEL Process Manager Developer’s Guide

The page appears as follows:

5. Add the following function to the Function Body section:

// Create JAXB object factory and result object
creditrating.ObjectFactory of = new creditrating.ObjectFactory();
creditrating.Rating result = of.createRating();
// Get current calendar
java.util.Calendar calendar = java.util.Calendar.getInstance();
// Create new RL object and convert from JAXB to RL
MyRatingRequest mrr = new MyRatingRequest();
mrr.ssn = request.getSSN();
mrr.name = request.getName();
mrr.age = request.getAge();
mrr.amount = request.getAmount();
mrr.date = request.getDate().getTimeInMillis();
// Assert the RL object and run Alternate Ruleset
assert(mrr);
run("AlternateRuleset");
// Result is in variable theResult, convert back to JAXB and return
result.setRating(theResult.rating);
result.setRisk(theResult.risk);
result.setMaxAmount(theResult.maxAmount);
result.setDate(calendar);
return result;

6. Click OK.

This function can be used from Oracle BPEL Process Manager since it has an XML
contract, although the underlying rule data model is based on RL fact types.

Field Value

Name calculatCreditRating

Alias calculateCreditRating

Return Type Rating

Expand Do not select.

See Also: "Invoking the Sample Rule Set from a BPEL Process" on
page 18-33 to integrate the rule set with a BPEL process

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-33

Invoking the Sample Rule Set from a BPEL Process
This section describes how to integrate the rule sets created with the Oracle Business
Rules Rule Author with a BPEL process.

This section contains the following topics:

■ Task 1: Create a Connection to the Rule Engine

■ Task 2: Create a BPEL Project

■ Task 3: Create a Decision Service Partner Link

■ Task 4: Create a Decide Activity

Task 1: Create a Connection to the Rule Engine
1. Restart Oracle JDeveloper.

2. Select Connection Navigator from the View main menu in Oracle JDeveloper.

3. Right-click Rule Engines and select New Rule Engine Connection.

4. Click Next on the Welcome window.

5. Enter SampleRuleRepository in the Connection Name field.

6. Select Oracle Rules Engine File Repository as the business rule engine to which
to connect.

7. Click Next.

The Connection window appears.

8. Click the folder icon to select the directory in which the file repository is located.

9. Select the CreditRatingRepository file repository from the
C:\CreditRatingRules\model\CreditRatingRepository directory. This is the
repository you created in Step 1 on page 18-19.

10. Click Open.

11. Click Next.

The Test Connection window appears.

12. Click Test.

If the connection to the business rule engine is successful, the following message
appears:

Success

13. Click Finish.

Task 2: Create a BPEL Project
1. Right-click your application in the Application Navigator section.

2. Select New Project to define a new BPEL process project.

3. Double-click BPEL Process Project in the Items window to display the BPEL
Project Creation Wizard window.

4. Enter SampleProcess in the Name field.

5. Select Synchronous BPEL Process from the Template list.

See Also: "Create Rule Engine Connection Wizard" on page 18-7

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-34 Oracle BPEL Process Manager Developer’s Guide

6. Click Next.

7. Click the flashlight icon to the right of the Input Schema Element field.

8. In the Select Schema window, select CreditRatingTypes.xsd from the directory in
which you saved it in Step 2 of "Task 1: Create a Data Model for Rule Authoring"
on page 18-19 and click Open.

The Type Chooser window appears.

9. Expand and select Imported Schemas > CreditRatingTypes.xsd > ratingrequest.

10. Click OK.

11. Click the flashlight icon to the right of the Output Schema Element field.

The Type Chooser window appears.

12. Expand and select Imported Schemas > CreditRatingTypes.xsd > rating.

13. Click OK.

14. Click Finish.

This completes the BPEL project creation wizard. A new BPEL process template is
created for you with a receive activity accepting a ratingrequest element and a reply
activity sending out a rating element.

Task 3: Create a Decision Service Partner Link
1. Ensure that Services is selected in the drop-down list of the Component Palette

section in the upper right section of Oracle JDeveloper.

2. Drag and drop a Decision Service onto the right side of the designer window
anywhere beneath the header Services.

The Select a Ruleset or a Function window appears. This window enables you to
select an invocation pattern.

3. Enter the following details:

4. Click the flashlight icon next to the Ruleset field.

The Rule Explorer window appears.

This window enables you to browse and select the rule set in the dictionary of the
repository you modified in Step 3 of "Task 4: Create a New Rule Set and Model
Rules" on page 18-23.

5. Click Show All Versions at the bottom of the window to display all versions of
rule dictionaries in the specified repository in the business rule engine. Business
rule engines can contain multiple rule dictionaries and versions.

Field Value

Service Name CreditRatingService

Note: When complete, this becomes the name of the partner link.

Namespace http://xmlns.oracle.com/myLoanProcess/CreditRatingService

Note: This field is automatically completed with your entry in the
Service Name field.

Invocation Pattern Execute Ruleset

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-35

6. Expand and select SampleRuleRepository > SampleDictionary > INITIAL >
SampleRuleset.

7. Click OK.

You are returned to the Select a Ruleset or a Function window of the Decision
Service wizard. All fact names for the SampleRuleset rule set now appear in the
fact table.

8. Specify the details of the interaction pattern.

■ Select the Assert Fact check box for the Ratingrequest fact type.

This asserts a fact to the rule set (sends an input parameter of factual data to
the business rule engine).

■ Select the Watch Fact check box for the Rating fact type.

This returns results created by the business rule engine as part of executing the
rule set SampleRuleset.

9. Click Next.

The Copy XSD Files window shows the directory path to the
CreditRatingTypes.xsd schema file for the wizard to import. If the wizard cannot
find this file, you must manually copy it to the rules/xsd directory of the
SampleProcess BPEL project.

10. Click Next, then Finish.

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-36 Oracle BPEL Process Manager Developer’s Guide

A partner link of the name you specified in Step 3 on page 18-34 is created. This
partner link provides the interface between the BPEL process and the business rule
engine.

11. Select Save from the File main menu.

Task 4: Create a Decide Activity
1. Drag and drop a Decide activity from the Process Activities list of the Component

Palette to below the receiveInput receive activity in the designer window.

The Edit Decide window appears.

2. Enter the following values:

3. Click Assign Input Facts.

You now map BPEL input variables to automatically created BPEL variables that
correspond to the Ratingrequest input (assert) fact type.

4. Click Create.

The From section shows the BPEL variables of the process and the To section
shows the facts selected for the partner link interaction. Since you reused the XML
schema file of the fact types in your BPEL process, you can assign the top level
ratingrequest element from the BPEL input variable inputVariable to the fact to
assert.

5. Enter the following details:

See Also:

■ "Decision Service Wizard" on page 18-9

■ "Decision Service Partner Link Directory Structure" on page 18-39

Field Value

Name GetRating

Decision Service CreditRatingService

Operation Assert facts, execute rule set, retrieve results, and reset the session

Field Value

From

■ Type Variable

Methodology for Rule Set Modeling and Integration with a BPEL Process

BPEL Process Integration with Business Rules 18-37

The window appears as follows:

6. Click OK.

7. Click Assign Output Facts.

You now assign the results of executing the rule set to a BPEL variable. For the
assignment of output facts, the From section displays the facts as modeled in the
decision service partner link interaction and the To section lists the variables of the
BPEL process.

8. Enter the following details:

■ Variables Expand and select Variables > inputVariable > payload >
ns2:ratingrequest

Note: The namespace number values (for example, ns1, ns2) can vary.
Use the namespace values that automatically appear.

To

■ Type Variable

■ Variables Expand and select Variables > creditrating_Ratingrequest_i >
ns2:ratingrequest

Field Value

From

■ Type Variable

■ Variables Expand and select Variables > creditrating_Rating_o > ns2:rating

Field Value

Methodology for Rule Set Modeling and Integration with a BPEL Process

18-38 Oracle BPEL Process Manager Developer’s Guide

The window appears as follows:

9. Click OK to close the Decision Fact Map window and Edit Decide window.

 This completes decide activity configuration. The BPEL process model is updated
with the GetRating decide activity and the BPEL process is ready for deployment.

To

■ Type Variable

■ Variables Expand and select Variables > outputVariable > payload > ns2:rating

Field Value

Decision Service Deployment and Run Time

BPEL Process Integration with Business Rules 18-39

Summary of Methodology
This section provides a summary of issues to consider before designing a rule set.

■ Plan the data model before starting to model business rules.

■ Specify the data model using XML schema constructs.

■ Import the XML schema into the rule author as XML fact types.

■ Keep limitations of JAXB in mind (element and complex type naming, target
package for multiple schemata, and so on).

■ Specify RL functions that can be used in rule patterns and actions.

■ Model a rule that does not include an if statement test pattern and set it to low
priority to generate a default result in the case where no other rule starts as part of
rule set execution.

■ Model your rules on the XML schema type level.

■ Be aware that the data exchange with the BPEL world is on the XML element level.

■ Be aware that an alternative approach using RL functions can be taken in the case
of an existing data model based on RL or Java fact types.

Decision Service Deployment and Run Time
This section describes decision service partner link creation, deployment, and run time
issues.

This section contains the following topics:

■ Decision Service Partner Link Directory Structure

■ Deployment

■ Run Time

Decision Service Partner Link Directory Structure
As part of decision service partner link creation during design time, subdirectories and
files are created under the following directory:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\decisionservices\DecisionService

■ ear — Top level directory for the J2EE enterprise archive (EAR)

■ war — Top level directory for the Web archive (WAR)

where DecisionService is the name you entered in the Service Name field of the
Decision Service wizard.

Table 18–1 shows the subdirectories and files of the ear and war directories.

See Also: "Decide Activity" on page 18-14

Decision Service Deployment and Run Time

18-40 Oracle BPEL Process Manager Developer’s Guide

The following steps are automatically performed as part of decision service partner
link creation:

■ A new directory structure (see Table 18–1) is created in the following directory:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\decisionservices\DecisionService

■ EAR deployment descriptors are generated and stored in the META-INF
subdirectory of the enterprise archive.

■ A Java server page file GetDecisionServiceInfo.jsp is generated and stored
in the public_html directory of the Web archive.

■ The decision service-dependent WSDL file DecisionService.wsdl is
generated and stored in the WEB-INF/wsdl directory of the Web archive. All
dependent XML schema files are also copied to that directory. Dependent schema
files include the definitions for the Web service messages and contract and the
XML schema files for the XML fact types of the business rule engine.

■ The decision service configuration file decisionservices.xml is generated
and copied to the directory WEB-INF/classes of the Web archive.

■ The rule repository location is resolved:

– If the rule repository is a file repository, the repository file is copied from its
original location to the WEB-INF/repository directory of the Web archive
and the configuration file decisionservices.xml is modified to reference
the new location.

– If the rule repository is a WebDav repository, the configuration file is not
edited.

■ JAXB generation steps:

– A list of XML schema files for the XML fact types being used in the partner
link is obtained.

Table 18–1 Contents of ear and war directories

ear/
META-INF

war/public_
html

war/
WEB-INF/lib

war/
WEB-INF/wsdl

war/
WEB-INF/

war/
WEB-INF/classes

war/WEB-INF/
repository

applicati
on.xml

GetDecisio
nServiceIn
fo.jsp

No files common.xsd web.xml decisionservic
es.xml

Oracle
Business Rules
file repository

orion-app
lication.
xml

BpelProcess
.xsd

webservices
.xml

Generated JAXB
classes from XML
fact types

DecisionSer
vice.xsd

oracle-webs
ervices.xml

DecisionSer
viceMessage
s.xsd

java-wsdl-m
apping.xml

rpi.xsd

DecisionSer
vice.wsdl

XML schema
files for fact
types

Decision Service Deployment and Run Time

BPEL Process Integration with Business Rules 18-41

– Oracle JAXB generator is used to generate JAXB classes for the XML fact types
in the directory WEB-INF/classes of the Web archive.

■ Web service deployment descriptors and the JAX-RPC mapping file are generated
in the directory WEB-INF of the Web archive.

The decisionservices.xml decision service configuration file includes the
necessary information to generate an interaction pattern-specific WSDL.

From the following information in the configuration file:

<pattern name="AssertExecuteWatchStateless">
 <arguments>
 <assert>creditrating.Ratingrequest</assert>
 <watch>creditrating.Rating</watch>
 </arguments>
</pattern>

you can understand the messages and operations for WSDL generation.

In the following section, the XML schema file of the XML fact types is imported into
the decisionservices.wsdl file. This enables the fact elements to be referenced:

<types>
 <schema xmlns="http://www.w3.org/2001/XMLSchema" ...>
 <include schemaLocation="CreditRatingAgentTypes.xsd"/>
 </schema>
 <schema xmlns="http://www.w3.org/2001/XMLSchema" ...>
 <import namespace="http://samples.otn.com/bpel/demo"
 schemaLocation="CreditRatingTypes.xsd"/>
 <import namespace="http://xmlns.oracle.com/bpel"/>
 . . .
 . . .

In this section, the XML schema element corresponding to the fact
creditrating.Ratingrequest is shown:

 . . .
 . . .
 <element name="assertExecuteWatchStateless">
 <complexType>
 <sequence>
 <element name="configURL" type="string" maxOccurs="1"/>
 <element name="bpelInstance" type="bpelpm:tBpelProcess"
 maxOccurs="1"/>
 <element name="assertList" minOccurs="1" maxOccurs="1">
 <complexType>
 <sequence>
 <element ref="ns1:ratingrequest"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 <attribute name="name" type="NCName" use="required"/>
 </complexType>
 </element>
 . . .
 . . .

In this section, the XML schema element corresponding to the fact
creditrating.Rating is shown:

 . . .

Decision Service Deployment and Run Time

18-42 Oracle BPEL Process Manager Developer’s Guide

 . . .
 <element name="assertExecuteWatchStatelessDecision">
 <complexType>
 <sequence>
 <element name="resultList" minOccurs="1" maxOccurs="1">
 <complexType>
 <sequence>
 <element ref="ns1:rating"/>
 </sequence>
 </complexType>
 </element>
 </sequence>
 </complexType>
 </element>
 </schema>
 </types>
 . . .
 . . .

In this section, appropriate messages are created for the interaction pattern:

 . . .
 . . .
 <message name="assertExecuteWatchStatelessMessage">
 <part name="payload" element="tns:assertExecuteWatchStateless"/>
 </message>
 <message name="assertExecuteWatchStatelessDecisionMessage">
 <part name="payload"
 element="tns:assertExecuteWatchStatelessDecision"/>
 </message>
 <message name="decisionServiceError">
 <part name="payload" element="tns:errorInfo"/>
 </message>
 . . .
 . . .

In this section, an operation is created for the interaction pattern with input and
output messages corresponding to the selected fact types:

 . . .
 . . .
 <portType name="IDecisionService">
 <operation name="assertExecuteWatchStateless">
 <input name="assertExecuteWatchStatelessInput"
 message="tns:assertExecuteWatchStatelessMessage"/>
 <output name="assertExecuteWatchStatelessOutput"
 message="tns:assertExecuteWatchStatelessDecisionMessage"/>
 <fault name="operationErroredFault"
 message="tns:decisionServiceError"/>
 </operation>
 </portType>

Deployment
The decision services modeled in a BPEL project are deployed with the BPEL process.
As part of BPEL process deployment, the following steps are performed for all
decision services in the project:

■ The Java compiler (javac) is used and all Java classes are compiled in the
subdirectory WEB-INF/classes.

Decision Service Deployment and Run Time

BPEL Process Integration with Business Rules 18-43

■ A Web archive DecisionService.war file is created in the ear enterprise
archive subdirectory of a decision service. The Web archive consists of all files
under the war directory of a decision service.

■ An enterprise archive DecisionService.ear file is created in the top level
directory of a decision service. The enterprise archive consists of all files in the ear
directory of a decision service, plus the Web archive created above.

■ The enterprise archive DecisionService.ear is deployed to the underlying
J2EE container using the administrator tools of the specific container.

The J2EE context root of a decision service DecisionService is as follows:

http://${hostname}:${http_port}/rules/${domain_id}/${process_id}/${process_
revision}/DecisionService

The parameters for this syntax are defined as follows:

The decision services for a specific BPEL process and revision can be identified using
Oracle Enterprise Manager 10g Grid Control Console.

Run Time
The decision service run time component is a standard J2EE JAX-RPC Web service.

This section describes how to manage the decision service from the following consoles:

■ Oracle Enterprise Manager 10g Application Server Control Console Support

■ Oracle BPEL Control Support

Oracle Enterprise Manager 10g Application Server Control Console Support
There are several implications of deploying decision services as self-contained
enterprise archives. The most important is that every decision service can be managed
separately and independently of its invoking BPEL process using Oracle Enterprise
Manager 10g Application Server Control Console.

For example, with the AutoLoanDemo sample included as part of Oracle BPEL
Process Manager, the AutoLoanFlow BPEL process consists of two decision service
partner links:

Parameter Description

${hostname} The name of the host that on which the application server
is installed

${http_port} The HTTP port of the application server

${domain_id} The BPEL domain

${process_id} The BPEL process name

${process_revision} The BPEL process version

See Also: "Run Time" on page 18-43

See Also: The AutoLoanDemo tutorial, which describes how to
design a BPEL process that integrates with business rules and uses
human workflow:

SOA_Oracle_Home\bpel\samples\demos\AutoLoanDemo

Decision Service Deployment and Run Time

18-44 Oracle BPEL Process Manager Developer’s Guide

■ Loan advisor

■ Credit rating

1. Log into Oracle Enterprise Manager 10g Application Server Control Console.

http://hostname:port/em

2. Click Web Services.

The two decision services appear: LoanAdvisorAgent and CreditRatingAgent.

You can manage and diagnose the decision services as with any other Web service.

3. Click CreditRatingAgentPort to receive more details for the CreditRatingAgent
decision service:

4. Click Operations to access additional details:

Decision Service Deployment and Run Time

BPEL Process Integration with Business Rules 18-45

Oracle BPEL Control Support
You can monitor and diagnose decision services through Oracle BPEL Control. A
decisionServiceDetails property is added to the BPEL suitcase that refers to the
configuration information of a decision service partner link.

1. Log into Oracle BPEL Control.

2. Click the AutoLoanFlow BPEL process in Oracle BPEL Control.

3. Click Descriptor.

The Descriptor tab shows the process descriptor of the AutoLoanFlow process
included with the AutoLoanDemo sample:

The process has two decision service partner links configured:

■ CreditRatingAgentPL for credit rating

■ LoanAdvisorAgentPL for loan advisory

4. Access additional details about a decision service partner link by clicking Rule
Service Details (for example, the details for CreditRatingAgentPL).

Decision Service Deployment and Run Time

18-46 Oracle BPEL Process Manager Developer’s Guide

The information displayed includes the following:

■ Rule engine information

– The backend rule engine provider (Oracle in this case)

– The physical location of the rule repository

– The name of the rule catalog being used for that partner link

– (Optional) The version of the rule catalog being used

– (Optional) The rule set used by the partner link

■ Interaction information

– The interaction patterns used by the partner link

– The input and output fact types used per interaction pattern

5. If you want to open the rule author and update the rule set, click Open Rule
Author.

Decide activity details are also available in the Flow window.

6. Click the Instances tab.

7. Click a specific instance in the Instance list.

8. Click Flow.

9. Click a decide activity in the process instance flow to access the same information
(for this example, named LoanAdvisorAgent).

Advanced Decision Service Features

BPEL Process Integration with Business Rules 18-47

This displays the following information:

Advanced Decision Service Features
This section describes advanced decision service features for which limited or no user
interface support is provided. Instead, you manually edit deployment description and
configuration files to use these features.

This section contains the following topics:

■ Using WSIF Bindings

■ Enabling Logging of Oracle Business Rules Rule Session Events

■ Customizing assertXPath

Using WSIF Bindings
As described in "Decision Service Components" on page 18-4, decision services are
JAX-RPC Web services. Therefore, SOAP is the protocol to use with a decision service.
However, you can configure the BPEL process to use the decision service in a WSIF
context.

Perform the following procedures:

Advanced Decision Service Features

18-48 Oracle BPEL Process Manager Developer’s Guide

1. Remove the wsdlRuntimeLocation property for a decision service partner link
from the bpel.xml deployment descriptor file of the BPEL process.

2. Add fact type Java classes to the classpath of Oracle BPEL Process Manager.

a. If the decision service partner link was deployed before, you can copy all the
files from:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\decisionservices\DecisionService\war\WEB-INF\classes

to

SOA_Oracle_Home\bpel\system\classes

b. Otherwise, you must compile the Java classes located in the following
directory:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\decisionservices\DecisionService\war\WEB-INF\classes

to

SOA_Oracle_Home\bpel\system\classes

3. Deploy the BPEL process.

Enabling Logging of Oracle Business Rules Rule Session Events
The Oracle Business Rules Rules Engine defines several rule session events for
monitoring. (See Oracle Business Rules Language Reference Guide for additional details.)
The decision service provides the option to enable these events and log the output to
the Oracle BPEL Process Manager log file.

The events are enabled through properties in the decision service configuration file
(decisionservices.xml). Table 18–2 describes the properties that can be set.

1. Open the file:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\decisionservices\DecisionService\war\WEB-INF\
classes\decisionservices.xml

2. Add the properties after the repository element in the ruleEngineProvider
section.

<?xml version = '1.0' encoding = 'UTF-8'?>

Table 18–2 Decision Service Configuration File Parameters

Property Description

watchRules Information about rule invocations (execution of activations)

watchActivations Addition or removal of activations from the agenda

watchFacts Assertion, retraction, or modification of facts in working memory

watchFocus Pushing or popping of the rule set stack

watchCompilations When a rule’s conditions are added to the network, information about
how the condition parts are shared with existing rules is printed. “=”
indicates sharing.

watchAll Includes information from all of the above events

Advanced Decision Service Features

BPEL Process Integration with Business Rules 18-49

<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules">
 <ruleEngineProvider name="CreditRatingRuleRepository"
 provider="Oracle">
 <repository type="File">
 <file>repositoryresource:CreditRatingRepository</file>
 </repository>
 <properties>
 <property name="watchRules">true</property>
 <property name="watchActivations">true</property>
 <property name="watchFacts">true</property>
 <property name="watchCompilations">true</property>
 </properties>
 </ruleEngineProvider>
 <decisionService name="CreditRatingAgent"

targetNamespace="http://xmlns.oracle.com/AutoLoanFlow/CreditRatingAgent"
 ruleEngineProviderReference="CreditRatingRuleRepository">
 <catalog>RatingFY06</catalog>
 <catalogVersion>Approved_060205</catalogVersion>
 <ruleset>PrivateCustomerRatingRules</ruleset>
 <pattern name="AssertExecuteWatchStateless">
 <arguments>
 <assert>creditrating.Ratingrequest</assert>
 <watch>creditrating.Rating</watch>
 </arguments>
 </pattern>
 </decisionService>
</decisionServices>

3. Redeploy the decision service. The following is a sample output taken from the
credit rating agent of the AutoLoanFlow process.

<2006-07-05 10:18:13,710> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> Execution plan for AutoLoanFlow:202
<2006-07-05 10:18:13,710> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> assert fact creditrating.Ratingrequest
<2006-07-05 10:18:13,710> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> f-1
 creditrating.RatingrequestImpl(SSN : "12345", age : 41, amount : 60000.0, date
 : null, name : "Irving Stone", DOMNode : <ratingrequest
 xmlns="http://samples.otn.com/bpel/demo">
.....
<2006-07-05 10:18:13,750> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> Activation: creditrating.__
xpath.retractDeadRatingrequest : f-1,
<2006-07-05 10:18:13,750> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> Activation: creditrating.__
xpath.retractDeadRatingrequestType : f-1,
<2006-07-05 10:18:13,750> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> Activation:
 PrivateCustomerRatingRules.Default : f-1
<2006-07-05 10:18:13,790> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> Activation:
 PrivateCustomerRatingRules.YoungCustomers : f-1
<2006-07-05 10:18:13,790> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> Activation:
 PrivateCustomerRatingRules.HighRiskCustomers : f-1
<2006-07-05 10:18:13,790> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> Execute rule set
 PrivateCustomerRatingRules
<2006-07-05 10:18:13,790> <DEBUG> <default.collaxa.cube.services>

Advanced Decision Service Features

18-50 Oracle BPEL Process Manager Developer’s Guide

 <OracleRuleSession::executeUnitOfWork> Fire 1
 PrivateCustomerRatingRules.YoungCustomers f-1
<2006-07-05 10:18:13,790> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> <== f-1
 creditrating.RatingrequestImpl(SSN : "12345", age : 41, amount : 60000.0, date
 : null, name : "Irving Stone", DOMNode : <ratingrequest
 xmlns="http://samples.otn.com/bpel/demo">
....
<2006-07-05 10:18:13,820> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> <== Activation: creditrating.__
xpath.retractDeadRatingrequest : f-1,
<2006-07-05 10:18:13,820> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> <== Activation: creditrating.__
xpath.retractDeadRatingrequestType : f-1,
<2006-07-05 10:18:13,820> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> <== Activation:
 PrivateCustomerRatingRules.Default : f-1
<2006-07-05 10:18:13,820> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> <== Activation:
 PrivateCustomerRatingRules.HighRiskCustomers : f-1
<2006-07-05 10:18:13,830> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> f-2
 creditrating.RatingImpl(DOMNode : oracle.xml.parser.v2.XMLElement@1b1d896)
<2006-07-05 10:18:13,830> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> Activation: creditrating.__
xpath.retractDeadRating : f-2,
<2006-07-05 10:18:13,830> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> ==> Activation: creditrating.__
xpath.retractDeadRatingType : f-2,
<2006-07-05 10:18:13,830> <DEBUG> <default.collaxa.cube.services>
 <OracleRuleSession::executeUnitOfWork> Ruleset PrivateCustomerRatingRules
 executed, 1 rules fired.

Customizing assertXPath
Oracle Business Rules can specify an XPath expression when asserting facts. This
reduces the number of assertions and provides a convenient mechanism to assert
multiple facts with a single assert statement.

This functionality is available in Oracle JDeveloper. Select Check here to assert all
descendants from the top level element on the Select a Ruleset or a Function window
in the Decision Service wizard. When you select this option, a default XPath "//*" is
created for the fact to assert. This causes all descendants of the fact element to assert
during run time.

You can customize the XPath expression manually by modifying the decision service
configuration located in the following file:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\decisionservices\DecisionService\war\WEB-INF\
classes\decisionservices.xml

The following example shows this option enabled for a fact type.

<?xml version = '1.0' encoding = 'UTF-8'?>
<decisionServices xmlns="http://xmlns.oracle.com/bpel/rules">
 <ruleEngineProvider name="CreditRatingRuleRepository"
 provider="Oracle">
 <repository type="File">
 <file>repositoryresource:CreditRatingRepository</file>
 </repository>

Example of BPEL Process Integration with Business Rules

BPEL Process Integration with Business Rules 18-51

 </ruleEngineProvider>
 <decisionService name="CreditRatingAgent"

targetNamespace="http://xmlns.oracle.com/AutoLoanFlow/CreditRatingAgent"
 ruleEngineProviderReference="CreditRatingRuleRepository">
 <catalog>RatingFY06</catalog>
 <catalogVersion>Approved_060205</catalogVersion>
 <ruleset>PrivateCustomerRatingRules</ruleset>
 <pattern name="AssertExecuteWatchStateless">
 <arguments>
 <assert xpath="//*">creditrating.Ratingrequest</assert>
 <watch>creditrating.Rating</watch>
 </arguments>
 </pattern>
 </decisionService>
</decisionServices>

You can customize the attribute xpath="//*" before deploying the decision service.

Example of BPEL Process Integration with Business Rules
The section describes how to design and integrate a BPEL process with the business
rules of a business rule engine. This example is part of a larger tutorial that also
describes how to design this BPEL process to use human workflow. Only the part
describing BPEL process integration with business rules is included in this section.

This section contains the following topics:

■ Task 1: Update a Rule Using Oracle Business Rules Rule Author

■ Task 2: Create a Connection to the Business Rule Repository

■ Task 3: Create a BPEL Process and Import the Schema

■ Task 4: Create a Decision Service Partner Link

■ Task 5: Create a Decide Activity

Task 1: Update a Rule Using Oracle Business Rules Rule Author
This section describes how to access the Oracle Business Rules Rule Author and
modify a business rule that you later integrate with your BPEL process.

1. Log into the Oracle Business Rules Rule Author.

http://hostname:port/ruleauthor

The Oracle Business Rules Rule Author is automatically installed with the SOA
Suite Basic Install type.

2. Log in as oc4jadmin/password.

where password is the oc4jadmin password you entered during installation.

3. Click the Repository tab at the top.

4. Select File from the Repository Type list.

See Also: The complete AutoLoanDemo tutorial, which describes
how to design a BPEL process that integrates with business rules and
uses human workflow:

SOA_Oracle_Home\bpel\samples\demos\AutoLoanDemo

Example of BPEL Process Integration with Business Rules

18-52 Oracle BPEL Process Manager Developer’s Guide

5. Click Browse and select the CreditRatingRepository file repository from the
SOA_Oracle_Home\bpel\samples\demos\AutoLoanDemo\repository
directory.

This page displays the following details:

6. Click Connect.

A message displays indicating that a connection has been made to the repository.

7. Click the Customization tab at the top.

8. Enter the following details to load the rule dictionary and its versions from the
repository selected in Step 5:

This page displays the following details:

9. Click Load.

A confirmation message appears:

Dictionary 'RatingFY06 (Approved_060205)' has been loaded

10. Click the Customization tab at the top. You now modify a rule in the rule set.

11. Click the YoungCustomers rule and change request.customer age < from 40 to
45.

This page displays the following details:

Field Value

Existing Dictionaries RatingFY06

Version Approved_060205

Example of BPEL Process Integration with Business Rules

BPEL Process Integration with Business Rules 18-53

12. Click Apply.

A message displays indicating that the customization has been applied.

13. Click the HighRiskCustomers rule and change request.customer age >= from 40
to 45.

14. Click Apply.

15. Click Save Dictionary at the top.

16. Click Save.

This saves the current dictionary contents (including your updates) in the
CreditRatingRepository repository.

17. Click Logout.

Task 2: Create a Connection to the Business Rule Repository
This section describes how to create a connection to the business rule repository.

1. Select Connection Navigator from the View main menu in Oracle JDeveloper.

2. Right-click Rule Engines and select New Rule Engine Connection.

3. Click Next on the Welcome window.

4. Enter CreditRatingRuleRepository in the Connection Name field.

5. Select Oracle Rules Engine File Repository as the type of business rule engine to
which to connect.

Example of BPEL Process Integration with Business Rules

18-54 Oracle BPEL Process Manager Developer’s Guide

6. Click Next.

The Connection window appears.

7. Click the folder icon to select the directory in which the file repository is located.

8. Select the CreditRatingRepository file repository from the SOA_Oracle_
Home\bpel\samples\demos\AutoLoanDemo\repository directory. This is the
repository you loaded in Step 5 on page 18-52.

9. Click Open.

10. Click Next.

The Test Connection window appears.

11. Click Test.

If the connection to the business rule repository is successful, the following
message appears:

Success

Example of BPEL Process Integration with Business Rules

BPEL Process Integration with Business Rules 18-55

12. Click Finish.

Task 3: Create a BPEL Process and Import the Schema
You now create a BPEL process in which to integrate the business rules of the business
rule engine you modified in "Task 1: Update a Rule Using Oracle Business Rules Rule
Author" on page 18-51.

1. Right-click your application in the Application Navigator section.

2. Select New Project to define a new BPEL process project.

3. Double-click BPEL Process Project in the Items window to display the BPEL
Project Creation Wizard window.

4. Enter AutoLoanFlow in the Name field. All other fields default to the correct
values for creating an asynchronous BPEL process.

5. Click Next.

6. Click the flashlight icon to the right of the Input Schema Element field.

7. In the Select Schema window, select AutoLoanTypes.xsd from the SOA_Oracle_
Home\bpel\samples\demos\AutoLoanDemo\AutoLoanFlow\bpel directory
and click Open.

The Type Chooser window appears.

8. Expand and select Imported Schemas > AutoLoanTypes.xsd > loanApplication.

9. Click OK.

10. Click the flashlight icon to the right of the Output Schema Element field.

The Type Chooser window appears.

11. Expand and select Imported Schemas > AutoLoanTypes.xsd > loanOffer.

12. Click OK.

13. Click Finish.

Task 4: Create a Decision Service Partner Link
You now use the Decision Service Wizard to connect to the business rule engine and
convert the rule set you modified in "Task 1: Update a Rule Using Oracle Business
Rules Rule Author" into a Web service to use in the BPEL process. When complete, a
decision service partner link is created.

1. Ensure that Services is selected in the drop-down list of the Component Palette
section in the upper right section of Oracle JDeveloper.

2. Drag and drop a Decision Service onto the right side of the designer window
anywhere beneath the header Services.

The Select a Ruleset or a Function window appears.

This window enables you to select an invocation pattern.

3. Enter the following details:

Field Value

Service Name CreditRatingAgent

Note: When complete, this becomes the name of the partner link.

Example of BPEL Process Integration with Business Rules

18-56 Oracle BPEL Process Manager Developer’s Guide

The window now appears as follows:

4. Click the flashlight icon next to the Ruleset field.

The Rule Explorer window appears.

This window enables you to browse and select the rule set in the dictionary of the
repository you modified in "Task 1: Update a Rule Using Oracle Business Rules
Rule Author" on page 18-51.

5. Click Show All Versions at the bottom of the window to display all catalog
versions of rule dictionaries in the specified repository. Business rule repositories
can contain multiple rule dictionaries and versions.

6. Expand and select CreditRatingRuleRepository > RatingFY06 > Approved_
060205 > PrivateCustomerRatingRules.

Namespace http://xmlns.oracle.com/myLoanProcess/CreditRatingAgent

Note: This field is automatically completed with your entry in the
Service Name field.

Invocation Pattern Execute Ruleset

Field Value

Example of BPEL Process Integration with Business Rules

BPEL Process Integration with Business Rules 18-57

7. Click OK.

You are returned to the Select a Ruleset or a Function window of the Decision
Service wizard. Note that all fact names for the PrivateCustomerRatingRules rule
set now appear in the fact table.

8. Select the input (Assert Fact) and output (Watch Fact) fact types:

■ Select the Assert Fact check box for the Ratingrequest fact type.

This asserts a fact to the rule set (sends factual data to the business rule
engine).

■ Select the Watch Fact check box for the Rating fact type.

This returns results from the rule set. This table column only appears because
you selected an invocation pattern that retrieves results in Step 3 on
page 18-55.

Example of BPEL Process Integration with Business Rules

18-58 Oracle BPEL Process Manager Developer’s Guide

9. Click Next.

This window shows the schema file for the wizard to import.

10. Click Next, then Finish.

A partner link of the name you specified in Step 3 on page 18-55 is created. This
partner link provides the interface between the BPEL process and the business rule
engine.

Example of BPEL Process Integration with Business Rules

BPEL Process Integration with Business Rules 18-59

11. Select Save from the File main menu.

Task 5: Create a Decide Activity
You now create a decide activity to invoke the decision service partner link you
created with the Decision Service wizard. The decide activity enables you to create
copy operation assignments between the fact types in your rule set (now included in
the partner link) and BPEL variables. You provide an input fact to the rule set and then
retrieve the results. This enables you to invoke rules from the BPEL process.

When complete, a decide activity consisting of assign and invoke activities to the
decision service partner link is created.

1. Drag and drop a Decide activity below the receiveInput receive activity in the
designer window.

2. Enter the following values:

3. Click Assign Input Facts.

You now map BPEL input variables to automatically created BPEL variables that
correspond to the Ratingrequest input (assert) fact type.

4. Click Create.

5. Enter the following details:

The window appears as follows:

Field Value

Name GetCreditRating

Decision Service CreditRatingAgent

Operation Assert facts, execute rule set, retrieve results, and reset the session

Field Value

From

■ Type Variable

■ Variables Expand and select Variables > inputVariable > payload >
ns1:loanApplication > ns1:SSN

Note: The namespace number values (for example, ns1, ns2) can vary.
Use the namespace values that automatically appear.

To

■ Type Variable

■ Variables Expand and select Variables > creditrating_Ratingrequest_i >
ns3:ratingrequest > ns3:SSN

Example of BPEL Process Integration with Business Rules

18-60 Oracle BPEL Process Manager Developer’s Guide

6. Click OK.

7. Click Create again to create a second copy operation.

8. Enter the following details:

9. Click OK.

10. Click Create again to create a third copy operation.

11. Enter the following details:

Field Value

From

■ Type Variable

■ Variables Expand and select Variables > inputVariable > payload >
ns1:loanApplication > ns1:customerName

To

■ Type Variable

■ Variables Expand and select Variables > creditrating_Ratingrequest_i >
ns3:ratingrequest > ns3:name

Field Value

From

■ Type Variable

Example of BPEL Process Integration with Business Rules

BPEL Process Integration with Business Rules 18-61

12. Click Apply.

The Edit Decide window displays the following input fact mappings:

13. Click Assign Output Facts.

You now map the automatically created BPEL variables that correspond to the
Rating output fact type to BPEL input variables.

14. Click Create.

15. Enter the following details to create the output facts:

■ Variables Expand and select Variables > inputVariable > payload >
ns1:loanApplication > ns1:loanAmount

To

■ Type Variable

■ Variables Expand and select Variables > creditrating_Ratingrequest_i >
ns3:ratingrequest > ns3:amount

Field Value

From

■ Type Variable

■ Variables Expand and select Variables > creditrating_Rating_o > ns2:rating >
ns2:rating

Note: The namespace number values (for example, ns1, ns2) can vary.
Use the namespace values that automatically appear.

To

■ Type Variable

Field Value

Example of BPEL Process Integration with Business Rules

18-62 Oracle BPEL Process Manager Developer’s Guide

The window appears as follows:

16. Click OK.

17. Click Create again to create a second copy operation.

18. Enter the following details:

19. Click OK.

20. Click Create again to create a third copy operation.

21. Enter the following details:

■ Variables Expand and select Variables > inputVariable > payload >
ns3:loanApplication > ns3:creditRating

Field Value

From

■ Type Variable

■ Variables Expand and select Variables > creditrating_Rating_o > ns2:rating >
ns2:risk

To

■ Type Variable

■ Variables Expand and select Variables > inputVariable > payload >
ns3:loanApplication > ns3:creditRisk

Field Value

Example of BPEL Process Integration with Business Rules

BPEL Process Integration with Business Rules 18-63

22. Click OK.

The Edit Decide window displays the following output fact mappings:

23. Click OK.

When complete, a decide activity consisting of assign and invoke activities to the
decision service partner link is created.

Field Value

From

■ Type Variable

■ Variables Expand and select Variables > creditrating_Rating_o > ns2:rating >
ns2:maxAmount

To

■ Type Variable

■ Variables Expand and select Variables > inputVariable > payload >
ns3:loanApplication > ns3:creditMaxAmount

Example of BPEL Process Integration with Business Rules

18-64 Oracle BPEL Process Manager Developer’s Guide

24. Click the + sign to expand the GetCreditRating decide activity and view the
assign and invoke activities.

The BPEL process is now integrated with the business rules of the business rule
engine. If you later modify the contents of the business rule, you do not need to
redesign your BPEL process.

25. Select Save from the File main menu.

Part IV
Development and Deployment Life Cycle

This part describes how to run and manage BPEL processes from Oracle BPEL Control.

This part contains the following chapters:

■ Chapter 19, "BPEL Process Deployment and Domain Management"

■ Chapter 20, "Testing BPEL Processes"

■ Chapter 21, "Oracle BPEL Portlets"

■ Chapter 22, "Oracle BPEL Control Reports"

BPEL Process Deployment and Domain Management 19-1

19
BPEL Process Deployment and

Domain Management

This chapter provides an overview of key BPEL process deployment and domain
management concepts. An overview of Oracle BPEL Control from which you can
manage processes and domains is also provided. In addition, an overview of several
build and command line tools is also provided.

This chapter contains the following topics:

■ Compiling and Deploying a BPEL Process

■ Creating and Managing a BPEL Domain

■ Managing Processes in Oracle BPEL Control

■ Build and Command Line Tools

■ Summary

Compiling and Deploying a BPEL Process
After you complete the design of your BPEL process, you compile and deploy the
process to Oracle BPEL Server. If compilation and deployment are successful, you can
run and manage the BPEL process from Oracle BPEL Control.

Deployment sends the Oracle BPEL Process Manager archive (a set of files in a JAR file
with a directory structure similar to the project directory structure) to Oracle BPEL
Server. The deployment operation automatically validates and compiles the project
directory into the BPEL archive. Therefore, you do not need to explicitly validate,
compile, and recompile a project before deployment. Use Oracle BPEL Control to view
any currently running BPEL processes before compiling and deploying additional
processes.

BPEL processes can be compiled and deployed in Oracle JDeveloper.

See Also: The following documentation for tutorials in which you
deploy BPEL processes:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

Note: You must wait for deployment of one BPEL process to
complete before attempting to deploy another process. Attempting to
deploy a second process while the first process is still deploying can
cause problems.

Compiling and Deploying a BPEL Process

19-2 Oracle BPEL Process Manager Developer’s Guide

Compiling and Deploying in Oracle JDeveloper
To compile and deploy a BPEL process in Oracle JDeveloper, right-click the BPEL
project (for this example, named OrderBooking) in the Application Navigator and
select Deploy:

You have two deployment methods from which to choose:

■ You can deploy directly to the default domain or any other domain you have
created by using an integration server connection.

Domains enable you to partition and manage instances of your processes. A
discussion on the importance of domains is provided later in this chapter.

If this is the first time you have deployed this BPEL process to Oracle BPEL Server,
a default version label of 1.0 is automatically created. A version identifies a
specific deployed instance of a BPEL process. The version label is appended to the
end of the JAR file name created when you deploy the BPEL process.

If this label version is already deployed and the server mode is production, you
are prompted to either overwrite the existing version or enter a different version
label:

If you overwrite the version, the old process definition on the server is replaced by
the new definition. You cannot revert to the old definition. In addition, any process
instances that ran under the old definition are marked as stale. The stale instances
cannot be examined, and all flow and audit information is lost. If you enter a
different version label for the new process definition (for example, 2.0), it is
deployed to Oracle BPEL Server, while the older, deployed process definition
(1.0) also continues to run simultaneously on Oracle BPEL Server. The instances
that ran under the old definition are retained, and not marked as stale. You can
still examine the flow and audit information for these instances.

If the server mode is development, you are not prompted and the version is
automatically overwritten.

Compiling and Deploying a BPEL Process

BPEL Process Deployment and Domain Management 19-3

This is a key benefit of versioning. For example, you may have an older instance of
a BPEL process running with one customer that is still valid. You then begin a
partnership with a different customer that requires a slight modification to the
design of this BPEL process. At some point you plan to migrate the old customer
to the newer version of the BPEL process, but for now that is not necessary.
Versioning enables you to run both processes.

If you want to use a more descriptive version name for a process, right-click the
process again in the Application Navigator and select Deploy > connection_name
> Deploy to domain_name domain. Provide a more descriptive name when
prompted in the Your version field of the Deployment Properties window (for
example, sales_div_1.0). You can then retire the other process version on Oracle
BPEL Control.

■ If you select BPEL Process Deployer, the BPEL Process Deployer window opens.
This window enables you to customize your settings by selecting a different or
creating a new Oracle BPEL Server connection and deploying to domains other
than default. If this process version is already deployed, you can also select to
overwrite the existing version or enter a different version label to enable both to
run simultaneously.

After you select a deployment method, the Log Window at the bottom of Oracle
JDeveloper displays messages about the status of the deployment. For example, the
following message under the Messages tab indicates that deployment was successful.

The following message under the Apache Ant tab also indicates that deployment was
successful.

If deployment is unsuccessful, errors display in the Log Window. Click the error to
display the line of code that caused deployment to fail.

Caution: Use caution when reusing version labels in a production
environment, due to the potential loss of data. In a development
environment, it can be useful to reuse version numbers to avoid
creating unnecessary revisions of the process on Oracle BPEL Server.

Compiling and Deploying a BPEL Process

19-4 Oracle BPEL Process Manager Developer’s Guide

Make corrections and redeploy.

Compiling Without Deploying in Oracle JDeveloper
You can also compile without immediately deploying an Oracle BPEL Process
Manager archive to Oracle BPEL Server. Perform this action by right-clicking the BPEL
process and selecting Make or Rebuild. This places the Oracle BPEL Process Manager
archive in the following directory:

JDev_Oracle_Home\jdev\mywork\my_application\project_name\output

From this directory, you can deploy the process in either of two ways:

1. Copy the archive to the appropriate domain directory (for this example, default)

SOA_Oracle_Home\bpel\domains\default\deploy

or

1. Log into Oracle BPEL Control by selecting Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process Manager > BPEL Control.

2. Click BPEL Processes.

See Also:

■ "Creating a BPEL Domain" on page 19-10

■ "Changing Oracle BPEL Server Mode" on page 19-11

■ Oracle BPEL Process Manager Order Booking Tutorial and Oracle
BPEL Process Manager Quick Start Guide for instructions on
creating integration server connections

Compiling and Deploying a BPEL Process

BPEL Process Deployment and Domain Management 19-5

3. Click Deploy New Process in the Related Tasks section.

4. Click Browse to select the BPEL suitcase JAR file for the process, then click Open.

5. Click Deploy.

6. Click the Dashboard tab to view the newly deployed process.

BPEL Suitcase JAR File
During compilation and deployment, the BPEL process archive and its components are
compiled and packaged into a JAR file known as a BPEL suitcase. This JAR file
includes the following files:

■ project_name.bpel file implementation of the process

■ project_name.wsdl file

■ bpel.xml deployment descriptor file

■ Any other local resources that are required, such as XML schemas, Java classes or
libraries, and so on

The suitcase JAR file is deployed to the JDev_Oracle_
Home\jdev\mywork\application_name\process_name\output directory. The
suitcase JAR file name follows the convention of bpel_projectname_
versionnumber.jar. For example:

bpel_LoanProcess_1.0.jar

Deploying to Multiple Environments with Different Configuration Values
When the testing and development phase of a BPEL process has completed, you are
ready to deploy the process to a production environment. The configuration properties
for the production environment are typically different from those for the development
environment. For example, the partner link Web service URL for the production
environment is typically different from the one used in the testing environment.

In previous releases, you resolved this conflict by modifying the bpel.xml
deployment descriptor file or providing separate bpel.xml files for the development
and production environments. This was a big effort if the bpel.xml file required
many modifications or if you had multiple versions of bpel.xml that required
modifications.

Beginning with this release, a customize ant task is provided that enables you to
specify the property value for development and production environments in a single
build file location. The customize task captures the changes between different
versions of bpel.xml using the build file. This task can be used as a subtask of bpelc
or as a standalone ant task. The bpelc subtask can contain multiple customize
tasks. The customize task can contain multiple subtasks.

customize ant Task Example
This section provides an end-to-end example of using the customize ant task.

See Also:

■ "Creating and Managing a BPEL Domain" on page 19-8

■ "Deploying a BPEL Suitcase to a Specific Domain" on page 19-11

Compiling and Deploying a BPEL Process

19-6 Oracle BPEL Process Manager Developer’s Guide

1. Copy the target domain URL WSDL file of the partner link Web service to the
directory in which the bpel.xml file for your BPEL process is located (for this
example, IncrementService.wsdl is used).

2. Open the bpel.xml file in the same directory.

3. Modify the directory path for the IncrementService.wsdl file under the
partnerLinkBinding element to indicate that this WSDL file is located in the
same directory:

<?xml version="1.0" encoding="UTF-8"?>
<BPELSuitcase>
 <BPELProcess src="Invoke.bpel" id="Invoke">
 <partnerLinkBindings>
 <partnerLinkBinding name="client">
 <property name="wsdlLocation">Invoke.wsdl</property>
 </partnerLinkBinding>
 <partnerLinkBinding name="IncrementService">
 <property name="wsdlLocation">IncrementService.wsdl</property>
 </partnerLinkBinding>
 </partnerLinkBindings>
 <configurations>
 <property name="testIntroduction"><![CDATA[
 This BPEL process invokes a synchronous integer increment service.
]]></property>
 </configurations>
 </BPELProcess>
</BPELSuitcase>

4. Create a custom build.xml file in the same directory as the bpel.xml file and
the IncrementService.wsdl file that uses the customize task. You specify
properties for the host name, port, domain name, and process revision of the
partner link Web service that map to values set in the
ant-orapbel-properties file.

<?xml version="1.0" encoding="iso-8859-1"?>
<project name="bpel.deploy" default="compile" basedir=".">
 <target name="compile">
 <bpelc input="${basedir}/bpel.xml" out="${process.dir}/output"
 rev="${rev}" home="${bpel.home}">
 <customize>
 <partnerLinkBinding name="IncrementService">
 <property name="wsdlLocation">
 http://${host_name}:${port_number}
 /orabpel/${domain_name}
 /IncrementService/${rev}/IncrementService?wsdl</property>
 </partnerLinkBinding>
 </customize>
 </bpelc>
 </target>
</project>

Note: You can use your own custom build properties file instead of
the ant-orapbel-properties file. Ensure that you import the
custom file in the build.xml file.

Compiling and Deploying a BPEL Process

BPEL Process Deployment and Domain Management 19-7

5. Specify values for the host name, port, domain name, and process revision
properties in the SOA_Oracle_
Home\bpel\utilities\ant-orapbel-properties file.

#Development or production environment

host_name=jsmith-pc.us.oracle.com
port_number=80
domain_name=default
rev=1.0
--
END OF FILE

This single file is the only location that requires editing between the development
and production environments. For example, if the host name for the production
environment is different (for example, jwilliams-pc.us.oracle.com), you
change it in this file.

6. Go into the main build.xml file located one directory above the bpel.xml,
IncrementService.wsdl, and custom build.xml files.

7. Specify a new target name in the process-deploy section (for this example, the
default target name of compile is changed to compile1).

<target name="process-deploy"
 depends="validateTask, compile1, deployProcess, deployTaskForm,
 deployDecisionServices" />

8. Create a new target name section below the target name. For this example, a
section with a value of compile1 is specified that calls the custom build.xml
script you created in Step 4. The target name section points to the bpel directory
that includes the bpel.xml, IncrementService.wsdl, and custom
build.xml files.

<target name="process-deploy"
 depends="validateTask, compile1, deployProcess, deployTaskForm,
 deployDecisionServices" />
 <target name="validateTask">
 <echo>
--
Validating workflow
 </echo>
 <validateTask dir="${process.dir}/bpel" />
 </target>
 <target name="compile1">
 <ant dir="${process.dir}/bpel"/>
 </target>
 <target name="compile">

9. Deploy the BPEL process with ant.

ant process-deploy

10. Go to Oracle BPEL Control to see that all processes deployed correctly.

customize ant Task Syntax
The customize ant task can be used to modify several types of properties. This
section provides syntax examples of using the customize ant task with these
properties.

Creating and Managing a BPEL Domain

19-8 Oracle BPEL Process Manager Developer’s Guide

Specifying Custom File Names By default, the bpel.xml file set in the build.xml file is
used. You can also can specify custom input and output deployment descriptor files.
This action modifies the specified input XML file and writes the results to the specified
outFile. Table 19–1 describes the attributes to use.

Specifying Deployment Descriptor configurations Properties When used as a bpelc subtask,
the customize ant task can add or modify configurations properties of the
deployment descriptor.

<configurations>
 <property name="propName">propValue</property>
</partnerLinkBinding>

Specifying partnerLinkBinding Properties When used as a bpelc subtask, the customize
ant task can add or modify properties of a partnerLinkBinding.

<partnerLinkBinding name="partnerLinkName">
 <property name="propName">propValue</property>
</partnerLinkBinding>

Specifying activationAgent Properties When used as a bpelc subtask, the customize
ant task can add or modify properties of an activationAgent.

<activationAgents name="actAgentName">
 <property name="propName">propValue</property>
</partnerLinkBinding>

Specifying Deployment Descriptor preferences Properties When used as a bpelc subtask,
the customize ant task can add or modify preferences properties of the
deployment descriptor.

<preferences>
 <property name="propName">propValue</property>
</preference>

Creating and Managing a BPEL Domain
BPEL processes (specifically, the suitcase JAR file) are deployed to domains. A BPEL
domain allows a developer or administrator to partition a single instance of Oracle
BPEL Process Manager into multiple virtual BPEL sections.

Table 19–1 Attributes

Attribute Description Required

inFile Specifies the input XML file. When used as a subtask of
bpelc, the default value is the deployment descriptor file
(bpel.xml).

No

outFile Specifies the output XML file. When used as a subtask of
bpelc, the default value of this is the deployment descriptor
file (bpel.xml).

No

See Also: Appendix C, "Deployment Descriptor Properties"

See Also: "customize ant Task Example" on page 19-5

See Also: Appendix C, "Deployment Descriptor Properties"

Creating and Managing a BPEL Domain

BPEL Process Deployment and Domain Management 19-9

 Here are some examples of how to use BPEL domains:

■ Partition a single Oracle BPEL Process Manager instance into a multideveloper
environment. In this case, the domain ID typically identifies the developer owning
that domain.

■ Partition a single Oracle BPEL Process Manager instance into both a development
and QA environment. In this case, the domain IDs can be test and qa.

■ Partition a single Oracle BPEL Process Manager instance into an environment used
by multiple departments or partners. In these cases, the domain IDs are the names
of the departments or partners.

The following sections describe key BPEL domain issues:

■ Logging into Domains

■ Changing Domain Passwords

■ Creating a BPEL Domain

■ Changing Oracle BPEL Server Mode

■ Deploying a BPEL Suitcase to a Specific Domain

■ Undeploying a BPEL Process from a Specific Domain

Logging into Domains
Oracle BPEL Process Manager domain management and administration is performed
from Oracle BPEL Control and Oracle BPEL Admin Console.

Beginning with this release, Oracle BPEL Control and Oracle BPEL Admin Console are
secured with Oracle Application Server J2EE and JAAS security features. Access to
BPEL domains is now protected through user IDs and passwords. In previous releases,
only a password was required.

When Oracle BPEL Process Manager is installed, an initial domain named default is
created. The initial password for accessing the default domain through Oracle BPEL
Control or any domain you create is the same as that specified for the oc4jadmin user
during installation. The procedural instructions described in this chapter for
performing tasks use the oc4jadmin user.

You can also use the bpeladmin user or default user and their default password of
welcome1 to access domains. The bpeladmin user provides access to all domains
and the default user provides access to only the default domain.

The oc4jadmin, bpeladmin, and default users enable you to access Oracle BPEL
Control through the following methods:

■ Selecting Start > All Programs > Oracle - Oracle_Home > Oracle BPEL Process
Manager > BPEL Control

■ Going to the following URL:

http://localhost:port/BPELConsole

where port is:

– 8888 if you installed Oracle BPEL Process Manager from the Oracle
Application Server SOA software CD.

– 9700 if you installed the Oracle BPEL Process Manager for Developers or
Oracle BPEL Process Manager for OracleAS Middle Tier install type from the
Oracle BPEL Process Manager software CD.

Creating and Managing a BPEL Domain

19-10 Oracle BPEL Process Manager Developer’s Guide

The oc4jadmin and bpeladmin users enable you to access Oracle BPEL Admin
Console through the following URL:

http://localhost:port/BPELAdmin

You cannot access Oracle BPEL Admin Console with the default user. Both Oracle
BPEL Control and Oracle BPEL Admin Console are described further in subsequent
sections of this chapter.

Changing Domain Passwords
Passwords for the oc4jadmin, bpeladmin, and default users can be changed
through Oracle Enterprise Manager 10g Application Server Control Console. Oracle
recommends that you change the passwords for the bpeladmin and default users
after installation.

Creating a BPEL Domain
You can create additional domains by performing the following procedures.

1. Access Oracle BPEL Admin Console:

http://localhost:port/BPELAdmin

2. Enter the oc4jadmin username and password.

3. Click the BPEL Domains tab.

4. Click Create New BPEL Domain.

The Create New BPEL Domain window appears.

5. Follow the on-screen instructions to create a new domain with an ID.

6. Return to Oracle JDeveloper.

7. Right-click a process.

8. Select Deploy > connection_name > Refresh.

9. Select Deploy > connection_name > Deploy to domain_name domain.

where domain_name is the ID you entered in Step 5.

10. Log in to Oracle BPEL Control.

See Also:

■ Security chapter of the Oracle BPEL Process Manager
Administrator’s Guide for additional details about Oracle BPEL
Control and Oracle BPEL Admin Console users and the roles that
provide access to domains

■ Oracle BPEL Process Manager Installation Guide for information
about supported Web browsers

See Also:

■ Oracle Application Server Administrator’s Guide for instructions on
changing the oc4jadmin, bpeladmin, and default passwords

■ Oracle BPEL Process Manager Administrator’s Guide for additional
details about Oracle BPEL Process Manager security

Creating and Managing a BPEL Domain

BPEL Process Deployment and Domain Management 19-11

11. Select the new domain name from the drop-down list in the upper right corner of
Oracle BPEL Control.

The process you deployed in Step 9 displays in the Dashboard tab.

Changing Oracle BPEL Server Mode
Oracle BPEL Server is automatically installed in production mode. If you attempt to
deploy a process in production mode and a label version of that process is already
deployed, you are prompted to either overwrite the existing version or enter a
different version label.

Follow these instructions to see the current mode of your server in Oracle JDeveloper.

1. Right-click the BPEL process in the Application Navigator.

2. Select Deploy > BPEL Process Deployer.

The Server Mode field of the BPEL Process Deployer window displays the mode.

You can change this mode to development. When you attempt to deploy a process in
development mode and a label version of that process is already deployed, it is
automatically overwritten and you are not prompted to make a decision.

Follow these instructions to change the current mode of your server.

1. Access Oracle BPEL Admin Console:

http://localhost:port/BPELAdmin

2. Enter the oc4jadmin username and password.

3. Click the Server tab.

4. Change the productionServer property value to false.

5. Click Apply.

6. Return to the BPEL Process Deployer window. The Server Mode field now
displays as Development.

Deploying a BPEL Suitcase to a Specific Domain
In addition to the domain deployment methods described in "Compiling and
Deploying a BPEL Process" on page 19-1, there are other methods for deploying a
BPEL suitcase into a domain:

Managing Processes in Oracle BPEL Control

19-12 Oracle BPEL Process Manager Developer’s Guide

1. If the domain is local, configure the deploy option of the bpelc ant task to
perform local deployment to a specific domain. The following example shows an
ant build script deploying the BPEL suitcase to a domain named qa:

<?xml version="1.0"?>
<project name="LoanFlow" default="main" basedir=".">
<property name="deploy" value="qa"/>
<property name="rev" value="1.0"/>
<target name="main">
<bpelc orabpelhome="${orabpelHome}" rev="${rev}" deploy="${deploy}"/>
</target>
</project>

2. If the domain is not local to the environment in which to compile the BPEL
suitcase, use the Deploy New Process link under the Dashboard tab in Oracle
BPEL Control to remotely upload and deploy a BPEL JAR file. Links to this task
are located in the bottom-left portion of the Dashboard tab and bottom-left
portion of the BPEL Processes tab. You can simply run the bpelc task without the
deploy option to create the BPEL suitcase JAR in the current directory. If you have
already deployed the BPEL suitcase locally, you can upload it from your local
deployment directory. See "BPEL Suitcase JAR File" on page 19-5 for more
information on where deployed BPEL suitcases can be found.

3. Deploying a BPEL process is equivalent to copying the BPEL suitcase JAR file into
the deploy directory of the appropriate BPEL domain. Even if you are accessing
the domain remotely, all you need is disk sharing, FTP, secure copy (SCP), or some
other access to the server hosting the domain. You can add this to your ant
build.xml script to remove the deploy option as described above and then add
your own task to perform the remote copy of the generated JAR file into the
appropriate location.

Undeploying a BPEL Process from a Specific Domain
Oracle BPEL Control enables you to manage the life cycle and state of a deployed
BPEL process. Select the name of the BPEL process on the Dashboard tab and then
select the Manage tab on the left. On this page you can first retire and then undeploy
the selected BPEL process. Retiring a process prevents any new instances of that
process from being created. If a specific version of a BPEL process is undeployed
before all pending in-flight instances are completed, those instances are marked as
stale and their execution is cancelled. Note that every task that can be performed in
Oracle BPEL Control can also be performed programmatically.

Managing Processes in Oracle BPEL Control
If compilation and deployment are successful, you can run and manage the BPEL
process from Oracle BPEL Control. This section provides an overview of the main
pages of Oracle BPEL Control.

1. Log into Oracle BPEL Control by selecting Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process Manager > BPEL Control.

2. Enter the oc4jadmin username and password.

3. See the following sections for an overview of Oracle BPEL Control:

■ Dashboard Tab: Viewing Deployed, Running, and Completed Processes

See Also: "Build and Command Line Tools" on page 19-27 for
additional details about ant and bpelc

Managing Processes in Oracle BPEL Control

BPEL Process Deployment and Domain Management 19-13

■ BPEL Processes Tab: Managing the Process Life Cycle

■ Instances Tab: Viewing Process Instances

■ Activities Tab: Viewing Process Activities

Dashboard Tab: Viewing Deployed, Running, and Completed Processes
When you log into Oracle BPEL Control, the Dashboard tab displays by default. This
page displays the currently deployed BPEL processes and instances of BPEL processes
that are currently running (in-flight) and that have recently completed. Click a
deployed BPEL process in the Name column to access a page for creating an instance
and testing your process. Use Oracle BPEL Control to view any currently running
BPEL processes before compiling and deploying additional processes. An asterisk
identifies the version that is the default process. Default processes are described later
in this chapter.

Viewing and Changing Domains
Each Oracle BPEL Control window includes links in the upper right corner for
managing BPEL domains, accessing the BPEL site on the Oracle Technology Network,
and switching to another domain. The domain into which you are currently logged is
always displayed. When Oracle BPEL Process Manager is installed, an initial domain
named default is created. You can create additional domains. A drop-down list
enables you to access any of these domains.

1. Click the Domain list to display a list of available domains.

Managing Processes in Oracle BPEL Control

19-14 Oracle BPEL Process Manager Developer’s Guide

2. Select an appropriate domain to access (for this example, sales).

The Dashboard tab of the selected domain appears without prompting you to
enter the password.

BPEL Processes Tab: Managing the Process Life Cycle
1. Click the BPEL Processes tab to view BPEL process life cycles and states. Note that

different version labels of OrderBooking are currently active. A process identified
with an asterisk (for this example, OrderBooking version 1.5) is the default
process.

Instructions for using the sections of the BPEL Processes tab are listed in Table 19–2.

Clearing the WSDL Cache
Click Clear WSDL Cache to clear the cache for all WSDLs of the selected domain.

Deploying New Processes
Click Deploy New Process to deploy BPEL processes from Oracle BPEL Control
instead of using Oracle JDeveloper.

Table 19–2 BPEL Processes Tab

For This Section... See...

Clear WSDL Cache "Clearing the WSDL Cache" on page 19-14

Deploy New Process "Deploying New Processes" on page 19-14

Perform Manual Recovery "Performing Manual Recovery" on page 19-15

Refresh Alarm Table "Refreshing the Alarm Table" on page 19-15

View Process Log "Viewing the Process Logs" on page 19-15

Deployed Processes "Managing the Process Life Cycle" on page 19-15

Managing Processes in Oracle BPEL Control

BPEL Process Deployment and Domain Management 19-15

Performing Manual Recovery
Click Perform Manual Recovery to perform a manual recovery of messages. For
example, if you are using the file adapter and your system server crashes while
inbound messages are being processed, you can manually perform recovery when the
server restarts to ensure that all message records are recovered. For example, a file has
ten messages and the server crashes after three messages have been processed. This
causes the fourth message to go undelivered. When the server restarts and begins
processing with message five (the offset of the last successfully rejected message), you
can manually recover message four to ensure that all messages are preserved.

Refreshing the Alarm Table
Click Refresh Alarm Table to refresh the alarm table for the selected domain. This
registers all pending wait/onAlarm activities with the system.

Viewing the Process Logs
Click View Process Log to view the events of all BPEL processes in the selected
domain (for example, when a process was compiled, undeployed, marked as the
default instance, and so on).

Managing the Process Life Cycle
This section describes how to manage the life cycle of a process.

1. Click a specific process in the BPEL Process list.

The Manage window appears. This window enables you to manage the life cycle
and state of the BPEL process.

See Also: "Compiling Without Deploying in Oracle JDeveloper" on
page 19-4

Managing Processes in Oracle BPEL Control

19-16 Oracle BPEL Process Manager Developer’s Guide

Instructions for using the sections of this window are listed in Table 19–3.

Status Indicators for BPEL Processes For each BPEL process, Oracle BPEL Control shows
the following status indicators:

■ Life cycle

Table 19–3 Managing the Process Life Cycle

For This Section... See...

Manage "Status Indicators for BPEL Processes" on page 19-16

"Process Life Cycle Recommendations for a Development
Environment" on page 19-18

"Process Life Cycle Recommendations for a Production
Environment" on page 19-18

"Example: Life Cycle of Processes" on page 19-19

Initiate "Initiating Processes" on page 19-25

Descriptor "Viewing and Setting Deployment Descriptors" on page 19-25

WSDL "Viewing WSDL File Contents" on page 19-25

Sensors "Viewing Sensor Data" on page 19-25

Source "Viewing BPEL File Contents" on page 19-25

Test Suites "Running Test Suites" on page 19-25

Reports "Creating Reports" on page 19-25

Managing Processes in Oracle BPEL Control

BPEL Process Deployment and Domain Management 19-17

A process life cycle can be active or retired. If the process life cycle is retired, you
cannot create a new instance.

■ State

A process state can be on or off. If the process state is off, you cannot access
instances or create new ones.

■ Open Instances

The number of open instances. An open instance is an instance that is currently
being processed.

■ Completed Instances

The number of completed instances. A completed instance is an instance that has
completed processing, either successfully or due to an error.

1. Perform the following process management tasks from this window:

■ Manage the process life cycle (either Active or Retired)

■ Manage the process state (either On or Off)

■ Explicitly change the default process

■ Undeploy the process

2. Ensure that you understand the following process life cycle and state concepts:

Process Description

Process Life Cycles

■ Active All processes when deployed are automatically active (that is, existing versions are not
automatically retired). You must explicitly retire processes.

■ Retired A process that is no longer used. When a process is retired, all currently executing instances
complete normally. You can view previously completed instances.

Process States

■ On Process instances can be instantiated and accessed.

■ Off Process instances cannot be instantiated and accessed. Access to existing instances and
activities of the process is not allowed.

Default Revision A designated process and revision that is instantiated when a new request comes in. The
default process is identified by an asterisk next to its name in Oracle BPEL Control. There can
be only one default process.

If you retire a default process, the default does not change to another process. The retired
process remains the default. You must explicitly select a new default process.

Designating a process as the default works as follows from Oracle JDeveloper:

■ Deploy version 1.0 of the CreditRatingService process; it displays as the default process
in Oracle BPEL Control.

■ Deploy version 2.0 of the CreditRatingService process; it now displays as the default
process in Oracle BPEL Control.

■ Redeploy version 1.0 of the CreditRatingService process; it again displays as the default
process in Oracle BPEL Control.

Managing Processes in Oracle BPEL Control

19-18 Oracle BPEL Process Manager Developer’s Guide

Process Life Cycle Recommendations for a Development Environment In a development
environment, Oracle recommends that you always deploy processes to the same
version on Oracle BPEL Server. This way, you do not need to be concerned about
marking processes explicitly as default. The life cycle to follow for this environment is
as follows:

■ Design your process.

■ Deploy the process to Oracle BPEL Server (version is 1.0). This becomes the
default process for any new instances.

■ Redesign the process as needed.

■ Redeploy the process as version 1.0 (this is a newer version that overwrites the
older version, but version 1.0 remains the default process).

Process Life Cycle Recommendations for a Production Environment In a production
environment, Oracle recommends that you increment version numbers as you deploy
newer versions. For example, if OrderBooking version 1.0 is running in a production
environment, then deploy the newer version of OrderBooking to version 2.0. It is your
decision as to when to mark a process as default; new instances are started using this
definition. When you are certain that you have adequately tested and verified your
process, select Mark as Default on the Manage window shown in Step 1 on page 19-15.
All version 1.0 instances switch seamlessly to version 2.0. This enables you to decide
when a process is ready for production mode. The life cycle to follow for this scenario
is as follows:

■ Design your process.

■ Deploy the process to Oracle BPEL Server with a different version number (for
example, use version 2.0 if the older default version is 1.0).

■ Test version 2.0 of the process.

■ Activate version 2.0 by marking it as the default process.

Undeployed A process with all traces removed from the system. You cannot view previously completed
processes. Instances belonging to this process are usually purged before undeploying a
process. Undeploying the only version of a process (which is also the default) results in the
complete removal of this process.

If you cannot successfully undeploy a BPEL process from the Manage window of the BPEL
Processes tab of Oracle BPEL Control, then manually delete its JAR files. For example, if the
process is named OrderBooking, perform the following steps:

1. Delete the following files and directories:

JDev_Oracle_Home\jdev\mywork\application_name\process_
name\output\bpel_OrderBooking_*.jar files (for example, bpel_
OrderBooking_1.0.jar, bpel_OrderBooking_2.0.jar, and so on)

SOA_Oracle_Home\bpel\domains\domain_name\tmp\.bpel_OrderBooking_
*.jar directories (for example, bpel_OrderBooking_1.0.jar, bpel_
OrderBooking_2.0.jar, and so on)

2. Restart Oracle BPEL Server.

Process Description

Managing Processes in Oracle BPEL Control

BPEL Process Deployment and Domain Management 19-19

Example: Life Cycle of Processes This section provides a brief example of the various life
cycle states of two process versions. In the first stage, two instances of the same
process version are created, as shown in Table 19–4. CreditRatingService version 1.0
receives two messages, which results in the creation of two instances.

The life cycle and state of the CreditRatingService version displays in the BPEL
Processes tab shown in Figure 19–1. Because CreditRatingService version 1.0 was the
first deployed version of this process, it automatically became the default process. The
two messages that resulted in the creation of two CreditRatingService version 1.0
instances have both completed.

Figure 19–1 Stage 1: Two Instances Created

The two completed instances of CreditRatingService version 1.0 display in the
Instances tab shown in Figure 19–2.

Figure 19–2 Stage 1: Two Instances Created

In stage 2, you deploy CreditRatingService again, but this time with a new version
number of 2.0, as shown in Table 19–5.

WARNING: Do not overwrite existing versions of a process with
newer versions in a production environment. This marks all
existing instances of the overwritten process as stale. Stale instances
cannot be examined, and all flow and audit information is lost.
Instead, create a separate version as described in this section and
mark the newer version as the default.

Table 19–4 Stage 1: Two Instances Created

Stage Action Life Cycle State Default Process
On Arrival of New
Message Request

1 Deploy
CreditRatingS
ervice version
1.0

Active=1.0 On=1.0 Version 1.0
(automatically set
as default version
in Oracle
JDeveloper)

Create two instances for
CreditRatingService
version 1.0

Managing Processes in Oracle BPEL Control

19-20 Oracle BPEL Process Manager Developer’s Guide

This causes CreditRatingService version 2.0 to become the default version, as
indicated by the asterisk in Figure 19–3. CreditRatingService version 1.0 continues to
be deployed. This is the convention followed by Oracle JDeveloper.

Figure 19–3 Stage 2: Multiple Process Versions Created

If you again deploy CreditRatingService in Oracle JDeveloper, and select version 1.0
in the Your version field of the Deployment Properties window, CreditRatingService
version 1.0 again becomes the default version, as shown in Table 19–6 and Figure 19–4.

Figure 19–4 Stage 2: Multiple Process Versions Created

In stage 3, you explicitly change CreditRatingService version 2.0 in Oracle BPEL
Control to be the default version and retire CreditRatingService version 1.0, as shown
in Table 19–7.

Table 19–5 Stage 2: Multiple Process Versions Created

Stage Action Life Cycle State Default Process
On Arrival of New
Message Request

2 Deploy
CreditRatingS
ervice version
2.0

Active=1.0 On=1.0 Version 2.0
(automatically set
as default version
in Oracle
JDeveloper)

--

Table 19–6 Stage 2: Multiple Process Versions Created

Stage Action Life Cycle State Default Process
On Arrival of New
Message Request

2 Redeploy
CreditRatingS
ervice version
1.0

Active=1.0 On=1.0 Version 1.0
(automatically set
as default version
in Oracle
JDeveloper)

--

Managing Processes in Oracle BPEL Control

BPEL Process Deployment and Domain Management 19-21

Figure 19–5 shows Mark as Default being selected for CreditRatingService version
2.0. This makes it the default process.

Figure 19–5 Stage 3: Change Default Process and Retire Instance

Figure 19–6 shows CreditRatingService version 1.0 being retired.

Table 19–7 Stage 3: Change Default Process and Retire Instance

Stage Action Life Cycle State Default Process
On Arrival of New
Message Request

3 Change default
process to
OrderBooking
version 2.0

Active=1.0 On=1.0 Version 2.0
(explicitly set in
Oracle BPEL
Control)

Create an instance for
OrderBooking version
2.0

3 Retire
OrderBooking
version 1.0

Retired=2.
0

On=2.0 Version 2.0 No action

Managing Processes in Oracle BPEL Control

19-22 Oracle BPEL Process Manager Developer’s Guide

Figure 19–6 Stage 3: Change Default Process and Retire Instance

The modified life cycle and state of the two CreditRatingService versions displays in
the BPEL Processes tab shown in Figure 19–7. Because CreditRatingService version
2.0 was explicitly selected as the default process, it now displays the asterisk. The
message that resulted in the creation of an CreditRatingService version 1.0 instance
has completed. CreditRatingService version 1.0 displays as Retired.

Figure 19–7 Stage 3: Change Default Process and Retire Instance

The completed instance of CreditRatingService version 2.0 displays in the Instances
tab shown in Figure 19–8.

Figure 19–8 Stage 3: Change Default Process and Retire Instance

Managing Processes in Oracle BPEL Control

BPEL Process Deployment and Domain Management 19-23

If you click the Dashboard tab, the retired CreditRatingService version 1.0 no longer
appears. This means you can no longer create an instance for this version.

In stage 4, you make CreditRatingService version 1.0 inactive and then undeploy it, as
shown in Table 19–8.

The state of CreditRatingService version 1.0 is changed to Off (inactive) in
Figure 19–9.

Figure 19–9 Stage 4: Deactivate and Undeploy a Process

The state of CreditRatingService version 1.0 displays as Off in the BPEL Processes tab
shown in Figure 19–10. Because you initially retired this process, any live instances
had already completed normally. If you had instead made this version inactive before
retiring it, any live instances would have faulted and been aborted.

Table 19–8 Stage 4: Deactivate and Undeploy a Process

Stage Action Life Cycle State Default Process
On Arrival of New
Message Request

4 Make
CreditRatingS
ervice version
1.0 inactive

Retired=2.
0

Off=2.0 Version 2.0 No action

4 Undeploy
CreditRatingS
ervice version
1.0

Retired=2.
0

Off=2.0 Version 2.0 No action

Managing Processes in Oracle BPEL Control

19-24 Oracle BPEL Process Manager Developer’s Guide

Figure 19–10 Stage 4: Deactivate and Undeploy a Process

CreditRatingService version 1.0 is then undeployed, as shown in Figure 19–11.

Figure 19–11 Stage 4: Deactivate and Undeploy a Process

The BPEL Processes tab in Figure 19–12 no longer displays CreditRatingService
version 1.0. The asterisk also no longer displays for CreditRatingService version 2.0.
However, this version is still the default. If you click this instance in the BPEL Process
list, you see that no Mark as Default button displays in the Manage window. Instead,
the following message appears.

This revision is currently selected as the default revision.

Figure 19–12 Stage 4: Deactivate and Undeploy a Process

The two completed instances of the undeployed CreditRatingService version 1.0
display as disabled in the Instances tab shown in Figure 19–13.

Figure 19–13 Stage 4: Deactivate and Undeploy a Process

Clicking one of the completed instances displays the status as Stale in Figure 19–14.

Managing Processes in Oracle BPEL Control

BPEL Process Deployment and Domain Management 19-25

Figure 19–14 Stage 4: Deactivate and Undeploy a Process

Initiating Processes Click Initiate to run processes from the BPEL Processes tab. This is
the same window that displays when you click a process in the Deployed BPEL
Processes list of the Dashboard tab.

Viewing and Setting Deployment Descriptors Click Descriptor to view and change
deployment descriptor bpel.xml file properties of a BPEL process at run time. This
prevents you from having to reset these properties during design time and redeploy
the BPEL process.

Viewing WSDL File Contents Click WSDL to view the WSDL file contents for a process.

Viewing Sensor Data Click Sensors to view the fault, activity, and variable sensor data of
a process.

Viewing BPEL File Contents Click Source to view the BPEL file contents of a process.

Running Test Suites Test suites enable you to simulate the interaction between a BPEL
process and its Web service partners prior to deployment in a production
environment. This helps to ensure that a process interacts with Web service partners as
expected by the time it is ready for deployment to a production environment. Click
Test Suites to run the test cases of a deployed test suite for a BPEL process instance
and view XML document reports. By default, report results are formatted as JUnit
XML test results.

Creating Reports Click Reports to create reports in Oracle BPEL Control that enable you
to:

■ Receive an overall view of business process instance performance

■ Analyze data for the BPEL process instances and make critical decisions

■ Analyze data of the activities that constitute a business process

■ Identify and debug faults and take appropriate corrective actions

See Also: Appendix C, "Deployment Descriptor Properties"

See Also: "Viewing Sensor and Sensor Action Definitions" on
page 17-11

See Also: Chapter 20, "Testing BPEL Processes"

See Also: Chapter 22, "Oracle BPEL Control Reports"

Managing Processes in Oracle BPEL Control

19-26 Oracle BPEL Process Manager Developer’s Guide

Instances Tab: Viewing Process Instances
1. Click the Instances tab to view BPEL process instances.

2. Click an instance in the Instance column (for example, Instance #30 of
OrderBooking). From the window that appears, you can perform the following
tasks:

■ View the state of the instance (for example, Completed, Active, or Faulted)

■ Delete the instance.

■ Click Flow to view a visual representation of the history of the activities in this
instance.

■ Click Audit to view an audit trail of this instance.

■ Click Debug to view the BPEL Debugger, which takes the BPEL source code
that implements this process and matches it against the state of this particular
instance. Points in the code where execution is currently paused are
highlighted in yellow (for example, the process is currently waiting for a loan
service to call back with a loan offer).

■ Click Interactions to view details about the activities in this instance.

■ Click Sensor Values to view the results of any activity, fault, or variable
sensors you created in this instance.

■ Click Test to save an instance as a test case. You can then import it into an
Oracle JDeveloper project.

Note: The Flow and Audit links do not provide details about the
actions or states of any header variables you defined during design
time. As a workaround, use the Debug link to view header variable
details.

Build and Command Line Tools

BPEL Process Deployment and Domain Management 19-27

Activities Tab: Viewing Process Activities
1. Click the Activities tab to view the status of activities in the deployed BPEL

process instance.

Build and Command Line Tools
When you deploy a BPEL process, several build and compiler command line tools are
automatically invoked. This section provides an overview of these tools, plus an
additional command line tool for generating XML facades:

■ ant

■ bpelc

■ schemac

See Also: The following documentation for additional details about
sensors and test cases:

■ Chapter 17, "Sensors"

■ Chapter 20, "Testing BPEL Processes"

■ Oracle BPEL Process Manager Order Booking Tutorial

See Also: The following documentation for tutorials in which you
run processes from Oracle BPEL Control and view their results from
the Audit and Flow links:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

Build and Command Line Tools

19-28 Oracle BPEL Process Manager Developer’s Guide

ant
ant is a Java-based build tool used by Oracle BPEL Process Manager for compiling
and deploying the BPEL process. ant is similar to a make file. However, instead of
being extended with operating system-dependent, shell-based commands, ant is
extended using Java classes. The configuration files are XML-based and call out a
target tree where various tasks are executed.

bpelc
bpelc (or bpelc.sh for UNIX operating systems) is the Oracle BPEL Process
Manager tool that compiles and deploys BPEL processes.

Table 19–9 shows the supported bpelc options:

Examples of ant Tasks
The following ant task compiles and generates a BPEL archive file in the current
directory using the default bpel.xml deployment descriptor.

Use the following bpelc task sample to deploy a BPEL archive into the default
domain deploy directory:

<bpelc home="${home}" rev="${rev}" deploy="default"/>

See Also: http://ant.apache.org/

Table 19–9 Parameters

Attribute Description Required

classpath Specifies where to find user class files. This attribute is similar
to a PATH structure and can also be set through a nested
classpath element.

No

deploy Deploys the BPEL process archive to the specified domain in
the local Oracle home. The domain must be accessible through
the file system for this option to work.

No

force Always compiles the process; the compiler does not check the
time stamp of .bpel, .wsdl and .xml files. The value
defaults to false.

No

help Displays the help message. This value defaults to false. No

home The orabpel home directory (or whatever you named your
SOA_Oracle_Home directory), which is typically available as
ant property $home.

No

input The deployment descriptor location path, By default, it looks
for bpel.xml under the current directory.

No

keepGenerated Includes the BPEL process Java classes in the generated BPEL
archive. The value defaults to false.

No

lib Oracle BPEL Process Manager system lib directory. No

out Specifies the location in which to deploy the BPEL archive.
This option is used when the deploy attribute is not used. For
example:

out=”c:\myproject\bpel\deploy”

No

rev The revision (version) tag for the deployed process. No

verbose Generates additional debugging messages about compiler
actions. The value defaults to false.

No

Build and Command Line Tools

BPEL Process Deployment and Domain Management 19-29

To deploy the BPEL archive into the c:\myproject directory:

<bpelc home="${home}" rev="${rev}" out="C:\myproject"/>

Specify a deployment descriptor file name:

<bpelc home="${home}" rev="${rev}" deploy="default" input="orderdd.xml"/>

Specify a user classpath for bpelc:

<bpelc home="${home}" rev="${rev}" deploy="default"/>
<classpath>
<pathelement location="dist/test.jar"/>
<pathelement path="${java.class.path}"/>
</classpath>
</bpelc>

schemac

schemac (or schemac.sh for UNIX operating systems) is a schema compiler utility
provided with Oracle BPEL Process Manager. You use this utility to generate XML
facades. XML facades are a set of Java interfaces and classes through which you can
access and modify BPEL (and other XML) variables and map individual XML values
to Java variables with get and set methods. Classes are generated only for the
complexTypes schema types and element with an anonymous complexType. This
is similar to the jaxb compiler.

You can invoke schemac from the operating system command prompt to perform
specific tasks. schemac command line syntax uses the following format:

schemac options filename | classname(s)

where filename is the name of a file ending with .xsd and containing a valid XML
schema definition and classname is the name of a valid Java class (without the
.java suffix). Only use this argument when the -R option is supplied.

Table 19–10 describes the supported options:

Note: While schemac is currently included with Oracle BPEL
Process Manager, Oracle recommends that you use JAXB, which
provides a standard Java object-to-XML API. See the Oracle Application
Server TopLink Application Developer’s Guide for details about JAXB.
schemac will not be included with Oracle Application Server 11g.

Table 19–10 Parameters

Attribute Description Required

input The XML schema is the name of a file (ending with .xsd or
.wsdl) containing a valid XML schema definition.

Yes

out Specify where to place generated facade class files. This value
defaults to the current directory.

No

doc Generates Javadoc for the generated classes and redirects it to
the specified location.

No

jar Archives the generated classes into the specified JAR file name. No

verbose Generates more debugging messages about the compiler actions.
Defaults to false.

No

Build and Command Line Tools

19-30 Oracle BPEL Process Manager Developer’s Guide

Examples
Generate the facade classes from an XSD and place them under the current directory:

<schemac input="${basedir}/Order.xsd "/>

Generate the facade classes from a WSDL schema file:

<schemac input="${basedir}/PurchaseOrder.wsdl "/>

Generate the Javadoc into the c:\myjavadoc directory:

<schemac input="${basedir}/Order.xsd" doc="c:\myjavadoc"/>

Archive the generated facade classes into a .jar file:

<schemac input="${basedir}/XPath.wsdl" jar="myorderfacade.jar"/>

Redirect the generated facade classes into a specific directory:

<schemac input="${basedir}/Order.xsd " out="${basedir}/BPEL-INF/classes"/>

Specify the namespace Java package mapping file to override the default behavior:

<schemac input="${basedir}/Order.xsd " out="${basedir}/BPEL-INF/classes"
 nsMap="mynsmap.txt"/>

noCompile Generates only the Java source files and does not compile the
generated sources when set to true. This value defaults to
false.

No

help Displays the help message. This value defaults to false. No

sourceOut Specifies the location in which to redirect the generated Java
files. For example:

sourceOut=”c:\myproject\bpel\facade\source”

No

nsMap To override the default Java package name, specify the
namespace to the Java package mapping file. For example:

nsMap="mynsmap.txt"

The content of mynsmap.txt looks as follows:

http://samples.otn.com/xpath/autoloan=boo.foo.g
oo

Note: If it is a name-value property file, you must escape the
colon (:) using a backslash (\). If there is no nsMap attribute, by
default schemac generates the package name from the
namespace. For example, the default Java package name for
http://samples.otn.com/xpath/autoloan is
com.otn.samples.xpath.autoloan.

No

Table 19–10 (Cont.) Parameters

Attribute Description Required

Summary

BPEL Process Deployment and Domain Management 19-31

Summary
This chapter describes how to compile and deploy BPEL processes. It describes key
features of BPEL suitcase JAR files. It also describes how to create and manage BPEL
domains, including creating domains, changing Oracle BPEL Server modes
(production or development), managing BPEL suitcase JAR files, and undeploying
processes. An overview of Oracle BPEL Control is also provided, including a detailed
description of managing different versions of BPEL processes. Finally, a discussion on
how to use the ant, bpelc, and schemac build tools is provided.

See Also:

■ http://java.sun.com/xml/jaxb/index.html

■ Oracle Application Server TopLink Application Developer’s Guide for
details about JAXB

■ "Using an XML Facade to Simplify DOM Manipulation" on
page 9-7

■ SOA_Oracle_
Home\bpel\samples\tutorials\702.Bindings for XML
facade samples

Summary

19-32 Oracle BPEL Process Manager Developer’s Guide

Testing BPEL Processes 20-1

20
Testing BPEL Processes

This chapter describes how to create, deploy, and run test cases that automate the
testing of BPEL processes. Test cases enable you to simulate the interaction between a
BPEL process and its Web service partners prior to deployment in a production
environment. This helps to ensure that a process interacts with Web service partners as
expected by the time it is ready for deployment to a production environment.

This chapter contains the following topics:

■ Overview of the BPEL Test Framework

■ Components of a Test Suite

■ Creating Test Suites in Oracle JDeveloper

■ Deploying a Test Suite

■ Running a Test Suite and Viewing Report Results

■ Advanced Test Suite Design Features

Overview of the BPEL Test Framework
Oracle BPEL Process Manager provides an automated test suite framework for
creating and running repeatable tests on a BPEL process.

The test suite framework provides the following features:

■ Simulates Web service partner interactions

■ Validates process actions with test data

■ Calculates the percentage of source code executed in terms of the percentage of
simple activities executed

■ Generates a test case from the audit trail of a completed instance

■ Creates reports of test results

The following sections provide an overview of test suite concepts:

■ Test Cases Overview

■ Test Suites Overview

■ Emulations Overview

See Also: BPEL test suite sample files located at:

■ SOA_Oracle_Home\bpel\samples\references\BPELTest

■ SOA_Oracle_Home\bpel\samples\demos\BPELTest

Overview of the BPEL Test Framework

20-2 Oracle BPEL Process Manager Developer’s Guide

■ Assertions Overview

■ Process Code Coverage Overview

■ JUnit Support Overview

Test Cases Overview
The test framework supports two types of test cases:

■ Unit test — Represents a single test case in a test suite. For example, assume you
have a BPEL process in which an offer for a product is submitted to two Web
service suppliers. You can create a test in your test suite to emulate the behavior of
these Web service partners in this interaction with your BPEL process.

■ Composite test — Consists of a test where BPEL partners are not emulated, but
instead are invoked with test case information. For example, assume you have a
BPEL process that calls a subprocess that contains a human workflow step. You
may want to test the interactions between the two BPEL processes, but not have to
manually perform the human workflow approval step. In this case, you can create
a composite test for the main process by passing a test case name to the subprocess
when it is invoked. This test case can emulate the human workflow step; this
means that no human interaction is required.

Test Suites Overview
Test suites consist of a logical collection of one or more test cases. Each test case
contains a set of commands to perform as the test instance is executed. The execution
of a test suite is known as a test run. Each test corresponds to a single BPEL instance.

Emulations Overview
Emulations enable you to simulate the behavior of Web service partners with which
your BPEL process interacts during execution. Instead of invoking a partner link, you
can specify a response.

Assertions Overview
Assertions enable you to verify variable data or process flow. You can perform the
following types of assertions:

■ Simple Value Assert — Compare the value of a selected string or number variable
to an expected value. An error message that you define is displayed if a
comparison fails.

See Also: "Creating Test Suites in Oracle JDeveloper" on page 20-6

See Also:

■ "Creating Test Suites in Oracle JDeveloper" on page 20-6

■ "Editing Test Cases in Oracle JDeveloper" on page 20-9

See Also:

■ "Emulations" on page 20-4

■ "Creating Emulations in Oracle JDeveloper" on page 20-10

Components of a Test Suite

Testing BPEL Processes 20-3

■ XML Assert — Compare the element values of an entire XML document to the
expected element values. An error message that you define is displayed if a
comparison fails.

■ Activity Executed Assert — Execute an activity a specified number of times. This
ensures that an activity executes the correct number of times. This is useful for
verifying process flow.

Process Code Coverage Overview
Code coverage provides a method for calculating the completeness of the executed
tests. This is calculated as the percentage of simple activities executed at least once,
compared to the number of simple activities defined in the BPEL process. Simple
activities are nonstructured activities such as invoke, receive, reply, and assign
activities.

JUnit Support Overview
JUnit is an open source test framework to use for creating regression tests for Java
applications. JUnit is an instance of the xUnit architecture for unit testing frameworks.

By default, the reports created during test suite execution are in JUnit XML format.

Components of a Test Suite
This section describes the test components that comprise a test case. The PriceFinder
demonstration is used as an example. Methods for creating and importing these tests
into your process are described in subsequent sections of this chapter.

This section contains the following topics:

■ Process Initiation

■ Emulations

■ Assertions

■ Include Files

See Also:

■ "Assertions" on page 20-5

■ "Creating Assertions in Oracle JDeveloper" on page 20-14

See Also: "Running a Test Suite and Viewing Report Results" on
page 20-21

Note: While reports display in JUnit XML format, the tests from
which reports are created are Oracle BPEL Process Manager tests, and
not JUnit tests.

See Also:

■ http://www.junit.org

■ "Running a Test Suite and Viewing Report Results" on page 20-21

Components of a Test Suite

20-4 Oracle BPEL Process Manager Developer’s Guide

Process Initiation
You first define the operation of your process. The following section defines the
operation of initiate to initiate the PriceFinder process. The initiation payload is
also defined in this section:

<BPELTest processName="PriceFinderWithTests"
 xmlns="http://xmlns.oracle.com/bpel/instancedriver">
 <initiate operation="initiate">
 <inboundMessage>
 <part name="payload">
 <content>
 <PriceProviderProcessRequest
 xmlns="http://xmlns.oracle.com/PriceProvider">
 <manufacturer
 xmlns="http://xmlns.oracle.com/PriceProvider">Oracle</manufacturer>
 <ItemName xmlns="http://xmlns.oracle.com/PriceProvider">BPEL
 PM</ItemName>
 <customerLocation
 xmlns="http://xmlns.oracle.com/PriceProvider">94065</customerLocation>
 </PriceProviderProcessRequest>
 </content>
 </part>
 </inboundMessage>
 </initiate>
. . .
. . .

Emulations
You create emulations to simulate the message data that your BPEL process receives
from Web service partners. PriceFinder invokes two pricing services:

■ FlakyPriceProvider

■ FreeShippingPriceProvider

The following test code instructs Oracle BPEL Process Manager to first skip the
outbound invocation to the FreeShippingPriceProvider service and then
emulate receiving a response:

<BPELTest processName=LoanFlow" processRevision="1.0"
 xmlns="http://xmlns.oracle.com/bpel/instancedriver"
. . .
. . .
 <!-- ***
 Skip outbound invoke
 *** -->
 <activityDriver name="FreeShippingInvoke">
 <emulate/>
 </activityDriver>
 <!-- ***
 Emulate the FreeShippingPriceProvider Service
 *** -->
 <activityDriver name="FreeShippingReceive" firstIteration="1"

See Also:

■ SOA_Oracle_
Home\bpel\samples\demos\BPELTest\PriceFinder

■ SOA_Oracle_Home\bpel\samples\references\BPELTest

Components of a Test Suite

Testing BPEL Processes 20-5

 lastIteration="1">
 <emulate duration="PT">
 <inboundMessage>
 <part name="payload">
 <content>
<PriceProviderProcessResponse xmlns="http://xmlns.oracle.com/PriceProvider">
 <itemPrice>70</itemPrice>
 <shippingCost>0</shippingCost>
 <deliveryTime>P3D</deliveryTime>
</PriceProviderProcessResponse>
 </content>
 </part>
 </inboundMessage>
 </emulate>
 </activityDriver>
. . .
. . .

In the first test, the emulate element is empty. This is because the activity is a one-way
invoke, and is skipped. In the second test, a receive activity is emulated. This means
you must specify the inbound message.

Assertions
You create assertions to validate a variable or an entire XML document at a point
during BPEL process execution.

<BPELTest processName=LoanFlow" processRevision="1.0"
. . .
. . .
 <activityDriver name="choosePrice">
 <assertValue variableName="outputVariable" partName="payload"
 comparisonMethod="number" fatal="true" patternMatch="false">
 <message>The item price is incorrect!</message>
 <actualPath>/ns2:PriceProviderProcessResponse/ns2:itemPrice</actualPath>
 <expected>65</expected>
 </assertValue>
. . .
. . .

This test tells Oracle BPEL Process Manager that after the choosePrice activity has
completed, ensure that the item price content in the outputVariable variable
matches the content specified.

See Also:

■ "Creating Emulations in Oracle JDeveloper" on page 20-10

Note: Test case content can also be created from the audit trail in
Oracle BPEL Control.

See Also:

■ "Creating Assertions in Oracle JDeveloper" on page 20-14

■ "Creating a Test Case from Oracle BPEL Control" on page 20-17

Creating Test Suites in Oracle JDeveloper

20-6 Oracle BPEL Process Manager Developer’s Guide

Include Files
Large portions of tests typically stay the same across different test cases. To avoid
having to duplicate large sections of test files, tests can include other tests and then
selectively override particular tests to create various test cases. These are known as
baseline tests. Baseline tests do not run on their own; they exist only to be included by
other tests.

Including a baseline test in a test case brings everything from the baseline test into the
test case. If a particular action in the baseline file is not needed, it can be overridden in
the test case.

For example, you can define the process operation and payload information shown in
"Process Initiation" on page 20-4 in a separate file named baseline.xml. The
baseline test must be stored in the includes directory of your test suite in Oracle
JDeveloper:

 In your main test case file, you call this file as follows:

<BPELTest processName="PriceFinderWithTests"
 xmlns="http://xmlns.oracle.com/bpel/instancedriver"
 <include>baseline.xml</include>
. . .
. . .

Creating Test Suites in Oracle JDeveloper
You first create a test suite in which you then create or import test cases. There are
several methods for adding test cases to a test suite:

■ You import test cases into a test suite. You create these test files manually or
through audit trail output from Oracle BPEL Control.

■ You can create a new test case using Oracle JDeveloper.

This section contains the following topics:

■ Creating Test Suites in Oracle JDeveloper

■ Importing Test Cases in Oracle JDeveloper

■ Creating Test Cases in Oracle JDeveloper

■ Editing Test Cases in Oracle JDeveloper

■ Creating a Test Case from Oracle BPEL Control

Creating Test Suites in Oracle JDeveloper
This section describes how to create test suites for a BPEL process in Oracle
JDeveloper.

1. Expand the BPEL process in which to create a test suite in the Application
Navigator.

See Also: "Creating Test Suites in Oracle JDeveloper" on page 20-6
for information about creating these test components

Note: Do not enter a multibyte character string as a test suite name
or test case name. Doing so causes an error to occur when the test is
executed from Oracle BPEL Control.

Creating Test Suites in Oracle JDeveloper

Testing BPEL Processes 20-7

This displays the Test Suites folder under Integration Content.

2. Right-click Test Suites and select Create Test Suite.

3. Enter a test suite name (for example, logicTest).

4. Click OK.

The test suite is created beneath the Test Suites folder in the Application
Navigator:

The following operating system directory is also created:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\bpel\testsuites\test_suite_name

Two subdirectories for adding additional test files are also created beneath test_
suite_name: includes and messages. These subdirectories are represented by
the Includes tab and Message Instance Files tab, respectively, of the Edit Test
Suite window, which is described in Step 1 of "Importing Test Cases in Oracle
JDeveloper" on page 20-7.

Importing Test Cases in Oracle JDeveloper
This section describes how to import test cases into a test suite in Oracle JDeveloper.

1. Right-click the test suite name you entered in Step 3 of "Creating Test Suites in
Oracle JDeveloper" on page 20-7 and select Edit Test Suite.

This displays the Edit Test Suite window.

Note: You cannot create test suites within other test suites. However,
you can organize a test suite into subdirectories.

Creating Test Suites in Oracle JDeveloper

20-8 Oracle BPEL Process Manager Developer’s Guide

You can create the content for test cases manually or through audit trail output
from Oracle BPEL Control. You then import the files into Oracle JDeveloper. You
can validate a test case in the Application Navigator by right-clicking it and
selecting Validate XML.

This window consists of the following tabs for importing test cases:

Tab Description

General The tab enables you to add test cases to your test suite.

Add a test file by clicking Add. These files are added to the
following directory:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\bpel\testsuites\test_suite_name

You can also select to add this test file as a baseline test. A baseline
test is a generic test that can be imported and used by other tests.
These files enable you to factor out common testing actions so they
do not need to be repeated in multiple files.

Includes This tab enables you to add baseline (include) test cases.

Add a baseline test file by clicking Add. These files are added to the
following directory:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\bpel\testsuites\test_suite_name\includes

Baseline files consist of generic tests that do not run on their own.
Instead, these tests are imported and called by other tests.

Including a baseline test in a test case brings everything from the
baseline test into the test case. If a particular action in the baseline is
not desired, it can be overridden in the test case.

Creating Test Suites in Oracle JDeveloper

Testing BPEL Processes 20-9

2. If you want to view the XML source of the test case, select the file in the
Application Navigator and click Source.

3. Edit the file as necessary.

Creating Test Cases in Oracle JDeveloper
You can create an empty test case in your test suite.

1. Right-click the test suite name you entered in Step 3 of "Creating Test Suites in
Oracle JDeveloper" on page 20-6 and select Create BPEL Test.

2. Enter the following details:

3. Click OK.

4. Select this file in the Application Navigator and click Source.

5. Edit the file to include all necessary test details.

Editing Test Cases in Oracle JDeveloper
Test cases consist of emulations, assertions, and external calls. You can add these
actions to test cases in the test mode of Oracle JDeveloper.

1. Double-click a test case beneath the Test Suites folder in the Application
Navigator.

The BPEL process in Oracle JDeveloper is refreshed to display in test mode. This
mode enables you to define test information. No other modifications, such as
editing the property windows of activities, can be performed in this node.

Message Instance Files This tab enables you to add emulated message instance test cases.

Add a message instance test file by clicking Add. These files are
added to the following directory:

JDev_Oracle_Home\jdev\mywork\application_name\
process_name\bpel\testsuites\test_suite_name\messages

Message instance files provide a method for simulating the message
data received back from Web service partners. You can manually
enter the received message data into this XML file or copy it from
audit trail output in Oracle BPEL Control.

Importing message instance files enables you to reduce the test file
size and improve readability.

Field Value

Name Enter a name for the test case.

Test Suite Select the test suite in which to place this test file.

Add as Baseline Test Select this check box if you want to make this a baseline test case.

Tab Description

Creating Test Suites in Oracle JDeveloper

20-10 Oracle BPEL Process Manager Developer’s Guide

Activities on which these actions have already been defined display special icons
in the upper right corner.

2. Right-click an activity to display a list of test actions that can be performed.

3. Select one of the following menu options and see the corresponding section for
details:

Creating Emulations in Oracle JDeveloper
You create emulations to simulate either message data, fault data, or both types that
your BPEL process receives from Web service partners. The fields that display on this
window are based on the activity type selected (an invoke or receive are supported)
and the radio buttons selected at the top of this window:

■ Emulating Inbound Messages

■ Emulating Faults

■ Emulating BPEL or Partner Tests

Menu Option See Section...

Emulate activity_type
Message

"Creating Emulations in Oracle JDeveloper" on page 20-10

Asserts "Creating Assertions in Oracle JDeveloper" on page 20-14

External Calls "Creating External Calls in Oracle JDeveloper" on page 20-16

Creating Test Suites in Oracle JDeveloper

Testing BPEL Processes 20-11

Emulating Inbound Messages Select this check box to send an inbound message from a
client, then select the type of return message data to simulate from the Web service
partner. This feature is available for receive activities and two-way invoke activities.

1. Select Emulate Inbound Message.

2. Enter the following details:

An example of this window with completed content is shown below:

Notes:

■ One-way invokes can be skipped. This is because these types of
invokes do not receive any data from the partner link.

■ You can override the emulations defined in the top-level test case
added in the Edit Test Suite - General tab by clicking Override
Included Emulation in the BPEL Test Settings - Emulate tab.

See Also:

■ "Emulations Overview" on page 20-2

■ "Emulations" on page 20-4

Field Value

Operation This field is automatically completed with the operation type for
the activity (for example, a process operation in an invoke activity).

Message This field is automatically completed with the path to the inbound
message.

Part Select the part of the inbound message (for example, a payload).

Value

■ Enter Manually

■ Load From File

Create a simulated message to return from a Web service partner:

Click to enter message data in the Enter Value field.

Click the flashlight icon to load message data from a file.

Duration Enter the amount of time to wait for the message to be delivered
from the Web service partner. This field displays for two-way
invoke activities.

Creating Test Suites in Oracle JDeveloper

20-12 Oracle BPEL Process Manager Developer’s Guide

Emulating Faults Select this check box to send an inbound system fault from a client.
Then, select the type of return fault message to simulate from the Web service partner.
This enables you to test fault handling capabilities in your process. This feature is
available for invoke activities.

1. Select Emulate Fault.

2. Enter the following details:

An example of this window with completed content is shown below:

Field Value

Namespace URI A fault must have a unique qualified name (QName). This activity
must provide a name for the fault and optionally provide a variable of
data that provides further information about the fault.

Click the flashlight icon to select the fault to monitor. The Namespace
URI field is automatically completed with a URL path based on your
fault selection.

Local Part Displays the local part selection you make for the Namespace URI
field. For example, if you select a Web service partner with an
associated fault named NegativeCredit, then the name
NegativeCredit is added to this field.

Part Select the message part containing the fault (for example, a payload).

Value

■ Enter Manually

■ Load From File

Create a simulated fault message to return from a Web service partner:

Click to enter message data in the Enter Value field.

Click the flashlight icon to load message data from a file.

Creating Test Suites in Oracle JDeveloper

Testing BPEL Processes 20-13

Emulating BPEL or Partner Tests In the case where the partner is a BPEL process, you can
pass a test case for this partner to execute. This is useful if you want to test the
interaction between your BPEL processes, but not any external partners. For example,
assume you have a main BPEL process that calls a subprocess that in turn calls human
workflow from a test for the main BPEL process. Instead of emulating the subprocess,
you can invoke a test case of the subprocess that emulates the human workflow
service. This enables you to test the interoperability of your BPEL processes without
having to invoke the human workflow service. The name of this radio button is based
upon the type of activity selected. For one-way invoke activities, the name is Call
Partner Test. For two-way invoke activities, the name is Call BPEL Test. For receive
activities, this radio button is disabled.

1. Select Call Partner Test or Call BPEL Test.

2. Enter the name and relative location of the test in the test suite to run.

An example of this window with completed content is shown below:

Note: For one-way invokes, only system faults can be emulated. For
two-way invokes, both system and user-defined business faults can be
emulated.

Creating Test Suites in Oracle JDeveloper

20-14 Oracle BPEL Process Manager Developer’s Guide

Creating Assertions in Oracle JDeveloper
You perform assertions to verify variable data or process flow. Variable data assertions
enable you to validate test data in a variable as a process is executed. This is done by
extracting a value from a variable or an XML document and comparing it to an
expected value. To verify process flow, you can assert the number of times that an
activity has been executed.

1. Click Create to display a list of tests.

2. Select a test and see the corresponding section for details.

Creating Value Asserts This test compares the value of a selected string or number
variable to an expected value. The XPath expression specified must resolve to a simple
type (for example, string, number, and so on).

1. Enter the following details:

Selection See Section...

Value Assert "Creating Value Asserts" on page 20-14

Activity Executed Assert "Creating an Activity Execution Assert" on page 20-15

XML Assert "Creating XML Asserts" on page 20-15

See Also:

■ "Assertions Overview" on page 20-2

■ "Assertions" on page 20-5

Field Value

Variable Click the flashlight icon to select a variable XPath value. The value for
this variable is extracted during testing and compared to the expected
value defined below.

Part Displays the part selection you make for the Variable field.

Actual Path Displays the path selection you make for the Variable field.

Comparison Method Select the variable value type to perform a string comparison or
numerical comparison.

Creating Test Suites in Oracle JDeveloper

Testing BPEL Processes 20-15

An example of this window with completed content is shown below:

Creating an Activity Execution Assert This test executes an activity a specified number of
times. This provides a method for verifying that an activity executes the correct
number of times (for example, ensuring that a while activity executes the correct
number of times).

1. Enter a value for the number of times to execute this activity.

Creating XML Asserts This test compares the element values of an entire XML document
to the expected element values.

1. Enter the following details:

Expected Enter the value you are expecting the variable to contain.

Pattern Match Select if the value entered in the Expected field is a regular expression
pattern that you want to compare (for example, [0-9]*).

Error Message Enter a message to display if the assertion fails.

Fatal Select this check box if you want the assertion to be fatal. This causes
the instance to immediately terminate. If not selected, the instance
continues to execute.

Warning: For this release, fatal assertions are not supported at runtime.
Create nonfatal assertions only. Test instances with fatal assertions hang
and can impact Oracle BPEL Server performance.

Field Value

Variable Click the flashlight icon to select a variable XPath value. The element
value for this variable is extracted during testing and compared to the
expected element value defined below.

Part Displays the part selection you make for the Variable field.

Actual Path (Optional) Displays the path selection you make for the Variable field.

Field Value

Creating Test Suites in Oracle JDeveloper

20-16 Oracle BPEL Process Manager Developer’s Guide

An example of this window with completed content is shown below:

Creating External Calls in Oracle JDeveloper
External calls provide an advanced method for performing user actions during the
execution of a test case. You specify a fully qualified Java class name for the command.
When the test case reaches the activity where the external call is set, the specified Java
class is called with the provided arguments. This class must implement the
com.oracle.services.bpel.test.ITestCallHandler interface. At run time,
this class must be in the ant classpath when running the task. Call handlers are not
supported when running tests from Oracle BPEL Control.

Comparison Method Specify the strictness of the comparison. For most purposes,
xml-similar is sufficient. xml-identical can be used when the
comparison must be exact (for example, element ordering).

Expected Value Select a method for comparing the values:

■ Enter Manually Select and manually enter the element value you are expecting the
variable to contain.

■ Load From File Select and click the flashlight icon to choose a message file containing
the element value you are expecting the variable to contain.

Error Message Enter a message to display if the assertion fails.

Fatal Select this check box if you want the assertion to be fatal. This causes
the instance to immediately terminate. If not selected, the instance
continues to execute.

Warning: For this release, fatal assertions are not supported at runtime.
Create nonfatal assertions only. Test instances with fatal assertions hang
and can impact Oracle BPEL Server performance.

Field Value

Creating Test Suites in Oracle JDeveloper

Testing BPEL Processes 20-17

1. Click Create.

The External Call window appears.

2. Click Create to create a default argument name and value in the table.

3. Place your cursor inside the default values for the Name and Value columns,
remove the default values, and enter appropriate details.

4. If you want to execute this command before this activity is executed, select the Do
Before Activity check box. Otherwise, the call is executed after the activity.

An example of this window with completed content is shown below:

5. Click OK.

When the call is executed, these arguments are passed to the Java class.

Creating a Test Case from Oracle BPEL Control
You can create the contents for your test case through audit trail output from Oracle
BPEL Control. This provides two benefits:

■ A quick method for creating a baseline test when first starting.

■ A method for converting an error scenario identified during development into a
test case. You capture the use case that exposed the bug, add specific data
assertions, and add the test to a test suite to run regularly as a regression test. This
enables you to ensure that the bug does not re-appear in the future.

1. Log into Oracle BPEL Control by selecting Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process Manager > BPEL Control.

2. Log in as oc4jadmin/password.

See Also:

■ Oracle BPEL Process Manager Client API Reference:

SOA_Oracle_Home\bpel\docs\apidocs

Creating Test Suites in Oracle JDeveloper

20-18 Oracle BPEL Process Manager Developer’s Guide

where password is the oc4jadmin password you entered during installation.

3. Click Instances.

4. Select a specific instance from which to create test file content.

5. Click Test.

If the instance has not yet completed or if the test was already initiated as a test
case, you cannot save this instance as a test case.

6. Select a method:

a. Click Save as unit test (.xml) to save the contents to a test file. In this case, all
partners are emulated.

b. Click Save as composite test (.zip) to save the contents of multiple tests to a
zip file. In this case, BPEL partners are called with test case information while
other partners (like human workflow) are emulated.You must then unzip this
file before importing the tests into Oracle JDeveloper. Note that with
composite tests, tests can call other tests. If you change the name of a
composite test file, ensure that you edit any test files that may call this file to
include the correct name.

7. Save the file as XML to a directory location.

8. Return to Oracle JDeveloper.

9. If you saved the file as a composite test file, unzip it.

10. Right-click the Test Suites folder and select Import BPEL Test.

11. Select the test suite in the BPEL process in which to import the test.

12. Click the flashlight icon for the Imported Test URL field.

13. Select the file saved in Step 7 and click Open.

14. Click OK.

The test is added to the selected test suite in the Application Navigator.

15. Right-click the test suite and select Edit Test Suite.

Note that the test and its contents now display in the Edit Test Suite window.

Note: No assertions are created in test cases generated from Oracle
BPEL Control.

Deploying a Test Suite

Testing BPEL Processes 20-19

Deploying a Test Suite
After creating a test suite of test cases, you deploy the test to Oracle BPEL Server. Two
deployment methods are provided:

■ Deploying from Oracle JDeveloper

■ Deploying from an ant Task

Deploying from Oracle JDeveloper
Oracle JDeveloper can be used to deploy test suites manually when you are first create
them.

Follow these steps to deploy test suites from Oracle JDeveloper.

1. Ensure that you first deploy the BPEL process with which the test suite is
associated. The process and the test suite must be deployed separately and cannot
be deployed together.

2. Right-click the Test Suites folder and select BPEL Test Deployer.

The BPEL Test Deployer window appears.

3. Click the check box for the test suite to deploy.

4. Expand test_suite_name - Deploy > Tests and select the specific test cases to
deploy.

5. Select the server to which to deploy the tests.

6. Click Deploy to compile, validate, and deploy the selected test cases of the test
suite.

Deployment status messages display in the Status section.

Deploying a Test Suite

20-20 Oracle BPEL Process Manager Developer’s Guide

Deploying from an ant Task
An ant task can be used to deploy test suites. This task is useful in an automated
testing environment.

Follow these steps to deploy test suites from an ant task.

1. View the ant task parameters used to deploy test suites in the build.xml file.
This file is located in the Resources folder of your BPEL process.

<target name="test" depends="deployTestSuites, bpelTest, report" />
<target name="prepareTests">
 <echo>
--
| Preparing BPEL tests for deployment
--
 </echo>
 <delete file="${process.dir}/output/bpeltest.zip" quiet="true"/>
 <zip basedir="${process.dir}/bpel/testsuites" filesonly="true"
 excludes="test_suites.xml, **/excludes/*"
 destfile="${process.dir}/output/bpeltest.zip"/>
</target>
<target name="deployTestSuites" depends="prepareTests">
 <echo>
--
| Deploying bpel tests ${process.name} on ${http.hostname}, port ${http.port}
--
 </echo>
 <deployTestSuites
 user="${admin.user}" password="${admin.password}"
 hostname="${http.hostname}" httpport="${http.port}"
 domain="${domain}" process="${process.name}"
 rev="${rev}"
 testfile="${process.dir}/output/bpeltest.zip"/>
</target>

2. If you want to change the parameter values for this process, edit and uncomment
appropriate parameters in the build.properties file located in the same
Resources folder as the build.xml file. Note that this changes the values for this
process only.

#domain=default
#rev=1.0
#user=oc4jadmin
#hostname=localhost
#http.hostname=localhost
#http.port=9700
#j2ee.hostname=localhost
#rmi.port=23791
#oc4jinstancename=home
#asinstancename=
#opmn.requestport=6003
#platform=ias_10g
#platform=oc4j_10g
bpeltest.callHandler=
bpel.context.properties=${bpel.home}/samples/tutorials/102.InvokingProcesses/rm

Note: The BPEL process must be deployed before tests for a process
can be deployed.

Running a Test Suite and Viewing Report Results

Testing BPEL Processes 20-21

i/context.properties

3. Open the developer’s prompt by selecting Start > All Programs > Oracle - Oracle_
Home > Oracle BPEL Process Manager > Developer Prompt.

4. Change directories to the correct location and run ant to deploy the test suite:

ant test

where test is the target name defined in the build.xml file.

Running a Test Suite and Viewing Report Results
After deployment, you can run the test cases of a test suite on a BPEL process instance
and view XML document reports. By default, report results are formatted as JUnit
XML test results. Two methods are provided:

■ Running from Oracle BPEL Control

■ Running from an ant Task

Running from Oracle BPEL Control
Oracle BPEL Control can be used to run tests manually and generate report results.

Follow these steps to run test suites and view report results from Oracle BPEL Control.

1. Log into Oracle BPEL Control by selecting Start > All Programs > Oracle -
Oracle_Home > Oracle BPEL Process Manager > BPEL Control.

2. Log in as oc4jadmin/password.

where password is the oc4jadmin password.

3. Click BPEL Processes.

4. Click the instance to test.

5. Click Test Suites.

If a test suite was deployed with this instance, the following window appears.

If a test suite has not been deployed with this instance, this window does not
appear. You must first deploy a test suite.

6. Select the check box for the test suite (for this example, named main).

Note: Test results are stored as binary large objects (BLOBs).

Running a Test Suite and Viewing Report Results

20-22 Oracle BPEL Process Manager Developer’s Guide

Check boxes for the tests in the test suites appear.

7. Select the XML tests you want to run.

You can also undeploy test suites by clicking Undeploy Tests.

8. Click Execute Tests.

As tests complete, the window is updated with results in three sections:

■ Test details such as process name, test run dates, which suites ran, and the
number of workers appear. A worker is the number of concurrent threads that
can run one or more test cases. The number of workers controls how many test
cases can be run simultaneously.

■ A summary report displays the outcomes of the tests and code coverage.

■ A detailed listing of all the tests and which assertions failed is displayed. Note
the Display Failures Only check box. When checked, detailed information for
successful tests is hidden. By default, this check box is checked.

Running a Test Suite and Viewing Report Results

Testing BPEL Processes 20-23

9. Click the percentage value link under Process Coverage to view the amount of
source code executed.

10. Click one of the following links in the upper right corner of Oracle BPEL Control
to view specific code coverage details.

Activities that were executed are framed in green and those that were not are
framed in red.

Running a Test Suite and Viewing Report Results

20-24 Oracle BPEL Process Manager Developer’s Guide

11. Click View Instance Flow to view additional details or click Back to BPEL
Control.

Running from an ant Task
An ant task can be used to run test suites and generate report results. This task is
useful in an automated testing environment. By default, the test results are formatted
as JUnit XML test results. This format provides the following benefits:

■ Uses the junitreport task to produce a frames-based report.

■ Integrates your BPEL test results with other JUnit results (if you use JUnit to test
your Java components).

■ Integrates with other third-party test suite frameworks that also use the JUnit
report format.

Follow these steps to run tests and create reports from an ant task.

1. View the ant task parameters used to run test cases and generate reports in the
build.xml file. This file is located in the Resources folder of your BPEL process.

<!-- "bpeltest" target runs deployed testsuites of a BPEL process -->
<target name="bpelTest">
 <echo>
--
Executing process ${process.name}(v.${rev}):
 minCoverage=${bpeltest.minCoverage}, timeout=${bpeltest.timeout} sec,
 numWorkers=${bpeltest.numWorkers}
--
 </echo>
 <delete dir="${bpeltest.results.dir}/xml/${process.name}" quiet="true"/>
 <bpeltest
 user="${admin.user}" password="${admin.password}"
 hostname="${http.hostname}" httpport="${http.port}"
 domain="${domain}" process="${process.name}"
 rev="${rev}" name="${process.name}Tests"
 timeout="${bpeltest.timeout}"
 numWorkers="${bpeltest.numWorkers}"
 minCoverage="${bpeltest.minCoverage}"

Running a Test Suite and Viewing Report Results

Testing BPEL Processes 20-25

 callHandler="${bpeltest.callHandler}"
 context="${bpel.context.properties}"
 resultsDir="${bpeltest.results.dir}/xml/${process.name}"

resultsPropertyFile="${bpeltest.results.dir}/${process.name}.properties"/>
 <property file="${bpeltest.results.dir}/${process.name}.properties"/>
 <echo>
--
Executed ${test.total.count} test(s) for ${process.name} (v.${rev}) with
 ${test.failure.count} failure(s)
--
 </echo>
</target>
. . .
. . .

<!-- "report" target creates JUnitReport for testsuites run by bpeltest. -->
 <target name="report">
 <echo>
--
Creating BPELTest JUnitReport at
 ${bpeltest.results.dir}${file.separator}html${file.separator}index.html
--
 </echo>
 <mkdir dir="${bpeltest.results.dir}/xml"/>
 <junitreport todir="${bpeltest.results.dir}/xml">
 <fileset dir="${bpeltest.results.dir}/xml">
 <include name="*/TEST-*.xml" />
 <include name="*/BPEL-*.xml" />
 </fileset>
 <report format="frames" todir="${bpeltest.results.dir}/html" />
 </junitreport>
 </target>
 <!-- If pre-build.xml and post-build.xml exists, call its default target
 -->
 <condition property="exists.pre-build.xml">
 <available file="${process.dir}/pre-build.xml"/>
 </condition>
 <target name="pre-build" if="exists.pre-build.xml">
 <ant antfile="${process.dir}/pre-build.xml" inheritAll="false"/>
 </target>
 <condition property="exists.post-build.xml">
 <available file="${process.dir}/post-build.xml"/>
 </condition>
 <target name="post-build" if="exists.post-build.xml">
 <ant antfile="${process.dir}/post-build.xml" inheritAll="false"/>
 </target>

 <!-- Convenience targets -->
 <target name="deploy_test" depends="deploy, test"/>

</project>

2. If you want to change the parameter values for this process, See Step 2 on
page 20-20 for details.

3. Open the developer’s prompt by selecting Start > All Programs > Oracle - Oracle_
Home > Oracle BPEL Process Manager > Developer Prompt.

4. Change directories to the correct location and start ant to run the test suite and
create the reports:

Running a Test Suite and Viewing Report Results

20-26 Oracle BPEL Process Manager Developer’s Guide

ant bpelTest report

where bpelTest and report are the target names defined in the build.xml
file.

The following example shows an ant-generated report:

Since JUnit is being used, several Java constructs such as packages and classes are
included in the report. For Oracle BPEL Process Manager, the default package
resolves to bpel.domain.process-revision, but this can be customized.
Classes map to test suite names. Note the code coverage suite. This is added when
you specify a minimum code coverage in the ant task. In the main pane, a
summary of the test results is shown. If you package results from multiple
processes in this report, there are more entries in the Packages table.

5. Click the package name (BPEL process) to display report results.

Note: If you want to deploy the BPEL process, deploy the
corresponding test cases, run the deployed test cases, and generate
reports at the same time, run the following command:

ant deployProcess test

Advanced Test Suite Design Features

Testing BPEL Processes 20-27

Advanced Test Suite Design Features
This section describes several advanced test suite design features. Samples for some of
these features are available in the SOA_Oracle_Home\bpel\samples\references
subdirectories.

■ Setting Dynamic Values at Run Time

■ Asynchronous Event Emulation

■ Verifying External Actions

■ Custom Reporting

■ Database Views

■ XML Schemas

■ Client APIs

Setting Dynamic Values at Run Time
You may sometimes want to have messages that contain dynamic content. For
example:

■ You want to emulate a message that contains the current date and time

■ You need a unique identifier

To support this, you add message updates to emulated messages. A message update
consists of two main pieces of information:

■ An XPath function that generates a string value

■ An XPath expression that specifies the portion of the message to update

Advanced Test Suite Design Features

20-28 Oracle BPEL Process Manager Developer’s Guide

For example, assume you want to emulate the following message:

<dateTimeMessage xmlns="http://xmlns.oracle.com/SomeProcess">
 <theDateTime>current date time</theDateTime>
</dateTimeMessage>

Add an emulation with the following content in Oracle JDeveloper:

<dateTimeMessage xmlns="http://xmlns.oracle.com/SomeProcess">
 <theDateTime/>
</dateTimeMessage>

Since there is no graphical user interface support for message updates, switch to the
source view and view the following generated emulation:

 <activityDriver name="someActivity">
 <emulate>
 <inboundMessage>
 <part name="payload">
 <content>
 <dateTimeMessage xmlns="http://xmlns.oracle.com/SomeProcess">
 <theDateTime/>
 </dateTimeMessage>
 </content>
 </part>
 </inboundMessage>
 </emulate>
 </activityDriver>

Add a message update to the inboundMessage to set the date time at run time:

 <activityDriver name="Invoke_2">
 <emulate duration="PT">
 <inboundMessage>
 <part name="payload">
 <content>
 <dateTimeMessage xmlns="http://xmlns.oracle.com/SomeProcess">
 <theDateTime/>
 </dateTimeMessage>
 </content>
 <update>
 <location>
 /client:dateTimeMessage/client:theDateTime
 </location>
 <XPathExpression>
 xp20:current-dateTime()
 </XPathExpression>
 </update>
 </part>
 </inboundMessage>
 </emulate>

Note that the update element contains an XPath location to the empty theDateTime
element. The XPath expression element contains an XPath function that generates the
current date time. When the test is run, this XPath function is called and the emulated
message is updated with the current date time.

Note: Namespace prefixes used in the XPath function and XPath
query must be correctly defined in the test case XML document.

Advanced Test Suite Design Features

Testing BPEL Processes 20-29

Asynchronous Event Emulation
It is possible to emulate asynchronous events. These events are captured in the
onMessage or onAlarm branches in your BPEL process. There is no current design
time support for event emulation.

Verifying External Actions
You can extend your test cases beyond BPEL. For example, assume you have a BPEL
process that alters an external system. You can write a test case that invokes an
instance of the BPEL process and calls an API that verifies that the external system was
updated appropriately. Since there is limited support for this in the BPEL test
framework, you can write custom XPath functions to verify data and then use these
functions in assertions. There is no design time support for this. To do this manually,
write an assertion as follows:

<activityDriver name="Assign_1">
 <assertValue fatal="true">
 <message>exact text comparison</message>
 <actualPath>ns:extractExternalValue()</actualPath>
 <expected>theInput</expected>
 </assertValue>

In the bold section, note that an XPath function was used instead of the usual XPath
query. This function can be implemented to extract a value from an external system
The BPEL test framework then compares the value returned by the XPath function to
theInput.

Custom Reporting
The ant task generates JUnit-style XML results by default. These results can then be
passed to the junitreport task to generate a frames-based HTML report. If you
want to present the results in a different format, set the xsl parameter of the
bpelTest ant task to a URL or file path that points to an XSLT stylesheet you created.
After tests have been executed, an XSL transformation is performed on the results
XML document (specified by the XML schema defined in SOA_Oracle_
Home\bpel\system\xmllib\BPELTestResult.xsd) using the stylesheet
specified by the xsl attribute.

The following example shows the ant task using an XSL stylesheet accessible from a
URL:

<bpelTest ... xsl="http://mycompany.com/myStyleSheet.xsl".../>

See Also: The following message update sample:

SOA_Oracle_Home\bpel\samples\references\BPELTest\
Emulations\bpel\testsuites\main\demoMessageUpdate.xml

See Also: The following samples to see how to manually create
these test cases:

■ SOA_Oracle_
Home\bpel\samples\references\BPELTest\Alarms\bpel
\testsuites\main

■ SOA_Oracle_
Home\bpel\samples\references\BPELTest\OnMessage\b
pel\testsuites\main

Advanced Test Suite Design Features

20-30 Oracle BPEL Process Manager Developer’s Guide

The following example shows the ant task using an XSL stylesheet accessible from the
file system:

<bpelTest ... xsl="C:\xslDir\myStyleSheet.xsd" .../>

Database Views
The following database views enable you to query details about test results and test
definitions.

■ admin_list_td

■ admin_list_tdef

admin_list_td
This view provides information about previously run test cases, as shown in
Table 20–1.

For example:

SQL> select cikey, ci_domain_ref, test_run_name from admin_list_td;

CIKEY | CI_DOMAIN_REF | TEST_RUN_NAME
------+---------------+--
 4 | 0 | ca8f3d34e7fa93f2:53855ec5:10c02daf400:-7b46

SQL> select test_run_id from admin_list_td;

TEST_RUN_ID

ca8f3d34e7fa93f2:53855ec5:10c02daf400:-7b46

Table 20–1 admin_list_td

Name Null Type Description

CIKEY N VARCHAR2(100) The BPEL process

CI_DOMAIN_REF N SMALLINT(5) The BPEL process domain

TEST_RUN_NAME N VARCHAR2(100) The name of the test run. This can stay
constant across many test runs. This
value is automatically generated unless
the test run was initiated through the
client code.

TEST_RUN_ID N VARCHAR2(100) The ID of the test run. This must be
unique across test runs. This value is
automatically generated unless the test
run was initiated through the client
code.

TEST_SUITE N VARCHAR2(100) The test suite of this test case

TEST_LOCATION N VARCHAR2(100) The location of the test case within the
test suite. This is typically the name of
the test case file.

TEST_STATUS N VARCHAR2(50) The status of this test case. This is either
passed, failed, or running.

TEST_RESULT N BLOB The XML result of the test case. This
column can be read using a DOM parser.

Advanced Test Suite Design Features

Testing BPEL Processes 20-31

SQL> select test_location, test_suite, test_status, test_result from admin_list_
td;

TEST_LOCATION | TEST_SUITE | TEST_STATUS | TEST_RESULT
---------------------------+------------+-------------+------------
testShippingConsidered.xml | logicSuite | failed | <?xml vers

admin_list_tdef
This view provides information about deployed test cases, as shown in Table 20–2.

SQL> select process_id, revision_tag, domain_ref, test_suite from admin_list_tdef;

PROCESS_ID | REVISION_TAG | DOMAIN_REF | TEST_SUITE

---------------------+--------------+------------+-----------
PriceFinderWithTests | 1.0 | 0 | logicSuite
PriceFinderWithTests | 1.0 | 0 | logicSuite
Emulations | 1.0 | 0 | main
Emulations | 1.0 | 0 | main
Emulations | 1.0 | 0 | main
Emulations | 1.0 | 0 | main
Emulations | 1.0 | 0 | main
Emulations | 1.0 | 0 | main
Emulations | 1.0 | 0 | main
Emulations | 1.0 | 0 | main
Emulations | 1.0 | 0 | main

SQL> select location, type, creation_date, definition from admin_list_tdef;

LOCATION | TYPE | CREATION_DATE | DEFINITION
-----------------------------+---------+----------------------------+-----------
baseline.xml | include | 2006-06-25 10:58:16.260000 | <?xml vers

Table 20–2 admin_list_tdef

Name Null Type Description

PROCESS_ID N VARCHAR2(100) The BPEL process

REVISION_TAG N VARCHAR2(50) The BPEL process revision

DOMAIN_REF N SMALLINT(5) The BPEL process domain

TEST_SUITE N VARCHAR2(100) The test suite of this test case

LOCATION N VARCHAR2(100) The location of the test case within the test
suite. This is typically the name of the test
case file.

TYPE N VARCHAR2(10) The type of this file:

■ message — a message file

■ include — a baseline test case

■ test — a test case

■ properties — a properties file

CREATION_DATE N DATE The date this test was deployed

DEFINITION N BLOB The XML definition of the test case. This
column can be read using a DOM parser.

Advanced Test Suite Design Features

20-32 Oracle BPEL Process Manager Developer’s Guide

testShippingConsidered.xml | test | 2006-06-25 10:58:16.260000 | <?xml vers
baseline.xml | include | 2006-06-27 16:09:08.025000 | <?xml vers
emulated.xml | message | 2006-06-27 16:09:08.025000 | <?xml vers
demoAsyncEmulation.xml | test | 2006-06-27 16:09:08.025000 | <?xml vers
demoBusinessFault.xml | test | 2006-06-27 16:09:08.025000 | <?xml vers
demoEmulationFromMessage.xml | test | 2006-06-27 16:09:08.025000 | <?xml vers
demoMessageUpdate.xml | test | 2006-06-27 16:09:08.025000 | <?xml vers
demoPartnerTest.xml | test | 2006-06-27 16:09:08.025000 | <?xml vers
demoSyncEmulation.xml | test | 2006-06-27 16:09:08.025000 | <?xml vers
demoSystemFault.xml | test | 2006-06-27 16:09:08.025000 | <?xml vers

XML Schemas
The following XML schemas are provided in the SOA_Oracle_
Home\bpel\system\xmllib directory:

■ InstanceDriver.xsd — Test case schema

■ BPELTestResult.xsd — Test results schema

Client APIs
A service defined in the com.oracle.services.bpel.test package enables you
to use the Locator class to look up the test service and initiate test cases, get a list of
deployed tests, or get the results of test cases already executed. This service can be
looked up in a similar manner to the delivery service. For the service name, you can
use com.oracle.services.bpel.test.ITestService.SERVICE_NAME.

See Also:

■ Oracle BPEL Process Manager Client API Reference:

SOA_Oracle_Home\bpel\docs\apidocs

Oracle BPEL Portlets 21-1

21
Oracle BPEL Portlets

Oracle BPEL Portlets consist of Oracle BPEL Control report portlets and Oracle BPEL
Worklist Application portlets. This chapter describes how to deploy the Oracle BPEL
Portlets and configure the Oracle Application Server Portal (OracleAS Portal) to
provide access to data from these portlets.

This chapter contains the following topics:

■ OracleAS Portal Introduction

■ Step 1: Installing and Configuring the Required Oracle Application Server
Components

■ Step 2: Deploying the Portlets

■ Step 3: Registering Web Providers with OracleAS Portal

■ Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources

■ Step 5: Mapping Portlet Parameters with Page Parameters

■ Summary

OracleAS Portal Introduction
OracleAS Portal is a component of Oracle Application Server used for the
development, deployment, administration, and configuration of enterprise class
portals. OracleAS Portal enables you to present information from multiple, unrelated
data sources in a single organized view. This view, a portal page, can contain one or
more components called portlets that can each get their content from different data
sources.

A portlet parameter provides a configurable way of passing a value to a portlet. Using
portlet parameters, the information displayed in a portlet can be specific to a particular
page or user. Portlet parameters are created by the portlet developer and exposed to
the page designer through the user interface. After adding a portlet to a page, page
designers can assign values to the public portlet parameters to make the information
displayed in the portlet specific to the page.

Web providers enable you to deploy portlets to OracleAS Portal. They may reside on
the same application server as OracleAS Portal, on a remote application server, or
anywhere on the network. Web providers use open standards, such as XML, SOAP,
HTTP, or J2EE for deployment, definition, and communication with OracleAS Portal.

Figure 21–1 provides an overview of this integration.

21-2 Oracle BPEL Process Manager Developer’s Guide

Figure 21–1 Oracle Application Server Portal and BPEL Process Integration Overview

 You can configure OracleAS Portal to access the following portlets:

■ Oracle BPEL Control reports portlets

Enables you to access instance state, instance execution time, performance, activity
sensor, fault sensor, and process time distribution reports that describe the
behavior of instances of a selected BPEL process. Oracle BPEL Control reports
enable you to:

– Receive an overall view of business process instance performance

– Analyze data for the BPEL process instances and make critical decisions

– Analyze data of the activities that constitute a business process

– Identify and debug faults and take appropriate corrective actions

■ Oracle BPEL Worklist Application portlets

Enables you to access Oracle BPEL Worklist Application, a Web interface that
enables users to access and act on tasks assigned to them. The tasks displayed
depend on the user’s profile, and the actions allowed depend on the user’s
privileges. The Oracle BPEL Worklist Application is layered on top of the BPEL
worklist service.

See Also: The following documentation for additional descriptions
of these report types:

■ "Defining Oracle BPEL Control Report Portlet Parameters and
Accessing Portlet Data Sources" on page 21-9

■ "Creating Oracle BPEL Control Reports" on page 22-1

See Also: The following documentation for descriptions of Oracle
BPEL Worklist Application portlets and for additional details about
Oracle BPEL Worklist Application:

■ "Defining Oracle BPEL Worklist Application Portlet Parameters
and Accessing Portlet Data Sources" on page 21-13

■ Chapter 16, "Worklist Application"

Portlet
View

Portlet
View

OracleAS Portal

2 31 2 31

Oracle BPEL Portlets

Oracle BPEL
Control Reports
(Web Provider)

Oracle BPEL
Worklist Application

(Web Provider)

1 Register Web provider with
OracleAS Portal

2 Portlet parameters are passed
to Web provider on page
refresh

3 Web provider responds with
data based on portlet
parameters and customization
settings

Step 1: Installing and Configuring the Required Oracle Application Server Components

Oracle BPEL Portlets 21-3

Step 1: Installing and Configuring the Required Oracle Application Server
Components

OracleAS Portal uses Oracle Internet Directory, an LDAP-compliant directory that
provides a single repository and administration environment for user accounts. Oracle
BPEL Worklist Application also requires the use of Oracle Internet Directory; Oracle
BPEL Control does not require this component. Therefore, to use both of these Oracle
BPEL Portlets, you must install the following installation types to use OracleAS Portal:

■ Install the Identity Management and Metadata Repository installation type of
Oracle Application Server Infrastructure 10g Release 2 (10.1.2.0.2).

■ Install Portal and Wireless middle tier 10g Release 2 (10.1.2.0.2).

■ Install BPEL Process Manager for OracleAS Middle Tier 10.1.3.1.0.

Configuring Realms (10.1.3.1.0 Only)
Multiple realms are supported in 10.1.3.1.0 through customization of the SOA_
Oracle_Home\bpel\system\services\config\is_config.xml file. The is_
config.xml file must contain a configuration (realm) that corresponds to the Oracle
Internet Directory instance of the portal where the portlets are to be used. Since is_
config.xml can be configured to support multiple realms, the wf_client_
config.xml file must specify the realm name from is_config.xml that
corresponds to the portal Oracle Internet Directory instance.

1. Use a text editor to open the wf_client_config.xml file located in the same
directory as is_config.xml.

Note: If you install the identity service demo user community and
run the workflow service samples shipped with Oracle BPEL Process
Manager, you can display data about these users in the Oracle BPEL
Worklist Application portlets.

See Also: Oracle BPEL Process Manager Administrator’s Guide for
details about the demo user community

Notes:

■ OracleAS Portal cannot be configured for use with the BPEL
Process Manager for Developers installation type. This is because
BPEL Process Manager for Developers does not use Oracle
Internet Directory (required by OracleAS Portal).

■ You must use the 10.1.2.0.2 Portal and Wireless middle tier install
type with Oracle BPEL Process Manager 10.1.3.1.0. This middle
tier version enables you to view Oracle BPEL Worklist Application
portlets from both 10.1.2.0.2 and 10.1.3.1.0.

See Also: The service configuration chapter of Oracle BPEL Process
Manager Administrator’s Guide for instructions on configuring Oracle
Internet Directory 10.1.2.0.2 with Oracle BPEL Process Manager
10.1.3.1.0

21-4 Oracle BPEL Process Manager Developer’s Guide

2. Change jazn.com to the realm value you specified in is_config.xml. This
value is used for authenticating users coming from OracleAS Portal. For example,
if the configuration name for the portal Oracle Internet Directory instance is
specified by realm name portalOID in is_config.xml, then the portal realm
mapping information in wf_client_config.xml is as follows:

<!-- specifies the mapping for portal realm to is_config realm -->
 <portal>
 <realmMapping>portalOID</realmMapping>
</portal>

Step 2: Deploying the Portlets
You must install Oracle BPEL Process Manager and deploy the Oracle BPEL Portlets
.ear file. Use one of the following methods to deploy the .ear file:

■ Deploying Portlets with dcmctl

■ Deploying Portlets with Oracle Enterprise Manager 10g Application Server
Control Console

Deploying Portlets with dcmctl
Follow these procedures to deploy the portlets with the dcmctl utility.

1. Change directories to the following location:

SOA_Oracle_Home\dcm\bin

2. Enter the following command to deploy Oracle BPEL Portlets:

dcmctl deployApplication -f SOA_Oracle_
Home\bpel\system\services\lib\BPELPortlet.ear -a
BPELPortlet -co OC4J_BPEL -pa orabpel

When deployment completes successfully, a message similar to the following
appears:

Application: bpelportlet
Component Name: OC4J_BPEL
Component Type: OC4J
Instance: mark.my-pc.us.oracle.com

Deploying Portlets with Oracle Enterprise Manager 10g Application Server Control
Console

Follow these procedures to deploy the portlets with Oracle Enterprise Manager 10g
Application Server Control Console.

1. Go to the following URL:

http://hostname:port/em

where:

See Also: "Multirealm Support" on page 15-107

See Also: Oracle Application Server Administrator’s Guide for
additional information about the dcmctl utility

Step 2: Deploying the Portlets

Oracle BPEL Portlets 21-5

■ hostname is the name of the host on which Oracle BPEL Process Manager is
installed.

■ port is the number of the Oracle HTTP Server port. The following sources
also identify the port number used to access the Oracle Enterprise Manager
10g Application Server Control Console:

– The bpelsetupinfo.txt file in the install subdirectory of the Oracle
home for your installation

– The SOA_Oracle_
Home\bpel\utilities\ant-orabpel.properties file.

– The following command:

prompt> SOA_Oracle_Home\opmn\bin\opmnctl status -l

2. Enter the following login details when prompted:

The Oracle Application Server home page appears.

3. Select the OC4J instance in which Oracle BPEL Process Manager is deployed.

4. Click the Applications tab.

5. Click Deploy EAR file.

The Deploy Application window appears.

6. Enter the following details:

7. Click Next.

8. Enter the following details:

Note: On Windows platforms, you can also start Oracle Enterprise
Manager 10g Application Server Control Console from the Start
Menu.

Field Value

Username Enter oc4jadmin

Password Enter the password you specified during installation for the oc4jadmin user.

Field Description

Archive Location Select the SOA_Oracle_
Home\bpel\system\services\lib\BPELPortlet.ear file.

Application Name Enter BPELPortlet

Parent Application Select orabpel

Field Description

Application Name Enter BPELPortlet

Parent Application Select orabpel

Context Root Enter BPELPortlet

21-6 Oracle BPEL Process Manager Developer’s Guide

9. Click Next.

The Deployment Settings window appears.

10. Go to the task Select security provider.

11. Select Oracle Identity Management from the drop-down list.

The Oracle Internet Directory host and port information automatically appears if
the orabpel parent application is configured with Oracle Internet Directory as the
security provider.

12. Click Deploy.

Messages display indicating that deployment is in progress. When complete, the
following message appears:

Application "BPELPortlet" was successfully deployed.

Step 3: Registering Web Providers with OracleAS Portal
Web providers provide portlet data to OracleAS Portal. You must first register the
Oracle BPEL Process Manager Web provider with the specific OracleAS Portal
instance. This enables you to use the Oracle BPEL Control report portlets and Oracle
BPEL Worklist Application portlets in OracleAS Portal pages.

Once you have registered these Web providers, you can access the data provided by
the portlets.

1. Go to the 10.1.2.0.2 OracleAS Portal home page. For example:

http://hostname:port_number/pls/portal

where hostname is the host on which the 10.1.2.0.2 Portal and Wireless middle
tier is installed and port_number is typically 7777. If you are unsure, see the
setupinfo.txt file in the SOA_Oracle_Home\install directory for your
Portal and Wireless installation. You can also access OracleAS Portal from a link on
the Oracle Application Server Welcome page.

2. Log in to the OracleAS Portal instance using the portal user name and ias_admin
password. This is the same password that you specified during Portal and
Wireless middle tier installation and BPEL Process Manager for OracleAS Middle
Tier installation.

3. Select the Administrator tab, then the Portlets subtab to access the Portal Builder
window to register the provider.

4. Click Register a Provider in the Remote Providers section.

5. Enter the following details on the Provider Information page:

Field Description

Name Enter a unique and recognizable name.

Display Name Enter a name to display on the portlet page header.

Timeout Enter the amount of time a page takes to render if the portlet is
not responding.

Timeout Message Enter message to display when a timeout occurs.

Implementation Style Ensure that Web is selected.

Step 3: Registering Web Providers with OracleAS Portal

Oracle BPEL Portlets 21-7

6. Click Next.

7. Enter appropriate details on the General Properties page. For the URL of the Web
provider, ensure that you enter the following details for Oracle BPEL Process
Manager:

http://bpel_host:bpel_port/BPELPortlet/providers

where bpel_host is the host on which Oracle BPEL Process Manager is installed
and bpel_port is the port. For BPEL Process Manager for OracleAS Middle Tier
installations, the port is typically 7777 or 7778. If you are unsure of the port, see
the SOA_Oracle_Home\install\bpelsetupinfo.txt file that was created
after BPEL Process Manager for OracleAS Middle Tier installation.

8. Select Once Per User Session from the Login Frequency list.

9. Click Next.

10. Enter your user or group name in the Grantee field of the Control Access page,
click Add, and then click Finish. If you are not sure about the user or group name,
click the appropriate browse icon.

If provider registration was successful, you receive a success message.

11. Click OK.

12. Click Builder, then Build to display the Portal Builder page.

13. Go to the Page Groups section of the Portal Builder page.

14. Select the group from the Page Group list. If a page group does not exist, create
one.

15. Click Create a Page and follow the steps that appear.

The new page appears with the display name header you entered when creating
the page.

16. Click the + icon (second icon from the left) to add an instance of the portlet to the
page.

The Add Portlets To Region page appears.

21-8 Oracle BPEL Process Manager Developer’s Guide

17. Click Portlet Staging Area in the Portlet Repository section.

18. Click the portlet you previously created in the Available Portlets section.

This displays the Oracle BPEL Portlets in the Available Portlets section.

Note: The following portlet link titles in the Available Portlets
section apply to these report types:

■ The portlet link entitled This report shows the process
performance data based on completion time SLA applies to
performance reports.

■ The portlet link entitled This report shows the distribution of the
process execution time across all the activities applies to process
time distribution reports.

You can always change these titles when editing the portlet.

Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources

Oracle BPEL Portlets 21-9

19. Click the portlets you want.

The selected portlets are added to the Selected Portlets section.

20. Click OK.

21. See "Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources" on
page 21-9 for information on setting portlet properties.

Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources
When you access a portlet for the first time, some default settings already appear for
Oracle BPEL Worklist Application. No default settings appear for Oracle BPEL Control
reports. For example, if you selected Instance Execution Time in Step 19 on page 21-9,
the page appears with the following message.

1. Click the Edit Defaults icon (first icon on the left above the message) to set the
parameter values of the Oracle BPEL Control reports portlets or change the default
settings for Oracle BPEL Worklist Application portlets.

2. See the following section based on your portlet selection in Step 1.

Defining Oracle BPEL Control Report Portlet Parameters and Accessing Portlet Data
Sources

Report portlets provide access to Oracle BPEL Control reports that describe the
behavior of the instances of a selected BPEL process.

See Also: See Oracle Application Server Portal User’s Guide for
additional details about using OracleAS Portal

If You Selected... Go to Section...

Instance State

Instance Execution Time

Performance

Activity Sensor

Process Time Distribution

Fault Sensor

"Defining Oracle BPEL Control Report Portlet Parameters
and Accessing Portlet Data Sources" on page 21-9

BPEL Worklist Portlet "Defining Oracle BPEL Worklist Application Portlet
Parameters and Accessing Portlet Data Sources" on
page 21-13

21-10 Oracle BPEL Process Manager Developer’s Guide

Each of the report portlets must be associated with a specific time period. Table 21–1
describes the parameter values to specify for each report type. This window provides a
method for specifying the same parameter values across all report type portlets in a
given page.

1. Enter the following parameter values.

For example, if you enter 7/29/05 as the end date, 22:00 as the end hour, Weekly as
the time interval, and 3 as the number of time intervals, the report is created for
the three weeks between 7/08/05 at 10 PM and 7/29/05 at 10 PM.

2. Click Apply to apply your values and click OK to create portlet data.

3. See the following sections based on the portlet type you selected:

Table 21–1 Oracle BPEL Control Report Portlet Parameters

Parameter Description

Title Enter a report title name or accept the default name. The title that
appears by default is based upon the type of report you selected
in Step 1 on page 21-9.

Domain Select the domain in which the BPEL process is deployed.

Business Process Select the BPEL process for which to create reports of its instances.

Time Interval Select Daily, Hourly, or Weekly as the time interval for
generating data.

End Date Enter the date at which to stop generating report data.

End Hour Enter the time at which to stop generating report data.

Number of Time Intervals Enter the time period for creating reports. This is the number of
days, weeks, or hours (according to the Time Interval list
selection) starting from the end date going backwards in time to
determine the start date.

Portlet See Section...

Instance State "Instance State" on page 21-11

Instance Execution Time "Instance Execution Time" on page 21-11

Performance "Performance" on page 21-12

Activity Sensor "Activity Sensor" on page 21-13

Process Time Distribution "Process Time Distribution" on page 21-13

Fault Sensor "Fault Sensor" on page 21-13

Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources

Oracle BPEL Portlets 21-11

Instance State
The instance state report portlet shown in Figure 21–2 provides details about the
number of faulted, completed, and currently running instances of the BPEL process for
the selected time period.

Figure 21–2 Instance State Report

Instance Execution Time
The instance execution time report portlet shown in Figure 21–3 provides details about
the maximum, minimum, and average execution times aggregated across all closed
instances of the business process during the selected time period.

Note: You can edit parameter settings by clicking the Edit icon (first
icon on the left above the portlet title bar).

21-12 Oracle BPEL Process Manager Developer’s Guide

Figure 21–3 Instance Execution Time Report

Performance
The performance report portlet shown in Figure 21–4 provides aggregated information
about the percentage of BPEL process instances that meet the service level agreement
(SLA) value associated with a specific BPEL process.

Figure 21–4 Performance Report

See Also: "Creating Performance Reports" on page 22-5 for a
description of the SLA parameter and how to set it

Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources

Oracle BPEL Portlets 21-13

Activity Sensor
The activity sensor report portlet shown in Figure 21–5 provides details about the
activity sensors associated with the BPEL process over a selected time period. This
enables you to analyze activity trends. Activity sensor reports show the activity name,
sensor name, activity type, aggregated values of the minimum, maximum, and
average execution time of the activity, and the number of occurrences of the activity.
This report shows activity information only if activity sensors are defined for the BPEL
process.

Figure 21–5 Activity Sensor Portlet

Process Time Distribution
Process time distribution reports enable you to view the distribution of execution
times across the activities of BPEL process instances. For example, you may have two
activities, one for each loan application company returning a loan offer. You can see
which activity is taking the longest amount of time to process the loan offer. You do not
need to create sensors in activities to use this report. This report enables you to
identify which activities are taking the most time to process.

Fault Sensor
The fault sensor report portal shown in Figure 21–6 provides details about the data
collected by fault sensors associated with a specific BPEL process over the specified
time period. This enables you to analyze trends in faults. The report shows the date
and time of the fault occurrence, the fault message, the activity in which the fault
occurred, and a link to the faulted instance. This report shows activity information
only if fault sensors are defined for the BPEL process. For this example, no fault sensor
data was found.

Figure 21–6 Fault Sensor Reports

Defining Oracle BPEL Worklist Application Portlet Parameters and Accessing Portlet
Data Sources

These portlets integrate Oracle BPEL Worklist Application with OracleAS Portal. There
are two types of portlets:

21-14 Oracle BPEL Process Manager Developer’s Guide

■ Listing portlet

■ Analysis portlet

Details about the parameter values to specify for these portlets are provided below.

Listing Portlet Customization
The listing portlet displays a list of tasks that satisfy the data filtering criterion. This
portlet provides considerable flexibility in terms of which tasks to display and how to
display them.

Figure 21–7 BPEL Worklist Portlet Filter and Display Customization Options

The listing portlet exposes two portlet parameters: Task Category and Task Status.
The values for these can be set from the page. If no value is set, then the default values
of My & Group and Any are used. Figure 21–8 on page 21-15 shows the Page
Parameter Properties page where these default values are set. See "Step 5: Mapping
Portlet Parameters with Page Parameters" on page 21-20 for instructions on editing
this page.

See Also: Chapter 16, "Worklist Application" for additional details
about Oracle BPEL Worklist Application

Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources

Oracle BPEL Portlets 21-15

Figure 21–8 Page Parameter Properties

The portlet task filter and display customization options shown in Figure 21–7 on
page 21-14 are described in Table 21–2. The first part provides data filter customization
options and the second part provides display customization options.

1. Enter the following parameter values.

Table 21–2 BPEL Worklist Portlet Task Filter and Display Customization Options

Parameter Description

Task Filter Customization

■ Category Select one of the following:

■ My & Group—tasks assigned to the user and the groups to
which the logged-in user belongs

■ Reportees—tasks assigned to the users who report to the
logged-in user

■ Owner—tasks that are owned by the logged-in user by way
of process ownership

■ Creator—tasks that were created or initiated by the
logged-in user

■ Previous—tasks that the logged-in user has updated

■ Status Select the status state: Assigned, Completed, Errored, Expired,
Withdrawn, Suspended, and Any.

■ Created Select the previous x days: (leave blank (that is, no restriction), 1
day, 7 days, 14 days, and 30 days).

■ Expiration Select the next x days: (leave blank (that is, no restriction), 1 day,
7 days, 14 days, and 30 days).

■ Priority Select from Any or 1 through 5, where 1 is the highest priority.

21-16 Oracle BPEL Process Manager Developer’s Guide

2. Click Apply to apply your values and click OK to create portlet data.

Listing Portlet View
Figure 21–9 shows the task listing portlet for 10.1.2.0.2 and Figure 21–10 shows the
task listing portlet for 10.1.3. The category of tasks and the current user name displays
at the top. The table displays the columns chosen in the Display Customization
options described in Table 21–2. The actual set of tasks that display depends on the
Task Filter Customization options chosen in Table 21–2. The title column contains a
link for clicking down into the worklist application for the task details. Paging
information and the last page refreshed time are displayed at the bottom.

Figure 21–9 Worklist Portlet View (10.1.2.0.2)

■ Business Process Select one of the deployed business processes or Any.

Display Customization

■ Title Select the portlet title.

■ Layout Select the size of the portlet as a ratio of the maximum size
(Small, Medium, Large, or Full).

■ Show Header/Footer Set this flag to Yes (default option) if the header (category and
user name) and footer (page generation time) are to be
displayed.

■ Column Layout
(Columns 1 through 8)

Select the columns to display and the order in which to display
them. There can be up to eight columns: Title, Number,
Assignee, Status, Priority, Expiration, Last Modified, Created,
Conclusion, Last Modifier, Creator, Acquirer, Task Key, and
Business Process. Note that the first column is always Title.

■ Sort Column Select the order in which to sort and display the following
columns: Title, Number, Priority, Expiration, Conclusion, Last
Modified, and Last Modifier.

■ Sort Order Select Ascending or Descending.

■ Page Size Select 5, 10, 20, or 50

■ Locale Source Select the locale for the portlet based on the specified source:
Portlet (resolved from the browser and set language portlet) or
Directory Service.

■ Style Source Select the style (background color, font color, and font style) for
the portlet based on the specified source: Portlet (based on page
style used in the portal page) or Default (Oracle BPEL Control
or Oracle BPEL Worklist Application style).

Table 21–2 (Cont.) BPEL Worklist Portlet Task Filter and Display Customization Options

Parameter Description

Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources

Oracle BPEL Portlets 21-17

Figure 21–10 Worklist Portlet View (10.1.3)

Figure 21–11 shows the 10.1.2.0.2 worklist application that you access by clicking a task
entry under the Title column in Figure 21–9 on page 21-16. The worklist application
recognizes that the user is clicking down from the portlet and sets the header
information and home link accordingly. The search option is skipped and the home
link points back to the portal page. All other behavior is the same as if the user had
logged into the worklist application. If you click a 10.1.3 task entry under the Title
column in Figure 21–10 on page 21-17, a similar worklist application appears.

Figure 21–11 Accessing the Worklist Application

Analysis Portlet Customization
Figure 21–12 shows the analysis listing portlet. The analysis portlet provides a status
breakdown chart based on the category of tasks chosen and other filter options. It also
provides the ability to group the results based on the assignee, business process, or the
creator of tasks. The Listing Portlet exposes a portlet parameter for Task Category. The
value for this can be set from the page. If no value is set, then the default value of My

21-18 Oracle BPEL Process Manager Developer’s Guide

& Group is used. Figure 21–8 on page 21-15 shows the Page Parameter Properties
page where this default value is set. See "Step 5: Mapping Portlet Parameters with
Page Parameters" on page 21-20 for instructions on editing this page.

Figure 21–12 BPEL Worklist Analysis Portlet Filter and Display Customization Options

Table 21–3 shows the analysis portlet task filter and display customization options.
The first part provides data filter customization options and the second part provides
display customization options.

1. Enter the following parameter values.

Table 21–3 BPEL Worklist Analysis Portlet Filter and Display Customization Options

Parameter Description

Task Filter Customization

Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources

Oracle BPEL Portlets 21-19

2. Click OK.

Analysis Portlet View
Figure 21–13 shows the analysis portlet for 10.1.2.0.2 and Figure 21–14 shows the
analysis portlet for 10.1.3. The category of tasks and the current user name display at
the top. The table displays the group by column, the corresponding statuses, and
count. If there are multiple assignees (reportee category, for example), the status
breakdown is repeated for each assignee. If the business process is chosen as the
Group By column, the status breakdown is repeated for each deployed business
process. The last page refreshed time displays at the bottom.

■ Category Select one of the following:

■ My & Group—tasks assigned to the user and the groups to
which the logged-in user belongs

■ Reportees—tasks assigned to the users who report to the
logged-in user

■ Owner—tasks that are owned by the logged-in user by way
of process ownership

■ Creator—tasks that were created or initiated by the
logged-in user

■ Previous—tasks that the logged-in user has updated

■ Created Select the previous x days: (leave blank (that is, no restriction), 1
day, 7 days, 14 days, and 30 days).

■ Expiration Select the next x days: (leave blank (that is, no restriction), 1 day,
7 days, 14 days, and 30 days).

■ Priority Select from Any or 1 through 5, where 1 is the highest priority.

■ Business Process Select one of the deployed business processes or Any.

Display Customization

■ Title Select the portlet title.

■ Layout Select the size of the portlet as a ratio of the maximum size
(Small, Medium, Large, or Full).

■ Show Header/Footer Set this flag to Yes (default option) if the header (category and
user name) and footer (page generation time) are to be
displayed.

■ Show Statuses with
Zero Count

Select Yes to compact the portlet by skipping statuses for which
there are no qualifying tasks

■ Group By Select to group by Assignee, Business Process, Creator, or All
(status summary of all tasks).

■ Show options for
various statuses

Select only those statuses you want to see: Assigned,
Completed, Expired, Errored, Suspended, Withdrawn, and
Requested.

■ Locale Source Select the locale for the portlet based on the specified source:
Portlet (resolved from the browser and set language portlet) or
Directory Service.

■ Style Source Select the style (background color, font color, and font style) for
the portlet based on the specified source: Portlet (based on page
style used in the portal page) or Default (Oracle BPEL Control
or Oracle BPEL Worklist Application style).

Table 21–3 (Cont.) BPEL Worklist Analysis Portlet Filter and Display Customization

Parameter Description

21-20 Oracle BPEL Process Manager Developer’s Guide

Figure 21–13 Analysis Portlet View (10.1.2.0.2)

Figure 21–14 Analysis Portlet View (10.1.3)

Step 5: Mapping Portlet Parameters with Page Parameters
Time-related properties of the portlets are also exposed as parameters and can be
mapped to page parameters. This enables you to override the parameter values you
set:

■ In Step 1 on page 21-10 of "Defining Oracle BPEL Control Report Portlet
Parameters and Accessing Portlet Data Sources"

■ In Step 1 on page 21-15 of "Listing Portlet Customization" and Step 1 on page 21-18
of "Analysis Portlet Customization"

1. Click Page: Properties at the top of a report portlet. For this example, the Instance
State report of the Oracle BPEL Control reports portlets is shown.

Step 5: Mapping Portlet Parameters with Page Parameters

Oracle BPEL Portlets 21-21

The Edit page appears.

2. Click the Parameters tab.

a. If the Parameters tab does not display, return to the portlet reports page
shown in Step 1 on page 21-20 to enable it.

b. Click Page Group: Properties at the top of the report portlet.

c. Click the Configure tab.

The Edit Page Group page appears.

d. Click Edit in the Parameters and Events section.

e. Select Enable Parameters and Events.

f. Click OK.

g. Return to the Edit page shown in Step 1 on page 21-20.

h. Click the Page: Properties tab.

i. Click the Parameters tab on the Edit page.

21-22 Oracle BPEL Process Manager Developer’s Guide

3. Add the page parameters and map the page parameters to the portlet parameters.

■ For Oracle BPEL Control reports portlets, the following page parameter
properties are available:

■ For Oracle BPEL Worklist Application portlets, the following page parameter
properties are available:

Summary

Oracle BPEL Portlets 21-23

When you save these changes, the portlet picks up the property values from the
page parameters instead of the ones set during the edit process.

Summary
This chapter describes how to deploy the Oracle BPEL Portlets and configure
OracleAS Portal to provide access to data from these portlets.

21-24 Oracle BPEL Process Manager Developer’s Guide

Oracle BPEL Control Reports 22-1

22
Oracle BPEL Control Reports

This chapter provides an overview of Oracle BPEL Control reports. It provides
descriptions of the types of reports you can create, how to create them, and how to
analyze the results.

This chapter contains the following topics:

■ Creating Oracle BPEL Control Reports

■ Summary

Creating Oracle BPEL Control Reports
You can create reports in Oracle BPEL Control that enable you to:

■ Receive an overall view of business process instance performance

■ Analyze data for the BPEL process instances and make critical decisions

■ Analyze data of the activities that constitute a business process

■ Identify and debug faults and take appropriate corrective actions

Perform the following steps to create reports. The examples shown in this section
describe how to create reports for the LoanFlowPlus sample BPEL process that is
available under the SOA_Oracle_
Home\bpel\samples\demos\LoanDemoPlus\LoanFlowPlus directory. To
automatically build this sample in Oracle JDeveloper, create an application with an
empty project and open the LoanFlowPlus.jpr file in the LoanFlowPlus directory.

1. Click a specific process to create reports for all its instances in the Deployed BPEL
Processes column of the Dashboard tab of Oracle BPEL Control (for this example,
LoanFlowPlus is selected).

The Initiate tab appears by default.

2. Enter specific details to initiate an instance and click Post XML Message.

Creating Oracle BPEL Control Reports

22-2 Oracle BPEL Process Manager Developer’s Guide

3. Click Reports on the BPEL Processes tab.

The Reports tab appears:

This page enables you to generate several report types. The fields to complete in
order to create reports are described in the following table:

For example, if you enter 7/29/05 as the end date, 22:00 as the end hour, Weekly as
the time interval, and 3 as the number of time intervals, the report is created for
the three weeks between 7/08/05 at 10 PM and 7/29/05 at 10 PM.

4. See the following sections for details about creating the available report types:

■ Creating Process Reports

■ Creating Performance Reports

■ Creating Activity Sensor Reports

Page Element Location in Page Description

Report Type list upper right Select the type of report to create:

■ Process

■ Performance

■ Activity Sensor

■ Fault Sensor

■ Process Time Distribution

Descriptions of these report types are provided in the
sections that follow.

End Date field upper left Enter the date at which to stop generating report data.

End Hour list upper left Select the hour at which to stop generating report data.

Time Interval list upper middle Select Daily, Hourly, or Weekly as the time interval for
generating data.

Number of Time
Intervals field

upper middle Enter the time period for creating reports. This is the
number of days, weeks, or hours (according to the
Time Interval list selection) starting from the end date
going backwards in time to determine the start date.

Go button upper middle Click to create the selected report type.

Creating Oracle BPEL Control Reports

Oracle BPEL Control Reports 22-3

■ Creating Fault Sensor Reports

■ Creating Process Time Distribution Reports

Creating Process Reports
Process reports display data on the state of selected BPEL process instances and
execution times of these instances. The data is grouped along the time line (X-Axis)
into the number of time intervals based on the specified query criteria.

1. Select Process from the Report Type list.

2. Enter appropriate time period query details as described in the table in Step 3 on
page 22-2 and click Go.

Note that a progress bar and Cancel button display below the Query field during
report creation. This occurs during the creation of all report types. If you want to
stop report creation, click Cancel.

The report results appear:

3. Review the Instance State section of the process report (the left side).

Notes:

■ After creating any report type, you can save the report details to a
comma-separated value (CSV) file by selecting Export to CSV.
You can then review these reports in Microsoft Excel.

■ You can also execute and view Oracle BPEL Control reports from
Oracle Application Server Portal. See Chapter 21, "Oracle BPEL
Portlets" for instructions.

Creating Oracle BPEL Control Reports

22-4 Oracle BPEL Process Manager Developer’s Guide

The graph shows the number of BPEL process instances initiated, faulted,
successfully completed, and currently running. For this example, which uses the
LoanFlowPlus sample BPEL process, the graph shows how many loans were
requested (initiated), how many stopped abnormally due to faults in the system,
how many were successfully processed, and how many are still pending.

4. Hold your cursor over a specific bar to display information. For this example, the
information that displays identifies the series as faulted instances, the group (date)
in which this information was gathered as 7/28/05, and the value (number) of
faulted instances as four.

5. Click this bar to display the list of instances that faulted.

This displays the list of four faulted instances on the Instances tab.

6. Click a specific instance from the list to debug.

You can then debug the instance and take appropriate corrective actions.

7. Return to the process report results shown in Step 2 on page 22-3.

8. Review the Instance Execution Time section of the process report (the right side).

This graph shows the maximum, minimum, and average execution times
aggregated across all closed instances of the business process during the selected
time interval. By default, process reports display all successfully and
unsuccessfully completed processes (known as All Closed).

9. If you want to display only successfully completed (known as Closed
Successfully) or unsuccessfully completed (known as Faulted) process instances,
make an appropriate selection from the View Execution Time for list above the
graph.

Creating Oracle BPEL Control Reports

Oracle BPEL Control Reports 22-5

10. Click one of the minimum or maximum data points in the graph to show
additional details. For example, click the maximum execution time to view
information about the instance that took the longest amount of time to execute.

This displays the Instances tab for this instance.

11. Click the specific instance in the list.

You can then debug the instance and take appropriate corrective actions.

Creating Performance Reports
Performance reports display the percentage of BPEL process instances that meet the
Completion Time SLA field value. This enables you to identify bottlenecks in instance
performance. You assign this value to the SLACompletionTime parameter in the
Configurations tab of the Deployment Descriptor Properties window in Oracle
JDeveloper. You specify an SLACompletionTime parameter value using the P0YT
format. P0YT conforms to the PnYnMnDTnHnMnS convention, where:

Creating Oracle BPEL Control Reports

22-6 Oracle BPEL Process Manager Developer’s Guide

■ T is the date and time separator

■ nY, nM, nD, nH, nM, and nS correspond to the number of years, months, days,
hours, minutes, and seconds, respectively

For example, P0YT1.5S corresponds to 0 years, 1.5 seconds. The letter P and at least
one unit of time must always be present.

If you define the completion time service level agreement (SLA) value for the
LoanFlowPlus process as P0YT450S seconds (450 seconds), the report graph shows the
percentage of instances that completed and did not complete within that time period.

This assignment adds this parameter to the bpel.xml file.

<configurations>
 <property name="SLACompletionTime">P0YT450S</property>
</configurations>

1. Select Performance from the Report Type list.

2. Enter appropriate time period query details as described in the table in Step 3 on
page 22-2 and click Go.

The report results appear:

This graph shows the percentage of instances that completed and did not complete
within this time period.

3. Hold your cursor over a specific bar to display information. For this example, the
information that displays below identifies the series of instances that satisfied the
SLACompletionTime parameter value, the group (date) in which this information
was gathered as 7/29/05, and information about the percentage and number of
successfully completed instances and total number of instances for that day.

Creating Oracle BPEL Control Reports

Oracle BPEL Control Reports 22-7

4. Click a specific bar to display the Instances tab. For example, click the red bar for
instances that did not satisfy the SLA value. Holding your cursor over this bar
before clicking displays specific information about these instances.

5. Click the specific instance in the list.

You can then debug the instance and take appropriate corrective actions.

6. If you want to override the SLACompletionTime parameter value in the
bpel.xml file, change the value in the Completion Time SLA field above the
graph and click Go to re-execute the report.

The report results display details based on the new parameter value entered. Note
that a Default link now displays to the right of the value you entered in Step 6.

7. Click Default to re-execute the report with the initial SLACompletionTime
parameter value set during design time in the Configurations tab of the
Deployment Descriptor Properties window.

Creating Activity Sensor Reports
Activity sensor reports show data for the activity sensors associated with the selected
BPEL process over a specified time span. This enables you to analyze activity trends.
Activity sensor reports show the activity name, sensor name, activity type, aggregated
values of the minimum, maximum, and average execution time of the activity, and the
number of occurrences of the activity. This report shows activity execution time only if
activity sensors are defined for the BPEL process.

1. Select Activity Sensor from the Report Type list.

2. Enter appropriate time period query details as described in the table in Step 3 on
page 22-2.

3. Make a selection from the Activity Sensor list. Only activities with sensors display
in this list.

■ Select All to create a report for all activities in the BPEL process.

See Also: Appendix C, "Deployment Descriptor Properties"

Creating Oracle BPEL Control Reports

22-8 Oracle BPEL Process Manager Developer’s Guide

■ Select a specific activity for which to create a report.

4. Click Go.

The report results appear (for this example, All was selected from the Activity
Sensor list):

5. Click Show Details on the far left side to view additional information about an
activity sensor.

This displays details about all the variables associated with that activity sensor. It
also shows a graph for the minimum, maximum, and average execution times, as
collected by the chosen activity sensor over the selected time span.

6. Click the variable name in the Variable Name column (for this example, named
input) to display the detailed values of the variable collected during the selected
time period.

Creating Oracle BPEL Control Reports

Oracle BPEL Control Reports 22-9

7. Click a specific instance ID on the Variable Details window to display the Flow
diagram of that instance.

You can then debug the instance and take appropriate corrective actions.

Creating Fault Sensor Reports
Fault sensor reports show the data collected by fault sensors over a specified time
interval. This enables you to analyze trends in faults while processing loan
applications. The report shows the date and time of the fault occurrence, the activity in
which the fault occurred, and a link to the faulted instance. For this example, the
LoanFlowPlus sample BPEL process is used. There are two types of faults for which
data is provided in this sample:

■ Bankruptcy reports — the fault occurs when the customer has a negative credit
rating

■ The social security number of the customer requesting the loan was not found

1. Select Fault Sensor from the Report Type list.

2. Enter appropriate time period query details as described in the table in Step 3 on
page 22-2 and click Go.

The report results display the types of fault messages.

Creating Oracle BPEL Control Reports

22-10 Oracle BPEL Process Manager Developer’s Guide

3. Click a specific instance ID in the Instance ID column to display the Flow diagram
for the activity of the instance that faulted.

4. Debug the activity and take appropriate corrective actions.

Creating Process Time Distribution Reports
Process time distribution reports enable you to view the distribution of execution
times across the activities of BPEL process instances. For example, you may have two
activities, one for each loan application company returning a loan offer. You can see
which activity is taking the longest amount of time to process the loan offer. You do not
need to create sensors in activities to use this report. This report enables you to
identify which activities are taking the most time to process.

1. Select Process Time Distribution from the Report Type list.

2. Enter appropriate time period query details as described in the table in Step 3 on
page 22-2 and click Go.

Summary

Oracle BPEL Control Reports 22-11

The report results appear:

3. Note which activities take the longest to complete.

4. Debug the activity and take appropriate corrective actions.

Summary
This chapter provides an overview of Oracle BPEL Control reports. It provides
descriptions of the types of reports you can create, how to create them, and how to
analyze the results.

Summary

22-12 Oracle BPEL Process Manager Developer’s Guide

Part V
Reference Information

This part provides reference details about troubleshooting issues, activities and
services, deployment descriptor properties, and XPath extension functions.

This part contains the following appendices:

■ Appendix A, "Troubleshooting and Workarounds"

■ Appendix B, "BPEL Process Activities and Services"

■ Appendix C, "Deployment Descriptor Properties"

■ Appendix D, "XPath Extension Functions"

Troubleshooting and Workarounds A-1

A
Troubleshooting and Workarounds

This appendix describes Oracle BPEL Process Manager troubleshooting methods.

This appendix contains the following topics:

■ Troubleshooting General Issues

■ Troubleshooting Sensors—The Custom Data Publisher

■ Troubleshooting Oracle BPEL Worklist Application

■ Summary

Troubleshooting General Issues
The following sections describe possible issues and solutions.

Setting Properties for BPEL Processes to Successfully Complete and Catch Exception
Errors

The values to which you set the transaction-timeout and syncMaxWaitTime
properties can impact whether a transaction scope successfully completes or times out
and catches exception errors. For example, assume you have two processes:

■ TimeoutSubprocess (A synchronous detail process that includes a wait activity set
to three minutes)

■ TimeoutMainProcess (An asynchronous main process that calls the
TimeoutSubprocess)

If syncMaxWaitTime is set to 45 seconds (the default value) and
transaction-timeout is set to 30 seconds, after 45 seconds the main process
continues running and does not successfully complete and catch the following
exception error as expected:

com.oracle.bpel.client.delivery.ReceiveTimeOutException

In the domain.log file, the following exception error displays:

An exception occurred during transaction completion:; nested exception is:
javax.transaction.RollbackException: Timed out
javax.transaction.RollbackException: Timed out

Perform the following procedures for the main process to successfully complete and
catch the exception error.

1. Set the transaction-timeout and syncMaxWaitTime properties as follows:

Troubleshooting General Issues

A-2 Oracle BPEL Process Manager Developer’s Guide

This causes the main process to successfully complete and catch the exception
error.

Developer Prompt on Windows 2000
The developer prompt on Windows 2000 can fail to display when selecting Start > All
Programs > Oracle - Oracle_Home > Oracle BPEL Process Manager > Developer
Prompt. This is a known classpath length issue with Windows 2000. For the developer
prompt to successfully display, you must shorten your classpath. For example, when
you install Oracle BPEL Process Manager, limit the length of the directory path of your
Oracle home.

Correcting Validation Errors in Complex Processes
If you have complex processes with validation errors (for example, assign activities
with multiple copy rules that are embedded inside several scopes), the recommended
method for accessing and correcting these errors is as follows:

1. Right-click the error and select Go to Source to access the source code that errored.

2. Review the source code to identify the error.

3. Click Diagram and go to the graphical view of the error.

4. Make corrections in the graphical view.

Handling Long-Running Processes
When a process has a long-standing activity and the server timeout value is set to less
than the time that has elapsed since the previous dehydration point has been reached,

Property File Location This Value Must Be... Example

transaction-timeout SOA_Oracle_
Home\j2ee\home\config\t
ransaction-manager.xml

Larger than the
transaction-timeo
ut value in
orion-ejb-jar.xml
and the
syncMaxWaitTime
value.

7200

transaction-timeout SOA_Oracle_
Home\j2ee\home\applicat
ion-deployments\orabpel
\ejb_ob_
engine\orion-ejb-jar.xm
l

Less than the
transaction-timeo
ut value in
transaction-manag
er.xml.

Note: You must set all
transaction-timeo
ut properties that
display in this file.

3600

syncMaxWaitTime SOA_Oracle_
Home\bpel\domains\domai
n_
name\config\domain.xml

where domain_name is the
name of the domain to which
you are deploying.

Less than the
transaction-timeo
ut value in
orion-ejb-jar.xml.

240

See Also: "Starting Oracle BPEL Process Manager Components" on
page 2-2

Troubleshooting Sensors—The Custom Data Publisher

Troubleshooting and Workarounds A-3

you can see exception messages similar to the following in the Oracle BPEL Server
window.

Message handle error.
An exception occurred while attempting to process the message
"com.collaxa.cube.engine.dispatch.message.invoke.InvokeIns
tanceMessage"; the exception is: Transaction was rolled back: timed out;
nested exception is: java.rmi.RemoteException:
No Exception - originate from:java.lang.Exception: No Exception - originate
from:; nested exception is:
 java.lang.Exception: No Exception - originate from:

As a workaround, increase the transaction-config timeout value in the
transaction-manager.xml file. For example:

<transaction-config timeout="30000"/>

The location of this file depends on the method by which you installed Oracle BPEL
Process Manager:

■ For Oracle Application Server SOA Basic installations, the file is located in SOA_
Oracle_Home\j2ee\home\config.

■ For Oracle BPEL Process Manager installations, the file is located in SOA_
Oracle_Home\bpel\system\appserver\oc4j\j2ee\home\config.

See Oracle BPEL Process Manager Installation Guide for a detailed description on setting
this parameter.

Creating an Empty BPEL Process and Importing a Schema
If you create an empty project (which is common with adapter endpoint projects) and
import an XSD file, you cannot deploy the project without editing the project_
name.bpel file.

As a workaround, perform the following steps:

1. Create an asynchronous project.

2. Leave the client partner link alone (it enables you to import XSDs because it refers
to the process_name.wsdl file that has the necessary imports).

3. Edit the receiveInput receive activity of the client partner link and have it point to
the new adapter inbound endpoint in the Partner Link field.

Troubleshooting Sensors—The Custom Data Publisher
The following sections describe possible issues and solutions.

Data Publisher Is Not Working

Problem
The custom data publisher is not working.

Solution
■ Make sure that the class file has been generated and that it is in the system

classpath. See the obsetenv.bat file for this definition, or the BPEL suitcase.

■ Ensure that you have implemented the data publisher interface.

Troubleshooting Sensors—The Custom Data Publisher

A-4 Oracle BPEL Process Manager Developer’s Guide

■ If you compile your data publisher into the system classpath, then you must
restart Oracle BPEL Process Manager. You may have made changes to the data
publisher without restarting Oracle BPEL Process Manager.

■ It is possible that an exception is being thrown in your data publisher. Check the
log file for any exceptions, or temporarily add a try/catch block around all your
code. In the catch, print the stack trace. These messages display on the text
window that opens when you start Oracle BPEL Process Manager.

Data Publisher Works, But Business Process Runs Slowly

Problem
The data publisher works fine, but the business process runs very slowly.

Solution
There are a couple of options.

First, you can attempt to profile your code. The do-user-sensor-callback statistic in
Oracle BPEL Control records how much time is spent publishing sensor data.

Second, you can switch from a custom data publisher to a JMS Publisher. Then, you
can deploy a message-driven bean to the application server to publish data whenever
data is sent to that particular JMS destination. This decouples data publishing from
process execution.

Caching Data in the Data Publisher Is Not Supported

Problem
To improve performance, I want to cache data in my data publisher. Is this supported?

Solution
This is not supported. Data publishers must be stateless.

Unexpected Errors in the Data Publisher

Problem
My data publisher works fine most of the time, but sometimes I get a weird error.

It is possible that your data publisher is experiencing concurrency issues.

Solution
Data publishers must be coded in a thread-safe manner. This means that the Java code
must be thread safe as well as the utilization of resources, such as databases or files.

Data Extracted to XML Is Difficult to Work With

Problem
The data I extract is complex XML. It is difficult to work with. Can I do anything to
make it simpler?

Troubleshooting Oracle BPEL Worklist Application

Troubleshooting and Workarounds A-5

Solution
While the W3C DOM model is somewhat cumbersome, there are third-party models
(such as DOM4J) that make things easier. It is easy to create a DOM4J object from its
corresponding W3C DOM object. Another option is to generate JAX-B objects or
schema objects for the data you extract. Then you can use the generated Java classes to
manipulate data more easily.

Troubleshooting Oracle BPEL Worklist Application
The following sections describe possible issues and solutions.

Not Able to Log In to the Worklist Application
You cannot log in to the Worklist Application if your information is not available in the
identity service. Check with an administrator to verify that your user information is
present in the identity system (a file based on LDAP, such as Oracle Internet
Directory).

Information Is Displayed in a Different Language
The Worklist Application gets a user’s language (locale) preferences from the identity
service and displays the information in that locale. If information is displayed in the
wrong language, make sure that the user’s preference is set to a supported locale. See
"Accessing the Worklist Application in Local Languages" on page 16-39 for more
information.

Dates and Times Are Displayed Incorrectly
The Worklist Application gets a user’s timezone preference from the identity service
and displays the information in this timezone. Also, the date and time is formatted to
suit the language (locale) preference. Make sure that these preferences are correctly
specified in the identity service.

The User Is Not Permitted to Perform an Action
You may see an error message that says something like:

"User jcooper is not permitted to perform the action Update on task Loan
application for John with id...."

Check if the user has permission to perform the action or if the action can be
performed on the task in its current state. You can also check for the following:

■ The task expired between the time the user loaded the page and actually
performed the action.

■ The task was updated by another user (such as a manager, owner, or
administrator) between the time the user loaded the page and actually performed
the action.

Expected Task Is Not Listed Under Task Titles
On the Worklist Application home page, under the Title column, if you do not see a
task listed that you expected to see, then it may have been modified by another user or
by the system.

Summary

A-6 Oracle BPEL Process Manager Developer’s Guide

Another user, such as a manager or group member, may have modified the task by
performing any of the following actions:

■ Complete

■ Suspend

■ Request More Information

Also, the filer of the task may have withdrawn (cancelled) the task.

The system can modify a task in the following situations:

■ If the process instance associated with a task was purged or archived, the task is
also purged or archived and may not be accessible.

■ If a task expires

■ If a task encounters a system error such as an incorrect assignee

In most of the preceding cases, you can view the task by changing the filters to a
broader category (such as Any or All).

Summary
This appendix describes Oracle BPEL Process Manager troubleshooting methods.

BPEL Process Activities and Services B-1

B
BPEL Process Activities and Services

This appendix describes the activities and services that you use when designing a
BPEL process in Oracle JDeveloper.

This appendix contains the following topics:

■ Process Activities Overview

■ Services Overview

■ Validation When Loading a Process Diagram

■ Summary

Process Activities Overview
Oracle JDeveloper includes activities that are available for dragging and dropping into
a BPEL process. These activities enable you to perform specific tasks within a process.
This section provides a brief overview of these activities and provides references to
other documentation that describes how to use these activities:

This section contains the following topics:

■ Tabs Common to Many Activities

■ Assign Activity

■ Compensate Activity

■ Decide Activity

■ Email Activity

■ Empty Activity

■ Fax Activity

■ Flow Activity

■ FlowN Activity

■ Human Task Activity

■ Invoke Activity

■ Java Embedding Activity

■ Pager Activity

■ Pick Activity

■ Receive Activity

Process Activities Overview

B-2 Oracle BPEL Process Manager Developer’s Guide

■ Reply Activity

■ Scope Activity

■ Sequence Activity

■ SMS Activity

■ Switch Activity

■ Terminate Activity

■ Throw Activity

■ Transform Activity

■ Voice Activity

■ Wait Activity

■ While Activity

Tabs Common to Many Activities
While each activity performs specific tasks, many activities include tabs that enable
you to perform similar tasks. This section describes these common tabs.

■ The Sensors tab displays on all activities and enables you to create sensors for
capturing details about an activity.

■ The Correlations tab displays in invoke, receive, and reply activities, the
onMessage branch of pick activities, and the OnMessage variant of event handlers.
Correlation sets address complex interactions between a process and its partners
by providing a method for explicitly specifying correlated groups of operations
within a service instance. A set of correlation tokens is defined as a set of
properties shared by all messages in the correlated group.

■ The Adapters tab displays in invoke, receive, and reply activities, and the
onMessage branch of pick activities. You create header variables for use with the
Advanced Queuing (AQ), File, FTP, MQ, and Java Message Service (JMS)
adapters.

■ The Annotations tab displays on all activities and enables you to provide
descriptions in activities in the form of code comments and name and pair value
assignments.

Note the following issues when using annotations in Oracle JDeveloper:

■ The Annotations tab in activities of Oracle JDeveloper does not provide a
method for changing the order of annotations. As a workaround, change the
order of annotations in the Source view of the project’s BPEL file in Oracle
JDeveloper.

See Also: The following documentation for additional details about
activities:

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Business Process Execution Language for Web Services Specification

■ SOA_Oracle_Home\bpel\samples\references directory

Process Activities Overview

BPEL Process Activities and Services B-3

■ The otherwise branch in a switch activity does not allow you to create
annotations. However, the case branch in a switch activity does provide this
functionality.

Assign Activity
This activity provides a method for data manipulation, such as copying the contents of
one variable to another. This activity can contain any number of elementary
assignments.

When you double-click the Assign icon, the Assign window appears. You can perform
the following tasks:

■ Click the General tab to provide the assign activity with a meaningful name.

■ Click the Copy Operation tab and the Create icon (shown in Figure B–1), and then
select Copy Operation, to access the Create Copy Operation window. Other
selections such as Append Operation and Insert-After Operation are also
available. This enables you to copy the contents of the source element (variable,
expression, XML fragment, or partner link) in the From field to the contents of the
destination element in the To field. You can also select a part (typically the
payload) and an XPath query (a language for addressing parts of an XML
document).

See Also:

■ The Online help for these tabs for additional details about their
use

■ "Using Correlation Sets in an Asynchronous Service" on page 5-14

■ Chapter 17, "Sensors"

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide

Process Activities Overview

B-4 Oracle BPEL Process Manager Developer’s Guide

Figure B–1 Copy Rules Tab of Assign Activity WIndow

If an assign activity contains more than one bpelx:append setting, it must be split
into two assign activities. Otherwise, Oracle JDeveloper moves the bpelx:append to
the end of the list each time, which can cause problems. As a workaround, move it
manually.

Compensate Activity
This activity invokes compensation on an inner scope activity that has already
successfully completed. This activity can be invoked only from within a fault handler
or another compensation handler. Compensation occurs when a process cannot
complete several operations after already completing others. The process must return
and undo the previously completed operations. For example, assume a process is
designed to book a rental car, a hotel, and a flight. The process books the car and the
hotel, but is unable to book a flight for the correct day. In this case, the process
performs compensation by unbooking the car and the hotel.

The compensation handler is invoked with the compensate activity, which names the
scope on which the compensation handler is to be invoked.

See Also: The following documentation for examples of using the
assign activity:

■ Chapter 3, "Manipulating XML Data in BPEL"

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ SOA_Oracle_Home\bpel\samples\references\Assign

Process Activities Overview

BPEL Process Activities and Services B-5

When you double-click the Compensate icon, the Compensate window shown in
Figure B–2 appears. You can perform the following tasks:

■ Click the General tab to provide the activity with a meaningful name and select
the scope activity on which the compensation handler is to be invoked.

Figure B–2 Compensate Activity

Decide Activity
This activity enables you to define a process that invokes the decision service partner
link that you created with the Decision Service Wizard. This activity also enables you
to create copy operation assignments between the fact data in your rule set or function
and BPEL variables.

When you drag and drop the Decide icon, the Decide window appears. You provide
the following information, as shown in Figure B–3.

See Also:

■ "BankTransferDemo" on page 1-7 for a demonstration that uses
a compensate activity

■ "Using Compensation After Undoing a Series of Operations" on
page 8-9

Process Activities Overview

B-6 Oracle BPEL Process Manager Developer’s Guide

Figure B–3 Decide Activity

■ Enter a name, select the decision service partner link you created, and the
operation to perform (invocation pattern). If you have not created a decision
service, click the first icon to the right of the Decision Service field.

■ Click Assign Input Facts, then click Create to create mappings for the input facts.
This enables you to assign BPEL variables to the facts to be asserted or to the
function input parameters.

This enables you to create assignments that map BPEL input variables to
automatically created BPEL variables that correspond to the input (assert) fact
type.

■ If you selected an invocation pattern that retrieves results, click Assign Output
Facts, then click Create to create mappings for the output facts. This enables you
to assign values from a function return value or rule set result to a BPEL variable.

This enables you to create assignments that map automatically created BPEL
variables that correspond to the output (watch) fact type.

A decide activity consisting of assign and invoke activities to the decision service
partner link is created after you click OK.

Email Activity
This activity enables you to send an e-mail notification about an event.

For example, an online shopping business process of an online bookstore sends a
courtesy e-mail message to you after the items are shipped. The business process calls

See Also: "Decide Activity" on page 18-14

Process Activities Overview

BPEL Process Activities and Services B-7

the notification service with your user ID and notification message. The notification
service gets the e-mail address from Oracle Internet Directory.

When you drag and drop an Email icon into a BPEL process, the Edit Email window
shown in Figure B–4 appears.

Figure B–4 Edit Email Window

Use the Edit Email dialog to enter notification details, as described in Table B–1.

Table B–1 E-mail Notification Parameters

Name Description

From Account The name of the account used to send this message. The
configuration details for this e-mail account name must exist on
Oracle BPEL Server.

To The e-mail address to which the message is to be delivered. This
can be a) a static e-mail address entered at the time the message
is created, or b) an e-mail address looked up using the identity
service, or c) a dynamic address from the payload. The XPath
Expression Builder can be used to get the dynamic e-mail
address from the input. See "Setting E-mail Addresses and
Telephone Numbers Dynamically" on page 14-13.

Process Activities Overview

B-8 Oracle BPEL Process Manager Developer’s Guide

Empty Activity
This activity enables you to insert a no-operation instruction into a process. This
activity is useful when you need to use an activity that does nothing (for example,
when a fault needs to be caught and suppressed). Figure B–5 shows the empty activity.

CC and Bcc The e-mail addresses to which the message is copied and blind
copied. This can be a static or dynamic address as described for
the To address.

Reply To The e-mail address to use for replies. This can be a static or
dynamic address as described for the To address.

Subject Subject of the e-mail message. This can be free text or dynamic
text. The XPath Expression Builder can be used to set dynamic
text based on data from process variables that you specify.

Body Message body of the e-mail message. This can be plain text,
XML, free text, or dynamic text, as described for the Subject
parameter.

Multipart message with n
attachments

Select to specify e-mail attachments. See "Setting E-mail
Attachments" on page 14-5.

The number of attachments if Multipart message is selected.
The number includes the body. For example, if you have a body
and one attachment, specify 2 here.

See Also:

■ Oracle BPEL Process Manager Order Booking Tutorial for an example
of using an email activity

■ "The E-mail Notification Channel" on page 14-4

Table B–1 (Cont.) E-mail Notification Parameters

Name Description

Process Activities Overview

BPEL Process Activities and Services B-9

Figure B–5 Empty Activity

Fax Activity
This activity enables you to send a fax notification about an event.

When you drag and drop a Fax icon into a BPEL process, the Edit Fax window shown
in Figure B–6 appears.

See Also: "Using the Empty Activity to Insert No-Op Instructions
into a Business Process" on page 8-8

Process Activities Overview

B-10 Oracle BPEL Process Manager Developer’s Guide

Figure B–6 Edit Fax Window

Use the Edit Fax dialog to enter notification details, as described in Table B–2.

Table B–2 Fax Notification Parameters

Name Description

Fax Number The fax number to which the message is to be delivered. This
can be a) a static fax number entered at the time the message is
created, or b) a fax number looked up using the identity service,
or c) a dynamic fax number from the payload. The XPath
Expression Builder can be used to get the dynamic fax number
from the input.

Cover Page The cover page name. The cover page details must exist on the
server. The cover page can be in PDF, Microsoft Word, HTML,
or plain text format. (This field is optional.) The XPath
Expression Builder can be used to set dynamic text based on
data from process variables that you specify.

Body Fax message body. This must be plain text or HTML. This can be
free text or dynamic text as described for the Cover page
parameter.

See Also: "The Fax Notification Channel" on page 14-8

Process Activities Overview

BPEL Process Activities and Services B-11

Flow Activity
This activity enables you to specify one or more activities to be performed
concurrently. A flow activity completes when all activities in the flow have finished
processing. Completion of a flow activity includes the possibility that it can be skipped
if its enabling condition is false.

For example, assume you use a flow activity to enable two loan offer providers
(United Loan service and Star Loan service) to start in parallel. In this case, the flow
activity contains two parallel activities – the sequence to invoke the United Loan
service and the sequence to invoke the Star Loan service. Each service can take an
arbitrary amount of time to complete their loan processes.

Figure B–7 shows an initial flow activity with its two panels for parallel processing.
You drag and drop activities into both panels to create parallel processing. When
complete, a flow activity looks like that shown in Figure B–8.

Figure B–7 Flow Activity (At Time of Creation)

Figure B–8 Flow Activity (After Design Completion)

Process Activities Overview

B-12 Oracle BPEL Process Manager Developer’s Guide

FlowN Activity
This activity enables you to create activities within a flow. You specify the number of
branches of these activities to create.

Figure B–9 shows a flowN activity.

Figure B–9 FlowN Activity

Human Task Activity
This activity enables you to describe the tasks, input or output information, and
procedural steps performed by users or groups as part of the end-to-end business
process. For example, an insurance company can design a workflow application to
ensure that a claim is handled consistently from initial call to final settlement. The
workflow application ensures that each person handling the claim uses the correct

See Also: The following documentation for examples of using the
flow activity:

■ "Defining a Parallel Flow" on page 6-2

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\Flow

See Also:

■ "Customizing the Number of Flow Activities by Using the flowN
Activity" on page 6-4

■ SOA_Oracle_Home\bpel\samples\references\FlowN

Process Activities Overview

BPEL Process Activities and Services B-13

online form and successfully completes their step before enabling the process to
proceed to the next person and procedural step.

You create a workflow to manage and enforce the consistent handling of work. After
creation, you can also modify your workflow. At run time, the workflow results in the
creation of tasks that can be accessed through the Oracle BPEL Worklist Application.

When you drag and drop a Human Task icon, the Add a Human Task window shown
in Figure B–10 appears.

Figure B–10 Human Task Activity

Create a task definition by clicking the second icon to the right of the Task Definition
field. The Human Task editor opens. This is where you create the human workflow
task, as shown in Figure B–11. Your inputs are saved in the human_task_name.task
file.

Process Activities Overview

B-14 Oracle BPEL Process Manager Developer’s Guide

Figure B–11 Human Task Editor

Invoke Activity
This activity enables you to specify an operation you want to invoke for the service
(identified by its partner link). The operation can be one-way or request-response on a
port provided by the service. You can also automatically create variables in an invoke

See Also: The following documentation for examples of using the
human task activity and workflows:

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_
Home\bpel\samples\demos\HelpDeskServiceRequest

■ SOA_Oracle_
Home\bpel\samples\demos\TimeOffRequestDemo

■ SOA_Oracle_
Home\bpel\samples\demos\VacationRequest

■ Chapter 15, "Oracle BPEL Process Manager Workflow Services"

■ Chapter 16, "Worklist Application"

Process Activities Overview

BPEL Process Activities and Services B-15

activity. An invoke activity invokes a synchronous service or initiates an asynchronous
Web service.

The invoke activity opens a port in the process to send and receive data. It uses this
port to submit required data and receive a response. For synchronous callbacks, only
one port is needed for both the send and the receive functions.

When you double-click the Invoke icon, the Invoke window shown in Figure B–12
appears. You can perform the following tasks:

■ Provide the activity with a meaningful name.

■ Select the partner link for which to specify an operation

■ Select the operation to be performed

■ Automatically create a variable or select an existing variable in which to transport
the data (payload)

Figure B–12 Invoke Activity

Process Activities Overview

B-16 Oracle BPEL Process Manager Developer’s Guide

Java Embedding Activity
This activity enables you to add custom Java code to a BPEL process using the Java
BPEL exec extension <bpelx:exec>. This is useful when you already have Java
code that can perform a function, and want to use this existing code instead of starting
over.

When you double-click this activity, the Edit Java Embedding window shown in
Figure B–13 appears.

Figure B–13 Java Embedding Activity

If you use this activity, ensure that you add the JAR files to the Oracle JDeveloper
classpath or put them in the JDev_Oracle_Home\jdev\lib\ext directory to
ensure that your project compiles properly during design time.

In addition, place the corresponding class files in the SOA_Oracle_
Home\bpel\system\classes directory.

Perform the following Java JAR file configuration steps to ensure correct run time
behavior. This example describes the configuration steps for Windows operating
systems. Perform similar steps for UNIX operating systems.

1. Add the files into the BPEL client bpelc CLASSPATH:

a. Open SOA_Oracle_Home\bpel\bin\obsetenv.bat. For UNIX operating
systems, the file is named obsetenv.sh.

b. Edit the file as follows:

See Also: The following documentation for examples of using the
invoke activity:

■ "Using the Invoke Activity to Perform a Request" on page 4-5

■ "How the Invoke and Receive Activities Work" on page 5-5

■ "Step 2: Adding an Invoke Activity" on page 5-12

■ "Returning a Fault in an Asynchronous Interaction" on page 8-7

■ Chapter 12, "Interaction Patterns"

■ Oracle BPEL Process Manager Quick Start Guide

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\Invoke

Process Activities Overview

BPEL Process Activities and Services B-17

@REM set MY_CLASSES_DIR=%CLASSPATH%
set MY_CLASSES_DIR=%OB_HOME%\system\classes
set MY_CLASSPATH=%MY_CLASSES_DIR%;your_jar_files

2. Add the files into the Oracle BPEL Server bpelc CLASSPATH in either of two
ways:

a. Open SOA_Oracle_
Home\bpel\domains\default\config\domain.xml (if the default
domain is being used).

b. Edit the file as follows:

<property id="bpelcClasspath">
 <name>BPEL process compiler classpath</name>
 <value>your_jar_files;...</value>
 <comment>...</comment>
</property>

c. Restart Oracle BPEL Server.

or

a. Go to Manage BPEL Domain > Configuration on Oracle BPEL Control.

b. Go to the bpelcClasspath property.

c. Enter your_jar_files; in the Value field.

d. Click Apply.

e. Restart Oracle BPEL Server.

3. Add the files into the Oracle Application Server CLASSPATH:

a. Open application.xml, which is in

SOA_Oracle_Home\j2ee\home\config\

b. Edit the file as follows:

 <library path=your_jar_files/>
 <library path="C:\Ora_Home\bpel\system\classes"/>

Pager Activity
This activity enables you to send a pager notification about an event.

When you drag and drop a Pager icon into a BPEL process, the Edit Pager window
shown in Figure B–14 appears.

See Also: "Using Java Embedding in a BPEL Process" on page 9-8

Process Activities Overview

B-18 Oracle BPEL Process Manager Developer’s Guide

Figure B–14 Edit Pager Window

Use the Edit Pager dialog to enter notification details, as described in Table B–3.

Table B–3 Pager Notification Parameters

Name Description

From Number The pager number from which the message is to be sent. This
can be a) a static pager number entered at the time the message
is created, or b) a dynamic pager number from the payload. The
XPath Expression Builder can be used to get the dynamic pager
number from the input.

Pager Number The number of the recipient of this message. This can be a) a
static pager number entered at the time the message is created,
or b) a pager number looked up using the identity service, or c) a
dynamic pager number from the payload. The XPath Expression
Builder can be used to get the dynamic pager number from the
input.

Body Pager message body. This must be plain text. This can be free
text or dynamic text as described for the From Number
parameter.

See Also: "The Pager Notification Channel" on page 14-10

Process Activities Overview

BPEL Process Activities and Services B-19

Pick Activity
This activity waits for the occurrence of one event in a set of events and performs the
activity associated with that event. The occurrence of the events is often mutually
exclusive (the process either receives an acceptance or rejection message, but not both).
If more than one of the events occurs, then the selection of the activity to perform
depends on which event occurred first. If the events occur nearly simultaneously,
there is a race and the choice of activity to be performed is dependent on both timing
and implementation.

The pick activity provides two branches, each one with a condition. When you
double-click the Pick icon, the pick activity shown in Figure B–15 appears and
displays these two branches: onMessage (on the left) and onAlarm (on the right). The
onMessage branch contains the code for receiving a reply, for example, from a loan
service. The onAlarm branch contains the code for a timeout, for example, after one
minute. Whichever branch completes first is executed; the other branch is not. The
branch that has its condition satisfied first is executed.

Figure B–15 Pick Activity

If you add correlations to an OnMessage branch of a Pick activity in Oracle
JDeveloper, the correlations syntax is placed after the assign activity syntax. The
correlation syntax must go before the assign activity.

As a workaround, perform the following steps:

1. Create a correlation set in Oracle JDeveloper.

2. Assign this to the OnMessage branch.

3. Complete the remaining design tasks.

4. Before making or deploying the BPEL process, move the correlation syntax before
the assign activity in the BPEL source code.

Process Activities Overview

B-20 Oracle BPEL Process Manager Developer’s Guide

Receive Activity
This activity specifies the partner link from which to receive information and the port
type and operation for the partner link to invoke. This activity waits for an
asynchronous callback response message from a service, such as a loan application
approver service. While the BPEL process is waiting, it is dehydrated (compressed and
stored) until the callback message arrives. The contents of this response are stored in a
response variable in the process.

When you double-click the Receive icon, the Receive window shown in Figure B–16
appears. You can perform the following tasks:

■ Provide the receive activity with a meaningful name.

■ Select the partner link service for which to specify an operation

■ Select the operation to be performed

■ Automatically create a variable or select an existing variable in which to transport
the callback response

See Also:

■ "107.Exceptions" on page 1-11 for a tutorial that uses a pick
activity

■ "108.Timeouts" on page 1-11 for a tutorial that uses a pick
activity

■ "Using the Pick Activity to Select Between Continuing a Process or
Waiting" on page 10-2

■ "Defining a Timeout" on page 10-4

■ Chapter 12, "Interaction Patterns"

■ SOA_Oracle_Home\bpel\samples\references\Pick for an
example of using the pick activity

Process Activities Overview

BPEL Process Activities and Services B-21

Figure B–16 Receive Activity

Reply Activity
This activity allows the process to send a message in reply to a message that was
received through a receive activity. The combination of a receive activity and a reply
activity forms a request-response operation on the WSDL port type for the process.

Figure B–17 shows the reply activity.

See Also: The following documentation for examples of using the
receive activity:

■ "How the Invoke and Receive Activities Work" on page 5-5

■ "Step 3: Adding a Receive Activity" on page 5-13

■ Chapter 12, "Interaction Patterns"

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

■ SOA_Oracle_Home\bpel\samples\references\Receive

Process Activities Overview

B-22 Oracle BPEL Process Manager Developer’s Guide

Figure B–17 Reply Activity

Scope Activity
This activity consists of a collection of nested activities that can have their own local
variables, fault handlers, compensation handlers, and so on. A scope activity is
analogous to a { } block in a programming language.

Each scope has a primary activity that defines its behavior. The primary activity can be
a complex structured activity, with many nested activities within it to arbitrary depth.
The scope is shared by all the nested activities.

When you double-click the Scope icon, the Scope window shown in Figure B–18
appears. Define appropriate activities inside the scope activity.

See Also:

■ "Using the Reply Activity to Send Messages in Response to a
Receive Activity" on page 5-10

■ "Returning a Fault in a Synchronous Interaction" on page 8-7

■ Chapter 12, "Interaction Patterns"

■ SOA_Oracle_Home\bpel\samples\references\Reply for
an example of using the reply activity

Process Activities Overview

BPEL Process Activities and Services B-23

Figure B–18 Scope Activity

Fault handling is associated with a scope activity. The goal is to undo the incomplete
and unsuccessful work of a scope activity in which a fault has occurred. You define
catch activities in a scope activity to create a set of custom fault-handling activities.
Each catch activity is defined to intercept a specific type of fault.

Figure B–19 shows the Add Catch Branch icon inside a scope activity. Figure B–20
shows the catch activity area that appears when you click the Add Catch Branch icon.
Within the area defined as Drop Activity Here, you drag and drop additional
activities to create fault handling logic to catch and manage exceptions.

For example, a client provides a social security number to a Credit Rating service
when applying for a loan. This number is used to perform a credit check. If a bad
credit history is identified or the social security number is identified as invalid, an
assign activity inside the catch activity notifies the client of the loan offer rejection. The
entire loan application process is terminated with a terminate activity.

Process Activities Overview

B-24 Oracle BPEL Process Manager Developer’s Guide

Figure B–19 Creating a Catch Branch

Figure B–20 Catch Activity Icon

Sequence Activity
This activity enables you to define a collection of activities to be performed in
sequential order. For example, you may want the following activities performed in a
specific order:

■ A customer request is received in a receive activity.

See Also: The following documentation for examples of using the
scope activity and fault handling:

■ "Using the Scope Activity to Manage a Group of Activities" on
page 8-6

■ "Using a Fault Handler within a Scope" on page 8-8

■ Chapter 12, "Interaction Patterns"

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\Catch

Process Activities Overview

BPEL Process Activities and Services B-25

■ The request is processed inside a flow activity that enables concurrent behavior.

■ A reply message with the final approval status of the request is sent back to the
customer in a reply activity.

A sequence activity makes the assumption that the request can be processed in a
reasonable amount of time, justifying the requirement that the invoker wait for a
synchronous response (because this service is offered as a request-response operation).

When this assumption cannot be made, it is better to define the customer interaction as
a pair of asynchronous message exchanges.

When you double-click the Sequence icon, the activity area shown in Figure B–21
appears. Define appropriate activities inside the sequence activity.

Figure B–21 Sequence Activity

SMS Activity
This activity enables you to send a short message system (SMS) notification about an
event.

When you drag and drop an SMS icon into a BPEL process, the Edit SMS window
shown in Figure B–22 appears.

See Also:

■ "Defining a Parallel Flow" on page 6-2

■ Chapter 12, "Interaction Patterns"

Process Activities Overview

B-26 Oracle BPEL Process Manager Developer’s Guide

Figure B–22 Edit SMS Window

Use the Edit SMS dialog to enter notification details, as described in Table B–4.

Table B–4 SMS Notification Parameters

Name Description

From number The telephone number from which to send the SMS notification.
This can be a static telephone number entered at the time the
message is created or a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input. See "Setting E-mail
Addresses and Telephone Numbers Dynamically" on page 14-13.

Telephone number The telephone number to which the message is to be delivered.
This can be a) a static telephone number entered at the time the
message is created, or b) a telephone number looked up using
the identity service, or c) a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input.

Subject Subject of the SMS message. This can be free text or dynamic
text. The XPath Expression Builder can be used to set dynamic
text based on data from process variables that you specify.

Body SMS message body. This must be plain text. This can be free text
or dynamic text as described for the Subject parameter.

Process Activities Overview

BPEL Process Activities and Services B-27

Switch Activity
This activity consists of an ordered list of one or more conditional branches defined in
a case branch, followed optionally by an otherwise branch. The branches are
considered in the order in which they appear. The first branch whose condition is true
is taken and provides the activity performed for the switch. If no branch with a
condition is taken, then the otherwise branch is taken. If the otherwise branch is not
explicitly specified, then an otherwise branch with an empty activity is assumed to be
available. The switch activity is complete when the activity of the selected branch
completes.

A switch activity differs in functionality from a flow activity. For example, a flow
activity enables a process to gather two loan offers at the same time, but does not
compare their values. To compare and make decisions on the values of the two offers,
a switch activity is used. The first branch is executed if a defined condition (inside the
case branch) is met. If it is not met, the otherwise branch is executed.

Figure B–23 shows a switch activity with the following defined branches.

Figure B–23 Switch Activity

Terminate Activity
A terminate activity enables you to end the tasks of an activity (for example, the fault
handling tasks in a catch branch). For example, if a client’s bad credit history is
identified or a social security number is identified as invalid, a loan application
process is terminated, and the client’s loan application document is never submitted to
the service loan providers.

Figure B–24 shows a terminate activity in the otherwise branch of a switch activity.

See Also: "The SMS Notification Channel" on page 14-11

See Also: The following documentation for examples of using the
switch activity:

■ "Using a Switch Activity to Define Conditional Branching" on
page 7-2

■ Chapter 12, "Interaction Patterns"

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\Switch

Process Activities Overview

B-28 Oracle BPEL Process Manager Developer’s Guide

Figure B–24 Terminate Activity

Throw Activity
This activity generates a fault from inside the business process.

When you double-click the Throw icon, the Throw window shown in Figure B–25
appears.

See Also: The following documentation for examples of using the
terminate activity:

■ "Using the Terminate Activity to Stop a Business Process Instance"
on page 8-10

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\Terminate

Process Activities Overview

BPEL Process Activities and Services B-29

Figure B–25 Throw Activity

Transform Activity
This activity enables you to create a transformation that maps source elements to
target elements (for example, incoming purchase order data into outgoing purchase
order acknowledgment data).

When you double-click the Transform icon, the Transform window shown in
Figure B–26 appears. This window enables you to perform the following tasks:

■ Define the source and target variables and parts to map

■ Specify the transformation mapper file

■ Click the second icon (the Create Mapping icon) to the right of the Mapper File
field to access a window for graphically mapping source and target elements. This
window enables you to drag and drop (map) a source element to a target element.

See Also: The following documentation for examples of using the
throw activity:

■ "Throwing Internal Faults" on page 8-6

■ SOA_Oracle_Home\bpel\samples\references\Throw

Process Activities Overview

B-30 Oracle BPEL Process Manager Developer’s Guide

Figure B–26 Transform Activity

Voice Activity
This activity enables you to send a telephone voice notification about an event.

When you drag and drop a Voice icon into a BPEL process, the Edit Voice window
shown in Figure B–27 appears.

See Also: The following documentation for examples of using the
transform activity:

■ Chapter 13, "XSLT Mapper and Transformations"

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\demos\XSLMapper

Process Activities Overview

BPEL Process Activities and Services B-31

Figure B–27 Edit Voice Window

Use the Edit Voice dialog to enter notification details, as described in Table B–5.

Wait Activity
This activity allows a process to specify a delay for a certain period of time or until a
certain deadline is reached. A typical use of this activity is to invoke an operation at a

Table B–5 Voice Notification Parameters

Name Description

Telephone number The telephone number to which the message is to be delivered.
This can be a) a static telephone number entered at the time the
message is created, or b) a telephone number looked up using
the identity service, or c) a dynamic telephone number from the
payload. The XPath Expression Builder can be used to get the
dynamic telephone number from the input.

Body Message body. This can be plain text or XML. Also, this can be
free text or dynamic text. The XPath Expression Builder can be
used to set dynamic text based on data from process variables
that you specify.

See Also: "Voice Activity" on page B-30

Process Activities Overview

B-32 Oracle BPEL Process Manager Developer’s Guide

certain time. This activity allows you to wait for a given time period or until a certain
time has passed. Exactly one of the expiration criteria must be specified.

When you double-click the Wait icon, the Wait window shown in Figure B–28 appears.

Figure B–28 Wait Activity

While Activity
This activity supports repeated performance of a specified iterative activity. The
iterative activity is repeated until the given while condition is no longer true.

When you double-click the While icon, the While window shown in Figure B–29
appears. You can enter expressions in this window.

See Also: The following documentation for examples of using the
wait activity:

■ "Using the Wait Activity to Set an Expiration Time" on page 10-4

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\Wait

Services Overview

BPEL Process Activities and Services B-33

Figure B–29 While Activity

Services Overview
With the following services, BPEL processes can communicate with Web-based
applications and clients.

This section contains the following topics:

■ AQ Adapter

■ Database Adapter

See Also: The following documentation for examples of using the
while activity:

■ "Using a While Activity to Define Conditional Branching" on
page 7-4

■ Oracle BPEL Process Manager Order Booking Tutorial

■ SOA_Oracle_Home\bpel\samples\references\While

See Also:

■ Oracle Adapters for Files, FTP, Databases, and Enterprise Messaging
User’s Guide for more information about the adapters described in
the following sections

■ Oracle Application Server Adapter Concepts for conceptual
information

■ Oracle BPEL Process Manager Order Booking Tutorial for examples
using adapters

Services Overview

B-34 Oracle BPEL Process Manager Developer’s Guide

■ Decision Service

■ EJB Web Service

■ File Adapter

■ FTP Adapter

■ Java Web Service

■ JMS Adapter

■ MQ Adapter

■ Oracle Applications

■ PartnerLink

AQ Adapter
This adapter acts as both a dequeue (inbound) and enqueue (outbound) messaging
adapter. In the inbound direction, the adapter polls the queues for messages to
dequeue from a destination. In the outbound direction, the adapter enqueues
messages to the queue for subscribers to dequeue.

Database Adapter
This adapter enables a BPEL process to communicate with Oracle databases or
third-party databases through JDBC. To access an existing relational schema, you use
the Adapter Configuration Wizard to do the following:

■ Import a relational schema and map it as an XML schema (XSD)

■ Abstract SQL operations such as SELECT, INSERT, and UPDATE as Web services

While your BPEL process deals with XML and invokes web services, database rows
and values are queried, inserted, and updated.

Decision Service
This service enables the integration of a BPEL process with a rule set or function that is
created in a business rules engine. With the decision service, you can make business
decisions based on these rules. A wizard guides you through several steps to convert
the selected rule set or function (and the operations to perform) into a Web service to
use in the BPEL process. The wizard supports the Oracle Business Rules engine. A
new decision service partner link for this Web service is automatically created that
interfaces with the business rules engine.

Metadata information about the rules engine and repository is stored in a .decs
configuration file in your BPEL project. This file is used during run time. A WSDL file
based on the rule set to invoke is also created.

See Also: The following documentation for examples of using this
adapter:

■ SOA_Oracle_
Home\bpel\samples\tutorials\124.AQAdapter

See Also: The following documentation for examples of using this
adapter:

■ SOA_Oracle_
Home\bpel\samples\tutorials\122.DBAdapter

Services Overview

BPEL Process Activities and Services B-35

EJB Web Service
This service enables you to publish a Web service from a stateless session EJB. The
wizard creates the WSDL document and deployment files needed to publish your
code as a Web service.

File Adapter
This adapter acts as both an inbound and outbound adapter. In the inbound direction,
the adapter polls for files in a directory to retrieve and process. In the outbound
direction, the adapter creates files in a directory.

FTP Adapter
This adapter acts as both an inbound and outbound adapter. In the inbound direction,
the adapter polls for files in a directory to retrieve and process. In the outbound
direction, the adapter creates files in a directory.

Java Web Service
This service enables you to publish a Web service from a Java class. A wizard creates
the WSDL document and deployment files needed to publish your code as a Web
service. After you select the class and methods you want to publish, the wizard
generates deployment descriptors, a JAX-RPC mapping file, and a WSDL document
that can be deployed to an application server.

JMS Adapter
This adapter acts as both a consume (inbound) and produce (outbound) messaging
adapter. In the inbound direction, the adapter polls (consumes) messages from a JMS
destination. In the outbound direction, the adapter sends (produces) messages to a
JMS destination.

See Also: The following documentation for examples of using this
service:

■ Chapter 18, "BPEL Process Integration with Business Rules"

■ SOA_Oracle_Home\bpel\samples\demos\AutoLoanDemo

See Also: The following documentation for examples of using this
adapter:

■ SOA_Oracle_
Home\bpel\samples\tutorials\121.FileAdapter

See Also: The following documentation for examples of using this
adapter:

■ SOA_Oracle_
Home\bpel\samples\tutorials\129.FTPAdapter

See Also: The following documentation for examples of using this
adapter:

■ SOA_Oracle_
Home\bpel\samples\tutorials\123.JmsAdapter

Services Overview

B-36 Oracle BPEL Process Manager Developer’s Guide

MQ Adapter
This adapter provides message exchange capabilities between BPEL processes and the
IBM MQSeries messaging software.

Oracle Applications
This adapter provides comprehensive, bidirectional, multimodal, synchronous, and
asynchronous connectivity to Oracle Applications. The adapter supports all modules
of Oracle Applications for versions 11.5.1 to 11.5.10. The adapter provides real-time
and bidirectional connectivity to Oracle Applications through interface tables, views,
application programming interfaces (APIs), and XML Gateway. The adapter inserts
data into Oracle Applications using interface tables and APIs. To retrieve data from
Oracle Applications, the adapter uses views. In addition, it uses XML Gateways for
bidirectional integration with Oracle Applications. XML Gateways are also used to
insert as well as receive Open Application Group Integration Specification
(OAGIS)-compliant documents from Oracle Applications.

PartnerLink
This service enables you to define the external services with which your process
interacts. A partner link type characterizes the conversational relationship between
two services by defining the roles played by each service in the conversation and
specifying the port type provided by each service to receive messages within the
context of the conversation. For example, if you are creating a process to interact with
a Credit Rating Service and two loan provider services (United Loan and Star Loan),
you create partner links for all three services.

When you double-click the PartnerLink icon, the Partner Link window shown in
Figure B–30 appears. You provide the following details:

■ A meaningful name for the service

■ The Web services description language (WSDL) file of the external service

■ The actual service type (defined as Partner Link Type)

■ The role of the service (defined as Partner Role)

■ The role of the process requesting the service (defined as My Role)

See Also: MQ adapter tutorials at

■ http://www.oracle.com/technology/products/integrati
on/adapters/dev_support.html#tutorials

See Also: The following documentation for examples of using this
adapter:

■ Oracle Application Server Adapter for Oracle Applications User’s Guide

■ SOA_Oracle_
Home\bpel\samples\tutorials\150.AppsAdapter

Validation When Loading a Process Diagram

BPEL Process Activities and Services B-37

Figure B–30 PartnerLink Activity

Validation When Loading a Process Diagram
You may see an icon (a yellow triangle with an exclamation point) indicating invalid
settings as you create and open activities such as a scope or an assign for the first time.
The settings are invalid because you have not yet entered details.

To turn this option off for the current project, do the following:

1. Right-click the BPEL diagram and select Display > Diagram Properties.

2. Deselect the Enable Automatic Validation option.

3. Click OK.

4. Select Save All from the File main menu.

To disable this message for all new projects going forward, do the following:

1. Select Preferences > BPEL Editor from the Tools main menu in Oracle JDeveloper.

2. Deselect the Enable Automatic Validation option.

3. Click OK.

See Also: The following documentation for examples of using
partner links:

■ "Establishing the Partner Link" on page 4-2

■ "partnerLinkTypes for Asynchronous Services" on page 5-3

■ "Step 1: Adding a Partner Link for an Asynchronous Service" on
page 5-11

■ Oracle BPEL Process Manager Order Booking Tutorial

■ Oracle BPEL Process Manager Quick Start Guide

Summary

B-38 Oracle BPEL Process Manager Developer’s Guide

Changes Made In Oracle JDeveloper Do Not Update Automatically
Updates that you make in the BPEL Validation Browser window may not be
automatically reflected in the BPEL process. For example, if you perform the following
steps:

1. Create a partner link, do not specify a WSDL file, and click Apply and OK. This
error causes an exclamation point icon to display in the upper left corner of the
partnerLink icon.

2. Click the exclamation point to display the BPEL Validation Browser window.

3. Double-click the partner link in the BPEL Structure section of this window,
correctly complete all fields in the Edit Partner Link window that displays, and
apply and save your changes.

4. Right-click the BPEL Structure window and select Refresh Partner Links. Note
that the partner link still displays an error.

As a workaround, close the BPEL Validation Browser window, double-click the
partnerLink icon in the Diagram window of Oracle JDeveloper, and click Apply and
OK. This action causes the error to disappear.

Summary
This appendix describes the process activities and services that you can drag and drop
to create a BPEL process.

Deployment Descriptor Properties C-1

C
Deployment Descriptor Properties

This appendix discusses how to define deployment descriptor preference properties
and deployment descriptor configuration properties.

This appendix contains the following topics:

■ Deployment Descriptor Preference Properties

■ Deployment Descriptor Configuration Properties

■ Summary

Deployment Descriptor Preference Properties
Preferences are simple name-value pair properties that are defined in Oracle
JDeveloper, and which are accessed at run time by the BPEL process. Preferences
enable BPEL process designers to externalize literal values from a process. You can
change the value of a preference at run time in Oracle BPEL Control, without having to
redeploy the BPEL process.

For example, if you design a process that automatically rejects expense requests that
exceed 1000 dollars, and business requirements later change so that the maximum
amount is increased to 1500 dollars, then you normally need to edit the process
definition and redeploy. By defining a preference for the maximum amount in the
deployment descriptor property at design time, you can change the value at run time
as needed, without redeploying the process.

Defining a Preference Property
You can define preference values in Oracle JDeveloper.

1. Click the Deployment Descriptor Properties icon, as shown in Figure C–1
(located in the upper-left area of a BPEL diagram).

Deployment Descriptor Preference Properties

C-2 Oracle BPEL Process Manager Developer’s Guide

Figure C–1 Deployment Descriptor Properties Icon

2. In the Deployment Descriptor Properties window, click the Preferences tab,
shown in Figure C–2.

Figure C–2 Deployment Descriptor Preference Properties

3. Click Create and enter a preference name.

4. Edit the value in the Property Value field and click OK.

The change takes effect immediately, and is reflected in bpel.xml, in the
preferences tag, as follows:

Deployment Descriptor Preference Properties

Deployment Descriptor Properties C-3

...
<preferences>
 <property name="MAX_AMOUNT">1000</property>
 <property name="DEFAULT_COSTCENTER">US23</property>
</preferences>
...

Updating a Preference at Run Time
You can update preference values at run time in Oracle BPEL Control.

1. Click the BPEL Processes tab.

2. Click a process name and then the Descriptor tab.

The deployment descriptor for the process, including any preferences, is
displayed, as shown in Figure C–3.

Figure C–3 Updating BPEL Process Preferences at Run Time

3. Update the preference value, and click Update descriptor.

The change takes effect immediately.

Getting the Value of a Preference within a BPEL Process
The value of a preference can be read by a BPEL process using the XPath extension
function ora:getPreference(String preferenceName). This function can be
used as part of a simple assign statement, used in condition expressions, or used as
part of a more complex XPath expression.

Encrypting a Preference Value
You can encrypt the contents of a preference property. Encryption uses DES with the
sunJCE security provider. The contents do not appear encrypted in Oracle JDeveloper.
The contents are encrypted at deployment only. The Encryption list (see Figure C–2 on
page C-2) provides the following options:

■ Plain Text—The contents remain in plain text.

Deployment Descriptor Configuration Properties

C-4 Oracle BPEL Process Manager Developer’s Guide

■ Encrypt on server on deploy—The contents remain in plain text in the Oracle
JDeveloper project. However, the contents are encrypted on Oracle BPEL Server.

■ Encrypt on local machine—The contents remain in encrypted form in the Oracle
JDeveloper project and are also encrypted on Oracle BPEL Server.

The property is also shown as a password field in the Configurations tab of the
deployment descriptor.

The following example shows the XML code without encryption set and then with
encryption set.

Without encryption set:

...
<preferences>
 <property name="secret">mySecretValue</property>
</preferences>
...

Or the XML without encryption can look as follows, although properties are stored as
plaintext by default, so plaintext need not be specified explicitly.

...
<preferences>
 <property name="secret" encryption="plaintext">mySecretValue</property>
</preferences>
...

To tell the compiler and Oracle BPEL Server to encrypt a property, the XML looks like
this:

...
<preferences>
 <property name="secret" encryption="encrypt">mySecretValue</property>
</preferences>
...

After the BPEL project is compiled, the compiler updates the copy of the bpel.xml
file in the compiled JAR file (not the copy in the Oracle JDeveloper project), so that the
XML looks like this:

...
<preferences>
 <property name="secret" encryption="encrypted">ZAv9lfntAgy=</property>
</preferences>
...

Encryption works for any property tag in the descriptor, not just those in the
preferences section, in case you want to encrypt properties in other sections.

Deployment Descriptor Configuration Properties
Configuration properties are specific properties used by Oracle BPEL Server, Oracle
BPEL Control, or both. In Oracle BPEL Control, for example, configuration properties

Note: Values of preferences can still be inferred by inspecting the
audit trails of instances that contain values derived from the
preference.

Deployment Descriptor Configuration Properties

Deployment Descriptor Properties C-5

are used to display a description of the process and default data in the test process
window.

Defining a Configuration Property
You can define configuration properties in Oracle JDeveloper.

1. Click the Deployment Descriptor Properties icon, as shown in Figure C–1 on
page C-2 (located in the upper-left area of a BPEL diagram).

2. In the Deployment Descriptor Properties window, click the Configurations tab,
shown in Figure C–4.

Figure C–4 Deployment Descriptor Configuration Properties

3. Click Create and enter a configuration name.

4. Edit the value in the Property Value field and click OK.

The change takes effect immediately, and is reflected in bpel.xml.

See "Encrypting a Preference Value" on page C-3 for information about encrypting the
contents of configuration properties.

Table C–1 lists the property names of the configurations deployment descriptor.

Deployment Descriptor Configuration Properties

C-6 Oracle BPEL Process Manager Developer’s Guide

Table C–1 Configuration Properties for the configurations Deployment Descriptor

Property Name Description

BPEL Server
Behavior on
Change

completionPersistLevel Sets the portion of the instance information that you want
to save after the instance is completed. The default value is
all, meaning the instance is saved in both the cube_
instance and cube_scope tables. The other value is
instanceHeader, meaning only the metadata of the
instances are saved in the cube_instance table. Note that
this property can only be set if the
inMemoryOptimization property is set to True.

See Also: Oracle Application Server Performance Guide for
additional details about the inMemoryOptimization and
completionPersistLevel properties

NA

completionPersistPolicy Configures how the instance data is saved. The default
value is on, meaning the completed instance is saved
normally. If this value is set to deferred, then the
completed instance is saved, but with a different thread and
in another transaction. If this value is set to be faulted,
then only the faulted instances are saved. If this value is set
to off, then no instances of this process are saved.

See Also: Oracle Application Server Performance Guide for
additional details about the completionPersistPolicy
property

NA

defaultInput The XML document that you want to use as input to test the
process from Oracle BPEL Control.

Takes effect
immediately

initializeVariables Default value is True. If set to False, the compiler does
not initialize the variables based on to-spec queries.

NA

inMemoryOptimization Default value is False. This property can only be set to
True if it does not have dehydration points. Activities like
wait, receive, onMessage, and onAlarm create dehydration
points in the process. If this property is set to True, Oracle
BPEL Server tries to do inMemory optimization on the
instances of this process on to-spec queries.

See Also: Oracle Application Server Performance Guide for
additional details about the inMemoryOptimization
property

NA

loadSchema Default value is True. If set to False, XML schemas are
not loaded and Oracle BPEL Process Manager becomes
typeless.

NA

noAlterWSDL Default value is False. If set to True, the compiler does
not try to modify the process WSDL to add binding and
service information.

NA

optimizeVariableCopy Default value is True. If set to False, Oracle BPEL Server
does not enable copy-on-write for an assign copy.

NA

relaxTypeChecking Default value is False. If set to True, the compiler does
not check type compatibility with an assign activity.

NA

relaxXPathQName Default value is False. If set to True, the compiler does
not complain about unqualified steps in the query. For
example, where the correct form must be:
query="/ns1:payload/ns1:name", the following form
passes compilation, if this flag is turned on:
query="/payload/name".

NA

Deployment Descriptor Configuration Properties

Deployment Descriptor Properties C-7

Table C–2 lists the configuration properties of sections of the partnerLinkBinding
deployment descriptor.

sensorActionLocation Location of the sensor action XML file that is used by Oracle
BPEL Process Manager. The sensor action XML file
configures the action rule for the events.

NA

sensorLocation Location of the sensor XML file. The sensor XML file
defines the list of sensors into which Oracle BPEL Server
logs events.

NA

testIntroduction Introduction text that appears in the test console. Takes effect
immediately

transaction When set to participate, the process produces a fault
that is not handled by fault handlers, which calls the
transaction to be rolled back.

Takes effect
immediately

SLACompletionTime Service Level Agreement (Completion Time) - Threshold for
a commitment within which a process is completed for a
specified time period. Value is an XML duration.

NA

xpathValidation Default value is True. If set to False, the compiler does
not validate the XPath queries.

NA

user The username a calling user must provide (given the
domain level security is on).

Redeploy the
process

pw The password a calling user must provide (given the
domain level security is on).

Redeploy the
process

role The role a calling user must belong to in the identity
management (given the domain level security is on).

Redeploy the
process

Table C–2 Configuration Properties for the partnerLinkBinding Deployment Descriptor

Property Name Description

BPEL Server
Behavior on
Change

basicHeaders Creates HTTP basic authentication. The following values
are supported:

■ propagate — If the process has been invoked
securely, these credentials are also used for the
outbound direction

■ credentials — Passes credentials from the
descriptor

Takes effect
immediately

basicUsername The username (passed to basic authentication) Takes effect
immediately

basicPassword The password credential (passed to basic authentication) Takes effect
immediately

callbackBindings List of bindings that the compiler generates for the callback
portType. The default value is soap. You set multiple
bindings separated by commas (for example, jms, soap).
The first item is used as the preferred binding when calling
back.

Recompile (not
implemented)

Table C–1 (Cont.) Configuration Properties for the configurations Deployment Descriptor

Property Name Description

BPEL Server
Behavior on
Change

Deployment Descriptor Configuration Properties

C-8 Oracle BPEL Process Manager Developer’s Guide

correlation Default value is wsAddressing. If this is set to
correlationSet, this partner link is using the BPEL
correlation set.

If this is the
process
partnerLink,
recompile (not
implemented)

contentType Sets the special HTTP contentType. Example: text/xml Takes effect
immediately

httpAccept Overwrites the HTTP accept header that Oracle BPEL
Server sends to the remote SOAP service.

Takes effect
immediately

httpContentType Overwrites the HTTP content-type header that Oracle
BPEL Server sends to the remote SOAP service.

Takes effect
immediately

httpKeepAlive If the server permits keepAlive connections, this Boolean
property can be turned on to take advantage of it. Thus,
connections to the same server are shared between
invocations.

This attribute was previously named keepAlive.

Takes effect
immediately

httpPassword For HTTP username and password authentication Takes effect
immediately

httpUsername For HTTP username and password authentication Takes effect
immediately

location URL that overrides the location defined in the WSDL. For
SOAP over HTTP binding, this value overrides the SOAP
address.

Takes effect
immediately

nonBlockingInvoke Default value is False. When this is set to True, Oracle
BPEL Server spawns a separate thread to do the invocation
so that the invoke activity does not block the instance.

See Also: Oracle Application Server Performance Guide for
additional details about the nonBlockingInvoke
property

Takes effect
immediately

retryInterval Number of seconds that Oracle BPEL Server waits between
retries.

Takes effect
immediately

retryMaxCount Number of retries that Oracle BPEL Server attempts, if an
invoke fails because of network problems.

Takes effect
immediately

sendXSIType Some legacy RPC-style Web services require the xsi:type
to be set with every element in the input message. If this
value is set to True, Oracle BPEL Process Manager
populates the xsi:type of all the elements.

Takes effect
immediately

serviceProperties -- Takes effect
immediately

timeout Number of seconds in which a SOAP call times out. A
remote fault is thrown if this happens.

Takes effect
immediately

Table C–2 (Cont.) Configuration Properties for the partnerLinkBinding Deployment Descriptor

Property Name Description

BPEL Server
Behavior on
Change

Summary

Deployment Descriptor Properties C-9

Summary
This appendix discusses deployment descriptor preference properties and deployment
descriptor configuration properties, and how to define them in Oracle JDeveloper.

validateXML Enables message boundary validation. When set to true,
Oracle BPEL Server validates the XML message against the
XML schema during a receive activity and an invoke
activity for this partner link. If the XML message is invalid,
then a bpelx:invalidVariables runtime fault is
thrown. This overrides the domain level validateXML
property. The following example enables validation for only
the StarLoanService partner:

<partnerLinkBinding name="StarLoanService">
<property name="wsdlLocation">
http://<hostname>:9700/orabpel/default/StarLoan/Sta
rLoan?wsdl</property>
<property name="validateXML">true</property>
</partnerLinkBinding>

See Also: Oracle Application Server Performance Guide for
additional details about the validateXML property

Recompile

wsdlLocation URL of the WSDL file that defines this partner link. This
property must be present. The BPEL compiler needs this to
validate the BPEL source. This can be an abstract WSDL in
that only the portTypes and their dependencies need to be
defined in the WSDL.

Recompile (not
implemented)

wsdlRuntimeLocation URL to the partner link WSDL. It is used on Oracle BPEL
Server, which means that the concrete WSDL with all the
service, port, and binding definitions is needed. This
property is optional and defaults to the wsdlLocation
property. This property also enables multiple URLs
separated by blanks (spaces, new lines, and tabs). Therefore,
Oracle BPEL Server tries sequentially if any URLs are not
available.

Clear WSDL cache
(not implemented)

wsseHeaders Creates a WS-Security username token. The following
values are supported:

■ propagate — If the process has been invoked
securely, these credentials are also used for the
outbound direction

■ credentials — Passes credentials from the
descriptor

See Also: Oracle BPEL Process Manager Administrator’s
Guide for additional details about the wsseHeaders
property

Takes effect
immediately

wsseUsername The username for the token (required)

See Also: Oracle BPEL Process Manager Administrator’s Guide
for additional details about the wsseUsername property

Takes effect
immediately

wssePassword The password for the token (optional)

See Also: Oracle BPEL Process Manager Administrator’s Guide
for additional details about the wssePassword property

Takes effect
immediately

Table C–2 (Cont.) Configuration Properties for the partnerLinkBinding Deployment Descriptor

Property Name Description

BPEL Server
Behavior on
Change

Summary

C-10 Oracle BPEL Process Manager Developer’s Guide

XPath Extension Functions D-1

D
XPath Extension Functions

Oracle provides additional XPath extension functions that use built-in BPEL
capabilities and XPath standards.

This appendix contains the following topics:

■ Advanced Functions

■ BPEL Extension Functions

■ BPEL XPath Extension Functions

■ Database Functions

■ Date Functions

■ Mathematical Functions

■ Identity Service Functions

■ Workflow Service Functions

■ String Functions

■ Utility Functions

■ Adding a Custom XPath Function

■ Summary

Advanced Functions
This section describes the following functions:

■ create-nodeset-from-delimited-string

■ generate-guid

■ lookup-dvm

■ lookup-xml

See Also:

■ "Deprecated Workflow Service and Identity Service Functions" on
page 15-123 for information about workflow service and identity
service functions that are deprecated for this release

■ http://www.w3.org for details about XPath functions

Advanced Functions

D-2 Oracle BPEL Process Manager Developer’s Guide

create-nodeset-from-delimited-string
The function takes a delimited string and returns a nodeSet.

Signature:

orcl:create-nodeset-from-delimited-string(qname,
delimited-string, delimiter)

Arguments:

■ qname - The qualified name in which each node in the node set must be created.
The QName can be represented in two forms:

– task:assignee

– {http://mytask/task}assignee

■ delimited-string - The sting of elements separated by the delimiter.

■ delimiter - The character that separates the items in the input string; for
example, a comma or a semicolon.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

generate-guid
Generates a unique GUID.

Signature:

orcl:generate-guid()

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lookup-dvm

This function returns a string by looking up the value for the target column in the
domain value map (DVM), where the value for source column is equal to the source
value. The source value is an XPath expression bound to the source document of the
XSLT transformation. The expression is evaluated during the transformation and the
result value is passed as the source value for lookup.

Signature:

Note: Only use lookup-dvm with Oracle Enterprise Service Bus.
Use of this function with Oracle BPEL Process Manager is not
currently supported.

Advanced Functions

XPath Extension Functions D-3

orcl:lookup-dvm(dvmName as string, sourceColumn as string,
sourceValue as string, targetColumn as string, defaultValue as
string)

Arguments:

■ dvmName - The DVM name.

■ sourceColumn - The source column name.

■ sourceValue - The source value (an XPath expression bound to the source
document of the XSLT transformation).

■ targetColumn - The target column name.

■ defaultValue - If the value is not found, the default value is returned.

Example:

You want to convert from abbreviated state names in the United States to their full
names:

orcl:lookup-dvm('State Code','code','CA','state','Not Found')

This attempts to convert an abbreviated CA to its full name of California. The
default value is Not Found.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lookup-xml
This function returns the string value of an element defined by lookupXPath in an
XML file (docURL) given its parent XPath (parentXPath), the key XPath
(keyXPath), and the value of the key (key).

Example: orcl:lookup-xml('file:/d:/country_data.xml',
'/Countries/Country', 'Abbreviation', 'FullName', 'UK') returns the
value of the element FullName child of /Countries/Country where
Abbreviation = 'UK' is in the file D:\country_data.xml.

Signature:

orcl:lookup-xml(docURL, parentXPath, keyXPath, lookupXPath, key)

Arguments:

■ docURL - The XML file

■ parentXPath - The parent XPath

■ keyXPath - The key XPath

■ lookupXPath - The lookup XPath

■ key - The key value

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

BPEL Extension Functions

D-4 Oracle BPEL Process Manager Developer’s Guide

■ namespace-prefix: orcl

BPEL Extension Functions
This section describes the following functions:

■ getLinkStatus

■ getVariableData

■ getVariableProperty

getLinkStatus
This function returns a Boolean value indicating the status of the link. If the status of
the link is positive the value is true, otherwise the value is false. This function can
only be used in a join condition.

The linkName argument refers to the name of an incoming link for the activity
associated with the join condition.

Signature:

bpws:getLinkStatus ('linkName')

Arguments:

■ variableName - The source variable for the data

■ propertyName - The QName of the property

Property IDs:

■ namespace-uri:
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

getVariableData
This function extracts arbitrary values from BPEL variables.

When only the first argument is present, the function extracts the value of the variable,
which in this case must be defined using an XML Schema simple type or element.
Otherwise, the return value of this function is a node set containing the single node
representing either an entire part of a message type (if the second argument is present
and the third argument is absent) or the result of the selection based on the
locationPath (if both optional arguments are present). If the given locationPath
selects a node set of a size other than one during execution, the standard fault
bpws:selectionFailure is thrown.

Signature:

bpws:getVariableData ('variableName', 'partName'?,
'locationPath'?)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

BPEL XPath Extension Functions

XPath Extension Functions D-5

Property IDs:

■ namespace-uri:
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

getVariableProperty
This function extracts arbitrary values from BPEL variables.

If the given property selects a node set of a size other than one during execution, the
standard fault bpws:selectionFailure is thrown.

Signature:

bpws:getVariableProperty ('variableName', 'propertyname')

Arguments:

■ variableName - The source variable for the data

■ propertyName - The QName of the property

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri:
http://schemas.xmlsoap.org/ws/2003/03/business-process/

■ namespace-prefix: bpws

BPEL XPath Extension Functions
This section describes the following functions:

addQuotes
This function returns the content of a string with single quotes added.

Signature:

ora:addQuotes(string)

Arguments:

■ string - The string to which this function adds quotes

Property IDs:

See Also: The following documentation for examples of using this
function:

■ Chapter 3, "Manipulating XML Data in BPEL"

■ "BPEL Code Example of the FlowN Activity" on page 6-6

■ "Using a Switch Activity to Define Conditional Branching" on
page 7-2

■ "Setting E-mail Addresses and Telephone Numbers Dynamically"
on page 14-13

BPEL XPath Extension Functions

D-6 Oracle BPEL Process Manager Developer’s Guide

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

appendToList

This function appends to a node list. The node list with which to append should not be
null or empty.

Signature:

ora:appendToList('variableName', 'partName'?, 'locationPath'?,
Object)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

■ Object - The object can be either a list or a single item. If the object is a list, this
function appends each item in the list. Each appended item is either an element, or
an element with the string value of the node created.

Property IDs:

■ deprecated

Use the bpelx:copyList or bpelx:append extension activity to append to a
list. This extension activity is demonstrated in sample SOA_Oracle_
Home\bpel\samples\tutorials\126.DataAggregator.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

copyList

This function copies a node list or a node. The node list to be copied to should not be
null or empty.

Signature:

ora:copyList('variableName', 'partName'?, 'locationPath'?,
Object)

Arguments:

Note: While the appendToList function is still available for use,
Oracle recommends that you use the bpelx:append extension of an
assign activity to append data to a node list.

Note: While the copyList function is still available for use, Oracle
recommends that you use the bpelx:copyList extension to copy a
node list or a node.

BPEL XPath Extension Functions

XPath Extension Functions D-7

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional)

■ Object - The object can be either a list or a single item. If the object is a list, each
item in the list is copied. Each item to be copied is either an element, or an element
with the string value of the node created.

Property IDs:

■ deprecated

Use the bpelx:copyList extension activity to append to a list. This extension
activity is demonstrated in sample SOA_Oracle_
Home\bpel\samples\tutorials\126.DataAggregator.

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

countNodes

This function returns the size of the elements as an integer.

Signature:

ora:countNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional)

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

doc
This function returns the content of an XML file.

Signature:

ora:doc('fileName','xpath'?)

Arguments:

■ fileName - The name of the XML file

Note: While the countNodes function is still available for use,
Oracle recommends that you use version 1.0 of the XPath count()
function to return the size of the elements as an integer.

BPEL XPath Extension Functions

D-8 Oracle BPEL Process Manager Developer’s Guide

■ xpath - The path to the file

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

formatDate
This function converts standard XSD date formats to characters suitable for output.

Signature:

ora:formatDate('dateTime', 'format')

Arguments:

■ dateTime - Contains a date-related value in XSD format. For nonstring
arguments, this function behaves as if a string() function were applied. If the
argument is not a date, the output is an empty string. If it is a valid XSD date and
some fields are empty, this function attempts to fill unspecified fields. For
example, 2003-06-10T15:56:00.

■ format - Contains a string formatted according to
java.text.SimpleDateFormat format

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

generateGUID
Generates a unique GUID.

Signature:

ora:generateGUID()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getContentAsString
This function returns the content of an element as an XML string.

Signature:

ora:getContentAsString(NodeList elementAsNodeList)

Arguments:

■ NodeList - The node list (source for the data).

■ elementAsNodeList - The element as the node list.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

See Also: "Assigning Date or Time" on page 3-8 for an example of
using this function

BPEL XPath Extension Functions

XPath Extension Functions D-9

■ namespace-prefix: ora

getConversationId
This function returns the conversation ID.

Signature:

ora:getConversationId()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getCreator
This function returns the instance creator.

Signature:

ora:getCreator()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getCurrentDate
This function returns the current date as a string.

Signature:

ora:getCurrentDate('format'?)

Argument:

■ format - (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getCurrentDateTime
This function returns the current date time as a string.

Signature:

ora:getCurrentDateTime('format'?)

Argument:

■ format - (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

See Also: "Assigning Date or Time" on page 3-8 for an example of
using this function

BPEL XPath Extension Functions

D-10 Oracle BPEL Process Manager Developer’s Guide

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getCurrentTime
This function returns the current time as a string.

Signature:

ora:getCurrentTime('format'?)

Argument:

■ format - (Optional) Specifies a string formatted according to
java.text.SimpleDateFormat format (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getDomainId
This function returns the current domain ID.

Signature:

ora:getDomainId()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getElement
This function returns an element using index from the array of elements.

Signature:

ora:getElement('variableName', 'partName', 'locationPath',
index)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (required)

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (required)

■ index - Dynamic index value. The index of the first node is 1.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

See Also: "Dynamically Indexing with the BPEL getElement
Function" on page 3-19 for an example of using this function

BPEL XPath Extension Functions

XPath Extension Functions D-11

getGroupIdsFromGroupAlias
This function returns a List of user Ids for a group alias specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getGroupIdsFromGroupAlias(String aliasName)

Arguments:

■ aliasName - The alias for a list of users or groups as defined in the bpel.xml file

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getInstanceId
This function returns the instance ID.

Signature:

ora:getInstanceId()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getNodeValue
This function returns the value of a DOM node as a string.

Signature:

ora:getNodeValue(node)

Arguments:

■ node - The DOM node

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getNodes
This function get a node list. This is implemented as an alternate to
bpws:getVariableData, which does not return a node list.

Signature:

ora:getNodes('variableName', 'partName'?, 'locationPath'?)

Arguments:

■ variableName - The source variable for the data

■ partName - The part to select from the variable (optional)

BPEL XPath Extension Functions

D-12 Oracle BPEL Process Manager Developer’s Guide

■ locationPath - Provides an absolute location path (with / meaning the root of
the document fragment representing the entire part) to identify the root of a
subtree within the document fragment representing the part (optional).

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getPreference
This function returns the value of a property specified in the preferences section of the
BPEL suitcase descriptor.

Signature:

ora:getPreference(String preferenceName)

Arguments:

■ preferenceName - The name of the preference as specified in the BPEL suitcase
descriptor.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getProcessId
This function returns the ID of the current BPEL process.

Signature:

ora:getProcessId()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getProcessOwnerId
This function returns the ID of the user who owns the process, if specified in the
TaskServiceAliases section of the BPEL suitcase descriptor.

Signature:

ora:getProcessOwnerId()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getProcessURL
This function returns the root URL of the current BPEL process.

Signature:

See Also: "getVariableData" on page D-4

BPEL XPath Extension Functions

XPath Extension Functions D-13

ora:getProcessURL()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getProcessVersion
This function returns the current process version.

Signature:

ora:getProcessVersion()

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getUserAliasId
This function returns the user ID for an alias specified in the TaskServiceAliases
section of the BPEL suitcase descriptor.

Signature:

ora:getUserAliasId (String aliasName)

Arguments:

■ aliasName - The alias for a list of users or groups as defined in the bpel.xml
file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

integer
This function returns the content of the node as an integer.

Signature:

ora:integer(node)

Arguments:

■ node - The input node

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

parseEscapedXML
This function parses a string to DOM.

Signature:

ora:parseEscapedXML(contentString)

BPEL XPath Extension Functions

D-14 Oracle BPEL Process Manager Developer’s Guide

Arguments:

■ contentString - The string that this function parses to a DOM.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

processXQuery
This function returns the result of an XQuery transformation.

Signature:

ora:processXQuery('template','context'?)

Arguments:

■ template - The XSLT template

■ input - The input data to be transformed

■ properties - The properties as defined in the bpel.xml file

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

processXSLT
This function returns the result of XSLT transformation using the Oracle XDK XSLT
processor.

Signature:

xdk:processXSLT('template','input','properties'?)

Arguments:

■ template - The XSLT template

■ input - The input data to be transformed

■ properties - The properties as defined in the bpel.xml file

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: xdk

See Also: "Converting from a String to an XML Element" on
page 3-21 for an example of using this function

See Also:

■ "114.XSLTTransformations" on page 1-11 for a tutorial that
uses this function

■ "Formatting the Body of an E-mail Message as HTML" on
page 14-8 for an example of using this function

BPEL XPath Extension Functions

XPath Extension Functions D-15

processXSQL
This function returns the result of the XSQL request.

Signature:

ora:processXSQL('template','input','properties'?)

Arguments:

■ template - The XSLT template

■ input - The input data to be transformed

■ properties - The properties as defined in the bpel.xml file

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

readBinaryFromFile
This function reads data from a file.

Signature:

ora:readBinaryFromFile(fileName)

Arguments:

■ fileName - The file name from which to read data.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

readFile
This function returns the content of the file.

Signature:

ora:readFile('fileName','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ fileName - The name of the file. This argument can also be an HTTP URL.

This function by default reads files relative to the suitcase JAR file for the process.
If the file that you want to read is located in a different directory path, you must
specify an extra directory slash (/) to indicate that this is an absolute path. For
example:

ora:readFile(’file:///c:/temp/test.doc’)

If you specify only two directory slashes (//), you receive an error similar to the
following:

XPath expression failed to execute.
Error while processing xpath expression,
the expression is "ora:readFile("file://c:/temp/test.doc")",
the reason is c. Please verify the xpath query.

See Also: "BPEL File Contents" on page 3-32

Database Functions

D-16 Oracle BPEL Process Manager Developer’s Guide

■ nxsdTemplate - The NXSD template for the output

■ nxsdRoot -The NXSD root

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

writeBinaryToFile
This function writes the binary bytes of a variable (or part of the variable) to a file of
the given file name.

Signature:

ora:writeBinaryToFile(varName[, partName][, query])

Arguments:

■ varName - The name of the variable.

■ partName - The name of the part in the case of a messageType variable.

■ query - The query string to a child of the root element.

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

Database Functions
This section describes the following functions:

■ lookup-table

■ query-database

■ sequence-next-val

lookup-table
This function returns a string based on the SQL query generated from the parameters.

The string is obtained by executing:

SELECT outputColumn FROM table WHERE inputColumn = key

against the data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source
JNDI identifier. Only Oracle Thin Driver is supported if the JDBC connect string is
used.

Example: orcl:lookup-table('employee','id','1234','last_
name','jdbc:oracle:thin:scott/tiger@localhost:1521:ORCL')

See Also: "Setting E-mail Attachments" on page 14-5 for an example
of using this function

See Also: "BPEL File Contents" on page 3-32

Database Functions

XPath Extension Functions D-17

Signature:

orcl:lookup-table(table, inputColumn, key, outputColumn,
datasource)

Arguments:

■ table - The table from which to draw the data

■ inputColumn - The column within the table

■ key - The key

■ outputColumn - The column to output the data

■ datasource - The source of the data

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

query-database
This function returns a node-set by executing the SQL query against the specified
database.

Signature:

orcl:query-database(sqlquery as string, rowset as boolean, row
as boolean, datasource as string)

Arguments:

■ sqlquery - The SQL query to perform

■ rowset - Indicates if the rows should be enclosed in an element

■ row - Indicates if each row should be enclosed in an element

■ datasource - Either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a JNDI
name for the database

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

sequence-next-val
Returns the next value of an Oracle sequence.

The next value is obtained by executing

SELECT sequence.nextval FROM dual

against a data source that can be either a JDBC connect string
(jdbc:oracle:thin:username/password@host:port:sid) or a data source
JNDI identifier. Only Oracle Thin Driver is supported if a JDBC connect string is used.

Date Functions

D-18 Oracle BPEL Process Manager Developer’s Guide

Example: orcl:sequence-next-val('employee_id_
sequence','jdbc:oracle:thin:scott/tiger@localhost:1521:ORCL')

Signature:

orcl:sequence-next-val(sequence as string, datasource as string)

Arguments:

■ sequence - The sequence number in the database

■ datasource - Either a JDBC connect string or a data source JNDI identifier

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

Date Functions
This section describes the following functions:

add-dayTimeDuration-to-dateTime
This function returns a new date time value adding dateTime to the given duration.

If the duration value is negative, then the resulting value precedes dateTime.

Signature:

xp20:add-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)

Arguments:

■ dateTime as string - The dateTime to which the function adds the duration,
in string format.

■ duration as string - The duration to add to the dateTime, or subtract if the
duration is negative, in string format.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

current-date
This function returns the current date in ISO format YYYY-MM-DD.

Signature:

xp20:current-date(object)

Arguments:

■ Object - The time in standard format

Property IDs:

Date Functions

XPath Extension Functions D-19

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

current-dateTime
This function returns the current datetime-value in ISO format
CCYY-MM-DDThh:mm:ssTZD.

Signature:

xp20:current-dateTime(object)

Arguments:

■ object - The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

current-time
This function returns the current time in ISO format. The format is hh:mm:ssTZD.

Signature:

xp20:current-time(object)

Arguments:

■ object - The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

day-from-dateTime
This function returns the day from dateTime. The default day is 1.

Signature:

xp20:day-from-dateTime(object)

Arguments:

■ object - The time in standard format as a string

Property IDs:

See Also: "Setting Dynamic Values at Run Time" on page 20-27 for
an example of using this function

Date Functions

D-20 Oracle BPEL Process Manager Developer’s Guide

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

format-dateTime
This function returns the formatted string of dateTime using the format provided.

Signature:

xp20:format-dateTime(dateTime as string, format as string)

Arguments:

■ dateTime - The dateTime to be formatted

■ format - The format for the output

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

hours-from-dateTime
This function returns the hour from dateTime. The default hour is 0.

Signature:

xp20:hours-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The dateTime

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

implicit-timezone
This function returns the current time zone in ISO format +/- hh:mm, indicating a
deviation from UTC (Coordinated Universal Timezone).

Signature:

xp20:implicit-timezone(object)

Arguments:

■ object - The time in standard format

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

Date Functions

XPath Extension Functions D-21

■ namespace-prefix: xp20

minutes-from-dateTime
This function returns the minute from dateTime. The default minute is 0.

Signature:

xp20:minutes-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The dateTime

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

month-from-dateTime
This function returns the month from dateTime. The default month is 1 (January).

Signature:

xp20:month-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The dateTime to be formatted

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

seconds-from-dateTime
This function returns the second from dateTime. The default second is 0.

Signature:

xp20:seconds-from-dateTime(dateTime as string)

Arguments:

■ dateTime as a string - The dateTime as a string

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

subtract-dayTimeDuration-from-dateTime
This function returns a new dateTime value after subtracting duration from
dateTime.

Date Functions

D-22 Oracle BPEL Process Manager Developer’s Guide

If the duration value is negative, then the resultant dateTime value follows
input-dateTime value.

Signature:

xp20:subtract-dayTimeDuration-from-dateTime(dateTime as string,
duration as string)

Arguments:

■ dateTime as string - The dateTime from which the function subtracts the
duration, in string format.

■ duration as string - The duration to subtract to the dateTime, or add if the
duration is negative, in string format.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

timezone-from-dateTime
This function returns the timezone from dateTime. The default timezone is
GMT+00:00.

Signature:

xp20:timezone-from-dateTime(dateTime as string)

Arguments:

■ dateTime as string - The dateTime for which this function returns a time
zone

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

year-from-dateTime
This function returns the year from dateTime.

Signature:

xp20:year-from-dateTime(dateTime as string)

Arguments:

■ dateTime - The dateTime

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

Identity Service Functions

XPath Extension Functions D-23

Mathematical Functions
This section describes the following function.

abs
This function returns the absolute value of inputNumber.

If inputNumber is not negative, the inputNumber is returned. If the inputNumber
is negative, the negation of inputNumber is returned.

Example: abs(-1) returns 1.

Signature:

xp20:abs(inputNumber as number)

Arguments:

■ inputNumber as number - The number for which the function returns an
absolute value.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

Identity Service Functions
This section describes the following functions:

■ getDefaultRealmName

■ getGroupProperty

■ getManager

■ getReportees

■ getSupportedRealmNames

■ getUserProperty

■ getUserRoles

■ getUsersInGroup

■ isUserInRole

■ lookupGroup

■ lookupUser

getDefaultRealmName
This function returns the default realm name.

Signature:

ids:getDefaultRealmName()

Property IDs:

Identity Service Functions

D-24 Oracle BPEL Process Manager Developer’s Guide

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

getGroupProperty
This function returns the property value for the given group. If the group or attribute
does not exist, it returns null.

Signature:

ids:getGroupProperty(groupName, attributeName, realmName)

Arguments:

■ groupName - The group name.

■ attributeName - The name of the group attribute. The name is one of the
following values:

1. name

2. displayName

3. description

4. email

If the identity service uses the LDAP providerType or JAZN LDAP-based
providers, configure the LDAP server to enable searching by those attributes.

■ realmName - The realm name. This is optional. If not specified, the default realm
is assumed.

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

getManager
This function gets the manager of a given user. If the user does not exist or there is no
manager for this user, it returns null.

Signature:

ids:getManager(userName, realmName)

Arguments:

■ userName - The user name.

■ realmName - The realm name. This is optional. If not specified, the default realm
is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

Identity Service Functions

XPath Extension Functions D-25

getReportees
This function gets the reportees of the user. If the user does not exist, it returns null.
The function returns a list of nodes. Each node in the list is a user.

Signature:

 ids:getReportees(userName, upToLevel, realmName)

Arguments:

■ userName - The user name.

■ upToLevel- Defines the levels of indirect reportees to be included into the result.
If the value is 1, it returns only direct reportees. If the value is -1, it returns all
levels of reportees. It can be either an element with value xsd:number or a string,
for example '1'.

■ realmName - The realm name. This is optional and if not specified, the default
realm is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

getSupportedRealmNames
This function returns the supported realm names.

Signature:

ids:getSupportedRealms()

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

getUserProperty
This function returns the property of the user. If the user or attribute does not exist, it
returns null.

Signature:

ids:getUserProperty(userName, attributeName, realmName)

Arguments:

■ userName - The user name.

■ attributeName - The name of the user attribute. The attribute name is one of the
following values:

1. name

2. displayName

3. description

4. title

5. firstName

Identity Service Functions

D-26 Oracle BPEL Process Manager Developer’s Guide

6. middleName

7. lastName

8. workPhone

9. homePhone

10. mobile

11. pager

12. fax

If the identity service uses the LDAP providerType or JAZN LDAP-based
providers, configure the LDAP server to enable searching by those attributes.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

getUserRoles
This function gets the user roles. This function returns a list of objects, either
application roles or groups, depending on the roleType. If the user or role does not
exist, it returns null.

Signature:

ids:getUserRoles(userName, roleType, direct)

Arguments:

■ userName - The user name.

■ roleType - The role type — this is one of three values: ApplicationRole,
EnterpriseRole, or AnyRole.

■ direct - A Boolean flag indicating if direct or indirect roles are fetched. This is
optional. If not specified, only direct roles are fetched. It can be either an element
with value xsd:boolean or string 'true'/'false'.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice

■ namespace-prefix: ids

getUsersInGroup
This function gets the users in a group. If the group does not exist, it returns null. The
function returns a list of nodes. Each node in the list is called user.

Signature:

ids:getUsersInGroup(groupName, direct, realmName)

See Also: "Setting E-mail Addresses and Telephone Numbers
Dynamically" on page 14-13 for an example

Identity Service Functions

XPath Extension Functions D-27

Arguments:

■ groupName - The group name.

■ direct - A Boolean flag. If true, the function returns direct user grantees;
otherwise, all user grantees are returned. It can be either an element with value
xsd:boolean or string 'true'/'false'.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

isUserInRole
This function verifies if a user has a given role, returning a Boolean true or false. If
the user does not exist, it returns null.

Signature:

ids:isUserInRole(userID, roleName, realmName)

Arguments:

■ userID - The user name.

■ roleName - The role or group name

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

lookupGroup
This function gets the group. If the group does not exist, it returns null.

Signature:

 ids:lookupGroup(groupName, realmName)

Arguments:

■ groupName - The group name.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/services/IdentitySer
vice/xpath

■ namespace-prefix: ids

Workflow Service Functions

D-28 Oracle BPEL Process Manager Developer’s Guide

lookupUser
This function gets the user object. If the user does not exist, it returns null.

Signature:

 ids:lookupUser(userName, realmName)

Arguments:

■ userName - The user name.

■ realmName - The realm name. This is optional. If not specified, the default realm
name is assumed.

Property IDs:

■ namespace-uri:
http://xmlns.oracle.com/bpel/services/IdentityService/xpath

■ namespace-prefix: ids

Workflow Service Functions
This section describes the following functions:

■ clearTaskAssignees

■ createWordMLDocument

■ getNotificationProperty

■ getNumberOfTaskApprovals

■ getPreviousTaskApprover

■ getTaskAttachmentByIndex

■ getTaskAttachmentByName

■ getTaskAttachmentContents

■ getTaskAttachmentsCount

■ getTaskResourceBundleString

■ wfDynamicGroupAssign

■ wfDynamicUserAssign

clearTaskAssignees
This function clears the current task assignees.

Signature:

hwf:clearTaskAssignees(taskID)

Arguments:

■ task - The task ID of the task.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

Workflow Service Functions

XPath Extension Functions D-29

createWordMLDocument
This function creates a Microsoft Word ML document as a base 64-encoded string.

Signature:

hwf:createWordMLDocument(node, xsltURI)

Arguments:

■ node - The node

■ xsltURI - The XSLT used to transform the node (the first argument) to Microsoft
Word ML

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

getNotificationProperty
This function retrieves a notification property. The function evaluates to corresponding
values for each notification. Only use this function in the notification content XPath
expression. If used elsewhere, it returns null.

Signature:

hwf:getNotificationProperty(propertyName)

Arguments:

■ propertyName - The name of the notification property. It can be one of the
following values:

– recipient - The recipient of the notification.

– recipientDisplay - The display name of the recipient.

– taskAssignees - The task assignees.

– taskAssigneesDisplay - The display names of the task assignees.

– locale - The locale of the recipient.

– taskId - The task ID of the task for which the notification is meant.

– taskNumber - The task number of the task for which the notification is
meant.

– appLink - The HTML link to the Oracle BPEL Worklist Application task
details page.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

See Also: "Specifying WordML Style Sheets for Attachments" on
page 15-48

See Also:

■ "Contents of Notification" on page 15-82 for an example of using
this function

■ "Configuring Messages in Different Languages" on page 15-83

Workflow Service Functions

D-30 Oracle BPEL Process Manager Developer’s Guide

getNumberOfTaskApprovals
This function computes the number of times the task was approved.

Signature:

hwf:getNumberOfTaskApprovals(taskId)

Arguments:

■ taskId - The ID of the task

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

getPreviousTaskApprover
This function retrieves the previous task approver.

Signature:

hwf:getPreviousTaskApprover(taskId)

Arguments:

■ taskId - The ID of the task

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

getTaskAttachmentByIndex
This function retrieves the task attachment at the specified index.

Signature:

hwf:getTaskAttachmentByIndex(taskId, attachmentIndex)

Arguments:

■ taskId - The task ID of the task

■ attachmentIndex - The index of the attachment. The index begins from 1. The
attachmentIndex argument can be a node whose value evaluates to the index
number as a string (all node values are strings). If specified statically, it can be
specified as '1'.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

getTaskAttachmentByName
This function retrieves the task attachment by the attachment name.

Signature:

hwf:getTaskAttachmentByName(taskId, attachmentName)

Arguments:

Workflow Service Functions

XPath Extension Functions D-31

■ taskId - The task ID of the task.

■ attachmentName - The name of the attachment.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

getTaskAttachmentContents
This function retrieves the task attachment contents by the attachment name.

Signature:

hwf:getTaskAttachmentContents(taskId, attachmentName)

Arguments:

■ taskId - The task ID of the task.

■ attachmentName - The name of the attachment.

Property IDs:

■ namespace-uri:http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

getTaskAttachmentsCount
This function retrieves the number of task attachments.

Signature:

hwf:getTaskAttachmentsCount(taskId)

Arguments:

■ taskId - The task ID.

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

getTaskResourceBundleString
This function returns the internationalized resource value from the resource bundle
associated with a task definition.

Signature:

 hwf:getTaskResourceBundleString(taskId, key, locale?)

Arguments:

■ taskId - The task ID of the task.

■ key - The key to the resource.

■ locale - (Optional) The locale. This value defaults to system locale. This returns a
resourceString XML element in the namespace
http://xmlns.oracle.com/bpel/services/taskService, which contains
the string from the resource bundle.

Workflow Service Functions

D-32 Oracle BPEL Process Manager Developer’s Guide

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

wfDynamicGroupAssign
This function gets the name of an identity service group, selected according to the
specified assignment pattern. The group is selected from either the subordinate groups
of the specified group (if a single group name is supplied), or from the list of groups (if
a list of user names is supplied). If the identity service is configured with multiple
realms, the realm name for the group and groups must also be supplied. Additional
assignment pattern specific parameters can be supplied. These additional parameters
are optional, depending on the details of the specific assignment pattern used.

There are two signatures of this function.

Signature 1:

hwf:wfDynamicGroupAssign(’patternName’,’groupName’,’realmName’?,
’patternParam1’?,’patternParam2’?,...,’patternParamN’?)

Argument 1:

■ patternName - The name of the assignment pattern (for example, ROUND_ROBIN)

■ groupName - The name of the group from which to select a subordinate group.

■ realmName - The name of the identity service realm to which the group belongs.

■ patternParam1...patternParamN - Any additional parameters required by
the assignment pattern implementation (may be optional, depending on pattern).

Signature 2:

hwf:wfDynamicGroupAssign(’patternName’,’groupList’,’realmName’?,
’patternParam1’?,’patternParam2’?,...,’patternParamN’?)

Argument 2:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ groupList - The list of groups from which to select a group.

■ realmName - The name of the identity service realm to which the groups belong.

■ patternParam1...patternParamN - Any additional parameters required by
the assignment pattern implementation (may be optional, depending on the
pattern).

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

See Also: "Specifying Multilingual Settings" on page 15-48 and
"Configuring Messages in Different Languages" on page 15-83 for
additional details about this function

See Also: "Dynamic Assignment Functions" on page 15-113

String Functions

XPath Extension Functions D-33

wfDynamicUserAssign
This function returns the name of an identity service user, selected according to the
specified assignment pattern. The user is selected from either the subordinate users of
the specified group (if a single group name is supplied), or from the list of users (if a
list of user names is supplied). If the identity service is configured with multiple
realms, the realm name for the group and users must also be supplied. Additional
assignment pattern specific parameters can be supplied. These additional parameters
are optional, depending on the details of the specific assignment pattern used.

There are two signatures for this function.

Signature 1:

hwf:wfDynamicUserAssign(’patternName’,’groupName’,’realmName’?,’
patternParam1’?,....,’patternParam2’?,...,’patternParamN’?)

Arguments 1:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ groupName - The name of the group from which to select a subordinate user.

■ realmName - The name of the identity service realm to which the group belongs.

■ patternParam1 ... patternParamN - Any additional parameters required
by the assignment pattern implementation (may be optional, depending on the
pattern).

Signature 2:

hwf:wfDynamicUserAssign(patternName,userList,realmName?,patternP
aram1?,patternParam2?,...,patternParamN?)

Arguments 2:

■ patternName - The name of the assignment pattern (for example, ROUND_
ROBIN).

■ userList - The list of users from which to select a user.

■ realmName - The name of the identity service realm to which the users belong.

■ patternParam1...patternParamN - Any additional parameters required by
the assignment pattern implementation (may be optional, depending on the
pattern).

Property IDs:

■ namespace-uri: http://xmlns.oracle.com/bpel/workflow/xpath

■ namespace-prefix: hwf

String Functions
This section describes the following functions.

■ compare

■ compare-ignore-case

■ create-delimited-string

See Also: "Dynamic Assignment Functions" on page 15-113

String Functions

D-34 Oracle BPEL Process Manager Developer’s Guide

■ ends-with

■ format-string

■ get-content-as-string

■ get-localized-string

■ index-within-string

■ last-index-within-string

■ left-trim

■ lower-case

■ matches

■ right-trim

■ upper-case

compare
This function returns the lexicographical difference between inputString and
compareString comparing the unicode value of each character of both the strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

Example: xp20:compare('Audi', 'BMW') returns -1

Signature:

xp20:compare(inputString as string, compareString as string)

Arguments:

■ variableName - The source variable for the data

■ propertyName - The qualified name (QName) of the property

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

compare-ignore-case
This function returns the lexicographical difference between inputString and
compareString while ignoring case and comparing the unicode value of each
character of both the strings.

This function returns -1 if inputString lexicographically precedes the
compareString.

This function returns 0 if both inputString and compareString are equal.

This function returns 1 if inputString lexicographically follows the
compareString.

String Functions

XPath Extension Functions D-35

Example: xp20:compare-ignore-case('Audi','bmw') returns -1

Signature:

xp:compare-ignore-case(inputString as string, compareString as
string)

Arguments:

■ inputString as string - The input string

■ CompareString as string - The string to compare against the input string

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

create-delimited-string
This function returns a delimited string created from nodeSet delimited by delimiter.

Signature:

orcl:create-delimited-string(nodeSet as node-set, delimiter as
string)

Arguments:

■ nodeSet - The node set to be converted into a delimited string

■ delimiter - The character that separates the items in the output string; for
example, a comma or a semicolon.

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

ends-with
This function returns true if inputString ends with searchString.

Example: xp20:ends-with('XSL Map','Map') returns true

Signature:

xp20:ends-with(inputString as string, searchString as string)

Arguments:

■ inputString - The string of data to be searched

■ searchString - The string for which the function searches

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

String Functions

D-36 Oracle BPEL Process Manager Developer’s Guide

format-string
This function returns the message formatted with the arguments passed. At least one
argument is required and supports up to a maximum of 10 arguments.

Example: orcl:format-string('{0} + {1} = {2}','2','2','4') returns '2
+ 2 = 4'

Signature:

orcl:format-string(string,string,string...)

Arguments:

■ string - One of the strings to be used in the formatted output

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

get-content-as-string
This function returns the XML representation of the input element.

Signature:

orcl:get-content-as-string(element as node-set)

Arguments:

■ element as node-set - The input element that the function returns as an XML
representation

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

get-localized-string
This function returns the locale-specific string for key. This function uses language,
country, variant, and resource bundle to identify the correct resource bundle.

The resource bundle in obtained by resolving resourceLocation against the
resourceBaseURL. The URL is assumed to be a directory only if it ends with /.

Usage: orcl:get-localized-string(resourceBaseURL as string,
resourceLocation as string, resource bundle as string, language
as string, country as string, variant as string, key as string)

Example:
orcl:get-localized-string('file:/c:/','','MyResourceBundle','en'
,'US','','MSG_KEY') returns a locale-specific string from a resource bundle
'MyResourceBundle' in the C:\ directory

Signature:

orcl:get-localized-string(resourceURL,resourceLocation,resourceB
undleName,language,country,variant,messageKey)

String Functions

XPath Extension Functions D-37

Arguments:

■ resourceURL - The URL of the resource

■ resourceLocation - The subdirectory location of the resource

■ resourceBundleName - The name of the zip file containing the resource bundle

■ language - The language of the localized output

■ country - The country of the localized output

■ variant - The language variant of the localized output

■ messageKey - The message key in the resource bundle

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

index-within-string
This function returns the zero-based index of the first occurrence of searchString
within the inputString.

This function returns -1 if searchString is not found.

Example: orcl:index-within-string('ABCABC, 'B') returns 1

Signature:

orcl:index-within-string(inputString as string, searchString as
string)

Arguments:

■ inputString - The string to be searched

■ searchString - The string for which the function searches in the inputString

Property IDs:

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

last-index-within-string
This function returns the zero-based index of the last occurrence of searchString
within inputString.

This function returns -1 if searchString is not found.

Example: orcl:last-index-within-string('ABCABC', 'B') returns 4

Signature:

See Also: "Configuring Messages in Different Languages" on
page 15-83 for an example of using this function

String Functions

D-38 Oracle BPEL Process Manager Developer’s Guide

orcl:last-index-within-string(inputString as string,
searchString as string)

Arguments:

■ inputString - The string to be searched

■ searchString - The string for which the function searches in the inputString

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

left-trim
This function returns the value of inputString after removing all the leading white
spaces.

Example: orcl:left-trim(' account ') returns 'account '

Signature:

orcl:left-trim(inputString)

Arguments:

■ inputString - The string to be left-trimmed

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

lower-case
This function returns the value of inputString after translating every character to its
lower-case correspondent.

Example: xp20:lower-case('ABc!D') returns 'abc!d'

Signature:

xp20:lower-case(inputString)

Arguments:

■ inputString - The input string

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

See Also: "Chaining Functions" on page 13-10 for an example of
using this function in the XSLT Mapper

String Functions

XPath Extension Functions D-39

matches
This function returns true if intputString matches the regular expression pattern
regexPattern.

Example: xp20:matches('abracadabra', '^a.*a$') returns true

Signature:

xp20:matches(intputString, regexPattern)

Arguments:

■ inputString - The input string

■ regexPattern - The regular expression pattern

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

right-trim
This function returns the value inputString after removing all the trailing white
spaces.

Example: orcl:right-trim(' account ') returns ' account'

Signature:

orcl:right-trim(inputString as string)

Arguments:

■ inputString - The input string to be right-trimmed

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

upper-case
This function returns the value of inputString after translating every character to its
upper-case correspondent.

Example: xp20:upper-case('abCd0') returns 'ABCD0'

Signature:

xp20:upper-case(inputString as string)

Arguments:

■ inputString - The input string

Property IDs:

See Also: "Chaining Functions" on page 13-10 for an example of
using this function in the XSLT Mapper

Utility Functions

D-40 Oracle BPEL Process Manager Developer’s Guide

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.Xpath20

■ namespace-prefix: xp20

Utility Functions
This section describes the following functions.

authenticate
This function authenticates a lightweight directory access protocol (LDAP) user and
returns true or false.

Signature:

ldap:authenticate('properties','userId','password')

Arguments:

■ properties - The name of the directory specified in the directories.xml file

■ userId - The LDAP user’s ID

■ password - The LDAP user’s password

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension/ldap

■ namespace-prefix: ldap

batchProcessActive
This function returns the number of active processes in the batch.

Signature:

ora:batchProcessActive(String batchId, String processId)

Arguments:

■ batchId - The ID of the batch

■ processId - The ID of the process

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

batchProcessCompleted
This function returns the number of completed processes in the batch.

Signature:

ora:batchProcessCompleted(String batchId, String processId)

Arguments:

■ batchId - The ID of the batch

■ processId - The ID of the process

Utility Functions

XPath Extension Functions D-41

Property IDs:

■ namespace-uri:http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

format
This function formats a message using Java's message format.

Signature:

ora:format(formatStrings, args+)

Arguments:

■ formatStrings - The string of data to be formatted

■ args+ -

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

genEmptyElem
This function generates a list of empty elements for the given QName.

Signature:

ora:genEmptyElem('ElemQName',size?, 'TypeQName'?, xsiNil?)

Arguments:

■ ElemQName - The first argument is the QName of the empty elements

■ size - The second optional integer argument for the number of empty elements. If
missing, the default size is 1.

■ TypeQName - The third optional argument is the QName, which is the xsi:type
of the generated empty name. This xsi:type pattern matches SOAPENC:Array.
If missing or an empty string, the xsi:type attribute is not generated.

■ xsiNil - The fourth optional Boolean argument is to specify whether the
generated empty elements are XSI - nil, provided the element is XSD-nillable.
The default is false. If missing or false, xsi:nil is not generated.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getChildElement
This function gets a child element for the given element.

Signature:

ora:getChildElement(element, index)

Arguments:

See Also: "Generating Functionality Equivalent to an Array of an
Empty Element" on page 3-20

Utility Functions

D-42 Oracle BPEL Process Manager Developer’s Guide

■ element - The source for the data

■ index - The integer value of the child element index

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

getMessage
This function gets a message based on the arguments.

Signature:

ora:getMessage(locale, relativeLocation, resourceName,
resourceKey, resourceLocation?)

Arguments:

■ locale - The locale of the message

■ relativeLocation - The subdirectory or message

■ resourceName - The name of the message resource

■ resourceKey - The key of the resource

■ resourceLocation - The location of the resource

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

listUsers
This function returns a list of LDAP users.

Signature:

ldap:listUsers('properties','filter')

Arguments:

■ properties - The properties name as defined in the directories.xml file

■ filter - The LDAP filter

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension/ldap

■ namespace-prefix: ldap

max-value-among-nodeset
This function returns the maximum value from a list of input numbers, the node-set
inputNumber.

The node-set inputNumber can be a collection of text nodes or elements containing
text nodes.

In the case of elements, the first text node's value is considered.

Signature:

Utility Functions

XPath Extension Functions D-43

orcl:max-value-among-nodeset(inputNumber as node-set)

Arguments:

■ inputNumber - The node-set of input numbers

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

min-value-among-nodeset
This function returns the minimum value from a list of input numbers, the node-set
inputNumbers.

The node-set can be a collection of text nodes or elements containing text nodes.

In the case of elements, the first text node's value is considered.

Signature:

orcl:min-value-among-nodeset(inputNumbers as node-set)

Arguments:

■ inputNumber - The node-set of input numbers

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

search
This function returns a list of LDAP entries.

Signature:

ldap:search('properties','filter','scope'?)

Arguments:

■ properties - The properties name as defined in the bpel.xml file

■ filter - The filter for the entries

■ scope -The scope of the search

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension/ldap

■ namespace-prefix: ldap

square-root
This function returns the square root of inputNumber.

Example: orcl:square-root(25) returns 5

Signature:

Utility Functions

D-44 Oracle BPEL Process Manager Developer’s Guide

orcl:square-root(inputNumber as number)

Arguments:

■ inputNumber - The input number for which the function calculates the square
root

Property IDs:

■ namespace-uri:
http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.servic
es.functions.ExtFunc

■ namespace-prefix: orcl

translateFromNative
This function translates the input stream to an XML file.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ string - The data to be converted into an XML file.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot - The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

translateToNative
Translates the XML to the native data.

Signature:

ora:translateFromNative('string','nxsdTemplate'?,'nxsdRoot'?)

Arguments:

■ string - The XML file to be converted into a string.

■ nxsdTemplate - The XSD file used to define how the translation is performed.

■ nxsdRoot -The root element defined in the XSD file.

Property IDs:

■ namespace-uri: http://schemas.oracle.com/xpath/extension

■ namespace-prefix: ora

Adding a Custom XPath Function

XPath Extension Functions D-45

Adding a Custom XPath Function
This section describes how you can create and add your own XPath functions to
Oracle BPEL Process Manager. In this example, a function named is
getNodeValue(arg1) is created.

1. Implement the com.oracle.bpel.xml.xpath.IXPathFunction interface for
your XPath function. The IXPathFunction interface has one method named
call(context, args). The signature of this method is as follows:

Object call(IXPathContext context, List args)
 throws XPathFunctionException;

For the following example, a function named getNodeValue(arg1) is
implemented that gets a value of w3c node:

package com.collaxa.cube.xml.xpath.dom.functions;

public class GetNodeValue implements IXPathFunction {
 Object call(IXPathContext context, List args) throws XPathFunctionException {
 org.w3c.dom.Node node = (org.w3c.dom.Node) args.get(0);
 return node.getNodeValue()
 }
}

You now register the getNodeValue XPath function with Oracle BPEL Server.

2. Open the following file:

SOA_Oracle_Home\bpel\system\config\xpath-functions.xml

3. Add the getNodeValue XPath function under the <bpel-xpath-functions>
section.

<function id="getNodeValue" arity=”1”>
 <classname>com.collaxa.cube.xml.xpath.dom.functions.GetNodeValueFunction
 </classname>
 <property id="namespace-uri">
 <value>http://boo.com/xpath/function</value>
 <comment>Namespace URI for this function</comment>
 </property>
 <property id="namespace-prefix">
 <value>boo</value>
 <comment>Namespace prefix for this function</comment>
 </property>
 </function>

4. Note the following function syntax details:

■ <function> has the following attributes:

– id — Defines the XPath function name

– arity — Defines the number of required arguments that the function can
accept (for example, a function takes 5 arguments, but the last 2
arguments are optional; in this case, the value for arity is 3).

■ <classname> — Defines the XPath implementation class name.

5. Specify the following initialization properties for each function:

■ namespace-uri — Associate each XPath with a namespace.

■ namespace-prefix — Specify a namespace prefix for this XPath function.

Adding a Custom XPath Function

D-46 Oracle BPEL Process Manager Developer’s Guide

For example, assume you want to call the XPath function from Oracle BPEL
Process Manager. You must define the namespace uri in the <process> section
as follows:

<process name="XPathFunction"
 targetNamespace="http://samples.cxdn.com"
 suppressJoinFailure="yes"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:boo="http://boo.com/xpath/function"
 xmlns="http://schemas.xmlsoap.org/ws/2003/03/business-process/">

<copy>
 <from expression="boo:getNodeValue(bpws:getVariableData
 ('output','payload','/invoice/lineItems/item[3]/@sku'))"/>
 <to variable="mySKU"/>
 </copy>
</process>

6. Go to the following directory to see how this function is used in a sample:

SOA_Oracle_Home\bpel\samples\references\XPathFunction

7. Review the getNodeValue() XPath function code shipped with this sample.

package com.collaxa.cube.xml.xpath.dom.functions;

import java.util.List;
import com.oracle.bpel.xml.xpath.IXpathFunction;
import com.oracle.bpel.xml.xpath.IXPathContext;
import com.oracle.bpel.xml.xpath.XPathFunctionException;

import org.w3c.dom.Node;

/**
 * Returns the value of the dom node as String
 *
 * Usage: String ora:getNodeValue(Node node)
 * Node - dom node
 *
 */
public class GetNodeValueFunction implements IXPathFunction
{

 public Object call(IXPathContext context, List args) throws
 XPathFunctionException
 {
 try
 {
 if (args.size() == 1)
 {
 return evaluate(args.get(0);
 }
 }
 catch(Exception e)
 {
 throw new XPathFunctionException (e.getMessage());
 }
 throw new XPathFunctionException ("getNodeValue() requires one argument
 which is a dom node.");
 }

Adding a Custom XPath Function

XPath Extension Functions D-47

 public Object evaluate(Object node) throws Exception {

 if (node != null)
 {
 if (node instanceof Node)
 return ((Node)node).getNodeValue();
 else
 return String.valueOf(node);
 }
 return null;
 }
}

Summary

D-48 Oracle BPEL Process Manager Developer’s Guide

Summary
This appendix lists the XPath extension functions, along with their descriptions,
signature, argument descriptions, and property ID information.

Workflow Services Changes Between 10.1.2 and 10.1.3.1 E-1

E
Workflow Services Changes Between 10.1.2

and 10.1.3.1

This appendix provides an overview of changes to workflow services between releases
10.1.2 and 10.1.3.1.

This appendix contains the following topics:

■ Backwards Compatibility between 10.1.2 and 10.1.3.1

■ Changes Between the Workflow Wizard and the Human Task Editor

■ Changes to Configuration Files

■ Changes to Worklist APIs

■ Changes to Task Display Form Deployment

■ Changes to the Oracle BPEL Worklist Application

■ Changes to Oracle BPEL Control

■ Migrating Workflow Definitions from 10.1.2 to 10.1.3.1

Backwards Compatibility between 10.1.2 and 10.1.3.1
Workflows designed with the workflow wizard in 10.1.2 can be deployed and run in
10.1.3.1. You just have to redeploy the process. However, the instance tables for 10.1.2
and 10.1.3.1 are different. Therefore, 10.1.2 items do not show up in the 10.1.3.1 Oracle
BPEL Worklist Application. To access tasks created from 10.1.2 processes, visit the old
Oracle BPEL Worklist Application at

http://localhost:9700/integration/oldworklistapp/Login

The identity service configuration file must be modified as described "Migrating
Workflow Definitions from 10.1.2 to 10.1.3.1" on page E-11. This modification is
required even if you do not make any changes to your 10.1.2 processes. If you want to
use any new 10.1.3.1 workflow features, you must manually migrate the process to use

See Also:

■ "Oracle BPEL Process Manager Workflow Services 10.1.2 and
10.1.3.1.0 Compatibility" on page 15-2 for additional details

■ "Deprecated Workflow Service and Identity Service Functions" on
page 15-123

■ Oracle BPEL Process Manager Installation Guide for additional
details about migrating projects that use the workflow service

Changes Between the Workflow Wizard and the Human Task Editor

E-2 Oracle BPEL Process Manager Developer’s Guide

the 10.1.3 task definition. The changes to the task editor, form deployment, worklist,
and configuration files are documented in later sections of this appendix.

Changes Between the Workflow Wizard and the Human Task Editor
For release 10.1.3.1, the Workflow Wizard that you used to design workflows in
previous releases has been replaced with the Human Task Editor. You can still deploy
10.1.2 processes that include workflow functionality from Oracle JDeveloper.
However, you cannot edit these workflows with the Human Task Editor. To use the
10.1.3.1 functionality, you must manually migrate the workflow task scope and
recreate the human task.

Table 22–1 describes the functionality of the 10.1.2 Workflow Wizard pages and the
location of this functionality in the Human Task Editor.

Table 22–1 Location of Workflow Wizard Functionality in 10.1.3.1

10.1.2 Workflow Wizard Page Location in 10.1.3.1 Human Task Editor See Section

Welcome — For creating a
workflow model, performing
advanced task configuration, and
extending the functionality of an
existing workflow

Note: The pages that display if you
select advanced task configuration
are described later in this table.

To create a human task:

1. Access the Human Task Editor.

To extend an existing workflow:

1. Go to the Advanced tab of the human task
activity.

2. Click the Include task history from check
box.

"Accessing the Human Task
Editor" on page 15-13 to
create a human task

"Including the Task History
of Other Human Tasks" on
page 15-59 to extend an
existing workflow

Workflow Pattern — For selecting
a workflow pattern to design,
specifying a workflow name, and
specifying a variable name

Note: Workflow patterns are
known as participant types in
10.1.3.1.

To select a workflow pattern to design.

1. Go to the Assignment and Routing
Policy section.

2. Click the + sign to display the Add
Participant Type window.

3. Select a participant type from the Type
list.

To specify a workflow name:

1. Right-click the BPEL process and select
Create Human Task Definition.

2. Specify a name in the Human Task Name
field of the Add a Human Task window.

or

1. Go to the General tab of the human task
activity.

2. Specify a name in the Task Definition
field.

To specify a variable name:

1. Go to the General tab of the human task
activity.

2. Click the flashlight in the BPEL Variable
column to map the task parameter to the
BPEL variable.

"Assigning Task Participants"
on page 15-22 to select a
workflow pattern to design

"Accessing the Human Task
Editor" on page 15-13 or
"Associating a Human
Worklist Task with a BPEL
Process" on page 15-54 to
specify a workflow name

"Specifying Task Parameters"
on page 15-56 to specify a
variable name

Task Notifications — For selecting
the status for sending a
notification message to a recipient

1. Go to the Notification Settings section.

2. Click the + sign to expand the section.

3. Specify the task notification status.

"Specifying Participant
Notification Preferences" on
page 15-43

Changes Between the Workflow Wizard and the Human Task Editor

Workflow Services Changes Between 10.1.2 and 10.1.3.1 E-3

Task Details — For selecting task
details such as task title, payload,
payload display format, task
creator, and expiration duration

To specify a task title:

1. Go to the top of the Human Task Editor.

2. Specify a name in the Title field.

or

1. Go to the General tab of the human task
activity.

2. Specify a name in the Task Title field.

To specify a payload:

1. Go to the Parameters section.

2. Click the + sign to display the Add Task
Parameter window.

To specify a payload display format:

1. Complete BPEL process design.

2. Right-click the human task folder.

3. Select a payload display format option.

To specify a task creator:

1. Go to the General tab of the human task
activity.

2. Specify a task creator in the Initiator field.

To specify the expiration duration:

1. Go to the Assignment and Routing
Policy section.

2. Click the + sign to display the Add
Participant Type window.

3. Select a participant type from the Type
list.

4. Click Advanced at the bottom for the
selected participant type.

5. Provide specific details.

"Specifying a Task Title and
Priority" on page 15-16 or
"Specifying the Task Title" on
page 15-55 to specify a task
title

"Specifying the Task Payload
Data Structure" on
page 15-21 to specify a
payload

"Selecting a Task Display
Form" on page 15-66 to
specify a payload display
format

"Specifying the Task Initiator
and Task Priority" on
page 15-55 to specify a task
creator

"Specifying a Time Limit for
Acting on a Task" on
page 15-26 to specify the
expiration duration for a
single approver

"Specifying a Time Limit for
Acting on a Task" on
page 15-29 to specify the
expiration duration for a
group vote

"Specifying a Time Limit for
Acting on a Task" on
page 15-32 to specify the
expiration duration for a
management chain

"Specifying a Time Limit for
Acting on a Task" on
page 15-34 to specify the
expiration duration for a
sequential list of approvers

Task Outcomes — For selecting a
possible outcome for the task

1. Click the icon to the right of the Outcomes
field at the top of the Human Task Editor.

"Specifying a Task Outcome"
on page 15-16

Table 22–1 (Cont.) Location of Workflow Wizard Functionality in 10.1.3.1

10.1.2 Workflow Wizard Page Location in 10.1.3.1 Human Task Editor See Section

Changes Between the Workflow Wizard and the Human Task Editor

E-4 Oracle BPEL Process Manager Developer’s Guide

Assignees — For manually or
dynamically selecting the user or
group to whom to assign a task

1. Go to the Assignment and Routing
Policy section.

2. Click the + sign to display the Add
Participant Type window.

3. Select a participant type from the Type
list.

4. Select a method for manually or
dynamically assigning the user or group
to a task.

"Assigning Participants to
the Single Approver Task" on
page 15-25

"Assigning Participants to
the Group Vote Task" on
page 15-28

"Assigning Participants to
the Management Chain Task"
on page 15-31

"Assigning Participants to
the Sequential List of
Approvers Task" on
page 15-33

"Configuring the FYI
Assignee Participant Type"
on page 15-35

"Configuring the External
Routing Service Participant
Type" on page 15-36

Escalation policy — For selecting
the method for escalating a task

1. Go to the Expiration and Escalation
Policy section.

2. Click the + sign to expand the section.

3. Select Escalate after from the list.

4. Provide specific details.

"Overview or Escalation and
Expiration Policy" on
page 15-39 and "Escalate
After Policy" on page 15-42

Renewal policy — For selecting a
task renewal policy

1. Go to the Expiration and Escalation
Policy section.

2. Click the + sign to expand the section.

3. Select Renew after from the list.

4. Provide specific details.

"Renew After Policy" on
page 15-42

Assignment policy — For selecting
if a specific person or a specific
number of people must act on the
task. This lets you route tasks to
multiple users in a sequence

1. Go to the Assignment and Routing
Policy section.

2. Click the + sign to display the Add
Participant Type window.

3. Select Sequential List of Approvers from
the list.

4. Specify the list of sequential approvers.

"Assigning Participants to
the Sequential List of
Approvers Task" on
page 15-33

Routing policy — For selecting the
method by which to route the task

1. Go to the Notifications section.

2. Click the + sign to expand the section.

3. Specify a routing method.

"Notifying Recipients of
Changes to Task Status" on
page 15-44

Outcome determination policy —
For selecting a task outcome
policy, such as the percentage for
final outcome, default outcome,
and early completion
configuration

1. Go to the Assignment and Routing
Policy section.

2. Click the + sign to display the Add
Participant Type window.

3. Select the Group Vote participant type
from the Type list.

4. Go to the Majority Voted Outcome
section.

5. Provide specific details.

"Specifying Group Voting
Details" on page 15-29

Table 22–1 (Cont.) Location of Workflow Wizard Functionality in 10.1.3.1

10.1.2 Workflow Wizard Page Location in 10.1.3.1 Human Task Editor See Section

Changes Between the Workflow Wizard and the Human Task Editor

Workflow Services Changes Between 10.1.2 and 10.1.3.1 E-5

Management Chain Parameters —
For selecting the management
chain (initial assignee and other
users such as a manager) to
sequentially review this task

1. Go to the Assignment and Routing
Policy section.

2. Click the + sign to display the Add
Participant Type window.

3. Select Management Chain from the list.

4. Specify the number of management chains
in the Number of Approvers section.

"Specifying the Number of
Approvers" on page 15-31

Reviewers — For manually or
dynamically selecting the user or
group to review this task

(appeared only if the parallel
workflow with final reviewer
pattern was selected)

Model a parallel participant followed by a
simple participant, which acts as the reviewer.

(Advanced Options) Optional Task
Details — For selecting the task
priority, task owner, and task
identification key

To specify the task priority:

1. Go to the top of the Human Task Editor.

2. Select a priority from the Priority list.

or, to override this setting:

1. Go to the General tab of the human task
activity.

2. Select a priority from the Priority list.

To specify the task owner:

1. Go to the top of the Human Task Editor.

2. Specify an owner in the Owner field.

or, to override this setting:

1. Go to the Advanced tab of the human task
activity.

2. Specify an owner in the Owner field.

To specify the identification key:

1. Go to the Advanced tab of the human task
activity.

2. Specify the identification key in the
Identification Key field.

"Specifying the Task Title,
Priority, Outcome, and
Owner" on page 15-15 or
"Specifying the Task Initiator
and Task Priority" on
page 15-55 to specify the task
priority

"Specifying a Task Owner"
on page 15-58 to specify the
task owner

"Specifying an Identification
Key" on page 15-59 to specify
the identification key

Table 22–1 (Cont.) Location of Workflow Wizard Functionality in 10.1.3.1

10.1.2 Workflow Wizard Page Location in 10.1.3.1 Human Task Editor See Section

Changes to Configuration Files

E-6 Oracle BPEL Process Manager Developer’s Guide

Changes to Configuration Files
Table 22–2 describes the differences between configuration files. These files are located
in the SOA_Oracle_Home\bpel\system\services\config directory.

(Advanced Options) Task Flex
Fields — For extending the
functionality of a task to capture
data in addition to the payload

Flex fields are configured in the Oracle BPEL
Worklist Application. You can promote any
task parameter that uses simple types to flex
fields. To use this functionality, log into the
Oracle BPEL Worklist Application with
administrator privileges. By default, the
bpeladmin user has permissions to perform
flex field mappings.

"Flex Field Mappings" on
page 16-28

(Advanced Options) Restricted
Task Actions — For restricting
some common actions performed
from Oracle BPEL Worklist
Application during runtime

1. Click the + sign next to Advanced
Settings.

2. Click Configure Actions to display the
System Action Details window.

3. Select system actions to allow in the task.

"Overriding Default System
Actions" on page 15-49

(Advanced Options) Version
Tracking Attributes — For
selecting the attributes to be
version tracked

Version attribute configuration is not
supported. The workflow service by default
creates the task version when:

■ Payload is changed

■ Attachments are added, deleted, or
updated

When comments are added, the task is not
versioned.

Table 22–2 Configuration File Changes

Configuration File Changes Between 10.1.2 and 10.1.3.1

E-mail server ns_emails.xml This file includes a new property called
NotificationMode, which is used for both e-mail and
wireless notifications:

<EmailAccounts xmlns="http://
 xmlns.oracle.com/ias/pcbpel/NotificationService"
 EmailMimeCharset=""
 NotificationMode="NONE">

Set this property as follows (NONE is the default):

■ EMAIL — If you only want to set up e-mail, and not
other channels such as voice, SMS, and so on

■ ALL — If you want to set up e-mail and all other
channels, such as voice, SMS, and so on

The note in this file explains the settings in detail.

Wireless ns_
iaswconfig.xm
l

No changes.

Fax ns_
faxcoverpages
.xml

No changes.

Workflow
properties

wf_config.xml This file now includes workflow property settings that
previously appeared in pc.properties.

Table 22–1 (Cont.) Location of Workflow Wizard Functionality in 10.1.3.1

10.1.2 Workflow Wizard Page Location in 10.1.3.1 Human Task Editor See Section

Changes to Worklist APIs

Workflow Services Changes Between 10.1.2 and 10.1.3.1 E-7

Changes to Worklist APIs
In 10.1.3.1, a new set of APIs is provided for interacting with workflow services. These
APIs only support 10.1.3.1 workflow tasks, and cannot be used to query or update
10.1.2 tasks or task definitions.

For interaction with 10.1.2 tasks, the 10.1.2 APIs are still provided. These APIs can
query and update 10.1.2 tasks and task definitions. However, they cannot be used for
10.1.3.1 tasks.

Table 22–3 describes the worklist API changes between 10.1.2 and 10.1.3.1.

Global
configuration
properties

pc.properties This file now defines only the global configuration
properties. All workflow property settings are now
defined in wf_config.xml.

Identity service is_config.xml The containment hierarchy has changed. This file now
defines support for multiple realms and separate
authentication and authorization providers.

<?xml version = '1.0' encoding = 'UTF-8'?>
<ISConfiguration xmlns= "http://
 www.oracle.com/pcbpel/identityservice/isconfig">
 <configurations>
 <configuration realmName="jazn.com">
 <provider providerType="JAZN" name="XML"
 service="Identity">
 <property name="usersPropertiesFile"
 value="users-properties.xml"/>
 </provider>
 </configuration>
 </configurations>
</ISConfiguration>

The 10.1.2 format had only one realm:

<BPMIdentityServiceConfig xmlns="http://
 www.oracle.com/pcbpel/identityservice/isconfig">
 <provider providerType="JAZN" name="xml">
 <property name="userPropertiesFile"
 value="users-properties.xml"/>
 </provider>
</BPMIdentityServiceConfig>

The 10.1.2 is_config.xml file can be migrated to
10.1.3.1 format by copying the provider element from
the old file to the provider element in the default
configuration section of the new file.

See Also: Oracle BPEL Process Manager Administrator’s Guide for
additional details about these configuration files

Table 22–2 (Cont.) Configuration File Changes

Configuration File Changes Between 10.1.2 and 10.1.3.1

Changes to Task Display Form Deployment

E-8 Oracle BPEL Process Manager Developer’s Guide

Changes to Task Display Form Deployment
Table 22–4 describes the task display form deployment changes between 10.1.2 and
10.1.3.1.

Table 22–3 API Worklist Changes

Component 10.1.2 10.1.3.1

API Clients Different APIs to support local
Java client and remote EJB
client are provided.

Several API clients (Java, local and remote
EJB, and SOAP) are provided.

Local and remote EJBs are now unified in a
single API. To use the same API, modify the
wf_client_config.xml file to use the
appropriate communication protocol.

The wf_client_config.xml file is
populated by default at install time with the
EJB and SOAP configurations necessary to
switch between EJB and SOAP bindings.

See Also: "Building Clients for Workflow
Services" on page 16-54

Packages that
contain the APIs:

■ oracle.tip.pc.api.work
list

■ oracle.tip.pc.services
.hw.worklist

■ oracle.bpel.services.workflow.c
lient — The workflow client API

■ oracle.bpel.services.workflow.m
etadata — Corresponds to the task
metadata service, which exposes
operations to retrieve metadata
information related to a task

■ oracle.bpel.services.workflow.q
uery — Corresponds to the task query
service, which queries tasks based on a
variety of search criterion such as
keyword, category, status, business
process, attribute values, history
information of a task, and so on

■ oracle.bpel.services.workflow.r
eport — Corresponds to the report
query service, which creates reports
such as unattended tasks, tasks
priority, tasks cycle time, and tasks
productivity

■ oracle.bpel.services.workflow.r
untimeconfig — Corresponds to the
runtime config service, which manages
metadata used in the task service
run-time environment. It principally
supports management of task payload
flex field mappings.

■ oracle.bpel.services.workflow.t
ask — Corresponds to the task service,
which exposes operations to act on
tasks

■ oracle.bpel.services.workflow.u
ser — Corresponds to the user
metadata service, which provides
methods for managing metadata
specific to individual users and groups

Changes to Task Display Form Deployment

Workflow Services Changes Between 10.1.2 and 10.1.3.1 E-9

Table 22–4 Task Display Form Deployment

Issue 10.1.2 10.1.3.1.

Specifying the
task display form

You specify the task display form to
use during workflow design in the
Worklow Wizard - Task Details
window:

■ Auto generate JSP Form

■ XSL File

■ JSP URL

You specify the task display form to use after
completing human task design:

■ Auto Generate Simple Task Form

■ Custom Task Form

See Also: "Task 3: Generating the Task Display Form"
on page 15-66

Contents of the
autogenerated JSP
task form

Automatically creates two files to
display the payload:

■ task_name_WF_Form.jsp — a
default JSP file

■ task_name_WF_Fields.xml
— a mapping file

The default layout is based on a three-region template:

■ Header region — Displays task attributes such as
title, priority, created date, assignee, and expiration
date. This information is contained in the
Header1.jsp file.

■ Body region — Displays content based on task
parameters. The information is contained in the
payload-body.jsp file and
payload-body.xml mapping file.

■ Footer region — Displays comments, attachments,
and a short history of the task routing. This
information is contained in the Footer1.jsp file.

A .tform file is also generated, which includes a
template URI and region information. This file is part
of the process deployment archive and is deployed
during process deployment.

See Also: "Automatically Generating a Simple Task
Display Form" on page 15-68

Contents of the
custom JSP task
form

You write a JSP for payload
presentation display in Oracle BPEL
Worklist Application

Task display forms are generated using three templates
and two default JSPs:

■ Three Region JSP — Consists of header, body, and
footer regions. These regions can be displayed
using custom JSP, XSL, default JSP, or
autogenerated JSP files. The automatically
generated JSP displays the body region.

■ Two Region JSP — Consists of the header and
footer regions

■ One Region JSP — Consists of the body region

The two default JSPs are as follows:

■ The header JSP displays task attributes such as
task number, priority, title, and so on.

■ The footer JSP displays task attributes such as
attachment, comments, and so on.

See Also: "Generating a Custom Task Display Form" on
page 15-74

Changes to the Oracle BPEL Worklist Application

E-10 Oracle BPEL Process Manager Developer’s Guide

Changes to the Oracle BPEL Worklist Application
Table 22–5 lists the URLs for accessing the old and new Oracle BPEL Worklist
Application. You access tasks created from 10.1.2 processes by visiting the old Oracle
BPEL Worklist Application URL. You access designed in 10.1.3.1 with the Human Task
editor by visiting the new URL.

Changes to Oracle BPEL Control
In 10.1.2, the workflow definition was defined in the following locations:

■ A configuration file

■ As BPEL code inside the workflow scope

The generated BPEL code varied based on the workflow pattern you selected to design
the process. The BPEL code in the process also used the task manager process for some
of its functionality. Therefore, for every process that included human workflow, the
audit trail showed the activities executed inside the scope. Also, every instance of the
task included a corresponding instance of the TaskActionHandler BPEL process.

Directory
structure of task
form

JSP and mapping files appeared at
the same level as the process.

Task display forms are packaged in an EAR file in the
JDev_Oracle_Home\jdev\mywork\application_
name\project_name\public_html\human_task_
name\form directory.

Deployment
target

Forms are deployed only if the
process is deployed from Oracle
JDeveloper.

The autogenerated JSP is copied to
the server during process
deployment.

Forms are deployed with either Oracle JDeveloper or
ant. A deployTaskForm target is automatically
added to your build.xml to deploy task forms.

The deployTaskForm target creates an EAR file and
uses the OC4J deployment tool to deploy the form as a
separate application. ant runs this target after running
the deployProcess target, which deploys the BPEL
process. During process deployment, the task display
form is registered with the human workflow.

See Also: "Deploying Task Display Forms" on
page 15-77

Location of
deployed task
forms

All task display forms are deployed
inside the sample worklist
application under
j2ee\home\applications\hw_
services\worklistxpress\pay
load\bpel_WorkflowName_
Version\.

Each task display form is a separate application and is
deployed under
j2ee\home\applications\default_Process_
Name_Version_Workflow_Name\.

This provides for better sharing of the task display
application from multiple worklist applications.

Table 22–5 Old and New Oracle BPEL Worklist Application URLs

Issue 10.1.2 Worklist Application URL 10.1.3.1 Worklist Application URL

Worklist
URL

http://host:port/integration/
oldworklistapp/Login

http://host:port/integration/
worklistapp/Login

Worklist
code
location

Oracle_
Home\integration\orabpel\samp
les\hw\worklistapp

SOA_Oracle_
Home\bpel\samples\hw\worklist
app

See Also: "Customizing the Worklist Application" on page 16-41

Table 22–4 (Cont.) Task Display Form Deployment

Issue 10.1.2 10.1.3.1.

Migrating Workflow Definitions from 10.1.2 to 10.1.3.1

Workflow Services Changes Between 10.1.2 and 10.1.3.1 E-11

In 10.1.3.1, workflows are completely metadata-driven. Therefore, the generated BPEL
code is much simpler; it consists of several assigns followed by invoke and receive
activities from the task manager service. The task manager is no longer implemented
as a BPEL process. Therefore, the audit trail shows a simplified view of the task. Also,
the audit trail has been enhanced to show the task history. Therefore, clicking the task
activity queries the current state of the task and displays the status and assignees.

Migrating Workflow Definitions from 10.1.2 to 10.1.3.1
1. Identify the scope activities that include human workflows.

2. Create a new human task definition for each of the workflows identified in Step 1.

3. Give it the same name as the old scope.

4. Drag and drop a human task activity in your BPEL process.

This creates a new 10.1.3.1 scope activity and switch activity.

5. Remove the 10.1.2 scope activity. However, do not remove the 10.1.2 switch
statement.

6. Copy the case statements from the 10.1.3.1 switch to the 10.1.2 switch and retain
any of the code that you have in the case blocks.

7. Remove the 10.1.3.1 switch activity.

8. Remove the 10.1.2 global task variable. When the human task is created in 10.1.3.1,
a new variable is created.

9. Identify task forms used for the workflow by looking for the _form.xml and
.jsp files.

In 10.1.2, task forms are displayed by using the autogenerated JSP form, the XSLT
template, and the user-defined JSP URL. For the autogenerated JSP form, you can
use the 10.1.3.1 autogenerated simple task form. For the XSLT template and
user-defined JSP, URL you can use the 10.1.3.1 custom task form.

With the 10.1.3.1 custom task form, you must select the three region JSP template,
which includes the header, payload, and footer regions. For the header and footer
regions, you can use the default header and footer JSP, respectively. For the
payload, you can use the XSLT or JSP type based on the 10.1.2 task form display.

10. Regenerate the task forms.

11. Redo any customizations that were performed on the old task forms.

Migrating Workflow Definitions from 10.1.2 to 10.1.3.1

E-12 Oracle BPEL Process Manager Developer’s Guide

Index-1

Index

Numerics
101.HelloWorld

tutorials, 1-10
102.InvokingProcesses

tutorials, 1-10
103.XMLDocuments

tutorials, 1-10
104.SyncQuoteConsumer

tutorials, 1-10
105.AsyncCompositeLoanBroker

tutorials, 1-10
106.ParallelFlows

tutorials, 1-10
107.Exceptions

tutorials, 1-11
108.Timeouts

tutorials, 1-11
109.CorrelationSets

tutorials, 1-11
112.Arrays

tutorials, 1-11
113.ABCARouting

tutorials, 1-11
114.XSLTTransformations

tutorials, 1-11
115.XQueryTransformations

tutorials, 1-11
121.FileAdapter

tutorials, 1-11
122.DBAdapter

tutorials, 1-12
123.AQAdapter

tutorials, 1-13
124.JMSAdapter

tutorials, 1-13
125.ReportsSchema

tutorials, 1-14
126.DataAggregator

tutorials, 1-14
127.OrderBookingTutorial

tutorials, 1-14
128.GoogleFlow

tutorials, 1-14
129.FTPAdapter

tutorials, 1-14

130.SendEmailWithAttachments
tutorials, 1-14

132.UserTasks
tutorials, 1-14

133.SecureInvokingProcesses
tutorials, 1-14

140.AdapterFramework
tutorials, 1-14

150.AppsAdapter
tutorials, 1-14

701.LargeProcesses
tutorials, 1-14

702.Bindings
tutorials, 1-15

A
abs function

description, D-23
accountName

XML file, 14-15
action permissions

in worklists, 16-17
actionable notification

definition, 14-1
actional e-mails, 15-46, 15-83
activation agent

customize task syntax, 19-8
e-mail, 14-14

activationAgent attributes
setting for notifications in the bpel.xml file, 14-14

active
process life cycle, 19-17

activities
adapters tab, B-2
annotations tab, B-2
assign, B-3
compensate, B-4
correlation sets tab, B-2
decide, B-5
definition, 1-3, 2-15
e-mail, B-6
empty, B-8
fax, B-9
flow, B-11
flowN, B-12

Index-2

human task, B-12
invoke, B-14
Java embedding, B-16
overview, 2-15, B-1
pager, B-17
pick, B-19
receive, B-20
reply, B-21
scope, B-22
sensors tab, B-2
sequence, B-24
SMS, B-25
switch, B-27
tasks common to many activities, B-2
terminate, B-27
throw, B-28
transform, B-29
voice, B-30
wait, B-31
while, B-32

Activities tab
Oracle BPEL Control, 19-27

activity executed assert
overview, 20-3

activity interactions
viewing, 19-26

activity sensor reports
creating, 22-7

activity sensors
definition, 17-1

Adapter Configuration wizard
starting, 2-20

adapters
configuring, 2-20
definition, 2-20
documentation, 2-21
in Oracle JDeveloper, 2-20
overview, B-33
service names, 2-20
supported technology adapters, 1-2
supported third-party adapters, 1-2
tutorials for third-party adapters, 1-3

adapters tab
in activities, B-2

add-dayTimeDuration-to-dateTime function
description, D-18

adding comments and attachments
in worklists, 16-13

addQuotes function
description, D-5

ADF data controls
preview release support, 15-67

ADT queue
tutorial, 1-13

ADT types supported with 10.1.3 types
tutorial, 1-13

ADT with XMLType payload
tutorial, 1-13

alarm table
refreshing from Oracle BPEL Control, 19-15

AmazonFlow
demos, 1-7

annotations tab
in activities, B-2

ant
customize task for deploying to multiple

environments with different configuration
values, 19-5

definition, 19-28
deploying test suites, 20-20
deploying to multiple environments with different

configuration values, 19-5
deploying workflow task display forms, 15-77
deployProcess test, 20-26
generating custom reports, 20-29
generating report results, 20-24
performing local deployment, 19-11
running test suites, 20-24
specifying the property value for development and

production environments in a single build file
location, 19-5

syntax for customize task, 19-7
task examples, 19-28
using the developer prompt, 2-3

Apache Axis
sample of interoperability with Oracle BPEL

Process Manager, 1-7
tutorials, 1-7

appendToList function
description, D-6

Application Navigator
accessing the Human Task editor from, 15-13
contents of, 2-6
definition, 2-6
location of in Oracle JDeveloper, 2-5

applications
blank spaces not permitted in directory path, 2-3
creating in Oracle JDeveloper, 2-3
definition, 2-3

AQ adapter
ADT queue tutorial, 1-13
ADT with XMLType payload tutorial, 1-13
capabilities, B-34
CLOB payload as opaque tutorial, 1-13
CLOB payload tutorial, 1-13
correlations tutorial, 1-13
enqueuing files to BLOB columns tutorial, 1-13
listening for message recipients tutorial, 1-13
multiconsumer queues tutorial, 1-13
raw queues tutorial, 1-13
rejectedMessageHandler property tutorial, 1-13
rules-based subscriber tutorial, 1-13
simple XMLType payload tutorial, 1-13
SQL primitive types tutorial, 1-13
supported 10.1.3 ADT types tutorial, 1-13
tutorials, 1-13

AQ adapter BLOB column enqueuing
tutorial, 1-13

AQ adapter correlations
tutorial, 1-13

Index-3

AQ adapter message recipients listener
tutorial, 1-13

AQ adapter multiconsumer queues
tutorial, 1-13

AQ adapter raw queues
tutorial, 1-13

AQ adapter SQL primitive types
tutorial, 1-13

archive
definition, 19-1

arrays
determining the size of, 3-17
in transformations, 13-14
manipulating, 3-16
maxOccurs attribute, 3-16
SOAP-encoded arrays not supported, 3-21
statically indexing into, 3-16
tutorials, 1-11

assert facts and execute rule set operation
definition, 18-15

assert facts only operation
definition, 18-15

assert facts, execute rule set, and retrieve results
operation

definition, 18-15
assert facts, execute rule set, retrieve results, and reset

the session operation
definition, 18-15

assertion tests
overview, 20-2

assertions
creating activity execution asserts, 20-15
creating value asserts, 20-14
creating XML asserts, 20-15
fatal assertions not supported at runtime, 20-15,

20-16
in BPEL test suites, 20-5

assertXPath
customizing in business rules, 18-50

assign activity
adding to an asynchronous service, 5-14
capabilities, B-3
copying data, 3-5
description, 3-2
for data manipulation, 3-2
formatting the e-mail message body as

HTML, 14-8
in asynchronous services, 5-14
references, 1-9
using multiple bpelx:append settings, B-4

assignment service
configuration, 15-113
deploying a custom assignment service, 15-121
dynamic assignment functions, 15-113, 15-114,

15-117, 15-118
dynamically assigning task participants, 15-118
example of implementation, 15-120
implementing, 15-119
overview, 15-119

asynchronous callbacks, 5-3

asynchronous event emulation
in BPEL tests, 20-29

asynchronous interaction with a notification timer
BPEL process as the client, 12-6
BPEL process as the service, 12-6
definition, 12-5

asynchronous interaction with timeout
BPEL process as the client, 12-5
BPEL process as the service, 12-5
definition, 12-4

asynchronous interactions
BPEL process as the client, 12-4
BPEL process as the service, 12-4
definition, 12-3
returning faults, 8-7

asynchronous processes
dehydration store, 5-10
retrieving status and results from, 11-5
tutorial, 1-10
using dehydration, 5-10

asynchronous services
assign activities, 5-14
calling, 5-4, 5-11
correlating messages, 5-7
correlation IDs, 5-6
correlation sets, 5-14
invoke activities, 5-5, 5-12
managing multiple instances, 5-7
parallel flows, 6-1
partner links, 5-4, 5-5, 5-11
partnerLinkTypes, 5-3
receive activities, 5-5, 5-13
reply activities, 5-10
sample, 1-8
tutorials, 1-14
use case, 5-1
WS-Addressing, 5-6

attachments
binary attachments in SOAP messages, 3-28
sending with the notification wizard, 14-5
task attachments with e-mail notifications, 15-46,

15-84
tutorials, 1-14
using style sheets, 15-48
using WordML style sheets, 15-48

attribute labels
internationalization, 15-113

attributes
manipulating, 3-9

audit trail
viewing, 19-26

authenticate function
description, D-40

auto mapping
in transformations, 13-15
with confirmation in transformations, 13-17

AutoLoanDemo
demos, 1-7

Axis
tutorials, 1-10

Index-4

B
BankTransferDemo

demos, 1-7
batching

message batching limitations with Oracle Business
Activity Monitoring, 17-17

tutorials, 1-14
batchProcessActive function

description, D-40
batchProcessCompleted function

description, D-40
BEA WebLogic

sample of interoperability with Oracle BPEL
Process Manager, 1-7

supported by Oracle BPEL Process Manager, 1-2
best practices

process life cycle recommendations for a
development environment, 19-18

process life cycle recommendations for a
production environment, 19-18

binary attachments
demo, 1-7, 3-29
to SOAP messages, 3-28

bindingFault
definition, 8-4

Boolean values
assigning, 3-8

BPEL
definition

BPEL design environment
overview, 2-3

BPEL domains
creating and managing, 19-8

BPEL exec extension
references, 1-9

BPEL files
definition, 2-6
partner links definition, 4-2

BPEL Process Deployer
deploying, 19-3

BPEL processes
catching exception errors, A-1
common interaction patterns, 12-1
compiling and deploying, 19-1
correcting validation errors in complex BPEL

processes, A-2
creating an empty process and importing a

schema, A-3
creating templates of BPEL processes, 2-4
default revision, 19-17
handling long-running processes, A-2
importing an existing project, 2-4
invoking with a Web Service/SOAP

interface, 11-6
life cycles, 19-17
manually undeploying, 19-18
sending messages from a Java/JSP

application, 11-1
undeployed, 19-17
viewing and managing on the Oracle BPEL

Control, 19-12
BPEL Processes tab

Oracle BPEL Control, 19-14
BPEL projects

creating templates of BPEL processes, 2-4
naming conventions, 2-4

BPEL test
activity executed assert, 20-3
assertions overview, 20-2
asynchronous event emulation, 20-29
client APIs, 20-32
composite test case, 20-2
creating a test case from Oracle BPEL

Control, 20-17
creating activity execution asserts, 20-15
creating assertions, 20-14
creating emulations, 20-10
creating external calls, 20-16
creating test cases, 20-9
creating test suites, 20-6
creating value asserts, 20-14
creating XML asserts, 20-15
custom reporting, 20-29
database views, 20-30
definition, 20-1
deploying test suites, 20-19, 20-20
editing test cases, 20-9
emulating BPEL tests, 20-13
emulating faults, 20-12
emulating inbound messages, 20-11
emulating partner tests, 20-13
emulations overview, 20-2
fatal assertions not supported at runtime, 20-15,

20-16
importing test cases, 20-7
JUnit support, 20-3
naming limitations on test suites and test

cases, 20-6
process code coverage overview, 20-3
running test suites from an ant task, 20-24
running test suites from Oracle BPEL

Control, 19-25, 20-21
setting dynamic values at run time, 20-27
simple value assert, 20-2
test case overview, 20-2
test suite assertions, 20-5
test suite components, 20-3
test suite emulations, 20-4
test suite include files, 20-6
test suites overview, 20-2
test suites process initiation, 20-4
unit test case, 20-2
verifying external actions, 20-29
viewing test results, 20-21
XML assert, 20-3
XML schemas, 20-32

BPEL XPath functions
examples, 3-4

BPEL_ACTIVITY_SENSOR_VALUES
sensor public view, 17-19

Index-5

BPEL_FAULT_SENSOR_VALUES
sensor public view, 17-20

BPEL_PROCESS_INSTANCES
sensor public view, 17-18

BPEL_VARIABLE_SENSOR_VALUES
sensor public view, 17-21

bpeladmin
changing the password, 19-10
logging into domains, 19-9
user account, 15-103, 19-9

bpelc
definition, 19-28
examples, 19-28
using, 19-28

BPELTest
demos, 1-7
references, 1-9

bpelx
in assign activities, B-4

bpelx exec extension
for embedding Java code in a BPEL process, 9-6

bpelx:append extension
appending data to a node list, D-6
description, 3-10

bpelx:copyList extension
copying a node list or a node, D-6
description, 3-15

bpelx:exec extension
built-in methods, 9-8

bpelx:headerVariable extension
description, 3-26

bpelx:insertAfter extension
description, 3-12

bpelx:insertBefore extension
description, 3-11

bpelx:property extension
description, 3-26

bpelx:remove extension
description, 3-12

bpelx:rename extension
description, 3-13

bpelx:validate extension
description, 3-16

bpel.xml file
content is read into memory only when the file is

opened, 2-14
definition, 2-6
deployment descriptor file, C-2
do not edit through a combination of Oracle

JDeveloper and a text editor, 2-14
registering sensors and sensor actions, 17-11
setting activationAgent attributes, 14-14
updating a preference at run time, 19-25

BPMDefaultDomainAdmin
identity service role, 15-103, 15-104

BPMERRORS
sensor public view, 17-22

BPMSystemAdmin
identity service role, 15-103, 15-104

BPMWorkflowAdmin

identity service role, 15-103, 15-104
BPMWorkflowReassign

identity service role, 15-103, 15-104
BPMWorkflowSuspend

identity service role, 15-103, 15-104
BPMWorkflowViewHistory

identity service role, 15-103, 15-104
browsers

supported, 19-10
built-in reports

of workflows, 15-4
business faults

definition, 8-3
business process execution language

See BPEL
business rules

assertXPath, 18-50
connecting to a rules engine, 18-7
creating a BPEL project, 18-33
creating a connection to the rule engine, 18-33
creating a decide activity, 18-36
creating a decision service partner link, 18-34
definition, 2-19, 18-1
deployment and run time, 18-39, 18-42, 18-43
in Oracle JDeveloper, 2-19
integrating with BPEL processes through the

decision service wizard, 18-9
invoking the sample rule set from a BPEL

process, 18-33
logging of session events, 18-48
methodology, 18-17
modeling fact types based on an XML

schema, 18-17
creating a data model for rule authoring, 18-18
creating a new repository and

dictionary, 18-19
creating a new rule set and model rules, 18-23
importing the XML schema into the data

model, 18-20
modeling rules based on existing RL or JavaBeans

fact types, 18-28
creating a new data model using the RL fact

types, 18-28
creating a new rule set and rules, 18-30
creating the RL function contract, 18-31
defining a contract between BPEL and business

rules, 18-28
selecting with the decision service wizard, 18-11
summary of methodology, 18-39
supported rules engines, 18-8
use case, 18-51
use case for data validation and constraint

checks, 18-7
use case for dynamic processing, 18-7
use case for externalizing decision points in the

process, 18-7
use case for human workflow, 18-7
use cases, 18-7
with Oracle BPEL Process Manager, 18-2
XPath expressions, 18-50

Index-6

business rules dictionary
definition, 18-3

C
cache

clearing the WSDL cache, 19-14
callback classes

specifying on task status, 15-51
callbacks

task routing and customization in BPEL
callbacks, 15-52, 15-59

viewing, 15-62
catch branch

creating, B-23
fault handling, 8-8
references, 1-9
tutorial, 1-11

channels
e-mail, 14-4
fax, 14-8
pager, 14-10
SMS, 14-11
voice mail, 14-12

CheckoutDemo
demos, 1-7

class names
specifying in the external routing service

participant type, 15-37
clearTaskAssignees function

description, D-28
client APIs

in BPEL tests, 20-32
CLOB payload

tutorial, 1-13
CLOB payload as opaque

tutorial, 1-13
COBOL Copybook

tutorial, 1-11
code coverage tests

overview, 20-3
comma-separated value (CSV) files

exporting reports to CSV files, 22-3
tutorials, 1-11

compare function
description, D-34

compare-ignore-case function
description, D-34

compatibility
between workflow services 10.1.2 and

10.1.3.1.0, 15-2, E-6
compensate activity

capabilities, B-4
definition, 8-9
fault handling, 8-9
tutorial, 1-7

compilation
of BPEL processes, 19-1
without deployment on Oracle JDeveloper, 19-4

compiling

VacationRequest process, 15-95
complex structures

tutorial, 1-11
complex type

variables, 3-6
Component Palette

accessing the Human Task editor from, 15-14
definition, 2-10
location of in Oracle JDeveloper, 2-5
transformation functions, 2-10

composite test
definition, 20-2

concat function
description, 3-7

conditional branching logic
definition, 7-1
tutorials, 1-14
use case, 7-1
use of XPath expressions, 7-1
using switch activities, 7-2
using while activities, 7-4

conditional processing
with xsl choose, 13-13
with xsl if, 13-12

configuration properties
deployment descriptor, C-4

constant values
in transformations, 13-7

copyList function
description, D-6

core XPath functions
examples, 3-3

correlation ID
WS-Addressing, 5-6

correlation sets
associating with receive activities, 5-22
creating, 5-21
creating property aliases, 5-24
definition, 5-7, 5-10
tutorials, 1-11, 5-14
WSDL file content, 5-25

correlation sets tab
in activities, B-2

correlations, 5-7
adding on an OnMessage branch of a pick

activity, B-19
countNodes function, 3-17

description, D-7
create instance

definition, 5-5
in receive activities, 5-5

create-delimited-string function
description, D-35

createInstance attribute, 5-6
create-nodeset-from-deliminated-string function

description, D-2
createWordMLDocument function

description, D-29
current-date function

description, D-18

Index-7

current-dateTime function
description, D-19

current-time function
description, D-19

custom
sensor publish type, 17-2

custom escalation function
using, 15-122

custom plug-ins
use with identity service, 15-104, 15-105

custom reporting
in BPEL tests, 20-29

custom task display form
contents of, 15-74
contents of autogenerated JSP, 15-75
contents of custom JSP, 15-76
contents of default JSP, 15-77
contents of XSL, 15-77

custom XPath functions
references, 1-9

customize task
activation agent properties, 19-8
deployment descriptor configurations

properties, 19-8
deployment descriptor preferences

properties, 19-8
example, 19-5
for deploying to multiple environments with

different configuration values, 19-5
partnerlinkbinding properties, 19-8
specifying the property value for development and

production environments in a single build file
location, 19-5

syntax, 19-7

D
Dashboard tab

Oracle BPEL Control, 19-13
viewing deployed processes, 15-95

data manipulation
accessing fields with complex type variables, 3-6
assigning Boolean values, 3-8
assigning date or time, 3-8
assigning literal strings, 3-7
assigning numeric values, 3-6
concatenating strings, 3-7
converting from a string to a structured XML

object type, 3-21
copying data between variables, 3-5
determining array sizes, 3-17
dynamically indexing into a data sequence, 3-17
dynamically indexing with the getElement

function, 3-19
generating array-equivalent functionality with the

genEmptyElem function, 3-20
initializing variables, 3-4
manipulating arrays, 3-16
manipulating attributes, 3-9
mathematical calculations with XPath

functions, 3-7
statically indexing into a data sequence, 3-16
with assign activities, 3-2, 3-5
with XQuery and XSLT, 3-4

data sequences
dynamically indexing into, 3-17

database
sensor publish type, 17-2

database adapter
advanced tutorial, 1-12
capabilities, B-34
delete operation tutorial, 1-12
fault handling tutorial, 1-12
insert operation tutorial, 1-12
last read ID tutorial, 1-12
logical polling delete strategy, 1-12
master detail replication tutorial, 1-12
merge operation tutorial, 1-12
polling control table tutorial, 1-12
pure SQL tutorial, 1-12
query by example, 1-12
REF CURSORS tutorial, 1-12
REF CURSORs tutorial, 1-12
SELECT ALL tutorial, 1-12
SQL Server tutorial, 1-12
stored procedure tutorial, 1-12
tutorials, 1-12, 1-14
update operation tutorial, 1-12
with file adapter tutorial, 1-12

database delete operation
tutorial, 1-12

database fault handling
tutorial, 1-12

database insert operation
tutorial, 1-12

database merge operation
tutorial, 1-12

database update operation
tutorial, 1-12

database views
in BPEL tests, 20-30

dates
assigning, 3-8

day-from-dateTime function
description, D-19

debatching
FTP adapter tutorial, 1-14
FTP tutorial, 1-14
tutorial, 1-11, 1-14

decide activity
assert facts and execute rule set operation

definition, 18-15
assert facts only operation definition, 18-15
assert facts, execute rule set, and retrieve results

operation definition, 18-15
assert facts, execute rule set, retrieve results, and

reset the session operation definition, 18-15
capabilities, B-5
creating, 18-36
definition, 18-14

Index-8

execute function and reset the session operation
definition, 18-15

execute function operation definition, 18-15
retrieve results operation definition, 18-15
selecting the operation of the invocation

pattern, 18-15
decision service

advanced features, 18-47
architecture, 18-3
capabilities, B-34
components, 18-4
configuration file contents, 18-5
definition, 18-2
deployment and run time, 18-39, 18-42, 18-43
directory structure, 18-39
interactions with other components, 18-4
JAX-RPC Web services, 18-4, 18-47
logging of session events, 18-48
Oracle BPEL Control support, 18-45
Oracle Enterprise Manager support, 18-43
partner link, 18-39
use case, 18-51
using WSIF bindings, 18-47

Decision Service Builder
definition, 18-4

Decision Service Cache
definition, 18-4

Decision Service Runtime
definition, 18-4

decision service wizard
for integrating business rules with BPEL

processes, 18-9
importing schema files, 18-13
selecting a business rule, 18-11
selecting an invocation pattern, 18-10
specifying input and output facts, 18-12

decision services
customizing assertXpath, 18-50

default
changing the password, 19-10
logging into domains, 19-9
user account, 15-103, 19-9
versions of processes, 19-17

default revision
of BPEL processes, 19-17

defining a fault handler, 8-5
dehydration

definition, 1-2, 5-10
dehydration store, 5-10
delegations

of tasks, 15-10
demonstrations

location of, 1-6, 1-7
demos

AmazonFlow, 1-7
AutoLoanDemo, 1-7
BankTransferDemo, 1-7
binary attachments in SOAP messages, 1-7, 3-29
binding faults, 8-5, 8-12
BPELTest, 1-7

CheckoutDemo, 1-7
compensate activity, 1-7
DocumentReview, 1-8
ExpenseRequestApproval, 1-8
FlowN activity, 1-8
GoogleFlow, 1-8
HelpDeskServiceRequest, 1-8
HotwireDemo, 1-8
human workflows, 1-9
IBMSamples, 1-8
Java embedding, 1-8
LoanDemo, 1-8
LoanDemoPlus, 1-8
parallel synchronous invocations, 1-8
ParallelSearch, 1-8
ResilientDemo, 1-8
run-time exceptions, 1-8
run-time faults, 8-5, 8-12
SalesforceFlow, 1-8
sensor actions, 17-3
sensors, 17-3
SleepBroker, 1-8
transformations, 1-9
VacationRequest, 1-9
workflows, 1-8
XSLMapper, 1-9
XSLT Mapper, 1-9

deploying
VacationRequest process, 15-95

deployment
deploy one process at a time, 19-1
of a suitcase JAR file to a specific domain, 19-11
of BPEL processes, 19-1
of custom Oracle BPEL Worklist

Application, 16-46
of multiple versions of the same process, 19-2
overwriting versions, 19-2
specifying the property value for development and

production environments in a single build file
location, 19-5

status displays in Log Window, 19-3
to multiple environments with different

configuration values, 19-5
undeploying a process from a specific

domain, 19-12
with Oracle JDeveloper, 19-2
with the BPEL Process Deployer, 19-3

deployment descriptor
bpel.xml file, 2-6, C-2
configuration properties, C-4, C-5
customize task syntax, 19-8
defining a configuration property, C-5
defining a preference property, C-1
encrypting a preference value, C-3
getting a preference value within a BPEL

process, C-3
preference properties, C-1
updating a preference at run time, 19-25, C-3

developer prompt
required when deploying services through ant or

Index-9

obant, 2-3
development mode

changing, 19-11
Diagram window, 2-7

definition, 2-7
location of in Oracle JDeveloper, 2-5

dictionaries
in transformations, 13-19

DIME protocol
SOAP binary attachments, 3-28

doc function
description, D-7

documentation
using this guide, 1-4

DocumentReview
demos, 1-8

domain passwords
changing, 11-3
changing domain passwords, 19-10

domains
best practices, 19-8
changing domain passwords, 19-10
changing domains in Oracle BPEL Control, 19-13
creating, 19-10
creating and managing, 19-8
definition, 19-2
deploying to specific domains, 19-11
logging into, 19-9
undeploying a process, 19-12

domain.xml file
increasing the syncMaxWaitTime property, 10-4,

A-1
location, 10-4
setting properties to catch exception errors, A-1

dynamic assignment
of task participants, 15-26, 15-28, 15-31, 15-34,

15-36
dynamic assignment functions

configuring, 15-117
configuring display names, 15-118
definition, 15-113
implementing, 15-114

dynamic JCA partner links
tutorials, 1-14

dynamic partner links
references, 1-9

dynamic values
setting at run time, 20-27

E
EJB

invoked by a BPEL process through use of WSIF
binding, 9-1

security in EJB Web services, 15-98
support in workflow services, 15-97
tutorials, 1-15

EJB Web service
capabilities, B-35

elements

ignoring in XSLT documents, 13-22
e-mail

attachments tutorial, 1-14
dynamically setting addresses, 14-13
making e-mails actional, 15-46, 15-83
notifications support, 14-2, 14-4

e-mail activation agent
starting processes, 14-14

e-mail activity
capabilities, B-6

e-mail attachments
notifications support, 14-5
tutorial, 1-14

e-mail messages
HTML content for message body, 14-8

empty activity
capabilities, B-8
definition, 8-8
fault handling, 8-8

empty processes
creating an empty process and importing a

schema, A-3
emulation tests

overview, 20-2
emulations

creating, 20-10
emulating BPEL tests, 20-13
emulating faults, 20-12
emulating inbound messages, 20-11
emulating partner tests, 20-13
in BPEL test suites, 20-4

ending
tasks, 15-39

ends-with function
description, D-35

errors
invalid settings, B-37

escalating
tasks, 15-39

escalation policy
escalate after, 15-42
overview, 15-39, 15-40
specifying, 15-47

escalations
of tasks, 15-10

evaluation time
definition, 17-4

event handlers
references, 1-9

exceptions, 8-3
catching, A-1
tutorials, 1-14

execute function and reset the session operation
definition, 18-15

execute function operation
definition, 18-15

Execution Unit
definition, 18-4

ExpenseRequestApproval
demos, 1-8

Index-10

expiration policy
expire after, 15-41
never expire, 15-41
overview, 15-39, 15-40
renew after, 15-42

expirations
of tasks, 15-10

expression constants
variable initialization, 3-4

external actions
verifying in BPEL tests, 20-29

external calls
creating in BPEL tests, 20-16

external routing service
configuring, 15-36
definition, 15-12, 15-36
specifying the class name, 15-37
workflow participant type, 15-12, 15-36

F
facades

See XML facades
Fact Converter

definition, 18-4
facts

specifying input and output facts with the decision
service wizard, 18-12

fault handling, 8-5
binding faults demo, 8-5, 8-12
defining, 8-1, 8-5, 8-10
importing RuntimeFault.wsdl, 8-5
modifying the WSDL files, 8-5
returning external faults, 8-7
sample, 1-8
throwing a WSDL fault from a Java binding, 9-4
throwing internal faults, 8-6
tutorials, 1-11, 1-14
use case, 8-1
using catch branches, 8-8
using compensate activities, 8-9
using empty activities, 8-8
using scope activities, 8-6, 8-8
using terminate activities, 8-10
using the getFaultAsString function, 8-5
using throw activities, 8-6

fault sensor reports
creating, 22-9

fault sensors
definition, 17-2

faults
categories of faults in BPEL, 8-3
emulating in BPEL tests, 20-12
Qname fault name, 8-3
returning external faults, 8-7
standard faults, 8-3
throwing internal faults, 8-6

fax
notifications support, 14-8

fax activity

capabilities, B-9
file adapter

capabilities, B-35
COBOL Copybook tutorial, 1-11
complex structure tutorial, 1-11
debatching tutorial, 1-11
flat structure, 1-11
opaque with headers tutorial, 1-11
tutorials, 1-11, 1-14

fire and forget
one-way message, 12-1

fixed length format
tutorials, 1-11

flat structure
tutorial, 1-11

flow activity
capabilities, B-11
definition, 6-2
references, 1-9
tutorials, 1-9, 1-10

flowN activity
capabilities, B-12
definition, 6-4
demos, 1-8
references, 1-9

format function
description, D-41

formatDate function
description, D-8

format-dateTime function
description, D-20

format-string function
description, D-36

FTP adapter
capabilities, B-35
FTP debatching, 1-14
tutorials, 1-14

functions
abs, D-23
add-dayTimeDuration-to-dateTime, D-18
addQuotes, D-5
appendToList, D-6
authenticate, D-40
batchProcessActive, D-40
batchProcessCompleted, D-40
chaining in transformations, 13-10
clearTaskAssignees, D-28
compare, D-34
compare-ignore-case, D-34
concat, 3-7
copyList, D-6
countNodes, 3-17, D-7
create-delimited-string, D-35
create-nodeset-from-deliminated-string, D-2
createWordMLDocument, D-29
creating a custom XPath function, D-45
current-date, D-18
current-dateTime, D-19
current-time, D-19
custom, 3-4

Index-11

day-from-dateTime, D-19
deprecated workflow service and identity service

functions, 15-123
descriptions, 13-8
doc, D-7
dynamically setting e-mail addresses and

telephone numbers, 14-13
editing in transformations, 13-9
editing XPath expressions in

transformations, 13-11
ends-with, D-35
examples, 3-3
format, D-41
formatDate, D-8
format-dateTime, D-20
format-string, D-36
functions prefixed with xp20 or orcl, 13-8
genEmptyElem, 3-20, D-41
generateGUID, D-8
generate-guid, D-2
getChildElement, D-41
getContentAsString, D-8
get-content-as-string, D-36
getConversationId, D-9
getCreator, D-9
getCurrentDate, 3-8, D-9
getCurrentDateTime, 3-8, D-9
getCurrentTime, 3-8, D-10
getDefaultRealmName, D-23
getDomainId, D-10
getElement, 3-19, D-10
getFaultAsString, 8-5
getGroupIdsFromGroupAlias, D-11
getGroupProperty, D-24
getInstanceId, D-11
getLinkStatus, D-4
get-localized-string, D-36
getManager, D-24
getMessage, D-42
getNodes, D-11
getNodeValue, D-11
getNotificationProperty, D-29
getNumberOfTaskApprovals, D-30
getPreference, D-12
getPreviousTaskApprover, D-30
getProcessId, D-12
getProcessOwnerId, D-12
getProcessURL, D-12
getProcessVersion, D-13
getReportees, D-25
getTaskAttachmentByIndex, D-30
getTaskAttachmentByName, D-30
getTaskAttachmentContents, D-31
getTaskAttachmentsCount, D-31
getTaskResourceBindingString, D-31
getUserAliasId, D-13
getUserProperty, 14-13, D-25
getUserRoles, D-26
getUsersInGroup, D-26
getVariableData, 14-13, D-4

getVariableProperty, D-5
hours-from-dateTime, D-20
implicit-timezone, D-20
in transformations, 13-8
index-within-string, D-37
integer, D-13
isUserInRole, D-27
last-index-within-string, D-37
left-trim, D-38
listUsers, D-42
location of function descriptions, 3-4
lookup-dvm, D-2
lookupGroup, D-27
lookup-table, D-16
lookupUser, D-28
lookup-xml, D-3
lower-case, D-38
matches, D-39
max-value-among-nodeset, D-42
mimic XPath 2.0 standards, 15-122
minutes-from-dateTime, D-21
min-value-among-nodeset, D-43
month-from-dateTime, D-21
parseEscapedXML, 3-21, D-13
position, 3-17
prefixed with xp20 or orcl, 13-8
processXQuery, D-14
processXSLT, 14-8, D-14
processXSQL, D-15
query-database, D-17
readBinaryFromFile, D-15
readFile, 14-7, D-15
references, 1-9
right-trim, D-39
search, D-43
seconds-from-dateTime, D-21
selecting an data sequence element, 3-16
sequence-next-val, D-17
square-root, D-43
subtract-dayTimeDuration-from-dateTime, D-21
timezone-from-dateTime, D-22
translateFromNative, D-44
translateToNative, D-44
upper-case, D-39
user-defined in transformations, 13-10
wfDynamicGroupAssign, D-32
wfDynamicUserAssign, D-33
workflow related, 15-122
writeBinaryToFile, D-16
year-from-dateTime, D-22

FYI assignee
configuring, 15-35
definition, 15-11, 15-35
workflow participant type, 15-11, 15-35

G
genEmptyElem function

description, 3-20, D-41
generateGUID function

Index-12

description, D-8
generate-guid function

description, D-2
getChildElement function

description, D-41
getContentAsString function

description, D-8
get-content-as-string function

description, D-36
getConversationId function

description, D-9
getCreator function

description, D-9
getCurrentDate function

description, 3-8, D-9
getCurrentDateTime function

description, 3-8, D-9
getCurrentTime function

description, 3-8, D-10
getDefaultRealmName function

description, D-23
getDomainId function

description, D-10
getElement function

description, 3-19, D-10
getFaultAsString function

description, 8-5
getGroupIdsFromGroupAlias function

description, D-11
getGroupProperty function

description, D-24
getInstanceId function

description, D-11
getLinkStatus function

description, D-4
get-localized-string function

description, D-36
getManager function

description, D-24
getMessage function

description, D-42
getNodes function

description, D-11
getNodeValue function

description, D-11
getNotificationProperty function

description, D-29
getNumberOfTaskApprovals function

description, D-30
getPreference function

description, D-12
getPreviousTaskApprover function

description, D-30
getProcessId function

description, D-12
getProcessOwnerId function

description, D-12
getProcessURL function

description, D-12
getProcessVersion function

description, D-13
getReportees function

description, D-25
getTaskAttachmentByIndex function

description, D-30
getTaskAttachmentByName function

description, D-30
getTaskAttachmentContents function

description, D-31
getTaskAttachmentsCount function

description, D-31
getTaskResourceBindingString function

description, D-31
getUserAliasId function

description, D-13
getUserProperty function

description, D-25
example, 14-13

getUserRoles function
description, D-26

getUsersInGroup function
description, D-26

getVariableData function
description, 3-7, D-4
example, 14-13
using in mathematical calculations, 3-7

getVariableProperty function
description, D-5

global task variable name
specifying in human task activities, 15-58

GoogleFlow
demos, 1-8

grantees
relationship with roles, 15-104

group information
in worklists, 16-39

group vote
configuring, 15-27
consensus percentage, 15-29
default outcome, 15-29
definition, 15-11, 15-27
immediately triggering a voted outcome when a

minimum percentage is met, 15-29
specifying group voting details, 15-29
waiting until all votes are in before triggering an

outcome, 15-29
workflow participant type, 15-11, 15-27

groups
creating, 15-104

guest
user account, 15-103

H
header variables

viewing details in Oracle BPEL Control, 19-26
headers

bpelx:property extension, 3-26
inputHeaderHandler, 3-24
manipulation of partnerLink properties, 3-26

Index-13

message header handling, 3-24
outputHeaderHandler, 3-24
registering header handlers, 3-25
SOAP headers, 3-26

heap size
increasing, 13-27

HelpDeskServiceRequest
demos, 1-8

HotwireDemo
demos, 1-8

hours-from-dateTime function
description, D-20

HTTP binding
security tutorial, 1-14

HTTP get method
tutorials, 1-15

human task activity
associating with a BPEL process, 15-53, 15-54
capabilities, B-12
identification key, 15-59
including the task history of other tasks, 15-59,

15-64
opening a definition already associated with a

BPEL process, 15-54
scope name and global task variable name, 15-58
specifying a task initiator and task priority, 15-55
specifying a task title, 15-55
specifying task parameters, 15-56
task owner, 15-58
viewing BPEL callbacks, 15-62
viewing the contents of, 15-60

human task definition
associating with a BPEL process, 15-12
creating with the Human Task editor, 15-13

Human Task editor
abruptly completing a condition, 15-38
accessing from the Application Navigator, 15-13
accessing from the Component Palette, 15-14
actional e-mails, 15-46, 15-83
allowing all participants to invite other

participants, 15-37
assigning task participants by name or

expression, 15-25, 15-28, 15-31, 15-33, 15-36
bypassing task participants, 15-26, 15-28, 15-31,

15-34
changes between the workflow wizard in 10.1.2

and the Human Task editor in 10.1.3.1.0, E-2
creating the human task definition, 15-13
definition, 2-19, 15-3, 15-12, 15-13
dynamically assigning task participants by

expression, 15-26, 15-28, 15-31, 15-34, 15-36
editing notification messages, 15-45
escalate after policy, 15-42
escalating, renewing, or ending a task, 15-39
escalation and expiration policy overview, 15-39,

15-40
escalation rules, 15-47
exiting the editor and saving changes, 15-53
expire after policy, 15-41
external routing service task participant, 15-36

FYI assignee task participant, 15-35
group vote task participant, 15-27
group voting details, 15-29
inviting additional task participants, 15-26, 15-32,

15-34
management chain task participant, 15-30
multilingual settings, 15-48, 15-83
never expire policy, 15-41
notification preferences, 15-43
notifying recipients of changes to task

status, 15-44
number of task approvers, 15-32
overriding default exception management, 15-51
overriding default system actions, 15-49
renew after policy, 15-42
reviewing the sections of, 15-14
securing notifications, 15-46, 15-85
sequential list of approvers task

participant, 15-32
setting up reminders, 15-46
sharing attachments and comments with task

participants, 15-29, 15-36
single approver task participant, 15-24
specifying callback classes, 15-51
specifying class names, 15-37
style sheets in attachments, 15-48
task attachments with e-mail notifications, 15-46,

15-84
task outcome, 15-16
task owner specification through the user

directory, 15-18
task owner specification through XPath

expressions, 15-20
task participants, 15-22
task payload data structure, 15-21
task routing and customization in BPEL

callbacks, 15-52, 15-59
task title and priority, 15-16
time limits for acting on tasks, 15-26, 15-29, 15-32,

15-34
WordML style sheets in attachments, 15-48

human workflow
creating a new project, 15-89
creating a user task activity, 15-89
demos, 1-9
running the VacationRequest process, 15-95
tutorials, 1-14
validating, compiling, and deploying, 15-95

I
IBMSamples

demos, 1-8
IDeliveryService.post() method

invoking a one-way Web service operation, 11-4
IDeliveryService.request() method

invoking a two-way Web service operation, 11-3
identification key

specifying in human task activities, 15-59
identity service

Index-14

creating users and groups, 15-104
definition, 15-4, 15-6, 15-102
deprecated functions, 15-123
determining a user’s local language and time

zone, 16-39
EJB, SOAP, and Java support, 15-97, 16-57
functions

getDefaultRealmName, D-23
getGroupProperty, D-24
getManager, D-24
getReportees, D-25
getUserProperty, D-25
getUserRoles, D-26
getUsersInGroup, D-26
isUserInRole, D-27
lookupGroup, D-27
lookupUser, D-28

multirealm support, 15-107
providers, 15-104, 15-105
support for in workflows, 15-4, 15-102
supported task operations, 15-102
use with custom plug-ins, 15-104, 15-105
use with JAZN, 15-4, 15-102, 15-104, 15-105
use with LDAP, 15-4, 15-102, 15-104
use with third-party LDAP servers, 15-105
user and role properties, 15-106
WSDL file location, 15-98
XPath extension functions, 15-122

implicit-timezone function
description, D-20

import
an existing BPEL process into a project, 2-4
cannot import XSD files in a ZIP file, 2-4
of schemas into an empty BPEL process, A-3
source and target schemas into a

transformation, 13-3
two schema files of the same name into the same

project is not supported, 2-13
user-defined functions in the XSLT

Mapper, 13-10
include files

in BPEL test suites, 20-6
indexing methods

using XPath, 3-17
index-within-string function

description, D-37
inspection.wsil file

adding remote Web services, 4-4
instances

starting new, 5-6
Instances tab

Oracle BPEL Control, 19-26
integer function

description, D-13
integration server connection

using to deploy a process, 15-95
interaction patterns

asynchronous interaction with notification
timer, 12-5

asynchronous interaction with timeout, 12-4

asynchronous interactions, 12-3
common patterns between a BPEL process and

another application, 12-1
multiple interactions, 12-10
one request, a mandatory response, and an

optional response, 12-8
one request, multiple responses, 12-6
one request, one of two possible responses, 12-7
one-way message, 12-1
partial processing, 12-9
synchronous interactions, 12-2

interop
location of, 1-7

interoperability
with Apache Axis, 1-7
with BEA WebLogic, 1-7
with Microsoft .Net, 1-7

Invalid Settings error message, B-37
invocation patterns

assert facts and execute rule set operation
definition, 18-15

assert facts only operation definition, 18-15
assert facts, execute rule set, and retrieve results

operation definition, 18-15
assert facts, execute rule set, retrieve results, and

reset the session operation definition, 18-15
execute function and reset the session operation

definition, 18-15
execute function operation definition, 18-15
retrieve results operation definition, 18-15
selecting the operation in the decide

activity, 18-15
selecting with the decision service wizard, 18-10
supported, 18-10

invoke activity, 5-5
adding to an asynchronous service, 5-12
capabilities, B-14
definition, 4-2
in asynchronous services, 5-5, 5-12
in synchronous services, 4-2, 4-5
references, 1-9
tutorials, 1-10

isUserInRole function
description, D-27

J
J2EE security

supported, 19-9
JAAS security

supported, 19-9
Java

support in workflow services, 15-97
Java API

invoking a BPEL process with the generic Java
API, 11-2

invoking a one-way operation, 11-4
invoking a two-way operation, 11-3
NormalizedMessage class for dynamically

activating messages, 11-3

Index-15

parsing XML messages, 11-3
using from a remote client, 11-5
using the Locator class to connect to Oracle BPEL

Process Manager, 11-2
Java applications

wrapped as SOAP services, 9-5
Java embedding

BPEL-compatible interface, 9-1
bpelx:exec extension, 9-8
demos, 1-8
embedding code in a BPEL process, 9-6
example, 9-8
in a BPEL process, 9-1
invoking an EJB, 9-1
tutorials, 9-5
using bpelx exec, 9-6
using WSIF binding, 9-1

Java embedding activity
capabilities, B-16

Java method
tutorials, 1-15

Java RMI client
security tutorial, 1-14

Java Web service
capabilities, B-35

Javadocs
location of, 11-3, 15-106

JavaExec
references, 1-9

Java/JSP applications
calling a BPEL process, 11-1

JAX-RPC
tutorials, 1-10

JAX-RPC Web services
decision service run time, 18-4, 18-47

JAZN
definition, 15-105
LDAP-based (Oracle Internet Directory) provider

type, 15-105
storing a user’s local language and time

zone, 16-39
use with identity service, 15-4, 15-102, 15-104,

15-105
use with third-party LDAP servers, 15-105
use with XML-based provider type, 15-105

jazn-data.xml file
creating users and groups with XML-based JAZN

provider, 15-104
JBoss

supported by Oracle BPEL Process Manager, 1-2
JMS adapter

capabilities, B-35
sensor publish type, 17-2
tutorials, 1-13

JMS Queue
sensor publish type, 17-2

JMS Topic
sensor publish type, 17-2

JSP client
security tutorial, 1-14

JSP form
samples, 1-7
tutorials, 1-10

JTA transaction management
sample, 1-7

JUnit
BPEL test reports, 20-3
BPEL test results, 20-21, 20-23
definition, 20-3

L
languages

accessing the Oracle BPEL Worklist Application in
local languages, 16-39

setting in JAZN, 16-39
setting in LDAP, 16-39

last read ID
tutorial, 1-12

last-index-within-string function
description, D-37

LDAP
storing a user’s local language and time

zone, 16-39
used with identity service, 15-4, 15-102, 15-104

left-trim function
description, D-38

life cycles
default instance version, 19-20, 19-22
default revision, 19-17
example, 19-19
inactive instances, 19-23
of processes, 19-14, 19-17
retiring instances, 19-22
undeployed, 19-17

links
references, 1-9

listUsers function
description, D-42

literal strings
assigning, 3-7

literal XML
variable initialization, 3-4

LoanDemo
demos, 1-8

LoanDemoPlus
demos, 1-8

Log window
definition, 2-13
location of in Oracle JDeveloper, 2-5

logging
of business rules session events, 18-48

logging in
Oracle BPEL Worklist Application, 16-4

logical polling delete strategy
tutorial, 1-12

logs
reviewing process logs from Oracle BPEL

Control, 19-15
lookup-dvm

Index-16

not supported on Oracle BPEL Process
Manager, D-2

lookup-dvm function
description, D-2

lookupGroup function
description, D-27

lookup-table function
description, D-16

lookupUser function
description, D-28

lookup-xml function
description, D-3

lower-case function
description, D-38

M
management chain

configuring, 15-30
definition, 15-11, 15-30
highest title of approver, 15-32
maximum number of chain levels up, 15-32
workflow participant type, 15-11, 15-30

map parameters
creating in transformations, 13-19

map variables
creating in transformations, 13-19

master detail replication
tutorial, 1-12

matches function
description, D-39

maxOccurs attribute, 3-16, 3-17
setting for transformations, 13-27

max-value-among-nodeset function
description, D-42

message flow
tutorials, 1-11

message header handling, 3-24
messages

recovering from Oracle BPEL Control, 19-15
Microsoft .Net

sample of interoperability with Oracle BPEL
Process Manager, 1-7

MIME protocol
SOAP binary attachments, 3-28

minOccurs attribute
setting for transformations, 13-28

minutes-from-dateTime function
description, D-21

min-value-among-nodeset function
description, D-43

modes
changing for the Oracle BPEL Server, 19-11

month-from-dateTime function
description, D-21

MQ adapter
capabilities, B-36

multilingual settings
specifying in tasks, 15-48, 15-83

multirealms

identity service support for, 15-107
supported, 21-3

myRole attribute
definition, 5-5

N
named templates

creating, 13-10
in functions, 13-10

naming conventions
for BPEL projects, 2-4

NLS
configuration overview, 15-124

nonBlockingInvoke property
using in bpel.xml file, 1-8

NormalizedMessage class
for dynamically activating messages, 11-3
specifying the address of a Web service for the

callback, 11-5
viewing the specific field name for the

conversation ID, 11-5
notification messages

editing, 15-45
notification services

actionable e-mails, 15-83
configuring the notification channel, 15-81
definition, 15-4, 15-6, 15-108
limitations on setting validateXML to true, 14-15
multilingual settings, 15-83
notification contents, 15-82
reliability support, 15-84
sending inbound and outbound

attachments, 15-84
sending inbound comments, 15-84
sending reminders, 15-85
sending secure notifications, 15-85
specifying participant notification

preferences, 15-43
WSDL file location, 15-98

notifications
configuring in Oracle JDeveloper, 14-3
definition, 2-19, 14-1, 15-2
dynamically setting e-mail addresses and

telephone numbers, 14-13
e-mail attachment support, 14-5
e-mail attachment tutorials, 1-14
e-mail support, 14-2, 14-4
fax support, 14-8
formatting the e-mail message body as

HTML, 14-8
in Oracle JDeveloper, 2-19
number of retries, 14-3
number of retry intervals, 14-3
pager support, 14-10
reliable notification service, 14-2
selecting recipients by browsing the user

directory, 14-14
SMS support, 14-11
tutorials, 1-14

Index-17

use case, 14-1
using Oracle Application Server Wireless, 14-2
voice mail support, 14-12

notifications and reminders
in tasks, 15-80

numeric values
assigning, 3-6

O
obant

using the developer prompt, 2-3
oc4jadmin

changing the password, 19-10
logging into domains, 19-9
making the password compatible with the

samples, 1-6
user account, 15-103, 19-9

off
process state, 19-17

on
process state, 19-17

onAlarm branch
of pick activity, 10-2

onMessage branch
of pick activity, 10-2

opaque with headers
tutorial, 1-11

Oracle Application Server Integration B2B
integration with Oracle BPEL Process

Manager, 1-3
Oracle Application Server Integration InterConnect

integration with Oracle BPEL Process
Manager, 1-3

Oracle Application Server Portal
accessing Oracle BPEL Control reports, 21-2, 21-9
accessing Oracle BPEL Worklist

Application, 21-2, 21-13
activity sensor report type portal, 21-13
analysis portlet view, 21-19
configuring realms for 10.1.3.1.0, 21-3
deploying portlets, 21-4
fault sensor report type portal, 21-13
installing for use with Oracle BPEL Process

Manager, 21-3
instance execution time report type portal, 21-11
instance state report type portal, 21-11
listing portlet view, 21-16
Oracle BPEL Worklist Application

parameters, 21-14, 21-17
overview, 21-1
performance report type portal, 21-12
registering Web providers, 21-6
viewing Oracle BPEL Control reports from, 22-3

Oracle Application Server Wireless
wireless and voice component, 14-2

Oracle Applications adapter
capabilities, B-36
changing a purchase order tutorial, 1-14
demonstrating outbound business events

tutorial, 1-14
importing and creating a purchase order in Oracle

E-Business suite tutorial, 1-14
integration with Oracle XML gateway to create a

purchase order tutorial, 1-14
integration with Oracle XML gateway to retrieve a

purchase order acknowledgement
tutorial, 1-14

Oracle BAM
See Oracle Business Activity Monitoring

Oracle BAM Server
creating a BPEL sensor, 17-15
creating a BPEL sensor action, 17-15
creating a connection to, 17-14
deployment descriptor parameters, 17-15

Oracle BPEL Admin Console
accessing, 19-10
supported Web browsers, 19-10

Oracle BPEL Control
accessing, 15-95
accessing through Oracle Application Server

Portal, 21-2, 21-9
Activities tab, 19-27
activity sensor report creation, 22-7
activity sensor report portal, 21-13
BPEL Processes tab, 19-14
changes that impact the worklist

application, 15-80
changing to different domains, 19-13
clearing the WSDL cache, 19-14
creating test cases, 20-17
dashboard tab, 19-13
decision service support, 18-45
deploying BPEL processes, 19-14
fault sensor report creation, 22-9
fault sensor report portal, 21-13
instance execution time report portal, 21-11
instance state report portal, 21-11
Instances tab, 19-26
location of function descriptions, 3-4
message recovery from Oracle BPEL

Control, 19-15
overview, 2-17
performance report creation, 22-5
performance report portal, 21-12
process report creation, 22-3
process time distribution report creation, 22-10
refreshing the alarm table, 19-15
report creation, 19-25, 22-1
reviewing process logs, 19-15
running a process, 15-95
running and managing processes from, 2-1
setting deployment descriptors, 19-25
supported Web browsers, 19-10
undeploying processes, 19-18
viewing a history of process activities, 19-26
viewing activity interactions, 19-26
viewing and managing processes, 19-12
viewing header variable details, 19-26
viewing sensor and sensor action metadata, 17-11

Index-18

viewing sensor data, 19-25
viewing sensor values, 19-26
viewing the audit trail of a process, 19-26

Oracle BPEL Process Manager
adds value and ease of use to BPEL

functionality, 1-2
components of, 2-1
definition, 1-2
integration with Oracle Application Server

Integration B2B, 1-3
integration with Oracle Application Server

Integration InterConnect, 1-3
provides support for, 1-2
services in Oracle JDeveloper, 2-18
supported designer types, 1-3

Oracle BPEL Server
changing modes, 19-11
deploying process to, 2-1
overview, 2-17

Oracle BPEL Worklist Application
accessing, 15-96
accessing in local languages, 16-39
accessing tasks assigned to users, 15-10
accessing through Oracle Application Server

Portal, 21-2, 21-13
adding comments and attachments, 16-13
analysis portlet view, 21-19
approving or rejecting a task, 15-96
architecture, 16-41
concepts, 16-2
customizing, 16-41
customizing with preferences, 16-48
defining portlet parameters through Oracle

Application Server Portal, 21-14, 21-17
definition, 15-4
deploying the custom application, 16-46
determining action permissions, 16-17
enabling for single sign-on, 16-50
home page contents, 16-6
listing portlet view, 21-16
logging in, 16-4
parallel tasks, 16-17
payload viewing, 16-13
reports, 16-33
request status, 16-11
requesting more information, 16-15
responding to tasks from, 15-2
routing, 16-15
sample, 1-8
Task Actions list, 16-10
task reassignment, 16-15
use cases, 16-1
user and group information, 16-39

Oracle Business Activity Monitoring
creating a BPEL sensor action for Oracle BAM

Server, 17-15
creating a BPEL sensor for Oracle BAM

Server, 17-15
creating a connection to Oracle BAM

Server, 17-14

definition
integration with Oracle BPEL Process Manager

sensors, 17-13
message batching limitations, 17-17
overview, 17-13

Oracle Business Rules
use Oracle JAXB 1.0 for XML fact types, 18-22

Oracle Business Rules RL Language
definition, 18-3

Oracle Business Rules Rule Author
definition, 18-3

Oracle Business Rules Rules Engine
definition, 18-3

Oracle Business Rules SDK
definition, 18-3

Oracle Delegated Administration Services
creating users and groups, 15-104

Oracle Enterprise Manager
decision service support, 18-43

Oracle Internet Directory
creating users and groups, 15-104
LDAP-based provider type, 15-105
object classes for specifying user and role

properties, 15-106
storing a user’s local language and time

zone, 16-39
Oracle JDeveloper, 2-7, 2-8

adapters, 2-20
Application Navigator, 2-6
best practices when editing project files, 2-14
compiling and deploying a process, 19-2
compiling without deploying, 19-4
Component Palette, 2-10, 2-11
configuring notifications, 14-3
creating a project, 2-3
creating an application, 2-3
creating sensors, 17-2
deploying test suites, 20-19
designing processes, 2-1
for designing BPEL processes, 1-3
location of Application Navigator, 2-5
location of Component Palette, 2-5
location of Diagram window, 2-5
location of Log window, 2-5
location of Process Activities, 2-5
location of Property Inspector, 2-5
location of Structure window, 2-5
Log window, 2-13
notifications, 2-19
overview of design environment, 2-3
overview of services, 2-18
Process Activities, 2-10
Property Inspector, 2-12
sensors, 2-19
Services, 2-11
Structure window, 2-12
transformations, 2-19, 13-1
workflows, 2-19
worklists, 2-19

Oracle Rules Engine File Repository

Index-19

definition, 18-3
Oracle Rules Engine WebDav Repository

definition, 18-3
OracleAS Portal

See Oracle Application Server Portal
orion-ejb-jar.xml file

setting properties to catch exception errors, A-1
outcome-based modeling, 15-64

case statements for other task conclusions, 15-65
payload updates, 15-65

overview, 17-1

P
pager

notifications support, 14-10
pager activity

capabilities, B-17
parallel flows

definition, 6-1, 6-2
tutorials, 1-10, 1-14
use case, 6-1

parallel synchronous invocations
demos, 1-8

parallel tasks
in worklists, 16-17

parallel workflow
sample, 1-8

ParallelSearch
demos, 1-8

parseEscapedXML function
description, 3-21, D-13

partial processing
BPEL process as the client, 12-10
BPEL process as the service, 12-10
definition, 12-9

participant types
external routing service, 15-12, 15-36
FYI assignee, 15-11, 15-35
group vole, 15-11, 15-27
in workflow services, 15-11
management chain, 15-11, 15-30
sequential list of approvers, 15-11, 15-32
single approver, 15-11, 15-24

partner links
adding to an asynchronous service, 5-11
BPEL file code example, 4-2
capabilities, B-36
decision service, 18-39
definition, 1-3, 2-16, 4-2
displaying in Diagram window, 2-8
dynamic, 1-9
dynamic JCA partner links tutorial, 1-14
in asynchronous services, 5-4, 5-5, 5-11
in synchronous services, 4-2
overview, 2-16
select Web services on remote servers, 4-4
specifying a WSDL file, 2-17
UDDI and WSIL directories, 4-4

partnerlinkbinding

customize task syntax, 19-8
partnerLinkTypes

definition, 4-3, 5-3
in asynchronous services, 5-3
in synchronous services, 4-3

partnerRole attribute
definition, 5-5

passwords
changing domain passwords, 19-10
for using samples, 1-6

patterns
of interaction between a BPEL process and another

application, 12-1
payload viewing

in worklists, 16-13
performance reports

creating, 22-5
Perl

tutorials, 1-10
PHP

tutorials, 1-10
pick activity

adding correlations on an OnMessage
branch, B-19

capabilities, B-19
code example, 10-3
condition branches, 10-2
for timeouts, 10-1
onAlarm branch, 10-2
onMessage branch, 10-2
references, 1-9
tutorial, 1-11

polling control table
tutorial, 1-12

port types
definition, 4-3
in asynchronous services, 5-3
in synchronous services, 4-3

portlet
overview, 21-1

portlet parameter
overview, 21-1

ports
in synchronous services, 4-2

position function
description, 3-17

post() method
support for client specifying a conversation

ID, 11-5
preference properties

deployment descriptor, C-1
Oracle BAM Server deployment

descriptors, 17-15
SLACompletionTime deployment

descriptor, 22-5
Process Activities

definition, 2-10
location of in Oracle JDeveloper, 2-5

process code coverage tests
overview, 20-3

Index-20

process history
viewing, 19-26

process initiation
in BPEL test suites, 20-4

process life cycles
default instance version, 19-20, 19-22
example, 19-19
inactive instances, 19-23
retiring instances, 19-22

process reports
creating, 22-3

process time distribution reports
creating, 22-10

processes
creating templates of BPEL processes, 2-4
deploying from Oracle BPEL Control, 19-14
naming conventions, 2-4
process life cycle recommendations for a

development environment, 19-18
process life cycle recommendations for a

production environment, 19-18
viewing deployed and completed

processes, 19-13
viewing logs from Oracle BPEL Control, 19-15

processXQuery function
description, D-14

processXSLT function
description, D-14
example, 14-8
tutorial, 1-11

processXSQL function
description, D-15

procurement process
workflow functionality example, 15-5

production mode
changing, 19-11

projects
best practices when editing, 2-14
blank spaces not permitted in directory path, 2-3
BPEL file, 2-6
bpel.xml, 2-6
creating, 15-89
creating in Oracle JDeveloper, 2-3
creating templates of BPEL processes, 2-4
definition, 2-3
importing two schema files of the same name into

the same project is not supported, 2-13
in Application Navigator, 2-6
naming conventions, 2-4
naming limitations, 2-3
WSDL file, 2-6

property aliases
creating for correlation sets, 5-24

Property Inspector
definition, 2-12
location of in Oracle JDeveloper, 2-5

proxy support
in workflow services, 15-10

PUBLIC role
identity service role, 15-103

public views
BPEL_ACTIVITY_SENSOR_VALUES, 17-19
BPEL_FAULT_SENSOR_VALUES, 17-20
BPEL_PROCESS_INSTANCES, 17-18
BPEL_VARIABLE_SENSOR_VALUES, 17-21
BPMERRORS, 17-22
sensors, 17-18

publish types
creating a custom publisher, 17-8
custom, 17-2
database, 17-2
definition, 17-2
JMS Adapter, 17-2
JMS Queue, 17-2
JMS Topic, 17-2

pure SQL
tutorial, 1-12

Q
Qname

fault name, 8-3
query by example

tutorial, 1-12
query-database function

description, D-17

R
readBinaryFromFile function

description, D-15
readFile function

description, D-15
example, 14-7
reading files from absolute directory paths, D-15

realms
support for multirealms, 15-107, 21-3

receive activity
adding to an asynchronous service, 5-13
associating with correlation sets, 5-22
capabilities, B-20
create instance, 5-5
creating new instances, 5-6
in asynchronous services, 5-5, 5-13
references, 1-9
tutorials, 1-10

recovery
recovering messages from Oracle BPEL

Control, 19-15
REF CURSORS

tutorial, 1-12
references

assign activity, 1-9
BPEL exec extension, 1-9
BPELTest, 1-9
catch branch, 1-9
custom XPath functions, 1-9
dynamic partner links, 1-9
event handlers, 1-9
flow activity, 1-9

Index-21

flowN activity, 1-9
functions, 1-9
invoke activity, 1-9
JavaExec, 1-9
links, 1-9
location of, 1-7
pick activity, 1-9
receive activity, 1-9
replay, 1-9
reply activity, 1-9
switch activity, 1-10
terminate activity, 1-10
throw activity, 1-10
wait activity, 1-10
while activity, 1-10
XPath functions, 1-10
XPath queries, 1-10

rejectedMessageHandler property
tutorial, 1-13

reliable notification service
persisting messages, 14-2

reminders
for task notifications, 15-85

remoteFault
definition, 8-5

renewing
tasks, 15-39

repeating elements
in transformations, 13-14

replay
references, 1-9

replayFault
definition, 8-5

reply activity
capabilities, B-21
definition, 5-10
in asynchronous services, 5-10
references, 1-9

reporting schema
for database publish type of sensors, 17-18

reports
activity sensor report creation, 22-7
correcting memory errors when generating for

transformations, 13-27
creating, 19-25, 22-1
customizing sample XML generation for

transformations, 13-27
exporting to comma-separated value (CSV)

files, 22-3
fault sensor report creation, 22-9
generating for transformations, 13-26
overview, 22-1
performance report creation, 22-5
process report creation, 22-3
process time distribution report creation, 22-10
tutorials, 1-14
viewing from Oracle Application Server

Portal, 22-3
Worklist Application, 16-33

request status

in worklists, 16-11
requesting more information

in worklists, 16-15
ResilientDemo

demos, 1-8
resource bundles

for displaying tasks in different languages, 15-48,
15-83

REST services
tutorials, 1-15

retired
process life cycle, 19-17

retrieve results operation
definition, 18-15

retryInterval property
defining for fault handling, 8-12

retryMaxCount property
defining fault handling, 8-12

right-trim function
description, D-39

RMI
tutorials, 1-10
using Java API through, 11-5

roles
BPMDefaultDomainAdmin, 15-103, 15-104
BPMSystemAdmin, 15-103, 15-104
BPMWorkflowAdmin, 15-103, 15-104
BPMWorkflowReassign, 15-103, 15-104
BPMWorkflowSuspend, 15-103, 15-104
BPMWorkflowViewHistory, 15-103, 15-104
for partner links in asynchronous services, 5-4
predefined, 15-103
properties, 15-106
PUBLIC, 15-103
relationship with grantees, 15-104

routing
in worklists, 16-15

.routing slip
definition, 15-3, 15-26

RPC styles
differences with document-literal styles in WSDL

files, 3-2, 3-22
Rule Provider Interface

definition, 18-4
rule set modeling

methodology, 18-17
rules engine

connecting to, 18-7
definition, 18-2

rules engines
supported, 18-8

running
OrderApproval, 15-95

runtime config service
definition, 15-6
EJB, SOAP, and Java support, 15-97, 16-57
supported task operations, 15-111
WSDL file location, 15-98

run-time exceptions, 8-3
demos, 1-8

Index-22

run-time faults
binding faults sample, 8-5, 8-12
definition, 8-3
example, 8-5

RuntimeFault.wsdl file
importing into a process, 8-5

S
SAAJ

implementation of, 3-33
samples

AmazonFlow, 1-7
Apache Axis, 1-7
asynchronous services, 1-8
AutoLoanDemo, 1-7
automatically creating, 1-6
BankTransferDemo, 1-7
BEA WebLogic, 1-7
BPELTest, 1-7
CheckoutDemo, 1-7
DocumentReview, 1-8
ExpenseRequestApproval, 1-8
fault handling, 1-8
flowN activity, 1-8
GoogleFlow, 1-8
HelpDeskServiceRequest, 1-8
HotwireDemo, 1-8
human workflows, 1-9
IBMSamples, 1-8
Java embedding, 1-8
JSP, 1-7
JTA transaction management, 1-7
LoanDemo, 1-8
LoanDemoPlus, 1-8
location of, 1-6, 1-7
Microsoft .Net, 1-7
nonBlockingInvoke property in bpel.xml, 1-8
Oracle BPEL Worklist Application, 1-8
Parallel Search, 1-8
parallel workflow, 1-8
ParallelSearch, 1-8
password to use, 1-6
ResilentDemo, 1-8
run-time exceptions, 1-8
SalesforceFlow, 1-8
SleepBroker, 1-8
transaction management, 1-7
VacationRequest, 1-9
wait activity, 1-8
workflow services, 1-8
XSLMapper, 1-9

schema files
creating a transformation map file from imported

schemas, 13-3
importing into the decision service wizard, 18-13
replacing in the XSLT Mapper, 13-23

schemac
definition, 19-29
examples, 19-30

generating XML facades from WSDL or XSD
files, 9-7, 19-29

using, 19-29
scope activity

capabilities, B-22
definition, 8-6
fault handling, 8-6, 8-8
tutorials, 1-9

scope name
specifying in human task activities, 15-58

search function
description, D-43

seconds-from-dateTime function
description, D-21

security
invoking from Java RMI client, 1-14
invoking from JSP client, 1-14
invoking over HTTP directly, 1-14
invoking over SOAP client, 1-14
J2EE and JAAS security features, 19-9
tutorials, 1-14

security model
for workflow services, 15-98
in EJB Web services, 15-98
in SOAP Web services, 15-98
workflow context on behalf of a user, 15-99

SELECT ALL
tutorial, 1-12

sensor actions
configuring, 17-6
creating a BPEL sensor action for Oracle BAM

Server monitoring, 17-15
demos, 17-3
registering in the bpel.xml file, 17-11
viewing definitions, 17-11
viewing metadata from Oracle BPEL

Control, 17-11
XSD schema file, 17-23

sensor data
persisting in a reporting schema, 17-18

sensor values
viewing, 19-26

sensorAction.xml file, 17-6, 17-7
sensors, 17-1

activity sensors, 17-1
BPEL reporting schema, 17-18
BPEL_ACTIVITY_SENSOR_VALUES public

views, 17-19
BPEL_FAULT_SENSOR_VALUES public

views, 17-20
BPEL_PROCESS_INSTANCES public

views, 17-18
BPEL_VARIABLE_SENSOR_VALUES public

views, 17-21
BPMERRORS public views, 17-22
configuring, 17-3
creating a BPEL sensor for Oracle BAM Server to

monitor, 17-15
creating a connection to Oracle BAM

Server, 17-14

Index-23

creating a custom publish type, 17-8
creating in Oracle JDeveloper, 17-2
definition, 2-19, 17-1
demos, 17-3
evaluation time, 17-4
fault sensors, 17-2
in Oracle JDeveloper, 2-19
integration with Oracle Business Activity

Monitoring, 17-13
public views, 17-18
publish types, 17-2
registering in the bpel.xml file, 17-11
sensor actions XSD schema file, 17-23
sensorAction.xml file, 17-2
sensor.xml file, 17-2
tutorials, 1-14
use cases, 17-1
variable sensors, 17-2
viewing definitions, 17-11
viewing metadata from the Oracle BPEL

Control, 17-11
viewing sensor data in Oracle BPEL

Control, 19-25
sensors tab

in activities, B-2
sensor.xml file, 17-4, 17-5
sequence activity

capabilities, B-24
sequence-next-val function

description, D-17
sequential list of approvers

configuring, 15-32
definition, 15-11, 15-32
workflow participant type, 15-11, 15-32

service level agreement (SLA), 22-5
service names

in adapters, 2-20
Services

definition, 2-11
services

AQ adapter, B-34
business rules, 2-19
database adapter, B-34
decision service, B-34
EJB Web service, B-35
file adapter, B-35
FTP adapter, B-35
Java Web service, B-35
JMS adapter, B-35
MQ adapter, B-36
notifications, 2-19
Oracle Applications adapter, B-36
overview, 2-18, B-33
partner link, B-36
sensors, 2-19
transformations, 2-19
workflows, 2-19
worklists, 2-19

setting up, 15-46, 15-83
short message service

See SMS
simple task display form

contents of, 15-68
customizing the default JSP, 15-72
customizing the default JSP to display a check

box, 15-74
customizing the JSP, 15-71
customizing the map file, 15-71
payload of, 15-68

simple value assert
overview, 20-2

simple XMLType payload
tutorial, 1-13

single approver
configuring, 15-24
definition, 15-11, 15-24
workflow participant type, 15-11, 15-24

single sign-on
enabling for the Oracle BPEL Worklist

Application, 16-50
SLACompletionTime deployment descriptor

parameter
setting in reports, 22-5

SleepBroker
demos, 1-8

SMS
notifications support, 14-11

SMS activity
capabilities, B-25

SOAP
security in SOAP Web services, 15-98
support in workflow services, 15-97
using with the task query service, 15-102

SOAP client
security tutorial, 1-14

SOAP headers, 3-26
receiving in BPEL, 3-26
sending in BPEL, 3-27

SOAP interface
invoking a BPEL process, 11-6

SOAP messages
BPEL file contents for binary attachments, 3-32
demos, 1-7, 3-29
Java client using SAAJ, 3-33
use case with binary attachments, 3-29
with binary attachments using DIME or

MIME, 3-28
WSDL file contents for binary attachments, 3-30

SOAP services
invoking a BPEL process, 11-1
performance issues, 9-5
using Java code, 9-5

SOAP-encoded arrays
not supported, 3-21

Source window, 2-8
definition, 2-8

SQL Server
tutorial, 1-12

square-root function
description, D-43

Index-24

SSO
See single sign-on

standard faults
definition, 8-3

stored procedures
tutorial, 1-12

strings
concatenating, 3-7
converting to an XML element, 3-21

Structure window
definition, 2-12
location of in Oracle JDeveloper, 2-5

style sheets
using for attachments, 15-48

subtract-dayTimeDuration-from-dateTime function
description, D-21

suitcase JAR file
definition, 19-5

switch activity
adding, 7-3
capabilities, B-27
in conditional branching logic, 7-2
references, 1-10

synchronous callbacks, 4-1
operational concepts, 4-5
required ports, 4-2
syncMaxWaitTime property, 4-2

synchronous interactions
BPEL process as the client, 12-3
BPEL process as the service, 12-3
definition, 12-2
returning faults, 8-7

synchronous processes
timeouts, 10-4

synchronous reads
FTP tutorial, 1-14

synchronous services
callbacks with the partner link and invoke

activity, 4-2
calling, 4-5
invoke activities, 4-5
partnerLinkTypes, 4-3
port types, 4-3
ports, 4-2
tutorials, 1-10, 1-14

syncMaxWaitTime property
in synchronous callbacks, 4-2
increasing to prevent timeouts, 10-4
setting to catch exception errors, A-1

system actions
in tasks, 15-49

T
task action time limits

specifying, 15-26, 15-29, 15-32, 15-34
task actions

in worklists, 16-3, 16-10
task approvers

specifying statically or dynamically, 15-23

specifying the number of, 15-32
task assignment and routing

definition, 15-3
task conditions

abruptly completing a condition, 15-38
task display form

adding update support to custom JSPs, 15-80
changes between 10.1.2 and 10.1.3.1.0, E-8
contents of custom task display form, 15-74
contents of custom task display form

autogenerated JSP, 15-75
contents of custom task display form custom

JSP, 15-76
contents of custom task display form default

JSP, 15-77
contents of custom task display form XSL, 15-77
contents of simple task display form, 15-68
creating custom JSPs, 15-78
custom task display form, 15-74
custom task display form autogenerated

JSP, 15-75, 15-77
custom task display form custom JSP, 15-76
custom task display form XSL, 15-77
customizing the simple task display form default

JSP, 15-72
customizing the simple task display form default

JSP to display a check box, 15-74
customizing the simple task display form

JSP, 15-71
customizing the simple task display form map

file, 15-71
definition, 15-13, 15-66
deleting, 15-78
deploying, 15-77
payload of simple task display form, 15-68
preview release support for ADF data

controls, 15-67
selecting, 15-66
simple task display form, 15-68
simple task display form payload, 15-68

.task file
associating with a BPEL process, 15-12, 15-53,

15-54
definition, 15-3, 15-12, 15-13
exiting the file and saving changes, 15-53

task history
specifying in human task activities, 15-59, 15-64

task initiator
specifying, 15-55

task metadata service
definition, 15-6
EJB, SOAP, and Java support, 15-97, 16-57
supported task operations, 15-109
WSDL file location, 15-97

task notification
editing notification messages, 15-45
making e-mails actionable, 15-46, 15-83
notifying recipients of changes to task

status, 15-44
overview, 15-43

Index-25

reminders, 15-85
securing notifications, 15-46, 15-85
setting up reminders, 15-46
task attachments with e-mail notifications, 15-46,

15-84
task outcome

displaying custom outcomes in a human task
activity, 15-17

specifying, 15-16
task owner

specifying by browsing the user directory, 15-18
specifying in human task activities, 15-58
specifying through XPath expressions, 15-20

task parameters
specifying, 15-56

task participants
allowing all participants to invite other

participants, 15-37
assigning task participants by name or

expression, 15-25, 15-28, 15-31, 15-33, 15-36
bypassing, 15-26, 15-28, 15-31, 15-34
dynamically assigning task participants by

expression, 15-26, 15-28, 15-31, 15-34, 15-36
dynamically assigning with the assignment

service, 15-118
inviting additional task participants, 15-26, 15-32,

15-34
sharing attachments and comments, 15-29, 15-36
specifying, 15-22

task payload data structure
specifying, 15-21

task priority
specifying, 15-16, 15-55

task query service
definition, 15-6
EJB, SOAP, and Java support, 15-97, 16-57
supported task operations, 15-101
using over SOAP, 15-102
WSDL file location, 15-97

task reassignment
in worklists, 16-15

task reminders
setting up, 15-46

task reports service
EJB, SOAP, and Java support, 15-97, 16-57

task routing service
definition, 15-6

task service
definition, 15-6
EJB, SOAP, and Java support, 15-97, 16-57
supported task operations, 15-99
WSDL file location, 15-97

task title
specifying, 15-16, 15-55

tasks
assigning a task to a user or role, 15-9
continuing workflows from other

workflows, 15-12
definition, 15-2
delegations, 15-10

escalating, renewing, or ending a task, 15-39
escalations, 15-10
expirations, 15-10
notifications and reminders, 15-80
overriding exception management, 15-51
routing, 15-9

TCP tunneling
definition, 5-8
setting up a TCP listener for asynchronous

services, 5-9
setting up a TCP listener for synchronous

services, 5-8
technology adapters

supported, 1-2
templates

creating templates of BPEL processes, 2-4
terminate activity

capabilities, B-27
definition, 8-10
fault handling, 8-10
references, 1-10

test cases
creating from Oracle BPEL Control, 20-17
creating in test suites, 20-9
editing, 20-9
importing into test suites, 20-7

test suites
components, 20-3
creating, 20-6
definition, 20-2
deploying from an ant task, 20-20
deploying from Oracle JDeveloper, 20-19
limitations on multibyte character names, 20-6
running from an ant task, 20-24
running from Oracle BPEL Control, 19-25, 20-21
viewing test results, 20-21

third-party adapters
supported, 1-2

throw activity
capabilities, B-28
references, 1-10
throwing internal faults, 8-6

time
assigning, 3-8

time duration format, 10-2
timeouts

designing, 10-4
increasing the syncMaxWaitTime property, 10-4
of BPEL processes, 10-1
tutorial, 1-11
use case, 10-1
using pick activities, 10-1
using the wait activity, 10-4
with synchronous processes, 10-4

timezone-from-dateTime function
description, D-22

transaction management
samples, 1-7

transaction-manager.xml file
handling long-running processes, A-2

Index-26

setting properties to catch exception errors, A-1
transaction-timeout property

setting to catch exception errors, A-1
transform activity

capabilities, B-29
creating, 13-1

transformation functions
Component Palette, 2-10

transformations
adding XSLT constructs, 13-12
auto mapping, 13-15
auto mapping with confirmation, 13-17
chaining functions, 13-10
correcting memory errors, 13-27
creating, 13-1
creating a map file from imported schemas, 13-3
creating a new map file, 13-2
creating an XSL map from an XSL stylesheet, 13-1
customizing sample XML generation, 13-27
definition, 2-19
demos, 1-9
dictionaries, 13-19
editing functions, 13-9
editing XPath expressions, 13-11
error when mapping duplicate elements, 13-6
functions, 13-8
functions prefixed with xp20 or orcl, 13-8
generating optional elements, 13-28
generating reports, 13-26
ignoring elements, 13-22
in Oracle JDeveloper, 2-19
linking source target nodes, 13-7
map parameter and variable creation, 13-19
named templates in functions, 13-10
repeating elements, 13-14
replacing schemas, 13-23
rules, 13-6
searching source and target nodes, 13-21
setting constant values, 13-7
setting the maximum depth, 13-28
setting the number of repeating elements, 13-27
testing the map file, 13-23
tutorials, 1-11, 1-14
use case, 13-1
user-defined functions, 13-10
using arrays, 13-14
using the XSLT Mapper, 13-6
using XQuery and XSLT, 3-4
viewing unmapped target nodes, 13-18
xsl choose conditional processing, 13-13
xsl if conditional processing, 13-12

translateFromNative function
description, D-44

translateToNative function
description, D-44

troubleshooting and workarounds
catching exception errors, A-1
Oracle BPEL Worklist Application, A-5
sensors, A-3

tutorials

101.HelloWorld, 1-10
102.InvokingProcesses, 1-10
103.XMLDocuments, 1-10
104.SyncQuoteConsumer, 1-10
105.AsyncCompositeLoanBroker, 1-10
106.ParallelFlows, 1-10
107.Exceptions, 1-11
108.Timeouts, 1-11
109.CorrelationSets, 1-11
112.Arrays, 1-11
113.ABCARouting, 1-11
114.XSLTTransformations, 1-11
115.XQueryTransformations, 1-11
125.ReportsSchema, 1-14
126.DataAggregator, 1-14
127.OrderBookingTutorial, 1-14
128.GoogleFlow, 1-14
130.SendEmailWithAttachments, 1-14
132.UserTasks, 1-14
133.SecureInvokingProcesses, 1-14
140.AdapterFramework, 1-14
150.AppsAdapter, 1-14
701.LargeProcesses, 1-14
702.Bindings, 1-15
activity, 1-11
ADT queue, 1-13
ADT with XMLType payload, 1-13
AQ adapter, 1-13
AQ adapter BLOB column enqueuing, 1-13
AQ adapter message recipients listener, 1-13
AQ adapter multiconsumer queues, 1-13
AQ adapter raw queues, 1-13
AQ adapter rules-based subscriber, 1-13
AQ adapter SQL primitive types, 1-13
arrays, 1-11
asynchronous process, 1-10
asynchronous services, 1-14
attachments in SOAP messages, 1-14
automatically creating, 1-6
Axis, 1-10
batching, 1-14
catch branch, 1-11
CLOB payload, 1-13
CLOB payload as opaque, 1-13
COBOL Copybook, 1-11
comma-separated value (CSV) files, 1-11
compensate activity, 1-7
complex structures, 1-11
conditional branching logic, 1-14
correlation sets, 1-11, 5-14
correlations with the AQ adapter, 1-13
database adapter, 1-12, 1-14
database adapter advanced topics, 1-12
database adapter pure SQL, 1-12
database adapter query by example, 1-12
database adapter REF CURSORS, 1-12
database adapter SQL Server, 1-12
database and file adapter tutorial, 1-12
database delete operation, 1-12
database fault handling, 1-12

Index-27

database insert operation, 1-12
database last read ID, 1-12
database logical polling delete strategy, 1-12
database master detail replication, 1-12
database merge operation, 1-12
database polling control table tutorial, 1-12
database SELECT ALL, 1-12
database update operation, 1-12
debatching, 1-11, 1-14
dynamic JCA partner links, 1-14
EJB, 1-15
exceptions, 1-14
fault handling, 1-11, 1-14
file adapter, 1-11
file handler, 1-14
fixed length format, 1-11
flat structure, 1-11
flow activity, 1-10
FTP adapter, 1-14
FTP adapter debatching, 1-14
FTP debatching, 1-14
FTP synchronous reads, 1-14
HTTP get method, 1-15
invoke activity, 1-10
Java method, 1-15
JAX-RPC, 1-10
JMS adapter, 1-13
JSP, 1-10
location of, 1-6, 1-7
message service, 1-11
notifications, 1-14
opaque with headers, 1-11
Oracle Applications adapter changing a purchase

order, 1-14
Oracle Applications adapter demonstrating

outbound business events, 1-14
Oracle Applications importing and creating a

purchase order in Oracle E-Business
suite, 1-14

Oracle Applications integration with Oracle XML
gateway to create a purchase order, 1-14

Oracle Applications integration with Oracle XML
gateway to retrieve a purchase order
acknowledgement, 1-14

parallel flows, 1-10, 1-14
Perl, 1-10
PHP, 1-10
pick activity, 1-11
processXSLT, 1-11
receive activity, 1-10
REF CURSORs, 1-12
rejectedMessageHandler property, 1-13
reports, 1-14
REST services, 1-15
RMI, 1-10
security, 1-14
sensors, 1-14
simple XMLType payload, 1-13
stored procedures, 1-12
supported 10.1.3 ADT types, 1-13

synchronous services, 1-10, 1-14
third-party adapters, 1-3
timeouts, 1-11
transformations, 1-11, 1-14
Web client, 1-10
workflows, 1-14
XML facades, 9-7
XML variables, 1-10
XQuery transformations, 1-11
XSLT Mapper, 1-11

U
UDDI directories

browsing for services, 4-4
undeployment

of BPEL processes, 19-17, 19-18
unit test case

definition, 20-2
upper-case function

description, D-39
use cases

human workflow examples, 15-86
human workflow vacation request

example, 15-87
SOAP messages with binary attachments, 3-29

user directory
selecting notification recipients by browsing the

directory, 14-14
user information

in worklists, 16-39
user metadata service

definition, 15-6
EJB, SOAP, and Java support, 15-97, 16-57
supported task operations, 15-109
WSDL file location, 15-98

user task activities
creating, 15-89

users
controlling access to in worklists, 16-48
creating, 15-104
properties, 15-106

uses cases
BPEL process integration with business

rules, 18-51
using this guide, 1-4
utils

location of, 1-7

V
VacationRequest

demos, 1-9
VacationRequest process

deploying, 15-95
running, 15-95

validateXML property
limitations on setting to true for notification

services, 14-15
validating

Index-28

VacationRequest process, 15-95
validation

limitations on setting to true for notification
services, 14-15

of XML data with bpelx
validate, 3-16

when loading a process diagram, B-37
validation errors

correcting in complex processes, A-2
variable sensors

definition, 17-2
variables

complex type, 3-6
copying data between, 3-5
initializing with expression constants, 3-4
initializing with literal XML, 3-4

versions
default, 19-17
definition, 19-2
deployment of multiple versions of the same

process, 19-2
do not overwrite existing versions of a process

with newer versions in a production
environment, 19-19

in production and development
environments, 19-3

life cycles, 19-14
of BPEL processes, 19-2
overwriting, 19-2

voice activity
capabilities, B-30

voice mail
dynamically setting telephone numbers, 14-13
notifications support, 14-12

W
wait activity

capabilities, B-31
code example, 10-4
definition, 10-4
references, 1-10
sample, 1-8

Web browsers
supported, 19-10

Web client
tutorials, 1-10

Web interfaces
interacting with BPEL processes, 11-1

Web providers
overview, 21-1
registering with Oracle Application Server

Portal, 21-6
Web services

remote Web Services
selecting remote services when creating a

partner link, 4-4
selecting remote services when creating a partner

link, 4-4
Web Service/SOAP interface

invoking a BPEL process, 11-6
wfDynamicGroupAssign function

description, D-32
wfDynamicUserAssign function

description, D-33
while activity

capabilities, B-32
in conditional branching logic, 7-4
references, 1-10
tutorial, 1-11

WordML style sheets
using for attachments, 15-48

work queues
in workflow services, 15-10

workflow context
creating on behalf of a user, 15-99

workflow functions
overview, 15-97

workflow services
abruptly completing a condition, 15-38
actionable e-mails, 15-46, 15-83
adding update support to custom JSPs, 15-80
allowing all participants to invite other

participants, 15-37
assigning a task to a user or role, 15-9
assigning task participants by name or

expression, 15-25, 15-28, 15-31, 15-33, 15-36
assignment service configuration, 15-113
associating the human task activity with a BPEL

process, 15-54
associating the human task definition with a BPEL

process, 15-12
associating the human task with a BPEL

process, 15-53
automatic assignment and delegation, 15-10
bypassing task participants, 15-26, 15-28, 15-31,

15-34
changes between 10.1.2 and 10.1.3.1.0, 15-2, E-6
changes between the workflow wizard and

Human Task editor between 10.1.2 and
10.1.3.1.0, E-2

changes to configuration files between 10.1.2 and
10.1.3.1.0, E-6

changes to task display form deployment between
10.1.2 and 10.1.3.1.0, E-8

changes to worklist APIs between 10.1.2 and
10.1.3.1.0, E-7

components of, 15-6
continuing workflows from other

workflows, 15-12
creating custom JSPs, 15-78
custom task display form, 15-74
custom task display form autogenerated

JSP, 15-75
custom task display form custom JSP, 15-76
custom task display form default JSP, 15-77
custom task display form XSL, 15-77
customizing the simple task display form default

JSP, 15-72
customizing the simple task display form default

Index-29

JSP to display a check box, 15-74
customizing the simple task display form

JSP, 15-71
customizing the simple task display form map

file, 15-71
definition, 2-19, 15-2
deleting the task display form, 15-78
demos, 1-8
deploying the task display form, 15-77
deprecated functions, 15-123
dynamically assigning task participants by

expression, 15-26, 15-28, 15-31, 15-34, 15-36
editing notification messages, 15-45
EJB support, 15-97
escalate after policy, 15-42
escalating, renewing, or ending a task, 15-39
escalation and expiration policy overview, 15-39,

15-40
escalation rules, 15-47
escalation, expiration, and delegation, 15-10
exiting the Human Task editor and saving

changes, 15-53
expire after policy, 15-41
external routing service task participant, 15-36
features, 15-2
functions, 15-122

clearTaskAssignees, D-28
createWordMLDocument, D-29
getNotificationProperty, D-29
getNumberOfTaskApprovals, D-30
getPreviousTaskApprover, D-30
getTaskAttachmentByIndex, D-30
getTaskAttachmentByName, D-30
getTaskAttachmentContents, D-31
getTaskAttachmentsCount, D-31
getTaskResourceBindingString, D-31
wfDynamicGroupAssign, D-32
wfDynamicUserAssign, D-33

FYI assignee task participant, 15-35
group rules integration

definition, 15-3
group vote task participant, 15-27
group voting details, 15-29
Human Task editor

definition, 15-3, 15-12, 15-13
identification key, 15-59
identity service, 15-6
in Oracle JDeveloper, 2-19
including the task history of other tasks, 15-59,

15-64
inviting additional task participants, 15-26, 15-32,

15-34
Java support, 15-97
management chain task participant, 15-30
multilingual settings, 15-48, 15-83
never expire policy, 15-41
notification

definition, 15-2
notification contents, 15-82
notification preferences, 15-43

notification service, 15-4, 15-6, 15-81
notifications, 15-80
notifying recipients of changes to task

status, 15-44
number of task approvers, 15-32
opening a definition already associated with a

BPEL process, 15-54
Oracle BPEL Worklist Application, 15-4
outcome-based modeling, 15-64
overriding default exception management, 15-51
overriding default system actions, 15-49
overview, 15-97
overview of modeling process, 15-12
participant types, 15-11
participant types of a workflow, 15-9
procurement process example, 15-5
proxy support, 15-10
renew after policy, 15-42
reports

definition, 15-4
routing slip

definition, 15-3, 15-26
runtime config service, 15-6
samples, 1-8
scope name and global task variable name, 15-58
securing notifications, 15-46, 15-85
security model, 15-98
sequential list of approvers task

participant, 15-32
setting up reminders, 15-46
sharing attachments and comments with task

participants, 15-29, 15-36
simple task display form, 15-68
simple task display form payload, 15-68
single approver task participant, 15-24
SOAP support, 15-97
specifying a task initiator and task priority, 15-55
specifying a task title, 15-55
specifying callback classes, 15-51
specifying class names, 15-37
specifying task approvers, 15-23
specifying task parameters, 15-56
storage of task history for auditing, 15-3
style sheets in attachments, 15-48
support for group rules, 15-3
support for identity service, 15-4, 15-102
support for JSP-based forms, 15-3
support for multiple participant types, 15-4
support for task assignment and routing, 15-3
support for task delegation, escalation, and

reapproval, 15-3
support for task expiration and automatic

renewal, 15-3
support for user rules, 15-3
task

definition, 15-2
task assignment and routing

definition, 15-3
task attachments with e-mail notifications, 15-46,

15-84

Index-30

task display form, 15-13, 15-66
task display form selection, 15-66
.task file

definition, 15-3, 15-12, 15-13
task metadata service, 15-6
task notifications, 15-80
task outcome, 15-16
task owner, 15-58
task owner specification through the user

directory, 15-18
task owner specification through XPath

expressions, 15-20
task participants, 15-22
task payload data structure, 15-21
task priority, 15-16
task query service, 15-6
task routing and customization in BPEL

callbacks, 15-52, 15-59
task routing service, 15-6
task service, 15-6
task title, 15-16
time limits for acting on tasks, 15-26, 15-29, 15-32,

15-34
use cases, 15-8
user metadata service, 15-6
user rules integration

definition, 15-3
viewing BPEL callbacks, 15-62
viewing the human task activity contents, 15-60
WordML style sheets in attachments, 15-48
work queues, 15-10
worklist

definition, 15-2
XPath extension functions, 15-122

worklist APIs
changes between 10.1.2 and 10.1.3.1.0, E-7

worklists
accessing in local languages, 16-39
adding comments and attachments, 16-13
controlling access to information and actions for

users, 16-48
customizing the Oracle BPEL Worklist

Application, 16-41
definition, 2-19, 15-2
determining action permissions, 16-17
in Oracle JDeveloper, 2-19
Oracle BPEL Worklist Application action

permission determination, 16-17
Oracle BPEL Worklist Application attachment

parallel tasks, 16-17
Oracle BPEL Worklist Application

comments, 16-13
Oracle BPEL Worklist Application

customizing, 16-41
Oracle BPEL Worklist Application home page

contents, 16-6
Oracle BPEL Worklist Application local language

access, 16-39
Oracle BPEL Worklist Application payload

viewing, 16-13

Oracle BPEL Worklist Application request
status, 16-11

Oracle BPEL Worklist Application requests for
more information, 16-15

Oracle BPEL Worklist Application routing, 16-15
Oracle BPEL Worklist Application Task Actions

list, 16-10
Oracle BPEL Worklist Application task

reassignment, 16-15
Oracle BPEL Worklist Application user and group

information, 16-39
parallel tasks, 16-17
payload viewing, 16-13
request status, 16-11
requesting more information, 16-15
routing, 16-15
task actions, 16-3, 16-10
task reassignment, 16-15
use cases, 16-1
user and group information, 16-39

writeBinaryToFile function
description, D-16

WS-Addressing, 5-7
definition, 5-7
sending correlation IDs, 5-6

WSDL cache
clearing, 19-14

WSDL files
definition, 2-6
differences between document-literal styles and

RPC styles, 3-2, 3-22
location for identity service, 15-98
location for notification service, 15-98
location for runtime config service, 15-98
location for task metadata service, 15-97
location for task query service, 15-97
location for task service, 15-97
location for user metadata service, 15-98
modifying to generate a fault, 8-5
specifying when creating a partner link, 2-17

WSIF bindings
decision service, 18-47
definition, 9-1
for using Java code in a BPEL process, 9-1
Java binding service using XML DOM

elements, 9-3
Java binding service using XML facades, 9-2
Java binding service using XML simple types, 9-2
Java throwing a WSDL fault from a Java

binding, 9-4
WSIF providers

adding a custom WSIF provider, 3-23
WSIL directories

browsing for remote services, 4-4
browsing for services, 4-4

X
XML assert

overview, 20-3

Index-31

XML data in BPEL, 3-2
XML data manipulation

bpelx:append extension, 3-10
bpelx:copyList extension, 3-15
bpelx:insertAfter extension, 3-12
bpelx:insertBefore extension, 3-11
bpelx:remove extension, 3-12
bpelx:rename extension, 3-13
bpelx:validate extension, 3-16

XML documents
manipulating, 3-2, 3-4
overview, 3-2, 3-4

XML facades
definition, 9-7
generating with schemac, 9-7, 19-29
Java binding service using, 9-2
Java embedding, 9-7
tutorials, 9-7

XML schemas
in BPEL tests, 20-32
message types and variable types, 3-1

XML variables
tutorials, 1-10

XPath, 3-2
XPath expressions

assigning numeric values, 3-6
Boolean expressions in switch activities, 7-4
dynamically creating another XPath

expression, 3-17
dynamically setting e-mail addresses and

telephone numbers, 14-13
editing in transformations, 13-11
examples, 3-3
fetching a data sequence element, 3-17
in conditional branching logic, 7-1
specifying a task owner, 15-20
specifying task approvers, 15-23

XPath functions
creating a custom XPath function, D-45
examples, 3-4
in transformations, 13-8
indexing methods, 3-17
mathematical calculations, 3-7
references, 1-10
using custom functions within assign

activities, 1-9
XPath queries

copying data, 3-6
examples, 3-3
references, 1-10

XQuery, 3-2, 3-4
XQuery transformations

tutorials, 1-11
XSL

custom task display form, 15-77
xsl choose

conditional processing, 13-13
xsl if

conditional processing, 13-12
XSL map

creating from an XSL stylesheet, 13-1
XSL stylesheet

creating an XSL map, 13-1
XSLMapper

demos, 1-9
XSLT, 3-2, 3-4
XSLT constructs

adding in transformations, 13-12
XSLT Mapper

adding XSLT constructs, 13-12
auto mapping, 13-15
auto mapping with confirmation, 13-17
chaining functions, 13-10
correcting memory errors when generating

reports, 13-27
creating a map file, 13-5
creating a map file from imported schemas, 13-3
creating a new map file, 13-2
creating a transform activity, 13-1
creating an XSL map from an XSL stylesheet, 13-1
customizing sample XML generation for

transformations, 13-27
demos, 1-9
dictionaries, 13-19
editing functions, 13-9
editing XPath expressions, 13-11
error when mapping duplicate elements, 13-6
functions, 13-8
functions prefixed with xp20 or orcl, 13-8
generating optional elements, 13-28
generating reports, 13-26
ignoring elements, 13-22
layout in Oracle JDeveloper, 13-5
linking source and target nodes, 13-7
map parameter and variable creation, 13-19
named templates in functions, 13-10
repeating elements, 13-14
replacing schemas, 13-23
rules, 13-6
searching source and target nodes, 13-21
setting constant values, 13-7
setting the maximum depth, 13-28
setting the number of repeating elements, 13-27
testing the map file, 13-23
tutorials, 1-11
use case, 13-1
user-defined functions, 13-10
using, 13-6
using arrays, 13-14
viewing unmapped target nodes, 13-18
xsl choose conditional processing, 13-13
xsl if conditional processing, 13-12

Y
year-from-dateTime function

description, D-22

Index-32

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What’s New in Oracle BPEL Process Manager?
	Part I Part I Introduction and Concepts
	1 Introduction to Oracle BPEL Process Manager
	What Is BPEL?
	What Is Oracle BPEL Process Manager?
	What Is Oracle JDeveloper?
	How to Use This Guide
	Getting Started with Demonstrations, Activity and Conceptual References, and Tutorials
	What Demonstrations Are Available?
	What Activity and Conceptual References Are Available?
	What Tutorials Are Available?

	Summary

	2 Getting Started with Oracle BPEL Process Manager
	Overview of Oracle BPEL Process Manager Components
	Starting Oracle BPEL Process Manager Components
	Overview of the BPEL Designer Environment
	Overview of BPEL Project Creation and Oracle JDeveloper
	Application Navigator
	Diagram Window
	Source Window
	History Window
	Component Palette
	Property Inspector
	Structure Window
	Log Window
	Editing Project Files in Oracle JDeveloper

	Overview of Activities
	Overview of Partner Links
	Overview of Oracle BPEL Server
	Overview of Oracle BPEL Control
	Overview of Oracle BPEL Process Manager Services
	Overview of Oracle BPEL Process Manager Technology Adapters
	Summary

	Part II Reviewing Key BPEL Development Concepts and Code Samples
	3 Manipulating XML Data in BPEL
	Use Cases for Manipulating XML Data in BPEL
	Overview of Manipulating XML Data in BPEL Concepts
	How XML Data Works in BPEL
	About Data Manipulation and XPath Standards

	Initializing a Variable with Expression Constants or Literal XML
	Copying Between Variables
	Accessing Fields Within Element-Based and Message Type-Based Variables
	Assigning Numeric Values
	Mathematical Calculations with XPath Standards
	Assigning String Literals
	Concatenating Strings
	Assigning Boolean Values
	Assigning Date or Time
	Manipulating Attributes
	Manipulating XML Data with bpelx Extensions
	bpelx:append
	bpelx:insertBefore
	bpelx:insertAfter
	bpelx:remove
	bpelx:rename and XSD Type Casting
	bpelx:copyList

	Validating XML Data with bpelx:validate
	Manipulating XML Data Sequences That Use Arrays
	Statically Indexing into an XML Data Sequence That Uses Arrays
	Determining Sequence Size
	Dynamically Indexing by Applying a Trailing XPath to an Expression
	Dynamic Indexing Example
	Using the bpelx:append Extension to Append New Items to a Sequence
	Merging Data Sequences
	Dynamically Indexing with the BPEL getElement Function
	Generating Functionality Equivalent to an Array of an Empty Element

	SOAP-Encoded Arrays Not Supported

	Converting from a String to an XML Element
	Differences Between Document-Style and RPC-Style WSDL Files
	Adding a Custom WSIF Provider
	Task 1: Register the WSDL Extension to the WSDL Reader
	Task 2: Register the WSIF Provider

	Input and Output Message Header Handling
	Header Handlers
	Registering of Header Handlers
	Manipulation of partnerLink Properties

	Manipulating SOAP Headers in BPEL
	Receiving SOAP Headers in BPEL
	Sending SOAP Headers in BPEL

	Using Binary Attachments in SOAP Messages
	Use Case: SOAP Message with Binary Attachment Using MIME
	WSDL File Contents
	BPEL File Contents
	Java Client Using SAAJ

	Displaying the Attachment Key for Binary Attachments Using the DIME Protocol in Oracle BPEL Control

	Summary

	4 Invoking a Synchronous Web Service
	Use Case for Synchronous Web Services
	Overview of Synchronous Service Concepts
	Establishing the Partner Link
	Defining the Partner Link in the BPEL Code
	Using the WSDL File to Enable the Web Services to Work with a BPEL Process
	Performing Lookups for Services that Use Partner Links
	Accessing Web Services on Remote Servers

	Using the Invoke Activity to Perform a Request

	Calling a Synchronous Service
	Summary

	5 Invoking an Asynchronous Web Service
	Use Case for Asynchronous Web Services
	Overview of Asynchronous Callback Concepts
	partnerLinkTypes for Asynchronous Services
	Calling the Service from BPEL
	How the Invoke and Receive Activities Work
	Managing Multiple Active BPEL Process Instances Using Correlation Methods
	WS-Addressing
	Setting up a TCP Listener for Synchronous Services
	Setting up a TCP Listener for Asynchronous Services

	Using Correlation Sets to Coordinate Asynchronous Message Body Contents

	Using the Reply Activity to Send Messages in Response to a Receive Activity
	Using Dehydration Points to Maintain Long-Running Asynchronous Processes

	Calling an Asynchronous Service
	Step 1: Adding a Partner Link for an Asynchronous Service
	Step 2: Adding an Invoke Activity
	Step 3: Adding a Receive Activity
	Step 4: Performing Additional Activities

	Using Correlation Sets in an Asynchronous Service
	Step 1: Creating a Project
	Step 2: Configuring Partner Links and File Adapter Services
	Creating an Initial Partner Link and File Adapter Service
	Creating a Second Partner Link and File Adapter Service
	Creating a Third Partner Link and File Adapter Service

	Step 3: Creating Three Receive Activities
	Creating an Initial Receive Activity
	Creating a Second Receive Activity
	Creating a Third Receive Activity

	Step 4: Creating Correlation Sets
	Creating an Initial Correlation Set
	Creating a Second Correlation Set

	Step 5: Associating Correlation Sets with Receive Activities
	Associating the First Correlation Set with a Receive Activity
	Associating the Second Correlation Set with a Receive Activity
	Associating the Third Correlation Set with a Receive Activity

	Step 6: Creating Property Aliases
	Creating Property Aliases for NameCorr
	Creating Property Aliases for IDCorr

	Step 7: Reviewing WSDL File Content

	Summary

	6 Parallel Flow
	Use Case for Parallel Flows
	Overview of Parallel Flow Concepts
	Defining a Parallel Flow
	Customizing the Number of Flow Activities by Using the flowN Activity
	BPEL Code Example of the FlowN Activity

	Summary

	7 Conditional Branching
	Use Case for Conditional Branching
	Overview of Conditional Branching Concepts
	Using a Switch Activity to Define Conditional Branching
	Using a While Activity to Define Conditional Branching
	Summary

	8 Fault Handling
	Use Case for Fault Handling
	Defining a Fault Handler
	BPEL Standard Faults
	Categories of BPEL Faults
	Business Faults
	Run-time Faults
	bindingFault
	remoteFault
	replayFault
	Catching Run-time Faults Example

	Getting Fault Details with the getFaultAsString XPath Extension Function
	Using the Scope Activity to Manage a Group of Activities
	Throwing Internal Faults
	Returning External Faults
	Returning a Fault in a Synchronous Interaction
	Returning a Fault in an Asynchronous Interaction

	Using a Fault Handler within a Scope
	Using the Empty Activity to Insert No-Op Instructions into a Business Process

	Using Compensation After Undoing a Series of Operations
	Using the Terminate Activity to Stop a Business Process Instance
	Fault Handling Example
	Summary

	9 Incorporating Java and J2EE Code in BPEL Processes
	Overview of Java and J2EE Code in BPEL Concepts
	Using Java Code with WSIF Binding
	Java Binding Service Using XML Simple Types
	Java Binding Service Using Oracle BPEL Process Manager XML Facade
	Java Binding Service Using XML DOM Elements
	Throwing a WSDL Fault from a Java Binding

	Using Java Code Wrapped as a SOAP Service
	Directly Embedding Java Code in a BPEL Process
	Using the bpelx:exec Tag to Embed Java Code Snippets into a BPEL Process
	Using an XML Facade to Simplify DOM Manipulation
	bpelx:exec Built-in Methods

	Using Java Embedding in a BPEL Process
	Summary

	10 Events and Timeouts
	Use Case for Events and Timeouts
	Overview of Event and Timeout Concepts
	Using the Pick Activity to Select Between Continuing a Process or Waiting
	Using the Wait Activity to Set an Expiration Time
	Setting Timeouts for Synchronous Processes
	Defining a Timeout
	Summary

	11 Invoking a BPEL Process
	Use Case for Invoking a BPEL Process
	Overview of Invoking BPEL Process Concepts
	Sending Messages to a BPEL Process from a Java or JSP Application
	Invoking a BPEL Process with the Generic Java API
	Connecting to Oracle BPEL Process Manager with the Locator Class
	Passing XML Messages Through Java
	Invoking a Two-Way Operation Through the Java API
	Invoking a One-Way Operation Through the Java API

	Retrieving Status or Results from Asynchronous BPEL Processes
	Using the Java API from a Remote Client
	Invoking a BPEL Process with the Web Service/SOAP Interface

	Summary

	12 Interaction Patterns
	One-Way Message
	Synchronous Interaction
	Asynchronous Interaction
	Asynchronous Interaction with Timeout
	Asynchronous Interaction with a Notification Timer
	One Request, Multiple Responses
	One Request, One of Two Possible Responses
	One Request, a Mandatory Response, and an Optional Response
	Partial Processing
	Multiple Application Interactions
	Summary

	Part III Oracle BPEL Process Manager Services
	13 XSLT Mapper and Transformations
	Use Case for Transformation
	Creating an XSL Map File
	Creating a New XSL Map File
	Creating an XSL Map File from Imported Source and Target Schema Files

	Overview of the XSLT Mapper
	Notes on the Mapper

	Using the XSLT Mapper
	Simple Copy by Linking Nodes
	Setting Constant Values
	Adding Functions
	Editing Function Parameters
	Chaining Functions
	Named Templates
	Importing User-Defined Functions

	Editing XPath Expressions
	Adding XSLT Constructs
	Conditional Processing with xsl:if
	Conditional Processing with xsl:choose
	Handling Repetition or Arrays

	Automatically Mapping Nodes
	Auto Map with Confirmation

	Viewing Unmapped Target Nodes
	Generating Dictionaries
	Creating Map Parameters and Variables
	Creating a Map Parameter
	Creating a Map Variable

	Searching Source and Target Nodes
	Ignoring Elements in the XSLT Document
	Replacing a Schema in the XSLT Mapper

	Testing the Map
	Test XSL Map Window
	Generating Reports
	Correcting Memory Errors When Generating Reports

	Sample XML Generation

	Summary

	14 Oracle BPEL Process Manager Notification Service
	Use Cases for Notification Service
	Overview of Notification Service Concepts
	Reliable Notification Service

	Configuring the Notification Service in Oracle JDeveloper
	The E-mail Notification Channel
	Setting E-mail Attachments
	Formatting the Body of an E-mail Message as HTML

	The Fax Notification Channel
	The Pager Notification Channel
	The SMS Notification Channel
	The Voice Notification Channel
	Setting E-mail Addresses and Telephone Numbers Dynamically
	Selecting Notification Recipients by Browsing the User Directory
	Starting Business Processes with the E-mail Activation Agent
	XML Validation Failure with the Notification Service

	Summary

	15 Oracle BPEL Process Manager Workflow Services
	Oracle BPEL Process Manager Workflow Services 10.1.2 and 10.1.3.1.0 Compatibility
	Overview of Workflow Services
	Workflow Functionality: A Procurement Process Example
	Workflow Services Components

	Use Cases for Workflow Services
	Assigning a Task to a User or Role
	Using the Various Participant Types
	Escalation, Expiration, and Delegation
	Automatic Assignment and Delegation
	Work Queues and Proxy Support
	The Oracle BPEL Worklist Application

	Participant Types in Workflow Services
	Continuing Workflows from Other Workflows

	Overview of the Modeling Process
	Create a Human Task Definition with the Human Task Editor
	Associate the Human Task Definition with a BPEL Process
	Generate the Task Display Form

	Task 1: Creating the Human Task Definition with the Human Task Editor
	Accessing the Human Task Editor
	From the Application Navigator
	From the Component Palette

	Reviewing the Sections of the Human Task Editor
	Specifying the Task Title, Priority, Outcome, and Owner
	Specifying a Task Title and Priority
	Specifying a Task Outcome
	Displaying Custom Outcomes in a Human Task Activity

	Specifying a Task Owner
	Specifying a Task Owner By Browsing the User Directory
	Specifying a Task Owner Dynamically

	Specifying the Task Payload Data Structure
	Assigning Task Participants
	Specifying Task Approvers
	Configuring the Single Approver Participant Type
	Assigning Participants to the Single Approver Task
	Bypassing a Task Participant
	Specifying a Time Limit for Acting on a Task
	Inviting Additional Participants to a Task

	Configuring the Group Vote Participant Type
	Assigning Participants to the Group Vote Task
	Bypassing a Task Participant
	Sharing Attachments and Comments with Task Participants
	Specifying Group Voting Details
	Specifying a Time Limit for Acting on a Task

	Configuring the Management Chain Participant Type
	Assigning Participants to the Management Chain Task
	Bypassing a Task Participant
	Specifying the Number of Approvers
	Specifying a Time Limit for Acting on a Task
	Inviting Additional Participants to a Task

	Configuring the Sequential List of Approvers Participant Type
	Assigning Participants to the Sequential List of Approvers Task
	Bypassing a Task Participant
	Specifying a Time Limit for Acting on a Task
	Inviting Additional Participants to a Task

	Configuring the FYI Assignee Participant Type
	Assigning Participants to the FYI Assignee Task
	Sharing Attachments and Comments with Task Participants

	Configuring the External Routing Service Participant Type
	Specifying a Class Name

	Allowing All Participants to Invite Other Participants
	Abruptly Completing a Condition

	Escalating, Renewing, or Ending the Task
	Overview or Escalation and Expiration Policy
	Never Expire Policy
	Expire After Policy
	Renew After Policy
	Escalate After Policy

	Specifying Participant Notification Preferences
	Notifying Recipients of Changes to Task Status
	Editing the Notification Message
	Setting Up Reminders
	Securing Notifications, Making Messages Actionable, and Sending Attachments

	Specifying Advanced Settings
	Specifying Escalation Rules
	Specifying WordML Style Sheets for Attachments
	Specifying Style Sheets for Attachments
	Specifying Multilingual Settings
	Overriding Default System Actions
	Overriding Default Exception Management
	Specifying Callback Classes on Task Status
	Allowing Task and Routing Customization in BPEL Callbacks

	Exiting the Human Task Editor and Saving Your Changes

	Task 2: Associating the Human Task with a BPEL Process
	Associating a Human Worklist Task with a BPEL Process
	Opening a Human Task Activity Already Associated with a BPEL Process
	Defining the Human Task Activity Title, Initiator, Priority, and Parameter Variables
	Specifying the Task Title
	Specifying the Task Initiator and Task Priority
	Specifying Task Parameters

	Defining the Human Task Activity Advanced Features
	Specifying a Scope Name and a Global Task Variable Name
	Specifying a Task Owner
	Specifying an Identification Key
	Including the Task History of Other Human Tasks
	Allowing Task and Routing Customizations in BPEL Callbacks

	Viewing the Generated Human Task Activity
	BPEL Callbacks
	Including the Task History from Other Workflows

	Outcome-Based Modeling
	Payload Updates
	Case Statements for Other Task Conclusions

	Task 3: Generating the Task Display Form
	Overview of Task Display Forms
	Selecting a Task Display Form
	Preview Release of Task Display Form Support for ADF Data Controls

	Automatically Generating a Simple Task Display Form
	Payload File for the Autogenerated JSP
	Customizing the Autogenerated JSP
	Customizing the Mapping File
	Customizing the Default JSP
	Displaying a Check Box on the Worklist Payload JSP

	Generating a Custom Task Display Form
	Autogenerated JSP
	Custom JSP
	Default JSP
	XSL

	Deploying Task Display Forms
	Creating Custom JSP Forms
	Adding Update Support in the Custom JSP

	How Changes to a Workflow Appear in Worklist Application
	Notifications from Workflow Services
	Configuring the Notification Channel
	Contents of Notification
	Configuring Messages in Different Languages
	Sending Actionable E-mails
	Sending Inbound and Outbound Attachments
	Sending Inbound Comments
	Reliability Support
	Sending Secure Notifications
	Channels Used for Notifications
	Sending Reminders

	End-to-End Workflow Examples
	Vacation Request Example
	Prerequisites
	Modeling the Vacation Request Process
	Creating the Vacation Request Process and Importing the Schema
	Adding a Human Task to the Order Approval Process
	Assigning Input and Output Parameters for the Human Task
	Creating a Task Form for the Worklist
	Modeling the Task Outcome
	Validating, Compiling, and Deploying the Order Approval Process
	Running the Order Approval Process

	Workflow Services
	EJB, SOAP, and Java Support for the Workflow Services
	Security Model for Services
	Security in SOAP Web Services
	Security in EJBs
	Creating Workflow Context on Behalf of a User

	Task Service
	Task Query Service
	Identity Service
	Creating Users and Groups
	Identity Service Providers
	The JAZN Provider
	Third-Party LDAP Server
	Custom User Repository Plug-ins

	User and Role Properties
	Multirealm Support
	Authentication, Authorization, and Identity Service Providers

	Notification Service
	Task Metadata Service
	User Metadata Service
	Runtime Config Service
	Internationalization of Attribute Labels

	Configuring the Assignment Service
	Dynamic Assignment Functions
	Implementing a Dynamic Assignment Function
	Configuring Dynamic Assignment Functions
	Configuring Display Names for Dynamic Assignment Functions

	Dynamically Assigning Task Participants with the Assignment Service
	Assignment Service Overview
	Implementing an Assignment Service
	Example of Assignment Service Implementation
	Deploying a Custom Assignment Service

	Custom Escalation Function

	Workflow Service and Identity Service Related XPath Extension Functions
	Deprecated Workflow Service and Identity Service Functions

	NLS Configuration
	Summary

	16 Worklist Application
	Use Cases for the Worklist Application
	Overview of Worklist Application Concepts
	Worklist Application User Types
	Task Components

	Features of the Worklist Application
	Using the Task Details Page
	Task Actions
	Request Status
	Header Section
	Payload Section
	Comments and Attachments Section
	History Section
	Routing
	Requesting More Information
	Reassignment
	Parallel Tasks
	Determining Action Permissions

	Using Advanced Search
	Viewing a Bar Chart of Task Status
	Using Work Queues
	Setting Preferences
	Vacation Preferences
	My Rules
	Group Rules
	Custom Views
	Display Preferences

	Using the Administration Functions
	Manage Rules
	Flex Field Mappings
	Creating Labels
	Browsing All Mappings
	Editing Mappings by Task Type
	Restrictions

	Application Customization

	Creating Reports
	Unattended Tasks Report
	Tasks Priority Report
	Tasks Cycle Time Report
	Tasks Productivity Report

	User and Group Information

	Accessing the Worklist Application in Local Languages
	Customizing the Worklist Application
	Worklist Application Architecture
	Customizing the Login Page
	Customizing Header Information
	Customizing the Task Details Page
	Changing the Client-Service Binding for the Worklist Application
	Deploying the Custom Worklist Application
	Task 1: Changing the Application Configuration
	Task 2: Changing the Build File
	Task 3: Reviewing the File Changes
	Task 4: Building and Deploying the Application

	Customizing the Worklist Application Using Preferences
	Configuring Display Names for Task Attributes Using WorkflowLabels.properties

	Controlling Access to Information and Actions for Different Users
	Enabling the Worklist Application for Single Sign-On
	Task 1: Changing the Servlet Code
	Task 2: Changing the Application Configuration
	Task 3: Reviewing the File Changes
	Task 4: Building and Deploying the Application

	Building Clients for Workflow Services
	Packages and Classes for Building Clients
	Workflow Service Client
	The IWorkflowServiceClient Interface

	Classpaths for Java Clients
	EJB References in Web Applications
	Initiating a Task
	Creating a Task
	Creating a Payload Element in a Task
	Initiating a Task Programmatically

	Writing a Worklist Application Using the HelpDeskUI Sample

	Summary

	17 Sensors
	Use Cases for Sensors
	Overview of Sensor Concepts
	Implementing Sensors and Sensor Actions in Oracle JDeveloper
	Configuring Sensors
	Configuring Sensor Actions
	Publishing to Remote Topics and Queues
	Creating a Custom Data Publisher
	Registering the Sensors and Sensor Actions in bpel.xml

	Sensors and Oracle BPEL Control
	Viewing Sensor and Sensor Action Definitions
	Viewing Sensor Data

	Sensor Integration with Oracle Business Activity Monitoring
	Creating a Connection to Oracle BAM Server
	Creating a Sensor
	Creating a BAM Sensor Action

	Sensor Public Views
	BPM Schema

	Sensor Actions XSD File
	Summary

	18 BPEL Process Integration with Business Rules
	Business Rules and Decision Service Concepts
	Business Rules and Business Rule Engines
	Decision Service
	Oracle Business Rules with Oracle BPEL Process Manager

	Decision Service Architecture
	Decision Service Components
	Interaction with Other Components
	Contents of Decision Service Configuration File

	Use Cases for Integration of Business Processes and Business Rules
	Integration of BPEL Processes with Business Rules
	Create Rule Engine Connection Wizard
	Decision Service Wizard
	Selecting an Invocation Pattern
	Selecting a Business Rule
	Specifying Input and Output Facts
	Rule Sets
	Functions

	Importing Schema Files

	Decide Activity
	Mapping Input and Output Facts to BPEL Variables

	Methodology for Rule Set Modeling and Integration with a BPEL Process
	Recommended Methodology
	Methodology One: Modeling Fact Types Based on an XML Schema
	Task 1: Create a Data Model for Rule Authoring
	Task 2: Create a New Rule Repository and Dictionary in the Rule Author
	Task 3: Import the XML Schema into the Data Model of the Rule Dictionary
	Task 4: Create a New Rule Set and Model Rules

	Methodology Two: Modeling Rules Based on Existing RL or JavaBeans Fact Types
	Task 1: Define a Contract between BPEL and Business Rules
	Task 2: Create a New Data Model Using the RL Fact Types
	Task 3: Create a New Rule Set and Rules
	Task 4: Create the RL Function Contract

	Invoking the Sample Rule Set from a BPEL Process
	Task 1: Create a Connection to the Rule Engine
	Task 2: Create a BPEL Project
	Task 3: Create a Decision Service Partner Link
	Task 4: Create a Decide Activity

	Summary of Methodology

	Decision Service Deployment and Run Time
	Decision Service Partner Link Directory Structure
	Deployment
	Run Time
	Oracle Enterprise Manager 10g Application Server Control Console Support
	Oracle BPEL Control Support

	Advanced Decision Service Features
	Using WSIF Bindings
	Enabling Logging of Oracle Business Rules Rule Session Events
	Customizing assertXPath

	Example of BPEL Process Integration with Business Rules
	Task 1: Update a Rule Using Oracle Business Rules Rule Author
	Task 2: Create a Connection to the Business Rule Repository
	Task 3: Create a BPEL Process and Import the Schema
	Task 4: Create a Decision Service Partner Link
	Task 5: Create a Decide Activity

	Part IV Development and Deployment Life Cycle
	19 BPEL Process Deployment and Domain Management
	Compiling and Deploying a BPEL Process
	Compiling and Deploying in Oracle JDeveloper
	Compiling Without Deploying in Oracle JDeveloper

	BPEL Suitcase JAR File
	Deploying to Multiple Environments with Different Configuration Values
	customize ant Task Example
	customize ant Task Syntax
	Specifying Custom File Names
	Specifying Deployment Descriptor configurations Properties
	Specifying partnerLinkBinding Properties
	Specifying activationAgent Properties
	Specifying Deployment Descriptor preferences Properties

	Creating and Managing a BPEL Domain
	Logging into Domains
	Changing Domain Passwords
	Creating a BPEL Domain
	Changing Oracle BPEL Server Mode
	Deploying a BPEL Suitcase to a Specific Domain
	Undeploying a BPEL Process from a Specific Domain

	Managing Processes in Oracle BPEL Control
	Dashboard Tab: Viewing Deployed, Running, and Completed Processes
	Viewing and Changing Domains

	BPEL Processes Tab: Managing the Process Life Cycle
	Clearing the WSDL Cache
	Deploying New Processes
	Performing Manual Recovery
	Refreshing the Alarm Table
	Viewing the Process Logs
	Managing the Process Life Cycle
	Status Indicators for BPEL Processes
	Process Life Cycle Recommendations for a Development Environment
	Process Life Cycle Recommendations for a Production Environment
	Example: Life Cycle of Processes
	Initiating Processes
	Viewing and Setting Deployment Descriptors
	Viewing WSDL File Contents
	Viewing Sensor Data
	Viewing BPEL File Contents
	Running Test Suites
	Creating Reports

	Instances Tab: Viewing Process Instances
	Activities Tab: Viewing Process Activities

	Build and Command Line Tools
	ant
	bpelc
	Examples of ant Tasks

	schemac
	Examples

	Summary

	20 Testing BPEL Processes
	Overview of the BPEL Test Framework
	Test Cases Overview
	Test Suites Overview
	Emulations Overview
	Assertions Overview
	Process Code Coverage Overview
	JUnit Support Overview

	Components of a Test Suite
	Process Initiation
	Emulations
	Assertions
	Include Files

	Creating Test Suites in Oracle JDeveloper
	Creating Test Suites in Oracle JDeveloper
	Importing Test Cases in Oracle JDeveloper
	Creating Test Cases in Oracle JDeveloper
	Editing Test Cases in Oracle JDeveloper
	Creating Emulations in Oracle JDeveloper
	Emulating Inbound Messages
	Emulating Faults
	Emulating BPEL or Partner Tests

	Creating Assertions in Oracle JDeveloper
	Creating Value Asserts
	Creating an Activity Execution Assert
	Creating XML Asserts

	Creating External Calls in Oracle JDeveloper

	Creating a Test Case from Oracle BPEL Control

	Deploying a Test Suite
	Deploying from Oracle JDeveloper
	Deploying from an ant Task

	Running a Test Suite and Viewing Report Results
	Running from Oracle BPEL Control
	Running from an ant Task

	Advanced Test Suite Design Features
	Setting Dynamic Values at Run Time
	Asynchronous Event Emulation
	Verifying External Actions
	Custom Reporting
	Database Views
	admin_list_td
	admin_list_tdef

	XML Schemas
	Client APIs

	21 Oracle BPEL Portlets
	OracleAS Portal Introduction
	Step 1: Installing and Configuring the Required Oracle Application Server Components
	Configuring Realms (10.1.3.1.0 Only)

	Step 2: Deploying the Portlets
	Deploying Portlets with dcmctl
	Deploying Portlets with Oracle Enterprise Manager 10g Application Server Control Console

	Step 3: Registering Web Providers with OracleAS Portal
	Step 4: Defining Portlet Parameters and Accessing Portlet Data Sources
	Defining Oracle BPEL Control Report Portlet Parameters and Accessing Portlet Data Sources
	Instance State
	Instance Execution Time
	Performance
	Activity Sensor
	Process Time Distribution
	Fault Sensor

	Defining Oracle BPEL Worklist Application Portlet Parameters and Accessing Portlet Data Sources
	Listing Portlet Customization
	Listing Portlet View
	Analysis Portlet Customization
	Analysis Portlet View

	Step 5: Mapping Portlet Parameters with Page Parameters
	Summary

	22 Oracle BPEL Control Reports
	Creating Oracle BPEL Control Reports
	Creating Process Reports
	Creating Performance Reports
	Creating Activity Sensor Reports
	Creating Fault Sensor Reports
	Creating Process Time Distribution Reports

	Summary

	Part V Reference Information
	A Troubleshooting and Workarounds
	Troubleshooting General Issues
	Setting Properties for BPEL Processes to Successfully Complete and Catch Exception Errors
	Developer Prompt on Windows 2000
	Correcting Validation Errors in Complex Processes
	Handling Long-Running Processes
	Creating an Empty BPEL Process and Importing a Schema

	Troubleshooting Sensors-The Custom Data Publisher
	Data Publisher Is Not Working
	Data Publisher Works, But Business Process Runs Slowly
	Caching Data in the Data Publisher Is Not Supported
	Unexpected Errors in the Data Publisher
	Data Extracted to XML Is Difficult to Work With

	Troubleshooting Oracle BPEL Worklist Application
	Not Able to Log In to the Worklist Application
	Information Is Displayed in a Different Language
	Dates and Times Are Displayed Incorrectly
	The User Is Not Permitted to Perform an Action
	Expected Task Is Not Listed Under Task Titles

	Summary

	B BPEL Process Activities and Services
	Process Activities Overview
	Tabs Common to Many Activities
	Assign Activity
	Compensate Activity
	Decide Activity
	Email Activity
	Empty Activity
	Fax Activity
	Flow Activity
	FlowN Activity
	Human Task Activity
	Invoke Activity
	Java Embedding Activity
	Pager Activity
	Pick Activity
	Receive Activity
	Reply Activity
	Scope Activity
	Sequence Activity
	SMS Activity
	Switch Activity
	Terminate Activity
	Throw Activity
	Transform Activity
	Voice Activity
	Wait Activity
	While Activity

	Services Overview
	AQ Adapter
	Database Adapter
	Decision Service
	EJB Web Service
	File Adapter
	FTP Adapter
	Java Web Service
	JMS Adapter
	MQ Adapter
	Oracle Applications
	PartnerLink

	Validation When Loading a Process Diagram
	Changes Made In Oracle JDeveloper Do Not Update Automatically

	Summary

	C Deployment Descriptor Properties
	Deployment Descriptor Preference Properties
	Defining a Preference Property
	Updating a Preference at Run Time
	Getting the Value of a Preference within a BPEL Process
	Encrypting a Preference Value

	Deployment Descriptor Configuration Properties
	Defining a Configuration Property

	Summary

	D XPath Extension Functions
	Advanced Functions
	create-nodeset-from-delimited-string
	generate-guid
	lookup-dvm
	lookup-xml

	BPEL Extension Functions
	getLinkStatus
	getVariableData
	getVariableProperty

	BPEL XPath Extension Functions
	addQuotes
	appendToList
	copyList
	countNodes
	doc
	formatDate
	generateGUID
	getContentAsString
	getConversationId
	getCreator
	getCurrentDate
	getCurrentDateTime
	getCurrentTime
	getDomainId
	getElement
	getGroupIdsFromGroupAlias
	getInstanceId
	getNodeValue
	getNodes
	getPreference
	getProcessId
	getProcessOwnerId
	getProcessURL
	getProcessVersion
	getUserAliasId
	integer
	parseEscapedXML
	processXQuery
	processXSLT
	processXSQL
	readBinaryFromFile
	readFile
	writeBinaryToFile

	Database Functions
	lookup-table
	query-database
	sequence-next-val

	Date Functions
	add-dayTimeDuration-to-dateTime
	current-date
	current-dateTime
	current-time
	day-from-dateTime
	format-dateTime
	hours-from-dateTime
	implicit-timezone
	minutes-from-dateTime
	month-from-dateTime
	seconds-from-dateTime
	subtract-dayTimeDuration-from-dateTime
	timezone-from-dateTime
	year-from-dateTime

	Mathematical Functions
	abs

	Identity Service Functions
	getDefaultRealmName
	getGroupProperty
	getManager
	getReportees
	getSupportedRealmNames
	getUserProperty
	getUserRoles
	getUsersInGroup
	isUserInRole
	lookupGroup
	lookupUser

	Workflow Service Functions
	clearTaskAssignees
	createWordMLDocument
	getNotificationProperty
	getNumberOfTaskApprovals
	getPreviousTaskApprover
	getTaskAttachmentByIndex
	getTaskAttachmentByName
	getTaskAttachmentContents
	getTaskAttachmentsCount
	getTaskResourceBundleString
	wfDynamicGroupAssign
	wfDynamicUserAssign

	String Functions
	compare
	compare-ignore-case
	create-delimited-string
	ends-with
	format-string
	get-content-as-string
	get-localized-string
	index-within-string
	last-index-within-string
	left-trim
	lower-case
	matches
	right-trim
	upper-case

	Utility Functions
	authenticate
	batchProcessActive
	batchProcessCompleted
	format
	genEmptyElem
	getChildElement
	getMessage
	listUsers
	max-value-among-nodeset
	min-value-among-nodeset
	search
	square-root
	translateFromNative
	translateToNative

	Adding a Custom XPath Function
	Summary

	E Workflow Services Changes Between 10.1.2 and 10.1.3.1
	Backwards Compatibility between 10.1.2 and 10.1.3.1
	Changes Between the Workflow Wizard and the Human Task Editor
	Changes to Configuration Files
	Changes to Worklist APIs
	Changes to Task Display Form Deployment
	Changes to the Oracle BPEL Worklist Application
	Changes to Oracle BPEL Control
	Migrating Workflow Definitions from 10.1.2 to 10.1.3.1

	Index
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

