

ORACLE JHEADSTART 10g
for ADF
(RELEASE 10.1.3.3)

DEVELOPER’S GUIDE

JULY, 2008

JHeadstart Developer’s Guide

Copyright © 2008, Oracle Corporation

All rights reserved.

Authors: Steven Davelaar, Peter Ebell, Ton van Kooten, Sandra Muller, Jaco Verheul

Contributors: Pieter Biemond, Sigrid Gylseth, Bouke Nijhuis

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.
The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.
If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.
The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.
Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.
The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

CONTENTS

C H A P T E R 1 G E T T I N G S T A R T E D . 1 - 1

1.1. Introduction into JDeveloper, ADF and JHeadstart..1-2
1.1.1. Oracle JDeveloper ..1-2
1.1.2. Oracle Application Development Framework (ADF) ..1-2
1.1.3. What is Oracle JHeadstart? ..1-3

1.2. Roadmap to Developing ADF Applications using JHeadstart ...1-5
1.2.1. Set Up Project for Team-Based Development..1-5
1.2.2. Create Business Service using ADF Business Components...1-6
1.2.3. Design and Generate Web Pages..1-7
1.2.4. Design and Generate Security Structure...1-8
1.2.5. Customize Generated Web Tier ...1-8

C H A P T E R 2 S E T U P P R O J E C T F O R T E A M - B A S E D D E V E L O P M E N T 2 - 1

2.1. Setting Up Version Control System..2-2
2.1.1. Version Control Models ...2-2
2.1.2. Requirements for a GoodVersion Control System ...2-3
2.1.3. Which Files to Version? ...2-4

2.2. Setting up Structure of JDeveloper Workspace and Projects ...2-6
2.2.1. Installing JDeveloper..2-6
2.2.2. Identify Subsystems within your Application ..2-6
2.2.3. Creating a Workspace and Projects ..2-6
2.2.4. Creating Database Connection ...2-9
2.2.5. Initializing Model Project for Business Components ...2-9
2.2.6. Optimizing ADF BC for Team Development...2-9
2.2.7. Switching off Default Creation of ADF BC Java classes...2-9
2.2.8. Enabling ViewController Project for JHeadstart..2-10

2.3. Organizing JHeadstart Application Definition Files...2-11
2.3.1. Service Level Settings that Should Be the Same Accross Application Definitions ...2-11
2.3.2. Naming Conventions for File Location Properties ...2-11

2.4. Defining Java Package Structure and Other Naming Conventions2-13
2.4.1. Java Packages ...2-13
2.4.2. Naming ADF Business Components ..2-14

JHeadstart Developer’s Guide Contents i

C H A P T E R 3 C R E A T I N G A D F B U S I N E S S C O M P O N E N T S . 3 - 1

3.1. Setting Up ADF BC Base Classes ..3-2
3.1.1. Using CDM RuleFrame..3-4

3.2. Creating the Entity Object Layer ..3-5
3.2.1. Review Database Design ..3-5
3.2.2. Creating First-Cut Entity Objects and Associations ...3-5
3.2.3. Renaming Entity Objects and Associations..3-6
3.2.4. Generating Primary Key Values ...3-7
3.2.5. Setting Entity Object Attribute Properties used by JHeadstart3-9
3.2.6. Implementing Business Rules...3-11

3.3. Creating View Objects and Application Modules ..3-15
3.3.1. Creating View Objects and View Links ...3-15
3.3.2. Renaming View Objects and View Links...3-15
3.3.3. Inspecting and Setting Key Attributes of a View Object..3-15
3.3.4. Setting View Object Control Hints...3-18
3.3.5. Determining the Order of Displayed Rows ..3-18
3.3.6. Creating Calculated or Transient Attributes ...3-19
3.3.7. Setting Up Master-Detail Synchronization...3-22
3.3.8. Defining View Links and View Object Usages for Lookups3-23
3.3.9. Testing the Model ...3-24

C H A P T E R 4 U S I N G J H E A D S T A R T . 4 - 1

4.1. Understanding the JHeadstart Application Generator Architecture..4-2
4.1.1. Input Output..4-3

4.2. Using the JHeadstart Enable Project Wizard ..4-4
4.2.1. Enabling JHeadstart on a new project ..4-4
4.2.2. Enabling JHeadstart on an existing project ..4-5
4.2.3. Re-enabling JHeadstart on a project ...4-6

4.3. Using the Create New Application Definition Wizard ...4-7
4.3.1. Dropdown Lists or Lists of Values...4-7

4.4. Using the Application Definition Editor...4-9
4.4.1. Maintaining the Application Definition..4-9
4.4.2. Service ..4-11
4.4.3. Groups ..4-12
4.4.4. Items ...4-12
4.4.5. Lists of Values ..4-12
4.4.6. Regions ...4-13
4.4.7. Detail Groups..4-14
4.4.8. Domains..4-14
4.4.9. Manipulating Objects ...4-15
4.4.10. Novice Mode and Expert Mode..4-18
4.4.11. Synchronize View Objects with groups ...4-18

4.5. Running the JHeadstart Application Generator ..4-20

4.6. Running the Generated Application ...4-22
4.6.1. TroubleShooting ...4-22
4.6.2. Dealing with Code Segment Too Large Error ..4-23

ii Contents JHeadstart Developer’s Guide

4.7. Customizing Using Generator Templates...4-25
4.7.1. Recommended Approach for Customizing JHeadstart Generator Output..................4-25
4.7.2. Using Custom Templates..4-26
4.7.3. Finding Out Which Generator Templates Are Used ..4-28
4.7.4. Velocity and the Velocity Template Language ..4-28
4.7.5. JHeadstart specific constructs in the Velocity Templates...4-29
4.7.6. The File Generator Template..4-31
4.7.7. Generating a JSF Navigation Rule from a Generator Template4-33
4.7.8. Generating a JSF ManagedBean from a Generator Template4-33

4.8. Generating Mobile Applications...4-35
4.8.1. JHeadstart properties for Mobile ..4-35
4.8.2. New Application Definition Wizard...4-36
4.8.3. JHeadstart Application Generator ..4-36
4.8.4. Customizing View Types ...4-36
4.8.5. Adding a View Type ..4-37

4.9. What was Generated for What Purpose..4-38

C H A P T E R 5 G E N E R A T I N G P A G E L A Y O U T S . 5 - 1

5.1. Creating Form Pages...5-2
5.1.1. Hide Items on the Form Page ...5-3
5.1.2. Using Regions ..5-3
5.1.3. Create and Update Mode in Form Layout ..5-6

5.2. Creating Select-Form Pages ...5-8

5.3. Creating Table Pages ..5-10
5.3.1. Hide Items in a Table..5-11
5.3.2. Allowing the User to Sort Data in a Table Page...5-11
5.3.3. Limiting the Number of Rows on a Table Page ...5-12
5.3.4. Adding Summary Information to a Table...5-12
5.3.5. Change Table-Related ADF Business Components Settings5-13
5.3.6. Using Table Overflow ..5-15

5.4. Creating Table-Form Pages ..5-18

5.5. Creating Master-Detail Pages ...5-20
5.5.1. Master-Detail on Separate Page ...5-21
5.5.2. Master-Detail on Same Page ..5-21

5.6. Creating Tree Layouts ..5-24
5.6.1. Generating a Basic Tree ...5-24
5.6.2. Variation: Basic Tree with navigation-only nodes ...5-29
5.6.3. Variation: Recursive Tree...5-30
5.6.4. Variation: Recursive Tree with Limited Set of Root Nodes.......................................5-32
5.6.5. Variation: Tree showing only Children of selected Parent...5-35

5.7. Creating Shuttle Layouts ..5-38
5.7.1. Creating Parent Shuttles ...5-38
5.7.2. Creating Intersection Shuttles...5-40
5.7.3. Understanding How JHeadstart Runtime Implements Shuttles..................................5-43

5.8. Creating Wizard Layouts..5-45

JHeadstart Developer’s Guide Contents iii

5.9. Changing the Overall Page Look and Feel ...5-47
5.9.1. Customizing the Application Logos ...5-48
5.9.2. Rearranging the Overall Page Layout Using Generator Templates............................5-49
5.9.3. Creating Custom ADF Faces Regions and using them in Generator Templates5-50

C H A P T E R 6 G E N E R A T I N G U S E R I N T E R F A C E W I D G E T S . 6 - 1

6.1. Specifying the Prompt ..6-2

6.2. Default Display Value ..6-3
6.2.1. Using EL expressions ...6-3

6.3. Display Type...6-4

6.4. Generating a Text Item ...6-6
6.4.1. Define Item Display Width and Height ..6-6
6.4.2. Setting Maximum Length ...6-7

6.5. Generating a Dropdown List...6-8
6.5.1. Static dropdown list based on a Static Domain ..6-8
6.5.2. Translation of static domains..6-8
6.5.3. Dynamic dropdown list based on a Dynamic Domain ...6-9

6.6. Generating a Radio Group ..6-10
6.6.1. Static radio group based on a domain...6-10
6.6.2. Translation of static domains..6-10
6.6.3. Dynamic radio group based on a Dynamic Domain...6-10

6.7. Generating a List of Values (LOV) ..6-11
6.7.1. Creating a (reusable) LOV group ...6-11
6.7.2. Linking a (reusable) LOV group to an item ...6-12
6.7.3. Defining an LOV on a display item..6-12
6.7.4. Use LOV for Validation ...6-17
6.7.5. Selecting multiple values in a List of Values..6-18
6.7.6. Understanding How JHeadstart Runtime Implements List Of Values6-19

6.8. Generating a Date (time) Field ...6-22
6.8.1. Specifying display format for date and datetime field..6-22

6.9. Generating a Checkbox...6-23

6.10. File Upload, File Download, Showing Image Files, and Playing Audio Files6-24
6.10.1. Combining File Display Options ..6-25
6.10.2. Showing Properties of Uploaded Files ...6-26
6.10.3. Using JHeadstart File Up/Download on BLOB Columns ..6-27

6.11. Generating a Graph...6-29

6.12. Conditionally Dependent Items ..6-32
6.12.1. Using the Depends On property ...6-32
6.12.2. Cascading Lists...6-34
6.12.3. Row Specific Dropdown Lists in Table..6-35

6.13. Custom Button that Calls a Custom Business Method ...6-36
6.13.1. Creating a Custom Method in the ADF BC Application Module.............................6-36
6.13.2. Creating a Button that Calls the Method With a Fixed Percentage6-37

iv Contents JHeadstart Developer’s Guide

6.13.3. Generating the Button that Calls the Method ...6-38
6.13.4. Creating a Button that Calls the Method With Percentage From Input Field...........6-41
6.13.5. Generating the Input Field and Button that Calls the Method..................................6-42

6.14. Hyperlink to Navigate Context-Sensitive to Another Page (Deep Linking)6-45

6.15. Embedding Oracle Forms in JSF Pages..6-49

C H A P T E R 7 G E N E R A T I N G Q U E R Y B E H A V I O R S . 7 - 1

7.1. Configuring the Query..7-2
7.1.1. Specifying Auto Query...7-2
7.1.2. Using Query Bind Parameters ..7-2
7.1.3. JHeadstart Runtime Implementation of Query Bind Parameters..................................7-5

7.2. Creating a Search Region ...7-8
7.2.2. Using Quick Search..7-8
7.2.3. Using Advanced Search ...7-9
7.2.4. Using a Query Operator..7-9
7.2.5. Using Query Bind Variables in Quick or Advanced Search7-10
7.2.6. Runtime Implementation of Quick Search and Advanced Search..............................7-12

7.3. Forcing a Requery ..7-15
7.3.1. Implementation of Requery ..7-15

C H A P T E R 8 G E N E R A T I N G T R A N S A C T I O N A L B E H A V I O R S . 8 - 1

8.1. Enabling Insert..8-2
8.1.1. Allowing Inserting Data in a Form Page ..8-2
8.1.2. Building Insert Only Form Pages ...8-2
8.1.3. Allowing the User to Insert Data in a Table Page ..8-3

8.2. Enabling Update ...8-4

8.3. Enabling Delete ..8-5

8.4. Conditionally Enabling Insert, Update an Delete ...8-6

8.5. Runtime Implementation of Transactional Behaviors ..8-7
8.5.1. Multi-Row Insert and Delete ..8-7
8.5.2. Single-Row Insert...8-8
8.5.3. Single-Row Delete..8-8
8.5.4. Commit Handling ...8-9
8.5.5. Rollback Handling..8-10

C H A P T E R 9 C R E A T I N G M E N U S T R U C T U R E S . 9 - 1

9.1. Static Menu Structure ...9-2
9.1.1. Which Menu Tab is Selected? ..9-2
9.1.2. Preventing Generation of a Menu Tab ...9-3
9.1.3. Customizing the Static Menu Structure..9-3

9.2. Dynamic Menu Structure..9-6

JHeadstart Developer’s Guide Contents v

9.2.1. Creating the Database Tables ...9-6
9.2.2. Enabling Dynamic Menus ..9-7
9.2.3. Defining the Menu Structure At Runtime...9-10
9.2.4. Linking a User Interface Skin to a Module ..9-11

C H A P T E R 10 A P P L I C A T I O N S E C U R I T Y . 1 0 - 1

10.1. Understanding and Choosing Security Options with JHeadstart ..10-2
10.1.1. JAAS and JAZN ...10-2
10.1.2. JAAS Custom Login Module ...10-3
10.1.3. Hardcoding Roles or Permissions in Application Code ...10-4
10.1.4. Custom Security..10-5
10.1.5. ADF Model Security ..10-5
10.1.6. ADF BC Security..10-7
10.1.7. ADF Model Security vs ADF BC Security ..10-7

10.2. JHeadstart Security Tables and Security Administration Screens10-8
10.2.1. Creating the Database Tables ...10-8
10.2.2. Generating Security Administration Pages...10-9

10.3. Using JAAS-JAZN for Authentication...10-11
10.3.1. Login Page and Login Bean ...10-11
10.3.2. Logout Button and Logout Bean ..10-11
10.3.3. J2EE Security Set Up in web.xml...10-12
10.3.4. Default Users and Roles in jazn-data.xml ..10-12
10.3.5. Using LDAP and/or Single Sign On in Deployed Application10-13

10.4. Using JAAS with Custom Login Module for Authentication...10-14
10.4.1. Sample Users And Roles ..10-14
10.4.2. Configuring the Custom Login Module ...10-14
10.4.3. System-jazn-data.xml ...10-15
10.4.4. Application.xml ..10-16
10.4.5. Debugging the Custom Login Module ...10-17
10.4.6. Deploying your Application with Custom Login Module......................................10-17

10.5. Using Custom Authentication...10-18
10.5.1. JHeadstart Authentication Filter ...10-18
10.5.2. Nested JhsModelService Application Module ...10-18
10.5.3. Login Page and Login Bean ...10-19
10.5.4. Logout Button...10-19

10.6. Restricting Access to Groups based on Authorization Information10-20
10.6.1. Restricting Group Access using Permissions ...10-20
10.6.2. When Access Denied Go To Next Group...10-21
10.6.3. JHeadstart Authorization Proxy..10-21

10.7. Restricting Group And Item Operations based on Authorization Information.................10-23
10.7.1. Restricting Group Operations using Permissions ...10-23
10.7.2. Restricting Item Operations ..10-24

10.8. Using Your Own Security Tables...10-25
10.8.1. Changes when Using JAAS Custom Login Module ..10-25
10.8.2. Changes when Using Custom Authentication ..10-25
10.8.3. Changes when Using Custom Authorization and/or Permissions10-25
10.8.4. Changes to SQL Script Templates..10-26

vi Contents JHeadstart Developer’s Guide

C H A P T E R 11 I N T E R N A T I O N A L I Z A T I O N A N D M E S S A G I N G . 1 1 - 1

11.1. National Language Support in JHeadstart ..11-2
11.1.1. Which Locale is Used at Runtime ..11-3
11.1.2. Supported Locales ..11-3
11.1.3. Adding a non-supported Locale ...11-4

11.2. Using Resource Bundle Type databaseTable ...11-5
11.2.1. Creating the Database Tables ...11-5
11.2.2. Running the JHeadstart Application Generator..11-6
11.2.3. Running the Application...11-8

11.3. Runtime Implementation of National Language Support ...11-10

11.4. Error Reporting...11-12

11.5. Outstanding Changes Warning...11-14

C H A P T E R 12 R U N T I M E P A G E C U S T O M I Z A T I O N S . 1 2 - 1

12.1. Creating the Database Tables ...12-2

12.2. Enabling Runtime Usage of Flex Items..12-4
12.2.1. Creating a Flexible Region ...12-4
12.2.2. Running the JHeadstart Application Generator..12-5
12.2.3. Generating the Flex Region Admin Pages..12-6

12.3. Defining Flex Items At Runtime ..12-8

12.4. Creating an Item with Display Type Flex Region ..12-11

12.5. Internationalization and Flex Items ..12-12

12.6. Customizing Standard Items at Runtime ..12-13

C H A P T E R 13 F O R M S 2 A D F G E N E R A T O R . 1 3 - 1

13.1. Introduction into JHeadstart Forms2ADF Generator (JFG) ...13-2

13.2. Roadmap...13-4

13.3. Running the JHeadstart Forms2ADF Generator (JFG) ..13-5
13.3.1. Select Forms Modules ..13-5
13.3.2. Select Form Elements to be Excluded from Processing ...13-6
13.3.3. Select Database Connection ...13-7
13.3.4. Generator Settings ..13-9
13.3.5. Processing the Selected Forms ...13-10
13.3.6. Troubleshooting..13-11
13.3.7. Processing the Same Form Multiple Times..13-13

13.4. Understanding the Outputs of the JHeadstart Forms2ADF Generator13-14
13.4.1. Generated ADF Business Components ..13-14
13.4.2. Generated JHeadstart Application Definition File ...13-16

JHeadstart Developer’s Guide Contents vii

13.5. Handling Forms PL/SQL Logic..13-18
13.5.1. Moving PL/SQL Logic to the Database ...13-18

C H A P T E R 14 J S F - A D F P A G E L I F E C Y C L E . 1 4 - 1

14.1. JSF Lifecycle Phases ..14-2
14.1.1. Restore View Phase ..14-2
14.1.2. Apply Request Values Phase ..14-2
14.1.3. Process Validation Phase..14-2
14.1.4. Update Model Phase...14-3
14.1.5. Invoke Application Phase...14-3
14.1.6. Render Response Phase ..14-3
14.1.7. The Impact of the Immediate Property ...14-3

14.2. ADF-Specific Lifecycle Phases ..14-5
14.2.1. Customizing the ADF-JSF PageLifecycle ..14-6

14.3. JHeadstart Page Lifecycle...14-8

viii Contents JHeadstart Developer’s Guide

C H A P T E R

1 Getting Started

Developing complex transactional applications on the Java Enterprise Edition (JEE)
platform is not a straightforward task. Java en JEE are widely perceived as a complex
development platform with relatively low developer productivity. However, if you
choose the right development tools, you will experience that this perception is simply not
true. This developer’s guide is about such a tool set, consisting of Oracle JDeveloper,
Oracle’s Application Development Framework (ADF) and Oracle JHeadstart. This toolset
provides you with an unprecedented productivity and ease of use in building feature-
rich JEE web applications in a flexible, and highly maintainable way.

To understand what we mean with unprecedented productivity, we strongly
recommend that you first go through the JHeadstart Tutorial. This tutorial is the best
way to get started with JHeadstart, it does not require any prior Java or ADF knowledge,
and provides an excellent overview of the development process and main features
JHeadstart brings to the table.

JHeadstart Tutorial - Building Enterprise JSF Applications with Oracle
JHeadstart.
http://www.oracle.com/technology/products/jdev/tips/muench/jhstutorial

After you have completed the tutorial, you probably can’t wait to build your own
applications. The content of this developer’s guide, together with numerous pointers to
external sources provides you with everything you need to know to build enterprise-
class web applications.

The first section in this chapter provides a brief introduction into the components and
technologies of the toolset, with references to external sources that provide more
information about each of the components.

The last section contains a comprehensive roadmap to build web applications with this
toolset.

JHeadstart Developer’s Guide Getting Started 1 - 1

http://www.oracle.com/technology/products/jdev/tips/muench/jhstutorial

1.1. Introduction into JDeveloper, ADF and JHeadstart

To get the most out of JHeadstart, it really helps to understand more about the
underlying technologies. If you have used Oracle Designer in the past to generate Oracle
Forms aplications you probably agree that good knowledge of Oracle Forms is rather
helpful in generating more complex functionality. This also applies to JHeadstart,
understanding how technologies like ADF Data Binding, ADF Faces and JSF work, is
indispensable for generating complex applications that involve customizations to the
default generator templates used by JHeadstart. This section provides the pointers to
obtain this knowledge.

1.1.1. Oracle JDeveloper

Oracle JDeveloper is the Integrated Development Environment (IDE) that allows us to
work productively. It provides a comprehensive set of integrated tools that support the
complete development lifecycle, from source control, modeling, and coding through
debugging, testing, profiling, and deploying. JDeveloper simplifies Java EE
development by providing wizards, editors, visual design tools, and deployment tools to
create high quality, standard Java EE components including applets, JavaBeans, Java
Server Faces (JSF), servlets, and Enterprise JavaBeans (EJB). JDeveloper also provides a
public Add-in API to extend and customize the development environment and
seamlessly integrate it with external products.

Oracle JDeveloper on OTN. Overview, Online Demo’s, Tutorials, White Papers,
How-to’s, Feature list, and more:
http://www.oracle.com/technology/products/jdev

1.1.2. Oracle Application Development Framework (ADF)

Oracle ADF is an end-to-end J2EE framework, fully integrated with JDeveloper that
simplifies development by providing out of the box infrastructure services and a visual
and declarative development experience. Since it supports multiple technologies you
have the choice to use the components that best fit your situation.

Oracle ADF comes with extended design time facilities. By using simple drag-and-drop
of the model components you can build page by page in a highly productive manner. For
Java Server Faces a very useful page flow modeler is included where you can draw the
logic of your controller structure. The business services can be developed with several
types of wizards (based on UML models), and several types of editors.

Altogether Oracle ADF provides a first class J2EE framework that couples high
development productivity with the flexibility to choose the components that fit your
situation best.

1 - 2 Getting Started JHeadstart Developer’s Guide

http://www.oracle.com/technology/products/jdev

Figure 1-1 Oracle ADF Architecture

Oracle ADF on OTN. Overview, Online Demo’s, Tutorials, White Papers, How-
to’s and more:
http://www.oracle.com/technology/products/adf

ADF Developers Guide for Forms/4GL Developers. Very comprehensive
developer’s guide with guidelines, best practices, hints and tips on building
applications using ADF.

1.1.3. What is Oracle JHeadstart?

JHeadstart is a development toolkit that works on top of ADF, fully integrated with
JDeveloper, which enables rapid component based development of Java EE applications.
It provides you with 4GL-like productivity without jeopardizing the flexibility and
openness of the Java EE architecture.

JHeadstart consists of three main components:

• JHeadstart Runtime Library

The JHeadstart runtime contains reusable components that extend Oracle ADF.
These reusable components implement Oracle ADF best practices that were
developed during custom development projects of Oracle Consulting.

• JHeadstart Application Generator (JAG)

Apart from the runtime components, JHeadstart provides significant design-time
support. The JHeadstart Application Generator (JAG) is a powerful generator that
automates the development of the Controller (JSF config file) , View (ADF Faces
pages), and Model components (ADF data controls and data bindings). The JAG
is driven by XML meta-data that you create using JDeveloper (plug-in) wizards
and JHeadstart property editors, providing you with a declarative, 4GL-like
experience in building Java EE applications. To help you to get started with the
meta data, JHeadstart generates a first cut of the meta data based on your ADF
Business Components, which can be retrieved from a UML class model or
database tables.

JHeadstart Developer’s Guide Getting Started 1 - 3

http://www.oracle.com/technology/products/adf

• JHeadstart Forms2ADF Generator (JFG)

In addition, JHeadstart offers you assistance in moving from the Oracle Forms
world to the Java/J2EE world. Using the JHeadstart Forms2ADF Generator, the
Forms .fmb files are read, and based on the Forms elements defined in the form,
the JFG creates ADF Business Componenets, as well as the XML meta-data
(Application Definition) required by the JHeadstart Application Generator.
After running the JFG, you can then run the JAG to create a fully functional ADF
web application, based on the definitions in the Oracle Form.

Oracle JHeadstart on OTN. Overview, Online Demo’s, Tutorials, White Paper,
How-to’s and more:
http://www.oracle.com/technology/products/adf

JHeadstart Weblog. Tips and tricks, advanced techniques and how to’s on ADF
and JHeadstart.
http://blogs.oracle.com/jheadstart/

1 - 4 Getting Started JHeadstart Developer’s Guide

http://www.oracle.com/technology/products/adf
http://blogs.oracle.com/jheadstart/

1.2. Roadmap to Developing ADF Applications using JHeadstart

This section provides you with a roadmap to build web applications using ADF and
JHeadstart. Although the tasks and task steps are presented here as sequential, it is likely
that you will iterate around some of these steps, refining the details at every pass of the
iteration.

The roadmap provides a short description of each step, and references the section in this
developers guide where you can find more information related to the task. As such, the
roadmap can be seen as an extended table of contents of this developer’s guide, although
the scope is even broader. Some steps will refer to external sources, like the ADF
Developers Guide or articles on the JDeveloper/ADF corners on Oracle’s Technology
Network (OTN).

Since this is a developer’s guide, it does not include activities for project management,
quality control, testing and user documentation. The nature, sequencing, and contents of
these activities is pre-determined by the project approach (Waterfall, Iterative, Agile,
DSDM, XP, etc.) and is beyond the scope of this guide.

1.2.1. Set Up Project for Team-Based Development

1.2.1.1. Setup Version Control System

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Setting up Version Control System”

1.2.1.2. Set up Structure of JDeveloper Application

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Set up Structure of JDeveloper Workspace and Projects”

1.2.1.3. Define Project Standards for Organizing ADF Business Components

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Defining Java Package Structure and Other Naming Conventions”

1.2.1.4. Define Java Package Structure and Other Naming Conventions

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Defining Java Package Structure and Other Naming Conventions”

1.2.1.5. Define Project Standards for Organizing JHeadstart Application Definition
Files

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Organizing JHeadstart Application Definition Files”

JHeadstart Developer’s Guide Getting Started 1 - 5

1.2.2. Create Business Service using ADF Business Components

1.2.2.1. Create Business Component Base Classes

Reference: Chapter 3 “Creating ADF Business Components”, section “Setting
Up ADF BC Base Classes”

Web Reference: Oracle Application Developer Framework Developer’s Guide
for Forms/4GL Developers Release 10.1.3, chapter 25: Advanced Business
Components Techniques, section 25.1. Globally Extending ADF Business
Components Functionality, and section 25.2. Creating a Layer of Framework
Extensions.: http://download-
uk.oracle.com/docs/html/B25947_01/bcadvgen.htm#sm0291.

1.2.2.2. Create Entity Objects and Associations

Reference: Chapter 3 “Creating ADF Business Components”, section “Creating
the Entity Object Layer”

Web Reference: Oracle Application Developer Framework Developer’s Guide
for Forms/4GL Developers Release 10.1.3, chapter 6: Creating a Business
Domain Layer Using Entity Objects. http://download-
west.oracle.com/docs/html/B25947_01/bcentities.htm - sm0124

1.2.2.3. Create View Objects and View Links

Reference: Chapter 3 “Creating ADF Business Components”, section “Creating
View Objects and Application Modules”

Web Reference: Oracle Application Developer Framework Developer’s Guide
for Forms/4GL Developers Release 10.1.3, chapter 5: Querying Data using
View Objects. http://download-
west.oracle.com/docs/html/B25947_01/bcquerying.htm - sm0070

Web Reference: Oracle Application Developer Framework Developer’s Guide
for Forms/4GL Developers Release 10.1.3, chapter 7: Building an Updatable
Data Model with Entity-based View Object. http://download-
west.oracle.com/docs/html/B25947_01/bcvoeo.htm - sm0167

1.2.2.4. Create Application Modules

Reference: Chapter 3 “Creating ADF Business Components”, section “Creating
View Objects and Application Modules”

1.2.2.5. Implement Business Rules

Reference: Chapter 3 “Creating ADF Business Components”, section
“Implementing Business Rules”

Web Reference: Implementing Business Rules in ADF BC. White paper on
OTN.
http://www.oracle.com/technology/products/jdev/collateral/papers/1013
1/businessrulesinadfbctechnicalwp.pdf

1 - 6 Getting Started JHeadstart Developer’s Guide

http://download-uk.oracle.com/docs/html/B25947_01/bcadvgen.htm#sm0291
http://download-uk.oracle.com/docs/html/B25947_01/bcadvgen.htm#sm0291
http://download-west.oracle.com/docs/html/B25947_01/bcentities.htm#sm0124
http://download-west.oracle.com/docs/html/B25947_01/bcentities.htm#sm0124
http://download-west.oracle.com/docs/html/B25947_01/bcvoeo.htm#sm0167
http://download-west.oracle.com/docs/html/B25947_01/bcvoeo.htm#sm0167
http://www.oracle.com/technology/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf
http://www.oracle.com/technology/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf

1.2.3. Design and Generate Web Pages

1.2.3.1. Understand JHeadstart Generator Achitecture and Add Ins

Reference: Chapter 4 “Using JHeadstart”

1.2.3.2. Create Application Definition File

Reference: Chapter 4 “Using JHeadstart”, sections “Using the Create New
Aplication Definiton Wizard”, “Using the Application Definition Editor”.

Reference: Chapter 2 “Set up Project for Team-based Development”, section
“Organizing JHeadstart Application Definition Files”

1.2.3.3. Configure Internationalization Options

Reference: Chapter 11 “Internationalization and Messaging”, section
“National Language Support in JHeadstart”

1.2.3.4. Generate and Run First-cut Web Application

Reference: Chapter 4 “Using JHeadstart”, sections “Running the JHeadstart
Application Generator” an “Running the Generated Application”

1.2.3.5. Design and Generate Page Layouts

Reference: Chapter 5 “Generating Page Layouts”

1.2.3.6. Design and Generate Item Display Types and Item Behavior

Reference: Chapter 6 “Generating User Interface Widgets”

1.2.3.7. Configure Query Behavior in Pages

Reference: Chapter 7 “Generating Query Behaviors”

1.2.3.8. Configure Transactional Behavior in Pages

Reference: Chapter 8 “Generating Transactional Behaviors”

1.2.3.9. Design and Generate Menu Structure

Reference: Chapter 9 “Creating Menu Structures”

JHeadstart Developer’s Guide Getting Started 1 - 7

1.2.4. Design and Generate Security Structure

1.2.4.1. Understand and Choose Authentication and Authorization Options

Reference: Chapter 10 “Application Security”, section “Understanding and
Choosing Security Options with JHeadstart”

Web Reference: OC4J Security Guide http://download-
uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/toc.htm

Web Reference: Introduction into ADF Security in JDeveloper 10.1.3.2
http://www.oracle.com/technology/products/jdev/howtos/1013/adfsecurity/adfsecurity
_10132.html

1.2.4.2. Implement User Authentication

Reference: Chapter 10 “Application Security”, sections “Using JAAS-JAZN
for Authentication”

Reference: Chapter 10 “Application Security”, sections “Using JAAS with
Custom Login Module for Authentication”

Reference: Chapter 10 “Application Security”, sections “Using Custom
Authentication”

1.2.4.3. Implement Role-based and Permission-based Authorization

Reference: Chapter 10 “Application Security”, sections “Restricting Access to
Groups based on Authorization Information”

Reference: Chapter 10 “Application Security”, sections “Restricting Group And
Item Operations based on Authorization Information”

Reference: Chapter 10 “Application Security”, sections “Using Custom
Authentication”

1.2.4.4. Design and Generate Security Administration Pages

Reference: Chapter 10 “Application Security”, sections “JHeadstart Security
Tables and Security Administration Screens”

1.2.5. Customize Generated Web Tier

1.2.5.1. Decide on Customization Approach

Reference: Chapter 10 “Using JHeadstart”, section “Recommended Approach for
Customizing JHeadstart Generator Output”

1.2.5.2. Use ADF Design-Time Tools to Implement Post-Generation Changes

Reference: Chapter 14 “JSF-ADF Page Lifecycle”

1 - 8 Getting Started JHeadstart Developer’s Guide

http://download-uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/toc.htm
http://download-uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/toc.htm
http://www.oracle.com/technology/products/jdev/howtos/1013/adfsecurity/adfsecurity_10132.html
http://www.oracle.com/technology/products/jdev/howtos/1013/adfsecurity/adfsecurity_10132.html

Web Reference: : Oracle Application Developer Framework Developer’s
Guide for Forms/4GL Developers Release 10.1.3, part III ”Building your Web
Interface”. http://download-west.oracle.com/docs/html/B25947_01/partpage3.htm -
sthref869

Web Reference: Oracle Application Developer Framework Developer’s Guide
for Forms/4GL Developers Release 10.1.3, chapter 10 ”Overview of
Application Module Data Binding”. http://download-
west.oracle.com/docs/html/B25947_01/bcdcpal.htm - sm0255

1.2.5.3. Move Post-Generation Changes to Custom Templates

Reference: Chapter 4 “Using JHeadstart”, section “Customizing Using
Generator Templates”

1.2.5.4. Create Custom ADF Faces Skin

Web Reference: Oracle Application Developer Framework Developer’s Guide
for Forms/4GL Developers Release 10.1.3, section 22.3 ”Using Skins to
Change the Look and Feel”.
http://download.oracle.com/docs/html/B25947_01/web_laf003.htm#CACJ
AGIG

Web Reference: ADF Faces Skinning Selectors.
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/
doc/skin-selectors.html

Web Reference: ADF Faces Skin best practices.
http://emarcoux.blogspot.com/2007/03/adf-faces-skin-best-practices.html

1.2.5.5. Add New Items and Customize Generated Items at Runtime

Reference: Chapter 12 “Runtime Page Customizations”

JHeadstart Developer’s Guide Getting Started 1 - 9

http://download-west.oracle.com/docs/html/B25947_01/partpage3.htm#sthref869
http://download-west.oracle.com/docs/html/B25947_01/partpage3.htm#sthref869
http://download-west.oracle.com/docs/html/B25947_01/bcdcpal.htm#sm0255
http://download-west.oracle.com/docs/html/B25947_01/bcdcpal.htm#sm0255
http://download.oracle.com/docs/html/B25947_01/web_laf003.htm#CACJAGIG
http://download.oracle.com/docs/html/B25947_01/web_laf003.htm#CACJAGIG
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/skin-selectors.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/skin-selectors.html
http://emarcoux.blogspot.com/2007/03/adf-faces-skin-best-practices.html

This page is intentionally left blank.

1 - 10 Getting Started JHeadstart Developer’s Guide

JHeadstart Developer's Guide Getting Started 2 - 1

C H A P T E R

2 Set Up Project for Team-
 Based Development

his chapter provides guidelines on

• selecting and setting up a version control system

• setting up the structure of the JDeveloper Application

• organizing JHeadstart application definition files

• defining the Java package structure and other naming conventions

T

2 - 2 Getting Started JHeadstart Developer's Guide

2.1. Setting Up Version Control System

Good version control is indispensable when working in teams. There are many version
control systems available on the market. In this section we will provide guidelines and
recommendations for setting up version control. The following topics are discussed:

• Version control models

• Requirements for a good version control system

• Which files to version?

2.1.1. Version Control Models

When selecting a version control system, you have to choose between two basic models
of version control: file locking and version merging. Wikipedia provides the following
definitions for these two models:

• File Locking: The simplest method of preventing concurrent access problems is
to lock files so that only one developer at a time has write access to the central
"repository" copies of those files. Once one developer "checks out" a file, others
can read that file, but no one else is allowed to change that file until that
developer "checks in" the updated version (or cancels the checkout).

File locking has merits and drawbacks. It can provide some protection against
difficult merge conflicts when a user is making radical changes to many sections
of a large file (or group of files). But if the files are left exclusively locked for too
long, other developers can be tempted to simply bypass the revision control
software and change the files locally anyway. That can lead to more serious
problems.

• Version Merging: Most version control systems, such as CVS and SubVersion,
allow multiple developers to be editing the same file at the same time. The first
developer to "check in" changes to the central repository always succeeds. The
system provides facilities to merge changes into the central repository, so the
improvements from the first developer are preserved when the other
programmers check in.

The concept of a reserved edit can provide an optional means to explicitly lock a
file for exclusive write access, even though a merging capability exists.

Revision Control in Wikipedia. Overview and definitions
HTUhttp://en.wikipedia.org/wiki/Revision_controlUTH

For developing applications using JDeveloper, ADF and JHeadstart, we recommend to
use the version merging approach, for the following reasons:

• It is a file-oriented development environment. Even for small to medium-sized
applications, you will easily have hundreds of files to manage. It is inevitable
that at some point multiple developers need to modify the same files. Using the
File Locking approach this means that developers will have to wait for each
other to finish a task and check in again. Although the number of “locking
conflicts” can be reduced by a smart distribution of development tasks, it is our
experience that you can never entirely avoid it.

JHeadstart Developer's Guide Getting Started 2 - 3

• The files that most often are modified simultaneously by multiple developers are
XML files, which by its structured nature are very well suited for automatic
merging by version control systems. It is our experience that a version control
system like SubVersion is also very good at merging Java files, the other most
used type of file in this development environment.

• When generating your application using JHeadstart, many files are modified
during a generation run. When using the file locking approach, you need to
know upfront which files will be modified by the JHeadstart Application
Generator: all these files need to be checked out prior to generation, otherwise
they remain read only and will not be modified by JHeadstart. It requires in
depth knowledge of JHeadstart and ADF to be able to correctly “predict” which
files will be modified in a specific generation run. With the version merging
approach this is not an issue, once you have finished a development task, the
version control system will tell you which files have been modified and need to
be committed to the version control repository.

2.1.2. Requirements for a GoodVersion Control System

When selecting a version control system, make sure the system provides functionality to
address the following requirements

• It supports the Version Merging model (see previous section).

• It provides a so-called Atomic Commit. With this we mean that when you have
modified a number of files that you want to commit to the version control
repository, you want either the entire transaction to be committed, or the entire
transaction to be rolled backed when a version conflict is detected which cannot
be solved by an automatic merge. In other words, either all files are committed
succesfully, or none of the files are committed. A version control system like CVS
does not support an atomic commit. This means that some files might be
committed to the repository, and then a version conflict is detected and the rest
of the files cannot be committed. When this happens, you end up with an
inconsistent situation in your version control repository since there are many
interdependencies between files in an ADF environment. Obviously, when other
developers update their local copies with this inconsistent set of files, they are
likely to run into all sorts of problems and error messages.

• It detects file changes by comparing file content rather than the timestamp of the
file. This requirement is particularly important when using JHeadstart: when
you regenerate your application using the JHeadstart Application Generator, the
content of many files might remain the same, although the file is recreated with a
new timestamp. When you commit your work after you completed a
development task, you do not want a new version of all these unmodified files to
be committed to the repository. Otherwise, it will be really hard to find back
versions that contained a real change, being a version you might want to revert
to when you want to undo some work.

• An efficient and easy to use user interface to perform common versioning tasks.
Developers should spend as little time as possible with version control tasks. An
intuitive user interface for common tasks like updating their local copy,
commiting changes, reverting to previous versions, resolving merge conflicts,
and creating application releases is essential to meet this requirement. Ideally,
the versioning user interface is integrated with JDeveloper, although in our
experience it is not a big deal to switch with Alt-Tab to a stand-alone GUI for
versioning when JDeveloper integration is not available, or less feature-rich.

2 - 4 Getting Started JHeadstart Developer's Guide

A popular open source version control system that meets all of the above requirements is
SubVersion (also known as SVN) . SubVersion has been built by the same community
that is responsible for CVS. It is intended as a replacement for CVS, keeping all the good
things of CVS, and fixing the bad things (like the absence of an atomic commit).

TortoiseSVN is an excellent stand-alone SubVersion GUI for the Windows platform,
nicely integrated with MS Windows Explorer. JDeveloper integration is also available.

SubVersion Home Page. Overview, documentation and download.
HTUhttp://subversion.tigris.org/UTH

TortoiseSVN Home Page. Overview, documentation and download.
HTUhttp://tortoisesvn.tigris.org/UTH

Using JDeveloper with SubVersion. Developers guide and installation
instructions.
HTUhttp://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange
/subversion/subversion.htmlUTH

The JHeadstart team has succesfully used SubVersion and TortoiseSVN on a number of
projects. This does not imply you should make the same choice. Version control is no
rocket science, any system that meets the above requirements will do the job.

2.1.3. Which Files to Version?

We recommend to version all files in your project, except for

• derived files like all compiled Java classes and XML and property files that are
copied to the classpath. In SubVersion, the easiest way to exclude these files is by
adding the root directory of the classpath (typically the /classes directory) to the
ignore list. This can be done by a right-mouse-click on the folder, and then
choose Tortoise SVN -> Add to Ignore List …

• files in the temporary directory created by ADF Faces. When running your
application in JDeveloper, a temp directory will be created under the WEB-INF
directory, which holds cached ADF Faces files like images and stylesheets. This
directory is not required to run your application and does not need to be
versioned.

• the files created by JDeveloper in the root: appname-data-sources.xml, appname-
jazn-data.xml, appname-oc4j-app.log, appname-oc4j-app.xml and
application.log. If you are using JAAS-JAZN authorization, you do might want
to version appname-jazn-data.xml since it holds the users and roles you have
defined in JDeveloper for the project.

• the faces-config diagram files, with extension “.oxd_faces”. When generating
your application with JHeadstart, the faces-config diagram typically looks rather
messy, so unless you spend some time in cleaning up the diagram, it doesn’t
make a lot of sense to version these files. They are usually created in a separate
folder (/model by default), so you can exlude the whole folder from versioning.

When using TortoiseSVN, the “Add to Ignore List” option in Windows Explorer is only
available on unversioned folders directly below a versioned folder. When committing a
project for the first time, it is easier to exclude folders using the right-mouse-click popup
menu in the Commit dialog, as shown in the screen shot below.

JHeadstart Developer's Guide Getting Started 2 - 5

2 - 6 Getting Started JHeadstart Developer's Guide

2.2. Setting up Structure of JDeveloper Workspace and Projects

2.2.1. Installing JDeveloper

It is recommended that all members of the development team use the same version of
JDeveloper. Different JDeveloper versions ship with different ADF libraries, which can
lead to unexpected behavior when running the application using the Embedded OC4J
container.

We also recommend that each developer installs JDeveloper in the same directory on
their local PC. This is easy when you need to work/help on another PC, but more
important, it prevents problems when you start using the facility to import Business
Components from another project or jar file into your own project. When importing
Business Components, JDeveloper stores path info of the imported components in the
Model.jpx file so they can be displayed properly when using the ADF Business
Component editors. If developers have a different JDeveloper directory, the path info
might be incorrect and JDeveloper will not be able to find the imported business
components.

Note that JHeadstart itself will import JHeadstart Runtime business components into
your own Model project when you use one of the following features:

• Flex items or customizable standard items

• Custom Security

• Database table as resource bundle

• Dynamic menu structure

2.2.2. Identify Subsystems within your Application

It is good practice to organize your application into logical subsystems. These
subsystems can be used as a basis for

• The projects you create within your JDeveloper workspace, see section HTUCreating
a Workspace and ProjectsUTH.

• The java package structure (see section HTUDefining Java Package Structure and
Other Naming ConventionsUTH),

• The structure of your ADF Business Components. We recommend to create one
ADF BC Application Module for each subsystem, that holds the View Object
Usages needed to implement the business logic, and web pages for that
subsystem.

• Dividing the work over the developers in the team.

• The structure of the JHeadstart Application Definition files. You will typically
create one Application Definition for each subsystem, which can be based on the
associated subsystem application module. See section HTUOrganizing JHeadstart
Application Definition FilesUTH.

2.2.3. Creating a Workspace and Projects

JDeveloper offers a convenient wizard for setting up an Application Workspace and
Projects.

JHeadstart Developer's Guide Getting Started 2 - 7

• Create a New Application (choose menu option File – New – General –
Application).

• Choose a name and directory for the new workspace, and also type in a default
package name (for example, com.mycompany.jhsdemo).

• In the Application Template field, choose Web Application [JSF, ADF BC] from
the dropdown list. Although you can use JHeadstart in any kind of JDeveloper
project, the recommended way is to use this application template as it is
configured for building a data-bound web application.

This will create two projects in your workspace: one called Model and one called
ViewController. In the Model project you can set up the ADF Business Components, and
in the ViewController project JHeadstart can generate the View and Controller layers of
your application.

If you are building a large application, based on a database schema of say 100 or more
tables, you might consider to create multiple Model projects.

Reasons to create multiple Model projects include:

• A layer of entity objects and/or view objects, and associated business rules will
be used by multiple applications. In such a situation it makes sense to create a
separate Model project for these entity objects (in a separate workspace if you
like), create a Jar file of this model project which can then be imported into your
application-specific Model project so you can create view objects on top of these
entity objects. Note that the entity objects can only be changed in the owning
Model project, not in the project in which they are imported.

2 - 8 Getting Started JHeadstart Developer's Guide

ADF Developers Guide, section 25.7 “Working with Libraries of Reusable
Components”. Includes instructions on importing business components into
another project.
HTUhttp://download-west.oracle.com/docs/html/B25947_01/bcadvgen007.htm -
CHEFECGD UTH

• The application is very large and can be divided into subsystems with few
dependencies on each other. Separate teams of developers work on each sub
system. In this case it makes sense to split the subsystems into multiple model
projects to have a clear separation of responsibilities, and to reduce the load time
of the Model projects in JDeveloper. To handle the few dependencies between
the subsystems, the facility to import business components can be use as
described before.

We do not recommend to create multiple ViewController projects. The application needs
to be deployed as one web application (.war file), and creating multiple ViewController
projects will create duplicates of files that will complicate the deployment process.

If you are building a large web application, we recommend to use the option to define
Working Sets on your ViewController project.

JDeveloper Online Help “Managing Working Sets”. Includes instructions on
creating working sets. Note that working sets are only supported in the System
Navigator view, not in the Application Navigator.
HTUhttp://www.oracle.com/webapps/online-
help/jdeveloper/10.1.3/state?navSetId=_&navId=4&vtTopicFile=working_with_p
rojects/ide_pworkingsetsmanaging.html&vtTopicId=UTH

A working set allows you to define a set of files (a subset of project source path contents)
that you want to work with, for example all files related to a subsystem. Typically, you
would perform the following actions scoped to the working set:

• Make

• Build/rebuild

• Search

• Find usages

When you have defined some useful working sets, you can exchange them with your
development team members. Here are the steps to do so:

• Open [JDevHome]/jdev/system/oracle.ide.10.1.3.xxxx/projects/index.xml and
finding the entry for the JDeveloper project on which you defined the working
sets.

• The entry in index.xml references a working set definition file in the
[JDevHome]/jdev/system/oracle.ide.10.1.3.xxxx/projects folder.

• Possibly rename this (project-specific) working set definition file to a more
meaningful name.

• Share this working set definition file with your team, and tell everyone to change
the project entry in their own
[JDevHome]/jdev/system/oracle.ide.10.1.3.xxxx/projects/index.xml to let it
point to the new file.

JHeadstart Developer's Guide Getting Started 2 - 9

2.2.4. Creating Database Connection

Create a Database Connection to the schema that contains the database tables of your
application. Make sure that every developer uses the same name for the connection, and
that they all make the same setting for the “Deploy Password” checkbox.

Suggestion: JDeveloper allows you to make an export of one or more database
connections to an XML file. This XML file can then be used by other
developers to import database connections, ensuring that the connections will
be identical on all developer PC’s. To use this feature, go to the Connections
tab, right-mouse click on the Database node, and choose “Export
Connections…”

2.2.5. Initializing Model Project for Business Components

Go to the Project Properties of the Model project, to the Business Components panel. Tick
the checkbox ‘Initialize Project for Business Components’. Choose the Database
Connection you just created.

2.2.6. Optimizing ADF BC for Team Development

Go to the Model project, Project Properties. On the Business Components | General
panel, uncheck the property named ‘Copy Package XML Files to Class Path’.

This sets the default setting to be used for new ADF Business Components project. By
unchecking this, the ADF design time no longer uses package XML files to track what
components are in the package, so the package XML files will not be a point of merge
conflicts between team members.

Suggestion: For existing projects, you can also edit this property at any time
by unchecking it on the Business Components | Options panel of the project
properties.

2.2.7. Switching off Default Creation of ADF BC Java classes

When creating entity objects, view objects and application modules, JDeveloper
generates Java classes for all these components that you can use to add custom code.
However, in most cases you will not add custom code to those classes, so it is better to
turn off the creation of these classes since ADF Business Components does not require
these classes to run your application.

If later on you do need to add custom code, you can still generate the Java class by going
to the “Java” tab in the editor of the business component.

You can switch off the default creation of these classes by going to the Tools ->
Preferences menu, and choose Business Components.

2 - 10 Getting Started JHeadstart Developer's Guide

If you plan to implement business rules in ADF Business Components, you typically
code these rules in the entity obbject row classes, so you could decide to create these
classes upfront, and also check the Entity Object Row Class checkbox.

2.2.8. Enabling ViewController Project for JHeadstart

Before you can use JHeadstart in a project, you must first “Enable JHeadstart” on it. See
chapter 4 “Using JHeadstart Addins” for more information.

JHeadstart Developer's Guide Getting Started 2 - 11

2.3. Organizing JHeadstart Application Definition Files

As explained in chapter “Using JHeadstart Add-Ins”, the JHeadstart Application
Generator is driven the Application Definition file that holds the generator metadata.
Although the name of the file suggests that you create only one application definition file
for your entire application, we do recommned to create multiple application definition
files, unless your application is really small. A typical approach is to create one
application definition file for each logical subsystem. Since an application definition file
is based on one data control (Application Module), the structure of your application
definition files will typically follow the structure of your ADF BC application modules,
which in turn should map your subsystem structure.

2.3.1. Service Level Settings that Should Be the Same Accross Application Definitions

When you create multiple application definition files, you should be aware of the fact
that a number of settings you make at the service-level in the Application Definition
Editor, are really application-wide settings. In other words, some service-level settings
should be the same in all application definition file. Failing to keep these settings in
synch might result in unexpected errors when running the application. For example, if
the NLS resource bundle name property is different, then depending on the application
definition file last generated, some pages might not be able to find the translatable
strings, because they are in a different resource bundle, no longer configured for use in
JhsCommonBeans.xml.

Here is a list with the service-level settings that should be the same across all application
definition files:

• Generator Flavours: View Type and JSP Version

• File Locations: Common Beans Faces Config

• Java: View Package, Page Definitions SubPackage

• UI Settings: Date Format, DateTime Format

• Security: Authentication Type, Use Role-based Authorization, Authorization
Type, Authorize Using Group Permissions

• Internationalization: NLS Resource Bundle, Resource Bundle Type, Generator
Default Locale, Generator Locales, Read User Locale from, Generate Locale
Switcher

• Runtime Customizations: Allow Runtime Customization of Menu, Allow use of
Flex regions, Allow Runtime Customization of Items

2.3.2. Naming Conventions for File Location Properties

To cleanly organize the output produced by the JHeadstart Application Generator, it is
helpful to set naming conventions for the File Location properties thet can be set at the
service-level of an application definition file.

Here are suggested naming conventions.

Property Value

Main Faces Config /WEB-INF/faces-config-<subsystem>.xml

2 - 12 Getting Started JHeadstart Developer's Guide

For example: /WEB-INF/faces-config-
hr.xml

Group Beans Faces Config
Directory

/<subsystem>/beandefs/

UI Pages Directory /<subsystem>/pages/

UI Page Regions Directory /<subsystem>/regions/

By using a subsystem indication (short name or abbreviation) in the name, all files of a
subsystem can easily be located. Since only one main faces-config is generated for each
application definition (which only holds the navigation rules) , this file is not organized
into a subsystem directory.

Note that by using this naming convention, JHeadstart will not generate the default
faces-config.xml file, that is created and updated by ADF when using the visual design-
time tools to create a JSF managed bean. So, with these settings you will never accidently
wipe out custom managed bean definitions when running the JHeadstart Application
Generator.

One drawback of not generating the default faces-config.xml is that ADF will add the
default <lifecycle> element to the faces-config.xml when performing a drag and drop
operation from the data control palette:

Since JHeadstart uses a customized version of the ADFPhaseListener (see chapter “JSF-
ADF Page Lifecycle” for more info), you should remove this element again after your
drag and drop action. If you forget to do this, you might loose the transactional messages
displayed by JHeadstart when pressing Commit, or all messages might be displayed
twice. Since you might easily forget to remove this element if you perform a lot of drag
and drop actions on the generated pages, a more structural solution is to move the
JHeadstart–required <lifecycle> definition from JhsCommon-beans.xml to faces-
config.xml:

To prevent generation of this element into JhsCommon-beans.xml, you should create a
custom template for JhsCommonBeans.vm and remove the element in this customized
template.

JHeadstart Developer's Guide Getting Started 2 - 13

2.4. Defining Java Package Structure and Other Naming Conventions

When working in a team, it is important to have standards on naming java packages and
the various types of (business) components. Everybody seems to have different opinions
on naming conventions, but remember, the important thing is to have naming standards
in place and have them applied by all developers. The actual format of the naming
conventions is less important.

As a suggestion, here are the naming conventions as applied on projects by the
JHeadstart Team, use them to your own advantage.

2.4.1. Java Packages

The root package of an application is by convention the reverse of your companies
internet domain name, followed by the application name, for example “com.acme.hr”.

A suggested package structure within the application can be found in the table below.
Subsitute the three dots with your application root package.

 Package Description

….model Base package forbusiness service classes,
classes who contain logic not specific for the
web application built on top of it

….model.adfbc Base package for ADF Business Components.

….model.adfbc.base Package for base classes extended by the ADF
Business Components you create for the
application

….model.adfbc.entity Base package for entity objects and
associations

….model.adfbc.entity.<subsystem> For larger applications, it is good practice to
further organize entity objects into subsystem
packages, for example
“model.adfbc.entity.authorization”.

….model.adfbc.query Base package for view objects and view links

….model.adfbc.query.<subsystem> For larger applications, it is good practice to
further organize view objects into subsystem
packages, for example
“model.adfbc.query.authorization”.

….model.adfbc.service Contains application modules

….controller Base package for classes that contain logic to
control the behavior of the web application.

….controller.jsf Base package for JSF-specific classes that
contain logic to control the behavior of the web

2 - 14 Getting Started JHeadstart Developer's Guide

application.

….controller.jsf.bean Contains JSF managed bean classes

….controller.jsf.lifecycle Contains custom JSF Page Lifecycle classes

….view Base package for classes that contain logic to
display web pages and the user interface in
general

….view.pagedefs Contains ADF Model Page Definitions

2.4.2. Naming ADF Business Components

• Entity Object names are self-descriptive and in singular. Remove any table name
prefixes from the name.

example: Department

• Entity Associations are named using the format <master entity><verb describing
relationship><detail entity>.

example: DepartmentHasEmployees

• View Objects names describe the result of the query, are in singular when the
query returns onew row at most, and in plural when the query can return
multiple rows. Any bind parameters defined for the ViewObject, should be
resembled in the name

examples: AllClerks, ClerksByDepartment

• View Links are named using the format <master view object><verb describing
relationship><detail view object>.

example: DepartmentHasEmployees

• Application Modules names are descriptive for the functional area they cover,
and are suffixed with “Service”.

examples: AuthorizationService, HumanResourcesServic

JHeadstart Developer's Guide Creating ADF Business Components 3 - 1

C H A P T E R

3 Creating ADF Business
 Components

his chapter provides you with guidelines on creating ADF Business Components.
The Oracle ADF Developer’s Guide for Forms/4GL Developers Release 10.1.3

already contains a wealth of information about how to use ADF Business Components.
This chapter will not duplicate that information. It focuses on best practices collected by
Oracle Consulting and guidelines on how you can best set up and prepare your ADF
Business Components when using JHeadstart to generate the View and Controller layers.

If you are new to ADF Business Components, we strongly recommend to first read
chapters 4 to 9 of the ADF Developer’s Guide.

Oracle ADF Developer’s Guide for Forms/4GL Developers, Chapters 4 to 9
describe the basics for creating ADF Business Components. Chapters 25 to 28
contain advanced techniques.
http://www.oracle.com/technology/documentation/jdev/B25947_01/index.html.

T

http://www.oracle.com/technology/documentation/jdev/B25947_01/index.html

3 - 2 Creating Business Components JHeadstart Developer's Guide

3.1. Setting Up ADF BC Base Classes

Every type of ADF Business Component extends from a Base class. By default, the base
classes are set to the standard ADF BC classes defined in oracle.jbo.server package. You
can check that under menu option Tools – Preferences.

In the ADF Developer’s Guide 10.1.3 it is recommended to create your own layer of ADF
BC Base Classes, also called framework extensions:

Before you begin to develop application-specific business components, Oracle recommends that
you consider creating a complete layer of framework extension classes and setting up your project-
level preferences to use that layer by default. You might not have any custom code in mind to put
in some (or any!) of these framework extension classes yet, but the first time you encounter a need
to:

• Add a generic feature that all your company's application modules require

• Augment a built-in feature with some custom, generic processing

• Workaround a bug you encounter in a generic way

You will be glad you heeded this recommendation. Failure to set up these preferences at the outset
can present your team with a substantial inconvenience if you discover mid-project that all of
your entity objects, for example, require a new generic feature, augmented built-in feature, or a
generic bug workaround. Putting a complete layer of framework classes in place to be
automatically used by JDeveloper at the start of your project is an insurance policy against this
inconvenience and the wasted time related to dealing with it later in the project.

For an explanation how to create such a layer, see the ADF Developer’s Guide.

JHeadstart Developer's Guide Creating ADF Business Components 3 - 3

Reference: See the Oracle Application Developer Framework Developer’s
Guide for Forms/4GL Developers Release 10.1.3, chapter 25: Advanced
Business Components Techniques, section 25.1. Globally Extending ADF Business
Components Functionality, and section 25.2. Creating a Layer of Framework
Extensions. Internet: http://download-
uk.oracle.com/docs/html/B25947_01/bcadvgen.htm#sm0291.

The Application Module Object base class can be used to implement functionality that is
needed in all Application Modules of your application. Therefore JHeadstart has created
is own subclass of the standard oracle.jbo.server.ApplicationModuleImpl
class. (The JHeadstart Application Generator can automatically set up the use of this
class if you don’t have your own ADF BC framework extensions.)

If you want additional custom functionality for your application modules, this means
that your custom AppModuleImpl should not extend the standard base class but rather
the JHeadstart base class: JhsApplicationModuleImpl.

To do this, you must first make sure that the JHeadstart Runtime 10.1.3 library is added
to your project. Also add the Commons Logging library, because JHeadstart uses it.

• Go to the Project Properties

• Select category Libraries

• Click Add Library

• Under Extension, select Commons Logging 1.0.3 and Ctrl-click to also select
JHeadstart Runtime 10.1.3

• Click OK twice

http://download-uk.oracle.com/docs/html/B25947_01/bcadvgen.htm#sm0291
http://download-uk.oracle.com/docs/html/B25947_01/bcadvgen.htm#sm0291

3 - 4 Creating Business Components JHeadstart Developer's Guide

• Save the project

Now you can use
oracle.jheadstart.model.adfbc.v2.JhsApplicationModuleImpl as the
super class of your custom Application Module framework extension.

Suggestion: In the Base Classes wizard page, use the Browse button to find
the desired base class. In the Search field, type in the first letters of the class
name, and the dialog will show all available classes that satisfy the base class
requirements.

3.1.1. Using CDM RuleFrame

CDM RuleFrame is a PL/SQL based framework for implementing business rules in the
database, tightly integrated with Oracle Designer.

Headstart Oracle Designer. Add on to Oracle Designer that includes CDM
RuleFrame:
http://www.oracle.com/technology/products/headstart/index.html

If you use CDM RuleFrame to implement business rules, you want the errors reported by
CDM RuleFrame to be displayed nicely in your generated web application. Using
JHeadstart this is easily accomplished by using a special application module super class
shipped with JHeadstart: RuleFrameApplicationModuleImpl. So, when using CDM
RuleFrame, your application module base class should extend
RuleFrameApplicationModuleImpl rather than JhsApplicationModuleImpl.

Note that RuleFrameApplicationModuleImpl extends
JhsApplicationModuleImpl in turn; so all standard JHeadstart functionality is still
available.

http://www.oracle.com/technology/products/headstart/index.html

JHeadstart Developer's Guide Creating ADF Business Components 3 - 5

3.2. Creating the Entity Object Layer

This section discusses the development tasks related to creating the entity object layer.
The following topics are discussed:

• Review Database Design

• Creating First-Cut Entity Objects and Associations

• Renaming Entity Objects and Associations

• Generating Primary Key Values

• Setting Entity Object Attribute Properties used by JHeadstart

• Implementing Business Rules

3.2.1. Review Database Design

A sound database design is critical to successfully building a performant ADF Business
Components layer. Providing guidelines for sound relational database design is outside
the scope of this developer’s guide, however, some guidelines directly impacting the
behavior of your web application are discussed below:

• If you are in the position to create or modify the database design, make sure all
tables have a non-updateable primary key, preferably consisting of only one
column. If you have updateable and/or composite primary keys, introduce a
surrogate primary key by adding an ID column that is automatically populated.
See section 3.2.4 Generating Primary Key Values for more info. Although ADF
Business Components can handle composite and updateable primary keys, this
will cause problems in ADF Faces pages. For example, an ADF Faces table
manages its rows using the key of the underlying row. If this key changes,
unexpected behavior can occur in your ADF Faces page. In addition, if you want
to provide a drop down list on a lookup tables to populate a foreign key, the
foreign key can only consists of one column, which in turn means the referenced
table must have a single primary key column.

• Ensure that all the primary key, unique key, and foreign key constraints and
check constraints that logically exist, are explicitly defined as database
constraints in your database server. When you create ADF Business
Components, these database constraints are stored in the Entity Object XML file.
JHeadstart uses this constraint information to generate user-friendly error
messages when a database constraint is violated.

3.2.2. Creating First-Cut Entity Objects and Associations

Use the JDeveloper wizard Business Components from Tables to create entity objects for
your database tables. You can find this wizard in the New Gallery. On the “Create Entity
Objects” wizard page, press the Query button to see all tables you created in the previous
exercise.

Make sure you specify a proper package name for the entity objects, based on the
naming conventions that you specified for your project. See chapter 2 for more info on
naming conventions.

Do not yet create default updateable or read-only view objects and do not create an
application module using the wizard for two reasons:

3 - 6 Creating Business Components JHeadstart Developer's Guide

• We first rename the entities and associations and the new names will be used
when we create view objects and view links.

• A default application module typically contains many (nested) view object
usages that you do not need in your application. You should set up your
application module data model based on the layout of the pages you will create
to meet the functional requirements of your application.

3.2.3. Renaming Entity Objects and Associations

We recommend renaming entity objects and associations to comply with the naming
standards you have set up for your project (see chapter 2).

Renaming associations and the association accessors is important for the following
reasons:

• By default, associations are named after the foreign key constraint suffixed with
“FkAssoc”. Foreign key names are often not very meaningful, so if you have
many associations, they are easier to manage with meaningful names.

• The accessor properties of an association determine the accessor method names
generated into the entity objects to traverse entity object associations, something
you will often do when coding business rules in your entity objects. Logical
accessor methods make it easier to code this logic.

• The view links that are created when you create default view objects for your
entity objects are named after the underlying associations, saving you an
additional renaming of the view links (although you typically will remove the
“Link” suffix added to the view link name).

For example, when you create entity objects for the EMPLOYEES and DEPARTMENTS
tables in the HR schema of the Oracle database, an association named DeptMgrFkAssoc
is created, with association properties named “Employees” and “Departments”. We
recommend renaming the association to something like
“EmployeeManagesDepartments”, and the association properties to “Manager” and
“DepartmentsManaged”.

JHeadstart Developer's Guide Creating ADF Business Components 3 - 7

Now, if you need to code logic in the Employee Entity Object that requires access to the
departments an employee manages, you can call the getDepartmentsManaged()
method rather than the confusing getEmployees() method.

3.2.4. Generating Primary Key Values

In many cases, artificial primary keys are used (also known as surrogate primary key).
Typically, these primary key columns are called ID. Because they are artificial, they are
meaningless to the user. The system generates the values and uses them internally, but
they should be hidden for the user.

Before starting to generate applications with JHeadstart, examine your Model for
artificial primary keys. Make sure they are correctly populated. Test this with the
Business Components Application Module Tester. See section Test the model.

An artificial primary key can be populated in two ways:

• In the Business components: The create method of the entity object is used for
that.

• In the database: A database trigger is in added to the table that gets the next
value from a database sequence and populates the primary key.

3.2.4.1. Surrogate primary key populated in the Business Components Model layer

In the Entity object implementation, a create method is added that takes the value out of
a database sequence and sets the primary key.

This is described in detail in the JDeveloper Help. Check topic ‘Populating an Attribute
from a Database Sequence’.

3 - 8 Creating Business Components JHeadstart Developer's Guide

Suggestion: If all primary key attributes have the same name, for example Id,
retrieving sequence values from the database in the create method is
something you could implement in your BC base classes. By doing so, you do
not need to implement a create method for each entity object. In the EO base
class you can retrieve from one sequence that is used for all Entity Objects. Or
you can implement a more sophisticated mechanism that derives the sequence
name from the Entity Object name.

3.2.4.2. Surrogate Primary Key populated in the database

The database generates the primary key value, so no Java code is needed to populate the
primary key. However, your Business Components Model needs to know that values get
refreshed in the database after the insert.

ADF Developer’s Guide, section 6.6.3.8 “Trigger-Assigned Primary Key
Values”.
http://download-west.oracle.com/docs/html/B25947_01/bcentities006.htm#sm0147

When you plan to create screens that insert a master row and one or more detail rows in
one transaction, you will need to ensure that ADF BC first posts the master row and then
the detail rows, otherwise ADF BC will not be able to set the foreign key of the details
rows correctly. To enforce this posting sequence, you should mark the entity association
as “Composite Association”.

Note that when you mark an association as composite, the detail entity object can only be
created as a detail of the master entity object, which means you cannot create a page that
directly creates detail entity object, in addition to the master-detail page. If you try to do
so, you will get error JBO-25030: Failed to find or invalidate owning entity.

http://download-west.oracle.com/docs/html/B25947_01/bcentities006.htm#sm0147

JHeadstart Developer's Guide Creating ADF Business Components 3 - 9

Weblog Steve Muench: “Why do I get InvaliOwnerException”.
http://radio.weblogs.com/0118231/stories/2003/01/17/whyDoIGetTheInvalidownerex
ception.html

3.2.5. Setting Entity Object Attribute Properties used by JHeadstart

A number of properties that you can set on the Entity Object attribute panel are carried
forward by JHeadstart into the Application Definition file used to generate the
application:

• Mandatory: when this checkbox is checked, the item that is based on this
attribute will be generated with an asterisk in front of the label, and a JavaScript
alert will be displayed when you submit the page when the item is still empty.

• Queryable: when checked, the item created for this attribute in the Application
Definition will have the Show in Quick Search and Show in Advance Search
checkboxes checked by default. Of course, you can uncheck these checkboxes
later on.

• Updateable: when set to “While New” the item will be generated as a read-only
item when an existing row is displayed on the page. When set to “Never” the
item will be read-only in the generated page.

Note that Queryable and Updateable properties can also be defined at the view object
(VO) level. An item that is queryable at EO level can be made non-queryable at VO level.
An item that is updateable at the EO level can be made (partly) read-only at the VO level.
The VO level settings take precedence when JHeadstart creates the Application
Definition file.

3.2.5.1. Specifying Entity Object Control Hints

You can specify Control Hints for an attribute in an Entity Object. See the screenshot
below.

http://radio.weblogs.com/0118231/stories/2003/01/17/whyDoIGetTheInvalidownerexception.html
http://radio.weblogs.com/0118231/stories/2003/01/17/whyDoIGetTheInvalidownerexception.html

3 - 10 Creating Business Components JHeadstart Developer's Guide

The information you enter in this panel is stored in a resource bundle for the entity
object. This means that if you want to translate your application, you have to go through
numerous resource bundles, created for all your entity and view objects (which also
support control hints) and make language-specific copies of all those bundles.

Internationalizing Control Hints. Explained in ADF Developers Guide.
http://download.oracle.com/docs/html/B25947_01/bcentities005.htm#sm01
40

This can be a tedious job when you have many ADF Business Components. When using
JHeadstart, you have an easier and faster alternative.

By default, JHeadstart will copy the values for Label Text, and Tooltip Text to the
corresponding item properties (Prompt in Form Layout and Hint Text) in the JHeadstart
Application Definition file. Then, when you generate your application with the service-
level property Generate NLS-enabled prompts and tabs checked, all translatable
strings, including labels and tooltip/hint texts, are stored in one centralized resource
bundle, or database table. One centralized bundle is much easier to manage and
translate, and when you use the database table as the store for translatable strings,
JHeadstart even offers an in-page editor to translate your application. See chapter 11
”Internationalization” for more information.

Now, if for whatever reason you want to use the business component resource bundles
for translating labels and tool tips, instead of the JHeadstart resource bundle or database
table, then you can do so by switching a JHeadstart preference. Go to the JDeveloper
Tools menu and choose “Preferences…” At the left side click “ JHeadstart Settings” and
the panel displayed below appears.

If you check the checkbox “Bind Item prompt to ADF BC Control Hint “Label Text”,
JHeadstart will no longer copy the Label value over to the Application Definition.
Instead, it will set the Label property of the item to an EL expression that references the
label as defined in the Control Hints panel.

JHeadstart Developer's Guide Creating ADF Business Components 3 - 11

3.2.6. Implementing Business Rules

ADF Business Components has extensive support for implementing business rules, both
declaratively using so-called validators, as well programmatically in the Entity Object
implementation classes. The JHeadstart Team has written a comprehensive white paper
on implementing business rules in ADF Business Components. This white paper can be
downloaded from OTN, and includes a classification of business rules, and a structured
approach to implementing each type of business rule.

Implementing Business Rules in ADF BC. White paper on OTN.
http://www.oracle.com/technology/products/jdev/collateral/papers/1013
1/businessrulesinadfbctechnicalwp.pdf

3.2.6.1. Adding Business Rules to the beforeCommit() method

If your business rule logic in the entity object beforeCommit() method can throw an
exception you must set the jbo.txn.handleafterpostexc property to true in your
application module configuration. By doing so the framework automatically handles
rolling back the in memory state of the other entity objects that may have already
successfully posted to the database (but not yet been committed) during the current
commit cycle.

However, there is a known issue (bug 4606787) which causes the
jbo.txn.handleafterpostexc = true setting to conflict with custom
activation/passivations of the ADF Business Components state. When such a conflict
occurs, the following exception will be thrown: JBO-25033: Activating state from
Database at id xx failed.

JHeadstart uses custom activation/passivation in the JhsPageLifecycle class to
restore rows already removed from ADF Business Components when the final database
commit fails because of referential integrity constraint violations. This means you cannot
set jbo.txn.handleafterpostexc to true, and if you nevertheless do so, you will get
the JBO-25033 error.

Fortunately, JHeadstart provides functionality to work around this bug. Instead of
setting the jbo.txn.handleafterpostexc property to true, you need to check the
group-level checkbox Always Passivate State Before Commit? in the Application
Definition Editor. Note that this setting is only visible in expert mode.

http://www.oracle.com/technology/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf
http://www.oracle.com/technology/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf

3 - 12 Creating Business Components JHeadstart Developer's Guide

You need to make this setting for each group, which generates pages that might start
transactions, which cause the beforeCommit () method to fire.

3.2.6.2. Define List Validators for Static Lookups

One topic, also discussed in this white paper, provides additional functionality in
combination with JHeadstart: defining List Validators. ADF BC has the possibility to add
Validators to Entity Objects. Using the List Validator, you can check for allowable values
in the Model layer.

In this example we use a List Validator to check the allowable values for the salary
column.

1. Edit the Entity Object and go to the Validation Node. Select the attribute you
want the Validator for and press New:

JHeadstart Developer's Guide Creating ADF Business Components 3 - 13

2. Choose List Validator and enter the Allowable Values. Note that you can only
enter allowable values here, and not the meaning.

Now, when you create a default Application Definition using the New JHeadstart
Application Definition wizard, JHeadstart creates a static domain with the same set of
allowable values as defined in the List Validator.

3 - 14 Creating Business Components JHeadstart Developer's Guide

If you now generate the application, you will get a drop down list on salary with the
allowable values as entered in the List Validator. If you prefer to have a radio group, you
can change the Display Type for the item to either “radio-horizontal” or “radio-vertical”.

JHeadstart Developer's Guide Creating ADF Business Components 3 - 15

3.3. Creating View Objects and Application Modules

This section discusses the development tasks related to creating the data model layer,
consisting of View Objects, View Links and Application Modules. The following topics
are discussed:

• Creating View Objects and View Links

• Renaming View Objects and View Links

• Inspecting and Setting Key Attributes of a View Object

• Setting View Object Control Hints

• Determining the Order of Displayed Rows

• Creating Calculated or Transient Attributes

• Setting up Master-Detail Synchronization

• Defining View Links and View Object Usages for Lookups

• Testing the Model

3.3.1. Creating View Objects and View Links

When creating a View Object you need to determine whether the data queried through
the ViewObject should be updateable in the user interface (web pages). If so, you need to
create an updateable ViewObject, which is based on a primary Entity Object. If the data
is read-only in the user interface, it is more efficient to create a read-only View Object,
which is a View Object not based on an entity object with a custom SQL query that you
need to enter manually.

A typical example of read-only View Objects, are View Objects used to populate lookup
data in the user interface, typically exposed through a drop down list, or List of Values
window.

3.3.2. Renaming View Objects and View Links

If you have used the “New Default Data Model Components” wizard, we recommend
that you rename the View Objects and View Links to comply with the naming standards
you have set up for your project (see chapter 2). If you create the View Objects and View
Links one-by-one, you can assign proper names right away.

3.3.3. Inspecting and Setting Key Attributes of a View Object

Under the covers, an ADF Faces table uses the View Object findByKey() method for its
row management. This row management is used by the ADF Faces table to update the
correct underlying row, when a user has changed one or more values in the ADF Faces
table. Built-in ADF Data Binding layer actions like setCurrentRowWithKey and

setCurrentRowWithKeyValue also rely on the findByKey() method. For this method to
behave reliably, two conditions must be met:

• Each View Object must have at least one key attribute

• The key attribute(s) should be non-updateable

3 - 16 Creating Business Components JHeadstart Developer's Guide

A view Object key that is updateable might result in unexpected behavior in the web tier.
For example, if you update key attribute values in an ADF Faces table, the row
management feature might not work correctly anymore.

To ensure the above two conditions are met; you must perform different tasks,
depending on whether the View Object is Updateable or Read-Only.

3.3.3.1. Unchecking Reference Key Attributes for Updateable View Objects

An updateble View Object based on only one Entity Object, will inherit its key
attribute(s) from the underlying Entity Object, which in turn is inherited from the
underlying table’s primary key. Assuming you have applied common sense database
design guidelines, the primary key is not updateable, hence the View Object key is read
only as well. So far so good, however, when you start adding “Reference” Entity Objects
to the View Object, for example to join lookup data in the query, ADF Business
Components will add the key attributes of the reference Entity Object to the key of the
View Object (JDeveloper bug 6804062, fixed in 11g).

For example, we want to display the Department Manager Name on a page that lists all
departments. We need to join the Departments table with the Employees table in the
View Object query. The easiest way to do this is by adding the Employees Entity Object
as Reference Entity Object, as shown in the picture below.

Once you added the Employees Entity Object, and added some Employee attributes to
the View Object, ADF Business Component nicely changes the SQL statement for you to
join with the Employees table. However, the key attribute of the Employees Entity
Object, EmployeeId is also checked, effectively adding this attribute to the Key of a View
Object Row. So, ADF Business Components silently made your Row Key updateable.
When you subsequently use JHeadstart to generate a List of Values window to change
the manager of a department in a table layout, you will notice that the LOV values are
not returned as expected. This is because the Row Key has changed in the middle of this

JHeadstart Developer's Guide Creating ADF Business Components 3 - 17

user action. The solution is shown below: uncheck the Key attribute checkbox of the
“reference” key attribute(s), EmployeeId in this case.

3.3.3.2. Set Manage Rows By Key for Read-Only View Objects

When you create a read-only View Object, by default none of the attributes will be
marked as Key attribute. In order to successfully be able to use the findByKey() method
on a read-only view object, you need to perform two additional steps:

1. Ensure that at least one attribute in the view object has the Key Attribute
property set, and make sure this is a non-updateable attribute.

2. Enable a custom Java class for the view object, and override its create() method

to call setManageRowsByKey(true) after calling super.create() like this:

// In custom Java class for read-only view object
public void create()
{
 super.create();
 setManageRowsByKey(true);
}

Suggestion: Rather than adding this create() method to each and every read-
only View Object, you can apply a generic coding technique in the View
Object base class. See section 25.3.2 of the ADF Developer’s Guide:
http://download-uk.oracle.com/docs/html/B25947_01/bcadvgen003.htm - CHECHIJG

http://download-uk.oracle.com/docs/html/B25947_01/bcadvgen003.htm#CHECHIJG

3 - 18 Creating Business Components JHeadstart Developer's Guide

3.3.4. Setting View Object Control Hints

You can specify Control Hints for an attribute in a View Object. See the screenshot below.

JHeadstart might use some of these properties in the same way as Control Hints
specified for an Entity Object. See section Setting Entity Object Attribute Properties used
by JHeadstart fore more information.

3.3.5. Determining the Order of Displayed Rows

In most situations you want to order the queried records. To accomplish this you must
add an Order By clause to each View Object.

Attention: In general, there is NO DEFAULT sort order you can rely on.

1. Select the View Object, right mouse click, select Edit <ViewObject> to open its
Properties dialog.

2. Go to the Query node and enter the Order By clause. You can press the Edit
button to select available attributes. Often, the view is ordered by the Descriptor
attribute. It may also be ordered by a lookup attribute.

3. Be sure to use the 'Test' button to verify the query.

JHeadstart Developer's Guide Creating ADF Business Components 3 - 19

It is also possible to let the user order the records as desired in a page with table format.
See chapter 5, section “Allowing the user to sort data in a table page” for more detail on
how to do this.

3.3.6. Creating Calculated or Transient Attributes

Sometimes you want to show an attribute that does not exist in the correct form in the
database. For example: you want a read-only attribute FULL_NAME based on the
FIRST_NAME and LAST_NAME attributes. In such cases, you need to add a calculated
or transient attribute.

Note the important difference between a calculated and a transient attribute:

• A calculated attribute is present in the SQL query: the calculation is done by SQL
at retrieval time. So a calculated attribute is only recalculated when the query
is re-executed. Imagine a calculated attribute FullName that is a concatenation
of FirstName and LastName. When the FirstName is changed in the
application, the data needs to be requeried to refresh FullName. Only use a
calculated attribute for read-only fields.

• A transient attribute is not present in de SQL query. You have to calculate the
value in a get method in the View Object. Every time the transient attribute
value is needed, the get method is called and the transient value is
recalculated. So you have no synchronization issues when using a transient
attribute. The only drawback of a transient attribute is that you have to code a
get method in the ViewRowImpl class.

Reference: See also the Oracle Application Developer Framework Developer’s
Guide for Forms/4GL Developers Release 10.1.3, section 7.6: Adding
Calculated and Transient Attributes to an Entity-Based View Object.

3.3.6.1. Steps to create a calculated attribute
1. Select the View Object, right mouse click, select Edit <ViewObject> to open its

Properties dialog.

2. Go to the Attributes node and click on 'New'.

3. Enter an appropriate name for the attribute.

4. Check ‘Mapped to Column or SQL’.

5. Give the attribute an alias.

6. In the Expression text area, key in the SQL expression to create the concatenated
string. Note that if you have included lookup attributes in your view definition,
then you must include the alias you have given to the selected entity objects in
the SQL Expression:
For example: LAST_NAME || ', ' || FIRST_NAME

3 - 20 Creating Business Components JHeadstart Developer's Guide

7. Save the changes and close the View Object dialog.

3.3.6.2. Steps to create a transient attribute
1. Select the View Object, right mouse click, select Edit <ViewObject> to open its

Properties dialog.

2. Go to the Attributes node and click on 'New'.

3. Give the attribute an appropriate name.

JHeadstart Developer's Guide Creating ADF Business Components 3 - 21

4. Make sure that the 'Mapped to Column or SQL' checkbox is unchecked.

5. Go to the Java page.

6. Ensure that Generate Java File is checked for the View Row Class, and that
Accessors is checked for the View Row Class.

7. Press OK

8. Open the generated ViewRowImpl.java file (right-click the View Object and
select Go to View Row Class) and go to the get<newAttributeName> method.

9. Code the 'get' method for this attribute in the view java class. For example:
public String getFullName()
{

3 - 22 Creating Business Components JHeadstart Developer's Guide

 return getLastName() + "," + getFirstName();
}

10. Save the changes and close the View Object dialog.

Reference: It is recommended to test the ViewObject with the Business
Components Browser. See section Test the model.

3.3.7. Setting Up Master-Detail Synchronization

JHeadstart is capable of generating parent-child or master-detail layouts. For example
you want to show a department with all the employees in that departments as detail.

When you want to generate master-detail layout, it is important to make some
preparations in the ADF BC Model. Let’s take the Departments with Employees as an
example:

1. A View Link representing the master-detail relation must exist in your Model
project:

2. The master-detail relation must exist in the Data Model of your Application

Module

JHeadstart Developer's Guide Creating ADF Business Components 3 - 23

Attention: You can have multiple levels of nesting. For example Regions,
consisting of Countries, consisting of Locations and so on. See section 5.6 -
Creating Tree Layouts, for an example of deeper nesting.

3.3.8. Defining View Links and View Object Usages for Lookups

JHeadstart is capable of generating dropdown lists or lists of values for entering
references to other rows. For example, when entering or updating an Employee, you
want to set the Employee’s Department by choosing from all available Departments in
the database.

When you want to let the JHeadstart New Application Definition Wizard automatically
include such lookups, you have to make sure that View Links exist between the relevant
View Objects. In the example, a View Link must exist between the Employees View
Object and the Departments View Object.

For the purpose of automatically adding lookups, it is not necessary to include a usage of
the View Link in the data model of the Application Module. The New Application
Definition Wizard will automatically add lookup View Object usages in the Application
Module.

If you later want to add a new lookup to an existing Application Definition, it is not
necessary to have any View Links. However, you do need a View Object usage in the
Application Module for the lookup data collection. We recommend creating a dedicated
View Object usage for lookup purposes, because if the same View Object usage were also
used as the main data collection of a page, applying search criteria would result in not
having the complete list to choose from in the lookup.

3 - 24 Creating Business Components JHeadstart Developer's Guide

3.3.9. Testing the Model

Before starting to generate with JHeadstart, you should be sure you have your Model
right. So make sure you can query, insert, update and delete data with your View
Objects.

Use the Business Components Tester for validating your model. Right-click your
Application Module and choose ‘Test…’ . Check the Database Connection name and
click the Connect button. Now the Oracle Business Component Browser opens.

On the left hand side you will see the Data Model of the Application Module. Double
click one of the View Object Usages to open a browser for it. On the right hand side you
can now browse through the rows, make changes to them, and, using the toolbar, even
create and delete rows.

See the JDeveloper help for further instructions. Topic is ‘Testing with the ADF Business
Components Browser’.

Suggestion: This Tester application is a very convenient way of checking
whether you have correctly specified your Business Components, without
having to create a full-blown application on top of it first. Also, in multi-
layered applications such as these, the exact source of a problem is not always
easy to determine. The Tester application is very useful in determining
whether a problem is located ‘above’ or ‘below’ the ADF Bindings. Finally, it is
a quick and easy way to test virtually any business rule implementation that
was implemented in the Business Components.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 1

C H A P T E R

4 Using JHeadstart

his chapter provides information on how to use JHeadstart in general. The following
topics are covered:

• Understanding the Generator Architecture

• Using the JHeadstart Enable Project Wizard

• Using the Create New Application Definition Wizard

• Using the Application Definition Editor

• Running the JHeadstart Application Generator

• Running the Generated Application

• Using Generator Templates

• Generating Mobile Applications

• What Was Generated for What Purpose

T

4 - 2 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.1. Understanding the JHeadstart Application Generator Architecture

This section describes the high level architecture of the JHeadstart Application Generator
(JAG).

The JHeadstart Application Generator provides a simple, highly productive means for
creating a transaction-based J2EE application using ADF.

The high-level development process shown in this diagram follows:

1. Create the business service using ADF Business Components wizards in
JDeveloper. This step is independent of JHeadstart.

2. Use the JHeadstart New Application Definition Wizard to create a first-cut of the
application definition, the metadata file in XML format required to generate the
application. Then, although it is not shown on the diagram, you would refine the
metadata using the Application Definition Editor, and customize the generator
templates using the JDeveloper code editor.

3. Generate the Model (data bindings), View, and Controller layer code using the
JHeadstart Application Generator. This is a highly iterative process, where you
refine the metadata and templates based on previous generation results. For an
example of a generated page see Figure 2.

4. If the results from the JHeadstart generator do not fully match your functional
requirements, you can enhance the generated pages using the JDeveloper ADF
tools (visual editors, property inspectors, and drag-and-drop facilities). There are
several ways to preserve post-generation changes, as we will discuss later.

The Application Definition drives the JHeadstart Application Generator. This is an XML
file that defines the overall structure of the application, including:

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 3

• The type of view layer that should be generated (ADF Faces with JSP version 2.0
or 1.2).

• The Data Collections that should be displayed and modified.

• The layout styles that should be used to display and manipulate the Data
Collections.

• Relationships between the Data Collections: parent-child or lookup.

JHeadstart includes the JHeadstart Application Definition Editor, which is a user-
friendly mechanism to edit the Application Definition without having to edit the XML
file directly.

4.1.1. Input Output

In addition to the Application Definition, the JAG uses the following inputs:

• JHeadstart Generator Templates

The JAG parses the Application Definition and generates a Model-View-Controller
(MVC) application using the following technologies:

• Model: ADF Business Components and ADF Model (data bindings).

• View: JSF JSP and ADF Faces.

• Controller: JSF.

The JAG is capable of generating the following types of output:

• Faces Config files for the JSF Controller.

• JSF JSP files for each displayed page.

• Page Definitons (data bindings) for generated pages.

• Resource bundles for internationalization.

• SQL scripts for populating the JHeadstart database tables when table-driven
features are enabled (dynamic menu, flex items, security, internationalization)

The output of the JAG, together with the ADF Business Components, forms the complete
web application.

Whenever it is required, you can switch on and switch off generation of individual file
types.

4 - 4 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.2. Using the JHeadstart Enable Project Wizard

JDeveloper offers a host of technologies that you might or might not use in a project. The
use of some of these technologies might require the presence of some files or settings in
your project. To facilitate the development process, JDeveloper will usually create these
files and/or settings for you the first time you use such a technology in your project,
often without notice. For instance, the first time you create an ADF Faces page in a
project, JDeveloper will automatically add a number of settings to the web.xml file, and
add a faces-config.xml file to your project

In a similar fashion, the use of JHeadstart also requires such files and settings in your
project. We have chosen to make the use of JHeadstart on a project a deliberate choice.
Before allowing the use of any JHeadstart Addins on a project, you must first ‘enable’
JHeadstart on it. Typically, this only needs to occur on the ‘ViewController’ project: the
project that will hold the JSF Navigation files and the JSF JSP pages. This action will also
trigger the creation of those files and settings needed for a JHeadstart application.

4.2.1. Enabling JHeadstart on a new project

Enabling JHeadstart on a project is a simple operation that you can perform by right
clicking on the project, and selecting the option ‘Enable JHeadstart on this Project’.

The JHeadstart Enable Project Wizard that is invoked by this menu option does not ask
for any input. All you need to do is click ‘Next’ and ‘Finish’. It will then create and add a
number of files to your project, and make some required project settings. It will report
what it has done in the following dialogue:

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 5

4.2.2. Enabling JHeadstart on an existing project

The above screenshot is the result of invoking the JHeadstart Enable Project Wizard on
new project. But it is safe to use this wizard on a project that already contains many files,
possibly even a fully functional ADF web application. That is because, unlike
JDeveloper, this wizard will never overwrite any files or settings without either backing
them up or asking for your feedback on how to proceed. To be more specific, here are the
possible responses of the wizard when trying to create a file that already exists:

1. Backup the file.

This is done for files that are absolutely required, for JHeadstart to function
correctly, such as ‘web.xml’ and ‘faces-config.xml’. If you made manual changes
to these files, you will need to merge them from the backup to the new version
created by JHeadstart!

2. Ignore the file and keep the existing version.

This is done for less vital files such as index.html and log4j.properties

3. Prompt for your resolution.

This is done for all other files, such as Tag Libraries and JHeadstart-specific files.
It is unlikely that you made manual changes to these files, so normally you

4 - 6 Using the JHeadstart Addins JHeadstart Developer’s Guide

would choose ‘Overwrite All’, but you can make your choice to overwrite,
backup or ignore on a per-file basis if you want.

4.2.3. Re-enabling JHeadstart on a project

Because of the safe nature of the wizard, we have allowed the option to re-run the
wizard on a project that you have already used it on. You can do this, for instance, if you
receive a newer version or patch of JHeadstart and want to make sure you are using the
latest runtime files, or if you have made changes to the files that you want to undo by
reverting back to the original version.

To rerun the wizard again, right-click on the project and choose ‘Re-enable JHeadstart on
this Project’.

 Attention: As you can see, because JHeadstart was already enabled on this
project, you can choose the menu option ‘New JHeadstart Application
Definition’, and the menu option to launch the JHeadstart Enable Project
Wizard was renamed to ‘Re-enable JHeadstart on this Project’.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 7

4.3. Using the Create New Application Definition Wizard

After enabling JHeadstart, you will typically create a JHeadstart Application Definition
xml file. You can create a new Application Definition by right-clicking the
ViewController project and choosing ‘New JHeadstart Application Definition’.

At this point, JHeadstart will make changes to your ADF Business Components Model.

For each View Link, JHeadstart generates a Lookup data collection by default. JHeadstart
adds new instances of the ViewObjects to the Application Module with name *Lookup.
You can inspect this behavior by editing your Application Module.

The reason is that a lookup needs to maintain its own set of rows. For example, when
you have a page that maintains Employees, and in another page there is a list of values
for selecting an employee, there need to be two instances of the same ViewObject. One
instance holds the rows for the maintenance page, and the other holds the rows for the
list of values. This way you can perform a search in the Employees maintenance page,
without limiting the available values in the lookup.

4.3.1. Dropdown Lists or Lists of Values

One of the questions asked by the New Application Definition Wizard is ‘Generate
LOV's instead of dropdown lists?'

4 - 8 Using the JHeadstart Addins JHeadstart Developer’s Guide

The problem that could occur if you have a dropdown list with a very large number of
rows is twofold. The query performed on the database to retrieve the rows is slow, and
the HTML needed for rendering the page becomes very large and takes a long time to
load. In extreme situations, this might mean that when trying to show the page, the
database hangs and/or the page never shows up.

Rule of thumb: click this checkbox if one or more of the tables you expect to be used for
choosing the many-end of a relationship contains considerably more than 100 rows.

Warning: The Application Definition is not visible in your JDeveloper project.
Until you pressed the Save All icon in the JDeveloper toolbar.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 9

4.4. Using the Application Definition Editor

The Application Definition defines the structure of your application. It identifies which
pages you need, how you want these pages related, their layout styles, what information
sources they are based on, and so on. Each (top level) group in the application will be
generated as a tabbed page in your web application.

One Application Definition can contain only one Service. If you need multiple Services,
you must create multiple Application Definitions.

Reference: How to create an Application Definition and how to define a
service is described in Chapter 2, Getting Started. This section only discusses
how to create new groups, and how to modify and remove existing groups.

4.4.1. Maintaining the Application Definition

The JHeadstart Application Definition Editor helps you to maintain the Application
Definition without having to write and edit the XML yourself. You simply define or
modify the properties as you need, and the XML file will be modified accordingly.

4.4.1.1. Starting the Application Definition editor

To be able to start the editor you must have created an initial Application Definition.
Place the cursor on this file, and press the right-hand mouse click:

Select ‘Edit JHeadstart Application Definition’ to open the editor.

4 - 10 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.4.1.2. Using the help in the Application Definition editor

The help in the Application Definition editor explains all the properties that you can set
for each service, group, detail group, lookup and region. This is a very useful aid to help
you determine how and when to set each property.

When you open the Application Definition editor, you will see the properties on the right
hand side of the editor. Below the properties, you see a small area (enlarged in the screen
shot below) with the help text. If you click on a property, the help text appears in the
window for that property:

This area may seem unnecessary small. You can increase or decrease the size of this area,
as you desire, just by placing the mouse cursor on the line above the help text and move
the line up or down.

4.4.1.3. Editing the Properties

There are four types of properties:

1. Text properties

2. Check boxes

3. Dropdown lists

4. Combo boxes or editable dropdown lists

How to edit the first three types is obvious. But the fourth type needs a little explanation.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 11

As you can see in the example of the item-level Required? property above, a combo box
has a dropdown list from which you can choose a value (in this case true or false), but
you can also type in a different value. If you do so, you must confirm this typed-in value
by pressing the Enter key. This is also mentioned in the online help of the property.

Warning: If you type in a value in a combo box, and then press Tab or click
the mouse in a different cell, your typed-in value will be lost. Use Enter to
confirm your changes.

4.4.2. Service

A service must be seen as a major subset of the application. It includes a set of logically
related functionality on which a user performs tasks that are logically linked together.

A part of a service definition seen through the Application Definition Editor

Attention: When partitioning the application into services, take into account
the following restriction:

A service can only be related to one ADF BC Application Module.
However you can use one Application Module for multiple services.

4 - 12 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.4.3. Groups

A service is made up of one or more groups. A group allows users to query and modify a
single data collection that maps to an ADF BC View Object (VO). Depending on the
layout options you choose, the group may be displayed on a single page or on a number
of related pages.

Groups may be nested to support parent-child relationships between their respective
View Objects.

Compared to a form module defined through Oracle Designer, you would typically
create one group for each first level module component. For detail module components
in a master-detail relationship, you would use nested groups.

A group consists of Items, Regions and Detail Groups. These concepts are discussed
below.

4.4.4. Items

An item is a mapping to an attribute of an ADF View Object (which normally maps to a
database column). All kinds of properties can be set for an item. For instance you can
specify a default value or a label (used when generating prompts). An item can have a
List of Values, which is explained in the next section.

4.4.5. Lists of Values

A List of Values (LOV) construction in an Application Definition links an item to a group
of type LOV, and specifies which items in the LOV group are to be mapped to which
items in the base group. This is required if in the generated application you want to
populate the item using a List of Values popup window instead of using a dropdown
list.

 Example The EMPLOYEES table has a foreign key to the DEPARTMENTS table.

When adding an EMPLOYEE, you need to choose the department. Suppose you want to
enter the the department using a List of Values, and you want to put that LOV on
the Department Name instead of the Department Id.

In the Application Definition you then have to create an item DepartmentName
(after first creating it in the ADF BC View Object), and link an LOV to that item.
This is how it looks in the Application Definition editor:

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 13

An LOV is populated by means of an LOV group. This is a (top level or nested) group
with the property Use as List of Values? checked.

Within the LOV one can create a mapping of source and target items. In other words
which item of the LOV group should map to which item of the current group. The target
of the first value always automatically maps to the currently selected item.

4.4.6. Regions

The regions folder can contain three different types of objects. If you add a new Region
you can choose which type you want to create.

1. Item Regions

2. Detail Group Regions

3. Region Containers

An Item Region allows you to group items into a named section (region) on a page. You
can define as many item regions as you want for a group.

A Detail Group Region can be used to create a dedicated region for a detail group
(nested group). This way one has more control over the placement of the detail group on
the page.

Attention: The detail group(s) inside the Detail Group Region must have the
property Same page? checked. Only such groups appear in the dropdown list
of the Group Name property (of the Detail Group Region).

A Region Container is, as the name says, a container for regions. The Regions folder is
an example of a Region Container. This is where the Layout Style can be set. Three
different flavors can be used: horizontal, vertical and stacked.

4 - 14 Using the JHeadstart Addins JHeadstart Developer’s Guide

Some screenshots can be found in the section Using regions.

4.4.7. Detail Groups

Groups can be nested to create master-detail (parent-child) relationships.

 Example A Region can have one or more Countries, and a Country can have one or more
Locations.

This structure can be reflected in the Application Definition like this:

Depending on the layout options you choose, you can display a master group and its
detail(s) on different pages or on a single page.

Attention: JHeadstart has no restrictions on the maximum level of nesting of
groups.

4.4.8. Domains

A domain is a (short) list of values normally used to populate a dropdown list. Two
kinds of domains are distinguished: static and dynamic.

A static domain is nothing else than a list of hard coded domain values. See the Gender
domain in the screenshot below.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 15

A dynamic domain is a domain based on an ADF View Object and therefore based on a
query. See for example the EmployeesViewLookup domain in the screen shot.

Items with Display Type dropDownList, radio-horizontal and radio-vertical have a
Domain property where you can specify a static or dynamic domain.

4.4.9. Manipulating Objects

You can create the objects described above by using the green plus (+) symbol in the
upper left corner of the Application Definition Editor, or by using the right-mouse-click
menu in the left hand panel. Just select the intended parent node in the tree on the left
and press the plus symbol, or right-click and choose Add Child. Whenever it is unclear
what type of object should be created, a list is shown and the user can select the desired
type. Otherwise the only possible type of object is created.

The table below shows what object types can be created when a certain type of node is
selected. The last column indicates the name of the newly created object.

Node Object Type Name

Service Base Group NewGroup

Item NewItem Base Group /
Detail Groups
folder Detail Group NewGroup

4 - 16 Using the JHeadstart Addins JHeadstart Developer’s Guide

Items folder /
Item Region

Item NewItem

Item LOV (+ one LOV
Value)

Choose a LOV Group (+
[currentItem] <=
undefined)

LOV LOV Value undefined <= undefined

Region Container NewRegionContainer

Detail Group Region NewGroupRegion

Regions folder /
Region Container

Item Region NewItemRegion

Static Domain (+ one
Domain Value)

NewStaticDomain (+
undefined)

Domains folder

Dynamic Domain NewDynamicDomain

Static Domain Domain Value Undefined

After creating a new object, its properties have to be set. A red property is mandatory
(also indicated by a * at the end of the label) and a black one is optional.

4.4.9.1. Moving objects

You can move an object in the Application Definition to a different position under the
same parent by dragging and dropping the object. This way you can influence the order
in which for example level 1 menu tabs or fields in a form layout are generated.

You can also move objects to a different parent, if that parent is capable of holding
objects of that type. For example, you can move a detail group to another top-level
group, or you can move an item from a group to an item region.

4.4.9.2. Copying objects

There are two ways for duplicating objects in the Application Definition.

1. You can right-click an object in the Application Definition Navigator and then
choose Duplicate <object type>.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 17

The new object is an exact copy of the original, except for the name, which is
"Copy of <original name>".

2. You can also copy an object in the Application Definition Navigator by dragging
the object while holding the Ctrl key. The cursor will be decorated with a plus
(+) in a box to indicate that the dragged object will be copied instead of moved.

When releasing the Ctrl key a duplicate of the original object will be created. The
new object is an exact copy of the original (including the name property). The
new object will be created as child of the object currently under the cursor.

4.4.9.3. Deleting objects

You can also quickly delete objects using the editor. Simply select the object you want to
delete, and press the red cross (x) icon in the tool bar or in the right-mouse-click menu:

4.4.9.4. Using the clipboard to copy and paste multiple properties

If the group should only be similar to another group, and you only want to copy a few
properties, then you can also copy the properties you want from one group and paste
them into the new group. Simply select the group you want to copy from, select all the
properties you want to copy and press the button ‘Copy currently selected properties to
clipboard’:

4 - 18 Using the JHeadstart Addins JHeadstart Developer’s Guide

Then navigate to the group you want to copy to, and press the button ‘ Paste properties
from clipboard to currently selected node(s):

4.4.10. Novice Mode and Expert Mode

The Application Definition Editor gives you the possibility to change between novice
and expert mode.

In novice mode only the most relevant properties are displayed. Which properties are
relevant, might depend on the value of other properties. For example, if you change the
Layout Style from ‘form’ to ‘table’, the Form Layout properties are hidden and the Table
Layout properties become visible.

You can switch to expert mode by clicking the icon on the upper right of the editor, as
highlighted in the screen shot above. In expert mode you can see all properties,
regardless if they are applicable or not.

4.4.11. Synchronize View Objects with groups

In best-case scenarios View Objects never change, but in real life they do. Therefore the
synchronize button is added to make life a little easier. Whenever the attributes in a View
Object change, one can select the corresponding group in the Application Definition
editor and press the synchronize button as highlighted below, or by using the right-
mouse-click menu and choosing Synchronize. This action will add/remove all
missing/redundant items in the group.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 19

4 - 20 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.5. Running the JHeadstart Application Generator

Before you start generating your application, make sure you have applied the naming
conventions and other service-level settings as discussed in chapter “Team-based
Development”, section “Organizing JHeadstart Application Definition Files”.

Once you have got the service and group definitions right, you can generate the
application.

There are two ways to start the JHeadstart Application Generator (JAG):

1. Right click the Application Definition File in the Applications Navigator, and
choose Run JHeadstart Application Generator.

2. From within the JHeadstart Application Definition editor, click the third button
from the left.

Now JAG will generate the View and Controller layers of the application, including the
ADF Model data bindings to the ADF Business Components. The progress is logged in
the Jheadstart Application Generator – Log.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 21

You will see logging of what has been generated (the Information messages).
If a (potential) problem is detected that does not prevent the Generator from doing its
job, you will see Warnings.
Finally, if the application cannot be generated, you will see Errors.

4 - 22 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.6. Running the Generated Application

When the JHeadstart Application Generator has completed successfully, you can run and
test your application.

Before running the generated application, it is a good habit to always rebuild it first
(causing the project files to be copied to the class path). You can rebuild it in one of the
following ways:

• Right click the ViewController project in the Navigator, and choose Rebuild

• Click the Rebuild icon in the JDeveloper toolbar

You can run the generated Application in one of the following ways:

• Run the ViewController project (using right-mouse-click in the Navigator or
using the Run button in the JDeveloper tool bar),

The JHeadstart Application Generator has automatically set the first generated
page of the first group to be the default run target

• To directly run a specific page, select one of the generated .jspx files in the
Application Navigator, right-mouse-click and choose Run.

• Open the ‘faces-config.xml’ in Diagram view and right click a .jspx page to run.

4.6.1. TroubleShooting

If the application page does not show, and your browser “hangs” or gives a Gateway
Timeout, it could be that the proxy settings of your browser don't make an exception for
the host name or IP address used by embedded OC4J. Go to the menu option Tools ->
Embedded OC4J Server Preferences, and click on Startup below the Global node. Select

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 23

the radio button “Specify Host Name” and set the value to “localhost”. Usually the
browser is then able to find the local machine.

4.6.2. Dealing with Code Segment Too Large Error

If you have generated large pages, with many groups on the same page, and/or groups
with many items, compilation of such a page might fail with an error like this:

Error: code segment of method _jspService(javax.servlet.http.HttpServletRequest,
javax.servlet.http.HttpServletResponse) too large

This error is caused by a limitation in the Java language. The content of a Java method
cannot be larger than 64KB. With a very large JSF page, the compiled servlet might get a
method (like _jspService) that is too big to be compiled.

JHeadstart provides an easy work around for this error: you can move part of the content
of the page to separate ADF Faces region files that are included in the orginal page at
runtime, very similar to the concept of a JSP Include. The look and feel and behavior of
the page remains unchanged, only the way the page is composed at runtime is different.
You can use three properties in the Application Definition Editor to determine which
part of the page is generated into a separate ADF Faces Region:

• Group property Generate Group in Region File?

• Group property Generate Search Area in Region File?

• Item Group Region property Generate in Region File?

4 - 24 Using the JHeadstart Addins JHeadstart Developer’s Guide

Note that all three properties are only visible in expert mode. Typically, when you run
into this error, you first start generating whole groups on the page in a separate ADF
faces region by checking the Generate Group in Region File? checkbox for one or more
groups on the page. In most situations, this will solve the problem. However, you might
have one very big group on the page with very many items. If most of these items also
appear in the advanced search area of the group, you can check the checkbox Generate
Search Area in Region File?. If the problem still persists, the only solution is to divide
the items over multiple item regions, and at the item region container, check the
checkbox Generate in Region File?.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 25

4.7. Customizing Using Generator Templates

This paragraph discusses how you can use custom generator templates to implement
functionality in your application that cannot be generated using the default templates.

The following topics are discussed:

• Recommended approach to customizations

• Introduction into the JHeadstart template structure and how to configure
JHeadstart to use your custom templates

• Introduction into the Velocity Template Language used by JHeadstart

• How to apply common customizations

4.7.1. Recommended Approach for Customizing JHeadstart Generator Output

It is important to understand that the artifacts produced by JHeadstart are fully ADF
compliant, and implement numerous ADF best practices available on the internet. When
you use ADF drag and drop, ADF creates code snippets in JSF pages, page definitions
and bindings within these page definitions, and managed bean definitions. All these
artifacts are also created by JHeadstart. At any time in your development process you
can start using the visual design-time tools and code editors in JDeveloper to implement
functionality that cannot be generated out-of-the-box.

Now, if you start customizing a generated page, page definition or faces-config file, and
then generate your application again, you would loose the changes again. So, you have
three choices once you start customizing JHeadstart-generated output:

1. Do not use the JHeadstart Application Generator anymore on the application
definition that produced the output you customized.

2. Switch off generation of the files you modified. Both at the service-level and at
the group level you have generator switches that you can use to turn off specific
output. The screen shot below shows these group-level switches in the
Application Definition Editor. Note that these properties are only visible in
expert mode.

3. Move the customizations to custom templates, configure JHeadstart to use your

custom template, and keep on generating.

4 - 26 Using the JHeadstart Addins JHeadstart Developer’s Guide

You are free to choose whatever option suits you best, but we would like to share our
own opinion and the experiences of many JHeadstart customers before you make a
decision:

• The first option implies that you only use JHeadstart in the beginning of your
project to get a “head start”. While this is in line with the name of the product ☺,
this is the least attractive option in our view. When requirements change for any
page in the application definition, even pages that are not customized, they need
to be implemented manually. In short, developer productivity will decrease
quickly and dramatically with this approach.

• The second option is easy and fast. It is a good option if you do not expect
(significant) changes in the customized output. The question here is, how reliable
are your expectations? In modern agile application development methods
changing requirements are the rule rather than the exception. If changes are
needed, for example as a result of a database change, then applying these
changes manually will decrease developer productivity as well. Note that even
apparent simple UI changes like changing a drop down list into a list of values
easily take hours if not days to implement manually.

• The third option is initially a bit more work and requires you to understand the
JHeadstart templating architecture (explained in the remainder of this
paragraph). We have seen quite a few customers that initially decided to go for
the second option. However, once they discovered how easy and fast it is to
perform this additional step of moving custom code to a custom template, they
consistently chose for the third option. This fact is best illustrated by a survey we
conducted amongst JHeadstart customers that showed that the vast majority was
able to keep their application 100% generatable. This might sound unrealistic,
but when you realize that all content of the generated pages and faces-config files
is 100% driven by generator templates, meaning you can really customize
anything you like, you will better understand the outcome of this survey. Note
that a powerful side-effect of this approach is that you automatically
“document” your customizations by creating a separate tree of custom
templates. This is easy for maintenance, another developer can quickly identify
and understand the customizations, and allows for a smooth transition when
migrating to a new JDeveloper/JHeadstart version. For example, when
JDeveloper/JHeadstart release 11 is available, then regenerating your existing
application with JHeadstart 11 will automatically leverage the ADF Faces Rich
Components. You only need to modify your custom templates to leverage the
new release 11 features. When choosing option 1 or 2, the page customizations
are “hidden” in the customized page, and it will take a lot more effort to identify
and upgrade these customizations.

4.7.2. Using Custom Templates

When generating, JAG replaces placeholders in the templates with content taken or
derived from the Application Definition.

The JAG uses Velocity, an open source Java-based template engine from the Apache
Foundation. See also the paragraph Velocity and the Velocity Template Language below.

The JHeadstart templates are stored in the templates directory of your JHeadstart project.
This folder contains the following files:

• config/jag-config.xml: configurable settings for the JHeadstart Application
Generator

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 27

• config/defaultTemplateBindings.jtp: JHeadstart Template Properties file that
defines which Velocity template files are used for what purpose

• default/*/*.vm: default Velocity template files used for generating the
application

Warning: Never customize one of the standard JHeadstart files directly, be it a
default template, a.jspx, or any other file that was created by enabling
JHeadstart for your project. When you upgrade to a newer version of
JHeadstart they will be overwritten. Always create a custom template
template and refer to custom versions of the standard files there. Then you can
refer to your custom template in the Application Definition (see below).

Suggestion: Always put your custom templates into a different root folder, so
you quickly can have an overview of all template customizations in your
project.

The defaultTemplateBindings.jtp file describes all the available templates and has
pointers to the location of the templates. So, when changing the shipped JHeadstart
templates, you can copy them to another location, create a new Template Binding File
(for example customTemplateBindings.jtp) and refer to that in your Application
Definition.

You can define a custom Template Binding File to be used for the whole service, or for a
group, or for any other level. You specify it by going to the Templates tab (instead of the
Properties tab) and setting the Template Binding File property to
customTemplateBindings.jtp.

 Attention: The Template Binding File you specify in your Application
Definition does not need to include the complete list of templates. Only
include the lines for the templates you have customized. The other templates
will be inherited from the higher level Template Bindings file, or if there is no
higher level, from the JHeadstart default settings.

As you can see in the screen shot, you can also override the individual templates that are
referred in the Template Bindings File, like DATA_PAGE or LOV_PAGE.

4 - 28 Using the JHeadstart Addins JHeadstart Developer’s Guide

On individual groups, region containers, regions and items, you can override the service-
level template settings. You can choose to either specify a custom Template Bindings File
for a group or item, or to override an individual template for a group or item.

Suggestion: To easily find out what the default name of a certain template is,
check the online help of the template override property.

4.7.3. Finding Out Which Generator Templates Are Used

The service-level checkbox property Show Template Names In Source is handy to find
out which Generator Templates JHeadstart uses for the various parts of your generated
pages. When checked (the default) you will see that the templates used are included as
comments in the generated file, when you click the Source tab:

In the example screen shot above you can see that for the FirstName column in
EmployeesTable.jspx, the TABLE_TEXT_INPUT template is used which maps to the
default template default/item/table/tableTextInput.vm.

4.7.4. Velocity and the Velocity Template Language

The Velocity Template Language (VTL) is meant to provide the easiest, simplest, and
cleanest way to incorporate dynamic content. Even a developer with little or no
programming experience should soon be capable of using VTL.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 29

VTL uses references to embed dynamic content, and a variable is one type of reference.
Variables can be set using a VTL statement. Here is an example of a VTL statement:

#set($a = "Velocity")

The following rule of thumb may be useful to better understand how Velocity works:
References begin with $ and are used to get something. Directives begin with # and
are used to do something.

The #macro script element allows template designers to define a repeated segment of a
VTL template, called a Velocimacro. JHeadstart has defined several macros like
#ADVANCED_SEARCH_ITEMS. You can find the macro definitions in the project
subfolder templates/default/common.

A single line comment begins with ## and finishes at the end of the line. Multi-line
comments begin with #* and end with *#.

Text that is not interpreted by the Velocity Template Engine is copied literally.

Reference: See the following three documents at the Velocity website:

User’s Guide http://jakarta.apache.org/velocity/docs/user-guide.html

Developer's
Guide

http://jakarta.apache.org/velocity/docs/developer-
guide.html

Reference
Guide

http://jakarta.apache.org/velocity/docs/vtl-reference-
guide.html

4.7.5. JHeadstart specific constructs in the Velocity Templates

In addition to the normal Velocity capabilities, JHeadstart has created some
Velocimacros and other constructs that you can use in your custom templates.

You can access all metadata elements you enter through the Application Definition
Editor:

• ${JHS.service}

• ${JHS.current.group}

• ${JHS.current.item}

• ${JHS.current.regionContainer}

• ${JHS.current.itemRegion}

• ${JHS.current.groupRegion}

• ...

You can use all the attributes of these elements, for example ${JHS.current.group.name}.
For the proper attribute names, see the XML Schema of the Application Definition at
[JDEV_HOME]\ jdev\extensions\oracle.jheadstart.10.1.3\doc\
ApplicationDefinition.xsd. You can add this file to your ViewController project like this:

http://jakarta.apache.org/velocity/docs/user-guide.html
http://jakarta.apache.org/velocity/docs/developer-guide.html
http://jakarta.apache.org/velocity/docs/developer-guide.html
http://jakarta.apache.org/velocity/docs/vtl-reference-guide.html
http://jakarta.apache.org/velocity/docs/vtl-reference-guide.html

4 - 30 Using the JHeadstart Addins JHeadstart Developer’s Guide

If you then open it you see something like this:

And you can expand the structure to get something like this:

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 31

In addition to the XSD attributes, you can access aditional “convenience” methods in so-
called PG Model Classes (PG = Page Generator). Each Element Type in the Application
Definition has a corresponding PG Model class:

• PGGroupModel

• PGItemModel, etc.

Example: PGGroupModel has convenience method getParentGroup, so you can use
${JHS.current.group.parentGroup.name}. Since a group can lead to multiple pages,
or parts of a page, two additional model classes are created when running the JAG:
PGPageModel

• PageModel

• PageComponentModel

For each generated page, an instance of PageModel is created, to which you can refer to
using the VTL reference ${JHS.page}. A PageComponentModel instance is created for
each group displayed on the same page. So, if you have a parent group with layout style
“form”, and two detail groups with Same Page checkbox checked, three
PageComponentModel instances are created. You can refer to the current
PageComponent using the VTL reference ${JHS.current.pageComponent}.

Reference: See the Javadoc for all available classes and properties: in
JDeveloper choose Help | JHeadstart Documentation Index, and then click the
hyperlink 'Javadoc of the JHeadstart Application Generator'. Look for classes
like PGGroupModel.

Suggestion: For debugging purposes, you can temporarily add macro
#MODEL_POINTER() to your template. It prints all “current” elements you
can refer to.

4.7.6. The File Generator Template

JHeadstart uses a special template, default/misc/file/fileGenerator.vm, as a means to
generate additional files, not directly releated to a group. Examples of these files are the
home page, ADF Faces region files referenced in generated pages to display header
elements like branding images and global buttons, and SQL scripts to populate the
JHeadstart database tables for table-driven features.

4 - 32 Using the JHeadstart Addins JHeadstart Developer’s Guide

Each file that is generated through the fileGenerator.vm template has its own template
that is used to generate the file content. The physical template path and name for each
file is hardcoded in fileGenerator.vm.

As a result, configuring JHeadstart to use a custom template for a generated file is a bit
different. Rather then going to the templates tab in the Application Definition Editor to
change the name of the file template, you create a customized version of
fileGenerator.vm and change the template name in this customized fileGenerator
template. Configuring JHeadstart to use your custom fileGenerator template is done
through the Templates tab at Service level in the Application Definition Editor.

By creating a custom version of the file generator template, you can also generate
additional project-specific files using the JHeadstart metadata. The following methods on
the JHS velocity context are available for generating files:

• createFile: this will generate a file when the file does not exist yet

• createOrReplaceFile: this will generate a file, possibly overriding an existing
version of the file

• createApplicationDefinition: this will generate an application definition file
when the file does not exist yet. The application definition file is registered as a
special node in the JDeveloper Navigator to enable the Jheadstart context menu
on the file.

• createSQLScript: this will generate a SQL script when the file does not exist yet.
The generated script will be executed automatically when the service-level
checkbox "Run Generated SQL Scripts" is checked (the default).

• createOrReplaceSQLScript: this will generate a SQL script possibly overriding
an existing version of the file. The generated script will be executed
automatically when the service-level checkbox "Run Generated SQL Scripts" is
checked (the default).

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 33

Note that it only makes sense to create custom template for files that are re-generated
even when the file already exists. Files that are generated only once, can be customized
without loosing the changes.

4.7.7. Generating a JSF Navigation Rule from a Generator Template

By default, JHeadstart generates into the main faces-config file all navigation rules that
are needed to navigate between your generated pages (for example by using tabs, child
group buttons and details buttons). If you want to generate an extra (global) navigation
rule for some reason, you can include it by calling addNavigationCase or
addGlobalNavigationCase of the JHeadstart FacesConfigGenerator class.

For an example, see the default generator template for the Details button
(default/button/detailsButton.vm):
…
action="${JHS.facesConfigGenerator.addNavigationCase (${JHS.page.name}, "details",
${JHS.current.pageComponent.detailsPage.name})}"
…

As you can see, the template for a navigation button can also cause the corresponding
navigation case to be generated. The method addNavigationCase takes three parameters:

1. The "from" page

2. The outcome name

3. The "to" page

Similarly, addGlobalNavigationCase takes two parameters: just the outcome name and
the "to" page.

Reference: See the Javadoc of FacesConfigGenerator, methods
addNavigationCase() and addGlobalNavigationCase().

4.7.8. Generating a JSF ManagedBean from a Generator Template

By default, JHeadstart generates into the group faces-config files all managed beans that
are needed for the standard JHeadstart functionality. If you want to generate an extra
managed bean for some reason, you can include it by calling addCustomManagedBean
of the JHeadstart FacesConfigGenerator class.

For example you can put this in the generator template where you want to add the
managed bean generation:
#set ($myCustomBean =
${JHS.facesConfigGenerator.addCustomManagedBean

(${JHS.current.group},
 "custom/misc/facesconfig/myCustomBean.vm",
 "${JHS.current.group.name}MyCustomBean",
 ${JHS.current},
 ${JHS.page}
)

})

This code generates the managed bean, and puts its name into a Velocity variable that
you can use in the remainder of the generator template. For example, you can generate
the name of the managed bean into a page by referencing ${myCustomBean}.

The parameters of addCustomManagedBean are as follows:

4 - 34 Using the JHeadstart Addins JHeadstart Developer’s Guide

1. The Group used to determine in which faces config file the bean should be
added

2. The Velocity template file to use for this bean

3. Name of the bean

4. Current JHeadstart Model pointer

5. Current page

An example of the Velocity template for such a managed bean is:
<managed-bean>
 <managed-bean-name>
 ${JHS.current.managedBean.beanName}
 </managed-bean-name>
 <managed-bean-class>
 com.mycompany.myapp.controller.bean.MyCustomBean
 </managed-bean-class>
 <managed-bean-scope>
 session
 </managed-bean-scope>
</managed-bean>

Of course you must also create the managed bean class (in the example
com.mycompany.myapp.controller.bean.MyCustomBean). You can then refer to the
properties of the bean class in the properties of the ADF Faces components you generate
into your pages. If for example the bean class has a method getMyProperty(), you can
include the following in the generator template where you called
addCustomManagedBean:

someAdfFacesProperty="#{${myCustomBean}.myProperty}"

Reference: See the Javadoc of FacesConfigGenerator, method
addCustomManagedBean().

Below we will give a few examples of customizations that illustrate the different ways
you can customize JHeadstart generation. It also covers some customizations that occur
often.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 35

4.8. Generating Mobile Applications

ADF Faces makes it possible to run applications on mobile devices, like PDA or Telnet
devices. JHeadstart leverages these ADF Mobile capabilities and adds its own features to
simplify generating mobile applications.

JHeadstart support for Mobile devices is developed with certain main points in mind:

- As less as possible device specific code.

- Definition of capabilities of a device type are not hard coded, but stored in the jag-
config.xml file.

This makes it possible to easily add additional device types to JHeadstart without code
changes. Because the jag-config.xml file is in the project, you can add device types
yourself and define the capabilities of a viewtype.

4.8.1. JHeadstart properties for Mobile

4.8.1.1. Service Level Properties

Following properties on the Service level are related to mobile support:

- The ViewType ? property defines the type of pages to be generated by JHeadstart.
The generator uses this property to determine the set of templates to be used.
JHeadstart by default is shipped with support for ADF Faces and ADF Mobile PDA.

- The Use Short Labels ? property is used to generate short label prompts. When this
property is set, the generator uses the item property Short Prompt for generating the
prompt in a page. Otherwise the normal prompts are used. Note: There is only one
short prompt property, so JHeadstart makes no distinction for prompts generated in
table layout and formlayout when using the short prompt.

- The Generate JavaScript ? property can be used to disable the generation of
JavaScript in a generated pages. Useful when generating for a device that doesn’t
support JavaScript.

JHeadstart sets default values of these properties when creating a new
Application Structure File. Defaults are taken from the defintion stored in the
jag-config.xml

4.8.1.2. Group Level Properties

Following properties on the Group level are related to mobile support:

- The list of Layout Styles is restricted to layout styles supported for the selected View
Type.

4.8.1.3. Item Level Properties

Following properties on the Item level are related to mobile support:

4 - 36 Using the JHeadstart Addins JHeadstart Developer’s Guide

- The Short Prompt property can be used to define an alternative prompt for devices
with less space. The generator uses this property when service level property Use
Short Lables is set.

- The list of Display Types is restrictied to display types supported for the selected
View Type.

4.8.2. New Application Definition Wizard

When creating a new Application Definition, you can choose the ViewType:

The service level properties View Type ?, Use Short Labels, and Generate JavaScript ?
are set with default values for the chosen ViewType. Defaults are read from the
definition in jag-config.xml.

The group level properties Columns and Advanced Search Layout Columns are set to
the default value for the chosen ViewType.

4.8.3. JHeadstart Application Generator

For every ViewType, JHeadstart has a template binding file defined. JHeadstart uses this
file to find the templates to be used for generating. The template bindings files are copied
into your project in the Resources - config directory.

JHeadstart also supports a set of GeneratorText properties for each View Type. You can
use this to generate short text for mobile devices. For example: ‘Adv Srch’ instead of
‘Advanced Search’. The GeneratorText properties are copied into your project when you
enable JHeadstart, so you can customize them from within your project. You find them
in the Resources – nls directory.

The GeneratorText properties are used for generation of the NLS resources bundles for
your application. The Generator text file used for generation depends on the selected
ViewType. The relation between View Type and properties file used is in the jag-config
file. See next section.

Attention: When reenabling JHeadstart for a project, these files are
overwritten. Make sure to capture your changes before reenabling JHeadstart.

4.8.4. Customizing View Types

All properties of a ViewType are defined in the jag-config.xml. The JHeadstart Enable
Project Wizard copies this file into your project.

JHeadstart Developer’s Guide Using the JHeadstart Addins 4 - 37

The jag-config file defines beans used by JHeadstart. The following beans are related to
mobile support:

- viewTypes Manager holds a collection of ViewType beans.

- viewTypeAdfFaces defines the properties of the ADF Faces View Type.

- ViewTypeAdfMobilePDA defines the properties of the PDA View Type.

You can change settings in these beans to change JHeadstart behaviour. It is
recommended to not change the shipped definition viewTypeAdfFaces.

Attention: Be careful when changing the jag-config file. Incorrect settings here
may (will) corrupt functionality of JHeadstart.

Attention: When reenabling JHeadstart for a project, this file is overwritten.
Make sure to capture your changes before reenabling JHeadstart.

4.8.5. Adding a View Type

Take the following steps when you want to add a ViewType to JHeadstart:

1. Copy the definition of ‘viewTypeAdfFaces’. Change the bean name and set
properties as appropriate.

2. Add the new bean definition to the list of beans in viewTypeManager.

3. Optional, only when you need custom templates for the new ViewType: copy
templatebindings.jtp to <yourtemplatebindings.jtp> Make sure that the file name for
the template binding file matches the definition in jag-config.xml. Build the custom
templates and put them in <yourtemplatebindings.jtp>

Optional, only when you want to change generatorText for the new ViewType: copy
GeneratorText.properties for the language(s) you need and change them as you like.
Make sure that the file name for the <your>GeneratorText matches the definition in jag-
config.xml.

4 - 38 Using the JHeadstart Addins JHeadstart Developer’s Guide

4.9. What was Generated for What Purpose

The table below describes the files you get in your project when generating with
JHeadstart.

File Type / File Location Purpose

DataBindings.cpx View Package property at service
level

Container file for ADF Model layer.

*PageDef.xml Page Definitions Sub Package
property at service level

Page Definitions hold definition of ADF Data
Bindings

JSF pages (*.jspx) UI Pages Directory property at
service level

JSF files define the application page using ADF
Faces.

ADF Faces Regions (*.jspx) UI Page Regions Directory
property at service level

Region files are reusable pieces of ADF Faces
pages.

ApplicationResources.properties
or .java (or other name)

NLS Resource Bundle property at
service level

Resource Bundles that contain language
dependent texts and date(time) patterns.

faces-config.xml (or other name) Main Faces Config property at
service level

JSF Navigation Rules between pages.

JhsCommon-beans.xml (or other
name)

Common Beans Faces Config
property at service level

JSF managed beans that are common to
every group in the Application Definition

[groupName]-beans.xml Group Beans Faces Config
Directory property at service level

JSF managed beans specific to groups in the
Application Definition

JHeadstart Developer’s Guide Generating Page Layouts 5 - 1

C H A P T E R

5 Generating Page Layouts

his chapter describes the various page layout styles JHeadstart can generate. The
following layout styles are described:

• Creating Form Pages

• Creating Select-Form Pages

• Creating Table Pages

• Creating Table-Form Pages

• Creating Master-Detail Pages

• Creating Tree Layouts

• Creating Shuttle Layouts

• Creating Wizard Layouts

The last section of this chapter describes how you can change the overall page layout,
like colors, fonts, margins, headers and footers.

T

5 - 2 Generating Page Layouts JHeadstart Developer’s Guide

5.1. Creating Form Pages

With a form page you can manipulate one row at a time. You typically use a form page
when the row has many attributes and you want to show all of them.

Make the following changes to your group in the Application Definition to generate a
Form Page:

1. Set the Layout Style property to ‘form’.

There are a couple of group properties in the Form Layout category that influence this
layout style:

2. Determine the amount of horizontal space the form layout can consume on the
page as a percentage (Form Width). If you set this to 100%, the items will spread
out over the whole page. However, the items will not be aligned with each
other, but will be spread over the page to take the full space available.

If you want to force the items to be left aligned, set the value to an arbitrarily
small number. At runtime, the screen painter will see that the value is too small
and automatically increase the width just enough to display the items left
aligned. The default is 10 which will left align the items.

3. Determine the number of columns used to layout the fields in a form layout
style. The default is 2, which will leave a page with all items placed below each
other in one column.

Example of a form page:

Notice that the items are laid out in two columns as specified in the Columns property.

Attention: The display sequence of the items on the generated page is
determined by the order of the items in the group in the Application
Definition. The items are layed out from left to right, and then to the next line.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 3

Attention: The order of the rows when navigating to the next or previous
record is determined by the Order By clause in the View Object. See section
3.3.5 - Determining the Order of Displayed Rows.

5.1.1. Hide Items on the Form Page

With the Display in Form Layout? property, you can determine which items will be
generated in the form page.

The Display in Form Layout? property has three possible values:

1. True. The item is generated in the form page

2. False. The item is not present in the generated form page

3. EL expression that is evaluated at runtime (must return true or false).

5.1.2. Using Regions

By default, JHeadstart places all items on the page in the order you have defined them in
the group.

However, often you want to group related items together. For example: you have items
with address information and you have items with financial information.

For this purpose, you can define Item Regions:

1. Within the group, add the regions you need. See section 4.4 - Using the
Application Definition Editor, subsection 4.4.6 - Regions.

2. Move the items to the appropriate region.

Attention: Regions are only used when generating single-row (form layout)
pages or table overflow.

5 - 4 Generating Page Layouts JHeadstart Developer’s Guide

 Example The screen shot below shows an Item Region titled 'Organizational'. The group
level Columns property is set to 2. The region level Columns property is set to 1.

This is the simplest use of regions possible, for more advanced positioning of items
Region Containers and Detail Group Regions can be used. A region container is simply a
container for regions. Its most important property is the Layout Style. It determines how
the regions are placed on the page.

In the example below, the Layout Style of the Regions folder (which is also a Region
Container) is set to ‘vertical’. The Item Region ‘Finance’ and the Detail Group Region
‘Subordinates’ are layed out vertically.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 5

Region layout style ‘horizontal’ has the expected effect:

The most interesting option is the stacked one. The screenshot below shows an example
of a region container with the stacked layout style. The regions are represented as tabs
(hence the name stacked).

Suggestion: If the only regions you want to stack are Detail Group Regions,
then you can use a shortcut: set the property Stack Groups on Same Page at
group level to "Detail Groups Only". Then you don’t need to create any
regions. You can even stack the parent group itself, using the setting "All
Groups". See also Section 5.5 - Creating Master-Detail Pages.

If you use nested Region Containers you can combine several layout styles.

5 - 6 Generating Page Layouts JHeadstart Developer’s Guide

 Example The Regions of a group consist of a Detail Group Region called 'Subordinates' and
a Region Container called 'Personal'. The Region Container in turn contains 2 Item
Regions called 'Finance' and 'Contact Info'.

5.1.3. Create and Update Mode in Form Layout

JHeadstart does not generate separate pages for handling the creation of new records, or
the update of existing records in for layout. Instead, one page is used for both situations.
Depending on the page being in ‘Create’ mode or ‘Update’ mode, some elements on the
page act differently:

1. The title of the page is ‘Enter…’ when in ‘Create’ mode and ‘Edit…’ when in
‘Update’ mode. The verb used to prefix the Display Title Singular property
(Enter or Create), is read from the templates/nls/GeneratorText resource bundle
and can easily be changed. If you don’t want a prefix at all, and just use the
Display Title Singular property as is, then you can uncheck the group property
checkbox Add Verb to Form Title. Note that this property is only visible in
expert mode.

2. Components for record browsing are only shown in ‘Update’ mode.

3. New and Delete Buttons are only shown in 'Update' mode.

Page in ‘Update’ mode:

The same page in ‘Create’ mode:

When pressing a ‘New…’ button, the ‘Create’ action binding is executed and the
onCreate() method in JhsPageLifecycle fires. This method stores an entry in the

JHeadstart Developer’s Guide Generating Page Layouts 5 - 7

managed bean Hashmap called createModes, with the name of the Create action
binding as the key, and Boolean.TRUE as the value. As a result of this, the following
expression can be used to check whether the Departments group is in create mode:

#{createModes.CreateDepartments}

Note that JHeadstart always suffixes the name of the Create binding with the group
name, to prevent duplicate binding names when multiple groups are displayed on the
same page.

With this knowledge you will understand the expression that is used to display the
correct page title:

<af:panelPage title="#{createModes.CreateDepartments ?
nls['INSERT_TITLE_DEPARTMENTS'] :
nls['EDIT_TITLE_DEPARTMENT:#{bindings.DepartmentsDepartmentName}']}">

And the rendered property of the New and Delete buttons looks simply like this:
rendered="#{!createModes.CreateDepartment}"

When you press Save in the form page, the onCommit() in JhsPageLifecycle is called,
and this method will remove all entries from the createModes managed bean Hashmap
when commit is successful.

5 - 8 Generating Page Layouts JHeadstart Developer’s Guide

5.2. Creating Select-Form Pages

A Select-Form layout consists of:

• A Select page with a list box where the user can select a row, and

• A Form page to enter or update a single row.

The Select Page contains a list box that displays one unique item from the group’s data
collection. The user can then find the appropriate row, select it, and perform the desired
action (View, Edit, Delete, New). When New, View or Edit is pressed the Form Page is
displayed. That page is similar to the page described in the section 5.1 Creating Form
Pages above.

Use a Select-Form page when the number of records is fairly small.

Make the following changes to your group in the Application Definition to generate a
Select-Form layout:

1. Set the Layout Style property to ‘select-form’.

2. Determine which item should be displayed on the Select Page. Specify that item
to be the Descriptor Item of the group. You can only display one item in the list
box, but it could be based on an attribute that contains a concatenation of a
number of fields queried from the database. See section 3.3.6 "Create Calculated
or Transient Attributes" on how to create such an attribute.

3. See the section 5.1 Creating Form Pages above to see which properties are
appropriate for the Form Page. All properties that are appropriate to a Form
layout also apply to the Form page of the Select-Form layout.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 9

 Example In this example the Countries group should be displayed in a select-form layout,
and the item used for the Select Page should be CountryName.

Attention: The order of the rows in the Select Page is determined by the Order
By clause in the View Object. See section 3.3.5 - Determining the Order of
Displayed Rows.

5 - 10 Generating Page Layouts JHeadstart Developer’s Guide

5.3. Creating Table Pages

In many situations you want to present multiple records to the user in one page. For
example:

• A page showing all the Countries.

• A page showing all the Employees of a certain Department.

You can generate this type of page in a number of ways:

1. Using a Table Page. In a Table Page the data can be manipulated directly in the
table. Use this option when the number of items in the group is small, so the
table fits on the page. See the remainder of this section.

2. Using a Table Page with table overflow. Use this when the number of items is
too large to fit on one row, and it is important to have all items in view with the
entire table. With table overflow you can see some extra data for one of the rows
on the same page as the table. See Section 5.3.5 Using Table Overflow.

3. Using a Table-Form Page. Use this when the number of items is too large to fit
on one page, and you want a separate page with an overview of an entire row.
This is a combination of a Table Layout with multiple rows and a Form Layout
for manipulating one row. From the table page you can navigate to a form page
to manipulate one row. See Section 5.4 Creating Table-Form Pages.

Make the following changes to your group in the Application Definition to generate a
Table Page:

1. Set the Layout Style property to table.

2. Determine the amount of horizontal space the table can consume on the page as
a percentage (Table Width), e.g. 60%. You can also indicate the number of pixels
(e.g. 600).

 Example The Countries page should be displayed in a table layout. We make the following
settings in the Application Definition Editor:

JHeadstart Developer’s Guide Generating Page Layouts 5 - 11

The generated page looks as follows:

Attention: The order of the rows in the table is determined by the Order By
clause in the View Object. See section 3.3.5 - Determining the Order of
Displayed Rows.

The remainder of this section discusses the following topics that are related to table
layouts:

• Hide Items in a Table

• Allowing the User to Sort Data in a Table Page

• Limiting the Number of Rows on a Table Page

• Adding Summary Information to a Table

• Change Table-Related ADF Business Components Settings for performance
tuning

• Using Table Overflow

5.3.1. Hide Items in a Table

With the Display in Table Layout? property, you can determine which items will be
generated in the table. Values and meaning are the same as for the Display in Form
Layout? property (see section 5.1.1 - Hide Items on the Form Page).

So when you do not want an item to be generated in a table page but you do want to
show that item in a form page, set Display in Table Layout? to false.

5.3.2. Allowing the User to Sort Data in a Table Page

It is possible to generate a feature where the user can do an online sort of the records
queried in a table. The user can simply click on the column header and then the table
content is sorted based on the values in this column. Clicking the same column header
twice will switch the sort order from ascending to descending and vice versa.

If this is required, then you must set the Column Sortable property on the item level to
true, for those items you wish to be sortable.

5 - 12 Generating Page Layouts JHeadstart Developer’s Guide

5.3.3. Limiting the Number of Rows on a Table Page

By default, the Table and Table-Form layouts will display all existing rows in the table.
For large tables, this might be undesirable. You can limit the number of rows to be
displayed at once, and generate a dropdown list to navigate to another range of rows
within the table together with 'next' and 'previous' hyperlinks:

1. Check the Use Table Range? property for the group in the Application
Definition editor.

2. Set the Table range size property to the number of rows you want to display at
once.

The above example shows the Countries group with the Use Table Range? property set
to true, and the Table range size set to 6. You can now see that a dropdown list has been
generated to select other sets with records, and Previous and Next hyperlinks to navigate
to the next or previous record set in the table.

5.3.4. Adding Summary Information to a Table

For numeric columns, you can add summary information in the table footer. You can
choose from 3 types:

1. Sum

2. Average

3. Count

The summary will be displayed in the table footer. The label of the table footer is by
default Total, but you can change that in the Resource Bundle (see Chapter 11
"Internationalization and Messaging").

JHeadstart Developer’s Guide Generating Page Layouts 5 - 13

The example screenshot below shows the average salary in the table footer.

To generate such a table summary, go to the item you want to summarize, and set the
property Display Summary Type in Table to the desired type of summary.

5.3.5. Change Table-Related ADF Business Components Settings

By default, ADF BC View Objects fetch rows from the database one at a time. So for each
row there is a round-trip from the application server to the database.

5 - 14 Generating Page Layouts JHeadstart Developer’s Guide

When retrieving multiple rows at a time, this is an unnecessary slow-down. So we
recommend adapting the settings in the View Object to the settings in the JHeadstart
group as follows:

1. When Use Table Range? is true, set All Rows in Batches to the value of Table
Range Size + 1.

2. When Layout Style is table or table-form and Use Table Range ? is false, change

the View Objects to retrieve all at once. In this case, all records will be shown in
the table, so it makes sense to fetch all in one call from the database.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 15

Reference: There is much more to say about ADF Business Components
tuning. This sections explains only the ADF BC settings that are directly
related to values of JHeadstart properties. For more information on ADF BC
tuning, see the Oracle Application Developer Framework Developer’s Guide
for Forms/4GL Developers Release 10.1.3, section 27.2: Tuning Your View
Objects for Best Performance (for example: section 27.2.4.2: Consider Whether
Fetching One Row at a Time is Appropriate).

5.3.6. Using Table Overflow

It is also possible to include detail information for the current row of a table within the
table page. This is called table overflow1. A table overflow area can be used when it is
important to have the data in view with the entire table, but the user may or may not
want to view the data at all times.

This can be achieved by using the Table Overflow Style property for the group.

1. When set to inline, the first column of the table is labeled "Details". Each cell in
the column has an open/closed arrow icon followed by a link that reads "Show"
or "Hide." When the user clicks Show, the overflow area is shown directly below
the current row, and above the next row.

2. When set to right, the overflow area is always displayed. It is located to the right
of the table.

3. When set to below, the overflow area is always shown. It is located below the
table.

The overflow area displays all items that have the Display in Table Overflow Area?
property set to true, plus any regions you may have defined if they contain items. It is
also possible to show detail groups in the table overflow area, see Section 5.5 - Creating
Master-Detail Pages.

In the table overflow area you can apply regions similar to the way you use regions in
form layouts, see Section 5.1.2 Using Regions. Below is an example of an inline table
overflow style with stacked regions. The details are shown as inline data for a row.

1 This feature was named Detail-Disclosure in JHeadstart 10.1.2 (UIX only)

5 - 16 Generating Page Layouts JHeadstart Developer’s Guide

Other options for the Table Overflow Style are below and right. As the names already
suggest the details are put below or on the right of the base table. The most important
advantage of using the inline style is the possibility to show several detail rows (instead
of one) at the same time (see the Attention below). This is not possible when using the
below or right inline table overflow style: only the details of the current row are shown.

Attention: By default only one inline table overflow area is shown
at a time. If you open a second one, the first one closes. This was
done because this behavior is required if you show detail groups in
the table overflow, and by doing this always, the behavior is
consistent.
If you want to be able to open more than one inline table overflow
area at a time in cases where you don’t have detail groups in the
inline overflow, you can use a variation on the template
default\pageComponent\tableGroup.vm. Comment out the else-
branch of the if-statement that sets the disclosureListener, by
putting ## in front of the else and the second disclosureListener
line. See the comments in the template, and see Section 4.7 Using
Generator Templates.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 17

The above example shows the Employees group with the Table Overflow Style property
set to inline. You can see that the inline overflow is displayed for both the first and the
third record, which is only possible if you applied the customization described in the
'Attention' above. The table overflow area has two columns as defined by the Columns
property for the group.

The following screenshot shows the same group, with the Table Overflow Style set to
right. The details have been split into two item regions (salary and other). The Layout
Style of the Regions folder is vertical.

5 - 18 Generating Page Layouts JHeadstart Developer’s Guide

5.4. Creating Table-Form Pages

A Table-Form page is a combination of a multi-row page called a Table Page and a single
row page called a Form Page. In the Table Page the user can update and select a row. If
the user selects a row in the Table Page and presses the button or hyperlink to view the
details, then the Form Page opens, and the user can manipulate or create new rows.

Attention: The Table-Form page layout consists of a combination of the Table
layout and the Form layout. You can use the group properties described
specifically for Table layout to layout the Table part of the Table-Form layout.
Similarly, you can use the group properties described specifically for the Form
layout to layout the Form part of the Table-Form layout. View the sections for
Table pages (5.3) and Form pages (5.1) to see which properties are available.

Steps to create a table-form page:

1. Set the Layout Style property to ‘table-form’ to generate a Table-Form Page.

2. Set Display in Table Layout? property to true for items you want to have in the
table page.

3. Set Display in Form Layout? property to true for items you want to have in the
form page.

4. Choose between a button or hyperlink for the means of navigation to the form
page by setting the Table-Form link property for the group.

When you choose a link for navigation to the form page, you will get this:

Suggestion: The link is generated on the descriptor item. It is therefore a good
idea to set the descriptor to a unique key to help the user distinguish between
the rows and make the descriptor item the first item of the group.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 19

When you choose a button for navigation to the form page, you will get this:

5 - 20 Generating Page Layouts JHeadstart Developer’s Guide

5.5. Creating Master-Detail Pages

You may want to create pages that are related together as in a master-detail (parent-
child) relationship. To be able to generate such master-detail pages you should perform
the following steps:

1. Check the data model of your Application Module. The master-detail relation
should be present as nested View Instances.

Reference: When necessary, correct your Model. See Section 3.3.7 - Setting Up
Master-Detail Synchronization.

2. Create a group in the Application Definition for the master page, and create a
detail group for the detail page. Set the Data Collection of the master group to
the master View Object and the Data Collection of the detail group to the detail
View Object. Note that for the detail group, you can only select View Objects that
are detail View Objects of the master View Object. When the View Object you
need does not show up in the Detail Group, go back to step 1 and correct your
Data Model.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 21

5.5.1. Master-Detail on Separate Page

1. Uncheck the Same Page? property for the detail group. This indicates that the
detail should be generated on a separate page.

2. Determine the name of the top-level tab for the parent group. Specify this using
the Tabname property as you do for other layouts.

3. The level 2 menu bar will contain a tab for the master group (determined by its
Tabname property) and one for the detail group. Determine the name for the
level 2 tab of the detail. Specify this by using the Tabname property for the detail
group.

 Example In this example the Region and Country groups are displayed on separate pages.

As you can see two subpages are generated on the Regions tab. The name of the tabs
are as defined by the Tabname property. When pressing the Country tab we get the
second page:

As you can see the Countries are shown on the second page. Notice that above the table
the name of the region is shown. The information that is shown here is dependent on the
Descriptor Item specified for the master group.

5.5.2. Master-Detail on Same Page

To be able to generate master-details on a single page you should perform the following
steps:

1. Check the Same Page? property for the child group. This indicates that the detail
should be generated on the same page as its parent.

2. Set the Same Page Position property to the desired value: "Below Parent Group",
"At the Right of the Parent Group", or "In Table Overflow Area of Parent Group".

5 - 22 Generating Page Layouts JHeadstart Developer’s Guide

3. Determine the header of the child group as you want it to be displayed above the
child group. Specify this by using the Display Title (Plural) property for the
detail group.

 Example In this example the Region and the Country groups are defined to be displayed on
the same page.

As you can see the master and the detail group have been generated on the same
page in a master-detail layout. Note that the header above the details has been
set as defined by the Display Title (Plural) property. The header above the base
group Regions is determined by the Display Title (Singular) property (of the base
group).

5.5.2.1. Show Nested Table

Using the Table Overflow Style property for the group, you can generate detail group
(or child) tables within the table overflow area.

For this to work, the Layout Style of the parent group must be set to “table” (with layout
style “table-form” the detail table will only be shown on the form page), the Table
Overflow Style of the parent must have a value (for example inline as in the screenshot),
the detail group must have the Same Page? checkbox checked, and the Same Page
Position property of the detail group must be "In Table Overflow Area of Parent Group".
The Layout Style of the detail group does not have to be table (as in the screenshot).
Other layout styles are also supported.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 23

Note that the nested table could itself have another nested table in the inline table
overflow, allowing you to nest groups on the same page as many levels deep as you
want.

5.5.2.2. Stack Groups on Same Page

If a master group has several detail groups that need to be displayed on the same page, a
common design is to stack the detail groups, so that each has its own "tab". You can
achieve this using Detail Group Regions, but a quicker way is to set the parent group
property Stack Groups on Same Page to the desired value. For more information, see
Section 5.1.2 Using Regions.

5.5.2.3. Combining Layout Styles on Same Page

Using Region Containers, Detail Group Regions and Item Regions, you can create
advanced designs for your master-detail pages. For more information, see Section 5.1.2
Using Regions.

5 - 24 Generating Page Layouts JHeadstart Developer’s Guide

5.6. Creating Tree Layouts

You can use JHeadstart to generate tree controls. A tree control is extremely useful for
showing hierarchical structures in your data model.

Examples:

• Geographical areas subdivided in regions.

• Bill of Material structures: parts consisting of sub parts, consisting of sub-sub
parts and so on.

• Organizational structures.

This section will explain how to generate such a tree control with JHeadstart.

5.6.1. Generating a Basic Tree

Most of the tree controls you will generate will be of the basic category. There are a few
variations that will be explained in later sections:

• Variation: Basic Tree with navigation-only nodes

• Variation: Recursive Tree

• Variation: Recursive Tree with Limited Set of Root Nodes

• Variation: Tree showing only Children of selected Parent

It is advised to start with the basic steps, before reading the variations.

In the HR sample schema, a geographical structure is present that can be used in a tree
control. We have REGIONS, consisting of multiple COUNTRIES, consisting of multiple
LOCATIONS, consisting of multiple DEPARTMENTS, consisting of multiple
EMPLOYEES.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 25

So this is our database diagram:

We will generate a tree with REGIONS, COUNTRIES and LOCATIONS.

Steps:

1. Check your model. Make sure you have a View Object for each level you want to
show in the tree control. Check the presence of View Links between the View
Objects. In this example, you will need a View Object for REGIONS, for COUNTRIES
and for LOCATIONS and two View Links for the foreign keys between the tables.
You can check this by editing your application module and inspecting the available
View Objects. Each View Object should have the correct child View Objects as shown
below.

5 - 26 Generating Page Layouts JHeadstart Developer’s Guide

2. Add Data Collections (also known as View Object instances or VO usages) for these
View Objects to the Data Model of the Application Module. Add CountriesView as a
child of RegionsView and LocationsView as a child of CountriesView. You might
need some perseverance here: the user interface of the JDeveloper wizard is not that
user-friendly. When adding a detail view, it is important to select the subview in the
list of Available View Objects. The subviews are indented in the picture above within
the red rectangles. Then select the intended parent Data Collection in the Data
Model, and click the right arrow button. You should end up with something like this:

3. For selecting nodes in the tree, you need an extra Data Collection for each type of
tree node. It is recommended to create dedicated Data Collections for tree selection,
for example RegionsViewTreeSelect, CountriesViewTreeSelect, and
LocationsViewTreeSelect. These usages should be top-level usages in the Data
Model, that is, they should not be a child of another Data Collection.

4. Make sure the JHeadstart Application Definition has groups and detail groups for
your tree. You can maintain your groups by hand, or you run the ‘New Application

JHeadstart Developer’s Guide Generating Page Layouts 5 - 27

Definition’ wizard. Anyway, you should have something like this:

5. For the Regions group and all detail groups below it, change the Layout Style
property to 'tree-form'. The layout style 'tree' will be discussed in one of the next
sections.

6. For each of the tree groups, we need to specify two Data Collections:

The Data Collection property specifies the usage for selecting a tree node and
viewing / maintaining the data in a form layout. This should be a separate TreeSelect
Data Collection at top level in the Application Module, or nested below the same
Data Collection as the tree top-level group is nested below (if any).

The Tree Data Collection property specifies the usage for showing the hierarchical
structure of the tree, and needs to be a child usage of the direct parent group's Tree
Data Collection. If there is no parent group, the Tree Data Collection must be a top-
level Data Collection in the Application Module.

If you originally created the groups using the New Application Definition Wizard,
change the Tree Data Collection to be the same as the generated Data Collection
property, and then change the Data Collection property to the TreeSelect usage of
that view (for example RegionsViewTreeSelect, CountriesViewTreeSelect, etc) in all
tree detail groups. Only in the tree top-level group, the Data Collection and Tree
Data Collection can have the same value. When you want to use Quick Search or
Advanced Search on the tree top-level group, the two properties must have the same
value.

5 - 28 Generating Page Layouts JHeadstart Developer’s Guide

Attention: The reason why a separate TreeSelect Data Collection is required
here is the following. If you select a child node in the tree, and you would use
the Tree Data Collection to set the current row for display in the form area, the
row might not be found because the current row in the parent View Object
instance might be different from the parent node in the tree.

7. Select the correct Descriptor Item for each group to determine which item must be
shown in the tree control (for example choose RegionName instead of RegionId).
Note: you could also create a new attribute that combines the values of several other
attributes, and use that as the basis for the descriptor item. See section 3.3.6 "Create
Calculated or Transient Attributes" on how to create such an attribute.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 29

8. By default, the tree is rendered in collapsed mode when it is accessed for the first
time. If you want to show the tree in expanded mode by default, you can achieve this
by checking the property Show Tree Expanded? for the top-level tree group.

9. Change the Tree Width property and/or the Form Layout properties to your liking
and run the JHeadstart Application Generator. You will get something like this:

Attention: There is a known issue in the ADF Binding layer (5149012) that
causes leaf nodes to show up as expandable with the +-sign. Even after
expanding a leaf node, the collapse sign is still displayed. This will be fixed in
a future JDeveloper release.

You can use the tree control to drill down the hierarchical structure.

You can edit records on each level. JHeadstart has added a maintenance page for
REGIONS, COUNTRIES and LOCATIONS. You can navigate to the maintenance page
by clicking on the appropriate hyperlink in the tree.

5.6.2. Variation: Basic Tree with navigation-only nodes

Suppose you do not need editing capability on each level of your tree. For example, you
need REGION and COUNTRY only to drill down to the desired LOCATION. In this
case, you change the Layout Style property of some of the groups to 'tree'. With this
layout style, JHeadstart will use the group as a level in the tree control, without
generating maintenance pages.

These steps assumed you already applied the steps in section 5.6.1 Generating a Basic
Tree.

5 - 30 Generating Page Layouts JHeadstart Developer’s Guide

• Change the Layout Style property to 'tree' for the groups Regions and
Countries2.

Attention: The value of the Data Collection (the "tree select usage") property
is not used with this layout style, because this tree level cannot be edited. It
does not matter which usage you specify, but you must specify one because it
is a required property.

• Regenerate. You will get something like this:

Notice the absence of links on the REGIONS ('Americas') and COUNTRIES ('US') level.

5.6.3. Variation: Recursive Tree

In some cases, tree structures are modeled in the database with self-referencing foreign
keys (visible in Entity-Relationship diagrams by the so-called pig's ear).

Example: Employees have a manager. The manager is also an employee, so this is
modeled as a foreign key from EMPLOYEES to EMPLOYEES.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 31

Generating a tree for such a situation is only slightly different. The steps of section 5.6.1
Generating a Basic Tree are applicable to this situation, though with minor changes. The
step numbers here are variations of the basic tree steps with the same number.

1. You need the self-referencing foreign key as a View Link in your ADF Business
Components. The wizard ‘New Business Components from Tables’ will
automatically create such a View Link if a self-referencing foreign key is present
in the database.

2. In the data model of the Application Module, it is sufficient to have only one
level to generate a tree with an unlimited level of nesting. For example, to have a
tree with unlimited recursion on Employees, you only need this data model:

3. For this one-level data model it is not strictly necessary to also create a TreeSelect
usage, but it is a good habit and might become necessary when the tree is
extended.

4. You only need one group in your Application Definition for the self-referencing

View Object (similar to the hierarchy in the Application Module data model).

5. Change the Layout Style property of this group to 'tree-form'.

6. Change the Tree Data Collection to be the same as the original Data Collection
property (this usage is for showing the hierarchy of tree nodes), and change the
Data Collection property to the Tree Selection usage of that view (for example
EmployeesViewTreeSelect).

7. Select the right Descriptor Item.

8. If desired set the Show Tree Expanded? property

5 - 32 Generating Page Layouts JHeadstart Developer’s Guide

9. Change the Tree Width property and/or the Form Layout properties to your
liking, run the JHeadstart Application Generator and you are done.

You will get this (nodes expanded by hand):

As you can see, the tree can expand to any level.

5.6.4. Variation: Recursive Tree with Limited Set of Root Nodes

You can also see in the above tree fragment that employee ‘Ande’ is displayed twice. By
default, every employee is displayed in the top level of the tree. In most cases, this is not
what you want. In this example, you most likely want only employees without a
manager to appear in the top level of the tree structure, and their subordinates below
them. It is quite easy to do so by adding a non-default View Object here.

These steps assume you have already done the steps described in section 5.6.3 Variation:
Recursive Tree.

• Go to your Business Components project and choose ‘New View Object’.

• Give the View Object a nice name (‘ManagersView’) and select the Entity
Object and all its attributes.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 33

• Add a Query Where Clause to the View Object. In general, if you want only
the root nodes of the recursion, select those rows where the self-referencing
foreign key column is null. In this example we select only the employees that
have no manager with the Query Where Clause ‘manager_id is null’. Test the
Query.

• Because this View Object is new, we need also an extra View Link. By doing

so, JHeadstart knows the relation between the new View Object with top-level
rows and the View Object with the associated subordinates.

• In your Business Components (model) project, choose ‘New View Link’.

• Give the View Link an appropriate name, for example
MgrHasSubordinatesLink.

5 - 34 Generating Page Layouts JHeadstart Developer’s Guide

• In step 2 of the ‘Create View Link’ wizard, select the attributes that relate the
data in the two views. In the case of managers and employees, you will select
ManagersView.EmployeeId on the left, and EmployeesView.ManagerId on
the right, and then click the Add button:

• Add the new View Object 'ManagersView' to the Application Module's data

model. Add the detail view with the subordinates 'EmployeesView' below it
as a child usage.

Attention: You don't need a new EmployeesViewTreeSelect usage. We can use
the one we created earlier, because the attributes are the same as for the
ManagersView.

• Change the value of the Tree Data Collection and Data Collection property
of the Employees group to the new Data Collection 'ManagersView1'.

• Set the Recursive Tree Data Collection of the Employees group to the child
Employees usage of ManagersView1. This information can be found in the
Application Module Data Model.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 35

• Regenerate. You should get this (nodes in the picture expanded by hand to
show contents):

Each record is shown only once in the correct place in the tree structure.

5.6.5. Variation: Tree showing only Children of selected Parent

You might not want to show a tree of all rows in the database, but only of the child nodes
of a certain parent row. For example, you want the user first to select a department, and
then for that department show a tree of the employees of that department.

With JHeadstart you can generate that by having a hierarchy of groups, and only setting
the layout style to tree(-form) for a subset of child groups.

The steps described here assume that you have already built the tree as described in
section 5.6.3 Variation: Recursive Tree. We cannot use 5.6.4 Variation: Recursive Tree
with Limited Set of Root Nodes because it would not show any nodes unless the
department included a top manager in its employees. You already have a tree of
Employees, and now we will add a Department group in front of it.

• First ensure that the Application Module's data model includes the parent-
child relations we want to use. We should have a top level DepartmentsView
usage, with an EmployeesView child.

• In the Application Definition Editor, create a new Base Group and call it
Departments. Set the Data Collection to the top level DepartmentsView
usage. Enter a Tab Name, Display Titles, and a Descriptor Item.

• Set Advanced Search to samePage and Quick Search to singleSearchField, on
item DepartmentName.

• Make the Employees group of the recursive tree a detail group of the newly
created Departments group. Save, leave and reopen the Application Definition
Editor to reset the dropdown lists.

• Change the Tree Data Collection of the Employees child group to the child
usage of the Departments group.

• Change the Data Collection of the Employees child group from
'EmployeesViewTreeSelect' to the same child usage of Departments.

5 - 36 Generating Page Layouts JHeadstart Developer’s Guide

Warning: The exception to the rule of "Always use a top level Data Collection
for tree selection" is when your tree starts at a detail group, and the parent
group in your application structure does not have a tree layout. In that case,
the first tree group should use a child Data Collection of the parent group for
tree selection, to prevent that the default row shown does not belong to the
selected parent.

When you run the application, search for a department that has employees (for example
'Marketing'), and click the Employees subtab. Only then the tree is shown, containing
only employees of the selected department, and already a "default" Employee row is
selected.

As you can see, the "default" employee (that is shown before any tree node was clicked)
belongs to the right department. This is because we set the Data Collection of the
Employees child group to the child usage of Departments, instead of using
EmployeesViewTreeSelect. If you would have used EmployeesViewTreeSelect, you
might see employee 'King' by default, which is not an employee of the Marketing
department.

We are faced with a dilemma when we select a Department like 'Executive'. This
department has 'King' as one of its employees, who manages employees that are not in
department 'Executive'. When we select Hartstein in the tree, we still see employee 'King'
in the Edit page. There is an error message ' JBO-25020: View row of key
oracle.jbo.Key[201] not found in EmployeesIterator'. Of course, the EmployeesView3
usage now includes only the employees of Human Resources, which does not include
Hartstein!

JHeadstart Developer’s Guide Generating Page Layouts 5 - 37

Warning: This issue (selecting a tree node does not work) can only occur when
all of the following conditions apply:

1. The tree starts at a child group

2. The tree starts with a recursive (self-referencing) View Object

3. The direct children of the parent might have recursive children that
are not a direct child of the parent.

Suggestion: You can solve this by changing the Data Collection of the highest
tree group. The Data Collection you specify should contain every possible
selectable tree node of this View Object, including the drill-down nodes. If you
cannot implement this using a child usage of the parent group, then there is a
workaround: temporarily change the layout style of the parent group to tree,
then pick any Data Collection you want for the child group (for example
'EmployeesViewTreeSelect'), and change back the layout style of the parent.
This reintroduces the risk of showing the wrong initial row, however (but that
might be preferable over not being able to select some of the tree nodes).

5 - 38 Generating Page Layouts JHeadstart Developer’s Guide

5.7. Creating Shuttle Layouts

You can use JHeadstart to generate Shuttles. A shuttle is used to present a list of records
to the user. The user can move records from the selected list to unselected and vice versa.

Examples of the use of a shuttle:

1. Defining employees as members of a department. The left part of the shuttle
shows all employees in other departments. The right hand shows the employees
that are selected as members of this department. See screenshot below.
(JHeadstart calls this a parent-shuttle).

2. Attaching roles to a user. The left hand of the shuttle shows all the roles not
attached to the user currently. The right hand shows all the roles the user has
already. (JHeadstart calls this an intersection-shuttle)

5.7.1. Creating Parent Shuttles

Use a parent shuttle when you want to attach existing detail records to parents. For
example, you want to attach employees to departments, or customers to sales
representatives. A parent-shuttle does not create new records, but only updates links to
parent records.

With a parent shuttle you can maintain the relation between employees and
departments.

In this example we will create a parent shuttle to assign employees to departments.

Steps to create a parent shuttle:

1. Go to the Application Module and add another (top-level) usage of the
EmployeesView. Call the usage “EmployeesShuttle”.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 39

2. Create a new Dynamic Domain in the Application Definition Editor. Call it
EmployeesShuttle and set its Data Collection to EmployeesShuttle. The Value
Attribute should be EmployeeId and the Meaning Attribute LastName

3. Make the following changes to the Employees detail group of the Departments base
group. The Layout Style of Employees should be parent-shuttle. Set the Domain for
Unselected List in Shuttle to “EmployeesShuttle”. Set the Tabname to “Unassigned
Employees”. Check the property Same Page?. Finally set Display Title (plural) to
“Assign Employees to Departments” and Display Title (singular) to “Employees in
the Department”.

5 - 40 Generating Page Layouts JHeadstart Developer’s Guide

4. Generate and you will get something like this:

5. You can add a Quick Search Region to the left hand side of the shuttle. Then the
shuttle will look something like this:

Attention: When deattaching a record (moving from right to left), the
employee has no relation with any department anymore. In database terms,
the department_id column is set to null. This means it is best to use a parent-
shuttle with an optional foreign key.

5.7.2. Creating Intersection Shuttles

Use an intersection shuttle when you want to maintain an intersection between two
ViewObjects. An intersection typically exists when there is a m:n relation between two
View Objects. Examples:

JHeadstart Developer’s Guide Generating Page Layouts 5 - 41

• An m:n relation exists between Users and their Roles.

• An m:n relation exists between Employees and Projects.

In such cases, you will most likely implement the m:n relation with an intersection table:
a table with two foreign keys to the related tables. With an intersection shuttle, you can
maintain the contents of the intersection table.

Because the HR schema does not have a pure intersection table, we will add one:

create table hirable (id number, employee_id number, department_id
number);

alter table hirable add constraint hir_pk primary key (id);

alter table hirable add constraint hirdeptfk foreign key
(department_id) references departments;

alter table hirable add constraint hirempfk foreign key
(employee_id) references employees;

The hirable table is an intersection between Employees and Departments. It relates
multiple employees to multiple departments. Each department can hire multiple
employees. Each employee is hirable by multiple departments.

Generate Business Components for this new table. You will need an Entity Object,
Associations, a Default View Object and View Links.

Suggestion: It is easiest to start with a new Model project and regenerate all
your business components from scratch. Then you will get all necessary
Associations and View Links.

Steps to create an Intersection Shuttle:

1. Because an Intersection Shuttle will generate new records, have a system in place
to generate primary key values for the intersection table. See section 3.2.4 -

5 - 42 Generating Page Layouts JHeadstart Developer’s Guide

Generating Primary Key Values. Alternatively, you can create an intersection
table with a composite primary key consisting of the two foreign key columns.

2. Go to the Application Module and add another (top-level) usage of the
EmployeesView. Call the usage “EmployeesShuttle”.

3. Create a new Dynamic Domain in the Application Definition Editor. Call it
EmployeesShuttle and set its Data Collection to EmployeesShuttle. The Value
Attribute should be EmployeeId and the Meaning Attribute LastName

4. Make the following changes to the Hirable detail group of the Departments base
group. The Layout Style of Hirable should be intersection-shuttle. Check the
checkbox Same Page?. Set the Domain for Unselected List in Shuttle to
“EmployeesShuttle”. Set the Tabname to “Unassigned”. Set Display Title
(plural) to “Assign Hirable Employees” and Display Title (singular) to
“Assigned”.

5. When you now run the JAG, you will get the following error:

JAG-00126 [Departments / Hirable2] View Object Usage EmployeesShuttle
should have a nested View Object Usage based on HirableView.

The reason you get this error is this: at runtime, JHeadstart needs to know which
foreign key attribute(s) in the HirableView map to the primary key attribute(s) of
EmployeesView. This information is required to correctly insert a row in the
HIRABLE intersection table. JHeadstart uses the ViewLink on which the nested
HirableView usage is based to lookup this attribute mapping. So, open te
Application Module Editor, and add the HirableView as a nested ViewObject
usage under the EmployeesShuttle usage:

6. Generate again. The error should have gone now. Run the application and your

page will look like this:

JHeadstart Developer’s Guide Generating Page Layouts 5 - 43

5.7.3. Understanding How JHeadstart Runtime Implements Shuttles

A generated parent shuttle looks like this in the ADF Faces page:

This shuttle element references the SubordinatesShuttle managed bean, which is defined
as follows in the group beans faces-config:

When the user has shuttled entries between the two lists and then submits the page, for
example by pressing the Save button, the valueChangeListener method
processValueChange fires during the Process Validations phase. This method registers
the ParentShuttleBean instance as a “Model Updater” in JhsPageLifecycle. Just
before the Model validation phase, JhsPageLifecycle calls the doModelUpdate()
method on the registered “Model Updaters”. In method
ParentShuttleBean.doModelUpdate() the action binding to call the process shuttle

5 - 44 Generating Page Layouts JHeadstart Developer’s Guide

method on JhsApplicationModuleImpl (see below) is executed. This action binding is
passed in through managed property processShuttleMethodBinding.

After calling the action binding the iterator binding of the selected row is requeried, so
the newly shuttled rows will be displayed in the correct list after Commit. Note that at
this stage the actual database commit has not taken place yet, since this does not happen
until Invoke Application phase. However, JHeadstart leverages the ADF BC feature that
merges the query result with "open middle tier" changes.

Reference: See the Javadoc or source of ParentShuttleBean and
IntersectionShuttleBean.

Shuttle Support in ADF BC Application Module

JHeadstart Runtime provides an extension for your Application Module that includes
shuttle support. The JhsApplicationModule interface and the
JhsApplicationModuleImpl class contain the methods processParentShuttle() and
processIntersectionShuttle() that are able to analyze the list of selected and
unselected items and translate that to updates and inserts to the database.

These methods are exported in the Client Interface of the Application Module, which
makes them available as Data Control operations. For such an operation an Action
Binding can then be created in the UI model of the shuttle page (which is of course what
the JHeadstart Application Generator does).

The names of relevant ViewObject usages and attributes are defined in the UI model as
parameters of the Action Binding. Using EL expressions, this is also done for the leading
and trailing lists submitted by the shuttle (see above).

Reference: See the Javadoc or source of JhsApplicationModule and
JhsApplicationModuleImpl, in particular the methods
processParentShuttle() and processIntersectionShuttle().

JHeadstart Developer’s Guide Generating Page Layouts 5 - 45

5.8. Creating Wizard Layouts

A wizard layout can be used enter a new row in multiple steps. JHeadstart can generate
item regions and detail groups to separate steps (pages) of the wizard.

To generate this, we must first ensure that only inserts can be done in the main wizard
group.

1. Perform the steps described in section 8.1.3 - Build insert only screens.

2. In the top-level group's properties, check Wizard Style Layout?

3. Create Item Regions for the top-level group's items (one region for each wizard
step), give the Item Regions a suitable Title, and move the items to the regions
(see Section 5.1.2 Using Regions).

4. In the Regions folder of the top-level group, set the property Layout Style to
separatePages. This setting allows you spread the items of one group over
multiple pages: JHeadstart generates a separate page for each item group within
the Regions container.

5. Check that detail groups of the top-level group have Same Page? unchecked, to
ensure that they are generated to separate wizard steps.

On the last wizard page a Finish button is generated, which will save all changes that
were made during the earlier wizard steps.

5 - 46 Generating Page Layouts JHeadstart Developer’s Guide

 Attention: Out-of-the-box the wizard style only works for creating new rows.
The wizard style generation can also be used for updating existing rows. If
you use table-form layout or advancedSearch=separatePage however, you
will have to customize the Next button to perform a current row selection or a
search, respectively.

JHeadstart Developer’s Guide Generating Page Layouts 5 - 47

5.9. Changing the Overall Page Look and Feel

The overall look and feel of your application, like colors, fonts, margins, icons, button
shapes, menu bar, and so forth, is determined by a so-called ADF Faces skin. ADF Faces
comes with two default skins “oracle” and “mininal”, however you can create your own
custom skin to give your application a specific corporate branding.

The advantages of skinning are two-fold:

1. The desired Look and Feel is defined only once in a skin and used throughout
one or more applications.

2. You can apply a (new) skin on existing ADF Faces applications, the applications
themselves do not need to change.

5 - 48 Generating Page Layouts JHeadstart Developer’s Guide

With a custom skin, you can customize layout characteristics that are typically defined
through cascading style sheets: fonts, colors, icons, images, margins and so on. To figure
out how you can change the appearance of the various ADF Faces user interface
components, this Skin Selectors document is really useful.

Web Reference: Oracle Application Developer Framework Developer’s Guide
for Forms/4GL Developers Release 10.1.3, section 22.3 ”Using Skins to
Change the Look and Feel”.
http://download.oracle.com/docs/html/B25947_01/web_laf003.htm#CACJ
AGIG

Web Reference: ADF Faces Skinning Selectors.
http://otn.oracle.com/products/jdev/htdocs/partners/addins/exchange/jsf
/doc/skin-selectors.html

Web Reference: ADF Faces Skin best practices.
http://emarcoux.blogspot.com/2007/03/adf-faces-skin-best-practices.html

While skinning is a powerful feature, it only determines the general look and feel of your
application. You will need to change some other files to change the application
logos/images (see section 5.9.1), and if you want other look and feel characteristics to be
generated differently, you can customize the JHeadstart Generator Templates (see
section 5.9.2 and 5.9.3).

5.9.1. Customizing the Application Logos

By default, JHeadstart generates pages that show the Oracle and JHeadstart Demo logos.
One of the first things you want to customize is probably the replacement of these
images by those of your own organization.

Both branding and brandingAppContextual are named facets of the ADF Faces
PanelPage component that is used in JHeadstart-generated pages.

The JHeadstart logo's are referenced in the ADF Faces Region files
common\regions\branding.jspx and common\regions\brandingAppContextual.jspx.
These files were created by the JHeadstart file generator, because the content changes if
you use dynamic menus (for more information about dynamic menus, see Chapter 9
"Creating Menu Structures").

Once you have decided if you are going to use dynamic menus or not, you can turn off
the file generation for branding.jspx and brandingAppContextual.jspx, so that you can
customize them without losing your changes.

Reference:For instructions how to turn off the generation of these files, see
Chapter 4 “Using JHeadstart”, section 4.7.6 “The File Generator Template”.

http://download.oracle.com/docs/html/B25947_01/web_laf003.htm#CACJAGIG
http://download.oracle.com/docs/html/B25947_01/web_laf003.htm#CACJAGIG
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/skin-selectors.html
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/skin-selectors.html
http://emarcoux.blogspot.com/2007/03/adf-faces-skin-best-practices.html

JHeadstart Developer’s Guide Generating Page Layouts 5 - 49

After turning off the generation of these files, customize them as follows:

• Open branding.jspx and brandingAppContextual.jspx in
ViewController\public_html\common\regions.

• Copy your own logo image(s) to ViewController\images (for example, use
SRBranding.gif from the Oracle SR Demo).

• Change brandingAppContextual.jspx and branding.jspx to refer to your own
image instead of the JHeadstart image, or remove the image reference if you
don't want an image in that facet.

5.9.2. Rearranging the Overall Page Layout Using Generator Templates

While ADF Faces skinning is a nice feature, it does not allow you to perform more
"radical" layout customizations that include rearranging the overall page layout. For
example, in many web sites, the menu is shown in a nested structure at the left side of
the page, as shown in the example layout below.

Customizations like this can easily be achieved by creating a set of custom Velocity
templates and configure the JHeadstart Application Generator to use this custom set of
templates. For more information, see Section 4.7 Using Generator Templates.

The basic idea is that instead of the ADF Faces PanelPage component, you create your
own page structure, for example like this:

5 - 50 Generating Page Layouts JHeadstart Developer’s Guide

The content in the header, footer, leftSide, and rightSide areas is defined in ADF Faces
regions by the same name, to prevent the actual content of these areas from being
duplicated in each and every page.

Reference: You can download this example. See the JHeadstart Blog post
‘Generating a Custom Look and Feel using JHeadstart’ at
http://blogs.oracle.com/jheadstart/2006/12/22 - a122.

5.9.3. Creating Custom ADF Faces Regions and using them in Generator Templates

In ADF Faces 10.1.3, Regions are snippets of ADF Faces source code that are stored in
separate files, and can be reused in several ADF Faces pages. JHeadstart uses these ADF
Faces Regions for the application branding, the menu sections, and for example the form
browse buttons (arrow buttons to navigate to the previous or next record in form layout).

In general, you have to perform the following steps to customize an ADF Faces Region, if
you want to make a copy of the original region:

1. Create custom ADF Faces Region file

2. Declare the new Region in region-metadata.xml

3. Create customized version of Generator Template file that references the region,
in which you refer to the new Region

4. Refer to customized Generator Template in Application Definition

These steps are detailed below for customizing the application logo(s). As explained in
section 5.9.1 Customizing the Application Logos, it is not necessary to use this technique
for the logos because JHeadstart does not overwrite the relevant region files, but it is
useful to use this example for explaining the steps.

5.9.3.1. Creating a Custom Region

The JHeadstart logo's are referenced in the ADF Faces Region files
common\regions\branding.jspx and common\regions\brandingAppContextual.jspx.
As the golden rule is that you should not change files that were created by JHeadstart,
the way to do this is to copy these branding region files and make customized versions of
them.

• Copy branding.jspx and brandingAppContextual.jspx in
ViewController\public_html\common\regions to for example
customBranding.jspx and customBrandingAppContextual.jspx. If you want to
replace the 2 images by just 1, you only need to copy
brandingAppContextual.jspx.

• Copy your own logo image(s) to ViewController\images (for example, use
SRBranding.gif from the Oracle SR Demo).

• Change customBrandingAppContextual.jspx (and possibly customBranding.jspx
too) to refer to your own image instead of the JHeadstart image.

http://blogs.oracle.com/jheadstart/2006/12/22#a122

JHeadstart Developer’s Guide Generating Page Layouts 5 - 51

5.9.3.2. Declaring the New Region

To declare these new jspx files as ADF Faces Regions, you must modify WEB-
INF/region-metadata.xml.

• Open WEB-INF/region-metadata.xml, find the component
oracle.jheadstart.region.brandingAppContextual (and possibly
oracle.jheadstart.region.branding too), and copy the complete component
definition. Change the name of the component to, for example,
com.mycompany.myapp.view.region.brandingAppContextual, and change the
reference to the jspx file of the region.

5.9.3.3. Customizing the Data Page Template

Now that you have customized the branding region(s), you must ensure that the new
regions are used in every generated page. You can do this by creating a customized
version of the data page generator template (see also section 4.7 Using Generator
Templates).

• In your ViewController project, find the Resource default/page/dataPage.vm.

• Open it, and Save As custom/page/dataPage.vm (for example).

• In the copied dataPage template, optionally remove the <f:facet
name="branding"> (if you only want the brandingAppContextual). Change the
<f:facet name="brandingAppContextual"> to refer to the new region (set the
regionType to the name of the new component you defined in region-
metadata.xml, for example
com.mycompany.myapp.view.region.brandingAppContextual).

5.9.3.4. Using the Customized Template in the Application Definition

The last step is to specify this custom dataPage.vm in the Application Definition (see also
section 4.7 Using Generator Templates).

• Open the Application Definition editor.

• On Service level, go to the Templates tab.

• For DATA_PAGE, enter custom/page/dataPage.vm

Now if you generate the application again, each page will have a header like this:

5 - 52 Generating Page Layouts JHeadstart Developer’s Guide

This page is intentionally left blank.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 1

C H A P T E R

6 Generating User Interface
 Widgets

This chapter describes how you can specify the prompt and default display value of
generated items. After that, the various widget types you can generate with JHeadstart
are explained.

6- 2 Generating User Interface Widgets JHeadstart Developer’s Guide

6.1. Specifying the Prompt

If you don’t include a Prompt in Form Layout, the generated page will not have a label
for that field. If you want to display a prompt, you specify this using the Prompt in
Form /Table Layout property for form/table pages.

If you don't include a Prompt in Table Layout, it will default to the Prompt in Form
Layout.

A separate property Prompt in Search Region allows you to override the Prompt in
Form Layout in search areas:

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 3

6.2. Default Display Value

In the Application Definition Editor you can set the Default Display Value of an item.
This value is used when creating new rows.

For example, a new employee has by default a salary of 1000:

1. Enter the default value with Application Definition Editor.

2. Generate/run your application and create a new record. The default display
value is shown now in the column.

6.2.1. Using EL expressions

In addition to literal values, you can enter Expression Language in the Default Display
Value.

Imagine that for new employees the salary must be calculated based on job and so on.
Assume the result of the calculation is stored on the session context in an object called
Salary with method getDefaultSalary. In such a situation enter for Default Display Value
the EL #{salary.defaultSalary}

Use the same technique to display the current date: store it on the request or session and
enter an EL expression for showing on a page.

6- 4 Generating User Interface Widgets JHeadstart Developer’s Guide

6.3. Display Type

Default display types are set during the creation of the Application Definition. These can
be overridden by using the Display Type property.

You can choose from the following available display types for your items:

textInput

dropDownList

lov

checkbox

graph

list

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 5

radio-vertical

radio-horizontal

editor

dateField

datetimeField

secret

fileUpload

fileDownload

image

hidden

flexRegion See Chapter 12 "Runtime Page Customizations"

oraFormsFaces See section 6.15 “Embedding Oracle Forms in JSF pages”

6- 6 Generating User Interface Widgets JHeadstart Developer’s Guide

6.4. Generating a Text Item

6.4.1. Define Item Display Width and Height

The item display width and height can be set in two ways. The first option is dynamical.
EL expressions are used to get the width and height from the underlying ADF Business
Components. When these properties are not set on the Entity Object, the View Object is
checked for these properties.

By default, an item is displayed with height = 1 (line) and width = the data length of the
underlying table column. When the length of the table column is unknown or larger than
the value of the service level property Default Display Width, the value of this property
is used.

The second option is the static option. The Width and Height properties can be used to
hardcode the values for width and height. So instead of using the EL expressions, use
static numbers.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 7

6.4.2. Setting Maximum Length

The number of characters that can be entered in the HTML page for an item defaults to
the Precision of the underlying attribute. If you want to deviate from this standard you
can do this by specifying the Maximum Length property of the item. The value should
be the number of characters you require, or an EL expression returning such a number.

6- 8 Generating User Interface Widgets JHeadstart Developer’s Guide

6.5. Generating a Dropdown List

Use a dropdown list when the list of values the user can choose from is rather small. You
have to distinguish between two cases:

• The list of values is static; the values are not queried from the database. In this
case you base the dropdown list on a Static Domain or a List Validator.

• The list of values is dynamic. In this case you must base the dropdown list on
a Dynamic Domain.

6.5.1. Static dropdown list based on a Static Domain

When using this option, you have to add your domain with its values to the Application
Definition Editor.

You can create a static domain by selecting the Domains node in the Application
Definition Editor. After pressing the green plus (+) symbol select the static domain. A
domain with the name newStaticDomain is created. This name can easily be changed in
something more descriptive.

The last step is adding of values (and their meanings) to the new domain. An undefined
value is already provided with the newStaticDomain. After changing this value new
values can be added by selecting the new static domain and pressing the green plus (+)
symbol. See also the section Domains.

To use the newly created domain set the Display Type of an item to dropDownList,
radio-vertical or radio-horizontal and fill its Domain property with the name of the new
Domain.

6.5.2. Translation of static domains

The meaning of the domains in the Application Definition Editor is only in one language.
When you need to be able to translate domain meanings in other languages, set service
level property Generate NLS-enabled prompts and tabs to true. When this property is
set, JHeadstart will generate entries for each domain value in the
ApplicationResources.properties file.

Reference: Chapter 11 “Internationalization and Messaging”, section
“National Language Support in JHeadstart”

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 9

6.5.3. Dynamic dropdown list based on a Dynamic Domain

When the list of values must be dynamic, use a Dynamic Domain based on a View Object
Usage to generate the dropdown list.

Steps to generate a dropdown list based on a Dynamic Domain:

1. Create a Dynamic Domain based on the View Object. Select the View Object
Usage (in the data model of the Application Module) you want, by setting the
Data Collection property for the Dynamic Domain.

2. Set the Value Attribute of the Dynamic Domain to the attribute you want to
store in the item (which uses the domain).

3. Set the Meaning Attribute to the attribute you want to show in the dropdown
list.

4. Set Display Type of the item that uses the domain to ‘dropDownList’ (or ‘radio-

vertical/radio-horizontal’).

5. Set the Domain property to the Dynamic Domain.

6- 10 Generating User Interface Widgets JHeadstart Developer’s Guide

6.6. Generating a Radio Group

Use a radio group when the list of values the user can choose from is small. You have to
distinguish between two cases:

• The list of values is static; the values are not queried from the database. In this
case you base the radio group on a Static Domain or a List Validator.

• The list of values is dynamic. In this case you must base the radio group on a
Dynamic Domain.

6.6.1. Static radio group based on a domain

When using this option, you have to create a Static Domain as described in Static
dropdown list based on a Static Domain.

The Display Type property must be set to radio-vertical or radio-horizontal.

Generate your application, and you will get a radio group.

6.6.2. Translation of static domains

As you see, the meaning of the domains in the Application Definition Editor is only in
one language. When you need to be able to translate domain meanings in other
languages, set service level property Generate NLS-enabled prompts and tabs to true.
When this property is set, JHeadstart will generate entries for each domain value in the
ApplicationResources.properties file.

6.6.3. Dynamic radio group based on a Dynamic Domain

When the radio group must be dynamic, use a Dynamic Domain based on a View Object
Usage to generate the dropdown list.

The steps to create a dynamic radio group are almost identical to the steps for creating a
dynamic dropdown list, see Dynamic dropdown list based on a Dynamic Domain. The
Meaning Attribute is used to get labels for the radio buttons. Finally the Display Type
should be radio-vertical or –horizontal.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 11

6.7. Generating a List of Values (LOV)

Use a list of values (LOV) when you have a lookup to a related table and the number of
records in the related table is too big for a dropdown list or you want to provide search
functionality on the lookup.

An LOV is actually just a group as all other groups only it has the Use as List of Values?
checked and the Layout Style set to table. This kind of group is called a LOV group.

Furthermore an LOV is always attached to an item. This item gets a little lantern next to
it in the web pages. This item is called the LOV item.

Normally this LOV item (Target Item) is filled with a value from the LOV group (Source
Item). The mapping of Source Item to Target Item is what we call a return value. An LOV
can have several return values.

Steps to create a list of values:

1. Create a (reusable) LOV group

2. Link the LOV group to an item

6.7.1. Creating a (reusable) LOV group

1. Create (or reuse) a base group that will contain the rows of the LOV (which will
be used as LOV group). The creation of a base group is explained in Creating
objects.

2. Set the Layout Style (of the LOV group) to ‘table’.

3. .Check the Use as List of Values? property.

4. Specify at least one type of search for the LOV group: quick search or advanced

search.

5. Set the Display Type of the LOV item (which will have a LOV attached) to lov.

6- 12 Generating User Interface Widgets JHeadstart Developer’s Guide

Attention: If the Data Collection of your LOV Group is based on a
Read-Only ViewObject that is not based on an Entity Object, then
do the following:

• Make sure at least one attribute in the ViewObject is
marked as Key Attribute

• Override method create() in your ViewObjectImpl class,
and in this method call setManagerRowsByKey(true);

If you do not perform these steps, the LOV will not copy back any
values!

6.7.2. Linking a (reusable) LOV group to an item

1. Select the LOV item (and press the green plus (+) symbol.

2. Set the LOV Group Name property, and in the first return item, set the Source
Item property. The Source Item should be set to the item from the LOV group
that will be used to populate the LOV item.

3. Generate and you will get something like this. Here the Employees group is used

as LOV group. ManagerId is the LOV item and target item. The source item is
EmployeeId (from the LOV group).

6.7.3. Defining an LOV on a display item

There are situations where you will need to define lookup attributes in the base view
object. Take a look at the screen below. The CountryId column is part of the Locations
View Object. The CountryId is a foreign key referencing the Countries View Object.
However, in many (most) cases, you do not want to show the foreign key column,
particular in the case of artificial keys. Instead you want to show a more meaningful field
from the referenced table, in this case the Country Name.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 13

In that case you must include all the attributes you want to display on the page to
become a part of the view object on which you base your group in the Application
Definition. So the CountryName attribute of the Countries View must be added to the
LocationsView.

Perform the following steps to accomplish this:

1. Select the view object you want to modify, right mouse click, and select Edit
<view Object>

2. Navigate to the Entity Objects node. You will notice that your base entity is at
the right hand side as the selected entity. To be able to include lookup attributes
you must select the lookup entity and move it from the Available list to the
Selected list.

3. Set a proper alias for the lookup entity and select the right association end

(dropdown list just below the Selected Entities box).

4. Navigate to the Attributes node. You will notice that all the attributes of the base
entity take part of the selected list. Now, in the Available list, select those
attributes from the lookup entity object you want to display in the view object,
and move them to the Selected list.

6- 14 Generating User Interface Widgets JHeadstart Developer’s Guide

5. The key attribute from the lookup entity (let's call it the Lookup Key) is always
included and usually ends up with a strange name. If for example it is called
'Id', it will be named 'Id1' on the base table. This is not a good name. However,
the name XxxId (where Xxx is the entity alias) is already used by the Foreign Key
attribute of the base entity. On the 'Attribute Settings' node, rename the Id1
attribute using the naming convention LkpXxxId to avoid confusion.

6. Uncheck the Key Attribute checkbox of all “Lookup” key attributes that are
automatically added as described in the previous step (see also section 3.3.3.1.
Unchecking Reference Key Attributes for Updateable View Objects). If you
forget this step, the LOV lookup values will not be visible when returning
from the page.

7. It is also a good practice to rename the other lookup attributes so they are
prefixed with the entity alias. This makes them easily identifiable as lookup
attributes.

8. Test the View Object with the ADF BC Tester (see section 3.3.9 "Testing the

Model"). Check whether the LkpCtrCountryName attribute changes when you
change the CountryId attribute.

6.7.3.1. What to do when ADF BC Tester does not update the lookup item

In this example, the LkpCtrCountryName will most likely be updated correctly in the
ADF BC tester. However, in your application this might not work due to one of the
following causes:

� Cause: You did not define the View Object's lookup entity usage on the right
Entity Association (end).
Solution: Correct the View Object Definition.

� Cause: There is no underlying entity association, for example because the LOV
ViewObject is a read-only ViewObject.
Solution: In this case, you need to perform some additional steps. These steps
are explained below using the same Locations/Countries example as above,
although they are not required for this specific example. So, you only need to
do the 4 additional steps below in your own application if this cause applies.

1. Open the Locations ViewObject and create an additional transient attribute
named “LkpCtrCountryNameTransient”. Set updateable to “always” and
uncheck the queryable checkbox.

2. In the Java Tab check the checkbox to create a LocationsViewRowImpl java class.
Click OK to close the ViewObject editor

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 15

3. Got to the newly created LocationsViewRowImpl class, and modify the
getLkpCtrCountryNameTransient method as follows:
public String getLkpCtrCountryNameTransient ()
 {

 if (getAttributeInternal(LKPCTRCOUNTRYNAMETRANSIENT)==null)

 {

 return getLkpCtrCountryName();

 }

 return (String) getAttributeInternal(LKPCTRCOUNTRYNAMETRANSIENT);

 }

4. Continue with the steps below, but base your List of Values on the
LkpCtrCountryNameTransient item rather than on the LkpCtrCountryName
item. Hide the LkpCtrCountryName item in your pages by setting both Display
in Form and Display in Table to false for this item.

Now that we have extended the View Object, we need to make some changes to our
application definition:

1. On the Countries group check the Use as List of Values? property.

2. Select the Locations group and press the Synchronize button (the circular blue
arrows). This will add the newly created attributes as items to the group.

3. Set the Display Type of LkpCtrCountryName (or
LkpCtrCountryNameTransient) to lov.

4. Change the Prompt in Form Layout property of LkpCtrCountryName (or
LkpCtrCountryNameTransient) to Country.

5. Enable updates on LkpCtrCountryName (or LkpCtrCountryNameTransient) by
setting the Update allowed? property to true.

6- 16 Generating User Interface Widgets JHeadstart Developer’s Guide

6. Select item LkpCtrCountryName (or LkpCtrCountryNameTransient) and add a

LOV as described above in Linking a (reusable) LOV group to an item. Use
Countries as LOV group and CountryName as source item.

7. Select the LOV Countries (under LkpCtrCountryName) and add another return
value by pressing the green plus (+) symbol.

8. Change undefined <= undefined to CountryId <= CountryId

9. Make CountryId and LkpCtrCountryId invisible by setting the Display in

Form/Table Layout? properties to false.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 17

10. Generate and you get something like this.

6.7.4. Use LOV for Validation

A List of Values is normally used to assist the user in selecting a value for a foreign key
column. The user can navigate to the List of Values, type some search criteria and select
the value from the list and navigate back to the main page.

However, in most cases, the user will know many values by heart, and needs the List of
Values only for special cases, for example values that are infrequently used. With the Use
LOV for Validation functionality, JHeadstart can generate pages that assist the user in
both cases. It works this way:

1. The user enters (part of) the lookup item value.

2. The JHeadstart runtime checks how many records in the lookup match the value
the user entered.

3. When it is exactly one, the list of values window is not shown, but the JHeadstart
runtime finds the matching record and auto-completes the entered value.

4. When zero or more than 1 records in the lookup match the entered value,
automatically the list of values window is launched and pre-queried with the
value the user entered.

So, the system decides whether the list of values should be launched. This saves the user
from manually invoking the list of values and thus improves end-user productivity.

The next steps instruct you how to build this. The EMPLOYEES and DEPARTMENTS
tables are used as example. The goal is to see the department name in the Employees
page.

1. Extend the base View Object you want to manipulate with the descriptor
attributes of the lookup View Object. See Defining an LOV on a display item for
instructions. In our example, the DepartmentName attribute should be added to
the EmployeesView View Object. Use LkpDptDepartmentName and
LkpDptDepartmentId as identifiers for the new columns.

2. In the JHeadstart Application Definition, define a group for the base View Object
(Employees). Set group properties as you like.

3. Define a LOV group for looking up the department name (see Creating a
(reusable) LOV group).

4. Add an LOV on the LkpDptDepartmentName (see Linking a (reusable) LOV
group to an item). Set the LOV Group Name to Departments and the Source
Item to DepartmentName.

6- 18 Generating User Interface Widgets JHeadstart Developer’s Guide

5. In the LOV, set Use LOV for Validation? to true.

6. Generate the application. You might get this:

• Navigate to the DepartmentName, enter ‘F’ in the field and press TAB.
Because there is only one department name starting with F, no LOV will be
launched and the department name is auto completed.

• Navigate to the DepartmentName, enter ‘CO’ in the field and press TAB.
Because multiple department names start with CO, the list of values is
launched and prequeried.

6.7.5. Selecting multiple values in a List of Values

JHeadstart can generate a List of Values where the user can select many values at once.
This improves the usability of the application.

Suppose you have this data model:

An ORDER has multiple ORDER_ITEMS, so you can order multiple PRODUCTS in one
order. Without multi-select, the user has to create a new ORDER_ITEMS records and
select the PRODUCT for that ORDER_ITEM. Imagine the time needed to enter an
ORDER with say 20 products.

With multi-select List of Values, the user selects all the products for the ORDER at once.
When returning in the main page, multiple new rows are created AT ONCE. Of course,
this is only possible when ORDER_ITEMS is a table layout.

How to generate this:

1. Because multiple ORDER_ITEMS are created at once, you must have added to
your Business Components Model the ability to automatically generate the
primary key values. In this case, the Business Components layer should generate

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 19

the LINE_ITEM_ID of the ORDER_ITEMS. See section 3.2.4 - Generating
Primary Key Values.

2. Make sure you have groups defined correctly. In this example, ORDERS can
have form layout, ORDER ITEMS must have table layout and
PRODUCT_INFORMATION is an LOV group with table layout.

3. In the base group of the lov (in this example ORDER ITEMS), set Multi-row
Insert Allowed? and give the New Rows property a value greater than zero.

4. In the LOV group, check the boxes for Use as List Of Values (LOV) and Allow

Multiple Selection in LOV?.

5. Generate the application.

Attention: If you combine a Multi-Select LOV with Use Table Ranges, then it
can occur that some of the newly created rows are not immediately visible,
they have moved to the next table range.

For example, suppose you have a multi-select LOV in a table page with table
range size = 10. Suppose that you are showing rows 11-20 of 50, and 2 empty
rows for creating new records. If you now use the multi-select LOV in one of
the empty rows to create 3 new rows, the first new row will be visible at
bottom of current table range (position 10). The second and third new row will
be in the next table range, at positions 1 and 2. The row that was originally at
position 10 of the current table range, has now been moved up to position 3 of
the next table range. The current table range will show rows 11-20 of 53.

Suggestion: An alternative user interface for this situation is an Intersection
Shuttle. See section 5.7.2. Creating Intersection Shuttles.

6.7.6. Understanding How JHeadstart Runtime Implements List Of Values

When you specify a ListOfValues element for a group item, JHeadstart generates one or
more managed bean definitions for this LovItem. The number of beans depends on
whether the item is used in a search region, in a table layout and/or a form layout. Here
is an example of a managed bean definition for an LOV Item in a form layout:

6- 20 Generating User Interface Widgets JHeadstart Developer’s Guide

The returnValues property is used to copy back the correct values to the base page,
and/or bindings of the base page.

This bean is referenced by multiple properties in your LOV Item, as shown below:
<af:selectInputText
 id="DepartmentsManagerName" label="ManagerName"
 partialTriggers="DepartmentsManagerName"
 required="false"
 columns="#{bindings.DepartmentsManagerName.displayWidth}"
 maximumLength="25"
 value="#{DepartmentsManagerNameLovItem.lovFieldValue}"
 autoSubmit="true" immediate="true"
 valueChangeListener="#{DepartmentsManagerNameLovItem.validateWithLov}"
 binding="#{DepartmentsManagerNameLovItem.lovField}"
 action="dialog:ManagersLov" windowHeight="200"
 returnListener="#{DepartmentsManagerNameLovItem.returnedFromLov}"/>

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 21

When you have selected a row in the LOV, and the LOV window is closed, the
returnListener method returnedFromLov() is executed. This method calls method
copyReturnValues() in the same bean class (LovItemBean), which reads the
returnValues property, and copies back the values.

When you have checked the Use LOV For Validation? checkbox on the item’s List of
Values element in the Application Definition Editor, the valueChangeListener and
autoSubmit properties are generated, like in the above example. These two properties
cause the page to be submitted when the user tabs out the LOV item after changing the
value, and JSF calls the valueChangeListener method validateWithLov(). This method
uses the SearchBean of the LOV page (provided through the lovSearchBean managed
property) to execute a query against the LOV ViewObject Usage. When the query returns
exactly one row, validation is successful and the copyReturnValues() method is called
to copy back the values. When zero or more than one row is returned by the query, the
LOV window is launched.

Reference: See the Javadoc or source of LovItemBean.

6- 22 Generating User Interface Widgets JHeadstart Developer’s Guide

6.8. Generating a Date (time) Field

By default, you will get display type ‘dateField’ when the attribute in the ViewObject is
of type ‘Date’. In a dateField you can enter only the date.

You can change the Display Type property for an attribute to ‘dateTimeField’. In a
dateTimeField you can enter a date and a time.

6.8.1. Specifying display format for date and datetime field

By changing the service level properties Date Format and DateTime Format, you can
define the display format of both dates and datetimes. The format strings used here, are
as defined in java.text.SimpleDateFormat. The JAG takes the values of these
properties and puts them in the ApplicationResources.properties file (under datepattern
and datetimepattern). This file is used at runtime. In case of changes in the
Internationalization properties on the service level, these properties can be stored in
another locale.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 23

6.9. Generating a Checkbox

You can generate a checkbox for attributes that have exactly two allowable values: one
value is shown as checked, and the other as unchecked. Because the HR sample schema
does not have such an attribute, we have added IND_LEASE_CAR to the EMPLOYEES
table, with allowable values Y and N.

Steps to generate a checkbox:

1. Create a static domain with exactly two values (see the section Domains). The
first value in the domain is the checked value, the second value in the domain is
the unchecked value.

2. In the properties of the item that you want to generate as a checkbox, set Display

Type to ‘checkbox’ and Domain to the static domain you just created (for
example YesNo).

3. Set the Default Display Value to one of the values in the Domain.

4. It is customary to change the Prompt to something ending in a question mark,
for example ‘Lease Car?’.

This will generate a field like this in form layouts:

In a table layout it will look like this:

Attention: In a search region, IndLeaseCar will show as a dropdown list and
not as a checkbox.

The reason is that we have three situations when searching:

1. We want to search for rows with IndLeaseCar=’Y’

2. We want to search for rows with IndLeaseCar=’N’.

3. We do not want to consider the value of IndLeaseCar in the search,
but are searching on other criteria.

6- 24 Generating User Interface Widgets JHeadstart Developer’s Guide

6.10. File Upload, File Download, Showing Image Files, and Playing Audio Files

You can generate File Upload, and depending on the type of file, File Download or Show
Image or Play Audio for database columns of types ORDSYS.ORDDOC,
ORDSYS.ORDIMAGE and ORDSYS.ORDAUDIO. If you have stored your files in BLOB
columns instead, see section Using JHeadstart File Up/Download on BLOB Columns.

 Attention: The abovementioned types are object types defined in the Oracle
interMedia feature of the Oracle database. The ORDSYS.ORDDOC type can
store any heterogeneous media data including audio, image, and video data in
a database column.
ORDSYS.ORDIMAGE can process and automatically extract properties of
images of a variety of popular data formats, and ORDSYS.ORDAUDIO can
process audio specific properties.
For more information, see the interMedia section of the Oracle Technology
Network (http://otn.oracle.com/products/intermedia).

Example of generating a file upload field in the HR sample schema for uploading photos
of employees:

1. Make sure you have a table with a column of the correct datatype. This is
sufficient:
alter table EMPLOYEES add photo ordsys.ordimage;

2. Add the new Photo attribute to the ADF Entity Object and ADF View Object for
Employees.

3. Add the Photo item to the Employees group of your JHeadstart Application
Definition (by synchronizing the group) and generate your application. You will
get something like this:

With the Browse button you can select the image file you want to upload for this record.

3. If instead, you want that field to display the photo, you can change the Display
Type of the item to image.

4. If instead, you want that field to display a hyperlink that downloads the file in a
separate window, you can change the Display Type of the item to fileDownload.

 Attention: The display type ‘image’ means that ADF Faces renders the file as a
download link, image, or audio player, depending on the nature of the
individual file.

After changing the Display Type to image and regenerating, you will get something like
this (do not forget to upload a picture first!):

http://www.oracle.com/technology/products/intermedia

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 25

If the file you uploaded was an audio file (this is possible with the ORDDOC and
ORDAUDIO types), you will get something like this:

Suggestion: By default there are limits on the size of the file that can be
uploaded. If they are exceeded, you get a Java exception:
java.io.EOFException: Per-request disk space limits exceeded.

If you want to change the file size limitations, have a look at the Development
Guidelines for Oracle ADF Faces Applications, chapter File Upload, section
Configuration, at
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins
/exchange/jsf/doc/devguide/fileupload.html - Configuration.

6.10.1. Combining File Display Options

For generating both file upload and file download (or image or audio player) for the
same database column, create an extra item as follows:

1. Open the Application Definition Editor.

2. Add an extra item to the group.

3. Copy all properties of the original file item (Photo).

4. Change the Name of the new item (for example to ShowPhoto), and change the
Display Type to fileDownload or image.

5. Consider to change the prompt of one or both of the Photo items

If you don’t change the prompts, you will get something like this:

http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/devguide/fileupload.html#Configuration
http://www.oracle.com/technology/products/jdev/htdocs/partners/addins/exchange/jsf/doc/devguide/fileupload.html#Configuration

6- 26 Generating User Interface Widgets JHeadstart Developer’s Guide

6.10.2. Showing Properties of Uploaded Files

When uploading files, several additional characteristics of the files, like size and mime
type, are stored in the interMedia database column. You can make these properties
visible in your page. What properties are available depends on the object type
(ORDDOC, ORDIMAGE or ORDAUDIO).

Reference: For a complete overview of the available properties, see the
interMedia section of the Oracle Technology Network
(http://otn.oracle.com/products/intermedia).

Here are some properties that you might want to show:

Property SQL name ADF BC method Java type

File Size (in bytes) contentLength getContentLength() int

File Mime Type mimeType getMimeType() String

(Original) File Name source.srcName getSourceName() String

File Upload Time source.updateTime getUpdateTime() Timestamp

The SQL name is what you can use to retrieve the property in a SQL query, for example:
select emp.photo.contentLength, emp.photo.source.srcName
from employees emp
where emp.last_name = 'King';

If you want to show some of these additional file properties in your JHeadstart
application, for example the File Name and the File Size, here is how you do that.

1. In the ADF BC View Object, create new transient attributes for the File Name
and the File Size. See Steps to create a transient attribute.

2. Give the attributes the appropriate types (String and Number).

3. In the View Row Class, change the get methods for the new transient attributes
as follows (assuming that the original file attribute is called Photo):

 public String getPhotoFileName()
 {
 String fileName = null;
 if (getPhoto() != null)
 {
 try
 {
 fileName = getPhoto().getSourceName();
 }
 catch (SQLException e)
 {

http://www.oracle.com/technology/products/intermedia

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 27

 throw new JboException(e);
 }
 }
 return fileName;
 }

 public Number getPhotoSize()
 {
 Number size = null;
 if (getPhoto() != null)
 {
 try
 {
 size = new Number(getPhoto().getContentLength());
 }
 catch (SQLException e)
 {
 throw new JboException(e);
 }
 }
 return size;
 }

4. Go to the Application Definition, and synchronize the group to get items for the
new attributes.

5. Change the item properties (for example the Prompt) where desired, and
generate the application.

If you want to use the file name as the label for a download link (in case the file is not
an image, video or audio file), you can use the Hint Text property on the
fileDownload item to refer to the item that holds the name of the file.

For example, if you have a group named “Employees”, an item “DocItem” with
Display Type “fileDownload” that is based on an attribute of type OrdDocDomain,
and an item “DocItemFileName” that returns the name of the uploaded DocItem
using the technique explained above, you can set the Hint Text property of DocItem
as follows:

#{bindings.EmployeesDocItemFileName.inputValue}

This will display the name of the actual file on the download link.

6.10.3. Using JHeadstart File Up/Download on BLOB Columns

JHeadstart 10.1.2 supported upload and download functionality of files stored as
BLOB columns in the database. In JHeadstart 10.1.3 this is not supported anymore
because of the superior functionality of the Intermedia object types. If, however you

6- 28 Generating User Interface Widgets JHeadstart Developer’s Guide

still have BLOB columns and want to have file upload and download functionality
on them, there is a workaround, which involves on-the-fly-creation of ORDDOC
objects in a SQL Query on the table with the BLOB column holding the files.

Reference: Lucas Jellema described a workaround on the AMIS Blog:
"Enabling BLOB support with JHeadstart - Uploading/Downloading files to
and from a BLOB column" at http://technology.amis.nl/blog/?p=2463.

http://technology.amis.nl/blog/?p=2463

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 29

6.11. Generating a Graph

The values that are available in a numeric item can be displayed as a graph, like the
example screen shot below:

In this example the Salary is both shown in the Employees table, and shown as a
graph in the table overflow area. Therefore this example includes making a second
Salary item based on the same View Object attribute. By making this second item
dependent on the first Salary item, you can change the Salary value and immediately
see the change reflected in the graph.

The steps to create such a graph are:

1. In the Employees detail group, set Layout Style to table and Table Overflow
Style to right.

2. Right-mouse-click on the Salary Item and choose Duplicate Item from the
popup window.

6- 30 Generating User Interface Widgets JHeadstart Developer’s Guide

3. A new item named CopyOfSalary is added to the group. Move this new item
using drag and drop to display right below the Salary item. Set the following
properties for the CopyOfSalary item:

Property Category Property Name Set to Value

General Name "SalaryGraph"

General Display Type graph

Display Settings Display in Table
Layout

false

Display Settings Display in Table
Overflow Area?

true

Display Settings Width "300"

Display Settings Height "200"

Display Settings Depends on Item(s) Salary

4. Run the JHeadstart Application Generator.

When the generator is finished, you will notice a new file that has been added to
your JDeveloper project. This file, named
BIGraphDefEmployees4SalaryGraph.xml, is automatically opened in the
JDeveloper Graph Editor. Using the Graph Editor, you can set the graph type, for
example bar, line or pie chart as well as the visual appearance of the graph. In
the example screenshot above, we used the default bar graph, with the visual

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 31

appearance of the graph changed to a nice 3D-style rendering of the graph as
shown in the picture below.

6- 32 Generating User Interface Widgets JHeadstart Developer’s Guide

6.12. Conditionally Dependent Items

The ADF Faces components that JHeadstart application generator uses for your web tier
pages cleverly combine Asynchronous JavaScript, XML, and Dynamic HTML to deliver a
much more interactive web client interface for your business applications. In ADF Faces,
the feature is known as partial page rendering because it allows selective parts of a page
to be re-rendered to reflect server-side updates to data, without having to refresh and
redraw the entire page. This combination of web technologies for delivering more
interactive clients is known more popularly by the acronym AJAX. ADF Faces supports
this powerful feature for any JavaServer Faces (JSF) page with no coding. JHeadstart
automatically configures the necessary properties on the controls to enable a maximal
use of this great feature, for example for enabling dynamically-changing, conditionally-
dependent fields.

Sometimes, one field value (or its enabled status or some other characteristic) might
depend on another field. JHeadstart makes it simple to generate pages that support this
kind of conditionally-dependent field.

In this section we first describe the general usage of the Depends On property, and then
build on that for describing how to create cascading lists in form layout, search area, and
table layout, where the latter is a special case of row-specific dropdown lists.

6.12.1. Using the Depends On property

For each item, you can specify that it depends on one or more other items in the same
group. The details differ a bit if it depends on multiple items as opposed to depending
on a single item.

6.12.1.1. If an item depends on a single other item

For example, imagine that the commission percentage of an employee only is relevant if
they are an Account Manager. In this section we'll configure a simple example to
implement the disabling of the CommissionPct item in the Employees group unless the
value of the JobId is equal to 'AC_MGR'. To accomplish this task, follow these steps:

• Conditionalize the Value of the Disabled Property Using an Expression: in the
JHeadstart Application Definition Editor, expand the top-level Employees
group, its Items folder, and select the CommissionPct item. Set its Disabled?
property to the expression value:

#{$DEPENDS_ON_ITEM_VALUE$!= 'AC_MGR'}

The token $DEPENDS_ON_ITEM_VALUE$ gets substituted by the JHeadstart
application generator so that the expression ends up referencing the correct value of the
item on which the current item depends. In table layout, you need a different expression
than in form layout. We'll setup this item dependency next...

• Set the CommisionPct Item to Depend on the JobId Item by setting its Depends
on Item property to JobId.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 33

• Choose a value for the Clear/Refresh Value? property. When this checkbox is
checked, and the depends-on-item changes value, this item's value is cleared
before the model binding of the depends-on-item is updated. If you would code
logic in the setter method of the underlying attribute of the depends-on-item to
update this item's value, then this new value will be displayed in the page. If
you don't know what to choose, leave it unchecked.

• After regeneration and running the application, in the Employees tab, if you use
the Quick Search area to find all employees whose LastName starts with the
letter H, and then drill down to the details, you can navigate between employees
like Michael Hartstein and Shelly Higgins to notice that the CommissionPct field
on the screen as disabled for Michael, as shown below, but enabled for Shelly
(whose JobId = 'AC_MGR').

6.12.1.2. If an item depends on multiple other items

The basic steps are the same as when the item depends on a single item, except for the
following:

• Instead of choosing the Depends On item from the dropdown list, type in a
comma-separated list of item names in the field, followed by using the Enter
key.

6- 34 Generating User Interface Widgets JHeadstart Developer’s Guide

• You cannot use the token $DEPENDS_ON_ITEM_VALUE$ if the item depends
on multiple other items. Instead, use the following expressions depending on the
layout style and search area of the group:

Item usage Expression

Table layout row.<attributeName>

Form layout bindings.<groupName><itemName>.inputValue

Search area search<groupName>.criteria.<groupName><itemName>

For example, to refer to the value of the JobId in the search area, use the
expression #{searchEmployees.criteria.EmployeesJobId}.

• If in your application you have more than one of the abovementioned item
usages, for example you have the dependency in both form layout and search
area, you will have to create multiple dependent items: one for each usage. Make
sure the copied dependent item is displayed only in table layout, or only in the
form layout, or only in the search area, and use the appropriate expression for
each copied item.

6.12.2. Cascading Lists

If the displayed values in a dropdown list depend on the chosen value in another
dropdown list, we call them cascading lists.

Here are the basic steps to generate this in a form layout using the Region-Countries
example from the HR schema:

• Create a ViewObject on Countries with a where clause named bind param:
region_id = :p_region_id

• define p_region_id on the Bind Params tab of your VO

• Set the Query Bind Parameter property in the dynamic domain created for the
country item drop down list according to the table below, for example:
p_region_id=#{bindings.CountriesRegionId.inputValue}

Item usage Expression

Table layout row.<attributeName>

Form layout bindings.<groupName><itemName>.inputValue

Search area search<groupName>.criteria.<groupName><itemName>

Attention: If you have the same cascading lists in table and form layout,
and/or in a search area, you need to make separate domains, and separate
items for CountryId: one displayed in table layout with the "table" domain
associated, one in form layout with the "form" domain associated, one in
search are with the "search area" domain associated.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 35

• In case of a table layout the domain checkbox Data Collection Changes By Row
must be checked as well.

• Set Depends On Item(s) for CountryId item to the RegionId item

• Check checkbox Clear/Refresh Value? for CountryId

• Generate and run.

6.12.3. Row Specific Dropdown Lists in Table

This is in fact a more generic case of Cascading Lists in Table Layout, so follow the steps
above!

6- 36 Generating User Interface Widgets JHeadstart Developer’s Guide

6.13. Custom Button that Calls a Custom Business Method

Often you will have special processing that you want to initiate by clicking a button. It
could be a stored procedure in the database, or a custom method in ADF Business
Components.

Attention: This section assumes you understand the concept of JHeadstart
Generator Templates and you know how to use custom templates as explained in
section 4.7

Reference: See also section 8.5.4.1 "Add Commit Behavior to a Custom
Button".

The example below calls a custom ADF BC Application Module method from a button in
a JSF page. If you want to call a stored PL/SQL procedure or function, let this custom
method call the stored function or procedure like is described in the ADF Developer's
Guide for Forms/4GL Developers.

Reference: See the Oracle Application Developer Framework Developer’s
Guide for Forms/4GL Developers Release 10.1.3, section 25.5: Invoking Stored
Procedures and Functions.

In this example we will create a group level button to increase the salary of the current
employee. We discuss two ways:

1. Generating just a button that increases the salary with a fixed percentage.

2. Generating a button with an input field to type in the desired percentage.

In both cases we need a custom method in our Application Module.

6.13.1. Creating a Custom Method in the ADF BC Application Module

We are going to use the same method for both examples, which takes the employee id
and the desired percentage as parameters.

• Go to the Model project, and find the Application Module (for example
HRService).

• Go to the Application Module Class (for example HRServiceImpl.java). If there is
none, generate one using the Application Module editor, Java category.

• Create a new method as follows (assuming that the EmployeesView is defined in
the Application Module's data model as EmployeesView1):

 public void increaseSalary(String empId, String percentage)
 {
 // 1. Find the Employees view object instance
 EmployeesViewImpl empView = getEmployeesView1();
 // 2. Construct a new Key to find the Employee with the specified id
 Key empKey = new Key(new Object[]
 { empId });
 // 3. Find the row matching this key
 Row[] empsFound = empView.findByKey(empKey, 1);
 if (empsFound != null && empsFound.length > 0)
 {
 EmployeesViewRowImpl employee = (EmployeesViewRowImpl) empsFound[0];
 // 4. Increase the salary with the specified percentage

http://download.oracle.com/docs/html/B25947_01/bcadvgen005.htm#sm0297
http://download.oracle.com/docs/html/B25947_01/bcadvgen005.htm#sm0297

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 37

 double convertedPercentage = new Double(percentage).doubleValue();
 double multiplyNumber = 1 + convertedPercentage / 100;
 Number newSalary = employee.getSalary().multiply(multiplyNumber);
 employee.setSalary(newSalary);
 }
 }

 Attention: The type of the parameters is String, because that is easiest to pass
from the ViewController, and it can be converted to any type you need.

 Attention: This code assumes that you created a View Row class for the
Employees view. You can generate this class by going to the EmployeesView
editor, selecting the Java category and checking the EmployeesViewRowImpl
class checkbox.

 Attention: The Number class referenced is oracle.jbo.domain.Number, not
java.lang.Number.

• Publish this method to the ADF Data Control by opening the Application
Module Editor, and going to the Client Interface category. Shuttle the new
increaseSalary method to the right.

Now you can choose between two customizations:

1. Call the increaseSalary method from a button where you pass the current
Employee Id and a fixed percentage of 10.

2. Call the increaseSalary method from a button where you pass the current
Employee Id and take the percentage from an input field on the page.

If you choose 1, apply the steps from section Creating a Button that Calls the Method
With a Fixed Percentage, and if you choose 2, apply the steps from section Creating a
Button that Calls the Method With Percentage From Input Field.

6.13.2. Creating a Button that Calls the Method With a Fixed Percentage

Before we generate the button into the page, we drag-and-drop it using the JDeveloper
Visual Editor, including the relevant ADF Bindings. That way we can see what it is we
need to generate.

Before making any customizations, ensure that the names of the used generator
templates are included in the sources, as explained in the section Finding Out Which
Generator Templates Are Used.

• Go to the page where you want to add the button (for example Employees.jspx)
in Design mode.

• Go to the Data Control Palette, and find the new increaseSalary method of the
Application Module.

• Drag-and-drop the increaseSalary method next to the other group level buttons.

• Choose Create – Methods – ADF Command Button. An Action Binding Editor
dialog opens. Don't close it yet.

We will now pass the current Employee Id, and a fixed value of 10 (to increase the salary
with 10 percent) to the increaseSalary method.

6- 38 Generating User Interface Widgets JHeadstart Developer’s Guide

• Double click the empty value cell of empId, click the Button with three dots
(Edit), and choose ADF Bindings – bindings – EmployeesEmployeeId -
inputValue. Click the button with the right arrow (>) and the expression
${bindings.EmployeesEmployeeId.inputValue} will appear. Click OK.

• Double click the empty value cell of percentage, click the Button with three dots
(Edit), and type in the expression 10. Click OK.

• Click OK on the Action Binding Editor.

This creates a button 'increaseSalary' in the page, and a binding 'increaseSalary' in the
Page Definition of the page. If you run the page, and click the button, you can see a
higher value in the Salary field.

But if you now run the JHeadstart generator, you will lose the button and the binding, so
we must find a way to generate them.

6.13.3. Generating the Button that Calls the Method

We want JHeadstart to leave the increaseSalary binding in the Page Definition, so we are
going to instruct the generator only to overwrite its own JHeadstart bindings and leave
other bindings alone.

• Go to the Application Definition Editor, and switch to Expert mode (see section
Expert mode). This will ensure that the Generation Settings property category
becomes visible at group level (between Deep Linking and Customization
Settings).

• Go to the Employees group, and uncheck the Clear Page Definition Before
Generation? property.

To get the increaseSalary button in the generated JSF page, we are going to customize
one of JHeadstart's generator templates. First we need to find out which template this is.
Before making any customizations, ensure that the names of the used generator
templates are included in the sources, as explained in the section Finding Out Which
Generator Templates Are Used.

Then you can open the source of the generated Employees.jspx, and look for
increaseSalary. There is your increaseSalary button in between the comments explaining
which template generated what:

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 39

As you can see, the buttons are included within the actions facet that is printed by the
FORM_PAGE_CONTENT template, which defaults to
default/page/formPageContent.vm. So, let's customize this template and add the
custom button to it.

 Attention: Group-level buttons are not always generated through the
FORM_PAGE_CONTENT template. This template is used when there is only
one group displayed on the page, in which case the group-level buttons are
printed on the same level as the page level Save button. When multiple groups
are displayed on a page, the FORM_GROUP_BUTTONS or
TABLE_GROUP_BUTTONS templates are used, depending on the group
layout style.

• Open default/page/formPageContent.vm and Save As
custom/page/EmployeesFormPageContent.vm.

• In the <f:facet name="actions"> in the template, locate the place where you
want to insert the custom button (before, in between, or after the other buttons).

• Go to the Employees.jspx page, and copy the <commandButton> section of the
custom button. Paste it in the desired location in the panelButtonBar of
EmployeesFormPageContent.vm.

6- 40 Generating User Interface Widgets JHeadstart Developer’s Guide

Now the only thing left to do is make sure that the customized template is used for the
Employees group.

• Open the Application Definition Editor, go to the Employees group, and click on
the Templates tab.

• Set the FORM_PAGE_CONTENT value to
custom/page/EmployeesFormPageContent.vm

If you now run the JHeadstart Application Generator again, the button is included in the
generated page, and the binding for the button is preserved.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 41

6.13.4. Creating a Button that Calls the Method With Percentage From Input Field

Before we generate the button and the percentage input field into the page, we drag-and-
drop it using the JDeveloper Visual Editor, including the relevant ADF Bindings. That
way we can see what it is we need to generate.

Before making any customizations, ensure that the names of the used generator
templates are included in the sources, as explained in the section Finding Out Which
Generator Templates Are Used.

• Go to the page where you want to add the button and input field (for example
Employees.jspx) in Design mode.

• Go to the Data Control Palette, and find the new increaseSalary method of the
Application Module.

• Drag-and-drop the increaseSalary method just below the Employee fields.

• Choose Create – Parameters – ADF Parameter Form. A Form Fields Editor dialog
opens. Don't close it yet.

We only want a Form Field for the percentage, as we will pass the current Employee Id
to the increaseSalary method behind the scenes.

• By default the empId row is highlighted, so you can click the Delete button right
away.

• Click OK on the Form Fields Editor.

This creates a form with an input field and a button 'increaseSalary' in the page. In the
Page Definition of the page it creates a variableIterator with a variable
'increaseSalary_percentage', an attribute binding 'percentage', and a method binding
'increaseSalary'.

Now we still have to pass the Employee Id to the method call.

• Go to the Page Definition of the Employees page.

• In the Structure pane, open the bindings node and find the increaseSalary
binding. Open that node too, and select the empId parameter.

• Go to the properties of this parameter, and find the NDValue property. Click the
Button with three dots (Edit), and choose ADF Bindings – bindings –
EmployeesEmployeeId - inputValue. Click the button with the right arrow (>)
and the expression ${bindings.EmployeesEmployeeId.inputValue} will
appear. Click OK and Save.

If you run the page, fill in a percentage, and click the button, you can see a higher value
in the Salary field. If you like you can improve the layout by replacing the panelForm by
a panelLabelAndMessage (which means that you have to set simple="true" on the
inputText component).

6- 42 Generating User Interface Widgets JHeadstart Developer’s Guide

But if you now run the JHeadstart generator, you will lose the new page components and
bindings, so we must find a way to generate them.

6.13.5. Generating the Input Field and Button that Calls the Method

We want JHeadstart to leave the increaseSalary and related bindings in the Page
Definition, so we are going to instruct the generator only to overwrite its own JHeadstart
bindings and leave other bindings alone.

• Go to the Application Definition Editor, and switch to Expert mode (see section
Expert mode). This will ensure that the Generation Settings property category
becomes visible at group level (between Deep Linking and Customization
Settings).

• Go to the Employees group, and uncheck the Clear Page Definition Before
Generation? property.

To get the percentage input field and the increaseSalary button in the generated JSF
page, we are going to customize one of JHeadstart's generator templates. First we need to
find out which template this is. Before making any customizations, ensure that the names
of the used generator templates are included in the sources, as explained in the section
Finding Out Which Generator Templates Are Used.

 Then you can open the source of the generated Employees.jspx, and look for
increaseSalary. There is your increaseSalary button with percentage input field in
between the comments explaining which template generated what:

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 43

As you can see, the inputText and commandButton are included between the end of the
panelGroup that is printed by the FORM_GROUP template and the end of the panelPage
that is printed by the DATA_PAGE template (the starting point for all templates). Let's
customize the FORM_GROUP template, which defaults to
default/pageComponent/formGroup.vm.

• Open default/pageComponent/formGroup.vm and Save As
custom/pageComponent/EmployeesFormGroup.vm.

• Locate the place where you want to insert the custom button (an appropriate
place seems to be after the end of the first panelGroup, before the
FORM_GROUP_BUTTONS).

• Go to the Employees.jspx page, and copy the <panelForm> section with all its
child components. Paste it in the desired location of EmployeesFormGroup.vm.

6- 44 Generating User Interface Widgets JHeadstart Developer’s Guide

Now the only thing left to do is make sure that the customized template is used for the
Employees group.

• Open the Application Definition Editor, go to the Employees group, and click on
the Templates tab.

• Set the FORM_GROUP value to
custom/pageComponent/EmployeesFormGroup.vm

If you now run the JHeadstart Application Generator again, the input field and button is
included in the generated page, and the bindings for the button are preserved.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 45

6.14. Hyperlink to Navigate Context-Sensitive to Another Page (Deep Linking)

JHeadstart allows you generate hyperlinks (or buttons) that navigate context-sensitive to
another page. With context-sensitive we mean that the data displayed in the target page,
depends on the data displayed in the source page. This feature is called deep linking and
can be implemented using custom generator templates.

Attention: This section assumes you understand the concept of JHeadstart
Generator Templates and you know how to use custom templates as explained in
section 4.7

In this example, we will use the JHeadstart deep linking support in combination with a
custom template to generate the JobId in the Employees group table as a hyperlink that
navigates to the Job Edit page, querying the proper Job row.

First we must enable deep linking for the Job Edit Page, which is the target of the deep
link.

6.14.1.1. Enabling Deep Linking for a Group

To allow creation of deep links to the form page of a certain group (in this example the
Jobs group), perform the following steps:

1. In the Application Definition Editor, switch to Expert mode (see section Expert
mode). This will ensure that the Deep Linking property category becomes visible
at group level (between Table Layout and Generation Settings).

2. Go to the Jobs group and set the Deep Linking Type to Query By Key Value.

3. Set the Deep Linking Key Expression to #{param.jobId}

4. Generate the application, to make a navigation rule DeepLinkJobs available (it is
needed in the following steps).

These deep linking settings ensure that when a JSF navigation outcome called
'DeepLinkJobs' is used (this condition is specified in the Enable Deep Linking
Expression), it will go to the Jobs page, and query the Jobs data collection using the key
specified in the request parameter 'jobId' (the Deep Linking Key Expression).

Attention: For the Type of Deep Linking you can also choose "Set Current
Row Using Key Value". The difference is that instead of requerying the
database and returning just the desired row, the current row indicator in the
View Objects's row set will be pointed to the desired row.

The next step is to manually change the Job field in the Employees page to a hyperlink,
before moving that customization to a generator template.

6- 46 Generating User Interface Widgets JHeadstart Developer’s Guide

6.14.1.2. Manually Changing a Dropdown List to a Deep Link

1. Open the EmployeesTable.jspx in the Visual Design Editor in JDeveloper.

2. Convert the JobId selectOneChoice into a commandLink using the right-mous-
menu option Convert.

3. Remove the 'left over' child components from the converted selectOneChoice
from the commandLink using the structure pane.

4. Go to the properties of the commandLink, set Text to #{row.JobId}, and set
Action to DeepLinkJobs.

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 47

5. Insert inside the commandLink component the JSF Core component 'param'. Set
the Name property to 'jobId' and the Value property to #{row.JobId}.

You can now run the EmployeesTable page to test if the Job deep link works correctly.

Note that the breadcrumb on top of the Job Edit page shows that we just came from the
Employees page.

6.14.1.3. Preserving the Manual Changes using an Item Template

If we would now run the JHeadstart Application Generator, it would overwrite the
manual changes we made in the Employees page. Therefore we will create a Generator
Template for the JobId item to preserve the changes.

JHeadstart would generate a dropdown list for the JobId item in the table page, so the
template that we need to customize is TABLE_DROP_DOWN_LIST. See also section
Finding Out Which Generator Templates Are Used.

1. In the source of the EmployeesTable.jspx file, copy the commandLink element.
 <af:commandLink id="EmployeesJobId"
 text="#{row.JobId}"
 action="DeepLinkJobs">
 <f:param name="jobId" value="#{row.JobId}"/>
 </af:commandLink>

6- 48 Generating User Interface Widgets JHeadstart Developer’s Guide

2. In the JDeveloper navigator, go to the project's Resources – default\item\table
folder and open tableDropDownList.vm.

3. Save it as custom/item/table/JobIdColumn.vm.

4. In JobIdColumn.vm, replace the selectOneChoice component with the
commandLink you just copied.

5. Select the JobId item of the Employees group in the Application Definition
Editor, and click the Templates tab. Set the TABLE_DROP_DOWN_LIST
property to custom/item/table/JobIdColumn.vm.

Now you can safely generate the application again, the Job deep link will still work!

JHeadstart Developer’s Guide Generating User Interface Widgets 6- 49

6.15. Embedding Oracle Forms in JSF Pages

OraFormsFaces™ is a JSF component library to integrate Oracle Forms in a JSF web
application. This allows a developer to embed Oracle Forms in a JSF page and truly
integrate the two, including passing context, events, eliminating Forms applet startup
time, and many more features.

OraFormsFaces allows organizations to use the Java stack for new developments while
protecting their investment in Oracle Forms. They can build new JSF or ADF Faces based
web applications and integrate existing Forms applications in them. The JSF web
application can pass parameters to Forms and the other way around. Both Forms and JSF
can raise events (commands or triggers) in the other technology.

OraFormsFaces is a product from Commit Consulting. A trial version can be
downloaded from the Commit Consulting website.

Commit Consulting: For more information on OraFormsFaces and Commit
Consulting, go to http://www.commit-consulting.com/
A special OraFormsFaces page for JHeadstart users is also available:
http://www.commit-consulting.com/jhs

JHeadstart integrates with OraFormsFaces through the item display type
“oraFormsFaces”.

Follow these steps to generate a web page that embeds an Oracle Form using the
OraFormsFaces technology:

• Install OraFormsFaces in JDeveloper, by following the instructions in the
OraFormsFaces Developer’s Guide.

• Add the OraFormsFaces environment entries in the web.xml of your project, as
documented in the OraFormsFaces Developer’s Guide.

• Create a new top-level group in the application definition editor. Uncheck the
checkbox property Bound to Model Data Collection.

• Add an item to the group, uncheck the item checkbox property Bound to Model
Attribute?

• Set the Java Type property to “String”

• Set the Value property to the name of the Oracle Form you want to embed.

http://www.commit-consulting.com/

6- 50 Generating User Interface Widgets JHeadstart Developer’s Guide

• Set the Display Type property to oraFormsFaces.

• Generate the application

• Make sure the forms server is running.

• Run the generated application. When you go to the menu tab for the group you
just created, you will see the Oracle Form embedded in your JSF page. The first
time you access the page, it takes a few seconds because the forms applet must
be started. When you later return to the page, you will notice the form will be
displayed immediately, since the Forms applet is only started once (one of the
many features of the OraFormsFaces library). When you click on the JSF Save
button, you will notice that the Oracle Form is committed!

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 1

C H A P T E R

7 Generating Query
 Behaviors

This chapter discusses how to add query behaviors to a web page. Topics discussed
include:

• Using auto-query

• Using Query Bind Parameters

• Quick Search

• Advanced Search

• Forcing a Requery

7 - 2 Generating Query Behaviors JHeadstart Developer’s Guide

7.1. Configuring the Query

This section describes how you can influence the query behavior of generated pages.

7.1.1. Specifying Auto Query

By default, JHeadstart generates pages with Auto Query on. This means that the records
are automatically retrieved when the user enters a page, potentially retrieving a large
result.

On a group you can set the Auto Query property to false. This means that records are
queried upon request from the user, either by doing a Quick Search or an Advanced
Search. This is particular useful when we want to force the user to restrict the number of
rows retrieved by specifying search criteria.

See also the Maximum Number of Search Hits property. Use this property to force the
user to enter more restrictive search criteria.

7.1.2. Using Query Bind Parameters

Both Groups and List of Values (indirectly) are based on an ADF View Object. A View
Object contains a SQL query. By default, this is a fixed query. This means the View
Object will always return the same set of rows with each execution (if the database has
not changed). In many cases you want your View Object to be dynamic. For example a
View Object that retrieves the Employees of a Department. You want to pass the
DepartmentId into the ViewObject and have the ViewObject return the correct rows.

ADF BC View Objects have bind variables for this functionality. JHeadstart can at
runtime pass values into these bind variables using the Query Bind Parameters property

We will use the example of departments that have a managing employee:

Base group is departments with Layout Style=’form’. The Display Type of the item
ManagerId is ‘dropDownList’. JHeadstart generates this for us:

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 3

In the dropdown list, all the employees are shown. This is not what we want. We want
the manager to be an employee of the department. The dropdown list should only
contain employees that are in the department we are maintaining, in this case the
department with DepartmentId=10.

We will implement this requirement by using the Query Bind Parameters of JHeadstart:

1. Go to your Model project and create a New Default View Object for the
Employees Entity Object. Name the new View Object something like
‘EmployeesInDeptView’.

2. Edit the New View Object and enter a Query Where Clause with a bind variable.
It is important NOT to use the ‘? Style’ parameters. Enter bind variables with

7 - 4 Generating Query Behaviors JHeadstart Developer’s Guide

‘:name’ syntax. In this case we will enter ‘department_id=:p_dpt_id’

3. Add the new variable in the Bind Variables tab. Enter a name and a type and

press OK.

4. Add the new View Object to the Data Model of the Application Module

5. In JHeadstart, create a new Dynamic Domain based on the new View Object and
name it something like ‘EmployeesInDept’. In the Query Bind Parameters
property enter this expression:
p_dpt_id=#{bindings.DepartmentsDepartmentId.inputValue}

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 5

6. Set the property Domain (on the ManagerId item) to EmployeesInDept.

7. Generate and run the application again. The dropdown list for ManagerId now
contains only employees of the selected department.

You can use Query Bind Parameters for both Groups and Dynamic Domains. Using EL,
you can bind to any value available on the request or the session. JHeadstart will
automatically re-query when the value of a bind parameter has changed.

7.1.3. JHeadstart Runtime Implementation of Query Bind Parameters

When you specify query bind parameters for a group in the Application Definition,
JHeadstart generates a QueryBindParams managed bean in the group faces-config. If
you specify query bind parameters for a dynamic domain in the Application Definition,
JHeadstart generates such a managed bean in the domains faces-config. Here is an
example:

7 - 6 Generating Query Behaviors JHeadstart Developer’s Guide

The only task of the QueryBindParams class is to hold the last value of the query bind
parameters.

Applying the bind parameters is done by method applyBindParams() in
JhsApplicationModuleImpl. This method compares the old and new values of the bind
parameters and only (re-)executes a query when at least one bind parameter value has
changed.

In the page definition, an action binding is generated to call the applyBindParams()
method:

Note the EL expression for the second method argument that references the
namedParams property of the queryBindParams bean.

The missing link is how this method action is invoked. The query must be executed
before the page is displayed, so we cannot call the method using a button. As explained
in chapter “JSF-ADF Page Lifecycle” we can use the invoke action executable for this
purpose. JHeadstart generates an invokeAction executable as follows:

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 7

Note that because of the value of the refresh property, the action binding is invoked in
the Prepare Render phase. If we had left the refresh property to its default, the action
binding would be invoked twice: once in the Prepare Model phase, and once in the
Prepare Render phase. We invoke the action binding in Prepare Render phase to be sure
we have the latest up-to-date values of the query bind parameters, they might have been
changed in the Update Model or Invoke Application phases.

Reference: See the Javadoc or source of
JhsApplicationModuleImpl.applyBindParams().

7 - 8 Generating Query Behaviors JHeadstart Developer’s Guide

7.2. Creating a Search Region

In most cases, you want to give the end-user some query functionality to search for rows
with specific values and reduce the number of rows. This section describes how to do
that.

JHeadstart is able to generate two distinct ways of search functionality:

1. Quick Search: The search region is placed on top of the generated page.
Typically you can only search on one field at a time. Range queries are not
supported with quick search.

2. Advanced Search. The search region can be on top of the page or in a separate
page. The user can search on multiple fields together. Range queries are
supported.

Suggestion: You can use both options together. For example: a Quick Search
for the most frequently used selection, and an Advanced Search for less
frequently used selections. In that case the Quick Search will be shown by
default, with a button to go to the Advanced Search region.

Before generating a Quick Search or Advanced Search page, you have to make some
preparations:

7.2.1.1. Determine which items should be displayed in the Search Region

You need to review each group and identify items that should not logically be queriable.

If requested to generate search functionality, the JHeadstart Application Generator needs
to know what the queriable items are. You can set the Include in Quick/Advanced
Search properties for each item in a group. Both properties are default true.

1. Select an item in the Application Definition Editor.

2. Check or uncheck the Include in Quick/Advanced Search properties.

7.2.2. Using Quick Search

To generate a Quick Search region for a group, you have two choices:

1. The item used for searching is always the same. Give the Quick Search?
property the value singleSearchField. Select the search item in the Single or
Default Search Item property.

2. You want the user to be able to select the items to search on. Set the Quick
Search? property to ‘dropdownList’. JHeadstart will populate a dropdown list
with item names so the user can select the item to query on. Only queriable items
are shown in the list (see previous section). The default item is specified by the
Single or Default Search Item property.

You can also completely disable Quick Search by setting Quick Search? to ‘none’.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 9

7.2.3. Using Advanced Search

Again, there are two possibilities when generating Advanced Search functionality:

1. The Search region is in the same page as the rest of the group

2. The Search region is in a separate page.

You control this by setting the Advanced Search? property.

There are several properties that will affect the layout of the Advanced Search Region:

1. The Form Width property indicates the width of the Search Region. The default
value is 10% which will left align the items. If you set the value to a higher
number the items will be located further to the right on the page.

Attention: If you use the Form Width property when generating a
search region for a page of Form layout, this property value will
impact the layout of both the search region and the main form page.

2. The Advanced Search Layout Columns property indicates in how many
columns you want to display your items. By default all the items will be
displayed in one column.

3. Regions of the group. If the items you included in the Advanced Search, are also
included in a region, then by default a region will also be applied to the
advanced search area.

Attention: If you don’t want to apply the group regions to the
advanced search area, you can use a variation on the template
default\search\advancedSearchRegion.vm. Comment out the 3
lines just below the comment ‘Optional RegionContainer…’ by
putting ## in front of each line, and uncomment the 3 lines below
the comment ‘Use the following code instead…’ by removing the ##
in front of each line. Then put those 3 lines instead of the
#ADVANCED_SEARCH_ITEMS() call within the panelForm above. See
the comments in the template, and see the section Using Generator
Templates.

7.2.4. Using a Query Operator

On item level the Query Operator can be set. This operator determines how to query the
data. Examples are contains, endsWith and greaterThan.

By default, the ‘StartsWith’ operator is used for String items. In all other cases the
equality operator is used.

You can change this behavior by setting the Query Operator property for an item. See
the help in the Application Definition editor for possible values of this operator.

A special case is the value ‘setByUser’ for the Query Operator. ‘setByUser’ means the
user of the application can at runtime choose the operator to be used.

1. Set the Query Operator property to ‘SetByUser’.

2. Generate the application

3. Go to the ‘Advanced Search’ region in the generated application. You will see
something like this:

7 - 10 Generating Query Behaviors JHeadstart Developer’s Guide

4. JHeadstart has generated a dropdown list with applicable query operators for
this field.

7.2.5. Using Query Bind Variables in Quick or Advanced Search

Based on the quick or advanced search items that are set by the user, a query WHERE
clause is appended dynamically to the query (see section Search Support in ADF BC
Application Module).

This approach does not allow for adding sub selects to the WHERE clause that references
other tables. Since it is a common requirement to perform a search based on values in for
example a detail table, JHeadstart allows you to map quick or advanced search items to
query bind variables.

Let’s use an example to illustrate this technique: we want to be able to search all
departments that contain employees with a specific job. In other words, we want to add
Employee JobId as a search item to the Departments group.

Here are the steps to implement this:

• Add an unbound item “EmployeeJobId” to the Departments group. Do not
display this item in form nor table layout, and check the checkboxes “Show in
Advanced Search?” and “Show in Quick Search?”.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 11

• In the Departments View Object, defined a named bind variable after the item

name, prefixed with the group name: DepartmentsEmployeeJobId.

• In the same Departments View Object add a sub-select to EMPLOYEES table

using the value of DepartmentsEmployeeJobId bind variable.

7 - 12 Generating Query Behaviors JHeadstart Developer’s Guide

• Generate and run your application!

7.2.6. Runtime Implementation of Quick Search and Advanced Search

The JHeadstart functionalities Quick Search and Advanced Search share some runtime
components: the Search Bean and the search support in the ADF BC Application Module.

Search Bean

A search managed bean definition is generated in the group beans faces-config whenever
a group has Quick Search and/or Advanced Search enabled. Here is an example of a
search bean:

You can see how the generic JhsSearchBean class is configured through the managed
properties for usage in the Employees page. Related functionality like autoquery and the
maximum number of query hits allowed are also implemented through managed
properties.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 13

Note the searchBinding managed property; this property “injects” the ADF Model
action binding that is used to call the advancedSearch() method on
JhsApplicationModuleImpl (see below).

Both the Quick Search Go button and the Advanced Search Find button call a method on
the search bean:

<af:commandButton action="#{searchEmployees.quickSearch}"
 textAndAccessKey="#{nls['GO']}"/>

<af:commandButton textAndAccessKey="#{nls['FIND']}"
 action="#{searchEmployees.advancedSearch}" />

Internally, the quickSearch() and advancedSearch() methods delegate the actual work
to methods createArgumentListForAdvancedSearch() and
executeAdvancedSearchBinding().

7.2.6.2. Search Support in ADF BC Application Module

JHeadstart Runtime provides an extension for your Application Module that includes
advanced search support (which is used for both the Advanced Search and the Quick
Search functionality of JHeadstart). The JhsApplicationModule interface and the
JhsApplicationModuleImpl class contain the method advancedSearch() that takes an
array of JHeadstart QueryCondition objects and translates them to an additional where
clause on the relevant View Object.

This method is exported in the client interface of the Application Module, which makes it
available as a data control operation. For such an operation an action binding can then be
created in the page definition of the page (which is of course what the JHeadstart
Application Generator does when a Search Region is generated).

The QueryCondition object stores information about that part of the search that applies
to a single view attribute:

• attribute to search on

• operator to use

• search value

• format

• wildcard usage

• case (in)sensitivity

The QueryCondition also translates the query operator names used in the pages by
appropriate SQL operators and wildcard usage. For example, query operator
"startsWith" results in the operator "like" and wildcard usage "suffix".

The advancedSearch() method uses this information to construct ADF BC
ViewCriteria objects, applies them to the View Object, and then executes the (modified)
query of the View Object.

Reference: See the Javadoc or source of the advancedSearch() method of
JhsApplicationModule and JhsApplicationModuleImpl, and the Javadoc of
the QueryModel class.

7 - 14 Generating Query Behaviors JHeadstart Developer’s Guide

Reference: See the Javadoc or source of the JhsSearchBean

7.2.6.3. Combining Quick Search and Advanced Search

If you generate both Quick Search and Advanced Search on the same page, by default
the Quick Search region will be visible and the Advanced Search region will be hidden.
Besides the normal Quick Search fields, there will also be a button called 'Advanced
Search', to switch from Quick Search to Advanced Search.

When the user clicks the Advanced Search button, the Quick Search region is hidden and
the Advanced Search region is shown, together with a button called 'Quick Search'.

Which search region is shown initially, is governed by the JhsSearchBean property
quickSearchMode. The Quick Search and Advanced Search regions both use an EL
expression in the “rendered” property that references the quickSearchMode property in
the search bean.

Partial Page rendering is used to switch between Quick Search and Advanced Search.
The button 'Advanced Search' looks like this:

<af:commandButton id="asButtonEmployees"
 textAndAccessKey="#{nls['ADVANCED_SEARCH']}"
 partialSubmit="true"
 action="#{searchEmployees.switchToAdvancedSearchMode}"/>

When this button is pressed, the switchToAdvancedSearchMode() is executed which
sets the quickSearchMode property of the Search Bean to false. The effect is
that when the user goes to a different page, and later returns to this same page,
the Advanced Search region will still be visible, since the Search Bean is stored
on session scope.

JHeadstart Developer’s Guide Generating Query Behaviors 7 - 15

7.3. Forcing a Requery

By default, the ADF Model Iterator Binding created for the data collection of a JHeadstart
group is only queried once, and the query results are cached by ADF Business
Components. JHeadstart supports the option to force a refresh of the cached query data
by using the group level property Requery Condition.

This is a combobox property, the drop down list includes three common conditions that
JHeadstart translates to a booealn JSF EL expression,an you can also enter a custom
Boolean JSF EL expression.

The predefined values are:

• Always: every time the user navigates to the page, or submits the page itself, the
iterator binding is requeried. This condition translates to the JSF expression
#{true}.

• When Entering the Page: the iterator binding is requeried when the user
navigates from another page to this page. This condition translates to the JSF
expression #{!adfFacesContext.postback}.

• After Commit: the iterator binding is requeried when the user submits the page
by clicking on a button that executes the Commit action binding, like the
generated Save button. This condition translates to the JSF expression
#{jhsAfterCommit}.

Note that the Requery Condition property is also available for dynamic domains. If you
want to refresh the content of a drop down list, you can set the Requery Condition on the
dynamic domain.

7.3.1. Implementation of Requery

When the Requery Condition is set, JHeadstart generates two additional entries in the
Page Definition of the group:

• An action binding that executes the query.

7 - 16 Generating Query Behaviors JHeadstart Developer’s Guide

• An invokeAction in the executables section. The refreshCondition of this
invokeAction determines whether the executeQuery action binding is invoked or
not.

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 1

C H A P T E R

8 Generating Transactional
 Behaviors

This chapter describes how you can influence the transactional behavior of generated
pages. The properties in the Operations group in the Application Definition editor are
used for this.

8- 2 Generating Transactional Behaviors JHeadstart Developer’s Guide

8.1. Enabling Insert

8.1.1. Allowing Inserting Data in a Form Page

Use property Single-Row Insert allowed? JHeadstart will generate a ‘New’ button on
the page.

8.1.2. Building Insert Only Form Pages

Sometimes you want a page where the user can only enter new records, for example an
application for entering new service requests. In this case, a user must not be able to
query other data.

In such a case, set Layout Style to form, Advanced Search? and Quick Search?
properties to none, and disable Auto Query ? for the group.

When generating, you will get a warning now. To really disable all query functionality
for the group, change the View Object query settings. Go to the View Object and change
the view into an ‘Insert only’ View.

If you test the page by running the page directly from JDeveloper, you will see that it
does not start with a new empty row. This is because with insert-only pages, the creation
of a new row is performed when JSF navigates to a special Start[groupName] outcome,
which occurs if you navigate to the page from a menu 1 tab for example. So always test
the page through clicking a tab, or by creating a home page that uses the
Start[groupName] outcome. If you nevertheless want to start the page directly in insert
mode, you should include a request parameter Start[groupName]=true in the URL that
you use to start the page.

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 3

8.1.3. Allowing the User to Insert Data in a Table Page

Inserting rows in a table layout is supported in three ways:

• By displaying additional empty rows in the table using the New Rows property.
The Show New Rows at Top property determines whether the new rows are
displayed as the first or last rows in the table. Note that when Show New Rows
at Top is unchecked, and you use table ranges then the empty rows are only
visible when the user navigates to the last range set of rows.

• By checking the ShowAdd Row Button checkbox.

• By checking the Show Duplicate Row Button checkbox.

All of the above properties are only applicable when the Multi-Row Insert Allowed
checkbox is checked.

You can even use all three of them together. However, the New Rows property cannot
be set when using Table Overflow Style “below” or “right”.

8- 4 Generating Transactional Behaviors JHeadstart Developer’s Guide

8.2. Enabling Update

Use properties Single-Row Update Allowed? and Multi-Row Update Allowed? to
allow updates in respectively form layouts and table layouts.

Which items will be updateable or not depends on the Update Allowed property of an
item. This property can be used to make items read only, always updateable, or
updateable in a new row, or updateable in an existing row.

The Update Allowed property is a combo box, you can choose one of the options from
the drop down list, and you can also enter a boolean JSF EL Expression.

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 5

8.3. Enabling Delete

Use properties Single-Row delete allowed? and Multi-Row delete allowed? to allow
deletes in respectively form layouts and table layouts.

The JHeadstart Application Generator generates a Delete button on a single row page, or
a delete check box on a multi row page.

Example ‘Delete in a table layout’:

The user can now select all the records he wants to delete, and then press the save button
to commit the changes to the database.

Example ‘Delete in a form layout’:

8- 6 Generating Transactional Behaviors JHeadstart Developer’s Guide

8.4. Conditionally Enabling Insert, Update an Delete

The previous sections explained how to enable or disable insert, update and delete
functionally for the group, regardless of user roles and permissions or the actual data.

To conditionally enable insert, update and delete operations you can use the Insert
Allowed EL Expression, Update Allowed EL Expression and Delete Allowed EL
Expression. These properties are available both on the Service-level and on Group level.
On service-level, you will typically use them in combination with permission-based
access control. See chapter 10 “Application Security”, section 10.7 “Restricting Group
And Item Operations based on Authorization Information” for more information.

On the group level you can refer to user roles, and you can make the operation enabled
based on the actual data shown on the page.

For example, if you have a business rule which specifies that users in the
HR_ASSSISTANT role can only delete job PU_CLERK and that HR_MANAGERS can
delete all jobs, then you can specify the following DeleteAllowed EL Expression to
implement this rule:

#{jhsUserRoles[‘HR_MANAGERS’] or (jhsUserRoles[‘HR_ASSISTANT’] and
bindings.JobsJobId.inputValue==’PU_CLERK’)}

users can only delete jobs where the Delete button in the Edit Jobs page should only be
available when the Job Id is

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 7

8.5. Runtime Implementation of Transactional Behaviors

8.5.1. Multi-Row Insert and Delete

Out-of-the-box, JSF only supports editing of existing rows in a table. The Update Model
phase does not support multi-row insert and delete.

To implement multi-row insert and multi-row delete in a table, JHeadstart uses the class
oracle.jheadstart.controller.jsf.bean.JhsCollectionModel. This class extends the
default ADF Faces collection model class. The value property of an ADF Faces table
references a managed bean that uses the JhsCollectionModel class, like this:

<af:table value="#{Departments2CollectionModel}" ... />

The corresponding managed bean definition looks like this:

As you can see, the generic JhsCollectionModel class is configured for specific usage
in the DepartmentsTable using managed property settings. The managed property
newRowCount determines the number of empty rows that will be displayed in the table
that can be used to insert new rows.

8- 8 Generating Transactional Behaviors JHeadstart Developer’s Guide

Each JhsCollectionModel instance “registers” itself as a “Model Updater” in
JhsPageLifecycle. Just before model validation takes place, the JhsPageLifecycle
class calls the doModelUpdate() method in each of the registered Model Updaters. The
doModelUpdate() method in turn calls method processNewRows() to insert any new
rows when the user entered data in the new lines of the table. Method
getRowsToRemove() is called to determine the list of rows that must be deleted, based
on whether the delete checkbox is checked for a specific row in the table.

Before actually performing the deletes, the current state of the application module is
passivated for undo. Passivation can be compared to setting a savepoint in the database,
however passivation takes place on the middle tier. When an error occurs later on, we
can rollback the middle tier by activating the application state.

The reason is that if the delete fails because an error occurs during commit, then the row
can be redisplayed to the user. If this was not done, the ADF Business Components
would already have processed the delete and the row would not be visible anymore,
even though the row was still present in the database.

Reference: See the Javadoc or source of JhsCollectionModel and
JhsPageLifecycle.

8.5.2. Single-Row Insert

A ‘Create’ action binding is executed when a ‘New …’ button is pressed. The
JhsPageLifecycle class has overridden method invokeActionBinding() to intercept
the execution of any Create action binding, and call the onCreate() method in the same
class.

The onCreate() method first creates the new row, then tries to lookup a default values
managed bean with the same name as the Create action binding, suffixed with
“DefaultValues”. When such a bean is found, the applyDefaultValues() method is
called on this bean.

Finally, it populates the createModes managed bean Hashmap with an entry with the
create action binding name as the key and Boolean.TRUE as the value. This entry causes
the page to be rendered in insert mode. See also chapter 5 “Generating Page Layouts”
section “Create/Update Mode”..

8.5.3. Single-Row Delete

A ‘Delete’ action binding is executed when a ‘Delete …’ button is pressed. The
JhsPageLifecycle class has overridden method invokeActionBinding() to intercept
the execution of any Delete action binding, and call the onDelete() method in the same
class.

The onDelete() method first passivates the state of the application module, then it
deletes the row, and then it calls the onCommit() method to remove the row from the
database. The passivation of Application Module state is needed so we can restore the
deleted row in ADF BC when the actual database commit fails.

Reference: See the Javadoc or source of JhsPageLifecycle.onDelete().

JHeadstart Developer’s Guide Generating Transactional Behaviors 8 - 9

8.5.4. Commit Handling

The ‘Commit’ action binding is executed when the ‘Save’ button is pressed. When using
JSF, the ADF Model layer uses a Faces specific class (FacesCtrlActionBinding) at
runtime to execute the action binding. This class wraps the actual action binding class
(JUCtrlActionBinding) and checks the active Page Lifecycle class for a method named
onCommit(). If such a method is found, it calls this method. If such a method is not
found, it simply calls the execute() method on the wrapped action binding class.

The JhsPageLifecycle class includes such an onCommit() method to do the following:

• When the user tries to save data without having made any changes, he gets a ‘No
changes to save message’ (JHS-00101). JHeadstart checks the state of the
application module to determine whether there are outstanding changes. The
message is added to the JSF message stack.

• When the commit succeeds, a ‘Transaction completed’ message (JHS-00100) is
added to the JSF message stack.

• When the commit fails, the passivated state of the application module is
activated again to bring back any rows that might already have been removed
from the corresponding ViewObject iterator, when the Commit failed because of
a database error.

If you do not want to display the JHS-0010 or JHS-00101 messages, or you want to
replace them with a different message (either in all pages, or in a specific page) you can
create your own Page Lifecycle managed bean and set the managed properties
transactionCompletedMessageKey and/or noChangesMessageKey to the desired
values. See chapter 11 ADF-JSF page Lifecycle for more information on how to do this.

8.5.4.1. Add Commit Behavior to a Custom Button

If you want to perform the same Commit handling on a custom button that invokes a
business method (see section 6.11 “Custom Button that Calls a Custom Business
Method”), you can do so as follows:

• In the page visual design editor, double-click on the button. This will open a
dialog where you can create a managed bean method that is called when the
button is pressed, and ADF will prepopulate the button method with the code
required to execute the action binding that calls the business method.

• After the code that executes the action binding, you can add the following code
to fire the onCommit logic of the JhsPageLifecycle:

If you want to override the JHS-00100 and JHS-00101 message for this specific
button, you can use the overloaded version of onCommit that accepts the resource
keys for transaction-completed message, and no changes to save message:

8- 10 Generating Transactional Behaviors JHeadstart Developer’s Guide

Reference: See the Javadoc or source of JhsPageLifecycle.onCommit().

8.5.5. Rollback Handling

When the user makes a change on a page that violates a business rule, he gets an error
message. However, he has changed the model layer already. When the user corrects his
error and successfully submits the change, everything is fine. However, the user can
choose to leave the page without completing his change. In this case he leaves pending
changes in the Application Module. JHeadstart takes care of rolling them back.

Looking at a generated commandMenuItem will clarify how this works:

When the user navigates out of a page with pending changes, he will get a JavaScript
warning as is explained in section 11.5 Outstanding Changes Warning.

When the user still wants to leave the page, the action listeners defined against the
commandMenuItem will fire. The first action listener calls the JHeadstart
DoRollbackActionListener class which lookups the Rollback action binding and
executes it. This fires the onRollback() method in JhsPageLifecycle in the same way
as the onCommit() is fired when executing the Commit binding (see the previous
section). The onRollback() method stores the keys of the current row of each View
Object in the current binding container. After that, the actual rollback is executed and the
current rows are reset to the values before the rollback.

Reference: See the Javadoc or source of
JhsPageLifecycle.onRollback(),
JhsPageLifecycle.storeRowCurrencies(), and
JhsPageLifecycle.restoreRowCurrencies().

JHeadstart Developer’s Guide Gemerating Menu Structures 9 - 1

C H A P T E R

9 Creating Menu Structures

JHeadstart supports two styles of creating menus:

• a static menu structure generated based on the group structure of the
application definition

• a dynamic menu structure which is table-driven, and can be configured at
runtime using menu administration screens

Both menu styles define the structure of the menu; (custom) menu templates will
determine the actual layout of the menu. In this chapter, we will first explain the two
ways of creating a menu structure; the last section discusses how you can change the
layout of the menu.

9 - 2 Generating Menu Structures JHeadstart Developer’s Guide

9.1. Static Menu Structure

By default, JHeadstart generates a static menu structure that reflects the structure of the
service as defined in the application definition. For each top-level group, a tab within the
level 1 menu tab bar is generated. For second-level groups that are not displayed on the
same page as the top-level group, a tab within the level 2 menu tab bar is generated, as
shown in the pictures below.

Group structure defined in application definition

determines generated menu 1 and menu 2 tab bars

The Tabname property of a group determines the label of the menu tab. When you check
the service-level checkbox Generate NLS-enabled prompts and tabs?, the label of the
menu option will be read from a resource bundle, with the value of the Tabname
property used as default. See the section on Internationalization for more info on multi-
language support.

9.1.1. Which Menu Tab is Selected?

When using the static menu structure, the level 1 and level 2 menu tabs that are
displayed as selected are determined by the current page. Each generated page contains
a page snippet that references the ADF Faces Region .jspx file that contains the menu1
and menu 2 entries. In this reference, the selected tab name is passed as shown in the
page snippet below:

JHeadstart Developer’s Guide Gemerating Menu Structures 9 - 3

To customize the selected menu tab, you need to customize the pageMenu.vm template,
as discussed in the section “Customizing the Static Menu Structure”.

9.1.2. Preventing Generation of a Menu Tab

If you do not want a menu entry to be generated for a given group, you can uncheck the
group-level property Generate Menu Entry for this group.

Note that this property is only visible when you have switched the Application
Definition Editor to expert mode

9.1.3. Customizing the Static Menu Structure

The menu level 1 entries and menu level 2 entries are not hardcoded into each and every
page. Instead they are generated into a separate ADF Faces Region files. The menu level
1 entries are generated using the MENU1 template default/misc/menu/menu1.vm and
the level 2 entries are generated using the MENU2 template
default/misc/menu/menu2.vm.

The reference to both ADF Faces region files in each generated page is handled by the
PAGE_MENU template default/misc/menu/pageMenu.vm. So, if you want to
restructure the generated menu structure, you can create custom templates for these
three templates.

Let’s use a simple example to illustrate this technique. Instead of the default row of
menu1 tabs, we want the menu 1 entries to be displayed vertically at the left side of the
page, as shown in the screen shot included below.

9 - 4 Generating Menu Structures JHeadstart Developer’s Guide

To achieve this, we must place the menu1 inside the menu3 facet of the <af:panelPage>
element. Here are the steps to do this:

• Create a custom template for pageMenu.vm, and rename the menu1 facet to
menu3:

• Create a custom template for menu1.vm, and rename the enclosing element from

<af:menuTabs> to <af:menuList>

Now configure JHeadstart to use your custom menu templates instead of the default
templates. See chapter 4 “Using JHeadstart”, section “Customizing Using Generator
Templates” for more information on how to do this. That’s all, regenerate your
application and the menu1 will look like in the above screen shot.

Note that the menu3 facet is also used to render a tree in case of a tree-form layout. So,
this menu layout cannot be used in combination with tree layouts.

JHeadstart Developer’s Guide Gemerating Menu Structures 9 - 5

Another common scenario is to have the generated menu1 entries displayed as menu2
entries, to be able to add a top-level menu that provides access to the various
subsystems. In this scenario the “old” menu2 level entries are no longer displayed. This
is possible because JHeadstart also generates buttons to navigate to the detail groups that
are made accessible through the default level 2 menu.

Here are the steps to do this:

• Create a copy of the menu1.vm template, and replace the forEach loop with
hardcoded top level menu entries you want to appear. For example:

• Create a custom template for pageMenu.vm, rename menu1 facet to menu2, and

change the includeName suffix to menu2Tabs.

• Remove the existing menu2 facet (and surrounding if statement) from the
template.

• Add a new menu1 facet that uses the JHS_PARSE_INCLUDE macro to create an
ADF Faces region file with the content of your copied menu1.vm
(myTipMenu.vm) template. See the code snippet below for an example, and note
the reference to the actual template path and name.

• Create a custom template for menu1.vm, and rename the enslosing element

<af:menuTabs> to <af:menuBar>

• Configure JHeadstart to use your customized menu1.vm and pageMenu.vm
templates and regenerate your application.

9 - 6 Generating Menu Structures JHeadstart Developer’s Guide

9.2. Dynamic Menu Structure

Although the static menu structure can be changed using custom templates, it quickly
becomes a tedious job to do so when you have a large application and the required menu
structure is rather different from your group structure. In such situations, it is easier and
more flexible to use a dynamic menu structure that can be configured and customized at
runtime by a system administrator. JHeadstart uses a set of database tables to support
these dynamic menus. The structure of these tables is shown below.

The top level of the menu structure is defined by so-called modules. A module can be
seen as a logical subsystem of your application, and will often match with a service
defined in one application definition, but this is not required. Each module has a nested
structure of menu items. A menu item can simply launch the first page of a group as
defined in an application definition file, but you can also specify a custom JSF
Navigation action, or some arbitrary URL that will be displayed inside an iFrame within
the page.

You can also associate a user interface skin with a module; this allows you to support
multiple user interface skins depending on the currently selected module.

In the next sections we will explain how you can enable your application to use a
dynamic menu structure.

9.2.1. Creating the Database Tables

Before you can start using dynamic menus, you need to create the above table structure
in your own application database schema. You can do this by running the script
JhsModelCreate.sql against the database connection of your application schema. This
script is located in the scripts directory of your ViewController project. If you don’t see
the scripts directory, make sure you click the Toggle Directories in the toolbar of the
Application Navigator.

JHeadstart Developer’s Guide Gemerating Menu Structures 9 - 7

You can right-mouse-click on the JhsModelCreate.sql, then choose Run in SQL*Plus, and
then the database connection you want to run the script in.

 Attention: We recommend installing the JHeadstart tables in the same schema
as your own application tables. If you nevertheless prefer to install the
JHeadstart tables in a different database schema, then you need to ensure that
your application schema has full access to the JHeadstart tables and synonyms
with the same name as the table name. This is required because the JHeadstart
runtime accesses the database tables through View Object usages defined in
application module JhsModelService. When generating your application
while using one or more of the table-driven features, this JhsModelService
application module is added as a nested usage to your own application
module, thereby “inheriting” the database connection of its parent application
module.

 Attention: The JhsModelCreate.sql script creates database tables for all table-
driven JHeadstart runtime features. Additional tables for flex items,
translations and security are also created. If you do not plan to use these other
features you can create your own script that only creates the above tables, and
the JHS_SEQ sequence that is used to populate the ID column in these tables.

9.2.2. Enabling Dynamic Menus

To enable your application for use of dynamic menus, the first thing to do, is to check the
service-level checkbox Allow Runtime Customization of Menu?.

9.2.2.1. Running the JHeadstart Application Generator

When you now run the JHeadstart Application Generator again, the following happens
to enable dynamic menus:

9 - 8 Generating Menu Structures JHeadstart Developer’s Guide

• All ADF Business Components included in the JHeadstart Runtime library are
imported into your Model Project, and the JhsModelService application
module, is added as a nested usage to your own application module. The
JhsModelService includes View Object Usages that insert, update, delete and
query the underlying database tables needed for the dynamic menu. Note that
by creating JhsModelService as a nested application module, it will inherit the
database connection of the parent application module.

• An additional Application Definition file, named MenuAdminAppDef.xml is
generated. Click Save All after running the JAG and this file should appear
into the properties directory of your ViewController project. You can use this
Application Definition to generate the pages that are used to define the menu
structureat runtime. See section Generating the Menu Admin Pages for more
info.

JHeadstart Developer’s Guide Gemerating Menu Structures 9 - 9

• A SQL Script named DynamicMenuDataServiceName.sql is generated and
executed against the default database connection of your ADF Business
Components project. This script inserts one row in the JHS_MODULES table
for the service, and multiple rows in the JHS_MENU_ITEMS table for each
top-level group and second-level group defined in the Application Definition.
This SQL script is just created to provide you with a default menu structure
that you can use to test your application. Note that if you do not want the JAG
to auto-execute the script, you can uncheck the service-level checkbox “Run
Generated SQL Scripts?”

• A module-switcher drop-down list is generated in the global buttons area of

the page. This drop-down list allows you to switch modules in your
application, which causes a different menu structure to be displayed as well:
the menu items defined for the selected module.

9.2.2.2. Generating the Menu Admin Pages

As explained above, a separate application definition MenuAdminAppDef.xml is
generated that can be used to generate the menu administration screens. This application
definition is only generated when it does not exist yet, so after it has been generated, you
can make any changes you want using the Application Definition Editor, without loosing
these changes when you regenerate your “own” application definition.

Before you generate the MenuAdminAppDef you might want to inspect the file locations
properties, and change them if you have set other naming standards for these properties.

The default settings are in line with what we recommend:

9 - 10 Generating Menu Structures JHeadstart Developer’s Guide

• Generate all Main faces-config files in the WEB-INF directory with a suffix
indicating the service

• JhsCommon-beans.xml is shared by all services (application definitions); the
location should never be changed.

• Create a subdirectory per service for the generation of group beans faces
config files, pages and regions. Make a subdirectory under this “service”
directory for each of these file types.

• The View Package property should be the same across all services

• The Resource Bundle Type and NLS Resource Bundle properties should be
the same across all services.

Note that all service-level properties that are generally the same across all services have
got the same values as in your “own” application definition. If you later on decide to
make changes to these settings in your own application definition, then you will need to
make the same change in the MenuAdminAppDef Application Definition.

Now, if you are satisfied with the settings, you can run the JAG for the
MenuAdminAppDef. Note that like every other Application Definition service, the Menu
Admin service is treated as another module in your application: the generated SQL script
DynamicMenuDataMenuAdminService.sql has inserted a row in JHS_MODULES, and
rows in JHS_MENU_ITEMS for all level 1 and level 2 groups.

9.2.3. Defining the Menu Structure At Runtime

You are now ready to run the generated application, and change/define the menu
structure at runtime. If you start the application again, you will notice that the menu
structure is quite similar to the static menu structure.

This is because the generated SQL script that inserts rows in the JHS_MODULES and
JHS_MENU_ITEMS tables generates entries using the same algorithm as used for the
static menu structure. Now, using the module drop down list, we can navigate to the
MenuAdmin module, and change the menu structure anyway we want.

JHeadstart Developer’s Guide Gemerating Menu Structures 9 - 11

For example, within the HRModule, lets create only two top-level menu entries “Human
Resources” with Employees, Departments and Jobs as level-two menu entries, and
“Geographical”, with Regions, Countries and Locations underneath. We can do this by
creating new menu items directly under the HRModule, and making the appropriate
new menu item the parent menu item of the existing first-level menu items, effectively
changing them into level-two menu entries. The new structure will look like this:

Now, if you navigate back to the HRModule using the module drop down list, the menu
will look like this:

Note that “Employees2” and “Departments2” are now turned into level three menu
items and are no longer visible in the menu structure. This is because the default menu
layout templates only render level one and level two menu items. You can change this
using custom templates as explained in section “Customizing Menu Layout”.

9.2.4. Linking a User Interface Skin to a Module

If you have the requirement to render each module within your application with a
different look and feel, then you can accomplish this by defining so-called User Interface
Skins, and link such a skin to a module. You can define a skin through the Menu
Administration service.

9 - 12 Generating Menu Structures JHeadstart Developer’s Guide

A JHeadstart User Interface Skin integrates with the ADF Faces Skinning feature as
shown in the above screen shot. The value of the ADF Faces Skin property must be a
value that exists in the adf-faces-skins.xml file, located in web.xml.

Web Link: More information about using ADF Faces Skinning and creating your own
skin can be found in section 22.3 Using Skins to Change the Look and Feel of the
ADF Developers Guide.

The mycompany skin used as an example in this section, can be downloaded from
OTN as well.

If you have defined one or more user interface skins, you can associate a skin with a
module.

Now, to enable this dynamic skin switching based on the currently selected module, you
need to make a change in adf-faces-config.xml, to configure ADF Faces to read the skin
to use from the jhsDynamicMenu.currentUISkin managed bean property:

http://download.oracle.com/docs/html/B25947_01/web_laf003.htm#CACJAGIG
http://www.oracle.com/technology/products/webcenter/files/mycompany_skin.zip

JHeadstart Developer’s Guide Gemerating Menu Structures 9 - 13

If you now restart the application, and select the HRModule, the mycompany skin is
applied, which will look like this:

Note that the header image has changed as well, it is now set to the JHeadstart logo as
specified in the User Interface Skin maintenance page.

Modules that do not have a skin specified continue to be rendered with the default oracle
skin.

9 - 14 Generating Menu Structures JHeadstart Developer’s Guide

This page is intentionally left blank.

JHeadstart Developer’s Guide Application Security 10- 1

C H A P T E R

10 Application Security

pplication security in ADF web applications can be implemented at many levels:

• In the browser by using the secure https protocol, and browser certificates.

• In the View and Controller tiers by restricting access to web pages, by hiding UI
controls that provide access to unauthorized application functions, and/or by
making UI Input controls updateable or read only based on user roles.

• In the ADF Model tier by using ADF Security to restrict access to page
definitions, and to executables and bindings within the page definition.

• In the Business Service tier by restricting read, insert and update access to ADF
Business Components.

• In the Database tier by restricting access to specific data objects, for example by
granting select, insert, update and delete privileges to users and user roles.
When all your application users connect to the database using the same database
user (the rule rather than the exception in browser-based applications), you can
use Oracle Row Level Security (RLS) and Oracle Virtual Private Database (VPD)
to implement access privileges.

This chapter focuses on the extensive support provided by JHeadstart and ADF to
implement security in the View, Controller, Model and Business Service tier.

A

10 - 2 Application Security JHeadstart Developer’s Guide

10.1. Understanding and Choosing Security Options with JHeadstart

Generally speaking, there are two popular ways to implement authentication (“who is
the current user”) and authorization (“is the current user allowed to do this”) in Java EE
web applications:

• Container-managed security using JAAS (Java Authentication and Authorization
Service)

• Custom security

JHeadstart supports both types of security, and even allows you to combine both
approaches by using custom roles and/or permissions in addition to JAAS-based
security. This paragraph discusses the security options in more detail, which should
help you in configuring the JHeadstart security settings in your Application Definition
(at Service level).

10.1.1. JAAS and JAZN

Within the JEE platform, Java Authentication and Authorization Services (JAAS) is the
standard for implementing security. By using JAAS the web container used to run the
web application enforces proper authentication and authorization (“container-managed
security”). Each web container provides its own implementation of the JAAS standard.

JAAS allows web developers to develop the security in their application independent of
the chosen JAAS implementation, by using a simple API that can be invoked to answer
security related questions such as “who is the currently logged in user” and “does this
user belong to a specific ‘role’”.

To get the name of the currently logged in user in a JSF application, the following
statement can be used:

FacesContext.getInstance().getExternalContext().getUserPrincipal().getName()

To determine whether a user is in a specific role, the following boolean statement can be
used:

FacesContext.getInstance().getExternalContext().isUserInRole("roleName");

JHeadstart Developer’s Guide Application Security 10- 3

A great benefit from this approach is that the mechanism behind the retrieval of security
information can be changed, for instance from file- or table based to LDAP (Lightweight
Directory Access Protocol) based, without a single change in the application code itself.
Furthermore, it is very convenient that during development, a simple file-based security
mechanism can be used, while in other environments such as test- and production
environments, a full-blown security implementation such as LDAP can be implemented,
again without any changes to the application code.

When using Oracle’s web container OC4J, the JAAS standard is implemented using the
Oracle AS JAAS Provider, shortened as “JAZN”. JAZN provides out-of-the-box support
for storing the user and roles information in two formats:

• In a simple XML file, typically named jazn-data.xml

• In an LDAP directory. Oracle’s Internet Directory (OID) is a popular
implementation of the LDAP protocol.

In addition, JAZN can be configured to authenticate users against Oracle’s Single Sign-
On Server (SSO).

To use JAAS-JAZN with JHeadstart, you set the Authentication Type property to
“JAAS”.

If you want to use role-based authorization using JAAS, then check the Use Role-Based
Authorization? Checkbox and set the Authorization Type to “JAAS”. This only makes
sense if your LDAP directory contains a useful role structure that is linked to your
application users stored in LDAP. If no role information is present in LDAP, or it is too
coarse-grained to be of use for the authorization levels that need to be applied in your
application, then set the Authorization Type to “Custom”, so you can use the JHeadstart
security tables or your own tables to implement authorization. If LDAP contains useful
role information, and you want to use additional application-specific roles, then set the
Authorization Type to “JAAS and Custom”.

Warning: All application roles need to be listed in the web.xml deployment
descriptor for the isUserInRole() API call to work properly. In other words,
your list of application roles needs to be maintained in two places, in the
LDAP accessed by JAAS, and in the web.xml.

If you need to deploy your ADF-JHeadstart application to another web container, like
JBoss, Tomcat, or Websphere, you need to consult the documentation of this web
container for information on configuring JAAS and availability of out-of-the-box JAAS
providers like OracleAS JAAS (JAZN).

Overview of JAAS-based security in OC4J. OC4J Security Guide, chapter 2
http://download-
uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/jaas_intro.htm

10.1.2. JAAS Custom Login Module

JAAS supports the concept of a Custom Login Module (CLM). A CLM allows you to
retrieve security information from an arbitrary information store, for example a set of
database tables. If none of the standard JAAS providers of your web container meets
your requirements, you can write a custom login module. Since accessing database tables
for obtaining the security information is a common use case for a custom login module,

http://download-uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/jaas_intro.htm
http://download-uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/jaas_intro.htm

10 - 4 Application Security JHeadstart Developer’s Guide

OC4J ships with a ready-to-use sample CLM that you can configure to access your own
security tables.

Using Custom Login Modules in OC4J.
http://iasdocs.us.oracle.com/iasdl/101310_final/web.1013/b28957/loginmod.htm

Other examples of Database Login Modules. If you cannot use OC4J to deploy
your web container, then the sample database login modules written by Frank
Nimphius and Duncan Mills might be helpful since they do not rely on OC4J-
specific classes. This OTN article describes how to use these login modules:
http://www.oracle.com/technology/products/jdev/howtos/10g/jaassec/index.htm

Although a custom login module provides a lot of flexibility in storing the security
information, your flexibility is limited because of the following characteristic of the use
of JAAS in web applications:

Warning: All application roles need to be listed in the web.xml deployment
descriptor for the isUserInRole() API call to work properly. In other words,
your list of application roles needs to be maintained in two places, in your
custom security information store accessed through the CLM, and in the
web.xml.

To use a JAAS CLM with JHeadstart, you set the Authentication Type property to
“JAAS Custom Login Module”. If the CLM also retrieves user role information, then
check the Use Role-based Authorization checkbox, and set Authorization Type to
“JAAS”.

10.1.3. Hardcoding Roles or Permissions in Application Code

When you add security to your application, you need to check whether a user is
authorized to perform some application function. A fundamental choice you have to
make when implementing application security is how to perform these checks. The most
obvious choice is by checking the user’s roles. This implies that you need to design the
role structure of your application upfront, and your application code will contain hard-
coded role names to perform the various security checks.

Once in production, administration of application security is limited to assigning the
proper roles to your application users. Although you might have defined the application
roles in database tables for easy administration, adding new roles requires changes to the
application code, adding hardcoded references to the new application role. In other
words, changing the security schema of your application always requires a new release
of your application code.

A less obvious but more flexible approach is by using the concept of permissions. Each
application function you want to secure can be defined as a permission. A permission is
granted to one or more application roles, which in turn can be granted to one or more
users. For example, in the context of JHeadstart, you might think of the following group
permissions:

• The “Jobs” permission provides access to the pages generated from the Jobs
group as defined in the Application Definition Editor. Without this permission,
the user will not see the Jobs menu entry, and will get an access denied error if
he tries to access the page by “hacking” the URL in the browser.

• The “Jobs.Create” permission determines whether the “New Job” button is
rendered.

http://iasdocs.us.oracle.com/iasdl/101310_final/web.1013/b28957/loginmod.htm
http://www.oracle.com/technology/products/jdev/howtos/10g/jaassec/index.htm

JHeadstart Developer’s Guide Application Security 10- 5

• The “Jobs.Update” permission determines how the items on the Edit Job page
will be rendered: as read only when the user does not have a role with this
permission, or as updateable when the user does have this permission.

• The “Jobs.Delete” permission determines whether the “Delete Job” button is
rendered.

By hardcoding permission names in application code, the security schema of your
application is fully configurable at runtime, new roles can be added and existing roles
can be deleted or changed by adding or removing permissions, without changes to the
application code. Adding new permissions still requires a new application code release,
but this release was needed anyway to add the new application function that is to be
secured by the new permission.

To use permission-based security with JHeadstart, you check the service-level checkbox
Authorize Using Group Permissions?.

JHeadstart comes with a set of database tables to store the role and permission
information, and an administration application that can be used to maintain this
information. When used in combination with JAAS-based authorization, JHeadstart
performs the authorization check by first looking up all the roles that provide access to a
permission and then make the isUserInRole()API call to check whether the user has
access to such a role.

10.1.4. Custom Security

Instead of using JAAS, you can use the JHeadstart custom security mechanism. This is
implemented in application logic using a servlet filter that redirects to a login page when
an unauthenticated user tries to access a secured application. When the user submits the
login page, custom logic fires to authenticate the user and to retrieve the user’s roles and,
optionally, permissions.

Historically, a common reason for implementing security this way is that the security
information is stored in the same database as the application tables and is accessed using
the Business Service layer of the application.

Note however that by using a JAAS Custom Login Module, the same database tables
could be accessed. The only drawback of using JAAS is the double maintenance of role
information; new roles must be added to the web.xml as well.

10.1.5. ADF Model Security

ADF allows you to secure the executables (iterator bindings), action and value bindings
defined in the ADF page definitions, part of the ADF Model layer (also known as ADF
Data Bindings layer).

This provides additional security on top of the security defined in the View layer. If, for
example the user is now allowed to create a new employee, the “New Employee” button
is typically hidden in the user interface. Using ADF Model Security, an additional check
can be added on the “CreateEmployee” action binding in the page definition. Should the
user somehow manage to submit an HTTP request to create a new employee, the ADF
Model layer will prevent this and raise an application error as the user does not have the
privilege to execute the “CreateEmployee” action binding.

10 - 6 Application Security JHeadstart Developer’s Guide

Similarly, read and update privileges can be defined on value bindings. If a user tries to
update a UI item that is based on a value binding on which he does not have update
privilege, the ADF Model layer will raise an application error. Note that with ADF Faces
as view technology, this error is never raised, since the input control will be already
rendered as read only because ADF Faces checks whether the underlying value binding
is updateable.

Introduction into ADF Security. OTN article that provides a good overview
http://www.oracle.com/technology/products/jdev/howtos/1013/adfsecurity/adfsec
urity_10132.html

ADF Developer’s Guide, Implementing Authorization Using Oracle ADF
Security.
http://download-west.oracle.com/docs/html/B25947_01/adding_security007.htm

Note that if you enable ADF Security, you will need to grant privileges to each and every
binding in each and every page definition. By default, once ADF security is enabled, the
user does not have access to any binding. JHeadstart does NOT generate security settings
on the page definition bindings!

ADF Model Security relies on JAAS. The ADF Security wizard will configure J2EE
security in the web.xml, similar to JHeadstart, but less powerful. It does not use a JSF
login page, and does not create sample users and roles. When you run the ADF Security
wizard after you generated JAAS-based authentication with JHeadstart, step 4 of the
wizard will pre-display the form-based authentication settings generated by JHeadstart
as shown in the screen shot below.

Unfortunately, due to a bug in the wizard validation code that does not accept the Login
Page and Error Page URL’s, you will get an error message when you try to proceed to
the next page. The work around is as follows:

• Check the Generate Default checkbox and finish the ADF Security wizard.

• Go to the web.xml, and remove the < login-config> element, and “AllPages”
<security-constraint> element.

http://www.oracle.com/technology/products/jdev/howtos/1013/adfsecurity/adfsecurity_10132.html
http://www.oracle.com/technology/products/jdev/howtos/1013/adfsecurity/adfsecurity_10132.html
http://download-west.oracle.com/docs/html/B25947_01/adding_security007.htm

JHeadstart Developer’s Guide Application Security 10- 7

• Regenerate your application again using JHeadstart. This will move back the
JHeadstart-generated <login-config> element to the web.xml, which was
overridden when finishing the ADF Security wizard.

10.1.6. ADF BC Security

When using ADF Business Components, you can define Read-Only, Update, and
Update-While-New permissions on an entity object, or on individual attributes of an
entity object.

Similar permissions can be set on the page definitions using ADF Model Security, if used
both, the most restrictive permission wins. Using ADF BC Security is more efficient in
configuring. Authorization rules are defined once at the entity object level and are
automatically carried forward to all view objects based on these entity objects, and to all
page definitions that contain iterator and value bindings based on these view objects.

ADF BC Security relies on JAAS. If you want to use it, you need to configure JAAS-based
security with JHeadstart.

ADF Developer’s Guide, Configuring the ADF Business Components
Application to Use Container-Manage Security.
http://download-uk.oracle.com/docs/html/B25947_01/adding_security004.htm

10.1.7. ADF Model Security vs. ADF BC Security

The added value of ADF Model Security on top of ADF BC security is the possibility to
declaratively secure action/method bindings. This comes at the price of much more
overhead in configuring the authorization rules. You cannot use ADF Model Security to
only secure action/method bindings, once enabled you need to specify authorization
rules for all bindings.

So, as an alternative, you might choose to programmatically add a security check in Java
at the start of the methods underlying the action/method bindings.

If your application accesses multiple business service technologies, not just ADF
Business Components, ADF Model Security becomes a more attractive option, in
particular when those other technologies do not have the built-in authorization support
provided by ADF BC.

http://download-uk.oracle.com/docs/html/B25947_01/adding_security004.htm

10 - 8 Application Security JHeadstart Developer’s Guide

10.2. JHeadstart Security Tables and Security Administration Screens

JHeadstart uses a set of database tables to support some of the security options discussed
in the previous paragraph. The structure of these tables is shown below.

Depending on the security settings you have made, you will use all, some or none of the
above database objects:

• When Authentication Type is set to “JAAS”, and Authorization Type is set to
“JAAS” and checkbox Authorize Using Permissions is unchecked, then none of
the above database objects is used.

• When Authentication Type is set to “Custom”, the JHS_USERS table is used to
authenticate the user.

• When Authentication Type is set to “JAAS with Custom Login Module”, the
JHS_USERS, JHS_USER_ROLE_GRANTS and JHS_ROLES tables are used, as
well as the JHS_USER_ROLE_INFO database view.

• When Authorization Type is set to “Custom” or “JAAS and Custom”, the
JHS_USERS, JHS_USER_ROLE_GRANTS and JHS_ROLES tables are used

• When checkbox Authorize Using Group Permissions is checked, the
JHS_ROLES, JHS_ROLE_PERMISSION_GRANTS and JHS_PERMISSIONS
tables are used.

10.2.1. Creating the Database Tables

You create the above database objects by running the script JhsModelCreate.sql against
the database connection of your application schema. This script is located in the scripts
directory of your ViewController project. If you don’t see the scripts directory, make sure
you click the Toggle Directories in the toolbar of the Application Navigator.

JHeadstart Developer’s Guide Application Security 10- 9

You can right-mouse-click on the JhsModelCreate.sql, then choose Run in SQL*Plus, and
then the database connection you want to run the script in.

 Attention: We recommend installing the JHeadstart tables in the same schema
as your own application tables. If you nevertheless prefer to install the
JHeadstart tables in a different database schema, then you need to ensure that
your application schema has full access to the JHeadstart tables and synonyms
with the same name as the table name. This is required because the JHeadstart
runtime accesses the database tables through View Object usages defined in
application module JhsModelService. When generating your application
while using one or more of the table-driven features, this JhsModelService
application module is added as a nested usage to your own application
module, thereby “inheriting” the database connection of its parent application
module.

 Attention: The JhsModelCreate.sql script creates database tables for all table-
driven JHeadstart runtime features. Additional tables for dynamic menus,
translations and flex items are also created. If you do not plan to use these
other features you can create your own script that only creates the above
tables and view, and the JHS_SEQ sequence that is used to populate the ID
column in these tables.

You can use your own security tables rather than the JHeadstart tables, if you prefer so.
See section Using Your Own Security Tables for more information.

The JHeadstart runtime includes predefined “hooks” where you can plug in your own
security code to access your own security tables. The hooks to use depend on your
security settings, and will be described in the next paragraphs.

10.2.2. Generating Security Administration Pages

If you generate your application with security settings that use one or more JHeadstart
database tables (see above), then as part of the generation run, a separate application
definition SecurityAdminAppDef.xml is generated that can be used to generate the
security administration screens. This application definition is only generated when it
does not exist yet, so after it has been generated, you can make any changes you want
using the Application Definition Editor, without loosing these changes when you
regenerate your “own” application definition.

10 - 10 Application Security JHeadstart Developer’s Guide

Before you generate the SecurityAdminAppDef you might want to inspect the file
locations properties, and change them if you have set other naming standards for these
properties.

The default settings are in line with what we recommend:

• Generate all Main faces-config files in the WEB-INF directory with a suffix
indicating the service

• JhsCommon-beans.xml is shared by all services (application definitions); the
location should never be changed.

• Create a subdirectory per service for the generation of group beans faces
config files, pages and regions. Make a subdirectory under this “service”
directory for each of these file types.

• The View Package property should be the same across all services

• The Resource Bundle Type and NLS Resource Bundle properties should be
the same across all services.

Note that all service-level properties that are generally the same across all services have
got the same values as in your “own” application definition. If you later on decide to
make changes to these settings in your own application definition, then you will need to
make the same change in the SecurityAdminAppDef Application Definition.

As you can see in the above screen shot, the generated SecurityAdminAppDef file
contains groups to maintain all JHeadstart security tables. Depending on your security
settings, you may delete groups that maintain tables you will not use:

• You can remove the Users, UserRoleGrants and RoleUserGrants groups if you
use Authentication Type “JAAS” and Authorization Type “JAAS”.

• You can remove the PermissionsLov, Permissions, and RolePermissionGrants
groups if you unchecked the Authorize Using Group Permissions checkbox.

Now, if you are satisfied with the settings, you can run the JAG for the
SecurityAdminAppDef.

JHeadstart Developer’s Guide Application Security 10- 11

10.3. Using JAAS-JAZN for Authentication

When you run the JHeadstart Application Generator with service-level property
Authentication Type set to “JAAS”, the following happens:

• A login page and associated login bean is generated.

• A logout button and logout bean is generated.

• J2EE security is set up in the web.xml.

• Default users and roles are defined in jazn-data.xml.

These actions are discussed below in more detail.

10.3.1. Login Page and Login Bean

An ADF Faces login page is generated in /security/pages subdirectory under the
html root directory. This file is generated through the
default/misc/file/fileGenerator.vm template, which in turn uses
default/misc/file/loginPage.vm template. The login page is only generated
when it does not exist yet, so you can customize the generated login page without
loosing these changes when regenerating.

When clicking the login button on the login page, the authenticateUser method of
the generic oracle.jheadstart.controller.jsf.bean.LoginBean class is
called. This bean is configured in JhsCommonBeans.xml. In case of JAAS authentication,
this method redirects to a J2EE login form which autosubmits itself, and is therefore not
visible to the user. The J2EE login form contains the required form action
j_security_check, and fields j_username and j_password, filled with the values
as entered in the ADF Faces login page, to trigger the J2EE container-managed security.

Using this “redirect” technique, we are able to use a normal JSF page as login page, so
you can apply the same ADF Faces look and feel as used by your other application
pages, and you can use ADF drag and drop data binding should you want to add
dynamic data to the login page, like news items read from a database table.

The generated login page contains two “fast login” links for users SKING and
AHUNOLD, the two sample users that are created in the jazn-data.xml file.

10.3.2. Logout Button and Logout Bean

Using the /default/misc/file/menuGlobal.vm template, called from the
default/misc/file/fileGenerator.vm template, a logout button is generated in the global
buttons area. When clicking the logout button, the logout method of the generic
oracle.jheadstart.controller.jsf.bean.LogoutBean class is called. This
bean is configured in JhsCommonBeans.xml. In this method, the session is invalidated
and a redirect to the logout destination URL is performed, which defaults to “/”. By
using the slash, the web container will launch the index.jsp page that JHeadstart
generated in the HTML root directory. The index.jsp page redirects to the generated
home page, causing the login page to appear first again, but you are free to change the
redirect destination in the index.jsp page.

10 - 12 Application Security JHeadstart Developer’s Guide

10.3.3. J2EE Security Set Up in web.xml

JHeadstart first checks whether the <login-config> element is present in the web.xml. If
it is not present, then the following is generated:

• A <login-config> element is generated which configures the web container to use
the generated login page.

• A <security-constraint> element is generated which provides access to all .jspx
pages for users that have the Administrator role or the User role. The actual
names of these roles are defined in the service level properties Administrator
Role and User Role.

• For both roles, a <security-role> element is also generated.

The sample roles and security constraint are set up as a convenience, just like the links on
the login page, they allow you to access the generated application as administrator and
normal user.

You can customize these security elements to your liking. As long as the <login-config>
element is present in the web.xml, JHeadstart will preserve your customized settings
when regenerating your application.

10.3.4. Default Users and Roles in jazn-data.xml

JHeadstart generates the jazn-data.xml file in the META-INF directory under the source
root directory. It also generates the <jazn> element in orion-application.xml, if not
present yet, to configure OC4J to use the jazn-data.xml file as security information
provider:

 <jazn provider="XML" location="./jazn-data.xml"/>

The jazn-data.xml specifies two default users, SKING and AHUNOLD with passwords
the same as the username, and two roles, the Administrator role assigned to SKING and
the user role assigned to AHUNOLD. You can customize the default users and roles
either directly in the jazn-data.xml file, or using the editor provided by JDeveloper,
which can be found under the Tools -> Embedded OC4J Preferences menu.

JHeadstart Developer’s Guide Application Security 10- 13

Note that if you use the JDeveloper editor, the modifications to jazn-data.xml are not
saved until you close JDeveloper.

You can customize the default users and roles to your liking. JHeadstart will preserve
your changes upon regeneration.

10.3.5. Using LDAP and/or Single Sign On in Deployed Application

The users and roles generated in jazn-data.xml facilitate testing in the development
environment using JDeveloper’s embedded OC4J or a stand-alone OC4J server. When
you deploy your application to a test or production environment, you will typically
change the security provider to an LDAP implementation, either Oracle’s Internet
Directory (OID), or an external LDAP Provider. You can do this after deploying your
application by using the OracleAS or OC4J stand-alone Management console, or you can
change the <jazn> settings in orion-application.xml before deploying your application.
See the OC4J Security Guide for more information.

OC4J Security Guide. Chapter 2 Overview of OC4J Security, Chapter 6 Oracle
Identity Management Security provider.
http://download-
uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/jaas_intro.htm

http://download-uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/jaas_intro.htm
http://download-uk.oracle.com/docs/cd/B25221_03/web.1013/b14429/jaas_intro.htm

10 - 14 Application Security JHeadstart Developer’s Guide

10.4. Using JAAS with Custom Login Module for Authentication

When you run the JHeadstart Application Generator with service-level property
Authentication Type set to “JAAS with Custom Login Module”, the following happens:

• A login page and associated login bean is generated. See section Login Page and
Login Bean for more information.

• A logout button and logout bean is generated. See section Logout Button and
Logout Bean for more information.

• J2EE security is set up in the web.xml. See section J2EE Security Set Up in
web.xml for more information.

• The SecurityAminAppDef application definition file is generated. See section
Generating Security Administration Pages for more information.

• SQL script createSampleUsersAndRoles.sql is generated.

10.4.1. Sample Users And Roles

Using the default/misc/file.createSampleUsersAndRoles.vm template, launched from
the default/misc/file/fileGenerator.vm template, the SQL script
createSampleUsersAndRoles.sql is generated into the /scripts directory when it does not
exist yet. It is automatically executed as well when service-level property Run Generated
SQL Scripts? is checked. The script creates two users in JHS_USERS table, SKING and
AHUNOLD, two roles in JHS_ROLES table, the administrator role as specified in the
Administrator Role property, and the user role as specified in the User Role property.
SKING is assigned the administrator role, AHUNOLD the user role through two entries
in the JHS_USER_ROLE_GRANTS table.

10.4.2. Configuring the Custom Login Module

Unlike other security settings, using a JAAS Custom Login Module requires additional
manual steps from you, the developer, before you can run your application using the
embedded OC4J. The embedded OC4J is configured differently than the standalone
OC4J to support runtime testing of applications without requiring application
deployment. To do this, all web applications are executed as "current-workspace-app",
no matter what the assigned name for the J2EE application. This information is
important because to use JAAS Login Modules with the embedded OC4J, they need to be
configured under the name of the application using it: current-workspace-app. Failing to
use the current-workspace-app name for the LoginModule will cause OC4J to use its
own default Realm LoginModule and look for the username / password pair in the
system-jazn-data.xml file directly. Thus, failing to find login credentials would end in an
unauthenticated request.

All configuration files of the embedded OC4J are located in the
<jdev_home\jdev\system\oracle.j2ee.10.1.3.xx.xx\embedded-oc4j\config directory
where xx.xx is replaced with the actual build number. The configuration files that you
will edit to configure the Custom Login Module are:

• system-jazn-data.xml

• application.xml

• data-sources.xml

JHeadstart Developer’s Guide Application Security 10- 15

Note that the changes you make in these files are applied globally, they apply to all
applications that you run in the embedded OC4J. If you are simultaneously developing
another application that does not use JAAS, you need to comment out again the changes
described below.

10.4.3. System-jazn-data.xml

The system-jazn-data.xml file contains the JAAS LoginModule definition. We
recommend using the DBTableOraDataSourceLoginModule which is shipped with
OC4J, already exists in the class path of OC4J and doesn't need to be added to the lib
directory or configured in the application.xml file. It is ready for use. In system-jazn-
data.xml, you can specify so-called loginmodule options to configure the
DBTableOraDataSourceLoginModule to use the JHeadstart security tables. The
login module does have some limitations though:

• The username column must be the primary key column in the users table. This is
not the case in the JHS_USERS table, which has a meaningless ID column as
primary key

• The users table can be joined with one other table to retrieve the role names of
the user. In the JHeadstart security model, we need to join with two other tables,
JHS_ROLES to get the role name, and JHS_USER_ROLE_GRANTS to link the
user to the granted roles.

To work around these limitations, we use the JHS_USER_ROLE_INFO view, which is
defines as follows:

create or replace view jhs_user_role_info
as
select rle.id
 ,rle.short_name
 ,rle.name
 ,usr.username
from jhs_roles rle
 ,jhs_user_role_grants urg
 ,jhs_users usr
where urg.rle_id = rle.id
and urg.usr_id = usr.id

With this view in place, we need to add the following to system-jazn-data.xml (don’t
forget to change the data_source_name, see below):
 <application>
 <name>current-workspace-app</name>
 <login-modules>
 <login-module>

<class>oracle.security.jazn.login.module.db.DBTableOraDataSourceLoginModule</class
>
 <control-flag>required</control-flag>
 <options>
 <option>
 <name>data_source_name</name>
 <value>jdbc/hrCoreDS</value>
 </option>
 <option>
 <name>table</name>
 <value>jhs_users</value>
 </option>
 <option>
 <name>groupMembershipTableName</name>
 <value>jhs_user_role_info</value>
 </option>
 <option>
 <name>roles_fk_column</name>
 <value>username</value>
 </option>
 <option>

10 - 16 Application Security JHeadstart Developer’s Guide

 <name>groupMembershipGroupFieldName</name>
 <value>short_name</value>
 </option>
 <option>
 <name>user_pk_column</name>
 <value>username</value>
 </option>
 <option>
 <name>passwordField</name>
 <value>password</value>
 </option>
 <option>
 <name>usernameField</name>
 <value>username</value>
 </option>
 <option>
 <name>casing</name>
 <value>sensitive</value>
 </option>
 </options>
 </login-module>
 </login-modules>
 </application>

The value of the data_source_name property should match the datasource auto-created
by JDeveloper for your database connection. The naming format of the data source is

jdbc/[DBConnectionName]CoreDS

While nothing prevents you from hand editing the system-jazn-data.xml file, JDeveloper
provides a dialog to assist you. To launch the editor, select the menu option Tool ->
Embedded OC4J Server from the JDeveloper toolbar.

10.4.4. Application.xml

In the application.xml, the <jazn> element should be changed as follows:
<jazn provider="XML">
 <property name="role.mapping.dynamic" value="true"/>
 <property name="custom.loginmodule.provider" value="true"/>

JHeadstart Developer’s Guide Application Security 10- 17

 </jazn>

The role.mapping.dynamic property defines that J2EE security roles should be read
from the authenticated user subject, allowing the LoginModule to add role grants to the
authenticated user. The custom.loginmodule.provider property tells OC4J to use a
custom JAAS LoginModule for authentication.

10.4.5. Debugging the Custom Login Module

You can easily make a typo in the configuration, or use a non-existent data source name,
in all these situations the following error is logged, which you also get when entering an
invalid username or password:
WARNING: Login Failure: all modules ignored
javax.security.auth.login.LoginException: Login Failure: all modules ignored
 at javax.security.auth.login.LoginContext.invoke(LoginContext.java:921)
 at javax.security.auth.login.LoginContext.access$000(LoginContext.java:186)
 at javax.security.auth.login.LoginContext$4.run(LoginContext.java:683)
 at java.security.AccessController.doPrivileged(Native Method)
 at javax.security.auth.login.LoginContext.invokePriv(LoginContext.java:680)
 at javax.security.auth.login.LoginContext.login(LoginContext.java:579)
 at oracle.security.jazn.oc4j.OC4JUtil.doJAASLogin(OC4JUtil.java:241)
 ….

To discover what is really wrong, it is helpful to turn on debugging. You can do this by
editing the j2ee-logging.xml file in the config directory of your embedded OC4J, and
change the line
<logger name="oracle" level="NOTIFICATION:1" useParentHandlers="false">

to
<logger name="oracle" level="FINEST" useParentHandlers="false">

When you run the application again with this setting, and assume you specified an
invalid data source name, you will get feedback like this:
…
Oct 7, 2007 10:53:26 PM
oracle.security.jazn.login.module.db.DBTableOraDataSourceLoginModule
performDbAuthentication
FINE: [DBTableOraDataSourceLoginModule]Error: jdbc/hrCoreCitroenDS not found
Oct 7, 2007 10:53:26 PM
oracle.security.jazn.login.module.db.DBTableOraDataSourceLoginModule login
FINE: [DBTableOraDataSourceLoginModule]Logon Successful = false

10.4.6. Deploying your Application with Custom Login Module

When you deploy your application to a test or production environment, you can either
configure your security provider after deployment using the OracleAS or OC4J
management console, or you can include the <jazn-loginconfig> element in your orion-
application.xml to auto-configure the security provider when deploying your
application.

If you choose the latter, you can copy and paste the content of the <jazn-loginconfig>
element in system-jazn-data.xml to your orion-application.xml, but don’t forget to
replace the application name current-workspace-app with the actual name used to
deploy your application.

The <jazn> properties you added in application.xml are already generated into your
orion-application.xml.

10 - 18 Application Security JHeadstart Developer’s Guide

10.5. Using Custom Authentication

When you run the JHeadstart Application Generator with service-level property
Authentication Type set to “Custom”, the following happens:

• The JHeadstart authentication servlet filter is configured in the web.xml

• JhsModelService application module is added as a nested application module to
your application module.

• A login page and associated login bean is generated.

• A logout button is generated

• SQL script createSampleUsersAndRoles.sql is generated. See section Sample
Users And Roles for more information.

• The SecurityAminAppDef application definition file is generated. See section
Generating Security Administration Pages for more information.

10.5.1. JHeadstart Authentication Filter

The JHeadstart runtime includes servlet filter class
oracle.jheadstart.controller.jsf.AuthenticationFilter. This servlet
filter is configured in the web.xml to ensure that the user is redirected to the login page
when the user is not yet logged in. The servlet filter also supports logout, by invalidating
the session and redirecting to the logout destination URL which defaults to “/”. By
using the slash, the web container will launch the index.jsp page that JHeadstart
generated in the HTML root directory. The index.jsp page redirects to the generated
home page, causing the login page to appear first again, but you are free to change the
redirect destination in the index.jsp page.

10.5.2. Nested JhsModelService Application Module

All ADF Business Components included in the JHeadstart Runtime library are imported
into your Model Project, and the JhsModelService application module is added as a
nested usage to your own application module. The JhsModelService includes View
Object Usages that insert, update, delete and query the underlying database tables
needed for the table-driven JHeadstart features, including authentication. Note that by
creating JhsModelService as a nested application module, it will inherit the database
connection of the parent application module.

JHeadstart Developer’s Guide Application Security 10- 19

10.5.3. Login Page and Login Bean

An ADF Faces login page is generated in /security/pages subdirectory under the html
root directory. This file is generated through the default/misc/file/fileGenerator.vm
template, which in turn uses default/misc/file/loginPage.vm template. The login page
is only generated when it does not exist yet, so you can customize the generated login
page without loosing these changes when regenerating.

When clicking the login button on the login page, the authenticateUser method of
the generic oracle.jheadstart.controller.jsf.bean.LoginBean class is
called. This bean is configured in JhsCommonBeans.xml. In case of custom
authentication, this method calls method authenticateUser(String username,
String password) on the nested JhsModelService application module. This method
uses a ViewObject to access the JHS_USERS table to validate the username and
password. When valid, the method returns the UserContext object that implements the
JhsUser interface. This object is stored on the session using “JhsUser” as key, which is
checked by the authentication filter to determine whether the user is already logged in.

The generated login page contains two “fast login” links for users SKING and
AHUNOLD, the two sample users that are created in SQL script
createSampleUsersAndRoles.sql.

10.5.4. Logout Button

Using the /default/misc/file/menuGlobal.vm template, called from the
default/misc/file/fileGenerator.vm template, a logout button is generated in the global
buttons area. When clicking the logout button, you navigate to a non-existent page using
the URI /faces/security/pages/Logout.jspx. However, this URI is configured in the
JHeadstart Authentication filter as the logout URL, see section JHeadstart Authentication
Filter for more information.

10 - 20 Application Security JHeadstart Developer’s Guide

10.6. Restricting Access to Groups based on Authorization Information

When you have checked the service-level checkbox Use Role-based Authorization and
you selected an Authorization Type, you can restrict access to the pages generated for
each group by specifying roles or permissions. This can be done using the group level
property Authorized Roles/Permissions where you can specify a comma-separated list
of roles and/or permissions. If the user is granted at least one of the roles or permissions,
he is authorized to access the page.

If this property is not set, the pages generated for this group are public, and do not
require a specific user role or permission.

If you protect group pages using this property, JHeadstart will implement this restriction
in both the View and Controller layer:

• View layer (JSF pages): Hide tabs and navigation buttons that go to a page of
that group if the currently logged-in user is not authorized. See section
JHeadstart Authorization Proxy for more information on how this is
implemented.

• Controller Layer: If the user tries to directly access an unauthorized page by
“hacking” the browser URL, he should still be denied access. JHeadstart
performs this check for you. See section JHeadstart Authorization Proxy for
more information on how this is implemented.

10.6.1. Restricting Group Access using Permissions

The above example used role names to restrict access to a particular group. As explained
in section Hardcoding Roles or Permissions in Application Code you might prefer to
authorize using permission names. To do so, you check the service-level checkbox
Authorize Using Group Permissions.

Note that this property can be used regardless of the values set for Authentication Type
and Authorization Type.

When you generate your application with this setting, the following happens

• All groups are protected using the group name as permission name. This means
that you do not have to specify the Authorized Role/Permissions property for
each and every group. You can still specify this property at the group level, to
override the default group name permission.

JHeadstart Developer’s Guide Application Security 10- 21

• A SecurityAdminAppDef application definition file is generated that can be used
to generate pages to administer the permissions and grant permissions to roles.
Using a multi-select List of Values, you can easily search and assign multiple
permissions to a role. See section Generating Security Administration Pages for
more information.

• A SQL script named PermissionsData[ServiceName].sql is generated in the
/scripts directory. The script is automatically executed when service-level
checkbox Run Generate SQL scripts? is checked. The script inserts entries in
JHS_PERMISSIONS table for each group. Four permissions are inserted for each
group, an access permission named after the group, and three “operation”
permissions for creating, updating and deleting. See section Restricting Group
Operations based on Authorization Information for more information on using
these operation permissions. In the same script, all permissions are granted to
the Administrator role as specified in the Administrator Role property. This
means that you when you use the sample user SKING to log in, you should still
be able to access all groups. If you log in as AHUNOLD you will get an access
denied message since the USER role does not have any permissions granted. You
can use the security administration application to grant permission privileges to
the USER role, as shown in the screen shot below. After you granted permissions
for one or more groups, and you will log in as AHUNOLD you will see the
group tabs for which you granted access permission. Depending on the group
action permissions granted, the group pages will allow for insert, update and/or
delete.

10.6.2. When Access Denied Go To Next Group

Suppose you have combined several Application Definitions into a single application by
providing links to the starting points of each Application Definition. That starting point
would be the first top-level group of the Application Definition. Now suppose that the
logged-in user does not have access to the first group. In that case you would want the
link to navigate to the second group. And if the user doesn't have access to the first and
second group, the link should go to the third group, etc.

JHeadstart can generate such a navigation scenario if you check the service-level
property When Access Denied go to Next Group.

10.6.3. JHeadstart Authorization Proxy

The guiding principle behind the security features of JHeadstart is that the way the
application accesses the security information is as independent as possible from the
chosen implementation (JAAS and/or custom security).

To accomplish this, the JHeadstart runtime includes a class called
JhsAuthorizationProxy. If you checked the Service-level property Use Role-based
Authorization? in the Application Definition, a managed bean is generated into
JhsCommon-beans.xml that automatically creates an instance of this class and puts it on
the session.

10 - 22 Application Security JHeadstart Developer’s Guide

This JhsAuthorizationProxy instance will be invoked each and every time the
application needs authorization information. So whether JAAS is used and/or custom
authorization mechanism, whether permission-based authorization is enabled, and
whether the information is needed in the View or in the Controller layer, this
‘authorization proxy’ is the single point that all authorization questions are being routed
through. The Authorization Proxy will determine whether standard JAAS and/or a
custom security implementation is used, and will forward the ‘authorization question’
accordingly.

Reference: See the Javadoc of JhsAuthorizationProxy.

10.6.3.1. Accessing the Authorization Proxy in the View layer

For implementing security features in the View layer, for instance hiding tabs and
buttons or making fields read-only based on authorization information, it would be very
convenient if the Authorization Proxy could be accessed through EL expressions. For
that reason, the JhsAuthorizationProxy implements the Map interface. We can use the
managed bean "jhsUserRoles" that was mentioned in the previous section. For instance,
to hide a menu item if the current user does not belong to the ‘ADMIN’ or
‘HR_MANAGER’ roles, JHeadstart uses the following syntax:

 <af:commandMenuItem … rendered="#{jhsUserRoles['ADMIN,HR_MANAGER']}" …/>

Note that you can use a comma-separated list of role and/or permission names. The
Authentication Proxy will process them left-to-right until it finds a role or permission
granted to the current user, and returns true in that case. If the user belongs to none of
the roles, it will return false.

10.6.3.2. Accessing the Authentication Proxy in the Controller layer

As mentioned before, JHeadstart also performs a roles check in the JSF PageLifecycle.
This is to prevent "URL-Hacking": the tab or button to go to a certain page might be
hidden, but if the user knows the URL, he should still be denied access.

This is implemented by the method checkRoles() in JhsPageLifecycle, which is
called from the prepareModel() phase.

This method knows which roles to check for which page, because JHeadstart generated a
"roles" parameter into the Page Definition of the page.

JHeadstart Developer’s Guide Application Security 10- 23

Reference: See the Javadoc of the methods prepareModel() and
checkRoles() in the JhsPageLifecycle class.

10 - 24 Application Security JHeadstart Developer’s Guide

10.7. Restricting Group And Item Operations based on Authorization Information

In addition to restriction group access, you can also restrict the operations based on
authorization information. To do this for individual groups, use the
Insert/Update/Delete Allowed EL Expression properties on group level.

In the above example, both the HR_MANAGER and HR_ASSISTANT roles can access
the Employee group pages. The HR_MANAGER can insert, update and delete employee
information; the HR_ASSISTANT can only update existing employees.

10.7.1. Restricting Group Operations using Permissions

As explained in section Restricting Group Access using Permissions JHeadstart can
generate a SQL script that inserts operation permissions in the JHS_PERMISSIONS table
for each group. These operation permissions are named after the group, suffixed with
“.Create” “.Update” and “.Delete. For example, for the Jobs group the following
permissions are created:

• The “Jobs.Create” permission determines whether the “New Job” button is
rendered.

• The “Jobs.Update” permission determines how the items on the Edit Job page
will be rendered: as read only when the user does not have a role with this
permission, or as updateable when the user does have this permission.

• The “Jobs.Delete” permission determines whether the “Delete Job” button is
rendered

Now, you can use these permissions rather than role names to restrict the create, update
and delete operations. And you can configure this at service-level, which saves you the
work of entering the Insert Allowed, Update Allowed and Delete Allowed EL
expressions for each and every group. The same properties exist at service level, and you
can use the $GROUP_NAME$ token which will be replaced with the actual group name
when generating the pages for each group.

JHeadstart Developer’s Guide Application Security 10- 25

10.7.2. Restricting Item Operations

Based on the roles/permissions of the currently logged-in user, you can also determine if
individual group items will be visible, enabled, and/or updateable.

• Visibility is determined using the properties Display in Form Layout?, Display
in Table Layout?, and Display in Table Overflow Area?

• Enabledness is determined using the Disabled property

• Updateability is determined using the Update Allowed? property

Like the group access and group operations, you can also use permission names instead
of role names if you enabled the option to authorize using group permissions.

10 - 26 Application Security JHeadstart Developer’s Guide

10.8. Using Your Own Security Tables

You can use your own security tables rather than the JHeadstart tables, if you prefer so.
The JHeadstart runtime includes predefined “hooks” where you can plug in your own
security code to access your own security tables. The hooks to use depend on your
security settings, as described in the next sections

10.8.1. Changes when Using JAAS Custom Login Module

Using your own security tables instead of the JHeadstart tables and view is easiest when
using a JAAS custom login module: just change the options of the <jazn-loginconfig>
element to reference your own table and column names. Consider creating a database
view like JHS_USER_ROLE_INFO if your security data model does not comply with the
prerequisites of your custom login module provider.

10.8.2. Changes when Using Custom Authentication

When you use custom authentication, the authenticateUser method of the nested
JhsModelService application module is called. To hook in your own authentication logic,
you should perform the following steps:

• Create your own application module that extends JhsModelService application
module.

• Add the view object needed to authenticate the user against your own table.

• In this application module, override method authenticateUser and perform
authentication using the view object created in the previous step

• Remove the JhsModelService as nested usage from your root application module

• Add your extended version of JhsModelService application module as nested
usage to your root application module, and make sure the instance name is set
to JhsModelService.

10.8.3. Changes when Using Custom Authorization and/or Permissions

The JHeadstart Authorization Proxy makes use of method
createUserContext(String username, String userDisplayName, boolean
addPermissionForJAASRoles)

on the nested JhsModelService application module. This method creates a user context
object that implements the JhsUser interface, and adds authorized custom roles and
permissions by calling method setRolesAndPermissions on the same
JhsModelService application module.

So, to use your own tables for role and permission information, it is sufficient to override
method setRolesAndPermissions. Override this method in your own application module
that extends JhsModelService, and replace the nested JhsModelService instance with
your subclass.

JHeadstart Developer’s Guide Application Security 10- 27

10.8.4. Changes to SQL Script Templates

JHeadstart uses the following templates to generate entries into the various security
tables:

• default/misc/file/createSampleUsersAndRoles.vm

• default/misc/file/jhsPermissionsdata.vm

Both templates are called from the fileGenerator.vm template. So, you need to make
custom copies of all three of these templates, in your custom fileGenerator.vm you can
then reference your custom SQL script templates.

JHeadstart Developer’s Guide Internationalization 11- 1

C H A P T E R

11 Internationalization and
 Messaging

This chapter discusses the JHeadstart support for multiple languages, as well as the
options to externalize page text strings into a (translatable) resource bundle or database
table.

.

11 - 2 Internationalization JHeadstart Developer’s Guide

11.1. National Language Support in JHeadstart

JSF has built-in support for using property files or resource bundle classes as message
resource bundles. Message resource bundles can be used to make your application multi-
lingual. If you do not have internationalization requirements, it is still useful to use
message resource bundles to store “hard coded” text strings in a central place, where
they can be easily found and maintained.

When generating your application, JHeadstart generates a resource bundle that holds
translatable text. The name of the resource bundle can be specified in the Service-level
property NLS Resource Bundle. Using the Resource Bundle Type property you can
specify whether the resource bundle is generated as a property file, a java class or a
database table.

A property file is easiest to maintain by developers, it is a simple text file with key-value
pairs. However, a property file does not handle special symbols well. A Java-based
resource bundle is better suited for this. If you want the page text to be maintained or
translated by a super user or system administrator, then using a database table as
resource bundle is the best choice. See section Using Resource Bundle Type Database
Table for more information.

Button labels, page header titles, and other fixed “boilerplate text” generated by
JHeadstart are always generated into the resource bundle. However, if your application
should be truly multi-lingual, meaning that the generated pages cannot contain
hardcoded text at all, you should check the checkbox Generate NLS-enabled prompts
and tabs as well. When checked, the prompts, tab names and display titles that you
specify in the Application Definition Editor will also be generated into the resource
bundle.

In the Generator Default Locale property, you specify the locale that should be used to
populate the default resource bundle, which is the bundle that does not have the locale
suffixed to the name, for example ApplicationResources.properties. This
resource bundle is used when the user’s browser is set to a locale that is not supported
by your application.

In the Generator Locales property, you can optionally specify all other locales that must
be supported by your application as a comma delimited list. For each locale in this
property JHeadstart generates a resource bundle with the name as specified in the NLS
Resource Bundle property, suffixed with the locale code, for example

JHeadstart Developer’s Guide Internationalization 11- 3

ApplicationResources_nl.properties and
ApplicationResources_fr.properties.

11.1.1. Which Locale is Used at Runtime

The locale used to show the pages, and displayed as selected in the language drop down
list is based on the property Read User Locale From, which defaults to the locale set in
the browser of the end user.

If you do not want to read the locale from a browser, but store it as a user preference,
then you can enter an JSF EL expression in the Read User Locale From property. You
will typically use an expression that reads the locale from the user context object:

When you check the checkbox Generate Locale Switcher, a drop down list will be
generated in the global button area which allows the end user to choose one of the
supported locales (displayed through the associated language name).

11.1.2. Supported Locales

JHeadstart has built-in support for the following locales:

pt_BR Brazilian Portuguese
hr Croatian
nl Dutch
el Greek
en English
fo Faroese
fr French
de German
ja Japanese
kr Korean
no Norwegian
ro Romanian
sr Serbian
sl Slovenian
es Spanish

Built-in support means that if you specify one or more of these locales in the Application
Definition, the Resource Bundle generated for that locale will contain the correct
translations for button labels, page titles and other fixed boilerplate text generated by
JHeadstart.

If you have checked the checkbox Generate NLS-enabled prompts and tabs then each
resource bundle will also contain entries for the prompts, tab names and display titles,
but these entries are still in the language you used when specifying them in the
Application Definition Editor. You will need to translate these entries manually in the

11 - 4 Internationalization JHeadstart Developer’s Guide

generated resource bundle. After you have done this, make sure you uncheck the
checkbox Override NLS Resource Bundle Entries to preserve your changes when you
generate your application again.

11.1.3. Adding a non-supported Locale

If you want to generate your application using a locale that is not supported out of the
box, you can do so by performing the following steps:

1. Create a new version of GeneratorText.properties for your own locale. You can
find these files in the folder <ViewController project>\templates\nls.

2. Specify the locale in either the Generator Default Locale property or in the
Generator Locales property.

3. Generate the application.

4. Translate the entries in the generated Resource Bundle for your locale.

5. Uncheck checkbox Override NLS Resource Bundles in the Application
Definition, to preserve your translations. JHeadstart will then only add new
keys, not change existing ones.

6. Modify <HTML Root Directory>\jheadstart\messages.js and add messages in
your language. This file contains JavaScript messages.

7. Add entries in your Resource Bundle for the JHS-messages (open
jhsadfrt_source.zip and view the contents of the
JhsUserMessages_<language>.java file for example messages).

 Attention: The recommended type for Resource Bundle is java instead of
propertiesfile if you have special characters in your language. Make sure you
compile (rebuild) the Java Resource Bundle after you have added new entries,
otherwise JHeadstart Application Generator will erase them the next time you
run.

8. Make sure that your application users set the same locale in the browser and in
their operating system (Windows: Control Panel – Regional Options). Some
language dependent features (in particular ADF Faces) use the browser locale,
others the Windows locale.

Suggestion: If your language contains special characters that are not properly
shown in the resulting application, consider using Unicode notation. The tool
native2ascii (see
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/native2ascii.html)
can help you get the right Unicode for a specific text.

http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/native2ascii.html

JHeadstart Developer’s Guide Internationalization 11- 5

11.2. Using Resource Bundle Type databaseTable

JHeadstart uses two database tables when property Resource Bundle Type is set to
“databaseTable”. The structure of these tables is shown below.

The JHS_LOCALES table contains entries for all supported locales, the
JHS_TRANSLATIONS table contains all translatable strings.

11.2.1. Creating the Database Tables

You need to create the above table structure in your own application database schema.
You can do this by running the script JhsModelCreate.sql against the database
connection of your application schema. This script is located in the scripts directory of
your ViewController project. If you don’t see the scripts directory, make sure you click
the Toggle Directories in the toolbar of the Application Navigator.

You can right-mouse-click on the JhsModelCreate.sql, then choose Run in SQL*Plus, and
then the database connection you want to run the script in.

11 - 6 Internationalization JHeadstart Developer’s Guide

 Attention: We recommend installing the JHeadstart tables in the same schema
as your own application tables. If you nevertheless prefer to install the
JHeadstart tables in a different database schema, then you need to ensure that
your application schema has full access to the JHeadstart tables and synonyms
with the same name as the table name. This is required because the JHeadstart
runtime accesses the database tables through View Object usages defined in
application module JhsModelService. When generating your application
while using one or more of the table-driven features, this JhsModelService
application module is added as a nested usage to your own application
module, thereby “inheriting” the database connection of its parent application
module.

 Attention: The JhsModelCreate.sql script creates database tables for all table-
driven JHeadstart runtime features. Additional tables for flex items, dynamic
menus and security are also created. If you do not plan to use these other
features you can create your own script that only creates the above tables, and
the JHS_SEQ sequence that is used to populate the ID column in these tables.

11.2.2. Running the JHeadstart Application Generator

When you now run the JHeadstart Application Generator with property Resource
Bundle Type set to “databaseTable”, the following happens:

• All ADF Business Components included in the JHeadstart Runtime library are
imported into your Model Project, and the JhsModelService application
module, is added as a nested usage to your own application module. The
JhsModelService includes View Object Usages that insert, update, delete and
query the underlying nls database tables. Note that by creating
JhsModelService as a nested application module, it will inherit the database
connection of the parent application module.

JHeadstart Developer’s Guide Internationalization 11- 7

• A SQL Script named ApplicationResources.sql is generated to insert the
translatable text strings in the JHS_TRANSLATIONS table for the default
locale. If not yet present, this script will also create an entry in the
JHS_LOCALES table for the default locale. For each additional locale specified
in the Locales property, a separate SQL script named
ApplicationResources_localecode.sql is generated. The generated SQL scripts
are executed automatically against the database connection of your ADF
Business Components project when the service level checkbox Run Generated
SQL Scripts? is checked.

• For the default locale, and each additional locale, a java resource bundle is
generated as well. This might come as a surprise since the Resource Bundle
Type is set to “databaseTable”, not “javaClass”. However, since the Java
language has built-in support for resource bundle property files or java
classes, and JSF integrates seamlessly with these files, we use this java class
resource bundle as a “façade” to our database table. If you look at the content
of the generated resource bundles, things will become more clear:

The resource bundle class no longer holds the translatable strings as is the case
when generating with Resource Bundle Type set to “javaClass”. Instead it
delegates retrieval of the translatable strings to the JHeadstart superclass,
which uses a ViewObject in the nested JhsModelService to read the
translatable text strings from the JHS_TRANSLATIONS table for the given
locale.

• A page named ChangePageText.jspx is generated into the nls/pages directory
under the HTML root directory. This page is a dialog page that can be used to
change and translate page text in context while running the application.

• Using the default/misc/file/menuGlobal.vm template, two additional
buttons are generated into the global buttons area, one button to record the
page text, and one button to change/translate the page text.

11 - 8 Internationalization JHeadstart Developer’s Guide

11.2.3. Running the Application

If you now run the generated application, you should see the Record Page Text button in
the global button area.

If you enabled role-based authorization, the Record Page Text button is only visible
when the logged in user has the ADMIN role, but you can easily change this by making a
custom template for menuGlobal.vm.

When you now click this button, the JHeadstart runtime will “record” all translatable
text strings in each page, and the Record Page Text button will be replaced with a button
that can be used to invoke the ChangePageText dialog page.

JHeadstart Developer’s Guide Internationalization 11- 9

In this dialog, you can select a page to translate/modify from a drop down list. This drop
down list shows a list of all pages you visited after clicking on the Record Page Text
button. Through the language drop down list, you can select the language for which you
want enter/modify page translations.

11 - 10 Internationalization JHeadstart Developer’s Guide

11.3. Runtime Implementation of National Language Support

If you want to access a resource bundle in a JSF JSP page, you normally add a
loadBundle tag to your page like this:

<f:loadBundle basename="oracle.srdemo.view.resources.UIResources"
var="res"/>

And then you can access entries in this resource bundle like this:
<af:panelPage title="#{res['srcreate.pageTitle']}">

While this is a simple technique, the drawback is that you explicitly have to name your
resource bundles in your page, and if you have multiple resource bundles, you need to
include multiple <f:loadBundle> tags, and you need to know which entry resides in
which bundle.

JHeadstart takes a slightly different approach. Instead of generating <f:loadBundle>
tags into the pages, JHeadstart generates a managed bean definition under the key nls
which instantiates a class that provides access to all resource bundles of your application.

In generated pages, you will often see references to this nls managed bean like this:
<af:panelPage title="#{nls['TABLE_TITLE_EMPLOYEES']}">

This approach provides you with the flexibility to (re-)organize your resource bundles as
you like, without the need to change the references to resource bundle entries in your
page.

In addition, this approach allows you to override JHeadstart and/or ADF Business
Components messages. To do so, simply include the message key, for example JHS-
00100 or JBO-27014 in one of your application resource bundles. If the key is not found in
your default resource bundle(s), the standard JHeadstart or ADF BC message bundles
are used.

To make this all work, the following managed bean definitions are generated into the
JhsCommon-beans.xml:

JHeadstart Developer’s Guide Internationalization 11- 11

The MessageFactory class is the class that loads all bundles specified through the
bundleNames managed property. The MessageFactoryMap class is just a wrapper around
the MessageFactory class that implements the Map interface, so we can use JSF EL
expressions in the page to get entries from the resource bundle.

Reference: See the Javadoc or source of MessageFactory and
MessageFactoryMap.

11 - 12 Internationalization JHeadstart Developer’s Guide

11.4. Error Reporting

The ADF SR Demo (ADF BC) by Steve Muench customizes the default way a "tree" of
bundled ADF exceptions gets translated into JSF error message objects for display in the
JSP page by overriding the reportErrors() method of the ADF FacesPageLifecycle.

If multiple exceptions are reported for the same attribute, error reporting is simplified by
only reporting the first one and ignoring the others. An example of this might be that the
user has provided a key value that is a duplicate of an existing value, but also since the
attribute set failed due to that reason, a subsequent check for mandatory attribute ALSO
raised an error about the attribute's still being null.

Reference: You can easily install the ADF SR Demo using the JDeveloper
Check for Updates facility available under the Help menu. Note that you do
need an internet connection when using Check for Updates.

JHeadstart has copied the SR Demo error reporting extension to the JHeadstart
ErrorReportingUtils class and made some further customizations. This class is
instantiated by looking up a managed bean definition in JhsCommon-beans.xml:

Again, this approach brings you the advantage of easily configuring error reporting to
meet your specific requirements. By using managed properties, you can configure

• whether the stack trace of unexpected exceptions is printed. By default it is
printed.

JHeadstart Developer’s Guide Internationalization 11- 13

• which exceptions should be treated as expected exception, for which the stack
trace will never be written to the log.

• whether the error code (product code and error number) should be displayed.

 Attention: To avoid losing your changes in the managed property values after
generating again, you should create a custom template based on the
JhsCommonBeans.vm template and make the changes in this custom template.
To use your custom template rather than the default template, select the
Service node in the Application Definition Editor, go to the Templates tab, and
set the value of template key JHS_COMMON_BEANS to the name of your
custom template. See chapter 4, section “Using Generator templates” for more
information on using custom templates.

Note that using the same technique of creating a custom template, you can use
your own subclass of ErrorReportingUtils when the exposed managed
properties are not sufficient to meet your specific needs.

Additional functionality implemented in this class relates to database errors. When the
underlying exception is a SQLException that indicates a database constraint violation, a
message with the constraint name as key will be added to the JSF Message stack, so you
can provide a user-friendly message to the user by adding this constraint name as key to
your message resource bundle. Note that the JHeadstart Application Generator already
generates such messages into your message resource bundle for all key constraints
defined in the XML file of your Entity Objects.

Reference: See the Javadoc or source of
ErrorReportingUtils.reportErrors

11 - 14 Internationalization JHeadstart Developer’s Guide

11.5. Outstanding Changes Warning

When a user has made changes to any of the data fields on a page, but then clicks on a
navigation link or button without pressing ‘Save’ first, his changes will not be posted to
the application server and he will therefore lose them. Furthermore, any outstanding
changes on the middle-tier will be rolled back, so that the new page or record starts
‘clean’, without remnants of an earlier, unfinished transaction. JHeadstart ensures he gets
a JavaScript message when such a situation occurs, warning the user for the loss of the
uncommitted changes. The user can either cancel out and save his changes, or press OK
and continue with the navigation.

Looking at a generated commandMenuItem will clarify how this works:

The JavaScript alert is shown because the onclick property calls function
alertForChanges()in form1013.js (the JHeadstart JavaScript library). The check itself
is implemented in the hasChanges() function. This function loops over all forms in the
document and checks if the user has changed the value of one or more of the data items,
or if there are pending middle tier changes (indicated by hidden field hasChanges =
true).

Two exceptions exist to this checking behavior:

1. The check is not performed for pages where changing the data is not possible. This is
the case in Find Pages and in the Select page of a select-form layout. JHeadstart
generates script into these pages that sets the global variable ‘ignoreChanges’ to
true.

2. Items that are not bound to the model are not checked. This is for example the case
for the searchAttribute and searchText of a Quick Search region. Users may
change these fields and navigate out of the page without getting a warning. For this
type of item, a call to the JavaScript function addToIgnoreChangedFields is
generated. This function adds the item name to the array ignoreChangedFields that
holds the names of the items for which changes are ignored.

Reference: See the function hasChanges() in JavaScript library form1013.js.
You can find form1013.js by going to your ViewController project, and
opening [HTML Root Directory]/jheadstart/form1013.js.

JHeadstart Developer’s Guide Runtime Page Customizations 12 - 1

C H A P T E R

12 Runtime Page
 Customizations

When you deliver your application to multiple customers or organization units, these
customers or organization units might have specific requirements for customizing the
application. A typical example is an independent software vendor (ISV) who delivers an
application to multiple customers. Each customer has specific requirements, for example
a customer wants to add additional items to some pages, or they want to hide standard
items. These requirements could be implemented by creating separate code bases for
each customer, but this easily creates a maintenance nightmare.

JHeadstart offers extensive capabilities for runtime customization of pages, which allows
you to support customer-specific requirements without changing the code base, and
without changing the underlying database model.

This runtime customization functionality can be split into two areas:

• Defining additional so-called Flex Items at runtime.

• Customizing standard items at runtime. It is possible to hide an item in create
and/or edit mode, or to make an optional item required.

In the next sections we will explain how you can enable your application to use flex
items and customized standard items.

12 - 2 Runtime Page Customizations JHeadstart Developer’s Guide

12.1. Creating the Database Tables

JHeadstart uses a set of database tables to support these runtime customizations. The
structure of these tables is shown below.

Before you can start using Flex Items or Customized Standard Items, you need to create
the above table structure in your own application database schema. You can do this by
running the script JhsModelCreate.sql against the database connection of your
application schema. This script is located in the scripts directory of your ViewController
project. If you don’t see the scripts directory, make sure you click the Toggle Directories
in the toolbar of the Application Navigator.

JHeadstart Developer’s Guide Runtime Page Customizations 12 - 3

You can right-mouse-click on the JhsModelCreate.sql, then choose Run in SQL*Plus, and
then the database connection you want to run the script in.

 Attention: We recommend installing the JHeadstart tables in the same schema
as your own application tables. If you nevertheless prefer to install the
JHeadstart tables in a different database schema, then you need to ensure that
your application schema has full access to the JHeadstart tables and synonyms
with the same name as the table name. This is required because the JHeadstart
runtime accesses the database tables through View Object usages defined in
application module JhsModelService. When generating your application
while using one or more of the table-driven features, this JhsModelService
application module is added as a nested usage to your own application
module, thereby “inheriting” the database connection of its parent application
module.

 Attention: The JhsModelCreate.sql script creates database tables for all table-
driven JHeadstart runtime features. Additional tables for dynamic menus,
translations and security are also created. If you do not plan to use these other
features you can create your own script that only creates the above tables, and
the JHS_SEQ sequence that is used to populate the ID column in these tables.

12 - 4 Runtime Page Customizations JHeadstart Developer’s Guide

12.2. Enabling Runtime Usage of Flex Items

To enable your application for use of Flex Items, the first thing to do, is to check the
service-level checkbox “Allow Use of Flex Regions”.

Next, you define “place holders” in the Application Definition Editor for a region of flex
items that might be defined at runtime. A flex region placeholder can be defined in two
ways: by creating a Flexible Region, or by creating an item with display type
“flexRegion”.

12.2.1. Creating a Flexible Region

To create a Flexible Region, you can right-mouse-click on the Regions icon within a
group, and choose Add Child => Flexible Region.

Apart from the Name, a Flexible Region has two properties: Display in Form Layout?
and Display in Table Overflow Area? . The first property is only applicable when the
group has a layout style that includes a form page (form, table-form, select-form, tree-
form). The second property is applicable when the group has a layout style that includes
a table page (table, table-form) and the Table Overflow Style property is set on the
group.

JHeadstart Developer’s Guide Runtime Page Customizations 12 - 5

Note that you can define multiple Flex Regions for one group. For example, if you
generate a wizard-style layout for your group, you might want to add a Flex Region to
every wizard page.

12.2.2. Running the JHeadstart Application Generator

When you now run the JHeadstart Application Generator again, the following happens
to enable flex items at runtime:

• All ADF Business Components included in the JHeadstart Runtime library are
imported into your Model Project, and the JhsModelService application
module, is added as a nested usage to your own application module. The
JhsModelService includes View Object Usages that insert, update, delete and
query the underlying database tables needed for the runtime customizations.
Note that by creating JhsModelService as a nested application module, it will
inherit the database connection of the parent application module, allowing for
normal application data and flex region data to be committed in the same
transaction.

• An additional Application Definition file, named FlexRegionAppDef.xml is
generated. Click Save All after running the JAG and this file should appear
into the properties directory of your ViewController project. You can use this
Application Definition to generate the pages that are used to define the
content of the Flex Region at runtime. See section “Generating the Flex Region
Admin Pages” for more info.

12 - 6 Runtime Page Customizations JHeadstart Developer’s Guide

• A SQL Script named FlexRegionDefsDataServiceName.sql is generated and
executed against the default database connection of your ADF Business
Components project. This script inserts rows in the
JHS_FLEX_REGION_DEFINITIONS table for each Flex Region defined in the
Application Definition. Note that if you do not want the JAG to auto-execute
the script, you can uncheck the service-level checkbox “Run Generated SQL
Scripts?”

• The pages in a group with a Flex Region include ADF Faces elements that

dynamically display the flex items that might be defined at runtime for this
region. Of course, when you run the page just after you added the Flex
Region, no flex items have been defined yet for this Flex Region and the page
will look the same as it did without the flex items enabled.

• An additional global button “Customize Mode” is generated into the page.
Clicking this button will allow you to invoke the flex region admin pages you
are about to generate.

12.2.3. Generating the Flex Region Admin Pages

As explained above, a separate application definition FlexRegionAppDef.xml is
generated that can be used to generate the Flex Region administration screens. This
application definition is only generated when it does not exist yet, so after it has been
generated, you can make any changes you want using the Application Definition Editor,
without loosing these changes when you regenerate your “own” application definition.

Before you generate the FlexRegionAppDef you might want to inspect the file locations
properties, and change them if you have set other naming standards for these properties.

JHeadstart Developer’s Guide Runtime Page Customizations 12 - 7

The default settings are in line with what we recommend:

• Generate all Main faces-config files in the WEB-INF directory with a suffix
indicating the service

• JhsCommon-beans.xml is shared by all services (application definitions); the
location should never be changed.

• Create a subdirectory per service for the generation of group beans faces
config files, pages and regions. Make a subdirectory under this “service”
directory for each of these file types.

• The View Package property should be the same across all services

• The Resource Bundle Type and NLS Resource Bundle properties should be
the same across all services.

Note that all service-level properties that are generally the same across all services have
got the same values as in your “own” application definition. If you later on decide to
make changes to these settings in your own application definition, then you will need to
make the same change in the FlexRegionAppDef Application Definition.

Now, if you are satisfied with the settings, you can run the JAG for the
FlexRegionAppDef.

12 - 8 Runtime Page Customizations JHeadstart Developer’s Guide

12.3. Defining Flex Items At Runtime

You are now ready to run the generated application, and define some flex items at
runtime. If you start the application again, you will notice an additional button with
label “Customize Mode” in the upper right corner of each page.

Note that if you have enabled role-based security in your application, you will only see
the button when you log in as a user with a role as specified in the service-level property
Admin Role. You can customize the appearance of the Customize Mode button, as well
as the role required to see the button by modifying the menuGlobal.vm template.

If you click the Customize Mode button on a page with a flex region defined, a link will
appear at the location of the flex region.

Clicking this link will launch a dialog window with pages where you can define the
appearance of the Flex Region, and the Flex Items that should appear within the Flex
Region. You just generated these dialog pages using the FlexRegionAppDef.

JHeadstart Developer’s Guide Runtime Page Customizations 12 - 9

When you click the New Flex Item Definition button, you will get the following page in
the dialog that allows you to define a flex item within the region.

• In this page, you can define the display properties of the flex item, as well as
default value logic, validation logic, and allowable values. When you are done
defining the flex items, you can close the dialog. If you now navigate to another
row in your page, you will see the flex items appear. To increase performance,
the flex items are queried only once for each “base” row in a session, that’s why
you do not see the flex items for the employees your already visited in the same
browser session prior to defining the flex item.

In this screen shot, the flex region is displayed below the normal items. You can also
“stack” the flex region as shown below.

12 - 10 Runtime Page Customizations JHeadstart Developer’s Guide

Setting up another Item Region and setting the Layout Style of the Regions container to
“stacked” accomplish this.

JHeadstart Developer’s Guide Runtime Page Customizations 12 - 11

12.4. Creating an Item with Display Type Flex Region

By defining a Flex Region in the Application Definition, the flex items will always be
displayed in their own visual region. You can control how this region is displayed
relative to the standard items as we have seen above.

Now, if you want to display flex items within the same visual region as standard items,
you can use a special item with Display Type “flexRegion” as the place holder for the
flex items defined at runtime. Uncheck the checkbox Bound to Model Attribute for this
item, and set Display In Table Layout to false, since flex items cannot be displayed in a
table, only in a table overflow area.

If we now generate again and run the application, the flex items appear seamlessly with
the standard items, as shown in the screen shot below.

Note that you can define an unlimited number of Flex Regions and Items with Display
Type “flexRegion” in a group.

12 - 12 Runtime Page Customizations JHeadstart Developer’s Guide

12.5. Internationalization and Flex Items

Flex regions, and the flex items within a flex region support multiple languages. In the
dialog pages you use to define the flex region and flex items, you might have noticed
that every text item has a corresponding Translation Key item.

When you enter a value in a Translation Key item, this value will be stored as
translation key in the JHS_TRANSLATIONS table. The value of the corresponding text
item will be stored as translation text. For each Locale specified in the Application
Definition, an entry will be created.

JHeadstart must be configured to use the JHS_TRANSLATIONS table to retrieve
translatable strings. This is done through the service-level property NLS Resource
Bundle Type, which must be set to “databaseTable”. If for whatever reason you do not
want to use the JHS_TRANSLATIONS table as your resource bundle, then you should
not enter a value in the Translation Key items. In this case, we recommend you change
the FlexRegionAppDef application definition, and set the Display in Form Layout?
Property of all Translation Key items to “false”.

Please refer to the Internationalization section of this chapter for more information on
resource bundle types, and the option to change and translate your pages at runtime.

JHeadstart Developer’s Guide Runtime Page Customizations 12 - 13

12.6. Customizing Standard Items at Runtime

Standard generated items can be customized at runtime to a certain extent:

• Items that are generated as optional can be made required

• Items can be completely hidden, or conditionally hidden based on whether the
user is creating a new row or editing/viewing an existing row.

To enable customization of standard items at runtime, you need to check the service-
level checkbox “Allow Runtime Customization of Items?”

After you generated the application and you run the application again, the “Customize
Mode” button will appear. If you already enabled flex items in your application, the
Customize Mode button was already there. If you click the “Customize Mode” button
after you generated with the above setting, all items and column headers have a
customize icon displayed at the right of the item.

When you click the customize icon, it launches a dialog in which you can customize the
icon for which you clicked the icon.

12 - 14 Runtime Page Customizations JHeadstart Developer’s Guide

After you saved your changes and closed the dialog, the changes will not be visible until
you clicked the “Normal Mode” button, and you navigated to another page. When you
then return to your customized page, the runtime customization is applied.

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 1

C H A P T E R

13 Forms2ADF Generator

he JHeadstart Forms2ADF Generator (JFG) allows you to reuse Oracle Forms
elements and properties when creating Oracle ADF applications.

The JFG creates the Business Services (ADF Business Components) and the JHeadstart
meta data (Application Definition). After that you can run the JHeadstart Application
Generator to generate an ADF web application based on the User Interface definitions
that have been extracted from the Oracle Form.

This chapter explains how the JFG works, and how to use it.

T

13 - 2 Forms2ADF Generator JHeadstart Developer’s Guide

13.1. Introduction into JHeadstart Forms2ADF Generator (JFG)

If you have used Oracle Forms as your development environment over the years, the
JHeadstart Forms2ADF Generator (JFG) can be used in different situations to move to
Oracle ADF. Typical scenarios where the JFG can be of use include:

• You want to add self-service functionality to existing Oracle Forms back-office
applications

• You want to leverage advanced user interfaces features in JDeveloper/ADF
Faces which are hard or impossible to build in Oracle Forms

• You want to disseminate Oracle Forms artifacts in J2EE to prepare for a
transition to a service-oriented architecture (SOA).

• You want to migrate (parts of your) Oracle Forms applications to ADF.

While the JFG can assist in migrating Oracle Forms to ADF, it is not a migrator in itself.
Any custom PL/SQL logic residing in the form will not be migrated to ADF. See section
“Handling Forms PL/SQL Logic” for more information on Forms PL/SQL logic.

The Forms2ADF generation process looks as follows:

Figure 13-1 JHeadstart Forms2ADF Generator Process

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 3

The JHeadstart Forms2ADF Generator creates two main outputs:

1. ADF Business Components based on the data usages in the Oracle Form:

• ADF BC Entity Objects are created for each table used by a Forms block.

• ADF BC View Objects are created for each Forms data block and each record
group query. Named query Bind parameters are created based on references
to :block.item in the query WHERE clause.

• ADF BC Application Modules are created for each form. All form-based
application modules are nested inside one overall root application module.

2. JHeadstart Application Definition based on the user interface definitions in the
form:

• Groups are created for each block.

• LOV Groups are created for each LOV / Record Group

• Group Items are created for each item in a block.

• (Stacked) region containers and regions created based on item placement on
(tabbed) canvasses and within framed graphics

• Domains created based on forms item allowable values

• The PL/SQL logic in the form is extracted and added as “documentation”
nodes under the group and item elements.

For m ore detailed description of the mapping between Forms elements and ADF
Business Components and the JHeadstart Application, see section “Understanding the
Outputs of the JHeadstart Forms2ADF Generator”.

13 - 4 Forms2ADF Generator JHeadstart Developer’s Guide

13.2. Roadmap

When you plan to use the JFG, it is recommended that you follow the steps below:

1. Make sure Forms .fmb file is version 9i or 10i.

The JFG uses the Forms utility to convert a forms .fmb file to XML. This utility is
available as of Forms version 9i. If you built your forms with an older version,
you need to open your forms in version 9i or 10i, and save the .fmb file with this
version. Note that you do NOT need to upgrade your whole forms application to
9i or 10i; the JFG only needs the .fmb file in the proper version.

2. Analyze the forms for elements that should be ignored by the JFG

When running the JFG you can specify names of form elements that should be
ignored during the generation process. To choose the appropriate elements to
exclude from generation, you need to analyze the forms you want to run through
the JFG. Typical candidates to exclude are:

• Common forms elements added through an object library, like a block,
canvas and window to display a calendar popup on date items, or a
canvas and window to display errors.

• Current record indicator items

• Query-Find blocks, windows and canvasses

3. Prepare your project in JDeveloper

Before you can run the JFG you must create and prepare your project in
JDeveloper. See Chapter 1 ‘Getting Started’ on how to prepare your JDeveloper
project, and apply the steps until just before the creation of new ADF Business
Components.

4. Run the JFG

You are now ready to actually run the JHeadstart Forms2ADF Generator in your
Model project. It is recommended that you start with the simplest forms in your
application to build experience with the JFG and the results it produces. See the
next section on how to start and use the JFG.

5. Understand and Inspect the Forms2ADF Generator Outputs

Before generating the web application using the JHeadstart Application
Generator, we recommend you check the outputs produced by the JFG. See
section “Understanding the Outputs of the JHeadstart Forms2ADF Generator” for
more information.

6. Create ADF Web Application using the JHeadstart Application Generator

After running the JFG you can generate JHeadstart applications in the same way
as if you would have created your ADF Business Components manually, and as
if you would have run the New JHeadstart Application Definition wizard. See
Chapter 1 ‘Getting Started’, and apply the steps after creation of a JHeadstart
Application Definition.

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 5

13.3. Running the JHeadstart Forms2ADF Generator (JFG)

You should start the JHeadstart Forms2ADF Generator from the Model project. To start
the JHeadstart Forms2ADF Generator select your Model project in JDeveloper, right-
mouse click, select New (or from the Menu, select File -> New), go to the Business
Components node below the Business Tier. Select JHeadstart Forms2ADF Generator.

13.3.1. Select Forms Modules

You can select Oracle Forms .fmb files, or you can first use the Forms frmf2xml utility to
convert the forms to xml format, and then select the converted xml files.

13 - 6 Forms2ADF Generator JHeadstart Developer’s Guide

You can use the Browse button to open a File Chooser window to easily select the .fmb or
.xml files from your file system.

If you select Forms .fmb files, then the JFG will first run the Forms frmf2xml utility under
the covers. This utility requires that Oracle Forms be installed on the machine on which
you run JDeveloper. If you do not have Oracle Forms installed, you can run the frmf2xml
utility on another machine where Oracle Forms is installed, and then select the converted
XML files in the File Chooser window.

If you nevertheless select an .fmb file while Oracle Forms is not installed, you will get an
error message when you press the Next button.

13.3.2. Select Form Elements to be Excluded from Processing

Most of the Oracle Forms you want to process typically include elements that you want
to ignore during processing by the JFG. In step 2 of the JFG you can define this list of
elements you want to ignore. The match is based on the name, if you specify the name
“CALENDAR” and your form contains a block, a window and a canvas all named
“CALENDAR”, then all three elements will be ignored.

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 7

The default list of elements to exclude provides typical examples of such elements:

• CALENDAR, CALENDAR_TIME: ADF Faces provides its own built-in
functionality for displaying calendar pop ups on date and date time fields

• QMS$*: Elements that start with this name exist in forms generated with the
Template Package of Headstart for Oracle Designer. These are generic elements,
like the current record indicator that are of no use in the ADF environment.

• QF_*: Elements that start with this name implement so-called Query Find
functionality that can be generated with the Template Package of Headstart for
Oracle Designer. Query Find windows do not need to be migrated, since
JHeadstart has built-in support for quick and advanced search, similar to the
Forms query find window.

• CG$CTRL: This block is added to the form when the form is generated using
Oracle Designer. The block contains control items for Forms-specific logic that
does not map to ADF concepts.

• ORAFORMSFACES*: A block and canvas of this name is included in forms that
are enabled for inclusion in a JSF page using the OraFormsFaces component
supplied by Commit Consulting.

Reference: For information about OraFormsFaces, visit the website of Commit
Consulting: http://www.commit-consulting.com/oraformsfaces/

13.3.3. Select Database Connection

The database connection you select in this step is used as the connection for the ADF
Business Components that will be generated. This connection is also used to query the
table structures and key constraints from the Oracle Database Data Dictionary. This data
dictionary information is required to create the ADF BC Entity Objects for each table
used by a block in the selected forms. The ADF BC entity objects created by the JFG, are
reused across all forms that are processed by the JFG, only the generated View Objects are

http://www.commit-consulting.com/oraformsfaces/

13 - 8 Forms2ADF Generator JHeadstart Developer’s Guide

form-specific. Therefore, the entity objects created by the JFG contain attributes for all
columns in the table or view, regardless of whether the column is used in one of the
forms.

If the database schema you provide as database connection is not the owner of all tables
and views used by the selected forms, then make sure that the schema has synonyms to
these tables and views, and that the schema user is allowed to query the data dictionary
tables for these tables and views. This can be accomplished by granting the SELECT
ANY DICTIONARY privilege to the schema user. If your forms access tables or view in
another database schema by prefixing the table or view with the schema name, rather
then using synonyms, then the schema user you select should also have the SELECT
ANY DICTIONARY privilege to be able to read the table and view definitions from this
other schema.

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 9

13.3.4. Generator Settings

The following properties need to be set on the Generator Settings panel:

• Service Name: This is the name that is used to create the JHeadstart Application
Definition file

• Entity Objects Package: The package name that will be used to store all entity
objects and their associations. It is good practice to organize the entity objects,
view objects and application modules in separate packages. If you specify a
package name that does not yet exist, it will be created automatically.

• View Objects Package: The name of the package that will be used to store all
view objects and view links.

• Application Modules Package: The name of the package that will be used to
store all application modules.

• Root Application Module: The name of the root application module that will be
created. For each form that you selected to process, a separate application
module will be created, named after the forms module. All form-specific
application modules are then nested inside one root application module, so they
can share the same application module pool, and database connection pool at
runtime.

• View Controller Project: The name of the project in which the JHeadstart
Application Definition file will be saved.

• Entity Object Class Extends: The name of the superclass of each entity object
that will be created by the JFG. You can create your own superclass that extends
from the default oracle.jbo.server.EntityImpl class to implement
common behavior across all your entity objects.

13 - 10 Forms2ADF Generator JHeadstart Developer’s Guide

• Application Module Class Extends: The name of the superclass of each
application module object that will be created by the JFG. You can create your
own superclass that extends from
oracle.jheadstart.model.adfbc.v2.JhsApplicationModuleImpl
class to implement common behavior across all your application modules. If you
use CDM RuleFrame to implement your business rules in the database, you
should select the
oracle.jheadstart.model.adfbc.v2.RuleFrameApplicationModuleI
mpl class, or your own subclass of this class. By extending from the
RuleFrameApplicationModuleImpl class, your application will nicely
display CDM RuleFrame errors in the web user interface.

• Extract PL/SQL Logic?: If this checkbox is checked, the PL/SQL program units,
and the form-, block- and item-level triggers will be visible in the JHeadstart
Application Definition. This is helpful in assessing the additional functionality
that was implemented in the original form using PL/SQL that might need to be
implemented as well in the web pages generated by the JFG/JAG.

13.3.5. Processing the Selected Forms

When you click the Finish button on the Summary panel, the JFG will start processing
the forms.

The processing consists of the following steps:

• Conversion: Each selected .fmb form is converted to XML format using the
FRMF2XML utility. This step is skipped when you already selected xml-
formatted form files.

• Extraction: For each data block in the form, the underlying table or view
definition, including all primary keys, unique key and foreign key constraints
are queried from the data dictionary tables. This information is added to the
XML representation of the form, and the combined information is written to the
file system, in the Java source root directory, in a file named
<module_name>_extracted.xml

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 11

• ADF BC Migration: Each extracted XML file is processed by a number of ADF
BC migrators (each target ADF BC element has its own migrator), that together
create an XML structure that is the input for the actual creation (composition) of
ADF BC components. This XML structure is written to the file system, in the Java
source root directory, in a file named <module_name>_migratedAdfbc.xml

• ADF BC Composition: Based on the migrated ADF BC XML structure of each
form, the entity objects, entity associations, view objects and view links, and the
application modules are created.

• JHeadstart Migration: Each extracted XML file is then processed by a number of
JHeadstart migrators (each target JHeadstart Application Definition element has
its own migrator), that together create an XML structure that is the input for the
actual creation (composition) of the JHeadstart Application Definition file. This
XML structure is written to the file system, in the Java source root directory, in a
file named <module_name>_migratedJhs.xml

• JHeadstart Composition: Based on the migrated JHeadstart XML structure of
each form, the JHeadstart Application Definition file is created, and stored in the
properties directory of the ViewController project.

If the ADF2Generator run was successful, you can safely delete the intermediate results
of the Forms2AdDF Generator, being the extracted and migrated XML files in the Java
source root directory. However, if processing failed with an error, these XML files can
be used for troubleshooting as explained in the next section.

13.3.6. Troubleshooting

When the JHeadstart Forms2ADF Generator fails with an error, the first thing to do is to
assess which form module is causing the error. This information can easily be obtained
from the log window in JDeveloper, which prints an informational message for each
processing phase, for each module, as show in the screen shot below.

13 - 12 Forms2ADF Generator JHeadstart Developer’s Guide

The last printed line in this window will tell you which forms module the JFG was
processing when the error occurred, and in which phase of the processing.

Typically, an unexpected error dialog window will be displayed, which provides more
information about the error that occurred.

For example, the error dialog below will be displayed when no table or view information
could be queried from the Oracle data dictionary tables during the extraction phase of a
form module.

To solve this error, make sure that the database connection you specified has all the
required privileges. See section 13.3.3 “Select Database Connection” for more
information.

While you can fix the above error, most other unexpected errors might be related to a
problem in the JFG code base. While the JFG has been tested against numerous simple to
very complex forms, it is still in preview status. It has not been proven yet in a large-scale
customer project. There might be (combinations) of form element definitions in your
oracle forms that cannot be handled by the JFG. Or, the JFG will run and finish
successfully, but the outputs do not match your expectations based on the form
definition.

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 13

In such a situation, we recommend that you e-mail the Oracle JHeadstart Team
(idevcoe_nl@oracle.com), and send us the following information:

• The JHeadstart version you are using. You can see this in JDeveloper by going to
the Help menu -> JHeadstart Documentation Index.

• The name of the form module that is causing the problem.

• The error message and error stack trace displayed in the dialog window (if any)

• Any log information written to the JDeveloper JFG log window

• The XML files created during processing for this module: _extracted.xml,
_migratedAdfbc.xml and migratedJhs.xml file. Depending on the phase in which
the error occurred, not all of these files might be available for the form module.
Please send us the files that are available.

• Any other information that can help us understand your issue. For example, if
you expected a different layout of the user interface, then attach screen shots of
the original form, and the generated web page.

• Note: if you send zipped attachments (preferred), then make sure you rename
extension .zip to something else (.zipp), otherwise your e-mail will be bounced
by the Oracle Mail Server.

With this information, we might be able to reproduce the problem, and provide you with
a patch that fixes the problem.

13.3.7. Processing the Same Form Multiple Times

You can run the JFG multiple times for the same form. When you do this the following
happens:

• Existing entity objects will not be modified, only new attributes will be added if
there are columns in the table that are not yet mapped to an attribute

• Existing view objects will not be modified, only new attributes will be added if
there are items in the block that are not yet mapped to an attribute

• Existing application modules will not be modified, only new view object usages
will be added if necessary

• The groups generated for the form in the JHeadstart Application Definition will
not be changed at all. If you want the JFG to recreate the group definitions, you
first need to change the top-level group of the form and all its detail groups.

mailto:idevcoe_nl@oracle.com

13 - 14 Forms2ADF Generator JHeadstart Developer’s Guide

13.4. Understanding the Outputs of the JHeadstart Forms2ADF Generator

This section will give you a short overview of the output and explains how this can be
related to Oracle Forms elements. It also discusses possible changes you might need to
make to the generated outputs.

13.4.1. Generated ADF Business Components

13.4.1.1. Entity Objects

For each table or view used by an Oracle Forms data block, an Entity Object (EO) is
created. These entity objects are shared across all forms modules: when multiple forms
use the same table, only one entity object is created.

The information to create an EO is queried from the data dictionary tables. This means
that attributes are created for each column in the table, regardless of whether the column
is actually used in a forms block.

EO attributes are marked as key attributes based on the primary key definition in the
data dictionary. If the table does not have a primary key, or the block is based on a view,
then the JFG will default all mandatory attributes as primary key attributes. This is done
because ADF Business Components requires each EO to have at least one key attribute.
When this happens, a warning is written to the log window:

When you an encounter such a warning, you should check which attributes really make
up the primary key, and change the Primary Key checkbox in the EO attribute editor
accordingly.

13.4.1.2. Entity Association

Foreign Key constraints as found in the data dictionary are processed into Entity
Associations. These Associations are created between the two EO’s created from the two
tables between which the Foreign Key constraint lies. You can compare this to a client
side implementation of a Foreign Key.

13.4.1.3. View Objects

View Objects (VO) are created for each block in the form that is based on a table or view.
These “block” VO’s are always based on the entity object that maps to the same table or
view. For each data bound item within the block a VO attribute is created.

In older forms, lookup data (like the department name in an employee block) is typically
displayed in block items not based on a column. The values in these unbound items are
typically set through a POST-QUERY trigger that performs lookup queries to associated
tables. Since the JFG does not parse any PL/SQL logic, these lookup values will not be
visible in the ADF web application that can be generated using the outputs of the JFG.

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 15

However, when the block is updateable, it is quite likely that a List of Values (LOV) has
been defined in the form that populates the foreign key item (for example
department_id), as well as lookup items (for example department_name). If such an LOV
is present, JFG will create so-called calculated attributes for the lookup items that are
populated through an LOV. The calculated attribute gets a SQL expression that returns
the lookup item value based on the Record Group Query associated with the LOV.

In addition for the VO’s created for data blocks, read-only VO’s, not based on an EO, are
created for each Record Group Query found in the form. These read-only VO’s are used
as the data collection for the LOV groups created in the JHeadstart Application
Definition.

The WHERE and ORDER BY clauses of the data blocks are also migrated to the View
Object. Any references to block items are replaced with Query Bind variables, and in the
JHeadstart Application Definition, the Query Bind Arguments group property is set up
to populate these bind variables with the correct values. References to Forms globals and
system variables cannot be replaced with bind variables, and therefore these references
are changed to literal values by enclosing them in brackets, to keep the SQL query valid.
When the JFG encounters such a reference to a Forms global or System variable, you are
notified in the log window. Make sure you revisit these View Object and change the
query, where clause or order by clause as needed.

13.4.1.4. View Links

When a relation has been defined between two data blocks in the form, the JFG attempts
to create a view link between the View Objects created for the two blocks involved.

First, the JFG tries to find a foreign key constraint between the two tables, as defined in
the data dictionary. If such a foreign key constraint exists, the view link is created based
on this foreign key. If no foreign key is found, JFG parses the content of the forms
Relation Join Condition property. If the value of this property exists of one or more
conditions connected with the AND operator and each condition uses a simple ‘=’
operator with two item references, JFG creates a view link based on the attributes created
for these items. If the Relation Join Condition is more complex, or the JFG cannot find
matching attributes for the items, the JFG will display a warning in the log window:

In such a situation, the view link will be created without source and destination
attributes. You will need to add those attributes manually by double clicking on the view
link.

13.4.1.5. Application Module

For each form, an application module is created that contains usages for all the View
Objects created for the form. Each form-specific application module is added as a nested
application module usage to the Root Application Module.

13 - 16 Forms2ADF Generator JHeadstart Developer’s Guide

To make sure the ADF Business Components created are all valid, we recommend to run
the ADF BC tester on the Root application module, available through the right-mouse-
click menu on the application module. By running the tester, you can check:

• If your project compiles successfully. If not correct the compilation errors first.

• If all View Object queries have been brought forward in a correct manner, and
return the correct data

• If you can make updates through the entity-based View Objects, which are all
View Objects that originate from a Forms block.

13.4.2. Generated JHeadstart Application Definition File

The JFG also creates the JHeadstart Application Definition file. The sub sections below
explain how and when each element type in the JHeadstart Application Definition file is
created.

13.4.2.1. Groups

The JFG creates a Group for each block in the forms module. A top-level group is
created for

• The block that is specified as the first navigation block in the form, or if not
specified,

• The first block in the form that is not a detail block of another block

A detail-group is created for

• Each block that is a detail block of the block mapped to the parent group

• All other blocks that are not a detail block, they are created as detail group of the
top-level group. When such a block is based on a table or view, the boolean
Dependent Data Collection property is set to false, as there is no link with the
data collection of the parent group.

For each LOV in the form that has an associated Record Group Query, a group is created
with the boolean property Use as LOV set to true.

If the JFG created query bind parameters for the underlying View Object of a group, the
Query Bind Arguments property of the group will be set accordingly. This ensures that
the JHeadstart Application Generator will generate the appropriate configurations to
populate these query bind parameters with the correct item values at runtime.

If a block is not based on a table or view, then the boolean group property Bound to
Model Data Collection is set to false.

13.4.2.2. Items

For each item in a block, a corresponding item is added to the group that was created for
the parent block. If the item is not based on a column, the item will have the Databound
property set to false, otherwise it will be set to true, and the matching View Object
attribute will be set in the Attribute Name property.

The item display type is set based on the item type of the source form item.

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 17

If the form item has an LOV associated the item display type will be set to “lov”, and a
ListOfValues child element will be added to the JHeadstart item. The ListOfValues
element will have child ReturnValue elements, one for each LOV Column Mapping in
the form.

13.4.2.3. Region Containers, Item Regions and Group Regions

Based on the placement of an item:

• on a content canvas

• on a stacked canvas

• on a tab page

• within a framed graphic

and taking into account placement of parent and detail group items on the same canvas
or tab page, or within the same framed graphic, the JFG will create the appropriate
nested structure of region containers, item regions and group regions.

The number of layout columns set on an item region, is based on the first line of items
within the region in the original form. For example, if 3 items have the same Y position
coordinate within the tab page or graphic, then the Columns property will be set to 3,
regardless of the number of items on subsequent lines.

13.4.2.4. Domains

A static domain will be created for the following form items:

• Checkbox Items: a domain with two allowable values, the checked and
unchecked value will be created. If the unchecked value is not set, the value ‘N’
is taken as unchecked value, since ADF only supports boolean value bindings for
checkboxes that require both a checked and unchecked value.

• List Items: for each list element an allowable value will be created within the
domain

• Radio group items: for each radio button element an allowable value will be
created within the domain

Note that the JFG will not create dynamic domains for drop down lists. This is not
possible because Oracle Forms does not support Record Group Queries to be attached to
drop down lists. To populate a drop down list with dynamic values in Oracle Forms,
custom PL/SQL logic needs to be written. Since the JFG does not attempt to parse the
PL/SQL logic, we cannot create dynamic domains for drop down lists. Subsequently
drop down list items that are populated through PL/SQL will be created as a normal text
item by the JFG. Of course, after you ran the JFG, you can easily change the text item into
a drop down list and create the associated dynamic domain manually in the JHeadstart
Application Definition Editor.

13 - 18 Forms2ADF Generator JHeadstart Developer’s Guide

13.5. Handling Forms PL/SQL Logic

The JHeadstart Forms2ADF Generator allows you to “copy” the PL/SQL logic used in
the form to the JHeadstart Application Definition, so you can easily see the logic in the
editor, and determine what to do with it. Below we have listed common types of
PL/SQL logic, with some suggestions on how you might handle it. Note that this is a
high-level overview, not a detailed cookbook on how to handle each piece of PL/SQL
logic. Always make sure you fully understand the PL/SQL logic before you take a final
decision on how to re-implement it in the ADF/JHeadstart stack.

• Canvas and window management logic: this kind of logic can typically be
ignored, as it is specific to how Oracle Forms works.

• Navigation logic: logic to navigate to detail windows within the same form can
typically be ignored, since JHeadstart will generate buttons to navigate between
parent and detail groups. Navigation logic to call other forms, passing along
context parameter(s) used to query information in the called form can be
implemented using the JHeadstart Deep Linking functionality. See chapter 6
“Generating User Interface Widgets” section 6.14 “Hyperlink to Navigate
Context-Sensitive to Another Page (Deep Linking)” for more information.

• Logic to implement conditionally dependent items: with this we mean PL/SQL
logic that changes the user interface properties like required, enabled, or visible
for one or more “dependent” items based on the value(s) of one or more
“depends on” items. In other words, this kind of logic creates dynamic user
interfaces that change based on the values you enter. JHeadstart offers extensive
declarative support for conditionally dependent items. See chapter 6
“Generating User Interface Widgets”, section 6.12 “Conditionally Dependent
Items” for more information.

• Business rule logic: logic that causes error or messages or dialogs to be displayed
when the user enters invalid data, or logic that automatically updates other
values either directly in the form or by executing SQL DML statements (change
event rules). This kind of logic can be implemented in ADF Business
Components, as described in the Business Rules White Paper, or can be moved to
the database (in case it is not yet implemented there).

Reference: For information about enforcing business logic within the ADF BC
Business Service, see the whitepaper Business Rules in ADF BC:
otn.oracle.com/products/jdev/collateral/papers/10131/businessrulesinadfbc
technicalwp.pdf

13.5.1. Moving PL/SQL Logic to the Database

When analyzing the PL/SQL logic in older forms, you might encounter a lot of PL/SQL
logic to implement business rules or computations that might well be executed inside the
Oracle Database. Using the “Move to database” icon in the JHeadstart Application
Definition Editor, which is enabled when you select a PL/SQL program unit or trigger in
the navigator tree, you can easily move such logic to the database.

If you want to call out to PL/SQL procedures or functions that you moved to the
database from a button in your ADF web page, you need to do the following:

http://otn.oracle.com/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf
http://otn.oracle.com/products/jdev/collateral/papers/10131/businessrulesinadfbctechnicalwp.pdf

JHeadstart Developer’s Guide Forms2ADF Generator 13 - 19

• Create a custom business method in your application module class that calls the
stored procedure or function, by following the instructions in the ADF
Developer’s Guide for Forms/4GL Developers, section 25.5 “Invoking Stored
Procedures and Functions”.

Generate the button to call the method by following the instructions in chapter 6 “User
Interface Widgets”, section 6.13 “Custom Button that Calls a Custom Business Method”.

http://download-west.oracle.com/docs/html/B25947_01/bcadvgen005.htm#sm0297
http://download-west.oracle.com/docs/html/B25947_01/bcadvgen005.htm#sm0297
http://download-west.oracle.com/docs/html/B25947_01/bcadvgen005.htm#sm0297

13 - 20 Forms2ADF Generator JHeadstart Developer’s Guide

This page is intentionally left blank.

JHeadstart Developer’s Guide JSF-ADF Page Lifecycle 14 - 1

C H A P T E R

14 JSF-ADF Page Lifecycle
his chapter provides an architectural overview of the Page Lifecycle in JSF-ADF
applications and how JHeadstart plugs into this lifecycle.

If you want to build more advanced applications using JSF, ADF and JHeadstart it is
crucial that you understand what happens in which sequence when you submit a HTTP
Request from a web page. The actions performed from the moment you submit a page,
until the next page is displayed in the browser is called the Request Processing Lifecycle or
Page Lifecycle or just Lifecycle in JSF terms.

The various types of actions performed when submitting a request are divided in so-
called Lifecycle Phases. Standard JSF applications have 6 Lifecycle phases. When using
ADF together with JSF, you will even have 9 Lifecycle phases. In the paragraphs of this
chapter we will first explain the standard JSF Lifecycle phases, then the phases added by
ADF, and finally we will discuss how JHeadstart extends the default behavior of some of
the Lifecycle Phases.

Note that this section assumes you have a basic understanding of JSF concepts like UI
Component, Action and Action Listener Property, Validator, Managed Bean and
Navigation Rule. If you lack this background, we recommend that you first google for
“Introduction to JSF” and follow one of the tutorials that are returned as search result.

T

14 - 2 JSF-ADF Page Lifecycle JHeadstart Developer’s Guide

14.1. JSF Lifecycle Phases

The standard JSF Page Lifecycle consists of 6 phases as shown in the picture below.

Each phase is briefly described below.

14.1.1. Restore View Phase

In this phase the tree of UI Component java classes is restored in memory, so that the
next lifecycle phases can access the various UI Component class instances created for
each UI component that is defined in the JSP page.

14.1.2. Apply Request Values Phase

 In this phase, JSF populates the UI Component class with the value as submitted by the
user. This always happens and is the reason that when you submit a JSF page with some
input fields, by default the page will redisplay with the values as you entered them. So,
finally, we do not have to do any coding at all to redisplay a page with the entered
values! The UI Component class (re-)created for each input element in the Restore View
phase will keep track of the submitted value.

14.1.3. Process Validation Phase

In this phase, validators and converters that might be defined in the JSP page will be
executed for each UI Component. When validation or conversion fails, an error message
is added to the stack of JSF messages. When validation and conversion is successful, the
converted (also called “decoded”) value is stored in the UI Component class. Whereas
the submitted value is always a string (HTTP Request parameters are always strings) the
decoded value can be of any type. For example, when a date converter is defined against
an input element, the decoded value will be of type java.util.Date. In summary, the UI
Component class of an editable input element can hold two values: the submitted value
(accessible through getSubmittedValue()) and the decoded value (accessible through
getValue()).

JHeadstart Developer’s Guide JSF-ADF Page Lifecycle 14 - 3

14.1.4. Update Model Phase

This phase is only applicable for editable UI Components that have the value property
defined in the JSP page. The value property typically contains an EL expression that
references a managed bean property, or in case of an ADF Model binding, the
inputValue property of an ADF Value Binding class. In the Update Model phase, the
setter method of the property specified in the EL expression is called with the decoded
value of the UI Component. So, the following element in a JSP Page:

<h:inputText … value="#{loginBean.username}"/>

causes the setUsername() method to be called in the java class defined in the managed
bean definition named loginBean, stored in the faces-config.xml.
When using ADF bindings, you will typically see value properties like this:

<h:inputText …. value="#{bindings.LastName.inputValue}"/>

This causes the setInputValue method to be called on an ADF Model value binding class
that is created at runtime by ADF. The next section explains in more detail how that
works. For now, it is important to understand that JSF executes the Update Model phase
in complete ignorance of ADF and the ADF Data Binding layer. JSF simply parses the EL
expression in the value property of each UI component, and calls the corresponding
setter method.

14.1.5. Invoke Application Phase

In this phase, JSF calls the methods specified in the action property or actionListener
property of the JSF control used to submit the page (typically a button or hyperlink).
When the action property is set, the outcome of the action property (either a hard coded
literal value in the action property itself, or the return value of the action method
referenced in the action property) is used to determine the next page that must be
rendered. JSF looks up in the faces-config the navigation rules that match both the
submitted page and this action outcome. Again, JSF executes the Invoke Application
phase in complete ignorance of ADF and the ADF Data Binding layer. It simply calls the
method specified in the EL expression of the action or actionListener property:

<h:commandButton action="#{loginBean.authenticate}"/> causes the authenticate()
method to be called in the java class specified in the managed bean definition named
loginBean in the faces-config.xml.

<h:commandButton actionListener="#{bindings.Commit.execute}"/> causes the
execute() method to be called on the ADF action binding class created at runtime for
the Commit binding.

14.1.6. Render Response Phase

In this phase, the UI Component renderers are invoked to create the HTML markup that
is returned to the browser.

14.1.7. The Impact of the Immediate Property

The above sequence of lifecycle phases is the default JSF behavior. However, JSF is highly
customizable. We can skip lifecycle phases programmatically or declarative, and we can
add additional lifecycle phases as we will see in the next section. There is one simple
property, the immediate property, that allows you to declaratively change the default

14 - 4 JSF-ADF Page Lifecycle JHeadstart Developer’s Guide

lifecycle sequence. When you set the immediate property to true on the command
control that you use to submit the page, the Process Validation and Update Model
Phases are skipped. A typical example where you use the immediate property is the
Cancel button. When pressing Cancel, the user wants to abandon his current data entry
task, any user entered values should be ignored, and he should not get any validation
errors about required items, or other validation rules that might have been violated by
already entered values. The immediate property is doing exactly what is needed in this
case: it skips all validations and does not update the model.

When using ADF Faces, you can use the immediate property to skip the client-side
JavaScript validations, like requiredness of an item. This is quite useful, for example
when using partial page rendering to implement functionality like conditionally
dependent items. But remember, the Update Model phase is also skipped!

JHeadstart Developer’s Guide JSF-ADF Page Lifecycle 14 - 5

14.2. ADF-Specific Lifecycle Phases

As said before, JSF is highly customizable. You can plug in your own custom lifecycle
phases if you like by using a so-called Phase Listener class. ADF uses this technique to
integrate the ADF Model layer with JSF. If you create a simple drag and drop
application, and then lookup the source of the faces-config.xml, you will see the
following entry:
<lifecycle>
 <phase-listener>oracle.adf.controller.faces.lifecycle.ADFPhaseListener
 </phase-listener>
</lifecycle>

Through this ADFPhaseListener, ADF adds three more phases to the JSF Lifecycle, as
shown in the picture below.

The Prepare Model and Prepare Render phases both handle the executables section in
the page definition. The executables section contains two types of executables:

• Iterator executable that might cause the associated iterator (ViewObject Usage) to
be (re-)queried.

• Invoke Action executable that might cause the associated action binding to be
executed.

For example, you will have noticed that when you create a simple form page with ADF
drag and drop, and you run the page, you see the data of the first row in the underlying
table. This happens because when you dragged and dropped your data collection from
the data control palette onto your page, an iterator binding was added to the executables
section of your page definition. By default, an iterator executable queries the underlying
ViewObject usage in the PrepareModel phase if it was not queried before. An executable
has two properties that provide control over when the iterator is queried (or the action
invoked), and in which phase: Prepare Model, Prepare Render or both. These properties
are Refresh and RefreshCondition.

JHeadstart uses these properties to implement functionality like Deep Linking, Query
Bind Params, and “No-Autoquery” Mode, as you will see later in this chapter.

14 - 6 JSF-ADF Page Lifecycle JHeadstart Developer’s Guide

Reference: For more information about using the Refresh and Refresh
Condition properties, see the ADF Developer’s Guide for Forms/4GL
Developers, section 10.5.5:

http://download-
west.oracle.com/docs/html/B25947_01/bcdcpal005.htm#BJECHBHF

The Validate Model phase validates all “dirty” ADF BC View Objects and Entity
Objects. That is, those View Objects and underlying Entity Objects that have an attribute
that is updated in the Model Update phase through a value binding that is associated
with this attribute. In other words, this phase results in a call to the validateEntity()
method of each Entity Object that has been changed during the Update Model phase.
Typical model exceptions reported are required attributes without a value.

This phase should not be confused with the Process Validations phase, which is related
to the View layer of your application. The Process Validations phase validates the
submitted values of UI Components, based on validators defined against the UI
component in the JSP page, and properties like “required”. The Validate Model phase
applies to your Business Service layer, it calls validation methods in the Business Service.

14.2.1. Customizing the ADF-JSF PageLifecycle

In the ADFPhaseListener class, you will find the following method:
 protected PageLifecycle createPageLifecycle()
 {
 return new FacesPageLifecycle();
 }

As you can see, this method creates an instance of
oracle.adf.controller.faces.lifecycle.FacesPageLifecycle. This class subclasses
oracle.adf.controller.v2.lifecycle.PageLifecycle, which contains (amongst others)
three methods, one method for each of the three custom phases added by ADF to the JSF
Lifecycle:

• prepareModel()

• prepareRender()

• validateModelUpdates()

If you want to extend or override the default behavior of these ADF custom phases, for
example to skip model validation, you can override one or more of these methods in
your own subclass, and register your own Phase Listener class in the faces-config that
instantiates your application. When using JHeadstart, this process is a bit easier, you do
not need to create your own PhaseListener class as will be explained in the next section.

http://download-west.oracle.com/docs/html/B25947_01/bcdcpal005.htm#BJECHBHF
http://download-west.oracle.com/docs/html/B25947_01/bcdcpal005.htm#BJECHBHF

JHeadstart Developer’s Guide JSF-ADF Page Lifecycle 14 - 7

 Attention: There are other methods that you can override as well, like
reportErrors(). However, there are two methods that are useless to
override: processUpdateModel(), and processComponentEvents(). These
methods are never called in a JSF context., because they provide functionality
that is part of the standard JSF Lifecyle:

• The JSF Update Model phase provides the same functionality as
processUpdateModel().

• The JSF Invoke Application phase provides the same functionality as
processComponentEvents().

The methods are there because the FacesPageLifecycle class extends a generic
PageLifecycle class that is also used when building web applications without
JSF. For example, when using Struts the ADF framework does call these
methods.

14 - 8 JSF-ADF Page Lifecycle JHeadstart Developer’s Guide

14.3. JHeadstart Page Lifecycle

The JHeadstart Runtime includes its own lifecycle class
oracle.jheadstart.controller.jsf.lifecycle.JhsPageLifecycle that subclasses
oracle.adf.controller.faces.lifecycle.FacesPageLifecycle. As you will expect after
reading the previous section, JHeadstart registers the JhsPageLifecycle class using its
own Phase Listener class, JhsADFPhaseListener. When you generate your application
with JHeadstart, the following entry is generated into a faces-config file named
JhsCommon-beans.xml:

 <lifecycle>
 <phase-listener>oracle.jheadstart.controller.jsf.lifecycle.JhsADFPhaseListener
 </phase-listener>
 </lifecycle>

 Attention: JHeadstart generates multiple faces-config files, to nicely organize
the various elements that can be recorded in a faces-config file. You can set the
names or directories of these files through service-level properties in the
Application Definition, here is the list if you keep the default settings:

• The JhsCommon-beans.xml faces config contains the above <lifecycle>
element, as well as generic bean definitions that are common to the
whole web application. Even when you have multiple application
definitions to generate your application, you still need only one
JhsCommon-beans.xml.

• The “Main” faces-config.xml contains the navigation rules of your
service (application definition). You can have multiple Application
Definitions generated into the same faces-config.xml, or in different
files when you change the Service-level property Main Faces Config.

• The “Group” faces-config files hold all the managed bean definitions
used by the pages generated for a specific group.

• The Breadcrumb faces-config holds all the breadcrumb managed bean
definitions for one service (application definition).

Of course, JSF needs to know it should load all these generated faces-config
files. This is handled by a <context-param> element named
javax.faces.CONFIG_FILES in the web.xml, which contains a comma-
delimited list of all faces-config files. If this context parameter does not exist,
JSF only loads the default faces-config, which should be named faces-
config.xml, located in the WEB-INF folder.

If you go to the source of the JhsADFPhaseListener class, you will see the following
method:

 protected PageLifecycle createPageLifecycle()
 {
 return (PageLifecycle)JsfUtils.getExpressionValue("#{jhsPageLifecycle}");
 }

Rather than hardcoding the instantiation of a specific PageLifecycle class, as is done in
the default ADFPhaseListener class (see previous section), JHeadstart uses a very
powerful JSF technique: you can get hold of any java class defined as a managed bean,
by using the same sort of EL expression as you use in your JSP pages to reference
managed beans. The above expression will return an instance of the class that is defined

JHeadstart Developer’s Guide JSF-ADF Page Lifecycle 14 - 9

in one of the loaded faces-config files under the name “jhsPageLifecycle”. By default,
JHeadstart generates the following managed bean definitions in the JhsCommon-
beans.xml:

The second managed bean named “jhsWizardPageLifecycle” is not used by default but is
generated for your convenience. This second bean also illustrates why using the
technique of looking up the PageLifecycle class through a managed bean definition is so
powerful: you can configure specific behaviors of the class without creating a subclass by
specifying managed properties. For example, you can configure the “Transaction
Completed” message or whether model validation should be performed.

By default, the generated jhsPageLifecycle managed bean references the
JhsPageLifecycle class because this is the default value of the service-level property
“Page Lifecycle class”. If you want to use a custom subclass, you can do so by creating a
java class that extends JhsPageLifecycle and specify the name of this subclass as the
value of the Page Lifecycle Class property.

If you want to use a specific PageLifecycle class for one specific group rather than the
whole application, you can do this by setting the group-level Page Lifecycle class
property. Unlike the service-level property by the same name, this property can contain
an EL expression that references your custom lifecycle managed bean definition.

The JhsPageLifecycle class, together with the bean classes in the
oracle.jheadstart.controller.jsf.bean package form the heart of the JHeadstart
Runtime, together they implement the sophisticated runtime behaviors you can generate.

	1 Getting Started
	1.1. Introduction into JDeveloper, ADF and JHeadstart
	1.1.1. Oracle JDeveloper
	1.1.2. Oracle Application Development Framework (ADF)
	1.1.3. What is Oracle JHeadstart?

	1.2. Roadmap to Developing ADF Applications using JHeadstart
	1.2.1. Set Up Project for Team-Based Development
	1.2.1.1. Setup Version Control System
	1.2.1.2. Set up Structure of JDeveloper Application
	1.2.1.3. Define Project Standards for Organizing ADF Business Components
	1.2.1.4. Define Java Package Structure and Other Naming Conventions
	1.2.1.5. Define Project Standards for Organizing JHeadstart Application Definition Files

	1.2.2. Create Business Service using ADF Business Components
	1.2.2.1. Create Business Component Base Classes
	1.2.2.2. Create Entity Objects and Associations
	1.2.2.3. Create View Objects and View Links
	1.2.2.4. Create Application Modules
	1.2.2.5. Implement Business Rules

	1.2.3. Design and Generate Web Pages
	1.2.3.1. Understand JHeadstart Generator Achitecture and Add Ins
	1.2.3.2. Create Application Definition File
	1.2.3.3. Configure Internationalization Options
	1.2.3.4. Generate and Run First-cut Web Application
	1.2.3.5. Design and Generate Page Layouts
	1.2.3.6. Design and Generate Item Display Types and Item Behavior
	1.2.3.7. Configure Query Behavior in Pages
	1.2.3.8. Configure Transactional Behavior in Pages
	1.2.3.9. Design and Generate Menu Structure

	1.2.4. Design and Generate Security Structure
	1.2.4.1. Understand and Choose Authentication and Authorization Options
	1.2.4.2. Implement User Authentication
	1.2.4.3. Implement Role-based and Permission-based Authorization
	1.2.4.4. Design and Generate Security Administration Pages

	1.2.5. Customize Generated Web Tier
	1.2.5.1. Decide on Customization Approach
	1.2.5.2. Use ADF Design-Time Tools to Implement Post-Generation Changes
	1.2.5.3. Move Post-Generation Changes to Custom Templates
	1.2.5.4. Create Custom ADF Faces Skin
	1.2.5.5. Add New Items and Customize Generated Items at Runtime

	2 Set Up Project for Team-Based Development
	2.1. Setting Up Version Control System
	2.1.1. Version Control Models
	2.1.2. Requirements for a GoodVersion Control System
	2.1.3. Which Files to Version?

	2.2. Setting up Structure of JDeveloper Workspace and Projects
	2.2.1. Installing JDeveloper
	2.2.2. Identify Subsystems within your Application
	2.2.3. Creating a Workspace and Projects
	2.2.4. Creating Database Connection
	2.2.5. Initializing Model Project for Business Components
	2.2.6. Optimizing ADF BC for Team Development
	2.2.7. Switching off Default Creation of ADF BC Java classes
	2.2.8. Enabling ViewController Project for JHeadstart

	2.3. Organizing JHeadstart Application Definition Files
	2.3.1. Service Level Settings that Should Be the Same Accross Application Definitions
	2.3.2. Naming Conventions for File Location Properties

	2.4. Defining Java Package Structure and Other Naming Conventions
	2.4.1. Java Packages
	2.4.2. Naming ADF Business Components

	3 Creating ADF Business Components
	3.1. Setting Up ADF BC Base Classes
	3.1.1. Using CDM RuleFrame

	3.2. Creating the Entity Object Layer
	3.2.1. Review Database Design
	3.2.2. Creating First-Cut Entity Objects and Associations
	3.2.3. Renaming Entity Objects and Associations
	3.2.4. Generating Primary Key Values
	3.2.4.1. Surrogate primary key populated in the Business Components Model layer
	3.2.4.2. Surrogate Primary Key populated in the database

	3.2.5. Setting Entity Object Attribute Properties used by JHeadstart
	3.2.5.1. Specifying Entity Object Control Hints

	3.2.6. Implementing Business Rules
	3.2.6.1. Adding Business Rules to the beforeCommit() method
	3.2.6.2. Define List Validators for Static Lookups

	3.3. Creating View Objects and Application Modules
	3.3.1. Creating View Objects and View Links
	3.3.2. Renaming View Objects and View Links
	3.3.3. Inspecting and Setting Key Attributes of a View Object
	3.3.3.1. Unchecking Reference Key Attributes for Updateable View Objects
	3.3.3.2. Set Manage Rows By Key for Read-Only View Objects

	3.3.4. Setting View Object Control Hints
	3.3.5. Determining the Order of Displayed Rows
	3.3.6. Creating Calculated or Transient Attributes
	3.3.6.1. Steps to create a calculated attribute
	3.3.6.2. Steps to create a transient attribute

	3.3.7. Setting Up Master-Detail Synchronization
	3.3.8. Defining View Links and View Object Usages for Lookups
	3.3.9. Testing the Model

	4 Using JHeadstart
	4.1. Understanding the JHeadstart Application Generator Architecture
	4.1.1. Input Output

	4.2. Using the JHeadstart Enable Project Wizard
	4.2.1. Enabling JHeadstart on a new project
	4.2.2. Enabling JHeadstart on an existing project
	4.2.3. Re-enabling JHeadstart on a project

	4.3. Using the Create New Application Definition Wizard
	4.3.1. Dropdown Lists or Lists of Values

	4.4. Using the Application Definition Editor
	4.4.1. Maintaining the Application Definition
	4.4.1.1. Starting the Application Definition editor
	4.4.1.2. Using the help in the Application Definition editor
	4.4.1.3. Editing the Properties

	4.4.2. Service
	4.4.3. Groups
	4.4.4. Items
	4.4.5. Lists of Values
	4.4.6. Regions
	4.4.7. Detail Groups
	4.4.8. Domains
	4.4.9. Manipulating Objects
	4.4.9.1. Moving objects
	4.4.9.2. Copying objects
	4.4.9.3. Deleting objects
	4.4.9.4. Using the clipboard to copy and paste multiple properties

	4.4.10. Novice Mode and Expert Mode
	4.4.11. Synchronize View Objects with groups

	4.5. Running the JHeadstart Application Generator
	4.6. Running the Generated Application
	4.6.1. TroubleShooting
	4.6.2. Dealing with Code Segment Too Large Error

	4.7. Customizing Using Generator Templates
	4.7.1. Recommended Approach for Customizing JHeadstart Generator Output
	4.7.2. Using Custom Templates
	4.7.3. Finding Out Which Generator Templates Are Used
	4.7.4. Velocity and the Velocity Template Language
	4.7.5. JHeadstart specific constructs in the Velocity Templates
	4.7.6. The File Generator Template
	4.7.7. Generating a JSF Navigation Rule from a Generator Template
	4.7.8. Generating a JSF ManagedBean from a Generator Template

	4.8. Generating Mobile Applications
	4.8.1. JHeadstart properties for Mobile
	4.8.1.1. Service Level Properties
	4.8.1.2. Group Level Properties
	4.8.1.3. Item Level Properties

	4.8.2. New Application Definition Wizard
	4.8.3. JHeadstart Application Generator
	4.8.4. Customizing View Types
	4.8.5. Adding a View Type

	4.9. What was Generated for What Purpose

	5 Generating Page Layouts
	5.1. Creating Form Pages
	5.1.1. Hide Items on the Form Page
	5.1.2. Using Regions
	5.1.3. Create and Update Mode in Form Layout

	5.2. Creating Select-Form Pages
	5.3. Creating Table Pages
	5.3.1. Hide Items in a Table
	5.3.2. Allowing the User to Sort Data in a Table Page
	5.3.3. Limiting the Number of Rows on a Table Page
	5.3.4. Adding Summary Information to a Table
	5.3.5. Change Table-Related ADF Business Components Settings
	5.3.6. Using Table Overflow

	5.4. Creating Table-Form Pages
	5.5. Creating Master-Detail Pages
	5.5.1. Master-Detail on Separate Page
	5.5.2. Master-Detail on Same Page
	5.5.2.1. Show Nested Table
	5.5.2.2. Stack Groups on Same Page
	5.5.2.3. Combining Layout Styles on Same Page

	5.6. Creating Tree Layouts
	5.6.1. Generating a Basic Tree
	5.6.2. Variation: Basic Tree with navigation-only nodes
	5.6.3. Variation: Recursive Tree
	5.6.4. Variation: Recursive Tree with Limited Set of Root Nodes
	5.6.5. Variation: Tree showing only Children of selected Parent

	5.7. Creating Shuttle Layouts
	5.7.1. Creating Parent Shuttles
	5.7.2. Creating Intersection Shuttles
	5.7.3. Understanding How JHeadstart Runtime Implements Shuttles

	5.8. Creating Wizard Layouts
	5.9. Changing the Overall Page Look and Feel
	5.9.1. Customizing the Application Logos
	5.9.2. Rearranging the Overall Page Layout Using Generator Templates
	5.9.3. Creating Custom ADF Faces Regions and using them in Generator Templates
	5.9.3.1. Creating a Custom Region
	5.9.3.2. Declaring the New Region
	5.9.3.3. Customizing the Data Page Template
	5.9.3.4. Using the Customized Template in the Application Definition

	6 Generating User Interface Widgets
	6.1. Specifying the Prompt
	6.2. Default Display Value
	6.2.1. Using EL expressions

	6.3. Display Type
	6.4. Generating a Text Item
	6.4.1. Define Item Display Width and Height
	6.4.2. Setting Maximum Length

	6.5. Generating a Dropdown List
	6.5.1. Static dropdown list based on a Static Domain
	6.5.2. Translation of static domains
	6.5.3. Dynamic dropdown list based on a Dynamic Domain

	6.6. Generating a Radio Group
	6.6.1. Static radio group based on a domain
	6.6.2. Translation of static domains
	6.6.3. Dynamic radio group based on a Dynamic Domain

	6.7. Generating a List of Values (LOV)
	6.7.1. Creating a (reusable) LOV group
	6.7.2. Linking a (reusable) LOV group to an item
	6.7.3. Defining an LOV on a display item
	6.7.3.1. What to do when ADF BC Tester does not update the lookup item

	6.7.4. Use LOV for Validation
	6.7.5. Selecting multiple values in a List of Values
	6.7.6. Understanding How JHeadstart Runtime Implements List Of Values

	6.8. Generating a Date (time) Field
	6.8.1. Specifying display format for date and datetime field

	6.9. Generating a Checkbox
	6.10. File Upload, File Download, Showing Image Files, and Playing Audio Files
	6.10.1. Combining File Display Options
	6.10.2. Showing Properties of Uploaded Files
	6.10.3. Using JHeadstart File Up/Download on BLOB Columns

	6.11. Generating a Graph
	6.12. Conditionally Dependent Items
	6.12.1. Using the Depends On property
	6.12.1.1. If an item depends on a single other item
	6.12.1.2. If an item depends on multiple other items

	6.12.2. Cascading Lists
	6.12.3. Row Specific Dropdown Lists in Table

	6.13. Custom Button that Calls a Custom Business Method
	6.13.1. Creating a Custom Method in the ADF BC Application Module
	6.13.2. Creating a Button that Calls the Method With a Fixed Percentage
	6.13.3. Generating the Button that Calls the Method
	6.13.4. Creating a Button that Calls the Method With Percentage From Input Field
	6.13.5. Generating the Input Field and Button that Calls the Method

	6.14. Hyperlink to Navigate Context-Sensitive to Another Page (Deep Linking)
	6.14.1.1. Enabling Deep Linking for a Group
	6.14.1.2. Manually Changing a Dropdown List to a Deep Link
	6.14.1.3. Preserving the Manual Changes using an Item Template

	6.15. Embedding Oracle Forms in JSF Pages

	7 Generating Query Behaviors
	7.1. Configuring the Query
	7.1.1. Specifying Auto Query
	7.1.2. Using Query Bind Parameters
	7.1.3. JHeadstart Runtime Implementation of Query Bind Parameters

	7.2. Creating a Search Region
	7.2.1.1. Determine which items should be displayed in the Search Region
	7.2.2. Using Quick Search
	7.2.3. Using Advanced Search
	7.2.4. Using a Query Operator
	7.2.5. Using Query Bind Variables in Quick or Advanced Search
	7.2.6. Runtime Implementation of Quick Search and Advanced Search
	7.2.6.2. Search Support in ADF BC Application Module
	7.2.6.3. Combining Quick Search and Advanced Search

	7.3. Forcing a Requery
	7.3.1. Implementation of Requery

	8 Generating Transactional Behaviors
	8.1. Enabling Insert
	8.1.1. Allowing Inserting Data in a Form Page
	8.1.2. Building Insert Only Form Pages
	8.1.3. Allowing the User to Insert Data in a Table Page

	8.2. Enabling Update
	8.3. Enabling Delete
	8.4. Conditionally Enabling Insert, Update an Delete
	8.5. Runtime Implementation of Transactional Behaviors
	8.5.1. Multi-Row Insert and Delete
	8.5.2. Single-Row Insert
	8.5.3. Single-Row Delete
	8.5.4. Commit Handling
	8.5.4.1. Add Commit Behavior to a Custom Button

	8.5.5. Rollback Handling

	9 Creating Menu Structures
	9.1. Static Menu Structure
	9.1.1. Which Menu Tab is Selected?
	9.1.2. Preventing Generation of a Menu Tab
	9.1.3. Customizing the Static Menu Structure

	9.2. Dynamic Menu Structure
	9.2.1. Creating the Database Tables
	9.2.2. Enabling Dynamic Menus
	9.2.2.1. Running the JHeadstart Application Generator
	9.2.2.2. Generating the Menu Admin Pages

	9.2.3. Defining the Menu Structure At Runtime
	9.2.4. Linking a User Interface Skin to a Module

	10 Application Security
	10.1. Understanding and Choosing Security Options with JHeadstart
	10.1.1. JAAS and JAZN
	10.1.2. JAAS Custom Login Module
	10.1.3. Hardcoding Roles or Permissions in Application Code
	10.1.4. Custom Security
	10.1.5. ADF Model Security
	10.1.6. ADF BC Security
	10.1.7. ADF Model Security vs. ADF BC Security

	10.2. JHeadstart Security Tables and Security Administration Screens
	10.2.1. Creating the Database Tables
	10.2.2. Generating Security Administration Pages

	10.3. Using JAAS-JAZN for Authentication
	10.3.1. Login Page and Login Bean
	10.3.2. Logout Button and Logout Bean
	10.3.3. J2EE Security Set Up in web.xml
	10.3.4. Default Users and Roles in jazn-data.xml
	10.3.5. Using LDAP and/or Single Sign On in Deployed Application

	10.4. Using JAAS with Custom Login Module for Authentication
	10.4.1. Sample Users And Roles
	10.4.2. Configuring the Custom Login Module
	10.4.3. System-jazn-data.xml
	10.4.4. Application.xml
	10.4.5. Debugging the Custom Login Module
	10.4.6. Deploying your Application with Custom Login Module

	10.5. Using Custom Authentication
	10.5.1. JHeadstart Authentication Filter
	10.5.2. Nested JhsModelService Application Module
	10.5.3. Login Page and Login Bean
	10.5.4. Logout Button

	10.6. Restricting Access to Groups based on Authorization Information
	10.6.1. Restricting Group Access using Permissions
	10.6.2. When Access Denied Go To Next Group
	10.6.3. JHeadstart Authorization Proxy
	10.6.3.1. Accessing the Authorization Proxy in the View layer
	10.6.3.2. Accessing the Authentication Proxy in the Controller layer

	10.7. Restricting Group And Item Operations based on Authorization Information
	10.7.1. Restricting Group Operations using Permissions
	10.7.2. Restricting Item Operations

	10.8. Using Your Own Security Tables
	10.8.1. Changes when Using JAAS Custom Login Module
	10.8.2. Changes when Using Custom Authentication
	10.8.3. Changes when Using Custom Authorization and/or Permissions
	10.8.4. Changes to SQL Script Templates

	11 Internationalization and Messaging
	11.1. National Language Support in JHeadstart
	11.1.1. Which Locale is Used at Runtime
	11.1.2. Supported Locales
	11.1.3. Adding a non-supported Locale

	11.2. Using Resource Bundle Type databaseTable
	11.2.1. Creating the Database Tables
	11.2.2. Running the JHeadstart Application Generator
	11.2.3. Running the Application

	11.3. Runtime Implementation of National Language Support
	11.4. Error Reporting
	11.5. Outstanding Changes Warning

	12 Runtime Page Customizations
	12.1. Creating the Database Tables
	12.2. Enabling Runtime Usage of Flex Items
	12.2.1. Creating a Flexible Region
	12.2.2. Running the JHeadstart Application Generator
	12.2.3. Generating the Flex Region Admin Pages

	12.3. Defining Flex Items At Runtime
	12.4. Creating an Item with Display Type Flex Region
	12.5. Internationalization and Flex Items
	12.6. Customizing Standard Items at Runtime

	13 Forms2ADF Generator
	13.1. Introduction into JHeadstart Forms2ADF Generator (JFG)
	13.2. Roadmap
	13.3. Running the JHeadstart Forms2ADF Generator (JFG)
	13.3.1. Select Forms Modules
	13.3.2. Select Form Elements to be Excluded from Processing
	13.3.3. Select Database Connection
	13.3.4. Generator Settings
	13.3.5. Processing the Selected Forms
	13.3.6. Troubleshooting
	13.3.7. Processing the Same Form Multiple Times

	13.4. Understanding the Outputs of the JHeadstart Forms2ADF Generator
	13.4.1. Generated ADF Business Components
	13.4.1.1. Entity Objects
	13.4.1.2. Entity Association
	13.4.1.3. View Objects
	13.4.1.4. View Links
	13.4.1.5. Application Module

	13.4.2. Generated JHeadstart Application Definition File
	13.4.2.1. Groups
	13.4.2.2. Items
	13.4.2.3. Region Containers, Item Regions and Group Regions
	13.4.2.4. Domains

	13.5. Handling Forms PL/SQL Logic
	13.5.1. Moving PL/SQL Logic to the Database

	14 JSF-ADF Page Lifecycle
	14.1. JSF Lifecycle Phases
	14.1.1. Restore View Phase
	14.1.2. Apply Request Values Phase
	14.1.3. Process Validation Phase
	14.1.4. Update Model Phase
	14.1.5. Invoke Application Phase
	14.1.6. Render Response Phase
	14.1.7. The Impact of the Immediate Property

	14.2. ADF-Specific Lifecycle Phases
	14.2.1. Customizing the ADF-JSF PageLifecycle

	14.3. JHeadstart Page Lifecycle

