Security & Identity Management 


Mechanics of Oracle Portal and Identity Management
Sanjeev Mohan, Golden Gate University

Introduction

Portals are becoming one‑stop shop for organizations wanting to share corporate information stored deep in a multitude of stovepipe applications. Portals provide a single point of access to the applications through a secure and highly customizable and personalizable user interface.

Portal is a way to provide critical information and services to organizations’ employees, customers, partners and other stakeholders. Based on the roles of the end users, they have access to embedded applications or portlets such as, self services HR apps, collaboration tools like web‑based email and calendaring, financial data etc. 

This paper demonstrates the steps needed to build a complete enterprise portal. The steps include:

1. Designing the architecture of the portal 
2. Evaluating and selecting the software layers needed to build the portal
3. Understanding the LDAP concepts in order to set up authentication via the Directory architecture
4. Setting up the Portal for users to customize and personalize their experience
5. Authenticating the users through a single sign on (SSO) mechanism
6. Extending the portal via mobile devices
In an era of cost controls and shrinking IT budgets, the question arises, “what are the benefits of building a portal?” Companies have tried to integrate complex legacy systems in the past and the task is not easy; Portals include even greater risks. However, the business case for portals is very strong and some of the benefits may include:

1. Higher productivity for the employees by providing single point of access to integrated applications.
2. Better employee communication and collaboration.
3. More efficient business process and improvements
4. Help make an organization more competitive. A well designed portal could provide an organization with a differentiation over its competition.
5. Better customer satisfaction and retention. 
6. Lower cost and better utilization of the staff e.g. IT support, HR staff etc.
7. Lower cost by reducing the number of servers.
Integration and Consolidation

Organizations today are laboring under heterogeneous systems. Each system may be working very efficiently to deliver the information needed by organizations but the systems are a world unto themselves. Most systems in the past  were not built with the notion that one day they should be able to freely share information with other systems. Hence, what organizations have ended up with are stovepipe applications. 

Executive dashboards, balanced scorecards, 360 degree view of the customers are some of the strategic management approaches that require data from multiple systems to be integrated and consolidated.

The following diagram shows some consolidation techniques and the rest of the document focuses on one of the techniques: portals.


[image: image1]
As the picture above demonstrates, integration can be done at many levels within an organization. Each level of integration solves a certain problem and has its pros and cons as described below:

1. Integration of databases – This involves consolidating multiple smaller databases into an enterprise database. It allows organizations to retire multiple smaller ad hoc databases and maybe even legacy databases and the respective applications into a more stable and larger database. However, this works only for smaller applications.

2. Data Warehouse – This has been one of the most common ways of creating a single view of disparate data. Enterprise-wide data warehousing projects are usually very large and time consuming. They involve extracting the data from multiple systems, transforming in to a data model for the data warehouse and then loading the data. The tool that is sued for this purpose is called Extraction, Transforming and Loading tool (ETL). Once the data warehouse is built, Online Analytical Processing (OLAP) reporting tools are used to derive the intelligence. Well known ETL tool vendors are Informatica and Ascential. Major OLAP vendors are: Cognos, Business Objects, Brio, Hyperion and MicroStrategy.

3. EAI tools provide a bridge that allows data to be exchanged from one system to another in a transparent manner and made available to a client application. EAI layer is highly dependant on open standards so that the systems can communicate easily. Some of these stands are Java Message System (JMS) and Java Connector Architecture (JCA). Major EAI vendors include: IBM MQ Series, TIBCO, Vitria, Web Methods and SeeBeyond.

4. Application level integration has required the use of distributed computing technologies that integrate systems and application distributed over a network of systems using Remote Procedure Calls (RPC). Some of the common manifestations of RPC architectures are Object Management’s Group’s CORBA and Microsoft’s COM/DCOM. While these technologies have been around for a long time they are limited because they don’t use open standards. For instance, in the case of CORBA, all nodes would need to run the same Object Request Broker (ORB) product.

5. Web Services is the newest kid on the block. It is a distributed computing technology like CORBA and DCOM but with a difference that it uses the well known Internet standards and specifications, such as HTTP and XML. XML is used not only to represent the data but also as a messaging protocol called SOAP.

6. Portal Integration is another popular integration methodology in use today. It doesn’t involve expensive and time consuming technologies and processes that EAI and data warehousing require. Also, it is the most customer-facing of all the methods described in this section. This means that it can be highly personalized and customized to the customer’s requirements. In future, portals will present their functionality as web services so that multiple portals from different vendors can be integrated.

Portal

The term portal is often misused and many describe it as an entry point into a site e.g. a company’s home page. The term because popular with sites like Yahoo, Excite, MSN etc. Portal, however, is much more than a generic web site. They cater to a number of people and can be classified as:

· Enterprise Portal to support organizations’ customers and employee needs by providing integrated access to applications and services. The enterprise portal may be created as an internal corporate portal for corporate consumption or as an eBusiness portal for external users.

· Public Internet Portals such as My Yahoo

· Appliance Portals using hand held devices such as PDAs, cell phones etc.

· Vertical portals for industries such as insurance, law, banking etc.

Portal Features

Portals may be built to service different types of users and user requirements. Hence, the features in the portal that an organization builds vary. This section covers the basic features of portals from the view point of the end users. These features make the portals relevant, accurate and fresh.

· Application
These are tools that provide integration to packaged applications, such as legacy applications, ERP suites, CRM applications content and document management systems etc. Many of the applications mentioned here come with business intelligence components.

· Content
80% of the corporate data exists in files and other formats as unstructured data. This typically includes a full text indexing engine using innovative new products like Oracle’s Internet File System (IFS) capable of navigating and indexing existing content. This feature also allows users to subscribe to external / syndicated content providers such a news, weather, sports and entertainment information etc.

· Collaboration
One of the biggest benefits of portal is that it allows integration of collaboration tools to improve communication. These tools vary from email systems, calendar, chat, discussion boards etc. It allows end users to work together more effectively by establishing shared workspaces, shared document repositories, online meetings and real-time interaction. Notification of events and workflow are some other examples of collaboration. 

Personal Organization tools
Tools used to personalize the content with end users’ to-do lists, contacts / address books and other personal productivity tools.

· Presentation
Most portal software segments the portal page into multiple sections or frames for each application. These applications either run within the section or may launch a new browser window when executed. Presentation tools allow end users to decide which applications they wish to see on their portal page and the layout and color schemes.

· Presentation
Most portal software segments the portal page into multiple sections or frames for each application. These applications either run within the section or may launch a new browser window when executed. Presentation tools allow end users to decide which applications they wish to see on their portal page and the layout and color schemes.

· Search
Advance search capabilities that allow users to search structured as well as unstructured data.

Portal features from the point of view of the development and IT support staff are:

· Identity Management and Security
User management is one of the biggest components of building a portal. The users need to be authenticated correctly and need to have their profiles available so that they can have access to the authorized set of applications and services (role management). Security issues become even more important when multiple applications are accessed from one place, the portal using the Single Sign On (SSO).

· Content Management
Since portals may include structured and unstructured content from multiple internal as well as external sources being refreshed at varying intervals, content management becomes a critical component. Portals have adapters to extract data from the underlying systems. However, if there is no adapter out of the box for an application then the adapter must be written. Content management also includes taxonomy management. 

Infrastructure
A well designed portal must be reliable, highly available and able to scale to the requirements of the ever-growing end user community. The infrastructure may include load balancing, caching, and other performance enhancements.

· User Interface Services
Most portals today present their content as HTML pages. However, some of the sophisticated interfaces may require Java plug-ins, support for wirel;ess and mobile users etc.

Portal Architecture

From a technical point of view, portal is a framework that enables developers to plug various software components called portlets and then deliver the aggregated content to multi devices.  The portlets can be integrated using a number of open as well as proprietary standards such as HTML, JSP, Java Beans, Java servlets, XSL that transforms XML through XSL transformation or even or even CGI. However, there is no common way to expose the APIs of the portlets which leads the portlets vendors to create separate APIs for each of the portal vendors that they have a partner relationship with.  

In order to interoperate the portlets and portals, a Java Service request, JSR 168 is being reviewed by Sun Microsystems’ Java Community Process to define a set of APIs for aggregation, personalization, presentation and security. This specification will be based on the specification for Java Servlet. Once the standard is in place, there could be a new third party portlet industry that could mushroom as portals will be able to integrate any portlet based on the standards using the Java architecture.

Taking the portlet even further is a standard called Web Services for Remote Portals (WSRP) from Organization for Advancement of Structured Information Standards (OASIS). This standard defines interfaces and behaviors to encapsulate portlets as web services so that any portal based on WSRP standard could bind to the portlets. This means that the local portal will only have the WSRP portlet proxy while the actually portlet will run on the remote server. The portal developers will be able to locate WSRP portlets in a public or private UDDI (universal description, discovery and integration) registry. WSRP will also interoperate with portlets developed using Microsoft .NET architecture.

Identity Management

Identity management deals with building an infrastructure to centralize the management of users and the privileges assigned to them. The advantages of centralization are many, such as:

· Better control over security of applications and servers by consolidating the authentication and authorization aspects. In fact many organizations prefer to not have security built into an application but manage it via the organization’s identity management / security system.

· Reduction in the number of user accounts within an organization

· Ease of managing a user life cycle – creation of a new user account, modification, assignment of roles and privileges and finally deletion of the user account.

· Control auditing of user actions over the network.

· Ability to integrate or federate with external networks using the similar standards for identity management.

One of the most predominant standards for managing identities today is the Lightweight Directory Access Protocol (LDAP) which is covered in detail in the next section.

Introduction to Directories and LDAP

Most of the people are aware of some sort of a directory in their everyday life, such as a phone book or a map of the mall. In the online world as well we use directories to look up information without giving much thought to it. For instance, when we type a URL, Domain Name Service (DNS) kicks up to find the IP address of the domain on which the concerned web page is available. In order to get the IP address, DNS looks up either a cache or a database of IP addresses and names that make up what we call the DNS. Similarly, even the /etc/passwd file on UNIX system can be considered an example of a directory of users on that system.

Many applications also have a store of their own databases that they use to allow people to use their services. Email systems, for instance, maintain their own repository of users and their relevant information. Now, let’s say, we want two different email systems to share the same list of users, we may not be able to do this because these repositories are proprietary to each email system and are not designed to be compatible to other systems. So, when a new employee joins a company, he or she may need to have multiple user accounts setup in a multitude of systems. There are many problems with this approach. First of all, there is redundant data being entered in multiple systems. Secondly, there are chances that the data for the same person may not match due to system requirements or due to users’ errors. Finally, when an employee departs from an organization, some of the accounts may be left active and this creates a security hazard. In summary the issues stemming from disconnected directories of users are:

1. Redundant data is being stored due to no common standards

2. Data is inconsistent

3. Security is minimized

It is estimated that large Fortune 500 companies have around 100 repositories on an average. Hence, if the user related information can be stored in a common, networked data repository that is used by the applications for looking up the end user’s credentials then it will solve the issues listed above. In order to address the problem that there is no common standard to access information stored inside a directory, OSI came up with the X.500 model. However, this model was very complicated and difficult to use. In 1995, University of Michigan derived a lightweight version of the standard, called appropriately, Lightweight Directory Access Protocol (LDAP). In 1997, the Internet Engineering task Force (IETF) released the version 3 of LDAP standard. 

LDAP protocol is an IP protocol that runs over TCP/IP. A version of the protocol running over UDP/IP is in development as well.

LDAP Schema - overview

The LDAP standard defines a set of rigid rules about how data should be structured and stored. This section explains the components of an LDAP schema. Detailed explanation of the components follows in the subsequent sections.

An LDAP directory is made up of entries. A collection of entries is called a Directory Information Tree (DIT). An entry could be a person entity or a resource e.g. each printer in an organization could be stored in an LDAP directory so that the end-user systems can have an access to the latest list of printers available for their use. An entry could also be a container i.e. it can contain other entries as well. For example, a department is a container entry in the directory. 

Entries are made up of attributes. For example, if an entry represents a user in an organization then its attributes could be name, address, phone number, employee id, department number etc. 

Some of the attributes are defined as mandatory and must have values while other attributes have optional data. When the attributes are filled up with values, each entry can be uniquely identified by a name called the Distinguished Name or DN for short. The example below demonstrates how a DN looks like:

dn: uid = jdoe,ou = hr,o = acme,dc = com

A group of attributes is called an Object Class. For example, most of the generic attributes associated with a person are contained in an object class that comes within the LDAP software. This object class id called inetOrgPerson. This object class contains all of the attributes associated with the person described above and more.

Attributes and Object Classes

LDAP software from the leading vendors such as Novell, Sun Micro Systems, Microsoft and Oracle come with a large number of predefined attributes and object classes. One object class previously mentioned was inetOrgPerson. As these attributes and object classes behave exactly in the same manner no matter which vendor supplies the LDAP software, they have a platform-agnostic uniquely identification.  This identification is done by Abstract Syntax Notation (ASN.1) object identifiers (OID). ASN.1 is an ISO standard for describing a message that can be sent over a network. For example, the OID for inetOrgPerson is: 2.16.840.1.113730.3.2.2.

ASN.1 syntax ensures uniqueness. For instance, when Golden Gate University wanted to create its unique object class to include person attributes that were unique to its own institution, it decided to create an object class called gguPerson. However, in order to store it uniquely in the directory, it had to get a “private enterprise number” from the Internet Assigned Numbers Authority (IANA).  IANA assigned GGU a private enterprise number 15022 which allowed it to give the following OID to gguPerson:  

Each attribute consists of the following:

	Attributes
	Description

	OID
	As defined above this is the unique identifier

	Name
	Each attribute must have a name

	Desc
	An optional description

	Equality
	

	Substr
	

	Syntax
	

	Valued
	By default, attributes have only 1 value (single-valued) but may have multiple values as well (multi-valued) e.g. email address


As mentioned earlier, an object class consists of one or more attributes. Object classes are hierarchical in nature. In other words, an object class may be derived from another and hence inherits all of its attributes. Of course, an object class may have its own attributes as well. The object class that one inherits from is called the superclass while the derived object class is called the subclass. 

In LDAP, an object class called top is the highest super class. Top has only one mandatory attributes and it is multi-valued. The attribute is called object class and it stores the values of all its sub classes. It also has some optional attributes, such as: authPassword, orclGuid, creatorsName and createTimestamp.

The following diagram shows the hierarchy for the inetOrgPerson:


[image: image2]
Two of the commonly seen person attributes – cn (common name) and sn (surname) are in fact mandatory attributes of the Person object class. Its optional attributes include: userPassword, telephoneNumber etc. 

The object classes defined above differ in their type. For instance, LDAP prohibits an entry from belonging to the top class. Such a class is called an abstract class and serves only as a superclass. For entries to belong to an object class, the latter must be of the type structural. Structural object classes are static in nature. Once an entry is created , its object class can not change. However, there are cases when an entry may need to be enhanced by addition of a new attribute. Let’s say in the LDAP directory, it is now deemed necessary to store information related to managers only. As only a small percentage of the LDAP person entries need the new attributes, it will be counter productive to attach the attributes to every entry. Hence, an auxiliary type of object class can be created to define a set of attributes that can be added to entries that already exist in the directory tree.

LDAP Directory Tree

An LDAP tree looks like an inverted tree. It starts at the root (In LDAP world, it is called the root DSE). The root sets the naming context of the server. Some examples of the naming context are:


dc=ggu, dc=edu


o=yahoo.com

dc and o are attributes that stand for domain and organization respectively. dc attribute belongs to the domain object class. 

The root branches into the next level of classification for the organization. A popular second level of the tree may consist of organization’s departments defined under the attribute –ou (organization unit). 

Here is an example of a directory information tree (DIT):


[image: image3.emf]cn=departments

(orclContainer)

dc=edu

(domain)

dc=ggu

(orclSubscriber)

cn=Users

(orclContainer)

uid=jdoe

(gguPerson)

cn=Groups

(orclContainer)

cn=Apps

(orclContainer)

cn=cms

(gguApp)

ou=Operations

(groupOfNames,

orgUnit)

ou=HR

(groupOfNames,

orgUnit)

ou=payroll

(groupOfNames,

orgUnit)

ou=benefits

(groupOfNames,

orgUnit)

ou=IT

(groupOfNames,

orgUnit)

cn=roles

(orclContainer)

cn=Resources

(orclContainer)

 In the above example, there are multiple logical trees or sub trees. A contiguous sub tree (or the entire DIT) is also called the naming context. For instance, from ou=operations to ou=benefits is a naming context. The naming context of the server itself may be dc=edu or o=acme. Each tree or sub tree has its own schema (explained below). The specification of each schema is called a subschema. Each schema is held in a special entry in the directory called subentry. To see the schema of a tree one needs to do a search on the subschema subentry.

An LDAP schema consists of:

· Object class

· Attribute Types

· Syntaxes 

· Matching Rules – determines how attribute values are searched and compared.
A tree can be used to store not only user identities and affiliations but any asset an organization may have. For instance, in the tree above, the resources subtree can be used to store entries pertaining to printers. In that case, if a new printer is procured and entered into the tree, effected users will be able to see and (hopefully) use the printer.

Similarly, the tree in our example is used to store attributes pertaining to applications such as content management system (CMS). As the use of LDAP grows, more and more entities are starting to be stored in the directory. For instance, Oracle RDBMS users have for many years specified an “aliases” to connect client applications to the server hosts running Oracle databases. These aliases have either traditionally been stored locally on the client systems or in an Oracle name server.  However, Oracle is now starting to withdraw the support for the Oracle name server as it moves to storing the aliases in the directory. The benefit of doing so is that as new Oracle instances are brought online and their entries are added to the directory, they are immediately available to the end-users. Of course, for security reasons, the end-users will need to have a database account on the new instance before they can use it.

A user’s identity consists of at least one object representing the user but multiple group objects. In the diagram above, a user jdoe exists under the cn=users but it is also referenced in all the places where it must have authorizations. For instance, it may be under ou=hr, ou=benefits as well as under application, cms. There are many ways of representing group information and the following section covers it in details.

Directory Groups

A directory group is a collection of objects. It consists of members who may be either persons or even other groups. A group could be a department, a class that some students attend or a collection of people with some common interests. Hence, not all groups can be treated in the same way. For instance, membership in a department group may be static but membership of students in the same course lasts only as long as the class is in session.

In an LDAP groups could be static or dynamic. Static groups belong to object classes, groupOfNames or groupOfUniqueNames. They have attributes, member or uniqueMember respectively that contains the DN of the users that belong to the group. 

For example, let’s say there is a group of people who are considered administrators in the IT department of Acme corportation. Their group object may look as follows:


dn: cn=admins,ou=it,o=acme,dc=com

In this example, admins is a static group that will have one or more of the members or uniqueMembers as follows:


uniqueMember: uid=2151,cn=users, o=acme,dc=com

A dynamic group is expressed by evaluating an LDAP URL. Dynamic groups have object classes such as groupOfURLs which has an attribute memberURL. An example of an LDAP URL is given in the next section.

Oracle Internet directory (OID)

Oracle Internet Directory is Oracle’s LDAP-based directory implementation for Oracle9i stack. It used to be bundled with Oracle9i AS but is now available as a stand alone product as well. In fact, the option to install OID is available of the Oracle9i database CDROM.  The steps to install OID on a UNIX / Linux server are as follows:

1. Install Oracle 9.2.0.1 and choose the OID option

2. Patch the database to 9.2.0.4

3. Use database configuration assistant (dbca) utility’s OID template to create the database to store the objects associated with OID. At the end of this step, an empty schema (ods) is created. Also, a 
4. Configure OID by running OID configuration assistant (oidca) by supplying the following information:
a. SID (it is case sensitive)

b. Port number for OID and OID over SSL. Defaults are 389 & 636 but choose 4032 and 4031

c. Choose OID super user’s DN e.g. cn=orcladmin

d. Choose password. Default is welcome

Once OID is configured, the utility oidca will start up the processes required to run OID i.e. oidmon and oidldapd. Oidmon process is responsible for starting all other OID processes such as the LDAP daemon (oidldapd), replication (oidrepld) and directory integration server (odisrv).

These processes can also be started manually as described below. In the first command, the string oid.ggu.edu is the tnsnames.ora entry that was created by the dbca and oidca processes. The steps are:

1. $ oidmon connect=oid.ggu.edu start

2. $ oidctl connect=oid.ggu.edu server=oidldapd instance=1 flags=’-p 4032’ start
In order to confirm that OID is running, the following steps can be performed:

1. $ ps –ef | grep oid

2. $ sqlplus ods/ods


SQL> select * from ods_process;

At the end of this step, a fully functional LDAP-compliant directory service is available for use. The next section details some of the ways GGU is using OID. In each of the following OID Application sections, custom object classes and attributes are created to provide added functionality. The format for the creation of new attributes and object classes are defined in a text file using a standard LDAP format called the “LDAP Data Interface Format” or LDIF.  The technical specification for this format is defined in RFC 2849.  
The following command demonstrates how a schema definition file called nisSchema.ldif is used to extend the standard LDAP schema:


$ ldapmodify –h oid.ggu.edu –p 4032 –D “cn=oracladmin” –w welcome –f /home/oracle/nisSchema.ldif

Once a schema has been created it must indexed otherwise the LDAP schema is not searchable. If the OID utility called oidadmin is used to create the object classes and attributes then the index is created automatically. However, if the object classes are created manually using the LDIF mechanism then the index must be created using the three step process described below:
Step 1. A text file is created to contain a list of new attributes.

Step 2. Execute the command: $ORACLE_HOME/ldap/bin/catalog.sh –connect oid.ggu.edu –add –file filename 

Step 3. Restart OID so that the new index can be read.
The final step in setting up OID is to populate the schema with data. For instance, in the first OID application mentioned in the next section, “access to the corporate portal / intranet” the newly created attributes of the object classes such as eduPerson and gguPerson must be populated with employee data. If this data comes from a legacy Human Resource system then one option is to extract the data into a flat file and then use OID’s “bulkload” utility to load the data into OID.
Bulkload is an Oracle utility that uses SQL Loader to load OID tables. Each time OID tables are loaded LDAP index must be recreated via the step 2 (catalog.sh) mentioned above. The utility is a three step process that includes validation, creation of the internal files and finally loading the tables. Let’s say’s we have a file called employees.ldif that needs to be loaded into the directory. The steps to do so are as follows:
$ bulkload.sh –connect oid.ggu.edu –check employee.ldif

$ bulkload.sh –connect oid.ggu.edu –generate employee.ldif

$ bulkload.sh –connect oid.ggu.edu –load employee.ldif

OID Application: Access to the Corporate Portal / Intranet
One of the most common ways to use an LDAP directory is for authenticating people to connect to a corporate portal / intranet and for looking up demographic information on the employees. Golden Gate University has as its constituents, faculty, staff, students, alumni, benefactors etc. These users are defined in different systems and with different attributes. For example, a student may have a student id but no social security number. However, an employee must have both an employee id as well as student id. A faculty on the other hand may be a tenured employee of an adjunct faculty. In either case, the faculty may have one or more classes that they teach. 

In order to provide all these constituents will a log in to the GGU portal, the university had to extend the default schemas consisting of standard object classes and attributes. A number of higher education facilities under the Internet2 initiative called Middleware Architecture Committee  for Education (MACE) have created an object class specifically to address the needs of universities. This object class is called eduPerson. GGU extended this object class and created an object class called gguPerson.

OID application: Operating System Authentication

OID can be used to store all the credentials needed by an operating system to authorize a user to log in. By default, when a user logs into a UNIX system, /etc/passwd file is looked up. However, UNIX’s pluggable authentication module (PAM) can be set up so that  an LDAP directory is looked up for the user credentials instead. 

In order to do OS authentication an object class called nischema must be created. This schema is attributes that correspond to what one can expect to find in /etc/passwd file e.g. uid, gid, login shell, home directory, gecos (the comments filed of /etc/passwd file).
OID application: Directory Naming

At GGU we have hundreds of PCs that students use to connect to various Oracle databases. These PCs have one or more copies of tnsnames.ora files that are read by Oracle client applications to find the description of Oracle Net services names to connect users to Oracle instances. It is quite a tedious job to keep the tnsnames.ora files up to date. In order to ease the maintenance of the service names, Oracle Names name server was introduced. However, with the launch of Oracle Internet Directory, Oracle Names is being de-supported and Oracle9i is the terminal release of his product. In future, “Directoy Naming” mechanism will allow service names to be stored in OID.

As a result, GGU has migrated the service names to OID. In addition, the client PCs have to be updated with a file called ldap.ora as follows:
# LDAP.ORA Network Configuration File: /apps/oracle/product/9.2.0/network/admin/ldap.ora

# Generated by Oracle configuration tools.
DEFAULT_ADMIN_CONTEXT = "dc=ggu,dc=edu"

DIRECTORY_SERVERS= (oid.ggu.edu:4032:4031)

DIRECTORY_SERVER_TYPE = OID

An optional file called sqlnet.ora can be created in order to provide a backup for service name lookup. For instance, at GGGU the primary lookup of service names is OID followed by tnsnames.ora file. The file looks as follows:
# SQLNET.ORA Network Configuration File: /opt/oracle/product/9.2.0/network/admin/sqlnet.ora

# Generated by Oracle configuration tools.

#NAMES.DEFAULT_DOMAIN = domain

NAMES.DIRECTORY_PATH= (LDAP, TNSNAMES, ONAMES, HOSTNAME)
Single Sign ON (SSO)

A single sign on architecture involves a centralized authentication hub that is used by all the users of the portal. Once the SSO server authenticates a user, the user is free to access all the applications available to the portal without having to login again. Also, when a user signs off, single sign off ensures that the user is logged off all the participating applications.

The following block diagram explains how SSO works:


[image: image4]
SSO will work on all the applications or web pages that need authentication. When a client browser tries to access the page, the web server will check to see if the site has the appropriate cookie set or not. If it doesn’t, then the browser is redirected to the SSO server or identity provider. 

The browser will then receive one or more “tokens” and will set a cookie. The web browser will once again be redirected to the web server but this time the URL has identifying information encoded in it. 

The web server will check the validity of the cookie. If it hasn’t expired then the browser is allowed to log on to the authenticated page or application.

Currently, there are two predominant SSO architectures, Microsoft’s .NET Passport and Liberty Alliance’s Liberty 1.1 specification. Microsoft .NET passport is the largest SSO network today. Microsoft claims to have 200 million users accounts. End users don’t pay to become a member but participating businesses pay a $10,000 annual fee. Liberty Alliance was started by about 15 organizations including United Airlines, American Express, GM, HP, Sun and Nokia. And today has about 150 members. Affiliate and Associate members don’t pay any fees but the sponsor and management board members pay $120,000 annual fee. Liberty Alliance launched its first specification, Liberty 1.0 in July 2002.

The main difference in the SSO implementations of both the groups is in how the tokens are generated. Microsoft uses 3DES-encrypted identifiers in a proprietary format. However, this makes the Passport network proprietary. Hence, Microsoft has committed to upgrading to Kerberos tickets. However, Liberty rejects Kerberos because of the overhead of the Kerberos ticket server and its inability to distinguish between authentication and authorization. Liberty Alliance has instead proposed an XML-based standard for exchanging authentication and authorization data called Security Assertion Markup language (SAML). The SAML data is embedded in the HTTP responses. Microsoft has also collaborated with IBM and VeriSign to enable passing authentication and authorization data in the SOAP header as a part of the WS-Security specification. 
ERP





CRM





Email





LOB





Legacy





inetOrgPerson (2.16.840.113730.3.2.2)





Top (2.5.6.0)





Person (2.5.6.6)





organizationalPerson (2.5.6.7)








Client Web browser





Apache web server 


(mod_sso)





SSO Server / Identity Provider (passport.com)





LDAP





Authenticated Portal Page / application





1





2





3





6





9





4





5





8





7








Paper 36786


_1101883262.vsd

