RDF in the Database: Enabling Semantically Rich Business Applications

Xavier Lopez
Director, Product Management
Server Technologies
Overview

- Semantic Applications Opportunity
- Semantic Technology Primer - RDF
- Germane Oracle10g Database Technologies
 - Network Data Model
 - RDF
 - OWL
Networks to Model Systems
Life Sciences, Ontologies, Social Networks
Network Concepts:

A network is a graph representation for modeling objects of interest and their relationships. It contains the following elements:

- **Nodes**: objects of interests (e.g. intersection, subject)
- **Links**: relationship between nodes (e.g. street, property)
- **Paths**: ordered list of connected links (e.g. scenic route, interaction)

- RDF introduces a universal way to manage graph representation
RDF Data Model Opportunities

- **Unique Business Opportunities**
 - Life Sciences: pathway analysis, protein interaction
 - Web: service discovery, FOAFs, blogs
 - eBusiness: grid resources, app integration, BI
 - Security: social networks, provence, varying trust

- **Applying DBMS Technology to the Challenge**
 - Scalability: models comprising millions of graphs
 - Security: Web-based, trust, reification
 - Transaction, versioning, performance
 - Exploit expressive power of SQL
 - Interoperability: Integrating multiple networks
Semantic Technologies

Goal: Associating more meaning (context) to enterprise data to enable its use across applications
- Common framework to express information to be exchanged between applications without loss of meaning

How? Develop technologies to allow sharing and reuse of enterprise and web data.
W3C Stack of languages

- **XML**: Surface syntax, no semantics
- **XML Schema**: Describes structure of XML documents
- **RDF**: Graph data model for “relations” between “things”
- **RDF-Schema**: Defines a domain vocabulary for RDF
- **OWL**: A more expressive Vocabulary Definition Language
Resource Description Framework (RDF)

• Originally conceived as W3C’s metadata model
 • Document metadata for digital libraries, content rating, site maps, etc.

• Simple data model
 • Leverages syntactic extensibility and modularity of XML namespaces
 • Provides global extensibility through a common data model
 • Directed labeled graph: “subject/property/object”
 • Nodes are called “resources” and links “properties”
RDF Statements (1)

- RDF specifies simple descriptions of resources
- Subject -> Property -> Object triples
- Objects are web-resources (URIs)
- Subject is again an Object:
 - triples can be linked
RDF Statements (2)

- Every identifier is a URI
 - = world-wide unique naming!

- Any statement can be a resource
 - represented by a node
 - graphs can be nested
 - Reification example:
 - Metadata: author, date, source.
RDF Schema (RDFS)

- Allows creation of class and property hierarchies
 - Ex: `<\`NCI:Rheumatoid_Arthritis``
 \`rdfs:subClassOf``
 \`NCI:Autoimmune_Disease`'>
 - Defines a domain vocabulary for RDF
 - Organises this vocabulary into a typed hierarchy
- RDF Schemas have URIs and can be described using RDF
RDFS Data Model
RDF Inferencing

- Employing symmetry and transitivity characteristics of properties to infer new relationships
- RDF Statements + RDFS rules
- Syntax for specifying user-defined rules
 - Enabled by RDFS
Beyond RDF: OWL
Web Ontology Language

- OWL builds on RDF and RDF Schema for describing sophisticated relationships for inclusion in (domain-specific) Ontologies
- Incorporates Ontologies being developed by various industry domains
 - Life Sciences
 - National Security
 - Health Care
 - Manufacturing
Oracle10g Network Data Model
Oracle Spatial NDM

☑ Provide an open and generic network data model and analysis platform for graph-based applications (store, index, query)
☑ Combine specialized application information with a general network data
☑ Applies efficient network algorithms and constraints to support graph analysis
☑ Enable 3rd party tools and apps
NDM Analytical Capabilities

- Canonical network analysis functions
 - Shortest path between two nodes
 - All paths between two nodes
 - Nodes reachable from a given node
 - All nodes within cost c from a given node
 - Nodes capable of reaching a given node
 - Nearest n nodes from a given node
 - Minimum Cost Spanning Tree
 - Traveling Salesman Problem

- Framework to apply network constraints
 - (path length, cost, links to avoid, etc.)
Perform Shortest Path Analysis in 10g
Shortest Path Analysis: KEGG Data
NDM Architecture

Thick or Thin Client
Browsing, navigation, presentation, editing, and analysis

Java API:
Network features loaded as in-memory Java objects in client tier or middle tier

Network Schema:
Persistent node, link, path and path-link tables along with metadata

Oracle Spatial 10g
RDF Support in Oracle10g R2
RDF Design Objectives:

- Extend NDM to support RDF object types
- Enable RDF with graph analysis
- Enable combined SQL query of enterprise database and RDF graphs
- Support large, complex graphs (10s of millions statements)
- Easily extensible by 3rd party tools/apps
RDF in Oracle Spatial

- RDF data stored in a directed, logical network
- **Subjects** and **objects** mapped to nodes, and **properties** to links that have subject start nodes and object end nodes
- Links represent complete RDF triples.

RDF Triples:
- \{S_1, P_1, O_1\}
- \{S_1, P_2, O_2\}
- \{S_2, P_2, O_2\}
Two new RDF object types
- SDO_RDF_TRIPLE
- SDO_RDF_TRIPLE_S

Several constructors and member functions

RDF Data Types (URIs, Blank Nodes, Plain, Typed and Long Litterals, Collections Types)

Multiple representations of values

Reification
RDF Querying: Overview

- Extend SQL using Extensibility Framework
 - RDF_MATCH table function
 - for graph pattern specification in query
- SPARQL –like syntax (W3C) support
- SQL-level access to RDF data
- Java API
RDF Querying: Example

Find pairs of persons residing at the same address such that first person rents a truck and the second person buys fertilizer

```
SELECT t3.x name1, t3.y name2
FROM AddrTable t1, AddrTable t2,
TABLE(RDF_MATCH(RDFModels('transactions'), ...
  `(?x :rents ?a) (?a rdf:type :truck)
  (?y :buys ?b) (?b rdf:type :fertilizer)`
  ...)) t3
WHERE t1.name=t3.x and t2.name=t3.y and
  t1.addr=t2.addr;
```

Shows embedding of a RDF query in a SQL query
RDF Querying: Example

Find pairs of persons residing at the same address such that first person rents a truck and the second person buys fertilizer

```
SELECT t3.x name1, t3.y name2
FROM AddrTable t1, AddrTable t2,
TABLE(RDF_MATCH(
    '(?x :rents ?a) (?a rdf:type :truck)
    (?y :buys ?b) (?b rdf:type :fertilizer)',
    RDFModels('activities','vehicles','chemicals'),
    RDFRulebases('rdfs')
    ...)) t3
WHERE t1.name=t3.x and t2.name=t3.y and
    t1.addr=t2.addr;
```

Shows embedding of a graph query in a SQL query
Use Cases:

- Astra Zeneca – Biological Pathways Analysis
- Beyond Genomics – Pathways Analysis
- GlaxoSmithKlein – Pathways Analysis
- Kyoto Univ. (KEGG) – Pathways Analysis
- Nature Publishing – Citation Analysis
- Overstock.com – Customer Care
- Siderean – Enterprise Search Partner
- Tom Sawyer – Graph Visualization Tool
- Cytoscape – Graph Visualization Tool
Planned OWL Support

Oracle’s Approach:

- Allow OWL Ontologies to be stored in a set of Oracle tables
- Provide a collection of SQL Operators and SQL Table Functions to query OWL Ontologies
Restaurant Example

served_food

<table>
<thead>
<tr>
<th>R_id</th>
<th>Cuisine</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>American</td>
</tr>
<tr>
<td>2</td>
<td>Mexican</td>
</tr>
<tr>
<td>2</td>
<td>American</td>
</tr>
<tr>
<td>14</td>
<td>Brazilian</td>
</tr>
</tbody>
</table>

Cuisine_ontology

- **cuisine**
 - Latin American
 - Mexican
 - Brazilian

...
Querying Cuisine Ontology

```
SELECT * FROM served_food
WHERE ONT_RELATED ( cuisine,
   'IS_A',
   'Latin American',
   'Cuisine_ontology')=1;
```

Result:

<table>
<thead>
<tr>
<th>R_id</th>
<th>Cuisine</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Mexican</td>
</tr>
<tr>
<td>14</td>
<td>Brazilian</td>
</tr>
</tbody>
</table>
Additional Ontology Queries

- Semantic filtering
- Query with path length constraints
- Query with path content constraints
- Semantic join
Status

Design & Implementation

- RDF Querying → 10gR2 database
- OWL Querying → prototyped, planned for 11x database