Use of Semantic Technologies at Eli Lilly and Company

J Phil Brooks
Information Consultant, SE Data Team
Discover IT
Eli Lilly and Company
Notable Semantic Projects at Lilly

• Discovery Metadata
 – Integration engine for Discovery Master Data to enable translational research

• CATIE Integration
 – Integration of a large-scale antipsychotic clinical trial with public data sets to identify interactions between treatments, genes, receptors, and pathways

• Competitive Intelligence
 – Harmonization and integration of publicly available data sets for surveying the competitive landscape in the Endocrine disease area

• Experiment Metadata Repository
 – Aggregation and vocabulary synchronization of experiment-related data

• Hypothesis Generator
 – Framework combining Semantic Web technology, graph algorithms, and user profiling to discover and prioritize novel associations among biomedical entities across disciplines
Semantic Projects at Lilly: Discovery Metadata

Integrates Master Data throughout the pharmaceutical discovery process to enable information sharing/integration for the scientific community

- Models key relationships between Master Data classes
- Provides ability to integrate disparate data sets quicker than the normal warehouse paradigm typically allows
- Utilizes inferencing to create new classifications of data
- Creates a re-usable and sustainable semantic framework
- Enables user-authored manual curation of relationships
Semantic Projects at Lilly: Discovery Metadata - Architecture

SOA Layer/Enterprise Service Bus
(WebServices, Visualizers, DataAccess Components)

SQL → SPARQL

Source Graph 1 → Source Graph 2 → Source Graph 3 → Source Graph 4
Source... → Local Assertions → Top Level Ontology
Local Assertions → Provenance Graph

ETL
Other Tools

Oracle

Application 1 → Application 2 → Application 3 → ...

Authentication

SOA Layer/Enterprise Service Bus
(WS, Visualizers, DataAccess Components)

Oracle

SQL → SPARQL

Source Graph 1 → Source Graph 2 → Source Graph 3 → Source Graph 4
Source... → Local Assertions → Top Level Ontology
Local Assertions → Provenance Graph

ETL
Other Tools

Oracle

SQL → SPARQL

Source Graph 1 → Source Graph 2 → Source Graph 3 → Source Graph 4
Source... → Local Assertions → Top Level Ontology
Local Assertions → Provenance Graph

ETL
Other Tools

Oracle

SQL → SPARQL

Source Graph 1 → Source Graph 2 → Source Graph 3 → Source Graph 4
Source... → Local Assertions → Top Level Ontology
Local Assertions → Provenance Graph

ETL
Other Tools

Oracle

SQL → SPARQL

Source Graph 1 → Source Graph 2 → Source Graph 3 → Source Graph 4
Source... → Local Assertions → Top Level Ontology
Local Assertions → Provenance Graph

ETL
Other Tools

Oracle

SQL → SPARQL

Source Graph 1 → Source Graph 2 → Source Graph 3 → Source Graph 4
Source... → Local Assertions → Top Level Ontology
Local Assertions → Provenance Graph

ETL
Other Tools

Oracle
Semantic Projects at Lilly: Competitive Intelligence

Provides a mechanism for actively surveying publicly available information for competitive intelligence in the Endocrine area of Lilly’s business

- Constructed an ontology of competitor companies, projects, molecules, and disease targets
- Utilized semantic normalization along with other Natural Language Processing (NLP) techniques to reconcile data content
- Utilized inferencing (in conjunction with the company ontology) to normalize companies, their subsidiaries, and other collaborators
Semantic Projects at Lilly: Metadata Repository

Aggregates metadata for experiments from diverse relational databases into a semantic repository for scientific investigation

- Provides a unified vocabulary for scientific investigation
- Implemented faster and provided benefits sooner than the traditional warehousing paradigm
- Allows semantic and relational databases to work together

Sample Queries:

- Identify all interactions for methylases involved in Colon cancer
- Find cell lines in which RNAi data has been generated using Dhharmacon reagents
- Retrieve the antibodies that have been used to assess the AKT1 pathway activity in MCF7
- Find all the experiments that were done using my sample
- Find all samples which are grade III colorectal cancer and retrieve the expression, mutation and aCGH data
Why Oracle?

• Longstanding relationship with Oracle
• Significant Oracle expertise in-house
• Mature, centralized support organization
 • Backup/recovery
 • Software/patch installation
 • On-call support
• Ability to experiment with “minimal” investment
 • Oracle databases readily available
 • Dependent RDBMS options already licensed
• Support from Oracle’s Semantic Technologies Group has been great!
Use of Semantic Technologies at Eli Lilly and Company

Thank you!