

Oracle OpenWorld

October 2, 2014

Presenters: Bill Taggart and Tim Gerber

GARMIN

Who We Are

Bill Taggart
Software Engineer

Tim Gerber
Database Administrator

How Garmin Connect Manages and Analyzes 6 Billion Miles of Fitness GPS Data

Program Agenda

- Garmin – The Company
- Overview of Garmin's use of Oracle Spatial
- Segments and Leader Boards
- Challenges and their Solutions
- Benefits
- Q&A

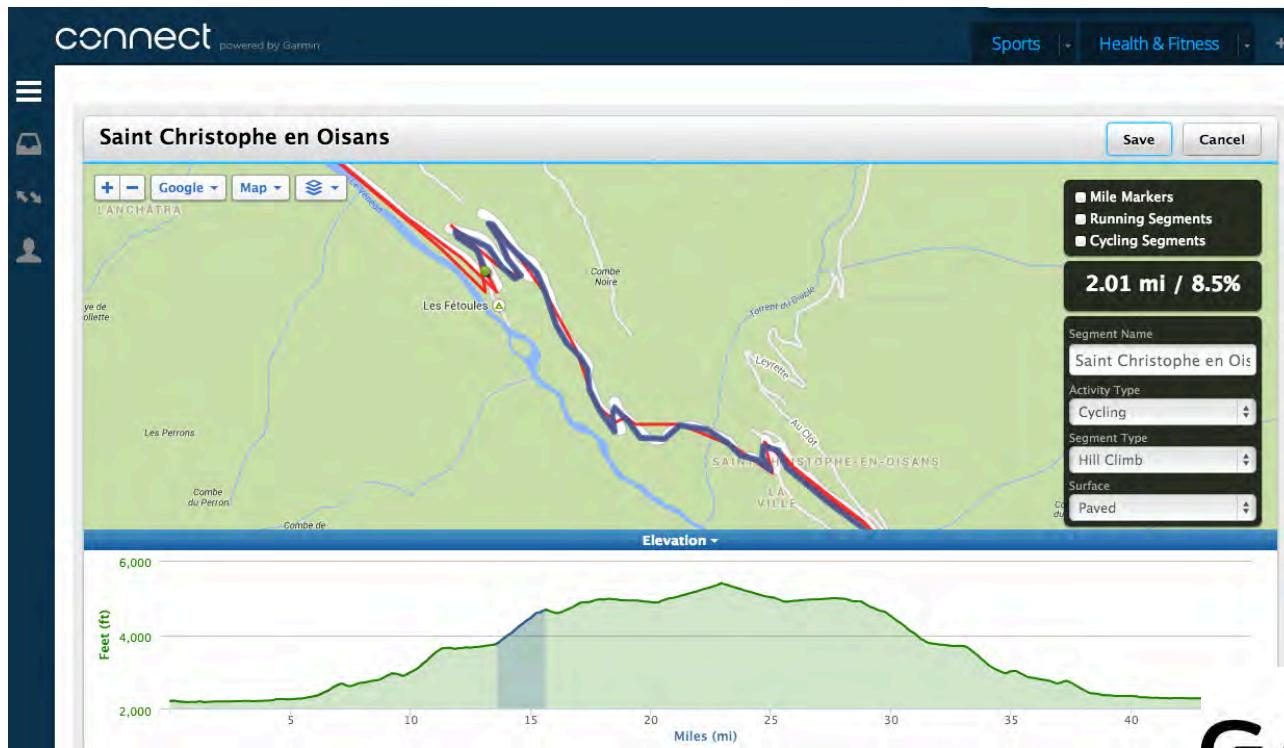
Who is Garmin

- Garmin is the global leader in satellite navigation.
- Since 1989, Garmin has designed, manufactured, marketed and sold navigation, communication and information devices and applications, most of which are enabled by GPS technology.
- Garmin's products serve automotive, aviation, marine, outdoor, sports and fitness industries.
- Garmin has approximately 10,000 associates in 35 offices worldwide.

What is Garmin Connect

- Web based portal to upload, track, and analyze a users outdoor, wellness and fitness activities.
- Allows users to interact/connect with each other around their outdoor/fitness data.
- Track and plan your current and future activities.
- The 6 billion miles mentioned in this presentation come from Garmin Connect user activities

Garmin Segments and Leaderboards


Leveraging Oracle Spatial for Challenges

- Fitness customers wanted a way to challenge one another.
- Segments provide a way to compete along a stretch of road or trail.
- Leaderboards rank user activities on a given challenge segment.
- Oracle Spatial and Graph plus Linear Referencing System are used to match user activities to segments and extract the elapsed time for ranking.
- Segments are creating from either a running or cycling activity

Garmin Segments and Leaderboards

Defining Segments from User Activities

GARMIN

Garmin Segments and Leaderboards

Ranking Users Activities

The screenshot shows the Garmin Connect website interface. The top navigation bar includes the 'Sports' and 'Health & Fitness' tabs. The main content area displays a segment summary for 'Saint Christophe en Oisans'.

Summary:

- Map:** Shows a route on a map with a blue line and elevation markers. A green shaded area represents the segment.
- Statistics:**

Distance	Avg Grade	Elev Gain	Elev Loss
2.01 mi	8.5 %	902 ft	0 ft
- Segment Type:** Hill Climb
- Surface:** Paved

Leaderboard: Everyone

Rank	User	Time	Speed (mph)	HR (BPM)	Power (W)	Cadence (RPM)	Wind	Date
1	gctest1	19:05	6.32	144	--	--	17 mph	July 1, 2013
1	gctest2	19:05	6.32	144	--	--	17 mph	July 1, 2013
3	gctest3	20:57	5.75	165	--	65	17 mph	July 14, 2013

Elevation: A line graph showing the elevation profile of the segment, with the y-axis ranging from 4,000 to 5,000 feet.

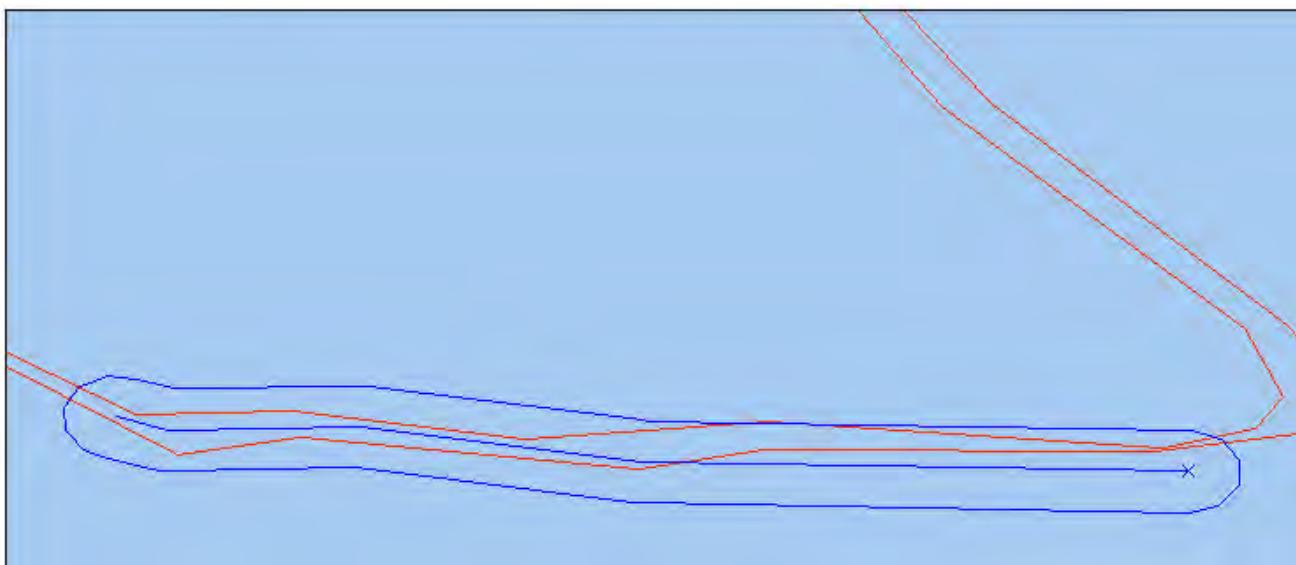
GARMIN

Meet the Edge 1000

Garmin Segments and Leaderboards

Distilling Data for the Edge 1000

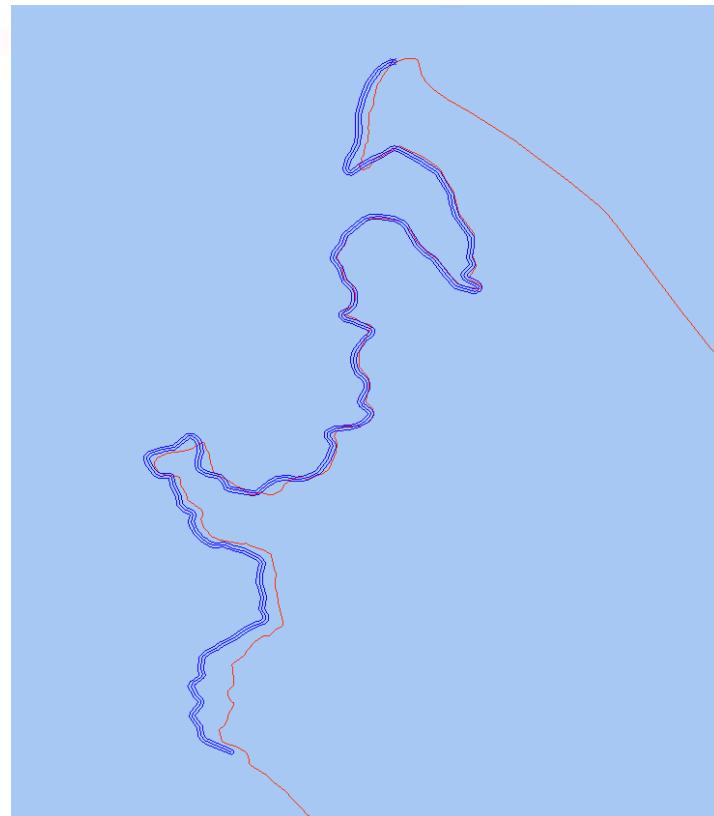
- The file sent to an Edge 1000 is like one drop from a distillery.
- There is a lot of energy spent behind the scenes to produce it.
- Oracle Spatial drives the process.



Garmin Segments and Leaderboards

Matching with Oracle Spatial and Graph

Simple Spatial Query Visualizer [source file](#)


Criteria:

- Start
- End
- Direction
- Path

Garmin Segments and Leaderboards

Segment Matching Challenges

GPS Variance:

- Buildings
- Trees
- Canyons
- Satellite drift
- Equipment

Garmin Segments and Leaderboards

Oracle Spatial and Graph to the Rescue

- `SDO_ANYINTERACT` casts a broad net for possible match candidates.
- `SDO_GEOM.SDO_BUFFER` used to ensure that the match candidate stays within an acceptable range along the segment.

Garmin Segments and Leaderboards

Oracle Linear Reference System to the Rescue

- Needed a way to measure elapsed time.
- LRS time measure provides a way to obtain the time entered & exited for the match candidate.
- Time comparison tests directionality.

Garmin Segments and Leaderboards

Building an Oracle Spatial and LRS Solution

Proof of concept challenges and testing

- Define data type (Oracle LRS w/time measure)
- Spatially index data
- Load test data
- Discovered some interesting activities

Garmin Segments and Leaderboards

Define USER_SDO_GEOM_METADATA

```
INSERT INTO USER_SDO_GEOM_METADATA(  
    table_name, column_name, diminfo, srid  
) VALUES (  
    'SEGMENT', 'POLYLINE',  
    SDO_DIM_ARRAY(  
        SDO_DIM_ELEMENT('Longitude', -180, 180, 0.05),  
        SDO_DIM_ELEMENT('Latitude', -90, 90, 0.05),  
        SDO_DIM_ELEMENT('Time', 0, 0, 0.05)), 8307
```


Garmin Segments and Leaderboards

Loading Spatially Indexed LRS Data

```
new JGeometry(  
    3302, // Line string; 3D (x, y, m), 3rd is dimension  
    8307, // SRID for latitude/longitude (8307)  
    {1,2,1}; // offset, line, straight,  
    SDO.coordinates(geom)  
);
```


Garmin Segments and Leaderboards

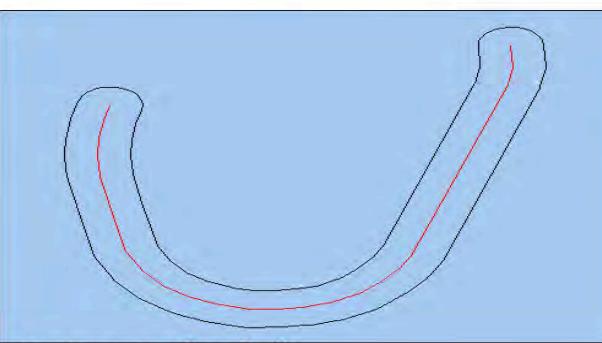
Validating Data

```
SELECT COUNT(*) FROM
GEO_ACTIVITY a
WHERE
SDO_GEOM.VALIDATE_GEOMETRY
( a.polyline, .005) = 'FALSE';
```


Garmin Segments and Leaderboards

Fixing Problems

```
UPDATE GEO_ACTIVITY a
SET a.polyline =
SDO_UTIL.REMOVE_DUPLICATE_VERTICES
( a.polyline, .005)
```



Garmin Segments and Leaderboards

Example of creating a 2D Line & MapViewer

```
INSERT INTO SPATIAL_LEARNING
(SPATIAL_NAME, SPATIAL_DATA)
VALUES
( 'Kansas Speedway Track',
  SDO_Geometry(
    2002, -- two dimensional line
    8307, -- SRID for WGS-84 longitude/latitude
    NULL,
    SDO_ELEM_INFO_ARRAY(1, 2, 1),
    SDO_ORDINATE_ARRAY(
      -94.8338234424591,39.11655560213989,
      -94.83394682407379,39.11618478057385,
      -94.83402192592621,39.11574920989278,
      -94.83404874801636,39.11532540880791,
      -94.83400046825409,39.114819198615976,
      -94.83385562896729,39.11417171516305,
      -94.83353912830353,39.11296502557993,
      -94.83324944972992,39.11248823034213,
      -94.8328846693039,39.11213504660467,
      -94.83245015144348,39.11187604407223,
      -94.83188152313232,39.1116700186508,
      -94.8313558101654,39.1115581760269,
      -94.8308676481247,39.11156994894302,
      -94.83044385910034,39.111611154134025,
      -94.82995569705963,39.111711223783246,
      -94.82944071292877,39.111934908367736,
      -94.82903838157654,39.11224688831305,
      -94.82870578765869,39.11257652599992,
      -94.82847511768341,39.11292382118056,
      -94.82679605484009,39.11707357185418,
      -94.82670485973358,39.117479704535015,
      -94.82674241065979,39.118021211134604));
  ));
```

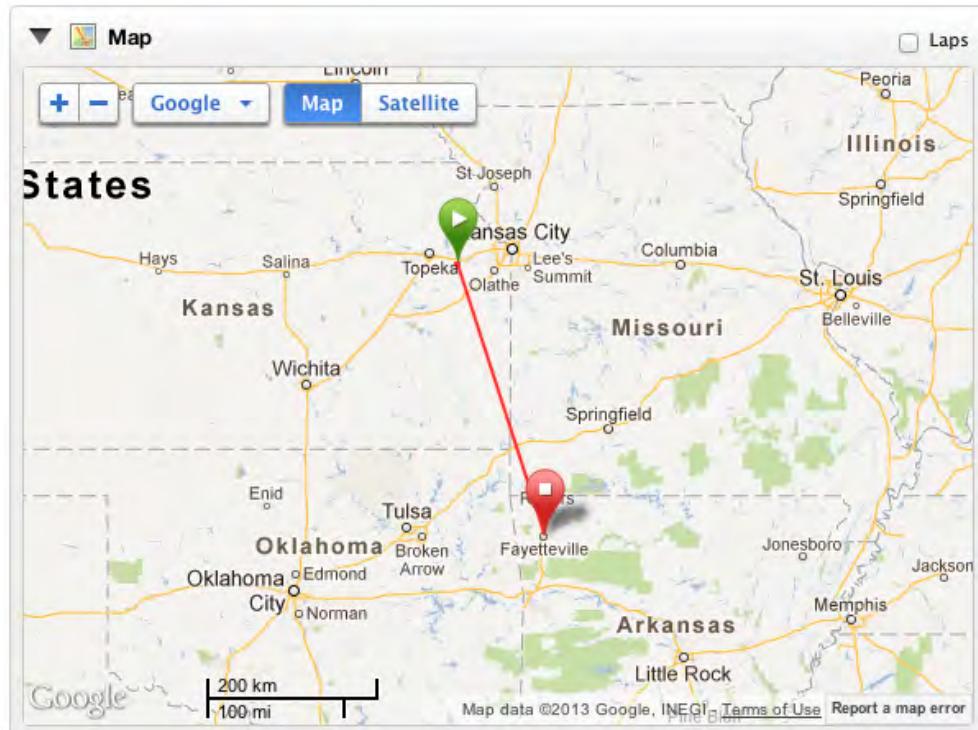
ORACLE
FUSION MIDDLEWARE
MAPVIEWER 11g

MapViewer Simple Spatial Query Visualiz

Click on the map to:

Datasource: mb_bill map width: 500 height: 375 AA Submit

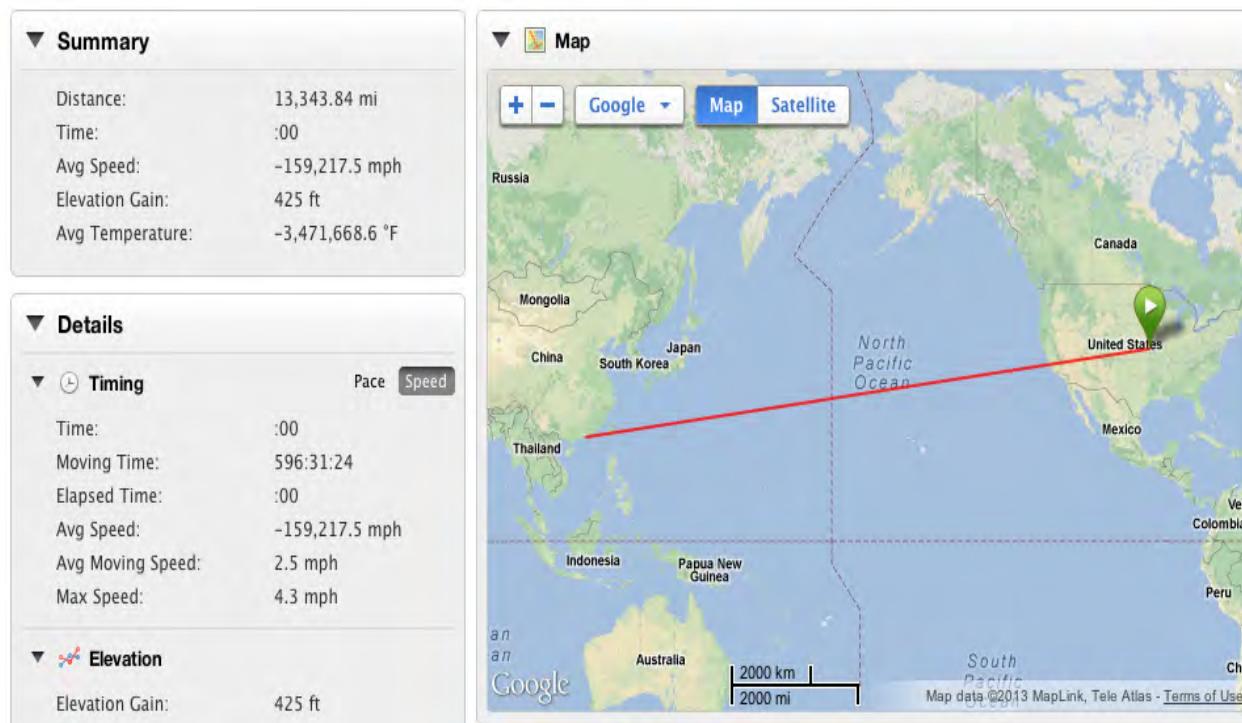
query 1: select spatial_data from spatial_learning where spatial_name = 'Kansas Speedway Track'


query 2: select SDO_Geom.SDO_BUFFER(spatial_data, 50, .05) from spatial_learning where spatial_name = 'Kansas Speedway Track'

MapViewer: <http://www.oracle.com/technetwork/middleware/mapviewer/overview/index-090261.html>

Garmin Segments and Leaderboards

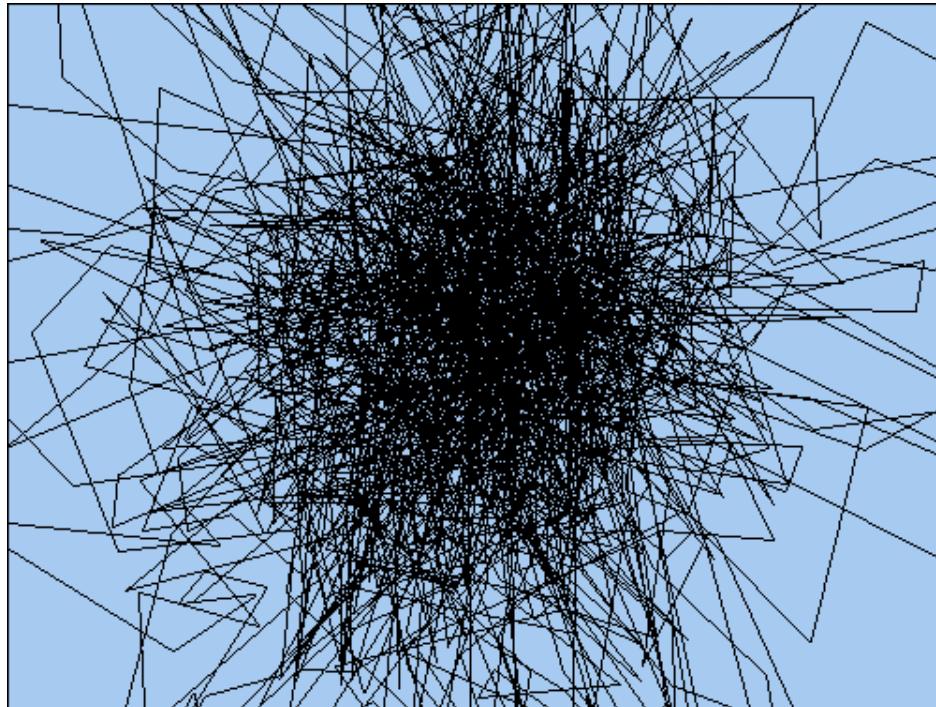
Identifying User Data Problems



User paused
multisport device at a
triathlon in one city
and then resumed it at
home.

Garmin Segments and Leaderboards

GPS Data Problems



We found a few instances of bad GPS data.

Garmin Segments and Leaderboards

Identifying User Data Problems

Indoor treadmill
activity with GPS
enabled.

Garmin Segments and Leaderboards

Multiple Laps on One Segment

Click on the map to:

Datasource: PROD map width: 500 height: 375 AA

query 1:

```
select polyline from mb.segment where segment_pk = 2561
union all
select SDO_GEOGRAPHY_BUFFER(polyline, 50, .05) from mb.segment where
segment_pk = 2561
```

Line:

translucent

Label Column:

query 2:

```
select polyline from mb.geo_activity where geo_activity_pk = 409275170
```

Line:

translucent

Label Column:

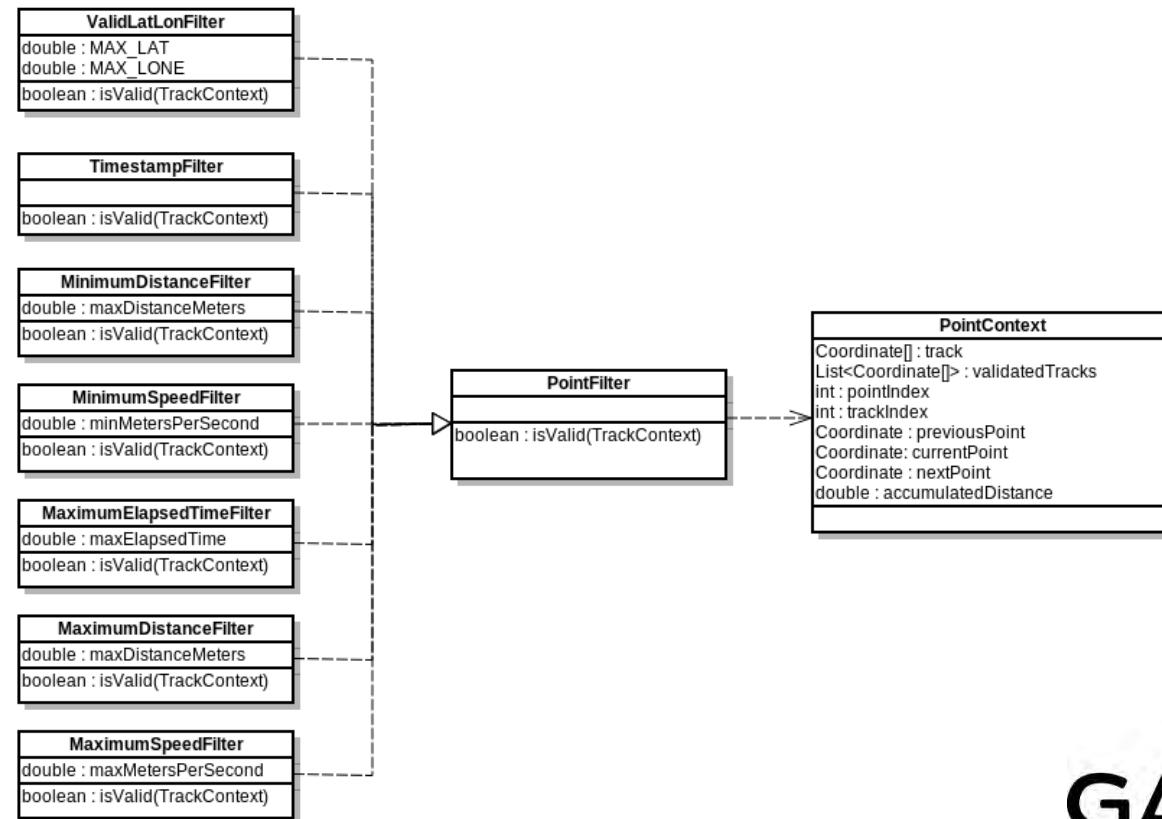
query 3:

```
select start_point from mb.segment where segment_pk = 2561
```

Line:

Popular segment that is a loop and one activity frequently crosses the segment multiple times

Garmin Segments and Leaderboards


Initial Historical Load of Activity Data

- In order to handle the following data issues, we build a process to scrub all of our activities(6 billion miles worth)
 - One activity crossing a segment multiple times (make sure they get credit for each match to the segment)
 - User usage issues
- Separate data structure to contain the scrubbed activities
- Define scrubber rules
- Complete initial load of 300 million historical activities

Activity Scrubbing Filters

Point Filter Class Diagram

Garmin Segments and Leaderboards

Segment Summary

- Segments give users a way to compete with each other.
- Oracle Spatial and Graph allows us to match user activities to segments.
- Oracle LRS allows us to measure the elapsed time of each segment match (used to build the segment leaderboard).
- The difficult part was provisioning clean data and overcoming differences in GPS data.
- Today we have over 125K segments with 52+ million and growing segment matches

Exadata Footprint

The Power Behind the Performance

Two Exadata Half-Racks

- One $\frac{1}{2}$ rack for Connect production database.
- One $\frac{1}{2}$ rack for all non-production Connect databases and production Data Guard standby database.

Exadata and Spatial Performance Benefits

- Running Oracle 11.2.0.3
- Ran the same spatial query on a commodity server and on Exadata -> Result was 20X faster on Exadata.
- We have even further performance gains by applying some of the backported Oracle 12C Spatial Patches.
 - **Patches numbers: 13950749 ,16512844, 18907724**

The World of Partitioning

Divide and Conquer the Data

- The Garmin Connect database is 50 TB and growing at a pace of 2 TB per month.
- Of this 50 TB, 5.5 TB is spatial data used for segments and leader boards.
- Putting this data into a single non-partitioned table is unrealistic.
- To get the best performance, we needed to partition the tables.

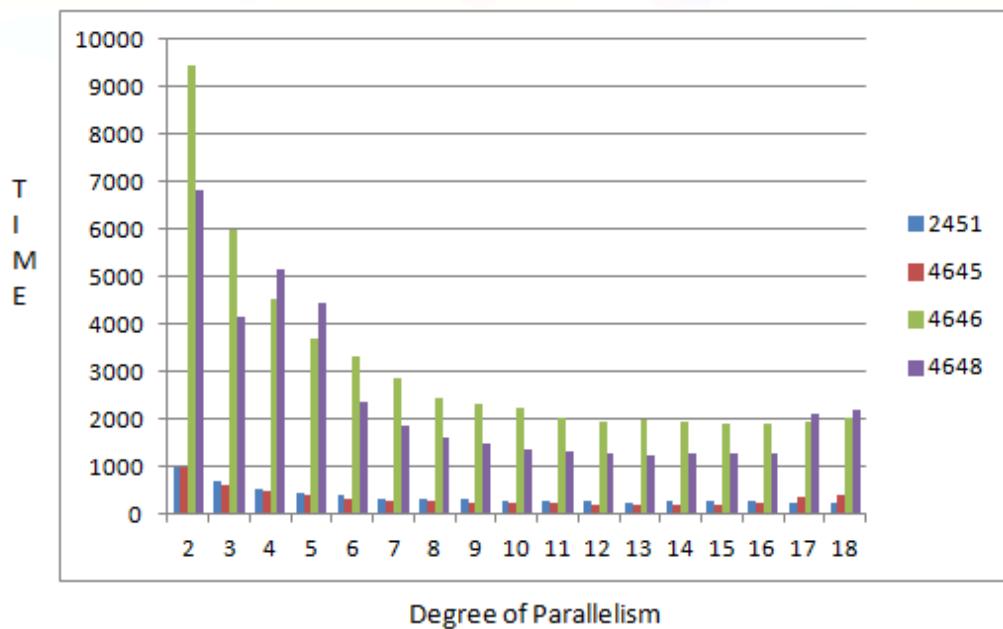
The World of Partitioning

Our Partitioning Strategy

GEO_ACTIVITY
(Partitioning Key: ACTIVITY_TYPE PK, START_TIME_GMT)
Partition High Value: 1, 01/01/2009
Partition High Value: 1, 01/01/2010
Partition High Value: 1, 01/01/2011
Partition High Value: 1, 01/01/2011
.
.
Partition High Value: 1, 03/01/2014
Partition High Value: 1, 04/01/2014
Partition High Value: 2, 01/01/2009
Partition High Value: 2, 01/01/2010
Partition High Value: 2, 01/01/2011
Partition High Value: 2, 01/01/2011
.
.
Partition High Value: 2, 03/01/2014
Partition High Value: 2, 04/01/2014

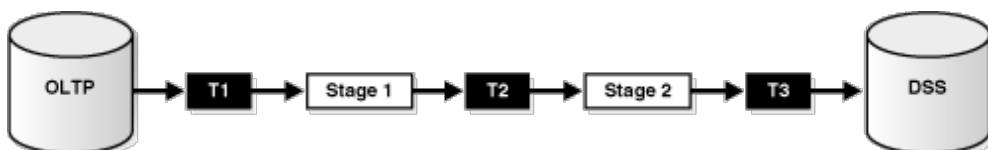
- All of our queries will be based around activity type (i.e. running and cycling) and date.
- Spatial indexing allows for partitioning but not sub-partitioning.
- Therefore we chose to use a composite key of activity_type, date with range partitioning.

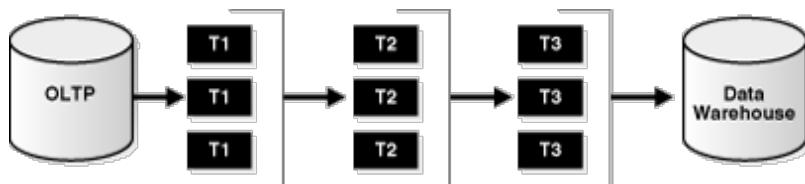
The World of Partitioning


Performance Impact of Local Indexes

- Tested global indexes (both traditional and Spatial Indexes).
- Saw 5x improvement when using local spatial indexes.
- `CREATE INDEX LRS_GEO_ACTIVITY_IDX ON GEO_ACTIVITY ("POLYLINE") INDEXTYPE IS "MDSYS"."SPATIAL_INDEX" PARAMETERS ('SDO_indx_dims=2') LOCAL PARALLEL 6 ;`

Power of Parallelism


Run Time Performance


Running tests with different degrees of parallelism helped drive out the optimal number of parallel processes.

Pipelined Functions

The Performance Impact

Typical Data Processing with Unparallelized, Unpipelined Table Functions

Data Processing Using Pipelining and Parallel Execution

- Iteratively return rows as they are produced instead of in a batch after all processing of the table function's input is completed.
- Execution of a table function can be parallelized, and returned rows can be streamed directly to the next process without intermediate staging.

Power of Parallelism

Parallel Pipelined Functions

- Parts of our segment matching processing is utilizing a PL/SQL package.
- To help performance within the package, we have taken advantage of parallel pipelined functions.

```
get_sections_for_segment(segment_pk_v      NUMBER,  
                         buffer_dist      NUMBER,  
                         interval_in_meters NUMBER,  
                         max_skip_percent NUMBER,  
                         source_table_cursor IN for_segment_cursor_type)  
RETURN activity_segment_table_type DETERMINISTIC  
PIPELINED PARALLEL_ENABLE  
(PARTITION source_table_cursor BY HASH (geo_activity_pk))
```


Performance Testing

The Never Ending Obstacle

- How to test a new functionality without any true baseline?
- How to create real life data for testing?
- How to manage the required resources needed by the Segments feature and providing the rest of the application sufficient resources?

Performance Testing

Responses to the Challenges

- We wrote a java program that created test data from segments from real life data and also created segments from known popular rides/runs.
- To test performance of matching this test data, we created a PL/SQL program that walked through each segment and recorded the run time to a table.
- Test, test, and test again before migrating to production.
 - Evaluate AWR reports
 - Second option is to use Real Application Testing (RAT) but some of the recommendations for using RAT can be difficult to accomplish

Production Obstacles

Resource Saturation

- Oracle Spatial queries can be CPU intensive
- How to manage the required resources needed by the Segments feature and providing the rest of the application sufficient resources?

Production Obstacles

DBRM at its Best

- DB Resource Manager is instrumental in allowing us to prioritize work from the application including the Segments feature.
- DBRM allows us to prioritize our CPU cycles and we can easily change this priority based on application peak times and low times.

Production Obstacles

Overcoming the CPU

- Each feature of our application connects to the database using separate DB Services.

```
srvctl add service -d <DB> -s <DB Service Name> -r <DB Inst1> -a <DB Inst2> -l primary
```

- Then DBRM is implemented to prioritize the work based off the DB Service Names allowing different parts of the application to have priority over others.

Production Obstacles

DBRM Details

- DBRM for Intra DB Resource Management
 - http://docs.oracle.com/cd/E11882_01/server.112/e25494/dbrm.htm#g1021210
 - <http://www.oracle.com/technetwork/database/performance/resource-manager-twp-133705.pdf>
- CPU/Instance Caging
- A DBRM plan should be enabled.
- <http://www.oracle.com/technetwork/database/performance/instance-caging-wp-166854.pdf>

ALTER SYSTEM SET RESOURCE_MANAGER_PLAN='DEFAULT_PLAN';

ALTER SYSTEM SET cpu_count=12 scope=both sid='*';

OR

ALTER SYSTEM SET cpu_count=12 scope=both sid='CONCTPRD1';

The Data Load Challenge

The Data Load Challenge The Problem

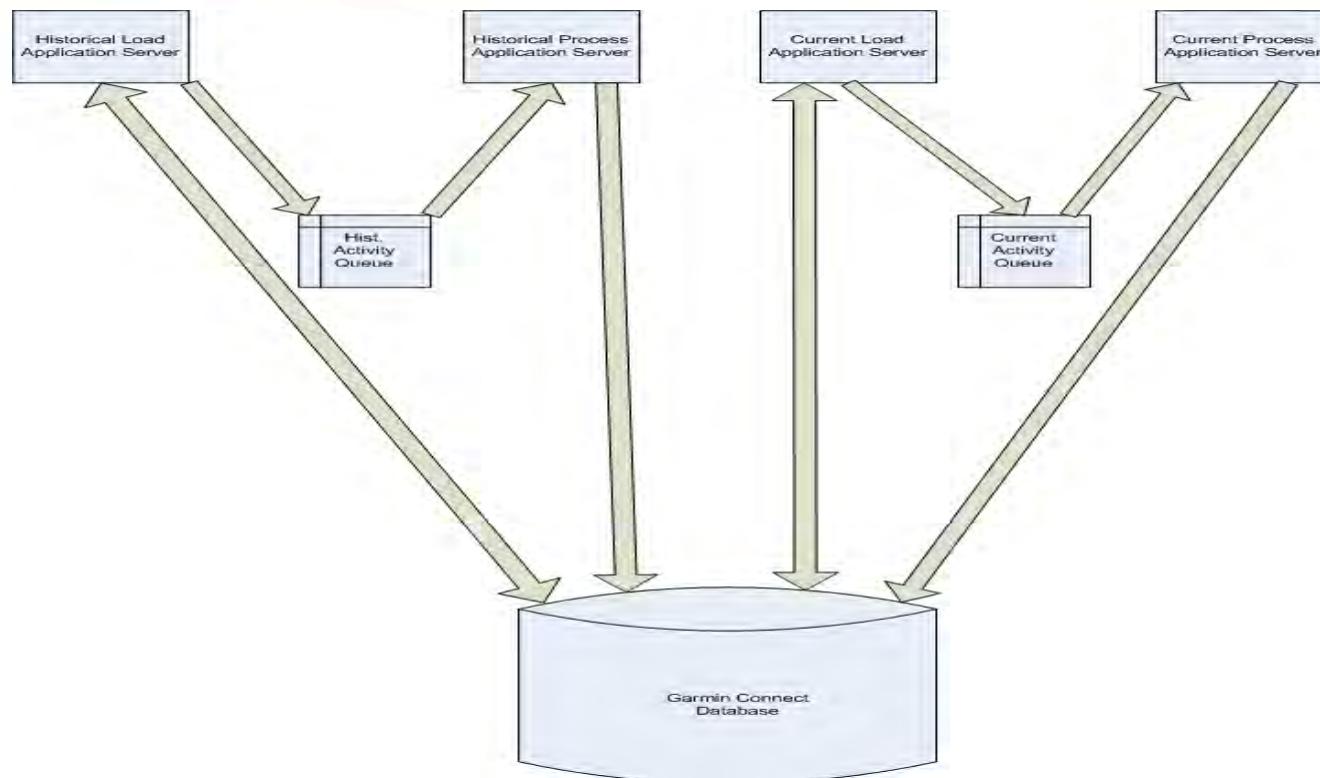
How do you process, analyze and load 300+ million fitness activities in a minimal time frame all while new activities (approximately 1 million per day) are being created?

The Data Load Challenge

Possible Options

- Transportable Tablespaces
- Partition Swapping
- Export/Import of table
- Custom Process

The Data Load Challenge


The Flexible Option

- We were able to utilize several queues (using Oracle Advanced Queuing) to place current activities being created in one queue and the historical activities in another queue.
- Processed both queues continuously until spatial data for all activities was created.
- We were able to process, analyze, load all 300+ Million fitness activities in the database in under 20 days.

The Data Load Challenge

The Load Process

GARMIN

Benefits

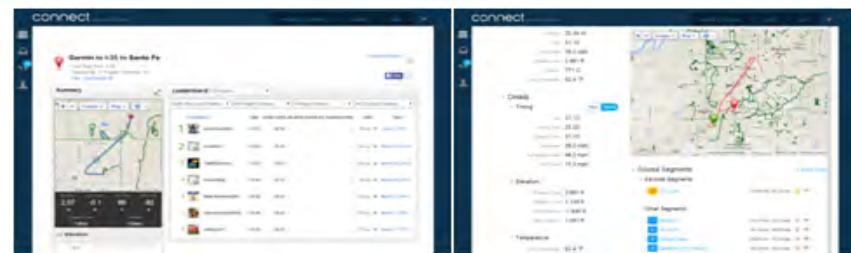
The Results are In!

- Provides “clean” versions of our data.
- Able to provide users results within seconds.
- Allows real time features for Garmin products.
- Enables additional reporting information about Garmin products.

Garmin

Segments and Leaderboards

OVERVIEW


- Allow users to compete for fastest time climbing a hill or sprinting down a straightaway and rank the leaders.
- Users define the starting line, path, and finish line for each competitive “segment”
- Match a user’s fitness activities to segments and rank the activity

CHALLENGES / OPPORTUNITIES

- Be able to match activities to segments within seconds
- Initial loading for 300+ million activities
- Data quality

SOLUTIONS

- Oracle Exadata Machine (Half Rack)
- Oracle Database 11g Enterprise Edition
 - Spatial and Graph
 - Partitioning
 - Parallel Pipelined Functions

RESULTS

- Stores and simplifies processing of more than 6 billion miles of user activities in a 50TB database
- Able to process and match activities to segments in seconds and able to match new segments to 5+ TB of activity data in minutes
- Allows for additional real time features on Garmin devices (Edge 1000)
- Enables additional reporting features about the use of Garmin Fitness and Wellness products

Q&A

