

ORACLE®

S P A T I A L

April 2010

Oracle Spatial User Conference

April 2010

Oracle Spatial

User Conference

Oracle Spatial

User Conference

April 29, 2010

Hyatt Regency Phoenix
Phoenix, Arizona USA

April 2010

Oracle Spatial

User Conference

**Parag Parikh
Dan Kuklov
CURRENT Group
Kerry D. McBee
Xcel Energy**

April 2010

Oracle Spatial

User Conference

Unified Real-Time Network Topology Management Using Oracle Spatial Xcel Energy SmartGridCity

Overview

- Managing Dynamic Distribution Grid & IP Network
- Unified Electrical and IP Network Topology Management – Overview
- Oracle Spatial & CURRENT OpenGrid Solution
- Unified Network Building Blocks

Smart Grid for the Middle Mile

- Convergence of Electrical and Communication Networks
 - *Two distinct set of users with common goal requires both networks to be fully integrated*
 - *Widespread deployment of smart sensor with actionable intelligence and communication requires robust Network Management System*

Smart Grid Infrastructure

- Remotely configured and managed sensors
- Remotely configured and controlled electrical device

Unified Networks

Oracle Spatial
User Conference

- **IP Network Management –**

Centralized management of Network Elements (NE) and model network topology

- Provisioning, activation, health check, data acquisition and control
- Utilize spatial data for problem detection and Resolution
- Acquire data from sensors and controllers associated with NE using IEC 61850, DNP3, IP and SNMP

- **Device Data Management –**

Centralized management of sensor provided measurements and correlate data with related electrical device

- Single repository with temporal element to maintain real-time and historic measurement data of electrical devices
- Receive and processes events and alarm

Oracle Spatial NDM Enabled NE - Device Correlation

April 2010

Oracle Spatial

User Conference

Oracle Spatial NDM Enabled NE - Device Correlation

April 2010

Oracle Spatial

User Conference

Oracle Spatial NDM Enabled NE - Device Correlation

April 2010

Oracle Spatial

User Conference

Oracle Spatial NDM Enabled NE - Device Correlation

April 2010

Oracle Spatial

User Conference

Oracle Spatial NDM Enabled NE - Device Correlation

April 2010

Oracle Spatial

User Conference

Oracle Spatial NDM Enabled NE - Device Correlation

April 2010

Oracle Spatial

User Conference

- Track and report Communication Network Element and sensor status using geographic and electrical feeder extent
- Maintain “As-built model” and “As-operated” network model
- Before fault, Sensor S1 reported voltage and current for Feeder CLP-1. After switching the same Sensor reports measurements for feeder CLP-2

Spatial Powered Smart Grid

Legacy GIS

- Requires dual architecture to store data
- Proprietary API and spatial queries
- Isolated system requires extensive integration effort and data translation
- Often supports only single network
- Lacks built-in temporal features to take actionable intelligence using historic data

Oracle Spatial – CURRENT OpenGrid

- gIS – Unified data storage
- SQL based spatial query support
- Enterprise system enables ease of integration
- Build-in support for OGC and SQL
- Multiple Network Support to enable self-healing
- Unified network topology, real-time and historic data provide actionable intelligence to prevent faults

Data Model Differences

Smart Grid – As Operated

- Simplified, essential objects & attributes
- Emphasis on speed
- Many operations users share one view
- Focus is on existing facilities
- Dynamic devices show current status
- Integrated Network models enables association between Smart Grid devices and grid

Corporate GIS – As Built

- Complex, numerous objects & attributes
- Emphasis on asset detail, not speed
- Many update users, each with unique view
- Includes proposed facilities
- Static devices show nominal status
- New Smart Grid devices are yet to be modeled

Solution Approach

- Provide Smart Grid data management solution
- Geographic model based on Oracle Spatial without any proprietary abstraction
- Network Data Model based on standard Oracle NDM and API
- Configurable device rules to model network connectivity
- Schematic and Geographic Viewer
 - *Manages “as-operated” view of the distribution network*
 - *Node and Links populated using two-port modeling*
 - *Path and Path Link used to enable topology management*

OpenGrid Data Sources

April 2010

Oracle Spatial

User Conference

NDM Metadata

OpenGrid User Data

Technology

- Red Hat Enterprise Linux
- Oracle RDBMS
- JEE application server – Oracle App Server to provide browser based thin clients and external system interfaces
- IDE – Eclipse
- Hibernate to model spatial data in a standardized way by abstraction
- CURRENT DNP3/IP OSI Layer 7

Architecture

- IEC 61968 CIM and OGC CIM inspired distribution data model
- Load-On-Demand Analysis to manage very large network analysis
 - *Web client utilizes LOD Java API for network applications*
 - *Spatial workspace for long term transaction and incremental import from the legacy GIS*
 - *Periodic versioning of network data model to maintain network operations history*

Oracle Spatial Enabled Analysis in *OpenGrid*

- Geo-coding – Identify street location of sensors and network element reporting communication loss
- Geometry Processing – Analyze distribution asset performance by electrical and geographical boundaries
- Network Analysis generated schematics/ one-line diagram
- Network Modeling
 - *Discovering Reachability functions to transfer the load between substation*
 - *Tracing with direction and shortest path for the Fault Location Isolation & Restoration*
 - *Enable user define Search using various constraint*
 - *Cost, Depth, Distance, MBR*
 - *Constraints for Electric Network Contingency planning*

GIS Integration Process

- **GIS Integration Methodology**
 - Proven and standards based GIS integration process supports multiple GIS data sources and formats
 - Supported Data Standards: XML, GML, IEC 61968-11 CIM, NRECA MultiSpeak

April 2010

Oracle Spatial

User Conference

Infrastructure Data Management – *using Oracle Spatial*

Spatial Network User Interface

April 2010

Oracle Spatial

User Conference

- **Electric Grid View**

- Provides access to real-time electric grid status
- Historic data for analysis
- Real-Time Distribution Power Flow Analysis to optimize the power delivery

- **Network View**

- Provides access to communication network status and configuration
- Root Cause Analysis of Network Elements

April 2010

Oracle Spatial
User Conference

SmartGridCity™ – Boulder, CO

Smart Grid Deployed – The Xcel Energy Example

Installation of sensing equipments, two-way communication network for distribution grid automation and real-time AMI to provide:

- **Transformer Monitoring** - real-time decisions based on current grid conditions
- **Feeder Automation** - monitoring power flow, outages and asset device health to provide centralized Volt-VAR control and Dynamic Voltage Optimization
- **Smart Distribution System** – real-time data on power consumption, outages, restoration and fault locations

Utilizing

- **Advanced sensing** technology to monitor feeder condition
- Two-way, low latency **real-time communications**
- Unified Communication and Electrical grid topology management

April 2010

Oracle Spatial

User Conference

SGC– MV Fault Location Detection

Spatial Feature Wish List

- Connectivity model import from proprietary GIS data models to Spatial Network Model
- Temporal support to track network model changes over the time

Summary

- Oracle Spatial is a core component of OpenGrid's unified communication and electrical topology management to deploy the Smart Grid solution
- Unified networks enables self-healing and optimized distribution network operations Asset Management, Strategic Planning, Tactical deployment of sensors and visualization
- GML and CIM standards based GIS integration leads to
 - *Removes limits imposed by proprietary data model*
 - *Improves GIS data accessibility*

April 2010

Oracle Spatial

User Conference

