

US Census Bureau Geographic Support System Initiative Partnership Program

OVERVIEW

- Centrally managed, authoritative database (MAF/TIGER)
- Centrally managed Partnership Program SDE geodatabase
- Supports all censuses and surveys

CHALLENGES / OPPORTUNITIES

- Need for centralized repository for data sets, security for mission critical data
- Need to support access by various COTS
- Increased level of automation for update processes
- Maintaining persistent topology

SOLUTIONS

- Oracle Database 11g Enterprise Edition 11.2.0.3
 - Spatial Option with Spatial Topology Data Model
 - Partitioning
- Oracle Web Logic 10.3.6
 - MapViewer 11.1.6, including Oracle Maps
- Oracle Business Intelligence Enterprise Edition
- Oracle Internet Directory

SOLUTIONS – Cont'd

- Oracle APEX (Application Express)
- Oracle Exadata

RESULTS

- Data is secured with FISMA compliant mechanisms (using Oracle OID)
- Single Sign On implemented (using Oracle OID)
- Successful processing of 450+ partner data sets, by 50+ business analysts, with thousands more to come
- Consolidation of partner road-centerline and address data in 27 GB sized (and growing) central repository
- Successful integration with FME (for ETL), ArcGIS SDE (for browsing and analysis), 1Spatial Radius Studio (for conflation automation tasks), and Acquis Data Editor (for editing)
- Used Oracle Spatial Topology Data Model to successfully maintain persistent topology
- Exadata has enabled faster processing – timely completion of previously time-intense tasks
- Oracle Exadata compression helps manage large datasets with ease (MAF/TIGER Data sets total approx. 17 TB)

May 2014
Oracle Spatial Summit

ORACLE®

May 21, 2014
Walter E. Washington Convention Center
Washington, DC USA

Jay E. Spurlin
Special Assistant to the
Assistant Division Chief for
Spatial Data Systems and
Database Management

GSSI Partnership Program

Program Agenda

- Overview
- MAF/TIGER Database
- Geographic Partnership Program
- Oracle Exadata

Overview

US Census Bureau - Geography Division

- The Geography Division handles geographic and cartographic activities in support of the Census Bureau's statistical programs.
- We continuously update features, boundaries, geographic entities, and address information
 - TIGER (Topologically Integrated Geographic Encoding and Reference)
 - MAF (Master Address File).
- We research geographic concepts, methods, and standards needed to facilitate data collection and dissemination.

Overview

Geographic Support System Initiative

- In support of the 2020 Decennial Census, the Census Bureau is evaluating what areas should be targeted for a traditional, on-the-ground address canvassing operation and areas in which it is not necessary.
- How will we decide which areas should be considered for targeting?
 - GEO has evaluated the MAF/TIGER database and assigned quality indicators to each of the census tracts
 - The MAF/TIGER is being updated through the Geographic Partnership Program
 - A Targeted Address Canvassing strategy has been developed that contains an inventory of criteria for evaluation

Overview

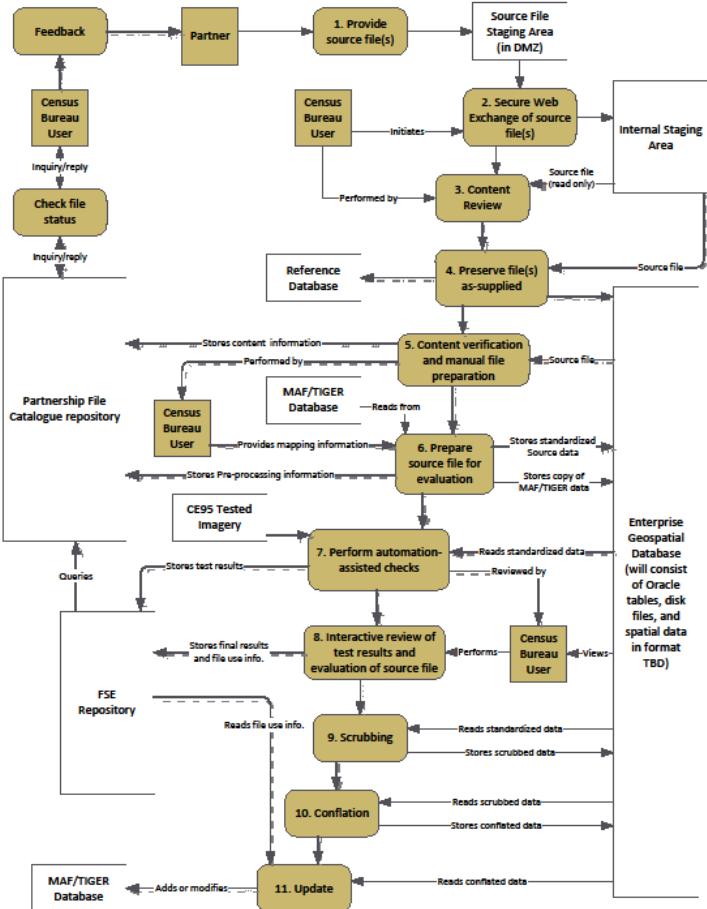
Geographic Support System Initiative

- The Geographic Partnership Program is now underway.
 - GEO is receiving both address and spatial data from invited partners
 - The data are being evaluated and integrated with the MAF/TIGER database.
 - The next step is to determine what level of feedback we can give to the partners about their data.
- The combination of the evaluation of the current MAF/TIGER database, the partner data, and predictive modeling will contribute to the recommendation on which areas of the country should be considered for targeting.

MAF/TIGER Database

An overview

- Implemented on Oracle Spatial Topology Data Model
 - Custom topological primitive features
 - Over 50 feature “layers” implemented in dozens of feature tables
 - Hierarchical features (features built on other features)
- Many software systems in MAF/TIGER system – all using Oracle
 - GWCS (GSSI Workflow Control System)
 - School District Review Program (SDRP) Crowd Source application
 - PCPTR (Problem Capture, Prioritization, Tracking, and Reporting)
 - QIs (Quality Indicators)



Geographic Partnership Program

Context Model

10/12/2012
Address and Feature Source File Evaluation - Context Model – vo.4

Geographic Partnership Program

Acquisition of data

- Data are provided at the state, county, and local level.
 - A partner provides a set of source files
 - The source files are moved inside the Census firewall via a secure web-exchange module
 - The content inventory of the files undergoes initial verification
 - The data and metadata provided are verified against published standards
 - The files are preserved, as supplied, for later reference

Geographic Partnership Program

Evaluation of data

- Data are evaluated
 - More detailed content assessment is done, including verification the files meet minimum guidelines for content and metadata
 - The files are prepared for automated processing, including re-projection and mapping to a standardized schema
 - A series of (mostly) automated checks is run, which provides metrics about the data in the files

Geographic Partnership Program

Evaluation and integration of data

- Update method is chosen
 - An interactive review is conducted, in which the files and their associated metrics are reviewed and a decision is made how to capture any new data
 - Some feature files are processed by an interactive editor, using the partner file, imagery, and other sources
 - Some feature files are processed through a semi-automated conflation process
 - Address files are processed through an automated update system

Geographic Partnership Program

Integration of data - Conflation

- Data are integrated into the MAF/TIGER database
 - Scrubbing: Any data that are not useful for updating the MAF/TIGER database get removed from the files
 - Matching: Features or addresses are matched to the MAF/TIGER database, using an automated process. An interactive review identifies any issues and allows adjustments to be made
 - Update: All approved changes are applied to the MAF/TIGER database, using an automated process.
 - Metadata is captured and stored in the database, with quality metrics about each feature

Geographic Partnership Program

Integration of technology architecture

- COTS software integration
 - ArcGIS
 - Partner data is spatially enabled using ArcSDE
 - ArcMap is used to view and analyze data
 - FME (Feature Manipulation Engine)
 - Extraction of reference layers, ETL (to load partner data into an SDE geodatabase)
 - 1Spatial Radius Studio
 - Used for automation of conflation processes

Geographic Partnership Program

Integration of technology architecture – cont'd

- COTS software integration
 - ADE (Acquis Data Editor)
 - Built on MapViewer
 - Utilized by GATRES (Geographic Acquis-Based Topological Real-time Editing System) for interactive editing
 - Redwood Cronacle
 - Used for process control, scheduling, and monitoring

Oracle Exadata

Delayed Calculations – TABBLOCK table

Field	Type	Description
ACT	VARCHAR2 (2)	
AREALAND	NUMBER (14)	Adds up areas of land topological faces (which are calculated using SDO_GEOM.SDO_AREA)
AREALANDHIST	NUMBER (14)	Saves AREALAND value, if AREALANDHIST is null
AREAWATER	NUMBER (14)	Adds up areas of water topological faces
AREAWATERHIST	NUMBER (14)	Saves AREAWATER value, if AREAWATERHIST is null
BLOCKCE	VARCHAR2 (4)	
BOUNDARYEDGES	SDO_TOPO_GEOMETRY	Updates topology for use cases that Topology Manager does not handle automatically
CENTROID	SDO_GEOMETRY	Uses SDO_GEOM.SDO_CENTROID
COUNTYFP	VARCHAR2 (3)	
CYCLES	NUMBER (3)	Counts external polygon loops
CYCLESMAX	NUMBER (3)	
FUNCSTAT	VARCHAR2 (1)	
GENSDOGEOMETRY	SDO_GEOMETRY	
HOUSING	NUMBER (9)	

Oracle Exadata

Delayed Calculations – TABBLOCK table – cont'd

Field	Type	Description
INTPOINT	SDO_Geometry	Uses centroid, if inside polygon; if not, chooses first quadrant centroid that falls inside polygon (recursively)
LSAD	VARCHAR2 (2)	
LWBLKTyp	VARCHAR2 (1)	Set aggregate value, based on values of composite topological faces
MTFCC	VARCHAR2 (5)	
NAME	VARCHAR2 (100)	
OID	NUMBER	
PERIM	NUMBER (9)	Adds lengths of topological edges in BOUNDARYEDGES
POPDEC	NUMBER (9)	
SDOGEOMETRY	SDO_Geometry	Uses GET_Geometry; calls FME to aggregate some topologically hierarchical features
STATEFP	VARCHAR2 (2)	
SUFFIX1CE	VARCHAR2 (1)	
SUFFIX2CE	VARCHAR2 (1)	
TOPOGEOM	SDO_TOPO_Geometry	
TRACTCE	VARCHAR2 (6)	

Oracle Exadata

Performance improvement example

- Delayed Calculations – Day to day
 - Before Exadata migration, nightly calculations (for daily changes) rarely completed – and were automatically terminated at 6 a.m., causing a consistent backlog
 - After Exadata migration, nightly calculations almost always complete – sometimes in less than an hour

Oracle Exadata

Performance improvement example

- Delayed Calculations – Benchmark Update
 - Includes calculation of SDO_GEOMETRY values from SDO_TOPO_GEOM types, as well as other calculations (like areas and internal points)
 - All delayed calculations are calculated for each “benchmark” (snapshot) of the MAF/TIGER database
 - Processes for benchmarks in 2010 and 2011 took between one and two months
 - Process after migration to Exadata took five days

Q&A