May 21, 2014
Walter E. Washington Convention Center
Washington, DC USA
How To Build a Drive Time Analysis Application - Workshop

Daniel Geringer
Senior Software Development Manager
Program Agenda

- Today’s Goal – Overview of drive time requirement
- Overview of VM for workshop
- HERE Sample for San Francisco
- Parallel Geocoding
- Oracle Spatial & Graph - Network Graph Overview
- Sample Java Application – Overview / Compile / Run
Today’s Goal:

Learn How to Build a Scalable Network Analysis Application
Why Drive Time Analysis Is Important

- Reachability given a constraint (time or distance) should consider a road network.
- “As the crow flies” computations can be misleading.
- For example, they may cross rivers where there are no bridges.
Spatial Analysis Versus Network Analysis

- Oracle Locator and Oracle Spatial can solve spatial proximity problems, sometimes referred to “as the crow flies” analysis.
- Another type of analysis that is required by users and applications is network analysis.
- Network applications deal with the connectivity of features.
Marketing Requirement
Road Network, Stores, and Customers

- Store locations in red
- Street network for the US in black
- E-mail fliers to millions of customers from their closest store.
More Than One Way To Solve

But not all approaches are optimal

- As the crow flies computations often assign wrong store to a customer.
- Given 1,000,000 customers, and 100 stores, compute drive time every combination? Takes a very long time.
- Voronoi Diagrams to group customers and stores and reduce drive time computations.
- Preprocessing may take days.
THINK OUT OF THE BOX
Large Scale Drive Time/Distance Analysis

Oracle Strategy

For millions of customers, find closest store within a specified drive time

- Same underlying data for geocoder and road network
- Customers geocode as link id and percentage (instead of longitude/latitude)
- 20 minute “reverse” Network Buffer from each store generates all possible paths
- Each persisted path includes:
 - Covered link IDs, nodes ID, and associated costs
- Single database query to find closest store and drive time/distance for each customer (join on link_id)
Database Information for VM
Start Database and Listener

- Password for VirtualBox oracledemo user is oracledemo
- Database should already be running. If not, from a terminal window, run:
 - sqlplus / as sysdba
 - SQL> startup
 - *Wait for message: Database opened.*
 - SQL> exit
- Listener should already be running. From a terminal window, run:
 - lsnrctl status (to check if listener is running)
 - lsnrctl start (to start listener)
- Both SQL*Plus and SQL Developer are installed in the VM
<table>
<thead>
<tr>
<th>Linux User</th>
<th>Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>oracle</td>
<td>oracledemo</td>
</tr>
<tr>
<td>root</td>
<td>oracledemo</td>
</tr>
</tbody>
</table>
Database Users

- Primarily you will be working with the sys, oracledemo and here_sf database accounts.

<table>
<thead>
<tr>
<th>Database User</th>
<th>Password</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>sys</td>
<td>oracledemo</td>
<td>sys admin user</td>
</tr>
<tr>
<td>system</td>
<td>oracledemo</td>
<td>system admin user</td>
</tr>
<tr>
<td>oracledemo</td>
<td>oracledemo</td>
<td>You will work in this account</td>
</tr>
<tr>
<td>HERE_SF</td>
<td>HERE_SF</td>
<td>Owner of HERE San Francisco sample data</td>
</tr>
<tr>
<td>mvdemo2</td>
<td>mvdemo2</td>
<td>MapViewer demo data owner</td>
</tr>
<tr>
<td>storm</td>
<td>storm</td>
<td>MapViewer storm demo data owner</td>
</tr>
<tr>
<td>ndmdemo</td>
<td>ndmdemo</td>
<td>Network Graph demo user</td>
</tr>
</tbody>
</table>
Aliases created for you

- **Just typing the database username** will connect through SQL*Plus
 - alias `oracledemo='sqlplus oracledemo/oracledemo'`
 - alias `sys='sqlplus sys/oracledemo as sysdba'`
 - alias `system='sqlplus system/oracledemo'
 - alias `HERE_SF='sqlplus HERE_SF/HERE_SF'`
HERE
San Francisco Sample Data
HERE – San Francisco Sample Data Set

Worldwide coverage available from HERE

- Pre-downloaded and installed on the VM. Very easy to install.
- Downloadable from the Oracle Technology Network (must accept license)
 - Spatial Features Partners' Data Downloads
 - [HERE Map Content Sample in Oracle Delivery Format for San Francisco](http://www.oracle.com/technetwork/database/options/spatialandgraph/downloads)
- Contains Geocoding, Routing and Mapping data sets.
 - **Geocoding road_segment_id** matches **Router edge_id**
 - Geocoder GC_Road_SEGMENT_NVT (ROAD_SEGMENT_ID) are always positive numbers
 - Router EDGE(EDGE_ID) can be positive or negative to denote direction.
HERE – San Francisco Sample Data Set

- San Francisco sample contains:
 - Geocoding data (street centerline and roof top)
 - Routing data, trucking data, traffic patterns, multi-modal
 - Mapping data
- Worldwide geographies also available
Parallel Enabled Geocoding
Oracle Spatial & Graph - Geocoder

- Geocoder is included in your Oracle Spatial and Graph license.
- Open data model for Geocoder reference data
- If you have reference data, you can populate the data model yourself
- If you don’t have the reference data, Oracle Partners sell it in Transportable Tablespace format (plug and play data).
 - HERE
 - Tom Tom
 - ADCI
 - others
Oracle Spatial and Graph Geocoder

- Forward / Reverse / Street Centerline / Rooftop (point based) support

In database geocoding –
- PL/SQL APIs
- Optimal for parallel enabled batch geocoding
- For batch processing, leverage parallel enabled pipeline table functions

Web service based geocoding
- Java servlet based with XML geocoding APIs
- Deployed in J2EE container
- Optimal for non-batch request in web based applications.
- Can perform batch processing too
In Database sdo_gcdr.Geocode API

- Accepts an **unparsed address** as an array of strings

```sql
SELECT sdo_gcdr.Geocode ('HERE_SF',
sdo_keywordarray('33 New Montgomery St.',
'San Francisco, CA 94105'),
'US','DEFAULT')
FROM dual;
```
In Database sdo_gcdr.Geocode_Addr API

– Accepts a **parsed address** as input

-- Higher match rate if you perform the parse and use this API

```sql
SELECT sdo_gcdr.Geocode_Addr ('HERE_SF',
    SDO_GEO_ADDR(0, null, null,
        'New Montgomery St.' , NULL, NULL,
        'San Francisco' , NULL,
        'CA' , 'US' ,
        '94105' , NULL, NULL, NULL,
        '33' , NULL, NULL, NULL, NULL,
        NULL, NULL, NULL, NULL, NULL,
        'DEFAULT' ,NULL,NULL))
FROM dual;
```
Large Scale Drive Time/Distance Analysis

Strategy

For millions of customers, find closest store within a specified drive time

- Same underlying data for geocoder and road network
- Customers geocode as link id and percentage (instead of longitude/latitude)
- 20 minute “reverse“ Network Buffer from each store generates all possible paths
- Each persisted path includes:
 - Covered link IDs, nodes ID, and associated costs
- Single database query to find closest store and drive time/distance for each customer (join on link_id)
Geocode Result

- Result returns both:
 - Percent (between 0 and 1) and Edge ID. In this example (.12, 23612131)
 - Longitude, Latitude
- We want Percent, Edge ID

```sql
SDO_GEO_ADDR(0, SDO_KEYWORDARRAY(), NULL, 'New Montgomery St', NULL, NULL, 'SAN FRANCISCO', 'SAN FRANCISCO', 'CA', 'US', '94105', NULL, '94105', NULL, '33', 'NEW MONTGOMERY', 'ST', 'F', 'F', NULL, NULL, 'R', .12, 23612131, '??X?#ENUT?B281CP?', 1, 'DEFAULT', -122.40158, 37.78835, '??010101010??000?', 8307)
```
Often Addresses Are In CSV File Format

- Oracle External Tables can point to a CSV file
- External tables are read only
- Setup is similar to a SQL*Loader control file
External Table For Address CSV Files

- CSV file resides in address_data_dir directory
- Multiple CSV files can be listed
- Select from the external table like any other table

```sql
CREATE TABLE customer_addresses_ext
  (in_customer_id NUMBER,
   in_housenumber VARCHAR2(1000),
   in_streetname VARCHAR2(1000),
   in_city VARCHAR2(100),
   in_state VARCHAR2(100),
   in_zip VARCHAR2(100))
ORGANIZATION EXTERNAL
  (TYPE ORACLE_LOADER
  DEFAULT DIRECTORY address_data_dir
  ACCESS PARAMETERS
    (RECORDS DELIMITED BY NEWLINE
     NOLOGFILE
     FIELDS TERMINATED BY ")")
LOCATION ('"
   -- This can be a comma delimited list of csv files
   'customers.csv');
```
Parallel Enabled Pipeline Table Function
Excellent for Batch Processing

- Parallelize a function that’s called a massive amount of times.
 - Batch geocoding (sdo_gcdr.geocode_addr)
 - Batch reverse geocoding (sdo_gcdr.reverse_geocode)
- Pipeline Table Function returns a table of results
 - Table of geocodes
 - Table of reverse geocodes
Parallel Enabled Pipeline Table Function
How does it work?

- Define cursor that selects the input to the batch process:
 - `SELECT address
 FROM customer_addresses
 WHERE state = 'NY';`
 - `SELECT vehicle_location
 FROM vehicles
 WHERE sdo_anyinteract (location,:region) = 'TRUE'

- Parallel Query distributes the batch process over a specified number of database cores.
ALTER SESSION ENABLE PARALLEL QUERY;
ALTER SESSION ENABLE PARALLEL DDL;

-- Additional attributes available like corrected a.house number, a.streetname, etc
-- are commented out. Uncomment if you would like them returned too.
DROP TABLE customers;
CREATE TABLE customers NOLOGGING AS
SELECT /*+ parallel (16) */
 a.id customer_id, a.longitude, a.latitude,
 -- a.housenumber,
 -- a.streetname,
 -- a.settlement,
 -- a.region,
 -- a.postalcode,
 -- a.matchcode,
 a.edgeid link_id, a.percent percentage
FROM TABLE(geocode_utils.geocode_parsed (CURSOR(SELECT in_customer_id,
 in_housenumber,
 in_streetname,
 in_city,
 in_state,
 in_zip
 FROM customer_addresses_ext),
 'HERE_SF')) a;
Geocoding Lab
Step 1 – Grant SELECT on Geocoder Tables

- HERE San Francisco sample was pre-populated into HERE_SF user.
- You will be working under the oracledemo database user
- Log in as HERE_SF, and grant SELECT on all tables and view to oracledemo

 - `cd /home/oracle/WORKSHOP/GEOCODE`
 - `grant.sh`

- Now you can connect as oracledemo to geocode instead of connecting as HERE_SF
Step 2 – Test a Geocode

- From the /home/oracle/WORKSHOP/GEOCODE directory:
 - Log in as oracledemo and run a test geocode
 - oracledemo
 - SQL> @test_one_geocode.sql
- First geocode in a session initializes the geocoding stored procedure, and takes a little longer to run.
- Subsequent geocodes will be very fast. Run it again.
 - SQL> @test_one_geocode.sql
Step 3 – Load geocode_utils

- geocode_utils is a package that contains parallel pipelined table functions for bulk geocoding.

- To install geocode_utils, as the oracledemo user:
 - SQL> @geocode_utils_setup.sql
Step 4 – Geocode Customers

- This VM is set up as having 2 processors. Increase VM processors if your host machine has more processors.
- Increase parallel degree in geocode_customers.sql if you have more than 2 processors
- To observe parallel threads, from a terminal, run top
  ```
  top
  ```
- As oracledemo, geocode 77,216 customers. Results will be in a table called customers.
  ```
  SQL> @geocode_customers.sql
  ```
- Notice processes in top (ora_p000 and ora_p001) consume most of the CPU. On a non-VM or VM with adequate resources, parallel processes will ramp up much faster.
Geocode Times On Exadata X4-2 1/2 RAC

- X4-2 with 96 cores
- Geocoded 77216 addresses in 3.32 seconds
- **23,257 geocodes per second**
- Works on commodity hardware too
Step 5 – Geocode Stores

- Increase parallel degree in `geocode_customers.sql` if you have more than 2 processors.
- As oracledemo, run `geocode_stores.sql` to geocode 12 stores. Result will be in a table called `stores`.

 - SQL> @geocode_stores.sql
Oracle Spatial and Graph
Network Graph Overview
What Is Oracle Spatial & Graph Network Graph?

- An open data model to store and analyze network data.
- Connectivity is determined using nodes and links:
 - Each link has a start node and an end node.
 - Links and/or nodes can have costs
 - Links can be one way or bi-directed
What Is Oracle Spatial & Graph Network Graph?

- Analysis is based on connectivity and optionally cost information.
- Network analyses includes:
 - Shortest path analysis
 - Nearest neighbor analysis
 - Within cost analysis
 - Network Buffer (forward and reverse)
 - Traveling salesman problem
 - Reachable/Reaching nodes
 - K-shortest paths analysis
VERY SIMPLE DATA MODEL
The Node Table (or View)

- Optional columns marked in red.
- Additional user data (custom data) columns can be added as needed.

```sql
SQL> desc MYNETWORK_NODE$;
Name    Type
------------------------  -------------
NODE_ID   NUMBER (Primary Key)
COST    NUMBER
ACTIVE   VARCHAR2(1)
GEOMETRY   SDO_GEOMETRY
```

Oracle Spatial Summit 2014
The Link Table (or View)

- Optional columns marked in red
- Additional user data columns can be added
- Links can be one way or bi-directed
- If bi-directed with a different cost in either direction, add another link.

```
SQL> desc MYNETWORK_LINK$;
```

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>LINK_ID</td>
<td>NUMBER (Primary Key)</td>
</tr>
<tr>
<td>START_NODE_ID</td>
<td>NUMBER</td>
</tr>
<tr>
<td>END_NODE_ID</td>
<td>NUMBER</td>
</tr>
<tr>
<td>ACTIVE</td>
<td>VARCHAR2(1)</td>
</tr>
<tr>
<td>LINK_LEVEL</td>
<td>NUMBER</td>
</tr>
<tr>
<td>COST</td>
<td>NUMBER</td>
</tr>
<tr>
<td>GEOMETRY</td>
<td>SDO_GEOMETRY</td>
</tr>
</tbody>
</table>
Network Partition Table for Very Large Networks
Load on Demand (Optional)

- If no network partition table, entire network is loaded into memory as a single partition.
- One row for each node.
- Nodes repeated for each hierarchy they belong to (LINK_LEVEL).
- You can manually populate a network partition table.
- `SDO_NET.SPATIAL_PARTITION`, partitions a spatial network for you (creates the partition table).

```
SQL> desc MYNETWORK_PART$;
Name          Type
--------------- --------------
NODE_ID                  NUMBER
LINK_LEVEL                NUMBER
PARTITION_ID              NUMBER
```
Visualizing Partition Boundaries

- Observe smaller partition boundaries in denser portions of the network (urban areas).
- The number of nodes in each partition is still balanced.
Partition BLOB Table (Optional)

- Partition BLOBs store network partitions in a binary format.
- The binary format is much faster to load into memory.

```
SQL> desc MYNETWORK_PBLOB$;
Name                        Type
---------------------    -------------
LINK_LEVEL                  NUMBER
PARTITION_ID                NUMBER
BLOB                        BLOB
NUM_INODES                  NUMBER
NUM_ENODES                  NUMBER
NUM_ILINKS                  NUMBER
NUM_ELINKS                  NUMBER
NUM_INLINKS                 NUMBER
NUM_OUTLINKS                NUMBER
USER_DATA_INCLUDED         VARCHAR2(1)
```
Network Metadata
Enter One Row Per Network

- HERE San Francisco sample enters one row in setup.txt.
- Network name is HERE_SF_NET
- Includes these views too:
 - HERE_SF_NET_NODE$
 - HERE_SF_NET_LINK$
 - HERE_SF_NET_PART$
 - HERE_SF_NET_PBLOB$

```sql
SQL> desc user_sdo_network_metadata;
Name                          Type
------------------------   -------------
NETWORK                    VARCHAR2(24)
NETWORK_ID                  NUMBER
NETWORKCATEGORY            VARCHAR2(12)
GEOMETRY_TYPE              VARCHAR2(24)
NETWORK_TYPE               VARCHAR2(24)
NO_OF_PARTITIONS           NUMBER
NODE_TABLE_NAME             VARCHAR2(32)
NODE_GEOM_COLUMN           VARCHAR2(32)
NODE_COST_COLUMN           VARCHAR2(32)
LINK_TABLE_NAME             VARCHAR2(32)
LINK_GEOM_COLUMN            VARCHAR2(32)
LINK_DIRECTION             VARCHAR2(12)
LINK_COST_COLUMN           VARCHAR2(32)
PATH_TABLE_NAME             VARCHAR2(32)
PATH_GEOM_COLUMN            VARCHAR2(32)
PATH_LINK_TABLE_NAME        VARCHAR2(32)
PARTITION_TABLE_NAME        VARCHAR2(32)
PARTITION_BLOB_TABLE_NAME  VARCHAR2(32)
```
The Java Application Example
Get Connection and Set Logging Level

// opening connection
conn = LODNetworkManager.getConnection(dbUrl, dbUser, dbPassword);

// Possible values: FATAL, ERROR, WARN, INFO, DEBUG, FINEST
// For debugging, set to FINEST
setLogLevel(logLevel);
Read Configuration File

- Slightly different format for configuration file in 11g and 12c
- This VM uses a 12c formatted configuration file
- File is located in classes/nbuffer/LODConfigs.xml since program is compiled with “–d classes” directive

```java
String configXmlFile = "nbuffer/LODConfigs.xml";

// load user specified LOD configuration (optional),
// otherwise default configuration will be used
InputStream config = ClassLoader.getSystemResourceAsStream(configXmlFile);
LODNetworkManager.getConfigManager().loadConfig(config);
```
Configuration File

- For HERE data, specify **RouterPartitionBlobTranslator11gR2**
- Legacy partition blob format used by data providers (before Network Graph)
- If you create your own network, use **PartitionBlobTranslator11gR2**

```xml
<LODConfig globalNetworkName="HERE_SF_NET" networkName="HERE_SF_NET">
  <networkIO>
    <batchSize>10000</batchSize>
    <geometryTolerance>0.05</geometryTolerance>
    <readPartitionFromBlob>true</readPartitionFromBlob>
    <partitionBlobTranslator>
      <className>oracle.spatial.router.ndm.RouterPartitionBlobTranslator11gR2</className>
      <parameters></parameters>
    </partitionBlobTranslator>
  </networkIO>
</LODConfig>
```
Configuration File (continued)

- userData is custom data associated with network data (nodes and links)
- For example speed limit
- userData is categorized
- User Data associated with category 0 is stored in partition blobs.
- HERE San Francisco sample stores speed limit userData in category 0

```xml
<userDataIO categoryId="0">
  <className>oracle.spatial.network.lod.LODUserDataIOSDO</className>
  <parameters>
  </parameters>
</userDataIO>
```
Configuration File (continued)

- Earlier we discussed network partition generation for very large networks.
- Nodes can be associated with a link level. For example, level 1 are detailed roads, level 2 are highways, etc…
- For large networks, if you have enough memory, increase maxNodes:

```xml
<cachingPolicy linkLevel="1">
  <maxNodes>200000</maxNodes>
  <residentPartitions></residentPartitions>
  <flushRule>
    <className>oracle.spatial.network.lod.LRUCachingHandler</className>
    <parameters></parameters>
  </flushRule>
</cachingPolicy>
</networkIO>
```
Initialize Analyst

- NetworkAnalyst class contains network analysis methods
- Create an analyst instance

```java
private static NetworkIO networkIO;
private static NetworkAnalyst analyst;

//get network input/output object
networkIO = LODNetworkManager.getCachedNetworkIO(
    conn, networkName, networkName, null);

//get network analyst
analyst = LODNetworkManager.getNetworkAnalyst(networkIO);
```
Implement Time Based Link Cost Calculator
Default Calculator Is Distance Based

```java
public class LinkTravelTimeCalculator implements LinkCostCalculator {
    int [] defaultUserDataCategories = {UserDataMetadata.DEFAULT_USER_DATA_CATEGORY};
    public LinkTravelTimeCalculator () {} 

    public double getLinkCost(LODAnalysisInfo analysisInfo) {
        LogicalLink link = analysisInfo.getNextLink();
        // speed in meters/second
        double speed =
            ((Double)link.getUserData(0).get
            (RouterPartitionBlobTranslator11gR2.USER_DATA_INDEX_SPEED_LIMIT)).doubleValue();
        return (link.getCost()/speed);  // distance/speed is travel time in seconds  }
```
Set Link Cost Calculator For Analyst

- Default link cost calculator is distance based
- Change it to be travel time based

// Save old link cost calculator to reset it later
LinkCostCalculator[] oldlccs = analyst.getLinkCostCalculators();

// Set new travel time based link cost calculator
LinkCostCalculator[] lccs = {new LinkTravelTimeCalculator()};
analyst.setLinkCostCalculators(lccs);

Defined on previous slide
Get Each Store link_id From Stores Table
Account For Negative link_id

WITH
part1 AS (SELECT a.store_id, b.link_id, a.percentage
FROM stores a,
here_sf.here_sf_net_link$b
WHERE a.link_id = b.link_id
UNION ALL
SELECT a.store_id, b.link_id, 1 - a.percentage
FROM stores a,
here_sf.here_sf_net_link$b
WHERE -a.link_id = b.link_id),
part2 AS (SELECT store_id, link_id, percentage,
row_number() OVER (PARTITION BY store_id ORDER BY store_id, link_id DESC) r_n
FROM part1)
SELECT store_id, link_id, percentage
FROM part2
WHERE r_n = 1;

- Geocoder always positive link_id.
- here_sf_net_link$b match can be positive, negative or both
- Sign determines direction
- If negative, (1 – percentage)
- SQL Analytics to group and order by store_id
- Only keep one match
Compute Reverse Network Buffer

- Previous slide query returns store_id's with respective link_id and percentage
- For each store, compute a reverse network buffer
- For LinkTravelTimeCalculator, cost is specified in seconds

```java
// Generate reverse network buffer, cost specified in seconds
PointOnNet startPoint = new PointOnNet(startLinkId, percentage);
PointOnNet[] startPoints = {startPoint};

NetworkBuffer buffer = analyst.reachingNetworkBuffer(startPoints, cost, null);
```
Write Reverse Network Buffer Results To A Table

- `networkIO.writeNetworkBuffer` creates the following tables if they don’t exist
 - **SF_NBCL$** - Contains
 - **SFNBCN$** - Contains
 - **SF_NBL$** - Contains network buffer links (buffer_id is store_id)
 - **SF_NBN$** - Contains network_buffer nodes
 - **SF_NBR$** - Contains network buffer radius

- Pre-create _NBL$ and _NBN$ with no indexes for faster inserts/deletes

```java
tableNamePrefix = “SF_”;
networkIO.writeNetworkBuffer(buffer, (long)storeId, tableNamePrefix);
```
Link Information In SF_NBL$

- **BUFFER_ID** is store_id
- Each link contains:
 - Percentage is a value between 0 and 1
 - Start % usually 0, unless customer and store are on the same link.
 - End % usually 1, except for boundary links
 - Cost from start node to store.
 - Cost from end node to store.

```sql
SQL> describe sf_nbl$
<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUFFER_ID</td>
<td>NUMBER</td>
</tr>
<tr>
<td>LINK_ID</td>
<td>NUMBER</td>
</tr>
<tr>
<td>START_PERCENTAGE</td>
<td>NUMBER</td>
</tr>
<tr>
<td>END_PERCENTAGE</td>
<td>NUMBER</td>
</tr>
<tr>
<td>START_COST</td>
<td>NUMBER</td>
</tr>
<tr>
<td>END_COST</td>
<td>NUMBER</td>
</tr>
</tbody>
</table>
```
Compile and Run the Java Application Lab
Compile Java Application

- Source code in:
 - PersistentNetworkBuffer.java
 - LinkTravelTimeCalculator.java
- PersistentNetworkBuffer.java declared inside a package:
 - package nbuffer;
- Compile with “javac -d classes” parameter
- Classes are generated in classes/nbuffer directory
 - cd /home/oracle/WORKSHOP/SOURCE_CODE_EXAMPLE
 - compile.sh
Generate Reverse Network Buffers

- To run application:
 - cd /home/oracle/WORKSHOP/SOURCE_CODE_EXAMPLE
 - run.sh

- run.sh executes the following command

```
java -cp $CLASSPATH nbuffer.PersistentNetworkBuffer \
  -dbUrl "jdbc:oracle:thin:@localhost:1521/ora12c.oracledemo.com" \
  -dbUser oracledemo \n  -dbPassword oracledemo \n  -networkName HERE_SF_NET \n  -networkOwner HERE_SF \n  -cost 1200 \n  -tableNamePrefix SF \n  -readFromTable true \n  -inputTable STORES \n  -logLevel ERROR
```
Visualize Network Buffers
Start WebLogic Server (WLS)

- Start WLS and pre-deployed servlets:
 - MapViewer
 - MVDemo – MapViewer demo
 - Geocoder – Web based geocoder service used by NDM Tutorial
 - NDM Tutorial – Network Graph tutorial
- cd /home/oracle/Mapviewer
- See README.txt to start WLS and pre-deployed servlets
Visualize Store Buffers

- To see the links covered by each store:
 - Start firefox
 - Under Bookmarks, select “Display store buffers”
 - Pick tile layer for a store to see which links are covered in 20 minute drive time.
 - For reference, turn on/off “Show all stores”
Display Store Buffers - MapViewer

- In Firefox, under Bookmarks, select “Display store buffers”
- Displays all the links that can reach Store 1
- Select different stores to view other buffers
Find Each Customer’s Closest Store
Large Scale Drive Time/Distance Analysis

For millions of customers, find closest store within a specified drive time

- Same underlying data for geocoder and road network
- Customers geocode as link id and percentage (instead of longitude/latitude)
- 20 minute “reverse“ Network Buffer from each store generates all possible paths
- Each persisted path includes:
 - Covered link IDs, nodes ID, and associated costs
- Single database query to find closest store and drive time/distance for each customer (join on link_id)
Find Each Customer’s Closest Store (and Cost)

- Same customer may fall on network buffer of multiple stores.
- Single SQL statement to generate closest store and cost of each customer.
Find Each Customer’s Closest Store (and Cost)

- Connect to oracledemo user to run SQL.
- Results stored in results table.

 - cd WORKSHOP/SOURCE_CODE_EXAMPLE/ANALYSIS
 - oracledemo
 - SQL> @generate_final_results.sql
 - SQL> SELECT customer_id, store_id, cost_in_min
 FROM results
 WHERE rownum < 10;
Find a Customer That Can Reach Many Stores

- The following SQL will list all the stores customer 207 can reach in 20 minutes, ordered by cost.

```
SQL> @find_all_stores_for_one_cust.sql
```

<table>
<thead>
<tr>
<th>C_CUSTOMER_ID</th>
<th>B_BUFFER_ID</th>
<th>COST</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>1</td>
<td>15.1884611</td>
</tr>
<tr>
<td>207</td>
<td>2</td>
<td>18.0122747</td>
</tr>
<tr>
<td>207</td>
<td>3</td>
<td>16.1757251</td>
</tr>
<tr>
<td>207</td>
<td>7</td>
<td>18.4145204</td>
</tr>
<tr>
<td>207</td>
<td>8</td>
<td>19.640776</td>
</tr>
<tr>
<td>207</td>
<td>9</td>
<td>19.9489666</td>
</tr>
</tbody>
</table>

- Only the closest store (store_id 1) will be in the results table
Conclusion
For millions of customers, find closest store within a specified drive time

- Same underlying data for geocoder and road network
- Customers geocode as link id and percentage (instead of longitude/latitude)
- 20 minute “reverse” Network Buffer from each store generates all possible paths
- Each persisted path includes:
 - Covered link IDs, nodes ID, and associated costs
- Single database query to find closest store and drive time/distance for each customer (join on link_id)
Summary

- Drive time analysis can be more effective than as the crow flies
- No need to compute every customer / store drive time
- Think out of the box
 - Geocode customers to get link_id and percentage
 - Generate and persist network buffers for stores
 - Simple relational join to find closest customer to each store
- Easy and fast to perform additional analysis
 - Compute another set of store buffers (30 min drive time, or 20 miles away)
 - Run relational query (customers do not need to be re-geocoded).
NDM Tutorial – Demo

Source Code available here:
Network Constraint Example

Customize Oracle’s Algorithms

class NoHighwayConstraint implements LODNetworkConstraint
{
 public NoHighwayConstraint()
 {
 }

 public boolean isSatisfied(LODAnalysisInfo info)
 {
 LogicalLink link = info.getNextLink();
 if (link == null || link.getLevel() == 1)
 return true;
 else
 return false;
 }
}
Resources
Oracle Technology Network

- www.oracle.com/technetwork/database/options/spatialand_graph
- www.oracle.com/technetwork/middleware/mapviewer
- https://blogs.oracle.com ➔ oraclespatial ➔ oracle_maps_blog
Oracle Spatial & Graph Special Interest Group
Connect and exchange knowledge with the community of Spatial & Graph users

- Talk with the Board this week
 - Wednesday lunch – SIG Board presentation (150AB)
 - Stop by the SIG User Group roundtable at Meet the Experts, 4:30pm Wednesday in 150AB
 - Visit Oracle’s exhibitor table at breaks & sign up

- Join us
 - Online communities: LinkedIn, Google+, IOUG SIG (free membership)
 - Visit OTN Spatial Community page
 www.oracle.com/technetwork/database/options/spatialandgraph/community
 (or search online for “Oracle Spatial and Graph Community”)
 - Email oraclespatialsig@gmail.com
Spatial Certification & Partner Specialization
Get valuable credentials – differentiate your skills

- Learn more at the Summit
 - Wed, Track C 3:30 – Exam preparation session
 - Talk to us at Oracle’s exhibitor table & “Meet the Experts” Certification table (Wed 4:30-5:00)

- Take the next steps
 - Schedule an exam, access topic lists / online training, learn about Partner Specialization requirements
 - Online training materials for Certified Implementation Specialist exam
 https://competencycenter.oracle.com/opncc/full_glp.cc?group_id=22003
May 21, 2014
Walter E. Washington Convention Center
Washington, DC USA