A Shortest Path to Using Graph Technologies
Best Practices in Graph Construction, Indexing, Analytics and Visualization

Hans Viehmann
Product Manager EMEA

Zhe Wu
Architect

Redwood Shores, January 31, 2017
Safe Harbor Statement

The following is intended to outline our general product direction. It is intended for information purposes only, and may not be incorporated into any contract. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described for Oracle’s products remains at the sole discretion of Oracle.
Graph Data Model

• What is a graph?
 – Data model representing entities as vertices and relationships as edges
 – Optionally including attributes
 – Also known as „linked data“

• What are typical graphs?
 – Social Networks
 • LinkedIn, Facebook, Google+, Twitter, ...
 – Physical networks, Supplier networks,…
 – Knowledge Graphs
 • Apple SIRI, Google Knowledge Graph, …
Graph Data Model

Why are graphs popular?

- Easy data modeling
 - "whiteboard friendly"
- Flexible data model
 - No predefined schema, easily extensible
 - Particularly useful for sparse data
- Insight from graphical representation
 - Intuitive visualization
- **Enabling new kinds of analysis**
 - Overcoming some limitations in relational technology
 - Basis for Machine Learning (Neural Networks)
Background: Three Types of Graph Data Models

Property Graph Model
- Graph Data Management
- Social Network Analysis
- Entity analytics

Network Data Model
- Network path analysis
- Transportation modeling

RDF Data Model
- Data federation
- Knowledge representation
- Semantic Web

Purpose-built for Linked Data and Semantic Web, conforming to W3C RDF standards

Purpose-built for Spatial Network Analysis

General Purpose Analysis
Categories of Graph Analysis

Computational Graph Analytics

• Compute values on vertices and edges
• Traversing graph or iterating over graph (usually repeatedly)
• Procedural logic
• Examples:
 – Shortest Path, PageRank, Weakly Connected Components, Centrality, ...

Graph Pattern Matching

• Based on description of pattern
• Find all matching sub-graphs
Examples for Graph Analysis

• Community detection and influencer analysis
 – Churn risk analysis/targeted marketing, HR Turnover analysis

• Product recommendation
 – Collaborative filtering, clustering

• Anomaly detection
 – Social Network Analysis (spam detection), fraud detection in healthcare

• Path analysis and reachability
 – Outage analysis in utilities networks, vulnerability analysis in IP networks, „Panama Papers“

• Pattern matching
 – Tax fraud detection, data extraction
Graph Analysis: Anomaly Detection

• Requirement:
 – Identify entities from a large dataset that look different than others, especially in their relationships

• Approaches:
 – Define an anomaly pattern, find all instances of the pattern in the graph
 – Given nodes in the same category, find nodes that stand out (eg. low Pagerank value)
Example: Fraud Detection in Healthcare

• Example for potential fraud detection
 – Public domain dataset
 – Medical providers and their operations

• Question
 – Are there any medical providers that are suspicious
 ➔ medical providers that perform different operations than their fellows
 (e.g. eye doctors doing plastic surgery)

• Approach
 – Create graph between doctors and operations
 – Apply personalized pagerank (a.k.a equivalent to random walking)
 – Identify doctors that are far from their fellows

![Graph showing relationships between clinics (doctors) and operations]

Example: Fraud Detection in Healthcare

Clinics (doctors) Operations
Introducing: Oracle Big Data Spatial and Graph

Spatial Analysis:
• Location Data Enrichment
• Proximity and containment analysis, Clustering
• Spatial data preparation (Vector, Raster)
• Interactive visualization

Property Graph Analysis:
• Graph Database
• In-memory Analysis Engine
• Scalable Network Analysis Algorithms
• Developer APIs
Oracle Big Data Graph Architecture

Graph Analytics
In-memory Analytic Engine

Graph Data Access Layer API
Blueprints & SolrCloud / Lucene

Scalable and Persistent Storage
Property Graph Support on
Apache HBase, Oracle NoSQL or Oracle 12.2

Java APIs

REST Web Service
Python, Perl, PHP, Ruby,
Javascript, …
The Property Graph Data Model

- A set of vertices (or nodes)
 - each vertex has a unique identifier.
 - each vertex has a set of in/out edges.
 - each vertex has a collection of **key-value** properties.

- A set of edges (or links)
 - each edge has a unique identifier.
 - each edge has a head/tail vertex.
 - each edge has a label denoting type of relationship between two vertices.
 - each edge has a collection of **key-value** properties.

https://github.com/tinkerpop/blueprints/wiki/Property-Graph-Model
Creating a Graph

• From a relational model
 – Rows in tables usually become vertices
 – Columns become properties on vertices
 – Relationships become edges
 – Join tables in n:m relations are transformed into relationships, columns become properties on edges

• Through API or interactively using a graphical tool
 – Adding vertices, edges, properties to a given graph

• From graph exchange formats
 – GraphML, GraphSON, GML (Graph Modeling Language)
Interacting with the Graph

No SQL and no SQL*Plus

• Access through APIs
 – Implementation of Apache Tinkerpop Blueprints APIs
 – Based on Java, REST plus SolR Cloud/Lucene support for text search

• Scripting
 – Groovy, Python, Javascript, ...
 – Apache Zeppelin integration, Javascript (Node.js) language binding

• Graphical UIs
 – Cytoscape, plug-in available for BDSG
 – Commercial Tools such as TomSawyer Perspectives
Graph Analysis Algorithms can be very hard to code ...

Oracle Big Data Spatial and Graph comes with 40+ pre-built algorithms

• Example: Find the size of the 2-hop network of vertices (Gremlin+Python)

```python
sum([v.query() \n    .direction(blueprints.Direction.OUT).count() \n    for v in OPGIterator(v0.query() \n    .direction(blueprints.Direction.OUT) \n    .vertices().iterator())])
```

• Single API call instead
 – Analysis in memory, in parallel

• Results can be persisted in Graph store and accessed from Oracle Database
 – Big Data SQL, Connectors
Example: Betweenness Centrality in Big Data Graph

Code

```python
b = analyst.betweenness().topK(15)
```
Social Network Analysis Algorithms (1)

Structure Evaluation
– Conductance
– countTriangles
– inDegreeDistribution
– outDegreeDistribution
– partitionConductance
– partitionModularity
– sparsify
– K-Core computes

Community Detection
– communitiesLabelPropagation

Ranking
– closenessCentralityUnitLength
– degreeCentrality
– eigenvectorCentrality
– Hyperlink-Induced Topic Search (HITS)
– inDegreeCentrality
– nodeBetweennessCentrality
– outDegreeCentrality
– Pagerank, weighted Pagerank
– approximatePagerank
– personalizedPagerank
– randomWalkWithRestart
Social Network Analysis Algorithms (2)

Pathfinding
- fattestPath
- shortestPathBellmanFord
- shortestPathBellmanFordReverse
- shortestPathDijkstra
- shortestPathDijkstraBidirectional
- shortestPathFilteredDijkstra
- shortestPathFilteredDijkstraBidirectional
- shortestPathHopDist
- shortestPathHopDistReverse

Recommendation
- salsa
- personalizedSalsa
- whomToFollow

Classic - Connected Components
- sccKosaraju
- sccTarjan
- wcc
Pattern matching using PGQL

- SQL-like syntax but with graph pattern description and property access
 - Interactive (real-time) analysis
 - Supporting aggregates, comparison, such as max, min, order by, group by
- Finding a given pattern in graph
 - Fraud detection
 - Anomaly detection
 - Subgraph extraction
 - ...

- Proposed for standardization by Oracle
 - Specification available on-line
 - Open-sourced front-end (i.e. parser)

https://github.com/oracle/pgql-lang
PGQL Example query

- Find all instances of a given pattern/template in data graph
- Fast, scaleable query mechanism

```sql
SELECT v3.name, v3.age
FROM 'myGraph'
WHERE
  (v1:Person WITH name = 'Amber') –[:friendOf]-> (v2:Person) –[:knows]-> (v3:Person)
```

Query: Find all people who are known to friends of ‘Amber’.
Text Search through Apache Lucene/Solr

• Use text indexing to access vertices or edges
 – Eg. find person with given name as starting point for reachability analysis
 – oraclePropertyGraph.createKeyIndex("name", Vertex.class);
 – oraclePropertyGraph.getVertices("name", "*Obama*", true);

• Based on Apache Solr/Solr Cloud
 – Highly scaleable through sharding and replication

• Uses Apache Lucene under the covers
 – open source text search engine library
 – inverted index, ranked searching, fuzzy matching ...

• Supports manual and auto indexing of Graph elements
In-memory Analytics Engine

Deployment options

Batch Mode
- `:loadGraph ...`
- `:pagerank ...`

Interactive (private server) Execution
- Client initiates PGX as a YARN task
- Client controls PGX via an interactive shell
 - `pgx> :loadGraph mygraph.json ...`
 - `pgx> :pagerank mygraph 0.85 ...`

Shared Server
- PGX can be configured as a service, with certain graphs pre-loaded
- And shared by multiple clients

Dry Run (Local Execution)
- Client can run PGX locally with small data set
- Client can submit a PGX script as a batch job
- To load the Graph and run the analysis
A Word on Performance

Sub-millisecond Performance for Graph Operations in NoSQL

Oracle Big Data Spatial and Graph: Property Graph – Data Access
Oracle NoSQL Database: Graph Operations On Twitter Data
(50K vertices, 50K edges, 10 K/V pairs for each)
Graph Analysis: Performance Compared with Neo4J

Path queries of Linux kernel source code

X86 Server
Xeon E5-2660 2.2Ghz
2 socket
x 8 cores
x 2HT
256GB DRAM

Neo4J: 2.2.1
Data:
- Linux kernel code as a graph
- Program analysis queries

Linux Kernel analysis on X86

- PGX
- Neo4j

Time (ms)

Huge performance advantage over Neo4J graph DB (2~4 orders of magnitude)

Basic graph pattern
Path queries
Single shortest path
Bulk shortest path
Distributed Graph Analysis Engine

Handling extremely large graphs

• Oracle Big Data Spatial and Graph uses very compact graph representation
 – Can fit graph with ~23bn edges into one BDA node

• Distributed implementation scales beyond this
 – Processing even larger graphs with several machines in a cluster (scale-out)
 – Interconnected through fast network (Ethernet or, ideally, Infiniband)

• Integrated with YARN for resource management
 – Same client interface, but not all APIs implemented yet

• Again, much faster than other implementations
 – Comprehensive performance comparison with GraphX, GraphLab
Graph visualization – Cytoscape, Vis.js, ...
Summary

Graph capabilities in Oracle Big Data Spatial and Graph

• Graph databases are powerful tools, complementing relational databases
 – Especially strong for analysis of graph topology and multi-hop relationships

• Graph analytics offer new insight
 – Especially relationships, dependencies and behavioural patterns

• Oracle Big Data Spatial and Graph offers
 – Comprehensive analytics through various APIs, integration with relational database
 – Scaleable, parallel in-memory processing
 – Secure and scaleable graph storage on Hadoop using Oracle NoSQL or HBase

• Runs on commodity hardware or BDA, both on-premise or in the Cloud
BIWA Sessions on Graph Analysis

• Robin Moffat, RittmanMead – Analysing the Panama Papers
• Mark Rittman, MJR Associates – Understanding how a Tweet goes Viral
• Ugur Demiyurek, USC – Context Aware Geosocial Graph Mining
• Hassan Chafi & Mark Hornick, Oracle – Graph and Machine Learning using R
• Kevin Madden, Tom Sawyer – Visualizing Graph Data with Geospatial Information
• Jean Villedieu, Linkurious – Fighting Financial Crime
• Wojciech Wcisło, Oracle – Tax Fraud Detection

• plus a Hands-On Workshop with Gabriela Moreno & Oskar van Rest, Oracle
Q&A
Resources

• Oracle Big Data Spatial and Graph OTN product page: www.oracle.com/technetwork/database/database-technologies/bigdata-spatialandgraph
 – White papers, software downloads, documentation and videos

• Oracle Big Data Lite Virtual Machine - a free sandbox to get started: www.oracle.com/technetwork/database/bigdata-appliance/oracle-bigdatalite-2104726.html

• Hands On Lab included in /opt/oracle/oracle-spatial-graph/
 – Content also available on GITHUB under http://github.com/oracle/BigDataLite/

• Blog – examples, tips & tricks: blogs.oracle.com/bigdataspatialgraph

 • @OracleBigData, @SpatialHannes, @JeanIhm

 • Oracle Spatial and Graph Group
Integrated Cloud
Applications & Platform Services