
Oracle Big Data Spatial: Hands-on Lab

Contents
Introduction .. 2

Lab Part 1: Use Oracle Big Data Spatial and Graph Vector Console ... 4

Create Spatial Index .. 5

Run a Categorization Job .. 6

Run a Binning Job .. 8

Run a Clustering Job .. 11

Lab Part 2: Use Oracle Big Data Spatial and Graph Vector Command Line .. 13

Create Spatial Index with GeoJSON file .. 14

Run a Categorization Job using a custom layer .. 15

Run a Binning Job using a custom RecordInfoProvider .. 19

Lab Part 3: Create Customized Jobs Using the Oracle Big Data Spatial and Graph Vector API 23

Create a Job to Filter Spatial and Non Spatial Data .. 29

Create a Job to Calculate Polygons length using an ESRI Shapefile .. 33

Lab Part 4: Use Oracle Big Data Spatial and Raster Console ... 39

Load raster images to HDFS and create basic mosaic... 40

Generate mosaic with Spatial Operations. ... 45

Load a DEM (Elevation Model) and calculate slope with algebra operation. ... 47

Calculate Hillshade on a DEM raster. .. 51

Lab Part 5: Use Oracle Big Data Spatial and Graph Raster Command Line .. 55

Load a set of rasters. ... 56

Process mosaic operation. .. 58

Process mosaic subset operation and raster algebra functions. .. 60

Process slope function. ... 63

Extend the framework by creating a custom raster analysis operation. .. 65

Lab Part 6: Create Customized Jobs Using the Oracle Big Data Spatial and Graph Raster API................... 74

Load a set of rasters and process the mosaic operation. ... 78

Load a DEM and process slope function. .. 82

Concluding comments .. 88

Oracle Big Data Spatial: Hands-on Lab

Introduction
Welcome to the Hands-on Introduction to the spatial feature of Oracle Big Data Spatial and Graph.

Time to Complete

Perform all parts – 182 Minutes

This lab has six parts:

1. Use Oracle Big Data Spatial and Graph Vector Console (18 mins)

2. Use Oracle Big Data Spatial and Graph Vector Command Line (20 mins)

3. Create Customized Jobs Using the Oracle Big Data Spatial and Graph Vector API (26 mins)

4. Use Oracle Big Data Spatial and Graph Raster Console (26 mins)

5. Use Oracle Big Data Spatial and Graph Raster Command Line (52 mins)

6. Create Customized Jobs Using the Oracle Big Data Spatial and Graph Raster API (35 mins)

The parts one and four are using the consoles to run and visualize results. Note that you can use the

vector console to visualize results created from the command line as well. In the parts two and five you

will be able to add more customization to your jobs by running them in the command line. Finally, parts

three and six walk you through the creation of Hadoop jobs using Java to generate customized results.

These parts can be completed in any order so if you are particularly interested in one of them, do that

one first in case you run out of time.

Let’s get started.

1. Install Big Data Lite from http://www.oracle.com/technetwork/database/bigdata-

appliance/oracle-bigdatalite-2104726.html

2. Copy Vector-HOL.zip and Raster-HOL.zip to the Big Data Lite Virtual Machine. You can do this

following the instructions of the tip Sharing folders between Big Data Lite and its host of the

Deployment Guide that can be found in the following link

http://www.oracle.com/technetwork/database/bigdata-appliance/bigdatalite-quickdeploy-430-

2844847.pdf

3. Open the web browser Firefox by clicking the icon below.

4. In Firefox go to Edit/Preferences and uncheck the Block pop-up windows checkbox.

http://www.oracle.com/technetwork/database/bigdata-appliance/oracle-bigdatalite-2104726.html
http://www.oracle.com/technetwork/database/bigdata-appliance/oracle-bigdatalite-2104726.html
http://www.oracle.com/technetwork/database/bigdata-appliance/bigdatalite-quickdeploy-430-2844847.pdf
http://www.oracle.com/technetwork/database/bigdata-appliance/bigdatalite-quickdeploy-430-2844847.pdf

Oracle Big Data Spatial: Hands-on Lab

5. Open the terminal.

6. Unzip the file Vector-HOL.zip to the directory /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL.

unzip Vector-HOL.zip -d /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL

7. Unzip the file Raster-HOL.zip to the directory /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL.

unzip Raster-HOL.zip -d /opt/oracle/oracle-spatial-

graph/spatial/raster/

8. Start Jetty.

/home/oracle/scripts/install-jetty-bdsg.sh

cd /u01/oracle-spatial-graph/spatial/jetty

java -jar start.jar

Note: When starting jetty the warning below is expected and can be ignored:

Oracle Big Data Spatial: Hands-on Lab

9. Create what will be our working directory in HDFS:
hadoop fs -mkdir /user/oracle/HOL

10. Now load the data that we will use during our examples into HDFS:
hadoop fs -put /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/data/tweets.json /user/oracle/HOL/tweets.json

hadoop fs -put /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/data/USA_2012Q4_PCB3_PLY.dbf

/user/oracle/HOL/USA_2012Q4_PCB3_PLY.dbf

hadoop fs -put /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/data/USA_2012Q4_PCB3_PLY.shp

/user/oracle/HOL/USA_2012Q4_PCB3_PLY.shp

hadoop fs -put /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/data/USA_2012Q4_PCB3_PLY.shx

/user/oracle/HOL/USA_2012Q4_PCB3_PLY.shx

Lab Part 1: Use Oracle Big Data Spatial and Graph Vector Console
Here is the first part of the lab where you will use the Vector Console to:

1) Create Spatial Index (5 mins)

2) Run a Categorization Job (4 mins)

3) Run a Binning Job (3 mins)

4) Run a Clustering Job (6 mins)

In this lab, the file /user/oracle/HOL/tweets.json will be used. This file is a GeoJSON file with sample

tweets. The tweets contain the geometry information, a location text, the number of followers and the

number of friends of the person that sent the tweet.

Note: For simplicity our examples won’t use the MVSuggest data enrichment service and won’t send

notification emails after job completions.

Oracle Big Data Spatial: Hands-on Lab
Note: The API provides InputFormats and RecordInfoProvider implementation for the common formats

GeoJSON and ESRI Shapefiles. It is possible to use any Hadoop provided or customized InputFormat and

any customized RecordInfoProvider.

Step 1: Open the web browser Firefox by clicking the icon below.

Note that if you need to open a new tab in Firefox click

Create Spatial Index
The first task is to create an index on the file /user/oracle/HOL/tweets.json.

1. Open http://localhost:8045/spatialviewer/

2. Click Create Index

3. Specify all the required details:

a. The index name: tweetsJanuaryIndex

b. Path of data to the index: Path of the file(s) to index in HDFS. For this example we set

hdfs://bigdatalite.localdomain:8020/user/oracle/HOL/tweets.json

c. New index path: This is the job output path. For this example we set

hdfs://bigdatalite.localdomain:8020/user/oracle/HOL/tweetsIndex1

d. The SRID of the geometries used to build the index: 8307

e. The tolerance of the geometries used to build the index: The tolerance reflects the

distance that two points can be apart and still be considered the same (for example, to

accommodate rounding errors). For this example we set 0.5

f. If the geometries used to build the index are geodetic or not: Yes

g. Input Format class: The InputFormat class implementation used to read the input data.

For this example we set

oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat

h. Record Info Provider class: The class that provides the spatial information. For this

example we set oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider.

http://localhost:8045/spatialviewer/

Oracle Big Data Spatial: Hands-on Lab

4. Click Create.

5. Open http://localhost:8088/cluster/apps in a new Firefox tab and wait until the job is completed

successfully (refresh with F5 to see the job updates).

Run a Categorization Job
Before running this example create the sample index performing the task Create Spatial Index. In this

task we will categorize the tweets of the file /user/oracle/HOL/tweets.json by Countries and States

Provinces so that we know how many tweets have been sent by countries and by Provinces. For

example we will know that 736 have been sent from the United States and 47 from California.

1. Open http://localhost:8045/spatialviewer/

2. Click on the section Categorization->Run Job.

3. Select the With Index option and select the index tweetsJanuaryIndex created in the Task Create

Spatial Index.

4. Click the Select templates button.

5. Select as hierarchy 1 World Countries and as hierarchy 2 World State Provinces and click Save.

6. Specify the required fields:

http://localhost:8088/cluster/apps
http://localhost:8045/spatialviewer/

Oracle Big Data Spatial: Hands-on Lab
a. Output path: The Hadoop job output path. For this example we set

hdfs://bigdatalite.localdomain:8020/user/oracle/HOL/catOutput

b. Result Name: Tweets January

7. Click Create.

8. Open http://localhost:8088/cluster/apps in a new Firefox tab and wait until the job is

completed successfully (refresh with F5 to see the job updates).

9. Back in the console tab, click on the section Categorization->View Results.

10. Click on the template World Countries.

11. Click on the result Tweets January.

12. See the number of tweets in the United States moving the mouse cursor on it.

http://localhost:8088/cluster/apps

Oracle Big Data Spatial: Hands-on Lab
13. Click the country United States.

14. The view changes to show the number of tweets by World State Provinces. The focus is on the

states of the United States.

Run a Binning Job
Before to run this example create the sample index performing the Task Create Spatial Index. In this task

we will run a binning analysis on the tweets.

1. Open http://localhost:8045/spatialviewer/

2. Click on the section Binning->Run Job.

3. Select the With Index option and select the index tweetsJanuaryIndex created in the task Create

Spatial Index.

4. Change the binning grid minimum bounding rectangle (MBR). Set:

- Min. X to -175

- Max. X to 175

- Min. Y to -75

- Max. Y to 75

5. Click the button to see the analysis area.

http://localhost:8045/spatialviewer/

Oracle Big Data Spatial: Hands-on Lab

6. The binning shape will be hexagon and the width will be 5.

7. Let the thematic map as count. The count attribute means that each cell in the grid will contain

as information the number of tweets that are in it.

8. Specify the required fields:

a. Output path: The Hadoop job output path. For this example we set

hdfs://bigdatalite.localdomain:8020/user/oracle/HOL/binningOutput

b. Result Name: Tweets January

Oracle Big Data Spatial: Hands-on Lab

9. Click Preview and see the preview of the grid.

10. Click Create.

11. Open http://localhost:8088/cluster/apps in a new Firefox tab and wait until the job is completed

successfully.

http://localhost:8088/cluster/apps

Oracle Big Data Spatial: Hands-on Lab

12. Back in the console tab, click on the section Binning->View Results.

Note that the result Tweets January can take an extra minute to be created. Refresh the screen

with F5 after a minute.

13. Click on the result Tweets January.

14. See the number of tweets in each cell moving the mouse cursor on it.

Run a Clustering Job
In this task we will run a clustering analysis on the tweets. The K –means clustering method is used and

the number of clusters is 2. The K-means method is popular for clustering analysis in data mining. More

information about it can be found here https://en.wikipedia.org/wiki/K-means_clustering.

1. Open http://localhost:8045/spatialviewer/

2. Click on the section Clustering->Run Job.

3. Specify all the required details:

a. Path of data: Provide the HDFS data path. For this example we set

hdfs://bigdatalite.localdomain:8020/user/oracle/HOL/tweets.json

b. The SRID of the geometries: 8307

c. The tolerance of the geometries: The tolerance reflects the distance that two points can

be apart and still be considered the same (for example, to accommodate rounding

errors). For this example we set 0.5

d. If the geometries are geodetic or not: Yes

https://en.wikipedia.org/wiki/K-means_clustering
http://localhost:8045/spatialviewer/

Oracle Big Data Spatial: Hands-on Lab
e. Input Format class: The InputFormat class implementation used to read the input data.

For this example we set

oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat.

f. Record Info Provider class: The class that will provide the spatial information. For this

example we set oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider.

g. Output path: The Hadoop job output path. For this example we set

hdfs://bigdatalite.localdomain:8020/user/oracle/HOL/clusteringOutput

h. Number of clusters: 2

i. Result Name: Tweets January

4. Click Create.

5. Open http://localhost:8088/cluster/apps in a new Firefox tab and wait until the jobs are

completed successfully. Note that this analysis uses the K-Means algorithm and will run several

jobs (about 9 jobs).

6. Back in the console tab, click on the section Clustering->View Results.

7. Click on the result Tweets January.

8. Select the checkbox Show clusters boundaries.

http://localhost:8088/cluster/apps

Oracle Big Data Spatial: Hands-on Lab

9. See the clusters centers and boundaries. Clicking on a cluster will show the number of

tweets inside that cluster.

Lab Part 2: Use Oracle Big Data Spatial and Graph Vector Command Line
In the prior section we showed how to run jobs and display their results in the vector console. Now let´s

see how to run jobs from the command line. For simplicity the categorization job and binning job will

run without spatial index.

In this section we will use the command line to:

1) Create Spatial Index with GeoJSON file (2 mins)

2) Run a Categorization Job using a custom layer (8 mins)

3) Run a Binning Job using a custom RecordInfoProvider (7 mins)

You can find the additional classes used in those examples in the folder /opt/oracle/oracle-
spatial-graph/spatial/vector/HOL/java/src/

More examples can be found in the folder /opt/oracle/oracle-spatial-
graph/spatial/vector/examples.

Step 1: Open the terminal. (3 mins for the following steps)

Oracle Big Data Spatial: Hands-on Lab
Step 2: We will take advantage of the libjars option in the hadoop jar command to make the API

needed JAR’s available to the map and reduce tasks. For that end, create an environment variable

named HADOOP_LIB_JARS that reference those jars by typing the following commands in the terminal:

export API_LIB_DIR=/opt/oracle/oracle-spatial-graph/spatial/vector/jlib

export HADOOP_LIB_JARS=$API_LIB_DIR/sdohadoop-

vector.jar,$API_LIB_DIR/sdoapi.jar,$API_LIB_DIR/sdoutl.jar,$API_LIB_DIR/ojdbc

8.jar

Step 3: Make these same JAR’s available to the client JVM, which is the JVM that’s created when you run

the hadoop jar command. For this to happen, you should set the HADOOP_CLASSPATH environment

variable containing the needed jars:

export HADOOP_CLASSPATH=$API_LIB_DIR/sdohadoop-

vector.jar:$API_LIB_DIR/sdoapi.jar:$API_LIB_DIR/sdoutl.jar:$API_LIB_DIR/ojdbc

8.jar:$HADOOP_CLASSPATH

Note: Since our examples don’t use the MVSuggest data enrichment service we don’t need to include all

the jars in /opt/oracle/oracle-spatial-graph/spatial/vector/jlib.

Note: The API provides InputFormats and RecordInfoProvider implementation for the common formats

GeoJSON and ESRI Shapefiles. It is possible to use any Hadoop provided or customized InputFormat and

any customized RecordInfoProvider.

Create Spatial Index with GeoJSON file
This task creates a spatial index using the job

oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing with the file

/user/oracle/HOL/tweets.json as input. The name of the new index is indexGeoJSON and the

metadata of the index will be located in the HDFS directory /user/oracle/HOL/indexMetadataDir.

The needed arguments of the job are:

 input : the location of the data to be indexed.

 output: the location of the resulting spatial index.

 inputFormat: the InputFormat class implementation used to read the input data.

 recordInfoProvider: the RecordInfoProvider implementation used to extract information

from the records read by the InputFormat class.

 srid: the Spatial Reference System id of the spatial data

 geodetic: value that indicates whether the geometries are geodetic or not

 tolerance: double value which represents the tolerance used when performing spatial

operations (tolerance reflects the distance that two points can be apart and still be

considered the same (for example, to accommodate rounding errors))

Oracle Big Data Spatial: Hands-on Lab
 indexName: the name of the index to be generated

 indexMetadataDir: the directory where the spatial index metadata will be stored in HDFS.

 overwriteIndexMetadata: argument that indicates whether the index metadata can be

overwritten if an index with the same name already exists.

1. Type the command in the terminal:
hadoop jar $API_LIB_DIR/sdohadoop-vector.jar

oracle.spatial.hadoop.vector.mapred.job.SpatialIndexing -libjars

$HADOOP_LIB_JARS input=/user/oracle/HOL/tweets.json

output=/user/oracle/HOL/indexGeoJSON

inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFor

mat

recordInfoProvider=oracle.spatial.hadoop.vector.geojson.GeoJsonRecordIn

foProvider srid=8307 geodetic=true tolerance=0.5 indexName=indexGeoJSON

indexMetadataDir=/user/oracle/HOL/indexMetadataDir

overwriteIndexMetadata=true

2. Once the job is finished, confirm that the index was created by opening up the Firefox browser

and going to the index HDFS location using this link:

http://localhost:50070/explorer.html#/user/oracle/HOL.

Run a Categorization Job using a custom layer
This task will categorize the tweets by countries and regions inside the eurozone. The API doesn’t

provide the data sets of the countries in the eurozone so we have to provide them. The job used is

oracle.spatial.hadoop.vector.mapred.job.Categorization. The needed arguments of

the job are:

http://localhost:50070/explorer.html#/user/oracle/HOL

Oracle Big Data Spatial: Hands-on Lab
 spatialOperation: the spatial operation to perform between the input data set and the

hierarchical data set. Allowed values are IsInside and AnyInteract

 input : the location of the input data in HDFS.

 output: the path where the results will be stored in HDFS

 inputFormat: the InputFormat class implementation used to read the input data.

 recordInfoProvider: the RecordInfoProvider implementation used to extract information

from the records read by the InputFormat class.

 srid: the Spatial Reference System id of the spatial data

 geodetic: value that indicates whether the geometries are geodetic or not

 tolerance: double value which represents the tolerance used when performing spatial

operations (tolerance reflects the distance that two points can be apart and still be

considered the same (for example, to accommodate rounding errors))

 hierarchyInfo: the fully qualified name of a HierarchyInfo implementation. It defines the

structure of the current hierarchy data. An implementation example is shown further in this

example.

 hierarchyIndex: the HDFS path where the hierarchy data index will be placed. This index is

used by the job to avoid finding parent-children relationships each time is required.

 hierarchyDataPaths: a comma separated list of paths of the hierarchy data. The paths should

be sorted in ascending way by hierarchy level.

1. Before executing the job we have to create the HierarchyInfo class and make it available for

our job. In this example the class is already created and is contained in the jar
/opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/jlib/eurohierarchyinfo.jar.

The class fully qualified name is hol.EuroHierarchyInfo and the implementation is:

Oracle Big Data Spatial: Hands-on Lab
The class hol.EuroHierarchyInfo describes the hierarchy that will be used to categorize

the tweets data. The first hierarchy is the eurozone_countries and the second hierarchy is the

eurozone_provinces. Both files are in the folder /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/data. In the file eurozone_countries.json each country has a

field _id that refers to the property ISO in the provinces records of the file

eurozone_provinces.json.

Example of record in the file eurozone_countries.json:

{"type":"Feature","_id":"FRA","geometry":{"type":"Polygon","coord

inates":[[1.44136,42.60366,1.47851,42.65168,…,1.44136,42.60366]]}

,"properties":{"Continent":"EU","Name":"France","Alt_Region":"EME

A","Country Code":"FRA"},"label_box":[-

1.12061,45.13915,6.02255,49.19591]}

And example of a record representing a France province in eurozone_provinces.json:

{"type":"Feature","_id":"3023519","geometry":{"type":"Polygon","c

oordinates":[[9.19977,41.36465,9.25876,…,41.36465]]},"properties"

:{"Country":"France","ISO":"FRA","State Province

Name":"Corse","Country Code_State Province

Name":"FRA_Corse","Country Name_State Province

Name":"France_Corse"},"label_box":[8.70974,42.08453,9.53075,42.54

732]}

By setting this information class the API will know that any record of a France province is also a

record belonging to the France country without extra calculation. If those data are not provided

then the provinces that are spatially inside a country are considered a province of it.

2. The next step is to make the jar eurohierarchyinfo.jar available for Hadoop. To do that

we will add it to the environment variables HADOOP_CLASSPATH and HADOOP_LIB_JARS

typing the following commands in the terminal:

export HADOOP_CLASSPATH=/opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/jlib/eurohierarchyinfo.jar:$HADOOP_CLASS

PATH

export HADOOP_LIB_JARS=/opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/jlib/eurohierarchyinfo.jar,$HADOOP_LIB_J

ARS

3. Now run the categorization job entering the following command in the terminal:
hadoop jar $API_LIB_DIR/sdohadoop-vector.jar

oracle.spatial.hadoop.vector.mapred.job.Categorization -libjars

$HADOOP_LIB_JARS spatialOperation=IsInside

input=/user/oracle/HOL/tweets.json output=/user/oracle/HOL/catOutput

inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFor

mat

Oracle Big Data Spatial: Hands-on Lab
recordInfoProvider=oracle.spatial.hadoop.vector.geojson.GeoJsonRecordIn

foProvider srid=8307 geodetic=true tolerance=0.5

hierarchyInfo=hol.EuroHierarchyInfo

hierarchyIndex=/user/oracle/HOL/hierarchyIndex

hierarchyDataPaths=file:///opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/data/eurozone_countries.json,file:///opt/oracl

e/oracle-spatial-graph/spatial/vector/HOL/data/eurozone_provinces.json

4. Once the job completes, the result has been saved in the HDFS folder

/user/oracle/HOL/catOutput. Let´s copy it locally. Type the command
hadoop fs -get /user/oracle/HOL/catOutput/*.json .

5. Type:
ls

Two files have been copied eurozone_countries_count.json and

eurozone_provinces_count.json.

6. Review eurozone_countries_count.json with the command:
more eurozone_countries_count.json

Each record id refers to the record in the eurozone_countries.json file, for example the result:

{"id":"FRA","result":59}

Refers to the record in the file eurozone_countries.json:

{"type":"Feature","_id":"FRA","geometry":{"type":"Polygon","coord

inates":[[1.44136,42.60366,1.47851,42.65168,…,1.44136,42.60366]]}

,"properties":{"Continent":"EU","Name":"France","Alt_Region":"EME

A","Country Code":"FRA"},"label_box":[-

1.12061,45.13915,6.02255,49.19591]}

Meaning that 59 tweets have been sent from France.

Oracle Big Data Spatial: Hands-on Lab

Run a Binning Job using a custom RecordInfoProvider
This task will run a binning analysis on the tweets. That is a query area will be split into cells that are the

bins, then each bin (cell) will contain the information of the average number of followers of the tweets

in the bin. To do this we will create a custom RecordInfoProvider that will return as extra field the

number of followers that is needed in this analysis. The job used is

oracle.spatial.hadoop.vector.mapred.job.Binning. The required arguments for this job

are:

 input : the location of the input data in HDFS.

 output: the path where the results will be stored in HDFS

 inputFormat: the InputFormat class implementation used to read the input data.

 recordInfoProvider: the RecordInfoProvider implementation used to extract information

from the records read by the InputFormat class.

 srid: the Spatial Reference System id of the spatial data

 geodetic: value that indicates whether the geometries are geodetic or not

 tolerance: double value which represents the tolerance used when performing spatial

operations (tolerance reflects the distance that two points can be apart and still be

considered the same (for example, to accommodate rounding errors))

 cellShape: the shape of the cells. It can be RECTANGLE or HEXAGON

 cellSize: the size of the cells in the format width,height

 gridMbr: the minimum and maximum dimension values for the grid in the form

minX,minY,maxX,maxY

 aggrFields: a comma-separated list of field names that will be aggregated to the result.

7. Before executing the job we have to create the RecordInfoProvider class and make it

available for our job. In this example the class is already created and is contained in the jar
/opt/oracle/oracle-spatial-graph/spatial/vector/HOL/jlib/
tweetsrecordinfoprovider.jar.

The class fully qualified name is hol.TweetsRecordInfoProvider and the implementation

is:

Oracle Big Data Spatial: Hands-on Lab

The class hol.TweetsRecordInfoProvider provides the geometry of each record and adds

to the extra fields list the followers_count that will be use in the analysis.

Example of record in the file tweets.json:

{"type":"Feature","_id":"1","geometry":{"type":"Point","coordinat

es":[121.31111,24.98889]},"properties":{"followers_count":82,"fri

ends_count":120,"location":"Taiwan"}}

Oracle Big Data Spatial: Hands-on Lab
8. The next step is to make the jar tweetsrecordinfoprovider.jar available for Hadoop. To

do that we will add it to the environment variables HADOOP_CLASSPATH and

HADOOP_LIB_JARS typing the following commands in the terminal:

export HADOOP_CLASSPATH=/opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/jlib/tweetsrecordinfoprovider.jar:$HADOO

P_CLASSPATH

export HADOOP_LIB_JARS=/opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/jlib/tweetsrecordinfoprovider.jar,$HADOO

P_LIB_JARS

9. Now run the binning job entering the following command in the terminal:

hadoop jar $API_LIB_DIR/sdohadoop-vector.jar

oracle.spatial.hadoop.vector.mapred.job.Binning -libjars

$HADOOP_LIB_JARS input=/user/oracle/HOL/tweets.json

output=/user/oracle/HOL/binningOutput

inputFormat=oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonIn

putFormat recordInfoProvider=hol.TweetsRecordInfoProvider

srid=8307 geodetic=true tolerance=0.5 cellShape=HEXAGON

cellSize=5 gridMbr=-175,-85,175,85 aggrFields=followers_count

10. The result has been saved in the HDFS folder /user/oracle/HOL/binningOutput. Let´s

copy it locally. Type the command
hadoop fs -get /user/oracle/HOL/binningOutput/bin_res .

11. Type:
ls

The file bin_res has been copied.

12. Review bin_res with the command:
more bin_res

Oracle Big Data Spatial: Hands-on Lab
Each record contains an id, the number of tweets in the bin (count), the geometry (geom) of

the bin that is a HEXAGON and the average number of followers for the tweets inside the bin

(follower_count), for example the result:
{"count":1,"id":444,"geom":{"type":"Polygon","coordinates":[[[66.25,-

67.6794919243],[65,-65.5144284149],[62.5,-65.5144284149],[61.25,-

67.6794919243],[62.5,-69.8445554338],[65,-69.8445554338],[66.25,-

67.6794919243]]]},"followers_count":98}

}

13. To see the result on the console open http://localhost:8045/spatialviewer/

14. Click on the section Binning->View Results.

15. Click on the add result button .

16. Specify all the required details:

a. Name: Followers Average Tweets January

b. SRID: 8307

c. Geodetic: Yes

d. Thematic attribute: followers_count

e. Select the file bin_res

17. Click Save

18. When the message “Result has been added successfully” appears click Close.

19. Click on the refresh button .

20. Click on the result Followers Average Tweets January.

http://localhost:8045/spatialviewer/

Oracle Big Data Spatial: Hands-on Lab

Lab Part 3: Create Customized Jobs Using the Oracle Big Data Spatial and

Graph Vector API
So far we saw how to use the console features and some API included jobs. Now we will see how to

create our own jobs in java using the API framework.

In this section we will:

1) Create a Job to Filter Spatial and Non Spatial Data (11 mins)

2) Create a Job to Calculate Polygons length using an ESRI Shapefile (8 mins)

For simplicity in the examples we won’t use any spatial index.

To learn how to filter with index and more about how to create jobs using the java API review the

examples in the folder /opt/oracle/oracle-spatial-graph/spatial/vector/examples.

You can find the additional classes used in those examples in the folder /opt/oracle/oracle-
spatial-graph/spatial/vector/HOL/java/src/

Step 1: Open JDeveloper by clicking the JDev icon in the upper Task Bar (7 minutes for the following

steps).

Step 2: Select the role Studio Developer (All Features) and click OK.

Oracle Big Data Spatial: Hands-on Lab

Step 2: Go to the Application menu and from the submenu list select New....

Step 3: Select Java Desktop Application and click OK

Step 4: Set the Application Name to VectorApplication and click Next.

Oracle Big Data Spatial: Hands-on Lab

Step 5: Set the project name to VectorTest and click Next.

Step 4: Set the default package to hol and click Finish.

Oracle Big Data Spatial: Hands-on Lab

Step 5: Right click on the VectorTest project in the Application Navigator and select Project Properties.

 Select the Libraries and Classpath option and click on Add JAR/Directory.

In the Add Archive/Directory window set the path to /opt/oracle/oracle-spatial-

graph/spatial/vector/jlib and select all the jar files in this folder. Click Open. Then in the same

Oracle Big Data Spatial: Hands-on Lab
way add all the Hadoop jars located in /usr/lib/hadoop/client. Now the project knows about the

required files for vector processing. Finally Click OK.

Step 6: Right click on the project and select Project Properties. In the emergent window select

Deployment option and click on Create Deployment Profile icon. Select JAR File as the Profile Type and

set vector_examples as the Deployment Profile Name, click OK to Finish.

Oracle Big Data Spatial: Hands-on Lab

Step 7: In the emergent Edit JAR Deployment Profile Properties set the jar file to /opt/oracle/oracle-

spatial-graph/spatial/vector/HOL/jlib/vector_examples.jar and click OK.

Step 8: Finally click OK in the Deployment screen.

Oracle Big Data Spatial: Hands-on Lab
Create a Job to Filter Spatial and Non Spatial Data
The job will filter the tweets that are inside a query window and that have a number of followers higher

than 50.

1. Right click on the VectorTest project in the Application Navigator and select New. In the New

Gallery window select Java class.

In the Create Java Class window, set CustomFiltering as the Name for the class and click Ok.

2. First add the imported classes to avoid compilation errors:

import java.io.IOException;

import oracle.spatial.hadoop.vector.geojson.GeoJsonRecordInfoProvider;
import oracle.spatial.hadoop.vector.geojson.mapred.GeoJsonInputFormat;

Oracle Big Data Spatial: Hands-on Lab
import oracle.spatial.hadoop.vector.mapred.input.SpatialFilterInputFormat;
import oracle.spatial.hadoop.vector.util.JobUtils;
import oracle.spatial.hadoop.vector.util.SpatialOperation;
import oracle.spatial.hadoop.vector.util.SpatialOperationConfig;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.NullWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.codehaus.jackson.JsonNode;
import org.codehaus.jackson.map.ObjectMapper;

3. Let´s start programming the CustomFiltering.java class creating the main function (The Map

class is provided in step 4).

public static void main(String[] init_args) throws Exception{
Configuration config = new Configuration();

// This step is important as init_args contains ALL the arguments passed to hadoop on the
// command line (such as -libjars [jar files]). What's left after .getRemainingArgs is just the
// application specific arguments
String [] args = new GenericOptionsParser(config, init_args).getRemainingArgs();

JobConf conf = new JobConf(config);

//set input path and format
JobUtils.setupInputPath(args[0], conf);
//InputFormat that will filter spatially the data
conf.setInputFormat(SpatialFilterInputFormat.class);

//set internal input format
SpatialFilterInputFormat.setInternalInputFormatClass(conf, GeoJsonInputFormat.class);
//as no spatial index is used a RecordInfoProvider is needed
SpatialFilterInputFormat.setRecordInfoProviderClass(conf, GeoJsonRecordInfoProvider.class);

//set spatial operation used to filter the records
SpatialOperationConfig spatialOperationConfig = new SpatialOperationConfig();
spatialOperationConfig.setSrid(8307);
spatialOperationConfig.setTolerance(0.5);
spatialOperationConfig.setGeodetic(true);
spatialOperationConfig.setOperation(SpatialOperation.IsInside);
//set the query window (the query window covers an area in the North of Mexico)
spatialOperationConfig.setJsonQueryWindow("{\"type\":\"Polygon\", \"coordinates\":[[-106, 25, -106, 30, -104, 30, -104, 25, -106, 25]]}");

spatialOperationConfig.store(conf);

// output path
JobUtils.setupOutputPath(args[1], null, conf);

// output format
conf.setOutputFormat(TextOutputFormat.class);
// mapper

Oracle Big Data Spatial: Hands-on Lab
conf.setMapperClass(Map.class);
conf.setMapOutputKeyClass(NullWritable.class);
conf.setMapOutputValueClass(Text.class);
//one reducer will be used to avoid multiple outputs
conf.setNumReduceTasks(1);

// run job
conf.setJarByClass(CustomFiltering.class);
conf.setJobName("CustomFiltering example");

JobClient.runJob(conf);

}

4. Add the Map class to the CustomFiltering class. The mapper will filter by tweet followers.

public static class Map extends MapReduceBase implements
Mapper<LongWritable, Text, NullWritable, Text> {

public void map(LongWritable key, Text value,

OutputCollector<NullWritable, Text> output, Reporter reporter) throws IOException {
ObjectMapper jsonMapper = new ObjectMapper();
JsonNode recordNode = jsonMapper.readTree(value.toString());
long followersCount = recordNode.get("properties").get("followers_count").getLongValue();
//additionally filter the tweets with more than 50 followers
if(followersCount > 50){

output.collect(NullWritable.get(), value);
}

}
}

5. The code is ready!
6. Right click on the project select Deploy and the vector_examples profile you just created.

7. Click Finish. The Jar file is deployed and ready to use.

Oracle Big Data Spatial: Hands-on Lab

8. Open the terminal.

9. We will take advantage of the libjars option in the hadoop jar command to make the API

needed JAR’s available to the map and reduce tasks. For that end, create an environment

variable named HADOOP_LIB_JARS that references those jars by typing the following command

in the terminal:

export API_LIB_DIR=/opt/oracle/oracle-spatial-graph/spatial/vector/jlib

export HADOOP_LIB_JARS=$API_LIB_DIR/sdohadoop-

vector.jar,$API_LIB_DIR/sdoapi.jar,$API_LIB_DIR/sdoutl.jar,$API_LIB_DIR

/ojdbc8.jar

10. Make these same JAR’s available to the client JVM, which is the JVM that’s created when you

run the hadoop jar command. For this to happen, you should set

the HADOOP_CLASSPATH environment variable containing the needed jars:

export HADOOP_CLASSPATH=$API_LIB_DIR/sdohadoop-

vector.jar:$API_LIB_DIR/sdoapi.jar:$API_LIB_DIR/sdoutl.jar:$API_LIB_DIR

/ojdbc8.jar:$HADOOP_CLASSPATH

11. Now run the job by entering the following command in the terminal:

hadoop jar /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/jlib/vector_examples.jar hol.CustomFiltering -

Oracle Big Data Spatial: Hands-on Lab
libjars $HADOOP_LIB_JARS /user/oracle/HOL/tweets.json

/user/oracle/HOL/filteringOutput

12. The result has been saved in the HDFS folder /user/oracle/HOL/filteringOutput. Let´s

copy it locally. Type the commands

mkdir filteringOutput

cd filteringOutput

hadoop fs -get /user/oracle/HOL/filteringOutput/* .

13. Type:

ls

The file part-00000 has been copied.

14. Review part-00000 with the command:

more part-00000

Three results are displayed. The resulting records have the same id and properties than in the

input file tweets.json and were selected because they have more than 50 followers as specified

in our custom filter class.

Create a Job to Calculate Polygons length using an ESRI Shapefile
The job receives as input an ESRI Shapefile containing polygons. The polygons represent the 3-digit

postal boundaries of the USA. The output will be the record attributes and the length in meters of the

polygons.

1. Right click on the VectorTest project in the Application Navigator and select New. In the New

Gallery window select Java class.

Oracle Big Data Spatial: Hands-on Lab

In the Create Java Class window, set PolygonLength as the Name for the class and click Ok.

2. First add the imported classes to avoid compilation errors:

import java.io.IOException;
import java.text.DecimalFormat;

import oracle.spatial.geometry.J3D_Geometry;
import oracle.spatial.geometry.JGeometry;
import oracle.spatial.hadoop.vector.RecordInfo;
import oracle.spatial.hadoop.vector.mapred.input.CompositeInputFormat;
import oracle.spatial.hadoop.vector.mapred.input.FileSplitInputFormat;
import oracle.spatial.hadoop.vector.mapred.input.RecordInfoLoader;
import oracle.spatial.hadoop.vector.shapefile.ShapeFileRecordInfoProvider;
import oracle.spatial.hadoop.vector.shapefile.mapred.ShapeFileInputFormat;
import oracle.spatial.hadoop.vector.util.ConfigParams;
import oracle.spatial.hadoop.vector.util.JobUtils;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.io.NullWritable;

Oracle Big Data Spatial: Hands-on Lab
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.FileSplit;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapred.TextOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;

3. Let´s start programming the PolygonLength.java class creating the main function (The Map class

is provided in step 4).

public static void main(String[] init_args) throws Exception{
Configuration config = new Configuration();
// This step is important as init_args contains ALL the arguments passed to hadoop on the command
// line (such as -libjars [jar files]). What's left after .getRemainingArgs is just the
// application specific arguments
String [] args = new GenericOptionsParser(config, init_args).getRemainingArgs();

JobConf conf = new JobConf(config);
conf.setJarByClass(PolygonLength.class);
conf.setJobName("PolygonLength example");
//one reducer will be used
conf.setNumReduceTasks(1);

//Setting add extra fields to true means that all the fields available in the Shapefile will
//be available when the records will be process in the mapper.
ShapeFileRecordInfoProvider.setAddExtraFields(conf, true);

//set input and output paths in HDFS
JobUtils.setupInputPath(args[0], conf);
JobUtils.setupOutputPath(args[1], null, conf);

//set the mapper class
conf.setMapperClass(Map.class);

conf.setMapOutputKeyClass(NullWritable.class);
conf.setMapOutputValueClass(Text.class);
conf.setOutputKeyClass(NullWritable.class);
conf.setOutputValueClass(RecordInfo.class);
//A CompositeInputFormat that only provides the source FileSplits as its values so mapreduce
//components can read the data directly using its internal input format.
conf.setInputFormat(FileSplitInputFormat.class);

//set SRID of the geometries
conf.setInt(ConfigParams.SRID, 4326);

//set the input format class
CompositeInputFormat.setInternalInputFormatClass(conf, ShapeFileInputFormat.class);
//set the record info provider class
CompositeInputFormat.setRecordInfoProviderClass(conf, ShapeFileRecordInfoProvider.class);
//set the output format class
conf.setOutputFormat(TextOutputFormat.class);
//run the job
JobClient.runJob(conf);

}

Oracle Big Data Spatial: Hands-on Lab
4. Add the Map class to the PolygonLength class.

Notes:

 The mappers will process up to 10 records to reduce the time of the job.

 Inverse flattening and semi-Major Axis is information specific to the coordinate

system. For example with the SRID 4326 that is used in the example the

information is available here:

https://en.wikipedia.org/wiki/World_Geodetic_System

public static class Map extends MapReduceBase implements Mapper<NullWritable, FileSplit, NullWritable, Text>{
private RecordInfoLoader<Writable, Writable> riLoader = null;

@Override
public void configure(JobConf conf) {

super.configure(conf);
//create the record info loader
riLoader = new RecordInfoLoader<Writable, Writable>(conf);

}

@Override
public void map(NullWritable key, FileSplit value,

OutputCollector<NullWritable, Text> output, Reporter reporter)
 throws IOException {
//set a maximum number of results to process to reduce the time of the job
int maxNumberOfResults = 10;
int currentResultNumber = 1;
//Semi-Major Axis (Equatorial Radius)
double WGS84_SMAX = 6378137;
//inverse flattening
double WGS84_IFLAT = 298.257223563;

riLoader.startLoading(value, reporter);

while(riLoader.hasNext()){

if(currentResultNumber > maxNumberOfResults){
//return since the maximum number of results to process has been reached

 return;
 }

 currentResultNumber++;

 //get the RecordInfo
 RecordInfo ri = riLoader.next();

 if(ri!=null && ri.getGeometry() != null){
 try {
 //the class J3D_Geometry contains the length function. It works with
 //both 3D and 2D geometries.
 J3D_Geometry geometry = JGeometry.make_3dgeom(ri.getGeometry(),
 false, //doesn't ignore SRID conversion
 ri.getGeometry().getSRID(), //geometries SRID
 0 //height that is 0 since in our case the geometry is 2D

);

 double length = geometry.length(
 0.05 //tolerance
 , "TRUE" //is_g3d TRUE means that the data are geodetic

https://en.wikipedia.org/wiki/World_Geodetic_System

Oracle Big Data Spatial: Hands-on Lab
 , WGS84_SMAX
 , 1/WGS84_IFLAT
 , 1 //use 1 for the unit-of-measure factor (to return meters)
);

 //collect the information to print as result
 StringBuffer sb = new StringBuffer();

 sb.append("----------------------------------");
 sb.append("\npostal code reference : " +ri.getField("postcode"));
 sb.append("\nCountry abbreviation : " +ri.getField("iso_ctry"));
 sb.append("\nCountry : " +ri.getField("admin1"));
 sb.append("\nState : " +ri.getField("admin2"));
 sb.append("\nCounty : " +ri.getField("admin3"));
 sb.append("\nCity : " +ri.getField("admin4"));
 sb.append("\nState abbreviation : " +ri.getField("state"));

 sb.append("\nlength : " +new DecimalFormat(".##").format(length));
 sb.append("\n----------------------------------");
 //collect the result
 output.collect(NullWritable.get(), new Text(sb.toString()));

 } catch (Exception e) {
 e.printStackTrace();
 }

}
}

}
}

15. The code is ready!
16. Right click on the project select Deploy and the vector_examples profile you just created.

5. Click Finish. The Jar file is deployed and ready to use.

Oracle Big Data Spatial: Hands-on Lab

6. Open the terminal.

7. We will take advantage of the libjars option in the hadoop jar command to make the API

needed JAR’s available to the map and reduce tasks. For that end, create an environment

variable named HADOOP_LIB_JARS that references those jars typing the following command in

the terminal:

export API_LIB_DIR=/opt/oracle/oracle-spatial-graph/spatial/vector/jlib

export HADOOP_LIB_JARS=$API_LIB_DIR/sdohadoop-

vector.jar,$API_LIB_DIR/sdoapi.jar,$API_LIB_DIR/sdoutl.jar,$API_LIB_DIR

/ojdbc8.jar

8. Make these same JAR’s available to the client JVM, which is the JVM that’s created when you

run the hadoop jar command. For this to happen, you should set

the HADOOP_CLASSPATH environment variable containing the needed jars:

export HADOOP_CLASSPATH=$API_LIB_DIR/sdohadoop-

vector.jar:$API_LIB_DIR/sdoapi.jar:$API_LIB_DIR/sdoutl.jar:$API_LIB_DIR

/ojdbc8.jar:$HADOOP_CLASSPATH

9. Now run the job by entering the following command in the terminal:

hadoop jar /opt/oracle/oracle-spatial-

graph/spatial/vector/HOL/jlib/vector_examples.jar hol.PolygonLength -

Oracle Big Data Spatial: Hands-on Lab
libjars $HADOOP_LIB_JARS /user/oracle/HOL/USA_2012Q4_PCB3_PLY.shp

/user/oracle/HOL/lengthResult

10. The result has been saved in the HDFS folder /user/oracle/HOL/lengthResult. Let´s

copy it locally. Type the commands

mkdir lengthResult

cd lengthResult

hadoop fs -get /user/oracle/HOL/lengthResult/* .

11. Type:

ls

The file part-00000 has been copied.

12. Review part-00000 with the command:

more part-00000

The resulting records have the record attributes and the length of the polygons in meters.

Lab Part 4: Use Oracle Big Data Spatial and Raster Console
The following lessons will walk us through various steps that are needed to load images into HDFS, then

select the images for processing and create mosaic images and finally add custom functionality to the

processing using the Raster Console - ImageServer.

Lab Exercises:

1) Load raster images to HDFS and create basic mosaic (10 mins)

Oracle Big Data Spatial: Hands-on Lab
2) Generate mosaic with Spatial Operations (4 mins)

3) Load a DEM (Elevation Model) and calculate slope with algebra operation (6 mins)

4) Calculate Hillshade on a DEM raster (6 mins)

Let´s get started:

Step 1: Open the web browser Firefox by clicking the icon below.

Note that if you need to open a new tab in Firefox click

Load raster images to HDFS and create basic mosaic
In this section we will learn how to locate images from the file system, and select those to be loaded

into hdfs, a whole folder can also be selected and all images inside it will be loaded as well.

1. Open http://localhost:8045/imageserver/#

2. Go to Hadoop Loader and Globe tab.

3. Configure the task memory as recommended by the message.

http://localhost:8045/imageserver/%23

Oracle Big Data Spatial: Hands-on Lab
4. Go the left panel and click on the open folder button and select all the Hawaii images one at a

time, Hawaii.tif, Kahoolawe.tif and maui.tif:

5. Do not forget to configure memory as necessary.

6. Click on Load Images button.

7. Open a new tab in your web browser and type http://localhost:8088/cluster/apps, to review the

loader job execution if necessary.

http://localhost:8088/cluster/apps

Oracle Big Data Spatial: Hands-on Lab

8. When done, go back to the imageserver, If no errors were generated, click on Return

 Note: if errors are generated in the loading process and download link will be provided to

download the logs of this job.

9. In Hadoop Loader and Globe tab, click on Refresh Footprints button and

wait till the footprints are drawn.

10. Click on each footprint to visualize the thumbnail of each image.

11. After clicking the rectangle the thumbnail appear, click on any part of the map to close it.

Oracle Big Data Spatial: Hands-on Lab

12. Zoom it or zoom out in the map as necessary to preview on the map the footprints.

13. Click on the selection mosaic area button at the left of the map, to start the area selection:

14. Then left-click on the map and keep pressed the button till the desired selection. This will create

sub set operations on the rasters that intersects this selection.

Note: to remove the selection just click on

15. Right click on the map and then select Generate Mosaic submenu.

Oracle Big Data Spatial: Hands-on Lab

16. A mosaic form will be opened. (Coordinates, size and SRID will be generated automatically

depending of the rasters selected).

17. Provide an output mosaic name and output folder for the mosaic. Then click ok.

18. Click on Generate Mosaic Button at the end of the dialog, to start the mosaic and the subset

operations.

Oracle Big Data Spatial: Hands-on Lab
19. In the apps running jobs, refresh the page to see the job running

http://localhost:8088/cluster/apps:

20. When done, return to the imageserver, and wait till the mosaic image is generated.

21. Scroll down to Download the mosaic . Or Go back to generate another

mosaic with different configuration.

Hint: Red rectangles out of the footprint box means that footprint has better resolution than the other in

blue with which is intersecting, keep in mind this at the time of generating mosaic with the resolution

algorithm

Generate mosaic with Spatial Operations.
In this section you will create a mosaic of rasters using the ImageServer Raster console with the raster

you loaded previously. Please note that previous lab (Load raster images to HDFS and create basic

http://localhost:8088/cluster/apps

Oracle Big Data Spatial: Hands-on Lab
mosaic) is required to be executed before this one. The difference here is that you will add spatial raster

operations to the process.

1. Press on or select a new area, over the mosaic dialog opened, click on Advanced

Configuration section to open spatial operations.

2. From the left panel, select the localnot operation, and then click add Operation button to move

it to the selected operations panel. Byte rasters only support localnot operation, but try

different data types to list all supported raster operations.

3. You may change the order of the selected operation by clicking on when multiple

operations are added.

Note: Available operations will be shown automatically depending of the pixel type of the

images, not all of the operations are applicable to all varieties of pixel types.

4. Click Create Mosaic button to generate a new mosaic. A warning about the

output file already exists will appear, accept it since it will be overwritten.

Oracle Big Data Spatial: Hands-on Lab
5. Review the job process on the job running apps http://localhost:8088/cluster/apps.

6. In this mosaic we added a not operation that results in the inversion of every pixel value.

7. Download the mosaic and close the dialog.

Load a DEM (Elevation Model) and calculate slope with algebra operation.
In this section we will load a special raster image capable to support a slope calculation and we will be

able to visualize this image using a user-custom jar loaded into the image server. The imageserver API

contains already a slope class to process the slope calculation.

1. Open http://localhost:8045/imageserver/#

2. Go to Hadoop Loader and Globe tab and load the NapaDEM.tif Image located at the root folder.

http://localhost:8088/cluster/apps
http://localhost:8045/imageserver/%23

Oracle Big Data Spatial: Hands-on Lab

3. Provide the necessary memory to this job:

4. Click on Load Images button, and wait till the image it’s loaded, when done, click on Refresh

Footprints button located in the right panel.

5. In the map you should be able to visualize the image around California.

Oracle Big Data Spatial: Hands-on Lab

6. Click on the selection tool to select a mosaic area , and select the entire footprint.

7. Then right click on the map to open the mosaic catalog configuration.

8. When the dialog is open, provide a mosaic output name for this image.

9. Modify the pixel type to Float 32 Bits since this is a 32 bits image.

Oracle Big Data Spatial: Hands-on Lab
10. Click on Add process Class button and provide the name of the class that will do the slope

calculation(fully class qualified name, including the package name), in this case is:

oracle.spatial.hadoop.imageprocessor.process.ImageSlope

11. Add and algebra operation to modify the value of DEM pixel, in this case we will use the ‘IF’

operation to replace the value. Click on Advance configuration and add the localif operation, and

a popup dialog will appear to select the operator and the values.

12. Click ok to save the configuration.

13. Click on to generate mosaic and wait for the result. Review the job process on

the job running apps http://localhost:8088/cluster/apps.

14. Once the process finished, go back to the imageserver tab and notice that the mosaic is shown,

you won´t be able to visualize it in this viewer, if you wish to visualize it download the image

http://localhost:8088/cluster/apps

Oracle Big Data Spatial: Hands-on Lab
using the “Download mosaic” button and copy to a Windows machine.

15. Open it using Windows Photo Viewer to see the slope.

Calculate Hillshade on a DEM raster.
In this section we will load a special raster image capable to support a hillshade calculation and we will

be using a external jar file with it, as an example that the framework can be extended and how to add

new raster analysis support. This lab assumes you already loaded DEM into HDFS with the steps in

previous lab.

1. Open http://localhost:8045/imageserver/# Go to Administrator tab and the section “Upload

user jars for mosaic processing” at the bottom of the page, click on Select File button to select

the external-analysis.jar located at /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-

HOL/jlib

http://localhost:8045/imageserver/%23

Oracle Big Data Spatial: Hands-on Lab

2. Select the user-custom jar and then click open.

3. Click on upload button to add the custom jar to the imageserver.

4. Waits till the jar is loaded and shows a successful message, then click Return to Console.

5. Check the jar file is added to the console.

Note: If ERROR 404 appears it could be related to memory capacity overflow in the Virtual

Machine when uploading the jar file, then you need to restart Jetty

1). cd /u01/oracle-spatial-graph/spatial/jetty

2). ps –fea | grep java

3). Select the <PID> belongs to the process java –jar start.jar

4). kill -9 <PID>

Oracle Big Data Spatial: Hands-on Lab
5) java –jar start.jar

6. Go to the Hadoop Loader and globe tab and refresh the footprints

to visualize the DEM image.

7. Click on the selection tool to select a mosaic area , and select the entire footprint.

Oracle Big Data Spatial: Hands-on Lab

8. Then right click on the map to open the mosaic catalog configuration.

9. When the dialog is open, provide a mosaic output name for this image.

10. Modify the pixel type to Float 32 bits since this is a 32 bits image.

11. Click on Add process Class button and provide the name of the class that will do the slope

calculation(fully class qualified name, including the package name), which is:

oracle.spatial.raster.HillShade

12. Click on to generate mosaic and wait for the result.

Oracle Big Data Spatial: Hands-on Lab
13. Download the hillshade image. (This kind of image will not be visible with windows photo

viewer, use another viewer)

Lab Part 5: Use Oracle Big Data Spatial and Graph Raster Command Line
The following series of labs will walk us through the steps needed to load rasters in HDFS and process

them using the Oracle Big Data Spatial and Graph Raster Command Line. First lab is a prerequisite for

the rest of the labs since this loads the rasters into HDFS.

Lab Exercises:

1) Load a set of rasters (6 mins)

2) Process mosaic operation (6 mins)

3) Process mosaic subset operation and raster algebra functions (5 mins)

4) Process slope function (5 mins)

5) Extend the framework by creating a custom raster analysis operation (30 mins)

Let´s get started:

Step 1: Open the terminal.

Oracle Big Data Spatial: Hands-on Lab
Step 2: Make sure libproj.so native library under /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/lib has execute permissions for all users, if not, set them

chmod 755 /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/lib/libproj.so

Step 3: Make sure xml folder under /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/

has write permissions for all users, if not, set them

chmod 757 /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-

HOL/data/xml

Step 4: Switch your user id to hdfs user.

sudo su - hdfs

Step 5: Modify the $HADOOP_CLASSPATH environment variable to include all the jars required for job

execution, by setting this, Hadoop will know where to find them.

export HADOOP_CLASSPATH=/opt/oracle/oracle-spatial-

graph/spatial/raster/jlib/hadoop-imageprocessor.jar:/opt/oracle/oracle-

spatial-graph/spatial/raster/jlib/hadoop-raster-fwk-

api.jar:/opt/oracle/oracle-spatial-

graph/spatial/raster/jlib/gdal.jar:$HADOOP_CLASSPATH

Load a set of rasters.

In these steps you will load in HDFS a set of rasters with different resolutions, data types and SRID´s.

1. Go to /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/raster and review the

rasters included there. There are three Hawaii rasters in different resolutions. There is also an

Elevation Model of Northern Napa Valley in SRID 32610 and has a single. The four of them will

be loaded in this exercise. The rasters to load are specified using the –files option when

executing the job.

2. The rasters will be loaded in the HDFS folder you specify, for this exercise we are using exercise0

folder, specifying the –output option when executing the job. This directory will be located in

the following path: /user/hdfs/exercise0/. As you can notice, hdfs directory is included in the

path, since that is the user executing the loading process.

Oracle Big Data Spatial: Hands-on Lab
3. You can also specify a thumbnail directory, where a thumbnail of every loaded raster is stored

when the job finishes. You can use it to verify if the raster loaded correctly and no information

was lost. For this exercise we are setting /opt/shareddir/spatial as the thumbnail folder, using

the –thumbnail option when executing the job.

4. Another optional setting is the number of overlapping pixels, which indicate the pixels from the

adjacent tiles that will be shared in every tile, these pixels apply to all directions (bottom, top,

left and right). For this exercise we are setting this value as 10, using the –overlap option when

executing the job.

5. Gdal and Gdal data directories must be set using the –gdal and –gdalData options when

executing the job, for this exercise we are setting /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/lib and /opt/oracle/oracle-spatial-graph/spatial/raster/gdal/data

6. Execute the job using the hadoop jar command with the hadoop-imageloader.jar and all the

options described in the last steps and wait until it finishes.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-

imageloader.jar -files /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-

HOL/data/raster/hawaii.tif,/opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-

HOL/data/raster/kahoolawe.tif,/opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-

HOL/data/raster/maui.tif,/opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/raster/NapaDEM.tif -out

exercise0 -overlap 10 -thumbnail /opt/shareddir/spatial -gdal

/opt/oracle/oracle-spatial-graph/spatial/raster/gdal/lib -gdalData

/opt/oracle/oracle-spatial-graph/spatial/raster/gdal/data

7. After the job finishes, list the content of the hdfs output directory to verify the rasters loaded

correctly, the four rasters should be listed as a result.

hdfs dfs -ls /user/hdfs/exercise0/opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/raster

Oracle Big Data Spatial: Hands-on Lab
8. If you wish to visually check if the rasters were loaded correctly, the thumbnails are what you

need. Review them in your /opt/shareddir/spatial/thumb directory followed by the hdfs path

used in the previous step.

ls -lat

/opt/shareddir/spatial/thumb/user/hdfs/exercise0/opt/oracle/oracle-

spatial-graph/spatial/raster/Raster-HOL/data/raster

Process mosaic operation.

In these steps you will process the Hawaii rasters loaded in previous lab by extracting a subset of them

and creating a mosaic with them (If you have not yet executed it, please do so before continuing).

1. Let´s start with the process by setting the raster catalog, go to /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/xml and open input.xml. Make sure the raster

directory set in HDFS includes “exercise0” as part of the path for each raster in the catalog, they

should all be in the path: /user/hdfs/exercise0/opt/oracle/oracle-spatial-

graph/spatial/raster/HOL/data/raster. This file will be used when executing the job to set the

catalog using the –catalog option.

Oracle Big Data Spatial: Hands-on Lab

2. Next step is to verify the features of the mosaic we want to create, the mosaic configuration xml

is /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/xml/testFS.xml, in this

example we are creating a mosaic that includes the complete three rasters according to the

specified coordinates in the transform element, it has 3 bands, SRID 26904 and GTIFF format.

Even though the raster kahoolawe listed in the catalog has SRID 26961, their coordinates will be

transformed in the process to make them match the mosaic request of SRID 26904. The

directory type element specifies that mosaic file output will be located in NFS, now you have to

set the directory output to /opt/shareddir/spatial. This file will be used when executing the job

to set the mosaic configuration using the –config option. You may want to experiment by

changing the coordinates and see how the resulting mosaic changes.

3. Now that the catalog and mosaic configuration are set, execute the job using the hadoop jar

command with the hadoop-imageprocessor.jar including the options described in the last steps

plus gdal paths and wait until it finishes.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-

imageprocessor.jar -catalog /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/xml/input.xml -config

/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-

HOL/data/xml/testFS.xml -gdal /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/lib -gdalData /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/data

Oracle Big Data Spatial: Hands-on Lab

4. After the job finishes, go to /opt/shareddir/spatial and review that the mosaic was created

there with the name hawaiimosaic.tif, you may visualize it and realize that all the three catalog

rasters are together in this mosaic.

You may change the Black NODATA value in configuration xml, and you will see a different background

color.

Process mosaic subset operation and raster algebra functions.

In these steps you will process the Hawaii rasters loaded previously in the first lab by extracting a subset

of them(If you have not yet executed it, please do so before continuing), transform the pixel using a

raster algebra function called localnot which inverts every bit in the pixels before creating a mosaic with

them.

1. Let´s start with the process by setting the raster catalog, go to /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/xml and open input.xml. Make sure the raster

directory set in HDFS includes “exercise0” as part of the path for each raster in the catalog, they

should all be in the path: /user/hdfs/exercise0/opt/oracle/oracle-spatial-

graph/spatial/raster/HOL/data/raster. The attribute config indicates the order of appearance

Oracle Big Data Spatial: Hands-on Lab
of the bands after the process is done, in this case is 1,2,3, you may want to change this order to

experiment how the result changes. This file will be used when executing the job to set the

catalog using the –catalog option.

2. Next step is to verify the features of the mosaic we want to create, the mosaic configuration xml

is /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/xml/testFSPartial.xml, in

this example we are creating a mosaic that includes the complete three rasters according to the

specified coordinates in the transform element, it has 3 bands, SRID 26904 and GTIFF format.

The directory type element specifies that mosaic file output will be located in NFS, now you

have to set the directory output to /opt/shareddir/spatial. This file will be used when executing

the job to set the mosaic configuration using the –config option. If you notice, the transform

coordinates have changed from the last exercise, now the mosaic has a minor pixelWidth and

pixelHeight , which will cut off the last island on the right, which is hawaii.tif raster, you will

visualize this on the mosaic output one is processed. There is a new element in this xml,

<operations>, where localnot operation is defined, this operation inverts the bits in every pixel

and is part of the supported raster algebra operations included in the framework.

3. Now that the catalog and mosaic configuration are set, execute the job using the hadoop jar

command with the hadoop-imageprocessor.jar and all the options described in the last steps

and wait until it finishes.

Oracle Big Data Spatial: Hands-on Lab
hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-

imageprocessor.jar -catalog /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/xml/input.xml -config

/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-

HOL/data/xml/testFSPartial.xml -gdal /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/lib -gdalData /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/data

4. After the job finishes, go to /opt/shareddir/spatial and review that the mosaic was created

there, you may visualize it and realize that all the three catalog rasters are together in this

mosaic. In this example the last island on the right is cut, this is a result of the transform

coordinates set in the mosaic configuration, that do not cover the complete island, and is an

example of subset operation. Also, you may notice the change in the pixels color and this is the

result of applying the localnot operation.

Oracle Big Data Spatial: Hands-on Lab
Process slope function.
In these steps you will process the Napa Valley Elevation Model loaded in HDFS in the first lab (If you

have not yet executed it, please do so before continuing) using a slope function provided by the

framework.

1. Let´s start with the process by setting the raster catalog, go to /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/xml and open inputDEM.xml. Make sure the raster

directory contains “exercise0” as part of the path for the raster in the catalog, it should be in the

path: /user/hdfs/exercise0/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-

HOL/data/raster. This file will be used when executing the job to set the catalog using the –

catalog option.

2. Next step is to verify the features of the mosaic we want to create, the mosaic configuration xml

is /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/xml/testSlopeFS.xml, in

this example we are creating a mosaic that include the complete Elevation Model according to

the specified coordinates in the transform element, it has 1 band, SRID 32610 and GTIFF format.

The directory type element specifies that mosaic file output will be located in NFS, now you

have to set the directory output to /opt/shareddir/spatial. The <operations> element sets the

localif operation, this operation updates the value of every pixel where its original elevation is

greater than 2500, you may change this value if you wish to experiment with it. The <process>

element indicates that ImageSlope class, which is part of the framework will be executed as part

of the process, as a result the output mosaic will show the slope according to its neighbor pixels.

This file will be used when executing the job to set the mosaic configuration using the –config

option.

Oracle Big Data Spatial: Hands-on Lab

3. Now that the catalog and mosaic configuration are set, execute the job using the hadoop jar

command with the hadoop-imageprocessor.jar and all the options described in the last steps

and wait until it finishes.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-

imageprocessor.jar -catalog /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/xml/inputDEM.xml -config

/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-

HOL/data/xml/testSlopeFS.xml -gdal /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/lib -gdalData /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/data

4. After the job finishes, go to /opt/shareddir/spatial and review that the mosaic was created

there, the output raster with the slope cannot be visualized in Linux environment for the

standard image tools, if you want to do so you may want to open the raster in Windows

environment with Windows Photo Viewer and realize that the original Elevation Model has

changed, now it shows the slope of every pixel allowing you to have a mountain view. If you

don’t have access to Windows environment you may try any specialized raster tool.

Oracle Big Data Spatial: Hands-on Lab

Extend the framework by creating a custom raster analysis operation.
In these steps you will learn how to extend the framework to create your own custom raster analysis

class. We will create a hillshade operation and will plug it to the framework to use it. The Hillshade

function obtains the hypothetical illumination of a surface by determining illumination values for each

pixel in a raster. It does this by setting a position for a hypothetical light source and calculating the

illumination values of each pixel in relation to neighboring pixels. You will process it using your own

processing class created by you! The input raster is the Napa Valley Elevation Model loaded in HDFS in

the first lab (If you have not yet executed it, please do so before continuing).

1. Let´s create the hillshade processing class. Open JDeveloper by clicking the JDev icon in the

upper Task Bar.

2. Select the Studio Developer role, and you may want to uncheck the “Always prompt for role

selection on startup” checkbox so this window does not appear next time.

3. Go to Application Navigator and from the dropdown list select New Application, select Java

Desktop Application and click OK. Set the Application Name to RasterAnalysisApplication and

click Next.

Oracle Big Data Spatial: Hands-on Lab

4. Set the project name to ExternalAnalysis and click Next.

5. Set the default package to oracle.spatial.raster and click Finish.

Oracle Big Data Spatial: Hands-on Lab
6. Right click on the ExternalAnalysis project in the Application Navigator and select Project

Properties. Select the Libraries and Classpath option and click on Add JAR/Directory. In the Add

Archive/Directory window set the path to /opt/oracle/oracle-spatial-graph/spatial/raster/jlib

and select the jar files gdal.jar and hadoop-imageprocessor.jar. Click Open and the Ok. From

the /usr/lib/hadoop add the hadoop-common-2.6.0-cdh5.4.7.jar. Now the project knows about

the required files to create the hillshade class.

7. Right click on the ExternalAnalysis project in the Application Navigator and select New -> Java

Class. In the Create Java Class window, set HillShadeUtil as the Name for the class and click Ok.

8. Go to /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/java/src and copy the

content of HillShadeUtil.java into the class you just created in JDeveloper. This class contains

utilitary methods to calculate hillshade value for every pixel in the DEM.

9. Right click on the ExternalAnalysis project in the Application Navigator and select New Java
Class. In the Create Java Class window, set HillShade as the Name for the class. Click on the
green Add button to add the class we are implementing which is
oracle.spatial.hadoop.imageprocessor.process.ImageProcessorInterface, then click Ok.

Oracle Big Data Spatial: Hands-on Lab

10. Let´s start programming the HillShade.java class; The following import statements are required:

import oracle.spatial.hadoop.imageprocessor.datatype.ImageBandWritable;
import oracle.spatial.hadoop.imageprocessor.process.ImageProcessorInterface;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.gdal.gdal.gdal;

11. Since the objective of this lab is to understand how to extend the Oracle framework using the

ImageBandWritable datatype that contains the raster info, all the hillshade algorithm details are

separated in the HillShadeUtil class so that the class you are coding focus only in getting info

from the raster and set the process results back in the ImageBandWritable data type. If you are

interested in the algorithm for hillshade, review the utilitary class. Inside the process method

that created automatically to implement the ImageProcessorInterface, we will start developing

the hillshade calculation, the following code gets the bands number, width and height of the tile,

number of overlapping pixels and flags for overlap in the four borders of every pixel.

//the GeneralInfoWritable inside the image contains the information about the final mosaic output, get number of output bands from
there.
int bands = Integer.valueOf(imageBandWritable.getMosaicInfo().getBandsToAdd().toString().split(",").length);

int width = imageBandWritable.getDstWidthSize().get();

 int height = imageBandWritable.getDstHeightSize().get();

int overlap = imageBandWritable.getOverlap().get();
 byte upOv = imageBandWritable.getUpOv().get();
 byte downOv = imageBandWritable.getDownOv().get();
 byte leftOv = imageBandWritable.getLeftOv().get();
 byte rightOv = imageBandWritable.getRightOv().get();

12. Now let´s define the MBR where the hillshade algorithm will start the processing, an initial setup

of 0 as a start and width and height of the tile as end is done. As a second step, we validate the

flags for overlapping pixels in every border of the tile and adjust the MBR accordingly to make

sure that only pixels specific to this tile are processed and avoid redundant processing with

other mappers, also the offsets in X and Y for this tile are updated based on the overlapping

pixels.

Oracle Big Data Spatial: Hands-on Lab
int startX = 0;
int startY = 0;
int endX = width;
int endY = height;
//If there are overlapping pixels on the left, then X will start in position overlap otherwise in 1
if (leftOv == Byte.MAX_VALUE) {
 startX = overlap;
 imageBandWritable.setOffX(new IntWritable(imageBandWritable.getOffX().get() + overlap));
} else {
 startX = 1;
 imageBandWritable.setOffX(new IntWritable(imageBandWritable.getOffX().get() + 1));
}
//If there are overlapping pixels on the right, then X will end in the width position minus overlapping pixels
if (rightOv == Byte.MAX_VALUE) {
 endX = width - overlap;
}
//If there are overlapping pixels on the top, then Y will start in position overlap
if (upOv == Byte.MAX_VALUE) {
 startY = overlap;
 imageBandWritable.setOffY(new IntWritable(imageBandWritable.getOffY().get() + overlap));
}
//If there are overlapping pixels on the bottom, then Y will end in the height position minus overlapping pixels
if (downOv == Byte.MAX_VALUE) {
 endY = height - overlap;
}

13. Now with the extracted information, let´s call the hillshadeTile method and finally return the

ImageBandWritable object with the hillshade information for final mosaic processing inside the

framework.

hillshadeTile(imageBandWritable, startX, startY, endX, endY, width, height, bands);
 return imageBandWritable;

14. Let´s create the hillshadeTile method that returns void and receives the data we extracted. The

first statement will be the creation of a HillShadeUtil instance. The rest of the method is

described in the next items.

private void hillshadeTile(ImageBandWritable image, int startX, int startY, int endX, int endY, int width,
 int height, int bands) {

HillShadeUtil util = new HillShadeUtil();

//More code to add inside this method

 }

15. Now calculate the last position in the tile by multiplying width*height, extract the width for

pixels in X and Y from mosaic configuration object, and calculate the width and height of the

piece to process according to the start and end pixels position excluding the overlapping pixels

that we calculated in last code segment. Reset the band counter of the ImageBandWritable

instance, so that we can add new processed data to it starting on band index 0.

 int lastValue = width * height;
 double pixelXWidth = image.getMosaicInfo().getPixelXWidth().get();
 double pixelYWidth = image.getMosaicInfo().getPixelYWidth().get();
 int newWidth = endX - startX;
 int newHeight = endY - startY;

Oracle Big Data Spatial: Hands-on Lab

 image.resetBandCounter();

16. We have all the required information to calculate hillshade, let´s iterate the bands, get the
NODATA value for each of them and execute the util.hillshade function. If you have interest on
the hillshade algorithm please review HillShadeUtil class.

 for (int x = 1; x <= bands; x++) {
 DoubleWritable noData = image.getNoDataArray(x);
 util.hillshade(lastValue, pixelXWidth, pixelYWidth, noData, image, newWidth, newHeight, x, startX,
 startY, endX, endY, width, height);

}

17. Now that hillshade has been calculated and set in the ImageBandWritable instance, let´s set the
final details to it, that reflect the new MBR for this tile, starting by setting the width, height and
number of bytes.

 image.setDstWidthSize(new IntWritable(newWidth));
 image.setDstHeightSize(new IntWritable(newHeight));
 int pixels = (newWidth) * (newHeight);
 int bytesNumber = pixels * (gdal.GetDataTypeSize(image.getDType().get()) / 8);
 image.setBytesNumber(bytesNumber);

18. Finally, update the coordinates for this tile, first get the original coordinates of the tile, and then
update positions 0 and third of the substitute array since those represent the raster start point,
update it by multiplying the pixel width and height in positions 1 and 5 * the new start X and Y
pixels, this gives us the delta for the new MBR and must be added to original start coordinates.

 DoubleWritable[] originalGeoTransform = image.getGeoTransform();
 DoubleWritable[] adfGeoTransform = new DoubleWritable[6];
 //0 and 3rd positions represent image origin, recalculating for new image size.
 adfGeoTransform[0] =
 new DoubleWritable(originalGeoTransform[0].get() + (originalGeoTransform[1].get() * startX));
 adfGeoTransform[1] = new DoubleWritable(originalGeoTransform[1].get());
 adfGeoTransform[2] = new DoubleWritable(originalGeoTransform[2].get());
 adfGeoTransform[3] =
 new DoubleWritable(originalGeoTransform[3].get() + (originalGeoTransform[5].get() * startY));
 adfGeoTransform[4] = new DoubleWritable(originalGeoTransform[4].get());
 adfGeoTransform[5] = new DoubleWritable(originalGeoTransform[5].get());
 image.setGeoTransform(adfGeoTransform);

19. Class is ready! Now let´s build it and pack a jar file to execute it. Right click on the project and
select Project Properties. In the emergent window select Deployment option and click on Create
Deployment Profile icon. Select JAR File as the Profile Type and set external as the Deployment
Profile Name, click OK to Finish.

Oracle Big Data Spatial: Hands-on Lab

20. In the emergent Edit JAR Deployment Profile Properties, click the Browse button to set the main
class to oracle.spatial.raster.HillShade and click Ok. Set the JAR File output path to
/opt/oracle/oracle-spatial-graph/spatial/raster/jlib, the name to external-analysis.jar, add an
additional MANIFEST file by clicking the button Add, and select the MANIFEST-EXTERNAL file
included in /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/java/ and click Ok to
accept all changes.

21. Deployment profile is ready, build the project using <Ctrl> + <F9>, after it is built, right click on

the project select Deploy and the external profile you just created and click OK. Jar file is

deployed and ready to use. This jar file has already been exported to HADOOP_CLASSPATH in

the Preparation Steps located at the beginning of this lab part.

Oracle Big Data Spatial: Hands-on Lab

22. Now configure the raster catalog to process, go to /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/xml and open inputDEM.xml. Make sure the raster

directory set in HDFS (exercise0) is part of the path for the raster in the catalog, it should be in

the path: /user/hdfs/exercise0/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-

HOL/data/raster. This file will be used when executing the job to set the catalog using the –

catalog option.

23. Next step is to verify the features of the mosaic we want to create, the mosaic configuration xml is

/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/xml/testSlopeFS.xml, in this

example we are creating a mosaic that include the complete Elevation Model according to the

specified coordinates in the transform element, it has 1 band, SRID 32610 and GTIFF format. The

directory type element specifies that mosaic file output will be located in NFS, now you have to set

the directory output to /opt/shareddir/spatial. The <operations> element sets the localif operation,

this operation updates the value of every pixel where its original elevation is greater than 2500, you

may change this value if you wish to experiment with it. The <process> element indicates the class

that will be used to process the raster, set oracle.spatial.raster.HillShade, which is the class you just

built and as a result the output mosaic will show the hillshade of the elevation model. You may also

change the output filename. The class will be found by Hadoop since the jar file was already

exported to HADOOP_CLASSPATH on step 8. This file will be used when executing the job to set the

mosaic configuration using the –config option.

Oracle Big Data Spatial: Hands-on Lab

24. Use –usrlib option in the command line to set the external-analysis.jar file that you just created and

share it to all nodes in the cluster

25. Now that the catalog and mosaic configuration are set, execute the job using the hadoop jar

command with the hadoop-imageprocessor.jar and all the options described in the last steps

and wait until it finishes.

hadoop jar /opt/oracle/oracle-spatial-graph/spatial/raster/jlib/hadoop-

imageprocessor.jar -catalog /opt/oracle/oracle-spatial-

graph/spatial/raster/Raster-HOL/data/xml/inputDEM.xml -config

/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-

HOL/data/xml/testSlopeFS.xml -gdal /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/lib -gdalData /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/data -usrlib /opt/oracle/oracle-spatial-

graph/spatial/raster/jlib/external-analysis.jar

26. After the job finishes, go to /opt/shareddir/spatial and review that the mosaic was created

there, the output raster with the hillshade cannot be visualized in Linux environment for the

standard image tools, if you want to do so you may want to open it by adding it to a raster

catalog in ImageServer (1. http://localhost:8045/imageserver/#. 2. Raster Image Processing ->

Catalog -> New Catalog -> Raster Catalog. 3. Imagery -> Add File Image ->

/opt/shareddir/spatial/hillshadefile.tif -> Ok).

http://localhost:8045/imageserver/

Oracle Big Data Spatial: Hands-on Lab

Lab Part 6: Create Customized Jobs Using the Oracle Big Data Spatial and

Graph Raster API
The following series of labs will walk us through the steps needed create MapReduce jobs that load

rasters in HDFS and process them using the Oracle Big Data Spatial and Graph Raster API.

Lab Exercises:

Load a set of rasters and process the mosaic operation (18 mins)

Load a DEM and process slope function (10 mins)

Let´s get started:

Step 1: Open JDeveloper by clicking the JDev icon in the upper Task Bar (7 minutes for the following

steps).

Step 2: Select the Studio Developer role, and you may want to uncheck the “Always prompt for role

selection on startup” checkbox so this window does not appear next time.

Oracle Big Data Spatial: Hands-on Lab

Step 3: Go to Application Navigator and from the dropdown list select New Application, select Java

Desktop Application and click OK. Go to Application Navigator and from the dropdown list select New

Application. Set the Application Name to RasterApplication and click Next.

Step 4: Set the project name to RasterTest and click Next.

Step 5: Set the default package to oracle.raster.test and click Finish.

Oracle Big Data Spatial: Hands-on Lab

Step 6: Right click on the RasterTest project in the Application Navigator and select Project Properties.

Select the Libraries and Classpath option and click on Add JAR/Directory. In the Add Archive/Directory

window set the path to /opt/oracle/oracle-spatial-graph/spatial/raster/jlib and select the jar files

hadoop-raster-fwk-api.jar, hadoop-imageloader.jar and hadoop-imageprocessor.jar. Click Open and the

Ok. Now the project knows about the required files for raster processing.

Step 7: Open the terminal.

Step 8: Make sure libproj.so native library under /opt/oracle/oracle-spatial-graph/spatial/raster/gdal/lib

has execute permissions for all users, if not, set them

chmod 755 /opt/oracle/oracle-spatial-

graph/spatial/raster/gdal/lib/libproj.so

Oracle Big Data Spatial: Hands-on Lab
Step 9: Switch your user id to hdfs user.

sudo su - hdfs

Step 10: Modify the $HADOOP_CLASSPATH environment variable to include all the jars required for job

execution, by setting this, Hadoop will know where to find them.

export HADOOP_CLASSPATH=/opt/oracle/oracle-spatial-

graph/spatial/raster/jlib/hadoop-imageprocessor.jar:/opt/oracle/oracle-

spatial-graph/spatial/raster/jlib/hadoop-raster-fwk-

api.jar:/opt/oracle/oracle-spatial-

graph/spatial/raster/jlib/gdal.jar:$HADOOP_CLASSPATH

Step 11: Right click on the project and select Project Properties. In the emergent window select
Deployment option and click on Create Deployment Profile icon. Select JAR File as the Profile Type and
set examples as the Deployment Profile Name, click OK to Finish.

Step 12: In the emergent Edit JAR Deployment Profile Properties, set the main class to
oracle.raster.test.RasterExample and click Ok. Set the JAR File output path to /opt/oracle/oracle-
spatial-graph/spatial/raster/jlib, the name to examples.jar and click Ok to accept all changes.

Oracle Big Data Spatial: Hands-on Lab
Load a set of rasters and process the mosaic operation.
In these steps you will load in HDFS a set of rasters with different resolutions and SRIDs in a first job,

and in a second job you will process these rasters by creating a mosaic with them.

1. Go to /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/raster and review the

rasters included there. There are three Hawaii rasters in different resolutions; the three of them

will be loaded in this exercise and have 3 bands. There is also an Elevation Model for Napa that

is not planned to be loaded in this exercise.

2. Right click on the RasterTest project in the Application Navigator and select New Java Class. In

the Create Java Class window, set RasterExample as the Name for the class and click Ok.

3. Let´s start programming the RasterExample.java class; Create a main method to be the input

point of the class(public static void main(String args[])), all the code will set inside this method.

Next create a HadoopConfiguration object and set the gdal data path as well as the jar file that

contains the mapreduce code to load the rasters. Let the JDeveloper work on the import

statements.

 HadoopConfiguration hadoopConf = new HadoopConfiguration();
 String gdalData = "/opt/oracle/oracle-spatial-graph/spatial/raster/gdal/data";
 hadoopConf.setGdalDataPath(gdalData);
hadoopConf.setMapreduceJobJar("hadoop-imageloader.jar");

4. Now create a HadoopLoader object and set the rasters to load.

Oracle Big Data Spatial: Hands-on Lab
String rasterDirectory = "/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/raster/hawaii.tif,/opt/oracle/oracle-
spatial-graph/spatial/raster/Raster-HOL/data/raster/kahoolawe.tif,/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-
HOL/data/raster/maui.tif ";

 RasterLoaderJob loader = (RasterLoaderJob) hadoopConf.createRasterLoaderJob();

loader.setFilesToLoad(rasterDirectory);

5. The rasters will be loaded in the HDFS folder you specify, for this exercise we are using exercise1

folder. This directory will be located in the following path: /user/hdfs/exercise1/. As you can

notice, hdfs directory is included in the path, since that is the user executing the loading

process.

 loader.setOutputFolder("exercise1");

6. You can also specify a thumbnail directory, where a thumbnail of every loaded raster is stored

when the job finishes. You can use it to verify if the raster loaded correctly and no information

was lost. For this exercise we are setting /opt/shareddir/spatial as the thumbnail folder, using

the –thumbnail option when executing the job.

 loader.setRasterThumbnailFolder("/opt/shareddir/spatial ");

7. Another optional setting is the number of overlapping pixels, which indicate the pixels from the

adjacent tiles that will be shared in every tile, these pixels apply to all directions (bottom, top,

left and right). For this exercise we are setting this value as 50.

 loader.setTileOverlap("50");

8. Set Gdal directory to /opt/oracle/oracle-spatial-graph/spatial/raster/gdal/lib and execute the job.
String gdalDirectory = "/opt/oracle/oracle-spatial-graph/spatial/raster/gdal/lib";

try {

 loader.setGdalPath(gdalDirectory);
//Executes the job
boolean loaderSuccess = loader.execute();

if (loaderSuccess) {

 System.out.println("Successfully executed loader job");
} else {

 System.out.println("Failed to execute loader job");
}

 } catch (Exception e) {
 System.out.println("Problem when trying to execute raster loader " + e.getMessage());
 }

9. The raster loader code is ready, and by this execution step, rasters should be tiled and loaded,

the next step is to process a mosaic operation using them. Let´s start with the mosaic process,

all the mosaic code should be inside the if(loaderSuccess). Assign the variable hadoopConf to a

new HadoopConfiguration object, set gdalData path , same used for loader configuration object

and set the jar name to hadoop-imageprocessor.jar.

 hadoopConf = new HadoopConfiguration();
 hadoopConf.setGdalDataPath(gdalData);

Oracle Big Data Spatial: Hands-on Lab
 hadoopConf.setMapreduceJobJar("hadoop-imageprocessor.jar");

10. Now create a RasterProcessorJob and set the gdal directory, with the same value used for
loader.

RasterProcessorJob processor = (RasterProcessorJob) hadoopConf.createRasterProcessorJob();
processor.setGdalPath(gdalDirectory);

11. Now create a MosaicConfiguration object and set the number of bands to 3, set the output
directory to /opt/shareddir/spatial, and name of the file to APIMosaic. Set the output
filesystem to NFS, using the value RasterProcessorJob.FS, raster output to GTIFF and SRID to
26904.

 MosaicConfiguration mosaic = new MosaicConfiguration();
 mosaic.setBands(3);
 mosaic.setDirectory("/opt/shareddir/spatial");
 mosaic.setFileName("APIMosaicFS");
 mosaic.setFileSystem(RasterProcessorJob.FS);

mosaic.setFormat("GTIFF");
 mosaic.setSrid("26904");

12. Now let´s set the mosaic features in terms of resolution, data type and coordinated that will
cover. The NODATA value will be used for pixels that do not intersect any of the raster sources.
We will use the FILE_LENGTH algorithm to order the source rasters in the descending order.
mosaic.setWidth(1600);
mosaic.setHeight(986);

 //byte datatype
 mosaic.setPixelType("1");
 mosaic.setNoData("#FFFFFF");
 //in case two or more rasters overlap, the area covered by the rasters will determine its priority in the mosaic
 mosaic.setOrderAlgorithm(ProcessConstants.ALGORITHM_FILE_LENGTH);
 //rasters that cover less area will be located on top of the mosaic, DESC, descending order
 mosaic.setOrder(RasterProcessorJob.DESC);

 //width for pixels in X and Y
 mosaic.setPixelXWidth(280.388143);
 mosaic.setPixelYWidth(-280.388143);
 //upper left coordinates
 mosaic.setUpperLeftX(556958.985610);
 mosaic.setUpperLeftY(2350324.082505);

13. Now that you specified the features of the mosaic you must create a catalog with the rasters
that will be considered for mosaic creation. Below is the code to create the first raster object,
and is your job to create the other two objects for maui and kahoolawe. The Raster class
package is oracle.spatial.hadoop.rasterapi.core.beans

 RasterCatalog catalog = new RasterCatalog();

 //Creates a raster object for the catalog
 Raster raster = new Raster();
 raster.setBands(3);
 //the tree bands will appear in order 1,2, 3. You may list less bands here.
 raster.setBandsOrder("1,2,3");
 raster.setDataType(1);
 raster.setRasterLocation("/user/hdfs/exercise1/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/raster/hawaii.tif.ohif");

Oracle Big Data Spatial: Hands-on Lab
 //Add raster to catalog
 catalog.addRasterToCatalog(raster);

 //Create and add the other two rasters for maui and kahoolawe

14. MosaicConfiguration and RasterCatalog objects are ready, the last step is to set them to the
processor job.

 processor.setMosaicConfigurationObject(mosaic.getCompactMosaic());
 processor.setCatalogObject(catalog.getCompactCatalog());

15. Now that the catalog and mosaic configuration are set, start the job using the execute command

provided by RasterProcessorJob.

 boolean processorSuccess = processor.execute();
 if (processorSuccess) {
 System.out.println("Successfully executed processor job");
 } else {
 System.out.println("Failed to execute processor job");
 }

16. The code is ready, now let´s build it and pack a jar file to execute it using <Ctrl> + <F9>, after it is
built, right click on the project select Deploy and the examples profile you just created. Jar file is
deployed and ready to use.

17. To execute the process go to the command line window where you switched to hdfs user and

execute the class you created and wait until both jobs complete.

hadoop jar /opt/oracle/oracle-spatial-

graph/spatial/raster/jlib/examples.jar

Oracle Big Data Spatial: Hands-on Lab
18. Review the mosaic output by listing the directory you set as mosaic output path in the example

class, /opt/shareddir/spatial. As you can see, APIMosaicFS.tif includes the three rasters you

added in the processor job.

Load a DEM and process slope function.
In these steps you will load in HDFS a DEM in a first job, and in a second job you will process these

rasters by creating a mosaic with them.

1. Go to /opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/raster and review the

rasters included there. NapaDEM.tif is the raster we will load in this example, it is an Elevation

Model of Northern Napa Valley in SRID 32610 and has a single band.

2. Right click on the RasterTest project in the Application Navigator and select New Java Class. In

the Create Java Class window, set RasterElevationExample as the Name for the class and click

Ok.

Oracle Big Data Spatial: Hands-on Lab

3. Let´s start programming the RasterElevationExample.java class; Create a main method to be the

input point of the class(public static void main(String args[])), all the code will be set inside this

method. Next create a HadoopConfiguration object and set the gdal data path as well as the jar

file that contains the mapreduce code to load the rasters. Let JDeveloper work on the import

statements.

 HadoopConfiguration hadoopConf = new HadoopConfiguration();
 String gdalData = "/opt/oracle/oracle-spatial-graph/spatial/raster/gdal/data";
 hadoopConf.setGdalDataPath(gdalData);
hadoopConf.setMapreduceJobJar("hadoop-imageloader.jar");

4. Now create a HadoopLoader object and set the rasters to load.

String rasterDirectory = "/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/raster/NapaDEM.tif ";

 RasterLoaderJob loader = (RasterLoaderJob) hadoopConf.createRasterLoaderJob();

loader.setFilesToLoad(rasterDirectory);

5. The raster will be loaded in the HDFS folder you specify, for this exercise we are using exercise2

folder. This directory will be located in the following path: /user/hdfs/exercise2/. As you can

notice, hdfs directory is included in the path, since that is the user executing the loading

process.

 loader.setOutputFolder("exercise2");

6. You can also specify a thumbnail directory, where a thumbnail of every loaded raster is stored

when the job finishes. You can use it to verify if the raster loaded correctly and no information

was lost. For this exercise we are setting /opt/shareddir/spatial as the thumbnail folder, using

the –thumbnail option when executing the job.

 loader.setRasterThumbnailFolder("/opt/shareddir/spatial");

7. Another optional setting is the number of overlapping pixels, which indicate the pixels from the

adjacent tiles that will be shared in every tile, these pixels apply to all directions (bottom, top,

left and right). For this exercise we are setting this value as 30.

Oracle Big Data Spatial: Hands-on Lab
 loader.setTileOverlap("30");

8. Set Gdal directory to /opt/oracle/oracle-spatial-graph/spatial/raster/gdal/lib and execute the

job.

String gdalDirectory = "/opt/oracle/oracle-spatial-graph/spatial/raster/gdal/lib";
try {

 loader.setGdalPath(gdalDirectory);
//Executes the job
boolean loaderSuccess = loader.execute();

if (loaderSuccess) {

 System.out.println("Successfully executed loader job");
} else {

 System.out.println("Failed to execute loader job");
}

 } catch (Exception e) {
 System.out.println("Problem when trying to execute raster loader " + e.getMessage());
 }

9. The raster loader code is ready, and by this execution step, elevation model should be tiled and

loaded, the next step is to process a mosaic operation using it and calculate the slope for every

pixel. Let´s start with the mosaic process, all the mosaic code should be inside the

if(loaderSuccess). Assign the variable hadoopConf to a new HadoopConfiguration object, set

gdalData path , same used for loader configuration object and set the jar name to hadoop-

imageprocessor.jar.

 hadoopConf = new HadoopConfiguration();
 hadoopConf.setGdalDataPath(gdalData);
 hadoopConf.setMapreduceJobJar("hadoop-imageprocessor.jar");

10. Now create a RasterProcessorJob and set the gdal directory, with the same value used for
loader.

RasterProcessorJob processor = (RasterProcessorJob) hadoopConf.createRasterProcessorJob();
processor.setGdalPath(gdalDirectory);

11. Now create a MosaicConfiguration object and set the number of bands to 3, set the output
directory to /opt/shareddir/spatial, and name of the file to APIMosaicSlope. Set the output
filesystem to NFS, using the value RasterProcessorJob.FS, raster output to GTIFF and SRID to
32610.

 MosaicConfiguration mosaic = new MosaicConfiguration();
 mosaic.setBands(1);
 mosaic.setDirectory("/opt/shareddir/spatial");
 mosaic.setFileName("APIMosaicSlope");
 mosaic.setFileSystem(RasterProcessorJob.FS);

mosaic.setFormat("GTIFF");
 mosaic.setSrid("32610");

Oracle Big Data Spatial: Hands-on Lab
12. Now let´s set the mosaic features in terms of resolution, data type and coordinated that will

cover. The NODATA value will be used for pixels that do not intersect any of the raster sources.
We will use the FILE_LENGTH algorithm to order the source rasters in the descending order.
mosaic.setWidth(1400);
mosaic.setHeight(870);

 //float32 datatype
 mosaic.setPixelType("6");
 mosaic.setNoData("#00");
 //in case two or more rasters overlap, the area covered by the rasters will determine its priority in the mosaic
 mosaic.setOrderAlgorithm(ProcessConstants.ALGORITHM_FILE_LENGTH);
 //rasters that cover less area will be located on top of the mosaic, DESC, descending order
 mosaic.setOrder(RasterProcessorJob.DESC);

 //width for pixels in X and Y
 mosaic.setPixelXWidth(48.416923);
 mosaic.setPixelYWidth(-48.416923);
 //upper left coordinates
 mosaic.setUpperLeftX(520284.694956);
 mosaic.setUpperLeftY(4305151.843027);

13. You also need to specify the processing class that will calculate the slope for every pixel.

//Sets slope processing class to mosaic configuration
 mosaic.setProcessingClasses("oracle.spatial.hadoop.imageprocessor.process.ImageSlope");

14. Now that you specified the features of the mosaic you must create a catalog with the rasters
that will be considered for mosaic creation. Below is the code to create the raster object and
add it to the catalog. The Raster class package is oracle.spatial.hadoop.rasterapi.core.beans

 RasterCatalog catalog = new RasterCatalog();

 //Creates a raster object for the catalog
 Raster raster = new Raster();
 raster.setBands(1);
 raster.setBandsOrder("1");
 raster.setDataType(6);
raster.setRasterLocation("/user/hdfs/exercise2/opt/oracle/oracle-spatial-graph/spatial/raster/Raster-HOL/data/raster/NapaDEM.tif.ohif");
 //Add raster to catalog
 catalog.addRasterToCatalog(raster);

15. MosaicConfiguration and RasterCatalog objects are ready, the last step is to set them to the
processor job.

 processor.setMosaicConfigurationObject(mosaic.getCompactMosaic());
 processor.setCatalogObject(catalog.getCompactCatalog());

16. Now that the catalog and mosaic configuration are set, start the job using the execute command

provided by RasterProcessorJob.

 boolean processorSuccess = processor.execute();
 if (processorSuccess) {
 System.out.println("Successfully executed processor job");
 } else {
 System.out.println("Failed to execute processor job");
 }

Oracle Big Data Spatial: Hands-on Lab
17. The code is ready, now let´s build it and pack a jar file to execute it. Right click on the project

and select Project Properties. In the emergent window select Deployment option and click on

the examples deployment profile, click the Edit Profile icon . In the emergent Edit JAR
Deployment Profile Properties, click the Browse button to set the main class to
oracle.raster.test.RasterElevationExample and click Ok to accept all changes.

18. Deployment profile is ready, build the project using <Ctrl> + <F9>, after it is built, right click on

the project select Deploy -> examples to JAR file. Jar file is deployed and ready to use.

19. To execute the process go to the command line window where you switched to hdfs user,

execute the class you created and wait until both jobs complete. $HADOOP_CLASSPATH

environment variable was already modified in Preparation Steps at the beginning of this Lab Part

to include all the jars required for job execution.

hadoop jar /opt/oracle/oracle-spatial-

graph/spatial/raster/jlib/examples.jar

Oracle Big Data Spatial: Hands-on Lab

20. Review the mosaic output by listing the directory you set as mosaic output path in the example

class, /opt/shareddir/spatial.

21. The output raster with the slope cannot be visualized in Linux environment for the standard

image tools, if you want to do so you may want to open the raster in Windows environment

with Windows Photo Viewer. If you don’t have access to Windows environment you may try any

specialized raster tool.

Oracle Big Data Spatial: Hands-on Lab

Concluding comments
Thank you for participating in this hands-on lab. More examples are available under the folders

/opt/oracle/oracle-spatial-graph/spatial/vector/examples and

/opt/oracle/oracle-spatial-graph/spatial/raster/examples. More information can also

be found in the following page:

http://www.oracle.com/technetwork/database/database-technologies/bigdata-

spatialandgraph/overview/index.html

http://www.oracle.com/technetwork/database/database-technologies/bigdata-spatialandgraph/overview/index.html
http://www.oracle.com/technetwork/database/database-technologies/bigdata-spatialandgraph/overview/index.html

