

Getting Started with Oracle Spatial

Tim Armitage

Agenda

- Create database structures
- Load Spatial Data
- Index
- Issue SQL queries
- Develop simple Oracle Application Server Mapviewer application

Oracle Spatial 10g Platform

What is a Spatial Database?

Spatial Analysis

•

Spatial Access Through SQL

Create Required Database Structures

All Spatial Types in Oracle 10g

Vector Map Data in Oracle Tables

Road

ROAD_ID	NAME	SURFACE	LANES	LOCATION
1	Pine Cir.	Asphalt	4	
2	2nd St.	Asphalt	2	
3	3rd St.	Asphalt	2	✓ N

The MDSYS Schema

- When Oracle Locator or Spatial is installed, the MDSYS user is created
 - Owner of Spatial types, packages, functions, procedures, metadata
 - Similar to user SYS
 - Privileged user
 - With ADMIN option
- This account is locked by default
 - Be careful with this administrative account
 - You should never need to log in as MDSYS
 - Never create any data as user MDSYS

SDO_GEOMETRY Object

• **SDO_GEOMETRY** Object

```
SDO_GTYPE NUMBER
SDO_SRID NUMBER
SDO_POINT SDO_POINT_TYPE
SDO_ELEM_INFO SDO_ELEM_INFO_ARRAY
SDO_ORDINATES SDO_ORDINATE_ARRAY
```

Example

SDO_GEOMETRY Object

• SDO POINT TYPE

x NUMBER
y NUMBER
z NUMBER

• SDO_ELEM_INFO_ARRAY

VARRAY (1048576) OF NUMBER

• SDO ORDINATE ARRAY

VARRAY (1048576) OF NUMBER

SDO_GEOMETRY Object

• **SDO_GTYPE** - Defines the type of geometry stored in the object

GTYPE	Explanation
1 POINT 2 LINESTRING	Geometry contains one point Geometry contains one line string
3 POLYGON 4 HETEROGENEOUS COLLECTION	Geometry contains one polygon Geometry is a collection of elements of different types:
5 MULTIPOINT 6 MULTILINESTRING	Geometry has multiple points
7 MULTIPOLYGON	Geometry has multiple line strings Geometry has multiple polygons

SDO_GTYPE

SDO_GTYPE	Four digit	Four digit GTYPEs - Include dimensionality			
	2D	3D	4D		
1 POINT	2001	3001	4001		
2 LINESTRING	2002	3002	4002		
3 POLYGON	2003	3003	4003		
4 COLLECTION	2004	3004	4004		
5 MULTIPOINT	2005	3005	4005		
6 MULTILINESTRING	2006	3006	4006		
7 MULTIPOLYGON	2007	3007	4007		

Constructing Geometries

```
SQL>
     INSERT INTO LINES VALUES (
         attribute 1, .... attribute n,
  2>
  3>
         SDO GEOMETRY (
  4>
           2002, null, null,
  5>
           SDO ELEM INFO ARRAY (1,2,1),
  6>
           SDO ORDINATE ARRAY (
             10,10, 20,25, 30,10, 40,10))
  7>
  8>
         );
```


How Spatial Data Is Stored

Spatial Metadata

- The spatial routines require you to populate a view that contains metadata about SDO GEOMETRY columns
- The metadata view is created for all Oracle
 Spatial users when Oracle Spatial is installed
- The metadata view is called USER_SDO_GEOM_METADATA
- For every sdo_geometry column, insert a row in the user_sdo_geom_metadata view

USER_SDO_GEOM_METADATA

```
SQL> DESCRIBE USER_SDO_GEOM_METADATA

Name Null? Type

TABLE_NAME NOT NULL VARCHAR2(32)

COLUMN_NAME NOT NULL VARCHAR2(1024)

DIMINFO SDO_DIM_ARRAY

SRID NUMBER
```

MDSYS.SDO_DIM_ARRAY

```
VARRAY(4) OF SDO_DIM_ELEMENT
```

MDSYS.SDO_DIM_ELEMENT object

SDO_DIMNAME	VARCHAR2(64)
SDO_LB	NUMBER
SDO_UB	NUMBER
SDO_TOLERANCE	NUMBER

Populating the USER_SDO_GEOM_METADATA View

Note: For geodetic data, the x axis bounds <u>must</u> be -180 to 180, and y axis bounds -90 to 90.

Load Spatial Data into Oracle Spatial Database

Loading Spatial Data

- Categories of loading:
 - Bulk loading of data
 - SQL*Loader
 - Import
 - Transactional inserts
 - INSERT statement
 - Loading using Partner Tools
 - Example SAFE Software's FME

Validating Geometries

- Oracle Spatial validation routines ensure spatial data in Oracle Spatial is valid
 - SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
 - Determines if a geometry is valid
 - SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
 - Determines if all geometries in a layer are valid
- If data is invalid, both routines return why and where the geometry is invalid

DEMO Loading Data using FME

FME Workbench

FME Mapping

Oracle Structures

Set up Spatial Indexes

Spatial Indexing

- Used to optimize spatial query performance
- R-tree Indexing
 - Based on minimum bounding rectangles (MBRs) for 2D data or minimum bounding volumes (MBVs) for 3D data
 - Indexes two, three, or four dimensions
- Provides an exclusive and exhaustive coverage of spatial objects
- Indexes all elements within a geometry including points, lines, and polygons

Optimized Query Model

A Look at R-tree Index Structures

```
create index GEOD_STATES_SIDX
  on GEOD_STATES (GEOM)
  indextype is MDSYS.SPATIAL_INDEX;
```

Index Information

Issue SQL Queries

Spatial Operators

- Full range of spatial operators
 - Implemented as functional extensions in SQL
 - Topological Operators
 - Inside Contains
 - Touch Disjoint
 - Covers
 Covered By
 - Equal Overlap Boundary
 - Distance Operators
 - Within Distance
 - Nearest Neighbor

INSIDE

Spatial Operators

- Operators
 - SDO_FILTER
 - Performs a primary filter only
 - SDO_RELATE and SDO_<relationship>
 - Performs a primary and secondary filter
 - SDO_WITHIN_DISTANCE
 - Generates a buffer around a geometry and performs a primary and optionally a secondary filter
 - SDO_NN
 - Returns nearest neighbors

SDO_FILTER Example

- Find all the cities in a selected rectangular area
- Result is approximate

Hint 1: All Spatial operators return TRUE or FALSE. When writing spatial queries always test with = 'TRUE', never <> 'FALSE' or = 'true'.

SDO_RELATE Example

Find all counties in the state of New Hampshire

Note: For optimal performance, don't forget to index GEOD STATES(state)

Relationship Operators Example

 Find all the counties around Passaic county in New Jersey:

```
SELECT /*+ ordered */ a.county
FROM geod_counties b,
    geod_counties a
WHERE b.county = 'Passaic'
AND b.state = 'New Jersey'
AND SDO_TOUCH(a.geom,b.geom) = 'TRUE';
```

• Previously:

```
AND SDO_RELATE(a.geom,b.geom,

'MASK=TOUCH') = 'TRUE';
```

SDO_WITHIN_DISTANCE Examples

Find all cities within a distance from an interstate

```
SELECT /*+ ordered */ c.city
FROM geod_interstates i, geod_cities c
WHERE i.highway = 'I170'
AND sdo_within_distance (
    c.location, i.geom,
    'distance=15 unit=mile') = 'TRUE';
```

Find interstates within a distance from a city

```
SELECT /*+ ordered */ i.highway
FROM geod_cities c, geod_interstates i
WHERE c.city = 'Tampa'
AND sdo_within_distance (
   i.geom, c.location,
   'distance=15 unit=mile') = 'TRUE';
```

SDO_NN Example

 Find the five cities nearest to Interstate I170, ordered by distance

 Note: Make sure you have an index on GEOD_INTERSTATES (HIGHWAY).

Spatial Functions

- Returns a geometry
 - Union
 - Difference
 - Intersect
 - XOR
 - Buffer
 - CenterPoint
 - ConvexHull
- Returns a number
 - LENGTH
 - AREA
 - Distance

DEMO SQL Developer

Develop Simple Oracle Application Server MapViewer Application

Oracle Spatial 10g Platform

MapViewer Overview

- A map rendering service in Oracle Application Server 10g. It is a server component (not a client viewer!)
- It visualizes data managed by Oracle Spatial.
- Provides a comprehensive set of APIs(XML and Java-based), using which client viewers can be easily developed and OGC WMS APIs
- Provides an enterprise-level solution to mapping metadata management.

MapViewer Overview Architecture

MapViewer Query

A map request consists of:

- Base map name
- Center of map
- Width and height of map
- Optional tags
 - map name
 - jdbc_query
 - others

A map response consists of:

- A streamed map image or
- A URL to the map image along with the map MBR

MapViewer APIs

- MapViewer supports 3 API flavors
 - XML-based
 - Native language to MapViewer
 - Java thin library
 - a mapping "bean" (without UI)
 - JSP custom tags
 - a subset of functions
 - To be used as a 'fast start' for beginners
 - The JSP taglib can be easily added to Oracle JDeveloper's component palette
 - A JDeveloper extension that lets you browse the current list of existing maps/themes/styles in a data source

Enhanced APIs and JDeveloper Integration

MapViewer Key Concepts

- Datasource
- Map
- Basemap
- Theme
- Style

MapViewer Welcome Page

http://localhost:8888/mapviewer

- Icon to go to/from the Admin page (see key icon in upper left)
- Several other hyperlinks, including Demos

MapViewer Welcome Page Demos

Oracle Map Builder

- Replacement for the Map Definition tool
- Currently in Beta and available on OTN for download
 - http://www.oracle.com/tech nology/software/products/m apviewer

DEMO Mapviewer and Mapbuilder

ORACLE IS THE INFORMATION COMPANY