

<Insert Picture Here>

Performance Tuning in Oracle Spatial
(Its only a database!)
Siva and Tim

Agenda

<Insert Picture Here>• Tuning Methodology
• Top Ten Mistakes
• Database Options

• Partitioning
• Real Application Clusters

• Optimising Data Access

Agenda

<Insert Picture Here>• Tuning Methodology
• Top Ten Mistakes
• Database Options

• Partitioning
• Real Application Clusters

• Optimising Data Access

Tuning Methodology

• Performance Tuning is NOT and afterthought
• Application performance should be part of the design

specification
• Understand application design issues properly
• Understand the way Oracle works
• Understand good SQL coding practice

• Set SLA goals – make them reasonable
• Instrument Code
• Measure Baseline Performance Statistics
• Understand the Application Useage Patterns

Tuning Methodology

• The DBA may not understand the Data but they will
understand the Database

• An Oracle Spatial Database works in exactly the
same way as a “normal” database

• Utilise standard tools and techniques (ADDM and
AWR)

Agenda

<Insert Picture Here>• Tuning Methodology
• Top Ten Mistakes
• Database Options

• Partitioning
• Real Application Clusters

• Optimising Data Access

Top Ten Mistakes

• Poor Connection Management
• Common in 3 Tier Apps

• Poor Use of Cursors and the Shared Pool
• Bind Variables – care with dynamic SQL

• Non Standard Initialisation Parameters
• Incorrectly set, bad advice

• Deployment/Migration Errors
• Missing object, incomplete stats, testing against poor data

sets,

• Unreasonable Expectations
• Unsuitable hardware, poor user expectation management

Top Ten Mistakes

• Excessive Full Tabl Scans
• Poor application design, missing Indexes

• Excessive Recursive SQL
• May be poor space management

• Bad SQL
• Use ADDM to identify igh resource statements

• Poor I/O Design
• Redo Log Issues

• Too small, too few

Agenda

<Insert Picture Here>• Tuning Methodology
• Top Ten Mistakes
• Database Options

• Partitioning
• Real Application Clusters

• Optimising Data Access

Oracle Partitioning

• Logical table decomposed to more than one physical
table

• Transparent to applications
• Based on a partitioning key

• Single Column
• Multicolumn

• Partitioned index is one logical index
• Decomposed to one physical index per partition

Creating a Partitioned Table

• Use a regular CREATE TABLE statement, adding a
PARTITIONING clause:

CREATE TABLE partition_table
in_date DATE, geom SDO_GEOMETRY)

PARTITION BY RANGE (in_date)
(PARTITION Q1_2004 VALUES LESS THAN ('01-APR-2004'),
PARTITION Q2_2004 VALUES LESS THAN ('01-JUL-2004'),
PARTITION Q3_2004 VALUES LESS THAN ('01-OCT-2004'),
PARTITION Q4_2004 VALUES LESS THAN ('01-JAN-2005')

);

Row Placement in Partitions

Partition Q1

Partition Q4

Table Data
ID IN_DATE

1

2

3

4

11-JAN-2004

22-APR-2004

16-JUL-2004

24-NOV-2004

Partition Q2

Partition Q3

Why Partition Data?

• Maintainability
• Partition-at-a-time load, backup, and restore
• Load data, create and rebuild indexes in different tablespaces on a

partition-by-partition basis
• Exchange tables and their indexes with partitions and their indexes

• Performance and Scalability
• Search multiple partitions in parallel
• Spread I/O load for accessing partitions across multiple I/O

channels/controllers
• Store data physically close together that is likely to be accessed

together
• Utilize partition elimination through the Oracle optimizer

Partition Elimination

• Including the partition key in the WHERE clause allows
the Oracle optimizer to eliminate from consideration all
partitions that do not meet the partition criteria

• Completely automatic
• Reduces processing requirements
• Reduces I/O requirements

• If the partition key is not included in the where clause all
partitions are searched

• Can be serial or parallel

Partition Elimination

Return all data from
month of April
SELECT *

FROM partition_table

WHERE

IN_DATE > '31-MAR-2004'

AND

IN_DATE < '01-MAY-2004'

Partition Q1

Partition Q2

Partition Q3

Partition Q4

Real Application Clusters

• Run All Your
Applications

• Add Low Cost
Capacity on Demand

• Scalable
• Highly Available
• Manageable
• Secure

RAC: The Cluster Database

Clustered
Database Servers

Mirrored Disk
Subsystem

High Speed
Switch or
Interconnect

Hub or
Switch
Fabric

Network

Centralized
Management
Console

Drive and Exploit
Industry Advances in
Clustering

Users

No Single
Point Of Failure

Interconnect

Storage Area Network

Shared CacheShared Cache

Agenda

<Insert Picture Here>• Tuning Methodology
• Top Ten Mistakes
• Database Options

• Partitioning
• Real Application Clusters

• Optimising Data Access

Spatial Partitioning
and
Spatial Partition Pruning

Spatial Partitioning

• Spatial data can be partitioned based on its location
• Can partition on X (Longitude) or Y (Latitude)
• Can partition using both X and Y
• Can partition using a “traditional” partition key and location

partitioning

• Oracle Spatial can use index information to do “Spatial
Partition Pruning”

• New and unique to Oracle Spatial

Spatial Partition Pruning

• What is Spatial partition pruning?
• Similar to Oracle optimizer partition elimination
• Included in Spatial index metadata is SDO_ROOT_MBR

• The minimum bounding rectangle encompassing the
spatial data in that indexed partition

• At query time, Oracle Spatial compares the query window
minimum bounding rectangle (MBR) with the partition’s
SDO_ROOT_MBR

• If there is no overlap, then no further processing is done on
that partition

Spatial Partition Pruning

Spatial Partition Pruning

• Used with Spatial operators:
• SDO_WITHIN_DISTANCE, SDO_FILTER, and SDO_RELATE

• Completely transparent and automatic
• Requires no partition key
• Occurs at run time

Single Column
Spatial Partitioning

Creating a Spatially Partitioned Table:
Single Column Key

• Can partition on X (longitude) or Y (latitude)
• Numeric column added to table to hold X or Y value

CREATE TABLE new_partition_table (in_date DATE,
geom SDO_GEOMETRY, x_value NUMBER)

PARTITION BY RANGE (x_value)
(PARTITION P_LT_90W VALUES LESS THAN (-90),
PARTITION P_LT_0 VALUES LESS THAN (0),
PARTITION P_LT_90E VALUES LESS THAN (90),
PARTITION P_MAX VALUES LESS THAN (180)
);

Creating a Spatially Partitioned Table:
Single Column Key

• Load X or Y values based on input geometry
• Directly load from SDO_POINT field
• Use SDO_GEOM.SDO_CENTROID function to load from a

point that is the centroid of a polygon
• Only valid for polygons

• Use SDO_GEOM.SDO_POINTONSURFACE to load from point,
line string, or polygon

Loading a Spatially Partitioned Table:
Single Column Key

• Example:

INSERT INTO new_partition_table NOLOGGING
SELECT val.in_date,

val.geom,
val.pt.sdo_point.x

FROM (SELECT in_date,
geom,
SDO_GEOM.SDO_POINTONSURFACE(

geom, 0.05) pt
FROM partition_table) val;

Loading a Spatially Partitioned Table:
Single Column Key

• Based on the X_VALUE, data gets loaded as follows:

X_VALUE Partition

-180 <= x < -90 P_LT_90W
-90 <= x < 0 P_LT_0
0 <= x < 90 P_LT_90E
90<= x <= 180 P_MAX

Spatially Partitioned Table and Index:
Single Column Key

• Four partitions, based on the first point of each
geometry

• Only partitioned by longitude

P_LT_90W P_LT_0 P_LT_90E P_MAX

Spatially Partitioned Table and Index:
Single Column Key

• Each partition’s spatial index stores the MBR around
all of the geometries in that index

• Each index MBR may overlap other index MBRs
• The query window MBR determines which spatial

partitioned indexes will be searched
• This partitioning scheme (in X) could be more

effective by adding a Y value
• Do NOT use X_VALUE in the WHERE clause

• Allowing the Oracle optimizer to eliminate partitions can
lead to wrong results with non-point spatial data

Multicolumn
Spatial Partitioning

Creating a Spatially Partitioned Table:
Multicolumn Key

• Can partition on X (longitude) and Y (latitude)
• Numeric columns added to hold X and Y values

• Special rules for multicolumn range partitioned tables
• The next key is only used for loading if there is an exact match

on the previous key
• All but the last key in a multicolumn partitioned table should

be associated with a single value
• Partition key is inclusive of key value

Creating a Spatially Partitioned Table:
Multicolumn Key

CREATE TABLE multi_partition_table (
in_date DATE, geom SDO_GEOMETRY,
x_value NUMBER, y_value NUMBER)

PARTITION BY RANGE (X_VALUE, Y_VALUE)
(
PARTITION P_LT_90W_45S VALUES LESS THAN (1,-45),
PARTITION P_LT_90W_0 VALUES LESS THAN (1,0),
PARTITION P_LT_90W_45N VALUES LESS THAN (1,45),
PARTITION P_LT_90W_90N VALUES LESS THAN (1,MAXVALUE),
PARTITION P_LT_0_45S VALUES LESS THAN (2,-45),
PARTITION P_LT_0_0 VALUES LESS THAN (2,0),
PARTITION P_LT_0_45N VALUES LESS THAN (2,45),
PARTITION P_LT_0_90N VALUES LESS THAN (2,MAXVALUE),

Creating a Spatially Partitioned Table:
Multicolumn Key

• Previous example continued

…
PARTITION P_LT_90E_45S VALUES LESS THAN (3,-45),
PARTITION P_LT_90E_0 VALUES LESS THAN (3,0),
PARTITION P_LT_90E_45N VALUES LESS THAN (3,45),
PARTITION P_LT_90E_90N VALUES LESS THAN (3,MAXVALUE),
PARTITION P_LT_180E_45S VALUES LESS THAN (4,-45),
PARTITION P_LT_180E_0 VALUES LESS THAN (4,0),
PARTITION P_LT_180E_45N VALUES LESS THAN (4,45),
PARTITION P_LT_180E_90N VALUES LESS THAN (4,MAXVALUE)

);

Loading a Spatially Partitioned Table:
Multicolumn Key

• Example:

INSERT INTO multi_partition_table NOLOGGING
SELECT val.in_date,

val.geom,
CEIL(ABS(-180 - val.pt.sdo_point.x)/90),
val.pt.sdo_point.y

FROM (SELECT in_date,
geom,
SDO_GEOM.SDO_POINTONSURFACE(

geom, 0.05) pt
FROM partition_table) val;

Loading a Spatially Partitioned Table:
Multicolumn Key

• Based on the X_VALUE and the Y_VALUE, data gets
loaded as follows:

X_VALUE Y_VALUE Partition

1 (-180 < X <= -90) -90 <= Y < -45 P_LT_90W_45S
1 -45 <= Y < 0 P_LT_90W_0
1 0 <= Y < 45 P_LT_90W_45N
1 45 <= Y <= 90 P_LT_90W_90N
2 (–90 < X <= 0) -90 <= Y < -45 P_LT_0_45S
2 -45 <= Y < 0 P_LT_0_0
2 0 <= Y < 45 P_LT_0_45N
2 45 <= Y <= 90 P_LT_90W_90N

Loading a Spatially Partitioned Table:
Multicolumn Key

• Based on the X_VALUE and the Y_VALUE, data gets
loaded as follows (continued):

X_VALUE Y_VALUE Partition

3 (0 < X <= 90)-9 0 <= Y < -45 P_LT_90E_45S
3 -45 <= Y < 0 P_LT_90E_0
3 0 <= Y < 45 P_LT_90E_45N
3 45 <= Y <= 90 P_LT_90E_90N
4 (90 < x < =180) -90 <= Y < -45 P_LT_180E_45S
4 -45 <= Y < 0 P_LT_180E_0
4 0 <= Y < 45 P_LT_180E_45N
4 45 <= Y <= 90 P_LT_180E_90N

Spatially Partitioned Table and Index:
Multicolumn Key

Combining Nonspatial and Spatial
Partitioning

• The nonspatial partition key is the leading key
• Include it in the WHERE clause
• The Oracle optimizer will use partition elimination to only

search partitions associated with the partition key
Then, after the Oracle optimizer reduces the search

space:
• Oracle Spatial partition pruning based on the query window

MBR and the SDO_ROOT_MBR columns occurs only against the
remaining partitions

Creating a Table Combining Nonspatial
and Spatial Partitioning

• Start of create table statement

CREATE TABLE quarter_spatial_partition_table (
in_date DATE, quarter number,
geom SDO_GEOMETRY, x_value NUMBER, y_value number)

PARTITION BY RANGE (QUARTER, X_VALUE, Y_VALUE)
(
PARTITION Q1_P_LT_90W_45S VALUES LESS THAN (1,1,-45),
PARTITION Q1_P_LT_90W_0 VALUES LESS THAN (1,1,0),
PARTITION Q1_P_LT_90W_45N VALUES LESS THAN (1,1,45),
PARTITION Q1_P_LT_90W_90N VALUES LESS THAN (1,1,90),
PARTITION Q1_P_LT_0_45S VALUES LESS THAN (1,2,-45),
PARTITION Q1_P_LT_0_0 VALUES LESS THAN (1,2,0),

Creating a Table Combining Nonspatial
and Spatial Partitioning

• End of create table statement

…
PARTITION Q4_P_LT_0_45N VALUES LESS THAN (4,2,45),
PARTITION Q4_P_LT_0_90N VALUES LESS THAN (4,2,90),
PARTITION Q4_P_LT_90E_45S VALUES LESS THAN (4,3,-45),
PARTITION Q4_P_LT_90E_0 VALUES LESS THAN (4,3,0),
PARTITION Q4_P_LT_90E_45N VALUES LESS THAN (4,3,45),
PARTITION Q4_P_LT_90E_90N VALUES LESS THAN (4,3,90),
PARTITION Q4_P_LT_180E_45S VALUES LESS THAN (4,4,-45),
PARTITION Q4_P_LT_180E_0 VALUES LESS THAN (4,4,0),
PARTITION Q4_P_LT_180E_45N VALUES LESS THAN (4,4,45),
PARTITION Q4_P_LT_180E_90N VALUES LESS THAN (4,4,90)
);

Combining Nonspatial and Spatial
Partitioning

• In this example, each date range has to be associated
with single value, as do all but the last partitioning key
in the multicolumn range partitioning key

• Each date range (quarter) has 16 spatial partitions in
it (4 quarters x 16 spatial partitions = 64 partitions)

Loading a Table Combining Nonspatial
and Spatial Partitioning

INSERT INTO quarter_spatial_partition_table NOLOGGING
SELECT val.in_date,

ceil (months_between (val.in_date,
TO_DATE('31-DEC-2003'))/3),

val.geom,
ceil(abs(-180 -val.pt.sdo_point.x)/90),
val.pt.sdo_point.y

FROM (SELECT in_date,
geom,
SDO_GEOM.SDO_POINTONSURFACE(
geom, 0.05) pt

FROM partition_table) val;

Combining Nonspatial and Spatial
Partitioning

Query has
both the
partition
key
and a
spatial
operator
in the
WHERE
clause

Q1

Q2

Q3

Q4

Optimizer
chooses
partition
based on
key value

Q2Q2

Spatial
partition
pruning

Query
Execution

Query
Result

Performance Considerations of
Spatial Partitioning

• Large Geometries (in area or length) that cross multiple
partitions cause the SDO_ROOT_MBR to expand

• Reduces effectiveness of spatial partitioning
• If only a few, can create a separate partition

• Use geometry length or area or MBR area as a criteria to
determine if data is pushed off to special partition

Performance Considerations of
Spatial Partitioning

• Overhead associated with checking each partition
• A little bit over 1 millisecond/partition on 1.5 Ghz Itanium box*
• If a very large number of partitions, overhead can be substantial
• Working to reduce/eliminate in a future release

* Tested on Hewlett Packard Integrity RX4640 server
with 4 1.5 Ghz Itanium processors running Red Hat
Linux Advanced Server 3.0, with a Storageworks
Enterprise Virtual Array 5000 Running VCS 3.010

Spatial Indexing

Spatial Indexing and Performance

• Create spatial indexes for the same reason other
indexes are created in Oracle

• They give us FAST access to data
• You can help Oracle do a better job at query time

• Use the index parameter <LAYER_GTYPE>
• Used for performance and geometry type checking

• Very important for point data

Spatial Indexing and Performance

• Why is <LAYER_GTYPE> important?
• Spatial index has tree structure of MBRs and ROWID pointers
• What is the MBR of a point?

• Spatial stores “degenerate” MBR information for point data
• The degenerate MBR is the point itself
• When doing relate processing, Oracle doesn’t have to join

back to the table to get the point
• It gets it directly from the index

Spatial Indexing and Performance

• Other optimizations
• Spatial index compares MBRs
• With relate processing, might not want to go directly to

geometry to geometry comparisons (they are expensive)
• May want to further compare simplified window with layer

geometry MBRs
• Compare convex hull of query window with layer geometry

MBRs

Spatial Indexing and Performance

• May choose to tile query window geometry
• Compare tiles and layer geometry MBRs
• <SDO_LEVEL> parameter for SDO_RELATE

• Number of times to divide the query window MBR
• Compare interior tiles with geometry MBR
• Default is 4, some have seen benefit with 5

• Takes extra time to create extra level, and does
more comparisons

• Try increasing it if your window geometry area is much
smaller than the MBR area

Spatial Indexing and Performance

• May choose to create interior MBR for a polygon
query window

• Interaction when layer geometry MBR is inside interior
MBR

• May compare query window geometry with layer
geometry MBR

Example Interior Optimization
•Which roads in the US have some interaction with this county?

• Primary filter compares geometry approximations, so result is
not exact

• Interior optimizations are applied to candidate set
• Geometry comparisons only where required

Spatial Indexing and Performance

• An example:
• Customer has hundreds of thousands of rows of data
• Mixed up all kinds of features (seismic, drill, geopolitical

boundaries, etc.)
• Their data model required this
• Wants to use locator (no partitioning)
• Sometimes their queries have to find a specific type of

feature that has an interaction

Spatial Indexing and Performance

• Example query:

• Takes about 70 seconds to return 2 rows
• SDO_FILTER returns in 1 second

select /*+ ordered */ et.id
from entities en, entities et
where en.id = 1644321
and et.entity_type = 'SEISMIC_AREA'
and sdo_relate(et.geom, en.geom,
'mask=ANYINTERACT querytype=WINDOW')='TRUE'

Spatial Indexing and Performance

• What is going on?
• Use MapViewer for analysis
• Just the filter (no other predicate)

Spatial Indexing and Performance

• The filter plus other predicate
• Very fast!
• Not too many rows

Spatial Indexing and Performance

• But the customer wants SDO_RELATE
• They want it fast using locator!
• These customers are very smart

select /*+ ordered */ et.id
from entities en, entities et
where en.id = 1644321
and et.entity_type = 'SEISMIC_AREA'
and sdo_filter(et.geom, en.geom)='TRUE'
and sdo_geom.sdo_distance(

et.geom,en.geom,0.5) = 0;

Spatial Indexing and Performance

• Whenever the query window comes from a table using
an operator, make sure to use the /*+ ordered */ hint

• Ensures the optimizer will generate a fast execution plan
• If you are joining tables, use a polygon layer as the

driving table
• Enables interior tile optimizations
• Unless the other table is much smaller

Spatial Indexing and Performance

• When moving spatial data and indexes
• Use transportable tablespaces
• New support in Oracle 10g
• One important restriction:

• Cannot transport indexes across endian platforms

Next Steps

• Related Web Sites For More Information
• otn.oracle.com/products/spatial

• Oracle Training
• Oracle Spatial 10g: Fundamentals
• Oracle Spatial 10g: Advanced

• Discussion Forum on OTN
• Venues such as this (Spatial SIG)

Pro Oracle Spatial

• “An Essential Guide” for developing
Spatially-enabled Business
Applications

• For Oracle Professionals
(Developers, DBAs), Spatial/GIS
Analysts, Consultants, …

• By Oracle Spatial Developers
and Geodan, NL

• Covers Spatial technology in Oracle
(Oracle Locator, Spatial, Mapviewer
products)

• Includes Sample code, Tips,…
• ISBN: 1-59059-383-9
• http://www.apress.com/book/bookDi

splay.html?bID=315

