
End-2-end-105-PO-Processing

Contents BPEL Orchestration 4Error! Reference source not found.-1

4 BPEL Orchestration

4.1 Introduction... 2

4.2 Modifying the composite application .. 2

4.2.1 Invoking the CreditCardStatus service ... 2

4.2.2 Designing the BPEL approval process .. 6

4.2.3 Modifying the Mediator component ..21

4.3 Deploying the application ..31

4.4 Testing the application..31

End-2-end-105-PO-Processing

4-2 BPEL Orchestration Section 4.1

4.1 Introduction
When receiving large orders (greater than $1,000) we want to be more cautious and:

���� Validate the customer's credit card

���� Automatically accept or reject the order based on the credit card status

In this chapter, you will have someone from the sales department review and approve

the order manually using the Human Task service.

The tool for orchestrating these interactions is the BPEL process manager. The overall

flow of the application uses the services created earlier as well as the Human Task

service.

4.2 Modifying the composite application
You'll start by invoking the service you created in chapter 2, the credit card validation

service, using SOAP.

4.2.1 Invoking the CreditCardStatus service
1. Drag-and-drop a Web Service activity into the External References swim lane.

2. Set the following fields:

���� Name: getCreditCardStatus

���� WSDL File: As mentioned in chapter 2, the URL to the WSDL file can be

obtained from the SOA Console, in the test screen, by clicking the Service

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-3

Description link. (Hint: It will be something like: http://localhost:8888/soa-

infra/services/CreditCardValidation/validationForCC/getStatusByCC?WSDL)

���� Port Type: When you copy-and-paste the WSDL URL in and press the Tab key

to move to the next field, it will be updated automatically based on the contents

of the WSDL.

3. Click OK.

4. Drag-and-drop a BPEL component on to the Components swim lane.

End-2-end-105-PO-Processing

4-4 BPEL Orchestration Section 4.2

5. In the Create BPEL Process dialog, specify the following settings:

���� Name: approveLargeOrder

���� Template: Asynchronous BPEL Process

���� Expose as Composite Service: Unchecked

���� Input: Click the flashlight icon, expand Project Schema Files >

internalorder.xsd and select Order

���� Output: Use the Order type, like you did for Input

Note that the input and output specified here will go in to the WSDL for this

service.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-5

6. Click OK.

7. Wire the BPEL process and the getCreditCardStatus service.

End-2-end-105-PO-Processing

4-6 BPEL Orchestration Section 4.2

4.2.2 Designing the BPEL approval process
Next you'll build a simple BPEL process that calls the external getCreditCardStatus

service.

1. Double-click the BPEL component to open the BPEL editor.

Notice the getCreditCardStatus partnerlink already in the References swim lane

because you wired it in the composite.

2. Drag-and-drop an Invoke activity from the Component Palette to an insertion point

under the receiveInput activity.

3. Drag the wire from the Invoke activity to the getCreditCardStatus. This tells your

BPEL process to invoke that service.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-7

4. In the Edit Invoke dialog, specify the following:

���� Name: invokeCCStatusService

���� Input Variable: Click the green plus icon, then press OK to create a new global

variable, accepting the default name and type.

This variable contains the data that will be sent to the service, or the input to the

service.

���� Output Variable: Click the green plus icon, then press OK to create a new

global variable, accepting the default name and type.

This variable contains the data that will be returned by the service, or the

output of the service.

End-2-end-105-PO-Processing

4-8 BPEL Orchestration Section 4.2

5. Click OK.

6. Your BPEL process looks like this so far:

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-9

7. We have created the variables that will be used when interacting with the

getCreditCardStatus service, but they haven't been populated. The output variable

will automatically be populated when the service returns a result, but you need to

populate the input variable yourself that's going to be passed to the service.

 In BPEL, you use an Assign activity to assign data to a variable. In this case you

want to assign the credit card number that passed into the POProcessing service to

the getCreditCardStatus service.

Drag-and-drop an Assign activity above your Invoke activity.

End-2-end-105-PO-Processing

4-10 BPEL Orchestration Section 4.2

8. Double-click the Assign activity to edit it.

9. Click the General tab and change the name to assignCCNumber.

10. Click the Copy Operation tab.

11. Click the green plus icon and select Copy Operation to open the Create Copy

Operation dialog, and specify the following.

���� In the From side, select Variables > Process > Variables > inputVariable >

payload > Order > creditCardInfo > cardNumber

���� In the To side, select Variables > Process > Variables >

invokeCCStatusService_execute_InputVariable > request >

creditcardStatusRequest > CCNumber

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-11

12. Click OK.

13. Back in the Assign dialog, add a second copy operation by click the green plus icon

and selecting Copy Operation, and specify the following.

���� In the From side, select Variables > Process > Variables > inputVariable >

payload > Order

���� In the To side, select Variables > Process > Variables > outputVariable >

payload > Order

You are doing this because BPEL process will return the input data, but with some

updates which will be made later in the BPEL process.

End-2-end-105-PO-Processing

4-12 BPEL Orchestration Section 4.2

14. The Assign dialog now looks like this:

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-13

15. Click OK to return to the BPEL process which now looks like this:

End-2-end-105-PO-Processing

4-14 BPEL Orchestration Section 4.2

16. The input variable to getCreditCardStatus is now populated. The Invoke activity

will pass that data to the service. The next step is to process the return data from the

service, the output.

Drag-and-drop a Switch activity underneath the invokeCCStatusService Invoke

activity.

17. Double-click the name of the Switch underneath the icon (which is probably

something like Switch_1) and rename it to EvalulateCCStatus. Note: You can also

double-click the Switch icon and change the name in the subsequent dialog, but if

you double-click the text itself you can change the name in-place.

18. Expand the Switch by clicking the small plus icon next to it.

19. Click the View Condition Expression button.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-15

20. Click the XPath Expression Builder button.

21. In the BPEL Variables field, expand Variables > Process > Variables >

invokeCCStatusService_execute_OutputVariable > reply and select

creditCardStatus.

22. Click the Insert Into Expression button (it's the wide button under the Expression

field).

End-2-end-105-PO-Processing

4-16 BPEL Orchestration Section 4.2

23. Put your cursor in the Expression field and at the endand add: = 'VALID'

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-17

24. Press OK.

25. Click outside the Condition Expression popup to close it.

26. If that condition is true, then BPEL will execute any activities in the <case> part of

the switch. If not, any activities in the <otherwise> section will be executed.

Drag-and-drop an Assign activity into the <case> section of the Switch.

End-2-end-105-PO-Processing

4-18 BPEL Orchestration Section 4.2

27. Double-click the name of the Assign (which will be something like Assign_2) and

rename it to assignApproval.

28. Double-click the Assign icon to open the Assign dialog.

29. Click the green plus icon and add a new copy operation.

30. In the From section, change the Type poplist to Expression.

31. In the Expression field, type: 'approved'.

32. In the To section, select Variables > Process > Variables > outputVariable >

payload > Order > status.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-19

33. Click OK.

34. Drag-and-drop an Assign activity into the <otherwise> section of the Switch.

35. Rename it to assignInvalidCC.

36. In the same way you just did, assign the value 'invalidCreditCard' to the status

field of the outputVariable variable.

End-2-end-105-PO-Processing

4-20 BPEL Orchestration Section 4.2

37. At the top of BPEL designer, click the green check mark to validate your process.

Any yellow flags you had should disappear and you should not have any warning

messages.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-21

38. Save the BPEL process and close the window to return to the composite.

4.2.3 Modifying the Mediator component
1. Wire the Mediator to the BPEL process.

End-2-end-105-PO-Processing

4-22 BPEL Orchestration Section 4.2

2. Your composite now looks like this:

3. Now the Mediator is routing requests to both the WriteApprovalResults service

and the approveLargeOrder BPEL process. Sometimes this is what you want a

Mediator service to do, but in this case a new order should either be automatically

approved or have to be approved by going through the approveLargeOrder

process.

If you recall, orders under $1,000 should be automatically approved while orders

greater than or equal to $1,000 need to go through an approval process. The

Mediator is capable of creating a content-based routing service to enable this kind

of processing.

Double-click the routePO Mediator component to open the Mediator editor.

4. Click on the filter icon, called Invoke Expression Builder which looks like a funnel,

for the WriteApprovalResults::Write request operation.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-23

5. In the Expression Builder dialog, build up the following expression:

($in.request/inp1:PurchaseOrder/inp1:price *
$in.request/inp1:PurchaseOrder/inp1:quantity) < 1000

Note: The namespaces (e.g., inp1) may be different for you, but you can ignore that.

Hint: Expand the nodes in the Variables section to find the field you want and

press the Insert Into Expression button to add them.

End-2-end-105-PO-Processing

4-24 BPEL Orchestration Section 4.2

6. Click OK.

7. Similarly, click the filter icon for the request invocation of

approveLargeOrder/client::initiate.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-25

8. Add the following expression:

($in.request/inp1:PurchaseOrder/inp1:price *
$in.request/inp1:PurchaseOrder/inp1:quantity) >= 1000

End-2-end-105-PO-Processing

4-26 BPEL Orchestration Section 4.2

9. Click OK.

10. You also need to set the callback of the sysnchronous BPEL process to call the file

adapter service.

Click the cog icon next to the Target Operation field in the callback section.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-27

11. In the Target Type dialog, click the Service button.

12. In the Target Services dialog, select POProcessing > References >

WriteApprovalResults > Write.

End-2-end-105-PO-Processing

4-28 BPEL Orchestration Section 4.2

13. Click OK.

14. A transformation needs to be added for this operation. It's the same as the

transformation done earlier, but the namespaces are different so a new

transformation will need to be created.

Click the transformation icon in the request section.

End-2-end-105-PO-Processing

Section 4.2 BPEL Orchestration 4-29

15. Select Create New Mapper File and click OK.

16. Drag-and-drop PurchaseOrder from the source to Order in target.

17. In the Auto Map Preferences dialog, click OK since you already added the

dictionary earlier.

The resulting transformation looks like this:

18. Save and close the mapper to return to the Mediator editor.

19. You must also add a transformation for the callback. Click the transformation icon

in the callback section.

End-2-end-105-PO-Processing

4-30 BPEL Orchestration Section 4.2

20. Select Create New Mapper File and click OK.

21. Drag-and-drop Order from the source to Order in the target.

22. In the Auto Map Preferences dialog, click OK.

The resulting transformation looks like this:

23. Save and close the mapper.

24. Save and close the Mediator editor to return to the composite.

25. Choose File > Save All from the menu or the toolbar just to make sure everything is

saved.

End-2-end-105-PO-Processing

Section 4.3 BPEL Orchestration 4-31

4.3 Deploying the application
Deploy the application in the same way as before using the Deploy command on the

Application Menu. This time you can select the connection you created earlier instead of

creating a new one.

Read Appendix A Deploying and Running a Composite Application to refresh your

memory on how to deploy if you need to.

4.4 Testing the application
1. In the SOA Console, click on the POProcessing application and then open the

tester.

2. Click XML Source.

3. In the previous chapter you submitted a small order which created an order file

directly. This time you'll create a large order which the Mediator will route to the

BPEL approval process.

Open the following file in a text editor:

c:\po\input\po-small-Headsetx1.xml

Copy the entire contents and paste them into the large text field in your browser:

4. Click Invoke.

5. As before, the Test Result screen won't have any response because this is a one-way

invocation with no reply or callback. However a new order_n.txt file will have

End-2-end-105-PO-Processing

4-32 BPEL Orchestration Section 4.4

been created in c:\temp. You can open it in a text editor and view the results

(shown in Figure 1). Notice that the value of <status> on line 8 has been set to

approved.

Figure 1 Output from order_n.txt file

6. Press the back button in the browser to return to the tester.

7. Re-run the application using the same input data from , but this time change the

credit card number to 4321-4321-4321-4321 which represents an invalid credit card.

8. Click Invoke to run the application.

9. Open the new order file in c:\temp and notice what the status is this time. This is

the result of the <switch> statement in your BPEL process.

End-2-end-105-PO-Processing

Section 4.4 BPEL Orchestration 4-33

10. Close the tester window. Back in the SOA Console click on the application or click

the Refresh link. In the Last 5 Instances section click on one of the most recent

instances to see the execution flow.

11. You can click the approveLargeOrder link to look at the BPEL process instance,

then click the Flow-Debug tab to see a visual representation of the BPEL instance

that ran (as shown in Figure 2). You can click the various activities to see their

results. An interesting one to click is the getCreditCardStatus invoke activity.

End-2-end-105-PO-Processing

4-34 BPEL Orchestration Section 4.4

Figure 2 Visual flow of the BPEL process

12. When you click the getCreditCardStatus invoke activity, it's a synchronous

(request-response) call, so you see both the input to the service (i.e., what you're

passing to the service) and the output (i.e., what you're getting back from the

service).

In the screenshots, below, the input to the service is the credit card number 4321-

4321-4321-4321 and the output returned is INVALID.

End-2-end-105-PO-Processing

Section 4.4 BPEL Orchestration 4-35

End-2-end-105-PO-Processing

4-36 BPEL Orchestration Section 4.4

13. Back in the main screen of the SOA Console, run the tester again and this time use

the small order that you used in the previous chapter, which can be found in
c:\po\input\po-small-Headsetx1.xml

Note that the BPEL process does not get invoked and instead you only get a new

order file generated in c:\temp.

