
Spotlight: Strictly Partitioned Tables

A Technical Corner article from the Rdb Journal

By Ian Smith

April 30, 2000

Copyright © 2000 Oracle Corporation. All Rights Reserved.

Oracle Rdb uses a special database object known as a STORAGE MAP to describe the physical distribution of table rows
across multiple storage areas. This functionality was first made available in Rdb V3.0, released in 1986. The advantage of
a storage map is that it allows very large tables to be spread across many physical devices to accommodate the data and to
make use of device parallelism with asynchronous I/O.

However, the partitioning ranges for tables were only used at INSERT time. A subsequent UPDATE statement may alter
the values of the partitioning columns. Rdb does not move the data in this case because the row may be referenced by
indices or other applications. As there was no guarantee that the data still obeyed the original partitioning scheme, the
Oracle Rdb Optimizer did not make use of the partitioning scheme to eliminate area scans.

When a table's storage map has the attribute PARTITIONING IS NOT UPDATABLE, then mapping of data to a storage
area is strictly enforced. This is known as strict partitioning. This feature was introduced with Oracle Rdb7.

In this case the partitioning columns may not be updated and the Rdb optimizer uses this knowledge when optimizing
sequential queries of the table. The savings in I/O for sequential scans can be significant.

April 30, 2000

ismith@us.oracle.com

Ian Smith, Consulting Engineer

Spotlight: Strictly Partitioned Tables

In Rdb7, Oracle Rdb introduced strictly partitioned tables. The savings in I/O for
sequential scans can be significant.

Technical Tips: Using Strictly Partitioned Tables

Strictly partitioned indices have also been supported by Oracle Rdb since Rdb V3.0. In general, most production systems
will use indices as supporting structures for query retrieval. However, strict partitioning is often useful when queries need
to perform sequential access to a table, such as during reporting, or during table maintenance.

How do I know if strict partitioning is working?

Use either the SET FLAGS statement or the logical RDMS$SET_FLAGS to enable the STRATEGY and EXECUTION
tracing during query evaluation.

Oracle Rdb Journal

www.oracle.com/rdb/rdb_journal

Technical Corner - Spotlight: Strictly Partitioned Tables

The Rdb Technical Corner is a regular feature of the Oracle Rdb Web Journal. (www.oracle.com/rdb/rdb_journal) The
examples in this article use SQL language from Oracle Rdb7 and later versions.

If a table is strictly partitioned and the query allows the use of this feature then the STRATEGY dump includes the text
"(partitioned scan#nn)" after the table name. The #nn indicates the leaf number for this sequential scan (there may be
several within a single query). For instance:

The EXECUTION dump displays the selected partitions for the current execution of the query.

How can multiple processes sequentially scan the same table?

By default, a sequential scan locks the entire table so that ISOLATION LEVEL SERIALIZABLE can be enforced. You
can change the SET TRANSACTION statement to reduce the ISOLATION LEVEL to REPEATABLE READ, or READ
COMMITTED. Now the table will be locked for shared read initially. If an UPDATE or DELETE is performed, then each
partition will be locked as required.

If each process selects data from different partitions, then they will execute concurrently.

Can I perform PROTECTED or EXCLUSIVE access to a partition?

Starting with Rdb V7.0.1.3 a new PARTITION clause was added to the SET TRANSACTION ... RESERVING statement
that allows the partition number to be locked for PROTECTED or EXCLUSIVE access by the transaction. This
mechanism is used by RMU/LOAD/PARALLEL so that parallel executors can perform EXCLUSIVE loads of a
partitioned table.

For applications which use strict partitioning to perform parallel maintenance, such as bulk loads, mass updates or row
purging this can have many benefits. While each process works in parallel on parts of the table, each can reserve the table
partitions for exclusive access and so avoid snapshot file I/O, use fewer locks and less virtual memory (which translates to
lower page faulting).

Technical Corner - Spotlight: Strictly Partitioned TablesOracle Rdb Journal

select name
 from T
 where badge between 8 and 10;
~S#0045
Conjunct Get Retrieval sequentially of relation T (partitioned scan#1)
~E#0045.1: Strict Partitioning using 2 areas
 partition 9 (larea=57)
 partition 10 (larea=58)
 NAME
 i
 j
 2 rows selected

SQL> set transaction read write
cont> reserving employees PARTITION (2)
cont> for exclusive write;

www.oracle.com/rdb/rdb_journal

You can reserve more than one partition by listing the partition numbers separated by commas. Any indices which are
identically partitioned will also be locked in the same way, all other indices are locked for SHARED access.

How does the WITH LIMIT clause work to partition the data?

The WITH LIMIT clause provides the upper limit of data which can be stored in the table (or index). Perhaps the easiest
way to see this is to use the RMU/EXTRACT command to extract the STORAGE_MAP and INDEX items from the
database. When you use /OPTION=FULL, RMU/EXTRACT annotates the storage map with the Boolean expression used
by Rdb at runtime to select the partition. As more columns are added to partition the table the more complex this Boolean
expression appears.

Technical Corner - Spotlight: Strictly Partitioned TablesOracle Rdb Journal

create storage map EMPLOYEES_MAP
 for EMPLOYEES
 placement via index EMPLOYEES_HASH
 store
 using (EMPLOYEE_ID)
 -- Partition:
 -- (EMPLOYEE_ID <= '00200')
 in EMPIDS_LOW
 with limit of ('00200')
 -- Partition:

 -- (EMPLOYEE_ID <= '00400')

 in EMPIDS_MID
 with limit of ('00400')
 otherwise in EMPIDS_OVER;

www.oracle.com/rdb/rdb_journal

How do I force a query to be SEQUENTIAL?

Prior to Rdb V7.0.4 a query outline must be used to guarantee a sequential access strategy. The following example
demonstrates the process. Use SET FLAGS 'OUTLINE' to generate a template outline for the query, also use SET
NOEXECUTE to avoid actually fetching, deleting or updating rows that would normally be affected by the query.

SQL> set flags 'outline';
SQL> set noexecute;
SQL> select last_name, first_name, employee_id
cont> from employees limit to 1 row;
-- Rdb Generated Outline : 1-MAY-2000 16:11
create outline QO_21FD853E88576893_00000000
id '21FD853E88576893F9E37D2F18EA64A2'
mode 0
as (
 query (
-- For loop
 subquery (
 EMPLOYEES 0 access path index EMP_EMPLOYEE_ID
)
)
)
compliance optional ;
0 rows selected

Notice that the access method was INDEX via the index EMP_EMPLOYEE_ID. Now reenabled execute, turn off outline
generation and enable the strategy flag so we can see the result. Use the template and change the access method to
SEQUENTIAL as shown in this example on the EMPLOYEES table.

The strategy display clearly shows the query outline being used and also the modified access strategy.

Starting with Rdb V7.0.4 a new OPTIMIZE clause has been added to force the optimizer to use sequential access. This
avoids creating a query outline for every ad hoc query or maintenance script.

Technical Corner - Spotlight: Strictly Partitioned TablesOracle Rdb Journal

SQL> set execute;
SQL> set flags 'nooutline, strategy';
SQL> create outline my_seq_query
cont> id '21FD853E88576893F9E37D2F18EA64A2'
cont> mode 0
cont> as (
cont> query (
cont> subquery (
cont> EMPLOYEES 0 access sequential
cont>)
cont>)
cont>)
cont> compliance optional ;
SQL> select last_name, first_name, employee_id
cont> from employees limit to 1 row;
~S: Outline "MY_SEQ_QUERY" used
Firstn Get Retrieval sequentially of relation EMPLOYEES
 LAST_NAME FIRST_NAME EMPLOYEE_ID
 O'Sullivan Rick 00190
1 row selected

SQL> select * from employees limit to 1 row;
Firstn Get Retrieval by index of relation EMPLOYEES
 Index name EMP_EMPLOYEE_ID [0:0]
...
1 row selected
SQL> select * from employees limit to 1 row
cont> optimize for SEQUENTIAL ACCESS;
Firstn Get Retrieval sequentially of relation EMPLOYEES
...
1 row selected

www.oracle.com/rdb/rdb_journal

Ian Smith is a Consulting Member of the Technical Staff of Oracle Corporation and a Technical Leader for the Oracle Rdb product engineering group
located in Nashua NH, U.S.A.

Ian has been a member of the engineering team since Jan 1989 and has been working with Rdb since the beta testing of the first version in 1984.
Between 1982 and 1989 Ian was a database consultant working with customers to build and tune Rdb and DBMS (CODASYL) systems.

Ian is currently the SQL language and relational interface architect for Oracle Rdb and has designed many of the new features incorporated into Rdb in
the last decade.

