Oracle Rdb™

SQL Reference Manual
Volume 5

Release 7.3.3.0 for HP OpenVMS Industry Standard 64 for Integrity Servers and
OpenVMS Alpha operating systems

November 2018

ORACLE

SQL Reference Manual, Volume 5

Release 7.3.3.0 for HP OpenVMS Industry Standard 64 for Integrity Servers and OpenVMS
Alpha operating systems

Copyright © 1987, 2018 Oracle Corporation. All rights reserved.
Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted
to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or
anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commercial computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms
set forth in the applicable Government contract, and, to the extent applicable by the terms
of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information
management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle
CODASYL DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are
registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on
content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

Send Us Your Comments Xi
Preface Xiii

A Error Messages

AA Types of Error Messages and Their Format A-1
A2 Error Message Documentation A-3
A3 Errors Generated When You Use SQL Statements A-4
A4 Identifying Precompiler and Module Language Errors. A-7

B SAQL Standards

B.1 ANSI/ISO/IEC SQL 1999 Standardcvvvueiin. B-1
B.2 SQL:1999 Features in Rdb B—6
B.3 Establishing SQL:1999 Semantics B-8

C The SQL Communications Area (SQLCA) and the Message Vector

CA1 The SQLCA . .. c-2
c.z2 The Message VECtOr it e e e e Cc-22
C.3 Declarations of the SQLCA and the Message Vector C-23
C4 Using SQLCA Include Files C-30
C5 SQLSTATE . . . o C-30
C.51 Definition of the SQLSTATE Status Parameter C-31
C.5.2 Use of the SQLSTATE Status Parameter...................... C-36

D The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

D.1
D.2
D.3
D.4
D.5
D.6
D.6.1
D.6.2

Purpose of the SQLDA
How SQL and Programs Use the SQLDA
Declaring the SQLDA e
Description of Fields in the SQLDA
Parameters Associated with the SQLDA: SQLSIZE and SQLDAPTR ...
Purpose of the SQLDAZ2

Declaring the SQLDA2.

Description of Fields in the SQLDA2

E Logical Names Used by SQL

F Obsolete SQL Syntax

F.1
F.1.1
F.1.1.1
F1.1.2
F.1.1.3
F.1.2
F.1.3
F.1.4
F.1.5
F.2
F.2.1
F.2.2
F.2.3
F.2.4
F.2.5
F.3
F.3.1
F.4
F.4.1
F.4.2
F.4.3
F.4.4

F.5
F.5.1
F.5.2

Incompatible Syntax
Incompatible Syntax Containing the SCHEMA Keyword
CREATE SCHEMA Meaning Incompatible
SHOW SCHEMA Meaning Incompatible
DROP SCHEMA Meaning Incompatible
DROP TABLE Now Restricts by Default
Database Handle Names Restricted to 25 Characters
Deprecated Default Semantics of the ORDER BY Clause
Change to EXTERNAL NAMES ISClause
Deprecated Syntaxt
Command Line Qualifiers
Deprecated Interactive SQL Statements
Constraint Conformance to the ANSI/ISO SQL Standard
Obsolete Keywords
Obsolete Built-in Functions
Deprecated Logical Names
RDB$CHARACTER_SET Logical Name
Reserved Words Deprecated as ldentifiers
ANSI/ISO 1989 SQL Standard Reserved Words
ANSI/ISO 1992 SQL Standard Reserved Words
ANSI/ISO 1999 SQL Standard Reserved Words
Words From ANSI/ISO SQL3 Draft Standard No Longer
Reserved
Punctuation Changes
Single Quotation Marks Required for String Literals
Double Quotation Marks Required for ANSI/ISO SQL Delimited
Identifiers

D1

D-5
D-9
D-14
D-15
D-16
D-19

F—1
F-2
F-2
F-2
F—2
F-3
F-3
F-3
F—4

F-6
F-6
F-7
F-7
F-8
F-9
F-9

F-10

F-10

F—11

F-13

F-14
F-14
F-15

F-15

F.5.3 Colons Required Before Host Language Variables in SQL Module
Languageo
F.6 Suppressing Diagnostic MeSSageso v v vt

G Oracle Database Compatibility

G.1 Oracle Database Functions
G.1.1 Optional Oracle SQL Functions,
G.2 Oracle Style Outer Join e
G.21 Outer Join Examples

H System Tables

H.1 Using Data Dictionary«
H.2 Modifying System Tables
H.3 Updating Metadata
H.4 LIST OF BYTE VARYING Metadata u...
H.5 Read Only ACCESS . . . v v vttt e e e e e e
H.6 All System Tables
H.6.1 RDB$CATALOG_SCHEMA e
H.6.2 RDBSCOLLATIONS e
H.6.3 RDBSCONSTRAINTS .. e
H.6.3.1 RDBSFLAGS . . .
H.6.4 RDB$CONSTRAINT RELATIONS i
H.6.4.1 RDBSFLAGS . . .
H.6.5 RDBSDATABASE
H.6.5.1 RDBSFLAGS . . .
H.6.6 RDBSFIELD_VERSIONS e
H.6.6.1 RDBSFLAGS . . .
H.6.7 RDB$PARAMETER _SUB TYPE i
H.6.8 RDBSFIELD _SUB TYPE e
H.6.9 RDBSFIELDS
H.6.9.1 RDBSFLAGS . . .
H.6.10 RDB$GRANTED_PROFILES. i
H.6.11 RDBSINDEX SEGMENTS e
H.6.11.0.1 RDBSFLAGS
H.6.12 RDBSINDICES e
H.6.12.1 RDBSFLAGS . . .
H.6.13 RDBSINTERRELATIONS e
H.6.13.1 RDBSUSAGE
H.6.13.2 RDBSFLAGS . . .o
H.6.14 RDBSMODULES

F-15
F-15

G-1
G-15
G-16

:IE:IEI:IEZIEIIII
O OWoONWMNDN = =

—_ =

vi

H.6.15 RDB$OBJECT_SYNONYMS e

H.6.15.1 RDBSFLAGS
H.6.16 RDBSPARAMETERS
H.6.16.1 RDBSFLAGS
H.6.17 RDBSPRIVILEGES e
H.6.17.1 RDBSFLAGS
H.6.18 RDBSPROFILES
H.6.18.1 RDBSFLAGS . . .
H.6.19 RDBSQUERY_OUTLINES e
H.6.19.1 RDBSFLAGS
H.6.20 RDB$RELATION_CONSTRAINTS
H.6.20.1 RDBSFLAGS
H.6.20.2 RDBSCONSTRAINT_TYPE e
H.6.21 RDB$RELATION_CONSTRAINT_FLDS
H.6.22 RDBSRELATION_FIELDS. e
H.6.23 RDBSRELATIONS e
H.6.23.1 RDBSFLAGS
H.6.24 RDBSROUTINES e
H.6.24.1 RDBSFLAGS
H.6.24.2 RDB$SOURCE_LANGUAGE e
H.6.25 RDBSSEQUENCES e
H.6.25.1 RDBSFLAGS
H.6.26 RDBSSTORAGE_MAPS e
H.6.26.1 RDBSFLAGS
H.6.27 RDB$STORAGE_MAP_AREAS e
H.6.27.1 RDBSFLAGS
H.6.28 RDB$SYNONYMS . .
H.6.29 RDBSTRIGGERS
H.6.29.1 RDBSFLAGS
H.6.29.2 RDB$TRIGGER_TYPE Values
H.6.30 RDBSVIEW_RELATIONS e
H.6.31 RDBSTRIGGER_ACTIONS s
H.6.31.1 RDBSFLAGS

H.6.32 RDB$WORKLOAD

Information Tables

1.1 Introduction to Information Tables
1.1.1 Restrictions for Information Tables
1.2 All Information Tables

H-35
H-35
H-36
H-36
H-37
H-38
H-39
H-40
H-40
H-41
H—41
H-42
H-42
H-43
H-44
H-46
H-49
H-50
H-51
H-52
H-53
H-54
H-54
H-55
H-55
H-56
H-57
H-59
H-61
H-61
H-61
H-62
H-63
H-63

[.2.1 All_Information_Tables -5
.2.1.1 RDB$STORAGE_AREAS e -5
[.2.1.1.1 RDBSFLAGS -7
.2.1.2 RDBSJOURNALS . .. e -8
[.2.1.2.1 RDBSFLAGS -9
.2.1.3 RDBSCACHES -9
1.2.1.3.1 RDBSFLAGS . . . I-10
.2.1.4 RDBSDATABASE ROOTttt e et e e e I-10
[.2.1.4.1 RDBSFLAGS -13
.2.1.5 RDB$DATABASE_JOURNAL -14
[.2.1.5.1 RDBSFLAGS . . . I-15
1.2.1.6 RDB$DATABASE_USERS I-16
[.2.1.6.1 RDBSFLAGS I-16
.2.1.7 RDBSLOGICAL _AREAS e -17
.2.1.7.1 RDBSFLAGS -17
.2.1.7.2 RDBSRECORD_TYPE e I-18
1.2.1.8 RDB$CHARACTER_SETS e I-18
1.2.1.8.1 RDB$REPERTOIRE -19
.2.1.8.2 RDBSFORM_OF_USE I-20
.2.1.8.3 RDBSFLAGS I-20
.2.1.9 RDBSNLS_CHARACTER_SETS [-21
1.2.1.10 RDBS$SESSION_PRIVILEGES e -21
Index
Examples
C-1 Fields in the SQLCA e C-3
Cc-2 Including Error Literals in a COBOL Program C-10
C-3 Values in SQLCA after PREPARE Statement C-14
C—4 Ada SQLCA and Message Vector Declaration C-24
C-5 BASIC SQLCA and Message Vector Declaration C-24
C-6 C SQLCA and Message Vector Declaration C-26
C-7 COBOL SQLCA and Message Vector Declaration C-=27
Cc-8 FORTRAN SQLCA and Message Vector Declaration Cc-27
Cc-9 Pascal SQLCA and Message Vector Declaration Cc-28
C-10 PL/I SQLCA and Message Vector Declaration C-29
C-11 Declaring SQLSTATE ina CProgram C-37
D-1 Declaration of the SQLDA INAda D-7
D-2 Declaration of the SQLDAINBASIC D-7

Vi

D-3 Declaration of the SQLDA INC D-8

D-4 Declaration of the SQLDA in PL/I, D-9
D-5 Declaration of the SQLDA2 in Ada D-16
D-6 Declaration of the SQLDA2 in BASIC D-17
D-7 Declaration of the SQLDA2IinC D-18
Figures
C-1 Fields of the Message Vector Cc-23
Tables

A-1 Explanation of Error Message Severity Codes A-2
A-2 SQL Errors Generated at Run Time A-5
B—1 Fully Supported Core SQL:1999 Features B-3
B-2 Partially Supported Core SQL:1999 Features B—4
B-3 Unsupported Core SQL:1999 Features. B-6
C-1 Values Returned to the SQLCODE Field C4
c-2 Including the Error Literals File in Programs C-8
C-3 SQLERRD array setting by statement c-12
C-4 SQLCA SQLERRD[O] Values, C-15
C-5 SQLSTATE Status Parameter Values—Sorted by SQLSTATE Class

and Subclass C-31
C-6 Include Files for SQLSTATE C-37
D-1 Fields in the SQLDA e D-9
D-2 Codes for SQLTYPE Field of SQLDA and SQLDA2 D-13
D-3 Fields in the SQLDA2 D-20
D-4 Codes for Interval Qualifiers in the SQLDA2. D-26
D-5 Codes for Date-Time Data Types in the SQLDA2. D-26
D-6 Values for the SQLCHAR_SET NAME Field D-27
E-1 Summary of SQL Logical Names E-1
E-2 Valid Equivalence Names for RDB$CHARACTER_SET Logical

Name . . E-3
F-1 Deprecated Syntax for SQL e F-4
F-2 Obsolete SQL Keywords i e e F-7
G-1 Optional Oracle SQL Functions G-=2
-1 Supported Information Tables -2

viii

Send Us Your Comments

Oracle Rdb for OpenVMS

Oracle SQL Reference Manual, Release 7.3.3.0

Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

Did you find any errors?

Is the information clearly presented?

Do you need more information? If so, where?

Are the examples correct? Do you need more examples?

What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title, chapter, section, and page number (if available).
You can send comments to us in the following ways:

Electronic mail:InfoRdb_US@oracle.com
FAX — 603-897-3825 Attn: Oracle Rdb

Postal service:

Oracle Corporation

Oracle Rdb Documentation
One Oracle Drive

Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number,
and (optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle
Support Services.

Xi

Preface

This manual describes the syntax and semantics of the statements and
language elements for the SQL (structured query language) interface to the
Oracle Rdb database software.

Intended Audience

To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information

You can find information about the versions of the operating system and
optional software that are compatible with this version of Oracle Rdb in the
Oracle Rdb Installation and Configuration Guide.

For information on the compatibility of other software products with this
version of Oracle Rdb, refer to the Oracle Rdb Release Notes.

Contact your Oracle representative if you have questions about the
compatibility of other software products with this version of Oracle Rdb.
Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xii

Structure

Xiv

This manual is divided into five volumes. Volume 1 contains Chapter 1 through
Chapter 5 and an index. Volume 2 contains Chapter 6 and an index. Volume 3
contains Chapter 7 and an index. Volume 4 contains Chapter 8 and an index.
Volume 5 contains the appendixes and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in
Volumes 1, 2, 3, 4, and 5 of the Oracle Rdb SQL Reference Manual:

Chapter 1

Chapter 2
Chapter 3

Chapter 4
Chapter 5

Chapter 6
Chapter 7
Chapter 8

Appendix A

Appendix B
Appendix C

Appendix D

Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the ANSI standard, how to read syntax
diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Describes the language and syntax elements common to
many SQL statements.

Describes the syntax for the SQL module language and the
SQL module processor command line.

Describes the syntax of the SQL precompiler command line.
Describes SQL routines.

Describe in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Describes the different types of errors encountered in SQL
and where they are documented.

Describes the SQL standards to which Oracle Rdb conforms.

Describes the SQL Communications Area, the message
vector, and the SQLSTATE error handling mechanism.

Describes the SQL Descriptor Areas and how they are used
in dynamic SQL programs.

Appendix E Summarizes the logical names that SQL recognizes for
special purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.
Appendix G Summarizes the SQL functions that have been added to

the Oracle Rdb SQL interface for compatibility with Oracle
Database SQL. This appendix also describes the SQL syntax
for performing an outer join between tables.

Appendix H Describes the Oracle Rdb system tables.

Appendix | Describes information tables that can be used with Oracle
Rdb.

Index Index for each volume.

Related Manuals

For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

e Oracle Rdb Guide to Database Design and Definition

e Oracle Rdb7 Guide to Database Performance and Tuning
e Oracle Rdb Introduction to SQL

e Oracle Rdb Guide to SQL Programming

Conventions

In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted.

The following conventions are also used in this manual:

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

XV

e f t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface Boldface type in text indicates a new term.

text

<> Angle brackets enclose user-supplied names in syntax diagrams.

[1 Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the command language prompt. This symbol

indicates that the command language interpreter is ready for input.

References to Products

XVi

The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

= In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS. Version 7.3
of Oracle Rdb software is often referred to as V7.3.

e Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

e QOracle ODBC Driver for Rdb software is referred to as the ODBC driver.

e OpenVMS 164 refers to HP OpenVMS Industry Standard 64 for Integrity
Servers.

e OpenVMS means the OpenVMS 164 and OpenVMS Alpha operating
systems.

A

Error Messages

This appendix describes:

The types and format of error messages you can encounter when using
SQL

How to find and use the documentation for error messages

A.1 Types of Error Messages and Their Format

You can receive messages not only from SQL, but also from underlying
software.

Messages you encounter while using SQL come from the following levels:

The SQL interface itself. Messages generated by SQL are preceded by a
facility code of SQL. For example:

%SQL-E-CURALROPE, Cursor K was already open

In programs, you can use the message vector structure in the SQL_
SIGNAL, SQL_GET_ERROR_TEXT, SQL_GET_MESSAGE_VECTOR, and
SQL$GET_ERROR_TEXT routines, described in Section C.2, to signal
errors and return the corresponding message text.

Common Operating System Interface (COSI) facility error messages. For
example:

%COSI-F-NOQUAL, qualifiers not allowed - supply only verb and parameters

The underlying database product. The facility code for messages generated
by the underlying database depends on the database product with which
you are using SQL.

Oracle Rdb messages are preceded by a facility code of RDMS. For example:
$RDMS-F-INVDB_NAME, invalid database name

Refer to the appropriate documentation for other products.

Error Messages A-1

The repository. Messages generated by the repository are preceded by a
facility code of CDD. For example:

%$CDD-E-ERRSHOW, error displaying object

Whatever the source of an error message, the format is the same. All error
messages contain the following elements:

The facility name preceded by a percent sign (%) or a hyphen (-)

The severity code followed by a hyphen (-)
Table A-1 lists the severity codes in order of increasing severity.

The diagnostic error message name followed by a comma ()

This name identifies the message. In the documentation for error
messages, the messages are alphabetized within each facility by diagnostic
error message name.

The diagnostic error message text

The text is a brief description of the problem. Error messages may
contain string substitutions that are specific to a user’s error. In the
documentation for error messages, these string substitutions are delimited
by angle brackets (< >) within a message. For example:

%$SQL-F-CURNOTOPE, Cursor <str> 1s not opened

If you receive this message, SQL substitutes the actual string (in this case,
a cursor name) for <str>.

You can suppress the display of any or all elements of an error message with
the SET MESSAGE command in DCL.

Table A-1 Explanation of Error Message Severity Codes

Code Severity Explanation
S Success Indicates that your command executed successfully.
| Information Reports on actions taken by the software.

A-2 Error Messages

(continued on next page)

Table A-1 (Cont.) Explanation of Error Message Severity Codes

Code Severity Explanation

W Warning Indicates error conditions for which you may not need to
take corrective action.

E Error Indicates conditions that are not fatal, but that must be
handled or corrected.

F Fatal Indicates conditions that are fatal and must be handled or
corrected.

A.2 Error Message Documentation

Because error messages are updated frequently, documentation is provided in
the following text files:

SQL messages:
In SYS$HELP:SQLSMSGnn.DOC
where nn is the current version number for Oracle Rdb.

This file contains the same text as the Help Errors help topic in interactive
SQL.

RDB messages:
In SYS$HELP:RDB_MSGnn.DOC
where nn is the current version number for Oracle Rdb.

RDMS messages:

In SYS$HELP:RDMS_MSG.DOC
COSI messages:

In SYS$HELP:COSI_MSG.DOC
SQL/Services messages:

In SYS$HELP:SQLSRV$MSG.DOC
Repository messages:

In SYS$HELP:CDD_MSG.DOC

The message documentation for all the facilities follows the same format, with
messages alphabetized by message name. After the message name and text,
the documentation includes an explanation and suggested user action.

Error Messages A-3

The online message documentation files may be updated even if you do
not install a new version of SQL. In particular, any installation of Oracle
Rdb databases may replace the RDB_MSG.DOC file with one that is more
up-to-date.

You can print the online message documentation files for reference. In
addition, you can search the files for the message information you need.

A.3 Errors Generated When You Use SQL Statements

When you write application programs that use SQL, you must use one of the
following methods to return the error messages:

e The SQLCODE parameter, which stores a value that represents the
execution status of SQL statements.

e The SQLSTATE status parameter, a string of five characters, provides error
handling that complies with the ANSI/ISO SQL standard. See Appendix C
for more information on the SQLSTATE status parameter.

e The longword array RDB$MESSAGE_VECTOR, which stores information
about the execution status of SQL statements.

= The calls sqgl_signal, sql_get_error_text, and SQL$GET_ERROR_TEXT,
which use error information returned through the RDBSMESSAGE_
VECTOR array.

= The call sql_get _message_vector, which retrieves information from the
message vector about the status of the last SQL statement.

= The SQL statement WHENEVER, which provides error handling for all
SQL statements that follow the WHENEVER statement. (However, you
cannot use this statement in programs that call procedures in an SQL
module.)

For more information about handling errors using SQL options, see the Oracle
Rdb Guide to SQL Programming.

Table A-2 lists SQL statements and errors they commonly generate at run
time. This is not an exhaustive list. The second column lists the error
message status code and the third column lists the corresponding value of the
SQLCODE field in the SQLCA. See Appendix C for more information about
SQLCODE values.

A-4 Error Messages

Table A-2 SQL Errors Generated at Run Time

SQL Statement Error Status Code? SQLCODE Value
ALTER DOMAIN SQL$ BAD LENGTH -1029
SQL$_BAD_SCALE -1030
SQL$ NO_SUCH_FIELD -1027
ALTER TABLE RDB$ DEADLOCK -913
RDB$_INTEG_FAIL -1001
RDB$_LOCK_CONFLICT -1003
RDB$ NO_PRIV -1028
RDB$ READ_ONLY_REL -1031
RDB$_READ_ONLY_TRANS -817
RDB$_READ_ONLY_VIEW -1031
RDB$ REQ NO_TRANS Not available?
SQL$ BAD_LENGTH -1029
SQL$_BAD_SCALE -1030
SQL$ COLEXISTS -1023
SQL$ FLDNOTDEF 1024
SQL$ FLDNOTINREL -1024
SQL$ NO_SUCH_FIELD -1027
ATTACH RDB$ REQ WRONG_DB -1020
CLOSE SQL$ CURNOTOPE -501
COMMIT RDB$ DEADLOCK -913
RDB$_INTEG_FAIL -1001
RDB$_LOCK_CONFLICT -1003
SQL$ NO_TXNOUT -1005
CREATE DOMAIN SQLS$_FIELD_EXISTS -1026
CREATE VIEW RDB$_DEADLOCK -913
RDB$_LOCK_CONFLICT -1003
SQL$ NO_SUCH_FIELD -1027

INo specific numeric value. Check the SQLCODE for negative values.

2.1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_

signal or sql_get_error_text to return a meaningful error.

(continued on next page)

Error Messages A-5

Table A-2 (Cont.) SQL Errors Generated at Run Time

SQL Statement

Error Status Code?

SQLCODE Value

DELETE

DELETE ... WHERE
CURRENT OF . ..

FETCH

INSERT

SQL$ REL_EXISTS

RDB$ DEADLOCK
RDB$_INTEG_FAIL
RDB$_LOCK_CONFLICT
RDB$ DEADLOCK
RDB$_INTEG_FAIL

SQL$ CURNOTOPE

SQL$ FETNOTDON

RDB$ DEADLOCK

RDB$ LOCK_CONFLICT
RDB$ STREAM_EOF
SQL$ CURNOTOPE

SQL$ NULLNOIND

RDB$ ARITH_EXCEPT
RDB$ DEADLOCK
RDB$_INTEG_FAIL

RDB$ LOCK_CONFLICT
RDB$ NO_DUP

RDB$ NO_PRIV
RDB$ NOT VALID

RDB$ OBSOLETE_METADATA
RDB$_READ_ONLY_REL
RDB$_READ_ONLY_TRANS
RDB$_READ_ONLY_VIEW
RDB$ REQ NO TRANS
RDB$ REQ WRONG_DB
RDB$ UNRES_REL

-1025
-913
-1001
-1003
-913
-1001
-501 / =507
-508
-913
-1003
100
-501
-305
-304
-913
-1001
-1003
-803
-1028
-1002
-1032
-1031
-817
-1031
Not available!
-1020
-1033

INo specific numeric value. Check the SQLCODE for negative values.

2;1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_
signal or sql_get_error_text to return a meaningful error.

A-6 Error Messages

(continued on next page)

Table A-2 (Cont.) SQL Errors Generated at Run Time

SQL Statement

Error Status Code?

SQLCODE Value

OPEN
ROLLBACK

SET TRANSACTION

singleton SELECT

UPDATE

UPDATE ... WHERE
CURRENT OF . ..

RDB$ DEADLOCK
RDB$ _LOCK_CONFLICT
SQL$ NO_TXNOUT
RDB$ DEADLOCK
RDB$_LOCK_CONFLICT
SQL$ BAD TXN_STATE
RDB$ DEADLOCK
RDB$_LOCK_CONFLICT
SQL$ NULLNOIND
SQL$ SELMORVAL
RDB$ DEADLOCK
RDB$_INTEG_FAIL
RDB$_LOCK_CONFLICT
RDB$ _NO_DUP
RDB$ NOT _VALID
RDB$ READ_ONLY_REL
RDB$ DEADLOCK
RDB$_INTEG_FAIL
RDB$_LOCK_CONFLICT
RDB$ NO_DUP
RDB$ NOT VALID

SQL$ CURNOTOPE
SQL$ FETNOTDON

-913
-1003
-1005
-913
-1003
-1004
-913
-1003
-305
-811
-913
-1001
—1003
-803
-1002
-1031
-913
-1001
-1003
—-803
-1002
=501
-508

2.1 is a general error SQLCODE value that does not correspond to any specific error. Use sql_
signal or sqgl_get_error_text to return a meaningful error.

A.4 Identifying Precompiler and Module Language Errors

The SQL precompiler and the SQL module language processor let you identify
(flag) syntax that is not ANSI/ISO SQL standard. See Chapter 3 and Chapter

4 for more information.

Error Messages A-7

Error messages for SQL precompilers and SQL module language are flagged in
the following way:

EXEC SQL SELECT SUM(DISTINCT QTY), AVG(DISTINCT QTY) /* multiple distincts*/
$SQL-I-NONSTADIS, (1) The standard only permits one DISTINCT in a select expression
INTO :intl, :int2 FROM D.SP; /* in a query */

A-8 Error Messages

B

SQL Standards

This appendix describes the SQL standards to which Oracle Rdb conforms.
B.1 ANSI/ISO/IEC SQL 1999 Standard

e The SQL interface to Oracle Rdb is referred to as SQL. This interface is
the Oracle Rdb implementation of the SQL standard commonly referred to
as the ANSI/ISO SQL standard or SQL99.

e The new SQL standard adopted in 1999 consists of the following five
parts:

— ANSI/ISO/IEC 9075-1:1999, Information technology - Database
language - SQL - Part 1: Framework (SQL/Framework)

— ANSI/ISO/IEC 9075-2:1999, Information technology - Database
language - SQL - Part 2: Foundation (SQL/Foundation)

— ANSI/ISO/IEC 9075-3:1999, Information technology - Database
language - SQL - Part 3: Call-Level Interface (SQL/CLI)

— ANSI/ISO/IEC 9075-4:1999, Information technology - Database
language - SQL - Part 4: Persistent Stored Modules (SQL/PSM)

— ANSI/ISO/IEC 9075-5:1999, Information technology - Database
language - SQL - Part 5: Host Language Bindings (SQL/Bindings)

In general, the Oracle Rdb documentation refers to this standard as
SQL:1999. SQL:1999 supersedes the SQL92 standard.

The minimal conformance level for SQL:1999 is known as Core. Core
SQL:1999 is a superset of the SQL92 Entry Level specification. Oracle Rdb
is broadly compatible with the SQL:1999 Core specification. However, a
small number of SQL:1999 Core features are not currently implemented

in Oracle Rdb or differ from the Oracle Rdb implementation. Oracle
Corporation is committed to fully supporting SQL:1999 Core functionality
in a future release, while providing upward compatibility for existing
applications.

SQL Standards B-1

Additionally, Oracle Rdb also complies to most of the ANSI/ISO/IEC 9075-
4:1999 (Persistent Stored Modules) portion of the standard.

The following functionality described by SQL:1999 CORE is not currently
available in Oracle Rdb:

e SQL99 flagger

The flagger would alert the programmer to extensions to the SQL:1999
SQL database language.

e Basic Information Schema, and Documentation Schema

A set of tables and views that describe the database definitions, similar in
content to the Rdb system tables.

e TIME and TIMESTAMP precision up to 6 fractional seconds
Oracle Rdb currently supports a maximum fractional second precision of 2.
e CREATE TYPE
The CREATE TYPE statement in the SQL:1999 CORE allows a user to
define a typed name, similar to a domain, but with strong typing rules.
e REVOKE ... { RESTRICT | CASCADE }

These variations to REVOKE requires that a check be performed during
protection updates so that privilege changes do not effect the correct
execution of existing procedures and functions.

You can obtain a copy of ANSI standards from the following address:

American National Standards Institute
11 West 42nd Street

New York, NY 10036

USA

Telephone: 212.642.4900

FAX: 212.398.0023

Or from their web site:
http://webstore.ansi.org/ansidocstore/default.asp

A subset of ANSI standards, including the SQL standard, are X3 or NCITS
standards. You can obtain these from the National Committee for Information
Technology Standards (NCITS) at:

http://www.cssinfo.com/ncitsquate.html

B-2 SQL Standards

The Core SQL:1999 features that Oracle Rdb fully supports are listed in

Table B-1.

Table B-1 Fully Supported Core SQL:1999 Features

Feature ID Feature

EO011 Numeric data types

EO021 Character data types

EO31 Identifiers

EO051 Basic query specification

E061 Basic predicates and search conditions
EO071 Basic query expressions

E081 Basic privileges

E091 Set functions

E101 Basic data manipulation

E111 Single row SELECT statement

E121 Basic cursor support

E131 Null value support (nulls in lieu of values)
E141 Basic integrity constraints

E151 Basic transaction support

E152 Basic SET TRANSACTION statement
E153 Updatable queries with subqueries
E161 SQL comments using leading double minus
E171 SQLSTATE support

E182 Module language

FO41 Basic joined table

F081 UNION and EXCEPT in views

F131 Grouped operations

F181 Multiple module support

F201 CAST function

F221 Explicit defaults

F261 CASE expression

(continued on next page)

SQL Standards B-3

Table B—1 (Cont.) Fully Supported Core SQL:1999 Features

Feature ID Feature

F311 Schema definition statement
F471 Scalar subquery values
F481 Expanded NULL predicate

Core SQL:1999 features that Oracle Rdb partially supports are listed in

Table B-2.

Table B—2 Partially Supported Core SQL:1999 Features

Feature ID Feature Partial Support
F031 Basic schema Oracle Rdb fully supports the following manipulation
subfeatures:

F031-01, Clause 11, "Schema definition and
manipulation™: Selected facilities as indicated by
the subfeatures of this Feature

F031-02, CREATE VIEW statement

F031-03, GRANT statement

F031-04, ALTER TABLE statement: ADD
COLUMN clause

F031-13, DROP TABLE statement: RESTRICT
clause

FO031-16, DROP VIEW statement: RESTRICT
clause

Oracle Rdb does not support the following subfeature:

B-4 SQL Standards

F031-19, REVOKE statement: RESTRICT clause

(continued on next page)

Table B-2 (Cont.) Partially Supported Core SQL:1999 Features

Feature ID

Feature

Partial Support

FO51

Basic date and time

Oracle Rdb fully supports the following subfeatures:

F051-01, DATE data type (including support of
DATE literal)

F051-02, TIME data type (including support of
TIME literal) with fractional seconds precision of
at least 0.

F051-03, TIMESTAMP data type (including
support of TIMESTAMP literal) with the
maximum fractional seconds precision of 2

F051-04, comparison predicate on DATE, TIME,
and TIMESTAMP data types

F051-05, explicit CAST between datetime types
and character types

F051-06, CURRENT_DATE
F051-07, LOCALTIME

F051-08, LOCALTIMESTAMP

Oracle Rdb does not support the following subfeature:

F051-03, fractional seconds precision greater than
2

(continued on next page)

SQL Standards B-5

Table B-2 (Cont.) Partially Supported Core SQL:1999 Features

Feat

ure ID Feature Partial Support

T321 Basic SQL-invoked Oracle Rdb fully supports the following subfeatures:

routines
= T321-01, user-defined functions with no
overloading

= T321-02, user-defined stored procedures with no
overloading

= T321-03, function invocation

= T321-04, CALL statement

= T321-05, RETURN statement

Oracle Rdb does not support the following subfeatures:
e T321-06, ROUTINES view

= T321-07, PARAMETERS view

The Core SQL:1999 features that Oracle Rdb does not support are listed in

Table B-3.

Table B-3 Unsupported Core SQL:1999 Features

Feature ID Feature

F021 Basic information schema; you can get this information from the Oracle Rdb
system tables

F501 Features and conformance views

F812 Basic flagging; Oracle Rdb’s SQL flagger only shows up through SQL92

S011 Distinct data types

B.2 SQL:1999
Ora

B-6 SQL Standards

Features in Rdb

cle Rdb includes the following SQL:1999 features to SQL:
AND CHAIN clause for COMMIT and ROLLBACK
LOCALTIME, LOCALTIMESTAMP, ABS functions
START TRANSACTION statement

ITERATE loop control statement

WHILE looping statement using revised SQL:1999 syntax
REPEAT looping statement
Searched CASE statement

DETERMINISTIC, and NOT DETERMINISTIC attributes

These clauses replace NOT VARIANT and VARIANT attributes,
respectively.

RETURNS NULL ON NULL INPUT and CALLED ON NULL INPUT
clauses for functions

Support for module global variables which can be accessed by all routines
in a module.

DEFAULT VALUES clause for INSERT

DEFAULT keyword for INSERT and UPDATE

Full SIGNAL statement syntax

BETWEEN SYMMETRIC predicate support

USER and ROLE support including the GRANT/REVOKE enhancements

INITIALLY IMMEDIATE and INITIALLY DEFERRED clauses for
constraints

UNIQUE predicate

TABLE query specification
This is a shorthand for SELECT * FROM

DISTINCT keyword for UNION

FOREIGN KEY reference semantics

The columns listed by the REFERENCES clause can be in a different order
to that of the matching PRIMARY KEY or UNIQUE constraint. Requires
SQL99 dialect.

ALTER MODULE, ALTER PROCEDURE and ALTER FUNCTION
statements

EXCEPT DISTINCT operator
INTERSECT DISTINCT operator

CORRESPONDING clause for UNION, EXCEPT and INTERSECT
operators

SQL Standards B-7

= VAR_POP, VAR_SAMP, STDDEV_POP, STDDEV_SAMP statistical
operators

e FILTER modifier for statistical functions

B.3 Establishing SQL:1999 Semantics

The following commands can be used to establish the SQL:1999 database
language standard semantics:

e SET DIALECT

e SET QUOTING RULES

e SET KEYWORD RULES

e SET DEFAULT DATE FORMAT
For example:

SQL> SET DIALECT 'SQL99';

In most cases, the semantics of the SQL99 dialect are the same as SQL92.
As new features are added, these may have different semantics in these two
dialects.

The following command displays the current settings for this connection:
SQL> SHOW CONNECTION <connectionname>
For example:

SQL> show connection rdbSdefault_connection
Connection: RDBSDEFAULT_CONNECTION

Default alias i1s RDB$DBHANDLE

Default catalog name is RDBSCATALOG

Default schema name is SMITHI

Dialect: SQL99

Default character unit: CHARACTERS

Keyword Rules: SQL99

View Rules: ANSI/ISO

Default DATE type: DATE ANSI

Quoting Rules: ANSI/ISO

Optimization Level: DEFAULT

Hold Cursors default: WITH HOLD PRESERVE NONE
Quiet commit mode: ON

Compound transactions mode: EXTERNAL
Default character set is DEC_MCS

National character set is DEC_MCS
Identifier character set is DEC_MCS

Literal character set is DEC_MCS

Display character set is UNSPECIFIED

B-8 SQL Standards

The session variables DIALECT, DATE_FORMAT, QUOTING_RULES, and
KEYWORD_RULES can also return the string 'SQL99'.

For example:

SQL> declare :a, :b, :c, :d char(10);
SQL> get environment (session)

cont> :a = DIALECT,

cont> :b = DATE_FORMAT,

cont> :C = QUOTING_RULES,

cont> :d = KEYWORD_RULES;

SQL> print :a, :b, :c, :d;

A B C D
SQLI99 SQLI99 SQLI99 SQLI99

SQL Standards B-9

C

The SQL Communications Area (SQLCA) and

the Message Vector

The SQLCA and message vector are two separate host structures that SQL
declares when it precompiles an INCLUDE SQLCA statement.

Both the SQLCA and the message vector provide ways of handling errors:

The SQLCA is a collection of parameters that SQL uses to provide
information about the execution of SQL statements to application
programs. The SQLCODE parameter in the SQLCA shows if a statement
was successful and, for some errors, the particular error when a statement
is not successful.

To illustrate how the SQLCA works in applications, interactive SQL
displays its contents when you issue the SHOW SQLCA statement.

The message vector is also a collection of parameters that SQL updates
after it executes a statement. It lets programs check if a statement was
successful, but provides more detail than the SQLCA about the type of
error if a statement is not successful. The message vector, for example,
provides a way to access any follow-on messages in addition to those
containing the facility code RDB or SQL.

You can use the following steps to examine the message vector:
— Assign any value to the logical name SQL$KEEP_PREP_FILES.

— Precompile any program that contains the line “EXEC SQL INCLUDE
SQLCA". (You can use the programs in the sample directory.)

— Examine the generated host language program.

SQL updates the contents of the SQLCA and the message vector after
completion of every executable SQL statement (nonexecutable statements are
the DECLARE, WHENEVER, and INCLUDE statements).

The SQL Communications Area (SQLCA) and the Message Vector C-1

You do not have to use the INCLUDE SQLCA statement in programs.
However, if you do not, you must explicitly declare the SQLCODE parameter
to receive values from SQL. SQLCODE is explicitly declared as an unscaled,
signed longword integer.

SQLCODE is a deprecated feature of the ANSI/ISO SQL standard and is
replaced by SQLSTATE. To comply with the ANSI/ISO SQL standard, you
should explicitly declare either SQLCODE or, preferably, SQLSTATE instead
of using the INCLUDE SQLCA statement. SQLCA (and the INCLUDE
SQLCA statement) is not part of the ANSI/ISO SQL standard. If you declare
SQLCODE or SQLSTATE but use the INCLUDE SQLCA statement, SQL uses
the SQLCA.

Programs that do not use the INCLUDE SQLCA statement will not have the
message vector declared by the precompiler. Such programs must explicitly
declare the message vector if they:

= Use the RDB$LU_STATUS field of the message vector in their error
checking

e Use system calls such as SYSSPUTMSG
The message vector is not part of the ANSI/ISO SQL standard.

When the SQLCA structure is explicitly declared by a program, SQL does

not update the SQLERRD fields. If you want the SQLERRD fields updated,
include the SQLCA definitions in the program using the EXEC SQL INCLUDE
SQLCA statement.

Section C.1 and Section C.2 describe the SQLCA and the message vector
in more detail. Section C.3 shows the declarations SQL makes for them in
different host language programs.

C.1 The SQLCA

The only fields of interest in the SQLCA are the SQLCODE field and the
second through sixth elements of the SQLERRD array.

Example C-1 shows the interactive SQL display for the SQLCA after the
“attempt to fetch past end of stream” error.

C-2 The SQL Communications Area (SQLCA) and the Message Vector

Example C-1 Fields in the SQLCA

SQL> SHOW SQLCA
SQLCA:
SQLCAID:
SQLCODE :
SQLERRD:

SQLWARNO :
SQLWARN3 :
SQLWARNG :
SQLSTATE:

SQLCA SQLCABC: 128

100

[0]: 0

[1]: 0

[2]1: 0

[31: 0

[41: 0

[5]: 0

0 SQLWARNTI : 0 SQLWARN? : 0
0 SQLWARN4 : 0 SQLWARNS : 0
0 SQLWARNT : 0

02000

SQLSTATE is not part of the SQLCA, although it appears in the display.

The remainder of this section describes the fields of the SQLCA.
Fields of the SQLCA

SQLCAID

An 8-character field whose value is always the character string SQLCA. The
FORTRAN SQLCA does not include this field.

SQLCABC

An integer field whose value is always the length, in bytes, of the SQLCA. The
value is always 128. The FORTRAN SQLCA does not include this field.

SQLCODE

An integer field whose value indicates the error status returned by the most
recently executed SQL statement. A positive value other than 100 indicates a
warning, a negative value indicates an error, and a zero indicates successful

execution.

Table C-1 shows the possible numeric and literal values that SQL returns to
the SQLCODE field and explains the meaning of the values.

The SQL Communications Area (SQLCA) and the Message Vector C-3

Table C-1 Values Returned to the SQLCODE Field

Numeric
Value Literal Value Meaning

Success Status Code

0 SQLCODE_SUCCESS Statement completed successfully.

Warning Status Codes

100 SQLCODE_EOS SELECT statement or cursor came to the end
of stream.

1003 SQLCODE_ELIM_NULL? Null value was eliminated in a set function.

1004 SQLCODE_TRUN_RTRV? String truncated during assignment. This

occurs only during data retrieval.

Error Status Codes

-1 SQLCODE_RDBERR Oracle Rdb returned an error. The value
of =1 is a general error SQLCODE value
returned by any error not corresponding to
the other values in this table. Use sqgl_signal
or sql_get_error_text to return a meaningful

error.

-304 SQLCODE_OUTOFRAN Value is out of range for a host variable.

-305 SQLCODE_NULLNOIND Tried to store a null value into a host
language variable with no indicator variable.

-306 SQLCODE_STR_DAT _ String data, right truncation.

TRUNC?

-307 SQLCODE_INV_DATETIME Date-time format is invalid.

-501 SQLCODE_CURNOTOPE Cursor is not open.

-502 SQLCODE_CURALROPE Cursor is already open.

-507 SQLCODE_UDCURNOPE Cursor in an UPDATE or DELETE operation
is not opened.

-508 SQLCODE_UDCURNPOS Cursor in an UPDATE or DELETE operation
is not positioned on a row.

-509 SQLCODE_UDCURDEL Cursor in an UPDATE or DELETE operation

is positioned on a deleted row.

10nly the SQL92 and SQL99 dialects return this value.

(continued on next page)

C-4 The SQL Communications Area (SQLCA) and the Message Vector

Table C-1 (Cont.) Values Returned to the SQLCODE Field

Numeric
Value Literal Value

Meaning

Error Status Codes

-803 SQLCODE_NO_DUP
-811 SQLCODE_SELMORVAL
-817 SQLCODE_ROTXN

-880 SQLCODE_SVPTINVSPEC
-881 SQLCODE_SVPTEXIST
-882 SQLCODE_SVPTNOEXIST
-913 SQLCODE_DEADLOCK

-1001 SQLCODE_INTEG_FAIL
-1002 SQLCODE_NOT_VALID

-1003 SQLCODE_LOCK_
CONFLICT

-1004 SQLCODE_BAD_TXN_
STATE

-1005 SQLCODE_NO_TXN
-1006 SQLCODE_BAD_VERSION

-1007 SQLCODE_TRIG_ERROR
-1008 SQLCODE_NOIMPTXN

-1009 SQLCODE_DISTIDERR
-1010 SQLCODE_BAD_CTX_VER

-1011 SQLCODE_BAD_CTX_
TYPE
-1012 SQLCODE_BAD_CTX_LEN

-1013 SQLCODE_BASROWDEL

Updating would cause duplication on a
unique index.

The result of a singleton select returned more
than one value.

Attempt to update from a read-only
transaction.

Savepoint is invalid.

Savepoint already exists.

Savepoint does not exist.

Request failed due to resource deadlock.
Constraint failed.

Valid-if failed.

NO WAIT request failed because resource was
locked.

Invalid transaction state—the transaction
already started.

No transaction active.

Version of the underlying system does not
support a feature that this query uses.

Trigger forced an error.

No implicit distributed transaction
outstanding.

Distributed transaction ID error.

Version field in the context structure is
defined incorrectly.

Type field in the context structure is defined
incorrectly.

Length field in the context structure is
defined incorrectly.

Row that contains the list has been deleted.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-5

Table C-1 (Cont.) Values Returned to the SQLCODE Field

Numeric

Value

Literal Value

Meaning

Error Status Codes

-1014

-1015
-1016
-1017
-1018

-1019

-1020
-1021
-1022
-1023
-1024
-1025

-1026

-1027

-1028
-1029
—1030
-1031
-1032
-1033
-1034
—-1035

SQLCODE_DIFFDEFINV

SQLCODE_STMTNOTPRE
SQLCODE_NOSUCHCONN
SQLCODE_CONNAMEXI
SQLCODE_DBENVSYNERR

SQLCODE_DBSPECSYNERR

SQLCODE_ATTACHERR
SQLCODE_NOSUCHALIAS
SQLCODE_ALIASINUSE
SQLCODE_COLEXISTS
SQLCODE_COLNOTDEF
SQLCODE_TBLEXISTS

SQLCODE_DOMEXISTS

SQLCODE_DOMNOTDEF

SQLCODE_NO_PRIV
SQLCODE_BAD_LENGTH
SQLCODE_BAD_SCALE
SQLCODE_RO_TABLE
SQLCODE_OBSMETADATA
SQLCODE_UNRES_REL
SQLCODE_CASENOTFND
SQLCODE_CHKOPT _VIOL

Invoker of the module is not the same as the
definer (the user who compiled the module).

Dynamic statement is not prepared.
Connection does not exist.
Connection name already exists.

Database environment specification contains
a syntax error.

Database specification contains a syntax
error.

Error attaching to the database.
Alias is not known.

Alias is already declared.

Column already exists in the table.
Column not defined in the table.

Table already exists in the database or
schema.

Domain already exists in the database or
schema.

Domain is not defined in the database or
schema.

No privilege for attempted operation.
Negative length specified for a column.
Negative scale specified for a column.
Attempt to update a read-only table.
Metadata no longer exists.

Table is not reserved in the transaction.
Case not found; WHEN not specified.
Integer failure with check option.

(continued on next page)

C-6 The SQL Communications Area (SQLCA) and the Message Vector

Table C-1 (Cont.) Values Returned to the SQLCODE Field

Numeric

Value

Literal Value

Meaning

Error Status Codes

-1036

-1037

-1038

-1039
-1040
-1041
—1045
-1046

—1047
-1048
-1049

-20111

SQLCODE_UNTERM C_
STR

SQLCODE_INDIC_
OVFLOW

SQLCODE_INV_PARAM _
VAL

SQLCODE_NULL_ELIMIN
SQLCODE_INV_ESC_SEQ
SQLCODE_RELNOTDEF
SQLCODE_INV_INTERVAL
SQLCODE_INV_FRACSEC

SQLCODE_INV_INTLEAD
SQLCODE_INC_CSET

SQLCODE_DATA CVT_
ERROR

SQLCODE_SVPTBADLOC

Unterminated C string.
Indicator overflow.
Invalid parameter value.

Null eliminated in the set function.

Invalid escape sequence.

Table not defined in the database or schema.
Invalid interval format.

Time, Timestamp or interval has too many
fractional digits.

Interval leading field is too large.
Incompatible character set.
Data conversion error.

Cannot use SAVEPOINT from function or
trigger.

Programs can use the literal values to check for success, the end of record
stream warnings, or specific errors. Your program can check for particular
error codes and execute different sets of error-handling statements depending
upon the error code returned. However, because the values in Table C-1 do not
reflect all the possible errors or warnings, your program should check for any
negative value.

SQL inserts the RDB message vector (see Section C.2) along with the SQLCA
structure when it executes an SQL statement.

Also, string truncation conditions are only reported when the dialect is set to
SQL92 or SQL99 prior to a database attach in interactive SQL or when your

application is compiled. For example:

The SQL Communications Area (SQLCA) and the Message Vector C-7

SQL> SET DIALECT ’SQL99’;

SQL> ATTACH 'FILENAME mf_personnel’;

SQL> DECLARE :1n CHAR(10);

SQL> SELECT last_name INTO :1n FROM employees WHERE employee_id = '00164';
$RDB-I-TRUN_RTRV, string truncated during assignment to a variable or parameter
SQL> SHOW SQLCA

SQLCA:
SQLCAID: SQLCA SQLCABC: 128
SQLCODE: 1004
SQLERRD: [0]: 0
[1]: 0
[2]1: 1
[3]: 0
[4]1: 0
[5]: 0
SQLWARNO : 0 SQLWARNLI : 0 SQLWARN?Z : 0
SQLWARNS : 0 SQLWARN4 : 0 SQLWARNS : 0
SQLWARNG : 0 SQLWARNT7 : 0
SQLSTATE: 01004

$RDB-I-TRUN_RTRV, string truncated during assignment to a variable or parameter

For each language, SQL provides a file that contains the declarations of all the
error literals shown in Table C-1. You can include this file in precompiled SQL
and module language programs.

Table C-2 shows how to include this file in your program.

Table C-2 Including the Error Literals File in Programs

Precompiled or Module
Language Declaration

Ada with SQL_SQLCODE;
with SQL_SQLDA;
with SQL_SQLDA2; *

BASIC %INCLUDE "sys$library:sql_literals.bas"

C #include "sys$library:sqgl_literals.h"

COBOL COPY 'SYS$LIBRARY:SQL_LITERALS
FORTRAN INCLUDE 'SYS$LIBRARY:SQL_LITERALS.FOR’
Pascal %include 'sys$library:sql_literals.pas’

PL/I %INCLUDE ’sys$library:sql_literals.pli’;

1You must compile the Ada package, SYSSLIBRARY:SQL_LITERALS.ADA, before you use it in a
program. Only declare SQL_SQLDA and SQL_SQLDAZ2 when you use dynamic SQL.

In addition to the error literals, the file contains declarations for the SQLTYPE
field in the SQLDA. See Appendix D for information about the SQLTYPE field.

C-8 The SQL Communications Area (SQLCA) and the Message Vector

Example C-2 shows how to include the error literals file in a COBOL program.

The SQL Communications Area (SQLCA) and the Message Vector C-9

Example C-2 Including Error Literals in a COBOL Program

IDENTIFICATION DIVISION.

PROGRAM-ID. LITERAL-TESTS.

*

* This program tests the use of symbolic literals for SQLCODE and

* SQLDA_DATATYPE. All the literal definitions are part of a file that
* ig used with the COPY command.

*

DATA DIVISION.

WORKING-STORAGE SECTION.

COPY SQL_LITERALS.

EXEC SQL INCLUDE SQLCA END-EXEC.

01 CDE PIC X(5).

01 DISP_SQLCODE PIC S9(9) DISPLAY SIGN LEADING SEPARATE.
01 GETERRVARS.

02 error-buffer-len PIC S9(9) COMP VALUE 132.
02 error-msg-len PIC S9(9) COMP.
02 error-buffer PIC X(132).

exec sgl whenever sqlerror continue end-exec.

PROCEDURE DIVISION.
*

* test for sglcode -501 SQLCODE_CURNOTOPE
*
exec sqgl declare A cursor for
select college_code from colleges
where college_name like 'D%’ order by 1
end-exec.
exec sqgl fetch A into :CDE end-exec.
if sglcode = SQLCODE_CURNOTOPE
then
MOVE sglcode to DISP_SQLCODE
DISPLAY "SQLCODE after attempt to fetch is ", DISP_SQLCODE
CALL "sqgl_get_error_text" USING BY REFERENCE error-buffer,
BY VALUE error-buffer-len,
BY REFERENCE error-msg-len.
DISPLAY BUFFER(1:error-msg-len)
end-if.
exec sqgl close A end-exec.

(continued on next page)

C-10 The SQL Communications Area (SQLCA) and the Message Vector

Example C-2 (Cont.) Including Error Literals in a COBOL Program
* test for SQLCODE 0 SQLCODE_SUCCESS
*
exec sql
insert into employees (employee_id, last_name, sex)
values (’00999',’Jones’,'M’")
end-exec.
if sglcode = SQLCODE_SUCCESS
then
MOVE sqglcode to DISP_SQLCODE
DISPLAY "SQLCODE after insert is ", DISP_SQLCODE
CALL "sqgl_get_error_text" USING BY REFERENCE error-buffer,
BY VALUE error-buffer-len,
BY REFERENCE error-msg-len.
DISPLAY BUFFER(1l:error-msg-len)
end-if.
EXEC SQL ROLLBACK END-EXEC.
STOP RUN.

SQLERRM
The SQLERRM is a structure containing two fields: a word field called
SQLERRML and a 70-character field called SQLERRMC.

SQLERRDIXx]

The SQLERRD is an array of 6 integer values. When displayed by the SHOW
SQLCA statement, these elements are numbered 0 through 5 and this same
convention is followed in this section. The contents of this array is dependent
on the successful execution of a SQL statement. These statements and

its affect on the SQLERRD are described in Table C-3. The values in the
SQLERRD are undefined for all other statements and after an error.

The SQLCA field SQLERRDIO0] is updated with the statement type by the
PREPARE and EXECUTE IMMEDIATE statements for all dialects. Numeric
codes which describe the statement type are listed in the table Table C—4.

The SQL Communications Area (SQLCA) and the Message Vector C-11

Table C-3 SQLERRD array setting by statement

SQL Statement

Description

DELETE

DESCRIBE

FETCH (list cursor)

FETCH (table cursor)

INSERT

OPEN (list cursor)

OPEN (table cursor)

The DELETE statement updates the third element
(SQLERRDI2]) with the number of rows deleted by the
statement.

The DESCRIBE statement updates the second element
(SQLERRDI1]) with the following values:

0: the statement is any SQL statement except a
SELECT statement or CALL statement.

1: the statement is a SELECT statement.

2: the statement is a CALL statement.

The FETCH statement updates the second element
(SQLERRDI1]) with the segment size in octets. The third
element (SQLERRD[2]) with the number of the segment on
which the cursor is currently positioned.

If you fetch a list element that is longer than the target you
specify, the fetched element will be truncated and the sixth
element (SQLERRD[5]) of the SQLERRD array will be set
to the length of the untruncated segment. If no truncation
occurs, the sixth element is set to zero.

The FETCH statement updates the third element
(SQLERRDI2]) with the number of the row on which the
cursor is currently positioned.

The INSERT statement updates the third element
(SQLERRDI2]) with the number of rows stored by the
statement.

The OPEN statement for a list cursor updates the second
element (SQLERRDI[1]) with the length of the longest
actual segment for this column value. The fourth element
(SQLERRDI3]) with number of segments for this column
value. The fifth and sixth elements (SQLERRD[4,5]) are
treated as a single BIGINT (quadword) containing the total
octets in all segments for this column value.

The OPEN statement for a table cursor updates the third
element (SQLERRD]I2]) with the estimated result table
cardinality. The fourth element (SQLERRDI3]) with the
estimated 1/0 operations.

(continued on next page)

C-12 The SQL Communications Area (SQLCA) and the Message Vector

Table C-3 (Cont.) SQLERRD array setting by statement
SQL Statement Description

PREPARE The PREPARE statement updates the first element
(SQLERRDIO0]) with the statement type. The numeric
codes, along with the corresponding symbolic names and
SQL statements are listed in Table C—4. The third® element
(SQLERRDI[2]) will be the count of output parameters, and
the fourth® element (SQLERRDI3]) will be the count of
input parameters. The values may be zero if there are no
output or input parameters in the statement, and CALL
parameters of INOUT mode will appear in both the input
and output count.

REPLACE The REPLACE statement updates the third element
(SQLERRDI2]) with the number of rows stored by the
statement.

UPDATE The UPDATE statement updates the third element
(SQLERRD]J2]) with the number of rows modified by the
statement.

SELECT The SELECT statement updates the third element
(SQLERRDI2]) with the number of rows in the result table
formed by the SELECT statement. Note: The SQLERRD[2]
field is not updated for dynamic SELECT statements.

1 The SQLCA was not updated by PREPARE prior to Rdb Release 7.1.3 so Oracle recommends
that the SQLERRD[2] and SQLERRD[3] values be set to a known value that can never normally
be seen (such as -1) prior to the PREPARE call. If after the PREPARE these values remain -1 then
the application must estimate the counts by examining the SQLDA.

SQLWARNXx
A series of 1-character fields, numbered from 0 through 7.

If the statement being prepared is a SELECT statement containing an INTO
clause, then the SQLCA field SQLWARNG®G will contain the character "I". Such
Singleton SELECT statements can be executed without using an cursor.

If the statement being prepared is a compound statement (BEGIN ... END),
then the SQLCA field SQLWARNG will contain the character "B".

If the statement being dynamically executed was a compound statement,

or a CALL statement then it is possible that a COMMIT or ROLLBACK

was executed as part of the procedure body. In such cases, the SQLCA field
SQLWARNSG will contain the character "Y". Further if a transaction was
activated prior to the statement, then SQLWARN?7 will contain the character
"Y". This will indicate that any cursors not declared as being preserved across

The SQL Communications Area (SQLCA) and the Message Vector C-13

COMMIT or ROLLBACK using the ON HOLD clause or statement will have
been closed.

The following simple program shows the effect of the PREPARE statement on
SQLCA. This program prepares a compound statement which requires both
input and output parameters.

Example C-3 Values in SQLCA after PREPARE Statement

#include <stdio.h>
#include <sgl_rdb_headers.h>

exec sql
declare alias filename 'db$:mf_personnel’;
exec sql
include SQLCA;
char * sl = "begin insert into work_status values (2, ?, ?);\
select count(*) into ? from work_status; end";
void main ()
{
int 1;
SQLCA.SQLERRD[2] = SQLCA.SQLERRD[3] = -1;
exec sqgl

prepare stmt from :sl;
if (SQLCA.SQLCODE != 0) sqgl_signal ();

printf("SQLCA:\n SQLCODE: %9d\n", SQLCA.SQLCODE) ;
for (1 = 0; 1 < 6; 1++)

printf(" SQLERRD[%d]: %9d\n", i, SQLCA.SQLERRD[i]);
printf(" SQLWARNO: %s\n", SQLCA.SQLWARN.SQLWARNO)
printf(" SQLWARN1: %s\n", SQLCA.SQLWARN.SQLWARN1

();
(" SOLWARN2: %s\n", SQLCA.SQLWARN.SQLWARN2) ;
printf(" SQLWARN3: %s\n", SQLCA.SQLWARN.SQLWARN3) ;
()i
()
()i

printf(" SQLWARN4: %s\n", SQLCA.SQLWARN.SQLWARN4
printf(" SQLWARN5: %s\n", SQLCA.SQLWARN.SQLWARNS
printf(" SQLWARN6: %s\n", SQLCA.SQLWARN.SQLWARNG

}

The results displayed by the program show that PREPARE has reported 3
input arguments (SQLERRDI[3]) and 1 output argument (SQLERRD[2]) in
the statement. The field SQLWARNG6 also indicates that this is a compound
statement.

(continued on next page)

C-14 The SQL Communications Area (SQLCA) and the Message Vector

Example C-3 (Cont.) Values in SQLCA after PREPARE Statement

SQLCA:
SOLCODE :
SOLERRD|
SOLERRD|
SOLERRD|
SOLERRD|
SOLERRD|

SOLERRD|

SOLWARNO :

SOLWARNT :

SOLWARN? :

SOLWARN?3 :

SOLWARNA :

SOLWARNS :

SOLWARN6: B

OO Wk o oo

0]
1]
21
3]:
4]
5]

Table C-4 SQLCA SQLERRDI]0] Values

Symbolic Namet Value SQL Statement
0 Statement is
unknown
SQL_K_OCTRDB_CONNECT -1 Rdb Connect
SQL_K OCTRDB_ATTACH -2 Rdb Attach
SQL_K OCTRDB_DISCONNECT -3 Rdb Disconnect
SQL_K_OCTRDB_CREATE_MODULE -4 Rdb Create
Module
SQL_K OCTRDB_ALTER_MODULE -5 Rdb Alter
Module
SQL_K_OCTRDB_DROP_MODULE -6 Rdb Drop
Module
SQL_K_OCTRDB_CREATE_DOMAIN -7 Rdb Create
Domain
SQL_K _OCTRDB_ALTER_DOMAIN -8 Rdb Alter
Domain

tThe positive values are defined for compatibility with Oracle 10g. Not all statements are
supported by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values
are Oracle Rdb specific values.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-15

Table C-4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Namet Value SQL Statement
SQL_K_OCTRDB_DROP_DOMAIN -9 Rdb Drop
Domain
SQL_K_OCTRDB_CREATE_CATALOG -10 Rdb Create
Catalog
SQL_K_OCTRDB_ALTER_CATALOG -11 Rdb Alter
Catalog
SQL_K_OCTRDB_DROP_CATALOG -12 Rdb Drop
Catalog
SQL_K_OCTRDB_ALTER_SCHEMA -13 Rdb Alter
Schema
SQL_K_OCTRDB_DROP_SCHEMA -14 Rdb Drop
Schema
SQL_K_OCTRDB_SET_SESSION -15 Rdb Set Session

Authorization

SQL_K_OCTCTB 1 create table
SQL_K_OCTINS 2 insert
SQL_K_OCTSEL 3 select

SQL_K OCTCCL 4 create cluster
SQL_K_OCTACL 5 alter cluster
SQL_K_OCTUPD 6 update
SQL_K OCTDEL 7 delete

SQL_K OCTDCL 8 drop cluster
SQL_K_OCTCIX 9 create index
SQL_K_OCTDIX 10 drop index
SQL_K_OCTAIX 11 alter index
SQL_K OCTDTB 12 drop table
SQL_K_OCTCSQ 13 create sequence
SQL_K_OCTASQ 14 alter sequence
SQL_K OCTATB 15 alter table
SQL_K_OCTDSQ 16 drop sequence

tThe positive values are defined for compatibility with Oracle 10g. Not all statements are
supported by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values
are Oracle Rdb specific values.

(continued on next page)

C-16 The SQL Communications Area (SQLCA) and the Message Vector

Table C—4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Namet Value SQL Statement
SQL_K OCTGRA 17 grant
SQL_K_OCTREV 18 revoke
SQL_K_OCTCSY 19 create synonym
SQL_K_OCTDSY 20 drop synonym
SQL_K_OCTCVW 21 create view
SQL_K_OCTDVW 22 drop view
SQL_K_OCTVIX 23 validate index
SQL_K_OCTCPR 24 create
procedure
SQL_K_OCTAPR 25 alter procedure
SQL_K _OCTLTB 26 lock table
SQL_K OCTNOP 27 no operation
SQL_K_OCTRNM 28 rename
SQL_K_OCTCMT 29 comment
SQL_K_OCTAUD 30 audit
SQL_K_OCTNOA 31 noaudit
SQL_K_OCTCED 32 create database
link
SQL K OCTDED 33 drop database
link
SQL_K OCTCDB 34 create database
SQL_K_OCTADB 35 alter database
SQL_K_OCTCRS 36 create rollback
segment
SQL_K_OCTARS 37 alter rollback
segment
SQL_K OCTDRS 38 drop rollback
segment
SQL_K_OCTCTS 39 create
tablespace

tThe positive values are defined for compatibility with Oracle 10g. Not all statements are
supported by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values
are Oracle Rdb specific values.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-17

Table C-4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Namet Value SQL Statement
SQL_K_OCTATS 40 alter tablespace
SQL_K OCTDTS 41 drop tablespace
SQL_K_OCTASE 42 alter session
SQL_K_OCTAUR 43 alter user
SQL_K_OCTCWK 44 commit
SQL_K_OCTROL 45 rollback
SQL_K_OCTSPT 46 savepoint
SQL_K_OCTPLS a7 pl/sgl execute
SQL_K OCTSET 48 set transaction
SQL_K_OCTASY 49 alter system
switch log
SQL_K _OCTXPL 50 explain
SQL_K_OCTCUS 51 create user
SQL_K_OCTCRO 52 create role
SQL_K_OCTDUS 53 drop user
SQL_K OCTDRO 54 drop role
SQL_K_OCTSER 55 set role
SQL_K_OCTCSC 56 create schema
SQL_K_ OCTCCF 57 create control
file
SQL_K_OCTATR 58 Alter tracing
SQL_K OCTCTG 59 create trigger
SQL_K_OCTATG 60 alter trigger
SQL_K_OCTDTG 61 drop trigger
SQL_K_OCTANT 62 analyze table
SQL_K_OCTANI 63 analyze index
SQL_K_OCTANC 64 analyze cluster
SQL_K_OCTCPF 65 create profile

tThe positive values are defined for compatibility with Oracle 10g. Not all statements are
supported by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values
are Oracle Rdb specific values.

(continued on next page)

C-18 The SQL Communications Area (SQLCA) and the Message Vector

Table C—4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Namet Value SQL Statement
SQL_K_OCTDPF 66 drop profile
SQL_K _OCTAPF 67 alter profile
SQL_K_OCTDPR 68 drop procedure
SQL_K_OCTARC 70 alter resource
cost
SQL_K_OCTCSL 71 create snapshot
log
SQL_K_OCTASL 72 alter snapshot
log
SQL_K OCTDSL 73 drop snhapshot
log
SQL_K_OCTCSN 74 create snapshot
SQL_K_OCTASN 75 alter snapshot
SQL_K_OCTDSN 76 drop snapshot
SQL_K_OCTCTY 7 create type
SQL_K_OCTDTY 78 drop type
SQL_K OCTARO 79 alter role
SQL_K_OCTATY 80 alter type
SQL_K_OCTCYB 81 create type
body
SQL_K_OCTAYB 82 alter type body
SQL_K _OCTDYB 83 drop type body
SQL_K OCTDLB 84 drop library
SQL_K OCTTTB 85 truncate table
SQL_K OCTTCL 86 truncate cluster
SQL_K _OCTCBM 87 create
bitmapfile
SQL_K_OCTAVW 88 alter view
SQL_K_OCTDBM 89 drop bitmapfile

tThe positive values are defined for compatibility with Oracle 10g. Not all statements are
supported by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values
are Oracle Rdb specific values.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-19

Table C-4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Namet Value SQL Statement
SQL_K_OCTSCO 920 set constraints
SQL_K OCTCFN 91 create function
SQL_K_OCTAFN 92 alter function
SQL_K_OCTDFN 93 drop function
SQL_K_OCTCPK 94 create package
SQL_K_OCTAPK 95 alter package
SQL_K_OCTDPK 96 drop package
SQL_K_OCTCPB 97 create package
body
SQL_K_OCTAPB 98 alter package
body
SQL_K_OCTDPB 99 drop package
body
SQL_K OCTCDR 157 create directory
SQL_K_OCTDDR 158 drop directory
SQL_K _OCTCLB 159 create library
SQL_K _OCTCJV 160 create java
SQL_K OCTAJV 161 alter java
SQL_K_OCTDJV 162 drop java
SQL_K_OCTCOP 163 create operator
SQL_K OCTCIT 164 create
indextype
SQL_K_OCTDIT 165 drop indextype
SQL_K_OCTAIT 166 reserver for
alter indextype
SQL_K_OCTDOP 167 drop operator
SQL_K OCTAST 168 asso_cigte
statistics
SQL_K_OCTDST 169 disassociate

statistics

tThe positive values are defined for compatibility with Oracle 10g. Not all statements are
supported by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values
are Oracle Rdb specific values.

(continued on next page)

C-20 The SQL Communications Area (SQLCA) and the Message Vector

Table C—4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Namet

Value

SQL Statement

SQL_K_OCTCAL
SQL_K_OCTCSM
SQL_K_OCTASM
SQL_K_OCTDSM
SQL_K_OCTCDM

SQL_K_OCTADM
SQL_K_OCTDDM
SQL_K_OCTCCT
SQL_K_OCTDCT
SQL_K_OCTASO
SQL_K_OCTCSO
SQL_K_OCTDSO
SQL_K_OCTAOP
SQL_K_OCTCEP

SQL_K_OCTAEP

SQL_K_OCTDEP

SQL_K_OCTCSP

SQL_K_OCTCPS

SQL_K_OCTUPS
SQL_K_OCTCPW

SQL_K_OCTUJI

170
171
172
173
174

175
176
177
178
179
180
181
183
184

185

186

187

188

189
190

191

call method
create summary
alter summary
drop summary

create
dimension

alter dimension
drop dimension
create context
drop context
alter outline
create outline
drop outline
alter operator

create
encryption
profile

alter encryption
profile

drop encryption
profile

create spfile
from pfile

create pfile
from spfile

merge

change
password
update join
index

tThe positive values are defined for compatibility with Oracle 10g. Not all statements are
supported by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values

are Oracle Rdb specific values.

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-21

Table C-4 (Cont.) SQLCA SQLERRD[0] Values

Symbolic Namet Value SQL Statement
SQL_K_OCTASYN 192 alter synonym
SQL_K_OCTADG 193 alter disk group
SQL_K_OCTCDG 194 create disk
group
SQL_K_OCTDDG 195 drop disk group
SQL_K_OCTALB 196 alter library
SQL_K _OCTPRB 197 purge user
recyclebin
SQL_K_OCTPDB 198 purge dba
recyclebin
SQL_K_OCTPTS 199 purge
tablespace
SQL_ K OCTPTB 200 purge table
SQL_K_OCTPIX 201 purge index
SQL_K_OCTUDP 202 undrop object
SQL_K _OCTDDB 203 drop database
SQL_K_OCTFBD 204 flashback
database
SQL_K _OCTFBT 205 flashback table

TThe positive values are defined for compatibility with Oracle 10g. Not all statements are
supported by Oracle Rdb therefore not all values will appear in the SQLCA. Negative values
are Oracle Rdb specific values.

C.2 The Message Vector

When SQL precompiles a program, it declares a host structure for the
message vector immediately following the SQLCA. It calls the structure
RDB$MESSAGE_VECTOR.

Programs most often use the message vector in two ways:

= By checking the message vector field RDB$LU_STATUS for the return
status value from the last SQL statement. The program can either check
the low-order bit of that field (successful if set) or use the entire field to
determine the specific return status value.

C-22 The SQL Communications Area (SQLCA) and the Message Vector

< By using the message vector in the sql_signal and sql_get_error_text
routines:

— The sqgl_signal routine uses the message vector to signal the error to
the OpenVMS condition handler.

— The sqgl_get_error_text routine puts the message text corresponding to
the return status value in the message vector into a buffer the program
specifies.

For more information about sql_signal and sql_get_error_text, see Chapter
5.

Figure C-1 summarizes the fields of the message vector.

Figure C-1 Fields of the Message Vector

RDB$MESSAGE_VECTOR

RDB$SLU_NUM_ARGUMENTS Number of arguments in the vector

RDB$LU_STATUS Number corresponding to return
status for the condition

RDB$ALU_ARGUMENTS An array containing information about FAO
arguments and follow-on messages related to
the primary message, if any

RDB$SLU_ARGUMENTS [1] Number of FAO arguments to primary message

Pointer to FAO arguments, if any

Return status for follow-on message, if any

Number of FAO arguments, for follow-on
message, if any

C.3 Declarations of the SQLCA and the Message Vector

This section shows the SQLCA and message vector declarations for the host
languages supported by the SQL precompiler and module processor.

Example C—4 shows the Ada SQLCA and message vector declaration.

The SQL Communications Area (SQLCA) and the Message Vector C-23

Example C-4 Ada SQLCA and Message Vector Declaration

Package SQL_ADA_CURSOR is
TYPE SQL_TYPE 1 IS NEW STRING(1..6);
type SQLERRM_REC is

record

SOLERRML :
SOLERRMC :

end record;

type SQLERRD_ARRAY is array (1.

type SQLCA is
record

SQLCAID :

SQOLABC :

SOLCODE :
SOLERRM :

SOLERRD

SQLWARNO
SOLWARN1
SOLWARN2
SOLWARN3
SOLWARN4

SQLWARNG

SOLWARN7

SQLEXT :
end record;

RDB_MESSAGE_VECTOR :

: s
: character :=

short_integer;
string (1..70);

string (1..8)
integer := 12

i
s

nteger;
glerrm_rec;
glerrd_arra

: character :
: character :
: character

: character :
SQLWARNS :
: character

: character :

st

character :

ring (1..8)

8;

Yi

.6

) of integer;

t= "SQLCA ";

SYSTEM.UNSIGNED_LONGWORD_ARRAY (1..20);
pragma PSECT_OBJECT (RDB_MESSAGE_VECTOR, "RDBSMESSAGE_VECTOR") ;

Example C-5 shows the BASIC SQLCA and message vector declaration.

Example C-5 BASIC SQLCA and Message Vector Declaration

RECORD SQLCA_REC
string SQLCAID =
long SQLCABC
long SQLCODE
GROUP SQLERRM

word SQLERRML

string SQLERRMC
END GROUP SQLERRM

long SQLERRD(5)
string SQLWARNO
string SQLWARNI1

8

=

70

(continued on next page)

C-24 The SQL Communications Area (SQLCA) and the Message Vector

Example C-5 (Cont.) BASIC SQLCA and Message Vector Declaration

string SQLWARN2
string SQLWARN3
string SQLWARN4
string SQLWARNS
string SQLWARNG
string SQLWARN?7
string SQLEXT =
END RECORD SQLCA_REC

[e N N

(oo 2 L T | | R B 1}

DECLARE SQLCA_REC SQLCA

RECORD RDBSMESSAGE_VECTOR_REC
long RDBSLU_NUM_ARGUMENTS
long RDBSLU_STATUS
GROUP RDBSALU_ARGUMENTS(17) ! Arrays in BASIC are always relative
long RDBSLU_ARGUMENT ! to 0. There are 18 array elements.
END GROUP RDBSALU_ARGUMENTS
END RECORD RDBSMESSAGE_VECTOR_REC

COMMON (RDBSMESSAGE_VECTOR) &
RDBSMESSAGE_VECTOR_REC RDBSMESSAGE_VECTOR

The SQL Communications Area (SQLCA) and the Message Vector C-25

Example C-6 shows the C SQLCA and message vector declaration.

Example C-6 C SQLCA and Message Vector Declaration

struct
{
char SQLCAID[8];
int SQLCABC;
int SQLCODE;
struct {
short SQLERRML;
char SQLERRMC[70];
} SQLERRM;
int SQLERRD[6];
struct {
char SQLWARNO
char SQLWARN1
char SQLWARN2
char SQLWARN3
char SQLWARN4
char SQLWARNS
char SQLWARNG6
char SQLWARN7
} SQLWARN;
char SQLEXTI[8];
} SQLCA = { {rs",'Q","L",'C", A", Y,
128, 0,
{0, "3,
{0,0,0,0,0,0},

{ " , " " " , " , nn nn , nn } ,

nn };

i

extern
struct RAbSMESSAGE_VECTOR_str
RDBSMESSAGE_VECTOR;

C-26 The SQL Communications Area (SQLCA) and the Message Vector

Example C-7 shows the COBOL SQLCA and message vector declaration.

Example C-7 COBOL SQLCA and Message Vector Declaration

01 SOLCA GLOBAL.
02 SOLCAID PIC X(8) VALUE IS "SQLCA .
02 SQLCABC PIC S9(9) COMP VALUE IS 128.
02 SQLCODE PIC S9(9) COMP.
02 SOLERRM.
03 SOLERRML PIC S9(4) COMP VALUE IS 0.
03 SOLERRMC PIC X(70).
02 SQLERRD PIC S9(9) COMP OCCURS 6 TIMES.
02 SOLWARN.
03 SQLWARNO PIC X.
03 SOLWARNL PIC X.
03 SOLWARN2 PIC X.
03 SOLWARN3 PIC X.
03 SOLWARN4 PIC X.
03 SQLWARNS PIC X.
03 SQLWARN6 PIC X.
03 SOLWARN7 PIC X.
02 SQLEXT PIC X(8).
01 RAb$MESSAGE_VECTOR EXTERNAL GLOBAL.
03 RAb$LU_NUM_ARGUMENTS PIC S9(9) COMP.
03 RAb$LU_STATUS PIC S9(9) COMP.
03 RAb$ALU_ARGUMENTS OCCURS 18 TIMES.
05 RAb$LU_ARGUMENTS PIC S9(9) COMP.

Example C-8 shows the FORTRAN SQLCA and message vector declaration.

Example C-8 FORTRAN SQLCA and Message Vector Declaration

CHARACTER*1 SQLCA (128)
INTEGER*4 SQLCOD

EQUIVALENCE (SQLCOD, SQLCA(13))
INTEGER*2 SQLTXL

EQUIVALENCE (SQLTXL, SQLCA(17))
CHARACTER*70 SQLTXT
EQUIVALENCE (SQLTXT, SQLCA(19))
INTEGER*4 SQLERR(1:6)
EQUIVALENCE (SQLERR, SQLCA(89))
CHARACTER*1 SQLWRN (0:7)
EQUIVALENCE (SQLWRN, SQLCA(113))

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-27

Example C-8 (Cont.) FORTRAN SQLCA and Message Vector Declaration

INTEGER*4 RAbSMESSAGE_VECTOR (20), RAbS$SLU_NUM_ARGUMENTS
INTEGER*4 RAbSLU_STATUS, RdAbSALU_ARGUMENTS (18)

COMMON /RAb$SMESSAGE_VECTOR/ RAb$SMESSAGE_VECTOR
EQUIVALENCE (RAb$MESSAGE_VECTOR(1),Rdb$LU_NUM_ARGUMENTS)
EQUIVALENCE (RAbSMESSAGE_VECTOR(2), RdbSLU_STATUS)
EQUIVALENCE (RAb$MESSAGE_VECTOR(3), RdAb$SALU_ARGUMENTS)

Example C-9 shows the Pascal SQLCA and message vector declaration.

Example C-9 Pascal SQLCA and Message Vector Declaration

TYPE

RDBSLU_ARGUMENTS = [HIDDEN] INTEGER;

RDBSALU_ARGUMENTS_ARRAY = [HIDDEN] ARRAY [1..18] OF RDBSLU_ARGUMENTS;
RDBSMESSAGE_VECTOR_REC = [HIDDEN] RECORD

RDB$LU_NUM_ARGUMENTS : INTEGER;
RDBS$LU_STATUS : INTEGER;
RDB$ALU_ARGUMENTS . RDB$ALU_ARGUMENTS_ARRAY;
END;
VAR

RDBSMESSAGE_VECTOR : [HIDDEN, common (rdbSmessage_vector)]
RDBSMESSAGE_VECTOR_REC;
TYPE
SQL$SQLCA_REC = [HIDDEN] RECORD
SQLCAID : PACKED ARRAY [1..8] OF CHAR;
SQLCABC : INTEGER;
SQLCODE : INTEGER;
SQLERRM : RECORD
SQLERRML : SQLSSMALLINT;
SQLERRMC : PACKED ARRAY [1..70] OF CHAR;
END;

(continued on next page)

C-28 The SQL Communications Area (SQLCA) and the Message Vector

Example C-9 (Cont.) Pascal SQLCA and Message Vector Declaration

SQLERRD : ARRAY [1..6] OF INTEGER;
SQLWARN : RECORD
SQLWARN(O : CHAR;
SQLWARN1 : CHAR;
SQLWARN2 : CHAR;
SQLWARN3 : CHAR;
SQLWARN4 : CHAR;
SQLWARNS5 : CHAR;
SQLWARN6 : CHAR;
SQLWARN7 : CHAR;
END;
SQLEXT : PACKED ARRAY [1..8] OF CHAR;
END;
VAR
RDBSDBHANDLE : [HIDDEN] INTEGER;
SQLCA : [HIDDEN] SQLS$SQLCA_REC;

Example C-10 shows the PL/I SQLCA and message vector declaration.

Example C-10 PL/I SQLCA and Message Vector Declaration

DCL 1 SQLCA STATIC ,

2 SQLCAID character(8) INITIAL(’'SQLCA "),

2 SQLCABC fixed binary(31) INITIAL(128),

2 SQLCODE fixed binary(31),

2 SQLERRM ,

3 SQLERRML fixed binary(15) INITIAL(O),

3 SQLERRMC character(70),

2 SQLERRD (1:6) fixed binary(31),

2 SQLWARN ,
SQLWARNO character (
SQLWARN1 character (
SQLWARN?2 character (
SQLWARN3 character (
SQLWARN4 character (
SQLWARNS character (
SQLWARN6 character (
SQLWARN7 character (
2 SQLEXT character (8);

1),
1),
1),
1),
1),
1),
1),
1)’

WL wwwwww

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-29

Example C-10 (Cont.) PL/I SQLCA and Message Vector Declaration

DCL 1 RAbSMESSAGE_VECTOR EXTERNAL,
2 RdbSLU_NUM_ARGUMENTS FIXED BINARY(31),
2 RAbSLU_STATUS FIXED BINARY (31),
2 RAbSALU_ARGUMENTS (18),
3 RdbSLU_ARGUMENTS FIXED BINARY (31);

C.4 Using SQLCA Include Files

Use of the SQLCA include files such as the SQL_SQLCA.H file for C, are
intended for use with the host language files only. That is, only *.C should be
included in that file. Precompiled files (*.SC files) should use the EXEC SQL
INCLUDE SQLCA embedded SQL command in the declaration section of the
module. In this way the precompiler can properly define the structure to be
used by the related SQL generated code.

Remember that the SQLCA is always scoped at the module level, unlike the
SQLCODE or SQLSTATE variables which may be routine specific.

C.5 SQLSTATE

SQL defines a set of status parameters that can be part of the parameter

list for a procedure definition in a nonstored module. They are SQLSTATE,
SQLCODE, and SQLCA. An SQL procedure is required to contain at least one
of these status parameters in its parameter list. All status parameters are
implicitly output parameters.

The purpose of these status parameters is to return the status of each SQL
statement that is executed. Each status parameter gives information that
allows you to determine whether the statement completed execution or an
exception has occurred. These status parameters differ in the amount of
diagnostic information they supply, when an exception occurs as follows:

e SQLCODE—This is the original SQL error handling mechanism. It is an
integer value. SQLCODE differentiates among errors (negative numbers),
warnings (positive numbers), successful completion (0), and a special code
of 100, which means no data. SQLCODE is a deprecated feature of the
ANSI/ISO SQL standard.

e SQLCA—This is an extension of the SQLCODE error handling mechanism.
It contains other context information that supplements the SQLCODE
value. SQLCA is not part of the ANSI/ISO SQL standard. However, many
databases such as DB2 and Oracle Database have defined proprietary
semantics and syntax to implement it.

C-30 The SQL Communications Area (SQLCA) and the Message Vector

e SQLSTATE—This is the error handling mechanism for the ANSI/ISO SQL
standard. The SQLSTATE value is a character string that is associated
with diagnostic information.

This section covers the following SQLSTATE topics:
= Definition of the SQLSTATE status parameter
e Use of the SQLSTATE status parameter

C.5.1 Definition of the SQLSTATE Status Parameter

The value returned in an SQLSTATE status parameter is a string of five
characters. It comprises a two-character class value followed by a three-
character subclass value. Each class value corresponds to an execution
condition such as success, connection exception, or data exception. Each
subclass corresponds to a subset of its execution condition. For example,
connection exceptions are differentiated by “connection name in use”,
“connection not open”, and “connection failure” categories. A subclass of
000 means there is no subcondition.

Table C-5 shows the SQLSTATE values that SQL has defined with its
corresponding execution condition. The SQLSTATE classes beginning with
either the characters R or S are Oracle Rdb-specific SQLSTATE values.

Table C-5 SQLSTATE Status Parameter Values—Sorted by SQLSTATE Class

and Subclass

Class
/Subclass

Condition

Subcondition

00000
01000
01003

01004

02000
08002

Successful completion
Warning

No data
Connection exception

No subcondition
No subcondition

Null value
eliminated in
aggregate function
String data, right
truncation

No subcondition

Connection name
in use

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-31

Table C-5 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class

/Subclass Condition Subcondition

08003 Connection does
not exist

08006 Connection failure

09000 Trigger action exception No subcondition

20000 Case not found for case statement No subcondition

21000 Singleton select returned more than one value No subcondition

22001 Data exception String data, right
truncation

22002 Null value,
no indicator
parameter

22003 Numeric value out
of range

22004 Null value not
allowed

22005 Error in assign-
ment

22006 Invalid fetch
orientation

22007 Invalid date-time
format

22008 Datetime field
overflow

22009 Invalid time
displacement value

22010 Invalid indicator
parameter value

22011 Substring error

22012 Division by zero

22015 Datetime field
overflow

(continued on next page)

C-32 The SQL Communications Area (SQLCA) and the Message Vector

Table C-5 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE

Class and Subclass

Class
/Subclass Condition Subcondition
22018 Invalid character
value for cast
22019 Invalid escape
character
22020 Invalid limit value
22021 Character not in
repertoire
22022 Indicator overflow
22023 Invalid parameter
value
22024 C string not
terminated
22025 Invalid escape
sequence
22027 Trim error
2201B Invalid regular
expression
2200F Zero length
character string
23000 Integrity constraint violation No subcondition
24000 Invalid cursor state No subcondition
25000 Invalid transaction state No subcondition
25001 Active SQL
transaction
25006 Read-only SQL
transaction
26000 Invalid SQL statement identifier No subcondition
2F000 SQL routine exception No subcondition
2F005 Function did not

execute return
statement

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-33

Table C-5 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE

Class and Subclass

Class
/Subclass

Condition

Subcondition

30000
31000
32000
33000
34000
35000
37000
38000
39000
39001

3B000
3B001

3B002

3B503

3C000
3E000
3F000
42000
44000
R1001*

Invalid SQL statement

Invalid target specification value
Invalid constraint mode state
Invalid SQL descriptor name
Invalid cursor name

Invalid condition number
Database specification syntax error
External procedure exception
External procedure call exception

Savepoint exception

Ambiguous cursor name

Invalid catalog name

Invalid schema name

Syntax error or access rule violation
With check option violation

Lock error exception

No subcondition
No subcondition
No subcondition
No subcondition
No subcondition
No subcondition
No subcondition
No subcondition
No subcondition

Invalid SQLSTATE
returned

No subcondition

Savepoint
exception, Invalid
specification

Savepoint
exception, Too
many savepoints

Savepoint
exception, Cannot
use from function
or trigger

No subcondition
No subcondition
No subcondition
No subcondition
No subcondition

Deadlock
encountered

10racle Rdb specific SQLSTATE code

C-34 The SQL Communications Area (SQLCA) and the Message Vector

(continued on next page)

Table C-5 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE

Class and Subclass

Class
/Subclass Condition Subcondition
R1002* Lock conflict
R2000* Duplicate value not allowed in index No subcondition
R3000? Trigger forced an ERROR statement No subcondition
R4000* Distributed transaction identification error No subcondition
R5000! Attempted to update a read-only table No subcondition
R6000! Metadata no longer available No subcondition
R7000! Table in request not reserved in transaction No subcondition
RR000! Oracle Rdb returned an error No subcondition
S0000* No implicit transaction No subcondition
S1001! Context exception Bad version in
context structure
S1002* Bad type in context
structure
S1003* Bad length in
context structure
S2000! Row containing list deleted No subcondition
S3000! Invoker was not the definer No subcondition
S4001* Alias exception Alias unknown
S4002* Alias already
declared
S7000* Base system does not support feature being No subcondition
used
S6000° Case not found; WHEN or ELSE not specified No subcondition
S7000! Bad SQL version No subcondition
S5001* Negative length and scale for column Negative length

specified for
column

10Oracle Rdb specific SQLSTATE code
20bsolete. Use SQLSTATE 09000 instead
3Obsolete. Use SQLSTATE 20000 instead

(continued on next page)

The SQL Communications Area (SQLCA) and the Message Vector C-35

Table C-5 (Cont.) SQLSTATE Status Parameter Values—Sorted by SQLSTATE
Class and Subclass

Class

/Subclass Condition Subcondition

S5002* Negative scale
specified for
column

10Oracle Rdb specific SQLSTATE code

C.5.2 Use of the SQLSTATE Status Parameter

Table C-5 shows the SQLSTATE classes 00, 01, and 02 as completion
conditions of success, warning, and no data respectively. All other classes
define exception conditions.

When using embedded SQL, the embedded exception declaration defines the
following categories of exceptions:

= NOT FOUND: SQLSTATE class = 02

e SQLWARNING: SQLSTATE class = 01

e SQLEXCEPTION: SQLSTATE class > 02

= SQLERROR: SQLEXCEPTION or SQLWARNING

Example C-11 shows how to declare SQLSTATE as a parameter in a C
program and how to evaluate the SQLSTATE value using the string compare
function. When you declare SQLSTATE in a C program, you must type
SQLSTATE in all uppercase characters.

C-36 The SQL Communications Area (SQLCA) and the Message Vector

Example C-11 Declaring SQLSTATE in a C Program

char SQLSTATE[6];
long SQLCODE;

main()
{
EXEC SQL SELECT T _INT INTO :cl FROM FOUR_TYPES
WHERE T DECIMAL = 4.1;
printf ("SQLCODE should be < 0; its value is %$1d\n", SQLCODE);
printf ("SQLSTATE should be '22002’; its value is %s\n", SQLSTATE);
if (SQLCODE >= 0 || strncmp (SQLSTATE, "22002", 5) != 0)
flag = 0;
}

You can use the GET DIAGNOSTICS statement to return the SQLSTATE
information to your program. For more information, see the GET
DIAGNOSTICS Statement.

Note that Oracle Rdb provides a set of include file for the value of SQLSTATE.
These file are located in SYS$LIBRARY with the following names:

Table C—6 Include Files for SQLSTATE

File Name Description
SQLSTATE.BAS BASIC include file
SQLSTATE.FOR Fortran include file
SQLSTATE.H C or C++ header file
SQLSTATE.LIB COBOL include file
SQLSTATE.PAS Pascal include file
SQLSTATE.SQL SQL declare file

In addition a special script (SQLSTATE_TABLE.SQL) is provided to create a
table (SQLSTATE_TABLE) in a database and populate it with the values and
symbolic names.

Oracle Corporation will periodically add to these definition files as new
SQLSTATE values are used by Oracle Rdb, or as required by the ANSI and
ISO SQL database standard.

The SQL Communications Area (SQLCA) and the Message Vector C-37

D

The SQL Dynamic Descriptor Areas (SQLDA
and SQLDAZ2)

An SQL Descriptor Area (SQLDA) is a collection of parameters used only in
dynamic SQL programs. SQL provides two descriptor areas: SQLDA and
SQLDAZ2. Sections D.6 through D.6.2 include information specific to the
SQLDA2.

Dynamic SQL lets programs accept or generate SQL statements at run time,
in contrast to SQL statements that are part of the source code for precompiled
programs or SQL module language procedures. Unlike precompiled SQL or
SQL module language statements, such dynamically executed SQL statements
are not necessarily part of a program'’s source code, but can be generated while
the program is running. Dynamic SQL is useful when you cannot predict the
type of SQL statement your program will need to process.

To use an SQLDA, host languages must support pointer variables that provide
indirect access to storage by storing the address of data instead of directly
storing data in the variable. The languages supported by the SQL precompiler
that also support pointer variables are PL/I, C, BASIC, and Ada. Any other
language that supports pointer variables can use an SQLDA, but must call
SQL module procedures containing SQL statements instead of embedding the
SQL statements directly in source code.

D.1 Purpose of the SQLDA

The SQLDA provides information about dynamic SQL statements to the
program and information about memory allocated by the program to SQL.
Specifically, SQL and host language programs use the SQLDA for the following
purposes:

e SQL uses the SQLDA as a place to write information about parameter
markers and select list items in a prepared statement. SQL writes
information about the number and data types of input and output
parameter markers and select list items to the SQLDA when it processes
PREPARE ... SELECT LIST INTO statements or DESCRIBE statements.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-1

Parameter markers are question marks (?) that denote parameters in
the statement string of a PREPARE statement. SQL replaces parameter
markers with values in parameters or dynamic memory when it executes a
dynamic SQL statement.

The DESCRIBE statement writes information about select list items

in a prepared SELECT statement to the SQLDA so the host language
program can allocate storage (parameters or dynamic memory) for them.
The storage allocated by the program then receives values in rows of
the prepared SELECT statement’s result table in subsequent FETCH
statements.

An SQLDA at any particular time can contain information about either
input or output parameter markers or select list items, but not about
both:

— SQL writes information about select list items to the SQLDA when it
executes DESCRIBE ... SELECT LIST or PREPARE ... SELECT
LIST statements.

— SQL writes information about parameter markers to the SQLDA when
it executes DESCRIBE . .. MARKERS statements. If a prepared
statement has no parameter markers, a DESCRIBE ... MARKERS
statement puts values in the SQLDA to indicate that there are no
parameter markers.

= The program uses the SQLDA as a place to read the information SQL
wrote to the SQLDA about any select list items, or input or output
parameter markers in the prepared statement:

— After either a DESCRIBE ... SELECT LIST or DESCRIBE . ..
MARKERS statement, the program reads the number and data type of
select list items or parameter markers.

The program uses that information to allocate storage (either by
declaring parameters or allocating dynamic memory) for values that
correspond to the parameter markers or select list items.

= The program uses the SQLDA as a place to write the addresses of the
storage it allocated for parameter markers and select list items.

e SQL uses the SQLDA as a place to read information about parameter
markers or select list items:

— In OPEN statements, SQL reads the addresses of a prepared SELECT
statement’s parameter markers to set up a cursor for the program to
process.

D-2 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

— In FETCH statements, SQL reads the addresses of a prepared SELECT
statement’s select list items so it can write the values of the row being
fetched to the storage allocated by the program.

— In EXECUTE statements, SQL reads the addresses of parameter
markers of any prepared statement other than a SELECT statement.

The OPEN and FETCH statements used to read information from the
SQLDA are not themselves dynamic statements used in a PREPARE
statement, nor is a DECLARE CURSOR statement that declares the cursor
named in the OPEN and FETCH statements. Although these statements
use prepared statements, they are among the SQL statements that cannot
themselves be prepared statements. See the PREPARE Statement for a list
of statements that cannot be dynamically executed.

The behavior of dynamic SQL and the SQLDA in particular can be
controlled using the SET SQLDA Statement. For instance, parameter
markers can be named variables instead of simple question marks (?).

D.2 How SQL and Programs Use the SQLDA

The specific sequence of operations that uses the SQLDA depends on whether
a program can accept dynamically generated SELECT statements only, non-
SELECT statements only, or both. The following sequence describes in general
the steps a program follows in using the SQLDA. For specific examples, see the
chapter on using dynamic SQL in the Oracle Rdb Guide to SQL Programming
and the sample programs created during installation of Oracle Rdb in the
Samples directory.

1.

The program uses the embedded SQL statement INCLUDE SQLDA to
automatically declare an SQLDA. In addition, the program must allocate
memory for the SQLDA and set the value of one of its fields, SQLN. The
value of SQLN specifies the maximum number of parameter markers or
select list items about which information can be stored in the SQLDA.

Programs can use more than one SQLDA but must explicitly declare
additional SQLDA structures with names other than SQLDA. Declaring
two SQLDAs can be useful for dynamic SQL programs that can accept both
SELECT and non-SELECT statements. One SQLDA stores information
about parameter markers and another stores information about select list
items. (An alternative to declaring multiple SQLDA structures in such
programs is to issue additional DESCRIBE ... SELECT LIST statements
after the program finishes with parameter marker information in the
SQLDA))

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-3

Declaration and allocation of SQLDASs need to be done only once. The
remaining steps repeat as many times as the program has dynamic SQL
statements to process.

2. SQL writes the number and data types of any select list items (for a
DESCRIBE ... SELECT LIST statement) or parameter markers (for a
DESCRIBE ... MARKERS statement) of a prepared statement into the
SQLDA. SQL puts the number of select list items or parameter markers in
the SQLD field of the SQLDA, and stores codes denoting their data types
in the SQLTYPE fields.

3. If the program needs to determine if a particular prepared statement
is a SELECT statement, it reads the value of the second element of the
SQLCA.SQLERRD array after a DESCRIBE ... SELECT LIST statement.
If the value is one, the prepared statement is a SELECT statement and the
program needs to allocate storage for rows generated during subsequent
FETCH statements.

4. When you use parameter markers in SQL statements, you should not make
any assumptions about the data types of the parameters. SQL may convert
the parameter to a data type that is more appropriate to a particular
operation. For example, when you use a parameter marker as one value
expression in a LIKE predicate, SQL returns a data type of VARCHAR for
that parameter even though the other value expression has a data type of
CHAR. The STARTING WITH predicate and the CONTAINING predicate
treat parameter markers in the same way. You can override the VARCHAR
data type in such predicates by explicitly setting the SQLTYPE field of the
SQLDA to CHAR.

5. The program reads information about the number, data type, and length
of any select list items (after a DESCRIBE ... SELECT LIST statement)
or parameter markers (after a DESCRIBE ... MARKERS statement) from
the SQLDA. The program then allocates storage (parameters or dynamic
memory) for each of the select list items or parameters, and writes the
addresses for that storage to the SQLDA. The program puts the addresses
into the SQLDATA fields of the SQLDA.

If SQL uses a data type for the parameter marker or select list item that
is not supported by the programming language, the program must convert
the SQLTYPE and SQLLEN fields to an appropriate data type and length.
The program changes the values of SQLTYPE and SQLLEN that SQL
returns from the DESCRIBE statement to a data type and length that both
SQL and the host language support.

6. The program supplies values that will be substituted for parameter
markers and writes those values to the storage allocated for them.

D-4 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

SQL reads information about parameter markers from the SQLDA.:

— If the prepared statement is a prepared SELECT statement, SQL reads
the addresses of any parameter markers for that prepared SELECT
statement when it executes an OPEN statement that refers to the
SQLDA.

— If the statement is any other prepared statement, SQL reads the
addresses of parameter markers for that statement when it executes an
EXECUTE statement that refers to the SQLDA.

SQL uses the addresses of parameter markers to retrieve the values in
storage (supplied by the program) and to substitute them for parameter
markers in the prepared statement.

Finally, for prepared SELECT statements only, SQL reads the addresses
of select list items when it executes a FETCH statement that refers to the
SQLDA. SQL uses the information to write the values from the row of the
result table to memory.

D.3 Declaring the SQLDA

Programs can declare the SQLDA in the following ways:

By using the INCLUDE SQLDA statement embedded in Ada, C, or

PL/I programs to be precompiled. The INCLUDE SQLDA statement
automatically inserts a declaration of an SQLDA structure, called SQLDA,
in the program when it precompiles the program.

In precompiled Ada programs, by specifying the SQLDA_ACCESS type
in the SQL definition package. Specifying SQLDA_ACCESS offers an
advantage over an embedded INCLUDE SQLDA statement because
you can use it in more than one declaration to declare multiple SQLDA
structures.

In precompiled C programs and C host language programs, you can use the
sgl_sglda.h header file. The following example shows how to include the
file in a C program:

#include <sqgl_sglda.h>

The sql_sqlda.h header file includes typedef statements for the SQLDA
structure defining the SQL_T_SQLDA (or the SQL_T_SQLDA?2) data type.
In addition, it defines the SQL_T_SQLDA_FULL (or SQL_T_SQLDA2_
FULL) data type as a superset to the definition of the SQLDA structure.
The SQL_T_SQLDA_FULL data type is identical in layout to the SQL_T_
SQLDA data type except that it contains additional unions with additional
fields that SQL uses when describing CALL statements.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-5

For additional information on declaring SQLDA structures, see the Oracle
Rdb Guide to SQL Programming.

= By explicitly declaring the SQLDA in programs written in host languages
that support pointer variables. Such host languages can then take
advantage of dynamic SQL even though the SQL precompiler does not
support them. Instead of embedding SQL statements directly in the host
language source code, languages unsupported by the precompiler must
call SQL module language procedures that contain SQL statements to use
dynamic SQL. See Chapter 3 for more information about the SQL module
language.

Programs that explicitly declare SQLDA structures (whether or not they
have precompiler support) supply a name for the SQLDA structure, which
can be SQLDA or any other valid name. Declaring two SQLDAs can be
useful for dynamic SQL programs that can accept both SELECT and
non-SELECT statements. One SQLDA stores information about parameter
markers and another stores information about select list items.

An SQLDA always includes four fields, and may sometimes include a fifth
field. The fifth field, SQLVAR, is a repeating field. For languages other than
C, it comprises five parameters that describe individual select list items

or parameter markers of a prepared statement. For C, it comprises six
parameters.

The following examples show declarations of the SQLDA for different host
languages. For PL/I, C, and Ada, the examples show the declaration SQL
inserts when it processes a program that contains the INCLUDE SQLDA
statement. For BASIC, the example shows the format a program should use
when it declares the SQLDA explicitly.

These sample declarations all use the name SQLDA as the name for the
SQLDA structure, but programs can use any valid name.

Example D-1 shows the declaration that SQL inserts when it processes a
program that contains the INCLUDE SQLDA statement.

D-6 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Example D-1 Declaration of the SQLDA in Ada

type SOLNAME_REC is
record
NAME_LEN : standard.short_integer;
NAME_STR : standard.string (1..30);
end record;

type SQLVAR_REC is
record
SQLTYPE : standard.short_integer;
SQLLEN : standard.short_integer;
SQLDATA : system.address;
SQLIND : system.address;
SQLNAME : sglname_rec;
end record;
type SQLVAR_ARRAY is array (1..255) of sqglvar_rec;

type SQLDA_RECORD;
type SQLDA_ACCESS is access SQLDA_RECORD;
type SQLDA_RECORD is
record
SQLDAID : standard.string (1..8) := ’'SQLDA "
SQLDABC : standard.integer;
SQLN : standard.short_integer;
SQLD : standard.short_integer;
SQLVAR : sglvar_array;
end record;

Example D-2 shows the format that BASIC programs should use when they
explicitly declare the SQLDA.

Example D-2 Declaration of the SQLDA in BASIC
RECORD SQLDA_REC

string SQLDAID = 8
long SQLDABC

word SQLN ! Program must explicitly
word SQLD I set SQLN equal to the number
GROUP SQLVAR(100) I of occurrences of SQLVAR

word SQLTYPE
word SQLLEN
long SQLDATA
long SQLIND

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-7

Example D-2 (Cont.) Declaration of the SQLDA in BASIC

GROUP SQLNAME
word SQLNAME
string SQLNAMEC = 30
END GROUP SQLNAME
END GROUP SQLVAR
END RECORD SQLDA_REC

DECLARE SQLDA_REC SQLDA

Example D-3 shows the declaration that SQL inserts when it processes a C
program that contains the INCLUDE SQLDA statement.

Example D-3 Declaration of the SQLDA in C

struct SQLDA_STRUCT {
char SQLDAIDI[8];
int SQLDABC;
short SQLN;
short SQLD;
struct SQLVAR_STRUCT {
short SQLTYPE;
short SQLLEN;
char *SQLDATA;
short *SQLIND;
short SQLNAME_LEN;
char SQLNAME([30];
} SQLVAR[1];
} *SQLDA;

Example D—4 shows the declaration that SQL inserts when it processes a PL/I
program that contains the INCLUDE SQLDA statement.

D-8 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Example D-4 Declaration of the SQLDA in PL/I

/~k

EXEC SQL INCLUDE SQLDA;

*/

DCL 1 SQLDA BASED (SQLDAPTR),
2 SQLDAID CHAR(8),
2 SQLDABC BIN FIXED(31),
2 SQLN BIN FIXED(15),
2 SQLD BIN FIXED(15),

2 SQLVAR (SQLSIZE REFER(SQLN)),

(
3 SQLTYPE BIN FIXED(15),
3 SQLLEN BIN FIXED(15),

3 SQLDATA PTR,
3 SQLIND PIR,

3 SQLNAME CHAR(30) VAR;

DCL SQLSIZE BIN FIXED;
DCL SQLDAPTR PTR;

D.4 Description of Fields in the SQLDA

Table D-1 describes the different fields of the SQLDA and the ways SQL uses
the fields. Remember that the SQLDA, at any particular time, can contain
information about either select list items or parameter markers, but not both.

Table D-1 Fields in the SQLDA

Field Name Meaning of the Field Set by Used by
SQLDAID Character string field whose Program SQL to determine if the structure is an SQLDA
value is always the character or an SQLDA2.
string “SQLDA".
SQLDABC The length in bytes of the SQL Not used.
SQLDA, which is a function
of SQLN (SQLDABC =16 + (44
* SQLN)).
SQLN The total number of occurrences Program SQL to determine if a program allocated enough

of the SQLVAR group field
(the value must equal or
exceed the value in SQLD, or
the DESCRIBE statement).
Generates a run-time error.

storage for the SQLDA.

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-9

Table D—1 (Cont.) Fields in the SQLDA

Field Name Meaning of the Field Set by Used by

SQLD Number of output items (if SQL Program to determine how many input or output
DESCRIBE ... OUTPUT) parameters for which to allocate storage.
or parameter markers (if
DESCRIBE ... INPUT) in
prepared statement (if none, the
value is 0).

SQLVAR A repeating group field, each No value See descriptions of subfields in the following
occurrence of which describes entries.

a select list item or parameter

marker (not used if the value of

SQLD is 0).

SQLVAR Subfields (Each Occurs Once for Each Select List ltem or Parameter Marker)

Field Name Meaning of the Field Set by Used by

SQLTYPE A subfield of SQLVAR whose SQL Program to allocate storage with the appropriate
value indicates the data type of data type for the parameter.
the select list item or parameter
marker (see Table D-2).

SQLLEN A subfield of SQLVAR whose SQL unless Program to allocate storage with the appropriate
value indicates the length in program size for the select list item or parameter marker.
bytes of the select list item or resets, except
parameter marker. DECIMAL

or H_FLOAT,

For CHAR? and CHARACTER
VARYING?, indicates the
declared length of the data
without length field overhead.

For fixed-length data types
(TINYINT, SMALLINT,
INTEGER, BIGINT, and
DECIMAL), SQLLEN is split
in half.

For TINYINT, SMALLINT,

INTEGER, and BIGINT, the low-

order byte of SQLLEN indicates
the length, and the high-order
byte indicates the scale (the
number of digits to the right of
the decimal point).

which can only
be set by user

2Includes VARCHAR, VARCHAR2, NATIONAL CHARACTER VARYING, RAW, and LONG VARCHAR

(continued on next page)

D-10 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D—1 (Cont.) Fields in the SQLDA

Field Name

SQLVAR Subfields (Each Occurs Once for Each Select List ltem or Parameter Marker)

Meaning of the Field

Set by

Used by

SQLDATA

For DECIMAL, the low-order
byte indicates the precision, and
the high-order byte indicates the
scale. However, the SQLLEN
for a DECIMAL data type

can be set only by the user;

it is not returned by SQL on a
DESCRIBE statement.

List cursors cannot return data
in data types that require a scale
factor.

For floating-point data types, the
SQLLEN shows the length of the
field in bytes so that SQLLEN =
4 indicates the REAL data type,
SQLLEN = 8 indicates DOUBLE
PRECISION, and SQLLEN

= 16 indicates the H_FLOAT
data type. The floating point
representation of the data (VAX
versus |EEE) is determined by
the /FLOAT qualifier on the
SQL$PRE command line.

A subfield of SQLVAR whose
value is the address of the
storage allocated for the select
list item or parameter marker.

For CHARACTER VARYING 2,
allocate sufficient memory to
allow the length field (that is,
SQLLEN plus two octects).

Program

In EXECUTE and OPEN statements, to
retrieve a value stored by the program and
substitute it for a parameter marker in the
prepared statement.

In FETCH statements, to store a value from
a result table.

2Includes VARCHAR, VARCHAR2, NATIONAL CHARACTER VARYING, RAW, and LONG VARCHAR

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-11

Table D—1 (Cont.) Fields in the SQLDA

SQLVAR Subfields (Each Occurs Once for Each Select List ltem or Parameter Marker)

Field Name Meaning of the Field Set by Used by

SQLIND A subfield of SQLVAR whose Program Program or SQL:
value is the address of the
indicator variable, a word (16 = In FETCH statements, by SQL, to store the
bits) in size (if program does not value for an indicator variable associated
set SQLIND, the value is 0). with a select list item.

e After FETCH statements, by the program.
to retrieve the value of a select list item'’s
associated indicator variable.

= In EXECUTE and OPEN statements, by
SQL, to retrieve the value of a parameter
marker’s associated indicator variable.

SQLNAME A varying character string SQL The program, optionally, to find out the name of
subfield of SQLVAR whose value the column associated with a select list item or
is: parameter marker.

For output items, the name
of the column in the select
list of the prepared SELECT
statement.

For input, the name of the
column to which a parameter
marker is assigned (in INSERT
or UPDATE statements) or
compared (in basic predicates).

If the select list item, assign-
ment, or comparison involves
an arithmetic expression or
predicates other than basic
predicates; SQL does not assign
a value to SQLNAME.

Table D-2 shows the numeric and literal values for the SQLTYPE subfield of
SQLVAR and the meaning of those values.

D-12 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D—2 Codes for SQLTYPE Field of SQLDA and SQLDA2

Numeric

Value Literal Value Data Type

449 SQLDA VARCHAR VARCHAR!, CHARACTER VARYING!
453 SQLDA_CHAR CHAR, CHARACTER

481 SQLDA_FLOAT FLOAT®, REAL, DOUBLE PRECISION
485 SQLDA_DECIMAL DECIMAL

497 SQLDA_INTEGER INTEGER

501 SQLDA_SMALLINT SMALLINT

503 SQLDA_DATE DATE VMS

505 SQLDA_QUADWORD BIGINT

507 SQLDA ASCIZ ASCIZ2

509 SQLDA_SEGSTRING LIST OF BYTE VARYING

515 SQLDA_TINYINT TINYINT

516 SQLDA_VARBYTE VARBYTE3#

519 SQLDA2_DATETIME Date-time (ANSI)

521 SQLDA2_INTERVAL INTERVAL

909 SQLDA2_VARBINARY BINARY VARYING (VARBINARY)

913 SQLDA2_BINARY BINARY

1For the SQLDAZ2 structure, this data type has a longword length prefix.

2The SQLTYPE code for ASCIZ is never returned in the SQLDA by a DESCRIBE statement, but it can be used to
override the data type that is returned.

3This data type value is only valid for fetches of list elements.
4This data type does not allow null values.

5The floating point representation assumed by SQL for the floating point number is determined by the /FLOAT qualifier
on the SQL$MOD or SQL$PRE command line.

SQL provides a file that contains the declarations of all the SQLTYPE literal
values. Table C-2 shows how to include this file in precompiled SQL and
module language programs.

There is some confusion over the use of ASCII and ASCIZ in dynamic SQL
and C programs. When a CHAR data type is written to the database using
INSERT or UPDATE, the string is not padded with blank spaces. It contains a
null-terminated character, which makes it difficult to access the data.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-13

SQL does not know what the host language is when using dynamic SQL; it
returns the data type of the field as in the DESCRIBE statement, (CHAR(N)),
and not the data type of the user’s host variable. The interpretation of
CHAR(Nn) being ASCIZ is for host variables and not database variables.

If you change the SQLDA's SQLTYPE from CHAR to ASCIZ and increase
SQLLEN by 1, no truncation occurs and the CHAR STRING fields will be
padded with blank spaces accordingly (where incrementing SQLLEN by 1
accounts for the null terminator).

Note

SQL sets the value of SQLTYPE during the DESCRIBE statement.
However, your application program can change the value of SQLTYPE
to that of another data type.

For example, SQL does not support the DECIMAL data type in
database columns. This means that SQL will never return the code
for the DECIMAL data type in the SQLTYPE field in the SQLDA.
However, programs can set the code to that for DECIMAL, and

SQL will convert data from databases to DECIMAL, and data from
DECIMAL parameters in the program to the data type in the database.

However, SQL assumes that program parameters will correspond to the
data type indicated by the SQLTYPE code. If they do not, SQL may
generate unpredictable results.

D.5 Parameters Associated with the SQLDA: SQLSIZE and
SQLDAPTR

In addition to the declaration of the SQLDA itself, SQL declares two related
parameters: SQLSIZE and SQLDAPTR. These parameters can only be
used in PL/I programs. The PL/I program uses both parameters when

it dynamically allocates storage for the SQLDA before a DESCRIBE or
PREPARE ... SELECT LIST INTO statement. Your program must:

e Assign a value to SQLSIZE and then assign the same value to SQLN.
Because the declaration of the SQLDA refers both to SQLSIZE and SQLN,
the program uses that value when it allocates memory for the SQLDA.

= Dynamically allocate memory for the SQLDA based on the value assigned
to SQLN, and assign the address for memory used by the SQLDA into
SQLDAPTR.

D-14 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

The following program fragment shows how a PL/I program uses SQLSIZE and
SQLDAPTR to allocate storage for the SQLDA:

#include <stdlib.h>
#define SQLVAR_ELEMENTS 20

/* Declare the SQL Descriptor Area: */
exec sql
include SQLDA;

/* Allocate memory for the SQLDA and

* get the value of its SQLN field:

*/

SQLDA = malloc (16 + 44 * SQLVAR_ELEMENTS) ;
SQLDA->SQLN = SQLVAR_ELEMENTS;

D.6 Purpose of the SQLDA2

SQL provides an extended version of the SQLDA, called the SQLDAZ2, which
supports additional fields and field sizes.

You can use either the SQLDA or SQLDA2 in any dynamic SQL statement
that calls for a descriptor area. SQL assumes default values for SQLDA2 fields
and field sizes if you use an SQLDA structure to provide input parameters for
an application; however, SQL issues an error message if the application cannot
represent resulting values.

Use the SQLDAZ2 instead of the SQLDA when any of the following applies to
the parameter markers or select list items:

= The length of the column name is greater than 30 octets. (An octet is 8
bits.)

= The data type of the column is DATE, DATE VMS, DATE ANSI, TIME,
TIMESTAMP, or any of the interval data types.

= The data type is CHAR, CHAR VARYING, CHARACTER, CHARACTER
VARYING, VARCHAR, LONG VARCHAR, or RAW and any of the following
is true:

— The character set is not the default 8-bit character set.
— The maximum length in octets exceeds 32,767.

You can examine the SQLDAZ2 after SQL fills in the items on a PREPARE
statement. Oracle Rdb recommends this rather than setting the fields yourself.

Use one of the following methods to extract the data for your own use:

= The CAST function to convert the data to TEXT before using it

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-15

e The EXTRACT function to extract individual fields so you can format it

e The CAST function to convert to DATE VMS so that you can use OpenVMS
system services

The ANSI/ISO SQL standard specifies that the data is always returned to the
application program as CHAR data.

D.6.1 Declaring the SQLDA2

Programs can declare the SQLDAZ2 in the same way as they declare an SQLDA,
described in Section D.3.

To indicate to SQL that the structure is an SQLDAZ2 instead of an SQLDA,
your program must set the SQLDAID field to be the character string containing
the word SQLDA2 followed by two spaces.

The following examples show declarations of the SQLDA2 for different host
languages. For PL/I, C, and Ada, the examples show the declaration SQL
inserts when it processes a program that contains the INCLUDE SQLDA
statement. For other languages, the examples show the format that programs
should use when they explicitly declare the SQLDA.

Example D-5 shows the declaration that SQL inserts when it processes an Ada
program that contains the INCLUDE SQLDAZ2 statement. In this example, N
stands for the maximum number of occurrences of SQLVAR2.

Example D-5 Declaration of the SQLDA2 in Ada

(continued on next page)

D-16 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Example D-5 (Cont.) Declaration of the SQLDA2 in Ada

type SQLNAME_REC is
record

NAME_LEN : standard.short_integer;

NAME_STR : standard.string (1..128);

end record;
type SQLVAR_REC is
record
SQLTYPE : standard.short_integer;
SQLLEN : standard.integer;
SQLDATA : system.address;
SQLIND : system.address;

SQLCHRONO_SCALE: standard.integer;

SQL_CHRONO_PRECISION: standard.integer;

SQLNAME : sglname_rec;

SQLCHAR_SET NAME : standard.string(l..128);

SQLCHAR_SET_SCHEMA : standard.string(l..128);

SQLCHAR_SET_CATALOG : standard.string(l..128);

end record;

type SQLVAR_ARRAY is array (1..N) of sglvar_rec;

type SQLDA_RECORD;
type SQLDA_ACCESS is access SQLDA_RECORD;
type SQLDA_RECORD is
record
SQLDAID : standard.string (1..8)
SQLDABC : standard.integer;
SQOLN : standard.short_integer;
SQLD : standard.short_integer;
SQLVAR : sglvar_array;
end record;

:= 'SQLDA2

1.

I

Example D—6 shows the format that BASIC programs should use when they

explicitly declare the SQLDAZ.

Example D-6 Declaration of the SQLDA2 in BASIC

RECORD SQLDA_REC

string SQLDAID = 8 I Value must be "SQLDA2

long SQLDABC

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-17

Example D-6 (Cont.) Declaration of the SQLDA2 in BASIC

word SQLN ! Program must explicitly
word SQLD ! set SQLN equal to the number
GROUP SQLVAR (N) ! of occurrences of SQLVAR.

word SQLTYPE
long SQLLEN
long SQLOCTET_ LEN
long SQLDATA
long SQLIND
long SQLCHRONO_SCALE
long SQLCHRONO_PRECISION
GROUP SQLNAME
word SQLNAME
string SQLNAMEC = 128
END GROUP SQLNAME
string SQLCHAR_SET NAME = 128
string SQLCHAR_SET SCHEMA = 128
string SQLCHAR_SET_CATALOG = 128
END GROUP SQLVAR
END RECORD SQLDA_REC

DECLARE SQLDA_REC SQLDA2

Example D—7 shows the declaration that SQL inserts when it processes a C
program that contains the INCLUDE SQLDA2 statement.

Example D-7 Declaration of the SQLDA2 in C

struct SQLDA_STRUCT {
char SQLDAID[8]; /*Value must be "SQLDA2 "*/
int SQLDABC; /* ignored. */

short SQLN;
short SQLD;

(continued on next page)

D-18 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Example D-7 (Cont.) Declaration of the SQLDA2 in C

struct {
short SQLTYPE;
long SQLLEN;
long SQLOCTET_LEN
char *SQLDATA;
long *SQLIND;
long SQLCHRONO_SCALE
long SQLCHRONO_PRECISION
short SQLNAME_LEN;
char SQLNAME[128];
char SQLCHAR_SET NAME[128];
char SQLCHAR_SET SCHEMA[128];
char SQLCHAR_SET CATALOG[128];
} SQLVARI[N]; /* N 1s maximum number of */
} *SQLDA; /* occurrences of SQLVAR. */

D.6.2 Description of Fields in the SQLDA2

The SQLVAR?2 field for an SQLDA2 structure comprises the following
parameters that describe individual select list items or parameter markers
of a prepared statement:

e Length (SQLLEN and SQLOCTET_LEN fields)

Note

There is a major difference between the SQLLEN fields in the SQLDA
and the SQLDA2. In the SQLDA, the SQLLEN field contains the
length of the field in bytes. In the SQLDAZ2, the SQLLEN field either
contains the length of the field in characters or is a subtype field

for certain data types (INTERVAL and LIST OF BYTE VARYING).
This is the case when you issue the DESCRIBE statement to return
information from SQL to your program.

The SQLOCTET_LEN field in the SQLDAZ2 is analogous to the
SQLLEN field in the SQLDA. Use SQLOCTET_LEN instead of
SQLLEN to allocate dynamic memory for the SQLDATA field when
using the SQLDA2.

= Data type (SQLTYPE)

= Scale and precision (SQLLEN or SQLCHRONO_SCALE and SQLCHRONO _
PRECISION)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-19

e Character set information (SQLCHAR_SET _NAME, SQLCHAR_SET _
SCHEMA, SQLCHAR_SET_CATALOG)

= Data value (SQLDATA)
= Null indicator value (SQLIND)
< Name for resulting columns of a cursor specification (SQLNAME)

Table D-3 describes the different fields of the SQLDA2 and the ways in which
SQL uses the fields when passing them to dynamic SQL. Remember that the
SQLDAZ2 at any particular time can contain information about either select list
items or parameter markers, but not both.

Table D-3 Fields in the SQLDA2

Field Name Meaning of the Field Set by Used by

SQLDAID Character string field whose value is always the Program SQL to determine if the
character string “SQLDA2 " (SQLDA2 followed structure is an SQLDA or an
by two spaces). SQLDA2.

SQLDABC The length in bytes of the SQLDA2, which is SQL Not used.

a function of SQLN (SQLDABC = 16+ (540 *
SQLN)).

SQLN The total number of occurrences of the Program SQL to determine if program
SQLVAR2 group field (the value must equal allocated enough storage for
or exceed the value in SQLD or the DESCRIBE the SQLDA.
or PREPARE OUTPUT INTO statement).

Generates a run-time error.

SQLD Number of select list items (if DESCRIBE . . . SQL Program to determine how
OUTPUT) or parameter markers (if DESCRIBE . . . many input or output
INPUT) in prepared statement (if none, the parameters for which to
value is 0). allocate storage.

SQLVAR2 A repeating group field, each occurrence of No value See descriptions of subfields
which describes a select list item or parameter in following entries.
marker (not used if the value of SQLD is 0).

SQLVAR2 Subfields (Each Occurs Once for Each Select List ltem or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLTYPE A subfield of SQLVAR2 whose value indicates SQL Program to allocate storage
the data type of the select list item or with the appropriate data
parameter marker (see Table D-2). type for the parameter.

(continued on next page)

D-20 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Table D-3 (Cont.) Fields in the SQLDA2

Field Name

Meaning of the Field

Set by

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Used by

SQLLEN

A subfield of SQLVAR2 whose value indicates
the length of the select list item or parameter
marker.

For character types, CHAR, CHARACTER
VARYING types SQLLEN indicates the declared
size, not including length overheads. See
SQLOCTET_LEN.

For fixed-length data types (TINYINT,
SMALLINT, INTEGER, BIGINT, NUMERIC,
and DECIMAL), SQLLEN is split in half.

SQLSIZE—the low-order 16 bits

e For TINYINT, SMALLINT, INTEGER,
and BIGINT; SQLSIZE and SQLOCTET_
LENGTH indicate the length in bytes of
the select list item or parameter marker.

e For DECIMAL,; SQLSIZE indicates the
precision. However, the SQLLEN for a
DECIMAL data type can only be set by
the user; it is not returned by SQL on a
DESCRIBE statement.

SQLSCALE—the high-order 16 bits

e SQLSCALE indicates the scale (the
number of digits to the right of the decimal
point).

= List cursors cannot return data in data
types that require a scale factor.

For floating-point data types, SQLLEN and
SQLOCTET_LEN are the size in octets of the
select list item or parameter marker.

SQL, unless
the program
resets,
except for
DECIMAL,
which can
only be set
by the user.

(continued on next page)

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-21

Table D-3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List ltem or Parameter Marker):

Field Name

Meaning of the Field Set by

Used by

SQLOCTET_LEN

SQLCHRONO_
SCALE

For DATE, DATE ANSI, DATE VMS, TIME,
or TIMESTAMP, SQLLEN is the length of the
date-time data type.

For INTERVAL data types, SQLLEN is set to
one of the codes specified in Table D—4.

A subfield of SQLVAR2 whose value indicates SQL, unless
the length in octets of the select list item or the program
parameter marker. resets.

If SQLTYPE indicates CHAR?, then SQLOCTET_
LEN is the maximum possible length in octets
of the character string.

If SQLTYPE? indicates CHARACTER
VARYING, SQLOCTET_LEN is the maximum
possible length in octets required to represent
the character string, including the octets
required to represent the string length (that
is, 4 additional octets.)

If SQLTYPE indicates a fixed-scale or floating-
point numeric data type, SQLOCTET_LEN is
the size in octets of the numeric select list item
or parameter marker.

If SQLTYPE indicates a date-time or interval
data type, then dynamic SQL ignores
SQLOCTET_LEN.

A longword subfield of SQLVAR2 whose value SQL, unless
indicates the specific date-time data type of the the program
column. resets.

When SQLTYPE represents a date-time data
type, SQLCHRONO_SCALE contains a code
specified in Table D-5.

When SQLTYPE represents an interval data
type, SQLCHRONO_SCALE contains the
implied or specified interval leading field
precision.

Program to allocate storage
with the appropriate size
for the select list item or
parameter marker.

Program or SQL.

Program.

lincludes CHARACTER, NCHAR, NATIONAL CHARACTER
2Includes VARCHAR, VARCHAR2, NATIONAL CHARACTER VARYING, RAW, and LONG VARCHAR

D-22 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

(continued on next page)

Table D-3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by
When SQLTYPE represents a data type that is
neither date-time nor interval, SQLCHRONO _
SCALE contains 0.
SQLCHRONO_ A longword subfield of SQLVAR2 whose SQL, unless Program.
PRECISION value indicates the precision of the column the program

SQLCHAR_SET_
NAME

SQLCHAR_SET_
SCHEMA

SQLCHAR_SET_
CATALOG

represented by SQLVAR2 when that column has
a date-time data type.

When SQLTYPE represents a TIME or
TIMESTAMP data type, SQLCHRONO_
PRECISION contains the time precision or
timestamp precision.

When SQLTYPE represents an interval data
type with a fractional seconds precision,
SQLCHRONO_PRECISION is set to that value.
Otherwise, SQLCHRONO_PRECISION is set to
0.

A 128-byte subfield of SQLVAR2 whose value
is the character set name if SQLTYPE is a
character string type, and spaces if SQLTYPE
is any other data type.

A 128-byte subfield of SQLVAR2 whose value

is the character set of the schema name if
SQLTYPE is a character string type, and spaces
if SQLTYPE is any other data type.

A 128-byte subfield of SQLVAR2 whose value

is the character set of the catalog name if
SQLTYPE is a character string type, and spaces
if SQLTYPE is any other data type.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

resets.

SQL, unless
the program
resets.

Reserved for
future use.

Reserved for
future use.

The SQLCHAR_SET_NAME
field indicates the character
set name of a select list item
or parameter marker if the
select list item or parameter
marker has a character
data type. Table D—6
shows the possible values
for the SQLCHAR_SET_
NAME field when the
SQLTYPE indicates one

of the character data types.

Reserved for future use.

Reserved for future use.

(continued on next page)

D-23

Table D-3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List ltem or Parameter Marker):

Field Name Meaning of the Field

Set by Used by

SQLDATA A subfield of SQLVAR2 whose value is the
address of the storage allocated for the
select list item or parameter marker. Use
SQLOCTET_LEN to allocate memory for this
pointer.

SQLIND A subfield of SQLVAR2 whose value is the
address of a longword indicator variable, a
longword (32 bits) in size (if the program does
not set an indicator variable, the value is 0).

D-24 The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2)

Program. SQL:

In EXECUTE and
OPEN statements,

to retrieve a value
stored by the program
and substitute it for a
parameter marker in
the prepared statement.

In FETCH statements,
to store a value from a
result table.

Program. Program or SQL:

-

In FETCH statements,
by SQL to store the
value for an indicator
variable associated with
a select list item.

After FETCH
statements, by program
to retrieve the value

of a select list item’s
associated indicator
variable.

In EXECUTE and
OPEN statements, by
SQL to retrieve the
value of a parameter
marker’s associated
indicator variable.

(continued on next page)

Table D-3 (Cont.) Fields in the SQLDA2

SQLVAR2 Subfields (Each Occurs Once for Each Select List Item or Parameter Marker):

Field Name Meaning of the Field Set by Used by

SQLNAME A varying character string subfield of SQLVAR2
whose value is:

= For select list items, the name of the
column in the select list of the prepared
SELECT statement.

= For parameter markers, the name of the
column to which a parameter marker
is assigned (in INSERT or UPDATE
statements) or compared (in basic
predicates).

If the select list item, assignment, or SQL. Program, optionally, to find

comparison involves an arithmetic expression out the name of the column

or predicates other than basic predicates, SQL associated with a select list

does not assign a value to SQLNAME. item or parameter marker.
SQLNAME_LEN A subfield of SQLVAR2 whose value is the

length in octets of the column named by

SQLNAME.

Table D—4 shows the possible values for the SQLLEN field when the SQLTYPE
indicates one of the interval data types.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-25

Table D-4 Codes for Interval Qualifiers in the SQLDA2

Code Interval Qualifier Interval Subtype

1 YEAR SQLDA2_DT_YEAR

2 MONTH SQLDA2_DT_MONTH

3 DAY SQLDA2_DT_DAY

4 HOUR SQLDA2_DT_HOUR

5 MINUTE SQLDA2_DT_MINUTE

6 SECOND SQLDA2_DT_SECOND

7 YEAR TO MONTH SQLDA2_DT_YEAR_MONTH
8 DAY TO HOUR SQLDA2_DT_DAY_HOUR

9 DAY TO MINUTE SQLDA2_DT_DAY_MINUTE
10 DAY TO SECOND SQLDA2_DT_DAY_SECOND
11 HOUR TO MINUTE SQLDA2_DT_HOUR_MINUTE
12 HOUR TO SECOND SQLDA2_DT_HOUR_SECOND

=
w

MINUTE TO SECOND SQLDA2_DT_MINUTE_SECOND

Table D-5 shows the possible values for the SQLCHRONO_SCALE field when
SQLTYPE indicates the data type DATE, DATE ANSI, DATE VMS, TIME or
TIMESTAMP.

Table D-5 Codes for Date-Time Data Types in the SQLDA2

Code Date-Time Data Type Date-Time Subtypes

1 DATE ANSI SQLDA2_DT_DATE

2 TIME SQLDA2_DT_TIME

3 TIMESTAMP SQLDA2_DT_TIMESTAMP

4 TIME WITH TIME ZONE SQLDA2_DT_TIME_TZ

5 TIMESTAMP WITH TIME ZONE SQLDA2_DT_TIMESTAMP_TZ

Table D—6 shows the possible values for the SQLCHAR_SET_NAME field when
the SQLTYPE indicates one of the character data types.

D-26 The SQL Dynamic Descriptor Areas (SQLDA and SQLDAZ2)

Table D—6 Values for the SQLCHAR_SET_NAME Field

Character Set Value Description

DEFAULT Database default character set

NATIONAL National character set

UNSPECIFIED The character set is unspecified. SQL does not

check for compatibility of data.

name-of-cset See Table 2-1 in Volume 1 for a list of supported
character set names.

The SQL Dynamic Descriptor Areas (SQLDA and SQLDA2) D-27

E

Logical Names Used by SQL

Table E-1 lists the logical names that SQL recognizes for special purposes.

Table E-1 Summary of SQL Logical Names

Logical Name

Function

RDB$CHARACTER_SET

RDB$ROUTINES

RDMS$BIND_OUTLINE_MODE

RDMS$BIND_QG_CPU_TIMEOUT
RDMS$BIND_QG_REC_LIMIT

RDMS$BIND_QG_TIMEOUT
RDMS$BIND_SEGMENTED_STRING_

BUFFER
RDMS$DEBUG_FLAGS

Specifies the database default and national character sets in addition to the
session default, identifier, literal, and national character sets. Table E-2
shows the valid equivalence names for the logical name.

The logical name is used by the EXPORT and IMPORT statements and by
the SQL precompiler and SQL module language to allow compatibility of
most recent versions with earlier versions of Oracle Rdb. This logical name
sets the attributes for the default connection.

This logical name is also deprecated and will not be supported in a future
release.

Specifies the location of an external routine image. If you do not specify

a location clause in a CREATE FUNCTION, CREATE PROCEDURE, or
CREATE MODULE statement, or if you specify the DEFAULT LOCATION
clause, SQL uses the RDB$ROUTINES logical name as the default image
location.

When multiple outlines exist for a query, this logical name is defined to
select which outline to use.

Specifies the amount of CPU time used to optimize a query for execution.

Specifies the number of rows that SQL fetches before the query governor
stops output.

Specifies the number of seconds that SQL spends compiling a query before
the query governor aborts that query.

Allows you to reduce the overhead of 1/O operations at run time when you
are manipulating a segmented string.

Allows you to examine database access strategies and the estimated cost of
those strategies when your program runs.

(continued on next page)

Logical Names Used by SQL E-1

Table E-1 (Cont.) Summary of SQL Logical Names

Logical Name

Function

RDMSS$SET_FLAGS

RDMS$DIAG_FLAGS
RDMS$RTX_SHRMEM_PAGE_CNT
RDMS$USE

OLD_CONCDRRENCY

RDMS$USE_OLD_SEGMENTED_
STRING

RDMS$VALIDATE_ROUTINE
SQL$DATABASE

SQLS$DISABLE_CONTEXT
SQLSEDIT
SQLINI

SYS$CURRENCY

SYS$DIGIT_SEP

SYS$LANGUAGE

SYS$RADIX_POINT

Allows you to examine database access strategies and the estimated cost of
those strategies when your program runs. See the SET FLAGS Statement
for a list of valid keywords that can be used with this logical name.

When defined to ’L’, prevents the opening of a scrollable list cursor when
the online format of lists is chained.

Specifies the size of the shared memory area used to manipulate server
site-bound, external routine parameter data and control data.

Allows applications to use the isolation-level behavior that was in effect for
V4.1.

When defined to YES, the default online format for lists (segmented strings)
is chained.

Controls the validation of routines.

Specifies the database that SQL declares if you do not explicitly declare a
database.

Disables the two-phase commit protocol. Useful for turning off distributed
transactions when you want to run batch-update transactions.

Specifies the editor that SQL invokes when you issue the EDIT statement in
interactive SQL. See the EDIT Statement for details.

Specifies the command file that SQL executes when you invoke interactive
SQL.

Specifies the character that SQL substitutes for the dollar sign ($) symbol
in an EDIT STRING clause of a column or domain definition, or the EDIT
USING clause of a SELECT statement.

Specifies the character that SQL substitutes for the comma symbol (,) in an
EDIT STRING clause of a column or domain definition, or the EDIT USING
clause of a SELECT statement.

Specifies the language that SQL uses for date and time input and displays,
or the EDIT USING clause of a SELECT statement.

Specifies the character that SQL substitutes for the decimal point symbol (.)
in an EDIT STRING clause of a column or domain definition, or the EDIT
USING clause of a SELECT statement.

Table E-2 shows the valid equivalence names for the logical name
RDB$CHARACTER_SET.

E-2 Logical Names Used by SQL

Table E-2 Valid Equivalence Names for RDBSCHARACTER_SET Logical

Name
Character Set Name of Character Set Equivalence Name
MCS DEC_MCS Undefined
Korean and ASCII DEC_KOREAN DEC_HANGUL
Hanyu and ASCII DEC_HANYU DEC_HANYU
Hanzi and ASCII DEC_HANZI DEC_HANZI
Kanji and ASCI|I DEC_KANJI DEC_KANJI

For more information on these and other logical names, see the Oracle Rdb7
Guide to Database Performance and Tuning.

Logical Names Used by SQL E-3

F

Obsolete SQL Syntax

This appendix describes:

Incompatible syntax

Certain SQL statements that were allowed in earlier versions of SQL now
have different behavior that is incompatible with earlier versions. You
must modify existing applications.

Deprecated syntax

Certain SQL statements that were allowed in earlier versions of SQL

will be identified (flagged) with diagnostic messages. SQL refers to such
statements as deprecated features. Although these statements will process
with expected behavior for this release, SQL may not support them in
future versions. You should replace deprecated syntax with the new syntax
in applications.

Reserved words deprecated as identifiers

If any of the listed reserved words is used as an identifier without double
quotation marks ("), SQL flags the usage as being honcompliant with the
ANSI/ISO standard and issues a deprecated feature message.

Punctuation changes
This section describes changes to punctuation marks used in SQL.
Suppressing diagnostic messages

This section describes how to suppress the diagnostic messages about
deprecated features.

F.1 Incompatible Syntax

The following sections describe incompatible syntax.

Obsolete SQL Syntax F-1

F.1.1 Incompatible Syntax Containing the SCHEMA Keyword

Because one database may contain multiple schemas, the following
incompatible changes apply to SQL syntax containing the SCHEMA keyword.

F.1.1.1 CREATE SCHEMA Meaning Incompatible

Use of the CREATE SCHEMA statement to create a database is deprecated. If
you use the CREATE SCHEMA statement to specify the physical attributes of
a database such as the root file parameters, SQL issues the deprecated feature
message and interprets the statement as it did in previous versions of SQL.

SQL> CREATE SCHEMA PARTS SNAPSHOT IS ENABLED;
%$SQL-I-DEPR_FEATURE, Deprecated Feature: SCHEMA (meaning DATABASE)
SQL>

However, if you do not specify any physical attributes of a database, you must
enable multischema naming to use the CREATE SCHEMA statement.

SQL> CREATE SCHEMA PARTS;
$SQL-F-SCHCATMULTI, Schemas and catalogs may only be referenced with
multischema enabled

When you enable multischema naming, the CREATE SCHEMA statement
creates a new schema within the current catalog.

SQL> ATTACH 'ALIAS Q4 FILENAME INVENTORY MULTISCHEMA IS ON’;
SQL> CREATE SCHEMA PARTS;
SQL> SHOW SCHEMAS;
Schemas in database with alias Q4
RDBSSCHEMA
PARTS

F.1.1.2 SHOW SCHEMA Meaning Incompatible
If you use a SHOW SCHEMA statement when you are attached to a database
with the multischema attribute and have multischema naming enabled, SQL
shows all the schemas for the current catalog. To show a database, use the
SHOW DATABASE or SHOW ALIAS statement.

If you use a SHOW SCHEMA statement when you do not have multischema
enabled, SQL issues an error message.

F.1.1.3 DROP SCHEMA Meaning Incompatible

If you use a DROP SCHEMA statement when you are attached to a database
with the multischema attribute and have multischema naming enabled, SQL
deletes the named schema from that database.

If you use a DROP SCHEMA statement when you do not have multischema
enabled, SQL issues an error message.

F-2 Obsolete SQL Syntax

If you use a DROP SCHEMA FILENAME statement, SQL interprets this as it
would have in V4.0 and prior versions; it deletes the database with the named
file name, and issues a deprecated feature error message.

F.1.2 DROP TABLE Now Restricts by Default

In V4.1 and higher, the default behavior of the DROP TABLE statement is a
restricted delete, not a cascading delete as in earlier versions. Only the table
will be deleted. If other items (views, constraints, indexes, or triggers) refer to
the specified table, the delete will fail, as shown in the following example:

SQL> DROP TABLE DEGREES;

$RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-TRGEXI, relation DEGREES is referenced in trigger
COLLEGE_CODE_CASCADE_UPDATE

-RDMS-F-RELNOTDEL, relation DEGREES has not been deleted

If you specify the CASCADE keyword for SQL DROP TABLE statements, SQL
deletes all items that refer to the table or view, then deletes the table itself.
The following example shows a cascading delete:

SQL> DROP TABLE JOB_HISTORY CASCADE;

View CURRENT_INFO is also being dropped.

View CURRENT_JOB is also being dropped.

Constraint JOB_HISTORY_FOREIGN1 is also being dropped.
Constraint JOB_HISTORY_FOREIGN2 is also being dropped.
Constraint JOB_HISTORY_FOREIGN3 is also being dropped.

Index JH_EMPLOYEE_ID is also being dropped.

Index JOB_HISTORY_HASH is also being dropped.

VIA clause on storage map JOB_HISTORY MAP is also being dropped.
Trigger EMPLOYEE_ID_CASCADE_DELETE is also being dropped.

F.1.3 Database Handle Names Restricted to 25 Characters

The database handle name is called an alias in SQL. When sessions are
enabled by the OPTIONS=(CONNECT) qualifier on the SQL precompiler
command line or the CONNECT qualifier on the module language command
line, the length of an alias can be no more than 25 characters. The database
handle was called an authorization identifier in versions of SQL prior to V4.1.

F.1.4 Deprecated Default Semantics of the ORDER BY Clause
In V4.1 and previous versions, SQL had the following default semantics:

= The ANSI/ISO 1989 standard provides a different direction. In future
releases, SQL will assign the sort order of ASC to any key not specifically
qualified with DESC.

Obsolete SQL Syntax F-3

e SQL will issue a deprecated feature warning if any sort keys inherit the
DESC qualifier.

Note

If you do not specify ASC or DESC for the second or subsequent sort

keys, SQL uses the order you specified for the preceding sort keys. If
you do not specify the sorting order with the first sort key, the default
order is ascending.

F.1.5 Change to EXTERNAL NAMES IS Clause

The multischema EXTERNAL NAME IS clause has changed to the STORED
NAME IS clause to avoid confusion with ANSI/ISO SQL standards.

F.2 Deprecated Syntax

Table F-1 lists SQL statements that have been replaced by new syntax. These
statements will be allowed by SQL, but in some cases SQL flags the statement
with a deprecated feature message.

Table F-1 Deprecated Syntax for SQL

Deprecated Statement

New Syntax

Deprecated Feature Message?

ALTER CACHE . ..
LARGE MEMORY IS ENABLED

ALTER CACHE . ..
SHARED MEMORY IS SYSTEM

ALTER CACHE . ..
WINDOW COUNT IS . ..

ALTER SCHEMA

CREATE CACHE . ..
LARGE MEMORY IS ENABLED

CREATE CACHE . ..
SHARED MEMORY IS SYSTEM

CREATE CACHE . ..
WINDOW COUNT IS . ..

CREATE SCHEMA

ALTER CACHE ... SHARED
MEMORY IS PROCESS RESIDENT

ALTER CACHE ... SHARED
MEMORY IS PROCESS RESIDENT

None

ALTER DATABASE

CREATE CACHE ... SHARED
MEMORY IS PROCESS RESIDENT

CREATE CACHE ... SHARED
MEMORY IS PROCESS RESIDENT

None

CREATE DATABASE

Yes

Yes?

1See Section F.1 for more information.

F-4 Obsolete SQL Syntax

(continued on next page)

Table F—1 (Cont.) Deprecated Syntax for SQL

Deprecated Statement

New Syntax

Deprecated Feature Message?

DECLARE SCHEMA — module
language and precompiled SQL

DECLARE SCHEMA — dynamic and
interactive SQL

DECLARE and SET TRANSACTION
— CONSISTENCY LEVEL 2, 3

DROP SCHEMA FILENAME

DROP SCHEMA PATHNAME

DROP SCHEMA AUTHORIZATION

EXPORT SCHEMA FILENAME
EXPORT SCHEMA PATHNAME
EXPORT SCHEMA AUTHORIZATION
FINISH

GRANT on SCHEMA AUTHORIZATION

IMPORT SCHEMA AUTHORIZATION

INTEGRATE

PREPARE ... SELECT LIST
REVOKE

SET ANSI

ALTER DATABASE . ..
JOURNALIIS ...
[NO]JCACHE FILENAME . ..

DECLARE ALIAS

ATTACH

ISOLATION LEVEL READ
COMMITTED

ISOLATION LEVEL REPEATABLE
READ

ISOLATION LEVEL SERIALIZABLE

DROP DATABASE FILENAME

DROP DATABASE PATHNAME

DROP DATABASE ALIAS

EXPORT DATABASE FILENAME
EXPORT DATABASE PATHNAME
EXPORT DATABASE ALIAS
DISCONNECT DEFAULT

GRANT ON DATABASE ALIAS

IMPORT DATABASE FROM
filespec WITH ALIAS

INTEGRATE DATABASE
DESCRIBE ... SELECT LIST
REVOKE ON DATABASE ALIAS

SET DEFAULT DATE FORMAT
SET KEYWORD RULES

SET QUOTING RULES

SET VIEW UPDATE RULES

None

Yes

In interactive SQL, but not in
dynamic SQL

Yes

Message only in precompiled SQL
and SQL module language

Message only in precompiled SQL
and SQL module language

Message only in precompiled SQL
and SQL module language

No
No
No

Yes, if databases are declared with
DECLARE SCHEMA; otherwise,
error message on nonconforming
usage

Yes

Yes

Yes
Yes
Yes
No

Yes. Functionality no longer provides
benefit on new hardware

(continued on next page)

Obsolete SQL Syntax F-5

Table F—1 (Cont.) Deprecated Syntax for SQL

Deprecated Statement New Syntax Deprecated Feature Message?

ALTER DATABASE . .. CREATE or ALTER DATABASE Yes. Feature no longer part of the

JOURNALIS ... NOTIFY Alter image journaling functionality.

NOTIFY

WRITE ONCE storage area attribute None Yes. Functionality is no longer
available in hardware

VARIANT NOT DETERMINISTIC No. New syntax conforms to
SQL:1999 Language Standard

NOT VARIANT DETERMINISTIC No. New syntax conforms to
SQL:1999 Language Standard

GENERAL PARAMETER STYLE PARAMETER STYLE GENERAL No. New syntax conforms to
SQL:1999 Language Standard

WHILE ... LOOP ... END LOOP WHILE ... DO ... END WHILE No. New syntax conforms to

SQL:1999 Language Standard

F.2.1 Command Line Qualifiers

Certain qualifiers in the SQL module language and precompiler command lines
have been replaced. These are:

e The ANSI_AUTHORIZATION qualifier is replaced by the RIGHTS clause.

= The ANSI_DATE qualifier is replaced by the DEFAULT DATE FORMAT
clause.

e The ANSI_IDENTIFIERS qualifier is replaced by the KEYWORD RULES
clause.

= The ANSI_PARAMETERS qualifier is replaced by the PARAMETER
COLONS clause.

e The ANSI_QUOTING qualifier is replaced by the QUOTING RULES
clause.

F.2.2 Deprecated Interactive SQL Statements

If you use the SET ANSI statement, SQL returns a deprecated feature
message. This statement has been replaced by:

e The SET ANSI DATE statement is replaced by the SET DEFAULT DATE
FORMAT statement. See the SET DEFAULT DATE FORMAT Statement
for more information.

e The SET ANSI IDENTIFIERS statement is replaced by the SET
KEYWORD RULES statement. See the SET KEYWORD RULES
Statement for more information.

F-6 Obsolete SQL Syntax

e The SET ANSI QUOTING statement is replaced by the SET QUOTING
RULES statement. See the SET QUOTING RULES Statement for more
information.

F.2.3 Constraint Conformance to the ANSI/ISO SQL Standard

The location of the constraint name in the CREATE TABLE statement has
been changed for ANSI/ISO SQL conformance. Constraint names are expected
before the constraint rather than after. If you place a constraint name after
the constraint, you get the following deprecated feature message:

SQL> CREATE TABLE TEMP2

cont> (COL1 REAL NOT NULL CONSTRAINT C7);

%$SQL-I-DEPR_FEATURE, Deprecated Feature: Constraint name clause following
constraint definition

$SQL-I-DEPR_FEATURE, Deprecated Feature: Default evaluation for constraints:
DEFERRABLE

The default evaluation time of DEFERRABLE for constraints has been
deprecated. If your dialect is SQLV40, constraints are still DEFERRABLE by
default. However, you will receive the following deprecated feature message if
you do not specify an evaluation time:

SQL> CREATE TABLE TEMP3

cont> (COL1 REAL CONSTRAINT C6 NOT NULL) ;

$SQL-I-DEPR_FEATURE, Deprecated Feature: Default evaluation for constraints:
DEFERRABLE

If your dialect is SQL92 or SQL99, constraints are NOT DEFERRABLE by
default, and you do not receive deprecated feature messages.

F.2.4 Obsolete Keywords

Table F-2 lists obsolete keywords and preferred substitutes for SQL
statements.

Table F-2 Obsolete SQL Keywords

Obsolete Keyword Preferred Keyword
COMMIT_TIME COMMIT TIME
CREATETAB CREATE
DIAGNOSTIC CONSTRAINT
QUADWORD BIGINT

(continued on next page)

Obsolete SQL Syntax F-7

Table F-2 (Cont.) Obsolete SQL Keywords

Obsolete Keyword Preferred Keyword
READ_ONLY READ ONLY
READ_WRITE READ WRITE
VERB_TIME VERB TIME

If you use the obsolete keywords, you receive the following diagnostic message:

SET TRANSACTION READ_ONLY;
1
%SQL-I-DEPR_FEATURE, (1) Deprecated Feature: READ_ONLY

F.2.5 Obsolete Built-in Functions

Several functions that were supplied as SQL or external routines in the
SYS$LIBRARY:SQL_FUNCTIONS library are now obsolete and have been
replaced with native SQL builtin functions.

= The function ABS was provided as an SQL function that accepted a
DOUBLE PRECISION argument and returned a DOUBLE PRECISION
result.

The native SQL function supports a wider range of data types (numeric
and INTERVAL types) and is more generally useful.

= The functions LEAST and GREATEST were provided as SQL functions
that accepted only two integer arguments.

The native SQL functions allow for a wider range of data types, and
support a parameter list of arbitrary length.

e The functions LENGTH and LENGTHB were provided as SQL stored
functions that accepted a VARCHAR (2000) parameter and performed the
appropriate CHARACTER_LENGTH or OCTET_LENGTH operation on the
argument.

The native SQL functions allow for a wider range of character set values
and larger sizes for the character data types.

= The function SIGN was provided as a SQL function.
The native SQL function is more generally useful.

= The functions ROUND and TRUNC were provided as SQL functions that
accepted a DOUBLE PRECISION argument and returned a DOUBLE
PRECISION result.

F-8 Obsolete SQL Syntax

The native SQL functions support a wider range of data types (TINYINT,
SMALLINT, INTEGER, BIGINT, and FLOAT) and are more generally
useful.

Note that the ROUND or TRUNC applied to date/time types (DATE, DATE
VMS, TIMESTAMP) requires the use of OCI support libraries provided by
OCI Services for Rdb.

Now that SQL implements these functions directly these definitions in
SYSSLIBRARY:SQL_FUNCTIONS are no longer required. However, they

are retained in the database for existing applications but new applications will
now automatically use new native functions in Oracle Rdb.

F.3 Deprecated Logical Names

The following sections describe deprecated logical names and, if applicable, the
logical name replacement.

See Appendix E for more information regarding any new logical names.

F.3.1 RDBSCHARACTER_SET Logical Name

The logical name RDB$CHARACTER_SET has been deprecated. It is used by
SQL to allow compatibility for databases and applications from V4.1 and V4.0.

When you are using versions higher than V4.1 and V4.0, Oracle Rdb
recommends that you use the following clauses and statements in place of
the logical name:

The DEFAULT CHARACTER SET and NATIONAL CHARACTER SET
clauses in the DECLARE ALIAS statement.

The IDENTIFIER CHARACTER SET, DEFAULT CHARACTER SET, and
NATIONAL CHARACTER SET clauses of the SQL module header (Section
3.2) or the DECLARE MODULE statement.

The SET IDENTIFIER CHARACTER SET statement, SET DEFAULT
CHARACTER SET statement, and the SET NATIONAL CHARACTER
SET statement for dynamic SQL.

The IDENTIFIER CHARACTER SET, DEFAULT CHARACTER SET,
and NATIONAL CHARACTER SET clauses in the CREATE DATABASE
statement or the ALTER DATABASE statement.

Obsolete SQL Syntax F-9

F.4 Reserved Words Deprecated as Identifiers

The following lists contain reserved words from the:
e ANSI/ISO 1989 SQL standard
= ANSI/ISO 1992 SQL standard
= ANSI/ISO 1999 SQL standard

If these reserved words are used as identifiers without double quotation marks
("), SQL flags their use as being noncompliant with the ANSI/ISO 1989
standard and issues a deprecated feature message.

Oracle Rdb does not recommend using reserved words as identifiers because
this capability is a deprecated feature and might not be supported in future
versions of SQL. However, if you must use reserved words as identifiers, then
you must enclose them within double quotation marks to be compliant with the
ANSI/ISO 1989 standard. SQL does not allow lowercase letters, spaces, or tab
stops within the double quotation marks.

For example, if you want to use the ANSI/ISO 1989 reserved word SELECT as
a table identifier, the statement would be written as follows:

SELECT * FROM "SELECT";

F.4.1 ANSI/ISO 1989 SQL Standard Reserved Words

ALL AND ANY

AS ASC AUTHORIZATION
AVG BEGIN BETWEEN
BY CHAR CHARACTER
CHECK CLOSE COBOL
COMMIT CONTINUE COUNT
CREATE CURRENT CURSOR
DEC DECIMAL DECLARE
DEFAULT DELETE DESC
DISTINCT DOUBLE END
ESCAPE EXEC EXISTS
FETCH FLOAT FOR
FOREIGN FORTRAN FOUND
FROM GO GOTO

F-10 Obsolete SQL Syntax

GRANT
IN

INT

IS

LIKE
MODULE
NUMERIC
OPEN
ORDER
PRECISION
PROCEDURE
REFERENCES
SECTION
SMALLINT
SQLCODE
TABLE
UNIQUE
VALUES
WHERE

F.4.2 ANSI/ISO 1992 SQL Standard Reserved Words
In addition to the reserved words listed for the ANSI/ISO 1989 standard, the

GROUP
INDICATOR
INTEGER
KEY

MAX

NOT

OF

OPTION
PASCAL
PRIMARY
PUBLIC
ROLLBACK
SELECT
SOME
SQLERROR
TO
UPDATE
VIEW
WITH

HAVING
INSERT
INTO
LANGUAGE
MIN

NULL

ON

OR

PLI
PRIVILEGES
REAL
SCHEMA
SET

SQL

SUM
UNION
USER
WHENEVER
WORK

ANSI/ISO SQL standard also includes the following reserved words:

ABSOLUTE
ALLOCATE
ASSERTION
BIT_LENGTH
CASCADED
CATALOG
COALESCE
COLUMN
CONSTRAINT
CORRESPONDING

ACTION

ALTER

AT

BOTH

CASE
CHAR_LENGTH
COLLATE
CONNECT
CONSTRAINTS
CROSS

ADD

ARE

BIT

CASCADE

CAST
CHARACTER_LENGTH
COLLATION
CONNECTION
CONVERT
CURRENT_DATE

Obsolete SQL Syntax F-11

CURRENT_TIME CURRENT_TIMESTAMP CURRENT_USER

DATE DAY DEALLOATE
DEFERRABLE DEFERRED DESCRIBE
DESCRIPTOR DIAGNOSTICS DISCONNECT
DOMAIN DROP ELSE
END-EXEC EXCEPT EXCEPTION
EXECUTE EXTERNAL EXTRACT
FALSE FIRST FULL

GET GLOBAL HOUR
IDENTITY IMMEDIATE INITIALLY
INNER INPUT INSENSITIVE
INTERSECT INTERVAL ISOLATION
JOIN LAST LEADING
LEFT LEVEL LOCAL
LOWER MATCH MINUTE
MONTH NAMES NATIONAL
NATURAL NCHAR NEXT

NO NULLIF OCTET_LENGTH
ONLY OUTER OUTPUT
OVERLAPS PAD PARTIAL
POSITION PREPARE PRESERVE
PRIOR READ RELATIVE
RESTRICT REVOKE RIGHT

ROWS SCROLL SECOND
SESSION SESSION_USER SIZE

SPACE SQLSTATE SUBSTRING
SYSTEM_USER TEMPORARY THEN

TIME TIMESTAMP TIMEZONE_HOUR
TIMEZONE_MINUTE TRAILING TRANSACTION
TRANSLATE TRANSLATION TRIM

TRUE UNKNOWN UPPER

F-12 Obsolete SQL Syntax

USAGE USING VALUE
VARCHAR VARYING WHEN
WRITE YEAR ZONE

F.4.3 ANSI/ISO 1999 SQL Standard Reserved Words

In addition to the reserved words listed for the ANSI/ISO 1989 standard and
the ANSI/ISO SQL 1992 standard, the ANSI/ISO SQL 1999 standard includes

the following reserved words.

ADMIN AFTER AGGREGATE
ALIAS ARRAY BEFORE
BINARY BLOB BOOLEAN
BREADTH CALL CLASS
CLOB COMPLETION CONDITION
CONSTRUCTOR CUBE CURRENT_PATH
CURRENT_ROLE CYCLE DATA
DEPTH DEREF DESTROY
DESTRUCTOR DETERMINISTIC DICTIONARY
DO DYNAMIC EACH
ELSEIF EQUALS EVERY

EXIT FREE FUNCTION
GENERAL GROUPING HANDLER
HOST IF IGNORE
INITIALIZE INOUT ITERATE
LARGE LATERAL LEAVE

LESS LIMIT LIST
LOCALTIME LOCALTIMESTAMP LOCATOR
LONG LOOP MAP
MODIFIES MODIFY NCLOB

NEW NONE NUMBER
OBJECT OFF OLD
OPERATION ORDINALITY ouT
PARAMETER PARAMETERS PATH
POSTFIX PREFIX PREORDER

Obsolete SQL Syntax F-13

RAW

REDO
REPEAT
RETURN
ROLLUP
SAVEPOINT
SENSITIVE
SIGNAL
SPECIFICTYPE
START
STRUCTURE
TREAT
UNDER
UNTIL
WITHOUT

READS

REF
RESIGNAL
RETURNS
ROUTINE
SCOPE
SEQUENCE
SIMILAR
SQLEXCEPTION
STATEMENT
TERMINATE
TRIGGER
UNDO
VARIABLE

RECURSIVE
REFERENCING
RESULT
ROLE

ROW

SEARCH

SETS
SPECIFIC
SQLWARNING
STATIC

THAN

TYPE
UNNEST
WHILE

F.4.4 Words From ANSI/ISO SQL3 Draft Standard No Longer Reserved

In previous releases, the following words were listed as reserved words
according to the ANSI/ISO SQL3 draft standard but did not become part of
the final ANSI/ISO 1999 SQL standard. The following words are no longer
reserved by Oracle Rdb as previously documented:

ACTOR ASYNC ELEMENT
INSTEAD MOVE MULTISET
NEW_TABLE oID OLD_TABLE
OPERATORS OTHERS PENDANT
PRIVATE PROTECTED REPRESENTATION
TEMPLATE TEST THERE

TUPLE VARIANT VIRTUAL

VISIBLE WAIT

F.5 Punctuation Changes

The following changes apply to punctuation marks used in SQL.

F-14 Obsolete SQL Syntax

F.5.1 Single Quotation Marks Required for String Literals

Use single (’) instead of double (") quotation marks to delimit a string
literal. SQL flags literals enclosed within double quotation marks with

an informational, compile-time, diagnostic message stating that this is
nonstandard usage. This message will appear even when you have specified
that SQL not notify you of syntax that is not ANSI/ISO SQL standard.

F.5.2 Double Quotation Marks Required for ANSI/ISO SQL Delimited
Identifiers

The leftmost name pair in a qualified name for a multischema object is

a delimited identifier. You must enclose a delimited identifier within
double quotation marks and use only uppercase characters. You must
enable ANSI/ISO SQL quoting rules to use delimited identifiers. For more
information, see Section 2.2.11.

F.5.3 Colons Required Before Host Language Variables in SQL Module
Language
In SQL module language statements, Oracle Rdb recommends that you precede
parameters with a colon (:) to distinguish them from column or table names.
These colons are currently optional in SQL, but are required by the ANSI/ISO
SQL standard. SQL may require these colons in a future version of Oracle
Rdb.

F.6 Suppressing Diagnostic Messages

In interactive SQL, use the SET WARNING NODEPRECATE statement
to suppress the diagnostic messages about deprecated features. For more
information, see the SET Statement.

If you are using the SQL precompiler, you can suppress the diagnostic
messages about deprecated features by using the
SQLOPTIONS=WARN=(NODEPRECATE) qualifier in the precompiler
command line. For details, see Section 4.3.

If you are using SQL module language, you can suppress the diagnostic
messages about deprecated features by using the WARN=(NODEPRECATE)
gualifier in the module language command line. For details, see Section 3.6.

Obsolete SQL Syntax F-15

G

Oracle Database Compatibility

G.1 Oracle Database Functions

SQL functions have been added to the OpenVMS Oracle Rdb SQL interface for
compatibility with Oracle SQL. Complete descriptions of these functions can be
found in the Oracle Database SQL Language Reference Manual.

G.1.1 Optional Oracle SQL Functions

Optionally, you can install the functions listed in Table G-1 in your database
from interactive SQL as shown in the following examples.

The file is named SQL_FUNCTIONSNN.SQL, where “nn” is the version
number. For example, use the following statement:

SQL> ATTACH 'FILENAME mydatabase’;
SQL> @SYSSLIBRARY:SQL_FUNCTIONS72.SQL

If you wish to use a character set other than DEC_MCS with the installable
functions, you must first define the RDB$ORACLE_SQLFUNC_VCHAR_DOM
domain as a character type using the desired character set before executing
the preceding statements. Similarly, if you wish to use a date data type other
than DATE VMS with the installable functions, you must first define the
RDB$ORACLE_SQLFUNC_DATE_DOM domain as a date data type before
executing the preceding statements.

For example,

SQL> ATTACH 'FILENAME mydatabase’;

SQL> CREATE DOMAIN RDBSORACLE_SQLFUNC_VCHAR_DOM VARCHAR (2000)
cont> CHARACTER SET KANJI;

SQL> CREATE DOMAIN RDBSORACLE_SQLFUNC_DATE_DOM DATE ANSI;
SQL> @SYSSLIBRARY:SQL_FUNCTIONS72.SQL

Oracle Database Compatibility G-1

If you choose, you may remove the installable functions from your database
at a later time. However, you must release any dynamic SQL statements and
disconnect any sessions that reference any of these functions before you can
remove the functions. Use the following statements from interactive SQL if
you wish to remove the installable functions from your database:

SQL> ATTACH 'FILENAME mydatabase’;
SQL> @SYSSLIBRARY:SQL_FUNCTIONS_DROP72.SQL

The file SYS$SLIBRARY:SQL_FUNCTIONS DROPNN.SQL, where “nn” is the
version number.

Table G-1 gives a brief description of each of the functions that you can
optionally install in your database.

Table G-1 Optional Oracle SQL Functions

Function Name Description Restrictions
ADD_MONTHS (d,n) Returns the date d plus n d must be of the same
months. date data type as

the RDB$ORACLE _
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.

ACOS (n) Returns the arc cosine of n. n must be in the range of
-1 to 1, and the function
returns a DOUBLE
PRECISION value in the
range of 0 to pi, expressed
in radians. If the passed
expression results in
NULL then the result of
ACOS will be NULL.

The following example returns the arc cosine of .3:

SQL> SELECT ACOS(.3) "Arc_Cosine" FROM RAb$SDATABASE;
Arc_Cosine
1.266103672779499E+000
1 row selected

(continued on next page)

G-2 Oracle Database Compatibility

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

ACOSH (n)

Returns the hyperbolic arc

cosine of n.

n must be equal to or
greater than 1. The
function returns a
DOUBLE PRECISION
value. If either passed
expression results in
NULL then the result of
ACOSH will be NULL.

SQL> SELECT ACOSH(1.0) "Hyperbolic Arc Cosine" FROM RAbS$SDATABASE;

Hyperbolic Arc Cosine
0.000000000000000E+000
1 row selected

ASCII (str)

ASIN (n)

Returns the decimal
representation of the first
character of its argument.

Returns the arc sine of n.

The following example returns the arc sine of .3:

SQL> SELECT ASIN(.3) "Arc_Sine" FROM RAb$SDATABASE;

Arc_Sine
3.046926540153975E-001
1 row selected

str must be of the

same character set as
the RDB$ORACLE _
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.

n must be in the range
of -1 to 1. The function
returns a DOUBLE
PRECISION value in

the range of -pi/2 to pi/2,
expressed in radians. If
the passed expression
results in NULL then the
result of ASIN will be
NULL.

(continued on next page)

Oracle Database Compatibility G-3

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions
ASINH (n) Returns the hyperbolic arc The function returns a
sine of n. DOUBLE PRECISION

value. If either passed
expression results in
NULL then the result of
ASINH will be NULL.

SQL> SELECT ASINH (-90.0) "Hyperbolic Arc Sine" FROM RAbSDATABASE;
Hyperbolic Arc Sine
-5.192987713658941E+000
1 row selected

ATAN (n) Returns the arc tangent of n can be in an unbounded
n. range and returns a value
in the range of -pi/2 to
pi/2, expressed in radians.
If the passed expression
results in NULL then the
result of ATAN will be

NULL.
The following example returns the arc tangent of .3:
SQL> SELECT ATAN(.3) "Arc_Tangent" FROM RAb$DATABASE;
Arc_Tangent
2.914567944778671E-001
1 row selected
ATANH (n) Returns the hyperbolic arc n must be in the range
tangent of n (in radians). of -1 to 1. The function

returns a DOUBLE
PRECISION value. If
either passed expression
results in NULL then the
result of ATANH will be
NULL.

(continued on next page)

G-4 Oracle Database Compatibility

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

SQL> SELECT ATANH(0.905148254) "Hyperbolic Arc Tangent" FROM RAb$DATABASE;

Hyperbolic Arc Tangent
1.500000001965249E+000
1 row selected

ATAN2 (n,m)

SQL> SELECT ATAN2(.3, .2)

Arc_Tangent2
9.827937232473291E-001
1 row selected

BITAND (exprl,expr2)

Returns the arc tangent of

n and m.

BITAND computes an
AND operation on the bits
of exprl and expr2, both
of which must resolve to
integers, and returns an
integer.

n can be in an unbounded
range and returns a
value in the range of

-pi to pi, depending on
the signs of n and m,
expressed in radians.
ATAN2(n,m) is the same
as ATAN(n/m). If either
passed expression results
in NULL then the result
of ATAN2 will be NULL.

"Arc_Tangent2" FROM RAbSDATABASE;

This function is
commonly used with

the DECODE function.

If the passed expression
results in NULL then the
result of the BITAND will
be null.

(continued on next page)

Oracle Database Compatibility G-5

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

Example 1: Checking bits in RDB$FLAGS column

The first bit of the mask stored in the column RDB$FLAGS of the table RUb$RELATIONS
indicates that this relation is a view definition. This query displays the names of any
views in the database.

SQL> -- Which objects in RAbSRELATIONS are views?
SQL> select rdbSrelation_name from rdbSrelations where bitand(rdb$flags, 1) = 1;

RDBSRELATION NAME
RDBVMS$COLLATIONS
RDBVMSS$INTERRELATIONS
RDBVMSS$SPRIVILEGES
RDBVMSS$SRELATION CONSTRAINTS
RDBVMSSRELATION_CONSTRAINT FLDS
RDBVMS$STORAGE_MAPS
RDBVMSS$STORAGE_MAP_AREAS
RDBVMSSTRIGGERS

8 rows selected

Example 2: Using BITAND with DECODE

This example uses the result of the BITAND in a DECODE list to display attributes of
an Rdb database.

SQL> select

cont> DECODE (BITAND (rdb$flags,1), 0, 'No Dictionary’, ’'Dictionary’),
cont> DECODE (BITAND (rdb$flags,2), 0, 'ACL Style’, 'ANSI Style’),

cont> DECODE (BITAND (rdb$flags,64), 0, 'No Multischema’, 'Multischema’)
cont> from

cont> RAbLSDATABASE;

No Dictionary ACL Style Multischema
1 row selected
SQL>

(continued on next page)

G-6 Oracle Database Compatibility

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

BITANDNOT (numeric-

expression,numeric-
expression)

BITNOT (numeric-
expression)

BITOR (numeric-
expression, numeric-
expression)

BITXOR (numeric-
expression, numeric-
expression)

CEIL (n)

CHR (n)

COS (n)

BITANDNOT is used

to clear bits in the first
expression that are set in
the second expression. First
a bitwise NOT (BITNOT)
is performed on the second
numeric value expression
and then a bitwise AND
(BITAND) is performed

of the first numeric value
expression with the result.

BITNOT returns the
bitwise NOT of the passed
numeric value expression.

BITOR returns the bitwise
OR of the passed numeric
value expressions.

BITXOR Returns the
bitwise XOR of the passed
numeric value expressions.

Returns the smallest
integer greater than or
equal to n.

Returns the character
having the binary
equivalent to n.

Returns the cosine of n (an
angle expressed in radians).

If either of the passed
expressions results

in NULL, then the
result of BITANDNOT
will be NULL. Note

that BITANDNOT is
equivalent to BITAND
(expl, BITNOT (ex2)) but
is more efficient.

If the passed expression
results in NULL, then
the result of BITNOT will
be NULL.

If either of the passed
expressions results in
NULL, then the result of
BITOR will be NULL.

If either of the passed
expressions results in
NULL, then the result of
BITXOR will be NULL.

The returned value is

of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM, the character set of
which is bound when you
install the Oracle SQL
functions. In addition,
only 1 octet (byte) of data
is encoded.

(continued on next page)

Oracle Database Compatibility G-7

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name Description Restrictions

COSH (n) Returns the hyperbolic
cosine of n (an angle
expressed in radians).

COT (n) COT returns the cotangent The function returns a
of n. DOUBLE PRECISION
value. If either passed
expression results in
NULL then the result of
COT will be NULL.

SQL> SELECT COT (3.14159265358979/4) "Cotangent" FROM RAbSDATABASE;
Cotangent
1.000000000000002E+000
1 row selected

EXP (n) Returns e raised to the nth
power (€=2.71828183 .. .).

FLOOR (n) Returns the largest integer
equal to or less than n.

HEXTORAW (str) Converts its argument str must be of the
containing hexadecimal same character set as
digits to a raw character the RDB$ORACLE_
value. SQLFUNC_VCHAR_

DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is

of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM.

(continued on next page)

G-8 Oracle Database Compatibility

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

INITCAP (str)

INSTR (s1,s2[,n[,m]])

INSTRB (s1,s2[,n[,m]])

LAST_DAY (d)

Returns the string
argument, with the first
letter of each word in
uppercase, all other letters
in lowercase. Words

are delimited by non-
alphanumeric characters.

Searches sl beginning
with its nth character
and returns the character
position of the mth
occurrence of s2 or O if

s2 does not occur m times.

If n <0, the search starts at

the end of s1.

Searches sl beginning with

its nth octet and returns

the octet position of the mth

occurrence of s2 or 0 if s2

does not occur m times. If n
< 0, the search starts at the

end of s1.

Returns the last day of the
month that contains d.

str must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is
of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM.

sl and s2 must be of

the same character set

as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which

is bound when you
install the Oracle SQL
functions. If either n or
m is omitted, they default
to 1.

sl and s2 must be of

the same character set

as the RDB$SORACLE_
SQLFUNC_VCHAR_
DOM domain, which

is bound when you

install the Oracle SQL
functions. If either n or
m is omitted, they default
to 1.

d must be of the same
date data type as

the RDB$ORACLE_
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.
The value returned is

of type RDB$ORACLE_
SQLFUNC_DATE_DOM.

(continued on next page)

Oracle Database Compatibility G-9

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

LN (n)

LOG (m,n)

LPAD (s,1,p)

LTRIM (s1[,s2])

MOD (m,n)

G-10 Oracle Database Compatibility

Returns the natural
logarithm of n where n
is greater than 0.

Returns the logarithm base
m of n. The base m can be
any positive number other
than 0 or 1 and n can be
any positive number.

Returns s left-padded to
length | with the sequence
of characters in p. If sis
longer than I, this function
returns that portion of s
that fits in I.

Removes characters from
the left of s1, with initial
characters removed up to
the first character not in s2.

Returns the remainder of m
divided by n. Returns m if
nis 0.

s and p must be of the
same character set as
the RDB$ORACLE _
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is

of type RDB$SORACLE_
SQLFUNC_VCHAR_
DOM. There is no default
for p as with Oracle.

sl and s2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is
of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted,s2
defaults to space.

(continued on next page)

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

MONTHS_BETWEEN
(d1,d2)

NEW_TIME (d1,z1,22)

Returns the number of
months between dates d1
and d2.

Returns the date and time
in time zone z2 when the
date and time in time zone
z1 is d. Time zones z1 and
z2 can be: AST, ADT, BST,
BDT, CST, CDT, EST, EDT,
GMT, HST, HDT, MST,
MDT, NST, PST, PDT, YST,
or YDT.

d1l and d2 must be of
the same date data type
as the RDB$ORACLE_
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.

d1l must be of the

same date data type

as the RDB$SORACLE _
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.
z1 and z2 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which

is also bound when

you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_DATE_DOM.

(continued on next page)

Oracle Database Compatibility G-11

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

NEXT_DAY (d,dayname)

POWER (m,n)

RAWTOHEX (str)

G-12 Oracle Database Compatibility

Returns the date of the
first weekday named by
dayname that is later than
the date d.

Returns m raised to the
nth power. The base m
and the exponent n can
be any number but if m
is negative, n must be an
integer.

Converts its raw argument
to a character value
containing its hexadecimal
equivalent.

d must be of the same
date data type as

the RDB$ORACLE_
SQLFUNC_DATE_DOM
domain, which is bound
when you install the
Oracle SQL functions.
dayname must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which

is also bound when

you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_DATE_DOM.

str must be of the
same character set as
the RDB$SORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE
SQLFUNC_VCHAR_
DOM.

(continued on next page)

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

REPLACE (s1[,s2[,s3]])

RPAD (s[.1L.pI])

RTRIM (s1[,s2])

SIN (n)

Returns s1 with every

occurrence of s2 replaced by

s3.

Returns s left-padded to
length | with the sequence
of characters in p. If sis
longer than I, this function
returns that portion of s
that fits in I.

Returns s2 with final
characters after the last
character not in s2.

Returns the sine of n (an

angle expressed in radians).

sl1, s2, and s3 must be of
the same character set
as the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which is
bound when you install
the Oracle SQL functions.
The value returned is

of type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, s2 and
s3 default to an empty
string.

s and p must be of the
same character set as
the RDB$ORACLE_
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, p
defaults to a space.

sl and s2 must be of
the same character set
as the RDB$SORACLE_
SQLFUNC VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE _
SQLFUNC_VCHAR_
DOM. If omitted, s2
defaults to a space.

(continued on next page)

Oracle Database Compatibility G-13

Table G—1 (Cont.) Optional Oracle SQL Functions

Function Name

Description

Restrictions

SINH (n)

SQRT (n)

SUBSTR (s[,p[,11D)

SUBSTRB (s[,p[I])

TAN (n)

TANH (n)

Returns the hyperbolic sine
of n (an angle expressed in
radians).

Returns the square root of
n. The value of n cannot be
negative. SQRT returns a
double precision result.

Returns a portion of s, |
characters long, beginning
at character position p. If p
is negative, SUBSTR counts
backward from the end of s.

Same as SUBSTR, except
p and | are expressed in
octets (bytes) rather than
characters.

Returns the tangent of
n (an angle expressed in
radians).

Returns the hyperbolic
tangent of n (an angle
expressed in radians).

s must be of the
same character set as
the RDB$ORACLE _
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDBSORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, |
defaults to zero (0).

s must be of the
same character set as
the RDB$ORACLE
SQLFUNC_VCHAR_
DOM domain, which
is also bound when
you install the Oracle
SQL functions. The
value returned is of
type RDB$ORACLE_
SQLFUNC_VCHAR_
DOM. If omitted, |
defaults to zero (0).

G-14 Oracle Database Compatibility

G.2 Oracle Style Outer Join

Oracle Rdb supports the SQL Database Language Standard syntax for
performing outer join between two or more tables, namely the LEFT, RIGHT,
and FULL OUTER JOIN clauses. Oracle Rdb also supports alternative syntax
and semantics that conform to those available in Oracle RDMS SQL language
to enhance the compatibility between these two products. The special operator
(+) can be placed in the WHERE clause to instruct SQL to join tables using
outer join semantics.

An outer join extends the result of a simple join. An outer join returns all
rows that satisfy the join condition and those rows from one table for which no
rows from the other satisfy the join condition. Such rows are not returned by a
simple join. To write a query that performs an outer join of tables A and B and
returns all rows from A, apply the outer join operator (+) to all columns of B in
the join condition. For all rows in A that have no matching rows in B, Oracle
Rdb returns NULL for any select list expressions containing columns of B.

Outer join queries are subject to the following rules and restrictions:

= The (+) operator can appear only in the WHERE clause and can be applied
only to a column of a table or view.

< If A and B are joined by multiple join conditions, you must use the (+)
operator in all of these conditions. If you do not, Oracle Rdb will return
only the rows resulting from a simple join, but without a warning or error
to advise you that you do not have the results of an outer join.

= The (+) operator can be applied only to a column, not to an arbitrary
expression. However, an arbitrary expression can contain a column marked
with the (+) operator.

= A condition containing the (+) operator cannot be combined with another
condition using the OR logical operator.

= A condition cannot use the IN comparison operator to compare a column
marked with the (+) operator with an expression.

= A condition cannot compare any column marked with the (+) operator with
a subquery.

If the WHERE clause contains a condition that compares a column from table
B with a constant, the (+) operator must be applied to the column so that
Oracle Rdb returns the rows from table A for which it has generated NULLs
for this column. Otherwise Oracle Rdb will return only the results of a simple
join.

Oracle Database Compatibility G-15

In a query that performs outer joins of more than two pairs of tables, a single
table can be the NULL-generated table for only one other table. For this
reason, you cannot apply the (+) operator to columns of B in the join condition
for A and B and the join condition for B and C.

G.2.1 Outer Join Examples

The examples in this section extend the results of this inner join (Equijoin)
between EMP and DEPT tables.

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno = dept.deptno;

EMP . ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
King President 10 Accounting
Blake Manager 30 Sales
Clark Manager 10 Accounting
Jones Manager 20 Research
Ford Analyst 20 Research
Smith Clerk 20 Research
Allen Salesman 30 Sales

Ward Salesman 30 Sales
Martin Salesman 30 Sales
Scott Analyst 20 Research
Turner Salesman 30 Sales
Adams Clerk 20 Research
James Clerk 30 Sales
Miller Clerk 10 Accounting

14 rows selected

The following query uses an outer join to extend the results of this Equijoin

example above:

G-16 Oracle Database Compatibility

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno;

EMP . ENAME EMP.JOB DEPT.DEPTNO DEPT.DNAME
King President 10 Accounting
Clark Manager 10 Accounting
Miller Clerk 10 Accounting
Jones Manager 20 Research
Ford Analyst 20 Research
Smith Clerk 20 Research
Scott Analyst 20 Research
Adams Clerk 20 Research
Blake Manager 30 Sales
Allen Salesman 30 Sales

Ward Salesman 30 Sales
Martin Salesman 30 Sales
Turner Salesman 30 Sales
James Clerk 30 Sales

NULL NULL 40 Operations

15 rows selected

In this outer join, Oracle Rdb returns a row containing the OPERATIONS
department even though no employees work in this department. Oracle Rdb
returns NULL in the ENAME and JOB columns for this row. The join query in
this example selects only departments that have employees.

The following query uses an outer join to extend the results of the preceding
example:

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno

cont> AND job (+) = 'Clerk’;

EMP . ENAME EMP.JOB DEPT.DEPTNO DEPT .DNAME
Miller Clerk 10 Accounting
Smith Clerk 20 Research
Adams Clerk 20 Research
James Clerk 30 Sales

NULL NULL 40 Operations

5 rows selected

In this outer join, Oracle Rdb returns a row containing the OPERATIONS
department even though no clerks work in this department. The (+) operator
on the JOB column ensures that rows for which the JOB column is NULL are
also returned. If this (+) were omitted, the row containing the OPERATIONS
department would not be returned because its JOB value is not 'CLERK'.

Oracle Database Compatibility G-17

SQL> SELECT ename, job, dept.deptno, dname
cont> FROM emp, dept
cont> WHERE emp.deptno (+) = dept.deptno

cont> AND job = ‘Clerk’;

EMP . ENAME EMP.JOB DEPT.DEPTNO DEPT .DNAME
Miller Clerk 10 Accounting
Smith Clerk 20 Research
Adams Clerk 20 Research
James Clerk 30 Sales

4 rows selected

This example shows four outer join queries on the CUSTOMERS, ORDERS,
LINEITEMS, and PARTS tables. These tables are shown here:

SQL> SELECT custno, custname
cont> FROM customers
cont> ORDER BY custno;
CUSTNO CUSTNAME
1 Angelic Co
2 Believable Co
3 Cables R Us
3 rows selected
SQL>
SQL> SELECT orderno, custno, orderdate
cont> FROM orders
cont> ORDER BY orderno;

ORDERNO CUSTNO ORDERDATE
9001 1 1999-10-13
9002 2 1999-10-13
9003 1 1999-10-20
9004 1 1999-10-27
9005 2 1999-10-31
5 rows selected

SQL>

SQL> SELECT orderno, lineno, partno, quantity
cont> FROM lineitems

cont> ORDER BY orderno, lineno;

ORDERNO LINENO PARTNO QUANTITY
9001 1 101 15
9001 2 102 10
9002 1 101 25
9002 2 103 50
9003 1 101 15
9004 1 102 10
9004 2 103 20
7 rows selected

SQL>
SQL> SELECT partno, partname
cont> FROM parts
cont> ORDER BY partno;
PARTNO PARTNAME
101 X-Ray Screen

G-18 Oracle Database Compatibility

102 Yellow Bag
103 Zoot Suit
3 rows selected

The customer Cables R Us has placed no orders, and order number 9005 has
no line items.

The following outer join returns all customers and the dates they placed
orders. The (+) operator ensures that customers who placed no orders are also
returned:

SQL> SELECT custname, orderdate

cont> FROM customers, orders

cont> WHERE customers.custno = orders.custno (+)
cont> ORDER BY customers.custno, orders.orderdate;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE

Angelic Co 1999-10-13
Angelic Co 1999-10-20
Angelic Co 1999-10-27
Believable Co 1999-10-13
Believable Co 1999-10-31
Cables R Us NULL

6 rows selected

The following outer join builds on the result of the previous one by adding the
LINEITEMS table to the FROM clause, columns from this table to the select
list, and a join condition joining this table to the ORDERS table to the where_
clause. This query joins the results of the previous query to the LINEITEMS
table and returns all customers, the dates they placed orders, and the part
number and quantity of each part they ordered. The first (+) operator serves
the same purpose as in the previous query. The second (+) operator ensures
that orders with no line items are also returned:

SQL> SELECT custname, orderdate, partno, quantity

cont> FROM customers, orders, lineitems

cont> WHERE customers.custno = orders.custno (+)

cont> AND orders.orderno = lineitems.orderno (+)

cont> ORDER BY customers.custno, orders.orderdate, lineitems.partno;
CUSTOMERS.CUSTNAME ORDERS.ORDERDATE LINEITEMS.PARTNO LINEITEMS.QUANTITY

Angelic Co 1999-10-13 101 15
Angelic Co 1999-10-13 102 10
Angelic Co 1999-10-20 101 15
Angelic Co 1999-10-27 102 10
Angelic Co 1999-10-27 103 20
Believable Co 1999-10-13 101 25
Believable Co 1999-10-13 103 50
Believable Co 1999-10-31 NULL NULL
Cables R Us NULL NULL NULL

9 rows selected

Oracle Database Compatibility G-19

The following outer join builds on the result of the previous one by adding the
PARTS table to the FROM clause, the PARTNAME column from this table to
the select list, and a join condition joining this table to the LINEITEMS table
to the where_clause. This query joins the results of the previous query to the
PARTS table to return all customers, the dates they placed orders, and the
quantity and name of each part they ordered. The first two (+) operators serve
the same purposes as in the previous query. The third (+) operator ensures
that rows with NULL part numbers are also returned:

SQL> SELECT custname, orderdate, quantity, partname

cont> FROM customers, orders, lineitems, parts

cont> WHERE customers.custno = orders.custno (+)

cont> AND orders.orderno = lineitems.orderno (+)

cont> AND lineitems.partno = parts.partno (+)

cont> ORDER BY customers.custno, orders.orderdate, parts.partno;

CUSTOMERS . CUSTNAME ORDERS .ORDERDATE LINEITEMS.QUANTITY PARTS.PARTNAME

Angelic Co 1999-10-13 15 X-Ray Screen
Angelic Co 1999-10-13 10 Yellow Bag
Angelic Co 1999-10-20 15 X-Ray Screen
Angelic Co 1999-10-27 10 Yellow Bag
Angelic Co 1999-10-27 20 Zoot Suit
Believable Co 1999-10-13 25 X-Ray Screen
Believable Co 1999-10-13 50 Zoot Suit
Believable Co 1999-10-31 NULL NULL

Cables R Us NULL NULL NULL

9 rows selected

G—-20 Oracle Database Compatibility

H

System Tables

This appendix describes the Oracle Rdb system tables.

Oracle Rdb stores information about the database as a set of special system
tables. The system tables are the definitive source of Oracle Rdb metadata.
Metadata defines the structure of the database; for example, metadata defines
the fields that comprise a particular table and the fields that can index that
table.

The definitions of most system tables are standard and are likely to remain
constant in future versions of Oracle Rdb.

In each description for a particular system table, BLR refers to binary
language representation. This is low-level syntax used internally to represent
Oracle Rdb data manipulation operations.

The following sections describe the usage of system tables with respect to
particular versions of Oracle Rdb or in relation to other database constructs,
operations, or products.

H.1 Using Data Dictionary

Although you can store your data definitions in the data dictionary, the
database system refers only to the system tables in the database file itself for
these definitions. In a sense, the system tables are an internal data dictionary
for the database. This method improves performance as Oracle Rdb does not
have to access the data dictionary at run time.

H.2 Modifying System Tables

When you create a database, Oracle Rdb defines, populates, and manipulates
the system tables. As the user performs data definition operations on the
database, Oracle Rdb reads and modifies the system tables to reflect those
operations. You should not modify any of the Oracle Rdb system tables
using data manipulation language, nor should you define any domains
based on system table fields. However, you can use regular Oracle Rdb data
manipulation statements to retrieve the contents of the system tables. This

System Tables H-1

means that your program can determine the structure and characteristics of
the database by retrieving the fields of the system tables.

H.3 Updating Metadata

When you use the SQL SET TRANSACTION ... RESERVING statement to
lock a set of tables for an Oracle Rdb operation, you normally exclude from
the transaction all the tables not listed in the RESERVING clause. However,
Oracle Rdb accesses and updates system tables as necessary, no matter which
tables you have locked with the SQL SET TRANSACTION statement.

When your transaction updates database metadata, Oracle Rdb reserves the
system tables involved in the update in the EXCLUSIVE share mode. Other
users are unable to perform data definition operations on these tables until you
complete your transaction. For example:

= When you refer to a domain (global field) in an update transaction that
changes data definitions, Oracle Rdb locks an index for the system table,
RDB$RELATION_FIELDS. No other users can refer to the same domain
until you commit your transaction.

= When you change a relation (table) or domain definition, Oracle Rdb locks
an index in the system table, RDBSFIELD_VERSIONS. No other users can
change table or global field definitions until you commit your transaction.

< When you change a table definition, Oracle Rdb locks an index in the
system table, RDB$SRELATION_FIELDS. No other users can change tables
in the same index node until you commit your transaction.

H.4 LIST OF BYTE VARYING Metadata

Oracle Rdb has supported multiple segment LIST OF BYTE VARYING
data types for user-defined data. However in previous versions, Oracle Rdb
maintained its own LIST OF BYTE VARYING metadata columns as single
segments. This restricted the length to approximately 65530 bytes. An SQL
CREATE TRIGGER or CREATE MODULE statement could fail due to this
restriction.

This limit was lifted by changing the way Oracle Rdb stores its own metadata.

= For columns containing binary data, such as the binary representation of
guery, routine, constraint, trigger action, computed by column, or query
outline, Oracle Rdb breaks the data into pieces that best fit the system
storage area page size. Thus, the segments are all the same size with a
possible small trailing segment.

H-2 System Tables

The LIST OF BYTE VARYING column value is no longer fragmented,
improving performance when reading system metadata.

For columns containing text data such as the SQL source (for elements
such as triggers and views) and user-supplied comment strings, Oracle Rdb
breaks the text at line boundaries (indicated by ASCII carriage returns
and line feeds) and stores the text without the line separator. Thus, the
segments are of varying size with a possible zero length for blank lines.

An application can now easily display the LIST OF BYTE VARYING
column value and the application no longer needs to break up the single
text segment for printing.

No change is made to the LIST OF BYTE VARYING column values when
a database is converted (using the RMU Convert command, RMU Restore
command, or SQL EXPORT/IMPORT statements) from a previous version.

Applications that read the Oracle Rdb system LIST OF BYTE VARYING
column values must be changed to understand multiple segments. Applications
that do not read these system column values should see no change to previous
behavior. Tools such as the RMU Extract command and the SQL SHOW

and EXPORT statements handle both the old and new formats of the system
metadata.

H.5 Read Only Access

The following is a list of fields of various system tables that are set to read-only
access.

RDB$ACCESS_CONTROL
RDB$COLLATION_CREATOR
RDB$CONSTRAINT_CREATOR
RDB$DATABASE_CREATOR
RDBS$FIELD_CREATOR
RDB$FLAGS
RDB$INDEX_CREATOR
RDB$MODULE_CREATOR
RDB$SMODULE_OWNER
RDB$OUTLINE_CREATOR
RDB$PROFILE_CREATOR

System Tables H-3

e RDB$RELATION_CREATOR

< RDB$ROUTINE_CREATOR

- RDB$ROUTINE_OWNER

e RDB$SEQUENCE_CREATOR

e RDB$SYNONYM_CREATOR

e RDB$TRIGGER_CREATOR

The following BASIC program uses an SQL Module to query system tables

PROGRAM SYSTEM_RELATION

This BASIC program interactively prompts a user to enter a name
of a system table (table). ©Next, the program calls an SQL
Module which uses a cursor to read the system table that the
user entered. Upon reading the fields (domains) of the system
table, the program displays a message to the user as to whether
the fields in a system table can be updated.

OPTION TYPE = EXPLICIT, SIZE = INTEGER LONG

ON ERROR GOTO ERR_ROUTINE

|

! Declare variables and constants

|

DECLARE STRING Column_name, Table_name

DECLARE INTEGER Update_yes, sqglcode

DECLARE INTEGER CONSTANT TRIM_BLANKS = 128, UPPER_CASE = 32
EXTERNAL SUB SET TRANSACTION (LONG)

EXTERNAL SUB OPEN_CURSOR (LONG, STRING)

EXTERNAL SUB FETCH_COLUMN (LONG, STRING, INTEGER)

EXTERNAL SUB CLOSE_CURSOR (LONG)

EXTERNAL SUB COMMIT TRANS (LONG)

|

! Prompt for table name

|

INPUT ’‘Name of Table’; Table_name

Table_name = EDITS (Table_name, UPPER_CASE)

PRINT 'Starting query’

PRINT 'In '; Table_name; ' Table, columns:’

|

! Call the SQL module to start the transaction.

|

CALL SET TRANSACTION (Sglcode)

|

! Open the cursor.

|

CALL OPEN_CURSOR(Sglcode, Table_name)

GET_LOOP:

WHILE (Sglcode = 0)

H-4 System Tables

|

! Fetch each column
|
CALL FETCH_COLUMN (Sglcode, Column_name, Update_yes)
IF (Sglcode = 0)
THEN

! Display returned column
I

PRINT ' '; EDITS(Column_name, TRIM_BLANKS) ;
IF (update_yes = 1)
THEN
PRINT ' can be updated’
ELSE
PRINT ' cannot be updated’
END TIF
END IF

NEXT

ERR_ROUTINE:
IF Sglcode = 100
THEN
PRINT "No more rows."
RESUME PROG_END
ELSE
PRINT "Unexpected error: ", Sglcode, Err
RESUME PROG_END
END IF
PROG_END:
|

! Close the cursor, commit work and exit
|

CALL CLOSE_CURSOR(Sglcode)

CALL COMMIT_TRANS (Sglcode)

END PROGRAM

The following module provides the SQL procedures that are called by the

preceding BASIC program.

-- This SQL module provides the SQL procedures that are called by the

-- preceding BASIC program, system table

MODULE SQL_SYSTEM_REL_BAS -- Module name
LANGUAGE BASIC -- Language of calling program
AUTHORIZATION SQL_SAMPLE -- Authorization ID

System Tables

DECLARE ALIAS FILENAME ’'MF_PERSONNEL’ -- Declaration of the database.

DECLARE SELECT_UPDATE CURSOR FOR
SELECT RDBSFIELD_NAME, RDBSUPDATE_FLAG
FROM RDBSRELATION_FIELDS
WHERE RDBSRELATION_NAME = table_name
ORDER BY RDBSFIELD_POSITION

-- Start a transaction.
PROCEDURE SET_TRANSACTION
SQLCODE;

SET TRANSACTION READ WRITE;

-- Open the cursor.
PROCEDURE OPEN_CURSOR
SQLCODE
table_name RDBSRELATION_NAME;

OPEN SELECT_UPDATE;

-- Fetch a row.
PROCEDURE FETCH_COLUMN

SQLCODE
field_name RDBSFIELD NAME
update_flag RDBSUPDATE_FLAG;

FETCH SELECT_UPDATE INTO :field_name, :update_flag;

-- Close the cursor.
PROCEDURE CLOSE_CURSOR
SQLCODE;

CLOSE SELECT_UPDATE;

-- Commit the transaction.
PROCEDURE COMMIT_TRANS
SQLCODE;

COMMIT;

H-6 System Tables

H.6 All System Tables

The Oracle Rdb system tables are as follows:

RDB$CATALOG_SCHEMA Contains the name and definition
of each SQL catalog and schema.
This table is present only
in databases with the SQL
multischema feature enabled.

RDB$COLLATIONS The collating sequences used by
this database.
RDB$CONSTRAINTS Name and definition of each
constraint.
RDB$CONSTRAINT_RELATIONS Name of each table that
participates in a given constraint.
RDB$DATABASE Database-specific information.
RDBS$FIELD_VERSIONS One row for each version of each
column definition in the database.
RDBS$FIELDS Characteristics of each domain in
the database.
RDB$GRANTED_PROFILES Description of roles and profiles
granted to users and other roles.
RDBS$INDEX_SEGMENTS Columns that make up an index.
RDBS$INDICES Characteristics of the indexes for
each table.
RDBSINTERRELATIONS Interdependencies of entities used
in the database.
RDB$MODULES Module definition as defined by

a user, including the header and
declaration section.

RDB$OBJECT_SYNONYMS When synonyms are enabled, this
system table is created to describe
the synonym name, type, and
target.

RDB$PARAMETERS Interface definition for each routine
stored in RDB$ROUTINES. Each
parameter to a routine (procedure
or function) is described by a row
in RDB$SPARAMETERS.

RDB$PRIVILEGES Protection for the database objects.

RDB$PROFILES Description of any profiles, roles or
users in the database.

System Tables H-7

RDB$QUERY_OUTLINES Query outline definitions used
by the optimizer to retrieve
known query outlines prior to
optimization.
RDB$RELATION_CONSTRAINTS Lists all table-specific constraints.
RDB$RELATION_CONSTRAINT_FLDS Lists the columns that participate
in unique, primary, or foreign

key declarations for table-specific
constraints.

RDB$RELATION_FIELDS Columns defined for each table.
RDB$RELATIONS Tables and views in the database.
RDB$ROUTINES Description of each function and

procedure in the database. The
routine may be standalone or part

of a module.
RDB$SEQUENCES Characteristics of any sequences
defined for the database.
RDB$STORAGE_MAPS Characteristics of each storage
map.
RDB$STORAGE_MAP_AREAS Characteristics of each partition of
a storage map.
RDB$SYNONYMS Connects an object's user-specified

name to its internal database
name. This table is only present
in databases with the SQL
multischema feature enabled.

RDB$TRIGGERS Definition of a trigger.

RDB$VIEW_RELATIONS Interdependencies of tables used in
views.

RDB$WORKLOAD Collects workload information.

RDB$TRIGGER_ACTIONS Collects workload information.

H.6.1 RDB$CATALOG_SCHEMA

The RDB$CATALOG_SCHEMA system table contains the name and definition
of each SQL catalog and schema. This table is present only in databases that
have the SQL multischema feature enabled. The following table provides
information on the columns of the RDB$CATALOG_SCHEMA system table.

H-8 System Tables

Column Name

Data Type

Summary Description

RDB$PARENT_ID

RDB$CATALOG_SCHEMA _

NAME

RDB$CATALOG_SCHEMA_ID

RDB$DESCRIPTION
RDB$SCHEMA_AUTH_ID

RDB$SECURITY_CLASS

RDB$CREATED

RDB$LAST_ALTERED

RDB$CATALOG_SCHEMA _

CREATOR

integer

char(31)

integer

list of byte
varying
char(31)

char(20)
date vms

date vms

char(31)

For a schema, this is the
RDB$CATALOG_SCHEMA_ID

of the catalog to which this schema
belongs. For a catalog, this column
is always 0.

The name of the catalog or schema.

A unique identifier indicating
whether this is a catalog or a
schema.

Schema objects have positive
identifiers starting at 1 and
increasing. Catalog objects have
negative identifiers starting at -1
and decreasing. 0 is reserved.

A user-supplied description of the
catalog or schema.

The authorization identifier of the
creator of the schema.

Reserved for future use.

Set when the schema or catalog is
created.

Set when SQL ALTER CATALOG
or ALTER SCHEMA statement is
used (future).

Creator of this schema or catalog.

H.6.2 RDB$COLLATIONS

The RDB$COLLATIONS system table describes the collating sequence to be
used in the database. The following table provides information on the columns
of the RDB$COLLATIONS system table.

Column Name Data Type Summary Description
RDB$COLLATION_NAME char(31) Supplies the name by which the
database’s collating sequences are
known within the database.
RDB$COLLATION_SEQUENCE list of byte Internal representation of the
varying collating sequence.

System Tables H-9

Column Name Data Type Summary Description

RDB$DESCRIPTION list of byte A user-supplied description of the
varying collating sequence.
RDB$FLAGS integer A bit mask where the following bits
are set:
e Bit0

If an ASCII collating sequence.

- Bit1l
If a DEC_MCS collating
sequence.
RDB$SECURITY_CLASS char(20) Reserved for future use.
RDB$CREATED date vms Set when the collating sequence is
created.
RDBS$LAST_ALTERED date vms Reserved for future use.
RDB$COLLATION_CREATOR char(31) Creator of this collating sequence.

H.6.3 RDB$CONSTRAINTS

The RDB$CONSTRAINTS system table contains the name and definition of
each constraint. The following table provides information on the columns of
the RDB$CONSTRAINTS system table.

Column Name Data Type Summary Description
RDB$CONSTRAINT_NAME char(31) The system-wide unique name of
the constraint.
RDB$CONSTRAINT_BLR list of byte The BLR that defines the
varying constraint.
RDB$CONSTRAINT_SOURCE list of byte The user’s source for the constraint.
varying
RDB$DESCRIPTION list of byte A user-supplied description of this
varying constraint.

H-10 System Tables

Column Name Data Type Summary Description

RDB$EVALUATION_TIME integer A value that represents when a
constraint is evaluated, as follows:

- 0

At commit time (deferred
initially deferred).

- 1

At verb time (deferrable
initially immediate).

- 2

At verb time (not deferrable).

RDB$EXTENSION_PARAMETERS list of byte Reserved for future use.

varying
RDB$SECURITY_CLASS char(20) Reserved for future use.
RDB$CREATED date vms Set when the constraint is created.
RDB$LAST_ALTERED date vms Reserved for future use.
RDB$CONSTRAINT_CREATOR char(31) Creator of this constraint.
RDBS$FLAGS integer Flags.

H.6.3.1 RDBSFLAGS
Represents flags for RDBSCONSTRAINTS system table.

Bit Position Description

Currently disabled.

Currently enabled without validation.
Tracking if SQL generated the name.
A not null constraint.

A primary key constraint.

A foreign key constraint.

A check constraint.

N oo o~ WN P O

A unique constraint.

System Tables H-11

H.6.4 RDB$SCONSTRAINT_RELATIONS

The RDB$CONSTRAINT_RELATIONS system table lists all tables that
participate in a given constraint. The following table provides information on
the columns of the RDB$SCONSTRAINT_RELATIONS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_NAME char(31) The system-wide unique name of
the constraint.

RDB$RELATION_NAME char(31) The name of a table involved in the
constraint.

RDB$FLAGS integer Flags.

RDB$CONSTRAINT_CONTEXT integer The context variable of the table
involved in the constraint.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.4.1 RDBS$FLAGS
Represents flags for RDB$SCONSTRAINT_RELATIONS system table.

Bit Position Description

Reserved for future use.

Reserved for future use.

If the constraint is on the specified table.

If the constraint evaluates with optimization by dbkey lookup.

If the constraint checks for existence.

If the constraint checks for uniqueness.

If the constraint needs to evaluate on store of specified table row.
If the constraint need not evaluate on store of specified table row.
If the constraint needs to evaluate on erase of specified table row.

© 0O N o o b~ W N -, O

If the constraint need not evaluate on erase of specified table row.

H.6.5 RDBSDATABASE

The RDB$DATABASE system table contains information that pertains to the
overall database. This table can contain only one row. The following table
provides information on the columns of the RDB$SDATABASE system table.

H-12 System Tables

Column Name

Data Type

Summary Description

RDB$CDD_PATH

RDB$FILE_NAME

RDB$MAJ_VER
RDB$MIN_VER

RDB$MAX_RELATION_ID

RDB$RELATION_ID

RDB$RELATION_ID_ROOT_
DBK

RDB$RELATION_NAME_
ROOT_DBK

RDBS$FIELD_ID

RDB$FIELD REL_FLD ROOT_
DBK

RDBS$INDEX_ID

RDBS$INDEX_NDX_ROOT_DBK

RDBS$INDEX_REL_ROOT DBK

char(256)

char(255)

integer
integer

integer

integer

char(8)

char(8)

integer

char(8)

integer

char(8)

char(8)

The dictionary path name for the
database.

Oracle Rdb returns the file
specification of the database root
file. [1]

Derived from the database major
version.

Derived from the database minor
version.

The largest table identifier
assigned. Oracle Rdb assigns
the next table an ID of MAX_
RELATION_ID + 1.

The unique identifier of the
RDB$RELATIONS table. If you
drop a table, that identifier is not
assigned to any other table.

A pointer (database key or dbkey)
to the base of the RDB$REL _
REL_ID_NDX index on column
RDB$RELATION_ID.

A pointer (dbkey) to the base of
the RDB$REL_REL_NAME_NDX
index on column RDB$RELATION _
NAME.

The identifier of the
RDBS$FIELD_VERSIONS table.

A pointer (dbkey) to the base
of the RDB$VER_REL_ID_
VER_NDX index on columns
RDB$RELATION_ID and
RDB$VERSION.

The identifier of the RDB$INDICES
table.

A pointer (dbkey) to the base of
the RDB$SNDX_NDX_NAME_NDX
index on column RDB$INDEX_
NAME.

A pointer (dbkey) to the base of the
RDB$NDX_REL_NAM_NDX index
on column RDB$RELATION_ID.

System Tables H-13

Column Name Data Type Summary Description

RDBS$INDEX_SEG_ID integer The identifier of the
RDBS$INDEX_SEGMENTS table.

RDBSINDEX_SEG_FLD_ROOT_ char(8) A pointer (dbkey) to the base of

DBK the RDBSNDX_SEG_NAM_FLD_
POS_NDX index on columns
RDB$INDEX_NAME and
RDBS$FIELD_POSITION.

RDB$SEGMENTED_STRING_ integer The logical area ID that contains

ID the segmented strings.

RDB$ACCESS_CONTROL list of byte The access control policy for the

varying database.

RDB$DESCRIPTION list of byte A user-supplied description of the

varying database.

RDB$DATABASE_PARAMETERS list of byte Reserved for future use.

varying

RDB$EXTENSION_PARAMETERS list of byte Reserved for future use.

varying

RDB$FLAGS integer Flags.

RDBVMS$MAX_VIEW_ID integer The largest view identifier assigned
to the RDB$SRELATION_ID column
in the RDB$RELATIONS system
table. Oracle Rdb assigns the next
view an ID of MAX_VIEW_ID + 1.

RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the
privileges that will be audited for
the database, as specified in the
RMU Set Audit command.

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the
privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

RDBVMS$SECURITY_USERS list of byte An access control list that identifies

varying users who will be audited or who
will produce alarms for DAC
(discretionary access control) events
when DACCESS (discretionary
access) auditing is enabled for
specific database objects.

RDB$SECURITY_CLASS char(20) Reserved for future use.

RDBVMSS$SECURITY_AUDIT2 integer Reserved for future use.

H-14 System Tables

Column Name Data Type Summary Description
RDBVMSS$SECURITY_ALARMZ2 integer Reserved for future use.
RDBVMS$CHARACTER_SET _ integer Value is the character set ID used
ID for the identifier character set.
RDBVMS$CHARACTER_SET _ integer Value is the character set ID
NATIONAL used for all NCHAR (also called
NATIONAL CHAR or NATIONAL
CHARACTER) data types and
literals.
RDBVMS$CHARACTER_SET _ integer Value is the character set ID used
DEFAULT for the default character set.
RDB$MAX_ROUTINE_ID integer Maintains a count of the modules
and routines added to the database.
Value is O if no routines or modules
have been added to the database.
RDB$CREATED date vms Set when the database is created.
RDB$LAST_ALTERED date vms Set when SQL ALTER DATABASE
statement is used.
RDB$DATABASE_CREATOR char(31) Creator of this database.
RDB$DEFAULT_STORAGE_ integer Default storage area used for
AREA_ID unmapped, persistent tables and
indices.
RDB$DEFAULT_TEMPLATE_ integer Reserved for future use.
AREA_ID
Footnote:
[1] The root file specification is not stored on disk (an RMU Dump command

with the Areas qualifier shows that this field is blank) and is only returned
to queries at runtime. Therefore, the root file specification remains correct
after you use the RMU Move_Area, RMU Copy_Database, and RMU Backup
commands, and the SQL EXPORT and IMPORT statements.

The following ALTER DATABASE clauses modify the RDB$SLAST_ALTERED

column in the RDB$DATABASE system table:

= CARDINALITY COLLECTION IS {ENABLED | DISABLED}
= DICTIONARY IS [NOT] REQUIRED
= DICTIONARY IS NOT USED

= METADATA CHANGES ARE {ENABLED | DISABLED}
e MULTISCHEMA IS {ON | OFF}

System Tables H-15

- SECURITY CHECKING IS EXTERNAL (PERSONA SUPPORT IS
{ENABLED | DISABLED))

- SECURITY CHECKING IS INTERNAL (ACCOUNT CHECK IS
{ENABLED | DISABLEDY})

= SYNONYMS ARE ENABLED
e WORKLOAD COLLECTION IS {ENABLED | DISABLED}

The following SQL statements modify the RDB$LAST_ALTERED column in
the RDB$DATABASE system table:

e GRANT statement
e REVOKE statement
e COMMENT ON DATABASE statement

H.6.5.1 RDBS$FLAGS
Represents flags for RDB$DATABASE system table.

Bit Position Description

0 If dictionary required.

1 If ANSI protection used.

2 If database file is a CDD$DATABASE database.

3 Reserved for future use.

4 Reserved for future use.

5 Reserved for future use.

6 Multischema is enabled.

7 Reserved for future use.

8 System indexes use run length compression.

9 The optimizer saves workload in RDB$WORKLOAD system table.
10 The optimizer is not updating table and index cardinalities.
11 All metadata changes are disabled.

12 Oracle Rdb uses database for user and role names.

13 When true use PERSONA services.

14 Synonyms are supported.

15 Prefix cardinalities are not collected for system indexes.

16 If collecting, use full algorithm for system indexes.

H-16 System Tables

Bit Position Description

17 Use sorted ranked index for system indexes.

H.6.6 RDBSFIELD_VERSIONS

The RDB$FIELD_VERSIONS system table is an Oracle Rdb extension. This
table contains one row for each version of each column definition in the
database. The following table provides information on the columns of the
RDBS$FIELD_VERSIONS system table.

Column Name

Data Type

Summary Description

RDB$RELATION_ID

RDBS$FIELD_ID

RDBS$FIELD_NAME
RDB$VERSION

RDBS$FIELD_TYPE

RDBS$FIELD_LENGTH

RDB$OFFSET

integer

integer

char(31)
integer

integer

integer

integer

The identifier for a table within the
database.

An identifier used internally to
name the column represented by
this row.

The name of the column.

The version number for the table
definition to which this column
belongs.

The data type of the column
represented by this row. This data
type must be interpreted according
to the rules for interpreting the
DSC$B_DTYPE field of class

S descriptors (as defined in the
OpenVMS Calling Standard).

Segmented strings require a unique
field type identifier. This identifier
is currently 261.

The length of the column
represented by this row. This
length must be interpreted
according to the rules for
interpreting the DSC$W_LENGTH
field within class S and SD
descriptors (as defined in the
OpenVMS Calling Standard).

The byte offset of the column from
the beginning of the row.

System Tables H-17

Column Name Data Type Summary Description
RDBS$FIELD_SCALE integer For numeric data types, the
scale factor to be applied when
interpreting the contents of the
column represented by this row.
This scale factor must be
interpreted according to the rules
for interpreting the DSC$B_SCALE
field of class SD descriptors (as
defined in the OpenVMS Calling
Standard).
For date-time data types,
RDBS$FIELD_SCALE is fractional
seconds precision. For other non-
numeric data types,
RDBS$FIELD_SCALE is 0.
RDB$FLAGS integer Flags.
RDB$VALIDATION_BLR list of byte The BLR that represents the SQL
varying check constraint clause defined in
this version of the column.
RDB$COMPUTED_BLR list of byte The BLR that represents the SQL
varying clause, COMPUTED BY, defined in
this version of the column.
RDB$MISSING_VALUE list of byte The BLR that represents the SQL
varying clause, MISSING_VALUE, defined
in this version of the column.
RDB$SEGMENT_LENGTH integer The length of a segmented string
segment. For date-time interval
fields, the interval leading field
precision.
RDBVMS$COLLATION_NAME char(31) The name of the collating sequence
for the column.
RDB$ACCESS_CONTROL list of byte The access control list for the
varying column.
RDB$DEFAULT_VALUE2 list of byte The SQL default value.
varying
RDBVMS$SECURITY_AUDIT integer A bit mask that indicates the

H-18 System Tables

privileges that will be audited for
the database, as specified in the
RMU Set Audit command.

Column Name

Data Type Summary Description

RDBVMS$SECURITY_ALARM integer A bit mask that indicates the

privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

RDBS$FIELD_SUB_TYPE integer A value that describes the data

subtype of RDB$FIELD_TYPE as
shown in Help topic RDBSFIELD_
SUB_TYPE.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.6.1 RDBS$FLAGS

Represents flags for RDB$FIELD_VERSIONS system table.

Bit Position Description

0 Not used.

1 Not used.

2 Not used.

3 Used by Oracle Rdb internally.

4 Set if column references a local temporary table (usually a
COMPUTED BY column).

5 Use SQL semantics for check constraint processing.

6 AUTOMATIC set on insert.

7 AUTOMATIC set on update.

8 If check constraint fails, use name in message.

9 Column is computed by an IDENTITY sequence.

10 View column is based on a read-only, or dbkey column.

H.6.7 RDB$SPARAMETER_SUB_TYPE
For details, see the Help topic RDB$FIELD SUB_TYPE.

System Tables H-19

H.6.8 RDBSFIELD_SUB_TYPE

The following table lists the values for the RDB$FIELD_SUB_TYPE and the

RDB$PARAMETER_SUB_TYPE columns.

RDBS$FIELD_TYPE = DSC$K_DTYPE_ADT

RDBS$FIELD_SUB_TYPE [1]

Summary Description

Less than O
Equal to O

56
63

513
514
515
516
520
524
528
536
540
544
560

568
572

H-20 System Tables

Reserved for future use.
Traditional OpenVMS timestamp,
which includes year, month, day,
hour, minute, second.

DATE ANSI, which includes year,
month, day.

TIME, which includes hour,
minute, second.

TIMESTAMP, which includes year,
month, day, hour, minute, second.

INTERVAL YEAR.

INTERVAL MONTH.
INTERVAL YEAR TO MONTH.
INTERVAL DAY.

INTERVAL HOUR.

INTERVAL DAY TO HOUR.
INTERVAL MINUTE.
INTERVAL HOUR TO MINUTE.
INTERVAL DAY TO MINUTE.
INTERVAL SECOND.

INTERVAL MINUTE TO
SECOND.

INTERVAL HOUR TO SECOND.
INTERVAL DAY TO SECOND.

RDBSFIELD_TYPE = DSC$K_DTYPE_T or DSC$K_DTYPE_VT

RDBS$FIELD_SUB_TYPE Summary Description

Equal to O ASCII or DEC_MCS character set.

Greater than 0 Character set other than ASCII or
DEC_MCs.

Less than O Special use of character data.

RDBS$FIELD_TYPE = DSC$SK_DTYPE_BLOB [2]

RDBS$FIELD_SUB_TYPE Summary Description
Less than O User-specified.

Equal to O Default.

Equal to 1 BLR (query) type.
Equal to 2 Character type.

Equal to 3 MBLR (definition) type.
Equal to 4 Binary type.

Equal to 5 OBLR (outline) type.
Greater than 5 Reserved for future use.
Footnotes:

[1] When RDBS$FIELD_SUB_TYPE is not equal to 0, then RDB$SEGMENT _

LENGTH can hold the interval leading field precision for intervals, and
RDBS$FIELD_SCALE can hold the fractional seconds precision for interval,
time, or timestamp.

[2] RDB$SEGMENT_LENGTH is the suggested size for a single binary large
object (BLOB) segment.

H.6.9 RDBS$FIELDS

The RDBS$FIELDS system table describes the global (generic) characteristics
of each domain in the database. There is one row for each domain in the
database. The following table provides information on the columns of the
RDBS$FIELDS system table.

System Tables H-21

Column Name

Data Type

Summary Description

RDBS$FIELD_NAME

RDBS$FIELD_TYPE

RDBS$FIELD_LENGTH

RDBS$FIELD_SCALE

H-22 System Tables

char(31)

integer

integer

integer

The name of the domain
represented by this row. Each
row within

RDBS$FIELDS must have a unique
RDBS$FIELD_NAME value.

The data type of the domain
represented by this row. This data
type must be interpreted according
to the rules for interpreting the
DSC$B_DTYPE field of class

S descriptors (as defined in the
OpenVMS Calling Standard).

Segmented strings require a unique
field type identifier. This identifier
is 261.

The length of the field represented
by this row. This length must

be interpreted according to the
rules for interpreting the DSC$W _
LENGTH field within class S

and SD descriptors (as defined

in OpenVMS Calling Standard).
For strings, this field contains the
length in octets (8-bit bytes), not in
characters.

For numeric data types, the
scale factor to be applied when
interpreting the contents of the
field represented by this row.

This scale factor must be
interpreted according to the rules
for interpreting the DSC$B_SCALE
field of class SD descriptors (as
defined in the OpenVMS Calling
Standard). For date-time data
types, RDB$FIELD_SCALE is
fractional seconds precision. For
other non-numeric data types,
RDBS$FIELD_SCALE is 0.

Column Name Data Type Summary Description

RDB$SYSTEM_FLAG integer A bit mask where the following bits
are set:

e |f Bit O is clear, this is a user-
defined domain.

= If Bit O is set, this is a system
domain.

RDB$VALIDATION_BLR list of byte The BLR that represents the

varying validation expression to be checked
each time a column based on this
domain is updated.

RDB$COMPUTED_BLR list of byte The BLR that represents the

varying expression used to calculate a
value for the column based on this
domain.

RDBS$EDIT_STRING varchar(255) The edit string used by interactive
SQL when printing the column
based on this domain. RDB$EDIT _
STRING can be null.

RDB$MISSING_VALUE list of byte The value used when the missing

varying value of the column based on this
domain is retrieved or displayed.
RDB$MISSING_VALUE does
not store any value in a column;
instead, it flags the column value
as missing.

RDBS$FIELD_SUB_TYPE integer A value that describes the data
subtype of RDB$FIELD_TYPE as
shown in the RDB$FIELD _SUB_
TYPE Help topic.

RDB$DESCRIPTION list of byte A user-supplied description of this

varying domain.

RDB$VALIDATION_SOURCE list of byte The user’s source text for the

varying validation criteria.

RDB$COMPUTED_SOURCE list of byte The user’s source used to calculate

varying a value at execution time.

System Tables H-23

Column Name Data Type

Summary Description

RDB$QUERY_NAME char(31)
RDB$QUERY_HEADER list of byte
varying
RDB$DEFAULT_VALUE list of byte
varying
RDB$SEGMENT_LENGTH integer

RDB$EXTENSION_PARAMETERS list of byte
varying

RDB$CDD_NAME list of byte
varying

H-24 System Tables

The query name of this do-
main. Column attributes in
RDBS$RELATION_FIELDS take
precedence over attributes in
RDBS$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the

value from RDBS$FIELDS is used.
RDB$QUERY_NAME can be null.

The query header of the domain is
used by interactive SQL. Column
attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDBS$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the
value from RDBS$FIELDS is used.

The default value used by non-
SQL interfaces when no value

is specified for a column during

a STORE clause. It differs from
RDB$MISSING_VALUE in that it
holds an actual column value.

Column attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDBS$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the
value from RDBS$FIELDS is used.

The length of a segmented string
segment. For date-time interval
fields, the interval leading field
precision.

Reserved for future use.

The fully qualified name of the
dictionary entity upon which the
domain definition is based, as
specified in the SQL clause, FROM
PATHNAME.

Column Name Data Type

Summary Description

RDBVMS$COLLATION_NAME char(31)

RDB$DEFAULT_VALUE2 list of byte
varying
RDB$SECURITY_CLASS char(20)
RDB$FLAGS integer
RDB$CREATED date vms
RDB$LAST_ALTERED date vms
RDBS$FIELD_CREATOR char(31)

The name of the collating sequence
for the domain.

The BLR for the SQL default value.
This value is used when no value
is provided in an SQL INSERT
statement.

Reserved for future use.
Flags.
Set when the domain is created.

Set when SQL ALTER DOMAIN
statement used.

Creator of this domain.

H.6.9.1 RDBS$FLAGS

Represents flags for RDB$FIELDS system table.

Bit Position Description

o o~ W N P O

Domain is hidden by user.

A SQL CHECK constraint is defined on this domain.
AUTOMATIC set on insert.

AUTOMATIC set on update.

If check constraint fails, use name in message.
Column is computed an IDENTITY sequence.

View column is based on a read-only, or dbkey column.

H.6.10 RDBSGRANTED_PROFILES

The RDB$GRANTED_PROFILES system table contains information about
each profile, and role granted to other roles and users. The following table
provides information on the columns of the RDBSGRANTED_PROFILES
system table. See also the related RDB$PROFILES system table.

System Tables H-25

Column Name Data Type Summary Description

RDB$GRANTEE_PROFILE_ID integer This is a unique identifier gener-
ated for the parent RDB$PROFILES
row.

RDB$PROFILE_TYPE integer Class of profile information: role
(1), default role (2), profile (0).

RDB$PROFILE_ID integer Identification of the profile or role

granted to this user.

H.6.11 RDBSINDEX_SEGMENTS

The RDB$INDEX_SEGMENTS system table describes the columns that make
up an index’s key. Each index must have at least one column within the key.
The following table provides information on the columns of the RDBSINDEX _

SEGMENTS system table.

Column Name Data Type Summary Description

RDBS$INDEX_NAME char(31) The name of the index of which this
row is a segment.

RDBS$FIELD_NAME char(31) The name of a column that
participates in the index key. This
column name matches the name in
the RDB$FIELD_NAME column
of the RDB$RELATION_FIELDS
table.

RDBS$FIELD_POSITION integer The ordinal position of this key
segment within the total index
key. No two segments in the key
may have the same RDB$FIELD_
POSITION.

RDBS$FLAGS integer A bit mask where Bit O is set for
descending segments, otherwise the
segments are ascending.

RDB$FIELD_LENGTH integer Shortened length of text for
compressed indexes.

RDBVMSS$FIELD_MAPPING _ bigint Shows the lower limit of the

LOW mapping range.

RDBVMSS$FIELD_MAPPING_ bigint Shows the higher limit of the

HIGH mapping range.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H-26 System Tables

Column Name

Data Type

Summary Description

RDB$CARDINALITY

bigint

Prefix cardinality for this and
all prior key segments (assumes
sorting by ordinal position).

H.6.11.0.1 RDB$FLAGS Represents flags for RDB$INDEX_SEGMENTS

system table.

Bit Position Description

0 Is set for descending segments.

H.6.12 RDBSINDICES

The RDBS$INDICES system table contains information about indexes in the
database. The following table provides information on the columns of the

RDBS$INDICES system table.

Column Name Data Type Summary Description
RDB$INDEX_NAME char(31) A unique index name.
RDB$RELATION_NAME char(31) The name of the table in which the
index is used.
RDB$SUNIQUE_FLAG integer A value that indicates whether
duplicate values are allowed in
indexes, as follows:
- 0
If duplicate values are allowed.
- 1
If no duplicate values are
allowed.
RDB$ROOT_DBK char(8) A pointer to the base of the index.
RDBS$INDEX_ID integer The identifier of the index.
RDB$FLAGS integer Flags.
RDB$SEGMENT_COUNT integer The number of segments in the key.
RDB$DESCRIPTION list of byte A user-supplied description of this
varying index.

System Tables H-27

Column Name

Data Type

Summary Description

RDB$EXTENSION_PARAMETERS list of byte

RDB$CARDINALITY

RDB$SECURITY_CLASS
RDB$CREATED
RDB$LAST_ALTERED

RDBS$SINDEX_CREATOR
RDB$KEY_CLUSTER_FACTOR

H-28 System Tables

varying

bigint

char(20)
date vms
date vms

char(31)
bigint(7)

Stores NODE SIZE value,
PERCENT FILL value, compression
algorithm, and compression run
length for this index. Also reserved
for other future use.

The number of unique entries for
a non-unique index. For a unique
index, the number is 0.

Reserved for future use.
Set when the index is created.

Set when SQL ALTER INDEX
statement is used.

Creator of this index.

Sorted Index: The ratio of the
number of clump changes that
occur when you traverse level-1
index nodes and the duplicate node
chains to the number of keys in the
index. This statistic is based on
entire index traversal. This means
last duplicate node of current key is
compared with first duplicate node
of next key for clump change.

Hash Index: The average number
of clump changes that occur when
you go from system record to hash
bucket to overflow hash bucket

(if fragmented), and traverse the
duplicate node chain for each key.
This statistic is based on per key
traversal.

Column Name

Data Type Summary Description

RDB$DATA_CLUSTER_ bigint(7) Sorted Index: The ratio of the

FACTOR

number of clump changes that
occur between adjacent dbkeys
in duplicate chains of all keys to
the number of keys in the index.
For unique index, the dbkeys of
adjacent keys are compared for
clump change. This statistic is
based on entire index traversal.
This means last dbkey of current
key is compared with first dbkey of
next key for clump change.

Hashed Index: The average
number of clump changes that
occur between adjacent dbkeys in
a duplicate chain for each key. For
a unique index, this value will be
always 1. This statistic is based on
per key traversal.

RDB$INDEX_DEPTH integer Sorted Index: The depth of the

B-tree.

Hashed Index: This column is not
used for hashed indices and is left
as 0.

H.6.12.1 RDBS$FLAGS

Represents flags for RDB$INDICES system table.

Bit Position

Description

0 N o o0 N P O

HASHED index. (If bit is clear, SORTED index.)

Index segments are numeric with MAPPING VALUES compression.
HASHED ORDERED index. (If bit is clear, HASHED SCATTERED.)
Reserved for future use.

Run-length compression.

Index is disabled or enabled deferred.

Build pending (enabled deferred).

Reserved for future use.

Reserved for future use.

System Tables H-29

Bit Position

Description

9

10
11
12
13
14
15

Reserved for future use.

Reserved for future use.

Internal use only.

SORTED RANKED index.

Prefix cardinalities disabled.

Use the full collection algorithm for prefix cardinality.

Index generated for a constraint when SET FLAGS 'AUTO_INDEX’
was enabled.

H.6.13 RDBSINTERRELATIONS

The RDBSINTERRELATIONS system table contains information that indicates
the interdependencies of objects in the database. The RDB$SINTERRELATIONS
table can be used to determine if an object can be dropped or if some other
object depends upon its existence in the database. The following table provides
information on the columns of the RDB$INTERRELATIONS system table.

Column Name

Data Type Summary Description

RDB$OBJECT_NAME char(31) The name of the object that cannot

be dropped or altered because it is
used by some other entity in the
database.

RDB$SUBOBJECT_NAME char(31) The name of the associated sub-

object that cannot be dropped
or altered because it is used by
another entity in the database.

RDB$ENTITY_NAME1 char(31) The name of the entity that

depends on the existence of
the object identified by the
RDB$OBJECT_NAME and
RDB$SUBOBJECT_NAME.

RDB$ENTITY_NAME2 char(31) If used, the name of the entity,

H-30 System Tables

together with RDB$ENTITY
NAME]1, that depends on the
existence of the object specified
in RDB$OBJECT_NAME and
RDB$SUBOBJECT_NAME.

Column Name Data Type Summary Description

RDB$USAGE char(31) The relationship among RDB$OBJECT _
NAME, RDB$SUBOBJECT _
NAME, RDBSENTITY_NAME]1,
and RDB$SENTITY_NAME?2.

RDB$USAGE contains a short

description.
RDB$FLAGS integer Flags.
RDB$CONSTRAINT_NAME char(31) This column is the name of a

constraint that is referred to

from another system table. The
value in this column equates to a
value for the same column in the
RDB$CONSTRAINTS system table.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.13.1 RDB$USAGE

Describes the field values for RDB$USAGE fields for the RDBSINTERRELATIONS
system table.

The table RdAb$INTERRELATIONS records much of the dependency
information when one object references another in the database. Such
information is used by DROP ... RESTRICT statements to prevent an object
being deleted when it is required by some other object. For instance, a function
may use one or more columns from a table in a query. That table and its
columns will be recorded with a value in RDB$USAGE of 'Storage Map’'.

Many reported errors include text from the RDBSUSAGE field to explain the
type of dependency preventing the DROP from succeeding. These text strings
are described in the following table.

Field value Description

Computed Field A Computed by or Automatic column references this
table, view, column or function.

Constraint Constraint definition references table, view, column,
sequence or function.

Storage Map Storage map references table and column.

View View definition requires table, view, column,

sequence or function.

System Tables H-31

Field value

Description

View Field
Trigger

RelConstraint
Domain Constraint (VALID IF)

Requires
Procedure
Function

Default Txn Reserving

Default Txn Evaluating

Lang Semantics

Cast As Domain
Temp Table Using Domain

Computed Column in Temp
Table

Module Variable Default Value

Referenced by Synonym
Default Value

Constraint Index

H-32 System Tables

View column requires table, view, column, sequence
or function.

Trigger definition requires table, view, column,
sequence or function.

A table (relation) constraint references a table.

A domain constraint (or VALID IF) references this
routine or sequence.

This table, temporary table (with module name), or
index is used by a query outline.

Procedure definition requires table, view, column,
sequence or function.

Function definition requires table, view, column,
sequence or function.

A stored module DECLARE TRANSACTION
references a table or view in the RESERVING
clause.

A stored module DECLARE TRANSACTION
references a constraint in the EVALUATING clause.

A stored function, procedure or trigger uses
wildcard for column list. This includes SELECT
* or INSERT with an omitted column list.

A CAST function referenced a domain name.

A DECLARE LOCAL TEMPORARY TABLE used a
domain for a column’s data type.

A computed by or automatic column defined by

a DECLARE LOCAL TEMPORARY TABLE or
DECLARE LOCAL TEMPORARY VIEW references
this object.

A module global DECLARE statement used a
DEFAULT clause. Table, view, function, domain
and sequence dependencies are recorded.

When a synonym is created, a dependency is stored.

A table column uses a DEFAULT clause. Table,
view, function, domain and sequence dependencies
are recorded.

When SET FLAGS 'AUTO_INDEX is active, any
constraint definition will define an index matching
the columns of the constraint.

Field value Description

Module Variable This module variable uses this domain.
Routine Parameter Not currently used. Reserved for future use.
Temp Table Reference A DECLARE LOCAL TEMPORARY TABLE
references this table in the LIKE clause.
Storage Map Function When CREATE STORAGE MAP is executed, a

system routine is created to reflect the mapping.
Those column dependencies are recorded.

H.6.13.2 RDBS$FLAGS
Represents flags for RDB$SINTERRELATIONS system table.

Bit Position Description

0 Entity is a module.

1 Object is a module.
2 Entity is a routine.

3 Object is a routine.
4 Entity is a trigger.

5 Object is a trigger.

6 Entity is a constraint.
7 Object is a constraint.
8 Reserved.

9 Reserved.

10 Reserved.

11 Reserved.

12 Reserved.

13 Reserved.

14 Entity is a sequence.
15 Object is a sequence.
16 Entity is a variable.
17 Object is a variable.
18 Entity is an index.
19 Object is an index.

System Tables H-33

H.6.14 RDBSMODULES

The RDB$MODULES system table describes a module as defined by a user. A
module can contain a stored procedure or an external function. Each module
has a header, a declaration section, and a series of routines. The header and
declaration section are defined in RDB$MODULES. (Each routine is defined
by an entry in RDBSROUTINES.) A row is stored in the RDBSMODULES
table for each module that is defined by a user. The following table provides
information on the columns of the RDB$SMODULES system table.

Column Name Data Type Summary Description
RDB$MODULE_NAME char(31) Name of the module.
RDB$MODULE_OWNER char(31) Owner of the module. If the module

is an invoker rights module, this
column is set to NULL. Otherwise,
definers username from this column
is used for definers rights checking.

RDB$MODULE_ID integer Unique identifier assigned to this
module by Oracle Rdb.
RDB$MODULE_VERSION char(16) Module version and checksum.

Allows runtime validation of
the module with respect to the

database.
RDB$EXTENSION_PARAMETERS list of byte Encoded information for module
varying level declarations.
RDB$MODULE_HDR_SOURCE list of byte Source of the module header as
varying provided by the definer.
RDB$DESCRIPTION list of byte Description of the module.
varying
RDB$ACCESS_CONTROL list of byte Access Control List (ACL) to control
varying access to the module. This value
can be NULL.
RDB$SECURITY_CLASS char(20) Reserved for future use.
RDB$CREATED date vms Set when the module is created.
RDB$LAST_ALTERED date vms Set when module is altered by the
ALTER, RENAME, DROP, GRANT
and REVOKE statements.
RDB$MODULE_CREATOR char(31) Creator of this module. Differentiates
between OWNER and AUTHORIZATION.
RDB$VARIABLE_COUNT integer Number of global variables.

H-34 System Tables

Column Name Data Type

Summary Description

RDB$FLAGS integer

Flags.

H.6.15 RDBSOBJECT_SYNONYMS

The RDB$OBJECT_SYNONYMS system table is created with synonyms are
enabled to record the synonym name, type, and target. The following table
provides information on the columns of the RDB$OBJECT_SYNONYMS

system table.

Column Name Data Type Summary Description
RDB$CREATED date vms Time and date when synonym entry
was created.
RDB$LAST_ALTERED date vms Time and date when synonym entry
was last altered.
RDB$DESCRIPTION list of byte A user-supplied description of the
varying synonym.
RDB$EXTENSION_PARAMETERS list of byte Reserved for future use.
varying
RDB$FLAGS integer Flags.
RDB$OBJECT_TYPE integer The type of synonym.
RDB$SYNONYM_NAME char(31) The synonym to be used by queries.
This name is unique within the
RDB$OBJECT_SYNONYMS
system table.
RDB$SYNONYM_VALUE char(31) name of the object for which the
synonym is defined.
RDB$SYNONYM_CREATOR char(31) Creator of the synonym entry.

H.6.15.1 RDBS$FLAGS

Represents flags for RDB$OBJECT_SYNONYMS system table.

Bit Position Description
0 When set, this bit indicates that this synonym references another
synonym.

Reserved for future use.

2 Indicates that the synonym was created by RENAME statement.

System Tables H-35

H.6.16 RDBSPARAMETERS

The RDB$PARAMETERS system table defines the routine interface for each
routine stored in RDB$SROUTINES. Each parameter to a routine (procedure
or function) is described by a row in RDB$PARAMETERS. The following table
provides information on the columns of the RDB$PARAMETERS system table.

Column Name Data Type Summary Description
RDB$PARAMETER_NAME char(31) Name of the parameter.
RDB$PARAMETER_SOURCE char(31) Source (domain or table) to the
routine containing the parameter.
RDB$ROUTINE_ID integer Unique identifier assigned to the

routine containing this parameter
by Oracle Rdb.

RDB$ORDINAL_POSITION integer Position in parameter list.
Position 0 indicates function result
description.

RDB$PARAMETER_TYPE integer Data type of the parameter.

RDB$PARAMETER_SUB_TYPE integer A value that describes the data

subtype of RDB$PARAMETER _
TYPE as shown in RDB$FIELD _
SUB_TYPE Help topic.

RDB$PARAMETER_LENGTH integer Length of the parameter.
RDB$PARAMETER_SCALE integer Scale of the data type.
RDB$PARAMETER_SEG_ integer The length of the segmented string
LENGTH segment. For date-time interval
fields, the interval leading field
precision.
RDB$DEFAULT_VALUE?2 list of byte Parameter default.
varying
RDB$FLAGS integer Flags.
RDB$DESCRIPTION list of byte Description of the parameter.
varying
RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.16.1 RDBS$FLAGS
Represents flags for RDB$PARAMETERS system table.

H-36 System Tables

Bit Position Description

IN (read) INOUT (modify).

OUT (write) INOUT (modify).

Reserved for future use.

BY DESCRIPTOR (default is BY REFERENCE).
BY VALUE (Bit number 3 is ignored).

Reserved for future use.

o o0 W N - O

Set if parameter mode is undefined.

If Bits 0 and 1 are both clear, then the parameter is the RETURN
TYPE of a function.

H.6.17 RDBSPRIVILEGES

The RDB$PRIVILEGES system table describes the protection for the database
objects. There is one row per grantor, grantee, and privileges combination per
entity in the database.

A row is stored in the RDB$PRIVILEGES table for each user who grants
another user privileges for a database object.

If the privilege for a database object was granted without the SQL GRANT
option, the row of the grantor and grantee is modified.

The privilege change takes effect at commit time of the command.

Note
The RDB$PRIVILEGES system table is used only in ANSI databases.

The following table provides information on the columns of the RDB$PRIVILEGES
system table.

Column Name Data Type Summary Description

RDB$SUBOBJECT_ID integer The id of the column or routine
for which protection is defined.
If protection is on a database,
module, table, or view, this column
is NULL. The value stored in this
column must be unique within the
database.

System Tables H-37

Column Name

Data Type

Summary Description

RDB$OBJECT_ID

RDB$GRANTOR

RDB$GRANTEE

RDB$PRIV_GRANT

RDB$PRIV_NOGRANT

RDB$FLAGS

RDB$SECURITY_CLASS

integer

integer

list of byte
varying

integer

integer

integer
char(20)

The id of the module, table,
sequence, or view for which
protection is defined. The column
is NULL if the protection is defined
for the database. The value stored
in this column must be unique
within the database.

The binary format UIC of the
person who defined or changed the
privileges. This is usually the UIC
of the person who executed the
protection command.

For an SQL IMPORT statement,
the UIC is that of the person who
originally defined the protection for
the user; not necessarily the person
who performed the SQL IMPORT
statement.

The binary format of the UICs of
the persons who hold privileges on
the database object.

Specifies the access mask of
privileges that the grantee has
that he can grant to other users.

Specifies the access mask of
privileges that the grantee has
that he can use himself but cannot
give to other users.

Flags.
Reserved for future use.

H.6.17.1 RDBS$FLAGS

Represents flags for RDB$PRIVILEGES system table.

Bit Position

Description

0
1

Privilege is defined for a module and procedure.
The data is related to sequences.

H-38 System Tables

H.6.18 RDB$PROFILES

The RDB$PROFILES system table contains information about each profile,
user and role defined for the database. The following table provides
information on the columns of the RDB$PROFILES system table. See also
the related RDB$GRANTED_PROFILES system table.

Column Name Data Type Summary Description
RDB$CREATED date vms time and date when profile entry
was created.
RDB$LAST_ALTERED date vms time and date when profile entry
was last altered.
RDB$DESCRIPTION list of byte Comment for this entry.
varying
RDB$EXTENSION_ list of byte Extra definitions such as default
PARAMETERS varying transaction.
RDBS$SYSTEM_FLAG integer Set to TRUE (1) if this is a system

define role or user, otherwise it

is set to FALSE (0). When the
RDB$SYSTEM_FLAG is set these
entries may not be deleted by a
DROP statement.

RDB$FLAGS integer Flags.
RDB$DEFINE_ACCESS bigint Which objects can be defined.
RDB$CHANGE_ACCESS bigint Which objects can be changed.
RDB$DELETE_ACCESS bigint Which objects can be deleted.
RDB$PROFILE_ID integer This is a unique identifier

generated for each USER,
PROFILE and ROLE added to
the database.

RDB$PROFILE_TYPE integer Class of profile information: role
(1), user (3), profile (0).
RDB$PROFILE_NAME char(31) Name of the user, profile or role.

This name is unique within the
RDB$PROFILES table.

RDB$PROFILE_CREATOR char(31) Creator of entry.

System Tables H-39

H.6.18.1 RDBS$FLAGS

Represents flags for RDB$PROFILES system table.

Bit Position

Description

0

A W DN P

The user entry is disabled (ACCOUNT LOCK).
Means that the user/role is identified externally.

Reserved for future use.
This is a system role.

Means the user is assigned a profile.

H.6.19 RDB$SQUERY_OUTLINES

The RDB$QUERY_OUTLINES system table contains query outline definitions
that are used by the optimizer to retrieve known query outlines prior to
optimization. The following table provides information on the columns of the
RDB$QUERY_OUTLINES system table.

Column Name Data Type Summary Description
RDB$OUTLINE_NAME char(31) The query outline name.
RDB$BLR_ID char(16) The BLR hashed identifier. This
identifier is generated by the
optimizer whenever a query outline
is created.
RDB$MODE integer The query mode (MANDATORY or
OPTIONAL).
RDB$FLAGS integer Flags.
RDB$DESCRIPTION list of byte A user-supplied description of this
varying outline.
RDB$OUTLINE_BLR list of byte The compiled query outline.
varying
RDB$SECURITY_CLASS char(20) Reserved for future use.
RDB$CREATED date vms Set when the outline is created.
RDBS$LAST_ALTERED date vms Reserved for future use.
RDB$OUTLINE_CREATOR char(31) Creator of this outline.

H-40 System Tables

H.6.19.1 RDBS$FLAGS

Represents flags for RDB$QUERY_OUTLINES system table.

Bit Position Description

0 This outline has been invalidated by some action, such as dropping
a required table or index.

H.6.20 RDBSRELATION_CONSTRAINTS

The RDB$RELATION_CONSTRAINTS system table lists all table-specific
constraints. The following table provides information on the columns of the
RDB$RELATION_CONSTRAINTS system table.

Column Name

Data Type

Summary Description

RDB$CONSTRAINT_MATCH_
TYPE

RDB$CONSTRAINT_NAME

RDB$CONSTRAINT_SOURCE

RDB$CONSTRAINT_TYPE

RDB$ERASE_ACTION

RDB$FIELD_NAME

RDB$FLAGS

integer

char(31)

list of byte
varying

integer

integer

char(31)

integer

The match type associated with a
referential integrity table-specific
constraint. This column is reserved
for future use. The value is always
0.

The name of the constraint
defined by the table specified by
RDB$RELATION_NAME.

The value in this column equates to
a value for the same column in the
RDB$CONSTRAINTS system table.

This text string contains the source
of the constraint from the table
definition.

The type of table-specific constraint
defined. The values are shown in
the RDB$CONSTRAINT_TYPE
Help topic.

The type of referential integrity
erase action specified. This column
is reserved for future use. The
value is always 0.

The name of the column for which
a column-level, table-specific
constraint is defined. The column is
blank for a table-level constraint.

Flags.

System Tables H-41

Column Name

Data Type

Summary Description

RDB$MODIFY_ACTION

RDB$REFD_CONSTRAINT_
NAME

RDB$RELATION_NAME

RDB$SECURITY_CLASS

integer

char(31)

char(31)

char(20)

The type of referential integrity
modify action specified. This
column is reserved for future use.
The value is always 0.

The name of the unique or primary
key constraint referred to by a
referential integrity foreign key
constraint.

If the constraint is not a referential
integrity constraint or no
referential integrity constraint
was specified, this column will

be null. Otherwise, the value

in this column will equate to a
value for the same columns in

the RDB$CONSTRAINTS and
RDB$RELATION_CONSTRAINT_
FLDS system tables.

This column is used to determine
the foreign key referenced table
name and referenced column
names.

The name of the table on which the
specified constraint is defined. The
value in this column equates to a
value for the same column in the
RDB$RELATIONS system table.

Reserved for future use.

H.6.20.1 RDBS$FLAGS

Represents flags for RDB$SRELATION_CONSTRAINTS system table.

Bit Position Description

0 This is SQL standard UNIQUE constraint which allows unique
values and ignores NULL.

H.6.20.2 RDB$CONSTRAINT_TYPE

The following table lists the values for the RDB$CONSTRAINT_TYPE column.

H-42 System Tables

Value Symbol Meaning

1 RDB$K_CON_CONDITION Requires conditional

expression constraint.

RDB$K_CON_PRIMARY_KEY Primary key constraint.

RDB$K_CON_REFERENTIAL Referential (foreign key)
constraint.

RDB$K_CON_UNIQUE Unique constraint.
Reserved for future use.

RDB$K_CON_NOT_NULL Not null (missing)
constraint.

H.6.21 RDBSRELATION_CONSTRAINT_FLDS

The RDB$RELATION_CONSTRAINT_FLDS system table lists the columns
that participate in unique, primary, or foreign key declarations for table-specific
constraints.

There is one row for each column that represents all or part of a unique,
primary, or foreign key constraint.

The following table provides information on the columns of the RDBSRELATION _
CONSTRAINT_FLDS system table.

Column Name Data Type Summary Description

RDB$CONSTRAINT_NAME char(31) The name of a constraint for which
the specified column participates.

RDB$FIELD_NAME char(31) The name of the column that is all

or part of the specified constraint.
The value in this column is

the same as that stored in the
RDB$RELATION_FIELDS system
table.

RDBS$FIELD_POSITION integer The ordinal position of the specified
column within the column list that
declares the unique, primary or
foreign key constraint.

For column-level constraints, there
will always be only one column in
the list. The first column in the list
has position value 1, the second has
position value 2, and so on.

System Tables H-43

Column Name Data Type Summary Description
RDB$FLAGS integer Reserved for future use.
RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.22 RDBS$SRELATION_FIELDS

The RDB$RELATION_FIELDS system table contains one row for each column
in each table. The following table provides information on the columns of the
RDB$RELATION_FIELDS system table.

Column Name

Data Type

Summary Description

RDB$RELATION_NAME

RDBS$FIELD_NAME

RDBS$FIELD_SOURCE

RDBS$FIELD_ID

RDBS$FIELD_POSITION

RDB$QUERY_NAME

H-44 System Tables

char(31)

char(31)

char(31)

integer

integer

char(31)

The name of the table that contains
the column represented by this row.

The name of the column repre-
sented by this row within the
table. Each RDB$RELATION_
FIELDS row that has the same
RDB$RELATION_NAME must
have a unique RDB$FIELD_NAME.

The name of the domain (from the
RDBS$FIELD_NAME column within
the

RDBS$FIELDS table) that supplies
the definition for this column.

An identifier that can be used
within the BLR to name the column
represented by this row. Oracle
Rdb assigns each column an id that
is permanent for as long as the
column exists within the table.

The ordinal position of the column
represented by this row, relative
to the other columns in the same
table.

The query name of this column.
RDB$QUERY_NAME can be null.

Column Name

Data Type

Summary Description

RDB$UPDATE_FLAG

RDB$QUERY_HEADER

RDB$DESCRIPTION

RDB$VIEW_CONTEXT

RDB$BASE_FIELD

integer

list of byte
varying

list of byte
varying

integer

char(31)

A value that indicates whether a
column can be updated:

- 0
If column cannot be updated.

- 1
If column can be updated.

The query header of this column
for use by SQL. Column attributes
in RDB$SRELATION_FIELDS take
precedence over RDB$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, SQL
uses the value from RDB$FIELDS.

A user-supplied description of the
contents of this row.

For view tables, this column
identifies the context variable
used to qualify the view column.

This context variable must be
defined within the row selection
expression that defines the view.
The context variable appears

in the BLR represented by the
column RDB$VIEW_BLR in
RDB$RELATIONS.

The local name of the column used
as a component of a view. The
name is qualified by the context
variable identified in RDB$VIEW _
CONTEXT.

System Tables H-45

Column Name Data Type

Summary Description

RDB$DEFAULT_VALUE list of byte
varying
RDB$EDIT_STRING varchar(255)

RDB$EXTENSION_PARAMETERS list of byte

varying
RDB$ACCESS_CONTROL list of byte

varying
RDB$DEFAULT_VALUE2 list of byte

varying
RDBVMSS$SECURITY_AUDIT integer

RDBVMS$SECURITY_ALARM integer

RDB$SECURITY_CLASS char(20)

The default value used by non-
SQL interfaces when no value is
specified for a column during a
STORE clause.

It differs from RDB$MISSING_
VALUE in that it holds an actual
column value. Column attributes in
RDB$RELATION_FIELDS take
precedence over attributes in
RDBS$FIELDS.

If the attribute value is missing in
RDB$RELATION_FIELDS, the
value from RDBS$FIELDS is used.

The edit string to be used by
interactive SQL when printing
the column. RDB$EDIT_STRING
can be null.

Reserved for future use.

The access control list for the
column.

The BLR for SQL default value.
This value is used when no value
is provided in an SQL INSERT
statement.

A bit mask that indicates the
privileges that will be audited for
the database, as specified in the
RMU Set Audit command.

A bit mask that indicates the
privileges that will produce alarms
for the database, as specified in the
RMU Set Audit command.

Reserved for future use.

H.6.23 RDBS$SRELATIONS

The RDB$RELATIONS system table names all the tables and views within the
database. There is one row for each table or view. The following table provides
information on the columns of the RDB$RELATIONS system table.

H-46 System Tables

Column Name

Data Type

Summary Description

RDB$RELATION_NAME

RDB$RELATION_ID

RDB$STORAGE_ID

RDB$SYSTEM_FLAG

RDB$DBKEY_LENGTH

RDB$MAX_VERSION

RDB$CARDINALITY

RDB$FLAGS

char(31)

integer

integer

integer

integer

integer

bigint

integer

The name of a table within the
database. Each row within
RBBS$RELATIONS must have a
unique RDB$SRELATION_NAME.

An identification number used
within the BLR to identify a table.

A pointer to the database logical
area where the data for this table is
stored.

A value that indicates whether
a table is a system table or a
user-defined table:

e 0
If a user table.

- 1
If a system table.

The length in bytes of the database
key. A database key for a row in

a table is 8 bytes, and "n times 8

* for a view row, where "n" is the

number of tables referred to in the
view.

If the view does not contain a
dbkey, RDB$DBKEY_LENGTH is
0. This occurs when the view uses
GROUP BY, UNION, or returns a
statistical value.

The number of the current version
of the table definition.

This value is matched with the
RDB$VERSION column in
RDBS$FIELD_VERSIONS to
determine the current row format
for the table.

The number of rows in the table
(cardinality).

Flags.

System Tables H-47

Column Name Data Type

Summary Description

RDB$VIEW_BLR list of byte
varying
RDB$DESCRIPTION list of byte
varying
RDB$VIEW_SOURCE list of byte
varying
RDB$ACCESS_CONTROL list of byte
varying
RDB$EXTENSION_PARAMETERS list of byte
varying
RDB$CDD_NAME list of byte
varying
RDBVMSS$SECURITY_AUDIT integer

RDBVMS$SECURITY_ALARM integer

RDB$SECURITY_CLASS char(20)
RDBVMS$SECURITY_AUDIT2 integer
RDBVMS$SECURITY_ALARM2 integer

RDB$CREATED date vms
RDBS$LAST _ALTERED date vms
RDB$RELATION_CREATOR char(31)

H-48 System Tables

The BLR that describes the row
selection expression used to select
the rows for the view. If the table
is not a view, RDB$VIEW_BLR is
missing.

A user-supplied description of this
table or view.

The user’s source text for the view
definition.

The access control policy for the
table.

Reserved for future use.

The fully qualified name of the
dictionary entity upon which

the table definition is based, as
specified in the SQL clause, FROM
PATHNAME.

A bit mask that indicates the
privileges that will be audited for
the table, as specified in the RMU
Set Audit command.

A bit mask that indicates the
privileges that produce alarms for
the table, as specified in the RMU
Set Audit command.

Reserved for future use.
Reserved for future use.
Reserved for future use.

Set when the table or view is
created (for system tables it will be
the same as the database creation
timestamp).

Set when SQL ALTER TABLE,
CREATE/ALTER STORAGE MAP,
ALTER DOMAIN, GRANT, or
REVOKE statements cause changes
to this system table.

Creator of this system table.

Column Name Data Type Summary Description

RDB$ROW_CLUSTER_FACTOR bigint(7) The ratio of the number of clump
changes that occur when you
sequentially read the rows to the
number of rows in a table. If a
row is fragmented and part of its
fragment is located in a clump
different than the current one or
immediate next one then it should
be counted as a clump change.

RDB$TYPE_ID integer Reserved for future use.

H.6.23.1 RDBS$FLAGS
Represents flags for RDB$SRELATIONS system table.

Bit Position Description

0 This table is a view.

1 This table is not compressed.

2 The SQL clause, WITH CHECK OPTION, is used in this view
definition.

3 Indicates a special internal system table.

4 This view is not an ANSI updatable view.

5 Reserved for future use.

6 Reserved for future use.

7 Reserved for future use.

8 Ignore Bit 1 and use RDB$STORAGE_MAPS for compression
information.

9 Set for temporary table.

10 Set for global temporary table; clear for local temporary table.

11 Set for delete data on commit; clear for preserve data on commit.

12 Reserved for future use.

13 Set if view or table references a local temporary table.

14 Special read-only information table.

15 System table has storage map.

16 View references only temporary table.

System Tables H-49

H.6.24 RDB$SROUTINES

The RDB$ROUTINES system table describes each routine that is part of

a stored module or a standalone external routine. An external routine can
either be part of a module or standalone (outside the context of a module). The
following table provides information on the columns of the RDB$ROUTINES
system table.

Column Name Data Type Summary Description
RDB$ROUTINE_NAME char(31) Name of the routine.
RDB$GENERIC_ROUTINE_ char(31) Reserved for future use.

NAME

RDB$MODULE_ID integer The identifier of the module that

contains this routine. If routine is
standalone, value is 0.

RDB$ROUTINE_ID integer Unique identifier assigned to this
routine.
RDB$ROUTINE_VERSION char(16) Routine version and checksum.

Allows runtime validation of
the routine with respect to the

database.

RDB$PARAMETER_COUNT integer The number of parameters for this
routine.

RDB$MIN_PARAMETER_ integer Minimum number of parameters for

COUNT this routine.

RDB$ROUTINE_BLR list of byte The BLR for this routine. If the

varying routine is external, this column is
set to NULL.

RDB$ROUTINE_SOURCE list of byte Source of the routine as provided by

varying the definer.

RDB$FLAGS integer Flags.

RDB$SOURCE_LANGUAGE integer The RDB$SOURCE_LANGUAGE
section lists the values for this
column.

RDB$DESCRIPTION list of byte Description of the routine.

varying
RDB$ACCESS _CONTROL list of byte The access control list (ACL) to
varying control access to the routine. This
value can be NULL.
RDB$SECURITY_CLASS char(20) Reserved for future use.

H-50 System Tables

Column Name

Data Type Summary Description

RDB$EXTENSION_PARAMETERS list of byte Stores interface information

RDBS$TYPE_ID

varying about the routine. This includes
parameter mappings, the shareable
image name, and entry point name.

integer Reserved for future use.

RDB$ROUTINE_OWNER char(31) Owner of the routine. This column

RDB$CREATED

is only used when the routine is
standalone (when RDB$MODULE _
ID is 0) otherwise the value is
NULL.

date vms Set when the routine is created
(the same as the parent module’s
creation timestamp).

RDB$LAST_ALTERED date vms Set when the routine is modified

by the ALTER, RENAME, GRANT,
and REVOKE statements.

RDB$ROUTINE_CREATOR char(31) Creator of this routine. Differentiates

between AUTHORIZATION and
OWNER.

H.6.24.1 RDBS$FLAGS

Represents flags for RDB$ROUTINES system table.

Bit Position

Description

0
1

o o~ W

Routine is a function. (Call returns a result.)
Routine is not valid. (Invalidated by a metadata change.)

The function is not deterministic (that is, the routine is variant). A
subsequent invocation of the routine with identical parameters may
return different results.

Routine can change the transaction state.
Routine is in a secured shareable image.
Reserved for future use.

Routine is not valid. (Invalidated by a metadata change to the object
upon which this routine depends. This dependency is a language
semantics dependency.)

Reserved for future use.

System Tables H-51

Bit Position Description

8 External function returns NULL when called with any NULL
parameter.

9 Routine has been analyzed (used for trigger dependency tracking).

10 Routine inserts rows.

11 Routine modifies rows.

12 Routine deletes rows.

13 Routine selects rows.

14 Routine calls other routines.

15 Reserved for future use.

16 Routine created with USAGE IS LOCAL clause.

17 Reserved for future use.

18 Reserved for future use.

19 Routine is a SYSTEM routine.

20 Routine generated by Oracle Rdb.

21 BLR$K_TRANSACTION can change SAVEPOINT state.

Other bits are reserved for future use.

H.6.24.2 RDB$SOURCE_LANGUAGE

The following table lists the values for the RDB$SOURCE_LANGUAGE
column.

Value Language

Language undefined
Ada

C

COBOL

FORTRAN

Pascal

Reserved for future use.
BASIC

GENERAL

PL/I

© 0 N OO o b~ W N -, O

H-52 System Tables

Value Language

10 SQL - default for stored functions and stored procedures

H.6.25 RDB$SEQUENCES

The RDB$SEQUENCES system table contains information about each
sequence. The following table provides information on the columns of the
RDB$SEQUENCES system table.

Column Name Data Type Summary Description
RDB$CREATED date vms Time sequence was created.
RDB$LAST_ALTERED date vms Last time sequence was altered.
RDB$ACCESS_CONTROL list of byte Access control list for this sequence.
varying
RDB$DESCRIPTION list of byte Description provided for this
varying sequence.
RDB$START_VALUE bigint Starting value for the sequence.
RDB$MINIMUM_SEQUENCE bigint Minimum value for the sequence.
RDB$SMAXIMUM_SEQUENCE bigint Maximum value for the sequence.
RDB$NEXT_SEQUENCE_ bigint Next value available for use for
VALUE the sequence. This column is a

read only COMPUTED BY column.
When the sequence is first defined
this column returns NULL.

RDB$INCREMENT_VALUE integer Increment value for the sequence.
A positive value indicates an
ascending sequence, and a negative
value indicates a descending
sequence.

RDB$CACHE_SIZE integer Number of sequence numbers to
allocate and hold in memory. If one
(1), then NOCACHE was specified
and the values will be allocated one

at a time.
RDB$FLAGS integer Flags.
RDB$SEQUENCE_ID integer Unique number assigned to this

sequence object. This value is for
internal use only.

RDB$SEQUENCE_NAME char(31) Unique name of the sequence.

System Tables H-53

Column Name

Data Type

Summary Description

RDB$SEQUENCE_CREATOR

char(31)

Creator of this sequence.

H.6.25.1 RDBS$FLAGS

Represents flags for RDB$SEQUENCES system table.

Bit Position Description

0 Sequence will cycle.

1 Sequence is ordered.

2 Sequence is random.

3 Indicates that this is a system sequence and may not be dropped.
4 Indicates that there was no minimum value specified.

5 Indicates that there was no maximum value specified.

6 Indicates that this is a column IDENTITY sequence.

7 Indicates that this sequence will wait for locks.

8 Indicates that this sequence will not wait for locks.

H.6.26 RDB$STORAGE_MAPS

The RDB$STORAGE_MAPS system table contains information about each
storage map. The following table provides information on the columns of the
RDB$STORAGE_MAPS system table.

Column Name Data Type Summary Description
RDB$MAP_NAME char(31) The name of the storage map.
RDB$RELATION_NAME char(31) The name of the table to which the
storage map refers.
RDBS$INDEX_NAME char(31) The name of the index specified in
the SQL clause, PLACEMENT VIA
INDEX, of the storage map.
RDB$FLAGS integer Flags.
RDB$MAP_SOURCE list of byte The user’s source text for the
varying storage map definition.
RDB$DESCRIPTION list of byte A user-supplied description of the
varying storage map.

H-54 System Tables

Column Name Data Type

Summary Description

RDB$EXTENSION_PARAMETERS list of byte
varying

RDB$VERTICAL_PARTITION_ integer
INDEX

RDB$VERTICAL_PARTITION_ char(31)
NAME

RDB$SECURITY_CLASS char(20)

Lists the column names for vertical
record partitioning.

A counter that indicates the
number of vertical record
partitions.

If vertical record partitioning is
used, there is one RDB$STORAGE _
MAPS for each vertical partition.

Name of the vertical record
partition.

Reserved for future use.

H.6.26.1 RDBS$FLAGS

Represents flags for RDB$STORAGE_MAPS system table.

Bit Position Description

Reserved for future use.

User named this partition.

g A W N O

If map enables compression.

If map is for a mixed format area.

Partition key cannot be updated.

Override used for strict partitioning - NO REORGANIZE.

H.6.27 RDB$STORAGE_MAP_AREAS

The RDB$STORAGE_MAP_AREAS system table contains information about
each storage area to which a storage map refers. The following table provides
information on the columns of the RDB$STORAGE_MAP_AREAS system

table.

Column Name Data Type Summary Description
RDB$MAP_NAME char(31) The name of the storage map.
RDB$AREA_NAME char(31) The name of the storage area

referred to by the storage map.

System Tables H-55

Column Name Data Type Summary Description
RDB$ROOT_DBK char(8) A pointer to the root of the
SORTED index, if it is a SORTED
index.
RDB$ORDINAL_POSITION integer The order of the storage area
represented by this row in the map.
RDB$STORAGE_ID integer For a table, a pointer to the
database logical area. For a hashed
index, a pointer to the system
record.
RDBS$INDEX_ID integer A pointer to the index logical area.
RDB$STORAGE_BLR list of byte The BLR that represents the SQL
varying clause, WITH LIMIT OF, in the
storage map definition.
RDB$DESCRIPTION list of byte Description of this partition.
varying
RDB$EXTENSION_PARAMETERS list of byte Lists table names and column
varying names that are referenced by
segmented string storage maps.
RDB$VERTICAL_PARTITION_ integer For LIST storage maps, the value
INDEX indicates the relationship between
areas of a LIST storage map area
set.
RDB$FLAGS integer Flags.
RDB$SECURITY_CLASS char(20) Reserved for future use.
RDB$PARTITION_NAME char(31) Name of the index or storage map

partition.

H.6.27.1 RDBS$FLAGS

Represents flags for RDB$STORAGE_MAP_AREAS system table.

Bit Position Description

0 If Bit O is clear, the LIST storage area set is filled randomly.

If Bit O is set, the LIST storage area set is filled sequentially.

A W DN P

User named this partition.
BUILD PARTITION is required.
Deferred build using NOLOGGING.
Cardinality needs to be updated on build.

H-56 System Tables

H.6.28 RDB$SYNONYMS

The RDB$SYNONYMS system table connects the user-visible name of an
object to the stored name of an object. The user-visible name of an object might
be replicated in multiple schemas, whereas the stored name of an object is
unique across all schemas and catalogs. This table is present only in databases
that have the SQL multischema feature enabled.

Unlike rows in other system tables, the rows in the RDB$SYNONYMS system
table are compressed. The following table provides information on the columns
of the RDB$SYNONYMS system table.

Column Name Data Type Summary Description

RDB$SCHEMA _ID integer The RDB$CATALOG_SCHEMA_ID
of the schema to which this object
belongs.

RDB$USER_VISIBLE_NAME char(31) The name of an object as it appears
to the user.

System Tables H-57

Column Name Data Type Summary Description

RDB$OBJECT_TYPE integer A value that represents the type of
an object, as follows:

e 8
A constraint.

- 19
A domain (global field).

e 26
An index.
e 31

A system table.

- 36

A view.
e 60

A sequence.
- 67

A storage map.

- 81
A trigger.
- 117

A collating sequence.

e 180
An outline.
- 192
A type.
RDB$STORED_NAME char(31) The name of an object as is actually
stored in the database.
RDB$SECURITY_CLASS char(20) Reserved for future use.

H-58 System Tables

H.6.29 RDBS$TRIGGERS

The RDB$TRIGGERS system table describes the definition of a trigger. The
following table provides information on the columns of the RDB$TRIGGERS

system table.

Column Name

Data Type

Summary Description

RDB$DESCRIPTION

RDB$FLAGS
RDB$RELATION_NAME

RDB$TRIGGER_ACTIONS

RDB$TRIGGER_CONTEXTS

RDB$TRIGGER_FIELD_NAME_
LIST

list of byte
varying

integer
char(31)

list of byte
varying

integer

list of byte
varying

A user-supplied text string
describing the trigger.

Flags.

The name of the table

for which this trigger is
defined. The trigger may

be selected on an update to
the named table (qualified
by the columns described in
the RDB$TRIGGER_FIELD_
NAME_LIST).

This table is used as a subject
table for all contexts that refer
to it.

A text string containing all
the sets of triggered actions
defined for this trigger. The
string consists of one or more
sets of clumplets, one set for
each triggered action.

The context number used within
the triggered action BLR to map
the triggered action BLR to the

current context of the triggering
update statement.

A text string composed of a
count field and one or more
counted strings. The count is an
unsigned word that represents
the number of strings in the list.

The counted strings are ASCIC
names that represent column
names. If the trigger is of
event type UPDATE, it will

be evaluated if one or more of
the specified columns has been
modified.

System Tables H-59

Column Name

Data Type

Summary Description

RDB$TRIGGER_NAME

RDB$TRIGGER_NEW
CONTEXT

RDB$TRIGGER OLD_
CONTEXT

RDB$TRIGGER_SOURCE

RDB$TRIGGER_TYPE

RDB$SECURITY_CLASS
RDB$CREATED
RDB$LAST_ALTERED

RDB$TRIGGER_CREATOR

char(31)

integer

integer

list of byte
varying

integer

char(20)
date vms
date vms

char(31)

RDB$EXTENSION_PARAMETERS list of byte

RDB$TRIGGER_ID

varying
integer

The name of a trigger. This
name must be a unique trigger
name within the database.

A context number used within
the triggered action's BLR to
refer to the new row values
for the subject table for an
UPDATE event.

A context number used within
the triggered action’s BLR to
refer to the old row values of the
subject table that existed before
an UPDATE event.

An optional text string for the
trigger definition. The string
is not used by the database
system.

It should reflect the full
definition of the trigger. This
column is used by the interfaces
to display the trigger definition.

The type of trigger, as defined
by the combination of the
trigger action time and the
trigger event. Action times
are BEFORE and AFTER, and
events are INSERT, DELETE,
and UPDATE.

The values that represent the
type of trigger are shown in the
RDB$TRIGGER_TYPE Values
section below.

Reserved for future use.
Set when the trigger is created.

Set when SQL ALTER
TRIGGER statement is used.

Creator of this trigger.
Extension parameters.

Unique id for trigger with child
records.

H-60 System Tables

H.6.29.1 RDBS$FLAGS
Represents flags for RDB$TRIGGERS system table.

Bit Position Description

0 Trigger is currently disabled.

1 Invalid due to changed schema.
2 Referenced table was altered.

H.6.29.2 RDBS$TRIGGER_TYPE Values

The following table lists the values for the RDB$TRIGGER_TYPE column of
the RDB$TRIGGERS system table and the different types of triggers they

represent.

Numeric Value Symbolic Value Description

1 RDB$K_BEFORE_STORE Trigger is evaluated before an
INSERT.

2 RDB$K_BEFORE_ERASE Trigger is evaluated before a
DELETE.

3 RDB$K_BEFORE_MODIFY Trigger is evaluated before an
UPDATE.

4 RDB$K_AFTER_STORE Trigger is evaluated after an
INSERT.

5 RDB$K_AFTER_ERASE Trigger is evaluated after a
DELETE.

6 RDB$K_AFTER_MODIFY Trigger is evaluated after an
UPDATE.

H.6.30 RDBSVIEW_RELATIONS

The RDB$VIEW_RELATIONS system table lists all the tables that participate
in a given view. There is one row for each table or view in a view definition.
The following table provides information on the columns of the RDB$VIEW _
RELATIONS system table.

System Tables H-61

Column Name Data Type Summary Description

RDB$VIEW_NAME char(31) Names a view or table that uses
another table. The value of
RDB$VIEW_NAME is normally
a view name, but might also be
the name of a table that includes a
column computed using a statistical

expression.
RDB$RELATION_NAME char(31) The name of a table used to form
the view.
RDB$VIEW_CONTEXT integer An identifier for the context

variable used to identify a table

in the view. The context variable
appears in the BLR represented
by the column RDB$VIEW_BLR in
RDB$RELATIONS.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H.6.31 RDB$STRIGGER_ACTIONS

The RDB$TRIGGER_ACTIONS system table describes a single trigger action
for a trigger.

Note

Triggers created by prior versions of Oracle Rdb are stored wholly in
the RDB$TRIGGERS table. Only new triggers created with Rdb V7.3
and later (which includes IMPORT DATABASE) are stored as multiple
RDB$TRIGGER_ACTION rows.

The following table provides information on the columns of the RDB$TRIGGER _
ACTIONS system table.

Column Name Data Type Summary Description
RDB$ACTION_BLR list of byte Trigger actions BLR
varying
RDB$CONDITION_BLR list of byte Trigger condition (boolean) BLR
varying
RDB$DESCRIPTION list of byte Description text
varying

H-62 System Tables

Column Name Data Type Summary Description
RDB$TRIGGER_ID integer Unique id for trigger
RDB$ORDINAL_POSITION integer Assigned order of the trigger action
within the trigger definition
RDB$FLAGS integer Flags. See definitions below.
RDB$ACTION_NAME char(31) Unique name of the trigger action.

This value may be system assigned

H.6.31.1 RDBS$FLAGS

Represents flags for RDB$TRIGGER_ACTIONS system table.

Bit Position Description
0 Action is executed for EACH ROW if true, otherwise just once EACH
STATEMENT

Action does not trigger further actions

2 TRACE statement is enabled always

All other flags are reserved for future use

H.6.32 RDBSWORKLOAD

The RDB$WORKLOAD system table is an optional system table (similar to
RDB$SYNONYMS and RDBSCATALOG_SCHEMA). It is created when the
database attribute WORKLOAD COLLECTION IS ENABLED is specified on
an SQL CREATE or ALTER DATABASE statement. Once created, this system

table can never be dropped.

The following table provides information on the columns of the RDB$WORKLOAD

system table.

Column Name Data Type Summary Description
RDB$CREATED date vms Time workload entry was created.
RDB$LAST_ALTERED date vms Last time statistics were updated.
RDB$DUPLICITY_FACTOR bigint(7) Value ranges from 1.0 to table

cardinality. Number of duplicate
values for an interesting column
group (RDB$FIELD_GROUP).

System Tables H-63

Column Name Data Type Summary Description

RDB$NULL_FACTOR integer(7) Value ranges from 0.0 to 1.0. This
is the proportion of table rows that
have NULL in one or more columns
of an interesting column group.

RDB$RELATION_ID integer Base table identifier.

RDB$FLAGS integer Reserved for future use.

RDB$FIELD_GROUP char(31) Contains up to 15 sorted column
identifiers.

RDB$SECURITY_CLASS char(20) Reserved for future use.

H-64 System Tables

Information Tables

.1 Introduction to Information Tables

Information tables display internal information about storage areas, after-
image journals, row caches, database users, the database root, and database
character sets. Once the information tables are created, you can query them
with the SQL interface.

Information tables are special read-only tables that can be created in an Oracle
Rdb database and used to retrieve database attributes that are not stored in
the existing relational tables. Information tables allow interesting database
information, which is currently stored in an internal format, to be displayed as
a relational table.

The script, INFO_TABLES.SQL, is supplied as a part of the Oracle Rdb Kit.
The INFO_TABLES.SQL file is in the SQL$SAMPLE directory. Table I-1 lists
the information tables that are supported in Oracle Rdb.

Information Tables -1

storage areas.)

Table I-1 Supported Information Tables

RDB$CACHES Displays information about the database row caches.
RDB$CHARACTER_SETS Displays information about the Oracle Rdb character
sets.
RDB$DATABASE_JOURNAL Displays information about the default journal.
RDB$DATABASE_ROOT Displays information about the database root.
RDB$DATABASE_USERS Displays information about the database users.
RDB$JOURNALS Displays information about the database journal files.
RDB$LOGICAL_AREAS Displays information about the logical areas.
RDB$NLS_CHARACTER_SETS Displays the mapping of Oracle NLS character sets to

Oracle Rdb character sets.

RDBS$SESSION_PRIVILEGES Displays the names of the enabled privileges for this
user session.

RDB$STORAGE_AREAS Displays information about the database storage
areas.

For additional information about these information tables on OpenVMS,
see the ORACLE_RDBnNN topic and select the Information_Tables subtopic
(where nn is the version number if using multiversion) in the Oracle Rdb
command-line Help or see the next section of this chapter.

Examples
Example 1: Querying an information tables

The following example shows how to query one of the information tables
created by the INFO_TABLES.SQL script.

SQL> SELECT * FROM RDBSLOGICAL_AREAS WHERE RDBSLOGICAL_AREA_NAME='JOBS’;
RDBSLOGICAL_AREA_ID RDBSAREA_ID RDBSRECORD_LENGTH RDBSTHRESHOLD1_PERCENT
RDBSTHRESHOLD2_PERCENT RDBSTHRESHOLD3_PERCENT RDB$SORDERED_HASH_OFFSET
RDBSRECORD_TYPE RDBSLOGICAL_AREA_NAME
95 7 41 0
0 0 0
1 JOBS

1 row selected
Example 2: Queries to detect growth of storage area files

The database administrator can list storage areas where the current allocation
of an area has exceeded the initial allocation. This information can be vital
when managing performance in mixed areas. With mixed areas every storage
area extension causes extra 1/0 for HASHED index access.

I-2 Information Tables

SQL> select RDBSAREA_NAME as NAME edit using 'T(15)’,

cont> RDBSINITIAL_ALLOCATION as INITIAL edit using ‘Z(9)’,

cont> RDBSCURRENT_ALLOCATION as CURRENT edit using 'Z(9)’,

cont> RDBSEXTEND_COUNT as EXTENDS edit using 'Z(9)’,

cont> RDBSLAST EXTEND as LAST EXT DATE

cont> from RDBSSTORAGE_AREAS

cont> where (RDBSCURRENT ALLOCATION > RDBSINITIAL_ALLOCATION + 1)
cont> and (RDBSAREA NAME <> ' ');

NAME INITIAL CURRENT EXTENDS LAST_EXT_DATE
RDB$SYSTEM 102 3724 15 14-AUG-2003 13:53:36.81
SALARY_HISTORY 270 1270 1 6-AUG-2003 11:47:11.00

2 rows selected

This query shows that the system area has extended by almost 37 percent since
the database was created. Why is that? Are developers creating tables without
mapping the data to user defined storage areas? Area SALARY_HISTORY is a
mixed area that has extended. The initial allocation is no longer adequate for
this area. Was there a period in August where a lot of data was inserted into
these areas? The database administrator can schedule maintenance time to
resize the SALARY_HISTORY storage area.

Note

The query adds one to the initial allocation to eliminate areas where

a spam page has been added and the current allocation is the initial

allocation plus one block. The comparison of RDBSAREA NAME to a
blank space eliminates snapshot areas from the query.

A similar query that shows snapshot files that have grown beyond the initial
allocation is:

SQL> select RDBSAREA_FILE as SNAP_NAME edit using 'T(50)’,
cont> RDBSINITIAL_ALLOCATION as INITIAL edit using 'Z(9)’,
cont> RDBSCURRENT_ ALLOCATION as CURRENT edit using 'Z(9)’
cont> from RDBSSTORAGE AREAS

cont> where (RDBSCURRENT_ ALLOCATION > RDBSINITIAL_ALLOCATION)
cont> and (RDBSAREA NAME = ' ');

SNAP_NAME INITIAL CURRENT
DKD300: [SQLUSER71]MF_PERS_DEFAULT.SNP;1 50 1623
DKD300: [SQLUSER71]DEPARTMENTS. SNP; 1 10 5000

2 rows selected

Large snapshot files are mainly caused by old active transactions, or an initial
allocation size that was too small. This query gives the database administrator
pointer to an area that needs investigation. Queries such as these can be
executed at regular intervals to detect growth trends.

Information Tables -3

-4

Example 3: Comparing table cardinality with cache sizes

Queries can be run periodically to check that the allocated cache sizes are
adequate for the current table size. Know that a cache was too small for the
table and taking corrective action can reduce cache collisions.

SQL> select A.RDBSCACHE_NAME, A.RDBSCACHE_SIZE, B.RDBSCARDINALITY
cont> from RDBSCACHES A, RDBSRELATIONS B
cont> where A.RDBSCACHE_NAME = B.RDBSRELATION_NAME;

A.RDBSCACHE_NAME A.RDBSCACHE_SIZE B.RDBSCARDINALITY
EMPLOYEES 100 103
DEPARTMENTS 26 26
DEGREES 20 165
TOO_BIG 500 10000
TOO_SMALL 1000 100

5 rows selected

In this example the tables TOO_BIG and DEGREES can only cache 5 percent
and 12 percent respectively of the total table. Perhaps the cache size needs
to be increased? Conversely, table TOO_SMALL appears to have a cache far
too large. Maybe this cache was incorrectly configured or the table has shrunk
over time? The current cache size is probably wasting memory.

Example 4: Converting logical DBKEY areas to names

Tools such as RMU Verify or RMU Show Statistics often display a logical area
DBKEY. For example consider this output from a stall message screen in RMU
Show Statictics:

202003A5:5 16:25:18.51 waiting for record 79:155:6

The database administrator can use RMU /DUMP/LAREA=RDBS$AIP to get
a list of all the logical areas and their area numbers. However, the following
simple query on the RDB$LOGICAL_AREAS information table can be used
instead.

SQL> select rdb$logical_area_id, rdbSarea_id, rdb$logical_area_name
cont> from rdb$Slogical_areas
cont> where rdb$logical_area_id=79;
RDBSLOGICAL_AREA_ID RDBSAREA_ID RDBSLOGICAL_AREA_NAME
79 3 EMPLOYEES
1 row selected

The query shows that this stall is on table EMPLOYEES and it resides in
physical area number 3. The database administrator can use this information
to dump the database page.

$ RMU/DUMP/AREA=3/START=155/END=155/0UTPUT=t.t mf_personnel

Information Tables

1.1.1 Restrictions for Information Tables
The following restrictions apply to information tables:

You cannot alter the information tables. The table names and column
names must remain unchanged.

You may not use ALTER TABLE on an Information Table. An exception
will be raised.

SQL> alter table RDBSDATABASE_USERS add new_col int;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETSYSREL, operation illegal on system defined metadata

Information tables are READ ONLY and in general the information is
translated from other (non-table) internal data structures.

Repeatable reads are not guaranteed for these tables. They reflect
the current active database. For instance, repeated queries on
RDB$DATABASE_USERS will show the set of users as they attach
and disconnect from the database.

.2 All Information Tables

Listed below are all of the current information tables.

1.2.1 All_Information_Tables

Included with each information table is a list of the columns in that table and
their description.

.2.1.1 RDB$STORAGE_AREAS
Displays information about the database storage areas.

Column Name Data Type Description
RDB$LAST_BACKUP date vms Date of last backup
RDB$LAST_INCREMENT_ date vms Date of last restore
RESTORE

RDBSINITIAL_ALLOCATION integer Allocation
RDB$CURRENT_ALLOCATION integer Maximum page number
RDB$AREA_ACCESS_MODE integer Access mode
RDB$THRESHOLD1_BYTES integer First threshold value
RDB$THRESHOLD2 _BYTES integer Second threshold value

Information Tables

-5

Column Name Data Type Description

RDB$THRESHOLD3_BYTES integer Third threshold value

RDB$PAGE_SIZE integer Page size

RDB$AREA_MIN_EXTENT integer Minimum page extent

RDB$AREA_MAX_EXTENT integer Maximum page extent

RDB$AREA_PERCENT_ integer Percent growth

EXTENT

RDB$EXTEND_COUNT integer Number of times area has been
extended

RDB$SPAM_INTERVAL integer Number of pages per SPAM page

RDB$JOURNAL_SEQUENCE integer AlJ recovery version number

RDB$MAX_PAGE_FREE_ integer Maximum free space on new page

SPACE

RDB$MAX_ROW_LENGTH integer Largest segment that can be stored
on a page

RDB$SEQUENCE integer Sequence number

RDB$AREA_ID integer Area ID

RDB$LINKED_AREA_ID integer For live storage area, ID of

snapshot area. For snapshot area,
ID of live storage area

RDBS$FLAGS integer Flags
RDB$THRESHOLD1_PERCENT integer First threshold percent value
RDB$THRESHOLD2_PERCENT integer Second threshold percent value
RDB$THRESHOLD3_PERCENT integer Third threshold percent value
RDB$AREA_FILE char(255) Storage area file name
RDB$CACHE_ID integer Row cache ID
RDB$AREA_NAME char(31) Storage area name
RDB$CLUMP_PAGE_COUNT integer The number of pages per logical
area clump (UNIFORM area)
RDB$PAGE_LENGTH integer Page length in bytes
RDB$PAGES_PER_SPAM_ integer Number of data pages per SPAM
PAGE_P1 page + 1
RDB$SPAM_PAGE_VECTOR_ integer SPAM page vector length in bytes
LENGTH
RDB$PAGE_PAD_LENGTH integer Page padding length in bytes

I-6 Information Tables

Column Name Data Type Description

RDB$MAX_SEGMENT_ integer Largest length to which an existing
LENGTH segment can grow
RDB$BACKUP_STATISTICS bigint Backup-specific statistics
RDB$SNAPS_ENABLED_TSN bigint TSN of oldest snapshots. If this is a

live storage area that has snapshots
allowed, this field contains the TSN
of the most recent transaction that

enabled snapshots for or performed

exclusive updates to this area

RDB$COMMIT_TSN bigint TSN to which this area is
consistent. If the area is marked
inconsistent, this is the TSN level
to which the area is currently
consistent

RDB$BACKUP_TSN bigint TSN of last full area backup. If this
field contains zero, this area has
not been backed up

RDB$INCR_BACKUP_TSN bigint TSN of last incremental area
backup. If this field contains
zero, this area has not been
incrementally backed up

RDB$LAST_EXTEND date vms Date of last area extend

.2.1.1.1 RDBS$FLAGS Represents flags for RDB$STORAGE_AREAS
information table.

Bit Position Description

Page format is mixed

Checksum calculation is enabled
This is a snapshot area

Area has snapshots

Snapshots are enabled

Area has space management pages
SPAM pages are enabled

Allow multi-volume disk extents
Extent is enabled

© 0 N OO 0o W N - O

Area is corrupt

Information Tables -7

Bit Position Description

10 Area is inconsistent

11 Reserved for future use

12 Page level locking

13 Reserved for future use

14 Reserved for future use

15 Row cache is enabled

16 Area has been restructured. If TRUE, this area has been
restructured and may only be readied by a restructuring process

17 Roll forward quiet-point is enabled

18 Area is corrupt due to Hot Standby. If TRUE, this storage area may

have been corrupted by an aborted batch update transaction

.2.1.2 RDB$JOURNALS

Displays information about the database journal files.

Column Name Data Type Description
RDB$LAST_BACKUP date vms Date of last AlJ backup
RDB$STATUS integer AlJ file is inaccessible
RDB$ALLOCATION integer Allocation

RDB$EXTENT integer Extent

RDB$FLAGS integer Flags
RDB$JOURNAL_NAME char(31) Journal name
RDB$LAST_BACKUP_ integer Last version number backed up
SEQUENCE

RDB$LAST_ACTIVATED date vms Date last activated
RDB$BACKUP_EDIT_STRING varchar(255) Backup editname file
RDB$DEFAULT_FILENAME char(255) Default journal name
RDB$FILENAME char(255) Journal name
RDB$BACKUP_FILENAME char(255) Backup file name
RDB$SEQUENCE_NUMBER integer Current AlJ sequence number
RDBS$STATE char(31) State ("Current” or "Latent"”)

Information Tables

.2.1.2.1 RDBS$FLAGS Represents flags for RDB$JOURNALS information
table.

Bit Position Description

Initialization in progress

Backup in progress

AlJ file has been modified

AlJ restored from existing file

Hard data loss resulted from fail over
Soft data loss resulted from fail over
New version of journal created
Journal has been overwritten

Backup failed prematurely

© 0O N oo o0~ W N P O

Journal created due to switch-over suspension

A
o

AlJ file block has been assigned

[
[N

Journal created for recovery synchronization

=
N

Extensible AlJ truncation error on backup

1.2.1.3 RDBS$CACHES
Displays information about the database row caches.

Column Name Data Type Description
RDBS$ALLOCATION integer Allocation
RDB$EXTENT integer Extent
RDB$CACHE_ID integer Cache ID
RDBS$FLAGS integer Flags
RDB$ROW_LENGTH integer Row length
RDB$CACHE_SIZE integer Cache size
RDB$WINDOW_COUNT integer Window count
RDB$NUM_RESERVED_ROWS integer Number of reserved rows
RDB$NUM_SWEEP_ROWS integer Number of sweep rows
RDB$CACHE_NAME char(31) Cache name
RDB$LOCATION char(255) Cache location

Information Tables

Column Name Data Type Description
RDB$SNAP_CACHE_SIZE integer Number of snapshot record slots in
cache
RDB$PHYSICAL_MEMORY bigint Physical memory in bytes
RDB$SWEEP_FREE_PCT integer Percent of slots to free during
sweep
RDB$SWEEP_BATCH_COUNT integer Number of records to batch write
RDB$MAX_WS_COUNT integer Maximum working set count
RDB$SWEEP_THRESH_HIGH integer % of marked slots to start sweep
RDB$SWEEP_THRESH_LOW integer % of marked slots to stop sweep

.2.1.3.1 RDBS$FLAGS Represents flags for RDB$CACHES information table.

Bit Position Description

o N o b~ W N B O

Shared memory is system
Large memory is enabled
Row replacement is enabled
Device/directory is defined
Updated rows to database
Updated rows to backing file
All rows to backing file
Snapshots are enabled

Use memory-resident section for cache

.2.1.4 RDBS$SDATABASE_ROOT

1-10

Displays information about the database root.

Column Name Data Type Description

RDB$CREATED date vms Date of database creation
RDB$LAST_FULL_BACKUP_ date vms Date of last complete full backup
TIME

RDB$MAJOR_VERSION integer Major software version
RDB$MINOR_VERSION integer Minor software version

Information Tables

Column Name Data Type Description

RDB$PRIOR_MAJOR_ integer Major software version for database

VERSION converted with /nocommit

RDB$PRIOR_MINOR_VERSION integer Minor software version for database
converted with /nocommit

RDB$FLAGS integer Flags

RDB$MAX_USERS integer Number of users

RDB$MAX_CLUSTER_NODES integer Number of cluster nodes

RDB$DEFAULT_NUM_OF_ integer Number of buffers

BUFFERS

RDB$MAX_RECOVERY_ integer Number of recover buffers

BUFFERS

RDB$BUFFER_SIZE integer Buffer size

RDB$GLOBAL_BUFFER_ integer Number of global buffers

COUNT

RDB$ALG_COUNT integer Adjustable lock granularity count

RDB$LOCK_TIMEOUT _ integer Lock timeout interval in seconds

INTERVAL

RDB$CHECKPOINT_INTERVAL_ integer Checkpoint block interval

BLKS

RDB$CHECKPOINT_TIMED_ integer Checkpoint time interval

SECONDS

RDB$TRANSACTION_ integer Commit transaction interval

INTERVAL

RDB$CLOSE_MODE integer Close mode

RDB$CLOSE_INTERVAL integer Close interval

RDB$ASYNC_PREFETCH_ integer Async prefetch depth

DEPTH

RDB$D_ASYNC_PREFETCH_ integer Detected async prefetch depth

DEPTH

RDB$D_ASYNC_PREFETCH_ integer Detected async prefetch threshold

THRESHOLD

RDB$CLEAN_BUFFER_COUNT integer Clean buffer count

RDB$MAX_BUFFER_COUNT integer Maximum buffer count

RDB$MIN_PAGE_SIZE_ integer Minimum area page block count

BLOCKS

Information Tables 1-11

Column Name Data Type Description

RDB$MAX_PAGE_SIZE_ integer Maximum area page block count

BLOCKS

RDB$TRANSACTION_MODE_ integer Transaction mode

FLAGS

RDB$ALG_FACTOR_O integer Adjustable locking granularity
factor O

RDB$ALG_FACTOR_1 integer Adjustable locking granularity
factor 1

RDB$ALG_FACTOR_2 integer Adjustable locking granularity
factor 2

RDB$ALG_FACTOR_3 integer Adjustable locking granularity
factor 3

RDB$ALG_FACTOR_4 integer Adjustable locking granularity
factor 4

RDB$ALG_FACTOR_5 integer Adjustable locking granularity
factor 5

RDB$ALG_FACTOR_6 integer Adjustable locking granularity
factor 6

RDB$ALG_FACTOR_7 integer Adjustable locking granularity
factor 7

RDB$AUDIT_FILENAME char(255) Audit journal file name

RDB$ROOT_FILENAME char(255) Database root file name

RDB$RUJ_LOCATION char(255) Default recovery-unit journal file
name

RDB$CACHE_LOCATION char(255) Default device/directory specifica-
tion for record cache files

RDB$MAX_PAGES_IN_ integer Maximum number of pages in a

BUFFER buffer

RDB$RCS_SWEEP_INTERVAL integer Row cache server (RCS) sweep
interval (in seconds)

RDB$RCS_CKPT_TIME integer Time interval to force row cache

server (RCS) to checkpoint. This
field contains the number of
seconds that pass before RCS

is forced to perform another

checkpoint
RDB$LAST_FULL_RESTORE date vms Date of last complete full restore
RDBS$AIJ_ACTIVATION_ID bigint AlJ journaling activation identifier

I-12 Information Tables

Column Name Data Type Description
RDB$RCVR_ACTIVATION_ID bigint RCVR journaling activation
identifier
RDB$OPER_CLASS integer Operator notification classes
RDBSPRESTART_TXN_ integer Seconds until prestarted transac-
TIMEOUT tion is abandoned. Zero means no
abandon timer
RDB$DB_REPLICATED integer AlJ log roll forward server started
RDB$UNIQUE_VERSION date vms Physical database create time-
and-date. This field contains the
time-and-date stamp when this
physical database was created /
restored / copied
RDB$AUDIT_FLAGS integer Audit event class flags

.2.1.4.1 RDBS$FLAGS Represents flags for RDB$SDATABASE _ROOT

information table.

Bit Position

Description

Open mode

© 0O N o o~ W N -, O

e o i
g A W N P O

Log server mode

RUJ is corrupt

Single file database

Snapshots are deferred
Global buffers are enabled
Carryover locks are enabled
Statistics collection is enabled
Fast commit is enabled

Database is corrupt

Async prefetch is enabled
Async batch writes are enabled
Lock partitioning is enabled

Page transfer via memory

AlJ commit optimization is enabled

Fast incremental backup is enabled

Information Tables 1-13

Bit Position Description

16 Detected async prefetch is enabled

17 Shared memory is system

18 Database has been modified (TSN allocated)

19 Database conversion has been committed

20 Row cache server (RCS) checkpoints to database
21 RCS checkpoints to backing store files

22 RCS checkpoints marked and unmarked to RDC
23 Global buffers should be in VLM

24 Row cache RUJ global buffers are disabled

25 LogMiner feature is enabled

26 Prestarted transactions are enabled

27 VMS Galaxy shared memory is enabled

28 Use of P1 memory enabled for PIO code

29 A change has been made that precludes an incremental backup
30 Security audit enabled

31 Security alarm enabled flag

32 Audit/alarm on first access only

33 Audit synchronous flush flag

34 Standby database is opened read-only

35 Roll-forward quiet-point enabled

36 Database has been modified while LSS inactive
37 Continuous LogMiner feature enabled

38 AlJ buffer objects enabled

39 OBJMAN buffer objects enabled

40 Page buffer objects enabled

41 RUJ buffer objects enabled

.2.1.5 RDBS$DATABASE_JOURNAL
Displays information about the default journal information.

I-14 Information Tables

Column Name Data Type Description

RDB$CONDITION integer AlJ status

RDB$DEFAULT_ALLOCATION integer Default allocation in blocks

RDB$DEFAULT_EXTENT integer Default extension in blocks

RDB$CURRENT_BACKUP_ integer Backup sequence number

SEQUENCE

RDB$CURR_RECOVERY _ integer Recovery sequence number

SEQUENCE

RDB$DATABASE_BACKUP_ integer Database backup sequence number

SEQUENCE

RDB$ALLOCATION integer Number of allocated AlJ file blocks

RDB$SHUTDOWN_TIME_MIN integer Shutdown time in minutes

RDB$OPERATOR_CLASSES integer Operator class

RDB$FLAGS integer Flags

RDB$DEFAULT_BACKUP_ char(255) Default backup file name

FILENAME

RDB$CACHE_FILENAME char(255) Cache file name

RDB$STANDBY_FILENAME char(255) Standby database file name

RDB$SERVER_NAME char(31) Server name

RDB$BACKUP_EDIT_STRING varchar(255) Backup editname file

RDB$REMOTE_NODE_NAME char(31) Remote node name

RDB$CUR_ACTIVE_AIJ integer Current active AlJ journal index

RDB$MASTER_FILENAME char(255) When database replication is active
on the standby database, this field
contains the file name of the master
database

RDBS$LSS_NETTYPE integer Network transport (DECnet,
TCP/IP)

RDB$LSS_SYNCED_TAD date vms LSS Replication sychronized

date/time

.2.1.5.1 RDB$FLAGS Represents flags for RDBSDATABASE_JOURNAL

information table.

Bit Position Description

0 Journaling is enabled

Information Tables 1-15

Bit Position

Description

© 0 N o o b WN B

N s e
A W N P O

Overwrite is enabled

Backup mode

New journal version

ABS uses quiet-point AlJ backup
Replicated as master

Replicated as standby

Master replication database
Database replication online

Hot Standby quiet-point

Hot Standby is enabled

Database changes made when AlJ disabled
One or more journals overwritten
Hard data loss resulted from fail over
Full quiet-point AlJ backup required

1.2.1.6 RDBS$DATABASE_USERS
Displays information about the database users.

1-16

Column Name

Data Type Description

RDB$PROCESS_ID integer Process ID number
RDB$STREAM_ID integer Stream ID number
RDB$MONITOR_ID integer Monitor ID number
RDB$ATTACH_ID integer Attach ID number

RDBS$FLAGS integer Flags

1.2.1.6.1 RDBS$FLAGS Represents flags for RDB$DATABASE_USERS

information table.

Bit Position Description

0 Client server process

1 AlJ log server

2 Process is being recovered

Information Tables

Bit Position Description

Database server process
Database utility process
Catch-up server

3

4

5

6 AlJ roll forward server
7 Row cache server

8 Log shipping server

9 Backup server

10 Continuous LogMiner Server

11 This process is binding to the database

1.2.1.7 RDBS$LOGICAL_AREAS
Displays information about the logical areas.

Column Name Data Type Description
RDB$LOGICAL_AREA_ID integer Logical area ID
RDB$AREA_ID integer Physical area ID
RDBS$FLAGS integer Flags
RDB$RECORD_LENGTH integer Record length
RDB$THRESHOLD1_PERCENT integer First threshold percent value
RDB$THRESHOLD2_PERCENT integer Second threshold percent value
RDB$THRESHOLD3_PERCENT integer Third threshold percent value
RDB$ORDERED_HASH_ integer Ordered hash offset

OFFSET

RDB$RECORD_TYPE integer AIP record type
RDB$LOGICAL_AREA_NAME char(31) Logical area name

1.2.1.7.1 RDBS$FLAGS Represents flags for RDBSLOGICAL_AREAS
information table.

Bit Position Description
0 Logical area uses hash ordered index
1 Logical area modified with unjournaled records

Information Tables 1-17

Bit Position Description

Nologging is enabled

Use full quadword modulo for hashing (otherwise use longword
modulo)

4 SPAM thresholds should be rebuilt

1.2.1.7.2 RDB$RECORD_TYPE Represents AIP record types for RDB$SLOGICAL _
AREAS information table.

AIP Record Types Description

Unknown
Table

Sorted index
Hashed index
System record

g A W N L O

Large object

.2.1.8 RDB$CHARACTER_SETS
Displays information about the Oracle Rdb character sets.

Column Name Data Type Description
RDB$LOWCASE_MAPPING list of byte Segmented string containing a 256
varying byte table used for lowercasing
characters
RDB$UPCASE_MAPPING list of byte Segmented string containing a 256
varying byte table used for uppercasing
characters
RDB$ASSOCIATED_CHARACTER integer Identifier of the associated
SET character set
RDB$CHARACTER_SET_ID integer Character set identifier
RDB$CHARACTER_SET_NAME char(31) Character set name
RDB$CHARACTER_WILDCARD integer Character used as wildcard
character
RDB$FLAGS integer Character set flags
RDB$FORM_OF_USE integer Character set form-of-use indicator

I-18 Information Tables

Column Name Data Type Description

RDBS$IDENTIFIER_CHARACTER_ integer Character set ID of the indentifier
SET character set
RDB$SMAXIMUM_OCTETS integer Maximum number of octets per
character
RDB$MINIMUM_OCTETS integer Minimum number of octets per
character
RDB$REPERTOIRE integer Character set repertoire
RDB$SPACE_CHARACTER integer Character used as space
RDB$STRING_WILDCARD integer Character used as string wildcard
RDB$VERSION integer Version number of character set
entry

1.2.1.8.1 RDBSREPERTOIRE Represents the repertoire values for
RDB$CHARACTER_SETS information table.

Value Name Description
0 OTHER Non-specific repertoire
1 LATIN Contains mainly Latin characters
2 JAPANESE Contains mainly Japanese characters
3 SIMPLE_CHINESE Contains mainly simplified Chinese
characters
4 KOREAN Contains mainly Korean characters
OLD_CHINESE Contains mainly traditional Chinese
characters
6 UNIVERSAL Contains universal characters; for
example, UNICODE
INDIAN Contains mainly Indian characters
ARABIC Contains mainly Arabic characters
GREEK Contains mainly Greek characters
10 CYRILLIC Contains mainly Cyrillic characters
11 HEBREW Contains mainly Hebrew characters

Information Tables 1-19

1-20

1.2.1.8.2 RDB$FORM_OF_USE Represents the form-of-use values for
RDB$CHARACTER_SETS information table.

Note: MIXED are odd flags, FIXED are even.

Value Name Description
0 FIXED_OCTET Fixed octet
1 MIXED_OCTET Mixed octet with DEC_KANJI style
encoding
FIXED_NO_UP Fixed octet, no uppercasing allowed
MIXED_SS2 As in MIXED_OCTET plus <SS2> as
introducer to alternate single octet
encoding
4 FIXED_UP_G1 Fixed octet, uppercasing only 7-bit
characters
5 MIXED_SS3 As in MIXED_SS2 plus <SS3> as
introducer to alternate double octet
encoding
FIXED_OTHER Fixed octet, other
MIXED_C2CB As in MIXED_OCTET plus hex 'C2CB’
as introducer to alternate double octet
encoding
9 MIXED_TAG Mixed octet with leading tag, compound
string
11 MIXED_SHIFT Mixed octet with coding table shifted; for
example, SHIFT_JIS
13 MIXED_110 Mixed octet with binary pattern of high
order bits specifying char size
15 MIXED_GB18030 Mixed octet with 2nd octet in range

HEX(30) - HEX(39) specifying 4 octet

1.2.1.8.3 RDBS$FLAGS Represents flags for RDB$SCHARACTER_SETS
information table.

Bit Position

Name

Description

0

Information Tables

CONTAINS_ASCII

Character set contains 7-bit
ASCII characters

Bit Position Name Description

1 SPACE_OCTET_REPEATS All octets of the multi-octet
space character are the
same value

1.2.1.9 RDBS$NLS_CHARACTER_SETS
Represents the mapping of Oracle NLS character sets to Oracle Rdb character

sets.

Column Name Data Type Description

RDB$CHARACTER_SET_ID integer Character set identifier

RDB$NLS_ID integer Oracle NLS identifier of character
set

RDB$NLS_NAME char(31) Oracle NLS character set name

1.2.1.10 RDBS$SESSION_PRIVILEGES
Represents the mapping of the enabled privileges for this user session.

Column Name Description

RDB$PRIVILEGE String describing an assigned privilege.

Information Tables 1-21

A

ACOS function, G-2
ACOSH function, G-2
Ada language
declaring the SQLDA, D-6
SQLCA, C-24
ADD_MONTHS function, G-2
ANSI_AUTHORIZATION qualifier
See also RIGHTS clause in Volumes 1 and 2
replaced by RIGHTS clause, F-6
ANSI_DATE qualifier
See also DEFAULT DATE FORMAT clause in
Volumes 1 and 2
replaced by DEFAULT DATE FORMAT clause,
F-6
ANSI_IDENTIFIERS qualifier
See also KEYWORD RULES clause in
Volumes 1 and 2
replaced by KEYWORD RULES clause, F-6
ANSI_PARAMETERS qualifier
See also PARAMETER COLONS clause in
Volume 2
replaced by PARAMETER COLONS clause,
F-6
ANSI_QUOTING qualifier
See also QUOTING RULES clause in Volumes
land?2
replaced by QUOTING RULES clause, F-6
ASCII function, G-3
ASCII in C programs
restriction, D-13

Index

ASCII in dynamic SQL
restriction, D-13
ASCIZ in C programs
restriction, D-13
ASCIZ in dynamic SQL
restriction, D-13
ASIN function, G-3
ASINH function, G-3
ATAN2 function, G-5
ATAN function, G-4
ATANH function, G4

B

BASIC language
declaring the SQLDA, D-7, D-17
SQLCA, C-24
BITAND function, G-5
BITANDNOT function, G-6
BITNOT function, G-7
BITOR function, G-7
BITXOR function, G-7
Built-in function, G-1

C

CALL statement
dynamic SQL and
determing, C-12
Cascading delete, F-3
CEIL function, G-7
Character set
logical name
RDB$CHARACTER_SET, E-1
specifying, E-1

Index-1

CHR function, G-7
C language
declaring the SQLDA, D-8, D-18
declaring the SQLDA2, D-18
SQLCA, C-26
COBOL language
SQLCA, C-27
using error literals, C-10
CONTAINING predicate
returning data types for parameter markers,
D-4
Conversion
of data types
in dynamic SQL, D-14
COS function, G-7
COSH function, G-7
COT function, G-8

D

Database system tables, H-1
Data type
conversion
in dynamic SQL, D-14
determining for dynamic SQL, D-12
Declaring the SQLDA
in Ada, D-6
in BASIC, D-7, D-17
in PL/lI, D-8
Declaring the SQLDA2
in C, D-18
DELETE statement
number of rows deleted, C-12
Deprecated feature
of command line qualifiers, F-6
of constraint in CREATE TABLE statement,
F-7
of ORDER BY clause, F-3
SQLOPTIONS=ANSI_AUTHORIZATION,
F-6
SQLOPTIONS=ANSI_DATE, F-6
SQLOPTIONS=ANSI_IDENTIFIERS, F-6
SQLOPTIONS=ANSI_PARAMETERS, F-6
SQLOPTIONS=ANSI_QUOTING, F-6
UNIQUE predicate, F-8

Index—2

DESCRIBE statement
MARKERS clause, D-2
SELECT LIST clause, D-2
SQLDA, D-9
Dynamic SQL
and date-time data types, D-15
CALL statement
determining if, C-12
data type conversion by setting SQLTYPE
field, D-14
declaring the SQLDA
for Ada, D-6
for BASIC, D-7, D-17
for C, D-8
for PL/I, D-8
declaring the SQLDA2
for C, D-18
declaring the SQLDAZ2 for Ada, D-16
declaring the SQLDAZ2 for BASIC, D-17
description of SQLDAZ2 fields, D-19
description of SQLDA fields, D-9
determining data types, D-12
distinguishing SELECT from other
statements, D—4
EXECUTE statement, D-3
FETCH statement, D-3
INCLUDE statement, D-3
multiple
SQLDA declarations, D-3
OPEN statement, D-2
parameter markers, D-2
purpose of SQLDA, D-1
select lists, D-1
SELECT statement
determining if, C-12
SQLDA, D-1, D-3
SQLDERRD array
and SELECT, C-13
SQLERRD array, C-12
SQLTYPE field, D-12
structure of SQLDA, D-5

Function (cont'd)

E ATAN2, G-5
ATANH, G4
Error handling BITAND, G-5
error messages, A-1 BITANDNOT, G-6
flagging, A-7 BITNOT, G-7
online message documentation, A-1 BITOR, G-7
RDB$LU_STATUS, C-22 BITXOR, G-7
return codes in SQLCA, C-3 built-in, G-1
sgl_get_error_text routine, C-23 CEIL, G-7
sqgl_signal routine, C-23 CHR, G-7
with message vector, C-1 COos, G-7
with SQLCA, C-1 COSH, G-7
with SQLSTATE, C-30 COT, G-8
Error literals EXP, G-8
COBOL, C-10 external
Error message logical name for location, E-1
flagging of precompiler and module language, FLOOR, G-8
AT HEXTORAW, G-8
format of, A-1 INITCAP, G-8
locations of online documentation, A-3 INSTR, G-9
online documentation locations, A-3 INSTRB, G-9
types of, A-1 LAST DAY, G-9
EXECUTE statement LN, G-9
parameter markers, D-3 LOG, G-10
SQLDA, D-3,D-9 LPAD, G-10
EXP function, G-8 LTRIM, G-10
MOD, G-10
F MONTHS BETWEEN, G-10
NEW_TIME, G-11
FETCH statement NEXT_DAY, G-11
current row, C-12 Oracle, G-1
SQLERRD field and, C-12 POWER, G-12
using select lists, D-3 RAWTOHEX, G-12
using SQLDA, D-3, D-9 REPLACE, G-12
FLOOR function, G-8 RPAD, G-13
FORTRAN language RTRIM, G-13
SQLCA, C-27 SIN, G-13
Function SINH, G-13
ACOS, G-2 SQRT, G-14
ACOSH, G-2 SUBSTR, G-14
ADD_MONTHS, G-2 SUBSTRB, G-14
ASCII, G-3 TAN, G-14
ASIN, G-3 TANH, G-14
ASINH, G-3
ATAN, G4

Index-3

H

Handling errors
online message documentation, A-1
RDB$LU_STATUS, C-22
sql_get_error_text routine, C-23
sql_signal routine, C-23
with message vector, C-1
with SQLCA, C-1
with SQLSTATE, C-30
HEXTORAW function, G-8

INCLUDE statement
SQLDA, D-3, D-6, D-8
SQLDA2, D-18
Incompatible syntax changes, F-1
Information Tables, 1-1
INITCAP function, G-8
INSERT statement
number of rows stored, C-12
INSTRB function, G-9
INSTR function, G-9

L

Logical name (cont'd)

RDMS$BIND SEGMENTED_STRING _
BUFFER, E-1
RDMS$DEBUG_FLAGS, E-1
RDMS$DIAG_FLAGS, E-2
RDMS$RTX_SHRMEM_PAGE_CNT, E-2
RDMS$SET_FLAGS, E-2
RDMS$USE_OLD_CONCURRENCY, E-2
RDMSS$SUSE_OLD_SEGMENTED_STRING,
E-2

RDMS$VALIDATE_ROUTINE, E-2
SQL$DATABASE, E-2
SQL$DISABLE_CONTEXT, E-2
SQLS$EDIT, E-2
SQLINI, E-2
SYS$CURRENCY, E-2
SYS$DIGIT_SEP, E-2
SYS$LANGUAGE, E-2
SYS$RADIX_POINT, E-2

LPAD function, G-10

LTRIM function, G-10

M

LAST_DAY function, G-9

LIKE predicate
returning data types for parameter markers,

D-4

Limits and parameters
maximum length of SQLNAME field, D-9

List
length of longest element, C-12
number of elements, C-12

LN function, G-9

LOG function, G-10

Logical name, E-1
RDB$CHARACTER_SET, E-1
RDB$ROUTINES, E-1
RDMS$BIND_OUTLINE_MODE, E-1
RDMS$BIND_QG_CPU_TIMEOUT, E-1
RDMS$BIND_QG_REC_LIMIT, E-1
RDMS$BIND_QG_TIMEOUT, E-1

Index-4

MARKERS clause of DESCRIBE statement, D-2

Messages, A-1
Message vector, C-1
in Ada, C-24
in BASIC, C-24
inC, C-26
in COBOL, C-27
in FORTRAN, C-27
in INCLUDE statement, C-1
in Pascal, C-28
in PL/I, C-29
RDB$LU_STATUS, C-22
sql_get_error_text routine, C-23
sqgl_signal routine, C-23
Metadata
system tables, H-1
MOD function, G-10
MONTHS_BETWEEN function, G-10
Multiple SQLDA declarations, D-3

N

NEW_TIME function, G-11
NEXT_DAY function, G-11

o)

Obsolete SQL syntax, F-1
OPEN statement
parameter markers, D-2
SQLERRD field and, C-12
using SQLDA, D-2, D-9
Oracle Database functions, G-1

P

Parameter
message vector, C-22
related to SQLDA, D-14
SQLCA, C-2

Parameter markers
data types returned, D-4
determining data types, D-12
in DESCRIBE statement, D-2
in EXECUTE statement, D-3
in OPEN statement, D-2
in SELECT statement, D-2
in SQLDA, D-2

Pascal language
SQLCA, C-28

PL/I language
declaring the SQLDA, D-8
SQLCA, C-29
SQLDA, D-1

POWER function, G-12

Predicate
UNIQUE, F-8

PREPARE statement
SELECT LIST clause, D-2
SQLDA, D-9

Previously reserved words
SQL3, F-14

Q

Query cost estimate
SQLCA values, C-12

R

RAWTOHEX function, G-12
RDB$CHARACTER_SET logical name, E-1
RDB$LU_STATUS field of message vector, C-22
RDB$MESSAGE_VECTOR structure, C-22
in Ada, C-24
in BASIC, C-24
in C, C-26
in COBOL, C-27
in FORTRAN, C-27
in INCLUDE statement, C-1
in Pascal, C-28
in PL/I, C-29
RDB$LU_STATUS field, C-22
sql_get_error_text routine, C-23
sql_signal routine, C-23
RDB$ROUTINES logical name, E-1
RDMS$BIND_OUTLINE_MODE logical name,
E-1
RDMS$BIND_QG_CPU_TIMEOUT logical name,
E-1
RDMS$BIND_QG_REC_LIMIT logical name,
E-1
RDMS$BIND_QG_TIMEOUT logical name, E-1
RDMS$BIND_SEGMENTED_STRING_BUFFER
logical name, E-1
RDMS$DEBUG_FLAGS logical name, E-1
RDMS$DIAG_FLAGS logical name, E-2
RDMS$RTX_SHRMEM_PAGE_CNT logical
name, E-2
RDMSS$SET_FLAGS logical name, E-2
RDMS$USE_OLD_CONCURRENCY logical
name, E-2
RDMS$USE_OLD_SEGMENTED_STRING
logical name, E-2

Index-5

RDMS$VALIDATE_ROUTINE logical name,
E-2
REPLACE function, G-12
REPLACE statement
number of rows stored, C-13
Reserved word
ANSI89, F-10
SQL92 Standard, F-11
SQL:1999, F-13
Restriction
ASCII in C programs, D-13
ASCII in dynamic SQL, D-13
ASCIZ in C programs, D-13
ASCIZ in dynamic SQL, D-13
Routine
sql_get_error_text, C-23
sqgl_signal, C-23
RPAD function, G-13
RTRIM function, G-13

S

SELECT LIST clause

of DESCRIBE statement, D-2

of PREPARE statement, D-2
Select lists

DESCRIBE statement, D-2

determining data types, D-12

for SELECT statements, D-3

in dynamic SQL, D-1

PREPARE statement, D-2

used by FETCH statements, D-3
SELECT statement

dynamic SQL and

determing, C-12

number of rows in result table, C-13

parameter markers, D-2

select lists, D-3
SIN function, G-13
SINH function, G-13
SQL$DATABASE logical name, E-2
SQL$DISABLE_CONTEXT logical name, E-2
SQLS$EDIT logical name, E-2

Index—6

SQL$GET_ERROR_TEXT routine
See also sql_get_error_text routine, C-23
SQLS$SIGNAL routine
See sql_signal routine
SQL3 draft standard
previously reserved words, F-14
SQLABC field of SQLCA, C-3
SQLAID field of SQLCA, C-3
SQLCA, C-1
and string truncation, C-7
declaring explicitly, C-2
description of fields, C-2
error return codes, C-3
in Ada, C-24
in BASIC, C-24
inC, C-26
in COBOL, C-27
in FORTRAN, C-27
in INCLUDE statement, C-1
in Pascal, C-28
in PL/I, C-29
list information in SQLERRD array, C-12
query cost estimates in SQLERRD array,
C-12
SQLABC field, C-3
SQLAID field, C-3
SQLCODE field, C-2, C-3
SQLERRD array, C-11
and counts, C-12, C-13
and dynamic SELECT, C-13
and OPEN list cursor, C-12
and OPEN table cursor, C-12
dynamic SQL and, C-12
SQLERRD field, C-2
SQLWARN fields, C-13
SQLCHRONO_SCALE field of SQLDA2
codes for date-time data types, D-26
SQLCODE field, C-3
declaring explicitly, C-2
error status code, C-3
value of return code, C-3
SQLDA, D-1
data types returned for parameter markers,
D-4
declared by INCLUDE, D-3

SQLDA (cont'd)
declaring for
Ada, D-6
BASIC, D-7, D-17
C, D-8
PL/I, D-8
description of fields, D-9
for date-time data types

See SQLDA2
in DESCRIBE statement, D-9
in EXECUTE statement, D-3, D-9
in FETCH statement, D-3, D-9
information about select lists, D-1
in OPEN statement, D-2, D-9
in PREPARE statement, D-9
in programs, D-3
parameter markers, D-2
purpose, D-1
related parameters, D-14
related SQLDAPTR declaration, D-14
related SQLSIZE declaration, D-14

setting SQLTYPE field to convert data types,

D-14

SQLDABC field, D-9

SQLDAID field, D-9

SQLDAPTR parameter, D-14

SQLDATA field, D-9

SQLD field, D-9

SQLIND field, D-9

SQLLEN field, D-9

SQLNAME field, D-9

SQLSIZE parameter, D-14

SQLTYPE field, D-9

SQLVAR field, D-9

structure, D-5

using multiple, D-3
SQLDA2, D-15

codes for date-time data types, D-26

codes for interval data types, D-25

declaring for

C, D-18

description of fields, D-19

SQLDABC field of SQLDA, D-9

SQLDAID field of SQLDA, D-9
SQLDAPTR parameter, D-14
SQLDATA field

allocating dynamic memory for, D-19
SQLDATA field of SQLDA, D-9
SQLD field of SQLDA, D-9
SQLERRD array of SQLCA, C-11

dynamic SELECT and, C-13

list information, C-12

query cost estimates, C-12
SQLIND field of SQLDA, D-9
SQLINI command file

logical name, E-2
SQLLEN field

of SQLDA, D-9

of SQLDA2

codes for interval data types, D-25
use in SQLDA contrasted with use in
SQLDA2, D-19

SQL module processor

command line qualifiers, F-6
SQLN

SQLDABC field, D-9
SQLNAME field of SQLDA, D-9
SQLN field of SQLDA, D-9
SQL precompiler

sgl_get_error_text routine, C-23

sqgl_signal routine, C-23
SQLSIZE parameter, D-14
SQLSTATE, C-30
SQLTYPE field of SQLDA, D-9, D-12

setting to convert data types, D-14
SQLVAR field of SQLDA, D-9
SQLWARN fields of SQLCA, C-13
sql_get_error_text routine, C-23
sqgl_signal routine, C-23
SQRT function, G-14
Standards, B-1
STARTING WITH predicate

returning data types for parameter markers,

D-4
String truncation
and SQLCA, C-7

Index-7

SUBSTRB function, G-14
SUBSTR function, G-14
Syntax

incompatible changes, F-1
SYS$CURRENCY logical name, E-2
SYS$DIGIT_SEP logical name, E-2
SYS$LANGUAGE logical name, E-2
SYS$RADIX_POINT logical name, E-2
System table, H-1

detailed, H-1
T
Tables

system, H-1

TAN function, G-14

Index-8

TANH function, G-14
Truncating
strings, C-7

U

UNIQUE predicate, F-8
UPDATE statement
number of rows modified, C-13

Vv

Variable
SQLDA, D-1
SQLDA2, D-15

