
Oracle Rdb™

SQL Reference Manual
Volume 3

Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for Integrity Servers and
OpenVMS Alpha operating systems

April 2012

®

SQL Reference Manual, Volume 3

Release 7.2.5.2 for HP OpenVMS Industry Standard 64 for Integrity Servers and OpenVMS
Alpha operating systems

Copyright © 1987, 2012 Oracle Corporation. All rights reserved.

Primary Author: Rdb Engineering and Documentation group

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except
as expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform,
publish, or display any part, in any form, or by any means. Reverse engineering,
disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted
to be error-free. If you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or
anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation
and technical data delivered to U.S. Government customers are "commercial computer
software" or "commercial technical data" pursuant to the applicable Federal Acquisition
Regulation and agency-specific supplemental regulations. As such, the use, duplication,
disclosure, modification, and adaptation shall be subject to the restrictions and license terms
set forth in the applicable Government contract, and, to the extent applicable by the terms
of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway,
Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information
management applications. It is not developed or intended for use in any inherently
dangerous applications, including applications that may create a risk of personal injury. If
you use this software or hardware in dangerous applications, then you shall be responsible
to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe
use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by
use of this software or hardware in dangerous applications.

Oracle, Java, Oracle Rdb, Hot Standby, LogMiner for Rdb, Oracle SQL/Services, Oracle
CODASYL DBMS, Oracle RMU, Oracle CDD/Repository, Oracle Trace, and Rdb7 are
registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

This software or hardware and documentation may provide access to or information on
content, products, and services from third parties. Oracle Corporation and its affiliates
are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not
be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

Contents

Send Us Your Comments . xi

Preface . xiii

7 SQL Statements

CREATE SEQUENCE Statement . 7–2
CREATE STORAGE AREA Clause . 7–11
CREATE STORAGE MAP Statement . 7–25
CREATE SYNONYM Statement . 7–54
CREATE TABLE Statement . 7–58
CREATE TRIGGER Statement . 7–112
CREATE USER Statement . 7–133
CREATE VIEW Statement . 7–136
DECLARE ALIAS Statement . 7–147
DECLARE CURSOR Statement . 7–159
DECLARE CURSOR Statement, Dynamic . 7–176
DECLARE CURSOR Statement, Extended Dynamic 7–182
DECLARE FUNCTION Statement . 7–189
DECLARE LOCAL TEMPORARY TABLE Statement 7–190
DECLARE MODULE Statement . 7–200
DECLARE PROCEDURE Statement . 7–210
DECLARE Routine Statement . 7–211
DECLARE STATEMENT Statement . 7–218
DECLARE TABLE Statement . 7–220
DECLARE TRANSACTION Statement . 7–227
DECLARE Variable Statement . 7–238
DELETE Statement . 7–241
DESCRIBE Statement . 7–247

iii

DISCONNECT Statement . 7–254
DROP Statements . 7–259
DROP CATALOG Statement . 7–260
DROP COLLATING SEQUENCE Statement . 7–263
DROP CONSTRAINT Statement . 7–266
DROP DATABASE Statement . 7–268
DROP DOMAIN Statement . 7–271
DROP INDEX Statement . 7–274
DROP MODULE Statement . 7–277
DROP OUTLINE Statement . 7–280
DROP PATHNAME Statement . 7–282
DROP PROFILE Statement . 7–283
DROP ROLE Statement . 7–286
Drop Routine Statement . 7–288
DROP SCHEMA Statement . 7–292
DROP SEQUENCE Statement . 7–295
DROP STORAGE MAP Statement . 7–298
DROP SYNONYM Statement . 7–300
DROP TABLE Statement . 7–302
DROP TRIGGER Statement . 7–307
DROP USER Statement . 7–309
DROP VIEW Statement . 7–311
EDIT Statement . 7–314
END DECLARE Statement . 7–318
Execute (@) Statement . 7–321
EXECUTE Statement . 7–324
EXECUTE IMMEDIATE Statement . 7–332
EXIT Statement . 7–337
EXPORT Statement . 7–338
FETCH Statement . 7–344
FOR Control Statement . 7–353
FOR (Counted) Control Statement . 7–357
GET DIAGNOSTICS Statement . 7–364
GET ENVIRONMENT Statement . 7–374
GRANT Statements . 7–378
GRANT Statement . 7–380
GRANT Statement: ANSI/ISO-Style . 7–401

iv

GRANT Statement: Roles . 7–413

Index

Tables

7–1 Using Temporary Tables . 7–84
7–2 Availability of Row Data for Triggered Actions 7–118
7–3 Classes, Types, and Modes of Cursors . 7–161
7–4 GET ENVIRONMENT session keywords . 7–375
7–5 SQL Privileges for Databases, Tables, Columns, Modules, External

Routines and Sequences . 7–386
7–6 Privilege Override Capability . 7–393

v

Send Us Your Comments

Oracle Rdb for OpenVMS
Oracle SQL Reference Manual, Release 7.2.5.2
Oracle Corporation welcomes your comments and suggestions on the quality
and usefulness of this publication. Your input is an important part of the
information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most?

If you find any errors or have any other suggestions for improvement, please
indicate the document title, chapter, section, and page number (if available).
You can send comments to us in the following ways:

• Electronic mail:InfoRdb_US@oracle.com

• FAX — 603-897-3825 Attn: Oracle Rdb

• Postal service:
Oracle Corporation
Oracle Rdb Documentation
One Oracle Drive
Nashua, NH 03062-2804
USA

If you would like a reply, please give your name, address, telephone number,
and (optionally) electronic mail address.

If you have problems with the software, please contact your local Oracle
Support Services.

xi

Preface

This manual describes the syntax and semantics of the statements and
language elements for the SQL (structured query language) interface to the
Oracle Rdb database software.

Intended Audience
To get the most out of this manual, you should be familiar with data processing
procedures, basic database management concepts and terminology, and the
OpenVMS operating system.

Operating System Information
You can find information about the versions of the operating system and
optional software that are compatible with this version of Oracle Rdb in the
Oracle Rdb Installation and Configuration Guide.

For information on the compatibility of other software products with this
version of Oracle Rdb, refer to the Oracle Rdb Release Notes.

Contact your Oracle representative if you have questions about the
compatibility of other software products with this version of Oracle Rdb.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support.
For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or
visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

xiii

Structure
This manual is divided into five volumes. Volume 1 contains Chapter 1 through
Chapter 5 and an index. Volume 2 contains Chapter 6 and an index. Volume 3
contains Chapter 7 and an index. Volume 4 contains Chapter 8 and an index.
Volume 5 contains the appendixes and an index.

The index for each volume contains entries for the respective volume only and
does not contain index entries from the other volumes in the set.

The following table shows the contents of the chapters and appendixes in
Volumes 1, 2, 3, 4, and 5 of the Oracle Rdb SQL Reference Manual:

Chapter 1 Introduces SQL (structured query language) and briefly
describes SQL functions. This chapter also describes
conformance to the ANSI standard, how to read syntax
diagrams, executable and nonexecutable statements,
keywords and line terminators, and support for Multivendor
Integration Architecture.

Chapter 2 Describes the language and syntax elements common to
many SQL statements.

Chapter 3 Describes the syntax for the SQL module language and the
SQL module processor command line.

Chapter 4 Describes the syntax of the SQL precompiler command line.

Chapter 5 Describes SQL routines.

Chapter 6
Chapter 7
Chapter 8

Describe in detail the syntax and semantics of the SQL
statements. These chapters include descriptions of data
definition statements, data manipulation statements, and
interactive control commands.

Appendix A Describes the different types of errors encountered in SQL
and where they are documented.

Appendix B Describes the SQL standards to which Oracle Rdb conforms.

Appendix C Describes the SQL Communications Area, the message
vector, and the SQLSTATE error handling mechanism.

Appendix D Describes the SQL Descriptor Areas and how they are used
in dynamic SQL programs.

xiv

Appendix E Summarizes the logical names that SQL recognizes for
special purposes.

Appendix F Summarizes the obsolete SQL features of the current Oracle
Rdb version.

Appendix G Summarizes the SQL functions that have been added to
the Oracle Rdb SQL interface for compatibility with Oracle
Database SQL. This appendix also describes the SQL syntax
for performing an outer join between tables.

Appendix H Describes the Oracle Rdb system tables.

Appendix I Describes information tables that can be used with Oracle
Rdb.

Index Index for each volume.

Related Manuals
For more information on Oracle Rdb, see the other manuals in this
documentation set, especially the following:

• Oracle Rdb Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb Introduction to SQL

• Oracle Rdb Guide to SQL Programming

Conventions
In examples, an implied carriage return occurs at the end of each line, unless
otherwise noted. You must press the Return key at the end of a line of input.

Often in examples the prompts are not shown. Generally, they are shown
where it is important to depict an interactive sequence exactly; otherwise, they
are omitted.

The following conventions are also used in this manual:

.

.

.

Vertical ellipsis points in an example mean that information not directly
related to the example has been omitted.

. . . Horizontal ellipsis points in statements or commands mean that parts
of the statement or command not directly related to the example have
been omitted.

xv

e, f, t Index entries in the printed manual may have a lowercase e, f, or t
following the page number; the e, f, or t is a reference to the example,
figure, or table, respectively, on that page.

boldface
text

Boldface type in text indicates a new term.

< > Angle brackets enclose user-supplied names in syntax diagrams.

[] Brackets enclose optional clauses from which you can choose one or
none.

$ The dollar sign represents the command language prompt. This symbol
indicates that the command language interpreter is ready for input.

References to Products
The Oracle Rdb documentation set to which this manual belongs often refers to
the following Oracle Corporation products by their abbreviated names:

• In this manual, Oracle Rdb refers to Oracle Rdb for OpenVMS. Version 7.2
of Oracle Rdb software is often referred to as V7.2.

• Oracle CDD/Repository software is referred to as the dictionary, the data
dictionary, or the repository.

• Oracle ODBC Driver for Rdb software is referred to as the ODBC driver.

• OpenVMS I64 refers to HP OpenVMS Industry Standard 64 for Integrity
Servers.

• OpenVMS means the OpenVMS I64 and OpenVMS Alpha operating
systems.

xvi

7
SQL Statements

This chapter describes the syntax and semantics of statements in SQL. SQL
statements include data definition statements; data manipulation statements;
statements that control the environment and program flow; and statements
that give information.

See Chapter 2 in Volume 1 for detailed descriptions of the language and syntax
elements referred to by the syntax diagrams in this chapter.

Chapter 6 in Volume 2 describes the statements from ACCEPT to CREATE
SCHEMA.

Chapter 8 in Volume 4 describes the statements from HELP to WHILE.

SQL Statements 7–1

CREATE SEQUENCE Statement

CREATE SEQUENCE Statement

Creates a sequence. A sequence is a database object from which multiple users
can generate unique integers. You can use sequences to automatically generate
primary key values.

Environment

You can use the CREATE SEQUENCE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE SEQUENCE <sequence-name>

STORED NAME IS <stored-name>

sequence-attributes
START WITH <numeric-value>

7–2 SQL Statements

CREATE SEQUENCE Statement

sequence-attributes =

INCREMENT BY <numeric-value>
sequence-range
CYCLE
NOCYCLE
CACHE <numeric-value>
NOCACHE
ORDER
NOORDER
RANDOMIZE
NORANDOMIZE
RESTART WITH
WAIT
NOWAIT
DEFAULT WAIT
COMMENT ’<string>’

IS /

sequence-range =

MINVALUE <numeric-value>
MAXVALUE TINYINT

SMALLINT
INTEGER
BIGINT

NOMINVALUE
NOMAXVALUE

Arguments

CACHE numeric-value
NOCACHE
The CACHE clause specifies how many values of the sequence Oracle Rdb
should preallocate and keep in memory for faster access. The numeric value
must be between 2 and 2147483647.

You cannot cache more values than will fit in a given cycle of sequence
numbers; thus, the maximum value allowed for the CACHE clause must be
less than the value resulting from the following formula:

(MAXVALUE-MINVALUE)/ABS(INCREMENT)

The SET FLAGS option SEQ_CACHE can be used to override the setting of
CACHE at runtime. See the SET FLAGS Statement for more details.

SQL Statements 7–3

CREATE SEQUENCE Statement

A cache for a given sequence is populated at the first request for a number
from that sequence, and whenever a value is requested when the cache is
empty. If a system failure occurs, or when the cache is released any unfetched
values will be discarded. The maximum number of lost values is equal to the
current cache size. This may be the value specified by CACHE or by the SET
FLAGS SEQ_CACHE option.

The NOCACHE clause specifies that values will be allocated one at a time.
This will require more I/O to the Rdb root file than using a CACHE value.

By default, Oracle Rdb caches 20 sequence values.

COMMENT IS ’string ’

Adds a comment about the sequence. SQL displays the text of the comment
when it executes a SHOW SEQUENCE statement. Enclose the comment in
single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

CYCLE
NOCYCLE
The CYCLE clause specifies that the sequence is to continue generating
values after reaching either the MINVALUE or MAXVALUE. After an
ascending sequence reaches the MAXVALUE, the sequence starts again
from its MINVALUE. After a descending sequence reaches its MINVALUE, the
sequence starts again at its MAXVALUE. The NOCYCLE clause specifies that
the sequence should not continue generating values after reaching either its
minimum or maximum value. An error is generated if an attempt is made to
increment the sequence beyond its limits. The NOCYCLE clause is the default.

INCREMENT BY numeric-value
Specifies the size of the increment and the direction (ascending or descending)
of the sequence. This numeric value must be in the range -2147483648 through
2147483647, excluding 0. The absolute value must be less than the difference
of MAXVALUE and MINVALUE. A negative value specifies a descending
sequence; a positive value specifies an ascending sequence. By default, the
numeric value is 1.

MAXVALUE numeric-value
NOMAXVALUE
The MAXVALUE clause specifies the maximum signed quadword (BIGINT)
value that the sequence can generate. The numeric value must be between
-9223372036854775808 and 9223372036854775808. The MAXVALUE must be
equal to or greater than the value specified for the START WITH clause
and greater than the value specified with the MINVALUE clause. The
NOMAXVALUE clause specifies that the maximum value for an ascending

7–4 SQL Statements

CREATE SEQUENCE Statement

sequence is 9223372036854775808 (plus the cache size) and -1 for a descending
sequence.

The NOMAXVALUE clause is the default.

MAXVALUE TINYINT
MAXVALUE SMALLINT
MAXVALUE INTEGER
MAXVALUE BIGINT
SQL allows the keyword TINYINT, SMALLINT, INTEGER and BIGINT to
follow MAXVALUE instead of a numeric value. This allows easy range setting
for sequences used with these data types. The value supplied will be the
largest positive value that can be assigned to this data type.

MINVALUE numeric-value
NOMINVALUE
The MINVALUE clause specifies the minimum signed quadword (BIGINT)
value that the sequence can generate. The numeric value must be equal
to or greater than -9223372036854775808. The MINVALUE must be less
than or equal to the value specified with the START WITH clause and less
than the value specified with the MAXVALUE clause. The NOMINVALUE
clause specifies that the minimum value for an ascending sequence is 1, and
-9223372036854775808 (plus the cache size) for a descending sequence.

The NOMINVALUE clause is the default.

MINVALUE TINYINT
MINVALUE SMALLINT
MINVALUE INTEGER
MINVALUE BIGINT
SQL allows the keyword TINYINT, SMALLINT, INTEGER and BIGINT to
follow MINVALUE instead of a numeric value. This allows easy range setting
for sequences used with these data types. The value supplied will be the
smallest negative value that can be assigned to this data type.

ORDER
NOORDER
The ORDER clause specifies that sequence numbers are guaranteed to be
assigned in order for each requesting process, thus maintaining a strict history
of requests. The NOORDER clause specifies that sequence numbers are not
guaranteed to be generated in order of request.

The NOORDER clause is the default.

SQL Statements 7–5

CREATE SEQUENCE Statement

RANDOMIZE
NORANDOMIZE
The RANDOMIZE clause specifies that the sequence numbers are to be
returned with a random value in the most significant bytes of the BIGINT
value. This allows unique values to be generated that have a random
distribution. When you specify the NORANDOMIZE clause, sequence numbers
are close in value to others created at the same time.

The advantage of the RANDOMIZE clause is that updates to columns
of a sorted index to which these values are written occur in different
locations in the index structure. This may improve concurrent access for
large indexes as leaf nodes in different parts of the index can be updated
independently. In contrast, the sequence numbers generated when you specify
the NORANDOMIZE clause (which are likely to be close in numeric value
to other sequences) result in index updates that occur in the same or nearby
index nodes, which may lead to contention in one part of the sorted index.

The full range of values in the BIGINT value returned for the sequence are
used; therefore, the NOMAXVALUE and NOMINVALUE clauses must be
specified (or defaulted to) for the sequence definition. The most significant
bits of the BIGINT value are set to a randomly generated positive value. A
generated distinct value is returned in the least significant 32 bits so that
uniqueness is guaranteed. If you also specify the CYCLE clause, then only
the least significant 32 bits are cycled. When a query is performed on the
column RDB$NEXT_SEQUENCE_VALUE in the RDB$SEQUENCES table,
only the generated value of the least significant bits is returned, because the
most significant bits are not assigned until the NEXTVAL pseudo column is
referenced.

If you specify RANDOMIZE, you cannot also specify ORDER, MAXVALUE, or
MINVALUE. The NORANDOMIZE clause is the default.

sequence-name
The name of the sequence that you want to create. Use a name that is unique
among all sequence, synonym, table, and view names in the database, or in the
schema if you are using a multischema database. Use any valid SQL name.

START WITH numeric-value
Specifies the initial numeric value to be used for the sequence. This value
must be in the range specified by (or defaulted to) the other sequence
attribute clauses. Valid values are in the range -9223373036854775808 to
9223372036854775807.

If omitted, the START WITH value defaults to the value of MINVALUE for
ascending sequences and MAXVALUE for descending sequences.

7–6 SQL Statements

CREATE SEQUENCE Statement

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a sequence created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, that do not recognize
multiple schemas in one database. You cannot specify a stored name for a
sequence in a database that does not allow multiple schemas.

WAIT
NOWAIT
DEFAULT WAIT
Specifies what wait state is used when a reference to NEXTVAL is used. A
reference to NEXTVAL for a sequence may require synchronization with other
users of the sequence. When you specify DEFAULT WAIT, the wait state
(WAIT or NOWAIT) of the current transaction is used. This may mean that no
waiting is performed during a NOWAIT transaction.

If you specify WAIT (the default) for the sequence, then regardless of the
wait state set for the current transaction, all synchronization waits for the
next value. This is the recommended setting if the application uses NOWAIT
transactions. The current WAIT timeout interval defined for the transaction or
database is used.

If you specify NOWAIT for the sequence, then regardless of the current
transaction setting, all synchronization does not wait for the next value.

Usage Notes

• You must have the CREATE database privilege on the database to create a
sequence.

A user must have SELECT privileges on a sequence to use the NEXTVAL
and CURRVAL pseudo columns.

• NEXTVAL establishes a new value for the session. An application must
reference the sequence NEXTVAL pseudo column before using CURRVAL.

• Concurrent access is allowed to the sequence once the transaction in which
the sequences were created is committed.

• If you specify the NEXTVAL pseudo column more than once in a statement,
then only the first specification increments the sequence value; the others
act as CURRVAL references.

• NEXTVAL and CURRVAL may be delimited. All upper and lower case
variations of these keywords are accepted and assumed to be equivalent to
these upper case keywords.

SQL Statements 7–7

CREATE SEQUENCE Statement

The following example shows that any case is accepted.

SQL> set dialect ’sql99’;
SQL> create sequence dept_id;
SQL> select dept_id.nextval from rdb$database;

1
1 row selected
SQL> select "DEPT_ID".currval from rdb$database;

1
1 row selected
SQL> select "DEPT_ID"."CURRVAL" from rdb$database;

1
1 row selected
SQL> select "DEPT_ID"."nextval" from rdb$database;

2
1 row selected
SQL> select "DEPT_ID"."CuRrVaL" from rdb$database;

2
1 row selected

• A run-time lock is used to synchronize access to the next unused sequence
value.

• The value of the START WITH clause establishes the initial value
generated after a sequence is created. This value is not necessarily
the value to which an ascending cycling sequence cycles after reaching its
maximum or minimum value.

• If you specify none of the sequence attributes, an ascending sequence
is created that starts with 1, increases by 1, and has no upper limit. If
the only sequence attribute that you specify is INCREMENT BY -1, a
descending sequence that starts with -1 and decreases with no lower limit
is generated.

• To create a sequence that increments without bounds, do one of the
following:

For an ascending sequence, omit the MAXVALUE clause or specify the
NOMAXVALUE clause.

For a descending sequence, omit the MINVALUE clause or specify the
NOMINVALUE clause.

• To create a sequence that stops at a predefined limit, do one of the
following:

For an ascending sequence, specify a value for the MAXVALUE clause
and omit the CYCLE clause.

7–8 SQL Statements

CREATE SEQUENCE Statement

For a descending sequence, specify a value for the MINVALUE clause
and omit the CYCLE clause.

Any attempt to generate a sequence number once the sequence has
reached its limit results in an error.

• To create a sequence that restarts after reaching a predefined limit,
omit the CYCLE clause and specify values for both the MAXVALUE and
MINVALUE clauses.

• When a table contains a column with the IDENTITY attribute, a sequence
is implicitly created, named after the table, to implement the IDENTITY
functionality. A SHOW SEQUENCE will list these special sequences.

• Once a sequence is created, applications can access its values in SQL
statements with the following pseudo columns:

CURRVAL: Returns the current value of the sequence.

NEXTVAL: Increments the sequence and returns the new value.

• Note that sequences with the CYCLE attribute are no longer guaranteed to
return unique values.

Examples

Example 1: Creating a Sequence

SQL Statements 7–9

CREATE SEQUENCE Statement

SQL> -- This example creates a new sequence using the default
SQL> -- values for NOMINVALUE, NOMAXVALUE, INCREMENT BY 1, NOCYCLE,
SQL> -- and CACHE 20. The START WITH value is set to 147.
SQL> -- Allyn Stuart will be assigned an EMPLOYEE_ID value of 147.
SQL> -- Nick Jones will be assigned an EMPLOYEE_ID of 148.
SQL> --
SQL> CREATE SEQUENCE EMPID START WITH 00147;
SQL> -- Use NEXTVAL to fetch a sequence number for the primary key column.
SQL> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID, LAST_NAME, FIRST_NAME)
cont> VALUES (EMPID.NEXTVAL, ’STUART’, ’ALLYN’)
cont> RETURNING EMPLOYEE_ID;
EMPLOYEE_ID
147
1 row inserted
SQL> -- Use CURRVAL to reuse the EMPLOYEE_ID value for the foreign key columns
SQL> -- in the associated tables.
SQL> INSERT INTO SALARY_HISTORY
cont> (EMPLOYEE_ID, SALARY_AMOUNT,SALARY_START, SALARY_END)
cont> VALUES (EMPID.CURRVAL, 35000, ’6-FEB-1998’, NULL)
cont> RETURNING EMPLOYEE_ID;
EMPLOYEE_ID
147
1 row inserted
SQL> INSERT INTO JOB_HISTORY
cont> (EMPLOYEE_ID, DEPARTMENT_CODE, JOB_START, JOB_END)
cont> VALUES (EMPID.CURRVAL, ’ENGR’, ’6-FEB-1998’, NULL)
cont> RETURNING EMPLOYEE_ID;
EMPLOYEE_ID
147
1 row inserted
SQL> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID, LAST_NAME, FIRST_NAME)
cont> VALUES (EMPID.NEXTVAL, ’JONES ’, ’NICK ’)
cont> RETURNING EMPLOYEE_ID;
EMPLOYEE_ID
148
1 row inserted

7–10 SQL Statements

CREATE STORAGE AREA Clause

CREATE STORAGE AREA Clause

Note

You cannot issue CREATE STORAGE AREA as an independent
statement. It is a clause allowed only as part of a CREATE DATABASE
or IMPORT statement.

You can also create a storage area using the ADD STORAGE AREA
clause of the ALTER DATABASE statement.

Creates additional storage areas in a multifile database. Storage areas are
data and snapshot files that are associated with particular tables in a multifile
database.

A CREATE STORAGE AREA clause specifies the names for the storage area
files and determines their physical characteristics. Subsequent CREATE
STORAGE MAP statements associate the storage area with particular tables
in the database.

Environment

You can use the CREATE STORAGE AREA clause only within a CREATE
DATABASE or IMPORT statement.

Format

CREATE STORAGE AREA <area-name>
RDB$SYSTEM FILENAME <file-spec>

storage-area-params-1
storage-area-params-2

SQL Statements 7–11

CREATE STORAGE AREA Clause

storage-area-params-1 =

ALLOCATION IS <number-pages> PAGES
CACHE USING <row-cache-name>
NO ROW CACHE
extent-params
INTERVAL IS <number-data-pages>
LOCKING IS ROW LEVEL

PAGE
PAGE FORMAT IS UNIFORM

MIXED
PAGE SIZE IS <page-blocks> BLOCKS

extent-params =

EXTENT IS ENABLED
DISABLED
<extent-pages> PAGES
(extension-options)

extension-options =

MINIMUM OF <min-pages> PAGES,

MAXIMUM OF <max-pages> PAGES,

PERCENT GROWTH IS <growth>

storage-area-params-2 =

CHECKSUM CALCULATION IS ENABLED
SNAPSHOT CHECKSUM CALCULATION IS DISABLED
SNAPSHOT ALLOCATION IS <snp-pages> PAGES
SNAPSHOT EXTENT IS <extent-pages> PAGES

(extension-options)
SNAPSHOT FILENAME <file-spec>
THRESHOLDS ARE (<val1>)

,<val2>
,<val3>

7–12 SQL Statements

CREATE STORAGE AREA Clause

Arguments

ALLOCATION IS number-pages PAGES
The number of database pages initially allocated to the storage area. Rdb will
automatically extend this allocation to account for internal structure pages,
such as SPAM (spage management) pages. For example, an allocation of 25
will be increased to 27 as shown in this example:

SQL> alter database filename MF_PERSONNEL
cont> add storage area DOC_EXAMPLE
cont> page format is uniform
cont> allocation 25;
SQL> attach ’filename MF_PERSONNEL’;
SQL> show storage area DOC_EXAMPLE

DOC_EXAMPLE
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
Area File: USER_DISK:[DOC.DATABASES]DOC_EXAMPLE.RDA;1
Area Allocation: 27 pages
Extent: Enabled
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: USER_DISK:[DOC.DATABASES]DOC_EXAMPLE.SNP;1
Snapshot Allocation: 100 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent
Locking is Row Level
No Cache Associated with Storage Area

No database objects use Storage Area DOC_EXAMPLE

CACHE USING row-cache-name
Assigns the named row cache to the specified storage area. All rows stored in
this area, whether they consist of table data, segmented string data, or special
rows such as index nodes, are cached if those rows fit in the cache.

If the row cache does not exist, you must create the row cache before
terminating the CREATE DATABASE statement. For example:

SQL> CREATE DATABASE FILENAME test_db
cont> ROW CACHE IS ENABLED
cont> CREATE STORAGE AREA area1
cont> CACHE USING test1
cont> CREATE CACHE test1
cont> CACHE SIZE IS 100 ROWS
cont> ROW LENGTH IS 200 BYTES;

SQL Statements 7–13

CREATE STORAGE AREA Clause

Only one row cache is allowed for each storage area.

NO ROW CACHE is the default for a storage area.

CHECKSUM CALCULATION
SNAPSHOT CHECKSUM CALCULATION
This option allows you to enable or disable calculations of page checksums
when pages are read from or written to the storage or snapshot area files.

The default is ENABLED.

Note

Oracle Corporation recommends that you leave checksum calculations
enabled; which is the default.

With current technology, it is possible that errors may occur that the checksum
calculation can detect but that may not be detected by either the hardware,
firmware, or software. Unexpected application results and database corruption
may occur if corrupt pages exist in memory or on disk but are not detected.

Oracle Corporation recommends performing checksum calculations, except in
the following specific circumstances:

• Your application is stable and has run without errors on the current
hardware and software configuration for an extended period of time.

• You have reached maximum CPU utilization in your current configuration.
Actual CPU utilization by the checksum calculation depends primarily on
the size of the database pages in your database. The larger the database
page, the more noticeable the CPU usage by the checksum calculation may
become.

Note

Oracle Corporation recommends that you carefully evaluate the trade-
off between reducing CPU usage by the checksum calculation and the
potential for loss of database integrity if checksum calculations are
disabled.

Oracle Rdb allows you to disable and, subsequently, re-enable checksum
calculation without error. However, once checksum calculations have been
disabled, corrupt pages may not be detected even if checksum calculations are
subsequently re-enabled.

7–14 SQL Statements

CREATE STORAGE AREA Clause

EXTENT ENABLED
EXTENT DISABLED
Enables or disables extents. Extents are ENABLED by default.

You may encounter performance problems when creating hashed indexes in
storage areas with the mixed page format if the storage area was created
specifying the incorrect size for the area and if extents are enabled. By
disabling extents, this problem can be diagnosed early and corrected to
improve performance.

EXTENT IS extent-pages PAGES
EXTENT IS (extension-options)
Specifies the number of pages of each storage area file extent. See also the
description under the SNAPSHOT EXTENT argument.

FILENAME file-spec
Provides an explicit file specification for storage area files. The CREATE
STORAGE AREA clause creates two files: a storage area file with a file
extension of .rda, and a snapshot file with a file extension of .snp. If you omit
the FILENAME argument, the file specification takes the following defaults:

• Device: the current device for the process

• Directory: the current directory for the process

• File name: the name specified for the storage area

Neither the file specification for the storage area nor the snapshot file may
contain a node specification.

The file specification is used for both the storage area and snapshot files
that comprise the storage area (unless you use the SNAPSHOT FILENAME
argument to specify a different file for the snapshot file). Because the CREATE
STORAGE AREA clause can create two files with different file extensions, do
not specify a file extension with the file specification.

You may use a logical name for all or part of a file specification.

One benefit of a multifile database is that its files can reside on more than one
disk. If you want storage area files to reside on another disk, you must specify
the FILENAME argument with a full file specification.

However, you may choose to create a multifile database even if your main
purpose in creating the storage area is not to distribute storage area files
across more than one disk. For instance, a multifile database enables you to:

SQL Statements 7–15

CREATE STORAGE AREA Clause

• Take advantage of hashed indexes. Hashed indexes require a storage area
with mixed page format and cannot be stored in the RDB$SYSTEM storage
area.

• Set attributes such as page size to better correspond with tables that will
be stored in the storage area.

INTERVAL IS number-data-pages
Specifies the number of data pages between SPAM pages in the storage area
file, and thus the maximum number of data pages each SPAM page manages.
The default, and also the minimum interval, is 216 data pages. The first page
of each storage area is a SPAM page. The interval you specify determines
where subsequent SPAM pages are to be inserted if there are enough data
pages in the storage file to require more SPAM pages.

You cannot specify the INTERVAL storage area parameter unless you also
explicitly specify PAGE FORMAT IS MIXED.

Oracle Rdb calculates the maximum INTERVAL size based on the number of
blocks per page, and returns an error message if you exceed this value. For
example, when the page size is 2 blocks, the maximum INTERVAL is 4008
pages. If you try to create a storage area with the INTERVAL set to 4009,
Oracle Rdb returns the following error message:

%RDB-E-BAD_DPB_CONTENT, invalid database parameters in the database parameter
block (DPB)
-RDMS-F-SPIMAX, spam interval of 4009 is more than the Rdb maximum of 4008
-RDMS-F-AREA_NAME, area NEW

For more information about setting space area management parameters, see
the Oracle Rdb Guide to Database Maintenance.

LOCKING IS ROW LEVEL
LOCKING IS PAGE LEVEL
Specifies if locking is at the page or row level for the storage area. This clause
provides an alternative to requesting locks on records. Specifying a lock level
when you create a storage area overrides the database default lock level. The
default is ROW LEVEL.

When many records are accessed in the same area and on the same page, the
LOCKING IS PAGE LEVEL clause reduces the number of lock operations
performed to process a transaction; however, this is at the expense of reduced
concurrency because these pages’ locks are held until COMMIT/ROLLBACK.
Transactions that benefit most with page-level locking are of short duration
and also access several database records on the same page. However, to
guarantee consistency of the data in the absence of row locking these page level
locks must be held until the transaction ends with COMMIT or ROLLBACK.

7–16 SQL Statements

CREATE STORAGE AREA Clause

Use the LOCKING IS ROW LEVEL if transactions are long in duration and
lock many rows.

The LOCKING IS PAGE LEVEL clause causes fewer blocking ASTs and
provides better response time and utilization of system resources. However,
there is a higher contention for pages and increased potential for deadlocks
and long transactions may use excessive locks.

Page-level locking is never applied to RDB$SYSTEM or the DEFAULT storage-
area, either implicitly or explicitly, because the locking protocol can stall
metadata users.

You cannot specify page-level locking on single-file databases.

MAXIMUM OF max-pages PAGES
Specifies the maximum number of pages of each extent. The default is 9,999
pages.

MINIMUM OF min-pages PAGES
Specifies the minimum number of pages of each extent. The default is 99
pages.

NO ROW CACHE
Specifies that a row cache is not assigned to the specified storage area in the
database. You cannot specify the NO ROW CACHE clause if you specify the
CACHE USING clause.

Alter the storage area and name a row cache with the CACHE USING clause
to assign a row cache to the storage area or to override the database default.
Only one row cache is allowed for each storage area.

PAGE FORMAT IS UNIFORM
PAGE FORMAT IS MIXED
Specifies the on-disk structure for the storage area.

• The default is PAGE FORMAT IS UNIFORM. A storage area with uniform
page format is a file that is divided into groups of n pages, called clumps,
where n equals the buffer size divided by the page size. Both buffer size
and page size are user specified values. By default, the buffer size is 6
blocks, and the page size is 1024 bytes or 2 blocks long, resulting in clumps
of three pages. The PAGE FORMAT IS UNIFORM argument creates a
storage area file that is divided into clumps. A set of clumps forms a
logical area that can contain rows from a single table or index only.

Uniform page format storage areas generally give the best performance if
the tables in the storage area are likely to be subject to a wide range of
queries.

SQL Statements 7–17

CREATE STORAGE AREA Clause

• The PAGE FORMAT IS MIXED argument creates a storage area with a
format that allows rows from more than one table to reside on or near a
particular page of the storage area file. This is useful for storing related
rows from different tables on the same page of the data file. For storage
areas subject to repeated queries that retrieve those related rows, a mixed
page format can greatly reduce input/output overhead if the mix of rows on
the page is carefully controlled. However, mixed page format storage areas
degrade performance if the mix of rows on the page is not suited for the
queries made against the storage area.

For more information on the relative advantages and disadvantages of uniform
and mixed storage areas, see the Oracle Rdb Guide to Database Maintenance.

PAGE SIZE IS page-blocks BLOCKS
The size in blocks of each data page in the storage area. Page size is allocated
in 512-byte blocks. The default is 2 blocks (1024 bytes). If your largest row is
larger than approximately 950 bytes, allocate more blocks per page to prevent
fragmented rows. If you specify a page size larger than the buffer size, an
error message is returned.

PERCENT GROWTH IS growth
Specifies the percent growth of each extent. The default is 20 percent growth.

SNAPSHOT ALLOCATION IS snp-pages PAGES
Specifies the number of pages allocated for the snapshot file.

The default is 100 pages.

SNAPSHOT EXTENT IS extent-pages PAGES
SNAPSHOT EXTENT IS (extension-options)
Specifies the number of pages of each snapshot or storage area file extent. The
default extent for storage area files is 100 pages.

Specify a number of pages for simple control over the extension. For greater
control, and particularly for multivolume databases, use the MIN, MAX, and
PERCENT GROWTH extension options instead.

If you use the MIN, MAX, and PERCENT GROWTH parameters, you must
enclose them in parentheses.

SNAPSHOT FILENAME file-spec
Provides a separate file specification for the snapshot file. The SNAPSHOT
FILENAME argument can only be specified with multifile databases.

7–18 SQL Statements

CREATE STORAGE AREA Clause

This argument lets you specify a different file name, device, or directory for the
snapshot file created by the CREATE STORAGE AREA clause. Do not specify
a file extension other than .snp to the file specification. Oracle Rdb assigns
the extension .snp to the file specification, even if you specify an alternate
extension.

If you omit the SNAPSHOT FILENAME argument, the snapshot file gets the
same device, directory, and file name as the storage area file.

STORAGE AREA area-name
Specifies the name of the storage area you want to create. The name cannot be
the same as any other storage area definition in the database.

STORAGE AREA RDB$SYSTEM
Specifies that you want the CREATE STORAGE AREA clause to override the
default characteristics for the main storage area, RDB$SYSTEM, in a new
database.

The RDB$SYSTEM storage area contains database system tables and indices.
If an alternate DEFAULT STORAGE AREA is not assigned then this area may
also contain unmapped user tables and indices.

THRESHOLDS ARE (val1 [,val2 [,val3]])
Specifies one, two, or three threshold values for mixed format pages. The
threshold values represent a fullness percentage on a data page and establish
three possible ranges of guaranteed free space on the data pages. When a data
page reaches the percentage defined by a given threshold value, the space area
management (SPAM) entry for the data page is updated to reflect the new
fullness percentage and its remaining free space.

The default threshold values for mixed areas, if not specified, are (70,85,95),
which indicates that the nominal record size should be used for SPAM
threshold calculations. Oracle Rdb never stores a record on a page at the
third threshold. The value you set for the highest threshold can be used to
reserve space on the page for future record growth.

When only val1 is specified, this is equivalent to (val1, 100, 100). When val1
and val2 are specified, this is equivalent to (val1, val2, 100). The trailing,
unspecified thresholds default to 100 percent. For example, THRESHOLDS
ARE (40) would appear as (40, 100, 100).

You cannot specify the THRESHOLDS storage area parameter unless you also
explicitly specify PAGE FORMAT IS MIXED.

For more information about setting space area management parameters, see
the Oracle Rdb Guide to Database Maintenance.

SQL Statements 7–19

CREATE STORAGE AREA Clause

Usage Notes

• You cannot use the CREATE STORAGE AREA clause with single-file
databases. The presence or absence of a CREATE STORAGE AREA clause
in a CREATE DATABASE statement is what determines whether the
database is single file or multifile. SQL creates a multifile database only
when the CREATE DATABASE statement includes at least one CREATE
STORAGE AREA clause.

• The CREATE STORAGE AREA clause does not control which tables or
indices will actually be associated with the storage area. The CREATE
STORAGE MAP and CREATE INDEX statements control what is stored in
a particular storage area file. For information about storing lists, see the
CREATE STORAGE MAP Statement.

• If the LOCKING IS PAGE LEVEL or LOCKING IS ROW LEVEL clause is
specified at the database level (using the ALTER DATABASE or CREATE
DATABASE statements), all storage areas are affected (with the exception
of RDB$SYSTEM which is always set to row-level locking). If specified at
the storage area level (using the CREATE STORAGE AREA clause), only
the specified storage area attributes are affected.

• Adding a new area with a page size smaller than the smallest existing
page size requires exclusive database access.

Examples

Example 1: Defining a multifile database

This example shows the definition of a database and storage areas for a
multifile database.

7–20 SQL Statements

CREATE STORAGE AREA Clause

SQL> -- Note that there is no semicolon before
SQL> -- the first CREATE STORAGE AREA clause.
SQL> CREATE DATABASE ALIAS MULTIFILE_EXAMPLE
cont> FILENAME ’DB_DATA01:[DB.DATA]MULTIFILE_EXAMPLE’
cont> CREATE STORAGE AREA EMPID_LOW
cont> FILENAME ’DB_DATA02:[DB.DATA]EMPID_LOW’
cont> ALLOCATION IS 10 PAGES
cont> -- Notice that the snapshot file resides on a
cont> -- different disk than the storage area file. This
cont> -- strategy reduces disk input/output bottlenecks:
cont> SNAPSHOT FILENAME ’DB_SNAP03:[DB.SNAP]EMPID_LOW’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA EMPID_MID
cont> FILENAME ’DB_DATA04:EMPID_MID’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP05:[DB.SNAP]EMPID_MID’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA EMPID_OVER
cont> FILENAME ’DB_DATA06:[DB.DATA]EMPID_OVER’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP07:[DB.SNAP]EMPID_OVER’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA HISTORIES
cont> FILENAME ’DB_DATA02:[DB.DATA]HISTORIES’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP03:[DB.SNAP]HISTORIES’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA CODES
cont> FILENAME ’DB_DATA04:[DB.DATA]CODES’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP05:[DB.SNAP]CODES’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> CREATE STORAGE AREA EMP_INFO
cont> FILENAME ’DB_DATA08:[DB.DATA]EMP_INFO’
cont> ALLOCATION IS 10 PAGES
cont> SNAPSHOT FILENAME ’DB_SNAP09:[DB.SNAP]EMP_INFO’
cont> SNAPSHOT ALLOCATION IS 10 PAGES
cont> --
cont> -- End the CREATE DATABASE statement:
cont> ;

SQL Statements 7–21

CREATE STORAGE AREA Clause

Example 2:

This example shows how to set page-level and row-level locking on storage
areas from both the database level and from the storage area level.

SQL> CREATE DATABASE FILENAME sample
cont> LOCKING IS PAGE LEVEL
cont> --
cont> -- All storage areas will default to page-level locking unless
cont> -- explicitly set to row-level locking.
cont> --
cont> CREATE STORAGE AREA RDB$SYSTEM
cont> FILENAME sample_system
cont> --
cont> -- You cannot specify page-level locking on RDB$SYSTEM. RDB$SYSTEM
cont> -- always defaults to row-level locking.
cont> --
cont> CREATE STORAGE AREA HASH_AREA
cont> FILENAME sample_hash
cont> PAGE FORMAT IS MIXED
cont> --
cont> -- HASH_AREA defaultS to page-level locking.
cont> --
cont> CREATE STORAGE AREA DATA_AREA
cont> FILENAME sample_data
cont> LOCKING IS ROW LEVEL
cont> --
cont> -- DATA_AREA is explicitly set to row-level locking.
cont> --
cont> ;
SQL> SHOW STORAGE AREAS (ATTRIBUTES) *
Storage Areas in database with filename sample

RDB$SYSTEM
List storage area.
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
.
.
.
Extent : Enabled
Locking is Row Level

7–22 SQL Statements

CREATE STORAGE AREA Clause

HASH_AREA
Access is: Read write
Page Format: Mixed
Page Size: 2 blocks
.
.
.
Extent : Enabled
Locking is Page Level

DATA_AREA
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
.
.
.
Extent : Enabled
Locking is Row Level

See the SHOW Statement for information on the SHOW STORAGE AREAS
statement.

Example 3: Creating and assigning a row cache to a storage area

SQL> create database
cont> filename SAMPLE_DB
cont> reserve 2 cache slots
cont> row cache is enabled
cont> default storage area is AREA1
cont> create cache CACHE1
cont> cache size is 1000 rows
cont> row length is 1000 bytes
cont> create storage area AREA1
cont> cache using CACHE1
cont> ;
SQL> show cache CACHE1

CACHE1
Cache Size: 1000 rows
Row Length: 1000 bytes

Row Replacement: Enabled
Shared Memory: Process
Large Memory: Disabled
Window Count: 100
Working Set Count: 10
Reserved Rows: 20
Allocation: 100 blocks
Extent: 100 blocks
SQL> show storage area AREA1

SQL Statements 7–23

CREATE STORAGE AREA Clause

AREA1
Access is: Read write
Page Format: Uniform
Page Size: 2 blocks
Area File: USER_DISK:[DOC.DATABASES]AREA1.RDA;1
Area Allocation: 702 pages
Extent: Enabled
Area Extent Minimum: 99 pages
Area Extent Maximum: 9999 pages
Area Extent Percent: 20 percent
Snapshot File: USER_DISK:[DOC.DATABASES]AREA1.SNP;1
Snapshot Allocation: 100 pages
Snapshot Extent Minimum: 99 pages
Snapshot Extent Maximum: 9999 pages
Snapshot Extent Percent: 20 percent

Locking is Row Level
Using Cache CACHE1

Database objects using Storage Area AREA1:
Usage Object Name Map / Partition
---------------- ------------------------------- -------------------------------
Default Area

7–24 SQL Statements

CREATE STORAGE MAP Statement

CREATE STORAGE MAP Statement

Associates a table with one or more storage areas in a multifile database. The
CREATE STORAGE MAP statement specifies a storage map that controls
which lists or rows of a table are stored in which storage areas.

In addition to creating storage maps, the CREATE STORAGE MAP statement
has options that control:

• Which index the database system uses when inserting rows in the table

• Whether or not the rows of the table are stored in a compressed format

• Whether or not partitioning keys can be modified.

• Whether the table is partitioned vertically, horizontally, or both.

• Whether logging is enabled or disabled for the duration of this operation

Environment

You can use the CREATE STORAGE MAP statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

SQL Statements 7–25

CREATE STORAGE MAP Statement

CREATE STORAGE MAP <map-name>

STORED NAME IS <stored-name>

FOR <table-name>
ENABLE COMPRESSION
DISABLE
PLACEMENT VIA INDEX <index-name>
partition-updatable-clause
threshold-clause
LOGGING
NOLOGGING
COMMENT IS ’<string>’

/

partition-clause
store-lists-clause

partition-updatable-clause =

PARTITIONING IS NOT UPDATABLE
UPDATABLE

threshold-clause =

THRESHOLD IS (<val1>)
OF

THRESHOLDS ARE
OF

(<val1>)
, <val2>

, <val3>

partition-clause =

STORE store-clause
columns-clause store-attributes

7–26 SQL Statements

CREATE STORAGE MAP Statement

columns-clause =

COLUMNS (<column-name>)
,

store-attributes =

ENABLE COMPRESSION
DISABLE

thresholds-clause
VERTICAL PARTITION <name>

store-clause =

IN area-spec
across-clause
using-clause

area-spec =

<area-name>
(threshold-clause)

LOGGING
NOLOGGING
PARTITION <name>
COMMENT IS ’string’

/
,

across-clause =

RANDOMLY ACROSS

(area-spec)
,

SQL Statements 7–27

CREATE STORAGE MAP Statement

using-clause =

USING (<column-name>)
,

IN area-spec WITH LIMIT OF (<literal>)
,

OTHERWISE IN area-spec

store-lists-clause =

STORE LISTS

IN area-spec
(area-spec)

,

FOR (<table-name>)
<table-name.col-name>

,

FILL RANDOMLY
FILL SEQUENTIALLY

Arguments

across-clause
Associates the table with two or more storage areas.

COMMENT IS ’string’
Adds a comment about the storage map. SQL displays the text of the comment
when it executes a SHOW STORAGE MAPS statement. Enclose the comment
in single quotation marks (’) and separate multiple lines in a comment with a
slash mark (/).

ENABLE COMPRESSION
DISABLE COMPRESSION
Specifies whether the rows for the partition are compressed or uncompressed
when stored. You can enable or disable compression on each vertical partition.

7–28 SQL Statements

CREATE STORAGE MAP Statement

You enable compression to conserve disk space, but there is a small CPU
overhead for inserting and retrieving compressed rows.

If you omit this clause, the default compression is that which was specified
for the storage map before the first STORE COLUMNS clause. The default is
ENABLE COMPRESSION.

FILL RANDOMLY
FILL SEQUENTIALLY
Specifies whether to fill the area set randomly or sequentially. Specifying
FILL RANDOMLY or FILL SEQUENTIALLY requires a FOR clause. When
a storage area is filled, it is removed from the list of available areas. Oracle
Rdb does not attempt to store any more lists in that area during the current
database attach. Instead, Oracle Rdb starts filling the next specified area.

When a set of areas is filled sequentially, Oracle Rdb stores lists in the first
specified area until that area is filled.

If the set of areas is filled randomly, lists are stored across multiple areas.
This is the default. Random filling is intended for read/write media, which will
benefit from the I/O distribution across the storage areas.

The keywords FILL RANDOMLY and FILL SEQUENTIALLY can only be
applied to areas contained within an area list.

FOR (table-name)
Specifies the table or tables to which this list storage map applies. The named
table must already be defined. If you want to store lists of more than one table
in the storage area, separate the names of the tables with commas. For each
area, you can specify one FOR clause and list of table names.

FOR (table-name.col-name)
Specifies the name of the table and column containing the list to which this
storage map applies. Separate the table name and the column name with a
period (.). The named table and column must already be defined. If you want
to store multiple lists in the storage area, separate the table name and column
name combinations with commas. For each area, you can specify one FOR
clause and a list of column names.

LOGGING
NOLOGGING
The LOGGING clause specifies that rows written to the table during the
current transaction (the transaction in which this table was created) be logged
when written to the database. Logging includes writing data and management
records to the recovery-unit journal file (.ruj) and after-image journal files
(.aij). When the NOLOGGING clause is specified then only a small number

SQL Statements 7–29

CREATE STORAGE MAP Statement

of management records are logged in the recovery-unit journal file (.ruj) and
after-image journal files (.aij). See the Usage Notes below for more information.

LOGGING and NOLOGGING can be specified per storage area (partition) or
as a default for the CREATE STORAGE MAP statement. The LOGGING and
NOLOGGING clauses are mutually exclusive; specify only one. The LOGGING
clause is the default.

OTHERWISE IN area-name
For partitioned storage maps only, specifies the storage area that is used as the
overflow partition. An overflow partition is a storage area that holds any
values that are higher than those specified in the WITH LIMIT OF clause. An
overflow partition holds those values that exceed the highest specified limits.

partition-clause
Defines vertical partitioning, horizontal partitioning, or both for the specified
table.

Horizontal partitioning means that you divide the rows of the table among
storage areas according to data values in one or more columns. Vertical
partitioning means that you divide the columns of the table among storage
areas. A given storage area will then contain only some of the columns of a
table. You can combine both horizontal and vertical partitions in a single map.

Vertical partitioning reduces disk I/O operations by placing frequently used
data in one area, so that you can read and update those portions of the table in
a single disk I/O operation.

See the Oracle Rdb Guide to Database Design and Definition for more
information regarding partitioning.

PARTITION name
Names the partition. The name can be a delimited identifier if the dialect or
quoting rules are set to SQL92 or SQL99. Partition names must be unique
within the storage map. If you do not specify this clause, Oracle Rdb generates
a default name for the partition.

PARTITIONING IS NOT UPDATABLE
Specifies that the value of the partitioning key cannot be modified and that
the row is always stored in the storage area based on the partitioning criteria
in the STORE USING clause. The partitioning key is the column or list of
columns specified in the STORE USING clause.

Specifying the PARTITIONING IS NOT UPDATABLE clause allows Oracle
Rdb to quickly retrieve data because the partitioning criteria can be used when
optimizing the query.

7–30 SQL Statements

CREATE STORAGE MAP Statement

To update columns that are partitioning keys in a NOT UPDATABLE storage
map, you must delete the rows and then reinsert the rows to ensure that they
are placed in the correct location.

If you specify the PARTITIONING clause, you must also specify the STORE
USING clause when defining a storage map.

If the PARTITIONING clause is not specified, UPDATABLE is the default.

See the Oracle Rdb Guide to Database Design and Definition for more
information regarding partitioning.

PARTITIONING IS UPDATABLE
Specifies that the partitioning key can be modified. The partitioning key is the
column or list of columns specified in the STORE USING clause.

If you modify a row in an UPDATABLE storage map, the row is not moved
to a different storage area even if the new value of the partitioning key
is not within the limits of original storage area. As a result, Oracle Rdb
must consider all storage areas specified in the STORE USING clause when
retrieving a row.

If you specify the PARTITIONING clause, you must also specify the STORE
USING clause when defining a storage map.

If the PARTITIONING clause is not specified, UPDATABLE is the default.

See the Oracle Rdb Guide to Database Design and Definition for more
information regarding partitioning.

PLACEMENT VIA INDEX index-name
Directs the database system to store a column in a way that optimizes access
to that column by the indicated path. Oracle Rdb chooses a target page for any
columns being stored by rules that take into account the type of index named
(sorted or hashed), the type of storage areas involved (uniform or mixed), and
how indexes and tables are assigned to storage areas.

For a hashed index, Oracle Rdb calculates the page containing the hashed
index node that points to the column. If that page is within the same storage
area in which the column will be stored, it is used as the target page for
storing the column. If that page is not within the same storage area in which
the column is to be stored, Oracle Rdb chooses a target page in the same
relative position within the appropriate storage area (if it is a mixed storage
area) or a page in a clump reserved for that table (if it is a uniform storage
area).

SQL Statements 7–31

CREATE STORAGE MAP Statement

For a sorted index, Oracle Rdb finds the database key of the next lowest row
to the one being stored and uses the page number in the database key as the
target page.

STORAGE MAP map-name
Specifies the name of the storage map you want to create. The name cannot be
the same as any other definition in the database.

store-clause
The storage map definition. The store-clause in a CREATE STORAGE MAP
statement lets you specify which storage area files are used to store rows from
the table.

• All rows of a table can be associated with a single storage area.

• Rows of a table can be randomly distributed among several storage areas.

• Rows of a table can be systematically distributed, or partitioned, among
several storage areas by specifying upper limits on the values for a column
in a particular storage area. This is called horizontal partitioning.

• Columns of a table can be partitioned among storage areas. This is called
vertical partitioning.

If you omit the storage map definition, the default is to store all the rows for a
table in the default storage area. See the CREATE and IMPORT DATABASE
statements for information on the default storage area.

STORE COLUMNS (column-name)
Lists the columns which will be stored in the subsequent map.

Multiple STORE COLUMNS clauses may appear in a map to spread across
multiple storage areas. A column name may only appear in one STORE
COLUMNS clause. A final STORE clause can appear to provide a location for
all remaining unspecified columns.

STORE IN area-name
Associates the table directly with a single storage area. All rows in the table
are stored in the area you specify.

STORE LISTS IN area-name
Directs the database system to store the lists from tables in a specified storage
area or in a set of areas. You can create only one storage map for lists within
each database.

7–32 SQL Statements

CREATE STORAGE MAP Statement

You must specify the default storage area for lists in the STORE LISTS clause.
The default list storage area contains lists from system tables as well as lists
not directed elsewhere by the STORE LISTS clause. You can also use the LIST
STORAGE AREA clause of the CREATE DATABASE statement to specify
a default storage area for lists. If you do not use the STORE LISTS clause
and do not specify a list storage area in the CREATE DATABASE statement,
Oracle Rdb uses the default storage area as the default list storage area. The
following example directs Oracle Rdb to place all lists in the LISTS storage
area unless otherwise specified in a storage map:

SQL> CREATE DATABASE FILENAME mf_personnel
SQL> LIST STORAGE AREA IS LISTS
SQL> CREATE STORAGE AREA LISTS;

The accompanying storage map statement must also specify the LISTS storage
area as the default storage area.

SQL> CREATE STORAGE MAP LISTS_MAP
cont> STORE LISTS IN LISTS1 FOR (EMPLOYEES.RESUME)
cont> IN LISTS;

You can use an area set to specify that data is to be distributed across several
areas. The following example shows how you can store data in three storage
areas (LISTS1, LISTS2, and LISTS3) for two different columns in TABLE1.
The default list storage area is LISTS1.

CREATE STORAGE MAP LISTS_MAP
STORE LISTS IN (LISTS1,LISTS2,LISTS3) FOR (TABLE1.COL1,TABLE1.COL2)
IN LISTS1;

You can store lists from different tables in the same area. The following
example shows how you can store data from TABLE1, TABLE2, and TABLE3
in the LISTS storage area. The default list storage area is RDB$SYSTEM.

SQL> CREATE STORAGE MAP LISTS_MAP -- to direct the list data to area LISTS
cont> STORE LISTS IN LISTS FOR (TABLE1, TABLE2, TABLE3)
cont> IN RDB$SYSTEM;

Alternatively, you can store lists from each table in unique areas. The following
example shows list data from TABLE1 being stored in the LISTS1 storage area
and list data from TABLE2 being stored in the LISTS2 storage area. The
default list storage area is RDB$SYSTEM.

CREATE STORAGE MAP LISTS_MAP
STORE LISTS IN LIST1 FOR (TABLE1)

IN LIST2 FOR (TABLE2)
IN RDB$SYSTEM;

SQL Statements 7–33

CREATE STORAGE MAP Statement

You can also specify that different columns from the same table go into
different areas. The following example shows data from different columns in
TABLE1 being stored in either LISTS1 or LISTS2. The default list storage
area is RDB$SYSTEM.

CREATE STORAGE MAP LISTS_MAP
STORE LISTS IN LISTS1 FOR (TABLE1.COL1)

IN LISTS2 FOR (TABLE1.COL2)
IN RDB$SYSTEM;

STORE RANDOMLY ACROSS (area-name)
As rows are inserted in the table, they are distributed randomly across the
storage areas named in the list. You must name at least two storage areas in
this clause.

STORE USING (column-name) IN area-name
The database system compares values in the columns to the values in the
WITH LIMIT OF clause to determine placement of rows inserted into the
table. For instance, a storage map with the clause STORE USING (X,Y,Z) IN
AREA1 WITH LIMIT OF (1,2,3) means that a row must meet these criteria to
be stored in AREA1:

�� � �� �� ��� � �� ��� ��� � �� �� ��� � �� ��� �	 ������

Use RMU EXTRACT to have the store using expression expanded. See
Example 9.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a storage map created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces that do not recognize multiple schemas in one
database. You cannot specify a stored name for a storage map in a database
that does not allow multiple schemas. For more information on stored names,
see Section 2.2.18.

threshold-clause
Specifies one, two, or three default threshold values for logical areas in
storage areas with uniform format pages. The threshold values (val1, val2,
and val3) represent a fullness percentage on a data page and establish three
possible ranges of guaranteed free space on the data pages. When a data page
reaches the percentage defined by a given threshold value, the space area
management (SPAM) entry for the data page is updated to reflect the new
fullness percentage and its remaining free space.

7–34 SQL Statements

CREATE STORAGE MAP Statement

Oracle Rdb never stores a record at the third threshold. The value you set
for the highest threshold can be used to reserve space on the page for future
record growth.

When only val1 is specified, this is equivalent to (val1, 100, 100). When val1
and val2 are specified, this is equivalent to (val1, val2, 100). The trailing,
unspecified thresholds default to 100 percent. For example, THRESHOLDS
ARE (40) would appear as (40, 100, 100).

If no thresholds are specified for the area, the default is (0,0,0). This causes
the SPAM algorithm to set thresholds based on the nominal record length for
the logical area; for example, the node size for the index or the uncompressed
length of the row for a table.

You cannot specify the thresholds for the storage map attribute for any
area that is a mixed page format. If you have a mixed page format, set the
thresholds for the storage area using the ADD STORAGE AREA or CREATE
STORAGE AREA clause of the ALTER DATABASE, CREATE DATABASE, or
IMPORT statements.

VERTICAL PARTITION name
Names a vertical partition. The name can be a delimited identifier if the
dialect or quoting rules are set to SQL92 or SQL99. Partition names must be
unique within the storage map. If you do not specify this clause, Oracle Rdb
generates a default name for the partition.

using-clause
Specifies columns whose values are used as limits for partitioning the table
horizontally across multiple storage areas.

WITH LIMIT OF (literal)
Specifies the maximum values that the columns named in the USING clause
can have when rows are initially stored in the specified storage area. Repeat
this clause to partition the rows of a table among multiple storage areas.

The number of literals listed must be the same as the number of columns in
the USING clause. The data type of the literals must agree with the data type
of the column. For character columns, enclose the literals in single quotation
marks.

The values in the WITH LIMIT OF clause only affect placement of rows when
they are initially stored. If UPDATE statements change data in a row so that
values in columns named in the USING clause exceed values specified in the
WITH LIMIT OF clause, the row is not moved into a different storage area.

SQL Statements 7–35

CREATE STORAGE MAP Statement

Usage Notes

• The CREATE STORAGE MAP statement creates a SQL mapping routine
that matches the WITH LIMIT OF clause for the storage map. The routine
is automatically created in the system module RDB$STORAGE_MAPS (use
SHOW SYSTEM MODULES to view). The storage map name is used to
name the mapping routine (use SHOW SYSTEM FUNCTIONS to view).

Note

If a routine already exists with the same name as the storage map,
then the mapping routine will not be created.

If the storage map includes a STORE COLUMNS clause, that is, a
vertically partitioned map, then several routines will be created and
uniquely named by adding the vertical partition number as a suffix.

The mapping routine returns the following values:

Zero (0) if the storage map is defined as RANDOMLY ACROSS. This
routine is just a descriptive place holder.

Positive value representing the storage map number (the same value as
stored in RDB$ORDINAL_POSITION column of the RDB$STORAGE_
MAP_AREAS table). These values can be used with the PARTITION
clause of the SET TRANSACTION...RESERVING clause to reserve a
specific partition prior to inserting the row.

A value of -1 if the storage map has no OTHERWISE clause. This
indicates that the row cannot be inserted because it does not match any
of the WITH LIMIT OF clauses.

• You must specify either a STORE clause, a PLACEMENT clause, or a
COMPRESSION clause in a CREATE STORAGE MAP statement.

• If you specify multiple storage areas in a CREATE STORAGE MAP
statement, they must have the same format; you cannot specify both
MIXED and UNIFORM format storage areas in the same storage map.

• You cannot create more than one map for the rows from a given table, but
you can create one map for that table’s rows and a separate map for that
table’s lists.

7–36 SQL Statements

CREATE STORAGE MAP Statement

• If you repeat a column or table in the storage map with a different
area, then all columns of data type LIST OF BYTE VARYING are stored
randomly across the specified areas, unless you specify SEQUENTIAL
storage.

• You cannot delete a list storage map from the database.

• You can only specify one PLACEMENT VIA INDEX clause per storage
map.

• Attempts to create a storage map fail if that storage map or its affected
table is involved in a query at the same time. Users must detach from
the database with a DISCONNECT statement before you can create the
storage map. When Oracle Rdb first accesses an object such as the table,
a lock is placed on that object and not released until the user exits the
database. If you attempt to update this object, you get a LOCK CONFLICT
ON CLIENT message due to the other user’s access to the object.

• You cannot execute the CREATE STORAGE MAP statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. See the Oracle Rdb7 Guide to Database
Performance and Tuning for more information on the RDB$SYSTEM
storage area.

• If a storage map does not contain an overflow partition (defined by the
OTHERWISE clause), you can add new partitions to the storage map
without reorganizing the storage areas. For example:

SQL> ALTER STORAGE MAP EMP_MAP
cont> STORE USING (EMPLOYEE_ID)
cont> IN PERSONNEL_1 WITH LIMIT OF (’00399’)
cont> IN PERSONNEL_2 WITH LIMIT OF (’00699’)
cont> IN PERSONNEL_3 WITH LIMIT OF (’10000’)
cont> IN PERSONNEL_4 WITH LIMIT OF (’10399’);
SQL>

Because the original storage map did not contain an OTHERWISE clause,
you do not need to reorganize the storage areas.

For more information, see the Oracle Rdb Guide to Database Design
and Definition and the Oracle Rdb7 Guide to Database Performance and
Tuning.

• If you attempt to insert values that are out of range of the storage map,
you receive an error similar to the following:

%RDMS-E-EXCMAPLIMIT, exceeded limit on last partition in storage map for
EMPLOYEES

Your applications should include code that handles this type of error.

SQL Statements 7–37

CREATE STORAGE MAP Statement

• If a storage map contains an overflow partition and you want to alter the
storage map to change the overflow partition to a partition defined with
the WITH LIMIT OF clause, you must use the REORGANIZE clause if
you want existing data that is stored in the overflow partition moved to
appropriate storage area. For example:

SQL> ALTER STORAGE MAP JH_MAP
cont> STORE USING (EMPLOYEE_ID)
cont> IN PERSONNEL_1 WITH LIMIT OF (’00399’)
cont> IN PERSONNEL_2 WITH LIMIT OF (’00699’)
cont> IN PERSONNEL_3 WITH LIMIT OF (’10000’)
cont> IN PERSONNEL_4 WITH LIMIT OF (’10399’)
cont> REORGANIZE;
SQL>

• Oracle Rdb checks to ensure that list maps are not created on system
tables.

• You can create a storage map for an existing table that contains data.
However, the following restrictions apply:

– The storage map must be a simple map that references only the default
storage area and represents the default mapping for the table.

– You cannot change the thresholds or compression for the table.

– You cannot specify the PLACEMENT VIA INDEX clause.

– The storage map cannot be vertically partitioned.

– The storage map may not include a WITH LIMIT clause for the storage
area.

Once the storage map is created, you can use the ALTER STORAGE MAP
statement to reorganize the table as needed. This is shown in Example 6.

If the new storage map contains any unacceptable attributes it will be
rejected, as shown in Example 7 in the Examples section.

• You must specify the columns-clause to vertically partition a storage map.

• You cannot alter a vertically partitioned storage map once it is defined.

• Columns not specified in the columns-clause are mapped to the final
vertical partition.

• The final vertical partition holds all unmapped columns and is used by
future ALTER TABLE . . . ADD COLUMN statements. Only the final
STORE clause can omit the COLUMNS clause.

• If you are not vertically partitioning a storage map, only one store-clause is
allowed in the storage map definition.

7–38 SQL Statements

CREATE STORAGE MAP Statement

• Some system tables are automatically created in the secondary system
area if defined by the clause DEFAULT STORAGE AREA in the CREATE
DATABASE statement. Additionally, a set of optional system tables exists
(which may not exist in all databases) that can be mapped manually to
other storage areas.

The set of system tables for which you can change the mapping, and
the instructions on how to do so, are provided in the section on moving
certain system tables to separate storage areas in the Oracle Rdb Guide to
Database Design and Definition.

• NOLOGGING is a transient attribute and reverts to LOGGING when the
CREATE STORAGE MAP statement is committed.

• NOLOGGING has the advantage of reducing the amount of I/O to the
recovery-unit journal file (.ruj) and after-image journal files (.aij). However,
when the transaction is rolled back, Rdb must use the management records
in the journals to undo the CREATE STORAGE MAP and any inserted
rows. For UNIFORM format storage areas, this is quite fast because of
the fast logical area delete mechanism inherent in this area type. On
the other hand, MIXED format storage areas require recovery to scan and
erase the table data; this additional recovery time should be considered
when using this clause.

Examples

Example 1: Defining storage maps for a multifile database

This example shows the definition of storage maps for a multifile database.
The tables named in the CREATE STORAGE MAP statements have the same
definitions as those in the sample database. See the CREATE STORAGE
AREA Clause for an example of a CREATE DATABASE statement with
CREATE STORAGE AREA clauses that create the storage areas referred to in
this example.

SQL> -- Declare the database as the default:
SQL> ATTACH ’FILENAME multifile_example’;
SQL> --
SQL> CREATE STORAGE MAP EMPLOYEE_MAP FOR EMPLOYEES
cont> STORE USING (EMPLOYEE_ID)
cont> IN EMPID_LOW WITH LIMIT OF (’00200’)
cont> IN EMPID_MID WITH LIMIT OF (’00500’)
cont> OTHERWISE IN EMPID_OVER;

SQL Statements 7–39

CREATE STORAGE MAP Statement

SQL> --
SQL> CREATE STORAGE MAP RESUME_MAP
cont> STORE LISTS IN EMP_INFO FOR (TABLE1, TABLE2, TABLE3)
cont> IN RDB$SYSTEM;
SQL> --
SQL> CREATE STORAGE MAP JOB_HISTORY_MAP FOR JOB_HISTORY
cont> STORE IN HISTORIES;
SQL> --
SQL> CREATE STORAGE MAP SALARY_HISTORY_MAP FOR SALARY_HISTORY
cont> STORE IN HISTORIES;
SQL> --
SQL> CREATE STORAGE MAP JOBS_MAP FOR JOBS
cont> STORE IN CODES;
SQL> --
SQL> CREATE STORAGE MAP DEPARTMENTS_MAP FOR DEPARTMENTS
cont> STORE IN CODES;
SQL> --
SQL> CREATE STORAGE MAP COLLEGES_MAP FOR COLLEGES
cont> STORE IN CODES;
SQL> --
SQL> CREATE STORAGE MAP DEGREES_MAP FOR DEGREES
cont> STORE IN EMP_INFO;
SQL> --
SQL> CREATE STORAGE MAP WORK_STATUS_MAP FOR WORK_STATUS
cont> STORE IN HISTORIES;
SQL> --
SQL> --
SQL> -COMMIT;
SQL> --

7–40 SQL Statements

CREATE STORAGE MAP Statement

Example 2: Defining storage maps that place and override thresholds on
uniform storage areas

SQL> CREATE DATABASE FILENAME birdlist
cont> CREATE STORAGE AREA AREA1
cont> CREATE STORAGE AREA AREA2
cont> CREATE STORAGE AREA AREA3
cont> CREATE STORAGE AREA AREA4
cont> CREATE TABLE SPECIES
cont> (GENUS CHAR (30),
cont> SPECIES CHAR (30),
cont> COMMON_NAME CHAR (40),
cont> FAMILY_NUMBER INT (3),
cont> SPECIES_NUMBER INT (3)
cont>)
cont> CREATE INDEX I1 ON SPECIES (FAMILY_NUMBER)
cont> CREATE TABLE SIGHTING
cont> (SPECIES_NUMBER INT (3),
cont> COMMON_NAME CHAR (40),
cont> CITY CHAR (20),
cont> STATE CHAR (20),
cont> SIGHTING_DATE DATE ANSI,
cont> NOTES_NUMBER INT (5))
cont> CREATE INDEX I2 ON SIGHTING (SPECIES_NUMBER)
cont> CREATE TABLE FIELD_NOTES
cont> (WEATHER CHAR (30),
cont> TIDE CHAR (15),
cont> SPECIES_NUMBER INT (3),
cont> SIGHTING_TIME TIMESTAMP(2),
cont> NOTES CHAR (500),
cont> NOTES_NUMBER INT (5))
cont> CREATE INDEX I3 ON FIELD_NOTES (NOTES_NUMBER)
cont> ;
SQL> --
SQL> -- The following CREATE STORAGE MAP statements place and
SQL> -- override thresholds on uniform storage area.
SQL> --
SQL> -- Note that the default threshold clause for the
SQL> -- storage map is not enclosed in parentheses, but each
SQL> -- threshold clause associated with a particular area is.
SQL> --
SQL> CREATE STORAGE MAP M1 FOR SPECIES
cont> THRESHOLDS ARE (30, 50, 80)
cont> ENABLE COMPRESSION
cont> PLACEMENT VIA INDEX I1
cont> STORE
cont> IN AREA1
cont> (THRESHOLD (10));
SQL> --
SQL> CREATE STORAGE MAP M2 FOR SIGHTING
cont> THRESHOLD IS (40)

SQL Statements 7–41

CREATE STORAGE MAP Statement

cont> STORE
cont> RANDOMLY ACROSS (
cont> AREA1 (THRESHOLD OF (10)),
cont> AREA2 (THRESHOLDS ARE (30, 50, 98)),
cont> AREA3
cont>);
SQL> --
SQL> CREATE STORAGE MAP M3 FOR FIELD_NOTES
cont> THRESHOLDS OF (50,70,90)
cont> STORE
cont> USING (SPECIES_NUMBER, NOTES_NUMBER)
cont> IN AREA1
cont> (THRESHOLDS OF (20, 80, 90))
cont> WITH LIMIT OF (30, 88)
cont> IN AREA2
cont> WITH LIMIT OF (40, 89)
cont> IN AREA3
cont> WITH LIMIT OF (50, 90)
cont> OTHERWISE IN AREA4
cont> (THRESHOLDS ARE (20, 30, 40));
SQL> --
SQL> SHOW STORAGE MAP *;
User Storage Maps in database with filename birdlist

M1
For Table: SPECIES
Placement Via Index: I1
Partitioning is: UPDATABLE
Store clause: STORE

IN AREA1
(THRESHOLD (10))

Partition information for storage map:
Compression is: ENABLED
Partition: (1) SYS_P00062
Storage Area: AREA1

M2
For Table: SIGHTING
Partitioning is: UPDATABLE
Store clause: STORE
RANDOMLY ACROSS (

AREA1 (THRESHOLD OF (10)),
AREA2 (THRESHOLDS ARE (30, 50, 98)),
AREA3

)

7–42 SQL Statements

CREATE STORAGE MAP Statement

Partition information for storage map:
Compression is: ENABLED
Partition: (1) SYS_P00063
Storage Area: AREA1
Partition: (2) SYS_P00064
Storage Area: AREA2
Partition: (3) SYS_P00065
Storage Area: AREA3

M3
For Table: FIELD_NOTES
Partitioning is: UPDATABLE
Store clause: STORE

USING (SPECIES_NUMBER, NOTES_NUMBER)
IN AREA1

(THRESHOLDS OF (20, 80, 90))
WITH LIMIT OF (30, 88)

IN AREA2
WITH LIMIT OF (40, 89)

IN AREA3
WITH LIMIT OF (50, 90)

OTHERWISE IN AREA4
(THRESHOLDS ARE (20, 30, 40))

Partition information for storage map:
Compression is: ENABLED
Partition: (1) SYS_P00066
Storage Area: AREA1
Partition: (2) SYS_P00067
Storage Area: AREA2
Partition: (3) SYS_P00068
Storage Area: AREA3
Partition: (4) SYS_P00069
Storage Area: AREA4

SQL> --
SQL> ROLLBACK;

Example 3: Creating a storage map that stores lists

This example creates a storage map that stores lists on specific storage areas.

SQL Statements 7–43

CREATE STORAGE MAP Statement

SQL> CREATE DATABASE FILENAME test
cont> CREATE STORAGE AREA LISTS1 PAGE FORMAT IS MIXED
cont> CREATE STORAGE AREA LISTS2 PAGE FORMAT IS MIXED
cont>
cont> CREATE TABLE EMPLOYEES
cont> (EMP_ID CHAR(5),
cont> RESUME LIST OF BYTE VARYING);
SQL> --
SQL> CREATE STORAGE MAP LISTS_MAP
cont> STORE LISTS IN
cont> (LISTS1,LISTS2) FOR (EMPLOYEES.RESUME)
cont> FILL SEQUENTIALLY
cont> IN RDB$SYSTEM;

Example 4: Creating an alternate map

The following storage map shows an alternate mapping for the EMPLOYEES
table in the MF_PERSONNEL database. This example uses both vertical
and horizontal partitioning to spread column data as well as row data across
multiple storage areas.

SQL> create storage map EMPLOYEES_MAP
cont> for EMPLOYEES
cont> placement via index EMPLOYEES_HASH
cont> -- store the primary information horizontally partitioned
cont> -- across the areas EMPIDS_LOW, EMPIDS_MID and EMPIDS_OVER
cont> -- disable compress because these columns are accessed often
cont> store
cont> columns (EMPLOYEE_ID, LAST_NAME,
cont> FIRST_NAME, MIDDLE_INITIAL)
cont> disable compression
cont> using (EMPLOYEE_ID)
cont> in EMPIDS_LOW
cont> with limit of (’00200’)
cont> in EMPIDS_MID
cont> with limit of (’00400’)
cont> otherwise in EMPIDS_OVER
cont>
cont> -- place all the address information in EMP_INFO
cont> -- make sure these character columns are compressed
cont> -- to remove the trailing spaces
cont> store
cont> columns (ADDRESS_DATA_1, ADDRESS_DATA_2, CITY, STATE,
cont> POSTAL_CODE)
cont> enable compression
cont> in EMP_INFO
cont>
cont> -- the remaining columns get
cont> -- written randomly over these areas
cont> store
cont> enable compression
cont> randomly across (SALARY_HISTORY, JOBS);

7–44 SQL Statements

CREATE STORAGE MAP Statement

Example 5: Disabling logging and naming horizontal and vertical partitions

SQL> CREATE DATABASE FILENAME birdlist
cont> CREATE STORAGE AREA AREA1
cont> CREATE STORAGE AREA AREA2
cont> CREATE STORAGE AREA AREA3
cont> CREATE STORAGE AREA AREA4
cont> CREATE STORAGE AREA AREA5
cont> CREATE STORAGE AREA AREA6
cont> CREATE STORAGE AREA AREA7
cont> CREATE STORAGE AREA AREA8
cont> CREATE TABLE SPECIES
cont> (GENUS CHAR (30),
cont> SPECIES CHAR (30),
cont> COMMON_NAME CHAR (40),
cont> FAMILY_NUMBER INT (3),
cont> SPECIES_NUMBER INT (3)
cont>)
cont> CREATE INDEX I1 ON SPECIES (FAMILY_NUMBER)
cont> CREATE TABLE SIGHTING
cont> (SPECIES_NUMBER INT (3),
cont> COMMON_NAME CHAR (40),
cont> CITY CHAR (20),
cont> STATE CHAR (20),
cont> SIGHTING_DATE DATE ANSI,
cont> NOTES_NUMBER INT (5))
cont> CREATE INDEX I2 ON SIGHTING (SPECIES_NUMBER)
cont> CREATE TABLE FIELD_NOTES
cont> (WEATHER CHAR (30),
cont> TIDE CHAR (15),
cont> SIGHTING_TIME TIMESTAMP(2),
cont> NOTES CHAR (500),
cont> NOTES_NUMBER INT (5),
cont> SPECIES_NUMBER INT (3))
cont> CREATE INDEX I3 ON FIELD_NOTES (NOTES_NUMBER);
SQL> --
SQL> -- Note that the default threshold clause for the
SQL> -- storage map is not enclosed in parentheses, but each
SQL> -- threshold clause associated with a particular area is enclosed
SQL> -- in parentheses.
SQL> --
SQL> CREATE STORAGE MAP M1 FOR SPECIES
cont> THRESHOLDS ARE (30, 50, 80)
cont> ENABLE COMPRESSION
cont> PLACEMENT VIA INDEX I1
cont> NOLOGGING
cont> COMMENT IS ’Storage Map for Species’
cont> STORE
cont> IN AREA1
cont> (THRESHOLD (10),
cont> PARTITION AREA1,
cont> COMMENT IS ’Partition is AREA1’);

SQL Statements 7–45

CREATE STORAGE MAP Statement

SQL> --
SQL> CREATE STORAGE MAP M2 FOR SIGHTING
cont> THRESHOLD IS (40)
cont> STORE
cont> RANDOMLY ACROSS (
cont> AREA1 (THRESHOLD OF (10),
cont> PARTITION AREA1),
cont> AREA2 (THRESHOLDS ARE (30, 50, 98),
cont> PARTITION AREA2),
cont> AREA3 (PARTITION AREA3)
cont>);
SQL> --
SQL> CREATE STORAGE MAP M3 FOR FIELD_NOTES
cont> THRESHOLDS OF (50,70,90)
cont> STORE COLUMNS (WEATHER, TIDE, SIGHTING_TIME)
cont> VERTICAL PARTITION WEATHER_TIDE_SIGHTINGTIME
cont> USING (SPECIES_NUMBER, NOTES_NUMBER)
cont> IN AREA1
cont> (THRESHOLDS OF (20, 80, 90))
cont> WITH LIMIT OF (30, 88)
cont> IN AREA2
cont> WITH LIMIT OF (40, 89)
cont> IN AREA3
cont> WITH LIMIT OF (50, 90)
cont> OTHERWISE IN AREA4
cont> (THRESHOLDS ARE (20, 30, 40))
cont> STORE COLUMNS (NOTES, NOTES_NUMBER, SPECIES_NUMBER)
cont> VERTICAL PARTITION NOTES_NOTESNUM_SPECIESNUM
cont> USING (SPECIES_NUMBER)
cont> IN AREA5
cont> (THRESHOLDS OF (20, 80, 90))
cont> WITH LIMIT OF (30)
cont> IN AREA6
cont> WITH LIMIT OF (40)
cont> IN AREA7
cont> WITH LIMIT OF (50)
cont> OTHERWISE IN AREA8
cont> (THRESHOLDS ARE (20, 30, 40));

7–46 SQL Statements

CREATE STORAGE MAP Statement

Example 6: Creating a storage map for a table containing data

SQL> -- Create table, insert data, and then create a storage map.
SQL> --
SQL> CREATE TABLE MAP_TEST2 (a INTEGER, b CHAR(10));
SQL> INSERT INTO MAP_TEST2 (a, b) VALUES (2, ’Second’);
1 row inserted
SQL> CREATE STORAGE MAP MAP_TEST2_MAP FOR MAP_TEST2
cont> STORE IN RDB$SYSTEM;
SQL> INSERT INTO MAP_TEST2 (a, b) VALUES (22, ’Second2’);
1 row inserted
SQL> COMMIT;
SQL> SELECT *,DBKEY FROM MAP_TEST2;

A B DBKEY
2 Second 90:809:0

22 Second2 90:809:1
2 rows selected
SQL>
SQL> -- Now alter the storage map and
SQL> -- place it in a different storage area.
SQL>
SQL> ALTER STORAGE MAP MAP_TEST2_MAP
cont> STORE IN TEST_AREA2;
SQL> COMMIT;
SQL> SELECT *,DBKEY FROM MAP_TEST2;

A B DBKEY
2 Second 91:11:0

22 Second2 91:11:1
2 rows selected
SQL>

Example 7: Invalid attempts to create a storage map

SQL> -- Create table, insert data, and then
SQL> -- create a storage map with invalid attributes.
SQL>
SQL> CREATE TABLE MAP_TEST3 (a INTEGER, b CHAR(10));
SQL> CREATE INDEX MAP_TEST3_INDEX ON MAP_TEST3 (a);
SQL> INSERT INTO MAP_TEST3 (a, b) VALUES (3, ’Third’);
1 row inserted

SQL Statements 7–47

CREATE STORAGE MAP Statement

SQL>
SQL> CREATE STORAGE MAP MAP_TEST3_MAP FOR MAP_TEST3
cont> STORE IN TEST_AREA1; -- Must be the default area.
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST3" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table
SQL>
SQL> CREATE STORAGE MAP MAP_TEST3_MAP for MAP_TEST3
cont> PLACEMENT VIA INDEX MAP_TEST3_INDEX -- Can’t use placement.
cont> STORE IN RDB$SYSTEM;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST3" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table
SQL>
SQL> CREATE STORAGE MAP MAP_TEST3_MAP FOR MAP_TEST3
cont> DISABLE COMPRESSION -- Can’t change compression.
cont> STORE IN RDB$SYSTEM;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST3" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table
SQL>
SQL> CREATE STORAGE MAP MAP_TEST3_MAP for MAP_TEST3
cont> THRESHOLDS ARE (50, 60, 70) -- Can’t change thresholds.
cont> STORE IN RDB$SYSTEM;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST3" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table
SQL>
SQL> CREATE STORAGE MAP MAP_TEST3_MAP FOR MAP_TEST3
cont> STORE ACROSS (RDB$SYSTEM, TEST_AREA2);-- Can’t use more than one area.
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST3" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table
SQL>
SQL> CREATE STORAGE MAP MAP_TEST3_MAP for MAP_TEST3
cont> STORE COLUMNS (a) in RDB$SYSTEM -- Can’t vertically partition.
cont> STORE COLUMNS (b) in TEST_AREA2;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, table "MAP_TEST3" has data in it
-RDMS-E-NOCMPLXMAP, can not use complex map for non-empty table

7–48 SQL Statements

CREATE STORAGE MAP Statement

Example 8: Using the RMU Extract command to display WITH LIMIT OF
expressions

The WITH LIMIT OF clauses of the STORE clause are converted to Boolean
expressions that are used by Oracle Rdb to direct inserted data to the correct
storage area. You can use the RMU Extract command to display these Boolean
expressions. Use the Item=STORAGE_MAP and Option=FULL qualifiers as
shown in the following example.

$ RMU/EXTRACT-
_$ /ITEM=STORAGE_MAP-
_$ /OPTION=(MATCH:EMPLOYEES_MAP%,NOHEADER,FULL,FILENAME_ONLY) -
_$ DB$:MF_PERSONNEL
set verify;
set language ENGLISH;
set default date format ’SQL92’;
set quoting rules ’SQL92’;
set date format DATE 001, TIME 001;
attach ’filename MF_PERSONNEL.RDB’;
create storage map EMPLOYEES_MAP

for EMPLOYEES
comment is
’ employees partitioned by "00200" "00400"’

placement via index EMPLOYEES_HASH
store

using (EMPLOYEE_ID)
-- Partition:
-- (EMPLOYEE_ID <= ’00200’)

in EMPIDS_LOW
with limit of (’00200’)

-- Partition:
-- (EMPLOYEE_ID <= ’00400’)

in EMPIDS_MID
with limit of (’00400’)

otherwise in EMPIDS_OVER;

commit work;

Example 9: SQL Mapping Routine

This example shows the SQL mapping routine created by the CREATE
STORAGE MAP statement that matches the WITH LIMIT OF clause for the
storage map.

SQL Statements 7–49

CREATE STORAGE MAP Statement

SQL> create table EMPLOYEES (
cont> EMPLOYEE_ID CHAR (5),
cont> LAST_NAME CHAR (14),
cont> FIRST_NAME CHAR (10),
cont> MIDDLE_INITIAL CHAR (1),
cont> ADDRESS_DATA_1 CHAR (25),
cont> ADDRESS_DATA_2 CHAR (25),
cont> CITY CHAR (20),
cont> STATE CHAR (2),
cont> POSTAL_CODE CHAR (5),
cont> SEX CHAR (1),
cont> BIRTHDAY DATE VMS,
cont> STATUS_CODE CHAR (1));
SQL>
SQL> create storage map EMPLOYEES_MAP
cont> for EMPLOYEES
cont> comment is
cont> ’ employees partitioned by "00200" "00400"’
cont> store
cont> using (EMPLOYEE_ID)
cont> in EMPIDS_LOW
cont> with limit of (’00200’)
cont> in EMPIDS_MID
cont> with limit of (’00400’)
cont> otherwise in EMPIDS_OVER;
SQL>
SQL> commit work;
SQL>
SQL> show system modules;
Modules in database with filename MF_PERSONNEL

RDB$STORAGE_MAPS
SQL>
SQL> show system functions;
Functions in database with filename MF_PERSONNEL

EMPLOYEES_MAP
SQL>
SQL> show system function EMPLOYEES_MAP;
Information for function EMPLOYEES_MAP

Function ID is: -2
Source:
return

case
when (:EMPLOYEE_ID <= ’00200’) then 1
when (:EMPLOYEE_ID <= ’00400’) then 2
else 3

end case;
Comment: Return value for select partition - range 1 .. 3
Module name is: RDB$STORAGE_MAPS
Module ID is: -1
Number of parameters is: 1

7–50 SQL Statements

CREATE STORAGE MAP Statement

Parameter Name Data Type Domain or Type
-------------- --------- --------------

INTEGER
Function result datatype
Return value is passed by value

EMPLOYEE_ID CHAR(5)
Parameter position is 1
Parameter is IN (read)
Parameter is passed by reference

Example 10: Using Storage Area Attributes in a LIST Storage Map

The following example shows the use of storage area attributes in a LIST
storage map. The storage area attributes must immediately follow the storage
area name (as in table storage maps).

SQL> create database
cont> filename ’DB$:MULTIMEDIA’
cont>
cont> create storage area PHOTO_AREA1
cont> filename ’DB$:PHOTO_AREA1’
cont> page format UNIFORM
cont>
cont> create storage area PHOTO_AREA2
cont> filename ’DB$:PHOTO_AREA2’
cont> page format UNIFORM
cont>
cont> create storage area TEXT_AREA
cont> filename ’DB$:TEXT_AREA’
cont> page format UNIFORM
cont>
cont> create storage area AUDIO_AREA
cont> filename ’DB$:AUDIO_AREA’
cont> page format UNIFORM
cont>
cont> create storage area DATA_AREA
cont> filename ’DB$:DATA_AREA’
cont> page format UNIFORM
cont> ;
SQL>
SQL> create table EMPLOYEES
cont> (name char(30),
cont> dob date,
cont> ident integer,
cont> photograph list of byte varying (4096) as binary,
cont> resume list of byte varying (132) as text,
cont> review list of byte varying (80) as text,
cont> voiceprint list of byte varying (4096) as binary
cont>);
SQL>
SQL> create storage map EMPLOYEES_MAP

SQL Statements 7–51

CREATE STORAGE MAP Statement

cont> for EMPLOYEES
cont> enable compression
cont> store in DATA_AREA;
SQL>
SQL> create storage map LISTS_MAP
cont> store lists
cont> in AUDIO_AREA
cont> (thresholds are (89, 99, 100)
cont> ,comment is ’The voice clips’
cont> ,partition AUDIO_STUFF)
cont> for (employees.voiceprint)
cont> in TEXT_AREA
cont> (thresholds is (99)
cont> ,partition TEXT_DOCUMENTS)
cont> for (employees.resume, employees.review)
cont> in (PHOTO_AREA1
cont> (comment is ’Happy Smiling Faces?’
cont> ,threshold is (99)
cont> ,partition PHOTOGRAPHIC_IMAGES_1)
cont> ,PHOTO_AREA2
cont> (comment is ’Happy Smiling Faces?’
cont> ,threshold is (99)
cont> ,partition PHOTOGRAPHIC_IMAGES_2)
cont>)
cont> for (employees.photograph)
cont> fill randomly
cont> in RDB$SYSTEM
cont> (partition SYSTEM_LARGE_OBJECTS);
SQL>
SQL> show storage map LISTS_MAP;

LISTS_MAP
For Lists
Store clause: STORE lists

in AUDIO_AREA
(thresholds are (89, 99, 100)
,comment is ’The voice clips’
,partition AUDIO_STUFF)

for (employees.voiceprint)
in TEXT_AREA

(thresholds is (99)
,partition TEXT_DOCUMENTS)

for (employees.resume, employees.review)
in (PHOTO_AREA1

(comment is ’Happy Smiling Faces?’
,threshold is (99)
,partition PHOTOGRAPHIC_IMAGES_1)

,PHOTO_AREA2
(comment is ’Happy Smiling Faces?’
,threshold is (99)
,partition PHOTOGRAPHIC_IMAGES_2)

)
for (employees.photograph)

7–52 SQL Statements

CREATE STORAGE MAP Statement

fill randomly
in RDB$SYSTEM

(partition SYSTEM_LARGE_OBJECTS)

Partition information for lists map:
Vertical Partition: VRP_P000
Partition: (1) AUDIO_STUFF
Fill Randomly
Storage Area: AUDIO_AREA

Thresholds are (89, 99, 100)
Comment: The voice clips
Partition: (2) TEXT_DOCUMENTS
Fill Randomly
Storage Area: TEXT_AREA

Thresholds are (99, 100, 100)
Partition: (3) PHOTOGRAPHIC_IMAGES_1
Fill Randomly
Storage Area: PHOTO_AREA1

Thresholds are (99, 100, 100)
Comment: Happy Smiling Faces?
Partition: (3) PHOTOGRAPHIC_IMAGES_2
Storage Area: PHOTO_AREA2

Thresholds are (99, 100, 100)
Comment: Happy Smiling Faces?
Partition: (4) SYSTEM_LARGE_OBJECTS
Fill Randomly
Storage Area: RDB$SYSTEM

SQL>
SQL> commit;

SQL Statements 7–53

CREATE SYNONYM Statement

CREATE SYNONYM Statement

Creates an alternate name or synonym for an existing database object. The
object may be a domain, function, module, procedure, sequence, another
synonym, table, or view.

Once defined, the synonym can be used in any query or data definition
language statement in place of the referenced object.

However, the SHOW commands do not accept synonyms. Use the SHOW
SYNONYM statement to determine if the name is a synonym.

Environment

You can use the CREATE SYNONYM statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE
OR REPLACE PUBLIC

SYNONYM <synonym-name> FOR
object-type

<object-name>
COMMENT IS ’ <quoted-string> ’

/

7–54 SQL Statements

CREATE SYNONYM Statement

object-type =

DOMAIN
FUNCTION
INDEX
MODULE
PROCEDURE
SEQUENCE
STORAGE MAP
SYNONYM
TABLE
VIEW

Arguments

COMMENT IS ’quoted-string’
This optional clause can be used to add several lines of comment to the
synonym object. The comment is displayed by the SHOW SYNONYM
statement.

FOR object-name
The name of the database object for which the synonym is required. This name
must exist for an object in the database. If the optional object type is omitted,
then Oracle Rdb will search the database for an object with this name.

object-type

Syntax options:

DOMAIN
FUNCTION
INDEX
MODULE
PROCEDURE
SEQUENCE
STORAGE MAP
SYNONYM
TABLE
VIEW

These optional object types can be used when the referenced object name is not
unique within the database. For instance, Oracle Rdb allows a domain and a
table to both be called MONEY. Therefore, to create a synonym for the table
MONEY, you must use the FOR TABLE clause so that it is uniquely identified.

SQL Statements 7–55

CREATE SYNONYM Statement

OR REPLACE
Instructs SQL to replace any synonym of this name if it exists. If it does not
exist, a new synonym is created. This shorthand allows replacement of an
existing synonym while maintaining all the dependencies established by query
and DDL usage of this synonym.

PUBLIC
This optional clause is provided for compatibility with the Oracle database
server. It is currently not used by Oracle Rdb. Its presence or absence may be
used by future releases. Oracle Corporation recommends you use the PUBLIC
keyword in applications.

synonym-name
The name of the synonym you want to create. The synonym name must be
unique within all domains, tables, views, functions, procedures, modules,
sequences, and synonyms within the database. You may qualify it with an
alias.

Usage Notes

• You must have the database CREATE privilege to execute the CREATE
SYNONYM statement.

• You must have the REFERENCES privilege on the referenced object to
create a synonym for that object. Because domains do not have access
control, no other privileges are required to create synonyms for domains.

• The database must have synonyms enabled. The ALTER DATABASE . . .
SYNONYMS ARE ENABLED clause creates a new system relation,
RDB$OBJECT_SYNONYMS, which is used to record the synonyms created
by this statement.

• Synonyms do not have any access control. Instead, granting privileges
to, or revoking privileges from a synonym is the same as referencing the
base object. In the following example, the GRANT statement grants the
SELECT privilege to PUBLIC on the EMPLOYEES table:

SQL> CREATE SYNONYM EMPS FOR EMPLOYEES;
SQL> GRANT SELECT ON TABLE EMPS TO PUBLIC;

• You may create synonyms for synonyms. This forms a chain of synonyms
that must be processed to determine the base database object. Oracle
Corporation recommends that this chain be no more than 10 references.
Oracle Rdb enforces a chain maximum length of 64.

7–56 SQL Statements

CREATE SYNONYM Statement

Examples

Example 1: Using the Default Alias

SQL> CREATE SYNONYM emps FOR employees;

Example 2: Using an Explicit Alias for the Synonym

SQL> CREATE SYNONYM db1.emps FOR employees;

Example 3: Using an Explicit Alias for the Referenced Object

SQL> CREATE SYNONYM emps FOR db1.employees;

Example 4: Using the Alias Explicitly

SQL> CREATE SYNONYM db1.emps FOR db1.employees;

Example 5: Using the Table Type

SQL> CREATE SYNONYM cash FOR table money
cont> COMMENT IS ’use a different name to avoid confusion with’
cont> / ’the domain MONEY’;

Example 6: Using Multiple Synonyms

SQL> CREATE TABLE t_employees_0001 (...);
SQL> CREATE SYNONYM employees FOR t_employees_0001;
SQL> CREATE SYNONYM emps FOR employees;

SQL Statements 7–57

CREATE TABLE Statement

CREATE TABLE Statement

Creates a temporary or persistent base table definition. A table definition
consists of a list of definitions of columns that make up a row in the table.

Persistent base tables are tables whose metadata and data are stored in the
database beyond an SQL session. The data can be shared by all users attached
to the database.

Temporary tables are tables whose data is automatically deleted when an
SQL session or module ends. The tables only materialize when you refer to
them in an SQL session and the data is local to an SQL session. You can also
specify whether the data is preserved or deleted at the end of a transaction
within the session; the default is to delete the data. The data in temporary
tables is private to the user. There are three types of temporary tables:

• Global temporary tables

• Local temporary tables

• Declared local temporary tables (see the DECLARE LOCAL TEMPORARY
TABLE Statement for additional information)

The metadata for a global temporary table is stored in the database and
persists beyond the SQL session. Different SQL sessions can share the
same metadata. The data stored in the table cannot be shared between SQL
sessions. However, the data can be shared between modules in a single SQL
session. The data does not persist beyond an SQL session.

The metadata for a local temporary table is stored in the database and persists
beyond the SQL session. Different SQL sessions can share the same metadata.
The data stored in the table cannot be shared between different modules in a
single SQL session or between SQL sessions. The data does not persist beyond
an SQL session or module.

Because temporary tables are used only to hold the user’s data, which is not
shared among users, no locks are needed and the data can be modified in a
read-only transaction.

See the Oracle Rdb Guide to Database Design and Definition for more
information on temporary tables.

Information tables are special read-only tables that can be used to retrieve
database attributes that are not stored in the existing relational tables.
Information tables allow interesting database information, which is currently
stored in an internal format, to be displayed as a relational table.

7–58 SQL Statements

CREATE TABLE Statement

When you define a table, you can also define table constraints. A constraint
specifies a condition that restricts the values that can be stored in a table.
Constraints can specify that columns contain:

Only certain values

Primary key values

Unique values

Values that cannot be null

There are several ways to specify a table definition in the CREATE TABLE
statement:

• Directly by naming the table, its columns and associated data types, default
values (optional), constraint definitions (optional), and formatting clauses.

You can define constraints on persistent base tables and global temporary
tables only.

• Indirectly by providing a path name for a repository record definition that
specifies the table name, columns, and data types.

• Indirectly by providing another table as a model in inheriting the columns,
datatypes and NOT NULL constraints.

SQL allows you to specify the default character data type or the national
character data type when defining table columns.

Environment

You can use the CREATE TABLE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

SQL Statements 7–59

CREATE TABLE Statement

Format

CREATE TABLE
INFORMATION
GLOBAL TEMPORARY
LOCAL

FROM <path-name>
ALIAS <alias>

<table-name> table-body
STORED NAME IS stored-name

create-table-attributes

create-table-attributes =

COMMENT IS ’quoted-string’
/

COMPRESSION IS ENABLED
DISABLED

DISABLE cre-enable-disable
ENABLE
LOGGING
NOLOGGING
ON COMMIT DELETE ROWS

PRESERVE

table-body =

(column-constraint-list)

LIKE <other-table-name>
(column-constraint-list)

cre-enable-disable =

ALL CONSTRAINTS
CONSTRAINT <constraint-name>
PRIMARY KEY
UNIQUE (<column-name>)

,

7–60 SQL Statements

CREATE TABLE Statement

col-definition =

<column-name>

column-type
DEFAULT value-expr
column-identity

COMPUTED BY value-expr

col-constraint

comment-is-clause sql-and-dtr-clause

column-constraint-list =

col-definition
table-constraint

,

column-identity =

IDENTITY
(<start-with>)

, <increment-by>

column-type=

data-type
<domain-name>
references-clause
AUTOMATIC AS value-expr

INSERT
UPDATE

SQL Statements 7–61

CREATE TABLE Statement

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
FLOAT
NUMBER

(<p>)
* , <d>

LIST OF BYTE VARYING
(<n>) AS BINARY

AS TEXT
DECIMAL
NUMERIC (<n>)

, <n>
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
CHARACTER (<n>) CHARACTER SET char-set-name
CHAR VARYING
CHARACTER VARYING
VARCHAR (<n>)
VARCHAR2 CHARACTER SET char-set-name
LONG VARCHAR
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
RAW (<n>)
LONG

RAW

7–62 SQL Statements

CREATE TABLE Statement

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

col-constraint=

CONSTRAINT <constraint-name>

PRIMARY KEY
UNIQUE
NOT NULL
NULL
CHECK (predicate)
references-clause

constraint-attributes

references-clause =

REFERENCES <referenced-table-name>

(<referenced-column-name>)
,

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS literal
DATATRIEVE

SQL Statements 7–63

CREATE TABLE Statement

literal =

numeric-literal
string-literal
date-time-literal
interval-literal
dbkey-literal

table-constraint =

CONSTRAINT <constraint-name>

table-constraint-clause

constraint-attributes

table-constraint-clause =

PRIMARY KEY (<column-name>)
,

UNIQUE (<column-name>)
,

CHECK (predicate)
FOREIGN KEY (<column-name>)

,

references-clause

constraint-attributes =

DEFERRABLE
INITIALLY IMMEDIATE

DEFERRED
NOT DEFERRABLE

INITIALLY IMMEDIATE
INITIALLY IMMEDIATE

DEFERRABLE
NOT DEFERRABLE

INITIALLY DEFERRED
DEFERRABLE

7–64 SQL Statements

CREATE TABLE Statement

Arguments

ALIAS alias
Specifies a name for an attach to a particular database. SQL adds the table
definition to the database referred to by the alias.

If you do not specify an alias, SQL adds the table definition to the default
database. See Section 2.2.1 for more information on default databases and
aliases.

AUTOMATIC AS value-expr
AUTOMATIC INSERT AS value-expr
AUTOMATIC UPDATE AS value-expr
These AUTOMATIC column clauses allow you to store special information
when data is inserted into a row or a row is updated. For example, you can
log application-specific information to audit activity or provide essential values,
such as time stamps or unique identifiers for the data.

The assignment of values to these types of columns is managed by Oracle
Rdb. The AUTOMATIC INSERT clause can be used to provide a complex
default for the column when the row is inserted; it cannot be changed by
an UPDATE statement. The AUTOMATIC UPDATE clause can be used to
provide an updated value during an UPDATE statement. The unqualified
AUTOMATIC clause specifies that the value expression should be applied
during both INSERT and UPDATE statements. The column type is derived
from the AS value-expr; using CAST allows a specific data type to be specified.
However, this is not required and is rarely necessary.

You can define an AUTOMATIC INSERT column to automatically receive data
during an insert operation. The data is stored like any other column, but the
column is read-only. Because AUTOMATIC columns are treated as read-only
columns, they cannot appear in the column list for an insert operation nor be
modified by an update operation. AUTOMATIC UPDATE columns can have
an associated default value that will be used when the row is inserted. See
Example 15 in the Examples section.

char-data-type
A valid SQL character data type. See Section 2.3.1 for more information on
character data types.

character-set-name
A valid character set name.

SQL Statements 7–65

CREATE TABLE Statement

CHECK predicate
Specifies a predicate that column values inserted into the table must satisfy.
See Section 2.7 for details on specifying predicates.

Predicates in CHECK column constraints can refer directly only to the column
with which they are associated. See the Usage Notes for details.

col-constraint
A constraint that applies to values stored in the associated column.

SQL allows column constraints and table constraints. The Usage Notes
summarize the differences between column constraints and table constraints.
The five types of column constraints are PRIMARY KEY, UNIQUE, NOT
NULL, CHECK, and FOREIGN KEY constraints. The FOREIGN KEY
constraints are created with the REFERENCES clause.

You can define a column constraint on persistent base tables and global
temporary tables only.

col-definition
The definition for a column in the table. SQL gives you two ways to specify
column definitions:

• By directly specifying a data type to associate with a column name

• By naming a domain that indirectly specifies a data type to associate with
a column name

Either way also allows options for specifying default values, column
constraints, and formatting clauses.

column-name
The name of a column you want to create in the table. You need to specify a
column name whether you directly specify a data type in the column definition
or indirectly specify a data type by naming a domain in the column definition.

COMPRESSION IS ENABLED
COMPRESSION IS DISABLED
Specifies whether run-length compression is enabled or disabled for rows
inserted into the base or temporary table.

In some cases, the data inserted into a table may not compress and so incur
only overhead in the row. This overhead is used by Rdb to describe the
sequence of uncompressible data. Use COMPRESSION IS DISABLED to
prevent Rdb from attempting the compression of such data.

Any storage map which specifies the ENABLE COMPRESSION or DISABLE
COMPRESSION clause will override this setting in the table.

7–66 SQL Statements

CREATE TABLE Statement

The COMPRESSION IS clause is not permitted for INFORMATION tables.

The default is COMPRESSION IS ENABLED.

COMPUTED BY value-expr
Specifies that the value of this column is calculated by a value expression.
This expression can reference other columns, constant expressions, sequence
references, external and SQL functions, and subselect clauses. Any table,
column, sequence or function reference will create a dependency upon this
column definition.

If your column definition refers to a column name within a value expression,
that named column must already be defined within the same CREATE TABLE
statement. See Section 2.6 for information on value expressions.

Any column that you refer to in the definition of a computed column cannot be
deleted from that table unless you first delete the computed column.

SQL does not allow the following for computed columns:

• UNIQUE constraints

• REFERENCES clauses

• PRIMARY KEY constraints

• DEFAULT clause

• IDENTITY clause

• Default value for DATATRIEVE

For example, if the FICA_RATE for an employee is 6.10 percent of the
employee’s starting salary and the group insurance rate is 0.7 percent, you
can define FICA_RATE and GROUP_RATE columns like this:

SQL> CREATE TABLE payroll_detail
cont> (salary_code CHAR(1),
cont> starting_salary SMALLINT(2),
cont> fica_amt
cont> COMPUTED BY (starting_salary * 0.061),
cont> group_rate
cont> COMPUTED BY (starting_salary * 0.007));

When you use this type of definition, you only have to store values in the
salary_code and starting_salary columns. The FICA and group insurance
deduction columns are computed automatically when the columns fica_amt or
group_rate are selected.

Example 11 shows a COMPUTED BY column that uses a select expression.

SQL Statements 7–67

CREATE TABLE Statement

constraint-attributes
Although the constraint attribute syntax , shown in Table 6-3, provides 11
permutations as required by the SQL99 standard, they equate to the following
three options:

• INITIALLY IMMEDIATE NOT DEFERRABLE

Specifies that evaluation of the constraint must take place when the
INSERT, DELETE, or UPDATE statement executes. If you are using the
SQL99, SQL92, MIA, ORACLE LEVEL1, or ORACLE LEVEL2 dialect, this
is the default.

• INITIALLY IMMEDIATE DEFERRABLE

Specifies that evaluation of the constraint may be deferred (using the SET
CONSTRAINT ALL statement or the SET TRANSACTION statement
with the EVALUATING clause), but by default it is evaluated after the
INSERT, DELETE, or UPDATE statement executes. See the SET ALL
CONSTRAINTS Statement for more information.

• INITIALLY DEFERRED DEFERRABLE

Specifies that evaluation of the constraint can take place at any later time.
Unless otherwise specified, evaluation of the constraint takes place as the
COMMIT statement executes. You can use the SET ALL CONSTRAINTS
statement to have all constraints evaluated earlier. See the description of
the SET ALL CONSTRAINTS statement for more information.

If you are using the default SQLV40 dialect, this is the default constraint
attribute. When using this dialect, Oracle Rdb displays a deprecated
feature message for all constraints defined without specification of one of
the constraint attributes.

CONSTRAINT constraint-name
Specifies a name for a column or table constraint. The name is used for a
variety of purposes:

• The RDB$_INTEG_FAIL error message specifies the name when an
INSERT, UPDATE, or DELETE statement violates the constraint.

• The ALTER TABLE table-name DROP CONSTRAINT constraint-name
statement specifies the name to delete a table constraint.

• The SHOW TABLE statements display the names of column and table
constraints.

• The EVALUATING clause of the SET TRANSACTION and DECLARE
TRANSACTION statements specifies constraint names.

7–68 SQL Statements

CREATE TABLE Statement

• The ENABLE and DISABLE clauses of the ALTER and CREATE TABLE
statements specify constraint names.

• The ALTER CONSTRAINT statement specifies constraint names.

• The DROP CONSTRAINT statement

The CONSTRAINT clause is optional. If you omit the constraint name, SQL
creates a name. However, Oracle Rdb recommends that you always name
column and table constraints. If you supply a constraint name with the
CONSTRAINT clause, it must be unique in the database or in the schema if
you are using a multischema database.

data-type
A valid SQL data type. Specifying an explicit data type to associate with a
column is an alternative to specifying a domain name. See Section 2.3 for more
information on data types.

date-time-data-types
A data type that specifies a date, time, or interval. See Section 2.3.2 for more
information about date-time data types.

DEFAULT value-expr
Provides a default value for a column if the row that is inserted does not
include a value for that column.

You can use any value expression including subqueries, conditional, character,
date/time, and numeric expressions as default values. See Section 2.6 for more
information about value expressions.

For more information about NULL, see Section 2.6.1 and the Usage Notes
following this Arguments list.

The value expressions described in Section 2.6 include DBKEY and aggregate
functions. However, the DEFAULT clause is not a valid location for referencing
a DBKEY or an aggregate function. If you attempt to reference either, you
receive a compile-time error.

If you do not specify a default value, a column inherits the default value from
the domain. If you do not specify a default value for either the column or
domain, SQL assigns NULL as the default value.

domain-name
The name of a domain created in a CREATE DOMAIN statement. SQL gives
the column the data type specified in the domain. For more information on
domains, see the CREATE DOMAIN Statement.

SQL Statements 7–69

CREATE TABLE Statement

For most purposes, you should specify a domain instead of an explicit data
type.

• Domains ensure that all columns in multiple tables that serve the same
purpose have the same data type. For example, several tables in the
sample personnel database refer to the domain ID_DOM.

• A domain lets you change the data type for all columns that refer to it
in one operation by changing the domain itself with an ALTER DOMAIN
statement.

For example, if you want to change the data type for the column
EMPLOYEE_ID from CHAR(5) to CHAR(6), you need only alter the
data type for the domain ID_DOM. You do not have to alter the data type
for the column EMPLOYEE_ID in the tables DEGREES, EMPLOYEES,
JOB_HISTORY, or SALARY_HISTORY, nor do you have to alter the column
MANAGER_ID in the DEPARTMENTS table.

However, you might not want to use domains when you create tables if:

• Your application must be compatible with Oracle Database.

• You are creating intermediate result tables that do not need the advantages
of domains.

enable-disable-clause
Allows you to enable or disable all constraints, specified constraints, a primary
key, or a unique column name, as described in the following list. By default,
table and column constraints added during a create table operation are
enabled.

• DISABLE ALL CONSTRAINTS

All table and column constraints for this table are disabled. No error is
raised if no constraints are defined on the table.

• ENABLE ALL CONSTRAINTS

All and column constraints for this table are enabled. No error is raised if
no constraints are defined on the table.

• DISABLE CONSTRAINT constraint-name

The named constraint is disabled. The named constraint must be a table
or column constraint for the table.

• ENABLE CONSTRAINT constraint-name

The named constraint is enabled. The named constraint must be a table or
column constraint for the table.

7–70 SQL Statements

CREATE TABLE Statement

• DISABLE PRIMARY KEY

The primary key for the table is disabled.

• ENABLE PRIMARY KEY

The primary key for the table is enabled.

• DISABLE UNIQUE (column-name)

The matching UNIQUE constraint is disabled. The columns listed must be
columns in the table.

• ENABLE UNIQUE (column-name)

The matching UNIQUE constraint is enabled. The columns listed must be
columns in the table.

FOREIGN KEY column-name
The name of a column or columns that you want to declare as a foreign key in
the table you are defining (referencing table). You cannot declare a computed
column as a foreign key.

FROM path-name
Specifies the repository path name of a repository record definition. SQL
creates the table using the definition from this record and gives the table the
name of the record definition.

You can create a table using the FROM path-name clause only if the record
definition in the repository was originally created using the repository Common
Dictionary Operator (CDO) utility. For instance, you cannot create a table
using the FROM path-name clause if the record definition was created in the
repository as part of an SQL session.

If the repository record contains a nested record definition, you cannot create a
table based on it.

Creating a table based on a repository record definition is useful when many
applications share the same definition. Changes to the common definition can
be automatically reflected in all applications that use it.

Note

Changes by other users or applications to the record definition in the
repository affect the table definition once the database is integrated
to match the repository with an INTEGRATE DATABASE . . . ALTER
FILES statement. If those changes include deleting records or
fields on which tables or table columns are based, any data in the

SQL Statements 7–71

CREATE TABLE Statement

dependent table or table column is lost after the next INTEGRATE
DATABASE . . . ALTER FILES statement executes.

You can use the FROM clause only if the database was attached specifying
PATHNAME. You can specify either a full repository path name or a relative
repository path name.

You cannot define constraints or any other table definition clauses, such as
DATATRIEVE formatting clauses, when you use the FROM path-name form
of the CREATE TABLE statement. This restriction does not prevent you from
using an ALTER TABLE statement to add them later.

You cannot use the FROM path-name clause when embedding a CREATE
TABLE statement within a CREATE DATABASE statement.

GLOBAL TEMPORARY
LOCAL
Specifies that the table definition is either a global or local temporary table.

IDENTITY
Specifies that the column is to be a special read-only identity column. INSERT
will evaluate this column and store a unique value for each row inserted.
Only one column of a table may have the IDENTITY attribute. Rdb creates a
sequence with the same name as the current table.

See ALTER SEQUENCE Statement and CREATE SEQUENCE Statement for
more information.

increment-by
An integer literal value that specifies the increment for the sequence created
for the IDENTITY column. A negative value creates a descending sequence,
and a positive value creates an ascending sequence. A value of zero is not
permitted. If omitted the default is 1, that is an ascending sequence.

INFORMATION
Specifies that the table definition is an information table. For details on
information tables, see Appendix I in Volume 5.

Information tables are reserved for use by Oracle Corporation.

LIKE other-table-name
Allows a database administrator to copy the metadata for an existing table and
create a new table with similar characteristics. An optional column list can be
used to add extra columns and contraints to this table. The referenced table
must exist in the same database as the table being created.

7–72 SQL Statements

CREATE TABLE Statement

LOGGING
NOLOGGING
The LOGGING clause specifies that the CREATE TABLE statement should be
logged in the recovery-unit journal file (.ruj) and after-image journal file (.aij).

The NOLOGGING clause specifies that the CREATE TABLE statement should
not be logged in the recovery-unit journal file (.ruj) and after-image journal file
(.aij).

The LOGGING clause is the default.

NOT NULL
Restricts values in the column to values that are not null.

ON COMMIT PRESERVE ROWS
ON COMMIT DELETE ROWS
Specifies whether data is preserved or deleted after a COMMIT statement for
global or local temporary tables only.

The default, if not specified, is ON COMMIT DELETE ROWS.

PRIMARY KEY
A primary key constraint defines one or more columns whose values make
a row in a table different from all others. SQL requires that values in a
primary key column be unique and not null; therefore, you need not specify the
UNIQUE and NOT NULL column constraints for primary key columns.

You cannot specify the primary key constraint for a computed column.

When used as a table constraint this clause must be followed by a list of
column names. When used as a column constraint this clause applies to the
named column of the table.

references-clause
Specifies the name of the column or columns that are a unique key or primary
key or in the referenced table. When the REFERENCES clause is used as
a table constraint, the column names specified in the FOREIGN KEY clause
become a foreign key for the referencing table.

When used as the column type clause, specifies that the type of the column
be inherited from the PRIMARY KEY or UNIQUE index referenced. Both the
data type and domain are inherited.

REFERENCES referenced-table-name
Specifies the name of the table that contains the unique key or primary
key referenced by the referencing table. To declare a constraint that refers

SQL Statements 7–73

CREATE TABLE Statement

to a unique or primary key in another table, you must have the SQL
REFERENCES or CREATE privileges to the referenced table.

referenced-column-name
For a column constraint, the name of the column that is a unique key or
primary key in the referenced table. You cannot use a computed column as a
referenced column name. For a table constraint, the referenced column name
is the name of the column or columns that are a unique key or primary key
in the referenced table. If you omit the referenced-column-name clause, the
primary key is selected by default. The number of columns and their data
types must match.

sql-and-dtr-clause
Optional SQL formatting clause. See Section 2.5 for more information about
formatting clauses.

If you specify a formatting clause for a column that is based on a domain that
also specifies a formatting clause, the formatting clause in the table definition
overrides the one in the domain definition.

start-with
An integer literal value that specifies the starting value for the sequence
created for the IDENTITY column. If omitted the default is 1.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a table created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a table in a database that does not allow multiple
schemas. For more details about stored names, see Section 2.2.18.

table-constraint
A constraint definition that applies to the whole table.

SQL allows column constraints and table constraints. The Usage Notes
summarize the differences between the two types of constraints. The four types
of table constraints are PRIMARY KEY, UNIQUE, CHECK, and FOREIGN
KEY constraints.

A column must be defined in a table before you can specify the column in a
table constraint definition.

You can define a table constraint on persistent base tables and global
temporary tables only.

7–74 SQL Statements

CREATE TABLE Statement

table-name
The name of the table definition you want to create. Use a name that is unique
among all table, sequence, view and synonym names in the database, or in the
schema if you are using a multischema database. Use any valid SQL name.
(See Section 2.2 for more information on user-supplied names.)

UNIQUE
Specifies that values in the associated column must be unique. You can use
either the UNIQUE or PRIMARY KEY keywords to define one or more columns
as a unique key for a table.

You cannot specify the UNIQUE constraint for a computed column or for a
column defined with the LIST OF BYTE VARYING data type.

Usage Notes

• You must have the CREATE database privilege on the database to create
a table. You must have REFERENCE database privilege on the table
specified by the LIKE clause.

• When the CREATE TABLE statement executes, SQL adds the table
definition to the database.

If you declared the database with the PATHNAME specification, the
definition is also added to the repository.

• It is possible when using the repository to define record structures that are
not acceptable to Oracle Rdb.

The repository is intended as a generic data repository that can hold data
structures available to many layered products and languages.

These data structures may not always be valid when applied to the
relational data model used by Oracle Rdb.

The following are some of the common incompatibilites between the data
structures of the repository and Oracle Rdb.

%CDD-E-PRSMISSNG, attribute value is missing

This error can occur when a record definition in the repository contains
a VARIANTS clause.

%CDD-E-INVALID_RDB_DTY, data type of field is not supported by
Oracle Rdb

This error can occur when a record definition in the repository contains
an OCCURS clause.

SQL Statements 7–75

CREATE TABLE Statement

%CDD-E-DTYPE_REQUIRED, field must have a data type for inclusion
in an Oracle Rdb database

This error can occur when a record definition in the repository contains
another nested record definition. Oracle Rdb can only accept field
definitions in a record definition.

%CDD-E-INVALID_RDB_DIM, record PARTS has dimension and
cannot be used by Oracle Rdb

This error occurs when a record definition in the repository contains an
ARRAY clause.

• The CREATE TABLE statement creates a default access privilege set for
the table that gives the creator all privileges to the database and all other
users no privileges. This means that new tables have a PUBLIC access of
NONE.

To override default PUBLIC access for newly created tables, define an
identifier with the name DEFAULT in the system privileges table. The
access rights that you give to this identifier on your database will then be
assigned to any new tables that you create.

1. Assigning the SELECT and UPDATE privileges to the database with
alias TEST1

SQL> ATTACH ’ALIAS test1 FILENAME mf_personnel’;
SQL> SHOW PROTECTION ON DATABASE test1;
Protection on Alias TEST1

(IDENTIFIER=[DBS,SMALLWOOD],ACCESS=SELECT+INSERT+UPDATE+DELETE+
SHOW+CREATE+ALTER+DROP+DBCTRL+OPERATOR+DBADM+SECURITY+DISTRIBTRAN)

(IDENTIFIER=[*,*],ACCESS=NONE)
SQL> GRANT SELECT, UPDATE ON DATABASE ALIAS TEST1
cont> TO DEFAULT;

2. Committing and disconnecting the transaction to make the change in
protection occur

SQL> COMMIT;
SQL> DISCONNECT ALL;

3. Receiving all access rights to the new table TABLE1

The protection on existing tables in the database is not changed;
however, any new tables that you define receive the protection
specified by the DEFAULT identifier. In this example, the owner
(SMALLWOOD) receives all the access rights to the new table TABLE1,
and all other users receive the SELECT and UPDATE access rights
specified by the DEFAULT identifier.

7–76 SQL Statements

CREATE TABLE Statement

SQL> ATTACH ’ALIAS test1 FILENAME mf_personnel’;
SQL> SET TRANSACTION READ WRITE;
SQL> CREATE TABLE test1.table1
cont> (last_name_dom CHAR(5),
cont> year_dom SMALLINT);
SQL> SHOW PROTECTION ON test1.table1;
Protection on Table TEST1.TABLE1

(IDENTIFIER=[DBS,SMALLWOOD],ACCESS=SELECT+INSERT+UPDATE+DELETE+
SHOW+CREATE+ALTER+DROP+DBCTRL+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SELECT+UPDATE)

The DEFAULT identifier is typically present on an OpenVMS system.
However, if the DEFAULT identifier has been removed from your system,
Oracle Rdb returns an error message.

SQL> GRANT INSERT ON DATABASE ALIAS TEST1 to DEFAULT;
%SYSTEM-F-NOSUCHID, unknown rights identifier

• You should consider what value, if any, you want to use for the default
value for a column. You can use a value such as NULL or Not Applicable
that clearly demonstrates that no data was inserted into a column. If a
column usually contains a particular value, you can use that value as the
default. For example, if most company employees work full-time, you could
make full-time the default value for a work status column.

• If you specify a default value for a column that you base on a domain and
you have specified a default value for that domain, the default value for the
column overrides the default value for the domain.

• Table-specific constraints can be declared at the table level or the column
level or both. These constraints can specify that columns contain only
certain values, primary key values, unique values, or that values cannot be
missing (null). Multiple constraints can be declared at both the table and
column level.

On both levels, you can specify definitions of unique, primary, and foreign
keys, and foreign key references to unique or primary keys. You can also
specify constraint evaluation time (either commit or update).

On the table level, you can define constraints for multicolumn keys.

On the column level, you can restrict the values of columns to values that
are not null.

• You can control when the database system evaluates constraints using the
SET ALL CONSTRAINTS statement.

SQL Statements 7–77

CREATE TABLE Statement

• If you defined constraints as NOT DEFERRABLE, they must be evaluated
when the INSERT, DELETE, or UPDATE statement executes. You
cannot use either the SET ALL CONSTRAINTS statement or the SET
TRANSACTION EVALUATING statement to change the evaluation time.

• Constraints specify a condition that restricts the values that can be stored
in a table. The INSERT, UPDATE, or DELETE statements that violate
the condition fail. The database system generates an RDB$_INTEG_FAIL
error, and SQL returns an SQLCODE value of –1001.

You can control when the database system evaluates constraints in the
EVALUATING clause of DECLARE and SET TRANSACTION statements.
By default, all deferred constraints are evaluated when a transaction
issues a COMMIT statement. However, if you specify VERB TIME
for specific constraints in the EVALUATING clause of a DECLARE or
SET TRANSACTION statement, the database system evaluates those
constraints whenever UPDATE, INSERT, or DELETE statements execute.

SQL allows column constraints and table constraints. The semantics and
syntax for the two types of constraints are similar, but not identical. The
following list summarizes the differences:

Column constraints allow the UNIQUE argument; table constraints
allow the UNIQUE (column-name) argument. Specifying UNIQUE
for a series of column definitions is more restrictive than specifying
UNIQUE and a list of the same columns because SQL requires only
that the combination of columns in a UNIQUE (column-name) table
constraint be unique.

SQL> CREATE TABLE TEMP1
cont> (COL1 REAL NOT NULL UNIQUE CONSTRAINT C1,
cont> COL2 REAL NOT NULL UNIQUE CONSTRAINT C2,
cont> COL3 REAL NOT NULL UNIQUE CONSTRAINT C3);
SQL>
SQL> CREATE TABLE TEMP2
cont> (COL4 REAL NOT NULL CONSTRAINT C4,
cont> COL5 REAL NOT NULL CONSTRAINT C5,
cont> COL6 REAL NOT NULL CONSTRAINT C6,
cont> UNIQUE (COL4, COL5, COL6) CONSTRAINT C7);
SQL>
SQL> INSERT INTO TEMP1 VALUES (1,1,1);
1 row inserted
SQL> INSERT INTO TEMP2 VALUES (1,1,1);
1 row inserted
SQL> COMMIT;
SQL>

7–78 SQL Statements

CREATE TABLE Statement

SQL> -- This fails because the values
SQL> -- in COL1 will not be unique:
SQL> INSERT INTO TEMP1 VALUES (1,2,2);
1 row inserted
SQL> COMMIT;
%RDB-E-INTEG_FAIL, violation of constraint C1 caused operation to fail
SQL>
SQL> ROLLBACK;
SQL>
SQL> -- This succeeds because the *combination*
SQL> -- of the columns is still unique:
SQL> INSERT INTO TEMP2 VALUES (1,2,2);
1 row inserted
SQL> COMMIT;

The CHECK constraints have the same syntax for column constraints
as for table constraints. The only syntactic distinction between the two
CHECK constraints is that CHECK table constraints are separated
from column definitions by commas, and CHECK column constraints
are not.

The predicate in a CHECK column constraint can refer directly only
to the column with which it is associated. The predicate in a CHECK
table constraint can refer directly to any column in the table. Either
type of CHECK constraint, however, can refer to columns in other
tables in the database through column select expressions in the
predicate.

The predicate of a CHECK constraint must not be false. It may be
unknown. The constraint COL 10 > 100 would allow values 101, 1000,
and NULL. It would not allow the value 99.

SQL> -- Cannot directly refer to TEST1 in
SQL> -- column constraint for TEST2:
SQL> CREATE TABLE TEST
cont> (TEST1 CHAR(5),
cont> TEST2 CHAR(5)
cont> CHECK (TEST2 <> TEST1)
cont>);
%SQL-F-COLNOTVAL, The column CHECK constraint cannot refer to the
column TEST1
SQL> -- To get around the problem, make the CHECK constraint a table
SQL> -- constraint by separating it from the column with a comma:
SQL> CREATE TABLE TEST
cont> (TEST1 CHAR(5),
cont> TEST2 CHAR(5),
cont> CHECK (TEST2 <> TEST1)
cont>);
SQL> COMMIT;

SQL Statements 7–79

CREATE TABLE Statement

SQL> INSERT INTO TEST VALUES (’1’,’1’);
1 row inserted
SQL> COMMIT;
%RDB-E-INTEG_FAIL, violation of constraint TEST_CHECK1 caused operation
to fail
SQL> ROLLBACK;
SQL> -- This table shows that a CHECK column constraint
SQL> -- can refer to other tables in column select expressions:
SQL> CREATE TABLE TEST0
cont> (TEST1 CHAR(5),
cont> TEST2 CHAR(5)
cont> CHECK (TEST2 NOT IN
cont> (SELECT TEST1 FROM TEST0))
cont>);

• An alternative to specifying unique column or table constraints is to use
CREATE INDEX statements with the UNIQUE keyword. Specifying
UNIQUE indexes generally gives better performance than specifying
logically equivalent constraints in a table definition.

• The REFERENCES clause can declare the one or more corresponding
columns in the referenced table that comprise a unique or primary key. If
not, the referenced table must include a PRIMARY KEY constraint at the
table level specifying the corresponding column or columns.

• If the dialect is SQL99 or ORACLE LEVEL2 then the list of columns in
the REFERENCES clause need not match the order of the corresponding
PRIMARY KEY or UNIQUE constraint. All other dialects require them to
match.

• The values in a foreign key must match the values in the related unique
key or primary key. SQL considers that the foreign key matches the related
unique key or primary key when either of the following statements is true:

A column in the foreign key contains a null value. In this case, the
foreign key is null. SQL considers that a null foreign key matches the
related unique key or primary key.

None of the columns in the foreign key contains a null value, and the
set of values in the foreign key also exists in the unique key or primary
key. In other words, the foreign key matches the related unique key or
primary key when for every row in the referencing table, there is a row
in the referenced table where the corresponding columns are equal.

The following example illustrates the first type of match. The null value
stored in column B2 of the table FOREIGN makes the foreign key of B1
and B2 a null foreign key. As a null foreign key, B1 and B2 match the
primary key A1 and A2 in the table PRIMARY.

7–80 SQL Statements

CREATE TABLE Statement

SQL> CREATE TABLE PRIMARY_TAB
cont> (A1 INTEGER,
cont> A2 INTEGER,
cont> PRIMARY KEY (A1, A2),
cont> A3 INTEGER);
SQL>
SQL> INSERT INTO PRIMARY_TAB (A1, A2, A3)
cont> VALUES (1, 1, 1);
1 row inserted
SQL>
SQL> CREATE TABLE FOREIGN_TAB
cont> (B1 INTEGER,
cont> B2 INTEGER,
cont> FOREIGN KEY (B1, B2)
cont> REFERENCES PRIMARY_TAB (A1, A2),
cont> B3 CHAR(5));
SQL> -- The following command stores a null value in column B2:
SQL> INSERT INTO FOREIGN_TAB (B1, B3) VALUES (2, ’AAAAA’);
1 row inserted

This example shows the second type of match. The values stored in
columns D1 and D2 (the foreign key) of the table FOREIGN_2 exactly
match the values stored in columns C1 and C2 (the primary key) of the
table PRIMARY_2.

SQL> CREATE TABLE PRIMARY_2
cont> (C1 INTEGER,
cont> C2 INTEGER,
cont> PRIMARY KEY (C1, C2),
cont> C3 INTEGER);
SQL>
SQL> INSERT INTO PRIMARY_2 (C1, C2, C3)
cont> VALUES (5, 3, 2);
1 row inserted
SQL>
SQL> CREATE TABLE FOREIGN_2
cont> (D1 INTEGER,
cont> D2 INTEGER,
cont> FOREIGN KEY (D1, D2)
cont> REFERENCES PRIMARY_2 (C1, C2),
cont> D3 CHAR(5));
SQL> --
SQL> INSERT INTO FOREIGN_2 (D1, D2, D3) VALUES (5, 3, ’BBBBB’);
1 row inserted

• You can use table-specific constraints to:

Maintain referential integrity by establishing a clear, visible set of
rules

Attach the desired integrity rules directly to the definition of a table

SQL Statements 7–81

CREATE TABLE Statement

Avoid defining multiple, seemingly independent constraints to
accomplish the same task

• Constraints should not specify columns defined as segmented strings,
as only the segmented string ID is referenced, not the actual segmented
string.

• Within the table definition, constraints can apply to the values in specific
rows of a table, to the entire contents of a table, or to states existing
between multiple tables.

• Within the table definition, Oracle Rdb first defines new versions of
columns. Then, SQL defines constraints and evaluates them. Therefore,
if columns and constraints are defined within the same table definition,
constraints can use any of the columns defined in this table before or after
the constraint definition text.

• If table-specific constraints are declared with a CREATE TABLE statement
and the definition of the generated constraint fails, the definition of the
table also fails.

• The CREATE TABLE statement adds the table definition and any
associated constraint definitions to the physical database.

If the database was attached with the PATHNAME argument, the
definitions are stored in the repository, ensuring consistency between
the database definitions and the repository definitions.

• To ensure that you do not define redundant, table-specific constraints, you
should display all constraints and triggers for the affected table using the
SHOW TABLE statement.

• If a constraint fails at commit time, the update operation must be manually
rolled back.

• You can create up to 8191 tables. This value is an architectural limit
restricted by the on-disk structure and includes system tables. When you
exceed the maximum limit, Oracle Rdb issues an error message.

If you delete older tables, Oracle Rdb recycles their identifiers so that
CREATE TABLE statements can succeed even after the maximum is
reached.

• CREATE TABLE statements in programs must precede (in the source file)
all other data definition language (DDL) statements that refer to the table.

7–82 SQL Statements

CREATE TABLE Statement

• You can specify the national character data type by using the NCHAR,
NATIONAL CHAR, NCHAR VARYING, or NATIONAL CHAR VARYING
data types. The national character data type is defined by the database
national character set when the database is created. See Section 2.3 for
more information regarding national character data types.

• You can specify the length of the data type in characters or octets. By
default, data types are specified in octets. By preceding the CREATE
TABLE command with the SET CHARACTER LENGTH or SET DIALECT
statement, you change the length to characters. For more information,
see the SET CHARACTER LENGTH Statement and the SET DIALECT
Statement, respectively.

• Because data in temporary tables is private to a session, you cannot use
temporary tables in as many places as you use persistent base tables. In
particular, note the following points when you use temporary tables:

– You can truncate global temporary tables using the TRUNCATE
TABLE statement. You cannot truncate local temporary tables.

– Global and local temporary tables cannot contain data of the data type
LIST OF BYTE VARYING.

– You can define column and table constraints for global temporary
tables, but not for local temporary tables. The columns in both global
and local temporary tables can reference domain constraints.

Constraints on a global temporary table can only refer to another
global temporary table. However, if the referenced target table specifies
ON COMMIT DELETE ROWS, the source table must also specify ON
COMMIT DELETE ROWS. This restriction does not apply when the
referenced target table specifies ON COMMIT PRESERVE ROWS.

– You can use triggers with global temporary tables only.

– You cannot define indexes for global or local temporary tables.

– Oracle Rdb does not journal changes to global or local temporary
tables.

• The following are allowed with global or local temporary tables:

– You can delete temporary tables using the DROP TABLE statement.

– A view can refer to a temporary table.

– You can use dbkeys with temporary tables.

– You can grant and revoke privileges only using the ALL keyword.

– You can write to a temporary table during a read-only transaction.

SQL Statements 7–83

CREATE TABLE Statement

– Table 7–1 summarizes the actions you can take with temporary tables
and when you can refer to temporary tables.

Table 7–1 Using Temporary Tables

Types of Temporary Tables

Action Global Local Declared Local

Drop table Yes Yes No
Alter table Yes No No
Truncate table Yes No No
Add constraints on table or column Yes No No
Refer to table in constraint
definition

Yes2 Yes No

Refer to domain constraints Yes Yes Yes
Refer to table in storage map Yes3 Yes No
Refer to table in view Yes Yes No
Grant privileges on temporary table Yes Yes No
Refer to table in outline Yes Yes No1

Create indexes on table No No No
Use dbkeys on table Yes Yes Yes
Use triggers with table Yes No No
Refer to table in COMMENT ON
statement

Yes Yes No

Contain LIST OF BYTE VARYING
data

No No No

Specify in RESERVING clause Yes4 Yes4 No
Write to table during read-only
transaction

Yes Yes Yes

Create in a read-only transaction No No Yes
Refer to a table in a computed by
column

Yes Yes No

1You can refer to a declared local temporary table if it is defined inside a stored module.
2From a temporary table only.
3Only the ENABLE or DISABLE COMPRESSION attribute may be specified.
4Such references are igmored.

7–84 SQL Statements

CREATE TABLE Statement

For information about declared local temporary tables, see the
DECLARE LOCAL TEMPORARY TABLE Statement.

– Data for a temporary table is stored in virtual memory, not in a storage
area. For journaling purposes, when changes are made to the data in a
temporary table such as updates or deletes, recovery space is required
to hold before images of deleted and updated rows. This recovery space
also requires virtual memory and may result in having to increase
Page File Quota (process quota, PGFLQUO) and Virtual Page Count
(SYSGEN parameter, VIRTUALPAGECNT) on OpenVMS.

A recommended way to reduce memory usage when using temporary
tables is to commit transactions which modify temporary table data
as soon as possible. Upon commit the additional copies of data are
released and available for reuse by Oracle Rdb. This eliminates extra
copies of data and therefore reduces virtual memory usage.

See the Oracle Rdb Guide to Database Design and Definition for
calculating memory usage for temporary tables.

• When a constraint is disabled, it is not evaluated by the INSERT, UPDATE,
DELETE, or TRUNCATE TABLE statements.

• The RMU Verify command with the Constraint qualifier ignores any
disabled constraints. The exception is when a constraint is exlicitly named
using the CONSTRAINT option.

• The following usage notes apply to AUTOMATIC columns:

When the column is omitted from an insert operation, a column default
and an automatic column provide similar functions. However, there are
distinctions, as follows:

* AUTOMATIC columns cannot be referenced during an insert
operation, because they are read-only to applications.

* AUTOMATIC columns can be written during an update operation.

* When you use an AUTOMATIC column, you do not provide the
data type for the column.

Note the following differences between using COMPUTED BY columns
and AUTOMATIC columns:

* COMPUTED BY columns use no space in the row, AUTOMATIC
columns do.

SQL Statements 7–85

CREATE TABLE Statement

* A COMPUTED BY column is evaluated when the row is fetched,
such as when a SELECT, UPDATE, or DELETE statement
references the column name. An AUTOMATIC column is evaluated
during an INSERT or UPDATE statement. A calculated value
is written to a column in the row, and the value returned by a
SELECT statement is the stored column value.

For example, a column defined as COMPUTED BY CURRENT_
DATE returns the date when the query is executed. A selected
column that is AUTOMATIC INSERT AS CURRENT_DATE
returns the date when the INSERT was performed, which might be
different from the date when the query is executed.

* Indexes and constraints can be defined for AUTOMATIC columns
but not for COMPUTED BY columns.

Note the following differences between using an AUTOMATIC column
and a trigger on the table:

* In an insert operation, an AFTER INSERT TRIGGER trigger can
provide AUTOMATIC column functionality. However, AUTOMATIC
columns can help eliminate the overhead of a trigger and so
simplify table management.

* Trigger actions cannot modify a row being updated, because this
leads to a recursive trigger action. AUTOMATIC UPDATE columns
are evaluated prior to the trigger and constraint execution.

If the data written to the table with an AUTOMATIC column is
incorrect, you can temporarily suspend the read-only attribute of the
column by issuing the SET FLAGS ’AUTO_OVERRIDE’ statement
if you have the DBADMIN privilege on the database. Then, you can
execute an update query to correct the incorrect data. See the SET
FLAGS Statement for more information and an example.

• The following usage notes apply to UNIQUE constraints:

Oracle Rdb provides an SQL:1999-compliant UNIQUE constraint.
This type of constraint excludes NULL columns from the UNIQUE
comparison. This effectively allows sets of columns to be UNIQUE or
NULL.

This type of constraint is created by default when the SQL dialect is
set to SQL89, MIA, ORACLE LEVEL1, ORACLE LEVEL2, SQL99,
or SQL92. The default dialect is SQLV40. Oracle Corporation
recommends that you set the dialect to SQL99 (or one of the listed
dialects) before using the CREATE TABLE statement (or ALTER
TABLE statement) to add UNIQUE constraints to tables.

7–86 SQL Statements

CREATE TABLE Statement

Note

The UNIQUE semantics are used at run time under any selected
dialect. That is, the table must be created under the listed dialects to
have the new style of UNIQUE constraints enabled.

The SQL standard UNIQUE constraint implementation, in addition
to conforming to the SQL Database Language standard, also provides
improved performance for single row insert operations. This is made
possible by eliminating checks for NULL values from the selection
expression and thus simplifying the optimization for unique checking.

Here is a comparison of the old and new optimizer strategies. In this
example, a UNIQUE constraint ("UNIQUE_A") and index on column A
are used to check for uniqueness during an INSERT statement. Note
that the optimizer chooses a full range search of the index (for example,
[0:0]):

~S: Constraint "UNIQUE_A" evaluated
Cross block of 2 entries
Cross block entry 1
Conjunct Firstn Get Retrieval by DBK of relation T_UNIQUE

Cross block entry 2
Conjunct Aggregate-F2 Conjunct
Index only retrieval of relation T_UNIQUE
Index name T_UNIQUE_INDEX_A [0:0]

With the simplified UNIQUE constraint ("UNIQUE_B"), the optimizer
can use a direct lookup of the index (that is, [1:1]), which reduces the
I/O to the index to perform the constraint evaluation:

~S: Constraint "UNIQUE_B" evaluated
Cross block of 2 entries
Cross block entry 1
Conjunct Firstn Get Retrieval by DBK of relation T_UNIQUE

Cross block entry 2
Conjunct Aggregate-F2 Index only retrieval of relation T_UNIQUE
Index name T_UNIQUE_INDEX_B [1:1]

In prior versions, the UNIQUE constraint restricted columns to a single
NULL value. To retain this behavior, use the SET DIALECT ’SQLV40’
statement before creating new tables or altering existing tables to add
UNIQUE constraints.

SQL Statements 7–87

CREATE TABLE Statement

UNIQUE constraints created in previous versions of Oracle Rdb
will perform as in previous versions. Interfaces such as RDO or the
Oracle CDD/Repository will continue to define the older style UNIQUE
constraint. Database EXPORT and IMPORT will retain the UNIQUE
constraint characteristics as defined by the database administrator,
regardless of the defined dialect setting.

Note

The RMU Extract command with the Item=Table qualifier does not
distinguish between the old and new UNIQUE constraints in this
release of Oracle Rdb. You must modify the generated SQL script to
establish the appropriate dialect before using the script to create a
database.

Because this new style of UNIQUE constraints is a relaxation of the
UNIQUE rules, it is possible to drop the old style UNIQUE constraint
and redefine the constraint under the SQL99 or similar dialect.

Note that this meaning of UNIQUE (that is, excluding NULL from
the uniqueness test) does not apply to the UNIQUE index. The
UNIQUE index still does not allow duplicate entries for NULL. If
a UNIQUE index is currently defined that assists the UNIQUE
constraint optimization, then the database administrator may want
to drop the index and make it a non-UNIQUE index so that multiple
NULLs can be stored. The UNIQUE constraint still enforces the
uniqueness of the data.

You can use the SQL SHOW TABLE command to determine which
type of UNIQUE constraint is in use. See Example 16 in the Examples
section.

As a side effect of this change to UNIQUE constraints, Oracle Rdb also
recognizes a larger class of CHECK constraints as being uniqueness
checks. The main benefit is that these constraints are no longer
executed when a DELETE statement is executed for the table, because
DELETE statements do not affect the uniqueness of the remaining
rows. For example:

7–88 SQL Statements

CREATE TABLE Statement

SQL> CREATE TABLE T_USER_UNIQUE_NEW
cont> A INTEGER,
cont> B INTEGER,
cont> CONSTRAINT UNIQUE_AB_NEW
cont> CHECK ((SELECT COUNT(*)
cont> FROM T_USER_UNIQUE_NEW T2
cont> WHERE T2.A = T_USER_UNIQUE_NEW.A and
cont>
T2.B = T_USER_UNIQUE_NEW.B) <= 1)
cont> NOT DEFERRABLE
cont>);

In previous versions of Oracle Rdb, only equality with 1 was recognized
as a uniqueness constraint. In this example a comparison of LESS
THAN or EQUAL TO 1 also qualifies as a uniqueness constraint.

See the Oracle Rdb Guide to Database Design and Definition for calculating
memory usage for temporary tables.

• The following usage notes apply to IDENTITY columns:

The IDENTITY attribute implicitly creates a system sequence with
the same name as the table in which it resides. This implies that only
one IDENTITY column can exist per table. No table may use the same
name as an existing sequence.

This new sequence can be modified using the ALTER SEQUENCE
statement, however, the sequence can only be dropped using the
ALTER TABLE . . . DROP COLUMN statement, or by the DROP
TABLE statement.

The sequence created by the IDENTITY attribute can be shown with
SHOW SEQUENCES, and the attributes of the sequence can be altered
using ALTER SEQUENCE, COMMENT ON SEQUENCE, GRANT and
REVOKE statements.

However, neither DROP SEQUENCE nor RENAME SEQUENCE are
permitted for this special sequence. A DROP TABLE, or an ALTER
TABLE ... DROP COLUMN of the identity column will implicitly drop
the identity sequence. A RENAME of the table will implicitly rename
the matching identity sequence.

Constraints and indices may be created for the identity column.
Indices can improve query performance, and constraints such as
PRIMARY KEY or UNIQUE will allow references from FOREIGN KEY
constraints of other tables.

Only columns of the type TINYINT, SMALLINT, INTEGER, or BIGINT
can use the IDENTITY attribute. These types must default to or have
a zero scale. Domains may be referenced if they have these types.

SQL Statements 7–89

CREATE TABLE Statement

The IDENTITY attribute implicitly changes the column to be an
AUTOMATIC INSERT column, therefore it becomes a read-only
column. Refer to the documentation on AUTOMATIC columns for more
information.

If a TRUNCATE TABLE is executed for a table with an IDENTITY
column, the special sequence is reset to the initial starting value.

DEFAULT and IDENTITY may not both be specified for a column.

AUTOMATIC and IDENTITY may not both be specified for a column.

Use GRANT and REVOKE to manage the protection on the created
sequence, most likely to match the access applied to the table.

• The table name provided by the LIKE clause must be a base table, a global
temporary table, or a local temporary temporary table that currently exists
in the current database. You can also specify a synonym for a base table or
temporary table.

The following attributes of the table are copied:

The names and ordering of all columns

For each column the data type, DEFAULT, IDENTITY, COMPUTED
BY clause, AUTOMATIC AS clause, COMMENT and domain will be
inherited.

Display attributes such as DEFAULT VALUE, QUERY NAME, QUERY
HEADER and EDIT STRING clauses.

The table comment is inherited, unless overwritten by a COMMENT IS
clause.

If the source table includes an IDENTITY column then the LIKE clause
will result in a new sequence to be created with the same name of this
new table.

Other table attributes such as referential constraints, triggers, storage
maps and indices are not inherited and must be separately created.

Note

If a COMPUTED BY expression uses a subselect to reference the
current table then this information is inherited unchanged by the new
table. You should perform a subsequent ALTER TABLE statement to
DROP and redefine the COMPUTED BY column.

7–90 SQL Statements

CREATE TABLE Statement

• You can not reference a system table or a view with the LIKE clause

SQL> create table my_sys like rdb$database;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETSYSREL, operation illegal on system defined metadata

• Any table referenced by a COMPUTED BY, AUTOMATIC or DEFAULT
clause will be implicitly reserved for SHARED READ by Rdb when
the column is referenced in a query. Therefore, it is not necessary to
explicitly reserve these tables in the DECLARE TRANSACTION or SET
TRANSACTION statement unless the required lock mode is higher than
SHARED READ.

If any of these expressions call an SQL function which reads from a table
or view, then these tables are not implicitly reserved. You must include
a LOCK TABLE statement in the function (or any called procedure) to
ensure that references to the tables are allowed, even when not listed
in the DECLARE TRANSACTION or SET TRANSACTION statement
RESERVING clause.

Examples

Example 1: Creating new tables with primary and foreign keys

In this example, the CREATE TABLE statement is used to create the
EMPLOYEES_2, SALARY_HISTORY_2, and WORK_STATUS_2 tables in
the personnel database. It specifies column definitions based on domain
definitions for the entire database.

The FOREIGN KEY constraint specified in the SALARY_HISTORY_2 table
must match the PRIMARY KEY constraint specified in the EMPLOYEES_2
table.

Note also that the CHECK constraint specified is a table constraint because
it is separated by commas from the column to which it refers. In this case, a
column constraint on EMPLOYEE_ID would have the same effect because it
refers only to the single column EMPLOYEE_ID.

Because the dialect is SQL99, the default for constraint evaluation time is
NOT DEFERRABLE.

SQL Statements 7–91

CREATE TABLE Statement

SQL> -- *** Set Dialect ***
SQL> --
SQL> SET DIALECT ’SQL99’;
SQL> --
SQL> -- *** Create tables ***
SQL> --
SQL> CREATE TABLE WORK_STATUS_2
cont> (
cont> STATUS_CODE STATUS_CODE_DOM
cont> CONSTRAINT WS2_STATUS_CODE_PRIMARY
cont> PRIMARY KEY,
cont> STATUS_NAME STATUS_NAME_DOM,
cont> STATUS_TYPE STATUS_DESC_DOM
cont>);
SQL> --
SQL> CREATE TABLE EMPLOYEES_2
cont> (
cont> EMPLOYEE_ID ID_DOM
cont> CONSTRAINT E2_EMPLOYEE_ID_PRIMARY
cont> PRIMARY KEY,
cont> LAST_NAME LAST_NAME_DOM,
cont> FIRST_NAME FIRST_NAME_DOM,
cont> MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
cont> ADDRESS_DATA_1 ADDRESS_DATA_1_DOM,
cont> ADDRESS_DATA_2 ADDRESS_DATA_2_DOM,
cont> CITY CITY_DOM,
cont> STATE STATE_DOM,
cont> POSTAL_CODE POSTAL_CODE_DOM,
cont> SEX SEX_DOM
cont> CONSTRAINT EMPLOYEE_SEX_VALUES
cont> CHECK (
cont> SEX IN (’M’, ’F’) OR SEX IS NULL
cont>),
cont> BIRTHDAY DATE_DOM,
cont> STATUS_CODE STATUS_CODE_DOM
cont> CONSTRAINT E2_STATUS_CODE_FOREIGN
cont> REFERENCES WORK_STATUS_2 (STATUS_CODE),
cont> CONSTRAINT EMP_STATUS_CODE_VALUES_2
cont> CHECK (
cont> STATUS_CODE IN (’0’, ’1’, ’2’)
cont> OR STATUS_CODE IS NULL
cont>)
cont>);

7–92 SQL Statements

CREATE TABLE Statement

SQL> --
SQL> CREATE TABLE SALARY_HISTORY_2
cont> (
cont> EMPLOYEE_ID ID_DOM
cont> CONSTRAINT SH2_EMPLOYEES_ID_FOREIGN
cont> REFERENCES EMPLOYEES_2 (EMPLOYEE_ID),
cont> SALARY_AMOUNT SALARY_DOM,
cont> SALARY_START DATE_DOM,
cont> SALARY_END DATE_DOM
cont>);
SQL>

Example 2: Creating a table with many SQL data types

The following example is an excerpt from the sample program sql_all_datatypes
created during installation of Oracle Rdb in the Samples directory. For a
variety of languages, sql_all_datatypes illustrates how you declare program
variables to match a variety of data types, and how you can specify those
variables in SQL statements when you store and retrieve column values or null
values.

This example shows the CREATE TABLE statement from the sql_all_datatypes
program.

EXEC SQL CREATE TABLE ALL_DATATYPES_TABLE
(
CHAR_COL CHAR(10),
SMALLINT_COL SMALLINT,
SMALLINT_SCALED_COL SMALLINT (3),
INTEGER_COL INTEGER,
INTEGER_SCALED_COL INTEGER (2),
QUADWORD_COL QUADWORD,
QUADWORD_SCALED_COL QUADWORD (5),
REAL_COL REAL,
DOUBLE_PREC_COL DOUBLE PRECISION,
DATE_COL DATE,
VARCHAR_COL VARCHAR(40)
);

Example 3: Specifying default values for columns

The following example illustrates the use of default values for columns. Each
salesperson enters his or her own daily sales information into the DAILY_
SALES table.

SQL Statements 7–93

CREATE TABLE Statement

SQL> --
SQL> CREATE TABLE DAILY_SALES
cont> --
cont> -- The column SALESPERSON is based on LAST_NAME_DOM and
cont> -- the default value is the user name of the person who
cont> -- enters the information:
cont> (SALESPERSON LAST_NAME_DOM DEFAULT USER,
cont> --
cont> -- Typical work day is 8 hours:
cont> HOURS_WORKED SMALLINT DEFAULT 8,
cont> HOURS_OVERTIME SMALLINT,
cont> GROSS_SALES INTEGER);
SQL> --
SQL> -- Insert daily sales information accepting the
SQL> -- default values for SALESPERSON and HOURS_WORKED:
SQL> --
SQL> INSERT INTO DAILY_SALES
cont> (HOURS_OVERTIME, GROSS_SALES)
cont> VALUES
cont> (1, 2499.00);
1 row inserted
SQL> SELECT * FROM DAILY_SALES;
SALESPERSON HOURS_WORKED HOURS_OVERTIME GROSS_SALES
KILPATRICK 8 1 2499
1 row selected

Example 4: Violating a constraint indirectly with the DELETE statement

Constraints prevent INSERT statements from adding rows to a table that do
not satisfy conditions specified in the constraint. Constraints also prevent
DELETE or UPDATE statements from deleting or changing values in a table if
the deletion or change violates the constraint on another table in the database.
The following example illustrates that point:

SQL> -- TEST has no constraints defined for it, but it is subject to
SQL> -- restrictions nonetheless because of the constraint specified
SQL> -- in TEST2:
SQL> CREATE TABLE TEST
cont> (COL1 REAL);
SQL>
SQL> CREATE TABLE TEST2
cont> (COL1 REAL,
cont> CHECK (COL1 IN
cont> (SELECT COL1 FROM TEST))
cont>);
SQL> COMMIT;
SQL>

7–94 SQL Statements

CREATE TABLE Statement

SQL> INSERT INTO TEST VALUES (1);
1 row inserted
SQL> INSERT INTO TEST2 VALUES (1);
1 row inserted
SQL> COMMIT;
SQL> -- This DELETE statement will fail because it will cause COL1 in
SQL> -- TEST2 to contain a value without the same value in COL1 of TEST:
SQL> DELETE FROM TEST WHERE COL1 = 1;
1 row deleted
SQL> COMMIT;
%RDB-E-INTEG_FAIL, violation of constraint TEST2_CHECK1 caused operation to
fail

Example 5: Evaluating constraints at verb time

Deferrable constraints are not evaluated until a transaction issues a COMMIT
statement. You can specify that constraints be evaluated more frequently with
the EVALUATING clause of the SET TRANSACTION statement.

SQL> create table TEST
cont> (col1 integer,
cont> col2 integer
cont> constraint C2
cont> unique
cont> deferrable
cont>);
SQL>
SQL> insert into TEST (col1, col2) values (1, 2);
1 row inserted
SQL> commit;
SQL>
SQL> /*
***> This INSERT will violate the constraint as shown by
***> the error during COMMIT
***> */
SQL> insert into TEST (col1, col2) values (1, 2);
1 row inserted
SQL> commit;
%RDB-E-INTEG_FAIL, violation of constraint C2 caused operation to fail
-RDB-F-ON_DB, on database USER_DISK:[DOC.DATABASES]MF_PERSONNEL.RDB;1
SQL> /*
***> The COMMIT failed, so we will ROLLBACK
***> */
SQL> rollback;
SQL>
SQL> /*
***> You can change the evalution time using the EVALUATING
***> clause of SET TRANSACTION
***> */
SQL> set transaction read write evaluating C2 at verb time;
SQL> insert into TEST (col1, col2) values (1, 2);
%RDB-E-INTEG_FAIL, violation of constraint C2 caused operation to fail

SQL Statements 7–95

CREATE TABLE Statement

-RDB-F-ON_DB, on database USER_DISK:[DOC.DATABASES]MF_PERSONNEL.RDB;1
SQL> rollback;

Example 6: Specifying the DECIMAL data type in the CREATE TABLE
statement

SQL does not support a packed decimal or numeric string data type. If you
specify the DECIMAL or NUMERIC data type for a column in a CREATE
TABLE or ALTER TABLE statement, SQL generates a warning message and
creates the column with a data type that depends on the precision argument
specified (see Section 2.3.3 for details). This example shows a CREATE TABLE
statement that specifies a DECIMAL data type.

SQL> CREATE TABLE TEMP
cont> (DECIMAL_EX DECIMAL);
%SQL-I-NO_DECIMAL, DECIMAL_EX is being converted from DECIMAL to INTEGER.
SQL>

Example 7: Basing a table on a repository record definition

In the following example, the FROM clause is used in a CREATE TABLE
statement to create a table with constraints based on a repository record
definition. The PARTS record (table) has a primary key based on the field
(column) PART_ID and a unique key based on the field (column) PART_NO, as
well as other constraints.

This example assumes that OTHER_PARTS record and OTHER_PARTS_ID
field have been previously defined in the repository. It begins with defining the
fields and the record in the repository using the Common Dictionary Operator
utility.

$!
$! Define CDD$DEFAULT:
$!
$ DEFINE CDD$DEFAULT SYS$COMMON:[REPOSITORY]TABLE_TEST
$!
$! Enter the respository to create new field and record definitions:
$!
$ REPOSITORY
CDO> !
CDO> ! Create the field definitions for the PARTS record:
CDO> !
CDO> DEFINE FIELD PART_NO DATATYPE IS SIGNED WORD.
CDO> DEFINE FIELD PART_ID DATATYPE IS SIGNED LONGWORD.
CDO> DEFINE FIELD PART_ID_USED_IN DATATYPE IS SIGNED LONGWORD.
CDO> DEFINE FIELD PART_QUANT DATATYPE IS SIGNED WORD.

7–96 SQL Statements

CREATE TABLE Statement

CDO> !
CDO> ! Create the PARTS record definition by first defining the constraints
CDO> ! and then including the field definitions just created. Note that
CDO> ! CDO creates the constraints as not deferrable.
CDO> !
CDO> DEFINE RECORD PARTS
cont> CONSTRAINT PARTS_PMK PRIMARY KEY PART_ID
cont> CONSTRAINT PARTS_UNQ UNIQUE PART_NO
cont> CONSTRAINT PART_CST CHECK
cont> (ANY P IN PARTS WITH (PART_ID IN
cont> PARTS = PART_ID_USED_IN IN P))
cont> CONSTRAINT PART_FRK
cont> FOREIGN KEY PART_ID REFERENCES OTHER_PARTS OTHER_PART_ID.
cont> PART_NO.
cont> PART_ID.
cont> PART_ID_USED_IN.
cont> PART_QUANT.
cont> END.
CDO> !
CDO> ! Display the RECORD PARTS:
CDO> !
CDO> SHOW RECORD PARTS/FULL
Definition of record PARTS
| Contains field PART_NO
| | Datatype signed word
| Contains field PART_ID
| | Datatype signed longword
| Contains field PART_ID_USED_IN
| | Datatype signed longword
| Contains field PART_QUANT
| | Datatype signed word
| Constraint PARTS_PMK primary key PART_ID NOT DEFERRABLE
| Constraint PARTS_UNQ unique PART_NO NOT DEFERRABLE
| Constraint PART_CST (ANY (P IN PARTS WITH
| (PART_ID IN PARTS EQ PART_ID_USED_IN IN P))) NOT DEFERRABLE
| Constraint PART_FRK foreign key PART_ID references OTHER_PARTS
| OTHER_PART_ID NOT DEFERRABLE
CDO> EXIT
$!
$! Entering SQL:
$ SQL
SQL> !
SQL> ! Attach to the AUTO database:
SQL> !
SQL> ATTACH ’ALIAS AUTO PATHNAME AUTO’;
SQL> !
SQL> ! Create a table called PARTS using the PARTS record (table)
SQL> ! just created in the repository:
SQL> !
SQL> CREATE TABLE FROM SYS$COMMON:[REPOSITORY]TABLE_TEST.PARTS
cont> ALIAS AUTO;

SQL Statements 7–97

CREATE TABLE Statement

SQL> !
SQL> ! Use the SHOW TABLE statement to display the information about the
SQL> ! PARTS table:
SQL> !
SQL> SHOW TABLE AUTO.PARTS;
Information for table AUTO.PARTS

CDD Pathname: SYS$COMMON:[REPOSITORY]TABLE_TEST.PARTS;1

Columns for table AUTO.PARTS:
Column Name Data Type Domain
----------- --------- ------
PART_NO SMALLINT AUTO.PART_NO
PART_ID INTEGER AUTO.PART_ID
PART_ID_USED_IN INTEGER AUTO.PART_ID_USED_IN
PART_QUANT SMALLINT AUTO.PART_QUANT

Table constraints for AUTO.PARTS:
AUTO.PARTS_PMK
Primary Key constraint
Table constraint for AUTO.PARTS
Evaluated on each VERB
Source: primary key PART_ID

AUTO.PARTS_UNQ
Unique constraint
Table constraint for AUTO.PARTS
Evaluated on each VERB
Source: unique PART_NO

AUTO.PART_CST
Check constraint
Table constraint for AUTO.PARTS
Evaluated on each VERB
Source: (ANY (P IN PARTS WITH (PART_ID IN PARTS EQ PART_ID_USED_IN IN P)))

AUTO.PART_FRK
Foreign Key constraint
Table constraint for AUTO.PARTS
Evaluated on each VERB
Source: foreign key PART_ID references OTHER_PARTS OTHER_PART_ID

Constraints referencing table AUTO.PARTS:
No constraints found

.

.

.
SQL> --
SQL> COMMIT;
SQL> DISCONNECT DEFAULT;
SQL> EXIT;

7–98 SQL Statements

CREATE TABLE Statement

Example 8: Defining table-specific constraints with single-column primary and
foreign keys

This example uses single-column keys to define table-specific constraints. The
example maintains referential integrity among the four tables involved by
using primary and foreign keys.

Three single-column primary key constraints preserve the integrity among the
tables. The primary key constraints are the EMPLOYEE_ID column for the
EMPLOYEES_TEST table, the JOB_CODE column for the JOBS_TEST table,
and the DEPARTMENT_CODE column for the DEPARTMENTS_TEST table.
The JOB_HISTORY_TEST table contains three foreign key constraints that
refer to these primary keys.

Because the dialect is set to SQL99, constraints are NOT DEFERRABLE.

SQL> SET DIALECT ’SQL99’;
SQL> --
SQL> CREATE TABLE EMPLOYEES_TEST
cont> (EMPLOYEE_ID ID_DOM
cont> CONSTRAINT E_TEST_EMP_ID_PRIMARY
cont> PRIMARY KEY,
cont> LAST_NAME LAST_NAME_DOM,
cont> FIRST_NAME FIRST_NAME_DOM,
cont> MIDDLE_INITIAL MIDDLE_INITIAL_DOM,
cont> ADDRESS_DATA_1 ADDRESS_DATA_1_DOM,
cont> ADDRESS_DATA_2 ADDRESS_DATA_2_DOM,
cont> CITY CITY_DOM,
cont> STATE STATE_DOM,
cont> POSTAL_CODE POSTAL_CODE_DOM,
cont> SEX SEX_DOM,
cont> BIRTHDAY DATE_DOM,
cont> STATUS_CODE STATUS_CODE_DOM);
SQL> --
SQL> CREATE TABLE JOBS_TEST
cont> (JOB_CODE JOB_CODE_DOM,
cont> CONSTRAINT J_TEST_CODE_PRIMARY
cont> PRIMARY KEY (JOB_CODE),
cont> WAGE_CLASS WAGE_CLASS_DOM,
cont> JOB_TITLE JOB_TITLE_DOM,
cont> MINIMUM_SALARY SALARY_DOM,
cont> MAXIMUM_SALARY SALARY_DOM);
SQL> --

SQL Statements 7–99

CREATE TABLE Statement

SQL> CREATE TABLE DEPARTMENTS_TEST
cont> (DEPARTMENT_CODE DEPARTMENT_CODE_DOM,
cont> CONSTRAINT D_DEPT_CODE_PRIMARY
cont> PRIMARY KEY (DEPARTMENT_CODE),
cont> DEPARTMENT_NAME DEPARTMENT_NAME_DOM,
cont> MANAGER_ID ID_DOM,
cont> BUDGET_PROJECTED BUDGET_DOM,
cont> BUDGET_ACTUAL BUDGET_DOM);
SQL> --
SQL> CREATE TABLE JOB_HISTORY_TEST
cont> (EMPLOYEE_ID ID_DOM
cont> CONSTRAINT JH_TEST_EMP_ID_FOREIGN
cont> REFERENCES EMPLOYEES_TEST (EMPLOYEE_ID),
cont> JOB_CODE JOB_CODE_DOM
cont> CONSTRAINT JH_J_CODE_FOREIGN
cont> REFERENCES JOBS_TEST (JOB_CODE),
cont> JOB_START DATE_DOM,
cont> JOB_END DATE_DOM,
cont> DEPARTMENT_CODE DEPARTMENT_CODE_DOM
cont> CONSTRAINT JH_D_CODE_FOREIGN
cont> REFERENCES DEPARTMENTS_TEST (DEPARTMENT_CODE),
cont> SUPERVISOR_ID ID_DOM);
SQL>

Example 9: Defining table-specific constraints with multicolumn primary and
foreign keys

The following example uses multicolumn keys to define table-specific
constraints using a segment of the personnel database. This example uses
some definitions not supplied with the sample database.

In this example, the two columns LOC and DEPT constitute a key, and they
are defined as a PRIMARY KEY constraint for the WORK_STATION table.
The two columns LOCATION and DEPARTMENT in the WORKER table are a
foreign key that references the primary key in the WORK_STATION table.

Because the dialect is set to SQL99, constraints are NOT DEFERRABLE, and
you do not receive a deprecated feature message when you define a constraint.

SQL> SET DIALECT ’SQL99’;
SQL> --
SQL> CREATE DOMAIN LOC_DOM CHAR (10);
SQL> CREATE DOMAIN DEPT_DOM CHAR (10);
SQL> CREATE DOMAIN MGR_DOM CHAR (20);
SQL> CREATE DOMAIN NAME_DOM CHAR (20);
SQL> --

7–100 SQL Statements

CREATE TABLE Statement

SQL> CREATE TABLE WORK_STATION
cont> (LOC LOC_DOM,
cont> DEPT DEPT_DOM,
cont> CONSTRAINT WS_LOC_DEPT_PRIMARY
cont> PRIMARY KEY (LOC, DEPT),
cont> MGR MGR_DOM);
SQL> --
SQL> CREATE TABLE WORKER
cont> (NAME NAME_DOM
cont> CONSTRAINT WORKER_PRIMARY_NAME
cont> PRIMARY KEY,
cont> LOCATION LOC_DOM,
cont> DEPARTMENT DEPT_DOM,
cont> CONSTRAINT WORKER_FOREIGN_LOCATION_DEPT
cont> FOREIGN KEY (LOCATION, DEPARTMENT)
cont> REFERENCES WORK_STATION (LOC, DEPT));
SQL>

Example 10: Defining a table that contains a list

The following example defines a column of the data type LIST OF BYTE
VARYING for storing employee resumes. This example defines the column
EMPLOYEE_ID in the table EMPLOYEES as a foreign key constraint
because resumes are kept only for actual employees for use in human
resource management applications. Applications could use this table to identify
employees with special backgrounds and skills for possible job assignments or
promotions.

SQL> CREATE DOMAIN RESUME_DOM LIST OF BYTE VARYING;
SQL> CREATE TABLE RESUMES
cont> (EMPLOYEE_ID ID_DOM
cont> REFERENCES EMPLOYEES (EMPLOYEE_ID),
cont> RESUME RESUME_DOM);
SQL> SHOW TABLE RESUMES;
Information for table RESUMES

Columns for table RESUMES:

Columns for table RESUMES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
Foreign Key constraint RESUMES_FOREIGN1
Unique constraint RESUMES_UNIQUE_EMPLOYEE_ID
RESUME VARBYTE LIST RESUME_DOM

Segment Length: 1

SQL Statements 7–101

CREATE TABLE Statement

Table constraints for RESUMES:
RESUMES_FOREIGN1
Foreign Key constraint
Column constraint for RESUMES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

RESUMES.EMPLOYEE_ID REFERENCES EMPLOYEES (EMPLOYEE_ID)

RESUMES_UNIQUE_EMPLOYEE_ID
Unique constraint
Column constraint for RESUMES.EMPLOYEE_ID
Evaluated on COMMIT
Source:

RESUMES.EMPLOYEE_ID UNIQUE

Constraints referencing table RESUMES:
No constraints found

Indexes on table RESUMES:
No indexes found

Storage Map for table RESUMES:
RESUMES_MAP

Triggers on table RESUMES:
No triggers found

SQL>

Example 11: Defining a table with a computed column that uses a select
expression

You can use a select expression in a COMPUTED BY clause. The following
example shows how to use the COMPUTED BY clause to count the number of
current employees of a particular department.

SQL> CREATE TABLE DEPTS1
cont> (DEPARTMENT_CODE DEPARTMENT_CODE_DOM,
cont> DEPT_COUNT COMPUTED BY
cont> (SELECT COUNT (*) FROM JOB_HISTORY JH
cont> WHERE JOB_END IS NULL
cont> AND
cont> --
cont> -- Use correlation names to qualify the DEPARTMENT_CODE columns.
cont> DEPTS1.DEPARTMENT_CODE = JH.DEPARTMENT_CODE),
cont> DEPARTMENT_NAME DEPARTMENT_NAME_DOM)
cont> ;
SQL> SELECT * FROM DEPTS1 WHERE DEPARTMENT_CODE = ’ADMN’;
DEPARTMENT_CODE DEPT_COUNT DEPARTMENT_NAME
ADMN 7 Corporate Administration
1 row selected

7–102 SQL Statements

CREATE TABLE Statement

Example 12: Creating a table using the database default character set,
national character set, and other character sets to define the columns

Assume the database was created defining the database default character set
as DEC_KANJI and the national character set as KANJI.

SQL> CREATE TABLE COLOURS
cont> (ENGLISH MCS_DOM,
cont> FRENCH MCS_DOM,
cont> JAPANESE KANJI_DOM,
cont> ROMAJI DEC_KANJI_DOM,
cont> KATAKANA KATAKANA_DOM,
cont> HINDI HINDI_DOM,
cont> GREEK GREEK_DOM,
cont> ARABIC ARABIC_DOM,
cont> RUSSIAN RUSSIAN_DOM);
SQL> SHOW TABLE (COLUMNS) COLOURS;
Information for table COLOURS

Columns for table COLOURS:
Column Name Data Type Domain
----------- --------- ------
ENGLISH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
FRENCH CHAR(8) MCS_DOM

DEC_MCS 8 Characters, 8 Octets
JAPANESE CHAR(8) KANJI_DOM

KANJI 4 Characters, 8 Octets
ROMAJI CHAR(16) DEC_KANJI_DOM
KATAKANA CHAR(8) KATAKANA_DOM

KATAKANA 8 Characters, 8 Octets
HINDI CHAR(8) HINDI_DOM

DEVANAGARI 8 Characters, 8 Octets
GREEK CHAR(8) GREEK_DOM

ISOLATINGREEK 8 Characters, 8 Octets
ARABIC CHAR(8) ARABIC_DOM

ISOLATINARABIC 8 Characters, 8 Octets
RUSSIAN CHAR(8) RUSSIAN_DOM

ISOLATINCYRILLIC 8 Characters, 8 Octets

SQL Statements 7–103

CREATE TABLE Statement

Example 13: Creating and using a global temporary table

Assume that you have a base table called PAYROLL that is populated with
data and that you want to extract the current week’s information to generate
paychecks for the company. The following example shows how to create a
global temporary table called PAYCHECKS_GLOB and populate it with data
from the PAYROLL and EMPLOYEES base tables. Your application can now
operate on the data in PAYCHECKS_GLOB to calculate deductions and net
pay for each employee. This eliminates continuous queries to the base tables
and reduces concurrency conflicts.

SQL> CREATE GLOBAL TEMPORARY TABLE PAYCHECKS_GLOB
cont> (EMPLOYEE_ID ID_DOM,
cont> LAST_NAME CHAR(14),
cont> HOURS_WORKED INTEGER,
cont> HOURLY_SAL INTEGER(2),
cont> WEEKLY_PAY INTEGER(2))
cont> ON COMMIT PRESERVE ROWS;
SQL> --
SQL> -- Insert data into the temporary tables from other existing tables.
SQL> INSERT INTO PAYCHECKS_GLOB
cont> (EMPLOYEE_ID, LAST_NAME, HOURS_WORKED, HOURLY_SAL, WEEKLY_PAY)
cont> SELECT P.EMPLOYEE_ID, E.LAST_NAME, P.HOURS_WORKED, P.HOURLY_SAL,
cont> P.HOURS_WORKED * P.HOURLY_SAL
cont> FROM EMPLOYEES E, PAYROLL P
cont> WHERE E.EMPLOYEE_ID = P.EMPLOYEE_ID
cont> AND P.WEEK_DATE = DATE ’1995-08-01’;
100 rows inserted
SQL> --
SQL> -- Display the data.
SQL> SELECT * FROM PAYCHECKS_GLOB LIMIT TO 2 ROWS;
EMPLOYEE_ID LAST_NAME HOURS_WORKED HOURLY_SAL WEEKLY_PAY
00165 Smith 40 30.50 1220.00
00166 Dietrich 40 36.00 1440.00
2 rows selected
SQL> -- Commit the data.
SQL> COMMIT;
SQL> --
SQL> -- Because the global temporary table was created with PRESERVE ROWS,
SQL> -- the data is preserved after you commit the transaction.
SQL> SELECT * FROM PAYCHECKS_GLOB LIMIT TO 2 ROWS;
EMPLOYEE_ID LAST_NAME HOURS_WORKED HOURLY_SAL WEEKLY_PAY
00165 Smith 40 30.50 1220.00
00166 Dietrich 40 36.00 1440.00
2 rows selected

7–104 SQL Statements

CREATE TABLE Statement

Example 14: Enabling and Disabling Constraints While Creating a Table

The PRIMARY KEY constraint enforces uniqueness on column A already. This
example disables the additional UNIQUE constraint, leaving it to document
the restriction but avoiding the evaluation at run-time.

SQL> SET DIALECT ’SQL99’;
SQL> CREATE TABLE TT
cont> (A INTEGER CONSTRAINT A1 UNIQUE,
cont> CONSTRAINT A2 UNIQUE (A),
cont> CONSTRAINT A3 PRIMARY KEY (A))
cont> ENABLE CONSTRAINT A1
cont> DISABLE CONSTRAINT A2;

Example 15: Using AUTOMATIC Columns

This example uses automatic columns to fill in column values during INSERT
and UPDATE.

Suppose that you want to store the current time stamp of a transaction and
supply a unique numeric value for an order number. In addition, when the row
is updated (the order is altered), you want a new time stamp to be written to
the LAST_UPDATED column. You could write an application to supply this
information, but you could not guarantee the desired behavior. For instance,
a user with access to the table might update the table with interactive SQL
and forget to enter a new time stamp to the LAST_UPDATED column. If
you use an AUTOMATIC column instead, it can be defined so that columns
automatically receive data during an insert operation. The data is sorted like
any other column, but the column is read-only.

SQL> CREATE TABLE ORDER_HEADER
cont> (ORDER_NUMBER AUTOMATIC INSERT AS NEW_ORDER.NEXTVAL,
cont> ORDER_DATE AUTOMATIC INSERT AS CURRENT_TIMESTAMP,
cont> LAST_UPDATED AUTOMATIC UPDATE AS CURRENT_TIMESTAMP
cont> DEFAULT NULL,
cont> CUSTOMER_NUMBER INTEGER,
cont> ORDER_TOTAL MONEY CHECK (ORDER_TOTAL >= 0.0));

SQL Statements 7–105

CREATE TABLE Statement

Example 16: SHOW TABLE Output for Old and New UNIQUE Constraints

SQL> -- This first example is a UNIQUE constraint created when
SQL> -- the default dialect is used (SQLV40). A new description
SQL> -- follows the "Unique constraint" text, explaining the
SQL> -- interpretation of null values.
SQL> SHOW TABLE (CONSTRAINT) T_UNIQUE
Information for table T_UNIQUE
Table constraints for T_UNIQUE:
T_UNIQUE_UNIQUE_B_A
Unique constraint

Null values are considered the same
Table constraint for T_UNIQUE
Evaluated on UPDATE, NOT DEFERRABLE
Source:

UNIQUE (b,a)
.
.
.

SQL> -- This second example is a UNIQUE constraint created
SQL> -- when the dialect was set to ’SQL92’, and the description
SQL> -- here indicates that all null values are considered
SQL> -- distinct.
SQL> SHOW TABLE (CONSTRAINT) T_UNIQUE2;
Information for table T_UNIQUE2
Table constraints for T_UNIQUE2:
T_UNIQUE2_UNIQUE_B_A
Unique constraint

Null values are considered distinct
Table constraint for T_UNIQUE2
Evaluated on UPDATE, NOT DEFERRABLE
Source: UNIQUE (b,a)
.
.
.

Example 17: Using the IDENTITY attribute

This simplified order entry database uses IDENTITY on all tables to generate
unique values for the table primary key field.

7–106 SQL Statements

CREATE TABLE Statement

SQL> set dialect ’SQL99’;
SQL> create domain MONEY as INTEGER (2);
SQL> create domain CUSTOMER_ID as INTEGER;
SQL> create domain PRODUCT_ID as INTEGER;
SQL> create domain ORDER_ID as INTEGER;
SQL> create domain LINE_NUMBER as INTEGER
cont> check (VALUE > 0 and VALUE IS NOT NULL)
cont> not deferrable;
SQL>
SQL> create table PRODUCTS
cont> (product_id PRODUCT_ID identity primary key,
cont> product_name char (100),
cont> unit_price MONEY,
cont> unit_name char (10)
cont>);
SQL> create unique index PRODUCTS_IX on PRODUCTS (product_id);
SQL>
SQL> create table CUSTOMERS
cont> (customer_id CUSTOMER_ID identity (1,1) primary key,
cont> customer_name char (100)
cont>);
SQL> create unique index CUSTOMERS_IX on CUSTOMERS (customer_id);
SQL>
SQL> create table ORDERS
cont> (order_id ORDER_ID identity (1000) primary key,
cont> order_date timestamp,
cont> customer_id CUSTOMER_ID references CUSTOMERS
cont>);
SQL> create unique index ORDERS_IX on ORDERS (order_id);
SQL>
SQL> create table ORDER_LINES
cont> (order_id ORDER_ID references ORDERS,
cont> line_number LINE_NUMBER,
cont> product_id PRODUCT_ID references PRODUCTS,
cont> quantity integer,
cont> discount float
cont>);
SQL> create unique index ORDER_LINES_IX on ORDER_LINES (order_id, line_number);
SQL>
SQL> show sequences
Sequences in database with filename SAMPLE

CUSTOMERS An identity column sequence.
ORDERS An identity column sequence.
PRODUCTS An identity column sequence.

SQL> show sequences ORDERS
ORDERS

Sequence Id: 3
An identity column sequence.
Initial Value: 1000
Minimum Value: 1000
Maximum Value: (none)
Next Sequence Value: 1000

SQL Statements 7–107

CREATE TABLE Statement

Increment by: 1
Cache Size: 20
No Order
No Cycle
No Randomize
Wait
Comment: column IDENTITY sequence
SQL> commit;

As can be seen in the example the START WITH value was explicitly set to
1000, but the INCREMENT BY value was defaulted to 1.

Example 18: Defaulting all attributes of IDENTITY sequence

SQL> set dialect ’sql99’;
SQL> create table PRODUCTS
cont> (product_id PRODUCT_ID identity primary key,
cont> ...);
SQL> show sequence PRODUCTS;

PRODUCTS
Sequence Id: 1
An identity column sequence.
Initial Value: 1
Minimum Value: 1
Maximum Value: (none)
Next Sequence Value: 1
Increment by: 1
Cache Size: 20
No Order
No Cycle
No Randomize
Wait
Comment: column IDENTITY sequence

As can be seen in the example both the START WITH and INCREMENT BY
values for the sequence have defaulted to 1.

7–108 SQL Statements

CREATE TABLE Statement

Example 19: Show that the IDENTITY sequence is reserved and can not be
dropped

SQL> drop sequence ORDERS;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-NOMETSYSREL, operation illegal on system defined metadata
-RDMS-E-SEQNOTDEL, sequence "ORDERS" has not been deleted

Example 20: Using the LIKE Clause to make a copy of a table definition

A new table will be used to record the EMPLOYEES details after they are
retired from the company. An extra column RETIRED_DATE is added to
record the date of the retirement and a new CHECK constraint is added to
ensure that that employee is not listed in both the EMPLOYEES table and the
new RETIRED_EMPLOYEES table.

SQL> set dialect ’sql99’;
SQL>
SQL> create table RETIRED_EMPLOYEES
cont> like EMPLOYEES
cont> (retired_date DATE_DOM
cont> ,primary key (EMPLOYEE_ID)
cont> ,check (not exists
cont> (select * from EMPLOYEES e
cont> where e.employee_id = RETIRED_EMPLOYEES.employee_id))
cont> initially deferred
cont>);
SQL>
SQL> show table RETIRED_EMPLOYEES;
Information for table RETIRED_EMPLOYEES

Columns for table RETIRED_EMPLOYEES:
Column Name Data Type Domain
----------- --------- ------
EMPLOYEE_ID CHAR(5) ID_DOM
LAST_NAME CHAR(14) LAST_NAME_DOM
FIRST_NAME CHAR(10) FIRST_NAME_DOM
MIDDLE_INITIAL CHAR(1) MIDDLE_INITIAL_DOM
ADDRESS_DATA_1 CHAR(25) ADDRESS_DATA_1_DOM
ADDRESS_DATA_2 CHAR(20) ADDRESS_DATA_2_DOM
CITY CHAR(20) CITY_DOM
STATE CHAR(2) STATE_DOM
POSTAL_CODE CHAR(5) POSTAL_CODE_DOM
SEX CHAR(1) SEX_DOM
BIRTHDAY DATE VMS DATE_DOM
STATUS_CODE CHAR(1) STATUS_CODE_DOM
RETIRED_DATE DATE VMS DATE_DOM

SQL Statements 7–109

CREATE TABLE Statement

Table constraints for RETIRED_EMPLOYEES:
RETIRED_EMPLOYEES_CHECK1
Check constraint
Table constraint for RETIRED_EMPLOYEES
Evaluated on COMMIT
Source:
CHECK (not exists
(select * from EMPLOYEES e
where e.employee_id = RETIRED_EMPLOYEES.employee_id))

RETIRED_EMPLOYEES_PRIMARY1
Primary Key constraint
Table constraint for RETIRED_EMPLOYEES
Evaluated on UPDATE, NOT DEFERRABLE
Source:
PRIMARY key (EMPLOYEE_ID)

Constraints referencing table RETIRED_EMPLOYEES:
No constraints found

Indexes on table RETIRED_EMPLOYEES:
No indexes found

Storage Map for table RETIRED_EMPLOYEES:
No Storage Map found

Triggers on table RETIRED_EMPLOYEES:
No triggers found

SQL>

Example 21: Showing the use of the Compression is Disabled clause

The following example shows that the compression was disabled for the
created table. The SHOW TABLE statement reports the disabled (that is the
non-default) setting for compression.

SQL> create table SAMPLE
cont> (ident integer identity
cont> ,sample_value real
cont>)
cont> compression is disabled;
SQL> show table SAMPLE
Information for table SAMPLE

Compression is disabled.
Columns for table SAMPLE:
Column Name Data Type Domain
----------- --------- ------
IDENT INTEGER
Computed: IDENTITY
SAMPLE_VALUE REAL

Table constraints for SAMPLE:
No Constraints found

7–110 SQL Statements

CREATE TABLE Statement

Constraints referencing table SAMPLE:
No Constraints found

Indexes on table SAMPLE:
No Indexes found

Storage Map for table SAMPLE:
No Storage Map found

Triggers on table SAMPLE:
No triggers found

SQL>

SQL Statements 7–111

CREATE TRIGGER Statement

CREATE TRIGGER Statement

Creates triggers for a specified table. A trigger defines the actions to occur
before or after the table is updated (by a write operation such as an INSERT,
DELETE, or UPDATE statement). The trigger is associated with a single
table, takes effect at a specific time for a particular type of update, and causes
one or more triggered actions to be performed. If the trigger specifies multiple
actions, each action is performed in the order in which it appears within the
trigger definition.

With triggers, you can define useful actions such as:

• Cascading deletes

Deleting a row from one table causes additional rows to be deleted from
other tables that are related to the first table by key values.

• Cascading updates

Updating a row in one table causes additional rows to be updated in other
tables that are related to the first table by key values. These updates are
commonly limited to the key fields themselves.

• Summation updates

Updating a row from one table causes a value in a row of another table to
be updated by being increased or decreased.

• Hidden deletes

Causing rows to be deleted from a table by moving them to a parallel table
that is not otherwise used by the database.

Note

Combinations of table-specific constraints and appropriately defined
triggers, by themselves, are not sufficient to guarantee that database
integrity is preserved when the database is updated. If integrity is
to be preserved, table-specific constraints and triggers must be used
in conjunction with a common set of update procedures that ensure
completely reproducible and consistent retrieval and update strategies.

The CREATE TRIGGER statement adds the trigger definition to the physical
database.

7–112 SQL Statements

CREATE TRIGGER Statement

A triggered action consists of an optional predicate and some triggered
statements. If specified, the predicate must evaluate to true for the triggered
statements in the action to execute. Each triggered statement is executed in
the order in which it appears within the triggered action clause.

The triggered statement can be:

• A DELETE statement

• An UPDATE statement

• An INSERT statement

• A CALL statement

• A SIGNAL statement

• A TRACE statement

• An ERROR statement

Environment

You can use the CREATE TRIGGER statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE TRIGGER <trigger-name>

STORED NAME IS <stored-name>

BEFORE INSERT
AFTER DELETE

UPDATE
OF <column-name>

,

ON <table-name> triggered-action
referencing-clause

SQL Statements 7–113

CREATE TRIGGER Statement

referencing-clause =

REFERENCING OLD AS <old-correlation-name>
NEW AS <new-correlation-name>

triggered-action =

(triggered-statement)
WHEN (predicate) ,

;

FOR EACH ROW
FOR EACH STATEMENT

triggered-statement =

call-statement
delete-statement
ERROR
insert-statement
signal-statement
trace-statement
update-statement

Arguments

call-statement
Specifies the stored procedure to invoke. You can only call procedures with
IN parameters. Operations on the triggering table are not permitted due to
possible side effects and recursive calls.

column-name
The name of a column within the specified table to be checked for deletion,
modification, or insertion. Use this argument only with UPDATE triggers.

delete-statement
Specifies the row of a table that you want to delete. If you specify CURRENT
OF cursor-name with the WHERE clause of the DELETE statement, you
receive an error message because the cursor is not visible to the CREATE
TRIGGER statement.

7–114 SQL Statements

CREATE TRIGGER Statement

ERROR
Provides the following message:

RDMS-E-TRIG_ERROR, Trigger ’trigger_name’ forced an error.

A triggered ERROR statement cancels the DELETE, UPDATE, or INSERT
statement that invoked the trigger.

FOR EACH ROW
FOR EACH STATEMENT
Specifies whether the triggered action is evaluated once per triggering
statement, or for each row of the subject table that is affected by the triggering
statement.

If you specify FOR EACH STATEMENT, then the triggered action is evaluated
only once, and row values are not available to the triggered action.

The FOR EACH STATEMENT clause is the default.

insert-statement
Specifies the new row or rows you want to add to a table.

old-correlation-name
A temporary name used to refer to the row values as they existed before an
UPDATE operation occurred. If you do not specify the FOR EACH ROW
clause, this correlation name cannot be referred to in the triggered statement.

new-correlation-name
A temporary name used to refer to the new row values to be applied by the
UPDATE operation. If you do not specify the FOR EACH ROW clause, this
correlation name cannot be referred to in the triggered statement.

referencing-clause
Lets you specify whether you want to refer to the row values as they existed
before an UPDATE operation occurred or the new row values after they are
applied by the UPDATE operation. Do not use this clause with INSERT or
DELETE operations.

You can specify each option (OLD AS old-correlation-name or NEW AS
new-correlation-name) only once in the referencing clause.

signal-statement
Specifies that the signaled SQLSTATE status parameter is to be passed back
to the application or SQL interface and that the current routine and all calling
routines are to be terminated. This provides a more complete error mechanism
than is provided by the ERROR clause.

SQL Statements 7–115

CREATE TRIGGER Statement

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a trigger created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a trigger in a database that does not allow multiple
schemas. For more information on stored names, see Section 2.2.18.

table-name
The name of the table for which this trigger is defined.

trace-statement
Allows applications to add triggers to log information when trace logging is
active.

triggered-action
Consists of an optional predicate, some triggered statements, and an optional
frequency clause. If specified, the predicate must evaluate to true for the
triggered statements in the triggered action clause to execute. Each triggered
statement is executed in the order in which it appears within the triggered
action clause.

triggered-statement
Updates the database or generates an error message.

update-statement
Specifies the row of a table that you want to modify. If you specify CURRENT
OF cursor-name with the WHERE clause of the UPDATE statement, you
receive an error message because the cursor is not visible to the CREATE
TRIGGER statement.

WHEN (predicate)
Describes the optional condition that must be satisfied before the associated
triggered statements are executed. This predicate cannot refer to any host
language variable.

To avoid ambiguity between columns and external function callouts, use
parentheses around the predicate in the WHEN clause. See the Usage Notes
for further explanation.

7–116 SQL Statements

CREATE TRIGGER Statement

Usage Notes

• If you did not attach to the database by a path name, the trigger definition
is not stored in the repository. This causes an inconsistency between the
definitions in the database and the repository. Therefore, you must define
the triggers again whenever you restore the database metadata from the
repository using the INTEGRATE statement.

• Creating a trigger requires SELECT and CREATE access to the subject
table, and if any triggered statement specifies some form of update
operation, also requires SELECT, DBCTRL, and the appropriate type of
update (DELETE, UPDATE, INSERT) access to the tables specified by the
triggered action statement.

• The trigger specification includes an action time, an update event (some
type of write operation to the database), and an optional column list, which
together determine when the trigger is to be evaluated. The action time
can be specified as either before or after the update event (the INSERT,
DELETE, or UPDATE statement). For triggers evaluated on UPDATE
statements, you can specify an optional list of columns (from the subject
table) to further stipulate that the trigger is to be evaluated only when
one of the columns listed is also listed in the SET column list of the
UPDATE statement. The trigger will be evaluated whether or not the
values within the listed columns are actually changed during the execution
of the UPDATE statement.

• Appropriate conditions may be placed in the WHEN predicate using both
the NEW and OLD context values to prevent the execution of the trigger
action if the actual column values did not change during the update.

• The frequency clause, FOR EACH ROW, determines whether an action
is evaluated once per triggering statement, or for each row of the subject
table that is affected by the triggering statement. If the FOR EACH ROW
clause is not specified, the action is evaluated only once, and row values
are not available to the triggered action.

• The table correlation name (current correlation name), old correlation
name, and new correlation name are for various states of the subject table
context of the triggered statement. The old correlation name is available
(valid) only for AFTER UPDATE triggers and the new correlation name is
available (valid) only for BEFORE UPDATE triggers.

SQL Statements 7–117

CREATE TRIGGER Statement

• The trigger being defined checks for conflicts with the specified trigger for
either update time and type, or in one of the column names on the list
of columns to be modified. A triggered statement cannot affect the table
on which the trigger is defined such that the trigger would be recursively
invoked.

• Table 7–2 lists the six possible types of update action. Only one trigger
specifying one of the six combinations of action time and type of update
statement can be defined for any table. For update type UPDATE, this
uniqueness is further qualified by any specified column names. A triggered
statement cannot affect the table on which the trigger is defined such that
the trigger would be recursively invoked.

The values from the row affected by the triggering statement are available
to the triggered actions, as shown in Table 7–2.

Table 7–2 Availability of Row Data for Triggered Actions

Action Time/Type of Update Availability of Row Data

BEFORE INSERT Row data is not available.
AFTER INSERT Row data referred to by the table correlation

name is available.
BEFORE DELETE Row data referred to by the table correlation

name is available.
AFTER DELETE Row data is not available.
BEFORE UPDATE Old values of row data referred to by the table

correlation name are available.
New values of row data referred to by the new
correlation name are available.

AFTER UPDATE New values of row data referred to by the table
correlation name are available.
Old values of row data referred to by the old
correlation name are available.

For example, a BEFORE INSERT trigger action for the EMPLOYEES
table cannot create a row in the JOB_HISTORY table for the ID in the
EMPLOYEE_ID column to be stored because the information in the row to
be stored is not yet available. However, an AFTER INSERT trigger action
can use the EMPLOYEE_ID column of the row being stored to create a row
in the JOB_HISTORY table.

7–118 SQL Statements

CREATE TRIGGER Statement

A BEFORE DELETE trigger action for the EMPLOYEES table can delete
rows in the JOB_HISTORY table using the EMPLOYEE_ID column
of the row to be deleted. However, an AFTER DELETE trigger action
cannot delete any JOB_HISTORY rows using that EMPLOYEE_ID column
because the information from the deleted row is no longer available.

• Once a trigger is selected for evaluation, SQL evaluates each pertinent
triggered action in succession. The execution of a triggered action
statement may cause other triggers to be selected for invocation; however,
if a trigger is selected recursively by a direct or indirect execution of one
of its actions, an exception is produced. Once all triggered actions have
been exhausted, another pertinent trigger may be selected for evaluation
(BEFORE UPDATE and AFTER UPDATE triggers only).

• An existing trigger cannot be changed. If you want to modify an existing
trigger, you must delete it, then create a new trigger.

• The number in the third element of the SQLERRD array, SQLERRD[2],
and the number displayed at the end of a statement in interactive SQL do
not include the rows inserted, updated, and deleted by triggers.

• You must execute the CREATE TRIGGER statement in a read/write
transaction. If you issue this statement when there is no active
transaction, SQL starts a read/write transaction implicitly.

• Attempts to create a trigger fail if that trigger or its affected tables are
involved in a query at the same time. Users must detach from the database
with a DISCONNECT statement before you can create the trigger. When
Oracle Rdb first accesses an object such as the table, a lock is placed
on that object and not released until the user exits the database. If you
attempt to update this object, you get a LOCK CONFLICT ON CLIENT
message due to the other user’s access to the object.

• You cannot execute the CREATE TRIGGER statement when the
RDB$SYSTEM storage area is set to read-only. You must first set
RDB$SYSTEM to read/write. See the Oracle Rdb7 Guide to Database
Performance and Tuning for more information on the RDB$SYSTEM
storage area.

• Other users are allowed to be attached to the database when you issue the
CREATE TRIGGER statement.

• If a trigger references a table not specified in the RESERVING clause of
the SET TRANSACTION statement, that table is reserved as SHARED
WRITE. If the table referenced by a trigger is already reserved in an
incompatible mode, the statement that activates it fails.

SQL Statements 7–119

CREATE TRIGGER Statement

• If you invoke a trigger performing more than one action and one of those
actions invokes another trigger, the actions performed in the second
trigger must complete before the subsequent actions of the first trigger are
executed. For example:

Action−2a

Action−2b

TRIG−1

Action−1a

Action−1b

TRIG−2

NU−2998A−RA

When TRIG-1 is invoked, Action-1a is executed which invokes TRIG-2. All
actions of TRIG-2 must complete before any subsequent actions of TRIG-1
can execute. The actions of TRIG-1 and TRIG-2 occur in the following
order:

Action-1a
Action-2a
Action-2b
Action-1b

The actions of TRIG-2 are not affected by the results of Action-1b because
Action-1b does not execute until TRIG-2 is complete. Should you need the
result of Action-1b to affect the results of TRIG-2, reverse the actions in
TRIG-1. For example:

Action−2a

Action−2b

TRIG−1

Action−1b

Action−1a

TRIG−2

NU−2999A−RA

The actions of TRIG-1 and TRIG-2 now occur in the following order:

Action-1b
Action-1a
Action-2a
Action-2b

• The inclusion of a function call in a value expression causes ambiguity with
conditional trigger definitions.

For example, the following syntax is ambiguous:

7–120 SQL Statements

CREATE TRIGGER Statement

.

.

.
WHEN ’00190’ <> EMPLOYEE_ID (ERROR)

.

.

.

In the preceding example, it is difficult to determine if the predicate refers
to the column EMPLOYEE_ID followed by an action or error, or if the
predicate refers to a function call to the function EMPLOYEE_ID with an
argument of ERROR. To support function calls within trigger definitions,
SQL assumes this is a function call.

Use parentheses around the predicate in the WHEN clause to avoid this
ambiguity.

• Oracle Rdb tracks language semantics for each trigger. If the language
semantics are altered, the trigger is invalidated and must be re-created.
The following semantics are fixed at data definition time:

SELECT * FROM table-name

The asterisk (*) expands to a column list

INSERT INTO table-name VALUES (...)

The column list defaults to the current names and order of the tables

Natural join

The matching names are used for equijoins

For example:

SQL> CREATE TRIGGER AFTER_T AFTER INSERT ON T
cont> (INSERT INTO S VALUES (T.ID, T.SEQ)) FOR EACH ROW;
SQL> ALTER TABLE S ADD COLUMN P REAL;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
- RDMS-W-TRIG_LANGSEMEXI, table used by trigger with language dependency -
trigger invalid on COMMIT
SQL> COMMIT;

.

.

.
SQL> INSERT INTO T VALUES (0,0);
%RDB-E-TRIG_REQ_ERROR, error encountered by a request using triggers
- RDMS-E-TRG_INVALID, trigger can not be invoked - it is marked invalid
-RDMS-E-TRIG_ERROR, trigger AFTER_T forced an error

SQL Statements 7–121

CREATE TRIGGER Statement

• Oracle Rdb creates dependencies between triggers and other database
objects, such as tables and routines, on which it depends. See Table 6-4 in
the CREATE MODULE Statement which lists operations that may cause
trigger invalidation.

• The SET FLAGS statement or the RDMS$SET_FLAGS logical must be
defined as TRACE to enable the TRACE statement prior to accessing the
table that activates the trigger. Otherwise, the TRACE statement is not
processed.

• When a SIGNAL statement is executed, the name of the TRIGGER is
reported as the signalling routine.

• The CALL statement may activate SQL or external procedures as a trigger
action with the following restrictions:

All parameters must be defined with mode IN because procedures may
not update columns on the trigger table.

A SQL procedure must not execute an INSERT, DELETE, or UPDATE
statement.

The SQL procedure may not use a CALL statement or activate a stored
function in a value expression.

A transaction may not be started (SET TRANSACTION, START
TRANSACTION, START DEFAULT TRANSACTION) or stopped
(COMMIT, ROLLBACK) in the SQL procedure.

Only SQL procedures that use SELECT, procedural statements (such
as CASE, WHILE, REPEAT, and FOR counted loops), subselects, or call
external routines can be called from a trigger.

SQL procedures created by prior releases which conform to these
restrictions may still be rejected by the CREATE TRIGGER process.
The diagnostic would be similar to that shown in the following example.
This occurs because the correct execution state was not recorded for this
routine when it was created. This can be corrected by using the DROP and
CREATE commands to create a new version.

An alternate method to correct the problem is to use the SET FLAGS
VALIDATE_ROUTINE option as shown in the following example. Once the
validation has been performed, a COMMIT command stores the state in
the RDB$ROUTINES system table for future use.

7–122 SQL Statements

CREATE TRIGGER Statement

SQL> set transaction read write;
SQL>
SQL> -- attempt to use SQL procedure fails
SQL> create trigger T_A
cont> after insert on M_TABLE
cont> (call SEND_MAIL (’MANAGER’, M_TABLE.last_name))
cont> for each row;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDB-E-RTN_FAIL, routine "SEND_MAIL" failed to compile or execute successfully
-RDMS-E-NOTRIGRTN, this stored routine may not be called from a trigger
SQL>
SQL> set flags ’VALIDATE_ROUTINE’;
SQL> -- use NOEXECUTE so the routine is just compiled, not executed
SQL> set noexecute;
SQL> -- validate the routine to set the correct routine state
SQL> call SEND_MAIL (’MANAGER’, ’’);
SQL> set execute;
SQL>
SQL> -- now the routine can be successfully used with the trigger definition
SQL> create trigger T_A
cont> after insert on M_TABLE
cont> (call SEND_MAIL (’MANAGER’, M_TABLE.last_name))
cont> for each row;
SQL>
SQL> commit;

• You can use a semicolon (;) as a separator between multiple trigger
statements of a triggered action, for example:

SQL> create table AUDIT (su char(31), ct timestamp, a integer);
SQL> create table DATA_TABLE (a integer, b integer);
SQL>
SQL> create trigger T_AUDIT
cont> after insert on DATA_TABLE
cont> (trace ’before audit...’;
cont> insert into AUDIT (su, ct, a)
cont> values (session_user, current_timestamp, DATA_TABLE.a);
cont> trace ’after audit...’)
cont> for each row;

The use of a semicolon is required for the TRACE statement because
comma (,) is an argument separator. SQL cannot distinguish the end of one
statement from the next without a semicolon.

• If the CALL statement is used as a trigger action, or if a stored function
is called from a trigger action (INSERT, DELETE, UPDATE, or CALL
argument) or in the WHEN clause, the following restrictions apply:

The SQL function or procedure may not execute an INSERT, DELETE,
or UPDATE statement.

SQL Statements 7–123

CREATE TRIGGER Statement

The SQL function or procedure may not use a CALL statement or
activate another stored function in a value expression.

Oracle Corporation plans to relax these restrictions in a future release of
Oracle Rdb.

Examples

Example 1: Defining a cascading delete trigger

The following SQL procedure shows a trigger from the sample personnel
database that deletes rows in several tables before deleting a row in the
EMPLOYEES table. Each associated employee row (from the tables that have
foreign keys referring to the primary key in the employee row) is deleted.
The employee identification number being deleted (00164) belongs to an
employee who is also a manager; therefore, the MANAGER_ID column in the
DEPARTMENTS table is set to null, as specified by the trigger.

SQL> SET TRANSACTION READ WRITE;
SQL> --
SQL> -- Display the EMPLOYEE_ID_CASCADE_DELETE trigger
SQL> -- in the sample database:
SQL> --
SQL> SHOW TRIGGER EMPLOYEE_ID_CASCADE_DELETE

EMPLOYEE_ID_CASCADE_DELETE
Source:
EMPLOYEE_ID_CASCADE_DELETE

BEFORE DELETE ON EMPLOYEES
(DELETE FROM DEGREES D WHERE D.EMPLOYEE_ID =
EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

(DELETE FROM JOB_HISTORY JH WHERE JH.EMPLOYEE_ID =
EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

(DELETE FROM SALARY_HISTORY SH WHERE SH.EMPLOYEE_ID =
EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

! Also, if an employee is terminated and that employee
! is the manager of a department, set the manager_id
! null for that department.
(UPDATE DEPARTMENTS D SET D.MANAGER_ID = NULL
WHERE D.MANAGER_ID = EMPLOYEES.EMPLOYEE_ID)
FOR EACH ROW

7–124 SQL Statements

CREATE TRIGGER Statement

SQL> --
SQL> -- The EMPLOYEES table has a value of ’00164’
SQL> -- in the EMPLOYEE_ID column:
SQL> --
SQL> SELECT * FROM EMPLOYEES E WHERE E.EMPLOYEE_ID = ’00164’;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00164 Toliver Alvin A
146 Parnell Place Chocorua

NH 03817 M 28-Mar-1947 1

1 row selected
SQL> --
SQL> --
SQL> -- The DEGREES table has two values of ’00164’
SQL> -- in the EMPLOYEE_ID column:
SQL> --
SQL> SELECT * FROM DEGREES D WHERE D.EMPLOYEE_ID = ’00164’;
EMPLOYEE_ID COLLEGE_CODE YEAR_GIVEN DEGREE DEGREE_FIELD
00164 PRDU 1973 MA Applied Math
00164 PRDU 1982 PhD Statistics
2 rows selected
SQL> --
SQL> --
SQL> -- The JOB_HISTORY table has the value of ’00164’ in
SQL> -- several rows in the EMPLOYEE_ID column:
SQL> --
SQL> SELECT * FROM JOB_HISTORY JH WHERE JH.EMPLOYEE_ID = ’00164’;
EMPLOYEE_ID JOB_CODE JOB_START JOB_END DEPARTMENT_CODE
SUPERVISOR_ID

00164 DMGR 21-Sep-1981 NULL MBMN
00228

00164 SPGM 5-Jul-1980 20-Sep-1981 MCBM
00164

2 rows selected
SQL> --
SQL> --
SQL> -- The SALARY_HISTORY table has a value of ’00164’
SQL> -- in several rows in the EMPLOYEE_ID column:
SQL> --
SQL> SELECT * FROM SALARY_HISTORY SH WHERE SH.EMPLOYEE_ID = ’00164’;
EMPLOYEE_ID SALARY_AMOUNT SALARY_START SALARY_END
00164 $26,291.00 5-Jul-1980 2-Mar-1981
00164 $51,712.00 14-Jan-1983 NULL
00164 $26,291.00 2-Mar-1981 21-Sep-1981
00164 $50,000.00 21-Sep-1981 14-Jan-1983
4 rows selected
SQL> --

SQL Statements 7–125

CREATE TRIGGER Statement

SQL> --
SQL> -- The DEPARTMENTS table has a value of ’00164’
SQL> -- in the MANAGER_ID column:
SQL> --
SQL> SELECT * FROM DEPARTMENTS D WHERE D.MANAGER_ID = ’00164’;
DEPARTMENT_CODE DEPARTMENT_NAME MANAGER_ID
BUDGET_PROJECTED BUDGET_ACTUAL

MBMN Board Manufacturing North 00164
NULL NULL

1 row selected
SQL> --
SQL> --
SQL> -- Test the trigger by deleting the row with a value of ’00164’
SQL> -- in the EMPLOYEE_ID column from the EMPLOYEES table:
SQL> --
SQL> DELETE FROM EMPLOYEES E WHERE E.EMPLOYEE_ID = ’00164’;
1 row deleted
SQL> --
SQL> -- The row with a value of ’00164’ in the EMPLOYEE_ID column
SQL> -- was deleted from the EMPLOYEES table:
SQL> --
SQL> SELECT * FROM EMPLOYEES E WHERE E.EMPLOYEE_ID = ’00164’;
0 rows selected
SQL> --
SQL> -- The rows with a value of ’00164’ in the EMPLOYEE_ID column
SQL> -- were deleted from the DEGREES table:
SQL> --
SQL> SELECT * FROM DEGREES D WHERE D.EMPLOYEE_ID = ’00164’;
0 rows selected
SQL> --
SQL> -- The rows with a value of ’00164’ in the EMPLOYEE_ID
SQL> -- column were deleted from the JOB_HISTORY table:
SQL> --
SQL> SELECT * FROM JOB_HISTORY JH WHERE JH.EMPLOYEE_ID = ’00164’;
0 rows selected
SQL> --
SQL> -- The rows with a value of ’00164’ in the EMPLOYEE_ID
SQL> -- column were deleted from the SALARY_HISTORY table:
SQL> --
SQL> SELECT * FROM SALARY_HISTORY SH WHERE SH.EMPLOYEE_ID = ’00164’;
0 rows selected
SQL> --
SQL> -- The value of ’00164’ in the MANAGER_ID column was set to null
SQL> -- in the DEPARTMENTS table:
SQL> --
SQL> SELECT * FROM DEPARTMENTS D WHERE D.DEPARTMENT_CODE = ’MBMN’;
DEPARTMENT_CODE DEPARTMENT_NAME MANAGER_ID
BUDGET_PROJECTED BUDGET_ACTUAL

MBMN Board Manufacturing North NULL
NULL NULL

7–126 SQL Statements

CREATE TRIGGER Statement

1 row selected
SQL> --
SQL> ROLLBACK;

Example 2: Defining a trigger that performs an update

Before the STATUS_CODE column in WORK_STATUS table is updated, the
STATUS_CODE_CASCADE_UPDATE trigger in the following SQL procedure
updates the associated rows in the EMPLOYEES table. The REFERENCING
clause specifies OLD_WORK_STATUS as the correlation name for the values in
the WORK_STATUS table before the UPDATE statement executes, and NEW_
WORK_STATUS as the correlation name for the values in the WORK_STATUS
table after the UPDATE statement executes.

SQL> -- Display the STATUS_CODE_CASCADE_UPDATE trigger in
SQL> -- the sample database:
SQL> --
SQL> SHOW TRIGGER STATUS_CODE_CASCADE_UPDATE

STATUS_CODE_CASCADE_UPDATE
Source:
STATUS_CODE_CASCADE_UPDATE

BEFORE UPDATE OF STATUS_CODE ON WORK_STATUS
REFERENCING OLD AS OLD_WORK_STATUS

NEW AS NEW_WORK_STATUS
(UPDATE EMPLOYEES E
SET E.STATUS_CODE = NEW_WORK_STATUS.STATUS_CODE
WHERE E.STATUS_CODE = OLD_WORK_STATUS.STATUS_CODE)
FOR EACH ROW

SQL> --
SQL> -- Change the STATUS_CODE column with a value of 2 to a value of 3:
SQL> --
SQL> UPDATE WORK_STATUS WS SET STATUS_CODE="3" WHERE STATUS_CODE="2";
1 row updated
SQL> --
SQL> -- The trigger changes any STATUS_CODE column in the EMPLOYEES table
SQL> -- with a value of 2 to a value of 3. Therefore, no rows are
SQL> -- selected for the first query that follows, but several are selected
SQL> -- for the second query:
SQL> --
SQL> SELECT * FROM EMPLOYEES E WHERE E.STATUS_CODE = "2";
0 rows selected
SQL> --
SQL> SELECT * FROM EMPLOYEES E WHERE E.STATUS_CODE = "3";
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00165 Smith Terry D
120 Tenby Dr. Chocorua

NH 03817 M 15-May-1954 3

SQL Statements 7–127

CREATE TRIGGER Statement

00178 Goldstone Neal NULL
194 Lyons Av, Colebrook

NH 03576 M 25-Apr-1952 3

.

.

.
00358 Lapointe Jo Ann C
70 Tenby Dr. Chocorua

NH 03817 F 24-Feb-1931 3

12 rows selected
SQL> --
SQL> ROLLBACK;

Example 3: Defining a trigger that updates a sales summary

The following example defines a trigger that updates a monthly sales total
after each daily sale is made.

SQL> --
SQL> -- Create the table to keep track of monthly sales:
SQL> CREATE TABLE MONTHLY_SALES
cont> (SALES_AMOUNT INTEGER);
SQL> --
SQL> -- Create the table to keep track of sales made today:
SQL> CREATE TABLE DAILY_SALES
cont> (SALES_AMOUNT INTEGER);
SQL> --
SQL> -- Assume that $250.00 of sales have been made during the current month:
SQL> INSERT INTO MONTHLY_SALES
cont> (SALES_AMOUNT) VALUES (250);
1 row inserted
SQL> --
SQL> -- After adding a new value to the SALES_AMOUNT column in
SQL> -- DAILY_SALES table, SQL updates the SALES column in
SQL> -- the MONTHLY_SALES table with the amount of the new sale:
SQL> CREATE TRIGGER UPDATE_SALES_TOTAL_ON_NEW_SALE
cont> AFTER INSERT ON DAILY_SALES
cont> (UPDATE MONTHLY_SALES M
cont> SET M.SALES_AMOUNT = M.SALES_AMOUNT + DAILY_SALES.SALES_AMOUNT)
cont> FOR EACH ROW;
SQL> --
SQL> -- The following statement records a new $5.00 sale for today:
SQL> INSERT INTO DAILY_SALES
cont> (SALES_AMOUNT) VALUES (5);
1 row inserted
SQL> --

7–128 SQL Statements

CREATE TRIGGER Statement

SQL> -- The value for the SALES_AMOUNT column of the DAILY_SALES table
SQL> -- is $5.00 and the value of the SALES_AMOUNT column of the
SQL> -- MONTHLY_SALES table is $255.00:
SQL> SELECT * FROM DAILY_SALES;
SALES_AMOUNT

5
1 row selected
SQL> --
SQL> SELECT * FROM MONTHLY_SALES;
SALES_AMOUNT

255
1 row selected
SQL> --
SQL> -- When a new $9.00 sale is made, the values in the two rows of the
SQL> -- SALES_AMOUNT column of the DAILY_SALES table are $5.00 and $9.00
SQL> -- and the value of the SALES_AMOUNT column of the MONTHLY_SALES
SQL> -- table is $264.00:
SQL> INSERT INTO DAILY_SALES
cont> (SALES_AMOUNT) VALUES (9);
1 row inserted
SQL> --
SQL> SELECT * FROM DAILY_SALES;
SALES_AMOUNT

5
9

2 rows selected
SQL> --
SQL> SELECT * FROM MONTHLY_SALES;
SALES_AMOUNT

264
1 row selected
SQL> --
SQL> ROLLBACK;
SQL> --

Example 4: Defining a trigger that sets column values to null

Before the STATUS_CODE column in the WORK_STATUS table is deleted, this
trigger causes the associated WORK_STATUS columns in the EMPLOYEES
table to be set to null.

SQL Statements 7–129

CREATE TRIGGER Statement

SQL> CREATE TRIGGER STATUS_CODE_ON_DELETE_SET_NULL
cont> BEFORE DELETE ON WORK_STATUS
cont> (UPDATE EMPLOYEES E SET E.STATUS_CODE = NULL
cont> WHERE E.STATUS_CODE = WORK_STATUS.STATUS_CODE)
cont> FOR EACH ROW;
SQL> --
SQL> -- Delete any row in the WORK_STATUS table where the STATUS_CODE
SQL> -- column has a value of 1:
SQL> DELETE FROM WORK_STATUS WS WHERE WS.STATUS_CODE = "1";
1 row deleted
SQL> --
SQL> -- This trigger sets the STATUS_CODE column value to null in many
SQL> -- rows in the EMPLOYEES table:
SQL> SELECT * FROM EMPLOYEES E WHERE E.STATUS_CODE IS NULL;
EMPLOYEE_ID LAST_NAME FIRST_NAME MIDDLE_INITIAL
ADDRESS_DATA_1 ADDRESS_DATA_2 CITY

STATE POSTAL_CODE SEX BIRTHDAY STATUS_CODE
00416 Ames Louie A
61 Broad st. NULL Alton

NH 03809 M 13-Apr-1941 NULL

00374 Andriola Leslie Q
111 Boston Post Rd. NULL Salisbury

NH 03268 M 19-Mar-1955 NULL
.
.
.

00200 Ziemke Al F
121 Putnam Hill Rd. NULL Winnisquam

NH 03289 M 27-Oct-1928 NULL

88 rows selected
SQL> ROLLBACK;

Example 5: Defining a trigger that prevents deletion of a row that exists in
two tables

Suppose that a user wants to delete only those rows in the JOB_HISTORY
table that do not also exist in the JOBS table. This is difficult to do with
constraints because a row can exist in one table with a key number that does
not exist in the other table. The following statement creates a trigger that
causes an error when the user tries to delete a row that exists in table JOB_
HISTORY.

7–130 SQL Statements

CREATE TRIGGER Statement

SQL> CREATE TRIGGER DELETE_GUARD
cont> BEFORE DELETE ON JOB_HISTORY
cont> WHEN EXISTS (SELECT JOBS.JOB_CODE FROM JOBS
cont> WHERE JOBS.JOB_CODE=JOB_HISTORY.JOB_CODE)
cont> (ERROR) FOR EACH ROW;
SQL> --
SQL> -- Now attempt a deletion that violates the trigger.
SQL> --
SQL> DELETE FROM JOB_HISTORY WHERE JOB_CODE = ’DMGR’;
%RDB-E-TRIG_INV_UPD, invalid update; encountered error condition
defined for trigger
-RDMS-E-TRIG_ERROR, trigger DELETE_GUARD forced an error
-RDB-F-ON_DB, on database DISK1:[DEPT3.SQL]MF_PERSONNEL.RDB;1

Example 6: Defining a trigger that saves audit information

SQL> -- Create new table to record changes made to
SQL> -- EMPLOYEES table
SQL> CREATE TABLE AUDIT_TRAIL
cont> (LOG DATE VMS,
cont> PERSON CHAR(31),
cont> TBL_NAME CHAR(10),
cont> OPER CHAR(1));
SQL> COMMIT;

SQL> -- Create a trigger so that each time
SQL> -- an INSERT operation is performed,
SQL> -- a record is stored in the AUDIT_TRAIL table.
SQL> CREATE TRIGGER EMPS_TRIGGER
cont> AFTER INSERT
cont> ON EMPLOYEES
cont> (INSERT INTO AUDIT_TRAIL
cont> VALUES (CURRENT_TIMESTAMP,
cont> CURRENT_USER, ’EMPLOYEES’, ’I’))
cont> FOR EACH STATEMENT;
SQL> -- The AUDIT_TRAIL table currently has no records.
SQL> SELECT * FROM AUDIT_TRAIL;
0 rows selected
SQL> -- Insert a record into EMPLOYEES
SQL> INSERT INTO EMPLOYEES
cont> (EMPLOYEE_ID, LAST_NAME)
cont> VALUES (’00964’, ’FRENCH’);
1 row inserted
SQL> -- See if trigger updated the AUDIT_TRAIL table.
SQL> SELECT * FROM AUDIT_TRAIL;
LOG PERSON TBL_NAME OPER
17-JUN-2003 15:04:31.43 STEWART EMPLOYEES I
1 row selected

SQL Statements 7–131

CREATE TRIGGER Statement

Example 7: Using TRACE as a trigger action

SQL> set flags ’TRACE’;
SQL> create table M_TABLE (a integer, b integer);
SQL>
SQL> create trigger T_A
cont> after insert on M_TABLE
cont> (trace ’in a trigger: ’ || cast(M_TABLE.a as varchar(10)))
cont> for each row;
SQL>
SQL> insert into M_TABLE (a, b) values (1, 10);
~Xt: in a trigger: 1
1 row inserted
SQL>

Example 8: Using SIGNAL as a trigger action

SQL> create table M_TABLE (a integer, b integer);
SQL>
SQL> create trigger T_A
cont> after insert on M_TABLE2
cont> when (M_TABLE2.a is not null)
cont> (signal ’12345’ (’in a trigger: ’
cont> || cast(M_TABLE2.a as varchar(10))))
cont> for each row;
SQL>
SQL> insert into M_TABLE2 (a, b) values (1, 10);
%RDB-E-SIGNAL_SQLSTATE, routine "T_A" signaled SQLSTATE "12345"
-RDB-I-TEXT, in a trigger: 1
SQL>

Example 9: Using CALL as a trigger action

SQL> create module M_MODULE
cont> language SQL
cont>
cont> procedure M_K (in :a int);
cont> trace ’called from a trigger: ’ || cast(:a as varchar(10));
cont>
cont> end module;
SQL>
SQL> create table M_TABLE (a integer, b integer);
SQL>
SQL> create trigger T_A
cont> after insert on M_TABLE
cont> (call M_K (M_TABLE.a))
cont> for each row;
SQL>
SQL> insert into M_TABLE (a, b) values (1, 10);
~Xt: called from a trigger: 1
1 row inserted
SQL>

7–132 SQL Statements

CREATE USER Statement

CREATE USER Statement

Creates a special security profile entry to identify a database user. That user
can be granted roles, which in turn provide access to database objects.

Environment

You can use the CREATE USER statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE USER <username> IDENTIFIED EXTERNALLY
PUBLIC

create-user-opts

create-user-opts =

ACCOUNT LOCK
UNLOCK

COMMENT IS ’<string>’
/

NO PROFILE
PROFILE <profile_name>

Arguments

ACCOUNT LOCK
ACCOUNT UNLOCK
The ACCOUNT LOCK clause disables access to the database by the user
for whom the CREATE USER statement is being applied. The ACCOUNT
UNLOCK clause allows that user access to the database.

The ACCOUNT UNLOCK clause is the default.

SQL Statements 7–133

CREATE USER Statement

COMMENT IS ’string’
Adds a comment about the user. SQL displays the text of the comment when it
executes a SHOW USERS statement. Enclose the comment in single quotation
marks (’) and separate multiple lines in a comment with a slash mark (/).

IDENTIFIED EXTERNALLY
Indicates that the user will be authenticated through the operating system.

NO PROFILE
NO PROFILE is the default behavior and indicates that no special restrictions
are applied to this user.

PROFILE
Identifies a new profile for assignment to the user. The specified profile name
must be the name of an existing profile.

PUBLIC
Explicitly creates a PUBLIC security profile entry in the database.

username
The name of the user to add to the database. This must match the name of an
existing OpenVMS username.

Usage Notes

• You must have the SECURITY privilege on the database to create a user.

• The special user PUBLIC exists implicitly. However, the CREATE USER
statement can be used to create an explicit PUBLIC entry so that roles and
profiles can be associated with the PUBLIC user. This allows control of
anonymous users who access the database.

• You can display existing users defined for a database by issuing a SHOW
USERS statement.

• The username must conform to OpenVMS naming conventions, that
is, uppercase letters, numbers, underscore and ´$´ with no spaces or
punctuation.

• If SECURITY CHECKING IS INTERNAL, then the GRANT statement
will implicitly perform a CREATE USER if the user is not defined in the
database and the name exists as an OpenVMS user. The following example
causes the user to be created.

7–134 SQL Statements

CREATE USER Statement

SQL> grant ADMIN_USER to SMITH;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-PRFCREATED, some users or roles were created
SQL> show users
Users in database with filename personnel

SMITH

Examples

Example 1: Creating a New User and Locking Her Account

SQL> CREATE USER munroy IDENTIFIED EXTERNALLY
cont> ACCOUNT LOCK
cont> COMMENT IS ’User munroy starts job on’/
cont> ’May 1, 2003. Unlock when she starts’;

Example 2: Adding a profile to a user

This example creates a new profile that defines the DEFAULT transaction
and then assigns a profile while creating a new user. The next time the user
attaches to the database the START DEFAULT TRANSACTION statement will
use the defined profile instead of the standard READ ONLY default.

SQL> create profile READ_COMMITTED
cont> default transaction read write isolation level read committed wait 30;
SQL> show profile READ_COMMITTED

READ_COMMITTED
Default transaction read write wait 30
Isolation level read committed

SQL> create user JAIN identified externally profile READ_COMMITTED;
SQL> show user JAIN;

JAIN
Identified externally
Account is unlocked
Profile: READ_COMMITTED
No roles have been granted to this user

SQL Statements 7–135

CREATE VIEW Statement

CREATE VIEW Statement

Creates a view definition. A view is a logical structure that refers to rows
stored in other tables. Data in a view is not physically stored in the database.
You can include in a view definition combinations of rows and columns from
other tables and view definitions in the schema. You define a view by specifying
a select expression, that:

• Names the criteria for selecting the tables, rows, and columns for the view

• Specifies a set of columns from those tables

When the CREATE VIEW statement executes, SQL adds the view definition
to the physical database. If you declared the schema with the PATHNAME
argument, the definition is also stored in the repository.

Environment

You can use the CREATE VIEW statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

CREATE VIEW <view-name>

STORED NAME IS <stored-name>

(<column-name>)

sql-and-dtr-clause

,

AS select-expr
check-option-clause

7–136 SQL Statements

CREATE VIEW Statement

select-expr =

select-clause
(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS literal
DATATRIEVE

check-option-clause =

WITH CHECK OPTION
CONSTRAINT <check-option-name>

NO CHECK OPTION

Arguments

check-option-clause
A constraint that places restrictions on update operations made to a view. The
check option clause ensures that any rows that are inserted or updated in a
view conform to the definition of the view. Do not specify the WITH CHECK
OPTION clause with views that are read-only. (The Usage Notes describe
which views SQL considers read-only.)

column-name
A list of names for the columns of the view. If you omit column names,
SQL assigns the names from the columns in the source tables in the select
expression.

SQL Statements 7–137

CREATE VIEW Statement

However, you must specify names for all the columns of the view in the
following cases:

• The select expression generates columns with duplicate names.

• The select expression uses statistical functions or arithmetic expressions to
create new columns that are not in the source tables.

CONSTRAINT check-option-name
Specify a name for the WITH CHECK OPTION constraint. If you omit the
name, SQL creates a name. However, Oracle Rdb recommends that you always
name constraints. If you supply a name for the WITH CHECK OPTION
constraint, the name must be unique in the schema.

The name for the WITH CHECK OPTION constraint is used by the INTEG_
FAIL error message when an INSERT or UPDATE statement violates the
constraint.

select-expr
A select expression that defines which columns and rows of the specified tables
SQL includes in the view. The select expression for a nonmultischema database
can name only tables in the same schema as the view. A select expression for
a multischema database can name a table in any schema in the database; the
schema need not be in the same catalog as the view being created. See Section
2.8.1 for more information on select expressions.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clauses. See Section 2.5 for more
information on formatting clauses.

STORED NAME IS stored-name
Specifies a name that Oracle Rdb uses to access a view created in a
multischema database. The stored name allows you to access multischema
definitions using interfaces, such as Oracle RMU, the Oracle Rdb management
utility, that do not recognize multiple schemas in one database. You cannot
specify a stored name for a view in a database that does not allow multiple
schemas. For more details about stored names, see Section 2.2.18.

view-name
Name of the view definition you want to create. When choosing a name, follow
these rules:

• Use a name that is unique among all view and table names in the schema.

• Use any valid SQL name (see Section 2.2 for more information).

7–138 SQL Statements

CREATE VIEW Statement

Usage Notes

• Any statement that inserts, updates, or deletes rows of a view changes the
rows of the base tables on which the view is based.

• Note the following when using INSERT, UPDATE, and DELETE
statements that refer to views:

Do not refer to read-only views in INSERT, UPDATE, or DELETE
statements. SQL considers as read-only views those with select
expressions that:

* Use the DISTINCT argument to eliminate duplicate rows from the
result table

* Name more than one table or view in the FROM clause

* Include a function in the select list

* Contain a UNION, EXCEPT (MINUS), INTERSECT, GROUP BY,
or HAVING clause

• In INSERT and UPDATE statements, you cannot refer to columns in views
that are the result of a value expression. For instance, you cannot use an
INSERT statement that refers to ARITH_COLUMN in the following view
definition:

SQL> CREATE VIEW TEMP (ARITH_COLUMN, EMPLOYEE_ID)
cont> AS SELECT (SALARY_AMOUNT * 3), EMPLOYEE_ID
cont> FROM SALARY_HISTORY;
SQL>
SQL> INSERT INTO TEMP (ARITH_COLUMN) VALUES (111);
%RDB-E-READ_ONLY_FIELD, attempt to update read-only field ARITH_COLUMN
SQL> ROLLBACK;

• To allow correct SQLSTATE handling for the ANSI/ISO SQL standard, the
exception raised by a WITH CHECK OPTION violation changes when the
dialect is set to SQL99 at database attach time. For example:

SQL> SET DIALECT ’SQL99’;
SQL> ATTACH ’FILENAME personnel_test’;
SQL> INSERT INTO MANAGERS VALUES (1, ’Fred’, 10);
%RDB-E-CHECK_FAIL, violation of view check option "MANAGERS_CHECKOPT1"
caused operation to fail

SQL Statements 7–139

CREATE VIEW Statement

This change allows SQL to return a special SQLSTATE value of 44000 and
allows applications to distinguish between constraint and view-check option
violations. Adjust any error handlers that examine the RDB$MESSAGE_
VECTOR so that they correctly handle RDB$_CHECK_FAIL (it is similar
to the error RDB$_INTEG_FAIL). For more information about SQLSTATE
values, see Appendix C.

• Use the WITH CHECK OPTION clause to make sure that rows you insert
or update in a view conform to its definition.

For example, the following view definition allows only salaries over
$60,000. Because you use the WITH CHECK OPTION clause, you cannot
insert a row that contains a salary of less than $60,000.

SQL> CREATE VIEW TEST
cont> AS SELECT * FROM SALARY_HISTORY
cont> WHERE SALARY_AMOUNT > 60000
cont> WITH CHECK OPTION CONSTRAINT TEST_VIEW_CONST;
SQL>
SQL> INSERT INTO TEST (SALARY_AMOUNT) VALUES (50);
%RDB-E-INTEG_FAIL, violation of constraint TEST_VIEW_CONST-
caused operation to fail

• When you insert or update a view, the rows are stored in the base tables.
If you do not use the WITH CHECK OPTION clause, you can insert or
update rows through a view that do not conform to the view’s definition.
Once stored, however, you cannot retrieve those rows through the view
because they do not meet the conditions specified by the view definition.

For instance, the following view definition allows only salaries over
$60,000. However, you can name the view in an INSERT statement to
store a salary value of $50, which you can then retrieve only by referring to
the table on which the view is based.

7–140 SQL Statements

CREATE VIEW Statement

SQL> CREATE VIEW TEMP
cont> AS SELECT * FROM SALARY_HISTORY
cont> WHERE SALARY_AMOUNT > 60000;
SQL>
SQL> INSERT INTO TEMP (SALARY_AMOUNT) VALUES (50);
1 row inserted
SQL> -- Cannot get the row just stored through the view TEMP:
SQL> --
SQL> SELECT * FROM TEMP WHERE SALARY_AMOUNT < 100;
0 rows inserted
SQL> -- To retrieve the row, select it from the base table
SQL> --
SQL> SELECT * FROM SALARY_HISTORY WHERE SALARY_AMOUNT < 100;
EMPLOYEE_ID SALARY_AMOUNT SALARY_START SALARY_END
NULL 50.00 NULL NULL

1 row inserted

• You can create up to 53,247 views. These values are architectural limits
restricted by the on-disk structure. When you exceed the maximum limit
for views, Oracle Rdb issues the MAXVIEWID error message.

Views can have a record ID that ranges from 12288 through 65535.

If you delete older views, Oracle Rdb recycles their identifiers so that the
CREATE VIEW statement can succeed even after reaching the maximum
value.

• The CREATE VIEW statement can reference a table reserved in DATA
DEFINITION mode.

Examples

Example 1: Defining a view based on a single table

This example shows a view definition that uses three columns from a single
table, EMPLOYEES.

SQL Statements 7–141

CREATE VIEW Statement

SQL> CREATE VIEW EMP_NAME
cont> AS SELECT
cont> FIRST_NAME,
cont> MIDDLE_INITIAL,
cont> LAST_NAME
cont> FROM EMPLOYEES;
SQL> --
SQL> -- Now display the rows from the view just created.
SQL> SELECT * FROM EMP_NAME;
FIRST_NAME MIDDLE_INITIAL LAST_NAME
Alvin A Toliver
Terry D Smith

.

.

.

Example 2: Defining a view that does not allow you to insert or update rows
that do not conform to the view’s definition

This example shows a view definition using the WITH CHECK OPTION
clause.

SQL> CREATE VIEW ADMN_VIEW
cont> AS SELECT * FROM JOB_HISTORY
cont> WHERE DEPARTMENT_CODE = ’ADMN’
cont> WITH CHECK OPTION CONSTRAINT ADMN_VIEW_CONST;
SQL> -- You cannot insert a row that does not
SQL> -- conform to the view definition.
SQL> --
SQL> INSERT INTO ADMN_VIEW (DEPARTMENT_CODE) VALUES (’MBMN’);
%RDB-E-INTEG-FAIL, violation of constraint ADMN_VIEW_CONST-
caused operation to fail

Example 3: Defining a view based on multiple tables

You can also define a view using more than one table.

SQL> CREATE VIEW CURRENT_SALARY
cont> AS SELECT
cont> E.LAST_NAME,
cont> E.FIRST_NAME,
cont> E.EMPLOYEE_ID,
cont> SH.SALARY_START,
cont> SH.SALARY_AMOUNT
cont> FROM
cont> SALARY_HISTORY SH, EMPLOYEES E
cont> WHERE
cont> SH.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND
cont> SH.SALARY_END IS NULL ;

7–142 SQL Statements

CREATE VIEW Statement

This example defines a view from the EMPLOYEES and SALARY_HISTORY
tables. It uses the select expression to:

• Choose the columns derived from each table. Because no column names
are specified before the select expression, the columns inherit the names
from the source tables.

• Join the tables and limit the view to current salaries.

SQL Statements 7–143

CREATE VIEW Statement

Example 4: Defining a view with local column names

SQL> CREATE VIEW EMP_JOB
cont> (CURRENT_ID,
cont> CURRENT_NAME,
cont> CURRENT_JOB,
cont> SUPERVISOR)
cont> AS SELECT
cont> E.EMPLOYEE_ID,
cont> E.LAST_NAME,
cont> J.JOB_TITLE,
cont> JH.SUPERVISOR_ID
cont> FROM
cont> EMPLOYEES E,
cont> JOB_HISTORY JH,
cont> JOBS J
cont> WHERE
cont> E.EMPLOYEE_ID = JH.EMPLOYEE_ID
cont> AND
cont> JH.JOB_CODE = J.JOB_CODE
cont> AND
cont> JH.JOB_END IS NULL ;

This view definition:

• Specifies local names for the columns in the view.

• Joins the EMPLOYEES and JOB_HISTORY tables. This join links rows in
the EMPLOYEES table to rows in the JOB_HISTORY table.

• Joins the JOB_HISTORY and JOBS tables. This join lets the view contain
job titles instead of job codes.

• Uses the JH.JOB_END IS NULL expression. This clause specifies that
only the current JOB_HISTORY rows, where the JOB_END column is null,
should be included in the view.

The following query uses the view defined in the previous example:

EXEC SQL
DECLARE X CURSOR FOR
SELECT CURRENT_ID, CURRENT_NAME, CURRENT_JOB, SUPERVISOR
FROM EMP_JOB

END-EXEC

EXEC SQL
OPEN X

END-EXEC

PERFORM WHILE SQLCODE NOT = 0

7–144 SQL Statements

CREATE VIEW Statement

EXEC SQL
FETCH X
INTO :ID, :NAME, :JOB, :SUPER

END-EXEC

END PERFORM

EXEC SQL
CLOSE X

END-EXEC

Example 5: Defining a view with a calculated column

This example shows a view definition that derives a column through a
calculation based on a column in an base table.

SQL> CREATE VIEW SS_DEDUCTION
cont> (IDENT,
cont> SALARY,
cont> SS_AMOUNT)
cont> AS SELECT
cont> E.EMPLOYEE_ID,
cont> SH.SALARY_AMOUNT,
cont> SH.SALARY_AMOUNT * 0.065
cont> FROM
cont> SALARY_HISTORY SH, EMPLOYEES E
cont> WHERE
cont> SH.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND
cont> SH.SALARY_END IS NULL ;

Each time the view column SS_AMOUNT is selected, it computes a new value
from the SALARY_AMOUNT column of the SALARY_HISTORY table.

SQL Statements 7–145

CREATE VIEW Statement

Example 6: Defining a view dependent on another view

This example creates a view, DEPENDENT_VIEW, that refers to the
CURRENT_JOB view in its definition to include current job information
for employees in the engineering department.

SQL> CREATE VIEW DEPENDENT_VIEW
cont> AS SELECT * FROM CURRENT_JOB
cont> WHERE DEPARTMENT_CODE = ’ENG’;

7–146 SQL Statements

DECLARE ALIAS Statement

DECLARE ALIAS Statement

Specifies the name and the source of the database definitions to be used
for module compilation, and makes the named alias part of the implicit
environment of an application. You can name either a file or a repository
path name to be used for the database definitions.

Environment

You can use the DECLARE ALIAS statement:

• Embedded in host language programs to be precompiled

• In a context file

• As part of the DECLARE section in an SQL module

The alias that you declare must be different from any other alias specified in
the module.

Format

DECLARE
scope-options

ALIAS FOR COMPILETIME
<alias>

FILENAME ’attach-spec ’
PATHNAME <path-name>

lit-or-def-user-authentication

RUNTIME runtime-options

database-options
attach-options
DEFAULT CHARACTER SET support-char-set
NATIONAL CHARACTER SET support-char-set
DISPLAY CHARACTER SET support-char-set

SQL Statements 7–147

DECLARE ALIAS Statement

lit-or-def-user-authentication =

USER ’<username>’
DEFAULT USING ’<password>’

DEFAULT

scope-options =

LOCAL
GLOBAL
EXTERNAL

attach-spec =

<file-spec>
<node-spec>

node-spec =

<nodename>
<access-string>
::

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

runtime-options =

FILENAME ’<attach-spec>’
<parameter>

PATHNAME <path-name>
<parameter>

runtime-string

7–148 SQL Statements

DECLARE ALIAS Statement

runtime-string =

’ FILENAME <attach-spec> ’
PATHNAME <pathname> literal-user-auth

parameter

database-options =

ELN
NSDS
rdb-options
VIDA
VIDA V1
VIDA V2
VIDA V2N
NOVIDA
DBIV1
DBIV31
DBIV70

rdb-options =

RDBVMS
RDB030
RDB031
RDB040
RDB041
RDB042
RDB050
RDB051
RDB060
RDB061
RDB070
RDB071

attach-options =

DBKEY SCOPE IS ATTACH
ROWID TRANSACTION
MULTISCHEMA IS ON

OFF
PRESTARTED TRANSACTIONS ARE ON

OFF
RESTRICTED ACCESS

NO

SQL Statements 7–149

DECLARE ALIAS Statement

Arguments

alias ALIAS
Specifies a name for the attach to the database. Specifying an alias lets your
program refer to more than one database.

You do not have to specify an alias in the DECLARE ALIAS statement.
The default alias in interactive SQL and in precompiled programs is
RDB$DBHANDLE. In the SQL module language, the default is the alias
specified in the module header. Using the default alias (either by specifying it
explicitly in the DECLARE ALIAS statement or by omitting any alias) makes
the database part of the default environment. Specifying a default database
means that statements that refer to the default database do not need to use an
alias.

If a default alias was already declared and you specify the default alias in the
alias clause (or specify any alias that was already declared), you receive an
error when you precompile the program or process it with the SQL module
processor.

database-options
By default, SQL uses only the database options used to compile a program
as valid options for that program. If you want to use the program with
other supported databases, you can override the default options by specifying
database options in the ATTACH or DECLARE ALIAS statement.

For more information on database options, see Section 2.10.

DBKEY SCOPE IS ATTACH
DBKEY SCOPE IS TRANSACTION
Controls when the database key of a deleted row can be used again by SQL.

• The default DBKEY SCOPE IS TRANSACTION means that SQL can reuse
the database key of a deleted table row (to refer to a newly inserted row)
as soon as the transaction that deleted the original row completes with a
COMMIT statement. (If the user who deleted the original row enters a
ROLLBACK statement, then the database key for that row cannot be used
again by SQL.)

During the connection of the user who entered the DECLARE ALIAS
statement, the DBKEY SCOPE IS TRANSACTION clause specifies that
a database key is guaranteed to refer to the same row only within a
particular transaction.

7–150 SQL Statements

DECLARE ALIAS Statement

• The DBKEY SCOPE IS ATTACH clause means that SQL cannot use the
database key again (to refer to a newly inserted row) until all users who
have attached with DBKEY SCOPE IS ATTACH have detached from the
database.

It only requires one process to attach with DBKEY SCOPE IS ATTACH to
force all database users to assume this characteristic.

• Oracle Corporation recommends using DBKEY SCOPE IS TRANSACTION
to prevent excessive consumption of storage area space by overhead
space needed to support DBKEY SCOPE IS ATTACH, and to prevent
performance problems when storing new rows.

During the connection of the user who entered the DECLARE ALIAS
statement, the DBKEY SCOPE IS ATTACH clause specifies that a database
key is guaranteed to refer to the same row until the user detaches from the
database.

See Section 2.6.5 for more information.

DEFAULT CHARACTER SET support-char-set
Specifies the default character set of the alias at compile time. For a list of
allowable character set names, see Section 2.1.

DISPLAY CHARACTER SET support-char-set
Specifies the character set encoding and characteristics expected of text strings
returned from Oracle Rdb. See the Usage Notes under CREATE DATABASE
Statement for additional information.

FILENAME ’attach-spec’
A quoted string containing full or partial information needed to access a
database.

For an Oracle Rdb database, an attach specification contains the file
specification of the .rdb file.

When you use the FILENAME argument, any changes you make to database
definitions are entered only to the database system file, not to the repository.
If you specify FILENAME, your application attaches to the database with that
file name at run time.

If you specify FILENAME:

During compilation, your application attaches to the specified database and
reads metadata from the database definitions.

At run time, your application attaches to the specified database.

For information regarding node-spec and file-spec, see Section 2.2.8.1.

SQL Statements 7–151

DECLARE ALIAS Statement

FOR COMPILETIME
Optional keyword provided for upward compatibility: DECLARE ALIAS
specifies the compile-time environment by default. Specifies that the alias
declared is the source of the database definition for program compiling and
execution.

lit-or-def-user-authentication
Specifies the user name and password to enable access to databases,
particularly remote databases.

You can use this clause to explicitly provide user name and password
information in the DECLARE ALIAS statement.

literal-user-auth
Specifies the user name and password for the specified database to be accessed
at run time. For more information about when to use this clause, see the
ATTACH Statement.

LOCAL
GLOBAL
EXTERNAL
Specifies the scope of the alias declaration in precompiled SQL or SQL module
language.

The scope-option declarations are:

• LOCAL declares an alias that is local to procedures in the module in which
it is declared, or local to dynamic statements prepared in the module in
which it is declared.

SQL attaches to a database with LOCAL scope only when you execute a
procedure in the same module without a session. The alias of a database
with LOCAL scope pertains only to that module.

If the execution of a procedure in another module has attached to the
implicit environment and that procedure subsequently calls another
procedure that references a local database, SQL attempts to attach to that
local database. If no transaction is active, SQL adds the local database to
the implicit environment for this module. If a transaction is active, SQL
returns an error message.

• GLOBAL declares an alias definition that is global to procedures in the
application. GLOBAL is the default.

• EXTERNAL declares an external reference to a global alias that is defined
in another module.

7–152 SQL Statements

DECLARE ALIAS Statement

In single-image applications, the distinction between alias definitions and alias
references is often unimportant. It is only necessary that each alias have at
least one definition. For this reason, Oracle Rdb has treated all alias references
(declared with the EXTERNAL keyword) the same as alias definitions (declared
with the GLOBAL keyword or the default.) For compatibility with previous
versions, this remains the default.

However, applications that share aliases between multiple images require a
distinction between alias definitions and alias references. All definitions of
any aliases shared between multiple OpenVMS images must be defined in one
image, generally the shareable image against which you link the other images.

Oracle Rdb recommends that you distinquish alias definitions from alias
references in any new source code. Use the GLOBAL (or default) scope
keyword for alias definitions and the EXTERNAL keyword for alias
references. If you share aliases between multiple OpenVMS images, use
the NOEXTERNAL_GLOBALS command line qualifier to override the default
and cause SQL to properly treat alias references as references.

If you use the EXTERNAL_GLOBAL command line qualifier, SQL treats
aliases declared with the EXTERNAL keyword as GLOBAL. That is, SQL
initializes alias references as well as alias definitions.

If you use the NOEXTERNAL_GLOBAL command line qualifier, SQL treats
aliases declared with the EXTERNAL keyword as alias references and does not
initialize them. It initializes all other aliases.

The EXTERNAL_GLOBAL qualifier is the default.

The [NO]INITIALIZE_HANDLES command line qualifiers also affect the
initialization of aliases, but they are recommended only for use in versions
prior to V7.0.

See Section 3.6 and Section 4.3 for more information about the command line
qualifiers.

MULTISCHEMA IS ON
MULTISCHEMA IS OFF
The MULTISCHEMA IS ON clause enables multischema naming for the
duration of the database attach. The MULTISCHEMA IS OFF clause disables
multischema naming for the duration of the database attach. Multischema
naming is disabled by default.

NATIONAL CHARACTER SET support-char-set
Specifies the national character set of the alias at compile time. For a list of
allowable character set names, see Section 2.1.

SQL Statements 7–153

DECLARE ALIAS Statement

PATHNAME path-name
A full or relative repository path name that specifies the source of the database
definitions. When you use the PATHNAME argument, any changes you make
to database definitions are entered in both the repository and the database
system file. Oracle Rdb recommends using the PATHNAME argument if you
have the repository on your system and you plan to use any data definition
statements.

If you specify PATHNAME:

• During compilation, your application attaches to the repository database
definition and reads metadata from the dictionary definitions. SQL extracts
the file name of the Oracle Rdb database from the dictionary and saves it
for use at run time.

• At run time, your application attaches to the Oracle Rdb database file
name extracted from the dictionary at compilation.

PRESTARTED TRANSACTIONS ARE ON
PRESTARTED TRANSACTIONS ARE OFF
Specifies whether Oracle Rdb enables or disables prestarted transactions.

Use the PRESTARTED TRANSACTIONS ARE OFF clause only if your
application uses a server process that is attached to the database for long
periods of time and causes the snapshot file to grow excessively. If you use
the PRESTARTED TRANSACTIONS ARE OFF clause, Oracle Rdb may
require additional I/O as each SET TRANSACTION statement must reserve a
transaction sequence number (TSN).

For most applications, Oracle Rdb recommends that you enable prestarted
transactions. The default is PRESTARTED TRANSACTIONS ARE ON. If you
use the PRESTARTED TRANSACTIONS ARE ON clause or do not specify
the PRESTARTED TRANSACTIONS clause, the COMMIT or ROLLBACK
statement for the previous read/write transaction automatically reserves the
TSN for the next transaction and reduces I/O.

You can use ALTER DATABASE . . . PRESTARTED TRANSACTIONS clause
to establish a default setting for all applications using the database. You
can also define the RDMS$BIND_PRESTART_TXN logical name to define
the default setting for prestarted transactions outside of an application.
The PRESTARTED TRANSACTION clause overrides this logical name
and database setting. For more information, see the Oracle Rdb7 Guide to
Database Performance and Tuning.

7–154 SQL Statements

DECLARE ALIAS Statement

RESTRICTED ACCESS
NO RESTRICTED ACCESS
Restricts access to the database. This allows you to access the database but
locks out all other users until you disconnect from the database. Setting
restricted access to the database requires DBADM privileges.

The default is NO RESTRICTED ACCESS if not specified.

ROWID SCOPE IS ATTACH
ROWID SCOPE IS TRANSACTION
The ROWID keyword is a synonym for the DBKEY keyword. See the DBKEY
SCOPE IS argument earlier in this Arguments list for more information.

RUNTIME runtime-options
Specifies the source of the database definitions when the program is run.

runtime-string
A quoted string or parameter that specifies the file name or path name of
the database to be accessed at run time, and optionally, the user name and
password of the user accessing the database at run time.

USER ’username’
USER DEFAULT
Specifies the operating system user name that the database system uses for
privilege checking.

You can specify a character string literal for the user name or you can specify
the DEFAULT keyword. The DEFAULT keyword allows you to avoid placing
the user name in a program’s source code. If you specify the DEFAULT
keyword, you pass the user name to the program by using a command line
qualifier when you compile an SQL module or precompiled program. You use
the USERNAME qualifier.

USING ’password’
USING DEFAULT
Specifies the user’s password for the user name specified in the USER clause.

You can specify a character string literal for the PASSWORD or you can
specify the DEFAULT keyword. The DEFAULT keyword allows you to avoid
placing the user name in a program’s source code. If you specify the DEFAULT
keyword, you pass the password to the program by using a command line
qualifier when you compile an SQL module or precompiled program. You use
the PASSWORD qualifier.

SQL Statements 7–155

DECLARE ALIAS Statement

Usage Notes

• DECLARE ALIAS is a nonexecutable statement that declares the database
to the program at compilation. SQL does not attach to the database until
it executes the first executable SQL statement in the program or SQL
module.

• When SQL executes the first procedure in a module, by default it attaches
to each alias in the module that is active.

• In interactive or dynamic SQL, you must use the ATTACH statement to
add a database to the implicit environment. For more information, see the
ATTACH Statement.

• The DECLARE ALIAS statements embedded in programs or in the
DECLARE section of an SQL module must come before any DECLARE
TRANSACTION or executable SQL statements. The DECLARE ALIAS
statements tell the application what databases it can compile against.

• To use an alias with a multischema database, you must enable ANSI/ISO
quoting and create a delimited identifier, as described in Section 2.2.11.

• You must ensure that the character sets specified by the DEFAULT
CHARACTER SET and NATIONAL CHARACTER SET clauses are the
same as the actual character sets of the database that is accessed at run
time. If these character sets do not match, unexpected results occur at run
time.

• The default character set specifies the character set for columns with
CHAR and VARCHAR data types. For more information on the default
character set, see Section 2.1.3.

• A national character set specifies the character set for columns with the
NCHAR and NCHAR VARYING data types. For more information on the
national character set, see Section 2.1.7.

• If the default character set is not specified in the DECLARE ALIAS
statement, the default character set of the database file invoked at compile
time is assumed.

• If the national character set is not specified in the DECLARE ALIAS
statement, the national character set of the database file invoked at
compile time is assumed.

7–156 SQL Statements

DECLARE ALIAS Statement

• If the database default character set is not DEC_MCS, the PATHNAME
specifier cannot be used due to a current limitation of the repository where
object names must only contain DEC_MCS characters. SQL flags this as
an error.

Examples

Example 1: Specifying a database and an alias in embedded SQL

This statement declares the database defined by the file specification personnel.
The precompiler uses this definition when compiling the program and SQL uses
the file personnel when the program runs. This name may be a logical name
or the name portion of the file personnel.rdb.

EXEC SQL
DECLARE PERS_ALIAS ALIAS FOR FILENAME personnel

END-EXEC

Example 2: Specifying a database with restricted access

This statement is the same as Example 1, but specifies restricted access to the
database.

EXEC SQL
DECLARE PERS_ALIAS ALIAS FOR FILENAME personnel
RESTRICTED ACCESS

END-EXEC

Example 3: Specifying the DECLARE ALIAS statement

This portion of an application program declares the databases MIA1 and
MIA_CHAR_SET. The precompiler uses the MIA1 database when compiling
the program and SQL uses the MIA_CHAR_SET database when the program
runs.

EXEC SQL
DECLARE ALIAS

COMPILETIME FILENAME MIA1
RUNTIME FILENAME MIA_CHAR_SET
DEFAULT CHARACTER SET DEC_KANJI
NATIONAL CHARACTER SET KANJI;

Example 4: Specifying the DEFAULT user authentication

The following example shows how to use the DEFAULT clause for user name
and password in an SQL module:

SQL Statements 7–157

DECLARE ALIAS Statement

MODULE TEST_DECLARE
DIALECT SQL99
LANGUAGE C
PARAMETER COLONS
ALIAS RDB$DBHANDLE

-----------------------declarations--------------------

DECLARE ALIAS COMPILETIME FILENAME mf_personnel
USER DEFAULT
USING DEFAULT

RUNTIME :run_time_spec
.
.
.

You pass the compile-time user name and password to the program by using
command line qualifiers. For example, to compile the program use the
following command line:

$ SQLMOD TESTDEC /USER=heleng /PASS= helenspasswd

At run time, the host language program can prompt the run-time user to
specify only the file specification or the file specification and the user name
and password at run time. The host language program can build the run time
string.

For example, if the host language program uses only the file specification, the
value of the variable passed to the program can be the following:

FILENAME "mf_personnel"

If the host language program uses the file specification, user name and
password, the value of the variable passed to the program can be the following:

FILENAME "mf_personnel ’USER heleng’ USING ’mypassword’ "

You must enclose the string in quotation marks; whether you use single (’) or
double quotation marks (") depends upon the programming language.

If you use the following DECLARE ALIAS statement, the host language
program can only prompt the run-time user to specify the file name.

DECLARE ALIAS COMPILETIME FILENAME mf_personnel
USER DEFAULT
USING DEFAULT

RUNTIME FILENAME :foo

7–158 SQL Statements

DECLARE CURSOR Statement

DECLARE CURSOR Statement

Declares a cursor.

With cursors, the conditions that define the result table are specified by the
select expression in the DECLARE CURSOR statement. SQL creates the
result table when it executes an OPEN statement. The result table for a
cursor exists until a CLOSE, COMMIT, or ROLLBACK statement executes, the
program stops, or you exit from interactive SQL. However, the result table can
exist across transactions if you define a holdable cursor. A holdable cursor
can remain open and retain its position when a new SQL transaction begins.

Host language programs require cursors because programs must perform
operations one row or element at a time, and therefore may execute statements
more than once to process an entire result table or list.

The scope of a cursor describes the portion of a module or program where the
cursor is valid. The extent of a cursor tells how long it is valid. All cursors in
SQL have the scope of the entire module.

You can create three classes of cursors, depending on which DECLARE
CURSOR statement you use:

• The DECLARE CURSOR statement is executed immediately. A cursor that
you create with this statement, sometimes called a static cursor, exists
only within the scope and extent of its module. Both the cursor name and
SELECT statement are known to your application at compile time.

• The dynamic DECLARE CURSOR statement is executed immediately.
The cursor name is known at compile time, and the SELECT statement
is determined at run time. You must supply a name for the SELECT
statement that is generated at run time. A dynamic cursor exists within
the scope of its module, but its extent is the entire run of the program or
image. For information about the dynamic DECLARE CURSOR statement,
see the DECLARE CURSOR Statement, Dynamic.

• The extended dynamic DECLARE CURSOR statement must be
precompiled or used as part of a procedure in an SQL module. You
must supply parameters for the cursor name and for the identifier of a
prepared SELECT statement that is generated at run time. An extended
dynamic cursor exists within the scope and extent of the entire module. For
information about the extended dynamic DECLARE CURSOR statement,
see the DECLARE CURSOR Statement, Extended Dynamic .

SQL Statements 7–159

DECLARE CURSOR Statement

Within each class, you can create two types of cursors:

• Table cursors are a method that SQL provides to access individual rows
of a result table. (A result table is a temporary collection of columns and
rows from one or more tables or views.)

• List cursors are a method that SQL provides to access individual elements
in a list.

A list is an ordered collection of elements, or segments, of the data type
LIST OF BYTE VARYING. For more information about the LIST OF BYTE
VARYING data type, see Section 2.3.7.

List cursors enable users to scan through a very large data structure from
within a language that does not provide support for objects of such size.
Because lists exist as a set of elements within a row of a table, a list cursor
must refer to a table cursor because the table cursor provides the row
context.

Cursors are further divided according to the modes of operations that they can
perform. Table cursors have four modes:

• Update cursors are the default table cursor. Rows are first read and
locked for SHARED READ or PROTECTED READ and then later, when an
UPDATE is performed, the rows are locked for EXCLUSIVE access. If the
table is reserved for EXCLUSIVE access, the subsequent update lock is not
required.

• Read-only cursors can be used to access row information from a result
table whenever you do not intend to update the database. For example,
you could use a read-only cursor to fetch row and column information for
display.

• Insert-only cursors position themselves on a row that has just been
inserted so that you can load lists into that row.

• Update-only cursors are used whenever you intend to modify many rows
in the result table. When the UPDATE ONLY option is used, SQL uses
a more aggressive lock mode that locks the rows for EXCLUSIVE access
when first read. This mode avoids a lock promotion from SHARED READ
or PROTECTED READ to EXCLUSIVE access. It may, therefore, avoid
deadlocks normally encountered during the lock promotion.

7–160 SQL Statements

DECLARE CURSOR Statement

List cursors have two modes:

• Read-only cursors are the default list cursor. They enable you to read
existing lists. By adding the SCROLL keyword to the read-only list cursor
clause, you enable Oracle Rdb to scroll forward and backward through the
list segments as needed.

• Insert-only cursors enable you to insert data into a list.

Table 7–3 lists the classes, types, and modes of cursors that SQL provides.

Table 7–3 Classes, Types, and Modes of Cursors

DECLARE CURSOR Dynamic DECLARE CURSOR
Extended Dynamic
DECLARE CURSOR

Table List Table List Table List

Insert-only Insert-only Insert-only Insert-only Insert-only Insert-only

Read-only Read-only Read-only Read-only Read-only Read-only

Update-only Update-only Update-only

For example, you must declare an insert-only table cursor to insert data into a
table. If the table includes lists, use the table cursor to position on the correct
row, and declare an insert-only list cursor to load the lists into that row. For
details about using cursors to load data into your database, see the INSERT
Statement.

To process the rows of a result table formed by a DECLARE CURSOR
statement, you must use the OPEN statement to position the cursor before
the first row. Subsequent FETCH statements retrieve the values of each row
for display on the terminal or processing in a program. (You must close the
cursor before you attempt to reopen it.)You can similarly process the elements
of a list by using an OPEN statement to position the cursor before the first
element in the list and repeating FETCH statements to retrieve successive
elements.

SQL Statements 7–161

DECLARE CURSOR Statement

Environment

You can use the DECLARE CURSOR statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of the DECLARE section in an SQL module

• In a context file

Format
DECLARE <cursor-name>

TABLE CURSOR
INSERT ONLY with-clause
READ ONLY
UPDATE ONLY

FOR select-expr
for-update-clause

optimize-clause
LIST CURSOR FOR SELECT

READ ONLY SCROLL
INSERT ONLY

<column-name> WHERE CURRENT OF <table-cursor-name>

with-clause =

WITH HOLD
PRESERVE ON COMMIT

ON ROLLBACK
ALL
NONE

7–162 SQL Statements

DECLARE CURSOR Statement

select-expr =

select-clause
(select-expr)
TABLE table-ref

select-merge-clause

order-by-clause offset-clause limit-to-clause

for-update-clause =

FOR UPDATE
OF <column-name>

,

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

Arguments

cursor-name
Specifies the name of the cursor you want to declare. Use a name that is
unique among all the cursor names in the module. Use any valid SQL name.
See Section 2.2 for more information on user-supplied names.

You can use a parameter to specify the cursor name at run time in an extended
dynamic DECLARE CURSOR statement. See the DECLARE CURSOR
Statement, Extended Dynamic for more information on the extended dynamic
DECLARE CURSOR statement.

SQL Statements 7–163

DECLARE CURSOR Statement

FOR select-expr
A select expression that defines which columns and rows of which tables
SQL includes in the cursor. See Section 2.8.1 for more information on select
expressions.

FOR UPDATE OF column-name
Specifies the columns in a cursor that you or your program might later modify
with an UPDATE statement. The column names in the FOR UPDATE clause
must belong to a table or view named in the FROM clause.

You do not have to specify the FOR UPDATE clause of the DECLARE CURSOR
statement to later modify rows using the UPDATE statement:

• If you do specify a FOR UPDATE clause and later specify columns in the
UPDATE statement that are not in the FOR UPDATE clause, SQL issues a
warning message and proceeds with the update modifications.

• If you do not specify a FOR UPDATE clause, you can update any column
using the UPDATE statement. SQL does not issue any messages.

The FOR UPDATE OF clause in a SELECT statement provides UPDATE
ONLY CURSOR semantics by locking all the rows selected.

INSERT ONLY
Specifies that a new list or a new row is created or opened.

If you specify a list cursor but do not specify the INSERT ONLY clause, SQL
declares a read-only list cursor by default.

If you specify a table cursor but do not specify the INSERT ONLY clause, SQL
declares an update cursor by default.

When you specify an insert-only cursor, all the value expressions in the select
list must be read/write. When you declare an insert-only table cursor to insert
lists, you must specify both table column and list column names in the FROM
clause.

For more information about how to use insert-only cursors, see the INSERT
Statement.

LIST CURSOR
Specifies a cursor that is used to manipulate columns of the data type LIST OF
BYTE VARYING.

OPTIMIZE AS query-name
Assigns a name to the query. You must define the SET FLAGS ’STRATEGY’
statement to see the access methods used to produce the results of the query.

7–164 SQL Statements

DECLARE CURSOR Statement

OPTIMIZE FOR
The OPTIMIZE FOR clause specifies the preferred optimizer strategy for
statements that specify a select expression. The following options are available:

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an
interactive application that displays groups of records to the user, where
the user has the option of aborting the query after the first few screens.
For example, singleton SELECT statements default to FAST FIRST
optimization.

If optimization strategy is not explicitly set, FAST FIRST is the default.

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

The following examples illustrate the DECLARE CURSOR syntax for
setting a preferred optimization mode:

SQL> DECLARE TEMP1 TABLE CURSOR
cont> FOR
cont> SELECT *
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID > ’00400’
cont> OPTIMIZE FOR FAST FIRST;
SQL> --
SQL> DECLARE TEMP2 TABLE CURSOR
cont> FOR
cont> SELECT LAST_NAME, FIRST_NAME
cont> FROM EMPLOYEES
cont> ORDER BY LAST_NAME
cont> OPTIMIZE FOR TOTAL TIME;

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality.

OPTIMIZE USING outline-name
Explicitly names the query outline to be used with the select expression even if
the outline IDs for the select expression and for the outline are different.

See the CREATE OUTLINE Statement for more information on creating an
outline.

SQL Statements 7–165

DECLARE CURSOR Statement

OPTIMIZE WITH
Selects one of three optimization controls: DEFAULT (as used by previous
versions of Oracle Rdb), AGGRESSIVE (assumes smaller numbers of rows
will be selected), and SAMPLED (which uses literals in the query to perform
preliminary estimation on indices).

PRESERVE ON COMMIT
PRESERVE ON ROLLBACK
PRESERVE ALL
PRESERVE NONE
Specifies when a cursor remains open.

• PRESERVE ON COMMIT

On commit, all cursors close except those defined with the WITH HOLD
PRESERVE ON COMMIT syntax. On rollback, all cursors close including
those defined with the WITH HOLD PRESERVE ON COMMIT syntax.

This is the same as specifying the WITH HOLD clause without any
preserve options.

• PRESERVE ON ROLLBACK

On rollback, all cursors close except those defined with the WITH
HOLD PRESERVE ON ROLLBACK syntax. On commit, all cursors
close including those defined with the WITH HOLD PRESERVE ON
ROLLBACK syntax.

• PRESERVE ALL

All cursors remain open after commit or rollback. Cursors close with the
CLOSE statement or when the session ends.

• PRESERVE NONE

All cursors close after a CLOSE, COMMIT, or ROLLBACK statement,
when the program stops, or when you exit from interactive SQL.

This is the same as not specifying the WITH HOLD clause at all.

READ ONLY
Specifies that the cursor is not used to update the database.

SCROLL
Specifies that Oracle Rdb can read the items in a list from either direction (up
or down) or at random. The SCROLL keyword must be used if the following
fetch options are desired:

• NEXT

7–166 SQL Statements

DECLARE CURSOR Statement

• PRIOR

• FIRST

• LAST

• RELATIVE

• ABSOLUTE

If SCROLL is not specified, the default for FETCH is NEXT. SCROLL is only
supported for LIST cursors.

TABLE CURSOR
Specifies that the cursor you want to declare is a table cursor, rather than a
list cursor. If you do not specify a cursor type, SQL declares a table cursor by
default.

UPDATE ONLY
Specifies that the cursor is used to update the database.

Use an update-only cursor when you plan to update most of the rows you are
fetching. The update-only cursor causes Oracle Rdb to apply more restrictive
locking during the initial read operation, so that locks do not need to be
upgraded later from READ to exclusive WRITE. This reduces the total number
of lock requests per query, and may help to avoid deadlocks.

Use update-only table cursors to modify table rows. SQL does not allow
update-only list cursors.

WHERE CURRENT OF table-cursor-name
Specifies the table cursor that provides the row context for the list cursor. The
table cursor named must be defined using a DECLARE CURSOR statement.

WITH HOLD
Indicates that the cursor remain open and maintain its position after the
transaction ends. This is called a holdable cursor.

Usage Notes

• You refer to cursors in INSERT, OPEN, CLOSE, FETCH, UPDATE, and
DELETE statements. The order of those statements in a host language
source file is not important; a CLOSE statement for a cursor can precede
its corresponding OPEN statement so long as program control branches to
process the OPEN statement first at run time. However, you must close a
cursor before you reopen it.

SQL Statements 7–167

DECLARE CURSOR Statement

• You can use the SQL CLOSE statement to close cursors individually, or
use the sql_close_cursors() routine to close all open cursors. The sql_close_
cursors() routine takes no arguments. For an example of this routine, see
the Oracle Rdb7 Guide to Distributed Transactions.

• SQL does not restrict how many cursors you can have open at once. It is
valid to declare and open more than one cursor at a time. However, if you
plan to use static, dynamic, and extended dynamic cursors within the same
program, you should avoid giving the same name to different cursors that
share the same scope or extent.

• You cannot refer to list cursors in UPDATE or DELETE statements.

• SQL considers as read-only cursors those that:

Use the DISTINCT argument to eliminate duplicate rows from the
result table

Name more than one table or view in the FROM clause

Include an aggregate function in the select list

Include a UNION, EXCEPT, or INTERSECT operator in the main
query

Contain a GROUP BY or HAVING clause in the main query

When a cursor is declared as READ ONLY, it can never be referenced
in a positional UPDATE or DELETE statement or an INSERT INTO
cursor-name statement.

When a cursor has neither INSERT ONLY, READ ONLY, or UPDATE
ONLY specified, it is considered a general cursor that can be used for a
DELETE, INSERT or UPDATE statement. However, if any of the above
listed items occurs, SQL implicitly considers the cursor to be a READ
ONLY cursor.

• You can process a table cursor only in the forward direction. If you want to
move the table cursor back to a row that you already processed, you must
close the table cursor and open it again.

• The order of the result table is unpredictable unless you specify an ORDER
BY clause in the DECLARE CURSOR statement. (The ORDER BY clause
is not valid in a list cursor declaration.)

• SQL evaluates the result table of the cursor (specified by the SELECT
statement) when it executes an OPEN statement for the cursor.

7–168 SQL Statements

DECLARE CURSOR Statement

• SQL evaluates any parameters in the select expression of a DECLARE
CURSOR statement when it executes the OPEN statement for the cursor.
It cannot evaluate the parameters again until you close and open the
cursor again.

• If a DECLARE CURSOR statement contains parameters, you pass the
parameters to it by declaring them in the procedure that contains the
OPEN statement. In addition, you must specify the parameter in the host
language call to the procedure that contains the OPEN statement. Because
the DECLARE CURSOR statement appears in the declaration section of
a module, not a procedure, you cannot pass the parameters directly to the
DECLARE CURSOR statement.

For examples of declaring cursors with parameters and passing parameters
to an SQL module, see Chapter 3.

• You cannot refer to insert-only cursors in the following statements:

DELETE and UPDATE statements that specify the CURRENT OF
clause

FETCH statements

• You cannot use the INSERT ONLY clause in a DECLARE CURSOR
statement that contains one or more of the following clauses in the main
query:

DISTINCT

WHERE

ORDER BY

GROUP BY

UNION, EXCEPT (MINUS), INTERSECT

• You can use only an insert-only cursor for the cursor name in an INSERT
statement used to add a new row to a table cursor or a new element to a
list cursor.

• When you define an insert-only table cursor, you must include the
LIST column in the select list of the table cursor. For an example, see
Example 3.

• A DECLARE CURSOR statement that uses parameters to specify
statements and cursor names is an extended dynamic DECLARE CURSOR
statement. An extended dynamic DECLARE CURSOR statement lets
programs supply cursor and statement names at run time. See the

SQL Statements 7–169

DECLARE CURSOR Statement

DECLARE CURSOR Statement, Extended Dynamic for more information
on the extended dynamic DECLARE CURSOR statement.

An extended dynamic DECLARE CURSOR statement is an executable
statement and returns a status value. In the module language, you must
include such a statement in a procedure.

• When accessing list data, you must be careful to close a list cursor before
you fetch the next row in the table cursor. If you fetch some, but not
all, rows from a list cursor and move to the next row in the table cursor
without closing the list cursor, you continue to fetch rows from the previous
list cursor. SQL does not issue a warning or error message telling you that
you opened two list cursors.

SQL> -- Define a cursor of Board Manufacturing Department Managers:
SQL> --
SQL> DECLARE BM_MGR CURSOR FOR
cont> SELECT EMPLOYEE_ID, RESUME FROM RESUMES R, CURRENT_INFO CI
cont> WHERE R.EMPLOYEE_ID = CI.ID AND DEPARTMENT
cont> CONTAINING "BOARD MANUFACTURING" AND JOB = "Department Manager";
SQL> --
SQL> -- Define a cursor for resumes of those managers:
SQL> DECLARE THE_RESUME LIST CURSOR FOR
cont> SELECT RESUME WHERE CURRENT OF BM_MGR;
SQL> --
SQL> -- Build the manager’s cursor:
SQL> OPEN BM_MGR;
SQL> --
SQL> -- Fetch the manager’s row:
SQL> FETCH BM_MGR;
R.EMPLOYEE_ID R.RESUME
00164 72:2:3
SQL> --
SQL> -- Get part of the resume:
SQL> OPEN THE_RESUME;
SQL> FETCH THE_RESUME;
RESUME
This is the resume for Alvin Toliver
SQL> --
SQL> -- Do not close the resume, and access the next manager:
SQL> FETCH BM_MGR;
R.EMPLOYEE_ID R.RESUME
00166 72:2:9
SQL> -- SQL continues to fetch from Toliver’s resume (00164)
SQL> -- because the list cursor was not closed.
SQL> -- If it were a new resume, you would see
SQL> -- a new "This is the resume for ..." line.
SQL> FETCH THE_RESUME;
RESUME
Boston, MA

7–170 SQL Statements

DECLARE CURSOR Statement

• The declared cursor must refer to the same table or list of tables specified
in a SET TRANSACTION RESERVING clause or the LOCK TABLE
statement. For example:

SQL> SET TRANSACTION RESERVING jobs FOR WRITE;
SQL> DECLARE curs1 CURSOR WITH HOLD FOR
cont> SELECT first_name,last_name FROM employees;
SQL> OPEN CURS1;
%RDB-E-UNRES_REL, relation EMPLOYEES in specified request is not a relation
reserved in specified transaction

• You can specify only the WITH HOLD clause for table cursors.

• It is possible in some queries for Rdb to prefetch the data for the cursor
during the OPEN statement. Examples include cursors that include the
ORDER BY clause which will require the data to be read and sorted before
delivering the first row of the result. The rows that are fetched are now
a snapshot of the data at the time of the OPEN and may become obsolete
after the COMMIT statement has executed.

For example, user BROWN declares and opens a cursor accessing the
employees table and later commits the transaction, but the WITH HOLD
cursor remains open. User JONES deletes an employee from the employees
table during the time BROWN has the cursor open. BROWN still sees the
employee deleted by JONES because BROWN is accessing a temporary
copy from the original state of table.

• You can define an SQL session default setting for holdable cursors using
the SET HOLD CURSORS statement. See the SET HOLD CURSORS
Statement for more information.

• The WITH HOLD PRESERVE ALL clause conforms to the ODBC driver
behavior of cursors.

• If an outline exists, Oracle Rdb uses the outline specified in the OPTIMIZE
USING clause unless one or more of the directives in the outline cannot be
followed. For example, if the compliance level for the outline is mandatory
and one of the indexes specified in the outline directives has been deleted,
the outline is not used. SQL issues an error message if an existing outline
cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb
compiles the query, ignores the outline name, and searches for an existing
outline with the same outline ID as the query. If an outline with the same
outline ID is found, Oracle Rdb attempts to execute the query using the
directives in that outline. If an outline with the same outline ID is not
found, the optimizer selects a strategy for the query for execution.

SQL Statements 7–171

DECLARE CURSOR Statement

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

Examples

Example 1: Declaring a table cursor in interactive SQL

The following example declares a cursor named SALARY_INFO. The result
table for SALARY_INFO contains the names and current salaries of employees
and is sorted by last name.

SQL> --
SQL> DECLARE SALARY_INFO CURSOR FOR
cont> SELECT E.FIRST_NAME, E.LAST_NAME, S.SALARY_AMOUNT
cont> FROM EMPLOYEES E, SALARY_HISTORY S
cont> WHERE E.EMPLOYEE_ID = S.EMPLOYEE_ID
cont> AND
cont> S.SALARY_END IS NULL
cont> ORDER BY
cont> E.LAST_NAME ASC;
SQL> --
SQL> -- Use an OPEN statement to open the cursor and
SQL> -- position it before the first row of the
SQL> -- result table:
SQL> OPEN SALARY_INFO;
SQL> --
SQL> -- Finally, use two FETCH statements to see the
SQL> -- first two rows of the cursor:
SQL> FETCH SALARY_INFO;
E.FIRST_NAME E.LAST_NAME S.SALARY_AMOUNT
Louie Ames $26,743.00
SQL> FETCH SALARY_INFO;
E.FIRST_NAME E.LAST_NAME S.SALARY_AMOUNT
Leslie Andriola $50,424.00

Example 2: Declaring a table cursor in a C program

This simple program uses embedded DECLARE CURSOR, OPEN, and FETCH
statements to retrieve and print the names and departments of managers.

#include <stdio.h>

void main ()
{
int SQLCODE;
char FNAME[15];
char LNAME[15];
char DNAME[31];

7–172 SQL Statements

DECLARE CURSOR Statement

/* Declare the cursor: */
exec sql

DECLARE MANAGER CURSOR FOR
SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID ;

/* Open the cursor: */
exec sql

OPEN MANAGER;

/* Start a loop to process the rows of the cursor: */
for (;;)

{
/* Retrieve the rows of the cursor
and put the value in host language variables: */
exec sql

FETCH MANAGER INTO :FNAME, :LNAME, :DNAME;
if (SQLCODE != 0) break;
/* Print the values in the variables: */
printf ("%s %s %s\n", FNAME, LNAME, DNAME);
}

/* Close the cursor: */
exec sql

CLOSE MANAGER;
}

Example 3: Using table and list cursors to retrieve list data in interactive SQL

The following example declares a table and list cursor to retrieve list
information:

SQL> DECLARE TBLCURSOR INSERT ONLY TABLE CURSOR FOR
cont> SELECT EMPLOYEE_ID, RESUME FROM RESUMES;
SQL> DECLARE LSTCURSOR INSERT ONLY LIST CURSOR FOR SELECT RESUME WHERE
CURRENT OF TBLCURSOR;
SQL> OPEN TBLCURSOR;
SQL> INSERT INTO CURSOR TBLCURSOR (EMPLOYEE_ID) VALUES (’00164’);
1 row inserted
SQL> OPEN LSTCURSOR;
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’This is the resume for 00164’);
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’Boston, MA’);
SQL> INSERT INTO CURSOR LSTCURSOR VALUES (’Oracle Corporation’);
SQL> CLOSE LSTCURSOR;
SQL> CLOSE TBLCURSOR;
SQL> COMMIT;
SQL> DECLARE TBLCURSOR2 CURSOR FOR SELECT EMPLOYEE_ID,
cont> RESUME FROM RESUMES;
SQL> DECLARE LSTCURSOR2 LIST CURSOR FOR SELECT RESUME WHERE
CURRENT OF TBLCURSOR2;

SQL Statements 7–173

DECLARE CURSOR Statement

SQL> OPEN TBLCURSOR2;
SQL> FETCH TBLCURSOR2;
00164

SQL> OPEN LSTCURSOR2;
SQL> FETCH LSTCURSOR2;
RESUME
This is the resume for 00164
SQL> FETCH LSTCURSOR2;
RESUME
Boston, MA
SQL> FETCH LSTCURSOR2;
RESUME
Oracle Corporation
SQL> FETCH LSTCURSOR2;
RESUME
%RDB-E-STREAM_EOF, attempt to fetch past end of record stream
SQL> CLOSE LSTCURSOR2;
SQL> SELECT * FROM RESUMES;
EMPLOYEE_ID RESUME
00164 1:701:2
1 row selected
SQL> CLOSE TBLCURSOR2;
SQL> COMMIT;

Example 4: Using the scroll attribute for a list cursor

The following example declares a table and read-only scrollable list cursor to
retrieve list information by scrolling back and forth between segments of the
list:

SQL> DECLARE CURSOR_ONE
cont> TABLE CURSOR FOR
cont> (SELECT EMPLOYEE_ID,RESUME FROM RESUMES);
SQL> --
SQL> DECLARE CURSOR_TWO
cont> READ ONLY
cont> SCROLL
cont> LIST CURSOR
cont> FOR SELECT RESUME
cont> WHERE CURRENT OF CURSOR_ONE;

7–174 SQL Statements

DECLARE CURSOR Statement

Example 5: Declaring a holdable cursor

SQL> -- Declare a holdable cursor that remains open on COMMIT
SQL> --
SQL> DECLARE curs1 CURSOR
cont> WITH HOLD PRESERVE ON COMMIT
cont> FOR SELECT e.first_name, e.last_name
cont> FROM employees e
cont> ORDER BY e.last_name;
SQL> OPEN curs1;
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Louie Ames
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Leslie Andriola
SQL> COMMIT;
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Joseph Babbin
SQL> FETCH curs1;
FIRST_NAME LAST_NAME
Dean Bartlett
SQL> ROLLBACK;
SQL> FETCH curs1;
%SQL-F-CURNOTOPE, Cursor CURS1 is not opened
SQL> --
SQL> -- Declare another holdable cursor that remains open always
SQL> --
SQL> DECLARE curs2 CURSOR
cont> WITH HOLD PRESERVE ALL
cont> FOR SELECT e.first_name, e.last_name
cont> FROM employees e
cont> ORDER BY e.last_name;
SQL> OPEN curs2;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Louie Ames
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Leslie Andriola
SQL> COMMIT;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Joseph Babbin
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Dean Bartlett
SQL> ROLLBACK;
SQL> FETCH curs2;
FIRST_NAME LAST_NAME
Wes Bartlett

SQL Statements 7–175

DECLARE CURSOR Statement, Dynamic

DECLARE CURSOR Statement, Dynamic

Declares a cursor where the SELECT statement is supplied at run time in a
parameter.

Refer to the DECLARE CURSOR Statement for a detailed description of
statement elements that apply to both dynamic and nondynamic DECLARE
CURSOR statements.

Environment

You can use the dynamic DECLARE CURSOR statement:

• Embedded in host language programs to be precompiled

• As part of the DECLARE statement section in an SQL module

Format

DECLARE <cursor-name>

TABLE CURSOR
INSERT ONLY with-clause
READ ONLY
UPDATE ONLY

FOR <statement-name>
LIST CURSOR

READ ONLY SCROLL
INSERT ONLY

FOR <statement-name>

with-clause =

WITH HOLD
PRESERVE ON COMMIT

ON ROLLBACK
ALL
NONE

7–176 SQL Statements

DECLARE CURSOR Statement, Dynamic

Arguments

cursor-name
The name of the cursor you want to declare. Use a name that is unique among
all the cursor names in the module. Use any valid SQL name. See Section 2.2
for more information on identifiers.

FOR statement-name
A name that identifies a prepared SELECT statement that is generated at run
time.

INSERT ONLY
Specifies that a new list or a new row is created or opened.

LIST CURSOR
Specifies that you are declaring a cursor to access the elements in a list.

PRESERVE ON COMMIT
PRESERVE ON ROLLBACK
PRESERVE ALL
PRESERVE NONE
Specifies when a cursor remains open.

• PRESERVE ON COMMIT

On commit, all cursors close except those defined with the WITH HOLD
PRESERVE ON COMMIT syntax. On rollback, all cursors close including
those defined with the WITH HOLD PRESERVE ON COMMIT syntax.

This is the same as specifying the WITH HOLD clause without any
preserve options.

• PRESERVE ON ROLLBACK

On rollback, all cursors close except those defined with the WITH
HOLD PRESERVE ON ROLLBACK syntax. On commit, all cursors
close including those defined with the WITH HOLD PRESERVE ON
ROLLBACK syntax.

• PRESERVE ALL

All cursors remain open after commit or rollback. Cursors close with the
CLOSE statement or when the session ends.

• PRESERVE NONE

All cursors close after a CLOSE, COMMIT, or ROLLBACK statement,
when the program stops, or when you exit from interactive SQL.

SQL Statements 7–177

DECLARE CURSOR Statement, Dynamic

This is the same as not specifying the WITH HOLD clause at all.

READ ONLY
Specifies that the cursor is not used to update the database.

SCROLL
Specifies that Oracle Rdb can read the items in a list from either direction (up
or down) or at random.

TABLE CURSOR
Specifies that you are declaring a cursor to access the rows in a table.

UPDATE ONLY
Specifies that the cursor is used to update the database.

WITH HOLD
Indicates that the cursor remain open and maintain its position after the
transaction ends. This is called a holdable cursor.

Usage Notes

• In a dynamic DECLARE CURSOR statement, the cursor name is compiled,
but the SELECT statement is determined at run time.

• Because a dynamic DECLARE CURSOR statement is not executable, you
must place this statement in the DECLARE section of an SQL module, as
with static DECLARE CURSOR statements.

• Cursors and views that contain a GROUP BY, UNION, EXCEPT (MINUS),
or INTERSECT clause in their main query cannot be accessed using
dynamic cursors which require access by DBKEY. If a user attempts to
access one of these views with a dynamic cursor, the following error is
returned when the cursor is opened:

"RDMS-F-VIEWNORET, view cannot be retrieved by database key".

The workaround for this problem is to use nondynamic cursors to access
the view. If a dynamic cursor must be used, the statement should access
the base tables that make up the view (with the GROUP BY and UNION
clauses, as appropriate) and not the view itself.

• Refer also to the Usage Notes for the DECLARE CURSOR statement.

7–178 SQL Statements

DECLARE CURSOR Statement, Dynamic

Examples

Example 1: Using a parameter for a statement name

.

.

.
* This program prepares a statement for dynamic execution from the string
* passed to it, and uses a dynamic cursor to fetch a row from a table.
*
*/
#include <stdio.h>
#include <descrip.h>

struct SQLDA_STRUCT {
char SQLDAID[8];
int SQLDABC;
short SQLN;
short SQLD;
struct {
short SQLTYPE;
short SQLLEN;
char *SQLDATA;
short *SQLIND;
short SQLNAME_LEN;
char SQLNAME[30];
} SQLVAR[];

} *SQLDA;
main()
{

/*
* General purpose locals
*/
int i;
long sqlcode;

char command_string[256];

/*
* Allocate SQLDA structures.
*/

SQLDA = malloc(500);
SQLDA->SQLN = 20;

/* Get the SELECT statement at run time. */

printf("\n Enter a SELECT statement.\n");
printf("\n Do not end the statement with a semicolon.\n");
gets(command_string);

SQL Statements 7–179

DECLARE CURSOR Statement, Dynamic

/* Prepare the SELECT statement. */
PREP_STMT(&sqlcode, &command_string, SQLDA);
if (sqlcode != 0)

goto err;

/* Open the cursor. */
OPEN_CURSOR(&sqlcode);
if (sqlcode != 0)

goto err;

/* Allocate memory. */
for (i=0; i < SQLDA->SQLD; i++) {

SQLDA->SQLVAR[i].SQLDATA = malloc(SQLDA->SQLVAR[i].SQLLEN);
SQLDA->SQLVAR[i].SQLIND = malloc(2);

}

/* Fetch a row. */
FETCH_CURSOR(&sqlcode, SQLDA);
if (sqlcode != 0)

goto err;

/* Use the SQLDA to determine the data type of each column in the row
and print the column. For simplicity, test for only two data types.
CHAR and INT. */

for (i=0; i < SQLDA->SQLD; i++) {

switch (SQLDA->SQLVAR[i].SQLTYPE) {

case SQLDA_CHAR; /* Character */
printf("%s", SQLDA->SQLVAR[i].SQLDATA);
break;

case SQLDA_INTEGER: /* Integer */
printf("%d", SQLDA->SQLVAR[i].SQLDATA);
break;

default:
printf("Some other datatype encountered\n");

}
}

/* Close the cursor. */
CLOSE_CURSOR(&sqlcode);

ROLLBACK(&sqlcode);
return;

.

.

.
}

7–180 SQL Statements

DECLARE CURSOR Statement, Dynamic

Example 2: SQL module file that the preceding program calls

-- This program uses dynamic cursors to fetch a row.
--
--
MODULE C_MOD_DYN_CURS
LANGUAGE C
AUTHORIZATION RDB$DBHANDLE

DECLARE ALIAS FOR FILENAME personnel

-- Declare the dynamic cursor. Use a statement name to identify a
-- prepared SELECT statement.

DECLARE CURSOR1 CURSOR FOR STMT_NAME

-- Prepare the statement from a statement entered at run time
-- and specify that SQL write information about the number and
-- data type of select list items to the SQLDA.

PROCEDURE PREP_STMT
SQLCODE
COMMAND_STRING CHAR (256)
SQLDA;

PREPARE STMT_NAME SELECT LIST INTO SQLDA FROM COMMAND_STRING;

PROCEDURE OPEN_CURSOR
SQLCODE;

OPEN CURSOR1;

PROCEDURE FETCH_CURSOR
SQLCODE
SQLDA;

FETCH CURSOR1 USING DESCRIPTOR SQLDA;

PROCEDURE CLOSE_CURSOR
SQLCODE;

CLOSE CURSOR1;

PROCEDURE ROLLBACK
SQLCODE;

ROLLBACK;

SQL Statements 7–181

DECLARE CURSOR Statement, Extended Dynamic

DECLARE CURSOR Statement, Extended Dynamic

Declares an extended dynamic cursor. An extended dynamic DECLARE
CURSOR statement is a DECLARE CURSOR statement in which both the
cursor name and the SELECT statement are supplied in parameters at run
time.

See the DECLARE CURSOR Statement for a detailed description of statement
elements that apply to both dynamic and nondynamic DECLARE CURSOR
statements.

Environment

You can use the extended dynamic DECLARE CURSOR statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

DECLARE <cursor-name-parameter>

TABLE CURSOR
INSERT ONLY with-clause
READ ONLY
UPDATE ONLY

FOR <statement-id-parameter>
LIST CURSOR FOR

READ ONLY SCROLL
INSERT ONLY

<statement-id-parameter>

with-clause =

WITH HOLD
PRESERVE ON COMMIT

ON ROLLBACK
ALL
NONE

7–182 SQL Statements

DECLARE CURSOR Statement, Extended Dynamic

Arguments

cursor-name-parameter
Contains the name of the cursor you want to declare. Use a character string
parameter to hold the cursor name that the program supplies at run time.

FOR statement-id-parameter
A parameter that contains an integer that identifies a prepared SELECT
statement. Use an integer parameter to hold the statement identifier that
SQL generates and assigns to the parameter when SQL executes a PREPARE
statement.

INSERT ONLY
Specifies that a new list or a new row is created or opened.

LIST CURSOR FOR
Specifies that you are declaring a cursor to access the elements in a list.

PRESERVE ON COMMIT
PRESERVE ON ROLLBACK
PRESERVE ALL
PRESERVE NONE
Specifies when a cursor remains open.

• PRESERVE ON COMMIT

On commit, all cursors close except those defined with the WITH HOLD
PRESERVE ON COMMIT syntax. On rollback, all cursors close including
those defined with the WITH HOLD PRESERVE ON COMMIT syntax.

This is the same as specifying the WITH HOLD clause without any
preserve options.

• PRESERVE ON ROLLBACK

On rollback, all cursors close except those defined with the WITH
HOLD PRESERVE ON ROLLBACK syntax. On commit, all cursors
close including those defined with the WITH HOLD PRESERVE ON
ROLLBACK syntax.

• PRESERVE ALL

All cursors remain open after commit or rollback. Cursors close with the
CLOSE statement or when the session ends.

• PRESERVE NONE

All cursors close after a close, commit, or rollback statement, when the
program stops, or when you exit from interactive SQL.

SQL Statements 7–183

DECLARE CURSOR Statement, Extended Dynamic

This is the same as not specifying the WITH HOLD clause at all.

READ ONLY
Specifies that the cursor is not used to update the database.

SCROLL
Specifies that Oracle Rdb can read the items in a list from either direction (up
or down) or at random.

TABLE CURSOR FOR
Specifies that you are declaring a cursor to access the rows in a table.

UPDATE ONLY
Specifies that the cursor is used to update the database.

WITH HOLD
Indicates that the cursor remain open and maintain its position after the
transaction ends. This is called a holdable cursor.

Usage Notes

• An extended dynamic DECLARE CURSOR statement is an executable
statement in dynamic SQL. It lets you specify, through parameters, both
the name of a cursor and the identifier of the SELECT statement on which
the cursor is based at run time. In general, using extended dynamic SQL
allows a single set of SQL procedures to concurrently control an arbitrary
number of prepared statements.

• The extended dynamic DECLARE CURSOR statement lets you use one
DECLARE CURSOR-PREPARE statement combination for multiple,
dynamically generated SELECT statements. This eliminates the necessity
of coding a DECLARE CURSOR and PREPARE statement for each
dynamically generated SELECT statement.

• You must use parameters to specify both the cursor name and the
statement identifier in an extended dynamic DECLARE CURSOR
statement. Specifying either the cursor name or the statement identifier
explicitly but not both through a parameter generates an error. Specifying
both the cursor name and statement identifier explicitly makes the
cursor a nondynamic cursor and the DECLARE CURSOR statement a
nonexecutable statement.

7–184 SQL Statements

DECLARE CURSOR Statement, Extended Dynamic

• Because an extended dynamic DECLARE CURSOR statement is
executable, it returns an execution status (SQLSTATE or SQLCODE)
at run time. Your program should check the status after executing an
extended dynamic DECLARE CURSOR statement.

Because an extended dynamic DECLARE CURSOR statement is
executable, you must place this statement in programs and SQL module
files where executable statements are allowed. For example, you must
place extended dynamic DECLARE CURSOR statements within a
procedure in an SQL module, not in the DECLARE section as with
static or dynamic DECLARE CURSOR statements.

• Refer also to the Usage Notes for the DECLARE CURSOR statement.

Example

Example 1: Using parameters for statement and cursor names

The following example shows two procedures from the online sample program
SQL$MULTI_STMT_DYN.SQLADA. These procedures show the use of
parameters for statement and cursor names.

.

.

.
-- This procedure prepares a statement for dynamic execution from the string
-- passed to it. This procedure can prepare any number of statements
-- because the statement is passed to it as the parameter, cur_procid.

procedure PREPARE_SQL is
CUR_CURSOR : string(1..31) := (others => ’ ’);
CUR_PROCID : integer := 0;
CUR_STMT : string(1..1024) := (others => ’ ’);

begin
-- Allocate separate SQLDAs for parameter markers (sqlda_in) and select list
-- items (sqlda_out). Assign the value of the constant MAXPARMS (set in the
-- declarations section) to the SQLN field of both SQLDA structures. SQLN
-- specifies to SQL the maximum size of the SQLDA.

sqlda_in := new sqlda_record;
sqlda_in.sqln := maxparms;
sqlda_out := new sqlda_record;
sqlda_out.sqln := maxparms;

-- Assign the SQL statement that was constructed in the procedure
-- CONSTRUCT_SQL to the variable cur_stmt.

cur_stmt := sql_stmt;

SQL Statements 7–185

DECLARE CURSOR Statement, Extended Dynamic

-- Use the PREPARE...SELECT LIST statement to prepare the dynamic statement
-- and write information about any select list items in it to sqlda_out.
-- It prepares a statement for dynamic execution from the string passed to
-- it. It also writes information about the number and data type of any
-- select list items in the statement to an SQLDA (specifically, the
-- sqlda_out SQLDA specified).
--
-- Note that the PREPARE statement could have prepared the statement without
-- writing to an SQLDA. Instead, a separate DESCRIBE...SELECT LIST statement
-- would have written information about any select list items to an SQLDA.
EXEC SQL PREPARE :cur_procid SELECT LIST INTO :sqlda_out FROM :cur_stmt;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- Use the DESCRIBE...MARKERS statement to write information about any
-- parameter markers in the dynamic statement to sqlda_in. This statement
-- writes information to an SQLDA (specifically, the sqlda_in SQLDA
-- specified) about the number and data type of any parameter markers in
-- the prepared dynamic statement. Note that SELECT statements may also
-- have parameter markers.

EXEC SQL DESCRIBE :cur_procid MARKERS INTO sqlda_in;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;

-- If the operation is "Read," create a unique name for the cursor name
-- so that the program can pass the cursor name to the dynamic DECLARE
-- CURSOR statement.

if cur_op(1) = ’R’ then
cur_cursor(1) := ’C’;
cur_cursor(2..name_strlng) := cur_name(1..name_strlng - 1);

-- Declare the dynamic cursor.

EXEC SQL DECLARE :cur_cursor CURSOR FOR :cur_procid;
case sqlca.sqlcode is

when sql_success => null;
when others => raise syntax_error;

end case;
end if;

number_of_procs := number_of_procs + 1;
sqlda_in_array(number_of_procs) := sqlda_in;
sqlda_out_array(number_of_procs) := sqlda_out;
procedure_names(number_of_procs) := cur_name;
procedure_ids(number_of_procs) := cur_procid;
if cur_op(1) = ’R’ then

cursor_names(number_of_procs) := cur_cursor;
end if;

7–186 SQL Statements

DECLARE CURSOR Statement, Extended Dynamic

exception
when syntax_error =>

sql_get_error_text(get_error_buffer,get_error_length);
put_line(get_error_buffer(1..integer(get_error_length)));
put("Press RETURN to continue. ");
get_line(terminal,release_screen,last);
new_line;

end PREPARE_SQL;
.
.
.
begin -- procedure body DISPLAY_DATA

-- Before displaying any data, allocate buffers to hold the data
-- returned by SQL.
--

allocate_buffers;

-- Allocate and assign SQLDAs for the requested SQL procedure.
--
sqlda_in := new sqlda_record;
sqlda_in := sqlda_in_array(stmt_index);
sqlda_out := new sqlda_record;
sqlda_out := sqlda_out_array(stmt_index);
cur_cursor := cursor_names(stmt_index);
-- Open the previously declared cursor. The statement specifies
-- an SQLDA (specifically, sqlda_in) as the source of addresses for any
-- parameter markers in the cursor’s SELECT statement.
--
EXEC SQL OPEN :cur_cursor USING DESCRIPTOR sqlda_in;
case sqlca.sqlcode is

when sql_success => null;
when others => raise unexpected_error;

end case;

-- Fetch the first row from the result table. This statement fetches a
-- row from the opened cursor and writes it to the addresses specified
-- in an SQLDA (specifically, sqlda_out).
--
EXEC SQL FETCH :cur_cursor USING DESCRIPTOR sqlda_out;
case sqlca.sqlcode is
-- Check to see if the result table has any rows.

when sql_success => null;
when stream_eof =>

put_line("No records found.");
new_line;

when others => raise unexpected_error;
end case;

-- Set up a loop to display the first row, then fetch and display second
-- and subsequent rows.

SQL Statements 7–187

DECLARE CURSOR Statement, Extended Dynamic

rowcount := 0;
while sqlca.sqlcode = 0 loop

rowcount := rowcount + 1;
-- Execute the DISPLAY_ROW procedure.

display_row;
-- To only display 5 rows, exit the loop if the loop counter
-- equals MAXROW (coded as 5 in this program).

if rowcount = maxrows then exit; end if;
-- Fetch another row, exit the loop if no more rows.

EXEC SQL FETCH :cur_cursor USING DESCRIPTOR sqlda_out;
case sqlca.sqlcode is

when sql_success => null;
when stream_eof => exit;
when others => raise unexpected_error;

end case;
end loop;

-- Close the cursor.
EXEC SQL CLOSE :cur_cursor;
case sqlca.sqlcode is

when sql_success => null;
when others => raise unexpected_error;

end case;
exception

when unexpected_error =>
sql_get_error_text(get_error_buffer,get_error_length);
EXEC SQL ROLLBACK;
put_line("This condition was not expected.");
put_line(get_error_buffer(1..integer(get_error_length)));
put("Press RETURN to continue. ");
get_line(terminal,release_screen,last);

-- Stop and let the user look before returning.
skip;
put_line("Press RETURN to proceed. ");
get_line(terminal,release_screen,last);

end DISPLAY_DATA;

7–188 SQL Statements

DECLARE FUNCTION Statement

DECLARE FUNCTION Statement

Declares an external function interface for use in database definition
statements.

The DECLARE FUNCTION statement is documented under the DECLARE
Routine Statement. For complete information on declaring a procedure, see the
DECLARE Routine Statement.

SQL Statements 7–189

DECLARE LOCAL TEMPORARY TABLE Statement

DECLARE LOCAL TEMPORARY TABLE Statement

Explicitly declares a local temporary table.

The metadata for a declared local temporary table is not stored in the database
and cannot be shared by other modules. These tables are sometimes called
scratch tables.

The data stored in the table cannot be shared between SQL sessions or
modules in a single session. Unlike persistent base tables, the metadata
and data do not persist beyond an SQL session.

In addition to declared local temporary tables, there are two other types of
temporary tables:

• Global temporary tables

• Local temporary tables

See the CREATE TABLE Statement for additional information on global and
local temporary tables.

Environment

You can use the DECLARE LOCAL TEMPORARY TABLE statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

• In a stored module

Format

DECLARE LOCAL TEMPORARY TABLE MODULE .
alias-name .

<table-name> dec-local-table-body

COMPRESSION IS ENABLED
DISABLED

ON COMMIT DELETE ROWS
PRESERVE

7–190 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

dec_local_table_body

(dec_local_col_list)

LIKE <other-table-name>
(dec_local_col_list)

dec-local-col-list =

> <column-name>

data-type
<domain-name> DEFAULT default-value

COMPUTED BY value-expr
,

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
FLOAT
NUMBER

(<p>)
* , <d>

LIST OF BYTE VARYING
(<n>) AS BINARY

AS TEXT
DECIMAL
NUMERIC (<n>)

, <n>
REAL
DOUBLE PRECISION
date-time-data-types

SQL Statements 7–191

DECLARE LOCAL TEMPORARY TABLE Statement

char-data-types =

CHAR
CHARACTER (<n>) CHARACTER SET char-set-name
CHAR VARYING
CHARACTER VARYING
VARCHAR (<n>)
VARCHAR2 CHARACTER SET char-set-name
LONG VARCHAR
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
RAW (<n>)
LONG

RAW

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

frac =

(<numeric-literal>)

7–192 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

interval-qualifier =

YEAR prec
TO MONTH

MONTH prec
DAY prec

TO HOUR
MINUTE
SECOND frac

HOUR prec
TO MINUTE

SECOND frac
MINUTE prec

TO SECOND frac
SECOND seconds-prec

prec =

(<numeric-literal>)

seconds-prec =

(<numeric-literal-1>

)
, <numeric-literal-2>

Arguments

COMPRESSION IS ENABLED
COMPRESSION IS DISABLED
Specifies whether run-length compression is enabled or disabled for rows
inserted into the declared local temporary table.

In some cases, the data inserted into a local temporary table may not compress
and so incur only overhead in the row. This overhead is used by Rdb to
describe the sequence of uncompressible data. Use COMPRESSION IS
DISABLED to prevent Rdb from attempting the compression of such data.

The default is COMPRESSION IS ENABLED.

SQL Statements 7–193

DECLARE LOCAL TEMPORARY TABLE Statement

dec-local-col-definition
The definition for a column in the table. SQL gives you two ways to specify
column definitions:

• By directly specifying a data type to associate with a column name

• By naming a domain that indirectly specifies a data type to associate with
a column name

See the CREATE TABLE Statement for more information about column
definitions. See Section 2.3 for more information about data types.

ON COMMIT PRESERVE ROWS
ON COMMIT DELETE ROWS
Specifies whether data is preserved or deleted after a COMMIT statement for
declared local temporary tables.

The default, if not specified, is ON COMMIT DELETE ROWS.

table-name
The name of the table you want to declare. You can optionally precede the
table-name with an alias-name and a period (.). You must, however, precede
the table-name with the keyword MODULE and a period (.), for example,
MODULE.EMPL_PAYROLL.

Usage Notes

• You must precede the name of the declared local temporary table with the
keyword MODULE and a period (.), for example:

SQL> DECLARE LOCAL TEMPORARY TABLE MODULE.empl_payroll
.
.
.

• Declared local temporary tables are stored in virtual memory, not in a
storage area. They use the same storage segment layout as persistent base
tables, but they use additional space in memory for management overhead.

See the Oracle Rdb Guide to Database Design and Definition for
information on estimating the virtual memory needs of declared local
temporary tables.

7–194 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

• Because the metadata is not stored in the database, you cannot use
declared local temporary tables in as many places as you use persistent
base tables. In particular, declared local temporary tables cannot:

– Be deleted using the DROP TABLE statement

– Be modified using the ALTER TABLE statement

– Be truncated

– Contain data of the data type LIST OF BYTE VARYING

– Be referred to in a view or in a storage map

– Be referred to in a constraint or be defined with a constraint

– Contain indexes

– Use triggers

– Have granted or revoked privileges

– Be referred to in an interactive or dynamic CREATE OUTLINE
statement if the declared local temporary table is outside the defintion
of a stored module

– Be referred to in a COMMENT ON statement

– Be specified in the RESERVING clause of a SET TRANSACTION
statement

– Be displayed using the SHOW statement

– Be referenced in a COMPUTED BY column of another persistent or
declared local temporary table

– Be exported or imported, unless as part of a module.

• You cannot define column or table constraints in declared local temporary
tables. The columns in a declared local temporary table can reference
domain constraints.

• You can use dbkeys with declared local temporary tables.

• Oracle Rdb does not journal changes to declared local temporary tables but
does manage ROLLBACK of changes in a transaction.

• You can define and write to a declared local temporary table during a
read-only transaction.

SQL Statements 7–195

DECLARE LOCAL TEMPORARY TABLE Statement

• You can qualify the name of the table with an alias name. For example, if
the database alias is PERS, the qualified name of PAYCHECK_DECL_TAB
is PERS.MODULE.PAYCHECK_DECL_TAB. However, the declared local
temporary table name is not an element of a catalog or schema.

• The following table summarizes the actions you can take using temporary
tables and when you can refer to temporary tables.

Types of Temporary Tables

Action Global Local Declared Local

Drop table Yes Yes No
Alter table Yes No No
Truncate table Yes No No
Add constraints on table or column Yes No No
Refer to table in constraint
definition

Yes2 Yes No

Refer to domain constraints Yes Yes Yes
Refer to table in storage map Yes3 Yes No
Refer to table in view Yes Yes No
Grant privileges on temporary table Yes Yes No
Refer to table in outline Yes Yes No1

Create indexes on table No No No
Use dbkeys on table Yes Yes Yes
Use triggers with table Yes No No
Refer to table in COMMENT ON
statement

Yes Yes No

Contain LIST OF BYTE VARYING
data

No No No

Specify in RESERVING clause Yes4 Yes4 No
Write to table during read-only
transaction

Yes Yes Yes

Create in a read-only transaction No No Yes

1You can refer to a declared local temporary table if it is defined inside a stored module.
2From a temporary table only.
3Only the ENABLE or DISABLE COMPRESSION attribute may be specified.
4Such references are igmored.

7–196 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

Types of Temporary Tables

Action Global Local Declared Local

Refer to a table in a computed by
column

Yes Yes No

For information about global and local temporary tables, see the CREATE
TABLE Statement.

• Because the declared local temporary table name is qualified by the
keyword MODULE and a period (.), a declared local temporary table can
have the same name as a persistent base table or view.

Examples

Example 1: Declaring and using a declared local temporary table in interactive
SQL

SQL> DECLARE LOCAL TEMPORARY TABLE MODULE.PAYCHECK_DECL_INT
cont> (EMPLOYEE_ID ID_DOM,
cont> LAST_NAME CHAR(14),
cont> HOURS_WORKED INTEGER,
cont> HOURLY_SAL INTEGER(2),
cont> WEEKLY_PAY INTEGER(2))
cont> ON COMMIT PRESERVE ROWS;
SQL> --
SQL> INSERT INTO MODULE.PAYCHECK_DECL_INT
cont> (EMPLOYEE_ID, LAST_NAME, HOURS_WORKED, HOURLY_SAL, WEEKLY_PAY)
cont> SELECT P.EMPLOYEE_ID, E.LAST_NAME, P.HOURS_WORKED,
cont> P.HOURLY_SAL, P.HOURS_WORKED * P.HOURLY_SAL
cont> FROM EMPLOYEES E, PAYROLL P
cont> WHERE E.EMPLOYEE_ID = P.EMPLOYEE_ID
cont> AND P.WEEK_DATE = DATE ’1995-08-01’;
100 rows inserted

SQL> SELECT * FROM MODULE.PAYCHECK_DECL_INT LIMIT TO 2 ROWS;
EMPLOYEE_ID LAST_NAME HOURS_WORKED HOURLY_SAL WEEKLY_PAY
00165 Smith 40 30.50 1220.00
00166 Dietrich 40 36.00 1440.00
2 rows selected

Example 2: Creating a stored module that contains the following:

• A declared local temporary table, MODULE.PAYCHECK_DECL_TAB

• A procedure, PAYCHECK_INS_DECL, that inserts weekly salary records
into the declared local temporary table, MODULE.PAYCHECK_DECL_TAB

SQL Statements 7–197

DECLARE LOCAL TEMPORARY TABLE Statement

• A procedure, LOW_HOURS_DECL, that counts the number of employees
with less than 40 hours worked

The following example also demonstrates that you can access the declared local
temporary table only from within the module.

SQL> -- Create the module containing a declared temporary table.
SQL> --
SQL> CREATE MODULE PAYCHECK_DECL_MOD
cont> LANGUAGE SQL
cont> DECLARE LOCAL TEMPORARY TABLE MODULE.PAYCHECK_DECL_TAB
cont> (EMPLOYEE_ID ID_DOM,
cont> LAST_NAME CHAR(14) ,
cont> HOURS_WORKED INTEGER, HOURLY_SAL INTEGER(2),
cont> WEEKLY_PAY INTEGER(2))
cont> ON COMMIT PRESERVE ROWS
cont> --
cont> -- Create the procedure to insert rows.
cont> --
cont> PROCEDURE PAYCHECK_INS_DECL;
cont> BEGIN
cont> INSERT INTO MODULE.PAYCHECK_DECL_TAB
cont> (EMPLOYEE_ID, LAST_NAME, HOURS_WORKED, HOURLY_SAL, WEEKLY_PAY)
cont> SELECT P.EMPLOYEE_ID, E.LAST_NAME, P.HOURS_WORKED,
cont> P.HOURLY_SAL, P.HOURS_WORKED * P.HOURLY_SAL
cont> FROM EMPLOYEES E, PAYROLL P
cont> WHERE E.EMPLOYEE_ID = P.EMPLOYEE_ID
cont> AND P.WEEK_DATE = DATE ’1995-08-01’;
cont> END;
cont> --
cont> -- Create the procedure to count the low hours.
cont> --
cont> PROCEDURE LOW_HOURS_DECL (:cnt INTEGER);
cont> BEGIN
cont> SELECT COUNT(*) INTO :cnt FROM MODULE.PAYCHECK_DECL_TAB
cont> WHERE HOURS_WORKED < 40;
cont> END;
cont> END MODULE;
SQL> --
SQL> -- Call the procedure to insert the rows.
SQL> --
SQL> CALL PAYCHECK_INS_DECL();
SQL> --
SQL> -- Declare a variable and call the procedure to count records with
SQL> -- low hours.
SQL> --
SQL> DECLARE :low_hr_cnt integer;
SQL> CALL LOW_HOURS_DECL(:low_hr_cnt);
LOW_HR_CNT

2

7–198 SQL Statements

DECLARE LOCAL TEMPORARY TABLE Statement

SQL> --
SQL> -- Because the table is a declared local temporary table, you cannot
SQL> -- access it from outside the stored module that contains it.
SQL> --
SQL> SELECT * FROM MODULE.PAYCHECK_DECL_TAB;
%SQL-F-RELNOTDCL, Table PAYCHECK_DECL_TAB has not been declared in module or
environment

Example 3: Disabling Compression for a Declared Local Temporary Table

The following example shows a declared local temporary table that will not
benefit from compression. The clause COMPRESSION IS DISABLED is used
to reduce the CPU overhead for the table as well as preventing a possible row
size increase because of compression notations.

SQL> declare local temporary table module.scratch0
cont> (averages double precision)
cont> compression is DISABLED
cont> on commit PRESERVE rows
cont> ;
SQL>
SQL> insert into module.scratch0
cont> select avg (char_length (a)) from module.scratch1;
1 row inserted
SQL>
SQL> select * from module.scratch0;

AVERAGES
2.100000000000000E+001

SQL Statements 7–199

DECLARE MODULE Statement

DECLARE MODULE Statement

Specifies characteristics, such as character sets, quoting rules, and the default
date format for a nonstored module.

Environment

You can use the DECLARE MODULE statement:

• Embedded in host language programs to be precompiled

• In a context file

This command is not executable.

Format
DECLARE MODULE <module-name>

DIALECT environment

char-set-options CATALOG <catalog-name>

SCHEMA <schema-name> AUTHORIZATION <auth-id>

PRAGMA (module-pragma-list) module-language-options

environment =

SQL99
SQL92
SQL89
SQLV40
MIA

7–200 SQL Statements

DECLARE MODULE Statement

char-set-options =

NAMES ARE names-char-set

LITERAL CHARACTER SET support-char-set
NATIONAL CHARACTER SET support-char-set
DEFAULT CHARACTER SET support-char-set
IDENTIFIER CHARACTER SET names-char-set
DISPLAY CHARACTER SET names-char-set

module-pragma-list =

IDENT string-literal

module-language-options =

ALIAS <alias-name>
CHARACTER LENGTH CHARACTERS

OCTETS
DEFAULT DATE FORMAT SQL99

SQL92
VMS

KEYWORD RULES environment
PARAMETER COLONS
QUOTING RULES environment
RIGHTS INVOKER

RESTRICT
VIEW UPDATE RULES environment
QUIET COMMIT ON

OFF
COMPOUND TRANSACTIONS INTERNAL

EXTERNAL

Arguments

ALIAS alias-name
Specifies the module alias. If you do not specify a module alias, the default
alias is the authorization identifier for the module.

When the FIPS flagger is enabled, the ALIAS clause (by itself or used with the
AUTHORIZATION clause) is flagged as nonstandard syntax.

SQL Statements 7–201

DECLARE MODULE Statement

If the application needs to refer to only one database across multiple modules,
it is good practice to use the same alias for the default database in all modules
that will be linked to make up an executable image.

AUTHORIZATION auth-id
Specifies the authorization identifier for the module. If you do not specify a
schema clause, the authorization identifier specifies the default schema.

To comply with the ANSI/ISO 1989 standard, specify the AUTHORIZATION
clause without the schema name. Specify both the AUTHORIZATION clause
and the schema name to comply with the ANSI/ISO SQL standard.

When you attach to a multischema database, the authorization identifier
for each schema is the user name of the user compiling the module. This
authorization identifier defines the default alias and schema. You can use the
SCHEMA clause and the DECLARE ALIAS statement to override the defaults.

If you attach to a single-schema database or specify that MULTISCHEMA IS
OFF in your ATTACH or DECLARE ALIAS statements and you specify both an
AUTHORIZATION clause and an ALIAS clause, the authorization identifier is
ignored by SQL unless you use the RIGHTS RESTRICT clause. The RIGHTS
RESTRICT clause causes SQL to use the authorization identifier specified in
the module AUTHORIZATION clause for privilege checking.

If procedures in the SQL module always qualify table names with an
authorization identifier, the AUTHORIZATION clause has no effect on SQL
statements in the procedures.

When the FIPS flagger is enabled, the omission of an AUTHORIZATION clause
is flagged as nonstandard ANSI syntax.

CATALOG catalog-name
Specifies the default catalog for the module. Catalogs are groups of schemas
within a multischema database. If you omit the catalog name when specifying
an object in a multischema database, SQL uses the default catalog name
RDB$CATALOG. Databases created without the multischema attribute do
not have catalogs. You can use the SET CATALOG statement to change the
current default catalog name in dynamic or interactive SQL.

CHARACTER LENGTH CHARACTERS
CHARACTER LENGTH OCTETS
Specifies whether the length of character string parameters, columns, and
domains are interpreted as characters or octets. The default is octets.

7–202 SQL Statements

DECLARE MODULE Statement

DEFAULT CHARACTER SET support-char-set
Specifies the character set for parameters that are not qualified by a character
set. The default is DEC_MCS. This clause overrides the character set specified
in the NAMES ARE clause. See Section 2.1 for a list of the allowable character
sets.

DEFAULT DATE FORMAT SQL99
DEFAULT DATE FORMAT VMS
Controls the default interpretation for the data type of the CURRENT_
TIMESTAMP built in function and column or CAST expressions with the
DATE data type. The DATE and CURRENT_TIMESTAMP data types can be
either VMS or ANSI/ISO Standard format.

If you specify VMS, both data types are interpreted as VMS format. The VMS
format DATE and CURRENT_TIMESTAMP contain YEAR TO SECOND fields.

If you specify SQL99 or SQL92, both data types are interpreted as SQL
standard format. The SQL format DATE contains only the YEAR TO DAY
fields.

The default is VMS.

Use the DEFAULT DATE FORMAT clause, rather than the SQLOPTIONS
= ANSI_DATE qualifier because the qualifier will be deprecated in a future
release.

DIALECT
Controls the following settings:

• Whether the length of character string parameters, columns, and domains
are interpreted as characters or octets

• Whether double quotation marks are interpreted as string literals or
delimited identifiers

• Whether or not identifiers can be keywords

• Which views are read-only

• Whether columns with the DATE or CURRENT_TIMESTAMP data type
are interpreted as VMS or SQL99 format

The DIALECT clause lets you specify the settings with one clause, instead of
specifying each setting individually. Because the module processor processes
the module clauses sequentially, the DIALECT clause can override the settings
of clauses specified before it or be overridden by clauses specified after it.

SQL Statements 7–203

DECLARE MODULE Statement

The following statements are specific to the SQL99 dialect:

• The default constraint evaluation time setting changes from DEFERRABLE
to NOT DEFERRABLE.

• Conversions between character data types when storing data or retrieving
data will raise exceptions or warnings in certain situations.

• You can specify DECIMAL or NUMERIC for formal parameters in SQL
modules, and declare host language parameters with packed decimal or
signed numeric storage format. SQL generates an error message if you
attempt to exceed the precision specified.

• The USER keyword specifies the current active user name for a request.

• A warning is generated when a NULL value is eliminated from a SET
function.

• The WITH CHECK OPTION clause on views returns a discrete error code
from an integrity constraint failure.

• An exception is generated with non-null terminated C strings.

Table 8-5 shows the dialect settings for each environment.

DISPLAY CHARACTER SET names-char-set
Specifies the character set encoding and characteristics expected of text strings
returned back to SQL from Oracle Rdb. See the Usage Notes under CREATE
DATABASE Statement for additional information.

IDENTIFIER CHARACTER SET names-char-set
Specifies the character set used for database object names such as table names
and column names. This clause overrides the character set specified in the
NAMES ARE clause. See Section 2.1.5 for a list of allowable character sets
and option values.

The specified character set must contain ASCII characters.

KEYWORD RULES
Controls whether or not identifiers can be keywords. If you specify SQL99,
SQL92, SQL89, or MIA, you cannot use keywords as identifiers, unless you
enclose them in double quotation marks. If you specify SQLV40, you can use
keywords as identifiers. The default is SQLV40.

Use the KEYWORD RULES clause, rather than the SQLOPTIONS = ANSI_
IDENTIFIER qualifier because the qualifier will be deprecated in a future
release.

7–204 SQL Statements

DECLARE MODULE Statement

LITERAL CHARACTER SET support-char-set
Specifies the character set for literals that are not qualified by a character set
or national character set. If you do not specify a character set in this clause or
in the NAMES ARE clause, the default is DEC_MCS. This clause overrides the
character set for unqualified literals specified in the NAMES ARE clause. See
Section 2.1 for a list of the allowable character sets.

MODULE module-name
An optional name for the nonstored module. If you do not supply a module
name, the default name is SQL_MODULE.

Use any valid OpenVMS name. (See Section 2.2 for more information on
user-supplied names.) However, the name must be unique among the modules
that are linked together to form an executable image.

NAMES ARE names-char-set
Specifies the character set used for the default, identifier, and literal character
sets for the module. Also specifies the character string parameters that are not
qualified by a character set or national character set. If you do not specify a
character set, the default is DEC_MCS.

You must ensure that the character set specified in this clause matches the
character set of all the databases attached to by any particular connection and
must contain ASCII characters. See Section 2.1.5 for a list of the allowable
character sets.

NATIONAL CHARACTER SET support-char-set
Specifies the character set for literals qualified by the national character set.
See Section 2.1 for a list of the allowable character sets.

PARAMETER COLONS
If you use the PARAMETER COLONS clause, all parameter names must begin
with a colon (:). This is valid in context files for module language only. This
rule applies to both declarations and references of module language procedure
parameters. If you do not use this clause, no parameter name can begin with a
colon.

The current default behavior is no colons are used. However, this default is
deprecated syntax. In the future, required colons will be the default because it
allows processing of ANSI/ISO SQL standard modules.

Use the PARAMETER COLONS clause, rather than the SQLOPTIONS =
ANSI_PARAMETERS qualifier because the qualifier will be deprecated in a
future release.

SQL Statements 7–205

DECLARE MODULE Statement

QUOTING RULES
Controls whether double quotation marks are interpreted as string literals or
delimited identifiers. If you specify SQLV40, SQL interprets double quotation
marks as literals. All other dialects interpret double quotation marks as
delimited identifiers. The default is SQLV40.

Use the QUOTING RULES clause, rather than the SQLOPTIONS = ANSI_
QUOTING qualifier because the qualifier will be deprecated in a future release.

RIGHTS INVOKER
RIGHTS RESTRICT
Specifies whether or not a module must be executed by a user whose
authorization identifier matches the module authorization identifier.

If you specify RESTRICT, SQL bases privilege checking on the default
authorization identifier. The default authorization identifier is the
authorization identifier of the user who compiles a module, unless you specify
a different authorization identifier using an AUTHORIZATION clause in the
module. The RESTRICT option causes SQL to compare the user name of the
person who executes a module with the default authorization identifier and
prevents any user other than one with the correct authorization identifier
from invoking that module. All applications that use multischema restrict the
invoker by default.

If you specify INVOKER, SQL bases the privilege on the authorization
identifier of the user running the module. The default is INVOKER.

Use the RIGHTS clause, rather than the SQLOPTIONS = ANSI_
AUTHORIZATION qualifier because the qualifier will be deprecated in a
future release.

SCHEMA schema-name
Specifies the default schema name for the module. The default schema is
the schema to which SQL statements refer if those statements do not qualify
table names and other schema names with an authorization identifier. If you
do not specify a default schema name for a module, you must specify a default
authorization identifier.

Using the SCHEMA clause, separate modules can each declare different
schemas as default schemas. This can be convenient for an application that
needs to refer to more than one schema. By putting SQL statements that refer
to a schema in the appropriate module’s procedures, you can minimize tedious
qualification of schema element names in those statements.

7–206 SQL Statements

DECLARE MODULE Statement

When you specify SCHEMA schema-name AUTHORIZATION auth-id, you
specify the schema name and the schema authorization identifier for the
module. The schema authorization identifier is considered the owner and
creator of the schema and everything in it.

VIEW UPDATE RULES
Specifies whether or not the SQL module processor applies the ANSI/ISO SQL
standard for updatable views to all views created during compilation.

If you specify SQL99, SQL92, SQL89, or MIA, the SQL module processor
applies that ANSI/ISO SQL standard for updatable views to all views created
during compilation. Views that do not comply with the specified ANSI/ISO
SQL standard for updatable views cannot be updated.

The specified ANSI/ISO standard for updatable views requires the following
conditions to be met in the SELECT statement:

• The DISTINCT keyword is not specified.

• Only column names can appear in the select list. Each column name can
appear only once. Functions and expressions such as max(column_name)
or column_name +1 cannot appear in the select list.

• The FROM clause refers to only one table. This table must be either a base
table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

If you specify SQLV40, SQL does not apply the ANSI/ISO standard for
updatable views. Instead, SQL considers views that meet the following
conditions to be updatable:

• The DISTINCT keyword is not specified.

• The FROM clause refers to only one table. This table must be either a base
table or a derived table that can be updated.

• The WHERE clause does not contain a subquery.

• The GROUP BY clause is not specified.

• The HAVING clause is not specified.

SQL Statements 7–207

DECLARE MODULE Statement

Example

Example 1: Declaring a module specifying character strings of different
character sets

Assuming that the character sets for the database match the character
sets specified in the program, the following example shows a simple SQL
precompiled C program that retrieves one row from the COLOURS table.

/* This SQL precompiled program does some simple tests of character length
* and character sets.
*/
#include stdio
#include descrip

main()
{

/* Specify CHARACTER LENGTH CHARACTERS in the DECLARE MODULE statement.
* In addition, specify the NAMES, NATIONAL, and DEFAULT character sets.
*/
EXEC SQL DECLARE MODULE CCC_COLOURS

NAMES ARE DEC_KANJI
NATIONAL CHARACTER SET KANJI
SCHEMA RDB$SCHEMA
AUTHORIZATION SQL_SAMPLE
CHARACTER LENGTH CHARACTERS
DEFAULT CHARACTER SET DEC_KANJI
ALIAS RDB$DBHANDLE;

/* If you do not specify character sets in the DECLARE ALIAS statement, SQL
* uses the character sets of the compile-time database.
*/
EXEC SQL DECLARE ALIAS FILENAME MIA_CHAR_SET;

int SQLCODE;

/* Because the default character set is DEC_KANJI, you do not need to qualify
* the variable dec_kanji_p with the character set, but you must declare
* char in lowercase.
*/
char dec_kanji_p[31];

/* When you declare a parameter with lowercase char, SQL considers the
* character set unspecified and allocates single-octet characters.
*/
char english_p[31];

7–208 SQL Statements

DECLARE MODULE Statement

/* When you specify the character set, SQL allocates single- or multi-octet
* characters, depending upon the character set.
*/
char CHARACTER SET DEC_MCS french_p[31];
char CHARACTER SET KANJI japanese_p[31];

.

.

.

/* Select one row from the COLOURS table. */
EXEC SQL SELECT ENGLISH, FRENCH, JAPANESE, ROMAJI,

KATAKANA, HINDI, GREEK, ARABIC, RUSSIAN
INTO :english_p, :french_p, :japanese_p, :dec_kanji_p,

:katakana_p, :devanagari_p, :isolatingreek_p,
:isolatinarabic_p, :isolatincyrillic_p

FROM COLOURS LIMIT TO 1 ROW;

if (SQLCODE != 0)
SQL$SIGNAL();

printf ("\nENGLISH: %s", english_p);
printf ("\nFRENCH: %s", french_p);
printf ("\nJAPANESE: %s", japanese_p);
printf ("\nROMAJI: %s", dec_kanji_p);
printf ("\nKATAKANA: %s", katakana_p);
printf ("\nHINDI: %s", devanagari_p);
printf ("\nGREEK: %s", isolatingreek_p);
printf ("\nARABIC: %s", isolatinarabic_p);
printf ("\nRUSSIAN: %s", isolatincyrillic_p);

EXEC SQL ROLLBACK;
}

SQL Statements 7–209

DECLARE PROCEDURE Statement

DECLARE PROCEDURE Statement

Declares a procedure interface for use in database definition statements.

The DECLARE PROCEDURE statement is documented under the DECLARE
Routine Statement. For complete information on declaring a procedure, see the
DECLARE Routine Statement.

7–210 SQL Statements

DECLARE Routine Statement

DECLARE Routine Statement

Declares a routine interface for use in database definition statements. A
routine is either a function or a procedure.

The declared routine acts as a template for calls to the function or procedure
in DDL statements such as CREATE TABLE, CREATE VIEW and CREATE
MODULE. The template allows Rdb to validate that the routine is correctly
named, is passed the correct number of parameters and that those parameters
are passed compatible arguments. For functions the returned data type is used
to calculate data types for COMPUTED BY, AUTOMATIC and other stored
value expressions.

Environment

You can use the DECLARE Routine statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

DECLARE FUNCTION <routine-name>
PROCEDURE

STORED NAME IS <identifier>

()
parameter-list

,

returns-clause LANGUAGE SQL

SQL Statements 7–211

DECLARE Routine Statement

parameter-list =

data-type
IN <parameter-name> <domain-name>
OUT
INOUT

DEFAULT value-expr mechanism-clause

COMMENT IS ’string’
/

mechanism-clause =

BY DESCRIPTOR
LENGTH
REFERENCE
VALUE

returns-clause =

RETURNS result-data-type
<domain-name> mechanism-clause

Arguments

DEFAULT value-expr
Specifies the default value of a parameter for a function or procedure defined
with mode IN. If you omit this parameter or if the CALL statement argument
list or function invocation specifies the DEFAULT keyword, then the value-expr
specified with this clause is used. The parameter uses NULL as the default if
you do not specify a value expression explicitly.

FUNCTION
Declares a function definition.

A function optionally accepts a list of IN parameters, always returns a value,
and is referenced by name as an element of a value expression.

LANGUAGE SQL
Names the language that calls the routine.

7–212 SQL Statements

DECLARE Routine Statement

mechanism-clause
Defines the passing mechanism for an external routine. The following list
describes the passing mechanisms.

• BY DESCRIPTOR

Allows passing character data with any parameter access mode to routines
compiled by language compilers that implement the OpenVMS calling
standard.

• BY LENGTH

The LENGTH passing mechanism is the same as the DESCRIPTOR
passing mechanism.

• BY REFERENCE

Allows passing data with any parameter access mode as a reference to the
actual data.

This is the default passing mechanism for parameters. This is also the
default passing mechanism for a function value returning character data.

• BY VALUE

Allows passing data with the IN parameter access mode to a routine as a
value and allows functions to return a value.

This is the default passing mechanism for a function value returning
noncharacter data.

parameter-list
The optional parameters of the routine. For each parameter you can specify
a parameter access mode (IN, OUT, and INOUT), a parameter name, a data
type, and a passing mechanism (by DESCRIPTOR, LENGTH, REFERENCE,
or VALUE).

The parameter access mode (IN, OUT, and INOUT) is optional and specifies
how the parameter is accessed (whether it is read, written, or both). IN
signifies read only, OUT signifies write only, and INOUT signifies read and
write. The parameter access mode defaults to IN.

Only the IN parameter access mode may be specified with parameters to a
function. Any of the parameter access modes (IN, OUT, and INOUT) may be
specified with parameters to a procedure.

The parameter name is prefixed with a colon (:). The parameter name must
be unique within the routine parameters.

The data type is required and describes the type of parameter using either an
SQL data type or a domain name.

SQL Statements 7–213

DECLARE Routine Statement

You cannot declare a parameter as the LIST OF BYTE VARYING data type.

PROCEDURE
Declares a procedure definition.

A procedure optionally accepts a list of IN, OUT, or INOUT parameters, and is
referenced by name in a CALL statement.

RETURNS result-data-type
RETURNS domain-name
Describes a function (returned) value. You can specify a data type and a
passing mechanism (BY DESCRIPTOR, LENGTH, REFERENCE, or VALUE).
The function value is, by definition, an OUT access mode value.

The data type is required and describes the type of parameter using either an
SQL data type or a domain name.

You cannot declare a function value as the LIST OF BYTE VARYING data
type.

routine-name
The name of the external routine. The name must be unique among external
and stored routines in the schema and can be qualified with an alias or, in a
multischema database, a schema name.

STORED NAME IS identifier
The name that Oracle Rdb uses to access the routine when defined in a
multischema database. The stored name allows you to access multischema
definitions using interfaces that do not recognize multiple schemas in one
database. You cannot specify a stored name for a routine in a database that
does not allow multiple schemas. For more information about stored names,
see Section 2.2.18.

Usage Notes

• If an additional DECLARE statement is executed with the same routine
name then it must be identical to the existing definition.

• The routine that is created using CREATE FUNCTION, CREATE
PROCEDURE, or CREATE MODULE statements must match exactly
the number of parameters, the data types (domains can be replaced with
the base data types or vice versa), passing mechanism (BY VALUE, BY
REFERENCE, BY LENGTH, BY DESCRIPTOR), and mode (IN, OUT and
INOUT).

7–214 SQL Statements

DECLARE Routine Statement

• The DEFAULT clause on parameters must be specified so that the
minimum and maximum parameter counts can be calculated for the
routine. However, this DEFAULT value is not used and may be specified
as NULL, i.e. a placeholder.

• A declared routine remains part of the session until it is replaced by a
CREATE FUNCTION, CREATE PROCEDURE, or CREATE MODULE
statement.

If a CREATE FUNCTION, CREATE PROCEDURE, or CREATE MODULE
statement is rolled back then any declared routine it replaced is also
eliminated. Therefore, a new DECLARE will be required in such cases.

• If the session is disconnected before a CREATE statement has defined the
true routine body (stored or external) then attempts to use the database
objects which reference those routines will fail.

This is similar to the behavior observed after using DROP ... CASCADE.
i.e. there are unresolved references which must be corrected by creating
those objects.

• Tools such as SQL EXPORT and IMPORT and RMU Extract use the
DECLARE routine facility to allow forward references in generated
database definition operations.

For RMU Extract the /ITEM=FORWARD_REFERENCES qualifier must be
used to enable the output of the DECLARE statements. For SQL EXPORT
this is the default setting which can be disabled using the NO FORWARD_
REFERENCES clause with the EXPORT or IMPORT commands.

Examples

Example 1: Definining a domain and referencing an external function

SQL> create domain MONEY as integer (2);
SQL>
SQL> create function INTEREST_PAID
cont> (in :amt MONEY)
cont> returns MONEY;
cont> external
cont> language C
cont> parameter style GENERAL;
SQL>
SQL> alter domain MONEY
cont> add
cont> check (INTEREST_PAID (value) > 0)
cont> not deferrable;

SQL Statements 7–215

DECLARE Routine Statement

Once the ALTER DOMAIN is completed, neither the function nor the domain
can be defined before the other. Here is a fragment of the result of executing
the output from the RMU Extract command.

SQL> create domain MONEY
cont> INTEGER (2)
cont> check((INTEREST_PAID(value) > 0))
cont> not deferrable;
%SQL-F-RTNNOTDEF, function or procedure INTEREST_PAID is not defined
SQL>
SQL> commit work;
SQL> create function INTEREST_PAID (
cont> in :AMT
cont> MONEY
cont> by reference)
cont> returns
cont> MONEY by value
cont> language SQL;
cont> external
cont> language C
cont> parameter style GENERAL
cont> deterministic
cont> called on null input
cont> ;
%SQL-F-NO_SUCH_FIELD, Domain MONEY does not exist in this database or schema
SQL> commit work;

This problem is avoided for RMU Extract by adding the FORWARD_
REFERENCES item to the command line:

$ RMU/EXTRACT/ITEM=(ALL,FORWARD_REFERENCES) databasename/OUTPUT=script.SQL

The script now contains a forward declaration of the function INTEREST_PAID
so that execution of the script can succeed.

7–216 SQL Statements

DECLARE Routine Statement

SQL> declare function INTEREST_PAID (
cont> in :AMT
cont> INTEGER (2))
cont> returns
cont> INTEGER (2)
cont> ;
SQL>
SQL> create domain MONEY
cont> INTEGER (2)
cont> check((INTEREST_PAID(value) > 0))
cont> not deferrable;
SQL>
SQL> commit work;
SQL> create function INTEREST_PAID (
cont> in :AMT
cont> MONEY
cont> by reference)
cont> returns
cont> MONEY by value
cont> language SQL;
cont> external
cont> language C
cont> parameter style GENERAL
cont> deterministic
cont> called on null input
cont> ;
SQL> commit work;

SQL Statements 7–217

DECLARE STATEMENT Statement

DECLARE STATEMENT Statement

Documents a statement name later used in a PREPARE statement in dynamic
SQL. SQL does not require DECLARE STATEMENT statements and does not
generate any code when it precompiles them. They are entirely optional.

Environment

You can issue the DECLARE STATEMENT statement only in host language
programs to be precompiled.

Format

DECLARE <statement-name> STATEMENT
,

Arguments

statement-name STATEMENT
Specifies the name of a statement later referred to in one of the following
embedded dynamic statements:

• PREPARE

• DECLARE CURSOR

• DESCRIBE

Example

Example 1: Declaring a statement name in a PL/I program

This example shows a program line that declares a statement name
DYNAMIC_STATEMENT. Later lines in the example show how DECLARE
CURSOR, PREPARE, and DESCRIBE statements refer to it. Because you
do not have to declare a statement explicitly, the DECLARE STATEMENT
statement is always optional.

7–218 SQL Statements

DECLARE STATEMENT Statement

EXEC SQL DECLARE DYNAMIC_STATEMENT STATEMENT;
/* Declare the SQL Communications Area. */
EXEC SQL INCLUDE SQLCA;
/* Declare the SQL Descriptor Area. */
EXEC SQL INCLUDE SQLDA;

/* The program declares the host language variable
STATEMENT_STRING and stores in it the
character string containing a SELECT
statement to be executed dynamically. */

.

.

.
EXEC SQL DECLARE CURSOR1 CURSOR FOR DYNAMIC_STATEMENT;
EXEC SQL PREPARE OBJECT_STATEMENT FROM STATEMENT_STRING;
EXEC SQL DESCRIBE OBJECT_STATEMENT INTO SQLDA;

/* The program sets up pointers in the
SQLDATA field of the SQLDA to the data
area (host language variables or dynamic
memory, for example) to receive the data
from the cursor. */

.

.

.
EXEC SQL OPEN CURSOR1;

DO WHILE (SQLCODE = 0);
EXEC SQL FETCH CURSOR1 USING DESCRIPTOR SQLDA;

/* The program prints or otherwise
processes rows of the result tables. */

.

.

.

END;

EXEC SQL CLOSE CURSOR1;

SQL Statements 7–219

DECLARE TABLE Statement

DECLARE TABLE Statement

Explicitly declares a table or view definition in a program. For tables named
in a DECLARE TABLE statement, SQL does not check the schema to compare
the definition with the explicit declaration.

An explicit table declaration is useful to:

• Document the definition in the source code of the program

• Allow references to tables that do not exist when SQL precompiles the
program, including:

Tables created in other modules of the program

Tables created dynamically

• Improve precompiler performance because SQL does not need to attach to
the schema to retrieve the table definition

• Make it easier to check that the declaration correctly corresponds to a host
structure the program uses to hold values from or for the table

• Declare only a subset of columns contained in the schema definition of the
table if the program needs to use only some of the columns

Environment

You can use the DECLARE TABLE statement:

• Embedded in host language programs to be precompiled

• In a context file

• As part of the DECLARE section in an SQL module

Format
DECLARE <table-name> TABLE

<view-name>

(declare-col-definition)
table-constraint

,

7–220 SQL Statements

DECLARE TABLE Statement

declare-col-definition =

<column-name> data-type
col-constraint
sql-and-dtr-clause

data-type =

char-data-types
TINYINT
SMALLINT (<n>)
INTEGER
BIGINT
FLOAT
NUMBER

(<p>)
* , <d>

LIST OF BYTE VARYING
(<n>) AS BINARY

AS TEXT
DECIMAL
NUMERIC (<n>)

, <n>
REAL
DOUBLE PRECISION
date-time-data-types

char-data-types =

CHAR
CHARACTER (<n>) CHARACTER SET char-set-name
CHAR VARYING
CHARACTER VARYING
VARCHAR (<n>)
VARCHAR2 CHARACTER SET char-set-name
LONG VARCHAR
NCHAR
NATIONAL CHAR (<n>)
NATIONAL CHARACTER
NCHAR VARYING
NATIONAL CHAR VARYING (<n>)
NATIONAL CHARACTER VARYING
RAW (<n>)
LONG

RAW

SQL Statements 7–221

DECLARE TABLE Statement

date-time-data-types =

DATE
ANSI
VMS

TIME frac
TIMESTAMP frac
INTERVAL interval-qualifier

frac =

(<numeric-literal>)

interval-qualifier =

YEAR prec
TO MONTH

MONTH prec
DAY prec

TO HOUR
MINUTE
SECOND frac

HOUR prec
TO MINUTE

SECOND frac
MINUTE prec

TO SECOND frac
SECOND seconds-prec

prec =

(<numeric-literal>)

7–222 SQL Statements

DECLARE TABLE Statement

seconds-prec =

(<numeric-literal-1>

)
, <numeric-literal-2>

col-constraint=

CONSTRAINT <constraint-name>

PRIMARY KEY
UNIQUE
NOT NULL
NULL
CHECK (predicate)
references-clause

constraint-attributes

constraint-attributes =

DEFERRABLE
INITIALLY IMMEDIATE

DEFERRED
NOT DEFERRABLE

INITIALLY IMMEDIATE
INITIALLY IMMEDIATE

DEFERRABLE
NOT DEFERRABLE

INITIALLY DEFERRED
DEFERRABLE

SQL Statements 7–223

DECLARE TABLE Statement

sql-and-dtr-clause =

QUERY HEADER IS <quoted-string>
/

EDIT STRING IS <quoted-string>

QUERY NAME FOR DTR IS <quoted-string>
DATATRIEVE

DEFAULT VALUE FOR DTR IS literal
DATATRIEVE

table-constraint =

CONSTRAINT <constraint-name>

table-constraint-clause

constraint-attributes

table-constraint-clause =

PRIMARY KEY (<column-name>)
,

UNIQUE (<column-name>)
,

CHECK (predicate)
FOREIGN KEY (<column-name>)

,

references-clause

Arguments

character-set-name
A valid character set name. See Section 2.1 for more information on character
sets.

col-constraint
A column constraint. See the CREATE TABLE Statement for more information
about column constraints.

7–224 SQL Statements

DECLARE TABLE Statement

column-name
The name of the column you want to define.

data-type
The data type of the column you want to define. See Section 2.3 for more
information on data types.

date-time-data-types
Data types for dates, times, and intervals. See Section 2.3.2 for more
information on date-time data types.

declare-col-definition
The definition for a column in the table. The column definition must
correspond to the table definition in the schema.

See the CREATE TABLE Statement for more information about column
definitions.

However, you cannot refer to domain names in a DECLARE TABLE statement.
For tables whose definitions refer to domain names, you must substitute the
data type and size of the domain for the domain name.

frac
interval-qualifier
prec
seconds-prec
Precision specifications for date-time data types. See Section 2.3.2 for more
information.

references-clause
See the CREATE TABLE Statement for more information.

sql-and-dtr-clause
Optional SQL and DATATRIEVE formatting clause. See Section 2.5 for more
information about formatting clauses.

table-name
view-name
The name of the table or view definition you want to declare.

table-constraint
A constraint definition that applies to the whole table. See the CREATE
TABLE Statement for more information about specifying table constraints.

SQL Statements 7–225

DECLARE TABLE Statement

Usage Notes

SQL uses the declaration in the DECLARE TABLE statement when it
precompiles embedded SQL statements or processes the module procedures
that refer to the table. Therefore, the columns in the declaration should match
the columns in the schema definition. However, the table or view definition to
which the declaration in the DECLARE TABLE statement corresponds does
not have to exist before a program can issue a DECLARE TABLE statement.
The program can create the table after it declares it.

Examples

Example 1: Declaring the table EMPLOYEES in a COBOL program

EXEC SQL
DECLARE EMPLOYEES TABLE

(EMPLOYEE_ID CHAR (5)
CONSTRAINT EMP_EMPLOYEE_ID_NOT_NULL
NOT NULL,

LAST_NAME CHAR (14),
FIRST_NAME CHAR (10),
MIDDLE_INITIAL CHAR (1),
ADDRESS_DATA_1 CHAR (25),
ADDRESS_DATA_2 CHAR (25),
CITY CHAR (20),
STATE CHAR (2),
POSTAL_CODE CHAR (5),
SEX CHAR (1),
CONSTRAINT EMP_SEX_VALUES
CHECK (

SEX IN (’M’, ’F’) OR SEX IS NULL
),

BIRTHDAY DATE ,
STATUS_CODE CHAR (1)
CONSTRAINT EMP_STATUS_CODE_VALUES
CHECK (

STATUS_CODE IN (’0’, ’1’, ’2’)
OR STATUS_CODE IS NULL
)

)
END_EXEC

7–226 SQL Statements

DECLARE TRANSACTION Statement

DECLARE TRANSACTION Statement

Specifies the characteristics for a default transaction. A transaction is a
group of statements whose changes can be made permanent or undone only as
a unit.

A transaction ends with a COMMIT or ROLLBACK statement. If you end the
transaction with the COMMIT statement, all changes made to the database
by the statements are made permanent. If you end the transaction with the
ROLLBACK statement, the statements do not take effect.

The characteristics specified in a DECLARE TRANSACTION statement
affect all transactions (except those started by the SET TRANSACTION
or START TRANSACTION statement) until you issue another DECLARE
TRANSACTION statement. The characteristics specified in a SET TRANSACTION
or START TRANSACTION statement affect only that transaction.

A DECLARE TRANSACTION statement does not start a transaction. The
declarations made in a DECLARE TRANSACTION statement do not take
effect until SQL starts a new transaction. SQL starts a new transaction with
the first executable data manipulation or data definition statement following
a DECLARE TRANSACTION, COMMIT, or ROLLBACK statement. In the
latter case (following a COMMIT or ROLLBACK statement), SQL applies the
transaction characteristics you declared for the transaction that just ended to
the next one you start.

In addition to the DECLARE TRANSACTION statement, you can specify the
characteristics of a transaction in one of two ways:

• If you specify the SET TRANSACTION or START TRANSACTION
statement, the declarations in the statement take effect immediately
and SQL starts a new transaction.

• You can retrieve and update data without declaring or setting a
transaction explicitly. If you omit the DECLARE TRANSACTION, SET
TRANSACTION or START TRANSACTION statements, SQL automatically
starts a transaction (using the read/write option) with the first executable
data manipulation or data definition statement following a COMMIT or
ROLLBACK statement.

See the Usage Notes for examples of when you would want to use the
DECLARE TRANSACTION statement instead of the SET TRANSACTION
or START TRANSACTION statement.

SQL Statements 7–227

DECLARE TRANSACTION Statement

You can specify many options with the DECLARE TRANSACTION statement,
including:

• A transaction mode (READ ONLY/READ WRITE/BATCH UPDATE)

• A lock specification clause (RESERVING options)

• A wait mode (WAIT/NOWAIT)

• An isolation level

• A constraint evaluation specification clause

• Multiple sets of all the preceding options for each database involved in the
transaction (ON clause)

Environment

You can use the DECLARE TRANSACTION statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• In a context file

• As part of the DECLARE section in an SQL module

• As part of the module header in a CREATE MODULE statement

• In dynamic SQL as a statement to be dynamically executed

In host language programs, you can have only a single DECLARE
TRANSACTION statement in each separately compiled source file. See
the Usage Notes for more information.

The DECLARE TRANSACTION statement is an extension to standard SQL
syntax. If your program must adhere to standard SQL syntax, you can isolate a
DECLARE TRANSACTION statement by putting it in a context file. For more
information on context files, see the Oracle Rdb Guide to SQL Programming.

Format

DECLARE TRANSACTION
tx-options
db-txns

7–228 SQL Statements

DECLARE TRANSACTION Statement

tx-options =

NAME ’quoted-string’
EVALUATING evaluating-clause

,
RESERVING reserving-clause

,
isolation-level
transaction-mode
wait-option

,

evaluating-clause =

<constraint-name> AT VERB TIME
<alias.> COMMIT TIME

reserving-clause =

<view-name>
<table-name>

PARTITION (<part-num>)
,

,

FOR READ
EXCLUSIVE WRITE
PROTECTED DATA DEFINITION
SHARED

isolation-level =

ISOLATION LEVEL READ COMMITTED
REPEATABLE READ
SERIALIZABLE

transaction-mode =

READ ONLY
READ WRITE
BATCH UPDATE

SQL Statements 7–229

DECLARE TRANSACTION Statement

wait-option =
WAIT

<timeout-value>
NOWAIT

db-txns =

ON <alias> USING (tx-options)
, DEFAULTS

AND

Arguments

The DECLARE TRANSACTION arguments are the same as the arguments for
the SET TRANSACTION statement. See the SET TRANSACTION Statement
for more information about the arguments for both statements.

Defaults

The DECLARE TRANSACTION defaults are the same as the defaults for the
SET TRANSACTION statement. See the SET TRANSACTION Statement for
complete information.

In general, you should not rely on default transaction characteristics. Use
explicit DECLARE TRANSACTION statements, specifying read/write, read-
only, or batch-update options; a list of tables in the RESERVING clause;
and a share mode and lock type for each table. The more specific you are in
a DECLARE TRANSACTION statement, the more efficient your database
operations will be.

When a transaction starts using characteristics specified in a DECLARE
TRANSACTION statement, any transaction characteristics unspecified in the
DECLARE TRANSACTION statement take the SQL defaults. This is true
even if the characteristics unspecified in DECLARE TRANSACTION were
specified in an earlier SET or DECLARE TRANSACTION statement.

7–230 SQL Statements

DECLARE TRANSACTION Statement

Usage Notes

The following notes are particular to DECLARE TRANSACTION. See the
SET TRANSACTION Statement for usage notes that are common to both
DECLARE TRANSACTION and SET TRANSACTION statements.

• The DECLARE TRANSACTION statement is not executable, and
therefore, does not start a transaction. (The declarations in a DECLARE
TRANSACTION statement take effect when SQL starts a new transaction;
that is, with the first executable data manipulation or data definition
statement following the DECLARE TRANSACTION, COMMIT, or
ROLLBACK statement.)

You can apply only one DECLARE TRANSACTION statement to a host
language source file or to an SQL module. Use the SET TRANSACTION
statement to change transaction characteristics in programs that were first
specified using the DECLARE TRANSACTION statement.

The following are advantages offered by the DECLARE TRANSACTION
statement:

It can establish transaction defaults for an interactive SQL session, a
module or single host language file in a program, or any statements
executed dynamically from a module. You might, for example, specify
DECLARE TRANSACTION READ ONLY in the SQLINI.SQL file you
create to set up your interactive SQL environment.

In interactive SQL, the characteristics specified by a DECLARE
TRANSACTION statement are valid until you enter another DECLARE
TRANSACTION statement. (A COMMIT or ROLLBACK statement
followed by a SET TRANSACTION statement may start a transaction
with different characteristics, but subsequent transactions started
implicitly will have the characteristics specified in the last DECLARE
TRANSACTION statement.)

If you specify characteristics using a SET TRANSACTION statement,
however, the characteristics apply only to that transaction. You must
reenter the statement after every COMMIT or ROLLBACK statement
to establish those characteristics again.

The following sequence shows a DECLARE TRANSACTION statement
followed by a SET TRANSACTION statement. Note that the SET
TRANSACTION statement is followed by a ROLLBACK statement:

SQL Statements 7–231

DECLARE TRANSACTION Statement

SQL> -- Declares default characteristics for transactions:
SQL> --
SQL> DECLARE TRANSACTION READ WRITE;
SQL> --
SQL> -- There is no transaction started; can start
SQL> -- transaction with characteristics different
SQL> -- from the declared characteristics using a
SQL> -- SET TRANSACTION statement:
SQL> --
SQL> SET TRANSACTION READ ONLY;
SQL> --
SQL> -- Roll back the transaction started by
SQL> -- the SET TRANSACTION statement:
SQL> --
SQL> ROLLBACK;
SQL> --
SQL> -- The default transaction characteristics are still those
SQL> -- specified in the DECLARE TRANSACTION statement, and
SQL> -- apply to the transaction started when this SELECT
SQL> -- statement executes:
SQL> --
SQL> SELECT * FROM EMPLOYEES;

You can include the DECLARE TRANSACTION statement in an SQL
context file.

The section in the Oracle Rdb Guide to SQL Programming about
program transportability explains when you may need an SQL context
file to support a program that includes SQL statements.

• In contrast to the DECLARE TRANSACTION statement, SET
TRANSACTION is an executable statement that specifies and starts
one transaction. You can include multiple SET TRANSACTION statements
in a host language source file or in an SQL language module. The SET
TRANSACTION statement has the following advantages:

It gives you explicit control over when transactions are started.

It provides flexibility for changing transaction characteristics in a
program source file.

• In precompiled programs, you can have only a single DECLARE
TRANSACTION statement in each separately compiled source file. It must
precede any executable SQL statement and follow all DECLARE ALIAS
statements. This restriction is not enforced for dynamically executed
DECLARE TRANSACTION statements.

7–232 SQL Statements

DECLARE TRANSACTION Statement

You can include multiple DECLARE TRANSACTION statements in a
program by linking multiple, separately compiled modules, each with
an associated DECLARE TRANSACTION statement. However, the
transaction characteristics that the statements specify will not necessarily
apply to their modules.

At execution time, when any module starts a transaction, the
characteristics declared by that module apply to all modules until
the transaction ends. In other words, the DECLARE TRANSACTION
statement only specifies characteristics for implicit transactions started
by that module; it does not ensure that those characteristics are current
when execution begins. Depending on the execution path of your program,
this may make it difficult to control the transaction characteristics that
apply to a particular module. For instance, if a module does not have an
explicit DECLARE TRANSACTION statement and that module starts a
transaction, default transaction characteristics apply to all modules until
the transaction ends.

When it is important to have particular transaction characteristics apply
to a given module, you must be careful to end transactions before program
control branches to that module. The SET TRANSACTION statement is
best suited to this situation.

• When you use the AND ON clause to start a transaction for more than
one database, you should make sure that the DECLARE TRANSACTION
statement includes an ON clause for every attached database. If you do
not, you cannot use or refer to the databases omitted from the DECLARE
TRANSACTION statement in any SQL statement, including SHOW and
later DECLARE TRANSACTION statements.

• If you use the BATCH UPDATE clause with DECLARE TRANSACTION
statement, SQL will return an error at compile time because BATCH
UPDATE is not compatible with two phase commit (2PC).

$ sql$ declare transaction batch update;
%SQL-F-NOBATCHUPDATE, BATCH UPDATE is not allowed without setting
of SQL$DISABLE_CONTEXT logical name

After disabling 2PC then this declare transaction will be accepted.
However, Oracle Rdb recommends that BATCH UPDATE transaction
be used seldom and with care as they can not be recovered and may leave
the database in an unusable state.

$ define SQL$DISABLE_CONTEXT TRUE
$ sql$ declare transaction batch update;

SQL Statements 7–233

DECLARE TRANSACTION Statement

• If you use the DECLARE TRANSACTION statement in a stored module
with either the RESERVING table clause or the EVALUATING constraint
clause, SQL establishes dependencies on the tables or constraints that you
specify. See the CREATE MODULE Statement for a list of statements that
can or cannot cause stored procedure invalidation.

See the Oracle Rdb Guide to SQL Programming for detailed information
about stored procedure dependency types and how metadata changes can
cause invalidation of stored procedures.

• By default, a transaction that reserves a table for EXCLUSIVE access
does not reserve the LIST (segmented string) area for exclusive access.
Because the LIST area is usually shared by many tables, SHARED access
is assumed by default to permit updates to the other tables.

This means that when you perform an import operation, or an application
updates a table reserved for EXCLUSIVE access, you might notice that the
snapshot storage area (.snp) grows. This is because of the I/O to the LIST
area that is performed by default when SHARED WRITE mode is in use.

However, if you attach to the database using an SQL ATTACH or IMPORT
statement and you specify the RESTRICTED ACCESS clause, then all
storage areas are accessed in EXCLUSIVE mode. Use this clause to
eliminate the snapshot I/O and related overhead if you are performing
a lot of I/O to the LIST storage areas (for example, when you are
restructuring the database or dropping a large table containing LIST
OF BYTE VARYING columns and data).

Examples

Example 1: Illustrating DECLARE and SET TRANSACTION differences

In the following example, the first executable statement following the
DECLARE TRANSACTION statement starts a transaction. In contrast,
the subsequent SET TRANSACTION statement itself starts a transaction.

SQL> DECLARE TRANSACTION READ WRITE NOWAIT;
SQL> --
SQL> -- Notice the "no transaction is in progress" message:
SQL> --
SQL> SHOW TRANSACTION
Transaction information:

Statement constraint evaluation is off

7–234 SQL Statements

DECLARE TRANSACTION Statement

On the default alias
Transaction characteristics:

Nowait
Read Write

Transaction information returned by base system:
no transaction is in progress
- session ID number is 80

SQL> --
SQL> -- The first executable statement following the
SQL> -- DECLARE TRANSACTION statement starts the transaction.
SQL> -- In this case, SELECT is the first executable statement.
SQL> --
SQL> SELECT LAST_NAME FROM CURRENT_SALARY;
LAST_NAME
Toliver
Smith
Dietrich
.
.
.

SQL> --
SQL> -- Note the transaction inherits the read/write characteristics
SQL> -- specified in the DECLARE TRANSACTION statement:
SQL> --
SQL> SHOW TRANSACTION;

Transaction information:
Statement constraint evaluation is off

On the default alias
Transaction characteristics:

Nowait
Read Write

Transaction information returned by base system:
a read-write transaction is in progress
- updates have not been performed
- transaction sequence number (TSN) is 416
- snapshot space for TSNs less than 416 can be reclaimed
- session ID number is 80

SQL> --
SQL> ROLLBACK;
SQL> --
SQL> -- Again, notice the "no transaction is in progress" message:
SQL> --
SQL> SHOW TRANSACTION;

Transaction information:
Statement constraint evaluation is off

SQL Statements 7–235

DECLARE TRANSACTION Statement

On the default alias
Transaction characteristics:

Nowait
Read Write

Transaction information returned by base system:
no transaction is in progress
- transaction sequence number (TSN) 416 is reserved
- snapshot space for TSNs less than 416 can be reclaimed
- session ID number is 80

SQL> --
SQL> -- Unlike DECLARE TRANSACTION, the SET TRANSACTION statement
SQL> -- immediately starts a transaction:
SQL> --
SQL> SET TRANSACTION READ ONLY WAIT;
SQL> --
SQL> -- Note the transaction characteristics show the
SQL> -- read-only characteristics:
SQL> --
SQL> SHOW TRANSACTION;
Transaction information:

Statement constraint evaluation is off

On the default alias
Transaction characteristics:

Wait
Read only

Transaction information returned by base system:
a snapshot transaction is in progress
- all transaction sequence numbers (TSNs) less than 416 are visible
- TSN 416 is invisible
- all TSNs greater than or equal to 417 are invisible
- session ID number is 80

Example 2: Using a DECLARE TRANSACTION statement in a context file

The following example shows a context file, test_declares.sql, that contains
declarations for precompiling source file test.sco:

DECLARE ALIAS FOR FILENAME personnel;
DECLARE TRANSACTION READ WRITE

RESERVING EMPLOYEES FOR PROTECTED WRITE,
JOB_HISTORY FOR PROTECTED WRITE,
DEPARTMENTS FOR SHARED READ,
JOBS FOR SHARED READ;

The section in the Oracle Rdb Guide to SQL Programming about program
transportability explains when you may need an SQL context file to support a
program that includes SQL statements.

7–236 SQL Statements

DECLARE TRANSACTION Statement

Example 3: Explicitly setting the isolation level in a DECLARE TRANSACTION
statement

In this example, you declare the default characteristics for a read/write
transaction, which includes changing the default ISOLATION LEVEL
SERIALIZABLE to ISOLATION LEVEL REPEATABLE READ.

SQL> DECLARE TRANSACTION READ WRITE ISOLATION LEVEL REPEATABLE READ;

Example 4: Reserving a Partition

SQL> -- Determine the ordinal position of the EMPLOYEES
SQL> -- partitions.
SQL> SELECT RDBMAP_NAME, RDBAREA_NAME, RDB$ORDINAL_POSITION
cont> FROM RDB$STORAGE_MAP_AREAS
cont> WHERE RDB$MAP_NAME=’EMPLOYEES_MAP’;
RDB$MAP_NAME RDB$AREA_NAME
RDB$ORDINAL_POSITION

EMPLOYEES_MAP EMPIDS_LOW
1

EMPLOYEES_MAP EMPIDS_MID
2

EMPLOYEES_MAP EMPIDS_OVER
3

3 rows selected
SQL> --
SQL> -- Reserve EMPIDS_MID and EMPIDS_OVER for
SQL> -- exclusive write.
SQL> --
SQL> DECLARE TRANSACTION
cont> RESERVING EMPLOYEES PARTITION (2,3)
cont> FOR EXCLUSIVE WRITE;

SQL Statements 7–237

DECLARE Variable Statement

DECLARE Variable Statement

Declares variables that you can use in interactive and dynamic SQL
for invoking stored procedures and for testing procedures in modules or
embedded SQL programs. For information on declaring variables in compound
statements, see the Compound Statement.

Environment

You can use the DECLARE statement:

• In interactive SQL

• In dynamic SQL as a statement to be dynamically executed

Format

DECLARE :<variable-name>
, CONSTANT

UPDATABLE

data-type
<domain-name> default-clause

default-clause =

DEFAULT date-time-literal
= interval-literal

numeric-literal
string-literal
: <variable-name>

Arguments

CONSTANT
UPDATABLE
CONSTANT changes the variable into a declared constant that cannot be
updated. If you specify CONSTANT, you must also have specified the
DEFAULT clause to ensure the variable has a value. CONSTANT also
indicates that the variable cannot be used as the target of an assignment or be
passed as an expression to a procedure’s INOUT or OUT parameter.

7–238 SQL Statements

DECLARE Variable Statement

UPDATABLE is the default and allows the variable to be modified. An
update of a variable can occur due to a SET assignment, an INTO assignment
(as part of an INSERT ... RETURNING, UPDATE ... RETURNING, or
SELECT statement), or as a procedure’s OUT or INOUT parameter on a CALL
statement.

data-type
Specifies the data type assigned to the variable. See Section 2.3 for more
information on data types.

default-clause
You can only use references to simple literal values and other declared
variables as a default.

domain-name
Specifies the domain name assigned to the variable. The domain supplies the
data type and, for interactive SQL, the edit string of the variable.

See Section 2.2.9 for more information on domain names.

variable-name
Specifies the local variable.

Usage Notes

• Variables inside compound statements can be set to NULL. Interactive
variables are more like host variables or parameters. You must use
indicator variables to set interactive SQL variables to NULL.

• Variables exist until the end of the session or until the UNDECLARE
Variable statement is executed. See the UNDECLARE Variable Statement
for more information about deleting variable definitions.

• Use the SHOW VARIABLES statement to show the existing variable
definitions.

• If the DEFAULT clause is not present, the declared variables initial value
is undefined.

• If a list of variables are declared together, the DEFAULT is applied to each
variable.

• UPDATABLE is the default for all declared variables.

SQL Statements 7–239

DECLARE Variable Statement

Example

Example 1: Declaring variables in interactive SQL

SQL> DECLARE :X INTEGER;
SQL> DECLARE :Y CHAR(10);
SQL>
SQL> BEGIN
cont> SET :X = 100;
cont> SET :Y = ’Active’;
cont> END;
SQL> PRINT :X, :Y ;

X Y
100 Active

SQL> SHOW VARIABLES;
X INTEGER
Y CHAR(10)

Example 2: Using the values of SQLSTATE in an interactive SQL script

The following simple script uses the named SQLSTATE variable with the
SIGNAL statement to make the script easier to read.

@SYS$LIBRARY:SQLSTATE
set verify;
begin
signal :SQLSTATE_DATA_ASSIGN (’Error in assignment’);
end;

When executed the output appears as shown below.

SQL> begin
cont> signal :SQLSTATE_DATA_ASSIGN (’Error in assignment’);
cont> end;
%RDB-E-SIGNAL_SQLSTATE, routine "(unnamed)" signaled SQLSTATE "22005"
-RDB-I-TEXT, Error in assignment
SQL>

7–240 SQL Statements

DELETE Statement

DELETE Statement

Deletes a row from a table or view.

Environment

You can use the DELETE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DELETE FROM <table-name>
<view-name> <correlation-name>

WHERE predicate
optimize-clause

CURRENT OF <cursor-name>

optimize-clause =

OPTIMIZE FOR FAST FIRST
TOTAL TIME
SEQUENTIAL ACCESS

USING <outline-name>
WITH DEFAULT SELECTIVITY

SAMPLED
AGGRESSIVE

AS <query-name>

Arguments

correlation name
Specifies a name that identifies the table or view in the predicate of the
DELETE statement. See Section 2.2.4.1 for more information about correlation
names.

SQL Statements 7–241

DELETE Statement

CURRENT OF cursor-name
If the WHERE clause uses CURRENT OF cursor-name, SQL deletes only the
row on which the named cursor is positioned.

The cursor must have been named previously in a DECLARE CURSOR
statement, must be open, and must be positioned on a row. In addition, the
FROM clause of the SELECT statement within the DECLARE CURSOR
statement must refer to the table or view that is the target of the DELETE
statement.

OPTIMIZE AS query-name
Assigns a name to the query.

OPTIMIZE FOR
The OPTIMIZE FOR clause specifies the preferred optimizer strategy for
statements that specify a select expression. The following options are available:

• FAST FIRST

A query optimized for FAST FIRST returns data to the user as quickly as
possible, even at the expense of total throughput.

If a query can be cancelled prematurely, you should specify FAST FIRST
optimization. A good candidate for FAST FIRST optimization is an
interactive application that displays groups of records to the user, where
the user has the option of aborting the query after the first few screens.
For example, singleton SELECT statements default to FAST FIRST
optimization.

If optimization strategy is not explicitly set, FAST FIRST is the default.

• TOTAL TIME

If your application runs in batch, accesses all the records in the query,
and performs updates or writes a report, you should specify TOTAL TIME
optimization. Most queries benefit from TOTAL TIME optimization.

• SEQUENTIAL ACCESS

Forces the use of sequential access. This is particularly valuable for tables
that use the strict partitioning functionality.

OPTIMIZE USING outline-name
Names the query outline to be used with the DELETE statement even if the
outline ID for the query and for the outline are different.

A query outline is an overall plan for how a query can be implemented. See
the CREATE OUTLINE Statement for additional information.

7–242 SQL Statements

DELETE Statement

OPTIMIZE WITH
Selects one of three optimization controls: DEFAULT (as used by previous
versions of Oracle Rdb), AGGRESSIVE (assumes smaller numbers of rows
will be selected), and SAMPLED (which uses literals in the query to perform
preliminary estimation on indices).

predicate
If the WHERE clause includes a predicate, all the rows of the target table for
which the predicate is true are deleted. See Section 2.7 for more information
on predicates.

table-name
view-name
Specifies the name of the target table or view from which you want to delete a
row.

WHERE
Specifies the rows of the target table or view that will be deleted. If you omit
the WHERE clause, SQL deletes all rows of the target table or view. You can
specify either a predicate or a cursor name in the WHERE clause.

Usage Notes

• When specifying a column name, if the column name is the same as a
parameter, you should use a correlation name or table name with the
column name to avoid confusion with the parameter name.

• The CURRENT OF clause in an embedded DELETE statement cannot
name a cursor based on a dynamic SELECT statement. To refer to a cursor
based on a dynamic SELECT statement in the CURRENT OF clause,
prepare and dynamically execute the DELETE statement as well.

• The CURRENT OF clause in an embedded DELETE statement cannot
name a read-only cursor. See the Usage Notes in the DECLARE CURSOR
Statement for information about which cursors are read-only.

• You cannot specify the OPTIMIZE USING or the OPTIMIZE AS clause
with the WHERE CURRENT OF clause.

• You cannot specify an outline name in a compound-use-statement. See the
Compound Statement for more information about compound statements.

SQL Statements 7–243

DELETE Statement

• If an outline exists, Oracle Rdb will use the outline specified in the
OPTIMIZE USING clause unless one or more of the directives in the
outline cannot be followed. SQL issues an error message if the existing
outline cannot be used.

If you specify the name of an outline that does not exist, Oracle Rdb
compiles the query, ignores the outline name, and searches for an existing
outline with the same outline ID as the query. If an outline with the same
outline ID is found, Oracle Rdb attempts to execute the query using the
directives in that outline. If an outline with the same outline ID is not
found, the optimizer selects a strategy for the query for execution.

See the Oracle Rdb7 Guide to Database Performance and Tuning for more
information regarding query outlines.

Examples

Example 1: Deleting all information about an employee

To delete all the information about an employee, you need to delete rows from
several tables within a single transaction. This program fragment deletes the
rows from all the result tables that contain information about an employee.
Note that all the DELETE operations are included in one transaction so that
no employee’s records are only partially deleted.

DISPLAY "Enter the ID number of employee".
DISPLAY "whose records you want to delete: "

WITH NO ADVANCING.
ACCEPT EMP-ID.

EXEC SQL
DECLARE TRANSACTION READ WRITE
RESERVING EMPLOYEES FOR PROTECTED WRITE,

JOB_HISTORY FOR PROTECTED WRITE,
SALARY_HISTORY FOR PROTECTED WRITE,
DEGREES FOR PROTECTED WRITE

END-EXEC

EXEC SQL
DELETE FROM EMPLOYEES E
WHERE E.EMPLOYEE_ID = :EMP-ID

END-EXEC

IF SQLCODE < 0 THEN
EXEC SQL ROLLBACK END-EXEC
GO TO ERROR-PAR

END-IF

7–244 SQL Statements

DELETE Statement

EXEC SQL
DELETE FROM JOB_HISTORY JH
WHERE JH.EMPLOYEE_ID = :EMP-ID

END-EXEC

IF SQLCODE < 0 THEN
EXEC SQL ROLLBACK END-EXEC
GO TO ERROR-PAR

END-IF

EXEC SQL
DELETE FROM SALARY_HISTORY SH
WHERE SH.EMPLOYEE_ID = :EMP-ID

END-EXEC

IF SQLCODE < 0 THEN
EXEC SQL ROLLBACK END-EXEC
GO TO ERROR-PAR

END-IF

EXEC SQL
DELETE FROM DEGREES D
WHERE D.EMPLOYEE_ID = :EMP-ID

END-EXEC

IF SQLCODE < 0 THEN
EXEC SQL ROLLBACK END-EXEC
GO TO ERROR-PAR

END-IF

Example 2: Deleting selected rows from a table

The following statement deletes all rows from the EMPLOYEES table where
the employee SALARY_AMOUNT is greater than $75,000. The EMPLOYEES
and SALARY_HISTORY tables are both in the database with the alias PERS.

SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL> DELETE FROM PERS.EMPLOYEES E
cont> WHERE EXISTS (SELECT *
cont> FROM PERS.SALARY_HISTORY S
cont> WHERE S.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND S.SALARY_AMOUNT > 75000
cont>) ;
7 rows deleted

Example 3: Deleting rows from a table specifying an outline name

The following example shows the syntax used to define the DEL_EMP_75000
outline:

SQL Statements 7–245

DELETE Statement

SQL> CREATE OUTLINE DEL_EMP_75000
cont> FROM
cont> (DELETE FROM EMPLOYEES E
cont> WHERE EXISTS (SELECT *
cont> FROM SALARY_HISTORY S
cont> WHERE S.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND S.SALARY_AMOUNT > 75000
cont>);

The following query specifies the DEL_EMP_75000 outline:

SQL> DELETE FROM EMPLOYEES E
cont> WHERE EXISTS (SELECT *
cont> FROM SALARY_HISTORY S
cont> WHERE S.EMPLOYEE_ID = E.EMPLOYEE_ID
cont> AND S.SALARY_AMOUNT > 75000
cont>)
cont> OPTIMIZE USING DEL_EMP_75000;
~S: Outline DEL_EMP_75000 used

.

.

.
7 rows deleted

7–246 SQL Statements

DESCRIBE Statement

DESCRIBE Statement

Writes information about a prepared statement to the SQL Descriptor Area
(SQLDA).

The DESCRIBE statement is a dynamic SQL statement. Dynamic SQL
lets programs accept or generate SQL statements at run time, in contrast to
SQL statements that are part of the source code for precompiled programs or
SQL module language procedures. Unlike precompiled SQL or SQL module
language statements, such dynamically executed SQL statements are not
part of a program’s source code but are generated while the program runs.
Dynamic SQL is useful when you cannot predict the type of SQL statement
your program needs to process.

The SQLDA is a collection of host language variables used only in dynamic
SQL programs. To use the SQLDA, host languages must support pointer
variables that provide indirect access to storage by storing the address of data
instead of directly storing data in the host language variable. The languages
supported by the SQL precompiler that also support pointer variables are Ada,
C, and PL/I. Any other language that supports pointer variables can use the
SQLDA, but must call SQL module procedures that contain SQL statements
instead of embedding the SQL statements directly in source code. The SQLDA
provides information about dynamic SQL statements to the program and
information about memory allocated by the program to SQL.

The DESCRIBE statement is how SQL writes information that the program
uses to the SQLDA. Specifically, the DESCRIBE statement stores in the
SQLDA the number and data types of any select list items or parameter
markers in a prepared statement.

Appendix D describes in more detail the specific fields of the SQLDA and how
programs use it to communicate about select list items and parameter markers
in prepared statements.

Environment

You can use the DESCRIBE statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

SQL Statements 7–247

DESCRIBE Statement

Format

DESCRIBE <statement-name>
<statement-id-parameter>

INTO <descriptor-name>
SELECT LIST
OUTPUT
MARKERS
INPUT

Arguments

INTO descriptor-name
Specifies the name of a structure declared in the host language program as an
SQLDA to which SQL writes information about select list items, or input or
output parameter markers.

Precompiled programs can use the embedded SQL statement INCLUDE
SQLDA to automatically insert a declaration of an SQLDA structure, called
SQLDA, in the program when it precompiles the program. Programs that
use the SQL module language must explicitly declare an SQLDA. Either
precompiled or SQL module language programs can explicitly declare
additional SQLDAs but must declare them with unique names. For sample
declarations of SQLDA structures, see Appendix D.3.

MARKERS
INPUT
Specifies that the DESCRIBE statement writes information about input
parameter markers to the SQLDA. The MARKERS or INPUT clause specifies
that the DESCRIBE statement writes information about the number and
data types of any input parameter markers in the prepared statement to the
SQLDA.

Input parameter markers in a prepared statement serve the same purpose
as host language variables in nondynamic, embedded SQL statements. The
program can use that information in the SQLDA to allocate storage. The
program must supply values in that allocated storage. SQL substitutes these
values for the parameter markers when it dynamically executes the prepared
statement.

7–248 SQL Statements

DESCRIBE Statement

SELECT LIST
OUTPUT
Specifies that the DESCRIBE statement writes information about returned
values in a prepared statement to the SQLDA. If you use this clause, the
DESCRIBE statement writes information about the number and data types of
any returned values in the prepared statement to the SQLDA. The program
uses that information to allocate storage for the returned values. The storage
allocated by the program then receives the returned values.

The following statements or clauses return values to the DESCRIBE
statement:

• Select list items in a SELECT statement

• The following statements within multistatement procedures:

Singleton SELECT statement

INSERT . . . RETURNING and UPDATE . . . RETURNING statements

SET assignment statement

• CALL statement (invoking a stored procedure)

• Dynamic singleton SELECT statement

The default is SELECT LIST (or OUTPUT).

statement-name
statement-id-parameter
Specifies the name of a prepared statement. If the PREPARE statement for the
dynamically executed statement specifies a parameter, use the same parameter
in the DESCRIBE statement instead of an explicit statement name.

You can supply either a parameter or a compile-time statement name.
Specifying a parameter lets SQL supply identifiers to programs at run time.
Use an integer parameter to contain the statement identifier returned by SQL
or a character string parameter to contain the name of the statement that
you pass to SQL. See the PREPARE Statement and the DECLARE CURSOR
Statement, Dynamic for more details.

Usage Notes

• Programs can set values for any fields in the SQLDA in addition to or
instead of having SQL set the values in a DESCRIBE statement. SQL uses
the values set by the program.

SQL Statements 7–249

DESCRIBE Statement

Examples

Example 1: Using the DESCRIBE . . . OUTPUT statement with a prepared
SELECT statement

This PL/I program illustrates using the DESCRIBE . . . OUTPUT statement
to write information to the SQLDA about the select list items of a prepared
SELECT statement. There are no parameter markers in this particular
prepared SELECT statement.

After issuing the DESCRIBE statement, the program stores in the SQLDA the
addresses of host language variables that will receive values from columns of
the result table during FETCH statements.

To shorten the example, this PL/I program is simplified:

• The program includes the SELECT statement to be dynamically executed
as part of the source code directly in the PREPARE statement. A program
with such coded SQL statements does not need to use dynamic SQL at all,
but can simply embed the SELECT statement in a DECLARE CURSOR
statement. (A program that must process SQL statements generated as it
executes is the only type that requires dynamic SQL.)

• The program declares host language variables for select list items without
checking the SQLDA for a description of those items. Typically, an
application needs to look in the SQLDA to determine the number and data
type of select list items generated by a prepared SELECT statement before
allocating storage.

• The program does not use the DESCRIBE . . . INPUT statement to
determine if there are any parameter markers in this dynamically executed
SELECT statement. In this example, because the SELECT statement is
coded in the program, it is clear that there is no need for a DESCRIBE . . .
INPUT statement. However, if the SELECT statement is generated at run
time, the program may have to determine there if are parameter markers
by issuing a DESCRIBE . . . INPUT statement and looking at the value of
the SQLD field in the SQLDA.

7–250 SQL Statements

DESCRIBE Statement

CURSOR_EX : PROCEDURE OPTIONS (MAIN);
/*
* Illustrate the DESCRIBE...SELECT LIST statement using a
* dynamic SELECT statement:
*
* Use a dynamic SELECT statement as the basis for
* a cursor that displays a join of the EMPLOYEES
* and SALARY_HISTORY tables on the screen.
*/
declare sys$putmsg external entry
(any, any value, any value, any value);

/* Declare SQL Communications Area: */
EXEC SQL INCLUDE SQLCA;

/* Declare SQL Descriptor Area: */
EXEC SQL INCLUDE SQLDA;

/* Declare the alias: */
EXEC SQL DECLARE ALIAS FILENAME ’SQL$DATABASE’;

/*
* Branch to ERR_HANDLER if the SQLCODE field
* of the SQLCA is greater than 0:
*/
EXEC SQL WHENEVER SQLERROR GOTO ERR_HANDLER;

/*
* Declare a cursor named EMP that uses the
* prepared statement DYN_SELECT:
*/
EXEC SQL DECLARE EMP CURSOR FOR DYN_SELECT;

/* Declare a host structure to receive
* the results of FETCH statements:
*/
DCL 1 P_REC,

2 EMPLOYEE_ID CHAR(5),
2 FIRST_NAME CHAR(10),
2 LAST_NAME CHAR(14),
2 SALARY_AMOUNT FIXED BINARY(31);

/* Allocate memory for the SQLDA and
* set the value of its SQLN field:
*/
SQLSIZE = 10;
ALLOCATE SQLDA SET (SQLDAPTR);
SQLN = 10;

SQL Statements 7–251

DESCRIBE Statement

/* Prepare the SELECT statement
* for dynamic execution directly
* from a statement string:
*/
EXEC SQL PREPARE DYN_SELECT FROM

’SELECT E.EMPLOYEE_ID,
E.FIRST_NAME,
E.LAST_NAME,
S.SALARY_AMOUNT

FROM EMPLOYEES E, SALARY_HISTORY S
WHERE E.EMPLOYEE_ID = S.EMPLOYEE_ID AND

S.SALARY_END IS NULL’;

/* Write information about the
* columns of the result table
* of DYN_SELECT into the SQLDA:
*/
EXEC SQL DESCRIBE DYN_SELECT OUTPUT INTO SQLDA;

/*
* Assign the addresses of the host language
* variables that will receive the values of the
* fetched row to the SQLDATA field
* of the SQLDA:
*/
SQLDATA(1) = ADDR(EMPLOYEE_ID);
SQLDATA(2) = ADDR(FIRST_NAME);
SQLDATA(3) = ADDR(LAST_NAME);
SQLDATA(4) = ADDR(SALARY_AMOUNT);

/* Open the cursor: */
EXEC SQL OPEN EMP;

/* Fetch the first row of the result table.
* SQL uses the addresses in the SQLDA
* to store values from the table into
* the host language variables.
*/
EXEC SQL FETCH EMP USING DESCRIPTOR SQLDA;

PUT EDIT (’Current Salaries of Employees: ’) (SKIP, A, SKIP(2));

/* While the SQLCODE field of the
* SQLCA is not 100 (NOT_FOUND error):
*/
DO WHILE (SQLCA.SQLCODE = 0);

/* Display the values from the host language variables: */
PUT SKIP EDIT
(EMPLOYEE_ID, ’ ’, FIRST_NAME, ’ ’, LAST_NAME, ’ ’,
SALARY_AMOUNT)

(A, A, A, A, A, A, F(9));

7–252 SQL Statements

DESCRIBE Statement

/* Fetch another row of the result table: */
EXEC SQL FETCH EMP USING DESCRIPTOR SQLDA;

END;

/* Close the cursor: */
EXEC SQL CLOSE EMP;

RETURN;

ERR_HANDLER:
PUT EDIT
(’Unexpected error, SQLCODE is: ’, SQLCA.SQLCODE) (skip, a, f(9));
CALL SYS$PUTMSG(RDB$MESSAGE_VECTOR, 0, 0, 0);
EXEC SQL WHENEVER SQLERROR CONTINUE;
EXEC SQL ROLLBACK;
RETURN;

END CURSOR_EX;

See also Example 2 in DECLARE CURSOR Statement, Dynamic.

SQL Statements 7–253

DISCONNECT Statement

DISCONNECT Statement

Detaches from declared databases and releases the aliases that you specified
in the declarations. The DISCONNECT statement also ends the specified
transactions and undoes all the changes you made since those transactions
began.

Environment

You can use the DISCONNECT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DISCONNECT <connection-name>
ALL
CURRENT
DEFAULT

connection-name =

’ <literal> ’
<parameter>
<parameter-marker>

Arguments

ALL
Specifies all active connections.

connection-name
Specifies a name for the association between the group of databases being
attached (the environment) and the database and queries that reference them
(the session).

7–254 SQL Statements

DISCONNECT Statement

You can specify the connection name as the following:

• A string literal enclosed in single quotation marks

• A parameter (in module language)

• A variable (in precompiled SQL)

CURRENT
Specifies the current connection.

DEFAULT
Specifies the default connection.

Usage Notes

• Use the DISCONNECT DEFAULT statement instead of the FINISH
statement. The FINISH statement is deprecated syntax. Because the
DISCONNECT DEFAULT statement performs an automatic rollback, be
sure to commit any changes that you want to keep before you execute the
DISCONNECT statement.

See the Oracle Rdb Guide to SQL Programming for disconnect information
with module language procedures.

• You can use SQL connections and explicit calls to DECdtm services to
control when you attach and detach from specific databases. By explicitly
calling DECdtm system services and associating each database with
an SQL connection, you can detach from one database while remaining
attached to other databases. For more information, see the Oracle Rdb7
Guide to Distributed Transactions.

Examples

Example 1: Using the DISCONNECT statement in interactive SQL

This example in interactive SQL illustrates that the DISCONNECT statement
lets you attach a database with the same alias as a previously attached
database (in this example the alias is the default). Use the SHOW DATABASE
statement to see the database settings.

SQL Statements 7–255

DISCONNECT Statement

SQL> ATTACH ’FILENAME mypers’;
SQL> --
SQL> ATTACH ’FILENAME mypers’;
This alias has already been declared.
Would you like to override this declaration (No)? no
%SQL-F-DEFDBDEC, A database has already been declared with the default alias
SQL> DISCONNECT DEFAULT;
SQL> ATTACH ’FILENAME mypers’;

Example 2: Using the DISCONNECT statement in precompiled SQL

This example is taken from the sample program sql_connections.sc. To use
connections in a program, you must specify the SQLOPTIONS=(CONNECT)
qualifier on the precompiler command line. This example shows an EXEC
SQL DISCONNECT statement that specifies the string literal ’al’ for the
connection-name and EXEC SQL DISCONNECT statements that specify the
keywords ALL and DEFAULT.

#include <stdio.h>
#include <string.h>
#include <descrip.h>

char employee_id1[6];
char last_name1[16];
char employee_id2[16];
char degree[14];
char employee_id3[16];
char supervisor[6];
char employee_id4[6];
char last_name4[15];

void sys$putmsg();

EXEC SQL INCLUDE SQLCA;
EXEC SQL declare alias filename personnel;
EXEC SQL declare alias_1 alias filename personnel;
EXEC SQL declare alias_2 alias filename personnel;
EXEC SQL declare alias_3 alias filename personnel;
main()

{
printf("\n\n\n******* Disconnect from default ***************\n");
EXEC SQL disconnect default;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);
printf("\n\n\n");

printf("********* Establish CONNECTION 1 **********\n");

EXEC SQL connect to ’alias alias_1 filename personnel’ as ’a1’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);

printf("********* Insert a record **********\n");

7–256 SQL Statements

DISCONNECT Statement

EXEC SQL insert into alias_1.employees (employee_id, last_name)
values (’00301’,’FELDMAN’);
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);

printf("********* Retrieve the record **********\n");
EXEC SQL select employee_id, last_name into :employee_id1,
:last_name1 from alias_1.employees where employee_id = ’00301’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);
printf("\n\n\n");
printf ("Employee_id = %s\n",employee_id1);
printf ("Last_name = %s\n",last_name1);
printf("\n\n\n");

printf("********* Establish CONNECTION 2 **********\n");
EXEC SQL connect to ’alias alias_2 filename personnel’ as ’a2’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);

printf("********* Insert a record **********\n");
EXEC SQL insert into alias_2.degrees (employee_id, degree_field)
values (’00901’,’MASTERS’);
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);

printf("********* Retrieve the record **********\n");
EXEC SQL select employee_id, degree_field into :employee_id2,
:degree from alias_2.degrees where employee_id = ’00901’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);
printf("\n\n\n");
printf("Employee-id = %s\n",employee_id2);
printf("Degree = %s\n",degree);
printf("\n\n\n");

printf("********* Establish CONNECTION 3 **********\n");
EXEC SQL connect to ’alias alias_3 filename personnel’ as ’a3’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);

printf("********* Insert a record **********\n");
EXEC SQL insert into alias_3.job_history (employee_id, supervisor_id)
values (’01501’,’Brown’);
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);

printf("********* Retrieve the record **********\n");
EXEC SQL select employee_id, supervisor_id into :employee_id3,
:supervisor from alias_3.job_history where employee_id = ’01501’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);
printf("\n\n\n");
printf("Employee-id = %s\n",employee_id3);
printf("Supervisor = %s\n ",supervisor);
printf("\n\n\n");

printf("********* Establish CONNECTION DEFAULT **********\n");
EXEC SQL set connect default ;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);

SQL Statements 7–257

DISCONNECT Statement

printf("********* Retrieve record with id 00164 **********\n");
EXEC SQL select employee_id, last_name into :employee_id4,
:last_name4 from employees where employee_id = ’00164’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);
printf("\n\n\n");
printf("Employee_id = %s\n",employee_id4);
printf("Last_name = %s\n",last_name4);
printf("\n\n\n");

printf("**** DISCONNECT, RECONNECT & TRY TO FIND RECORD *****\n");
strcpy(employee_id1," ");
strcpy(last_name1," ");
EXEC SQL disconnect ’a1’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);
EXEC SQL connect to ’alias alias_1 filename personnel’ as ’a1’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);
printf("********* Retrieve the record **********\n");
EXEC SQL select employee_id, last_name into :employee_id1,
:last_name1 from alias_1.employees where employee_id = ’00301’;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);

printf("************** SHOULD DISPLAY NO RECORD **************\n");
printf("\n\n\n");
printf("employee_id = %s\n",employee_id1);
printf("last_name = %s\n",last_name1);
printf("\n\n\n");
printf("*************** DISCONNECT ALL CONNECTIONS ***************\n");
EXEC SQL disconnect all;
if (SQLCA.SQLCODE != 0) SYS$PUTMSG(&RDB$MESSAGE_VECTOR,0,0,0);
EXEC SQL rollback;
}

7–258 SQL Statements

DROP Statements

DROP Statements

Deletes the database object.

Usage Notes

The following notes apply to all DROP statements except DROP DATABASE.

• You cannot execute the DROP statement when any of the LIST, DEFAULT
or RDB$SYSTEM storage areas are set to read-only. You must first
set these storage areas to read/write. Note that in some databases
RDB$SYSTEM will also be the default and list storage area.

• For multischema databases the IF EXISTS clause may not operate as
expected because the object is internally deleted using the STORED
NAME, which may be different from that specified by the DROP statement.
Currently, the IF EXISTS clause assumes that the multischema name and
the stored name are identical.

• You must execute the DROP statement in a read/write transaction. If you
issue this statement when there is no active transaction, SQL implicitly
starts a transaction with characteristics specified in the most recent
DECLARE TRANSACTION statement.

• The DROP statement fails when the following are true:

The database to which it applies was created with the DICTIONARY
IS REQUIRED argument.

The database was attached using the FILENAME argument.

Under these circumstances, the statement fails with the following error
when you issue it:

%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CDDISREQ, CDD required for metadata updates is not being maintained

• An error is reported if the DROP statement is used for an unknown
database object. Use the IF EXISTS in SQL command scripts to avoid
unwanted error messages.

SQL Statements 7–259

DROP CATALOG Statement

DROP CATALOG Statement

Deletes the specified catalog definition. You must delete all schemas and
definitions contained in a catalog before you can delete that catalog. If other
definitions exist that refer to the named catalog, the deletion fails.

The DROP CATALOG statement lists all schemas and definitions that it is
going to delete. You can roll back the statement if you do not want to delete
these definitions.

Environment

You can use the DROP CATALOG statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP CATALOG <catalog-name>
CASCADE
RESTRICT
IF EXISTS

catalog-name =

<name-of-catalog>

" <alias>.<name-of-catalog> "

Arguments

alias.name-of-catalog
Specifies a name for the attachment to the database. Always qualify the
catalog name with an alias if your program or interactive SQL statements
refer to more than one database. Separate the name of the catalog from the
alias with a period, and enclose the qualified name in double quotation marks.

7–260 SQL Statements

DROP CATALOG Statement

You must issue a SET QUOTING RULES statement before you can qualify a
catalog name with an alias.

CASCADE
RESTRICT
Performs a restricted delete by default. If you prefer to delete all definitions
contained in the catalog, you can specify the DROP CATALOG CASCADE
statement.

catalog-name
Specifies the module catalog name.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

Usage Notes

• You must have DROP database privilege in order to drop a catalog from a
multischema database.

• You cannot delete a catalog if another user issued a query using that
catalog. Users must detach from the database with a DISCONNECT
statement before you can delete the catalog.

• You cannot delete the catalog RDB$CATALOG.

Example

Example 1: Deleting a catalog

The following statement deletes the catalog DEPT1 associated with the alias
PERSONNEL_ALIAS:

SQL Statements 7–261

DROP CATALOG Statement

SQL> ATTACH ’ALIAS PERSONNEL_ALIAS FILENAME CORPORATE_DATA’;
SQL> SET QUOTING RULES ’SQL99’;
SQL> CREATE CATALOG "PERSONNEL_ALIAS.DEPT1";
SQL> SHOW CATALOG;
Catalogs in database PERSONNEL_ALIAS

"PERSONNEL_ALIAS.ADMINISTRATION"
"PERSONNEL_ALIAS.RDB$CATALOG""
"PERSONNEL_ALIAS.DEPT1"

SQL> DROP CATALOG "PERSONNEL_ALIAS.DEPT1";
SQL> SHOW CATALOG;
Catalogs in database PERSONNEL_ALIAS

"PERSONNEL_ALIAS.ADMINISTRATION"
"PERSONNEL_ALIAS.RDB$CATALOG"

SQL> DROP CATALOG "PERSONNEL_ALIAS.RDB$CATALOG";
%SQL-F-NODROPSYSCAT, Catalog "PERSONNEL_ALIAS.RDB$CATALOG" may not be
dropped
SQL>

7–262 SQL Statements

DROP COLLATING SEQUENCE Statement

DROP COLLATING SEQUENCE Statement

Deletes the named collating sequence.

You cannot delete a collating sequence if it is used by the database or by any
domain in the database.

Environment

You can use the DROP COLLATING SEQUENCE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP COLLATING SEQUENCE <collation-name>
IF EXISTS

Arguments

collation-name
Specifies the collation-name argument you used when creating the collating
sequence in the CREATE COLLATING SEQUENCE statement.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

Usage Notes

• You must have DROP database privilege in order to drop a collating
sequence from a database.

• You may not drop the collating sequence that was made the default for the
database.

SQL Statements 7–263

DROP COLLATING SEQUENCE Statement

SQL> create database filename TEST
cont> collating sequence french french;
SQL> drop coll seq french;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-COLUSEDDB, the collating sequence named FRENCH is used by the database

• You must execute this statement in a read/write transaction. If you issue
this statement when there is no active transaction, SQL starts a read/write
transaction implicitly.

• Other users are allowed to be attached to the database when you issue the
DROP COLLATING SEQUENCE statement.

Examples

Example 1: Creating, then deleting, a French collating sequence

The following example creates a collating sequence using the predefined
collating sequence FRENCH. It then uses the SHOW COLLATING
SEQUENCE statement to show the defined collating sequence.

The example next deletes the collating sequence using the DROP COLLATING
SEQUENCE statement. The SHOW COLLATING SEQUENCE statement
shows that the collating sequence no longer exists.

SQL> ATTACH ’FILENAME personnel’;
SQL> CREATE COLLATING SEQUENCE FRENCH FRENCH;
SQL> --
SQL> SHOW COLLATING SEQUENCE
User collating sequences in database with filename personnel

FRENCH
SQL> --
SQL> DROP COLLATING SEQUENCE FRENCH;
SQL> --
SQL> SHOW COLLATING SEQUENCE
User collating sequences in database with filename personnel
No collating sequences found

Example 2: Deleting a collating sequence used to define a domain or database

The following example shows that you cannot delete a collating sequence if a
domain or database is defined using the collating sequence:

SQL> CREATE COLLATING SEQUENCE SPANISH SPANISH;
SQL> CREATE DOMAIN LAST_NAME_SPANISH CHAR (14)
cont> COLLATING SEQUENCE IS SPANISH;
SQL> --
SQL> SHOW DOMAIN LAST_NAME_SPANISH
LAST_NAME_SPANISH CHAR(14)
Collating sequence: SPANISH
SQL> --

7–264 SQL Statements

DROP COLLATING SEQUENCE Statement

SQL> SHOW COLLATING SEQUENCE
User collating sequences in database with filename personnel

SPANISH
SQL> --
SQL> -- You cannot delete the collating sequence because the
SQL> -- domain LAST_NAME_SPANISH, defined using SPANISH, still exists:
SQL> --
SQL> DROP COLLATING SEQUENCE SPANISH;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-COLUSEDFLD, the collating sequence named SPANISH is used in
field LAST_NAME_SPANISH
SQL> --
SQL> -- Delete the domain:
SQL> --
SQL> DROP DOMAIN LAST_NAME_SPANISH;
SQL> --
SQL> -- Now you can delete the collating sequence:
SQL> --
SQL> DROP COLLATING SEQUENCE SPANISH;
SQL> --
SQL> SHOW COLLATING SEQUENCE
User collating sequences in database with filename personnel
No collating sequences found

SQL Statements 7–265

DROP CONSTRAINT Statement

DROP CONSTRAINT Statement

Deletes the named constraints.

Environment

You can use the DROP CONSTRAINT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP CONSTRAINT <constraint-name>
IF EXISTS

Arguments

constraint-name
Specifies the name of the constraint that you want to delete.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

Usage Notes

• You must have DROP table privilege for each table referenced by the table
or column constraint. For instances, a FOREIGN KEY constraint will
required DROP privilege for the source table as well as the referenced
table.

• If the constraint is a column or table constraint, this DROP statement will
implicitly execute an ALTER TABLE . . . DROP CONSTRAINT. Refer to
ALTER TABLE Statement for more information.

7–266 SQL Statements

DROP CONSTRAINT Statement

• Attempts to delete a constraint fail if that constraint is in a table involved
in a query at the same time. Users must detach from the database with
a DISCONNECT statement before you can delete the constraint. When
Oracle Rdb first accesses an object such as the constraint, a lock is placed
on that object and not released until the user exits the database. If you
attempt to update this object, you get a lock conflict on client message due
to the other users’ access to the object.

• The DROP CONSTRAINT statement can reference a constraint on a table
reserved in DATA DEFINITION mode.

Example

Example 1: Deleting a constraint

The following statement deletes the SEX_NOT_NULL constraint.

SQL> DROP CONSTRAINT SEX_NOT_NULL;

SQL Statements 7–267

DROP DATABASE Statement

DROP DATABASE Statement

Deletes a database.

When this statement executes in Oracle Rdb, SQL deletes all the database root
and storage area files associated with the database.

If you specify a repository path name in the DROP DATABASE statement or
specify an alias for a database attached with the PATHNAME argument, SQL
also deletes the repository directory that contains the database definitions.

Caution

Use the DROP DATABASE statement with care. You cannot use the
ROLLBACK statement to cancel a DROP DATABASE statement. When
you use this statement, SQL deletes the database root and storage area
files, which include all data and all definitions.

Environment

You can use the DROP DATABASE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
DROP DATABASE

ALIAS <alias>
FILENAME ’db-attach-spec’
PATHNAME <path-name> literal-user-auth

db-attach-spec =

<file-spec>
<node-spec>

7–268 SQL Statements

DROP DATABASE Statement

node-spec =

<nodename>
<access-string>
::

access-string =

" <user-name> <password> "
" <VMS-proxy-user-name> "

literal-user-auth =

USER ’<username>’
USING ’<password>’

Arguments

ALIAS alias
Specifies the alias for an attached database. The DROP DATABASE statement
deletes the database and all database root and storage area files associated
with the alias.

If the database was declared with the PATHNAME argument, the DROP
DATABASE statement also deletes the repository directory that contains the
database definitions.

FILENAME ’db-attach-spec’
Specifies a quoted string containing full or partial information needed to access
a database. An attach specification contains the file specification of the .rdb
file.

The DROP DATABASE statement deletes the database and all database
system files associated with the database root file specification. If you use
a partial file specification, SQL uses the standard defaults. The DROP
DATABASE statement deletes only the database files, whether or not there is
also a repository directory containing database definitions.

literal-user-auth
Specifies the user name and password for access to databases, particularly
remote database.

SQL Statements 7–269

DROP DATABASE Statement

This literal lets you explicitly provide user name and password information in
the DROP DATABASE statement.

PATHNAME path-name
Specifies a full or relative repository path name for the repository directory
where the database definitions are stored. Use a path name instead of a file
specification to delete the repository database definitions from the repository
along with the database root and storage area files. See also the DROP
PATHNAME Statement.

USER ’username’
Defines a character string literal that specifies the operating system user name
that the database system uses for privilege checking.

USING ’password’
Defines a character string literal that specifies the user’s password for the user
name specified in the USER clause.

Usage Notes

• You must have DROP database privilege to drop a database.

• You cannot delete an Oracle Rdb database when other users are currently
attached or is opened using the RMU/OPEN command.

• After Image Journal (.aij) files are not deleted.

Examples

Example 1: Deleting files only

The following statement deletes the database system files for the database
associated with the database personnel.rdb. If this database also had
definitions stored in a repository directory, this DROP DATABASE statement
would not delete those definitions.

SQL> DROP DATABASE FILENAME personnel;

Example 2: Deleting files and repository definitions

To delete database files and repository definitions, you must specify a repository
path name in the DROP DATABASE statement. This statement deletes the
repository directory CDD$TOP.ACCOUNTING.PERSONNEL in addition to all
database root and storage area files associated with it.

SQL> DROP DATABASE PATHNAME CDD$TOP.ACCOUNTING.PERSONNEL;

7–270 SQL Statements

DROP DOMAIN Statement

DROP DOMAIN Statement

Deletes a domain definition. If you attached to the database using the
PATHNAME qualifier, SQL also deletes the domain definition from the
repository.

Environment

You can use the DROP DOMAIN statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP DOMAIN <domain-name>
IF EXISTS

Arguments

domain-name
Specifies the name of the domain you want to delete.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

Usage Notes

• You must have DROP database privilege in order to drop a domain from a
database.

• You can delete any named domain. However, you cannot delete a domain
that is referred to in a column definition in a table. If you want to delete
a domain that is referred to in a column definition, you must first use the
ALTER TABLE statement to alter or delete the column definition. If the
column definition is used in a constraint or index definition, you must first

SQL Statements 7–271

DROP DOMAIN Statement

delete the constraint or index definition, then alter or delete the column
definition.

• Oracle Rdb creates dependencies between stored routines and metadata
(like domains) on which they are compiled and stored, therefore, you
cannot drop a domain with a routine or trigger dependency. Refer to the
CREATE MODULE Statement and CREATE TRIGGER Statement for
a list of statements that can or cannot cause stored routine and trigger
invalidation.

Refer to the Oracle Rdb Guide to SQL Programming for detailed
information about stored routine dependency types and how metadata
changes can cause invalidation of stored routines.

• If a domain is deleted as part of a DROP SCHEMA CASCADE statement,
the domain properties are inherited by any columns defined using the
domain.

Examples

Example 1: Deleting a domain not referred to by columns

SQL> --
SQL> -- The following CREATE DOMAIN statement creates a domain
SQL> -- that is not used by any columns:
SQL> --
SQL> CREATE DOMAIN ABCD IS CHAR(4);
SQL> --
SQL> -- The SHOW DOMAINS statement shows domain ABCD at the
SQL> -- top of the list:
SQL> --
SQL> SHOW DOMAINS

User domains in database with filename personnel
ABCD CHAR(4)
ADDRESS_DATA_1_DOM CHAR(25)
ADDRESS_DATA_2_DOM CHAR(20)

.

.

.

SQL> --
SQL> -- Now delete the domain:
SQL> --
SQL> DROP DOMAIN ABCD;
SQL> --
SQL> -- The SHOW DOMAINS statement shows that the
SQL> -- domain ABCD has been deleted:
SQL> --
SQL> SHOW DOMAINS

7–272 SQL Statements

DROP DOMAIN Statement

User domains in database with filename personnel
ADDRESS_DATA_1_DOM CHAR(25)
ADDRESS_DATA_2_DOM CHAR(20)

.

.

.

Example 2: Deleting a domain referred to by columns

The following example deletes a domain definition. Because a column refers
to the domain definition and a constraint refers to the column, you must first
alter the table before deleting the domain.

SQL> --
SQL> -- Attempt to delete the domain SEX_DOM. Error messages
SQL> -- indicate that the table EMPLOYEES uses the domain
SQL> -- SEX_DOM, so SEX_DOM cannot yet be deleted:
SQL> --
SQL> DROP DOMAIN SEX_DOM;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELEXI, field SEX_DOM is used in relation EMPLOYEES
-RDMS-F-FLDNOTDEL, field SEX_DOM has not been deleted
SQL> --
SQL> -- Looking at the EMPLOYEES table shows that SEX is the
SQL> -- column that depends on the domain SEX_DOM. Try
SQL> -- to delete the column SEX; error messages indicate that the
SQL> -- constraint EMP_SEX_VALUES depends on the column SEX:
SQL> --
SQL> ALTER TABLE EMPLOYEES DROP COLUMN SEX;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-FLDINCON, field SEX is referenced in constraint EMP_SEX_VALUES
-RDMS-F-RELFLDNOD, field SEX has not been deleted
from relation EMPLOYEES
SQL> --
SQL> -- Delete the constraint EMP_SEX_VALUES:
SQL> --
SQL> ALTER TABLE EMPLOYEES DROP CONSTRAINT EMP_SEX_VALUES;
SQL> --
SQL> -- Because EMP_SEX_VALUES was the only constraint or index
SQL> -- that depended on the column SEX, you can now delete
SQL> -- the column SEX:
SQL> --
SQL> ALTER TABLE EMPLOYEES DROP COLUMN SEX;
SQL> --
SQL> -- The column SEX in the table EMPLOYEES was the only column in
SQL> -- the database that depended on the domain SEX_DOM, so you can
SQL> -- now delete the domain SEX_DOM:
SQL> --
SQL> DROP DOMAIN SEX_DOM;
SQL>

SQL Statements 7–273

DROP INDEX Statement

DROP INDEX Statement

Deletes the specified index definition. If you attach to the database using
the PATHNAME qualifier, SQL also deletes the index definition from the
repository.

Environment

You can use the DROP INDEX statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP INDEX <index-name>
RESTRICT
CASCADE
IF EXISTS

Arguments

CASCADE
Specifies that you want SQL to modify any storage map that uses this index to
be a NO PLACEMENT VIA INDEX storage map.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

index-name
Specifies the name of the index definition you want to delete.

RESTRICT
Prevents the removal of an index if it is referenced by any other object within
an Oracle Rdb database. RESTRICT is the default.

7–274 SQL Statements

DROP INDEX Statement

Usage Notes

• You must have DROP table privilege in order to drop an index from a table.

• Attempts to delete an index fail if that index is involved in a query at the
same time. Users must detach from the database with a DISCONNECT
statement before you can delete the index. When Oracle Rdb first accesses
an object such as the index, a lock is placed on that object and not released
until the user exits the database. If you attempt to update this object,
you get a LOCK CONFLICT ON CLIENT message due to the other users’
optimized access to the object.

Similarly, while you are deleting an index, users cannot execute queries
involving that index until you complete the transaction with a COMMIT
or ROLLBACK statement for the DROP statement. The user receives a
LOCK CONFLICT ON CLIENT error message.

• CASCADE will implicitly alter any storage map that references this index
and change it to a NO PLACEMENT VIA INDEX storage map.

• Any query outline that references the index being dropped will be marked
invalid for both RESTRICT and CASCADE options of the DROP INDEX
command.

• In a multischema database, the DROP INDEX ... CASCADE statement
will be used implicitly to support the DROP SCHEMA ... CASCADE
statement. In previous versions of Oracle Rdb this statement would fail if
a storage map referenced an index that was to be dropped.

Examples

Example 1: Deleting an index from the default database

SQL> ATTACH ’FILENAME personnel’;
SQL> DROP INDEX DEG_COLLEGE_CODE;
SQL> COMMIT;

Example 2: Deleting an index from one of several attached databases

SQL> ATTACH ’FILENAME personnel’;
SQL> ATTACH ’ALIAS MF FILENAME mf_personnel’;
SQL> ATTACH ’ALIAS CORP FILENAME corporate_data’;
SQL> SET QUOTING RULES ’SQL99’;
SQL> DROP INDEX "CORP.ADMINISTRATION".PERSONNEL.EMP_EMPLOYEE_ID;
SQL> COMMIT;

Example 3: Avoiding errors when dropping indices.

SQL Statements 7–275

DROP INDEX Statement

In the following example, the script being used to drop indices prior to
restructuring would report errors. The first error (INDINMAP) indicates that
the index is used by a STORAGE MAP and the second error (INDNOTDEF)
indicates that index is not currently defined.

SQL> set transaction read write;
SQL>
SQL> drop index EMPLOYEES_HASH;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-INDINMAP, index "EMPLOYEES_HASH" is used in storage map "EMPLOYEES_MAP"
SQL> drop index EMP_EMPLOYEE_ID;
SQL> drop index EMP_LAST_NAME;
SQL> drop index EMP_CITY_STATE;
%SQL-F-INDNOTDEF, Index EMP_CITY_STATE is not defined in this database or schema
SQL>
SQL> rollback;

To avoid these errors, the DROP INDEX statement can include the CASCADE
clause (so that the storage map reference is automatically updated) and the IF
EXISTS clause (to suppress any not found errors).

SQL> set transaction read write;
SQL>
SQL> drop index EMPLOYEES_HASH cascade if exists;
SQL> drop index EMP_EMPLOYEE_ID cascade if exists;
SQL> drop index EMP_LAST_NAME cascade if exists;
SQL> drop index EMP_CITY_STATE cascade if exists;
SQL>
SQL> commit;

7–276 SQL Statements

DROP MODULE Statement

DROP MODULE Statement

Deletes a module from an Oracle Rdb database.

Environment

You can use the DROP MODULE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP MODULE <module-name>
RESTRICT
CASCADE
IF EXISTS

Arguments

CASCADE
Specifies that you want SQL to invalidate all objects that refer to routines
in the module and then delete that module definition. This is known as a
cascading delete. If you delete a module referenced by a stored routine with a
routine or language-semantic dependency, SQL also marks the affected stored
routine as invalid.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

module-name
Identifies the name of the module.

RESTRICT
Prevents the removal of a stored routine definition when the function or
procedure is referenced by any other object within an Oracle Rdb database.
RESTRICT is the default.

SQL Statements 7–277

DROP MODULE Statement

Usage Notes

• To execute this statement, you need the DROP privilege on the module you
want to delete.

• Attempts to delete a module will fail if the objects in a procedure or
function of a stored module are involved in a query at the same time.
Users must detach from the database with a DISCONNECT statement
before you can delete the module. When SQL first accesses an object such
as a module, a lock is placed on that object and not released until the users
exit the database.

If you attempt to update this object, you get a lock conflict on client
message due to the other users’ access to the object.

Similarly, while you are deleting a module, users cannot execute queries
involving the procedure or function of a module until you complete the
transaction with a COMMIT or ROLLBACK statement for the DROP
statement. The user receives a LOCK CONFLICT ON CLIENT error
message.

• If a table has a computed-by column whose definition invokes a stored
function, and if that stored function is being deleted, the column is set to
COMPUTE NULL.

• If a module is deleted, invalidating a stored routine, and then the module
is redefined, use of the invalid routine attempts to revalidate the routine
references. Use the ALTER MODULE statement to revalidate these
modules.

Examples

Example 1: Removing a module from an Oracle Rdb database

SQL> DROP MODULE employee_salary;

Example 2: Observing the DROP MODULE ... CASCASE action

This example demonstrates that dependencies may exists between the module
being dropped and other database objects such as routines and triggers. The
script uses SET FLAGS with the WARN_INVALID option so that the database
administrator is informed of any affected objects. In this case a rollback is
used to undo the DROP MODULE ... CASCADE as the affects might damage
the application environment.

7–278 SQL Statements

DROP MODULE Statement

SQL> start transaction read write;
SQL>
SQL> create module FIRST_MODULE
cont> function GET_TIME ()
cont> returns TIME (2);
cont> return CURRENT_TIME (2);
cont> end module;
SQL>
SQL> create module SECOND_MODULE
cont> procedure PRINT_TRACE (in :arg varchar(40));
cont> begin
cont> trace GET_TIME(), ’: ’, :arg;
cont> end;
cont> end module;
SQL>
SQL> create table SAMPLE_TABLE
cont> (ident integer,
cont> descr char(100));
SQL> create trigger SAMPLE_TABLE_TRIGGER
cont> after insert on SAMPLE_TABLE
cont> (trace GET_TIME(), ’: ’, SAMPLE_TABLE.descr)
cont> for each row;
SQL>
SQL> commit;
SQL>
SQL> set flags ’warn_invalid’;
SQL> drop module FIRST_MODULE restrict;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-OBJ_INUSE, object "GET_TIME" is referenced by SAMPLE_TABLE_TRIGGER. (usage: Trigger)
-RDMS-E-MODNOTDEL, module "FIRST_MODULE" has not been deleted
SQL> drop module FIRST_MODULE cascade;
~Xw: Trigger "SAMPLE_TABLE_TRIGGER" marked invalid
~Xw: Routine "PRINT_TRACE" marked invalid
SQL>
SQL> rollback;

SQL Statements 7–279

DROP OUTLINE Statement

DROP OUTLINE Statement

Deletes a query outline.

Environment

You can use the DROP OUTLINE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

The DROP OUTLINE statement allows the user to specify that an existing
outline should be removed from the database.

Format

DROP OUTLINE <outline-name>
IF EXISTS

Arguments

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

outline-name
Specifies the name of the outline you want to delete.

Usage Notes

• To delete an outline, you must have the DROP privilege for every table
referenced by the outline.

• The DROP OUTLINE statement is an online operation (other users can
be attached to the database when an outline is deleted). However, a query
outline cannot be deleted when the outline is being referenced in another
transaction. If you issue a DROP OUTLINE statement while another

7–280 SQL Statements

DROP OUTLINE Statement

transaction is referencing the outline, the transaction finishes and then the
outline is deleted.

Examples

Example 1. Deleting an outline

SQL> DROP OUTLINE MY_OUTLINE;

SQL Statements 7–281

DROP PATHNAME Statement

DROP PATHNAME Statement

Deletes the repository definitions. It does not delete the physical database files.

Environment

You can use the DROP PATHNAME statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP PATHNAME <path-name>

Arguments

path-name
Specifies the repository path name for the schema definitions.

Specify either a full path name or a relative path name. If you use a relative
path name, the current default repository directory must be defined to include
all the path name segments that precede the relative path name.

Examples

Example 1: Deleting a path name with the DROP PATHNAME statement

The following example deletes CDD$TOP.SQL.DEPT3, a repository directory,
and all its descendants. It does not delete the database system files or data
that corresponds to that path name.

SQL> DROP PATHNAME "CDD$TOP.SQL.DEPT3";

7–282 SQL Statements

DROP PROFILE Statement

DROP PROFILE Statement

Drops a profile definition.

Environment

You can use the DROP PROFILE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

DROP PROFILE <profilename>
DEFAULT PROFILE CASCADE

ALIAS aliasname RESTRICT
IF EXISTS

Arguments

ALIAS aliasname
When attached to multiple databases, the aliasname is required to direct the
DROP command to the appropriate database.

CASCADE
This option causes all user definitions to be altered to remove the reference to
this profile.

DEFAULT PROFILE
Drops the special profile RDB$DEFAULT_PROFILE.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

RESTRICT
If the profile is used by a user in the database, the DROP PROFILE statement
will fail. This is the default.

SQL Statements 7–283

DROP PROFILE Statement

Usage Notes

• You must have SECURITY database privilege in order to drop a profile
from a database.

• Profile names are, by default, in uppercase. If they were defined in mixed
case or with other special characters, use the SET DIALECT ’SQL99’ or
SET QUOTING RULES ’SQL99’ statement to enable delimited identifiers.
Then, use quotation marks (" ") around the name in the DROP PROFILE
statement.

Examples

Example 1: Using Delimited Identification Mixed-Case Profile Names

SQL> DROP PROFILE Decision_Support;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-PRFNEXISTS, a quota does not exist with the name "DECISION_SUPPORT"
SQL> SET DIALECT ’SQL99’;
SQL> DROP PROFILE "Decision_Support";
SQL> COMMIT;

Example 2: Using CASCADE to remove assigned profiles from users

This example demonstrates that there may be dependencies between profiles
and user objects. The CASCADE action will remove the profile from all users
to which is assigned.

7–284 SQL Statements

DROP PROFILE Statement

SQL> create profile DECISION_SUPPORT
cont> comment is ’restrictions for read-only users’
cont> default transaction read only
cont> transaction modes (read only, shared);
SQL>
SQL> show profile DECISION_SUPPORT;

DECISION_SUPPORT
Comment: restrictions for read-only users

Transaction modes (read only, shared)
Default transaction read only

SQL>
SQL> create user FREEMAN
cont> identified externally
cont> profile DECISION_SUPPORT;
SQL>
SQL> show user FREEMAN;

FREEMAN
Identified externally
Account is unlocked
Profile: DECISION_SUPPORT
No roles have been granted to this user

SQL>
SQL> drop profile DECISION_SUPPORT restrict;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-PRFINUSE, entry "DECISION_SUPPORT" is referenced by user "FREEMAN"
SQL>
SQL> drop profile DECISION_SUPPORT cascade;
SQL>
SQL> show user FREEMAN;

FREEMAN
Identified externally
Account is unlocked
No roles have been granted to this user

SQL>
SQL> commit;

SQL Statements 7–285

DROP ROLE Statement

DROP ROLE Statement

Drops a role previously created with the CREATE ROLE or GRANT statement.

Environment

You can use the DROP ROLE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

DROP ROLE <role-name>
CASCADE
RESTRICT
IF EXISTS

Arguments

CASCADE
Drops the specified role from the database and deletes all references to this
role that exist in other roles and access control lists (ACLs).

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

RESTRICT
Drops the specified role. If there are any references to this role in another role
or ACL, then the DROP ROLE statement fails.

The RESTRICT clause is the default.

role-name
An existing role-name in the database (such as one created with the CREATE
ROLE statement). You cannot specify one of the predefined roles. See the
Usage Notes for details.

7–286 SQL Statements

DROP ROLE Statement

Usage Notes

• You must have the SECURITY privilege on the database to drop a role.

• The special roles BATCH, DIALUP, INTERACTIVE, LOCAL, NETWORK,
and REMOTE are granted by the OpenVMS operating system when the
user process is created. Therefore, these roles are reserved names and
cannot be used as the role-name in the DROP ROLE statement.

Examples

Example 1: Dropping a Role from the Database

SQL> SHOW ROLES;
Roles in database with filename mf_personnel.rdb

DOCUMENTATION
SQL> DROP ROLE DOCUMENTATION RESTRICT;
SQL> SHOW ROLES;
Roles in database with filename mf_personnel.rdb
No Roles Found

SQL Statements 7–287

Drop Routine Statement

Drop Routine Statement

Deletes a routine definition, external or stored, from an Oracle Rdb database.
External routine refers to both external functions and external procedures.
Stored routine refers to both stored functions and stored procedures.

Environment

You can use the DROP FUNCTION and DROP PROCEDURE statements:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format
DROP FUNCTION <routine-name>

PROCEDURE RESTRICT
CASCADE
RESRICT
IF EXISTS

Arguments

CASCADE
Deletes the routine definition even when there are dependencies on the
specified routine. Any referencing routines are marked invalid.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

DROP FUNCTION routine-name
Identifies the name of the external or stored function definition in the Oracle
Rdb database.

DROP PROCEDURE routine-name
Identifies the name of the external or stored procedure definition in the Oracle
Rdb database.

7–288 SQL Statements

Drop Routine Statement

RESTRICT
Prevents the removal of an external or stored routine definition when the
routine is referenced by any other object within an Oracle Rdb database.

RESTRICT is the default.

Usage Notes

• You must have DROP privilege on the routine in order to drop a function
or procedure from a database. If the routine was created using CREATE
MODULE then you must have DROP privilege on the owning module in
order to drop the routine.

• SQL does not store the external routine’s executable image in an Oracle
Rdb database. Instead, it stores information that points to the external
routine, such as its name and location, so that SQL can automatically
invoke it from within a query execution.

• Before you can delete a routine in a module, you must have ALTER
privileges on the module containing the routine that you want to delete.

• Computed-by columns are set to COMPUTE NULL in tables that reference
a function that has been deleted by a DROP FUNCTION CASCADE
statement.

You can alter the table and delete the computed-by column. At some future
point, you can then alter the table and create a new computed-by column
using the same name but with a different computed-by expression.

Examples

Example 1: Deleting an external function definition from an Oracle Rdb
database

If you want to alter an external function definition, you must first delete it and
then create it again with the changes you plan. This example shows how to
delete the COSINE_F function.

SQL> DROP FUNCTION cosine_f RESTRICT;

SQL Statements 7–289

Drop Routine Statement

Example 2: Deleting a routine from a stored module

The DROP FUNCTION and DROP PROCEDURE statements can be used
to drop routines from a stored module. If the routine is referenced by other
objects then the CASCADE option may be required to successfully drop the
routine.

See also the DROP FUNCTION and DROP PROCEDURE clauses of ALTER
MODULE which can be used to perform the same task.

This example removes a function from the stored module TIME_ROUTINES
that is no longer in use.

SQL> set dialect ’sql99’;
SQL> create database filename junk;
SQL>
SQL> create module TIME_ROUTINES
cont>
cont> function GET_TIME ()
cont> returns TIME (2);
cont> return CURRENT_TIME (2);
cont>
cont> function DAY_OF_WEEK (in :dt date)
cont> returns VARCHAR(10);
cont> return case EXTRACT (weekday from :dt)
cont> when 1 then ’Monday’
cont> when 2 then ’Tuesday’
cont> when 3 then ’Wednesday’
cont> when 4 then ’Thursday’
cont> when 5 then ’Friday’
cont> when 6 then ’Saturday’
cont> when 7 then ’Sunday’
cont> else ’***’
cont> end;
cont>
cont> end module;
SQL>
SQL> show module TIME_ROUTINES;
Information for module TIME_ROUTINES

Header:
TIME_ROUTINES
No description found
Module ID is: 1

Routines in module TIME_ROUTINES:
DAY_OF_WEEK
GET_TIME

SQL> drop function GET_TIME cascade;
SQL> show module TIME_ROUTINES;
Information for module TIME_ROUTINES

7–290 SQL Statements

Drop Routine Statement

Header:
TIME_ROUTINES
No description found
Module ID is: 1

Routines in module TIME_ROUTINES:
DAY_OF_WEEK

SQL>

SQL Statements 7–291

DROP SCHEMA Statement

DROP SCHEMA Statement

Deletes a schema and all the definitions that it contains.

Environment

You can use the DROP SCHEMA statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP SCHEMA <schema-name>
CASCADE
RESTRICT
IF EXISTS

Arguments

CASCADE
Deletes all other definitions (views, constraints, tables, sequences, indexes,
and triggers) that refer to the named schema and then deletes that schema
definition. This is known as a cascading delete.

If you specify the CASCADE keyword, SQL deletes all definitions contained by
the schema before deleting the schema.

If you do not specify the CASCADE keyword, the schema must be empty.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

RESTRICT
Returns an error message if other definitions refer to the named schema. The
DROP SCHEMA RESTRICT statement will not delete a schema until you
have deleted all other definitions that refer to the named schema. The DROP
SCHEMA statement specifies an implicit RESTRICT by default.

7–292 SQL Statements

DROP SCHEMA Statement

schema-name
Specifies the schema name. You must qualify the schema name with catalog
and alias names if the schema is not in the default catalog and database. For
more information about schema names, see Section 2.2.15.

Usage Notes

• To delete a schema, you must have the same authorization identifier as
that schema or your user name must match the schema name.

• You must have DROP database privilege in order to drop a schema from a
multischema database.

• If you try to delete a schema without first deleting views, constraints,
indexes, and triggers that refer to that schema, SQL issues the following
error message:

SQL> ATTACH ’ALIAS MS_ALIAS FILENAME MS_TESTDB’;
SQL> SET QUOTING RULES ’SQL99’;
SQL> SET CATALOG ’"MS_ALIAS.MS_TESTCATALOG"’;
SQL> DROP SCHEMA "MS_ALIAS.MS_TESTSCHEMA";
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-SCHEMAINUSE, schema MS_TESTSCHEMA currently in use

You can avoid the error message by deleting all the definitions that refer
to the named schema before deleting the schema, or by specifying DROP
SCHEMA CASCADE.

• You cannot delete the schema RDB$SCHEMA.

Examples

Example 1: Deleting a schema with implicit RESTRICT

In the following example, the user must delete the definitions that refer to the
schema RECRUITING before deleting the schema itself.

After setting the default schema to RECRUITING and the default catalog to
ADMINISTRATION, the user can qualify each definition name with only the
alias CORP.

SQL Statements 7–293

DROP SCHEMA Statement

SQL> ATTACH ’ALIAS CORP FILENAME CORPORATE_DATA’;
SQL> SET CATALOG ’"CORP.ADMINISTRATION"’;
SQL> SET SCHEMA ’"CORP.ADMINISTRATION".RECRUITING’;
SQL> SET QUOTING RULES ’SQL92’;
SQL> DROP SCHEMA "CORP.RECRUITING";
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-E-SCHEMAINUSE, schema RECRUITING currently in use
SQL> DROP TABLE "CORP.CANDIDATES";
SQL> DROP TABLE "CORP.COLLEGES";
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CONEXI, relation COLLEGES is referenced in constraint DEGREES_FOREIGN3
-RDMS-F-RELNOTDEL, relation COLLEGES has not been deleted
SQL> DROP TABLE "CORP.DEGREES";
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-TRGEXI, relation DEGREES is referenced in trigger
EMPLOYEE_ID_CASCADE_DELETE
SQL> DROP TABLE "CORP.RESUMES";
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-TRGEXI, relation RESUMES is referenced in trigger
EMPLOYEE_ID_CASCADE_DELETE
-RDMS-F-RELNOTDEL, relation RESUMES has not been deleted
SQL> --
SQL> -- The trigger is part of another schema, PERSONNEL. Since this
SQL> -- is not the default schema, the user qualifies the trigger name
SQL> -- with schema and names.
SQL> --
SQL> DROP TRIGGER "CORP.ADMINSTRATION".PERSONNEL.EMPLOYEE_ID_CASCADE_DELETE;
SQL> DROP CONSTRAINT "CORP.DEGREES_FOREIGN3";
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-CONDELVIAREL, constraint DEGREES_FOREIGN3 can only be deleted by
changing or deleting relation DEGREES
SQL> DROP TABLE "CORP.DEGREES";
SQL> DROP TABLE "CORP.RESUMES";
SQL> DROP TABLE "CORP.COLLEGES";
SQL> DROP SCHEMA "CORP.RECRUITING";

Example 2: Deleting a schema with CASCADE

In the following example, SQL deletes the definitions that refer to the schema
ACCOUNTING, then deletes the schema itself:

SQL> DROP SCHEMA "CORP.ACCOUNTING" CASCADE;
Domain "CORP.ADMINISTRATION".ACCOUNTING.BUDGET is also being dropped.
Domain "CORP.ADMINISTRATION".ACCOUNTING.CODE is also being dropped.
SQL>

7–294 SQL Statements

DROP SEQUENCE Statement

DROP SEQUENCE Statement

Drops a specified sequence.

Environment

You can use the DROP SEQUENCE statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

DROP SEQUENCE <sequence-name>
CASCADE
RESTRICT
IF EXISTS

Arguments

CASCADE
The CASCADE clause specifies that you want SQL to invalidate all objects
that refer to the sequence and then delete the sequence definition. If you
delete a sequence referenced by a stored routine or trigger with a routine or
language-semantic dependency, SQL also marks the affected stored routine or
trigger as invalid.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

RESTRICT
The RESTRICT clause prevents the removal of a sequence definition (the
DROP SEQUENCE statement fails) when the sequence is referenced by any
other object within the Oracle Rdb database.

The RESTRICT clause is the default.

SQL Statements 7–295

DROP SEQUENCE Statement

sequence-name
An existing sequence name in the database. To specify lowercase characters
or characters not in the SQL repertoire, enclose the sequence name in single
quotation marks (’).

Usage Notes

• You must have the DROP database privilege on the sequence to drop a
sequence from a database.

• When you drop a sequence, the reserved space in the database root file
becomes available for reuse by the next sequence created.

• Because Oracle Rdb creates dependencies between stored sequences and
metadata (like tables) on which they depend, you can delete a table with a
routine or language-semantic dependency if you specify CASCADE but you
cannot with RESTRICT. In the case of DROP TABLE CASCADE, when the
table referenced in a stored routine is deleted, the stored routine is marked
as invalid. In the case of DROP TABLE RESTRICT, because the statement
fails when you attempt to delete a table referenced in a stored routine, the
dependent stored routine is not invalidated. See the CREATE MODULE
Statement for a list of statements that can or cannot cause stored routine
invalidation.

See the Oracle Rdb Guide to SQL Programming for detailed information
about stored routine dependency types and how metadata changes can
cause invalidation of stored routines.

• Oracle Rdb creates dependencies between sequences and other database
objects, such as tables and routines, which depend upon those definitions.

For example, you can delete a sequence with a dependency if you specify
CASCADE but you cannot with RESTRICT. In the case of DROP
SEQUENCE . . . CASCADE, when the sequence referenced in a stored
routine is deleted, the routine is marked as invalid. In the case of DROP
SEQUENCEE . . . RESTRICT, the statement fails when the dependency is
detected and the dependent routine is not invalidated. See the CREATE
MODULE Statement for a list of statements that may cause stored routine
invalidation.

• When a column is defined with the IDENTITY attribute in a CREATE
TABLE statement or an ALTER TABLE statement, a sequence is implicitly
created with the same name as the table. However, the DROP SEQUENCE
statement is not supported on such sequences. Use the ALTER TABLE ...

7–296 SQL Statements

DROP SEQUENCE Statement

DROP COLUMN statement, or the DROP TABLE statement to remove the
identity sequence.

Examples

Example 1: Dropping a Sequence

SQL> SHOW SEQUENCE;
Sequences in database with filename mf_personnel.rdb

EMPID
SQL> DROP SEQUENCE EMPID;
SQL> SHOW SEQUENCE;
Sequences in database with filename mf_personnel.rdb
No Sequences Found
SQL>

SQL Statements 7–297

DROP STORAGE MAP Statement

DROP STORAGE MAP Statement

Deletes the specified storage map definition.

Environment

You can use the DROP STORAGE MAP statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP STORAGE MAP <map-name>
IF EXISTS

Arguments

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

map-name
Specifies the name of the storage map you want to delete.

Usage Notes

• You must have DROP table privilege in order to drop a storage map from a
table.

• When the storage map is dropped the table is implicitly mapped to the
default storage area.

• You cannot delete a storage map that refers to a table that contains data.
If you attempt to do so, you receive an error message.

• The underlying storage map is deleted when you use DROP TABLE.

7–298 SQL Statements

DROP STORAGE MAP Statement

• Attempts to delete a storage map fail if that storage map refers to a table
that is involved in a query at the same time. Users must detach from
the database with a DISCONNECT statement before you can delete the
storage map. When Oracle Rdb first accesses an object such as a table,
a lock is placed on that object and not released until the users exit the
database. If you attempt to update this object, you get a LOCK CONFLICT
ON CLIENT message due to the other users’ access to the object.

Similarly, while you are deleting a storage map, users cannot execute
queries involving the table that the storage map refers to until you
complete the transaction with a COMMIT or ROLLBACK statement for the
DROP statement. The users receive a lock conflict on client error message.

• Other users are allowed to be attached to the database when you issue the
DROP STORAGE MAP statement.

Examples

Example 1: Deleting a storage map in interactive SQL

This example deletes a storage map. You cannot delete a storage map that
refers to a table that contains data.

SQL> ATTACH ’FILENAME mf_personnel’;
SQL> DROP STORAGE MAP WORK_STATUS_MAP;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-RELNOTEMPTY, relation WORK_STATUS has data in it
SQL> DELETE FROM WORK_STATUS;
3 rows deleted
SQL> DROP STORAGE MAP WORK_STATUS_MAP;
SQL>

SQL Statements 7–299

DROP SYNONYM Statement

DROP SYNONYM Statement

Drops a synonym definition.

Environment

You can use the DROP SYNONYM statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

DROP SYNONYM <synonym-name>
PUBLIC CASCADE

RESTRICT
IF EXISTS

Arguments

CASCADE
Specifies that you want SQL to delete the synonym definition even if other
database objects reference this name. This might later cause errors when
executing queries. Stored functions, stored procedures, and triggers that
reference this name will be marked as invalid.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

PUBLIC
This optional clause is provided for compatibility with the Oracle database
server. It is currently not used by Oracle Rdb. Its presence or absence may be
used by future releases. Oracle Corporation recommends you use the PUBLIC
keyword in applications.

7–300 SQL Statements

DROP SYNONYM Statement

RESTRICT
Specifies that you want SQL to abort the DROP statement if it detects any
database object referencing this name. This is the default.

synonym-name
The name of an existing synonym you want to drop.

Usage Notes

• You must have REFERENCES privilege on the referenced object to drop a
synonym for that object. Because domains do not have access control, no
other privileges are required to drop synonyms for domains.

• You must have database DROP privilege to execute the DROP SYNONYM
statement.

• You must have the DBADM (administrator) privilege on the database if the
synonym to be dropped was created by RENAME.

Example

Example 1: Dropping a Synonym

SQL> DROP PUBLIC SYNONYM employees CASCADE;

SQL Statements 7–301

DROP TABLE Statement

DROP TABLE Statement

Deletes the specified table definition.

If you use the PATHNAME qualifier when you attach to the database, the
DROP TABLE statement also deletes the table definition from the repository.

Environment

You can use the DROP TABLE statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP TABLE <table-name>
CASCADE
RESTRICT
IF EXISTS

Arguments

CASCADE
Specifies that you want SQL to delete all other definitions (constraints, indexes,
modules, storage maps, triggers, and views) that refer to the named table and
then delete that table definition. This is known as a cascading delete. For
stored routines or triggers with a routine or language-semantic dependency,
SQL also marks the affected routines and triggers as invalid.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

RESTRICT
Specifies that you want SQL to delete only the named table definition. If
constraints, modules, triggers, or views are defined that refer to the named
table, SQL does not delete the table. If there are indexes or storage maps that

7–302 SQL Statements

DROP TABLE Statement

refer to the named table, SQL deletes the table and storage map and does not
issue an error.

table-name
Specifies the name of the table definition you want to delete.

Usage Notes

• You must have DROP privilege on the table in order to drop that table
from a database.

• You cannot delete a table when there are other active transactions
involving the table. That is, you must have exclusive access to the table.

• Attempts to delete a table will fail if that table is involved in a query at the
same time.

• If you do not specify either the CASCADE keyword or the RESTRICT
keyword, SQL executes a restricted delete by default.

• The CASCADE option will invalidate all active queries that reference this
table. If using an ORACLE dialect then this is also true for RESTRICT.

• When SQL first accesses an object such as the table, a lock is placed on
that object and not released until the user exits the database.

If you are using Oracle Rdb and attempt to update this object, you get a
lock conflict on client message due to the other user’s access to the object.

Similarly, while you are deleting a table, users cannot execute queries
involving that table until you completed the transaction with a COMMIT
or ROLLBACK statement for the DROP statement. If you are using Oracle
Rdb, users receive a lock conflict on client error message.

• Performance of DROP TABLE statements varies widely, depending on
how the storage area file containing the table was defined. In multifile
databases, performance is much slower if the base storage area was created
with the PAGE FORMAT IS MIXED storage area parameter.

When a table contains one or more LIST OF BYTE VARYING columns,
the DROP TABLE statement must read each row in the table and record
the pointers for all LIST values. This list is processed at COMMIT time to
delete the LIST column data. Therefore, the database administrator must
also allow for this time when dropping the table.

SQL Statements 7–303

DROP TABLE Statement

Reserving the table for EXCLUSIVE WRITE is recommended because the
dropped LIST columns will require that each row in the table be updated
and set to NULL - it is this action which queues the pointers for commit
time processing. This reserving mode will eliminate snapshot file I/O, lower
lock resources and reduce virtual memory usage.

As the LIST data is stored outside the table performance may be improved
by attaching to the database with the RESTRICTED ACCESS clause,
which has the side effect of reserving all the LIST storage areas for
EXCLUSIVE access and therefore eliminates snapshot I/O during the
delete of the LIST data.

• Other users are allowed to be attached to the database when you issue the
DROP TABLE statement.

• If a view definition refers to a table you want to delete, you must delete
that view definition before you delete the table, or specify CASCADE.

• If a trigger definition refers to a table you want to delete, you must delete
that trigger definition before you delete the table, or specify CASCADE.

• Because Oracle Rdb creates dependencies between stored routines and
metadata (like tables) on which they depend, you can delete a table with a
routine or language-semantic dependency if you specify CASCADE but you
cannot with RESTRICT. In the case of DROP TABLE CASCADE, when the
table referenced in a stored routine is deleted, the stored routine is marked
as invalid. In the case of DROP TABLE RESTRICT, because the statement
fails when you attempt to delete a table referenced in a stored routine, the
dependent stored routine is not invalidated. See the CREATE MODULE
Statement for a list of statements that can or cannot cause stored routine
invalidation.

See the Oracle Rdb Guide to SQL Programming for detailed information
about stored routine dependency types and how metadata changes can
cause invalidation of stored routines.

• The DROP TABLE statement marks any query outline that refers to the
deleted table as invalid.

• A computed-by column is altered to COMPUTE NULL if it references a
persistent base table, global temporary table, or local temporary table that
has been deleted by a DROP TABLE CASCADE statement. For example:

7–304 SQL Statements

DROP TABLE Statement

SQL> CREATE TABLE t1 (col1 INTEGER,
cont> col2 INTEGER);
SQL> --
SQL> CREATE TABLE t2 (x INTEGER,
cont> y COMPUTED BY (SELECT COUNT(*) FROM
cont> t1 WHERE t1.col1 = t2.x));
SQL> --
SQL> -- Assume values have been inserted into the tables.
SQL> --
SQL> SELECT * FROM t1;

COL1 COL2
1 100
1 101
1 102
2 200
3 300

5 rows selected
SQL> SELECT * FROM t2;

X Y
1 3
3 1

2 rows selected
SQL> --
SQL> DROP TABLE t1 CASCADE;
Computed Column Y in table T2 is being set to NULL.
SQL> SELECT * FROM t2;

X Y
1 NULL
3 NULL

You can alter the table and delete the computed-by column. At some future
point, you can then alter the table and create a new computed-by column
using the same name but with a different computed-by expression.

However, a computed-by column is not set to NULL if it references a
declared local temporary table that has been deleted by a DROP TABLE
CASCADE statement. An exception is raised if you query the declared
local temporary table in this situation.

Examples

Example 1: Deleting a table from an attached database

SQL> ATTACH ’ALIAS PERS FILENAME personnel’;
SQL> DROP TABLE PERS.DEGREES;
SQL> COMMIT;

SQL Statements 7–305

DROP TABLE Statement

Example 2: Deleting a table and definitions that reference it from the default
database

SQL> ATTACH ’FILENAME corporate_data’;
SQL> DROP TABLE ADMINISTRATION.PERSONNEL.EMPLOYEES CASCADE;
View ADMINISTRATION.PERSONNEL.REVIEW_DATE is also being dropped.
View ADMINISTRATION.PERSONNEL.CURRENT_INFO is also being dropped.
View ADMINISTRATION.PERSONNEL.CURRENT_SALARY is also being dropped.
View ADMINISTRATION.PERSONNEL.CURRENT_JOB is also being dropped.
Constraint ADMINISTRATION.RECRUITING.DEGREES_FOREIGN2 is also being dropped.
Constraint ADMINISTRATION.PERSONNEL.EMPLOYEES_PRIMARY_EMPLOYEE_ID is also
being dropped.
Constraint ADMINISTRATION.PERSONNEL.EMP_SEX_VALUES is also being dropped.
Constraint ADMINISTRATION.PERSONNEL.HOURLY_HISTORY_FOREIGN1 is also being
dropped.
Constraint ADMINISTRATION.PERSONNEL.JOB_HISTORY_FOREIGN1 is also being
dropped.
Constraint ADMINISTRATION.RECRUITING.RESUMES_FOREIGN2 is also being dropped.
Constraint ADMINISTRATION.PERSONNEL.SALARY_HISTORY_FOREIGN1 is also being
dropped.
Constraint ADMINISTRATION.PERSONNEL.STATUS_CODE_VALUES is also being dropped.
Index ADMINISTRATION.PERSONNEL.EMP_LAST_NAME is also being dropped.
Index ADMINISTRATION.PERSONNEL.EMP_EMPLOYEE_ID is also being dropped.
Trigger ADMINISTRATION.PERSONNEL.EMPLOYEE_ID_CASCADE_DELETE is also being
dropped.
Trigger ADMINISTRATION.PERSONNEL.STATUS_CODE_CASCADE_UPDATE is also being
dropped.

7–306 SQL Statements

DROP TRIGGER Statement

DROP TRIGGER Statement

Deletes a trigger definition from the physical database and, if the database was
attached with PATHNAME, from the repository.

Environment

You can use the DROP TRIGGER statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP TRIGGER <trigger-name>
IF EXISTS

Arguments

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

trigger-name
Specifies the name of the trigger to be deleted.

Usage Notes

• To delete a trigger, you must have DELETE access to the table for which
the trigger is defined.

• You must have DROP table privilege in order to drop a trigger for a table.

• Attempts to delete a trigger fail if that trigger is involved in a query at the
same time. Users must detach from the database with a DISCONNECT
statement before you can delete the trigger. When Oracle Rdb first accesses
an object such as the table accessed by the trigger, a lock is placed on that
object and not released until the user exits the database. If you attempt to

SQL Statements 7–307

DROP TRIGGER Statement

update this object, you get a LOCK CONFLICT ON CLIENT message due
to the other users’ access to the object.

Similarly, while you are deleting a trigger, users cannot execute queries
involving tables referred to by the trigger until you have completed the
transaction with a COMMIT or ROLLBACK statement for the DROP
statement. The user receives lock conflict on client error message.

• Other users are allowed to be attached to the database when you issue the
DROP TRIGGER statement.

Examples

Example 1: Deleting the EMPLOYEE_ID_CASCADE_DELETE trigger

SQL> ATTACH ’FILENAME personnel’;
SQL> SHOW TRIGGERS
User triggers in database with filename PERSONNEL

COLLEGE_CODE_CASCADE_UPDATE
EMPLOYEE_ID_CASCADE_DELETE
STATUS_CODE_CASCADE_UPDATE

SQL> DROP TRIGGER EMPLOYEE_ID_CASCADE_DELETE;
SQL> SHOW TRIGGERS
User trigggers in database with filename PERSONNEL

COLLEGE_CODE_CASCADE_UPDATE
STATUS_CODE_CASCADE_UPDATE

SQL>

7–308 SQL Statements

DROP USER Statement

DROP USER Statement

Removes the entry (such as one created with the CREATE USER or GRANT
statement) for a user name or special user class from the database.

Environment

You can use the DROP statement:

• In interactive SQL

• Embedded in host language programs

• As part of a procedure in an SQL module or other compound statement

• In dynamic SQL as a statement to be dynamically executed

Format

DROP USER <username>
CASCADE
RESTRICT
IF EXISTS

Arguments

CASCADE
The CASCADE clause drops the specified user from the database and deletes
all references to this user that exist in the access control lists (ACLs), modules,
and schemas. If the PUBLIC user is dropped, ACLs are not processed to
remove the PUBLIC entry.

RESTRICT
The RESTRICT clause drops the specified user. If there are any references to
this user in another ACL, then the DROP USER statement fails.

The RESTRICT clause is the default.

username
An existing user name in the database.

SQL Statements 7–309

DROP USER Statement

Usage Notes

• You must have the SECURITY privilege on the database to drop a user.

• You can display existing users defined for a database by issuing a SHOW
SYSTEM USERS or SHOW USERS statement.

Example

Example 1: Dropping a User

SQL> SHOW USER
Users in database with filename mf_personnel.rdb

JSMITH
NSTUART

SQL> DROP USER JSMITH;
SQL> SHOW USER
Users in database with filename mf_personnel.rdb

NSTUART
SQL>

7–310 SQL Statements

DROP VIEW Statement

DROP VIEW Statement

Deletes the specified view definition. When the DROP VIEW statement
executes, SQL deletes the view definition from the database. If you attach
to the database using the PATHNAME qualifier, SQL also deletes the view
definition from the repository.

Environment

You can use the DROP VIEW statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

DROP VIEW <view-name>
CASCADE
RESTRICT
IF EXISTS

Arguments

CASCADE
Specifies that you want SQL to delete all other view definitions that refer
to the named view and then delete that view definition. This is known as a
cascading delete. If you delete a view referenced by a stored routine or trigger
with a routine or language-semantic dependency, SQL also marks the affected
routines and triggers as invalid.

IF EXISTS
Prevents SQL command language from displaying error messages if the
referenced object does not exist in the database.

RESTRICT
Specifies that you want SQL to delete only the named view definition. If there
are other views, triggers, or routines that refer to the named view, the deletion
fails. RESTRICT is the default.

SQL Statements 7–311

DROP VIEW Statement

view-name
Specifies the name of the view definition you want to delete.

Usage Notes

• You must have DROP privilege on the view in order to drop that view from
a database.

• Because Oracle Rdb creates dependencies between stored routines and
metadata (like views) on which they depend, you can delete a view with a
routine or language-semantic dependency if you specify CASCADE but you
cannot with RESTRICT. In the case of DROP VIEW CASCADE, when the
view referenced in a stored routine is deleted, the stored routine is marked
as invalid. In the case of DROP VIEW RESTRICT, because the statement
fails when you attempt to delete the view referenced in a stored routine,
the dependent stored routine is not invalidated. Refer to the CREATE
MODULE Statement for a list of statements that can or cannot cause
stored routine invalidation.

Refer to the Oracle Rdb Guide to SQL Programming for detailed
information about stored routine dependency types and how metadata
changes can cause invalidation of stored routines.

• If a deleted view is referenced in a computed-by column, the computed-by
column is altered to COMPUTE NULL.

Examples

Example 1: Deleting a view definition

The following example deletes the view definition CURRENT_INFO:

SQL> DROP VIEW CURRENT_INFO;
SQL> COMMIT;

Example 2: Deleting a view with dependent views

This example shows that SQL will not automatically delete any views that
refer to the view named in the DROP VIEW statement. You must use the
CASCADE keyword to delete a view with dependent views.

7–312 SQL Statements

DROP VIEW Statement

SQL> DROP VIEW CURRENT_JOB;
%RDB-E-NO_META_UPDATE, metadata update failed
-RDMS-F-VIEWINVIEW, view CURRENT_JOB is referenced by view CURRENT_INFO
-RDMS-F-VIEWNOTDEL, view CURRENT_JOB has not been deleted

SQL> DROP VIEW CURRENT_JOB CASCADE;
View CURRENT_INFO is also being dropped.
SQL> COMMIT;

Example 3: Adding new definitions to a database

When updating metadata definitions using a predefined SQL script it
sometimes required to remove objects that may not be present in all databases
being maintained. Adding a DROP VIEW, for instance, will result in an error
as shown here.

SQL> drop view CURRENT_INFO;
%SQL-F-RELNOTDEF, Table CURRENT_INFO is not defined in database or schema
SQL> create view CURRENT_INFO
cont> ...etc...

By using the IF EXISTS clause the error message is supressed and makes for
a less confusing execution of the maintance script.

SQL> drop view CURRENT_INFO if exists;
SQL> create view CURRENT_INFO
cont> ...etc...

SQL Statements 7–313

EDIT Statement

EDIT Statement

Calls an editor that lets you modify the SQL statements you issued within a
terminal session.

SQL supports a variety editors, some of which are:

• EDT

• DEC Text Processing Utility (DECTPU) editors on OpenVMS, such as EVE

• Language-Sensitive Editor (LSE) on OpenVMS, which is based on DECTPU
and provides templates that guide you in entering syntactically correct
statements

To invoke an editor other than the default, you must define the SQL$EDIT
logical name. See the Usage Notes section for details.

You can use the editor you choose with your usual initialization file to modify
your previous SQL statements, construct your next statement or group of
statements, or include a file with other statements.

Environment

You can issue the EDIT statement only in interactive SQL.

Format

EDIT
<number>
*

Arguments

* (asterisk)
Specifies a wildcard character. If you use the * (asterisk) wildcard character,
SQL includes in the editing buffer the number of statements specified in the
last SET EDIT KEEP statement. If you do not use the SET EDIT KEEP
statement, EDIT * puts the last 20 statements in your editing buffer. If you
omit the * (asterisk) wildcard character, SQL includes the last statement
issued in the editing buffer.

7–314 SQL Statements

EDIT Statement

number
Specifies the number of previous statements you want to edit, up to the number
specified in the last SET EDIT KEEP statement. If you specify zero as the
number, then SQL does not include any statements in the editing buffer. If
you omit the number argument, SQL includes the last statement issued in the
editing buffer.

Usage Notes

• When you use the EDIT statement, the following sequence occurs:

1. SQL invokes the editor specified by the SQL$EDIT logical name and
initializes the editor according to your initialization file for that editor,
if any. If you do not have an initialization file, SQL uses the system
default editor.

2. SQL places the statements you asked for in the editing buffer.

If you are using an editor other than EDT, DECTPU, or LSE, SQL
places the statements in a temporary file and spawns a subprocess to
execute the command you specified in the SQL$EDIT logical name.

3. The SQL prompt (SQL>) disappears and is replaced by the normal
display for the editor.

4. You can now edit the SQL statements.

If you are using the EDT, DECTPU, or LSE editor, SQL automatically
executes all the statements in the main editing buffer when you exit
from the editor. If you are using an editor other than EDT, DECTPU,
or LSE, you are prompted whether or not you want to execute the
command lines in the main editing buffer when you exit the editor. A
later Usage Note explains how to bypass this prompt and execute the
command lines automatically with other editors.

If you quit from the editor, SQL returns to the command level and
displays the SQL prompt (SQL>) without executing a statement.

• You do not need to do anything to specify EDT as the editor to use
within interactive SQL because it is the OpenVMS system default editor.
To use DECTPU, it must be installed on your system, and you must
define the logical name SQL$EDIT. To use LSE, it must be installed
on your system, and you must define the logical names SQL$EDIT and
LSE$ENVIRONMENT.

SQL Statements 7–315

EDIT Statement

$! To specify DECTPU as your editor in interactive SQL:
$ DEFINE SQL$EDIT TPU
$!
$! To specify LSE as your editor in interactive SQL:
$ DEFINE SQL$EDIT LSE
$ DEFINE LSE$ENVIRONMENT -
_$ SYS$COMMON:[SYSLIB]LSE$SYSTEM_ENVIRONMENT.ENV

Then, when you type EDIT in an SQL session, SQL calls the editor
specified by the SQL$EDIT logical name. If SQL$EDIT is not defined or
is defined to be something other than TPU or LSE, then SQL invokes the
EDT editor when you issue the EDIT command. If SQL cannot find the
TPU or LSE shareable image, it invokes EDT.

• If you specify an editor based on DECTPU for use in interactive SQL
(through the SQL$EDIT logical), you cannot always read or write files from
the editing buffer created when you issue the interactive SQL statement
EDIT.

In EVE editors, the INCLUDE command to read a file into the default
editing buffer fails. To work around this problem, you must use the
GET FILE command to place the file in another buffer and copy the
buffer to the MAIN buffer that SQL executes upon exiting from the
editor.

In all editors based on DECTPU, the DECTPU WRITE_FILE command
(WRITE in EVE) to write the default editing buffer fails. You must
copy the default buffer to another buffer and write that buffer to a file.

• If you execute an SQL statement and then execute the HELP statement
to read the help text, an EDIT statement puts only the original SQL
statement in the editing buffer, not the HELP statement.

• Interactive SQL users can recall the 20 most recent command lines using
the up and down arrow keys or the Ctrl/B key sequence.

The up arrow key recalls lines in sequence from most recent to least
recent.

The Ctrl/B key sequence also recalls lines in sequence from most recent
to least recent.

After you recalled prior lines, the down arrow key allows you to recall
more recently entered lines.

• The EDIT statement does not save any operating system invocation
statements or executable statements in the buffer of statements to edit.

7–316 SQL Statements

EDIT Statement

• If you are using an editor other than EDT, DECTPU, or LSE, you are
prompted whether or not you want to execute the command lines in the
main editing buffer when you exit the editor. You can bypass this prompt
by setting the SQL$EDIT_TWO logical name.

The SQL$EDIT_TWO logical name can be set to true so that the editor
accepts an input file followed by an output file. The editor edits the output
file and inserts the contents of the input file. Writing out the output file
signals SQL to execute the command lines. In order for the SQL$EDIT_
TWO logical name to be useful, the SQL$EDIT logical name must also be
set.

If the SQL$EDIT_TWO logical name is not set to true, then the editor is
invoked with only one file specification and, upon exiting, you are prompted
whether or not you want to execute the command lines in the main editing
buffer.

Examples

Example 1: Correcting a misspelled statement

1. Make a mistake:

SQL> SELECT JOB_TITLE FROM JOSB;
%SQL-F-RELNOTDEF, Table JOSB is not defined in schema
SQL>

2. Invoke the editor:

SQL> EDIT

3. When in the editor, change JOSB to JOBS. See the manual for the editor
you are using for detailed editing instructions.

4. Exit from the editor. SQL automatically executes the contents of the
editing buffer.

* EXIT
SELECT JOB_TITLE FROM JOBS;
Associate Programmer
Clerk
Assistant Clerk
Department Manager
Dept. Supervisor

.

.

.

SQL Statements 7–317

END DECLARE Statement

END DECLARE Statement

Delimits the end of a host language variable declaration section in a
precompiled program.

Environment

You can use the END DECLARE statement embedded in host language
programs to be precompiled.

Format

EXEC SQL BEGIN DECLARE SECTION ;

<host language variable declaration>

EXEC SQL END DECLARE SECTION ;

Arguments

BEGIN DECLARE SECTION
Delimits the beginning of a host language variable declaration.

END DECLARE SECTION
Delimits the end of host language variable declarations.

; (semicolon)
Terminates the BEGIN DECLARE and END DECLARE statements.

Which terminator you use depends on the language in which you are
embedding the host language variable. The following table shows which
terminator to use:

Required SQL Terminator

Host Language
BEGIN DECLARE
Statement

END DECLARE
Statement

COBOL END-EXEC END-EXEC

FORTRAN None required None required

Ada, C, Pascal, or PL/I ; (semicolon) ; (semicolon)

7–318 SQL Statements

END DECLARE Statement

host language variable declaration
Specifies a variable declaration embedded within a program.

See Section 2.2.13 for more information on host language variable definitions.

Usage Notes

• The ANSI/ISO SQL standard specifies that host language variables used
in embedded SQL statements must be declared within a pair of embedded
SQL BEGIN DECLARE . . . END DECLARE statements. If ANSI/ISO
compliance is important for your application, you should include all
declarations for host language variables used in embedded SQL statements
within a BEGIN DECLARE . . . END DECLARE block.

• SQL does not require that you enclose host language variables with BEGIN
DECLARE and END DECLARE statements. SQL does, however, issue a
warning message if both of the following conditions exist:

Your program includes a section delimited by BEGIN DECLARE and
END DECLARE statements.

You refer to a host language variable that is declared outside the
BEGIN DECLARE and END DECLARE section.

• In addition to host language variable declarations, you can include other
host language statements in a BEGIN DECLARE . . . END DECLARE
section. See Section 2.2.13 and the BEGIN DECLARE Statement for more
details.

Examples

Example 1: Declaring a host language variable within a BEGIN . . . END
DECLARE block

The following example shows portions of a PL/I program. The first part of
the example declares the host language variable LNAME within the BEGIN
DECLARE and END DECLARE statements. The semicolon is necessary as a
terminator because the language is PL/I.

The second part of the example shows a singleton SELECT statement that
specifies a one-row result table. The statement assigns the value in the row to
the previously declared host language variable LNAME.

SQL Statements 7–319

END DECLARE Statement

EXEC SQL
BEGIN DECLARE SECTION;
DECLARE LNAME char(20);

EXEC SQL
END DECLARE SECTION;
.
.
.
EXEC SQL
SELECT FIRST_NAME

INTO :LNAME
FROM EMPLOYEES
WHERE EMPLOYEE_ID = "00164";

7–320 SQL Statements

Execute (@) Statement

Execute (@) Statement

In SQL, the at sign (@) means execute. When you type @ and the name of an
indirect command file, SQL executes the statements in that file as if you typed
them one-at-a-time at the SQL prompt (SQL>). The command file must be a
text file that contains SQL statements.

The default file extension for an indirect command file is .SQL.

You can use the SET VERIFY statement to display the commands in the file as
they execute.

SQL recognizes a special SQL command file called SQLINI.SQL, which
contains SQL statements to be issued before SQL displays the SQL prompt
(SQL>). If this file exists, SQL executes the commands in the file first, before
displaying the prompt and accepting your input. If you define the logical name
to point to a general initialization file, SQL uses this file. Otherwise, it looks
for SQLINI.SQL in the current default directory.

Environment

You can issue the execute (@) statement only in interactive SQL.

Format

@<file-spec>

Arguments

file-spec
Specifies the name of an indirect command file. You can use either a full file
specification, a file name, or a logical name on OpenVMS. If you use a file
name, SQL looks in the current default directory for a file by that name. The
file must contain valid SQL statements.

SQL Statements 7–321

Execute (@) Statement

Usage Notes

Interactive SQL interprets any command line that begins with an at sign (@)
as the start of a command file invocation. This is true even if the at sign is
a continuation of a string literal from the previous line, which can lead to
confusing results.

SQL> INSERT INTO EMPLOYEES (CITY) VALUES (’AtSign -
cont> @City’)
%SQL-F-FILEACCERR, Error parsing name of file City’)
-RMS-F-SYN, file specification syntax error
SQL> --
SQL> -- You can avoid errors by breaking your statement line elsewhere:
SQL> --
SQL> INSERT INTO EMPLOYEES (CITY) VALUES
cont> (’AtSign - @City’);
1 row inserted

Examples

Example 1: Storing interactive SQL statements in a startup file

You can use an indirect command file to specify characteristics of your SQL
terminal session. This example assumes that SQLINI is defined as a logical
name that points to the file setup.sql. The file contains the following SQL
statements:

SET VERIFY;
SET EDIT KEEP 5; -- This line will be displayed on the terminal

SQL executes the file when you invoke interactive SQL.

$ SQL$
SQL> SET EDIT KEEP 5; -- This line will be displayed on the terminal
SQL>

When it executes, setup.sql turns on the indirect command file display and
limits the number of statements saved by SQL for editing to five.

7–322 SQL Statements

Execute (@) Statement

Example 2: Executing frequently used queries

The file EMPADDR.SQL contains the following SQL statements:

-- This command file generates information for a mailing list.
--
ATTACH ’FILENAME personnel’;
SET OUTPUT MAILLIST.DOC
SELECT FIRST_NAME, MIDDLE_INITIAL, LAST_NAME,

ADDRESS_DATA_1, ADDRESS_DATA_2, CITY, STATE, POSTAL_CODE
FROM EMPLOYEES;
--
-- Execute the file by using the following command:
--
@EMPADDR

Example 3: Using a logical name to run a command file

If you define COUNT to be a logical name, you can use the command @COUNT
to execute the statements in the file, even if the file is located in a directory
other than the default directory. The file COUNT.SQL contains the following
SQL statements:

-- This command file counts the rows in
-- each table of the personnel database.
--
SET NOVERIFY;
SELECT ’Count of Employees -------> ’, COUNT (*) FROM EMPLOYEES;
SELECT ’Count of Jobs ------------> ’, COUNT (*) FROM JOBS;
SELECT ’Count of Degrees ---------> ’, COUNT (*) FROM DEGREES;
SELECT ’Count of Salary_History --> ’, COUNT (*) FROM SALARY_HISTORY;
SELECT ’Count of Job_History -----> ’, COUNT (*) FROM JOB_HISTORY;
SELECT ’Count of Work_Status -----> ’, COUNT (*) FROM WORK_STATUS;
SELECT ’Count of Departments -----> ’, COUNT (*) FROM DEPARTMENTS;
SELECT ’Count of Colleges --------> ’, COUNT (*) FROM COLLEGES;

The following example shows how to execute the file and the output:

$ SQL
SQL> @COUNT;

Count of Employees -------> 100
1 row selected

Count of Jobs ------------> 15
1 row selected

Count of Degrees ---------> 166
1 row selected

.

.

.

SQL Statements 7–323

EXECUTE Statement

EXECUTE Statement

Dynamically executes a previously prepared statement.

The EXECUTE statement is a dynamic SQL statement. Dynamic SQL lets
programs accept or generate SQL statements at run time, in contrast to
SQL statements that are part of the source code for precompiled programs or
SQL module language procedures. Unlike precompiled SQL or SQL module
language statements, such dynamically executed SQL statements are not
necessarily part of a program’s source code, but can be generated while the
program is running. Dynamic SQL is useful when you cannot predict the type
of SQL statement your program will need to process.

If a program needs to dynamically execute a statement more than once,
the statement should be prepared first with the PREPARE statement and
executed each time with the EXECUTE statement. SQL does not parse and
compile prepared statements every time it dynamically executes them with the
EXECUTE statement.

Environment

You can use the EXECUTE statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

EXECUTE <statement-name>
<statement-id-parameter>

INTO DESCRIPTOR <desc-name>
<parameter>
<qualified-parameter>
<variable>

,

USING DESCRIPTOR <desc-name>
<parameter>
<qualified-parameter>
<variable>

,

7–324 SQL Statements

EXECUTE Statement

Arguments

INTO DESCRIPTOR descriptor-name
Specifies an SQLDA descriptor that contains addresses and data types that
specify output parameters or variables.

The descriptor must be a structure declared in the host language program
as an SQLDA. If the program is precompiled and uses the embedded SQL
statement INCLUDE SQLDA, the name of the structure is simply SQLDA.
Programs can use multiple SQLDAs, but must explicitly declare them with
names other than SQLDA.

Programs can always use the INTO DESCRIPTOR clause of the EXECUTE
statement whether or not the statement string contains output parameter
markers, as long as the value of the SQLD field in the SQLDA corresponds
to the number of output parameter markers. SQL updates the SQLD field
with the correct number of output parameter markers when it processes the
DESCRIBE statement for the statement string.

INTO parameter
INTO qualified-parameter
INTO variable
Specifies output parameters or variables whose values are returned by a
successful EXECUTE statement.

When you specify a list of parameters or variables, the number of parameters
in the list must be the same as the number of output parameter markers in
the statement string of the prepared statement. If SQL determines that a
statement string had no output parameter markers, the INTO clause is not
allowed.

statement-name
statement-id-parameter
Specifies the name of a prepared statement. You can supply either a parameter
or a compile-time statement name. Specifying a parameter lets SQL supply
identifiers to programs at run time. Use an integer parameter to contain
the statement identifier returned by SQL or a character string parameter to
contain the name of the statement that you pass to SQL.

If the PREPARE statement for the dynamically executed statement specifies a
parameter, use that same parameter in the EXECUTE statement instead of an
explicit statement name.

SQL Statements 7–325

EXECUTE Statement

USING DESCRIPTOR descriptor-name
Specifies an SQLDA descriptor that contains addresses and data types of input
parameters or variables.

The descriptor must be a structure declared in the host language program
as an SQLDA. If the program is precompiled and uses the embedded SQL
statement INCLUDE SQLDA, the name of the structure is simply SQLDA.
Programs can use multiple SQLDAs, but must explicitly declare them with
names other than SQLDA.

Programs can always use the USING DESCRIPTOR clause of the EXECUTE
statement whether or not the statement string contains input parameter
markers, as long as the value of the SQLD field in the SQLDA corresponds to
the number of input parameter markers. SQL updates the SQLD field with the
correct number of input parameter markers when it processes the DESCRIBE
statement for the statement string.

USING parameter
USING qualified-parameter
USING variable
Specifies input parameters or variables whose values SQL uses to replace
parameter markers in the prepared statement string.

When you specify a list of parameters or variables, the number of parameters
in the list must be the same as the number of input parameter markers in
the statement string of the prepared statement. If SQL determines that a
statement string had no input parameter markers, the USING clause is not
allowed.

Usage Notes

• You must use at least one USING or one INTO clause in an EXECUTE
statement. If the statement has no parameters then use the EXECUTE
IMMEDIATE statement instead.

• You may mix parameters with DESCRIPTOR structures within the
EXECUTE statement. That is, you may use INTO DESCRIPTOR to
hold the results of the dynamic statement, but use USING with a list of
parameters to provide the input values.

• When you issue the EXECUTE statement for a previously prepared
statement, you might want to obtain information beyond the success or
failure code returned in the SQLCODE status parameter. For example,
you might want to know how many rows were affected by the execution

7–326 SQL Statements

EXECUTE Statement

of an INSERT, DELETE, UPDATE, FETCH, or SELECT statement. SQL
returns this information in the SQLERRD[2] field of the SQLCA.

However, when you use an SQLCA parameter to prepare a statement, you
must also use an SQLCA parameter when you execute that statement.
For example, using SQL module language calls from C, your code might
look like the following where the SQLCA parameter is passed to both
procedures:

static struct SQLCA sqlca;
/* ... */
PREPARE_STMT(&sqlca, statement, &stmt_id);
/* ... */
EXECUTE_STMT(&sqlca, &stmt_id);

For more information about the SQLCA, including the SQLERRD[2] field,
see Appendix C.

Example

Example 1: Executing an INSERT statement with parameter markers

These fragments from the online sample C program sql_dynamic illustrate
using an EXECUTE statement in an SQL module procedure to execute a
dynamically generated SQL statement.

The program accepts input of any valid SQL statement from the terminal and
calls the subunit shown in the following program excerpt:

.

.

.
/*
**--
** Begin Main routine
**--
*/

int sql_dynamic (psql_stmt, input_sqlda, output_sqlda, stmt_id, is_select)
char *psql_stmt;
sqlda *input_sqlda;
sqlda *output_sqlda;
long *stmt_id;
int *is_select;

{
sqlda sqlda_in, sqlda_out; /* Declare the SQLDA structures. */
int rowcount, status;
int param;

/* Declare arrays for storage of original data types and allocate memory. */

SQL Statements 7–327

EXECUTE Statement

mem_ptr output_save;
mem_ptr input_save;

/* * If a NULL SQLDA is passed, then a new statement is being prepared. */

if ((*input_sqlda == NULL) && (*output_sqlda == NULL))
{
new_statement = TRUE;

/*
* Allocate separate SQLDAs for input parameter markers (SQLDA_IN)
* and output list items (SQLDA_OUT). Assign the value of the constant
* MAXPARMS to the SQLN field of both SQLDA structures. SQLN specifies to
* SQL the maximum size of the SQLDA.
*/

if ((sqlda_in = (sqlda) calloc (1, sizeof (sqlda_rec))) == 0)
{
printf ("\n\n*** Error allocating memory for sqlda_in: Abort");
return (-1);
}

else /* set # of possible parameters */
sqlda_in->sqln = MAXPARAMS;

if ((sqlda_out = (sqlda) calloc (1, sizeof (sqlda_rec))) == 0)
{
printf ("\n\n*** Error allocating memory for sqlda_out: Abort");
return (-1);
}

}
else

/* Set # of possible select list items. */
sqlda_out->sqln = MAXPARAMS;

/* copy name SQLDA2 to identify the SQLDA */

strncpy(&sqlda_in->sqldaid[0],"SQLDA2 ",8);
strncpy(&sqlda_out->sqldaid[0],"SQLDA2 ",8);

/*
* Call an SQL module language procedure, prepare_stmt and
* describe_stmt that contains a PREPARE and DESCRIBE...OUTPUT
* statement to prepare the dynamic statement and write information
* about any select list items in it to SQLDA_OUT.
*/

stmt_id = 0; / If <> 0 the BADPREPARE error results in the PREPARE.*/

7–328 SQL Statements

EXECUTE Statement

PREPARE_STMT (&SQLCA, stmt_id, psql_stmt);
if (SQLCA.SQLCODE != sql_success)

{
printf ("\n\nDSQL-E-PREPARE, Error %d encountered in PREPARE",

SQLCA.SQLCODE);
display_error_message();
return (-1);
}

DESCRIBE_SELECT (&SQLCA, stmt_id, sqlda_out);
if (SQLCA.SQLCODE != sql_success)

{
printf ("\n\nDSQL-E-PREPARE, Error %d encountered in PREPARE",

SQLCA.SQLCODE);
display_error_message();
return (-1);
}

/*
* Call an SQL module language procedure, describe_parm, that contains a
* DESCRIBE...INPUT statement to write information about any parameter
* markers in the dynamic statement to sqlda_in.
*/

DESCRIBE_PARM (&SQLCA, stmt_id, sqlda_in);
if (SQLCA.SQLCODE != sql_success)

{
printf ("\n\n*** Error %d returned from describe_parm: Abort",

SQLCA.SQLCODE);
display_error_message();
return (-1);
}

/* Save the value of the SQLCA.SQLERRD[1] field so that program can
* determine if the statement is a SELECT statement or not.
* If the value is 1, the statement is a SELECT statement.*/

*is_select = SQLCA.SQLERRD[1];
.
.
.

/*
* Check to see if the prepared dynamic statement contains any parameter
* markers by looking at the SQLD field of sqlda_in. SQLD contains the
* number of parameter markers in the prepared statement. If SQLD is
* positive, the prepared statement contains parameter markers. The program
* executes a local procedure, get_in_params, that prompts the user for
* values, allocates storage for those values, and updates the SQLDATA field
* of sqlda_in:
*/

SQL Statements 7–329

EXECUTE Statement

if (sqlda_in->sqld > 0)
if ((status = get_in_params(sqlda_in,input_save)) != 0)

{
printf ("\nError returned from GET_IN_PARAMS. Abort");
return (-1);
}

/* Check to see if the prepared dynamic statement is a SELECT by looking
* at the value in is_select, which stores the value of the
* SQLCA.SQLERRD[1] field. If that value is equal to 1, the prepared
* statement is a SELECT statement. The program allocates storage for
* rows for SQL module language procedures to open and fetch from a cursor,
* and displays the rows on the terminal:
*/

if (*is_select)
{
if (new_statement == TRUE) /* Allocate buffers for output. */

{
/* assign a unique name for the cursor */
sprintf(cursor_name,"%2d",++cursor_counter);

if ((status = allocate_buffers(sqlda_out)) != 0)
.
.
.

/*
* If the SQLCA.SQLERRD[1] field is not 1, then the prepared statement is not a
* SELECT statement and only needs to be executed. Call an SQL module language
* procedure to execute the statement, using information about parameter
* markers stored in sqlda_in by the local procedure get_in_params:
*/

{
EXECUTE_STMT (&SQLCA, stmt_id, sqlda_in);
if (SQLCA.SQLCODE != sql_success)

.

.

.

The SQL module language procedures called by the preceding fragment:

.

.

.

-- Procedure Section

-- This procedure prepares a statement for dynamic execution from the string
-- passed to it. It also writes information about the number and data type of
-- any select list items in the statement to an SQLDA2 (specifically,
-- the sqlda_out SQLDA2 passed to the procedure by the calling program).
--

7–330 SQL Statements

EXECUTE Statement

PROCEDURE PREPARE_STMT
SQLCA
:DYN_STMT_ID INTEGER
:STMT CHAR(1024);

PREPARE :DYN_STMT_ID FROM :STMT;

-- This procedure writes information to an SQLDA (specifically,
-- the sqlda_in SQLDA passed to the procedure by the calling program)
-- about the number and data type of any parameter markers in the
-- prepared dynamic statement. Note that SELECT statements may also
-- have parameter markers.

PROCEDURE DESCRIBE_SELECT
SQLCA
:DYN_STMT_ID INTEGER
SQLDA;

DESCRIBE :DYN_STMT_ID OUTPUT INTO SQLDA;

PROCEDURE DESCRIBE_PARM
SQLCA
:DYN_STMT_ID INTEGER
SQLDA;

DESCRIBE :DYN_STMT_ID INPUT INTO SQLDA;

-- This procedure dynamically executes a non-SELECT statement.
-- SELECT statements are processed by DECLARE CURSOR, OPEN CURSOR,
-- and FETCH statements.
--
-- The EXECUTE statement specifies an SQLDA2 (specifically,
-- the sqlda_in SQLDA2 passed to the procedure by the calling program)
-- as the source of addresses for any parameter markers in the dynamic
-- statement.
--
-- The EXECUTE statement with the USING DESCRIPTOR clause
-- also handles statement strings that contain no parameter markers.
-- If a statement string contains no parameter markers, SQL sets
-- the SQLD field of the SQLDA2 to zero.

PROCEDURE EXECUTE_STMT
SQLCA
:DYN_STMT_ID INTEGER
SQLDA;

EXECUTE :DYN_STMT_ID USING DESCRIPTOR SQLDA;
.
.
.

SQL Statements 7–331

EXECUTE IMMEDIATE Statement

EXECUTE IMMEDIATE Statement

Dynamically prepares, executes, and releases an SQL statement.

The EXECUTE IMMEDIATE statement is a dynamic SQL statement. Dynamic
SQL lets programs accept or generate SQL statements at run time, in contrast
to precompiled statements, which must be embedded in the program before
it is compiled. Unlike embedded statements, such dynamically executed SQL
statements are not necessarily part of the program’s source code, but can be
created while the program is running. Dynamic SQL is useful when you cannot
predict the type of SQL statement your program will need to process.

The EXECUTE IMMEDIATE statement cannot contain parameter markers.
However, if the statement meets those restrictions and will be dynamically
executed only once, use the EXECUTE IMMEDIATE statement instead of
PREPARE and EXECUTE statements.

Environment

You can use the EXECUTE IMMEDIATE statement:

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

EXECUTE IMMEDIATE ’<statement-string>’
<parameter>

Arguments

statement-string
parameter
Specifies the SQL statement to be prepared and executed dynamically. You
either specify the statement string directly in a character string literal enclosed
in single quotation marks, or in a parameter that contains the statement
string.

7–332 SQL Statements

EXECUTE IMMEDIATE Statement

Whether specified directly or by a parameter, the statement string must be
a character string that is a dynamically executable SQL statement other
than the SELECT statement. The form for the statement is the same as in
embedded SQL, except that you do not need to begin the string with EXEC
SQL or end it with any statement terminator.

Example

Example 1: Executing an INSERT statement with the EXECUTE
IMMEDIATE statement

This COBOL program illustrates using the EXECUTE IMMEDIATE statement
to prepare and execute a dynamic INSERT statement. Compare this example
with the example for the EXECUTE statement (see the EXECUTE Statement),
which uses an INSERT statement with parameter markers and displays the
result of the insert operation.

IDENTIFICATION DIVISION.
PROGRAM-ID. EXECUTE_IMMEDIATE_EXAMPLE.
*
* Illustrate EXECUTE_IMMEDIATE with a dynamic INSERT statement.
*
DATA DIVISION.

WORKING-STORAGE SECTION.

* Variable for DECLARE SCHEMA:
01 FILESPEC PIC X(20).

* Variables to hold values for
* storage in EMPLOYEES:
01 EMP_ID PIC X(5).
01 FNAME PIC X(10).
01 MID_INIT PIC X(1).
01 LNAME PIC X(14).
01 ADDR_1 PIC X(25).
01 ADDR_2 PIC X(25).
01 CITY PIC X(20).
01 STATE PIC X(2).
01 P_CODE PIC X(5).
01 SEX PIC X(1).
01 BDATE PIC S9(11)V9(7) COMP.
01 S_CODE PIC X(1).

SQL Statements 7–333

EXECUTE IMMEDIATE Statement

* Indicator variables for retrieving
* the entire row, including columns we
* do not assign values to, from
* the EMPLOYEES table:
01 EMP_ID_IND PIC S9(4) COMP.
01 FNAME_IND PIC S9(4) COMP.
01 MID_INIT_IND PIC S9(4) COMP.
01 LNAME_IND PIC S9(4) COMP.
01 ADDR_1_IND PIC S9(4) COMP.
01 ADDR_2_IND PIC S9(4) COMP.
01 CITY_IND PIC S9(4) COMP.
01 STATE_IND PIC S9(4) COMP.
01 P_CODE_IND PIC S9(4) COMP.
01 SEX_IND PIC S9(4) COMP.
01 BDATE_IND PIC S9(4) COMP.
01 S_CODE_IND PIC S9(4) COMP.

* Buffer for error handling:
01 BUFFER PIC X(300).
01 LEN PIC S9(4) USAGE IS COMP.

* 01 disp_sqlcode pic s9(9) sign leading separate.

* Load definition for SQL Communication Area (SQLCA):
EXEC SQL INCLUDE SQLCA END-EXEC.

**
*
* P R O C E D U R E D I V I S I O N
*
**
PROCEDURE DIVISION.
START-UP.

* Assign value to FILESPEC:
MOVE "SQL$DATABASE" TO FILESPEC

* Declare the schema:
EXEC SQL DECLARE SCHEMA RUNTIME FILENAME :FILESPEC
END-EXEC

* Use an EXECUTE IMMEDIATE statement
* to execute an INSERT statement:

EXEC SQL EXECUTE IMMEDIATE
"INSERT INTO EMPLOYEES

- "(EMPLOYEE_ID,FIRST_NAME,LAST_NAME,CITY)
- "VALUES (’99999’,’Les’,’Warton’,’Hudson’)"

END-EXEC
PERFORM CHECK.

PERFORM FETCHES.

EXEC SQL EXECUTE IMMEDIATE ’ROLLBACK’ END-EXEC.
PERFORM CHECK.

DISPLAY "Rolled back changes. All done.".

7–334 SQL Statements

EXECUTE IMMEDIATE Statement

CLEAR-IT-EXIT.
EXIT PROGRAM.

FETCHES.
DISPLAY "Here’s the row we stored:"

EXEC SQL PREPARE STMT FROM
’SELECT * FROM EMPLOYEES WHERE EMPLOYEE_ID = "99999"’
END-EXEC
EXEC SQL DECLARE C CURSOR FOR STMT END-EXEC

EXEC SQL OPEN C END-EXEC
* Clear values in host language
* variables in case new values
* from the table are null:

MOVE SPACES TO EMP_ID
MOVE SPACES TO FNAME
MOVE SPACES TO MID_INIT
MOVE SPACES TO LNAME
MOVE SPACES TO ADDR_1
MOVE SPACES TO ADDR_2
MOVE SPACES TO CITY
MOVE SPACES TO STATE
MOVE SPACES TO P_CODE
MOVE SPACES TO SEX
MOVE ZERO TO BDATE
MOVE SPACES TO S_CODE

EXEC SQL FETCH C INTO
:EMP_ID:EMP_ID_IND,
:LNAME:LNAME_IND,
:FNAME:FNAME_IND,
:MID_INIT:MID_INIT_IND,
:ADDR_1:ADDR_1_IND,
:ADDR_2:ADDR_2_IND,
:CITY:CITY_IND,
:STATE:STATE_IND,
:P_CODE:P_CODE_IND,
:SEX:SEX_IND,
:BDATE:BDATE_IND,
:S_CODE:S_CODE_IND

END-EXEC

SQL Statements 7–335

EXECUTE IMMEDIATE Statement

DISPLAY EMP_ID," ",
FNAME," ",
MID_INIT," ",
LNAME," ",
ADDR_1," ",
ADDR_2," ",
CITY," ",
STATE," ",
P_CODE," ",
SEX," ",
BDATE," ",
S_CODE.

PERFORM CHECK.
EXEC SQL CLOSE C END-EXEC.

CHECK.
IF SQLCODE NOT = 100 AND SQLCODE NOT = 0

DISPLAY "Error: SQLCODE = ", SQLCODE
CALL "SQL$GET_ERROR_TEXT" USING

BY DESCRIPTOR BUFFER,
BY REFERENCE LEN

DISPLAY BUFFER(1:LEN)
END-IF.

7–336 SQL Statements

EXIT Statement

EXIT Statement

Stops an interactive SQL session and returns you to the operating system
prompt. By default, the EXIT statement commits changes made during the
session.

Environment

You can issue the EXIT statement in interactive SQL only.

Format

EXIT
<CTRL/Z>

Usage Notes

• Both the QUIT and EXIT statements end an interactive SQL session. The
QUIT statement automatically rolls back changes made during the session;
the EXIT statement, by default, commits changes made during the session.

• If you have made uncommitted changes to the database when you issue the
EXIT statement, SQL asks if you want to roll back the transaction.

There are uncommitted changes to this database.
Would you like a chance to ROLLBACK these changes (No)?

If you do not answer and press the Return key or type NO, SQL commits
all changes made since the last COMMIT or ROLLBACK statement. If you
answer YES to the prompt, SQL returns you to the SQL prompt.

• Typing Ctrl/Z is the same as issuing the EXIT statement for OpenVMS.

SQL Statements 7–337

EXPORT Statement

EXPORT Statement

Makes a copy of a database in an intermediate form. Use the IMPORT
statement to rebuild an Oracle Rdb database from the interchange file (.rbr file
extension) created by the EXPORT statement.

You use the EXPORT statement with the IMPORT statement to make changes
to Oracle Rdb databases that cannot be made any other way. The EXPORT
statement unloads a database to an .rbr file. The IMPORT statement creates
the database again with the changes that are both allowed and not allowed
through ALTER statements. See the IMPORT Statement for more information.

Environment

You can use the EXPORT statement in interactive SQL only.

Format

EXPORT DATABASE ALIAS <alias>
FILENAME <file-spec>
PATHNAME <path-name> literal-user-auth

INTO <file-spec>
WITH EXTENSIONS

NO EXTENSIONS
DATA
NO DATA
FORWARD_REFERENCES
NO FORWARD_REFERENCES

literal-user-auth =

USER ’<username>’
USING ’<password>’

Arguments

ALIAS alias
FILENAME file-spec
PATHNAME path-name
Specifies the source database files to be written to an .rbr file.

7–338 SQL Statements

EXPORT Statement

• The ALIAS argument specifies the alias of an already attached database.
If the database you want to export is already attached, specifying ALIAS
avoids the overhead of a second attach to the database and the locking that
attach entails.

• The FILENAME and PATHNAME arguments both identify the database
root file associated with the database. If you specify a repository path
name, the path name indirectly specifies the database root file. Because
the EXPORT statement does not change any definitions in the repository,
the effect of the PATHNAME and FILENAME arguments is the same.

FORWARD_REFERENCES
NO FORWARD_REFERENCES
The EXPORT statement analyzes all dependencies in the database to
determine which functions and procedures are referenced by other definitions.
Since IMPORT defines each object type in a strict order, it is possible that
some definitions may be used prior to their definition. For instance, tables
are defined before modules, but the table might call an SQL function from a
module. The FORWARD_REFERENCES option requests that EXPORT save
descriptions of these routines first in the interchange file so that IMPORT can
declare them prior to their usage. See the DECLARE Routine Statement for
more details.

FORWARD_REFERENCES is the default. If the interchange file is to be
used by a version prior to Oracle Rdb V7.1.0.4 then the NO FORWARD_
REFERENCES option should be used to exclude this information.

INTO file-spec
Specifies the name for the .rbr file the EXPORT statement creates. Optionally,
the file specification can include a device and directory specification.

literal-user-auth
Specifies the user name and password for access to databases, particularly
remote database.

This literal lets you explicitly provide user name and password information in
the EXPORT statement.

USER ’username’
Defines a character string literal that specifies the operating system user name
that the database system uses for privilege checking.

USING ’password’
Defines a character string literal that specifies the user’s password for the user
name specified in the USER clause.

SQL Statements 7–339

EXPORT Statement

WITH DATA
WITH NO DATA
Specifies whether the .rbr file created by the EXPORT statement includes
the data and metadata contained in the database, or the metadata only. The
default is WITH DATA.

When you specify the WITH NO DATA option, the EXPORT statement copies
metadata, but not the data, from a source database to an .rbr file. Use the
IMPORT statement to generate an empty database whose metadata is identical
to that of the source database.

Note

The WITH NO DATA option is not compatible with Oracle
CDD/Repository databases (CDD$DATABASE.RDB). If you attempt
to export a CDD$DATABASE.RDB database, SQL issues an error
message stating that the WITH NO DATA option is not valid for Oracle
CDD/Repository databases.

WITH EXTENSIONS
WITH NO EXTENSIONS
Specifies whether or not the .rbr file created by the EXPORT statement
includes extensions that are compatible only with Oracle Rdb Version 3.0 or
higher database systems. The default is WITH EXTENSIONS.

When you specify the WITH NO EXTENSIONS option, the resulting
interchange (.rbr) file contains only the definitions of the domains, the tables,
and indexes. Indexes are converted to sorted indexes and are minus storage
maps. The following conversions take place for domains:

• TINYINT data types are converted to SMALLINT data types

• DATE ANSI, TIMESTAMP, and TIME data types are converted to DATE
VMS data types

In addition, all null values are converted to the columns’ missing value or
default to a data type specific missing value. For example, null numeric values
are replaced by zeros and null character values are replaced by blanks.

When you specify the WITH NO EXTENSIONS option, many features of
Oracle Rdb databases are not exported. For example, storage areas, storage
maps, triggers, collating sequences, functions, modules, and outlines are not
backed up when you specify the WITH NO EXTENSIONS argument.

7–340 SQL Statements

EXPORT Statement

Note

The WITH NO EXTENSIONS option is not compatible with Oracle
CDD/Repository databases (CDD$DATABASE.RDB). If you attempt
to export a CDD$DATABASE.RDB database, SQL issues an error
message stating that the WITH NO EXTENSIONS option is not valid
for Oracle CDD/Repository databases.

Usage Notes

• You need read access to all the objects in the database to back up the
database with the EXPORT statement.

• If you use the ALTER DATABASE statement to set OPEN IS MANUAL on
a database, you cannot export that database if it is closed.

• See the Oracle Rdb Guide to Database Maintenance for a complete
discussion of when to use the IMPORT, EXPORT, and ALTER DATABASE
statements.

• It is not possible to export a database using the WITH NO EXTENSIONS
clause if it contains INTERVAL domains. Oracle Rdb recommends either
removing the offending domains and related columns (see the DROP
DOMAIN Statement) or performing the EXPORT operation without
including the WITH NO EXTENSIONS clause.

• Normally, during an export operation, the Oracle Rdb interchange file
(.rbr), which uses the Record Management Services (RMS) default extent,
will extend for every 3 blocks the .rbr file grows in size. To prevent this,
define the following SET statement to change the process default RMS
extent quantity:

$ SET RMS_DEFAULT/EXTEND_QUANTITY=30000

Now, rather than ‘‘extending’’ the .rbr file for every 3 blocks (which involves
many extend operations), the RMS extend is only invoked once per 30,000
blocks. By specifying a larger value for the file extend parameter, the run
time of the export operation can be significantly improved.

• Oracle Rdb does not support remote export between different versions of
Oracle Rdb. You can successfully export a database only if the version
number of the system from which you issue the EXPORT statement equals
the version number of the database you are exporting.

SQL Statements 7–341

EXPORT Statement

• A node specification may be specified for the root FILENAME clause of the
EXPORT DATABASE statement.

• The intermediate file created by the EXPORT statement is encoded in
interchange format and can be processed by the IMPORT statement to
create a new database. The interchange file contains the table and column
metadata, row data, and NULL values for each row.

• By default, the same file specifications and allocations are used by the
IMPORT statement. The RMU Extract command can be used with
the Item=Import qualifier to create a template IMPORT commnad
that allows the database administrator to modify the file locations.
The Defaults=Allocation and Defaults=Snapshot_Allocation, and
Options=Filename_Only qualifiers can be used to create simplified scripts.

• The RMU Load command can also process the interchange format file
created by the EXPORT statement. Use the Match_Name qualifier with
the RMU Load command to specify the name of the table to select from the
interchange file.

• The EXPORT statement extracts all metadata and data from the source
database in a single transaction. It executes the same way as the START
DEFAULT TRANSACTION statement.

For example, if you define the RDMS$SET_FLAGS logical name to the
TRANSACTION keyword we can see this single transaction start and
commit.

$ DEFINE/USER_MODE RDMS$SET_FLAGS TRANSACTION
$ SQL$
SQL> EXPORT DATABASE FILENAME PERSONNEL INTO SAVED_PERSONNEL.RBR;
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=0)
~T Start_transaction (1) on db: 1, db count=1
~T Commit_transaction (1) on db: 1
~T Prepare_transaction (1) on db: 1
SQL>

The ‘‘Transaction Parameter Block’’ of zero length indicates that the START
DEFAULT TRANSACTION process has been executed. The Oracle Rdb
server will attempt to define a default definition in the database for the
current user, and if none is found, a READ ONLY transaction will be
started, which is the case in this example.

In some environments this type of transaction might not be desired. For
instance, in an environment with SNAPSHOTS defined as ENABLED
DEFERRED this transaction type would force writers to the database to
also start writing to the SNAPSHOT files.

7–342 SQL Statements

EXPORT Statement

In this case, you can define a PROFILE for the user performing the
EXPORT statement and associate a PROFILE with a more appropriate
default transaction definition. In the following example, we use
ISOLATION LEVEL READ COMMITTED to improve the concurrency
between EXPORT and other database users.

SQL> CREATE PROFILE DB_ADMIN
cont> DEFAULT TRANSACTION
cont> READ WRITE
cont> WAIT 10
cont> ISOLATION LEVEL READ COMMITTED;
SQL> CREATE USER PHILIP IDENTIFIED EXTERNALLY PROFILE DB_ADMIN;
SQL> COMMIT;

When the EXPORT statement is executed by this user, the default
transaction from the profile is used.

$ SQL$
SQL> EXPORT DATABASE FILENAME PERSONNEL INTO SAVED_PERSONNEL.RBR;
~T Compile transaction (1) on db: 1
~T Transaction Parameter Block: (len=6)
0000 (00000) TPB$K_VERSION = 1
0001 (00001) TPB$K_ISOLATION_LEVEL1 (read committed)
0002 (00002) TPB$K_WAIT_INTERVAL 10 seconds
0005 (00005) TPB$K_WRITE (read write)
~T Start_transaction (1) on db: 1, db count=1
~T Commit_transaction (1) on db: 1
~T Prepare_transaction (1) on db: 1
SQL>

The association with this default transaction can be removed after the
EXPORT statement has completed.

SQL> ALTER USER PHILIP NO PROFILE;
SQL> COMMIT;

SQL Statements 7–343

FETCH Statement

FETCH Statement

Advances a cursor to the next row of its result table and retrieves the values
from that row. When used with a list cursor, the FETCH statement places
the cursor on a specified position within a list and retrieves a portion of that
list. When embedded in precompiled host language programs, the FETCH
statement assigns the values from the row to host parameters. In interactive
SQL, the FETCH statement displays the value of the row on the terminal
screen.

Environment

You can use the FETCH statement:

• In interactive SQL (except for the USING DESCRIPTION clause)

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

Format

FETCH <cursor-name>
fetch-orientation-clause FROM <parameter>

INTO <parameter>
<qualified-parameter>
<variable>

,
USING DESCRIPTOR <descriptor-name>

fetch-orientation-clause =

NEXT
PRIOR
FIRST
LAST
RELATIVE simple-value-expression
ABSOLUTE simple-value-expression

7–344 SQL Statements

FETCH Statement

Arguments

cursor-name
parameter
Specifies the name of the cursor from which you want to retrieve a row. Use
a parameter if the cursor referred to by the cursor name was declared at run
time with a dynamic DECLARE CURSOR statement. Specify the parameter
used for the cursor name in the dynamic DECLARE CURSOR statement.

You can use a parameter to refer to the cursor name only when the FETCH
statement is accessing a dynamic cursor.

fetch-orientation-clause FROM
Specifies the specific segment of the list cursor to fetch. These options are
available only if you specified the SCROLL option in the DECLARE CURSOR
statement. The choices are:

• NEXT

Fetches the next segment of the list cursor. This is the default.

• PRIOR

Fetches the segment immediately before the current segment of the list
cursor.

• FIRST

Fetches the first segment of the list cursor.

• LAST

Fetches the last segment of the list cursor.

• RELATIVE simple-value-expression

Fetches the segment of the list cursor indicated by the value expression.
For example, relative –4 would fetch the segment that is four segments
prior to the current segment.

• ABSOLUTE simple-value-expression

Fetches the segment of the list cursor indicated by the value expression.
For example, absolute 4 would fetch the fourth segment of the list cursor.

INTO parameter
INTO qualified-parameter
INTO variable
Specifies a list of parameters, qualified parameters (host structures), or
variables to receive the values SQL retrieves from the row of the cursor’s result
table. The number of parameters or variables in the list must be the same as

SQL Statements 7–345

FETCH Statement

the number of values in the row. (If any of the parameters is a host structure,
SQL counts the number of parameters in that structure when it compares the
number of host parameters in the INTO clause with the number of values in
the row.)

The data types of parameters and variables must be compatible with the
values of the corresponding column of the cursor row.

simple-value-expression
Specifies either a positive or negative integer, or a numeric module language or
host language parameter.

USING DESCRIPTOR descriptor-name
Specifies the name of a descriptor that corresponds to an SQLDA. If you
use the INCLUDE statement to insert the SQLDA into your program, the
descriptor name is simply SQLDA.

An SQLDA is a collection of host language variables used only in dynamic
SQL. In a FETCH statement, the SQLDA points to a number of parameters
SQL uses to store values from the row. The number of parameters must match
the number of columns in the row.

The data types of parameters must be compatible with the values of the
corresponding column of the cursor row.

Usage Notes

• You cannot use a FETCH statement for a cursor before you issue an OPEN
statement for that cursor.

• An open cursor can be positioned:

Before the first row of its result table. When an OPEN statement
executes, SQL positions the cursor before the first row. When a
DELETE statement that refers to a cursor executes, SQL positions the
cursor before the next row that follows the deleted row.

On a row of its result table (after a FETCH statement for any but the
last row).

After the last row of its result table.

When the table cursor is positioned on the last row, any FETCH or
DELETE statement from the cursor positions the cursor after the last
row.

7–346 SQL Statements

FETCH Statement

• An error is generated and the SQLCODE status parameter or SQLCODE
field of SQLCA is set to +100 and the SQLSTATE field is set to ’02000’ in
the following situations:

If the current position of a cursor in a FETCH or FETCH NEXT
statement is on or after the last row of its result table.

If a FETCH ABSOLUTE or FETCH RELATIVE statement tries to
retrieve rows that are out of range.

If the current position of a cursor in a FETCH PRIOR statement is on
or before the first row of its result table.

• If you attempt to fetch an element of a list into a target specification that is
shorter than the element, the element will be truncated. The sixth element
of the SQLERRD array of the SQLCA is set to the difference between the
element and the target (the number of truncated bytes).

• Always use an indicator array when you use host language structures. For
information about indicator arrays, see Section 2.2.13.2 or the Oracle Rdb
Guide to SQL Programming.

When SQL fetches a list cursor, the value of the indicator parameter
shows if the segment is truncated. If no truncation occurs, the value of the
indicator parameter is 0. If the list segment value is null, the value of the
indicator parameter is –1. If the list segment is truncated, the SQLLEN
stores the length of the untruncated segment.

• You can determine the length of the fetched segment by passing a
VARCHAR or VARBYTE field in the SQLDA for the segment. SQL returns
the length of the segment in the length field of these two data types.

• You must make sure you close the list cursor before fetching the next row
of a table cursor. SQL does not issue an error message or warning if you
forget to do so.

See Appendix C for more information on the SQLCA and SQLSTATE.

Examples

Example 1: Using a FETCH statement embedded in a PL/I program

This program fragment uses embedded DECLARE CURSOR, OPEN, and
FETCH statements to retrieve and print the names and departments of
managers. The FETCH statement fetches the rows of the result table and
stores them in the parameters :FNAME, :LNAME, and :DNAME.

SQL Statements 7–347

FETCH Statement

/* Declare the parameters: */
BEGIN DECLARE SECTION

DCL ID CHAR(3);
DCL FNAME CHAR(10);
DCL LNAME CHAR(14);

END DECLARE SECTION

/* Declare the cursor: */
EXEC SQL DECLARE MANAGER CURSOR FOR

SELECT E.FIRST_NAME, E.LAST_NAME, D.DEPARTMENT_NAME
FROM EMPLOYEES E, DEPARTMENTS D
WHERE E.EMPLOYEE_ID = D.MANAGER_ID ;

/* Open the cursor: */
EXEC SQL OPEN MANAGER;

/* Start a loop to process the rows of the cursor: */
DO WHILE (SQLCODE = 0);

/* Retrieve the rows of the cursor
and put the value in parameters: */
EXEC SQL FETCH MANAGER INTO :FNAME, :LNAME, :DNAME;
/* Print the values in the parameters: */

.

.

.
END;

/* Close the cursor: */
EXEC SQL CLOSE MANAGER;

Example 2: Using a FETCH statement to display segments in a column of data
type LIST

This interactive example uses a table cursor to retrieve a row that contains a
list from the RESUMES table. The OPEN statement positions the cursor on
the first segment of the list in the RESUME column, and subsequent FETCH
statements retrieve successive segments of that list.

7–348 SQL Statements

FETCH Statement

SQL> DECLARE TBLCURSOR2 CURSOR FOR SELECT EMPLOYEE_ID, RESUME
cont> FROM RESUMES;
SQL> DECLARE LSTCURSOR2 LIST CURSOR FOR SELECT RESUME
cont> WHERE CURRENT OF TBLCURSOR2;
SQL> OPEN TBLCURSOR2;
SQL> FETCH TBLCURSOR2;
00164

SQL> OPEN LSTCURSOR2;
SQL> FETCH LSTCURSOR2;
RESUME
This is the resume for 00164
SQL> FETCH LSTCURSOR2;
RESUME
Boston, MA
SQL> FETCH LSTCURSOR2;
RESUME
Oracle Corporation
SQL> FETCH LSTCURSOR2;
RESUME
%RDB-E-STREAM_EOF, attempt to fetch past end of record stream
SQL> CLOSE LSTCURSOR2;
SQL> SELECT * FROM RESUMES;
EMPLOYEE_ID RESUME
00164 72:2:3
1 row selected
SQL> CLOSE TBLCURSOR2;
SQL> COMMIT;

Example 3: Using a scrollable list cursor to fetch list data

This C program demonstrates the use of scrollable list cursors to read list data
from the sample personnel database using the FETCH statement. The list data
being read is from the RESUME column of the RESUMES table in personnel.
Note that the RESUME is divided into three segments in this order:

1. A line including the employee’s name: ‘‘This is the resume for Alvin
Toliver’’

2. A line stating where the employee lives: ‘‘Boston, MA’’

3. A line stating where the employee works: ‘‘Oracle Corporation’’

#include stdio
#include descrip

/* Declare parameters for error handling by including the SQLCA. */

EXEC SQL INCLUDE SQLCA;

/* Error-handling section. */

dump_error()
{

SQL Statements 7–349

FETCH Statement

short errbuflen;
char errbuf[1024];
struct dsc$descriptor_s errbufdsc;

errbufdsc.dsc$b_class = DSC$K_CLASS_S;
errbufdsc.dsc$b_dtype = DSC$K_DTYPE_T;
errbufdsc.dsc$w_length = 1024;
errbufdsc.dsc$a_pointer = &errbuf;

if (SQLCA.SQLCODE != 0)
{

printf("SQLCODE = %d\n", SQLCA.SQLCODE);
SQL$GET_ERROR_TEXT(&errbufdsc, &errbuflen);

errbuf[errbuflen] = 0;
printf("%s\n", &errbuf);
}

}
main()
{

/* Attach to the personnel database. */

EXEC SQL DECLARE ALIAS FILENAME personnel;

/* Declare variables. */

short two_s;

long two_l;

char blob[8];
char emp_id[6];
char seg2[81];

/* Declare a table cursor. */

exec sql declare resumes_cursor table cursor for
select employee_id, resume from resumes where employee_id = ’00164’;

/* Declare a read-only scrollable list cursor to fetch the RESUME column. */

exec sql declare resume_list_cursor read only scrollable list cursor for
select resume where current of resumes_cursor;

/* Open the table cursor. */

exec sql open resumes_cursor;
dump_error();

/* Place the first value in the table cursor (00164) into the emp_id parameter,
and the resume data into the blob parameter. */

exec sql fetch resumes_cursor into :emp_id, :blob;
dump_error();

/* Open the scrollable list cursor. */

exec sql open resume_list_cursor;
dump_error();

7–350 SQL Statements

FETCH Statement

/* Begin to use the FETCH statement to read desired lines from the resume.
If an attempt is made to retrieve a segment that is out of range, the
program prints an error message.

*/

exec sql fetch last from resume_list_cursor into :seg2;
printf("FETCH LAST segment returned: %s\n", seg2);
dump_error();

exec sql fetch next from resume_list_cursor into :seg2;
printf("FETCH NEXT segment returned: %s\n", seg2);
dump_error();

exec sql fetch first from resume_list_cursor into :seg2;
printf("FETCH FIRST segment returned: %s\n", seg2);
dump_error();

exec sql fetch next from resume_list_cursor into :seg2;
printf("FETCH NEXT segment returned: %s\n", seg2);
dump_error();

exec sql fetch next from resume_list_cursor into :seg2;
printf("FETCH NEXT segment returned: %s\n", seg2);
dump_error();

exec sql fetch relative -2 from resume_list_cursor into :seg2;
printf("FETCH RELATIVE -2 segment returned: %s\n", seg2);
dump_error();

exec sql fetch first from resume_list_cursor into :seg2;
printf("FETCH FIRST segment returned: %s\n", seg2);
dump_error();

exec sql fetch relative 2 from resume_list_cursor into :seg2;
printf("FETCH RELATIVE 2 segment returned: %s\n", seg2);
dump_error();

exec sql fetch last from resume_list_cursor into :seg2;
printf("FETCH LAST segment returned: %s\n", seg2);
dump_error();

exec sql fetch prior from resume_list_cursor into :seg2;
printf("FETCH PRIOR segment returned: %s\n", seg2);
dump_error();

exec sql fetch ABSOLUTE 1 from resume_list_cursor into :seg2;
printf("FETCH ABSOLUTE 1 segment returned: %s\n", seg2);
dump_error();

exec sql fetch relative 2 from resume_list_cursor into :seg2;
printf("FETCH RELATIVE 2 segment returned: %s\n", seg2);
dump_error();

two_s = 2;
exec sql fetch ABSOLUTE :two_s from resume_list_cursor into :seg2;
printf("FETCH ABSOLUTE :two_s segment returned: %s\n", seg2);
dump_error();

SQL Statements 7–351

FETCH Statement

two_l = 2;
exec sql fetch ABSOLUTE :two_l from resume_list_cursor into :seg2;
printf("FETCH ABSOLUTE :two_1 segment returned: %s\n", seg2);
dump_error();

exec sql fetch RELATIVE :two_l from resume_list_cursor into :seg2;
printf("FETCH RELATIVE :two_1 segment returned: %s\n", seg2);
dump_error();

exec sql rollback;
}

The following example shows the output from the program:

FETCH LAST segment returned: Oracle Corporation
FETCH NEXT segment returned: Oracle Corporation
SQLCODE = 100
%SQL-W-NOTFOUND, No rows were found for this statement
FETCH FIRST segment returned: This is the resume for Alvin Toliver
FETCH NEXT segment returned: Boston, MA
FETCH NEXT segment returned: Oracle Corporation
FETCH RELATIVE -2 segment returned: This is the resume for Alvin Toliver
FETCH FIRST segment returned: This is the resume for Alvin Toliver
FETCH RELATIVE 2 segment returned: Oracle Corporation
FETCH LAST segment returned: Oracle Corporation
FETCH PRIOR segment returned: Boston, MA
FETCH ABSOLUTE 1 segment returned: This is the resume for Alvin Toliver
FETCH RELATIVE 2 segment returned: Oracle Corporation
FETCH ABSOLUTE :two_s segment returned: Boston, MA
FETCH ABSOLUTE :two_1 segment returned: Boston, MA
FETCH RELATIVE :two_1 segment returned: Boston, MA
SQLCODE = -1
%RDB-F-SEGSTR_EOF, attempt to fetch past the end of a segmented string
-RDMS-E-FETRELATIVE, fetch relative (2) causes reference out of range 1..3

7–352 SQL Statements

FOR Control Statement

FOR Control Statement

Executes an SQL statement for each row of a query expression.

Environment

You can use the FOR control statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

for-statement =

FOR <variable-name>
<beginning-label> :

AS
EACH ROW OF for-statement-table-cursor

select-expression DO compound-use-statement

END FOR
<ending-label>

for-statement-table-cursor =

CURSOR <cursor-name> FOR
READ ONLY TABLE
UPDATE ONLY

Arguments

AS EACH ROW OF for-statement-table-cursor
Creates a result table with a specified cursor.

The optional naming of a cursor lets you use positioned data manipulation
language statements in the DO clause of a FOR loop.

SQL Statements 7–353

FOR Control Statement

AS EACH ROW OF select-expression
Creates a simple result table.

After SQL creates the result table from the select expression, the DO clause
executes a set of SQL statements (compound-use-statement) for each result
table row.

beginning-label:
Assigns a name to the FOR statement.

A named FOR loop is called a labeled FOR loop statement. If you include
an ending label, it must be identical to its corresponding beginning label. A
beginning label must be unique within the procedure in which the label is
contained.

DO compound-use-statement
Executes a block of SQL statements for each row of the select expression result
table.

END FOR ending-label
Marks the end of a FOR loop. If you choose to include the optional ending
label, it must match exactly its corresponding beginning label. An ending label
must be unique within the procedure in which the label is contained.

The optional end-label argument makes the FOR loops of multistatement
procedures easier to read, especially in very complex procedure blocks.

FOR variable-name
Specifies a name for a record consisting of a field for each named column of
the FOR loop select expression. Each field in the record contains the data
represented by each column name in each row of the select expression result
table.

The variable name lets you reference a field in the compound-use-statement
argument, for example: variable-name.column-name.

Usage Notes

• A beginning label used with the ITERATE statement lets you skip the
commands of the loop body and start the next iteration of the loop.

• The cursor name must be unique within the containing module.

• Reference to the cursor name is only valid inside this FOR statement.

7–354 SQL Statements

FOR Control Statement

• Variables are created at the beginning of the FOR statement and are
destroyed at the end of the FOR statement.

• A FOR cursor loop executes the DO . . . END FOR body of the loop for
each row fetched from the row set. Applications cannot use RETURNED_
SQLCODE or RETURNED_SQLSTATE to determine if the FOR loop
reached the end of the row set without processing any rows. Applications
should use the GET DIAGNOSTICS ROW_COUNT statement after the
END FOR clause to test for zero or more rows processed.

Examples

Example 1: Using the FOR statement within an SQL module procedure

SQL> set flags ’trace’;
SQL>
SQL> create module REPORTS
cont> /*
***> This procedure counts the employees of a given state
***> who have had a decrease in their salary during their
***> employment
***> */
cont> procedure COUNT_DECREASED
cont> (in :state CHAR(2)
cont> ,inout :n_decreased INTEGER);
cont> begin
cont> set :n_decreased = 0;
cont>
cont> EMP_LOOP:
cont> for :empfor
cont> as each row of
cont> select employee_id
cont> from EMPLOYEES where state = :state
cont> do
cont> begin
cont> declare :last_salary INTEGER (2) default 0;
cont>
cont> HISTORY_LOOP:
cont> for :salfor
cont> as each row of
cont> select salary_amount
cont> from SALARY_HISTORY
cont> where employee_id = :empfor.employee_id
cont> order by salary_start
cont> do
cont> if :salfor.salary_amount < :last_salary
cont> then
cont> set :n_decreased = :n_decreased + 1;

SQL Statements 7–355

FOR Control Statement

cont> trace :empfor.employee_id, ’: ’, :salfor.salary_amount;
cont> leave HISTORY_LOOP;
cont> end if;
cont>
cont> set :last_salary = :salfor.salary_amount;
cont> end for;
cont> end;
cont> end for;
cont> end;
cont>
cont> end module;
SQL>
SQL> declare :n integer;
SQL> call COUNT_DECREASED (’NH’, :n);
~Xt: 00200: 40789.00
~Xt: 00248: 46000.00
~Xt: 00471: 52000.00

N
3

SQL>
SQL> rollback;

7–356 SQL Statements

FOR (Counted) Control Statement

FOR (Counted) Control Statement

Executes a block of SQL statements while the FOR loop variable is
incremented (or decremented) from a user-specified starting value to a user-
specified ending value.

Environment

You can use the FOR counted control statement in a compound statement of a
multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

counted-for-statement =

FOR <variable-name>
<beginning-label> :

IN value-expr TO value-expr
REVERSE

DO compound-use-statement
STEP value-expr

END FOR
<ending-label>

Arguments

AS EACH ROW OF select-expression
Creates a simple result table.

After SQL creates the result table from the select expression, the DO clause
executes a set of SQL statements (compound-use-statement) for each result
table row. See Section 2.8.1 for more information on select expressions.

SQL Statements 7–357

FOR (Counted) Control Statement

beginning-label:
Assigns a name to the FOR statement. A named FOR loop is called a labeled
FOR loop statement. If you include an ending label, it must be identical to
its corresponding beginning label. A beginning label must be unique within the
procedure in which the label is contained.

compound-use-statement
Identifies the SQL statements allowed in a compound statement block. See
Compound Statement for a complete description of a compound statement.

DO compound-use-statement
Executes a block of SQL statements once for each execution of the loop as
defined by the starting and ending value expressions.

END FOR
END FOR ending-label
Marks the end of a FOR loop. If you choose to include the optional ending
label, it must match exactly its corresponding beginning label. An ending
label must be unique within the procedure in which the label is contained.
The optional end-label argument makes the FOR loops of multistatement
procedures easier to read, especially in very complex procedure blocks.

FOR variable-name
Specifies a variable to hold a value that is incremented each time the FOR loop
is executed. The variable is decremented if the REVERSE keyword is specified.
The starting value for the variable is the first value expression. Execution of
the FOR loop ends when the variable has been incremented (or decremented)
to the value specified with the second value expression.
Marks the end of a FOR loop. If you choose to include the optional ending
label, it must match exactly its corresponding beginning label. An ending
label must be unique within the procedure in which the label is contained.
The optional end-label argument makes the FOR loops of multistatement
procedures easier to read, especially in very complex procedure blocks.

IN value-expr TO value-expr
IN REVERSE value-expr TO value-expr
Specifies how often the compound-use-statement should be executed. When
the REVERSE keyword is not specified, the variable contained in the FOR
variable-name is incremented at the end of each execution of the FOR loop
body. When the REVERSE keyword is specified, the variable contained in the
FOR variable-name is decremented at the end of each execution of the FOR
loop body.

7–358 SQL Statements

FOR (Counted) Control Statement

Both value expressions are evaluated once before the loop executes. The TO
value-expression is evaluated first to ensure that references to the FOR loop
variable do not cause side effects.

select expression
See Section 2.8.1 for a complete description of select expressions.

STEP value-expr
Controls the size of the increment between loop interations. The step size is
specified using a numeric value expression.

If omitted the default step size is 1.

SQL> begin
cont> declare :i integer;
cont> for :i in 1 to 20 step 5
cont> do
cont> trace :i;
cont> end for;
cont> end;
~Xt: 1
~Xt: 6
~Xt: 11
~Xt: 16

Note

Even if the loop control variable is an INTERVAL type the STEP must
be numeric type. In addition the value must be greater than zero - use
the REVERSE keyword to decrement the loop control variable.

value-expr
Syntax:

IN value-expr TO value-expr
IN REVERSE value-expr TO value-expr

Specifies how often the compound-use-statement should be executed. When
the REVERSE keyword is not specified, the variable contained in the FOR
variable-name is incremented at the end of each execution of the FOR loop
body. When the REVERSE keyword is specified, the variable contained in the
FOR variable-name is decremented at the end of each execution of the FOR
loop body.

SQL Statements 7–359

FOR (Counted) Control Statement

Both value expressions are evaluated once before the loop executes. The TO
value-expression is evaluated first to ensure that references to the FOR loop
variable do not cause side effects.

Usage Notes

• A beginning label used with the LEAVE statement lets you perform a
controlled exit from a FOR loop.

• The FOR loop variable-name must exist as a declared updatable local (or
global) variable.

• The FOR loop variable can be declared as a numeric value (TINYINT,
SMALLINT, INTEGER, BIGINT, FLOAT, REAL, DOUBLE, NUMERIC,
NUMBER, or DECIMAL) with no fractional portion.

The following INTERVAL data types are also legal for this type of FOR
loop

• INTERVAL YEAR

• INTERVAL MONTH

• INTERVAL DAY

• INTERVAL HOUR

• INTERVAL MINUTE

• INTERVAL SECOND

If INTERVAL is used then the initial and final values must be of the same
type. That is, the expressions must have the same data type as the loop
variable.

• Within the body of the FOR loop, the FOR loop variable-name cannot be
updated using any of the following:

The SET statement

The GET DIAGNOSTICS statement

The INTO clause of the INSERT RETURNING, UPDATE
RETURNING, or SELECT statements

In addition, the FOR loop variable name cannot be changed if it is the
target of an INOUT or OUT parameter of the CALL statement.

7–360 SQL Statements

FOR (Counted) Control Statement

In other words, the FOR loop variable behaves like a constant variable
within the loop. However, outside the loop, the variable can be modified
because the read-only nature of the loop variable is temporary.

• The loop body will not execute if any one of the following is true:

The starting value expression evaluates to NULL.

The ending value expression evaluates to NULL.

The starting value expression is greater than the ending value
expression in a forward loop (one that does not contain the REVERSE
keyword).

When the loop variable is numeric, the value expressions can be any
compatible numeric data type. For instance floating point or scaled
numeric values can be used.

The starting value expression is less than the ending value expression
in a reverse loop (one that contains the REVERSE keyword).

• The FOR loop uses the keyword TO as a separator between the initial and
final value expressions. This same keyword is used to separate the field
names in an interval qualifier. Therefore, there is an ambiguity possible
when an apparently well formed expression is used.

SQL> begin
cont> declare :i interval year;
cont> for :i in interval’1’ year to interval’4’year
for :i in interval’1’ year to interval’4’year

^
%SQL-W-LOOK_FOR_STT, Syntax error, looking for:
%SQL-W-LOOK_FOR_CON, MONTH,
%SQL-F-LOOK_FOR_FIN, found INTERVAL instead

This occurs because the TO separator is interpreted as part of the
INTERVAL literal or expression. Programmers must enclose the initial
expression in parentheses to avoid this ambiguity if it ends with an
interval qualifier.

• The STEP value expression is evaluated before the loop variable is assigned
a value. The value must be greater than zero and never NULL. If these
constraints are violated a runtime error is reported as shown in this simple
example.

SQL Statements 7–361

FOR (Counted) Control Statement

SQL> begin
cont> declare :l, :s integer;
cont>
cont> -- set the step size
cont> set :s = 0;
cont>
cont> for :l in reverse 1 to 10 step :s
cont> do
cont> trace :l;
cont> end for;
cont> end;
%RDB-E-NOT_VALID, validation on field STEP caused operation to fail
SQL>

Examples

Example 1: Using a Reverse Loop

SQL> SET FLAGS ’TRACE’;
SQL> BEGIN
cont> DECLARE :LOOP_VAR INTEGER;
cont> FOR :LOOP_VAR IN REVERSE 1 TO 5
cont> DO
cont> TRACE :LOOP_VAR;
cont> END FOR;
cont> END;
~Xt: 5
~Xt: 4
~Xt: 3
~Xt: 2
~Xt: 1

Example 2: Using an INTERVAL type as the loop variable

SQL> begin
cont> declare :i interval year;
cont> for :i in (interval’1’ year) to (interval’4’year)
cont> do
cont> trace :i;
cont> end for;
cont> end;
~Xt: 01
~Xt: 02
~Xt: 03
~Xt: 04

7–362 SQL Statements

FOR (Counted) Control Statement

Example 3: Using a complex expression as the STEP expression

SQL> begin
cont> declare :i interval year;
cont> declare :k interval year = interval’18’year;
cont> declare :j integer = 2;
cont>
cont> for :i in (interval’1’ year) to :k/2 step :j*2
cont> do
cont> trace :i;
cont> end for;
cont> end;
~Xt: 01
~Xt: 05
~Xt: 09

SQL Statements 7–363

GET DIAGNOSTICS Statement

GET DIAGNOSTICS Statement

Extracts diagnostic information about the execution of the previous SQL
statement or SQL routine environment.

The GET DIAGNOSTICS statement captures diagnostic information from an
Oracle Rdb maintained data structure called the diagnostics area. In the
ANSI/ISO SQL standard, the diagnostics area consists of two components:
a single header area and an array of detail areas. Oracle Rdb extracts
information only from the header component and the first element of the
detail area (Exception 1):

• Header area

Contains status information about rows and transactions, for example, the
number of rows affected by an INSERT, UPDATE, or DELETE statement
or the type of transaction that is active.

See the statement-item-name argument for a complete list of the status
information you can retrieve from the header area.

• Detail area (Exception 1)

Contains diagnostic information that corresponds to the status that
would be reported in the SQLSTATE or SQLCODE status parameter.
The EXCEPTION . . . RETURNED_SQLSTATE argument retrieves the
SQLSTATE status information from the detail area. The EXCEPTION . . .
RETURNED_SQLCODE argument retrieves the SQLCODE status
information from the detail area.

Environment

You can use the GET DIAGNOSTICS statement only within the compound
statement of a multistatement procedure:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a multistatement procedure in an SQL module

• In dynamic SQL as a statement to be dynamically executed

7–364 SQL Statements

GET DIAGNOSTICS Statement

Format

GET DIAGNOSTICS

<parameter> = statement-item-name
<variable>

,
EXCEPTION 1 <parameter> = statement-info-clause

<variable>
,

statement-item-name =

ACCESS_MODE
CALLING_ROUTINE
CONNECTION_NAME
CURRENT_ROW
DATABASE_HANDLE
GLOBAL_TRANSACTION
HOT_STANDBY_MODE
IMAGE_NAME
ISOLATION_LEVEL
LIMIT_CPU_TIME
LIMIT_ELAPSED_TIME
LIMIT_ROWS_FETCHED
ROW_COUNT
SERVER_IDENTIFICATION
TRACE_ENABLED
transaction-item-name

transaction-item-name =

TRANSACTION_ACTIVE
TRANSACTION_CHANGE_ALLOWED
TRANSACTION_SEQUENCE
TRANSACTION_TIMESTAMP
TRANSACTIONS_COMMITTED
TRANSACTIONS_ROLLED_BACK

statement-info-clause =

RETURNED_SQLSTATE
RETURNED_SQLCODE

SQL Statements 7–365

GET DIAGNOSTICS Statement

Arguments

EXCEPTION
Returns the exception condition following the execution of an SQL statement
(other than GET DIAGNOSTICS). Either SQLCODE or SQLSTATE can be
returned.

parameter = statement-item-name
variable = statement-item-name
Retrieves information about the statement execution recorded in the
diagnostics area and stores it in a simple target specification (a parameter
or variable).

RETURNED_SQLCODE
Requests the SQLCODE be returned to the target variable or parameter.
Oracle Rdb only returns success (0) and warning status (positive value) for
SQLCODE. Any error status will cause the compound statement or stored
routine to return to the calling application.

The result data type is INTEGER.

RETURNED_SQLSTATE
Requests the SQLSTATE be returned to the target variable or parameter.
Oracle Rdb only returns success (’00000’) and warning status for SQLSTATE.
Any error status will cause the compound statement or stored routine to return
to the calling application.

The result data type is CHAR (5).

statement-item-name
Specifies the kind of diagnostic information you can retrieve about the current
session or a previously executed SQL statement. You can gather the following
diagnostic data:

• ACCESS_MODE returns one of the strings ’READ ONLY’, ’READ WRITE’,
or ’BATCH UPDATE’ to indicate the type of transaction that is active. If
no transaction is active then the string ’NONE’ is returned. See the SET
TRANSACTION Statement for a description of transaction access modes.

The result data type is CHAR (31).

• CALLING_ROUTINE returns the name of the calling routine. If there is
no name for the calling routine, spaces are returned.

The result data type is CHAR (31).

• CONNECTION_NAME returns the current connection name.

7–366 SQL Statements

GET DIAGNOSTICS Statement

The result data type is CHAR (31).

• CURRENT_ROW returns the number of rows that have been fetched by
the inner most FOR control statement.

The result data type is INTEGER.

• DATABASE_HANDLE returns the current database handle (or stream)
identifier.

The result data type is INTEGER.

• GLOBAL_TRANSACTION returns the value 1 when a global transaction is
active and a value of 0 otherwise.

The result data type is INTEGER.

• HOT_STANDBY_MODE returns a value that indicates if this database is
participating in a Hot Standby configuration as master (’MASTER’), or as
standby (’STANDBY’), or is not in such a configuration (’NONE’).

The result data type is CHAR (31).

• IMAGE_NAME returns the activating image name. The image name
includes the node name from which the attach was started. This might be
a node different to that on which the Oracle Rdb server is running.

The result data type is VARCHAR (255).

• ISOLATION_LEVEL returns one of the string ’READ COMMITTED’,
’REPEATABLE READ’, or ’SERIALIZABLE’ to indicate the isolation level
of a transaction. If no transaction is active, then the string ’NONE’ is
returned. See the SET TRANSACTION Statement for a description of
transaction isolation levels.

The result data type is CHAR (31).

• LIMIT_CPU_TIME returns the session’s execution CPU time limit
in seconds. If zero (0) is returned, it is equivalent to no CPU
time limit. This value is established by either the logical name
RDMS$BIND_QG_EXEC_CPU_TIMEOUT or the SET QUERY
EXECUTION LIMIT CPU TIME statement.

The result data type is INTEGER.

• LIMIT_ELAPSED_TIME returns the session’s execution elapsed time
limit in seconds. If zero (0) is returned, it is equivalent to no elapsed
time limit. This value is established by either the logical name
RDMS$BIND_QG_EXEC_ELAPSED_TIMEOUT or the SET QUERY
EXECUTION LIMIT ELAPSED TIME statement.

The result data type is INTEGER.

SQL Statements 7–367

GET DIAGNOSTICS Statement

• LIMIT_ROWS_FETCHED returns the session’s row limit. If zero (0) is
returned, it is equivalent to no row limit. This value is established by the
logical name RDMS$BIND_QG_REC_LIMIT.

The result data type is BIGINT.

• ROW_COUNT returns the number of rows affected by an INSERT,
searched UPDATE, searched DELETE, or a FOR cursor loop statement.

The result data type is BIGINT.

• SERVER_IDENTIFICATION returns the Oracle Rdb version string. This
is useful for log file annotation.

The result data type is CHAR (31).

• TRACE_ENABLED returns a value to indicate if the TRACE flag has been
enabled using the statement SET FLAGS ’TRACE’, or by either of the
logical names RDMS$SET_FLAGS or RDMS$DEBUG_FLAGS. A zero (0)
is returned if the flag is disabled, otherwise a one (1) is returned to indicate
that tracing is enabled.

The result data type is INTEGER.

• TRANSACTIONS_COMMITTED returns the number of transactions that
have been committed during the processing of a multistatement procedure.

The result data type is INTEGER.

• TRANSACTIONS_ROLLED_BACK returns the number of transactions
that have been rolled back during the processing of a multistatement
procedure.

The result data type is INTEGER.

• TRANSACTION_ACTIVE returns a value of 1 when a transaction is active
and an integer of 0 otherwise.

The result data type is INTEGER.

• TRANSACTION_CHANGE_ALLOWED

There are many situations where the SQL language programmer would
like to start or end a transaction but does not know if a transaction
statement (SET TRANSACTION, START TRANSACTION, COMMIT or
ROLLBACK) is currently permitted. The transaction statements are not
permitted in the following cases:

• During a multidatabase or global transaction. In this case, the
transaction must be coordinated by the client, not a server-based
procedure.

• When a BEGIN ATOMIC compound statement is in the outer scope.

7–368 SQL Statements

GET DIAGNOSTICS Statement

• When a FOR cursor loop is active in an outer scope.

• When a SQL function is active, as part of the function body or from a
procedure called from that function.

The TRANSACTION_CHANGE_ALLOWED clause allows the programmer
to detect these restricted locations and conditionally execute a COMMIT,
ROLLBACK, START TRANSACTION or SET TRANSACTION as needed.

If transaction changes are permitted then a value of 1 is returned and a
value 0 otherwise.

The result data type is INTEGER.

• TRANSACTION_SEQUENCE returns the transaction sequence number
(TSN) assigned to the most recently started transaction. The TSN is a
unique indicator of database transaction activity, however, please note
that the TSN may be reused in some cases. The TSN for a READ ONLY
transaction reflects the transaction state which is visible to the transaction
and, therefore, it was previously assigned to a READ WRITE transaction.
If a READ WRITE transaction does not perform database I/O or was rolled
back, that TSN may be reused by a subsequent READ WRITE transaction.

The result data type is BIGINT.

• TRANSACTION_TIMESTAMP returns the date and time that the last
transaction was started. If a transaction is not active, the returned date
and time may be for a prior transaction.

Note

The database server will start transactions when performing database
operations. Therefore this timestamp may reflect the time of an
internal transaction.

The result data type is either DATE VMS or TIMESTAMP(2). If the
default date format is SQL99, this option returns a value with the data
type TIMESTAMP(2), otherwise it returns a DATE (VMS) data type. The
default date format can be changed using either the SET DIALECT or SET
DEFAULT DATE FORMAT statements, or one of the associated module
attributes.

SQL Statements 7–369

GET DIAGNOSTICS Statement

Usage Notes

• The diagnostics area is cleared at the beginning of each multistatement
procedure.

• You can use the GET DIAGNOSTICS statement only within the compound
statement of a multistatement procedure.

• Because an exception causes a multistatement procedure to terminate
immediately, RETURNED_SQLCODE or RETURNED_SQLSTATE only
returns a warning message. If the procedure is successful, RETURNED_
SQLCODE or RETURNED_SQLSTATE returns a success message.

• See also the SYS_GET_DIAGNOSTICS statement which can be used to
return various diagnostics information through a function interface.

Examples

Example 1: Using a GET DIAGNOSTICS statement to retrieve row count

PROCEDURE increate_nh (SQLSTATE, :rows_affected INTEGER);
BEGIN ATOMIC

UPDATE salary_history
SET salary_amount = salary_amount * 1.05
WHERE salary_end IS NULL
AND employee_id IN (SELECT employee_id

FROM employees
WHERE state = ’NH’);

GET DIAGNOSTICS :rows_affected = ROW_COUNT;
END;

Example 2: Using RETURNED_SQLSTATE

SQL> DECLARE :Y CHAR(5);
SQL> BEGIN
cont> SET :Y = ’Hello’;
cont> GET DIAGNOSTICS EXCEPTION 1 :Y = RETURNED_SQLSTATE;
cont> END;
SQL> PRINT :Y;
Y
00000

SQL>

7–370 SQL Statements

GET DIAGNOSTICS Statement

Example 3: Using RETURNED_SQLCODE

SQL> DECLARE :X INTEGER;
SQL> BEGIN
cont> SET :X = 100;
cont> GET DIAGNOSTICS EXCEPTION 1 :X = RETURNED_SQLCODE;
cont> END;
SQL> PRINT :X;

X
0

Example 4: Returning the current connection name

SQL> CONNECT TO ’ATTACH FILENAME mf_personnel’ AS ’my_connection’;
SQL> DECLARE :conn_name VARCHAR(20);
SQL> BEGIN
cont> GET DIAGNOSTICS :conn_name = CONNECTION_NAME;
cont> END;
SQL> PRINT :conn_name;
CONN_NAME
my_connection

Example 5: Using the TRANSACTION_TIMESTAMP and TRANSACTION_
SEQUENCE options

SQL> set transaction read write;
SQL> show transaction
Transaction information:

Statement constraint evaluation is off
On the default alias
Transaction characteristics:

Read Write
Transaction information returned by base system:
a read-write transaction is in progress
- updates have not been performed
- transaction sequence number (TSN) is 0:256
- snapshot space for TSNs less than 0:256 can be reclaimed
- recovery unit journal filename is USER2:[RDM$RUJ]SCRATCH$00018679B3AD.RUJ;1
- session ID number is 8

SQL>
SQL> declare :x date vms;
SQL>
SQL> begin get diagnostics :x = transaction_timestamp; end;
SQL> print :x;
X
27-MAY-1999 22:39:17.02

SQL>
SQL> declare :y bigint;
SQL>
SQL> begin get diagnostics :y = transaction_sequence; end;
SQL> print :y;

Y

SQL Statements 7–371

GET DIAGNOSTICS Statement

256
SQL>
SQL> select current_timestamp from rdb$database;

27-MAY-1999 22:39:18.20
1 row selected
SQL>
SQL> commit;

Example 6: Using the HOT_STANDBY_MODE and SERVER_IDENTIFICATION
options

SQL> set flags ’trace’;
SQL> declare :id, :hsmode char(31);
SQL> begin
cont> get diagnostics :id = SERVER_IDENTIFICATION,
cont> :hsmode = HOT_STANDBY_MODE;
cont> trace :id, :hsmode;
cont> end;
~Xt: Oracle Rdb V7.1 NONE

Example 7: Using the LIMIT_CPU_TIME, LIMIT_ROWS_FETCHED, and
LIMIT_ELAPSED_TIME options

SQL> set flags ’trace’;
SQL> set query execution limit elapsed time 10 minutes;
SQL> begin
cont> declare :row_limit integer;
cont> declare :elapsed_limit integer;
cont> declare :cpu_limit integer;
cont> get diagnostics
cont> :cpu_limit = LIMIT_CPU_TIME,
cont> :row_limit = LIMIT_ROWS_FETCHED,
cont> :elapsed_limit = LIMIT_ELAPSED_TIME;
cont> trace ’LIMIT_ROWS_FETCHED: ’, :row_limit;
cont> trace ’LIMIT_CPU_TIME: ’, :cpu_limit;
cont> trace ’LIMIT_ELAPSED_TIME: ’, :elapsed_limit;
cont> end;
~Xt: LIMIT_ROWS_FETCHED: 0
~Xt: LIMIT_CPU_TIME: 0
~Xt: LIMIT_ELAPSED_TIME: 600
SQL>

Example 8: Using the TRACE_ENABLED keyword in a compound statement

7–372 SQL Statements

GET DIAGNOSTICS Statement

SQL> declare :x integer;
SQL> begin
cont> get diagnostics :x = TRACE_ENABLED;
cont> end;
SQL> print :x;

X
0

SQL> set flags ’trace’;
SQL> begin
cont> get diagnostics :x = TRACE_ENABLED;
cont> end;
SQL> print :x;

X
1

SQL Statements 7–373

GET ENVIRONMENT Statement

GET ENVIRONMENT Statement

Loads values defined by OpenVMS DCL symbols or logical names and SQL
session values into locally declared SQL variables.

Environment

You can use the GET ENVIRONMENT statement in interactive SQL only.

Format

GET ENVIRONMENT
(getenv-options)

: <variable> = identifier
,

getenv-options =

SESSION
TRACE

,

Arguments

SESSION
Directs GET ENVIRONMENT to return selected interactive SQL session
options. These options can be used to save and restore session state during the
execution of an SQL script.

TRACE
Displays the translated string value prior to being converted to the data type of
the variable. This can assist in diagnosing data conversion errors. The display
will indicate if the result was derived from a local symbol, global symbol,
logical name, or session value. For example:

SQL> GET ENVIRONMENT (TRACE)
cont> :xx indicator :xx_ind = XX;
01: XX = XX "--" (Local)
%RDB-E-ARITH_EXCEPT, truncation of a numeric value at runtime
-COSI-F-INPCONERR, input conversion error

7–374 SQL Statements

GET ENVIRONMENT Statement

Usage Notes

The following table shows the associated SET command which will accept
the output from GET ENVIRONMENT (SESSION). These commands allow
application to re-establish the environment after using SET commands within
a SQL script. Refer to the listed SET command for details of the string value
that will be returned from GET ENVIRONMENT.

Table 7–4 GET ENVIRONMENT session keywords

SESSION Keyword Associated SET command

DEFAULT_CATALOG SET CATALOG
CONSTRAINT_MODE SET DEFAULT CONSTRAINT MODE
CHARACTER_LENGTH SET CHARACTER LENGTH
COMPOUND_TRANSACTIONS SET COMPOUND TRANSACTION
DATE_FORMAT SET DEFAULT DATE FORMAT
DEFAULT_CONSTRAINT_MODE SET DEFAULT CONSTRAINT MODE
DIALECT SET DIALECT
HOLD_CURSORS SET HOLD CURSOR
NULL_STRING SET DISPLAY NULL STRING
QUIET_COMMIT SET QUIET COMMIT
QUOTING_RULES SET QUOTING RULES
KEYWORD_RULES SET KEYWORD RULES
DEFAULT_SCHEMA SET SCHEMA
DEFAULT_ALIAS SET ALIAS
SQLCODE Returned condition set by an SQL

statement
SQLSTATE Returned condition set by an SQL

statement

• If no NULL indicator is specified and the DCL symbol or logical name is
not found, an error will be reported. For example:

SQL> GET ENVIRONMENT
cont> :x = THE_TIME;
%SQL-F-UNDEFVAR, Variable THE_TIME is not defined
-LIB-F-NOSUCHSYM, no such symbol

SQL Statements 7–375

GET ENVIRONMENT Statement

• If the specified symbol is not defined, and an INDICATOR is specified
for the variable, the indicator will be set, but the variable will remain
unchanged. For example:

SQL> GET ENVIRONMENT :xx indicator :xx_ind = XX;
SQL>
SQL> PRINT :xx, :xx_ind;

XX XX_IND
0 1

If the TRACE option is used, the value will be displayed as NULL for the
symbol.

• The specified variable must be a local variable defined using the DECLARE
statement. For example:

SQL> DECLARE :xx, :xx_ind INTEGER;

The identifier is assumed to be a DCL symbol or logical name. It is first
translated as a symbol name and, if that fails, it is translated as a logical
name. If translation is successful, the string result is converted to the data
type of the variable. The name must conform to the rules defined by the
OpenVMS DCL naming conventions.

Multiple assignments can be specified, separated by commas.

Examples

Example 1: Using the GET ENVIRONMENT Statement

$ emp_id = "00164"
$ SQL$
SQL> ATTACH ’FILENAME MF_PERSONNEL’;
SQL> DECLARE :e CHAR(5);
SQL> GET ENVIRONMENT :e = emp_id;
SQL> SELECT last_name, first_name FROM employees WHERE employee_id = :e;
LAST_NAME FIRST_NAME
Toliver Alvin
1 row selected
SQL> ROLLBACK;

Example 2: Using the SESSION option

This example uses the SESSION option to save the DIALECT and restore it
upon completion of the SQL script.

7–376 SQL Statements

GET ENVIRONMENT Statement

SQL> declare :Rdb_DIALECT char(10);
SQL> get environment (session) :Rdb_DIALECT = DIALECT;
SQL> set dialect ’SQL92’;
SQL> -- get SQL92 semantics for UNIQUE constrain
SQL> create table T (a integer unique);
SQL> set dialect :Rdb_DIALECT;
SQL> undeclare :Rdb_DIALECT;

SQL Statements 7–377

GRANT Statements

GRANT Statements

Adds privileges or roles to object access control.

Usage Notes

The following notes apply to all GRANT statements.

• You cannot execute the GRANT statement when any of the LIST,
DEFAULT or RDB$SYSTEM storage areas are set to read-only. You must
first set these storage areas to read/write. Note that in some databases
RDB$SYSTEM will also be the default and list storage area.

• Users with the OpenVMS SYSPRV privilege implicitly receive the same
privileges as users with the DBADM database privilege.

Users with the OpenVMS OPER privilege implicitly receive the SELECT,
INSERT, UPDATE and DELETE database privileges.

Users with the OpenVMS SECURITY privilege implicitly receive the same
privileges as users with the SECURITY database privilege.

Users with the OpenVMS BYPASS privilege implicitly receive all privileges
except the Oracle Rdb DBADM and SECURITY database privileges and
the DBCTRL database and table privileges.

Users with the OpenVMS READALL privilege implicitly receive Oracle
Rdb SELECT and SHOW database and table privileges.

• For the SELECT, INSERT, UPDATE and DELETE data manipulation
privileges, SQL checks the access privilege set for the database and for the
individual table before allowing access to a specific table. For example,
if your SELECT privilege for a database that contains the EMPLOYEES
table is revoked, you will not be able to read rows from the table even
though you may have SELECT privilege to the EMPLOYEES table itself.

• Additions and changes to ACLs do not take effect until you attach to the
database again, even though those changes are displayed by the SHOW
PROTECTION and SHOW PRIVILEGES statements. Additions and
changes to ACLs do not take effect for other users until they attach to the
database again.

7–378 SQL Statements

GRANT Statements

• You must execute the GRANT statement in a read/write transaction. If
you issue this statement when there is no active transaction, SQL starts
a transaction with characteristics specified in the most recent DECLARE
TRANSACTION statement.

SQL Statements 7–379

GRANT Statement

GRANT Statement

Creates or adds privileges to an entry to the Oracle Rdb access privilege set,
called the access control list (ACL), for a database, table, view, column,
module, or external routine. Each entry in an ACL consists of an identifier and
a list of privileges assigned to the identifier:

• Each identifier specifies a user or a set of users.

• The list of privileges specifies which operations that user or user group can
perform on the database, table, view, column, module, or external routine.

When a user tries to perform an operation on a database, SQL reads the
associated ACL from top to bottom, comparing the identifier of the user with
each entry. As soon as SQL finds the first match, it grants the rights listed in
that entry and stops the search. All identifiers that do not match a previous
entry ‘‘fall through’’ to the entry [*,*] (equivalent to the SQL keyword PUBLIC).
If no entry has the identifier [*,*], then users with unmatched identifiers are
denied all access to the database, table, view, column, module, or external
routine.

For this reason, both the entries and their order in the list are important.

Under the Oracle Rdb default protection scheme, when you create a new
database, table, view, module, or external routine, you get all access rights
to that object, including DBCTRL. All other users of that object are given
no access rights to it. For any tables or views created under the Oracle Rdb
default protection scheme, the creator of the table or view receives all the
access rights to the object, including DBCTRL, and all other users receive no
access rights to the object.

The DBCTRL access right enables an object’s creator to grant DBCTRL to
other users. See the Usage Notes for information on how you can tailor the
default protection for any new tables that you create within a database.

To remove privileges from or entirely delete an entry to the Oracle Rdb access
privilege set for a database, table, column, module, or external routine, see the
REVOKE Statement.

7–380 SQL Statements

GRANT Statement

Environment

You can use the GRANT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

GRANT

db-privs ON DATABASE ALIAS <alias>
,
*

table-privs ON <table-name>
TABLE <view-name>

,
*

column-privs ON COLUMN <column-name>
,

module-privs ON MODULE <module-name>
,
*

ext-routine-privs ON FUNCTION <ext-routine-name>
ON PROCEDURE ,

*
sequence-privs ON SEQUENCE <sequence-name>

,
*

grant-to

grant-to =

TO identifier
PUBLIC AFTER identifier

PUBLIC
POSITION <n>

,

SQL Statements 7–381

GRANT Statement

db-privs =

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
DBADM
SHOW
REFERENCES
UPDATE
SECURITY
DISTRIBTRAN

,
ALL PRIVILEGES

table-privs=

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
SHOW
REFERENCES

(<column-name>)
,

UPDATE
(<column-name>)

,
,

ALL PRIVILEGES

column-privs=

UPDATE
REFERENCES

,
ALL PRIVILEGES

7–382 SQL Statements

GRANT Statement

module-privs =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

ext-routine-privs =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

sequence-privs =
ALL

PRIVILEGES
ALTER
DROP
SELECT

,

identifier =

user-identifier
general-identifier
system-identifier
role-name

+

Arguments

AFTER identifier
AFTER PUBLIC
POSITION n
Specifies the position of the entry within the ACL to be modified or created.

SQL Statements 7–383

GRANT Statement

With the AFTER or POSITION argument, you can specify the position in the
list after which SQL searches for an ACL entry with an identifier that matches
the one specified in the TO clause of the GRANT statement.

Following are specifics about the AFTER and POSITION arguments:

• In the AFTER argument, the identifier specifies the entry in the ACL
after which SQL begins its search for the entry to be modified or created.
If none of the entries in the ACL has an identifier that matches the
identifier specified in the AFTER argument, SQL generates an error and
the statement fails.

Starting after the entry specified by the identifier in the AFTER argument,
SQL searches the entries in the ACL. If an entry has an identifier that
matches the identifier specified by the TO clause of the GRANT statement,
SQL creates a new entry that contains only those privileges specified in the
GRANT statement. SQL retains only the entry appearing first in the ACL,
and deletes any entries with duplicate identifiers.

If none of the entries has an identifier that matches the identifier specified
by the TO clause of the GRANT statement, SQL creates a new ACL entry
immediately following the identifier specified in the AFTER argument.

Specifying PUBLIC is equivalent to a wildcard specification of all user
identifiers.

• In the POSITION argument, the integer specifies the earliest relative
position in the ACL of the entry to be modified or created.

Starting with the position specified by the POSITION argument, SQL
searches the entries in the ACL. If an entry has an identifier that matches
the identifier specified by the TO clause of the GRANT statement, SQL
creates a new entry that contains only those privileges specified in the
GRANT statement. SQL retains only the entry appearing first in the ACL,
and deletes any entries with duplicate identifiers.

If none of the entries has an identifier that matches the identifier specified
by the TO clause of the GRANT statement, SQL creates a new entry for
that identifier at the relative position specified in the POSITION argument
(even if an entry before the position at which SQL began its search had an
identifier that matched).

If you specify a position higher than the number of entries in the list, SQL
places the entry last in the ACL. For example, if you specify position 12
and there are only 10 entries in the list, the new entry is placed in position
11 and given that position number.

7–384 SQL Statements

GRANT Statement

• If you omit the AFTER or POSITION argument, SQL searches the entire
ACL for an identifier list that matches the one specified in the TO clause
of the GRANT statement. If it finds a match, it modifies the ACL entry by
adding those privileges specified in the privilege list that are not already
present. If there is no match, SQL creates a new entry at the beginning of
the ACL.

ALL PRIVILEGES
Specifies that SQL should grant all privileges in the ACL entry.

general-identifier
Identifies groups of users on the system and are defined by the OpenVMS
system manager in the system rights database. The following are possible
general identifiers:

DATAENTRY
SECRETARIES
MANAGERS

ON SEQUENCE sequence-name
Specifies whether the GRANT statement applies to ACLs for the named
sequence or sequences.

ON DATABASE ALIAS *
ON TABLE *
ON MODULE *
ON FUNCTION *
ON PROCEDURE *
ON SEQUENCE *
Specifies whether the GRANT statement applies to ACLs for all objects of the
specified type. If privileges are denied for the operation on some objects, then
the GRANT is aborted.

db-privs
table-privs
column-privs
module-privs
ext-routine-privs
sequence-privs
Specifies the list of privileges you want to add to an existing ACL entry or
create in a new one. The operations permitted by a given privilege keyword
differ, depending on whether you granted it for a database, table, column,
module, external routine, or sequence.

SQL Statements 7–385

GRANT Statement

Table 7–5 lists the privilege keywords and their meanings for databases, tables,
columns, modules, external routines, and sequences.

Table 7–5 SQL Privileges for Databases, Tables, Columns, Modules, External
Routines and Sequences

Privilege

For the Access Privilege Set
of a Database, Grants the
Privilege to:

For the Access Privilege Set of
a Table, Column, View, Module,
External Routine or Sequence,
Grants the Privilege to:

ALTER Change database parame-
ters or change a domain.

Alter the table, index,
or storage map. Alter a
module, external routine, or
sequence. Does not apply to
column privileges.

CREATE Create a catalog, schema,
table, domain, collating
sequence, storage area,
external routine, module, or
sequence.

Create a view, trigger, index,
sequence, storage map, or
outline that uses a table.
Does not apply to column
privileges.

DBADM Perform any data
manipulation or data
definition operation on
any named object. Override
many database privileges.

Not applicable, but
syntactically allowed.

DBCTRL Create, delete, or modify an
access privilege set entry for
the database.

Grant or revoke an access
privilege set entry for the
table, sequence, module, or
external routine. Does not
apply to column privileges.

DELETE Delete data from a table
defined in the database.

Delete data from a table.
Does not apply to column
privileges.

DISTRIBTRAN Run a distributed (two-
phase commit protocol)
transaction against the
database.

Not applicable.

(continued on next page)

7–386 SQL Statements

GRANT Statement

Table 7–5 (Cont.) SQL Privileges for Databases, Tables, Columns, Modules,
External Routines and Sequences

Privilege

For the Access Privilege Set
of a Database, Grants the
Privilege to:

For the Access Privilege Set of
a Table, Column, View, Module,
External Routine or Sequence,
Grants the Privilege to:

DROP Delete a catalog, schema,
domain, collating sequence,
or path name.

Delete the table, index or
outline that uses a table.
Delete a view, column,
constraint, trigger, sequence,
or storage map. Delete
a view, module, external
routine, or sequence.

EXECUTE Not applicable. Allow the execution of a
module or external routine.
Does not apply to column,
sequence, or table privileges.

INSERT Store data in a table defined
in the database.

Store data in the table.
Does not apply to column or
sequence privileges.

OPERATOR Not applicable. Syntactically
allowed, but not imple-
mented. Reserved for future
versions.

Not applicable. Syntactically
allowed, but not imple-
mented. Reserved for future
versions.

REFERENCES Not applicable, but
syntactically allowed.

Define constraints that refer
to data in a table or column.
Define tables using the LIKE
clause. Define synonyms
that reference those objects.

SECURITY Override many database
privileges.

Not applicable.

(continued on next page)

SQL Statements 7–387

GRANT Statement

Table 7–5 (Cont.) SQL Privileges for Databases, Tables, Columns, Modules,
External Routines and Sequences

Privilege

For the Access Privilege Set
of a Database, Grants the
Privilege to:

For the Access Privilege Set of
a Table, Column, View, Module,
External Routine or Sequence,
Grants the Privilege to:

SELECT Attach to a database and
read data from a table
defined in the database.

Read data from a table or
reference the NEXTVAL and
CURRVAL pseudo columns
in a sequence. Does not
apply to column privileges.

SHOW Not applicable. Syntactically
allowed, but not imple-
mented. Reserved for future
versions.

Not applicable. Syntactically
allowed, but not imple-
mented. Reserved for future
versions.

UPDATE Update data in a table
defined in the database.

Update data in a table or
column.

Privileges on a column are determined by the privileges defined for the table
combined with those specified for the specific column ACL.

The SELECT privilege is a prerequisite for all other data manipulation
privileges, except UPDATE and REFERENCES. If you do not grant the
SELECT privilege, you effectively deny SELECT, INSERT, and DELETE
privileges, even if they are specified in the privilege list. It is not possible for
you to deny yourself the SELECT privilege.

For the SELECT, INSERT, UPDATE, and DELETE data manipulation
privileges, SQL checks the ACL for the database and for the individual
table before allowing access to a specific table. For example, if you are granted
SELECT privilege for the EMPLOYEES table, you are not able to select rows
from the table unless you also have SELECT privilege for the database that
contains the EMPLOYEES table.

A user with the UPDATE privilege on the table automatically receives the
UPDATE privilege on all columns in the table. To update a column, you must
have the UPDATE privilege either for the column or the table. However, you
can restrict the UPDATE privileges by defining them only on specific columns
you want users to be able to update, and by removing the UPDATE privilege
from the table entry.

You can modify the data in a column only with the UPDATE privilege on the
column and the SELECT privilege on the database.

7–388 SQL Statements

GRANT Statement

The REFERENCES privilege lets you define a constraint for a database with
ANSI/ISO-style privileges. For a database with ACL-style privileges, you need
the CREATE privilege to define a constraint.

You cannot deny yourself the DBCTRL privilege for a database or table that
you create. This restriction may cause GRANT statements to fail when you
might expect them to work.

For instance, suppose an ACL has no entry for PUBLIC. The following GRANT
statement fails because it creates an entry for PUBLIC at the top of the ACL
that does not include the DBCTRL privilege, effectively denying DBCTRL to
all other entries on the list, including the owner:

SQL> GRANT SELECT, INSERT ON EMPLOYEES TO PUBLIC;
%RDB-E-NO_PRIV, privilege denied by database facility

role-name
The name of a role, such as one created with the CREATE ROLE statement
or one that can be created automatically. (If the role name exists as an
operating system group or rights identifier, then Oracle Rdb will create the role
automatically when you issue the GRANT statement. A role that is created
automatically always has the attribute of IDENTIFIED EXTERNALLY.)

TO identifier
TO PUBLIC
Specifies the identifiers for the new or modified ACL entry. Specifying PUBLIC
is equivalent to a wildcard specification of all user identifiers.

You can specify four types of identifiers:

• User identifiers

• General identifiers

• System-defined identifiers

• Role names

You can specify more than one identifier by combining them with plus signs
(+). Such identifiers are called multiple identifiers. They identify only those
users who are common to all the groups defined by the individual identifiers.
Users who do not match all the identifiers are not controlled by that entry.

For instance, the multiple identifier SECRETARIES + INTERACTIVE
specifies only members of the group defined by the general identifier
SECRETARIES that are interactive processes. It does not identify members of
the SECRETARIES group that are not interactive processes.

SQL Statements 7–389

GRANT Statement

The following arguments briefly describe the three types of identifiers. For
more information about identifiers, see your operating system documentation.

system-identifier
System-defined identifiers are automatically defined by the system when
the rights database is created at system installation time. System-defined
identifiers are assigned depending on the type of login you execute. The
following are all valid system-defined identifiers:

BATCH
NETWORK
INTERACTIVE
LOCAL
DIALUP
REMOTE

user-identifier
Identifies each user on the system.

The user identifier consists of the standard OpenVMS user identification code
(UIC), a group name and a member name (user name). The group name is
optional. The user identifier can be in either numeric or alphanumeric format.
The following are all valid user identifiers that could identify the same user:

K_JONES
[SYSTEM3, K_JONES]
[341,311]

You can use the asterisk (*) wildcard character as part of a user identifier. For
example, if you want to specify all users in a group, you can enter [system3, *]
as the identifier.

When Oracle Rdb creates a database, it automatically creates an ACL entry
with the identifier [*,*] (also known as PUBLIC), which specifies the privileges
given to all users on the system.

You cannot use more than one user identifier in a multiple identifier.

Usage Notes

• Additions and changes to ACLs do not take effect until you attach to the
database again, even though those changes are displayed by the SHOW
PROTECTION and SHOW PRIVILEGES statements. Additions and
changes to ACLs do not take effect for other users until they attach to the
database again.

7–390 SQL Statements

GRANT Statement

• You must attach to all databases that you refer to in a GRANT statement.
If you use the default alias, you must use the alias RDB$DBHANDLE to
work with database ACLs.

• You can use the GRANT statement to modify existing ACL entries or create
new ones.

To modify an existing ACL entry, specify the same identifier in the TO
clause as is in the existing entry.

To create a new ACL entry, specify an identifier that is not already part of
an entry.

• When you create new tables and views, they have a PUBLIC access of
NONE by default.

• To override PUBLIC access for newly created tables, define an identifier
with the name DEFAULT in the system privileges database. The access
privileges given to this identifier on your database are then assigned to
PUBLIC for any newly created tables and views.

You might want to assign the SELECT and UPDATE privileges to the
database with alias TEST1. For example:

SQL> ATTACH ’ALIAS TEST1 FILENAME personnel’;
SQL> SHOW PROTECTION ON DATABASE TEST1.
Protection on Alias TEST1

(IDENTIFIER=[dbs,smallwood],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+
CREATE+ALTER+DROP+DBCTRL+OPERATOR+DBADM+REFERENCES+SECURITY)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL> GRANT SELECT, UPDATE ON DATABASE ALIAS TEST1
cont> TO DEFAULT;

You must commit and disconnect the transaction to make the change in
protection occur.

SQL> COMMIT;
SQL> DISCONNECT DEFAULT;

The protection on existing tables in the database is not changed, but
any new tables that you define receive the protection specified by the
DEFAULT identifier. In this example, the owner (SMALLWOOD) receives
all the access privileges to the new table TABLE1, and all other users
receive the SELECT and UPDATE access privileges specified by the
DEFAULT identifier.

SQL Statements 7–391

GRANT Statement

SQL> ATTACH ’ALIAS TEST1 FILENAME personnel’;
SQL> SET TRANSACTION READ WRITE;
SQL> CREATE TABLE TEST1.TABLE1
cont> (LAST_NAME_DOM CHAR(5),
cont> YEAR_DOM SMALLINT);
SQL> SHOW PROTECTION ON TEST1.TABLE1;
Protection on Table TABLE1

(IDENTIFIER=[dbs,smallwood],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+
CREATE+ALTER+DROP+DBCTRL+DBADM+REFERENCES+SECURITY)

(IDENTIFIER=[*,*],ACCESS=SELECT+UPDATE)

The DEFAULT identifier is typically present on an OpenVMS system
because the DEFAULT account is always present and cannot be removed.
However, it is possible to remove the DEFAULT identifier associated with
that account. If the DEFAULT identifier was removed from your system,
Oracle Rdb returns an error message.

SQL> GRANT INSERT ON DATABASE ALIAS TEST1 to DEFAULT;
%SYSTEM-F-NOSUCHID, unknown rights identifier

• The DBADM and SECURITY privileges are the two Oracle Rdb role-
oriented privileges. Users with these privileges can override ACLs for some
objects to perform certain system-level operations. Oracle Rdb role-oriented
privileges are limited to the database in which they are granted.

The two role-oriented database privileges cannot override each other. (For
example, DBADM privilege does not override SECURITY privilege.)

A user having one of these role-oriented privileges may be implicitly
granted certain other Oracle Rdb privileges. An implicit privilege is a
privilege granted as a result of an override; the user operates as if the user
actually holds the privilege, but the privilege is not explicitly granted and
stored in the ACL for the object.

Table 7–6 shows which Oracle Rdb privileges can be overridden by the
Oracle Rdb DBADM and SECURITY database privileges and the OpenVMS
SYSPRV, BYPASS, and READALL privileges. For each table entry, the
question is whether users with the Oracle Rdb or OpenVMS privilege
specified in the columns at the top of the table implicitly receive the access
rights associated with the Oracle Rdb privilege in the first column of the
table.

For example, the Y for the first entry in the table shows that the Oracle
Rdb DBADM privilege overrides the Oracle Rdb ALTER privilege, and the
N in the second entry shows that the Oracle Rdb SECURITY privilege does
not override the Oracle Rdb ALTER privilege. An N/A entry in the table
indicates that a privilege cannot override itself.

7–392 SQL Statements

GRANT Statement

Table 7–6 Privilege Override Capability

Database Privilege OpenVMS Privilege
Privilege DBADM SECURITY SYSPRV BYPASS READALL

ALTER Y N Y Y N
CREATE Y N Y Y N
DBADM N/A N Y N N
DBCTRL Y Y Y N N
DELETE (database) Y Y Y Y N
DELETE (table) Y N Y Y N

DISTRIBTRAN Y N Y Y N
DROP Y N Y Y N
EXECUTE Y Y N N N
INSERT (database) Y Y Y Y N
INSERT (table) Y N Y Y N
REFERENCES Y N Y Y N
SECURITY N N/A N N N

SELECT (database) Y Y Y Y Y
SELECT (table) Y N Y Y Y
SHOW Y N Y Y Y
UPDATE (database) Y Y Y Y N
UPDATE (table) Y N Y Y N

• Users with the DBADM database privilege can perform any data definition
or data manipulation operation on any named object, including the
database, regardless of the ACL for the object. The DBADM privilege
is the most powerful privilege in Oracle Rdb because it can override
most privilege checks performed by Oracle Rdb. Users with the DBADM
database privilege implicitly receive all privileges for all objects, except the
SECURITY database privilege.

• Users with the SECURITY database privilege implicitly receive the Oracle
Rdb SELECT, INSERT, UPDATE, and DELETE database privileges and
the Oracle Rdb DBCTRL database and table privileges.

• You must execute the GRANT statement in a read/write transaction. If you
issue this statement when there is no active transaction, Oracle Rdb starts
a read/write transaction implicitly.

SQL Statements 7–393

GRANT Statement

• You cannot execute the GRANT statement when the RDB$SYSTEM storage
area is set to read-only. You must first set RDB$SYSTEM to read/write.
See the Oracle Rdb Guide to Database Maintenance for more information
on the RDB$SYSTEM storage area.

• You can deny users the right to create databases.

You can use the RDBVMS$CREATE_DB logical name along with the
RDBVMS$CREATE_DB rights identifier to deny users the right to
create databases. See the Oracle Rdb Guide to Database Design and
Definition for more information about the RDBVMS$CREATE_DB
logical name.

Caution

When you use the RDBVMS$CREATE_DB logical name, other installed
third-party products will not be able to use Oracle Rdb to create
Oracle Rdb databases. Therefore, you must deassign this logical
name whenever users of such products need to create an Oracle Rdb
database.

• You cannot GRANT privileges on procedures or functions created by using
CREATE MODULE. Use GRANT on the module instead.

• When you grant privileges to a user identifier, if security checking is set to
internal, then SQL automatically creates that user as a database user.

In effect, it is as though you issued a CREATE USER statement for the
system user. See Example 7 in the Examples section.

• Rdb only uses the privileges associated with the temporary table when
performing security validation during data manipulation operations. For
example, if a user can attach to the database (requires SELECT privilege
only) and is granted INSERT privilege to a global or local temporary
table, then the user (or an invokers rights stored routine) can update the
temporary table.

For more information on protection for an Oracle Rdb database, see the
chapter on defining privileges in the Oracle Rdb Guide to Database Design and
Definition.

7–394 SQL Statements

GRANT Statement

Examples

Example 1: Redeclaring a database to make ACL changes take effect

This example illustrates that GRANT and REVOKE statements do not take
effect until you attach to the database again.

SQL> -- Display the ACL for the EMPLOYEES table:
SQL> SHOW PROTECTION ON TABLE EMPLOYEES;
Protection on Table EMPLOYEES

(IDENTIFIER=[sql,warring],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+DBADM+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SELECT+INSERT+UPDATE+DELETE+ALTER+DROP)
SQL>
SQL> -- User warring, the owner of the database, denies
SQL> -- herself INSERT access to the EMPLOYEES table:
SQL> REVOKE INSERT ON TABLE EMPLOYEES FROM warring;
SQL> COMMIT;
SQL>
SQL> -- The SHOW PROTECTION statement displays the change
SQL> -- (INSERT is no longer part of the ACL entry
SQL> -- for warring):
SQL> SHOW PROTECTION ON TABLE EMPLOYEES;
Protection on Table EMPLOYEES

(IDENTIFIER=[sql,warring],ACCESS=SELECT+UPDATE+DELETE+SHOW+CREATE+ALTER+
DROP+DBCTRL+DBADM+REFERENCES)

(IDENTIFIER=[*,*],ACCESS=SELECT+INSERT+UPDATE+DELETE+ALTER+DROP)
SQL>
SQL> -- But the change is not yet effective.
SQL> -- User warring can still store rows in the EMPLOYEES table:
SQL> INSERT INTO EMPLOYEES (EMPLOYEE_ID) VALUES (’99999’);
1 row inserted
SQL> SELECT EMPLOYEE_ID
cont> FROM EMPLOYEES
cont> WHERE EMPLOYEE_ID = ’99999’;
EMPLOYEE_ID
99999
1 row selected
SQL> ROLLBACK;
SQL>
SQL> -- To make the ACL change take effect, issue another ATTACH statement
SQL> -- to override the current declaration:
SQL> ATTACH ’FILENAME personnel’;
This database context has already been declared.
Would you like to override this declaration (No)? Y
SQL>

SQL Statements 7–395

GRANT Statement

SQL> -- Now warring cannot insert new rows into the EMPLOYEES table:
SQL> INSERT INTO EMPLOYEES (EMPLOYEE_ID) VALUES ("99999");
%RDB-E-NO_PRIV, privilege denied by database facility
SQL>
SQL> -- A GRANT statement gives all privileges back to warring:
SQL> GRANT ALL ON TABLE EMPLOYEES TO warring;
SQL> COMMIT;

Example 2: Creating an ACL with an SQL command file

The following SQL command file creates an ACL for the default database by
specifying the default alias RDB$DBHANDLE. It uses two general guidelines
for ordering ACL entries:

• The less restrictive the user identifier, the lower on the list that ACL
should go.

• The more powerful the privilege, the higher on the list that ACL should go.

Because SQL reads the list from top to bottom, you should place entries with
more specific identifiers earlier, and those with more general ones later. For
example, if you place the entry with the most general user identifier, [*,*], first
in the list, all users match it, and Oracle Rdb grants or denies all the access
rights specified there to all users.

Similarly, if you place the general entry [admin,*] before the specific entry
[admin,ford], SQL matches user [admin,ford] with [admin,*] and denies the
access rights INSERT, UPDATE, and DELETE, which user [admin,ford] needs.

-- Database Administrator -- needs all privileges.
--

GRANT ALL
ON DATABASE ALIAS RDB$DBHANDLE
TO [group2,adams]
POSITION 1;

-- Assistant -- needs to be able to use data definition statements.
--

GRANT SELECT,CREATE,ALTER,DROP
ON DATABASE ALIAS RDB$DBHANDLE
TO [group2,clark]
POSITION 2;

-- Operator -- needs to be able to perform database maintenance tasks.
--

GRANT SELECT, ALTER, DBADM
ON DATABASE ALIAS RDB$DBHANDLE
TO [group2,lawrence]
POSITION 3;

7–396 SQL Statements

GRANT Statement

-- Security Administrator -- needs to specify and show security events
-- audited for a database and review the audit trail.
--

GRANT SECURITY
ON DATABASE ALIAS RDB$DBHANDLE
TO [group2,davis]
POSITION 4;

-- Manager -- needs to be able to use all data manipulation statements.
--

GRANT SELECT,INSERT,UPDATE,DELETE
ON DATABASE ALIAS RDB$DBHANDLE
TO [admin,smith]
POSITION 5;

-- Secretary -- needs to be able to read, write, and delete data.
-- No access to data definition or maintenance.
--

GRANT SELECT,INSERT,UPDATE,DELETE
ON DATABASE ALIAS RDB$DBHANDLE
TO [admin,ford]
POSITION 6;

-- Programmers -- need to perform data definition and data manipulation
-- on some tables and constraints to test application programs.
--

GRANT SELECT,INSERT,UPDATE,DELETE,CREATE,ALTER,DROP,REFERENCES
ON DATABASE ALIAS RDB$DBHANDLE
TO PROGRAMMERS
POSITION 7;

-- Clerks -- need to be able only to read data. No access to modify, erase,
-- store, data definition, or maintenance statements.
--

GRANT SELECT
ON DATABASE ALIAS RDB$DBHANDLE
TO [admin,*]
POSITION 8;

-- Deny access to all users not explicitly granted access to the database.
--

REVOKE ALL
ON DATABASE ALIAS RDB$DBHANDLE
FROM PUBLIC
POSITION 9;

Example 3: Granting column access and denying table access

You need the REFERENCES privilege to define constraints that affect a
particular column. You need the UPDATE privilege to update data in a
column. A user with the UPDATE privilege for a table automatically receives
the UPDATE privilege for all columns in that table. To update a column,
you must have the UPDATE privilege either for the column or for the table.

SQL Statements 7–397

GRANT Statement

However, a database administrator can restrict UPDATE privileges by defining
them only for columns users should be able to update, and then removing the
UPDATE privilege from the table entry. Because current salary is sensitive
information, you might want to restrict the ability to update this amount.

The following example prevents user [admin,ford] from updating any column in
the SALARY_HISTORY table except SALARY_START and SALARY_END. For
instance, user [admin,ford] cannot update the SALARY_AMOUNT column.

SQL> GRANT UPDATE ON COLUMN SALARY_HISTORY.SALARY_START
cont> TO [admin,ford];
SQL> GRANT UPDATE ON COLUMN SALARY_HISTORY.SALARY_END
cont> TO [admin,ford];
SQL> --
SQL> REVOKE UPDATE ON TABLE SALARY_HISTORY FROM [admin,ford];
SQL> --
SQL> COMMIT;
SQL> --
SQL> SHOW PROTECTION ON TABLE SALARY_HISTORY;
Protection on Table SALARY_HISTORY

(IDENTIFIER=[grp2,jones],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+
ALTER+DROP+DBCTRL+DBADM+REFERENCES+SECURITY+DISTRIBTRAN)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL> --
SQL> SHOW PROTECTION ON COLUMN SALARY_HISTORY.SALARY_START;
Protection on Column SALARY_HISTORY.SALARY_START

(IDENTIFIER=[admin,ford],ACCESS=UPDATE)
(IDENTIFIER=[*,*],ACCESS=NONE)

Example 4: Granting SELECT Privilege to All Users for a Sequence

SQL> SHOW PROTECTION ON SEQUENCE EMPID
Protection on Sequence EMPID

(IDENTIFIER=[RDB,STRAUTS],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=NONE)

SQL> GRANT SELECT ON SEQUENCE EMPID TO PUBLIC;
SQL> SHOW PROTECTION ON SEQUENCE EMPID;
Protection on Sequence EMPID

(IDENTIFIER=[RDB,STRAUTS],ACCESS=SELECT+SHOW+ALTER+DROP+DBCTRL)
(IDENTIFIER=[*,*],ACCESS=SELECT)

Example 5: Granting INSERT ON TABLE Privilege to a Role

7–398 SQL Statements

GRANT Statement

SQL> SHOW PROTECTION ON TABLE JOBS
Protection on Table JOBS

(IDENTIFIER=[250,254],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+
DROP+DBCTRL+DBADM+REFERENCES)

(IDENTIFIER=PUBLIC,ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+DROP
+DBADM+REFERENCES)

SQL> CREATE ROLE ADMINISTRATOR;
SQL> GRANT INSERT ON TABLE JOBS TO ADMINISTRATOR AFTER [250,254];
SQL> SHOW PROTECTION ON TABLE JOBS
Protection on Table JOBS

(IDENTIFIER=[250,254],ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+
DROP+DBCTRL+DBADM+REFERENCES)

(IDENTIFIER=ADMINISTRATOR,ACCESS=INSERT)
(IDENTIFIER=PUBLIC,ACCESS=SELECT+INSERT+UPDATE+DELETE+SHOW+CREATE+ALTER+DROP
+DBADM+REFERENCES)

Example 6: Allowing All Access to a User

SQL> -- Allow all access to user JAIN
SQL> GRANT SELECT ON DATABASE ALIAS * to jain;
SQL> GRANT SELECT ON TABLE * to jain;
SQL> GRANT EXECUTE ON MODULE * to jain;
SQL> GRANT EXECUTE ON PROCEDURE * to jain;
SQL> GRANT EXECUTE ON FUNCTION * to jain;

SQL Statements 7–399

GRANT Statement

Example 7: Automatically Creating a User While Granting Privileges

SQL> ATTACH ’FILENAME MF_PERSONNEL.RDB’;
SQL> SHOW USERS
Users in database with filename mf_personnel.rdb

tsmith
jstuart

SQL> GRANT ALL ON DATABASE ALIAS RDB$DBHANDLE TO CDAY;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-PRFCREATED, some users or roles were created
SQL> SHOW USERS
Users in database with filename mf_personnel.rdb

tsmith
jstuart
cday

7–400 SQL Statements

GRANT Statement: ANSI/ISO-Style

GRANT Statement: ANSI/ISO-Style

Creates or adds ANSI/ISO-style privileges to an entry of the Oracle Rdb access
privilege set for a database, table, view, column, module, sequence, or routine.
At database creation time, you specify whether the database protection
mechanism will be ANSI/ISO-style or ACL-style. For more information on
creating or changing the style of privileges associated with a database, see the
CREATE DATABASE Statement.

Each entry in an ANSI/ISO-style access privilege set consists of an identifier
and a list of privileges assigned to the identifier.

• Each identifier specifies a user or PUBLIC access.

• The set of privileges specifies what operations that user can perform on the
database object.

ANSI/ISO-style privileges:

• Grant access to the creator when an object is created. Because only the
creator is granted access to the newly created object, additional access
must be granted explicitly.

• Support only the PUBLIC identifier as a wildcard.

• Support only user identifiers that translate to an OpenVMS user
identification code (UIC), Rdb users, or roles.

For ANSI/ISO-style databases, a user’s privileges are a combination of all
privilege sets that apply to that user. The access privilege set is not order-
dependent. The user matches the entry in the access privilege set; receives
whatever privileges have been granted for the database object; and receives the
privileges defined for PUBLIC. A user without an entry in the access privilege
set receives only the privileges defined for PUBLIC, which always has an entry
in the access privilege set even if PUBLIC has no access to the database, table,
column, module, or external routine.

To remove privileges from or entirely delete an entry to the Oracle Rdb access
privilege set for a database object, see the REVOKE Statement: ANSI/ISO-
Style.

SQL Statements 7–401

GRANT Statement: ANSI/ISO-Style

Environment

You can use the GRANT statement:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

GRANT

db-privs-ansi ON DATABASE ALIAS <alias>
,

*
table-privs-ansi ON <table-name>

TABLE <view-name>
,
*

column-privs-ansi ON COLUMN <colunn-name>
,

module-privs-ansi ON MODULE <module-name>
,
*

ext-routine-privs-ansi ON FUNCTION <ext-routine-name>
ON PROCEDURE ,

*
sequence-privs-ansi ON SEQUENCE <sequence-name>

,
*

grant-ansi-to

grant-ansi-to =

TO identifier-ansi-style
PUBLIC WITH GRANT OPTION

,

7–402 SQL Statements

GRANT Statement: ANSI/ISO-Style

db-privs-ansi =

SELECT
INSERT
OPERATOR
DELETE
CREATE
ALTER
DROP
DBCTRL
DBADM
SHOW
REFERENCES
UPDATE
SECURITY
DISTRIBTRAN

,
ALL PRIVILEGES

table-privs-ansi =

SELECT
INSERT
DELETE
CREATE
ALTER
DROP
DBCTRL
SHOW
REFERENCES

(<column-name>)
,

UPDATE
(<column-name>)

,
,

ALL PRIVILEGES

column-privs-ansi =

UPDATE
REFERENCES

,
ALL PRIVILEGES

SQL Statements 7–403

GRANT Statement: ANSI/ISO-Style

module-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

ext-routine-privs-ansi =

ALTER
DBCTRL
DROP
EXECUTE
REFERENCES
SHOW

,
ALL PRIVILEGES

identifier-ansi-style =

uic-identifier
user-identifier
role-name

sequence-privs-ansi =

ALTER
DBCTRL
DROP
SELECT

,
ALL PRIVILEGES

Arguments

ALL PRIVILEGES
Specifies that SQL should grant all privileges to the specified users.

7–404 SQL Statements

GRANT Statement: ANSI/ISO-Style

ON DATABASE ALIAS alias
ON TABLE table-name
ON COLUMN column-name
ON MODULE module-name
ON FUNCTION routine-name
ON PROCEDURE routine-name
ON SEQUENCE sequence-name
Specifies whether the GRANT statement applies to ACLs for the named object.
You can specify a list of names for any form of the ON clause. You must qualify
a column name with at least the associated table name.

ON DATABASE ALIAS *
ON TABLE *
ON MODULE *
ON FUNCTION *
ON PROCEDURE *
ON SEQUENCE *
Specifies whether the GRANT statement applies to ACLs for all objects of the
specified type. If privileges are denied for the operation on some objects, then
the GRANT is aborted.

db-privs-ansi
table-privs-ansi
column-privs-ansi
module-privs-ansi
ext-routine-privs-ansi
sequence-privs-ansi
Specifies the set of privileges you want to add to an existing access privilege
set entry or create in a new one. The operations permitted by a given privilege
keyword differ, depending on whether you granted it for a database, table,
column, module, or external routine. Table 7–5 lists the privilege keywords
and their meanings for databases, tables, columns, modules, external routines
and sequences.

role-name
The name of a role, such as one created with the CREATE ROLE statement.
If the role name exists as an operating system group or rights identifier, then
Oracle Rdb will create the role automatically when you issue the GRANT
statement. A role that is created automatically always has the attribute of
IDENTIFIED EXTERNALLY.

SQL Statements 7–405

GRANT Statement: ANSI/ISO-Style

TO identifier-ansi-style
Specifies the identifiers for the new or modified access privilege set entry.
Specifying PUBLIC is equivalent to a wildcard specification of all user
identifiers.

In ANSI/ISO-style databases, you are allowed to specify only single-user user
identifiers; no general or system identifiers are allowed. Access privilege
set entries identify only those users who are common to all groups defined
by the individual identifiers. Users who do not match all identifiers are not
controlled by that entry. ANSI/ISO-style access privilege sets support only user
identifiers.

user-identifier
Specifies a user identifier that uniquely identifies each user on the system.

On OpenVMS, the user identifier consists of the standard OpenVMS user
identification code (UIC), a group name and a member name (user name).
The group name is optional. The user identifier can be in either numeric or
alphanumeric format. The following are all valid user identifiers that could
identify the same user:

K_JONES
[SYSTEM3, K_JONES]
[341,311]

When Oracle Rdb creates an ANSI/ISO-style database, the creator of the
database gets all privileges, and the PUBLIC entry gets no privileges.

In an ANSI/ISO-style database, you cannot use multiple user identifiers.

In ANSI/ISO-style user identifiers, the only wildcard allowed is in the public
identifier [*,*].

For more information about identifiers, see the OpenVMS operating system
documentation.

WITH GRANT OPTION
Allows the user who has been granted a privilege the option of granting that
privilege to other users.

The WITH GRANT OPTION clause specifies that the grantees in the TO
clause may grant the privileges in the privilege list to other users for as long
as they have the privileges. When the privilege is revoked from the grantee
who received the privileges with the WITH GRANT OPTION clause, the
privileges also are revoked from all the users who received the privileges from
that grantee (unless these users have received the privilege from yet another
user who still has the privilege).

7–406 SQL Statements

GRANT Statement: ANSI/ISO-Style

Usage Notes

• For information on how to set up an ANSI/ISO-style database protection
mechanism, see the CREATE DATABASE Statement.

• You can use the GRANT (ANSI/ISO-style) statement to modify existing
access privilege set entries or create new ones.

To modify an existing access privilege set entry, specify the same identifier
in the TO clause as in the existing entry.

To create a new access privilege set entry, specify an identifier that is not
already part of an entry.

• Users with the DBADM database privilege can perform any data definition
or data manipulation operation on any named object, including the
database, regardless of the ACL for the object. The DBADM privilege
is the most powerful privilege in Oracle Rdb because it can override
most privilege checks performed by Oracle Rdb. Users with the DBADM
database privilege implicitly receive all privileges for all objects, except the
SECURITY database privilege.

• You must execute the GRANT (ANSI/ISO-style) statement in a read/write
transaction. If you issue this statement when there is no active
transaction, Oracle Rdb starts a read/write transaction implicitly.

• Privileges on a column are determined by the privileges defined on the
table combined with those specified for the specific column access privilege
set.

• A user with UPDATE or REFERENCES privilege on the table
automatically receives the same privileges on all columns in the table.
With UPDATE and REFERENCES privileges, you must have the privilege
for either the column or the table to update a column. However, you can
restrict UPDATE and REFERENCES privileges by defining them only on
specific columns you want users to be able to update or define constraints
for, and thus remove the privilege from the table entry.

You can modify the data in a column only if you have the UPDATE
privilege for the column and the SELECT privilege for the database.

• You cannot GRANT privileges on procedures or functions created as part of
CREATE or ALTER MODULE.

• A user must have SELECT privileges on a sequence to use the NEXTVAL
and CURRVAL pseudo columns.

SQL Statements 7–407

GRANT Statement: ANSI/ISO-Style

• If SECURITY CHECKING IS INTERNAL, Rdb will implicitly create a
user for any user-identifier or a role for a role-name not currently in the
database. A warning will be reported upon the successful execution of the
GRANT Statement.

SQL> grant select on database alias rdb$dbhandle to smith,app_user;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-PRFCREATED, some users or roles were created

If the user does not exist as a username or the role does not exist as a right
identifier, then an error will result.

SQL> grant select on database alias rdb$dbhandle to smith_kk;
%RDMS-E-NOSUCHPRF, unknown profile user or role

• Unlike base tables, the data in temporary tables is not actually stored in
the database, thus temporary tables never update the database.

Only the privileges associated with the temporary table are considered
when performing security validation during data manipulation operations.
For example, if a user can attach to the database (requires SELECT
privilege only) and is granted INSERT privilege to a global or local
temporary table, then the user (or an invoker’s rights stored routine) can
update the temporary table.

For more information on protection for an Oracle Rdb database, see the
chapter on defining privileges in the Oracle Rdb Guide to Database Design and
Definition.

Examples

Example 1: Using PUBLIC as a wildcard

This example shows that PUBLIC translates to [*,*] and can be used to grant
access to the database for all users.

7–408 SQL Statements

GRANT Statement: ANSI/ISO-Style

SQL> show protection on database rdb$dbhandle;
Protection on Alias RDB$DBHANDLE
[RDB,DOCS]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL> grant select on database alias rdb$dbhandle to public;
SQL> show protection on database rdb$dbhandle;
Protection on Alias RDB$DBHANDLE
[RDB,DOCS]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,OPERATOR,DBADM,SECURITY,DISTRIBTRAN
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

SQL> commit;

Example 2: Granting a privilege with the WITH GRANT OPTION clause.

This example shows how the WITH GRANT OPTION causes Rdb to maintain
a separate list of privileges that were granted by a user with ability to GRANT
to others. This extra information is queries using the SHOW USERS WITH
and SHOW USERS GRANTING commands.

SQL Statements 7–409

GRANT Statement: ANSI/ISO-Style

SQL> show protection on table EMPLOYEES;
Protection on Table EMPLOYEES
[RDB,DOCS]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL> grant delete on employees to freeman with grant option;
SQL>
SQL> show protection on table EMPLOYEES;
Protection on Table EMPLOYEES
[RDB,FREEMAN]:
With Grant Option: DELETE
Without Grant Option: NONE

[RDB,DOCS]:
With Grant Option: SELECT,INSERT,UPDATE,DELETE,SHOW,CREATE,ALTER,DROP,

DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL>
SQL> -- Show the list of users who will loose their DELETE
SQL> -- privilege if the privilege is taken away from DOCS
SQL>
SQL> show users with delete on employees from DOCS;
Users granted privileges on table EMPLOYEES by [RDB,DOCS]
[RDB,FREEMAN]
[RDB,DOCS]

[RDB,FREEMAN]
SQL>
SQL> -- Check if anyone on the list has given DELETE to anyone else
SQL>
SQL> show users granting delete on employees to PUBLIC;
Users granting privileges on table EMPLOYEES to [*,*]
No users found
SQL>

Example 3: Granting column privileges

This example shows the two forms of the GRANT column statement and the
effects it has on the target columns.

7–410 SQL Statements

GRANT Statement: ANSI/ISO-Style

SQL> -- First show existing column protections
SQL>
SQL> show protection on column CANDIDATES.FIRST_NAME;
Protection on Column CANDIDATES.FIRST_NAME
SQL> show protection on column CANDIDATES.CANDIDATE_STATUS;
Protection on Column CANDIDATES.CANDIDATE_STATUS
SQL>
SQL> -- Show alternate formats for the GRANT column statement
SQL>
SQL> grant update (CANDIDATE_STATUS) on table CANDIDATES to freeman;
SQL> grant update on column CANDIDATES.FIRST_NAME to freeman;
SQL>
SQL> -- Show the effects of the GRANT statements
SQL>
SQL> show protection on column candidates.FIRST_NAME;
Protection on Column CANDIDATES.FIRST_NAME
[RDB,FREEMAN]:
With Grant Option: NONE
Without Grant Option: UPDATE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL> show protection on column candidates.CANDIDATE_STATUS;
Protection on Column CANDIDATES.CANDIDATE_STATUS
[RDB,FREEMAN]:
With Grant Option: NONE
Without Grant Option: UPDATE

[*,*]:
With Grant Option: NONE
Without Grant Option: NONE

SQL>

Example 4: Granting privileges on a Sequence

This example shows that the set of privileges granted by ALL for sequences is
a small subset of those used for other objects such as tables and views.

SQL Statements 7–411

GRANT Statement: ANSI/ISO-Style

SQL> create sequence EMPLOYEE_ID_GEN;
SQL> grant all on sequence EMPLOYEE_ID_GEN to freeman;
SQL> grant select on sequence EMPLOYEE_ID_GEN to public;
SQL> show protection on sequence EMPLOYEE_ID_GEN;
Protection on Sequence EMPLOYEE_ID_GEN
[RDB,FREEMAN]:
With Grant Option: NONE
Without Grant Option: SELECT,SHOW,ALTER,DROP,DBCTRL,REFERENCES

[RDB,DOCS]:
With Grant Option: SELECT,SHOW,ALTER,DROP,DBCTRL,REFERENCES
Without Grant Option: NONE

[*,*]:
With Grant Option: NONE
Without Grant Option: SELECT

SQL>

7–412 SQL Statements

GRANT Statement: Roles

GRANT Statement: Roles

Grants a role to a user, another role, or the PUBLIC user.

Environment

You can use the GRANT statement for roles:

• In interactive SQL

• Embedded in host language programs to be precompiled

• As part of a nonstored procedure in a nonstored SQL module

• In dynamic SQL as a statement to be dynamically executed

Format

GRANT <role-name> TO
,

<username>
<role-name>
PUBLIC

,

Arguments

role-name
The name of a role previously created with the CREATE ROLE statement. If
the role name exists as an operating system group or rights identifier, then
Oracle Rdb will automatically create the role when you issue the GRANT
statement. A role that is created automatically always has the attribute
IDENTIFIED EXTERNALLY.

TO username
TO role-name
TO PUBLIC
Specifies the user name, role name, or the PUBLIC user to which you want
to grant the role. The PUBLIC user is the user name associated with all
anonymous users who access the database.

SQL Statements 7–413

GRANT Statement: Roles

If the user name or role name exists as an operating system user or rights
identifier, then Oracle Rdb will automatically create the user name or role
name when you issue the GRANT statement. A role or user that is created
automatically is IDENTIFIED EXTERNALLY.

Usage Notes

• You must have the SECURITY privilege on the database to grant a role to
a user or another role.

• The role being granted must not implicitly or explicitly be granted that
role. This means that a role cannot be granted to itself.

Examples

Example 1: Granting and Revoking Roles

SQL> -- Create three users and two roles. Oracle Rdb automatically
SQL> -- generates users and roles if they are identified externally.
SQL> CREATE USER ABLOWNEY IDENTIFIED EXTERNALLY;
SQL> CREATE USER BGREMBO IDENTIFIED EXTERNALLY;
SQL> CREATE USER LWARD IDENTIFIED EXTERNALLY;
SQL> CREATE ROLE SALES_MANAGER IDENTIFIED EXTERNALLY;
SQL> CREATE ROLE DIVISION_MANAGER IDENTIFIED EXTERNALLY;
SQL> -- Grant the SALES_MANAGER role to users ABLOWNEY,
SQL> -- BGREMBO, and to the DIVISION MANAGER ROLE.
SQL> GRANT SALES_MANAGER TO ABLOWNEY, BGREMBO, DIVISION_MANAGER;
SQL> -- Grant the DIVISION_MANAGER role to LWARD. LWARD now
SQL> -- has both the SALES_MANAGER and DIVISION_MANAGER roles.
SQL> GRANT DIVISION_MANAGER TO LWARD;
SQL> -- Revoke the DIVISION_MANAGER role from LWARD. He has
SQL> -- left the company.
SQL> REVOKE DIVISION_MANAGER FROM LWARD;
SQL> -- Grant the DIVISION_MANAGER role to BGREMBO. She
SQL> -- has been promoted to division manager.
SQL> GRANT DIVISION_MANAGER TO BGREMBO;

Example 2: The GRANT statement will implicitly perform a CREATE ROLE
and a CREATE USER if the role or user is not defined in the database and the
name exists as an OpenVMS rights identifier. The following example causes
both the user and role to be created.

7–414 SQL Statements

GRANT Statement: Roles

SQL> grant ADMIN_USER to SMITH;
%RDB-W-META_WARN, metadata successfully updated with the reported warning
-RDMS-W-PRFCREATED, some users or roles were created
SQL> show users
Users in database with filename personnel

SMITH
SQL> show roles
Roles in database with filename personnel

ADMIN_USER

The warning message alerts the database administrator that some implicit
actions were performed, but otherwise the GRANT statement was successful.

Note: this example refers to a database with SECURITY CHECKING IS
INTERNAL.

SQL Statements 7–415

Index

@ (at sign)
See EXECUTE statement

A
Access control lists (ACLs)

adding entries to, 7–380
changing, 7–380
creating entries, 7–380
database, 7–380
external routine, 7–380
general identifier, 7–385
module, 7–380
privileges, 7–386
system-defined identifier, 7–390
table, 7–380
user identifier, 7–380, 7–390

Access privilege sets
access control list (ACL) style, 7–380
adding entries to, 7–401
changing, 7–401
database

ANSI/ISO-style, 7–401
external routine, 7–401
module, 7–401
privileges, 7–386
table, 7–401
user identifier, 7–401, 7–406

ACCESS_MODE clause
GET DIAGNOSTICS statement, 7–366

ACLs
See Access control lists (ACLs)

Adding
entries to access privilege sets, 7–401
entries to ACLs, 7–380

AFTER clause
of GRANT statement, 7–383

Alias
for default database, 7–150, 7–391, 7–407
in CREATE TABLE statement, 7–65
in DECLARE ALIAS statement, 7–150
in GRANT statement, 7–385, 7–405
RDB$DBHANDLE, 7–150, 7–391, 7–407
releasing, 7–254

ALIAS clause
of EXPORT statement, 7–338

ALIAS keyword
of DECLARE MODULE statement, 7–201

Allocating a snapshot page, 7–18
ALLOCATION clause

of CREATE STORAGE AREA clause, 7–13
ALTER privilege, 7–386
ANSI/ISO SQL standard

flagging violations of, 7–202
ANSI/ISO-style privileges, 7–401
ANSI_AUTHORIZATION qualifier

replaced by RIGHTS clause, 7–206
Assigning row caches, 7–13
At sign (@) command

See EXECUTE statement
Attaching to a database, 7–147

with DECLARE ALIAS statement, 7–147
Attach specifications

in DECLARE ALIAS statement, 7–151
in DROP DATABASE statement, 7–269

Authentication
user, 7–152, 7–269, 7–339

Index–1

Authorization identifier
in precompiled SQL, 7–206

AUTHORIZATION keyword
of DECLARE MODULE statement, 7–202
of precompiled SQL, 7–202

AUTOMATIC clause, 7–65

B
BEGIN DECLARE statement

required terminators, 7–318
BYPASS privilege, 7–378, 7–392

C
CACHE USING clause

of CREATE STORAGE AREA clause, 7–13
Calculated columns

See COMPUTED BY columns
CALLING_ROUTINE clause

GET DIAGNOSTICS statement, 7–366
CALL statement

of CREATE TRIGGER statement, 7–113
CASCADE keyword

DROP SCHEMA statement, 7–292
DROP TABLE statement, 7–302
DROP VIEW statement, 7–311
of DROP INDEX statement, 7–274
of SQL module language, 7–274

Cascading delete
defining triggers, 7–124
schemas, 7–292
tables, 7–302
using triggers, 7–112
views, 7–311

Cascading update
using triggers, 7–112

Catalog
deleting, 7–260
DROP CATALOG statement, 7–260

CATALOG keyword
of DECLARE MODULE statement, 7–202
of SQL module language, 7–261
of SQL precompiler, 7–202

Character length
in precompiled SQL, 7–202, 7–203

CHARACTER LENGTH clause
in DECLARE MODULE statement, 7–202
in precompiled SQL, 7–202, 7–208

Character set
in precompiled SQL, 7–203, 7–205
in SQL precompiler, 7–204
national

of DECLARE ALIAS statement, 7–153
of DECLARE ALIAS statement, 7–151
of DECLARE MODULE statement, 7–205
of DEFAULT CHARACTER SET clause,

7–203
CHECK clause

of CREATE TABLE statement, 7–66
Check option clause, 7–137, 7–140, 7–142
CHECKSUM CALCULATION clause

of CREATE STORAGE AREA clause, 7–14
C language

dynamic SQL, 7–327
SQL module language, 7–327

Clumps
in CREATE STORAGE AREA clause, 7–17

COBOL language
dynamic SQL example, 7–333

COLLATING SEQUENCE clause
See also DROP COLLATING SEQUENCE

statement
Column

AUTOMATIC columns, 7–65
COMPUTED BY columns, 7–67
defining, 7–58
defining protection, 7–398
deleting, 7–302
DROP TABLE statement, 7–302
IDENTITY columns, 7–72

Column constraint
in CREATE TABLE statement, 7–66

Column default value, 7–69, 7–93
Column privileges, 7–386
Command line recall in interactive SQL, 7–316
Comments

adding to storage maps, 7–28

Index–2

Compound statements
FOR (counted) control statement, 7–357
FOR control statement, 7–353

Compressing
rows for partitioned tables, 7–28

COMPUTED BY columns
defining in tables, 7–67
deleting from tables, 7–67
with select expressions, 7–102

Concurrency
See Isolation level

Connecting to a database
with DECLARE ALIAS statement, 7–147 to

7–158
CONNECTION_NAME clause

GET DIAGNOSTICS statement, 7–366
Consistency

See Isolation level
Constraint, 7–58

contrasting column and table constraints,
7–78

DEFERRABLE clause, 7–68
defining

in CREATE VIEW statement, 7–137
deleting, 7–266
naming in

CONSTRAINT clause, 7–68
CREATE TABLE statement, 7–66, 7–74
CREATE VIEW statement, 7–138

naming in DEFERRABLE clause, 7–66
NOT DEFERRABLE clause, 7–68
segmented strings and, 7–82
sequence of definition, 7–82

CONSTRAINT clause
of CREATE TABLE statement, 7–68
to name constraints, 7–68

Constraint definitions
adding to repository, 7–82

Context file
DECLARE MODULE statement, 7–200
DECLARE TRANSACTION statement, 7–228

Control statements
FOR, 7–353
FOR (counted), 7–357

Correlation name
specifying in COMPUTED BY clause, 7–102
specifying in CREATE TRIGGER statement,

7–115
COUNT function

specifying in COMPUTED BY clause, 7–102
CREATE privilege, 7–386
CREATE SEQUENCE statement, 7–2

CACHE clause, 7–3
CYCLE clause, 7–4
INCREMENT BY clause, 7–4
MAXVALUE clause, 7–4
MINVALUE clause, 7–5
ORDER clause, 7–5
RANDOMIZE clause, 7–5
START WITH clause, 7–6
STORED NAME clause, 7–6
WAIT clause, 7–7

CREATE STORAGE AREA clause, 7–11
ALLOCATION clause, 7–13
CACHE USING clause, 7–13
CHECKSUM CALCULATION clause, 7–14
EXTENT clause, 7–15
FILENAME clause, 7–15
INTERVAL clause, 7–16
LOCKING clause, 7–16
NO ROW CACHE clause, 7–17
of CREATE DATABASE statement, 7–11
PAGE FORMAT clause, 7–17
PAGE SIZE clause, 7–18
RDB$SYSTEM clause, 7–19
SNAPSHOT ALLOCATION clause, 7–18
SNAPSHOT EXTENT clause, 7–18
SNAPSHOT FILENAME clause, 7–18
THRESHOLDS clause, 7–19

CREATE STORAGE MAP statement, 7–25
for table with data, 7–38
LOGGING clause, 7–29
NOLOGGING clause, 7–29
OTHERWISE IN clause, 7–30
PARTITIONING IS NOT UPDATABLE clause,

7–30
PARTITIONING IS UPDATABLE clause,

7–31
PARTITION name clause, 7–30

Index–3

CREATE STORAGE MAP statement (cont’d)
PLACEMENT VIA INDEX clause, 7–31
STORAGE MAP clause, 7–32
store clause, 7–32
STORED NAME IS clause, 7–34
STORE IN clause, 7–32
STORE LISTS clause, 7–32
STORE RANDOMLY ACROSS clause, 7–34
STORE USING clause, 7–34
THRESHOLDS clause, 7–34
VERTICAL PARTITION name clause, 7–35
WITH LIMIT OF clause, 7–35

CREATE SYNONYM statement, 7–54
FOR clause, 7–55
OR REPLACE clause, 7–55
PUBLIC clause, 7–56
synonym-name clause, 7–56

CREATE TABLE statement, 7–58
AUTOMATIC clause, 7–65
CHECK clause, 7–66
column constraints, 7–66
CONSTRAINT clause, 7–68
DEFERRABLE clause, 7–68
FROM path-name clause, 7–71
IDENTITY clause, 7–72
LIKE clause, 7–72
maintaining referential integrity, 7–99
naming constraints in, 7–68
NOT DEFERRABLE clause, 7–68
REFERENCES clause, 7–73
STORED NAME IS clause, 7–74
table constraints, 7–66, 7–74
used in program

restriction, 7–82
CREATETAB privilege

See also CREATE privilege
CREATE TRIGGER statement, 7–112

DELETE clause, 7–114
description, 7–112
environment, 7–113
ERROR clause, 7–114
FOR EACH ROW clause, 7–115
in dynamic SQL, 7–113
in embedded SQL, 7–113
in interactive SQL, 7–113

CREATE TRIGGER statement (cont’d)
INSERT clause, 7–115
REFERENCING clause, 7–115
STORED NAME IS clause, 7–116
triggered action clause, 7–116
UPDATE clause, 7–116
using a new correlation name, 7–115
using an old correlation name, 7–115

CREATE USER statement, 7–133
ACCOUNT LOCK clause, 7–133
COMMENT clause, 7–133
IDENTIFIED EXTERNALLY clause, 7–134
PROFILE clause, 7–134
PUBLIC clause, 7–134

CREATE VIEW statement, 7–136, 7–146
read-only views, 7–137, 7–139
rules for updating views, 7–139
STORED NAME IS clause, 7–138

Creating
See also Defining
access privilege set entries, 7–401
ACL entries, 7–380
columns, 7–58
cursors, 7–159, 7–176, 7–182
storage areas, 7–11
storage maps, 7–25, 7–32
tables, 7–58
triggers, 7–112
views, 7–136

CURRENT_ROW clause
GET DIAGNOSTICS statement, 7–367

Cursor, 7–159, 7–176, 7–182
See also List cursor
classes, 7–159
declaring, 7–159, 7–176, 7–182
declaring a holdable cursor, 7–175
declaring a scrollable list cursor, 7–174
dynamic

restriction, 7–178
FETCH statement, 7–344
holdable, 7–175
insert-only, 7–160
list, 7–160
positioning, 7–346
read-only, 7–160, 7–168

Index–4

Cursor (cont’d)
restriction, 7–170
result table created with OPEN, 7–159
retrieving rows from, 7–344
scope and extent, 7–159
table, 7–160
update-only, 7–160
when result table exists, 7–159

D
Database

allocating pages, 7–13
allocating snapshot pages, 7–18
attaching to

with DECLARE ALIAS statement, 7–147
copying without data, 7–340
declaring, 7–147
default access, 7–380
default protection on, 7–380
deleting, 7–268
detaching, 7–254
duplicating without data, 7–340
granting access, 7–380

ANSI/ISO-style, 7–401
invoking, 7–147 to 7–158
page format, 7–17
page size, 7–18
privileges, 7–386
restricted access to, 7–155
restricting creation, 7–394
specifying

in GRANT statement, 7–385, 7–405
specifying extent pages, 7–18

Database access
restricted, 7–155

Database option
of DECLARE ALIAS statement, 7–150

Database privileges, 7–380, 7–386
ANSI/ISO-style, 7–401

DATABASE_HANDLE clause
GET DIAGNOSTICS statement, 7–367

DATA clause
of EXPORT statement, 7–340

Data manipulation statements
DELETE statement, 7–241
using with views, 7–139

Date format
DEFAULT DATE FORMAT clause, 7–203
specifying

in precompiled SQL, 7–203
Date-time data types

in CREATE TABLE statement, 7–69
DBADM privilege, 7–386, 7–392, 7–393, 7–407
DBCTRL privilege, 7–386
DBKEY SCOPE clause

of DECLARE ALIAS statement, 7–150
Deadlock

avoiding, 7–167
Deassigning row caches, 7–17
DECIMAL data type

conversion by CREATE TABLE, 7–96
DECLARE ALIAS statement, 7–147

attach specifications, 7–151
database option, 7–150
DBKEY SCOPE clause, 7–150
–dbtype option, 7–150
default alias, 7–150
default character set, 7–151
DEFAULT CHARACTER SET clause, 7–151
environment, 7–147
FILENAME clause, 7–151
in embedded SQL, 7–147
in SQL module language procedures, 7–147
MULTISCHEMA IS clause, 7–153
national character set, 7–153
NATIONAL CHARACTER SET clause, 7–153
PATHNAME clause, 7–154
PRESTARTED TRANSACTIONS clause,

7–154
repository path names, 7–154
RESTRICTED ACCESS clause, 7–155
ROWID SCOPE clause, 7–155

DECLARE CURSOR statement, 7–159
FOR UPDATE clause, 7–164
read-only cursors, 7–168
SCROLL keyword, 7–161, 7–166
WHERE CURRENT OF clause, 7–167
WITH HOLD clause, 7–167

Index–5

DECLARE DEFAULT TRANSACTION, 7–230
DECLARE FUNCTION statement, 7–189
DECLARE LOCAL TEMPORARY TABLE

statement, 7–190
compression is disabled, 7–193
compression is enabled, 7–193
creating, 7–190
deleting rows on commit, 7–194
preserving rows on commit, 7–194
restrictions, 7–195
virtual memory requirements, 7–194

DECLARE MODULE statement, 7–200
ALIAS keyword, 7–201
AUTHORIZATION keyword, 7–202
CATALOG keyword, 7–202
character set, 7–205
context files, 7–200
DEFAULT CHARACTER SET clause, 7–203
DEFAULT DATE FORMAT clause, 7–203
DIALECT clause, 7–203
environment, 7–200
in embedded SQL, 7–200
in precompiled SQL, 7–208
KEYWORD RULES clause, 7–204
LITERAL CHARACTER SET clause, 7–205
MODULE keyword, 7–205
NAMES ARE clause, 7–205
national character set, 7–205
PARAMETER COLONS clause, 7–205
QUOTING RULES clause, 7–206
RIGHTS clause, 7–206
SCHEMA keyword, 7–206
VIEW UPDATE RULES clause, 7–207

DECLARE PROCEDURE statement, 7–210
DECLARE Routine statement, 7–211

environment, 7–211
format, 7–211
in context files, 7–211
in embedded SQL, 7–211
in interactive SQL, 7–211

DECLARE STATEMENT statement, 7–218
DECLARE TABLE statement, 7–220
DECLARE TRANSACTION statement, 7–227

contrasted with SET TRANSACTION
statement, 7–227, 7–231

DECLARE TRANSACTION statement (cont’d)
defaults, 7–230
dynamically executed, 7–233
environment, 7–228
format, 7–228
in embedded SQL, 7–228
in interactive SQL, 7–228
isolation level option in, 7–228
multiple, in programs, 7–233
restriction in programs, 7–233

DECLARE variable statement, 7–238
Declaring

holdable cursor, 7–175
scrollable list cursor, 7–174

Declaring a database, 7–147
with DECLARE ALIAS statement, 7–147 to

7–158
Default character set

in precompiled SQL, 7–203
of DECLARE ALIAS statement, 7–151

DEFAULT CHARACTER SET clause
in precompiled SQL, 7–203, 7–208
of DECLARE ALIAS statement, 7–151
of DECLARE MODULE statement, 7–203

Default database
with DECLARE ALIAS statement, 7–150

DEFAULT DATE FORMAT clause
in precompiled SQL, 7–203
of DECLARE MODULE statement, 7–203

Default value
specifying

in ALTER TABLE statement, 7–69
in CREATE TABLE statement, 7–93

DEFERRABLE clause
constraints, 7–66
of CREATE TABLE statement, 7–68

Defining
See Creating
access privilege set entries, 7–401
database access, 7–380

ANSI/ISO-style, 7–401
external routine access, 7–380, 7–401
module access, 7–380, 7–401
privileges, 7–380, 7–401
table access, 7–380, 7–401

Index–6

DELETE privilege, 7–386
DELETE statement, 7–241

in CREATE TRIGGER statement, 7–114
OPTIMIZE WITH clause, 7–243
specifying through

CREATE TRIGGER statement, 7–112
using with views, 7–139

Deleting
catalogs, 7–260
constraints, 7–266
databases, 7–268
data in views, 7–139
data with DELETE statement, 7–241
external functions, 7–288, 7–289
external procedures, 7–288, 7–289
external routines, 7–289
indexes, 7–274
modules, 7–277
repository definitions, 7–282
rows of tables, 7–241
schemas, 7–292
storage maps, 7–298
stored functions, 7–288, 7–289
stored procedures, 7–288, 7–289
stored routines, 7–289
tables, 7–302
triggers, 7–307
views, 7–311

Deleting a query outline, 7–280
Deprecated feature

SQLOPTIONS=ANSI_AUTHORIZATION,
7–206

SQLOPTIONS=ANSI_DATE, 7–203
SQLOPTIONS=ANSI_IDENTIFIERS, 7–204
SQLOPTIONS=ANSI_PARAMETERS, 7–205
SQLOPTIONS=ANSI_QUOTING, 7–206

DESCRIBE statement, 7–247, 7–250
in a PL/I program, 7–250
INPUT clause, 7–248
INTO clause, 7–248
manual alternative to, 7–249
MARKERS clause, 7–248
OUTPUT clause, 7–249
overriding values set by, 7–249
SELECT LIST clause, 7–249

DESCRIBE statement (cont’d)
SQLDA, 7–248
statement-name, 7–249

DESCRIPTOR clause
EXECUTE statement, 7–325

Detaching from databases, 7–254
DIALECT clause

See also SET DIALECT statement in Volume 3
in precompiled SQL, 7–203
of DECLARE MODULE statement, 7–203

Dialect setting
in precompiled SQL, 7–203
of DECLARE MODULE statement, 7–203

DISCONNECT statement, 7–254
DISTRIBTRAN privilege, 7–386
DROP CATALOG statement, 7–260

environment, 7–260
in dynamic SQL, 7–260
in embedded SQL, 7–260
in interactive SQL, 7–260

DROP COLLATING SEQUENCE statement,
7–263

DROP CONSTRAINT statement, 7–266
DROP DATABASE statement, 7–268

attach specification, 7–269
environment, 7–268
in dynamic SQL, 7–268
in embedded SQL, 7–268
in interactive SQL, 7–268

DROP DOMAIN statement, 7–271
See also ALTER DOMAIN statement in

Volume 2
See also CREATE DOMAIN statement in

Volume 2
DROP FUNCTION statement, 7–288
DROP INDEX statement, 7–274
DROP MODULE statement, 7–277
DROP OUTLINE statement, 7–280
DROP PATHNAME statement, 7–282
DROP privilege, 7–386
DROP PROCEDURE statement, 7–288
DROP ROLE statement, 7–286

CASCADE clause, 7–286
IF EXISTS clause, 7–286
RESTRICT clause, 7–286

Index–7

DROP ROLE statement (cont’d)
role-name clause, 7–286

Drop Routine statement
See DROP FUNCTION statement, DROP

PROCEDURE statement
DROP SCHEMA statement, 7–292

CASCADE keyword, 7–292
environment, 7–292
in dynamic SQL, 7–292
in embedded SQL, 7–292
in interactive SQL, 7–292
RESTRICT keyword, 7–292

DROP SEQUENCE statement, 7–295
CASCADE clause, 7–295
IF EXISTS clause, 7–295
RESTRICT clause, 7–295
sequence-name clause, 7–295

DROP statement
general usage notes, 7–259

DROP STORAGE MAP statement, 7–298
DROP SYNONYM statement, 7–300

CASCADE clause, 7–300
IF EXISTS clause, 7–300
PUBLIC clause, 7–300
RESTRICT clause, 7–301
synonym-name clause, 7–301

DROP TABLE statement, 7–302
CASCADE keyword, 7–302
RESTRICT keyword, 7–302

DROP TRIGGER statement, 7–307
arguments, 7–307
environment, 7–307
in embedded SQL, 7–307
in interactive SQL, 7–307
restrictions, 7–307

DROP USER statement, 7–309
CASCADE clause, 7–309
RESTRICT clause, 7–309
username clause, 7–309

DROP VIEW statement, 7–311
CASCADE keyword, 7–311
RESTRICT keyword, 7–311

Dynamic DECLARE CURSOR statement, 7–176
accessing views

restriction, 7–178

Dynamic SQL, 7–247
C, 7–327
COBOL, 7–333
CREATE TRIGGER statement, 7–113
DECLARE STATEMENT statement, 7–218
DESCRIBE statement, 7–247
EXECUTE IMMEDIATE statement, 7–332
EXECUTE statement, 7–324
multiple

DECLARE TRANSACTION statements,
7–233

parameter markers, 7–247
PL/I, 7–250
select lists, 7–247
SQL module language, 7–327
statement names, 7–218, 7–249, 7–324

E
EDIT statement, 7–314

invoking DECTPU, 7–314
invoking EDT, 7–314
invoking LSE, 7–314
SQL$EDIT logical name, 7–314

EDT editor
editing in interactive SQL, 7–314

Embedding SQL statements in programs
See SQL precompiler

END DECLARE statement, 7–318, 7–319
required terminators, 7–318

Erasing data
DELETE statement, 7–241
in views, 7–139

ERROR clause
of CREATE TRIGGER statement, 7–114

Error message
generated by CREATE TRIGGER statement,

7–114
MAXRELVER, 7–82
MAXVIEWID, 7–141

EVE
editing in interactive SQL, 7–314

EXCEPTION clause
GET DIAGNOSTICS statement, 7–366

Index–8

Execute (@) statement for running command
files, 7–321

EXECUTE IMMEDIATE statement, 7–332,
7–333

in a COBOL program, 7–333
parameter, 7–332
statement string, 7–332

EXECUTE privilege, 7–386
EXECUTE statement, 7–324

@ (at sign) command, 7–321
parameter, 7–325
parameter markers, 7–325, 7–326
SQLCA, 7–326
statement-name, 7–325
USING DESCRIPTOR clause, 7–326

EXIT statement, 7–337
Exporting a database

restriction, 7–341
EXPORT statement, 7–338

ALIAS clause, 7–338
contrasted with IMPORT statement, 7–338
DATA clause, 7–340
EXTENSIONS clause, 7–340
extents

restriction, 7–341
FILENAME clause, 7–338
INTO clause, 7–339
PATHNAME clause, 7–338
.rbr file, 7–339
restriction, 7–341

Extended dynamic DECLARE CURSOR
statement, 7–182

EXTENSIONS clause
of EXPORT statement, 7–340

EXTENT clause
of CREATE STORAGE AREA clause, 7–15

Extent page, specifying, 7–18
External functions

creating, 7–189
deleting, 7–288, 7–289
restrict deleting, 7–289

External procedure
declaring, 7–210
deleting, 7–288, 7–289
restrict deleting, 7–289

External routine
default protection on, 7–380
deleting, 7–288
EXECUTE privilege, 7–386
granting access, 7–380, 7–401
granting privilege, 7–380
privileges, 7–380, 7–401
restrict deleting, 7–289
specifying

in GRANT statement, 7–385, 7–405

F
FETCH statement, 7–344
FILENAME clause

DECLARE ALIAS statement, 7–151
of CREATE STORAGE AREA clause, 7–15
of EXPORT statement, 7–338

Filling storage areas, 7–29
FINISH statement

See DISCONNECT statement
FOR (counted) control statement

DO clause, 7–358
of compound statement, 7–357

FOR control statement
AS EACH ROW OF clause, 7–353, 7–354
beginning label, 7–354, 7–358
DO clause, 7–354
ending label, 7–354, 7–358
FOR variable name clause, 7–354, 7–358
of compound statement, 7–353

FOR EACH ROW clause
of CREATE TRIGGER statement, 7–115

FOR EACH STATEMENT clause
of CREATE TRIGGER statement, 7–115

FOR UPDATE clause, 7–164
FROM path-name clause

in CREATE TABLE statement, 7–71
Function

See also External routine, Stored Function

Index–9

G
General identifiers, 7–385
GET DIAGNOSTICS statement, 7–364

ACCESS_MODE clause, 7–366
CALLING_ROUTINE clause, 7–366
CONNECTION_NAME clause, 7–366
CURRENT_ROW clause, 7–367
DATABASE_HANDLE clause, 7–367
EXCEPTION clause, 7–366
GLOBAL_TRANSACTION clause, 7–367
HOT_STANDBY_MODE clause, 7–367
IMAGE_NAME clause, 7–367
ISOLATION_LEVEL clause, 7–367
LIMIT_CPU_TIME clause, 7–367
LIMIT_ELAPSED_TIME clause, 7–367
LIMIT_ROWS_FETCHED clause, 7–368
RETURNED_SQLCODE clause, 7–366
RETURNED_SQLSTATE clause, 7–366
ROW_COUNT clause, 7–368
SERVER_IDENTIFICATION clause, 7–368
statement-item-name, 7–366
TRACE_ENABLED clause, 7–368
TRANSACTIONS_COMMITTED clause,

7–368
TRANSACTIONS_ROLLED_BACK clause,

7–368
TRANSACTION_ACTIVE clause, 7–368
TRANSACTION_CHANGE_ALLOWED

clause, 7–368
TRANSACTION_SEQUENCE clause, 7–369
TRANSACTION_TIMESTAMP clause, 7–369

GET ENVIRONMENT statement, 7–374
Getting out of interactive SQL

EXIT statement, 7–337
Global temporary table

See Temporary table
GLOBAL_TRANSACTION clause

GET DIAGNOSTICS statement, 7–367
GRANT statement, 7–380

AFTER clause, 7–383
ANSI/ISO style, 7–401
creating new access privilege set entries,

7–407

GRANT statement (cont’d)
creating new ACL entries, 7–391
database access, 7–380

ANSI/ISO-style, 7–401
external routine access, 7–380, 7–401
general usage notes, 7–378
modifying existing access privilege set entries,

7–407
modifying existing ACL entries, 7–391
module access, 7–380, 7–401
ON COLUMN clause, 7–385, 7–405
ON DATABASE clause, 7–385, 7–405
ON FUNCTION clause, 7–385, 7–405
ON MODULE clause, 7–385, 7–405
ON PROCEDURE clause, 7–385, 7–405
ON SEQUENCE clause, 7–385, 7–405
ON TABLE clause, 7–385, 7–405
POSITION clause, 7–383
privileges, 7–386
RDB$DBHANDLE default alias, 7–391,

7–407
roles, 7–413
table access, 7–380, 7–401
TO clause, 7–389

ANSI/ISO-style, 7–406
GROUP BY clause

accessing view containing
restriction, 7–178

H
Hidden delete

See Cascading delete
Holdable cursor, 7–167

declaring, 7–175
Horizontal partitioning, 7–35
HOT_STANDBY_MODE clause

GET DIAGNOSTICS statement, 7–367

I
Identifier character set

in SQL precompiler, 7–204
IDENTIFIER CHARACTER SET clause

in SQL precompiler, 7–204

Index–10

Identifiers in access privilege sets, 7–401, 7–406
in ANSI/ISO-style GRANT statement, 7–406
multiple, 7–406

Identifiers in ACLs, 7–380
general, 7–385
in GRANT statement, 7–389
multiple, 7–389
system, 7–390
user identifier, 7–390

IF EXISTS keyword
of DROP INDEX statement, 7–274
of SQL module language, 7–261, 7–263,

7–266, 7–271, 7–274, 7–277, 7–280, 7–283,
7–286, 7–288, 7–292, 7–295, 7–298, 7–300,
7–302, 7–307, 7–311

IMAGE_NAME clause
GET DIAGNOSTICS statement, 7–367

Index
deleting, 7–274
DROP INDEX statement, 7–274

Initializing interactive SQL, 7–321
INPUT clause

DESCRIBE statement, 7–248
Input parameter, 7–248
INSERT clause

of CREATE TRIGGER statement, 7–115
INSERT privilege, 7–386
INSERT statement

in a COBOL program, 7–333
in CREATE TRIGGER statement, 7–115
in dynamic SQL, 7–333
parameter markers, 7–333
specifying through

CREATE TRIGGER statement, 7–112
using with views, 7–139

Interactive SQL interface
command line recall, 7–316

Internationalization features
See also DROP COLLATING SEQUENCE

statement
INTERVAL clause

of CREATE STORAGE AREA clause, 7–16
INTO clause

EXECUTE statement, 7–325
of DESCRIBE statement, 7–248

INTO clause (cont’d)
of EXPORT statement, 7–339

Isolation level
in DECLARE TRANSACTION statement,

7–228
ISOLATION_LEVEL clause

GET DIAGNOSTICS statement, 7–367

K
Keyword

controlling interpretation of
in precompiled SQL, 7–203, 7–204

KEYWORD RULES clause
in precompiled SQL, 7–204
of DECLARE MODULE statement, 7–204

L
Language-Sensitive Editor

See LSE
Leaving interactive SQL

EXIT statement, 7–337
Length

character
in precompiled SQL, 7–202, 7–203

Limits and parameters
maximum number of tables, 7–82
maximum number of views, 7–141

LIMIT_CPU_TIME clause
GET DIAGNOSTICS statement, 7–367

LIMIT_ELAPSED_TIME clause
GET DIAGNOSTICS statement, 7–367

LIMIT_ROWS_FETCHED clause
GET DIAGNOSTICS statement, 7–368

List
accessing with cursors, 7–160
creating, 7–101
filling storage areas

randomly, 7–29
sequentially, 7–29

processing with host programs, 7–159
setting a default storage area, 7–32
storing in multiple storage areas, 7–32
storing separately from table rows, 7–36

Index–11

List cursor
See also Cursor
restriction, 7–170
retrieving list segments from, 7–344
scrollable, 7–161, 7–174

LITERAL CHARACTER SET clause
of DECLARE MODULE statement, 7–205

Local temporary table
See also Temporary table
declaring explicitly, 7–190

Lock conflicts
reducing, 7–167

LOCKING clause
of CREATE STORAGE AREA clause, 7–16

LOGGING clause
CREATE STORAGE MAP statement, 7–29

Logical area threshold, 7–34
Logical name

RDBVMS$CREATE_DB, 7–394
SQL$EDIT, 7–314
SQLINI, 7–321

LSE
editing in interactive SQL, 7–314
invoking within SQL, 7–315

LSE$ENVIRONMENT
defining, 7–315

M
MARKERS clause of DESCRIBE statement,

7–248
Modifying

access privilege set entries, 7–401
ACL entries, 7–380
data in views, 7–139

Module
default protection on, 7–380
deleting, 7–277
EXECUTE privilege, 7–386
granting access, 7–380, 7–401
privileges, 7–380, 7–401
specifying

in GRANT statement, 7–385, 7–405

MODULE keyword
of DECLARE MODULE statement, 7–205

Multiple identifiers, 7–389
not allowed in ANSI/ISO-style databases,

7–406
Multiple transaction declarations in programs,

7–233
MULTISCHEMA IS ON clause

in DECLARE ALIAS statement, 7–153
Multistatement procedure

See also Compound statement

N
Name

character set for
precompiled SQL, 7–205

dynamic SQL statements, 7–249
statement (dynamic), 7–249

NAMES ARE clause
in precompiled SQL, 7–208
of DECLARE MODULE statement, 7–205

Naming a query, 7–164, 7–242
Naming constraints

in CONSTRAINT clause, 7–68
in CREATE TABLE statement, 7–66

National character set
in precompiled SQL, 7–205
of DECLARE ALIAS statement, 7–153
of DECLARE MODULE statement, 7–205

NATIONAL CHARACTER SET clause
in precompiled SQL, 7–205, 7–208
of DECLARE ALIAS statement, 7–153

New-correlation-name
using in CREATE TRIGGER statement,

7–115
NOLOGGING clause

CREATE STORAGE MAP statement, 7–29
NO ROW CACHE clause

of CREATE STORAGE AREA clause, 7–17
NOT DEFERRABLE clause

constraints, 7–66
of CREATE TABLE statement, 7–68

Index–12

O
Old-correlation-name

using in CREATE TRIGGER, 7–115
OPER privilege, 7–378
OPTIMIZE clause

AS keyword, 7–164, 7–242
USING keyword, 7–165, 7–242

Optimizing
queries, 7–165, 7–242
using an outline, 7–165, 7–242
using an query name, 7–164, 7–242

Optional predicate
specifying through

CREATE TRIGGER statement, 7–112
Oracle Rdb databases

specifying in DECLARE ALIAS statement,
7–150

OTHERWISE IN clause of CREATE STORAGE
MAP statement, 7–30

Outline name
using, 7–165, 7–242

OUTPUT clause
of DESCRIBE statement, 7–249

Output parameter, 7–249
Overflow partition

in storage map definition, 7–30

P
PAGE FORMAT clause

of CREATE STORAGE AREA clause, 7–17
PAGE SIZE clause

of CREATE STORAGE AREA clause, 7–18
Parameter

in EXECUTE statement, 7–325
specifying dynamic statements, 7–332

PARAMETER COLONS clause
of DECLARE MODULE statement, 7–205

Parameter markers, 7–325, 7–326
DESCRIBE statement, 7–248
information in SQLDA, 7–247

Partitioning, 7–30, 7–35
strict, 7–30

PARTITIONING IS NOT UPDATABLE clause
CREATE STORAGE MAP statement, 7–30

PARTITIONING IS UPDATABLE clause
CREATE STORAGE MAP statement, 7–31

Partitioning tables
horizontally, 7–35
vertically, 7–32

PARTITION name clause
CREATE STORAGE MAP statement, 7–30

PATHNAME clause
DECLARE ALIAS statement, 7–154
of EXPORT statement, 7–338

Performance
optimizing queries, 7–165, 7–242

Persistent cursor, 7–167
PL/I language

dynamic SQL, 7–250
PLACEMENT VIA INDEX clause

of CREATE STORAGE MAP statement, 7–31
POSITION clause

of GRANT statement, 7–383
Positioning cursors, 7–346
Precompiled SQL

See SQL precompiler
Predicate

in CREATE TRIGGER statement, 7–116
Prestarted transaction

disabling, 7–154
PRESTARTED TRANSACTIONS clause

of DECLARE ALIAS statement, 7–154
Privilege

See also Protection
adding, 7–380, 7–401
ALTER, 7–386
ANSI/ISO-style

defining, 7–401
BYPASS, 7–378
CREATE, 7–386
database, 7–380

ANSI/ISO-style, 7–401
DBADM, 7–386, 7–393, 7–407
DBCTRL, 7–386
defining, 7–380

Index–13

Privilege (cont’d)
DELETE, 7–386
DISTRIBTRAN, 7–386
DROP, 7–386
EXECUTE, 7–386
external routine, 7–380, 7–401
GRANT statement, 7–380

ANSI/ISO-style, 7–401
INSERT, 7–386
module, 7–380, 7–401
OPER, 7–378
overridden

by BYPASS, 7–392
by DBADM, 7–392
by READALL, 7–392
by SECURITY, 7–392
by SYSPRV, 7–392

REFERENCES, 7–386
role-oriented, 7–392
SECURITY, 7–378, 7–386, 7–393
SELECT, 7–386
SHOW, 7–386
SYSPRV, 7–378
table, 7–380, 7–401
UPDATE, 7–386

Protection
See also Privilege
column level, 7–398

Q
Query naming, 7–164, 7–242
Query optimizer, 7–165, 7–242
Query outlines

deleting, 7–280
Quotation mark

controlling interpretation of
in precompiled SQL, 7–203, 7–206

QUOTING RULES clause
in precompiled SQL, 7–206
of DECLARE MODULE statement, 7–206

R
RDB$DBHANDLE default alias, 7–150

in DECLARE ALIAS statement, 7–150
in GRANT statement, 7–391, 7–407

RDB$SYSTEM clause
of CREATE STORAGE AREA clause, 7–19

RDB$SYSTEM storage area, 7–19, 7–32
RDBVMS$CREATE_DB logical name, 7–394
RDBVMS$CREATE_DB rights identifier, 7–394
READALL privilege, 7–378, 7–392
Read-only cursor, 7–168
Read-only view, 7–139

restrictions, 7–137, 7–139
REFERENCES clause

of CREATE TABLE statement, 7–73
REFERENCES privilege, 7–386
REFERENCING clause

of CREATE TRIGGER statement, 7–115
Referencing table, 7–71, 7–73
Referential integrity

maintaining with
CREATE TABLE statement, 7–81, 7–99
CREATE TRIGGER statement, 7–112
table-specific constraints, 7–81

Relation
See Table

Removing data
DELETE statement, 7–241
in views, 7–139

Repository
adding constraint definitions to, 7–82
adding table definitions to, 7–82
adding trigger definitions to, 7–82
definitions

deleting, 7–282
path names

creating a table from a path name, 7–71
in CREATE TABLE statement, 7–71,

7–82
in DECLARE ALIAS statement, 7–154
using when deleting repository definitions,

7–282

Index–14

RESTRICTED ACCESS clause
of DECLARE ALIAS statement, 7–155

Restricted access to database, 7–155
Restricting delete

schemas, 7–292
Restriction

CREATE STORAGE AREA clause, 7–17
CREATE TABLE statement

repository record structures, 7–75
used in program, 7–82

cursors
dynamic, 7–178

DECLARE CURSOR statement, 7–170
declared local temporary table, 7–195
DECLARE variable statement, 7–239
dynamic DECLARE CURSOR statement

accessing views, 7–178
exporting a database, 7–341
EXPORT statement, 7–341

extents, 7–341
GROUP BY clause

accessing view containing, 7–178
on cursors, 7–170
page-level locking, 7–17
row-level locking, 7–17
UNION clause

accessing view containing, 7–178
views

accessing using dynamic cursors, 7–178
WITH NO EXTENSIONS clause, 7–341

RESTRICT keyword
DROP SCHEMA statement, 7–292
DROP TABLE statement, 7–302
DROP VIEW statement, 7–311
of DROP INDEX statement, 7–274
of SQL module language, 7–274

Result tables
for cursors, 7–159, 7–176, 7–182

Retrieving
list segments, 7–344
rows of cursors, 7–344

RETURNED_SQLCODE clause
GET DIAGNOSTICS statement, 7–366

RETURNED_SQLSTATE clause
GET DIAGNOSTICS statement, 7–366

RIGHTS clause
in precompiled SQL, 7–206
of DECLARE MODULE statement, 7–206

Role-oriented privilege, 7–392
Roles

GRANT statement, 7–413
Row cache

assignment, 7–13
deassignment, 7–17

ROWID SCOPE clause
of DECLARE ALIAS statement, 7–155

ROW_COUNT clause
GET DIAGNOSTICS statement, 7–368

Running command files with execute (@)
statement, 7–321

RUNTIME option
for DECLARE ALIAS statement, 7–155
run-time string

for DECLARE ALIAS statement, 7–155

S
Schema

cascading delete, 7–292
deleting, 7–292
DROP SCHEMA statement, 7–292
restricting delete, 7–292

SCHEMA keyword
of DECLARE MODULE statement, 7–206
of SQL module language, 7–293
of SQL precompiler, 7–206

Scratch table
See Declared local temporary table

Scrollable list cursor, 7–161
declaring, 7–174

SCROLL keyword
of DECLARE CURSOR statement, 7–161,

7–166
Security functions of triggers, 7–112
SECURITY privilege, 7–378, 7–386, 7–392,

7–393

Index–15

Segmented string
See also List

Select expressions
in COMPUTED BY clauses, 7–102

SELECT LIST clause
of DESCRIBE statement, 7–249

Select lists
DESCRIBE statement, 7–247, 7–249
information in SQLDA, 7–249

SELECT privilege, 7–386
SELECT statement

example in dynamic SQL, 7–250
in a PL/I program, 7–250

SERVER_IDENTIFICATION clause
GET DIAGNOSTICS statement, 7–368

SET TRANSACTION statement
contrasted with DECLARE TRANSACTION

statement, 7–232
SHOW privilege, 7–386
SIGNAL statement

of CREATE TRIGGER statement, 7–113
SNAPSHOT ALLOCATION clause

of CREATE STORAGE AREA clause, 7–18
SNAPSHOT EXTENT clause

of CREATE STORAGE AREA clause, 7–18
SNAPSHOT FILENAME clause

of CREATE STORAGE AREA clause, 7–18
Snapshot page

allocating, 7–18
SQL$EDIT logical name, 7–314
SQLCA

in EXECUTE statement, 7–326
SQL command lines, editing with EDIT

statement, 7–314
SQLDA, 7–247, 7–346

in DESCRIBE statement, 7–247, 7–248
parameter markers, 7–247
select lists, 7–247

SQLINI command file, 7–321
SQL mapping routine

CREATE STORAGE MAP statement, 7–36
SQL module language

CASCADE keyword, 7–274
CATALOG keyword, 7–261
dynamic SQL example in C, 7–327

SQL module language (cont’d)
IF EXISTS keyword, 7–261, 7–263, 7–266,

7–271, 7–274, 7–277, 7–280, 7–283, 7–286,
7–288, 7–292, 7–295, 7–298, 7–300, 7–302,
7–307, 7–311

RESTRICT keyword, 7–274
SCHEMA keyword, 7–293

SQL precompiler
ALIAS keyword, 7–201
authorization identifier, 7–206
AUTHORIZATION keyword, 7–202
CATALOG keyword, 7–202
CHARACTER LENGTH clause, 7–202, 7–208
character set, 7–203, 7–204, 7–205
DECLARE MODULE statement, 7–200,

7–208
default character set, 7–203
DEFAULT CHARACTER SET clause, 7–203,

7–208
DEFAULT DATE FORMAT clause, 7–203
DIALECT clause, 7–203
IDENTIFIER CHARACTER SET clause,

7–204
keyword interpretation, 7–203, 7–204
KEYWORD RULES clause, 7–204
MODULE keyword, 7–205
multiple transaction declarations, 7–233
NAMES ARE clause, 7–208
names character set, 7–205
national character set, 7–205
NATIONAL CHARACTER SET clause,

7–205, 7–208
QUOTING RULES clause, 7–206
RIGHTS clause, 7–206
SCHEMA keyword, 7–206
specifying date format, 7–203
VIEW UPDATE RULES clause, 7–207

statement-item-name
GET DIAGNOSTICS statement, 7–366

Statement names
in DESCRIBE statement, 7–249
in EXECUTE statement, 7–325

Statement string
in EXECUTE IMMEDIATE, 7–332

Index–16

Stopping interactive sessions
with EXIT, 7–337

Storage area
assigning row cache, 7–13
CREATE STORAGE AREA clause, 7–11,

7–19
deassigning row cache, 7–17
defining, 7–11
disabling extents, 7–15
enabling extents, 7–15
for compressed data, 7–34
for lists, 7–32

filling randomly, 7–29
filling sequentially, 7–29
setting a default storage area, 7–32

for table rows, 7–32
logical area thresholds, 7–34
page format, 7–17
page size, 7–18

STORAGE MAP clause
of CREATE STORAGE MAP statement, 7–32

Storage maps
CREATE STORAGE MAP statement, 7–25
defining, 7–25
deleting, 7–298
DROP STORAGE MAP statement, 7–298

Stored function
cascade deleting, 7–288
deleting, 7–288, 7–289
restrict deleting, 7–289

STORED NAME IS clause
of CREATE STORAGE MAP statement, 7–34
of CREATE TABLE statement, 7–74
of CREATE TRIGGER statement, 7–116
of CREATE VIEW statement, 7–138

Stored procedure
cascade deleting, 7–288
deleting, 7–277, 7–288, 7–289
restrict deleting, 7–289

Stored routine
cascade deleting, 7–288
deleting, 7–288
restrict deleting, 7–289

STORE IN clause
of CREATE STORAGE MAP statement, 7–32

STORE LISTS clause
of CREATE STORAGE MAP statement, 7–32

STORE RANDOMLY ACROSS clause
of CREATE STORAGE MAP statement, 7–34

STORE USING clause of CREATE STORAGE
MAP statement, 7–34

Storing data
in views, 7–139

Strict partitioning, 7–30
Summation updates

using triggers, 7–112
SYSPRV privilege, 7–378
System-defined identifiers, 7–390
System relations

Consult online SQL Help for this information
System tables

Consult online SQL Help for this information

T
Table

ALTER privilege, 7–386
cascading delete, 7–302
CREATE privilege, 7–386
creating, 7–58

maximum allowed, 7–82
using character set, 7–59

DBADM privilege, 7–386
DBCTRL privilege, 7–386
declaring explicitly, 7–220
default protection on, 7–380
definitions

containing lists, 7–101
CREATE TABLE statement, 7–58 to

7–111
DROP TABLE statement, 7–302

DELETE privilege, 7–386
deleting, 7–302
DROP privilege, 7–386
global temporary, 7–72
granting access, 7–380, 7–401
INSERT privilege, 7–386
local temporary, 7–72

Index–17

Table (cont’d)
maximum number of, 7–82
privileges, 7–380, 7–401
REFERENCES privilege, 7–386
referencing, 7–71, 7–73
SELECT privilege, 7–386
SHOW privilege, 7–386
specifying

in GRANT statement, 7–385, 7–405
UPDATE privilege, 7–386

Table columns
data type

default character set, 7–59
national character set, 7–59

Table constraints, 7–99
See also CREATE TABLE statement
declaring, 7–73
in CREATE TABLE statement, 7–66, 7–74
in DEFERRABLE clause, 7–66
privileges required for declaring, 7–73

Table cursor
See Cursor

Table definitions
adding to repository, 7–82

Table-specific constraints
See also CREATE TABLE statement
declaring, 7–73
privileges required for declaring, 7–73
required privileges for, 7–82
uses of, 7–81

Temporary table, 7–72
See also Declared local temporary table
deleting rows on commit, 7–73
global, 7–72
local, 7–72
preserving rows on commit, 7–73

TEMPORARY TABLE statement
compression is disabled, 7–66
compression is enabled, 7–66

Terminators
required for BEGIN DECLARE statement,

7–318
required for END DECLARE statement,

7–318

THRESHOLDS clause
of CREATE STORAGE AREA clause, 7–19
of CREATE STORAGE MAP statement, 7–34

TO clause
of ANSI/ISO-style GRANT statement, 7–406
of GRANT statement, 7–389

TRACE statement
of CREATE TRIGGER statement, 7–113

TRACE_ENABLED clause
GET DIAGNOSTICS statement, 7–368

Transactions, 7–227
declaring dynamically, 7–233
ending, 7–254
environment, 7–228
format for specifying, 7–228
in

context files, 7–228
DECLARE TRANSACTION statement,

7–227
embedded SQL, 7–228
interactive SQL, 7–228

isolation levels in, 7–228
multiple declarations in programs, 7–233
prestarted

disabling, 7–154
restriction in programs, 7–233

TRANSACTIONS_COMMITTED clause
GET DIAGNOSTICS statement, 7–368

TRANSACTIONS_ROLLED_BACK clause
GET DIAGNOSTICS statement, 7–368

TRANSACTION_ACTIVE clause
GET DIAGNOSTICS statement, 7–368

TRANSACTION_CHANGE_ALLOWED clause
GET DIAGNOSTICS statement, 7–368

TRANSACTION_SEQUENCE clause
GET DIAGNOSTICS statement, 7–369

TRANSACTION_TIMESTAMP clause
GET DIAGNOSTICS statement, 7–369

Trigger definitions
adding to repository, 7–82

Triggered action
defined, 7–113
specifying with CREATE TRIGGER, 7–116

Index–18

Triggered statement
defined, 7–113

Triggers, 7–112
and external function callouts, 7–120
and table-specific constraints, 7–81
cascading deletes, 7–112
cascading updates, 7–112
creating, 7–112
defining a cascading delete trigger, 7–124
deleting, 7–307
environment, 7–113
hidden deletes, 7–112
in embedded SQL, 7–113, 7–307
in interactive SQL, 7–113, 7–307
nested, 7–119
security functions, 7–112
summation updates, 7–112
trigger that performs an update, 7–127
trigger that prevents delete, 7–130

U
UIC identifier

See User identifier
UID identifier

See User identifier
UNION clause

accessing view containing
restriction, 7–178

UPDATE clause of CREATE TRIGGER
statement, 7–116

Update-only cursors, 7–167
UPDATE privilege, 7–386
UPDATE statement

in CREATE TRIGGER statement, 7–116
specifying through CREATE TRIGGER

statement, 7–112
using with views, 7–139

Updating
tables

in CREATE TRIGGER statement, 7–116
in DECLARE CURSOR statement, 7–167

views, 7–139

User authentication
DECLARE ALIAS statement, 7–152
DROP DATABASE statement, 7–269
EXPORT statement, 7–339

USER clause
DECLARE ALIAS statement, 7–155
DROP DATABASE statement, 7–270
EXPORT statement, 7–339

User identification code (UIC)
See User identifier

User identifier
in GRANT statement, 7–390, 7–401

User-supplied name
dynamic SQL statements, 7–249
statement names, 7–249

USING clause
DECLARE ALIAS statement, 7–155
DROP DATABASE statement, 7–270
EXECUTE statement, 7–326
EXPORT statement, 7–339

USING DESCRIPTOR clause
EXECUTE statement, 7–326

V
Value expression

COMPUTED BY columns, 7–67
DEFAULT value, 7–69, 7–212

Variable
specifying dynamic statements, 7–332

Variable declaration
in dynamic SQL, 7–238
in interactive SQL, 7–238

Vertical partitioning, 7–32
VERTICAL PARTITION name clause

CREATE STORAGE MAP statement, 7–35
View

accessing using dynamic cursors
restriction, 7–178

cascading delete, 7–311
changing data in, 7–139
default protection on, 7–380
defining, 7–136 to 7–146
deleting, 7–311
DROP VIEW statement, 7–311 to 7–313

Index–19

View (cont’d)
maximum number of, 7–141
read-only, 7–137, 7–139
rules for updating, 7–139
update of

controlling interpretation of
in precompiled SQL, 7–203, 7–207

VIEW UPDATE RULES clause
in precompiled SQL, 7–207
of DECLARE MODULE statement, 7–207

W
WHERE CURRENT OF clause, 7–167
WITH CHECK OPTION clause, 7–137, 7–140,

7–142
WITH GRANT OPTION clause, 7–406
WITH HOLD clause

of DECLARE CURSOR statement, 7–167
WITH LIMIT OF clause of CREATE STORAGE

MAP statement, 7–35
WITH NO EXTENSIONS clause

restriction, 7–341
Write-once, read-many device

storing list information on, 7–43

Index–20

