
Oracle Rdb Technical Forums
Optimizer Update

Jim Murray
Oracle New England
Development Centre

Agenda

• Query Timeout.
• Index Prefetch.
• Peephole Optimization.
• Bitmapped Scan Performance Enhancements.

– Improved processing of unique keys.
– Enhanced Fast First tactic.

• Dynamic Optimizer Fast First Shortcut.
• Bitmapped Scan For OR Index Retrieval.

Query Governor
Enhancement

Execution Timeouts
• Abort long running queries

– Elapsed time
– CPU time

• SQL Interface
– SET QUERY EXECUTION LIMIT {CPU|ELAPSED}

n {SECONDS|MINUTES}
• RMU/SHOW STATISTICS

– “Terminate Request” option on “Tools” menu
• Available in 7.1.2.4 and later

Query Timeout

• Timeout execution limit:

• Timeout forced from RMU:

%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-MAXTIMLIM, query governor maximum timeout
has been reached

%RDB-E-EXQUOTA, Oracle Rdb runtime quota exceeded
-RDMS-E-REQCANCELED, request canceled

New in 7.2
Index Prefetch

• Range retrievals only
– SELECT C1 FROM T1 ORDER BY C2;
 Get Retrieval by index of relation T1
 Index name I1 [0:0]

• Prefetch done for:
– Index nodes
– Data pages pointed to by entries in index nodes

• Prefetch not done for:
– Index nodes in a cached index
– Data rows in a cached table
– DDL (metadata) lookups
– Dynamic optimizer strategies

New in 7.2
Index Prefetch

• Test results for a “worst case” index showed
about a 40-60% improvement in elapsed
execution time, depending on disk speed

• CPU consumption difference is essentially
nil

• Underlying caches (like XFC) have big
impact on actual improvement
– No improvement if no disk I/O performed

Peephole Optimization
for Hidden Key Retrieval

• The problem:
– Column references inside functions can prevent optimal retrieval strategies.
– Note the full [0:0] index scan.

SQL> select last_name from employees where cast (last_name
as varchar (31)) = 'Smith`;
Tables:
 0 = EMPLOYEES
Conjunct: CAST (0.LAST_NAME AS VARCHAR (31)) = 'Smith'
Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_LAST_NAME [0:0]
 LAST_NAME
 Smith
 Smith
2 rows selected

Peephole Optimization
for Hidden Key Retrieval

• Optimzer “peeks” into the predicate to see if these
operators are present (may be deeply nested), and
to use the hidden base column, if detected, as the
index retrieval.

• Note that the notation “Hidden Key” is displayed
to indicate that the key is retrieved by the index
lookup scan performed on the index key (ikey) of
the base column hidden under the function.

• Disabled with set flags ‘NOHIDDEN_KEY’.

Peephole Optimization
for Hidden Key Retrieval

• Works for:
• equals (=)
• greater than (>)
• less than (<)
• greater or equal (>=)
• less than or equal (<=)
• IS NULL
• IS NOT NULL

• On the functions:
• CAST(? AS CHAR(n))
• TRIM(TRAILING FROM ?)
• STARTING WITH and LIKE

Peephole Optimization
for Hidden Key Retrieval

• Note the “Hidden Key” and [1:1] scan.
SQL> select last_name from employees where cast
(last_name as varchar(31)) starting with 'Smith';
Tables:
 0 = EMPLOYEES
Conjunct: CAST (0.LAST_NAME AS VARCHAR(31))
STARTING WITH 'Smith'
Index only retrieval of relation 0:EMPLOYEES
 Index name EMP_LAST_NAME [1:1] Hidden Key
 Keys: 0.LAST_NAME STARTING WITH 'Smith'
 LAST_NAME
 Smith
 Smith
2 rows selected

Bitmapped Scan

• Processing of unique keys and non-ranked indexes.
– Used to add one Dbkey at a time into the BBC.
– Very CPU intensive.
– Now uses a 1024 Dbkey buffer.
– Used when any key/index does not have a BBC duplicates.
– Sorts and rolls dbkeys into a BBC:

• At end of index scan.
• When Dbkey buffer fills.

– Execution trace shows Bld_Map trace.
– Up to 75% CPU reduction for some queries.

Bitmapped Scan
• Old Dbkey at a time processing of an index

– .

– .

• New Behavior

~E#0001.01(1) Estim Index/Estimate 1_1 2/29 3/29
~E#0001.01(1) BgrNdx1 FillMap2 DBKeys=1 Fetches=1+0
~E#0001.01(1) BgrNdx1 FillMap2 DBKeys=1 Fetches=0+0
~E#0001.01(1) BgrNdx1 Or__Map2 DBKeys=2 Fetches=0+0
~E#0001.01(1) BgrNdx1 FillMap2 DBKeys=1 Fetches=0+0
~E#0001.01(1) BgrNdx1 Or__Map2 DBKeys=3 Fetches=0+0
...
~E#0001.01(1) BgrNdx1 Or__Map2 DBKeys=19 Fetches=0+0
~E#0001.01(1) BgrNdx1 EofData DBKeys=19 Fetches=1+0

~E#0001.01(1) Estim Index/Estimate 1_1 2/29 3/29
~E#0001.01(1) BgrNdx1 EofData DBKeys=19 Fetches=1+0
~E#0001.01(1) BgrNdx1 Bld_Map2 DBKeys=19 Fetches=0+0

Bitmapped Scan

• Enhanced Fast First
– Old Behaviour

• Background (Bgr) scans an index passing dbkeys for
Foreground (Fgr).

• Fgr fetches the rows, filters, and possibly delivers.
• Fgr has 1024 dbkey list of delivered rows.
• Bgr has dbkey BBC and must add dbkeys one at a time.
• Final (Fin) uses Bgr dbkey BBC to fetch and deliver rows not

already delivered by Fgr.

Bitmapped Scan

• Enhanced Fast First
– Limitations:

• If many rows are not delivered Bgr BBC can contain many
dbkeys for unwanted rows that have already been fetched and
filtered by Fgr.

• Fin will have to fetch and re-test any dbkey not in Fgr dbkey
list.

• Maintaining BBC costly.
• It is known that Fgr has processed these rows, so simply wasted

effort.
• Most costly if many rows are rejected (Bgr Dbkey BBC much

bigger than Fgr).

Bitmapped Scan

• Enhanced Fast First
– New behaviour:

• Bgr dbkey BBC not maintained while Fast First is running.
• If Fast First is abandoned, new dbkeys are recorded (buffer and or

BBC).
• Fin only has to process dbkeys fetched after Fast First is terminated.

– When First Bgr index is an OR index list:
• The same dbkey could be read from two different OR indexes.
• Must maintain Dbkeys BBC to prevent duplicates.
• Discarded when Fast First finishes.

– Saves CPU time during Fast First.
– Saves IO and CPU during Fin.

Fast First Shortcut
• Old Behaviour:

– Bgr Scans 1st Bgr index passing dbkeys to Fgr.
– Fgr fetches, filters and potentially delivers row.
– If 1st Bgr index scan completes scan 2nd Bgr index.
– Fast First only turned on for 1st Bgr index.
– Fin uses Bgr dbkey list to fetch filter and deliver rows not in Fgr dbkey list.

• The problem:
– If the first Bgr index scan completes then we know that all possible rows

have been delivered.
– Scanning additional indexes is redundant
– E.G “where last_name=‘Smith’ and first_name=‘John’
– If we have processed all ‘Smith’ rows in FFirst then we don’t need to read

the first_name index.
• Now abandon Fin if fast first is still running.

Fast First Shortcut

• In the following execution trace, the Fin
phase does not execute because Fast First
was still running when the first index scan
completed.

~E#0003.01(1) Estim Index/Estimate 1/17 2/46
~E#0003.01(1) BgrNdx1 EofData DBKeys=63 Fetches=0+0 RecsOut=0
#Bufs=24
~E#0003.01(1) FgrNdx FFirst DBKeys=0 Fetches=0+23 RecsOut=0`ABA
~E#0003.01(1) Fin Buf_Ini DBKeys=0 Fetches=0+0 RecsOut=0`ABA

Special Image 02 for V7.1.3
• Fast First shortcut exposed a problem where

the 1025th row could fail to be delivered.
SQL> select * from t1 where f1=1;
~E#0000.00(2) Estim Index/Estimate 1/2
~E#0000.00(2) BgrNdx1 EofData DBKeys=2 Fetches=0+0 RecsOut=0 #Bufs=1
~E#0000.00(2) Fin Buf DBKeys=2 Fetches=0+1 RecsOut=2
~S#0001
Leaf#01 FFirst T1 Card=1025
 BgrNdx1 I1 [1:1] Fan=17
~E#0001.01(1) Estim Index/Estimate 1/2050
 F1 F2
 1 1
...
 1 1
~E#0001.01(1) BgrNdx1 EofBuf DBKeys=1024 Fetches=0+3 RecsOut=1024
~E#0001.01(1) BgrNdx1 EofData DBKeys=1025* Fetches=0+0 RecsOut=1024
#Bufs=10
~E#0001.01(1) FgrNdx FFirst DBKeys=1024 Fetches=0+12 RecsOut=1024`ABA
~E#0001.01(1) Fin TTblIni DBKeys=0 Fetches=0+0 RecsOut=1024`ABA
 1 1
1024 rows selected

Bitmapped Scan Or
Index Retrieval

• In the past, would only used bitmapped scan if
there was at least one AND index.

• Would not use bitmapped scan for a simple OR
query.

• E.g. select * from employees where
last_name=‘Smith’ or first_name=‘John’;

• Would use a ‘static’ OR tactic instead.
• Now uses bitmapped scan for simple OR queries if

bitmapped scan is enabled.

Bitmapped Scan OR
Index Retrieval

• This is a simple example of Bitmapped OR:
set flags 'strategy,detail,bitmap'
select count(*) from employees
 where (employee_id>'00300‘ or last_name>'L');
Tables:
 0 = EMPLOYEES
Aggregate: 0:COUNT (*)
Leaf#01 BgrOnly 0:EMPLOYEES Card=100 Bitmapped scan
 Bool: (0.EMPLOYEE_ID > '00300') OR (0.LAST_NAME > 'L')
 BgrNdx1 EMP_EMPLOYEE_ID [1:0] Fan=17
 Keys: 0.EMPLOYEE_ID > '00300'
 OrNdx1 EMP_LAST_NAME [1:0] Fan=12
 Keys: 0.LAST_NAME > 'L'

 56
1 row selected

• www.oracle.com/rdb
• metalink.oracle.com
• www.hp.com/products/openvms
• mark.bradley@oracle.com
• jim.murray@oracle.com
• paul.mead@oracle.com
• michael.ong@oracle.com

For More Information

Q U E S T I O N S

A N S W E R S
&

