
 1

Oracle® JDBC for Rdb

User Guide

July 2011

Release 7.3.0.2

Oracle JDBC for Rdb User Guide, Release 7.3.02

Copyright © 2005, 2011 Oracle Corporation. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary

information of Oracle Corporation; they are provided under a license agreement containing

restrictions on use and disclosure and are also protected by copyright, patent, and other

intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation

of the Programs is prohibited.

The information contained in this document is subject to change without notice. If you find

any problems in the documentation, please report them to us in writing. Oracle Corporation

does not warrant that this document is error free. Except as may be expressly permitted in

your license agreement for these Programs, no part of these Programs may be reproduced or

transmitted in any form or by any means, electronic or mechanical, for any purpose, without

the express written permission of Oracle Corporation.

If the Programs are delivered to the U.S. Government or anyone licensing or using the

Programs on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation

and technical data delivered to U.S. Government customers are "commercial technical data"

pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental

regulations. As such, use, duplication, disclosure, modification, and adaptation of the

Programs, including documentation and technical data, shall be subject to the licensing

restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable,

the additional rights set forth in FAR 52.227-19, Commercial Computer Software -

Restricted Rights (June, 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA

94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or

other inherently dangerous applications. It shall be the licensee's responsibility to take all

appropriate fail-safe, back up, redundancy and other measures to ensure the safe use of such

 2

applications if the Programs are used for such purposes, and Oracle Corporation disclaims

liability for any damages caused by such use of the Programs.

Oracle is a registered trademark of Oracle Corporation. All other company or product names

mentioned are used for identification purposes only and may be trademarks of their

respective owners.

The Programs may provide links to Web sites and access to content, products, and services

from third parties. Oracle is not responsible for the availability of, or any content provided

on, third-party Web sites. You bear all risks associated with the use of such content. If you

choose to purchase any products or services from a third party, the relationship is directly

between you and the third party. Oracle is not responsible for: (a) the quality of third-party

products or services; or (b) fulfilling any of the terms of the agreement with the third party,

including delivery of products or services and warranty obligations related to purchased

products or services. Oracle is not responsible for any loss or damage of any sort that you

may incur from dealing with any third party.

 3

Contents

Preface ... 7
Purpose of This Manual ... 7
Intended Audience .. 7
Document Structure ... 7
Conventions ... 7
Chapter 1 Introduction .. 9
Chapter 2 Oracle JDBC for Rdb Drivers ... 11

2.1 Oracle JDBC for Rdb Native Driver ... 11
2.1.1 URL Specification Used with the Oracle JDBC for Rdb native driver 11

2.1.2 Class Used with the Oracle JDBC for Rdb native driver.. 12

2.2 Oracle JDBC for Rdb Thin Driver... 12
2.2.1 URL Specification Used with the Oracle Rdb thin driver .. 13

2.2.2 Class Used with the Oracle JDBC for Rdb thin driver ... 14

2.3 Connection Options ... 14

2.4 Oracle JDBC for Rdb System Properties... 17
Chapter 3 Oracle JDBC for Rdb Servers ... 19

3.1 Oracle JDBC for Rdb Thin Server ... 19

3.1.1 Starting a Thin Server ... 20

3.2 Oracle JDBC for Rdb Multi-process Server .. 21
3.2.1 Starting a Multi-process Server .. 22
3.2.2 Shared Memory Usage .. 24
3.2.3 Prestarted Executors.. 25

3.2.4 Executor Naming .. 25
3.2.5 Executor Process Startup .. 26

3.3 Oracle JDBC for Rdb Pool Server... 28
3.3.1 Starting a Pool Server ... 29
3.3.2 Pool Server Operation ... 30

Chapter 4 Server Configuration .. 32

4.1 Server Configuration Options .. 32

4.2 Pool Server Configuration Options ... 41

4.3 Configuration Files .. 44

4.3.1 Standard Properties File .. 44
4.3.2 XML-Formatted Configuration File ... 46
4.3.3 Using filenames in the configuration file.. 56

Chapter 5 Using SSL .. 58

5.1 SSL Configuration .. 58
5.1.1 Client SSL Configuration ... 58
5.1.2 Server SSL Configuration ... 60

 4

5.2 SSL and the Controller... 61

5.3 SSL Configuration Options .. 62

5.4 Using Self-Signed Certificates for Testing ... 63
Chapter 6 Oracle JDBC for Rdb Controller .. 65

6.1 Running the Controller .. 68
6.1.2 Controller Command Line .. 71

6.2 Connecting to Servers .. 76
6.2.1 Connect Command.. 78
6.2.2 Implicit Connection .. 78

6.3 Control Password .. 79

6.4 Multicast Polling .. 80

6.5 Server Matching ... 81

6.5.1 type match ... 82
6.5.2 name match ... 83
6.5.3 port match ... 83

6.5.4 stat match .. 84
6.5.5 node match .. 85

6.5.6 vers match ... 85
6.5.7 Handling prior version Servers ... 86

6.6 Server Operations .. 87

6.6.1 Closing Servers ... 87
6.6.2 Opening Servers .. 89

6.6.3 Showing Servers ... 91

6.6.4 Starting Servers ... 93

6.6.5 Stopping Servers ... 94
6.6.6 Watching Servers .. 96

6.6.7 Polling Servers .. 97
6.6.8 POLL Sub-commands ... 99

6.7 Client Operations ... 101

6.7.1 Showing Clients .. 101
6.7.2 Stopping Clients .. 103

6.8 Other Commands ... 105
6.8.1 Digest .. 105
6.8.2 Obfuscate .. 106

Chapter 7 Oracle SQL/Services and Oracle JDBC for Rdb Servers ... 108

7.1 JDBC Dispatcher ... 108

7.1.1 Creating an Oracle SQL/Services JDBC Dispatcher .. 108
7.1.2 Associating an Oracle SQL/Services JDBC Dispatcher to a Server 109
7.1.3 Starting a JDBC Dispatcher .. 115
7.1.4 Stopping a JDBC Dispatcher .. 116

7.2 Command Procedures used by Oracle SQL/Services .. 117
7.2.1 JDBC Dispatcher Setup Procedure ... 118

 5

7.3 Using Pool Servers .. 118
Chapter 8 Performance .. 121

8.1 Performance Features ... 122

8.2 FetchSize .. 122

8.3 Lockwait and Maxtries ... 122
8.3.1 Lockwait precedence .. 123

8.4 Inactivity timeouts .. 124
8.4.1 Client connection timeout ... 125
8.4.2 Server Inactivity Timeout ... 126

8.5 SQL Statement Cache .. 127
8.5.1 Caching Statement Handles .. 128

8.6 Results Cache ... 130
Chapter 9 Other Features .. 132

9.1 Anonymous Usernames .. 132

9.2 BYPASS Privilege .. 132

9.2.1 BYPASS and Multi-Process servers ... 133

9.3 Persona .. 134

9.3.1 Persona and Server Operations ... 134

9.4 Default Transaction ... 135

9.5 Executor Sub-process used with the Rdb Native driver ... 136

9.5.1 Setting Maximum Handshake Tries and Wait Duration ... 136

9.6 JDBC Hint Methods ... 137

9.7 Logging .. 137

9.8 Ignoring Statement.cancel() Method Calls .. 138

9.9 Server Name ... 138

9.10 Named Databases .. 140

9.11 On Start Commands ... 141
9.11.1 srv.onStartCmd ... 141
9.11.2 srv.onExecStartCmd ... 143

9.11.3 srv.onCliStartCmd .. 144

9.12 Password Obfuscation in Server Configuration Files ... 145
9.12.1 Control Passwords .. 145

9.12.2 User Passwords ... 146

9.13 Restricting Server and Database Access ... 148
9.13.1 Restricting Database Access ... 148
9.13.2 Restricting User Access .. 149

9.13.3 Privileged Users Access .. 150
9.13.4 Access to the Command Line ... 150
9.13.5 Further server access protection .. 151

 6

9.14 Scope of CONNECTION.setReadOnly() .. 152

9.15 Server Command Procedures .. 153
9.15.1 Server Startup Command Procedure ... 154
9.15.2 Executor Startup Command Procedure ... 155

9.15.3 CLI Startup Command Procedure ... 156

9.16 Server/Client Protocol Checking ... 156

9.17 Using OpenVMS FailSAFE IP. .. 157

9.18 Attaching to Multiple Databases in the Same Connection .. 158

9.19 Shutdown Thread ... 159

9.20 Getting a List of Known Databases from Server ... 160
9.20.1 Show Databases SQL statement ... 161

9.20.2 getDatabases() ... 161

9.21 Trace .. 162
9.21.1 Setting tracelevel ... 163
9.21.2 Abbreviated form of tracelevel ... 164

9.21.3 Trace Values ... 165

9.22 File and Directory access Requirements ... 165
Chapter 10 JDBC Extensions for Oracle Rdb.. 167

10.1 Blob Class .. 167
10.1.1 setSegSeparator() Public Method ... 167

10.2 Driver Class ... 168
10.2.1 attach() Public Method .. 169

10.2.2 getDatabases() Public Static Method .. 171

10.3 ResultSet Class ... 172

10.3.1 getBytes() Public Method ... 173

10.4 Extended SQL Syntax - SET ... 173

10.5 Extended SQL Syntax – SHOW DATABASES ... 174
Chapter 11 Other Information .. 176

11.1 Disallowed Dynamic SQL Statements ... 176

11.2 Sample Setup, Starting and Using an Oracle JDBC for Rdb thin server. 176

11.3 Sample Setup, Starting an Oracle JDBC for Rdb thin server from Oracle SQL/Services. 186

11.4 Sample configuration file MY_SERVERS.XML ... 191

11.5 Datatype Mapping from Oracle Rdb to java.sql.Types ... 194

11.6 Datatype Mapping from java.sql.Types to Oracle Rdb ... 194

11.7 JDBC Specification SQL to Java Datatype Mappings .. 195

11.8 JDBC Specification Java to SQL Datatype Mappings .. 196

 7

Preface

Purpose of This Manual

The Oracle JDBC for Rdb 7.3 User Guide describes concepts, features and usage of the

Oracle JDBC for Rdb drivers and servers. This user guide covers Oracle JDBC for Rdb for

OpenVMS on both Alpha and Integrity Servers.

Intended Audience

This document is intended for users responsible for:

 System management

 Database administration

 Application programming

Document Structure

This document consists of ten chapters:

 Chapter 1 Introduction

 Chapter 2 Describes the Oracle JDBC for Rdb drivers

 Chapter 3 Describes the Oracle JDBC for Rdb servers

 Chapter 4 Describes details on how to configure Oracle JDBC for Rdb servers

 Chapter 5 Describes details on how to use SSL with Oracle JDBC for Rdb.

 Chapter 6 Describes how to use the Oracle JDBC for Rdb controller

 Chapter 7 Describes how to use Oracle JDBC for Rdb with Oracle SQL/Services

 Chapter 8 Describes performance features that are available

 Chapter 9 Describes other features that are available

 Chapter 10 Describes the JDBC extensions available for use with Oracle Rdb

 Chapter 11 Show general examples and datatype compatibilities

Conventions

Oracle JDBC for Rdb is often referred to as JDBC.

 8

Oracle Rdb is often referred to as Rdb.

Hewlett-Packard Company is often referred to as HP.

The following conventions are used in this document:

word
A lowercase word in a format example indicates a syntax element that

you supply.

[]
Brackets enclose optional clauses from which you can choose one or

none.

{ } Braces enclose clauses from which you must choose one alternative.

... A horizontal ellipsis means you can repeat the previous item.

.

.

.

A vertical ellipsis in an example means that information not directly

related to the example has been omitted.

Conventions in Code Examples

Code examples illustrate SQL or other command-line statements. They are displayed in a

monospace (fixed-width) font and separated from normal text as shown in this example:

SELECT last_name FROM employees WHERE last_name = 'TOLIVER';

Contents

 9

Chapter 1
Introduction

Oracle provides the following Oracle JDBC for Rdb drivers:

 Oracle JDBC for Rdb native driver for client-side use with an Oracle Rdb installation

 Oracle JDBC for Rdb thin driver, a 100 percent pure Java driver for client-side use

without an Oracle Rdb installation. This is particularly useful with applets.

The Oracle JDBC for Rdb drivers provide the same basic functionality. They both support

the following standards and features:

 JDK 1.5 / JDBC 3.0

 Same syntax and APIs

The Oracle JDBC for Rdb drivers implement standard Sun Microsystems java.sql

interfaces. It is assumed that the reader of these notes is already familiar with Java and

JDBC.

General information on Java may be found at

http://www.oracle.com/technetwork/java/index.html

General information on JDBC may be found at

http://www.oracle.com/technetwork/java/index-142838.html

Documentation for HP's Java for OpenVMS system may be found at the following web

sites:

http://www.compaq.com/java/documentation/index.html - Java 2.

http://h18012.www1.hp.com/java/documentation/index.html

In conjunction with the Oracle JDBC for Rdb thin driver, Oracle provides the following

Oracle JDBC for Rdb servers:

 Oracle Rdb thin server

 Oracle Rdb thin multi-process server

 Oracle Rdb thin pool server

The Oracle JDBC for Rdb servers carry out remote database access operations on behalf of

the Oracle JDBC for Rdb thin driver.

http://www.oracle.com/technetwork/java/index.html
http://www.oracle.com/technetwork/java/index-142838.html
http://www.compaq.com/java/documentation/index.html#Java 2
http://h18012.www1.hp.com/java/documentation/index.html

 10

Management of the Oracle JDBC for Rdb servers may be carried out using the Oracle

JDBC for Rdb controller or by using the Oracle SQL/Services manager.

Contents

 11

Chapter 2
Oracle JDBC for Rdb Drivers

There are two types of Oracle JDBC for Rdb drivers:

 Oracle JDBC for Rdb native driver

 Oracle JDBC for Rdb thin driver

The following sections discuss these two diver types as well how to connect to Oracle Rdb

databases and use System Properties when using the drivers:

 Connection Options

 Oracle JDBC for Rdb System Properties

2.1 Oracle JDBC for Rdb Native Driver

The Oracle JDBC for Rdb native driver is a Type II driver intended for use with client-

server Java applications.

The native driver, written in a combination of Java and C, converts JDBC invocations to

calls to SQLMOD modules, using native methods to call C-entry points.

When you use the native driver, the driver connects directly to the Oracle Rdb database

system using SQLMOD. If you are not using Rdb Remote Access then there are no

network connections involved. This means that the native driver is potentially the fastest

JDBC access method available within the Oracle JDBC for Rdb drivers.

Because the driver uses SQLMOD libraries to carry out Oracle Rdb access, the driver can

only be used on a client machine if Oracle Rdb Client libraries are also available on that

same machine. In addition, it is necessary for the driver to dynamically load a shared image

to use with its Java JNI interface. Thus this driver is not suitable for use with applications

that require Java applets.

2.1.1 URL Specification Used with the Oracle JDBC for Rdb native

driver

When you use the JDBC DriverManager to connect to an Oracle Rdb database using the

native driver the following connection URL format should be used:

Format
 jdbc:RdbNative:<database_specification><connect_switches>

 12

Elements

 The format elements are described in the following table:

Table 2.1-1 RdbNative Format Elements

Element Description

<database_specification> Is the full file specification of the Rdb

database that you wish to connect to.

<connect_switches>

These optional switches may be used to

specify certain settings that should be

established when the database connection is

made.

See Connection Options for more details.

Remarks

The <database_specification> should be a valid OpenVMS file specification or logical

name.

Example

 To connect to MY_DB_DIR:PERSONNEL:

 Connection conn = DriverManager.getConnection(

 "jdbc:RdbNative:my_db_dir:personnel",user, pass);

2.1.2 Class Used with the Oracle JDBC for Rdb native driver

The Rdb native driver can be found in the following class:

 oracle.rdb.jdbc.rdbNative.Driver

2.2 Oracle JDBC for Rdb Thin Driver

The Oracle JDBC for Rdb thin driver is a 100 percent pure Java, Type IV driver. Because it

is written entirely in Java, this driver is platform-independent. It does not require any

additional Oracle software on the client side.

For use with applets, the thin driver can be downloaded into a browser along with the Java

applet being run. The HTTP protocol is stateless, but the thin driver is not. The initial HTTP

request to download the applet and the thin driver is stateless. Once the thin driver establishes

the database connection, the communication between the browser and the database is stateful

and in a two-tier configuration.

 13

The thin driver allows a direct connection to any Oracle Rdb database via an Oracle JDBC

for Rdb server using TCP/IP on Java sockets.

Note:

When the thin driver is used with an applet, the client browser must have the capability to

support Java sockets.

2.2.1 URL Specification Used with the Oracle Rdb thin driver

When you use the JDBC DriverManager to connect to an Oracle Rdb database using the thin

driver the following connection URL format should be used:

Format

 jdbc:rdbThin://<node>:<port>/<database_specification><connect_switches>

Elements

 The format elements are described in the following table:

Table 2.2-1 RdbThin Format Elements

Element Description

<node> Is the node name or IP address of the node

that the Rdb JDBC server you wish to

connect to is running on.

<port> Is the port the Rdb thin server you wish to

connect to is listening on.

<database_specification> Is the full file specification of the Rdb

database that you wish to connect to.

<connect_switches>

These optional switches may be used to

specify certain settings that should be

established when the database connection is

made.

See Connection Options for more details.

Example

To connect using the thin driver via an Oracle Rdb thin server to

MY_DB_DIR:PERSONNEL on node BRAVO using port 1701:

Connection conn = DriverManager.getConnection(

 14

 "jdbc:rdbThin://bravo:1701/my_db_dir:personnel",user, pass);

Note:

The <database_specification> should be a valid OpenVMS-style file specification or

logical name, for example:

 my_disk:[my_directory]my_database

When you use an Oracle Rdb thin driver connection, any logical names and relative

directory specifications used in the database specification must be valid for the account and

directory from which the Oracle Rdb thin server was started.

2.2.2 Class Used with the Oracle JDBC for Rdb thin driver

The Rdb thin driver can be found in the following class:

 oracle.rdb.jdbc.rdbThin.Driver

Contents

2.3 Connection Options

The Oracle JDBC for Rdb drivers recognize a number of options that may be added to the

connection string to specify certain default behavior and settings to be established when the

connection is made.

Connection options may be either added directly to a connection URL using the @ character

as a separator, or as property values in the properties block that may be passed to the

DriverManager.GetConnection() method .

Format In connection URL
 @<option_name>=<value>

Options

The connections options that may be used are described in the following table:

Table 2.3-1 Connection Options

<option_name> <value> Default Description

alias string NULL Sets the alias for the database attach.

This option is used only when attaching to a

second database within the same Connection.

See Attaching to Multiple Databases in the

 15

<option_name> <value> Default Description

Same Connection for more details.

cli.idleTimeout Decimal or

hex integer

0 Sets the maximum time (in milliseconds) this

client connection may be idle. If no operation

is carried out using this connection within the

time specified, the connection will be forcibly

disconnected.

The value 0 means unlimited idle time allowed.

See Client connection timeout for more details

handshakeTries Decimal or

hex integer

500 Sets the maximum number of times the main

process will attempt to establish handshake

with its associated executor sub-process.

This option is only valid on connections using

rdbNative driver and when multiprocess is

enabled on the native connection.

This option may only be used in conjunction

with the multiprocess option.

See Executor Sub-process used with the Rdb

Native driver for more details.

handshakeWait Decimal or

hex integer

10 Sets the time (in milliseconds) between

handshake tries attempted between the main

process and its associated executor sub-

process.

This option is only valid on connections using

rdbNative driver and when multiprocess is

enabled on the native connection.

This option may only be used in conjunction

with the multiprocess option.

See Executor Sub-process used with the Rdb

Native driver for more details.

lockwait Decimal or

hex integer

-1 Sets the lockwait (in seconds) for transactions.

The value –1 means that the server will wait

indefinitely for the lock.

See Lockwait and Maxtries for more details.

multiProcess true or false false If true a new executor process will be created

for this connection.

This option is only valid when used with an

Rdb Native driver connection and will be

ignored by the Rdb Thin driver.

See Executor Sub-process used with the Rdb

Native driver for more details.

networkKeepalive true or false false If true the socket used to connect the client to

the server will have SoKeepAlive enabled

 16

<option_name> <value> Default Description

See your socket documentation for more

information on SoKeepAlive.

networkTimeout Decimal or

hex integer

0 Sets the maximum time (in milliseconds) this

client connection will wait on the completion

of a read or write on the network. If the read or

write does not complete within the designated

time an exception will be raised.

The value 0 means unlimited time allowed.

This timeout is only applicable to the thin

driver and is only placed on the client-side

socket operations.

sqlcache Decimal or

hex integer

0 Specifies the number of statements that may be

maintained in the SQL cache.

If less than or equal to 0, SQL statement cache

is disabled. Positive values specify the size of

the SQL statement cache.

srv.password string value NONE Specifies the server password to be used for the

connection. See Further server access

protection for more details.

ssl*

various NONE Sets one or more SSL characteristics, see

Using SSL for more details on these

characteristics.

tracelevel or

tl

Decimal or

hex integer

0 Specifies the default tracelevel for the

connection.

transaction readonly or

readwrite or

automatic or

oracle or

manual

automatic Specifies the default transaction for this

connection.

See Default Transaction and

Scope of CONNECTION.setReadOnly() for

more details

usehints

true or false true If true, the optional JDBC hint methods will be

observed.

If false, the optional JDBC hint methods will

be silently ignored.

See JDBC Hint Methods for more details.

Example

To connect using the thin driver via an Oracle JDBC for Rdb server to

MY_DB_DIR:PERS on node BRAVO using port 1755 and enabling full trace logging for

this connection:

 17

Connection conn = DriverManager.getConnection(

 "jdbc:rdbThin://bravo:1755/my_db_dir:pers@tracelevel=-1",

 user, pass);

Alternatively , these options may be placed in a properties block:

Properties info = new Properties();

info.put("user", user);

info.put("password", password);

info.put("tracelevel", traceLevel);

Connection conn = DriverManager.getConnection(

 "jdbc:rdbThin://bravo:1755/my_db_dir:pers", info);

2.4 Oracle JDBC for Rdb System Properties

The Oracle JDBC for Rdb drivers and servers can recognize configuration or connection

properties passed in as Java System Properties from the operating system command line

during application invocation.

When used in conjunction with an application invoking the Rdb native or Rdb thin driver,

the drivers will recognize system properties with an <option_name> similar to a valid

Connection option, see Connection Options for more details of these options.

If the same configuration option is specified as both an Rdb system property and within the

connection URL, then the value within the connection URL will take precedence.

When used in conjunction with an Rdb server invocation the server will recognize system

properties with any <option_name> that may be used as a server configuration option,

see Server Configuration Options and Pool Server Configuration Options for more details

of these options.

Any Rdb system property specified during the invocation of a server will take precedence

over the same property specified on the command line as a standard configuration option or

in a configuration file.

Format

 -Doracle.rdb.jdbc.<option_name>=<value>

Example

To set trace level to trace everything for your application that utilizes either the Rdb native

or Rdb thin driver:

 18

 $java –Doracle.rdb.jdbc.tracelevel=-1 my_application

Contents

 19

Chapter 3
Oracle JDBC for Rdb Servers

Oracle JDBC for Rdb servers are the server-side components that services JDBC requests

issued by applications using the Oracle Rdb thin driver.

There are three types of Oracle JDBC for Rdb servers:

 Oracle JDBC for Rdb thin server

 Oracle JDBC for Rdb multi-process server

 Oracle JDBC for Rdb pool server

Each server is multi-threaded, able to handle multiple client requests at the same time.

Oracle JDBC for Rdb servers should be installed and invoked on each node from which

you wish to serve Oracle Rdb databases.

The Oracle JDBC for Rdb thin driver communicates with the Oracle JDBC for Rdb servers

using Java sockets over TCP/IP.

The following sections provide information about each of the server types and the various

ways you may start-up a server on your system.

Note:

In order to start Oracle JDBC for Rdb servers you will require certain access to the

Oracle JDBC for Rdb directories and files. See File and Directory access

Requirements for more details.

3.1 Oracle JDBC for Rdb Thin Server

The Oracle JDBC for Rdb thin server is a server-side component that services JDBC

requests issued by applications using the Oracle Rdb thin driver.

The standard thin server is multi-threaded, able to handle multiple client requests at the

same time. Because the server is maintained as a single OpenVMS process, database access

for each of the threads is synchronized.

A thin server is installed and invoked on each node from which you wish to serve Oracle

Rdb databases. Oracle Rdb must be already installed and running on these nodes.

The server communicates with the Oracle Rdb thin driver using Java sockets over TCP/IP

with the default Port ID 1701.

 20

3.1.1 Starting a Thin Server

A thin server may be started by using the appropriate start statement within the controller,

as an Oracle SQL/Services JDBC dispatcher or directly from the operating system

command line.

3.1.1.1 Starting a Thin Server from the Oracle JDBC for Rdb controller

A thin server may be started from the controller by referencing a thin server definition in an

XML-formatted configuration file. See Starting Servers within Oracle JDBC for Rdb

Controller for more details.

Example

Given the following server section in the XML-formatted configuration file mycfg.xml:

<server

 name="serv1"

 type="RdbThinSrv"

 url="//localhost:1707/"

 logfile="myLogs:serv1.log"

/>

the following command may be used to start this server from within the controller:

rdbthincontrol> start server serv1

Alternatively the controller may be used in command mode to start a server

$ java –jar rdbthincontrol.jar –cfg mycfg.xml –

 –name serv1 –startserver

3.1.1.2 Starting a Thin Server from Oracle SQL/Services

A thin server may be started from the Oracle SQL/Services manager.

Using the Oracle SQL/Services manager, you must first establish a connection to the

SQL/Service server. Once connected you may then start a JDBC dispatcher.

Before you can start a JDBC dispatcher, you must first create its definition in the Oracle

SQL/Services environment.

See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

Example
$run sys$system:SQLSRV_MANAGE71

SQLSRV> connect server;

Connecting to server

Connected

SQLSRV> start disp JDBC_MPDISP;

 21

SQLSRV>

3.1.1.3 Starting a Thin Server from the Command Line

You may invoke a thin server from the OpenVMS command line.

Instead of placing a number of options on the command line, you may wish to create a

server definition within an XML-formatted configuration file and then start the server using

its server name. The server type for this server definition must be set to RdbThinSrv for a

standard thin server.

Format
$ java –jar rdbthinsrv.jar [<-option>]…

Elements

See Server Configuration Options for a list of valid <-option>s. Remember that on the

DCL command line, each configuration option must have a hyphen (-) prepended to it.

Remarks

By default, the server is assumed to be of type RdbThinSrv, a standard thin server.

See XML formatted Configuration File for more details on server definitions within

configuration files.

Example 1

$ java –jar rdbthinsrv.jar -port 1707

Example 2

Given the following server section in the XML-formatted configuration file mycfg.xml:

<server

 name="serv1"

 type="RdbThinSrv"

 url="//localhost:1707/"

 logfile="myLogs:serv1.log"

/>

the following method may be used to start this thin server:

$ java –jar rdbthinsrv.jar –cfg mycfg.xml –name serv1

3.2 Oracle JDBC for Rdb Multi-process Server

 22

The Oracle JDBC for Rdb multi-process server is a server-side component that processes

requests from the Oracle JDBC for Rdb thin driver using small memory footprint

subprocesses to carry out the requested operations on the Oracle Rdb database.

A multi-process server is multi-threaded and may handle multiple concurrent clients

allocating each client its own subprocess for database access, thus allowing better

concurrency and availability.

The majority of the multi-process server operations are carried out in a client thread context

within the main server process, handing off control to the clients allocated subprocess only

when direct Oracle Rdb database operations are required. Each client has its own

OpenVMS subprocess, thus concurrency is improved, as the server does not need to

synchronize database operations.

By default, the allocated subprocess is terminated on client disconnect. Executors may also

be retained for re-use after client disconnect, see Prestarted Executors for details.

A multi-process server is installed and invoked on each node from which you wish to serve

Oracle Rdb databases. Oracle Rdb must be already installed and running on these nodes.

The server communicates with the thin driver using Java sockets over TCP/IP with the

default Port ID 1701.

3.2.1 Starting a Multi-process Server

A multi-process server may be invoked by using the appropriate start statement within the

controller, as an Oracle SQL/Services JDBC dispatcher, or directly from the operating

system command line.

3.2.1.1 Starting a Multi-process Server from the Controller

A multi-process server may be started from the controller by referencing a multi-process

server definition in an XML-formatted configuration file. See Starting Servers within

Oracle JDBC for Rdb Controller for more details.

Example 1

Given the following server section in the XML-formatted configuration file mycfg.xml:

<server

 name="Mpserv1"

 type="RdbThinSrvMP"

 url="//localhost:1799/"

 logfile="myLogs:serv1.log"

/>

 23

the following command may be used to start this server from within the controller:

rdbthincontrol> start server Mpserv1

Example 2

Given the same configuration file as shown above, the controller may be used in command

mode to start a server:

$ java –jar rdbthincontrol.jar –cfg mycfg.xml –

 –name Mpserv1 –startserver

3.2.1.2 Starting a Multi-process Server from Oracle SQL/Services

A multi-process server may be started from Oracle SQL/Services manager.

Using the Oracle SQL/Services manager, you must first establish a connection to the

SQL/Service server. Once connected you may then start a JDBC dispatcher.

Before you can start a JDBC dispatcher, you must first create its definition in the Oracle

SQL/Services environment.

See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

Example
$run sys$system:SQLSRV_MANAGE71

SQLSRV> connect server;

Connecting to server

Connected

SQLSRV> start disp JDBC_MPDISP;

SQLSRV>

 See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

3.2.1.3 Starting a Multi-process Server from the Command Line

You may invoke a multi-process server from the OpenVMS command line.

Format
$ java –jar rdbthinsrv.jar [<-option>]…

Elements

See Server Configuration Options for a list of valid <-option>s. Remember that on the

DCL command line, each configuration option must have a hyphen (-) prepended to it.

 24

Remarks

Both the thin server and multi-process server are started using the same rdbthinsrv.jar file.

It is the server type that determines the style of server that will be started.

By default, the server is assumed to be of type RdbThinSrv, a standard thin server. To start

a multi-process server, the server type must be set to "RdbThinSrvMP".

Alternatively, the developer may wish to create a server definition within an XML-

formatted configuration file and then start the server using its server name. Again the server

type must be set to "RdbThinSrvMP".

On the DCL command line you must use double quotes to preserve the case-sensitive type

name.

 Example 1
$ java –jar rdbthinsrv.jar –port 1755 –type "RdbThinSrvMP"

Example 2

Given the following server section in the XML-formatted configuration file mycfg.xml:

<server

 name="Mpserv1"

 type="RdbThinSrvMP"

 url="//localhost:1799/"

 sharedmem="102400"

 logfile="myLogs:serv1.log"

/>

the following method may be used to start this multi-process server:

$ java –jar rdbthinsrv.jar –cfg mycfg.xml –name Mpserv1

3.2.2 Shared Memory Usage

The multi-process server needs to allocate shared global memory for communication with

its executors, which you may specify using the sharedmem server configuration option.

The default allocation for shared memory is 1024 KB and is only adequate for one or two

executors.

A rule of thumb that can be used is to allow 1024 KB for each concurrent executor you

expect to be running in conjunction with the server, but this will depend on the complexity

of the queries, the number of columns involved and the size of the data area that will have

to be created to hold the data returned to the executor by Rdb.

 25

3.2.3 Prestarted Executors

With a multi-process server you may also specify the number of executor process that may

be prestarted when the server starts running.

In addition you can also specify the maximum number of free executor process that may be

kept around while the server is running. This is particularly useful if your system takes a

while to start OpenVMS processes and sub-processes due to system load.

By prestarting executor processes you may reduce the overall elapsed time it takes for a

client to make its initial database connection.

3.2.4 Executor Naming

Each executor started up on a single system requires a unique process name on that system.

By default a name will be created for the executor based on the name of the server that

started it and a hexadecimal value that represents the instance of the executor process with

relation to the server.

By default the name of the executor subprocess has the following format:

Format

First seven (7) characters of server name + eight (8) character hexadecimal id.

Remarks

Names of executors are not case-sensitive.

The first seven (7) characters of the names of multi-process servers started up within the

same system should be unique irrespective of character casing, otherwise, executor process

names may clash.

Example 1
RDBTHNS00000220

The format of the executor names may be changed by using the srv.execPrefix

configuration option:

Format

srv.execPrefix + up to eight (8) character hexadecimal id.

 26

Remarks

If the srv.execPrefix configuration option is specified for a Multi-process server, all

executors for that server will have this name prefix. The server will try to provide a unique

name for each executor instance by appending to the given prefix as many characters of the

hexadecimal numeric id of the executor that will still keep the executor name within the

Process name sized expected by OpenVMS.

See XML Formatted Configuration File for more details on server definitions.

Example 2

Given the srv.execPrefix of "MY_EXECUTOR_" the fourth executor will be named:

MY_EXECUTOR_004

Note:

The longer the prefix, the smaller the number of characters that may be used to

provide uniqueness, so consideration should be given to the number of concurrent

executors that you expect a server to maintain when specify a customized

executor name prefix.

3.2.5 Executor Process Startup

The multi-process server will create a subprocess for each executor it allocates and starts.

OpenVMS command procedures are used during this subprocess creation. Information

about these command procedures may found in the Server Command Procedures and On

Start Commands sections of this document.

If a persona is specified for the server (see Persona for more information) the server will

use the OpenVMS CREPRC system service to start the process. If persona is not used

then the JAVA System.exec() method will be used instead.

If the environment for running your servers or your JDBC directories are not appropriately

setup, errors may occur during the startup of the executor process.

See File and Directory access Requirements for more details on JDBC directories access

requirements.

The steps taken during the startup of an executor process depend on whether or not

persona is used with the server.

3.2.5.1 Executor Start-up Steps

 27

Without Persona

If persona is not used the following steps are carried out by the server to start an executor

1. An executor name based on the server name is generated for the new process; see

Executor Naming for more details.

2. An attached process is created using the System.exec() method

3. The command procedure designated by the srv.execStartup option for the

multi-process server is executed. If this option has not been specified for the server

nor for the DEFAULT server in the configuration file, then

RDB$JDBC_HOME:RDBJDBC_STARTEXEC.COM is used. See Server Startup

Command Procedure.

4. If the srv.onExecStartCmd option is present for this server or for the

DEFAULT server then this command is executed. This is generally used to setup

server and site specific environments. See srv.onExecStartCmd.

5. The executor image pointed to by the logical name RDBJDBCEXEC is executed.

6. The executor and server establish communications channels.

With Persona

If persona is used:

1. An executor name based on the server name is generated for the new process; see

Executor Naming for more details.

2. Process quotas are determined for the executor process based on the current quotas

of the executing server.

3. A termination mailbox is setup for the executor process and read issued.

4. CREPRC is used to create a process and SYS$SYSTEM:LOGINOUT.EXE is

executed

5. Steps 3 thru 6 as described in the previous list above.

3.2.5.2 Executor Process Start-up Problems

If a problem occurs during executor subprocess creation, the status codes relating to the

problem will be written to the server log, for example:

 Java.sql.SQLException: Unable to start process,

 status: 0x56EC03C : substatus 65535

The status code shown is a VMS status code or an Rdb specific status code; see your

OpenVMS and Oracle Rdb documentation for more information on this status code.

The substatus indicates more information about the problem found. The following table

lists the subcode values and their meanings.

 28

Table 3.2-1Subcode Descriptions

Subcode Description

12 No more memory, check your quotas

13 Unable to create command procedure in rdb$jdbc_com:

directory, either insufficient privilege or access denied or there

already exists an earlier version of the file with the same name

but created by another user

19 Problem in pathname pointed to by rdb$jdbc_com logical

name, invalid device specified

20 Problem in pathname pointed to by rdb$jdbc_com logical

name, invalid directory specified

24 Too many files open by server already, check your quotas

28

Disk full, check the disk pointed to by rdb$jdbc_com

30 Disk or directory is write-protected, check the disk/directory

pointed to by rdb$jdbc_com

65530 Process terminated prematurely

65531 Problem reading termination mailbox

65532 Problem during call to CREPRC

65533 Problem getting information about termination mailbox

65534 Problem creating termination mailbox

Note:

It is important that the server process has appropriate access rights to the directories

specified by JDBCRDB_HOME, RDBJDBC_COM and RDB$JDBC_LOGS logical

names, see File and Directory access Requirements for more details.

Contents

3.3 Oracle JDBC for Rdb Pool Server

The Oracle JDBC for Rdb pool server is a server-side component that accepts connection

requests from the thin driver and redirects the requests to the next available Oracle JDBC

for Rdb server for processing,

Using the pool server you can designate a single Port ID that can be used by your client

side applications to connect to the next available server. The pool server selects the next

available server from a table of candidate servers in a round-robin fashion.

Once the connection request has been redirected, the thin driver and the designated server

communicate directly with each other.

 29

A pool server is installed and invoked on each node from which you wish to direct the

access to Oracle JDBC for Rdb servers. Oracle Rdb need not be present on these nodes, as

the pool server does not communicate directly with Oracle Rdb. The pool server and its

pooled servers do not need to be on the same node.

The pool server communicates with the thin driver using Java sockets over TCP/IP with the

default Port ID 1702.

Note:

The pool server carries out server pooling NOT connection pooling. Connections are

created in each connection request and are not reusable.

3.3.1 Starting a Pool Server

A pool server must be invoked on each node on which you wish to provide server

redirection. The pool server does not need to be on the same node as its pooled servers.

A pool server may be invoked by using the appropriate start statement within the controller,

as an Oracle SQL/Services JDBC dispatcher or directly from the operating system

command line.

3.3.1.1 Starting a Pool Server from the Controller

A pool server may be started from the controller by referencing a thin pool server definition

in an XML-formatted configuration file. See Starting Servers within Oracle JDBC for Rdb

Controller for more details.

Example

Given the following server section in the XML-formatted configuration file mycfg.xml:

<server

 name="mypoolserver"

 type="RdbThinSrvPool"

 url="//localhost:1702/" >

 <pooledServer name="srv1forRdb"/>

 <pooledServer name="srv2forRdb"/>

 <pooledServer name="srvMPforRdb"/>

</server>

, the following command may be used to start this server from within the controller

rdbthincontrol> start server mypoolserver

Alternatively the controller may be used in command mode to start a server

 30

$ java –jar rdbthincontrol.jar –cfg mycfg.xml –

 –name mypoolserver –startserver

3.3.1.2 Starting a Pool Server from Oracle SQL/Services

A pool server may be started from the Oracle SQL/Services manager:

Using the Oracle SQL/Services manager, you must first establish a connection to the

SQL/Service server. Once connected you may then start a JDBC dispatcher.

Before you can start a JDBC dispatcher, you must first create its definition in the Oracle

SQL/Services environment.

See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

Example
$run sys$system:SQLSRV_MANAGE71

SQLSRV> connect server;

Connecting to server

Connected

SQLSRV> start disp JDBC_DISP;

SQLSRV>

See Oracle SQL/Services and Oracle JDBC for Rdb Servers for more details.

3.3.1.3 Starting a Pool Server from the Command Line

You may invoke a pool server from the OpenVMS command line.

Format
 $ java –jar rdbthinsrvpool.jar [-option]

See Pool Server Configuration Options for a list of valid options.

Each option must have a hyphen (–) prepended to it.

Example
$ java –jar rdbthinsrvpool.jar –cfg mycfg.xml –

–name mypoolserver

3.3.2 Pool Server Operation

Once it is started, the pool server will scan the list of pooled servers in a round-robin

fashion to select the next available server.

 31

You can start and stop the servers in the pool at anytime. If a server is not available, then

the pool server will bypass it. The pool server also has the ability to automatically start up

one or more pooled servers when the pool server itself starts up.

During pool server startup, a check is made on each server within its pool to see if the

pooled server has the autoStart option enabled. If autoStart is enabled, then the

command procedure pointed to by the srv.startup option of that pooled server will be

executed. See Server Command Procedures for more details.

While the pool server is running, it will periodically check to see that each pooled server

within its pool of servers with autoRestart option enabled is still running. If

autoRestart is enabled for a non-running pooled server, the command procedure

pointed to by the srv.startup option of that pooled server will be executed to restart

the server.

You can use the srv.keepAliveTimer option on pool server start-up to specify the

time between checks for non-running autoRestart servers. See Pool Server

Configuration Options for more details.

If the pool server is shutdown using the controller or the Oracle SQL/Services manager,

then during server shutdown all pooled servers within the pool that have autoStart

enabled will also be shut down.

3.3.2.1 Pool Server redirection and failSAFE IP

During connection redirection by the pool server, the IP of the chosen pooled server will be

returned to the thin driver so that it may redirect the client's connection request to that

chosen server. As the DNS node name conversions may differ on the client and server

node, the pool server will implicitly convert any named nodes to IP addresses before

returning the resultant IP to the thin driver.

The conversion to IP addresses may limit the failover to a standby address carried out by

failSAFE IP.

failSAFE IP is an optional service provided by TCP/IP Services on OpenVMS to allow IP

addresses to fail over when nodes fail.

You may specify that the pool server does not translate named nodes to IP addresses during

the connection redirection, maintaining the "logical" nature of the named IP and thus

allowing failSAFE IP to correctly redirect to a standby node.

See –srv.useLogicalIps in Pool Server Configuration Options for more details.

Contents

 32

Chapter 4
Server Configuration

There are a number of configuration options that apply to Oracle JDBC for Rdb servers that

may be used as command line options or as server options inside a configuration file.

See Configuration Files for more details on how to use these options within a configuration

file.

The following sections detail the configuration options and files:

 Server Configuration Options

 Pool Server Configuration Options

 Configuration Files

4.1 Server Configuration Options

The following server configuration options may be used on the command line or in

configuration files in conjunction with standard thin servers and multi-process servers:

Table 4.1-1Server Configuration Options

Option Default Description

anonymous false If specified, tells the server to allow

anonymous connections, that is,

connections where the user and password

are not specified.

Depending on how the Oracle Rdb

database has been set up, Oracle Rdb may

allow connection to the database without a

username being explicitly specified, in

which case the characteristics of the

authorization account of the server invoker

will be used by Oracle Rdb to determine

database access.

This switch may be used in conjunction

with password and user to specify the

default username/password to use on

connections.

By default, anonymous connections are

disabled and the client must specify a valid

 33

Option Default Description

username and password combination to

access the Rdb database.

allowAccessToCL false If specified, indicates that users may be

allowed access to Command Line

operations on the system that the server is

executing on.

This option should only be used within an

XML formatted configuration file.

See Access to the Command Line for more

details.

allowDatabase

<name=database-name>

none Specifies the name of a database this server

will allow access to. This is used in

conjunction with the restrictAccess

option.

This option should only be used within an

XML formatted configuration file.

The named database should also be

described in the same configuration file.

A separate allowDatabase option

should be used for each database this

server will allow access to.

See Restricting Database Access for more

details.

allowPrivUser

<name=user-name>

none Specifies the usernames this server will

allow special access to. This is used in

conjunction with options such as the

allowAccessToCL option.

This option should only be used within an

XML formatted configuration file.

A separate allowPrivUser option

should be used for each user this server

will allow special access to.

See Privileged Users for more details.

allowShowDatabases false If specified, indicates that the server will

respond to user requests for a list of

 34

Option Default Description

databases that are known to the server.

The list of known named databases is

specified in the Database section of the

configuration file.

See Named Databases for more details.

allowUser

<name=user-name>

none Specifies the usernames this server will

allow database access to. This is used in

conjunction with the restrictAccess

option.

This option should only be used within an

XML formatted configuration file.

A separate allowUser option should be

used for each user this server will allow

database access to.

See Restricting User Access for more

details.

autorestart false If specified, indicates to any pool server

that may include this server in its pool of

servers to automatically restart this pooled

server. This option is only valid in an XML

formatted Configuration File. See Oracle

JDBC for Rdb Pool Server for more

details.

autostart false If specified, indicates to any pool server

that may include this server in its pool of

servers to automatically start up this pooled

server. This option is only valid in an XML

formatted Configuration File. See Pool

Server Operation for more details.

b or buffersize <send_buffer_size> see

description

Provides a hint to the server on sizing of

the underlying network I/O buffers.

Increasing buffer size can increase the

performance of network I/O for high-

volume connection, while decreasing it can

help reduce the backlog of incoming data.

The default buffer size is the current

default network buffer size for TCP/IP set

on the server system.

 35

Option Default Description

bypass false Specifies that if the privilege is available,

bypass will be an allowable privilege for

the server process.

Rdb checks for this privilege to determine

the access rights to databases and database

objects.

If enabled, all validated users connected to

databases via this server instance will be

considered to have bypass privilege.

The default is false where the bypass

privilege is disabled for the server by

default. Validated users who already

possess the bypass privilege will still have

bypass available.

See BYPASS Privileges for more details.

cfg or configfile < file_specification>

none The file specification of a configuration file

where server attributes may be found.

Attributes set in this configuration file may

be overridden by setting the same attribute

at the command line level.

If the file extension is XML the

configuration parameters are held in a

XML format. See Configuration Files for

more details.

By default no configuration file is used.

cli.idleTimeout <timeout> 0 Sets the maximum time (in milliseconds) a

client connection may be idle. If no

operation is carried out using this

connection within the time specified, the

connection will be forcibly disconnected.

A value of zero (0) means unlimited idle

time allowed.

See Client connection timeout for more

details.

controlpass <control_password>

none Specifies the password that control users

must use to be able to issue control

commands on this server instance.

This password may be either plain text or a

password digest value.

 36

Option Default Description

See Control Password for more

information on this password.

fs or fetchsize <default_fetch_size> 100 Specifies the default fetchsize to use.

The fetchsize provides a hint to the

server indicating the number of records to

retrieve and send back to the client at the

one time.

Increasing the fetchsize may improve

the network performance by reducing the

average network overhead per record

retrieved.

lockwait <lock_wait>

-1 Specifies the maximum number of seconds

to wait on getting a record lock.

This switch, used in conjunction with

maxtries and trywait, specifies how

often and how long to try to get a lock on a

locked object before issuing a locked

object Exception.

A value of minus one (-1) means wait

indefinitely.

log or logfile <file_specification> console Specifies the file specification of the log

file for this server.

 If trace is enabled the trace messages will

be written to this file instead of the

console.

 By default trace messages will be written

to the console.

maxclients

<maximum_number_of_clients>

-1 Specifies the maximum number of

concurrent clients this server instance may

handle.

 A value of minus one (-1) means allow an

unlimited number of clients.

maxFreeExecutors

<maximum_number_of_free_executors>

0 Specifies the maximum number of free

(unused) executor processes that may be

maintained while the server is running.

 This feature is only applicable to Multi-

process servers

 37

Option Default Description

maxtries

<maximum_number_of_lock_attempts>

10 Specifies the maximum number of times to

try to get a record lock.

This switch, used in conjunction with

lockwait and trywait, specifies

how often and how long to try to get a

lock on a locked object before issuing a

locked object Exception.

name <server name > see

description

Specifies a name for this server instance.

This name need not be unique, however the

name may be used to lookup server

information within the start-up

configuration file. The value of this name

is not case-sensitive.

If not specified a name will be created for

the server based on the server type.

p or port <port_num> 1701 Tells the server to listen on port

<port_num>

pw or password

<default_user_password>

none Used in conjunction with the user and

anonymous switches provides the

password to use on an anonymous

connection

persona <username> none Specifies the Operating system username,

which the process running the server will

assume. If not specified persona will not

be used. See Persona for more details.

prestartedExecutors

<number_of_prestarted_executors>

0 Specifies the number of executor process to

start up when the Multi-process server

starts.

This feature is only applicable to Multi-

process servers.

relay false If specified designates that this server

should relay poll requests to all active

servers in its network community

This feature is currently unavailable.

restrictAccess false Used in conjunction with the

 38

Option Default Description

allowDatabase and allowUser

options to restrict access to designated

databases and users.

This option should only be used within an

XML formatted configuration file.

 See Restricting Database Access for more

details.

sharedMem <size_in_KB> 1024 Specifies the amount of global shared

memory (in KB) that should be allocated

by the server.

This feature is only applicable to Multi-

process servers.

srv.bindTimeout <timeout> 0 Sets the timeout (in milliseconds) on

waiting for a database connection to

complete. If the database fails to connect

within this time an exception will be raised.

 A value of zero (0) means unlimited

timeout.

srv.cliStartup <file_specification> see

description

Specifies the startup batch or command file

that will be used to execute any CLI

statements the server issues.

 If not specified
rdb$jdbc_home:rdbjdbc_execcli.com

will be used.

See Server Command Procedures for more

details.

srv.execPrefix <prefix> see

description

Only valid for multi-process servers.

Specifies the prefix to use for executor

names.

If not specified a standard prefix based on

server name will be used.

See Executor Naming for more details.

srv.execStartup <file_specification> see

description

Only valid for multi-process servers.

Specifies the startup batch or command file

that will be used to startup the subprocess

for each client connection.

 If not specified
rdb$jdbc_home:rdbjdbc_startexec.com

 39

Option Default Description

will be used.

See Server Command Procedures for more

details.

srv.execTimeout <timeout> 0 Sets the timeout (in milliseconds) that an

unused executor process can remain idle in

the free executor queue before being

terminated. A value of zero (0) means

unlimited timeout.

This feature is only applicable to Multi-

process servers.

srv.idleTimeout <timeout> 0 Sets the maximum time (in milliseconds)

the server will wait for a new client

connection request. If no new connection is

made within the timeout period the server

will be closed down due to inactivity.

A value of zero (0) means unlimited idle

time allowed.

See Server Inactivity Timeout for more

details.

srv.mcBasePort <base_port> 5517 Specifies the base port number that will be

used for multicast operations.

A value of zero (0) will disable multicast

operations.

srv.mcGroupIP <group_ip> 239.192.1.1 Specifies the multicast IP group that this

server will participate in.

srv.mpMaxTries <max_tries> 500 Only valid for multi-process servers.

Specifies the number of times the server

should try to synchronize handshake with

executor before giving up.

srv.mpTryWait <wait_time> 10 Only valid for multi-process servers.

Specifies the time in milliseconds to wait

between server/executor handshake

synchronization tries.

srv.networkKeepAlive false If true the socket used to connect to the

client will have SoKeepAlive enabled
See your socket documentation for more

information on SoKeepAlive (TCP option

SO_KEEPALIVE).

srv.onExecStartCmd <command> none Specifies a DCL command statement that

 40

Option Default Description

should be executed prior to starting up an

executor.

See On Start Commands for more details.

srv.onStartCmd <command> none Specifies a DCL command statement that

should be executed prior to starting up a

server.

The specified command will only be

executed if a pool server starts up using the

controller or the server.

See On Start Commands for more details.

srv.password <server_password> none Specifies an additional password that

clients need to provide before they may use

the server for database connections.

See Further server access protection for

more details.

srv.showPoll false Specifies that information about POLL

requests received should be traced if server

action tracing has been enabled.

See Trace for further information

srv.startup <file_specification> see

description

Specifies the startup batch or command file

that will be used by the controller to startup

the process for this server.

If not specified
rdb$jdbc_home:rdbjdbc_startsrv.com
will be used.

See Server Command Procedures for more

details.

tl or tracelevel <trace_level>

0 Sets the trace level for debugging purposes.

See Trace for further information

tracelocal false Specifies that only local server base tracing

should be enabled. tracelevel values

specified by a client connection will not

affect the trace level of the server

components if this option is set.

trywait <wait_time> 10 Specifies the time in milliseconds to wait

between lock tries.

This switch, used in conjunction with

maxtries and lockwait, specifies

 41

Option Default Description

how often and how long to try to get a

lock on a locked object before issuing a

locked object Exception.

A value of zero (0) or a negative value,

indicates not to wait between lock tries.

type <server_type> RdbThinSrv Specifies the server type of this server.

Valid values are:

• RdbThinSrv - standard thin

server

• RdbThinSrvSSL - thin server

using SSL for communication

• RdbThinSrvMP - multi-process

server

• RdbThinSrvMPSSL - multi-

process server using SSL

• RdbThinSrvPool - pool server

• RdbThinSrvPoolSSL - pool

server using SSL

u or user <default_user_name>

none Used in conjunction with the password

and anonymous switches provides the

username to use on an anonymous

connection

url <connection URL> none

Specifies the node IP and port this server

will run on. This switch overrides any

port switch.

The format of the <connection URL> is

//<node>:<port>/

See Pool Server Configuration Options for the options that may be used with pool servers.

Contents

4.2 Pool Server Configuration Options

The valid configuration options that may be used with a pool server can be found in the

following table:

Table 4.2-1Pool Server Configuration Options

Option Default Description

 42

Option Default Description

cfg or configfile

<configuration_filename>

none The file specification of a configuration

file where server attributes may be

found.

Attributes set in this configuration file

may be overridden by setting the same

attribute at the command line level.

If the file extension is XML, the

configuration parameters are held in a

XML format. See Configuration Files for

more details.

By default no configuration file is used.

controlpass <control_password>

none Specifies the password that control users

must use to be able to issue control

commands on this server instance.

See Control Password for more

information on this password.

log or logfile <file_specification> console Specifies the file specification of the log

file for this server. If trace is enabled, the

trace messages will be written to this file

instead of the console.

By default trace messages will be written

to the console.

node<n> <node> none Specifies the node on which the thin

server number <n> resides. This option

is not valid for use in XML-formatted

configuration files.

poolserver none Specifies that the server should act as a

pool server. This is a mandatory option if

used on the command line or a non-

XML formatted configuration file

pooledserver

<name=server-name>

none Specifies the name of a server that will

take part in the pool. This option is only

available when using an XML-formatted

configuration file.

 43

Option Default Description

The named server should also be

described in the same configuration file.

poolsize <pool_size> none Specifies the number of thin servers that

will be specified. This is a mandatory

option if used on the command line or a

non-XML formatted configuration file

port<n> <port_num> none Specifies the port for the thin server

number <n> in server list. This option is

not valid for use in XML-formatted

configuration files.

p or port <port_num> 1701 Tells the pool server to listen on port

<port_num>.

srv.keepAliveTimer <seconds> 60 Sets the time (in seconds) of the duration

between pool server checks for non-

running pooled servers that have

autoRestart enabled.

See Oracle JDBC for Rdb Pool Server

for more details.

srv.mcBasePort <base_port> 5517 Specifies the base port number that will

be used for multicast operations.

A value of zero (0) will disable multicast

operations.

srv.mcGroupIP <group_ip> 239.192.1.1 Specifies the multicast IP group that this

server will participate in.

srv.password <server_password> none Specifies an additional password that

clients need to provide before they may

use the server for database connections.

See Further server access protection for

more details.

srv.useLogicalIPs false Only Valid for POOL servers.

Specifies that the server should not

translate named IP values to IP addresses

prior to redirecting connection request.

See Using OpenVMS FailSAFE IP. for

more details.

 44

Option Default Description

tl or tracelevel <trace_level>

0 Sets the trace level for debugging

purposes.

See Trace for further information

url <connection URL> none Specifies the node IP and port this server

will run on. This switch overrides any

port switch

As there may be a number of servers listed in the server pool it is advised to use the

configuration file to specify these options.

The number of servers in the pool is specified by the poolsize option if you are using a

standard configuration file. In the case of an XML-formatted configuration file, the

number of servers in the pool will be the same as the number of PooledServer

subsections within the server definition.

Each server participating in the pool must have both a node and a port id specified for it.

See Configuration Files for examples of configuring a pool server.

Contents

4.3 Configuration Files

Instead of setting the switches on the command line, you can specify a configuration file

that details the settings.

Two formats of configuration files are recognized:

 Standard Java Properties load file

 XML-formatted file

4.3.1 Standard Properties File

The following section describes the use of configuration file formatted as a standard Java

Properties load file. See XML Formatted Configuration File for details on using an XML-

formatted configuration file.

The same server configuration options as specified in Server Configuration Options and

Pool Server Configuration Options can be used but with the following changes:

1. Each keyword requires a value, even those that do not have values on the command

line, these options are considered Booleans and thus should have the appropriate

„TRUE‟ value.

 45

2. Each keyword must be separated from its value by an equals sign (=)

The –cfg switch on the command line allows you to specify the file specification of this

configuration file:

Format

$java –jar rdb$jdbc_home:rdbthinsrv.jar –cfg thinsrv.cfg

Example

Java style comments and empty lines may be included in the file, for example:

 //
 // configuration file for our thin server

 //

 // the default port for the thin server is 1701 but we

 // want it to listen on another port

 port=1708

 // allow anonymous connections

 anonymous=true

 // enable password display

 showpass=true

 // limit the number of clients

 maxclients=10

 // set the locking keywords

 lockwait=2

 maxtries=20

 // end of config file

In addition, the configuration file for a thin pool server should contain information about

the list of thin servers to which it may delegate connection requests, for example:

//

// configuration file for pool server

//

// the default port for the pool server is 1702

port=1702

// show is a pool server and the poolsize (number of subservient

servers)

poolserver=true

poolsize=4

// now add the servers

node1=MYNODE1

port1=1704

 46

node2=MYNODE1

port2=1705

node3=MYNODE1

port3=1706

node4=MYNODE2

port4=1704

// end of config file

Contents

4.3.2 XML-Formatted Configuration File

Instead of setting the switches on the command line, you can specify an XML-formatted

configuration file that details the settings of these switches. The XML-formatted

configuration file allows a greater number of configuration options to be specified than the

standard CFG file and is the recommended configuration file format.

The XML-formatted configuration file differs from the standard CFG file in that it may

contain information about multiple servers in the same configuration file.

Each server is specified within a separate server section and must be given a unique name.

This name is used to get default configuration information about the server on server start-

up, as well as how a server may be identified on your system and within the controller

interface.

The –cfg switch on the command line allows you to specify the file specification of this

file.

The same server configuration options as specified in Server Configuration Options and

Pool Server Configuration Options can be used but with the following changes:

Each keyword requires a value, even those that do not have values on the command line.

These options are considered Boolean values and thus should have the appropriate „TRUE‟

value.

Each keyword must be separated from its value by an equals sign (=)

All option values must be enclosed in double quotation marks.

The configuration document is a hierarchical XML object. Each keyword must be placed

within its appropriate section or subsection. Multiple servers may be specified within the

same configuration file. Each server must have a unique name.

 The format of the contents of the configuration file is XML V1.0.

 47

Format

 $java –jar rdb$jdbc_home:rdbthinsrv.jar –cfg rdbjdbccfg.xml

Example

<?xml version = ‗1.0‘?>

<!—Configuration file for Rdb Thin JDBC Drivers and Servers -->

<config>

 <!—SERVERS -->

 <servers>

 <!—DEFAULT server characteristics-->

 <server

 name="DEFAULT"

 type="RdbThinSrv"

 url="//localhost:1701/"

 maxClients="-1"

 srv.bindTimeout="1000"

 srv.idleTimeout="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.192.1.1"

 tracelevel = "0"

 autostart = "false"

 autorestart = "false"

 restrictAccess = "false"

 anonymous = "false"

 bypass = "false"

 tracelocal = "false"

 relay = "false"

 controlUser="control_user"

 controlPass="0x18E007C81F6B2E2EA02065F78A587BD3"

 cfg="rdb$jdbc_com:rdbjdbccfg.xml"

 srv.execStartup="rdb$jdbc_home:rdbjdbc_startexec.com"

 srv.startup="rdb$jdbc_home:rdbjdbc_startsrv.com"

 sharedmem = "0"

 />

 <!—DEFAULT Secure socket server -->

 <server

 name="DEFAULTSSL"

 type="RdbThinSrvSSL"

 ssl.default="false"

 ssl.context="TLS"

 ssl.keyManagerFactory="SunX509"

 ssl.keyStoreType="jks"

 ssl.keyStore="rdbjdbcsrv.kst"

 ssl.keyStorePassword="CHANGETHIS"

 ssl.trustStore="rdbjdbcsrv.kst"

 ssl.trustStorePassword="CHANGETHIS"

 />

 <!—now specific servers that will be started up by pool server -->

 <server

 name="srv1forRdb"

 type="RdbThinSrv"

 url="//localhost:1701/"

 autoStart="true"

 autoRestart="true"

 logfile="rdb$jdbc_logs:srv1forRdb.log"

 48

 tracelevel="-1"

 maxClients="1"

 />

 <server

 name="srv2forRdb"

 type="RdbThinSrv"

 url="//localhost:1708/"

 autoStart="true"

 logfile="rdb$jdbc_logs:srv2forRdb.log"

 />

 <!—MP server -->

 <!—sharedmem is in KB default = 1024 -->

 <server

 name="srvMPforRdb"

 type="RdbThinSrvMP"

 url="//localhost:1705/"

 autoStart="true"

 maxClients="10"

 maxFreeExecutors="10"

 prestartedExecutors="10"

 sharedMem="10240"

 />

 <!—the pool server -->

 <server

 name="rdbpool"

 type="RdbThinSrvPool"

 url="//localhost:1702/" >

 <pooledServer name="srv1forRdb"/>

 <pooledServer name="srv2forRdb"/>

 <pooledServer name="srvMPforRdb"/>

 </server>

 <!—Secure socket server -->

 <server

 name="srvssl1forRdb"

 type="RdbThinSrvSSL"

 url="//localhost:1709/"

 />

 </servers>

 <!—database -->

 <databases>

 <database

 name="mf_pers"

 url="//localhost:1701/mydisk:[databases]mf_personnel"

 driver="oracle.rdb.jdbc.rdbThin.Driver"

 URLPrefix="jdbc:rdbThin:"

 />

 <database

 name="pers"

 url="//localhost:1702/mydisk:[databases]personnel"

 driver="oracle.rdb.jdbc.rdbThin.Driver"

 URLPrefix="jdbc:rdbThin:"

 />

 </databases>

 49

</config>

The XML-formatted configuration file is an XML document that is composed of the

several sections and sub-sections.

Description of the sections and sub-sections within an XML-formatted configuration file is

now presented.

 Config Section

 Session Section

 Databases Section

 Database Section

 Servers Section

 Server Section

 Pooled Server Subsection

 Allowed Database Subsection

 Allowed User Subsection

4.3.2.1 Config Section

This section covers the entire configuration settings and contains the specific configuration

sections as described below.

Format

<config>

 [session section]

 [databases section]

 [servers section]

</config>

4.3.2.2 Session Section

This section describes session characteristics for an interactive session. Information within

the session section is currently only used by the Oracle JDBC for Rdb controller. You can

specify information such as passwords and user names that may be used when you start up

a controller session.

If it exists, the session named DEFAULT will be used to setup the default session

characteristics.

These session properties provide an alternate way of specifying options you may have

otherwise supplied on the command line during controller startup.

Format

<session

 [session property]…

 50

/>

Options

Valid properties for the session section can be seen in Table 5.5-1.

Table 4.3-1Session Section Properties

Option Default Description

controlPass

none

Specifies the password that will be used by

default when connecting to an active server

for control purposes.

Note: this password can be a plain-text or

obfuscated password created using the

obfuscate command. You should not use

an obfuscated password created using the

digest command as the server will not

recognize the password. See Password

Obfuscation in Server Configuration Files

for more details.

controlUser none

User name to use on control connections

password none

Currently this has the same function as

controlPass, however if both are present,

controlPass will take precedence.

Note: this password can be a plain-text or

obfuscated password created using the

obfuscate command. You should not use

an obfuscated password created using the

digest command as the server will not

recognize the password. See Password

Obfuscation in Server Configuration Files

for more details.

name none Name for this session description; must be
DEFAULT

user none

 User name to use on connection

tracelevel 0

The sessions default trace level

srv.mcBasePort <base_port> 5517

Specifies the base port number that will be

used for multicast operations

srv.mcGroupIP <group_ip> 239.192.1.1 Specifies the multicast IP group that will be

used for multicast operations

ssl.* none

Specifies SSL configuration information for

the session that may be used to connect to

SSL-enabled thin servers. See Using SSL

 51

Option Default Description

for more information

Example
<session

 name="DEFAULT"

 controlPass="jdbc_control"

 user="jdcb_user"

 password="jdbc_control"

 tracelevel="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.192.1.1"

/>

Note:

1. The session properties srv.mcBasePort and srv.mcGroupIP specify

the multicast attributes that should be used for polling servers. Only those

servers participating in the specified multicast group will respond to any poll

requests issued by the controller.

2. Although the user and control passwords may be stored in plain-text format

in the configuration file as shown in the example above, this may be

contrary to your organization's security policy. Oracle recommends to not

store plain-text passwords in your configuration files, instead the

appropriate command line switches should be used to provide the password.

3. User passwords and control passwords used within the session section of the

configuration file may be stored as obfuscated values created using the

Obfuscate command. Control passwords associated with servers may also be

specified in the server section of the configuration file as obfuscated values

created using the Digest command.

4.3.2.3 Databases Section

 This section specifies one or more database sections.

Format

<databases>

 [database section]…

</databases>

4.3.2.4 Database Section

 52

This section specifies a named database with the given properties.

Format

<database>

 [database property]…

/>

 Options

Valid properties for the database section can be seen in Table 5.5-2

Table 4.3-2Database Section Properties

Option Default Description

name none This is the name by which the Oracle JDBC

for Rdb drivers may recognize this database.

This name is required and must be unique

within the databases section of this

configuration file.

url none

This is the url that may be used to access this

database.

driver none This is the class path of the preferred JDBC

driver that may be used to access this

database.

URLPrefix none

This is the prefix that needs to be added to the

url above to provide a complete JDBC

Connection URL

Example

<!—database -->

 <databases>

 <database

 name="mf_pers"

 url="//localhost:1701/mydisk:[databases]mf_personnel"

 driver="oracle.rdb.jdbc.rdbThin.Driver"

 URLPrefix="jdbc:rdbThin:"

 />

 <database

 name="pers"

 url="//localhost:1702/mydisk:[databases]personnel"

 driver="oracle.rdb.jdbc.rdbThin.Driver"

 URLPrefix="jdbc:rdbThin:"

 />

 </databases>

4.3.2.5 Servers Section

 This section specifies one or more server property sections.

 53

Format

<servers>

 [server section]…

</servers>

4.3.2.6 Server Section

This section specifies one or more properties to assign to this server.

See Server Configuration for details on the properties that may be set.

Format

<server

 <property="value"/>…

/>

or

<server

 <property="value"/>…

>

[pooled server subsection]…

[allowed database subsection]…

[allowed user subsection]…

</server>

Example 1

A standard thin server called serv1 listening on port 1799 could be described using the

following Server Property section:

<server

 name="serv1"
 type="RdbThinSrv"

 url="//localhost:1799/"

 logfile="myLogs:serv1.log"

/>

Remarks

Default server characteristics for server configuration can be specified so that options need

not be repeated within the specific server configuration sections. Default server options

may be specified by declaring a server section with a name of DEFAULT or DEFAULTSSL.

<server

 name="DEFAULT"

 type="RdbThinSrv"

 url="//localhost:1701/"

 maxClients="-1"

 srv.bindTimeout="0"

 54

 srv.idleTimeout="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.1.1.1"

 autoStart="false"

 controlUser="jdbc_user"

 controlPass="0x811B15F866179583EB3C96751585B843"

/>

The DEFAULT and DEFAULTSSL server definitions should only be used to define the

default server characteristics and are not intended to represent actual server instances that

can be started by the controller or pool servers.

These default server properties will be assigned to each server found defined after them in

the configuration file unless explicitly overridden in the specific server subsection.

The placement of the DEFAULT and DEFAULTSSL server sections within the

configuration file is important. Only those servers defined in sections that occur after these

default definitions will have these default characteristics. Any server section specified prior

to the default server sections will not get these default characteristics. Oracle recommends

that these two sections be the first two server sections within your configuration file.

If subsections such as Pooled Server or Allowed Database are required, then the

second format for a Server section must be used.

Example 2

<server

 name="rdbpool"

 type="RdbThinSrvPool"

 url="//localhost:1702/" >

 <pooledServer name="srv1forRdb"/>

 <pooledServer name="srv2forRdb"/>

 <pooledServer name="srvMPforRdb"/>

</server>

4.3.2.7 Pooled Server Subsection

This subsection specifies a server that will take part in the parent server's server pool,

where the declared server name must reference a server already named in this configuration

file.

Multiple PooledServer subsections may be present in a single server declaration.

The subsection is valid only when used within an RdbThinSrvPool server

declaration.

The set of pooledServers provided will make up the pool of servers that the parent

pool server may try to access.

 55

Format

 <pooledServer name="declared server"/>

Example

<server

 name="rdbpool"

 type="RdbThinSrvPool"

 url="//localhost:1702/" >

 <pooledServer name="srv1forRdb"/>

 <pooledServer name="srv2forRdb"/>

 <pooledServer name="srvMPforRdb"/>

</server>

4.3.2.8 Allowed Database Subsection

This subsection specifies the database that clients using the server may access. The

declared database name must either reference a database already named in the database

section of this configuration file, or must be a valid database file specification or logical

name.

The subsection is only valid when used within a server declaration.

Multiple AllowDatabase subsections may be present in a single server declaration.

For database access to be restricted the server attribute restrictAccess must be set

"true".

See the section Restricting Database Access for more details

Format

 <allowDatabase name="db specification" />

 Example

<server

 name="srv2restrict"

 type="RdbThinSrv"

 url="//localhost:1701/"

 restrictAccess="true">

 <allowDatabase name="mf_pers"/>

 <allowDatabase name="disk1:[databases]customers"/>

</server>

4.3.2.9 Allowed User Subsection

 56

This subsection specifies the usernames the server will allow access to. The declared

username must be a valid username recognized by Rdb. The matching of usernames by the

server for this level of restriction is not case-sensitive.

The subsection is only valid when used within a server declaration.

Multiple AllowUser subsections may be present in a single server declaration.

For user access to be restricted the server attribute restrictAccess must be set
"true".

See the section Restricting User Access for more details

Format

 <allowUser name="username" />

 Example

<server

 name="srv2restrict"

 type="RdbThinSrv"

 url="//localhost:1701/"

 restrictAccess="true">

 <allowUser name="smith"/>

 <allowUser name="jones"/>

</server>

4.3.3 Using filenames in the configuration file

A number of attributes within the configuration file sections require the specification of a

filename, for example:

 cfg="<filename>"

 log="<filename>"

 srv.execStartup="<filename>"

 srv.startup="<filename>"

The filename must be a valid OpenVMS file specification that may contain a full or partial

file path and may include logical names.

You must ensure that, if logical names are used, they are available to the context within

which the server will be started, and that the file is accessible by the VMS user that starts

up the server.

If a server defined in the configuration will be started up using the controller, as a pooled

server by a pool server, or by Oracle SQL/Services, a detached process will be created for

 57

the server and the LOGINOUT.EXE will be run to ensure a valid process environment

under which Java and Oracle Rdb can be accessed.

Because the LOGINOUT.EXE program is run, any file specification using relative file

paths must be relative to the login directory of the invoker, otherwise a full file

specification must be used.

Contents

 58

Chapter 5
Using SSL

Secure Sockets Layer (SSL) was developed to provide security for Web traffic. Including

confidentiality, message integrity, and authentication. SSL achieves this through the use of

cryptography, digital signatures, and certificates.

Oracle JDBC for Rdb servers and thin clients may use SSL for communication over

TCP/IP. SSL allows an SSL-enabled server to authenticate itself to an SSL-enabled client,

allows the client to authenticate itself to the server, and allows both machines to establish

an encrypted connection.

Before trying to use SSL with the thin driver, you should familiarize yourself with general

Java security and SSL concepts. Please refer to your Java documentation for general

information on SSL and Java Security.

The following sections provide SSL information specific to using SSL with the thin driver

and assume a basic understanding of Java Security and SSL.

 SSL Configuration

 SSL and the Controller

 SSL Configuration Options

5.1 SSL Configuration

Information about SSL connection characteristics must be provided to both the client and

server, and in order for a communication channel to be established, both the server and

client must agree on the SSL security characteristics.

In addition, it is important that both the client and the server have the same security

certificate for authorization. The following sections detail how to provide SSL

characteristics in a client connection request and to an SSL-enabled Oracle JDBC for Rdb

server

 Client SSL Configuration

 Server SSL Configuration

5.1.1 Client SSL Configuration

The client application must specify its SSL characteristics during its connection request to

the thin driver. The simplest way of doing this is by providing extra SSL information in the

properties block that is passed to the DriverManager.getConnection() method.

 59

The SSL information provides information such as where to find the appropriate certificate

for SSL connections and what context and protocols should be used to carry out the SSL

handshake during connection set-up.

Example 1

Properties info = new Properties();

info.put("user", user);

info.put("password", password);

info.put("tracelevel", traceLevel);

info.put("ssl", "true");

info.put("ssl.default", "false");

info.put("ssl.context", "TLS");

info.put("ssl.keyManagerFactory", "SunX509");

info.put("ssl.keyStoreType", "jks");

info.put("ssl.keyStore", "rdbjdbccli.kst");

info.put("ssl.keyStorePassword", "CHANGETHIS");

info.put("ssl.trustStore", "rdbjdbccli.kst");

info.put("ssl.trustStorePassword", "CHANGETHIS");
Connection conn = DriverManager.getConnection(

 "jdbc:rdbThin://bravo:1755/my_db_dir:pers", info);

Remarks

The properties block must have the property ssl set to true for SSL connections to be

attempted.

In addition, the SSL characteristics can be specified explicitly as properties, or you may use

ssl.default set to true to request that the default SSL characteristics for your system

should be used.

Example 2

Properties info = new Properties();

info.put("user", user);

info.put("password", password);

info.put("tracelevel", traceLevel);

info.put("ssl", "true");

info.put("ssl.default", "true");

Connection conn = DriverManager.getConnection(

 "jdbc:rdbThin://bravo:1755/my_db_dir:pers", info);

Remarks

See SSL configuration options for details of the ssl.* options.

For an SSL connection to be made, the appropriate certificate for the server to which you

are trying to attach to should be in the keystore you have designated in the SSL properties

for the connection.

 60

If no certificate is found the following exception will be raised:

javax.net.ssl.SSLException: No available certificate corresponds to

 the SSL cipher suites, which are enabled.

 See your Java Security documentation for more information on certificates.

5.1.2 Server SSL Configuration

An SSL-enabled server must also be provided with SSL configuration information. This is

usually provided within the server section for the named server in an XML-based

configuration file.

To indicate that the server should be SSL-enabled, the server must be defined as one of the

following SSL server types:

RdbThinSrvSSL

RdbThinSrvMPSSL

RdbThinSrvPoolSSL

Example 1
<server

 name="MYSSL"

 type="RdbThinSrvSSL"

 ssl.default="false"

 ssl.context="TLS"

 ssl.keyManagerFactory="SunX509"

 ssl.keyStoreType="jks"

 ssl.keyStore="rdbjdbcsrv.kst"

 ssl.keyStorePassword="CHANGETHIS"

 ssl.trustStore="rdbjdbcsrv.kst"

 ssl.trustStorePassword="CHANGETHIS"

/>

Remarks

If you wish to define a number of SSL-enabled servers with the same SSL characteristics,

then you can use the special DEFAULTSSL server definition to define the default

characteristics. Each subsequent server definition that has one of the SSL server types will

use these characteristics, unless explicitly overridden in the server definition.

Example 2
<server

 name="DEFAULTSSL"

 type="RdbThinSrvSSL"

 ssl.default="false"

 61

 ssl.context="TLS"

 ssl.keyManagerFactory="SunX509"

 ssl.keyStoreType="jks"

 ssl.keyStore="rdbjdbcsrv.kst"

 ssl.keyStorePassword="CHANGETHIS"

 ssl.trustStore="rdbjdbcsrv.kst"

 ssl.trustStorePassword="CHANGETHIS"

 />

<server

 name="SSLsrv1"

 type="RdbThinSrvSSL"

 url="//localhost:1707/"

/>

<server

 name="SSLsrv2"

 type="RdbThinSrvMPSSL"

 url="//localhost:1708/"

 sharedMem="10000"

/>

Remarks

If a pool server is SSL-enabled, for security reasons it will only communicate with pooled

servers within its pool that are also SSL-enabled. Non-SSL-enabled pooled servers within

the pool will be ignored and will not be considered candidates for redirection of connection

requests.

 See SSL Configuration Options for details of these options.

5.2 SSL and the Controller

All connections made to SSL-enabled servers must be made using SSL connections. This

also includes the controller.

If the controller will be used to manage SSL-enabled servers, then the controller session

must also have the correct SSL information to make the secure connection to the server.

You can specify the SSL information that the controller uses for connecting to SSL-enabled

thin servers by starting the controller using an XML-formatted configuration file that has

the appropriate SSL information in its SESSION section.

Example

<session

 62

 name="DEFAULT"

 controlPass="jdbc_user"

 user="cts1"

 password="jdbc_user"

 tracelevel="0"

 srv.mcBasePort="5518"

 srv.mcGroupIP="239.192.1.2"

 ssl.default="false"

 ssl.context="TLS"

 ssl.keyManagerFactory="SunX509"

 ssl.keyStoreType="jks"

 ssl.keyStore="rdbjdbccli.kst"

 ssl.keyStorePassword="CHANGETHIS"

 ssl.trustStore="rdbjdbccli.kst"

 ssl.trustStorePassword="CHANGETHIS"

/>

Remarks

This is the same SSL information that you would have provided for a client SSL

configuration as described in Client SSL configuration.

If this information is provided, the controller will use the SSL configuration to connect to

any server that responds to a poll request as an SSL-enabled server.

5.3 SSL Configuration Options

The various SSL configuration options that may be set can be found in the following table:

Table 5.3-1SSL Configuration Options

Option Default Description

ssl.default false If specified, indicates that the default SSL socket

factory should be used to create an SSL socket.

The default SSL socket factory can be changed by

setting the value of the

"ssl.ServerSocketFactory.provider"

security property (in the Java security properties file)

to the desired class.

All other ssl.* configuration options will be ignored

if ssl.default is specified and set to true.

 If ssl.default is not specified or specified as false

then the values of the following ssl.* properties

should be used to create an SSL socket factory.

ssl.context <ssl context> none Indicates the SSL context to use, for example "TLS".

 63

Option Default Description

ssl.keyManagerFactory

<keymanager factory>

none Indicates the keymanager factory to use, for example

"SunX509".

ssl.keyStoreType <store

type>

none Indicates the type of the key store, for example
"jks".

ssl.keyStore <store

filename>

none Indicates the filename of the keystore.

ssl.keyStorePassword

<password>

none Indicates the password for the keystore.

ssl.trustStore

<trust store filename>

none Indicates the filename of the trust store.

ssl.trustStorePassword

<password>

none

Indicates the password of the trust store.

5.4 Using Self-Signed Certificates for Testing

The following code is an example that may be used to build and copy certificates that may

be used for SSL communications where the client and server are on OpenVMS nodes that

have Java environments already set up.

Information such as the keystore and password should be changed appropriately for your

own situation.

$! The following should be done on the Server node

$ write sys$output "Generating the Server KeyStore in file rdbjdbcsrv.kst

$ keytool –genkey –alias rdbjdbc-sv

-dname "CN=Jim Murray, OU=Rdb Engineering, O=Oracle, c=US"

-keypass "CHANGETHIS" –storepass "CHANGETHIS" –KeyStore rdbjdbcsrv.kst

$!

$write sys$output "Exporting the certificate from keystore to external

file server.cer

$ keytool –export –alias rdbjdbc-sv –storepass "CHANGETHIS" –

-file server.cer –keystore rdbjdbcsrv.kst

$!

$!--

$!

$! The following should be done on the client node

$!

$write sys$output "Generating the Client KeyStore in file rdbjdbccli.kst

$ keytool –genkey –alias rdbjdbc-cl –

-dname "CN=Rdbjdbc Client, OU=X, O=Y, L=Z, S=XY, C=YZ"

-keyalg RSA –keypass "CHANGETHIS" –storepass "CHANGETHIS" –keystore

rdbjdbccli.kst

$!

$write sys$output "Exporting the certificate from keystore to external

file client.cer

 64

$ keytool –export –alias rdbjdbc-cl –storepass "CHANGETHIS"

-file client.cer –keystore rdbjdbccli.kst

$!

$!--

$!

$! Exchange the certificates by copying the client certificate file

(client.cer) to

$! The server node, and the server certificate file (server.cer) to the

client node

$!

$!--

$!

$! Now on the server node

$write sys$output "Importing Client‘s certificate into Server‘s keystore

$ keytool –import –v –trustcacerts –alias rdbjdbc –file client.cer

-keystore rdbjdbcsrv.kst –keypass "CHANGETHIS" –storepass "CHANGETHIS"

yes

$!

$!--

$!

$! Now on the client node

$write sys$output "Importing Server‘s certificate into Client‘s keystore

$ keytool –import –v –trustcacerts –alias rdbjdbc –file server.cer

-keystore rdbjdbccli.kst –keypass "CHANGETHIS" –storepass "CHANGETHIS"

yes

The keytool command should work as shown above on most operating systems that have

Java installed.

Once the keystores have been set up, as long as you have setup the SSL properties correctly

for the client and the server as shown in previous sections, you can use SSL for

client/server communication within the thin driver.

Note:

It is important to use double quotes to maintain values such as passwords exactly as

you specify them in the server or client SSL connection configuration properties.

Contents

 65

Chapter 6
Oracle JDBC for Rdb Controller

The Oracle JDBC for Rdb controller (here-on referred to as the controller) allows basic

management of Oracle JDBC for Rdb servers.

Contained in the rdbthincontrol.jar file, this application allows local and remote

password-protected server management operations to be carried out on a thin server or pool

server. These operations can include showing the clients that are currently connected,

stopping client threads, and starting and stopping thin servers.

 The controller can be run either in interactive mode or single command mode. In

interactive mode you typically connect to the server you wish to manage and then issue the

management requests. When you are finished using the controller you can issue the exit

command to terminate the image.

 In single command mode you provide command line switches to tell the controller what

action has to be performed. When the action is complete the controller image will

terminate.

The controller is typically used in conjunction with an XML-formatted configuration file

that provides information about the Oracle JDBC for Rdb servers can be run on your

system. In addition the configuration file may provide session information such as the

broadcast port information to use when doing poll operations. See Configuration Files for

more information about configuration files.

The controller may be used to start and stop servers as well as other operations pertaining

to servers and connected clients. In addition the controller may be used to show the current

status of Oracle JDBC for Rdb servers running throughout your network.

Below is a sample session using the controller in interactive mode:

Example

rdbthincontrol> show stored servers

Stored server info

RDB$NODE : localhost
RDB$PORT : 1702

RDB$STATUS : not available

RDB$SERVER_NAME : SRV2

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : not available

RDB$SERVER_SHR_VERSION : not available

RDB$SERVER_PID : not available

RDB$ALLOWS_ANON : false

 66

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

RDB$NODE : localhost

RDB$PORT : 1701

RDB$STATUS : not available

RDB$SERVER_NAME : SRV1

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : not available

RDB$SERVER_SHR_VERSION : not available

RDB$SERVER_PID : not available

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

RDB$NODE : localhost

RDB$PORT : 1701

RDB$STATUS : not available

RDB$SERVER_NAME : DEFAULT

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : not available

RDB$SERVER_SHR_VERSION : not available

RDB$SERVER_PID : not available

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

rdbthincontrol> start server srv1

Starting server ...

.

RDB$NODE : 138.1.14.91

RDB$PORT : 1701

RDB$STATUS : Idle

RDB$SERVER_NAME : srv1

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : T7.2-510 20070109 B719

RDB$SERVER_SHR_VERSION : T7.2-510 20061221 B6CL

RDB$SERVER_PID : 0x20238378(539198328)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

RDB$TRACE_LEVEL : 0

RDB$LOG_FILE : rdbjdbclog

RDB$RESTRICT_ACCESS : false

rdbthincontrol> poll

Polling servers ...

srv1(0) //138.1.14.91:1701/ (0x20238378<539198328>)

rdbthincontrol> start server srv2

Starting server ...

.

 67

RDB$NODE : 138.1.14.91

RDB$PORT : 1702

RDB$STATUS : Idle

RDB$SERVER_NAME : srv2

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : T7.2-510 20070109 B719

RDB$SERVER_SHR_VERSION : T7.2-510 20061221 B6CL

RDB$SERVER_PID : 0x2033137C(540218236)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

RDB$TRACE_LEVEL : 0

RDB$LOG_FILE : rdbjdbclog

RDB$RESTRICT_ACCESS : false

rdbthincontrol> poll

Polling servers ...

srv2(0) //138.1.14.91:1702/ (0x2033137C<540218236>)

srv1(0) //138.1.14.91:1701/ (0x20238378<539198328>)

rdbthincontrol> show active servers

Active server info

RDB$NODE : 138.1.14.91

RDB$PORT : 1702

RDB$STATUS : Idle

RDB$SERVER_NAME : srv2

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : T7.2-510 20070109 B719

RDB$SERVER_SHR_VERSION : T7.2-510 20061221 B6CL

RDB$SERVER_PID : 0x2033137C(540218236)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

RDB$TRACE_LEVEL : 0

RDB$LOG_FILE : rdbjdbclog

RDB$RESTRICT_ACCESS : false

RDB$NODE : 138.1.14.91

RDB$PORT : 1701

RDB$STATUS : Idle

RDB$SERVER_NAME : srv1

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : T7.2-510 20070109 B719

RDB$SERVER_SHR_VERSION : T7.2-510 20061221 B6CL

RDB$SERVER_PID : 0x20238378(539198328)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

RDB$TRACE_LEVEL : 0

RDB$LOG_FILE : rdbjdbclog

RDB$RESTRICT_ACCESS : false

rdbthincontrol> stop all servers

Successfully stopped Thin Server : srv1 (//138.1.14.91:1701/)

Successfully stopped Thin Server : srv2 (//138.1.14.91:1702/)

rdbthincontrol> poll

 68

Polling servers ...

rdbthincontrol> exit

The following sections detail how to run the controller and carry out various server and

client control functions on active servers within your network.

 Running the Controller

 Connecting to Servers

 Control Password

 Multicast Polling

 Server Matching

 Server Operations

 Client Operations

6.1 Running the Controller

The controller allows basic management of Oracle JDBC for Rdb servers.

The controller can be run from the OpenVMS DCL command line either in single

command mode or as a command line interface:

 Format

$java –jar rdb$jdbc_home:rdbthincontrol.jar [<option> |

<command_keyword>]...

Remarks

Valid <option>s can be found in Table 6.1–1.

Valid <command_keyword>s can be found in Table 6.1–2.

For the controller to be able to manage an Oracle JDBC for Rdb server the server must

have a control password.

See Server Configuration Options for more details on specifying the control password.

Table 6.1-1Controller Options

Option Default Description
-active false Used in conjunction with a

command_keyword to specify that

the action applies to only active

designated entities
-all n/a

Used in conjunction with a

command_keyword to specify that

the action applies to all designated

 69

Option Default Description

entities
–configfile or –cfg

<configuration_filename>
none

The file specification of a configuration

file where session and server attributes

may be found.

Attributes set in this configuration file

may be overridden by setting the same

attribute at the command line level.

See Configuration Files for more details.

By default no configuration file is used.
-controlpass <control

password>
none

Specifies the control password to use

when connecting to servers. This

password takes precedence over any

password option provided on the

same command line
-n or –node <node> none Specifies the node where the server to

be connected to is running.

-name <server name > none Specifies a name for the server. The

name is used to lookup server

information within the start-up

configuration file. The value of this

name is not case-sensitive.

-oem n/a Used by OEM to indicate that the return

status and messages should be formatted

for OEM usage.

–password or –pw <password>

none Specifies the password to send to the

thin server when requesting a control

connection. If a controlpass option

is also found on the same command line

the controlpass option will take

precedence.

-pollTimeout <timeout> 2000 Specifies the time in milliseconds that

the controller should wait for POLL

replies from servers. See Polling Servers

for more information.
–port or -p <port_num> none Specifies the port on which the server to

be connected to is listening.

-srvargs <server_arguments> none Additional arguments to be passed on

 70

Option Default Description
 the connection URL when connecting to

the server. For Example :
@tracelevel=-1

-srv.mcBasePort <base_port> 5517

Specifies the base port number that will

be used for multicast operations.

-srv.mcGroupIP <group_ip> 239.192.1.1

Specifies the multicast IP group that this

server will participate in
-stored n/a Used in conjunction with a

command_keyword to specify that

the action applies to the stored

designated entities as found in the XML

configuration file
–tracelevel or –tl

<trace_level>
 0 Specifies the default tracelevel for the

session

The value zero (0) means no tracing.
–user or –u <user_name> .none

Specifies the username to use for

connection to the server
-url <connection URL> none

Specifies the node IP and port of the

server to connect to. This switch

overrides any port and node switch

specified The format of the <connection

URL> is //<node>:<port>/

Note:

 A number of these options may also be specified in a session section of the

XML-formatted configuration file used to start an interactive controller

session. See Session Section within XML Formatted Configuration File for

more details.

Table 6.1-2Controller Command Keywords

Option Description
-poll Sends a pool request out to locate active servers. See

Polling Servers for more information.

-startserver Starts the server as specified by the other options

given on the command line. See Starting Servers for

more information.
-openserver Opens the server as specified by the other options

given on the command line. See Opening Servers for

more information.

 71

-closeserver Closes the server as specified by the other options

given on the command line. See Closing Servers for

more information

-showserver

Issues the Show Server command that gets server

information from the connected server. See Showing

Servers for more information

-showclients Issues the Show Clients command, which gets

client information from the connected server. See

Showing Clients for more information

-stopserver

Stops the server as specified by the other options

given on the command line See Stopping Servers for

more information

-stopclient <client_id>

Issues the Stop Client command which requests

the connected server to terminate the specified client

thread.

The <client_id> is an id of a client as displayed

by the Show Clients command See Stopping Clients

for more information. There is no default value for
<client_id>

If the controller is invoked with the appropriate connect information and one of command

keywords, the controller will issue the desired request to the server, optionally display the

results, and terminate immediately.

If more than one command keyword is present, only one will be issued using the

precedence as shown in the preceding table.

Example

An example of issuing command keyword to the controller:

$java -jar rdb$jdbc_home:rdbthincontrol.jar -u jan –

 -controlpass mpass -node nd1 -port 1701 –stopserver

6.1.2 Controller Command Line

If no command keyword is used on the controller invocation, the application will go into

command line prompt mode allowing multiple commands to be issued.

If valid connection information is provided at the controller invocation (node, port, user

and password), the controller will automatically attempt to connect to the specified server.

 72

If a connection has not been established or a different server connection is required, then

the Connect command can be issued at the control command line. See Connecting to

Servers for more information.

If username and password are not provided on the connect command line, then the values

of the configuration options when the controller was invoked will be used. If a

configuration file is specified, the configuration file session characteristics will be used.

See Session Section within XML formatted Configuration File for more information on

session characteristics.

Commands may be issued at the control command line either within the context of a server

connection or outside the context of a specific server connection.

The commands that may be issued once a connection has been established to a server are

discussed in Commands requiring server connection.

The commands that do not require a server connection are discussed in Commands Not

requiring a server connection.

Format
$java -jar rdb$jdbc_home:rdbthincontrol.jar –cfg my_servers.xml

6.1.2.1 Commands requiring a server connection

Once a valid server connection has been established the commands shown in the following

table may be issued.

Table 6.1-3Controller Command Line Commands Within Connection

Command Description

close server

Closes the currently connected server. See Closing

Servers for more details

disconnect Disconnects from the currently connected server

open server

Opens the currently connected server. See Opening

Servers for more details

set logfile [<filename>] Sets the logfile for the currently connected active

server. This may be used to redirect trace log

message to a different log file, which will close the

current log file. If <filename> is missing of is

equal to the value OFF the current logfile is still

closed and log messages will no longer be sent to the

log file.

 73

set default tracelevel <int> Sets the default tracelevel on the currently connected

active server. This does not affect currently

connected clients. Only clients connecting after the

set default tracelevel is issued will be affected.

set tracelevel <int> Sets the tracelevel on the currently connected active

server. This will set the trace level for all clients that

are currently connected to the server.

Clients connecting after the set is issued will not be

affected.

show clients Show all clients on the currently connected server.

See Showing Clients for more details.

stop client <client_id> Stops the client matching the specified

<client_id> on the currently connected server.

See Stopping Clients for more details.

stop clients

Stops all clients on the currently connected server.

See Stopping Clients for more details.

stop server Stops the currently connected server

watch [server] Send trace logging from connected server to the

current console. See Watching Servers for more

details

Example

$java -jar rdb$jdbc_home:rdbthincontrol.jar

rdbthincontrol> connect //localhost:1701/ jones mypassword

rdbthincontrol> show server

RDB$NODE : localhost

RDB$PORT : 1701

RDB$STATUS : Idle

RDB$SERVER_NAME : rdbthnsrv1

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : V7.1-300 20040624 B46N

RDB$SERVER_SHR_VERSION : V7.1-300 20040624 B46N

RDB$SERVER_PID : 0x0B24(2852)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

rdbthincontrol>

rdbthincontrol> stop server

Successfully stopped Rdb Thin Server : //localhost:1701/

rdbthincontrol> exit

$

 74

6.1.2.2 Commands Not requiring a server connection

A number of commands may be issued that do not require you to have a connection

established, however, for all commands other than poll and quit you will have to

provide a username and control password which will be used to connect to the servers to

obtain the required information.

The commands that do not require a server connection are listed in the following table:

Table 6.1-4Controller Command Line Commands Without Connection

Command Description

poll Multicast Poll for responding servers. See Polling

Servers for more details.

set session controlpass <pwd>

Sets the sessions control password. See Control

Password for more information.

set default tracelevel <int>

<server_ident>

Sets the default tracelevel on the identified active

server. This does not affect currently connected

clients. Only clients connecting after the set default

tracelevel is issued will be affected.

set logfile <filename>

<server_ident>

Sets the logfile for the identified active server. This

may be used to redirect trace log message to a

different log file, which will close the current log file.

If <filename> is the value OFF then the current

logfile will be closed and log messages will no longer

be sent to the log file.

set polltimeout <int> Sets the time (in milliseconds) that the controller

should wait for POLL replies from servers. See

Polling Servers for more information.

set tracelevel <int> <server_ident> Sets the tracelevel on the identified active server.

This will set the trace level for all clients that are

currently connected to the server.

Clients connecting after the set is issued will not be

affected.

show active servers

show all servers

show server <server_ident>

Show information about servers. See Showing

Servers for more details.

show active clients

show all clients

Shows information about clients on all responding

servers See Showing Clients for more details.

 75

show active clients <name>

show all clients <name>

Shows information about clients with username

<name> on all responding servers. See Showing

Clients for more details.

stop active clients

stop all clients

Stops all clients on all responding servers.

See Stopping Clients for more details.

stop active clients <name>

stop all clients <name>

Stops all clients with username <name> on all

responding servers. See Stopping Clients for more

details.

stop active clients in <database

spec>

stop all clients in <database spec>

Stops all clients on all responding servers if the client

is currently connected to the specified database. See

Stopping Clients for more details.

stop active servers

stop all servers

stop server <server_ident>

Stops active servers. See Stopping Servers for more

details.

open active servers

open all servers

open server <server_ident>

Opens active servers. See Opening Servers for more

details.

close active servers

close all servers

close server <server_ident>

Closes active servers. See Closing Servers for more

details.

watch [server] <server_ident>

Watches active servers. See Watching Servers for

more details.

quit or exit Exits the controller application

Example

$java -jar rdb$jdbc_home:rdbthincontrol.jar -user jones –

 -controlpass jdbc_user

rdbthincontrol> show active servers

RDB$NODE : localhost

RDB$PORT : 1701

RDB$STATUS : Idle

RDB$SERVER_NAME : rdbthnsrv1

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : V7.1-300 20040624 B46N

RDB$SERVER_SHR_VERSION : V7.1-300 20040624 B46N

RDB$SERVER_PID : 0x0B30(2864)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

 76

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

RDB$NODE : localhost

RDB$PORT : 1711

RDB$STATUS : Idle

RDB$SERVER_NAME : myserver

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : V7.1-300 20040624 B46N

RDB$SERVER_SHR_VERSION : V7.1-300 20040624 B46N

RDB$SERVER_PID : 0x0B88(2952)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

rdbthincontrol>

If a server does not recognize the provided control password, it will respond with a failure

message:

rdbthincontrol> show active servers

Failed to connect <CONTROL>

No Rdb Thin Server connection has been established

Unable to connect to server //localhost:1701/

Failed to connect <CONTROL>

No Rdb Thin Server connection has been established

Unable to connect to server //localhost:1711/

rdbthincontrol>

Contents

6.2 Connecting to Servers

The majority of commands that can be issued from the controller require a valid control

connection to be established with a server. If valid connection information is provided at

the controller invocation (node, port, user and password), the controller will automatically

attempt to connect to the specified server when the controller starts up.

If user and password are provided at the controller invocation, this information will be

maintained for the entire controller session and will be used in subsequent connection

request unless explicitly overridden on the command statement.

Commands will only be carried out on a server if a control connection has been established,

which requires the correct control password to be provided during the connect request. See

Control Password for more information of this password.

 77

This control connection may be an explicit connection established for the session by using

the Connect command or may be implicitly established if a command is issued to a server

that requires control access to execute successfully. Many controller commands allow

server connection information to be specified, indicating which server to apply the

command. In addition, the connection information may provide a username and password

to use for that server.

Format

 <command> <server_connection>

The <server_connection> information is comprised of a server identification string

and optional connection username and control password:

Format

 <server_ident> [<server_uid>]

The <server_ident> string can be one of the following:

• Port ID - this is the same as issuing //localhost:<port>/

• full URL with the format: //<node>:<port>/

• name of server as found in the configuration used to start the controller

The <server_uid> is:

 <username> [<password>]

The <password> must match the control password of the server for the control

connection to be carried out successfully.

If a username or password is not provided on the command line then the current session

information is used.

This connection, once established, will be maintained until either an explicit Disconnect

is issued, or a new connection is established to another server or the controller exits.

If an attempt is made to issue a controller command without a connection being

established, then an error condition will be raised.

Example

rdbthincontrol> watch

No Rdb Thin Server connection has been established

 78

If username and password are not provided on the connect command line, then the

values of the appropriate configuration options set when the controller was invoked will be

used, or if a configuration file is specified, the configuration file session characteristics will

be used. See Session Section within XML formatted Configuration File for more

information on session characteristics.

6.2.1 Connect Command

If a connection has not been established or the current connection has been disconnected or

a different server connection is required, then the Connect command can be issued at the

control command line.

Format
 connect [server] <server_connection>

This command connects to the server specified by the <server_connection>

information.

Example

The following examples use the Connect command:

rdbthincontrol> connect //localhost:1701/ jones mypassword

rdbthincontrol> connect server 1701

rdbthincontrol> connect myServer jim xxxxx

Remarks

If username and password are not provided on the Connect command line, then the

values entered in the configuration options when the controller was invoked will be used,

or if a configuration file is specified, the configuration file session characteristics will be

used. See Session Section within XML formatted Configuration File for more information

on session characteristics.

6.2.2 Implicit Connection

A number of the control commands require a control connection to be established with the

target server. If the target server is not currently connected then both explicitly provided

connection information and session connection information may be used to attempt to

establish a control connection.

 79

Connection information may be provided on the command line along with the command,

for example:

Example
rdbthincontrol> stop server //localhost:1701/ jones mypassword

Once an implicit connection is made, this connection will be established as the current

session connection until overridden by another implicit or explicit connection.

6.3 Control Password

To carry out any operations on active servers or clients you are required to provide a

control password. This password must match the control password for that active server,

otherwise, an exception will be raised and the operation will fail.

When you start up the controller you may provide a password as a command line option

or in the session section of an XML-formatted Configuration file. If you provide both a

password and a controlPass the controlPass will take precedence.

Example

rdbthincontrol> stop server myMPServer

Failed to connect <CONTROL>

No Rdb Thin Server connection has been established

Unable to connect to server //localhost:1788/

In addition the control password may be set for a session by using the Set Session

Controlpass statement at the controller command line prompt.

rdbthincontrol> set session controlpass badpassword

rdbthincontrol> show server 1701

Failed to connect <CONTROL>

No Rdb Thin Server connection has been established

rdbthincontrol> set session controlpass mypassword

rdbthincontrol> show server 1701

RDB$NODE : 192.168.1.100

RDB$PORT : 1701

RDB$STATUS : Idle

RDB$SERVER_NAME : jimserv

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : X7.1-301 20040713 B47C

RDB$SERVER_SHR_VERSION : X7.1-301 20040712 B47C

RDB$SERVER_PID : 0x1728(5928)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

 80

Note:

 A session password or controlPass specifed on the controller command line

should not start with the following strings:

• ―0x‖ or

• ―##‖

A session password or controlPass specified in a configuration file starting with

the prefixes as designated above, will be considered to be a digested or obfuscated

password.

Contents

6.4 Multicast Polling

The controller uses multicast polling to discover Oracle JDBC for Rdb servers that may be

available on the network.

Multicasting is a style of efficiently broadcasting data over a network connection to

many connected servers. Any server listening in to the multicast IP address will

receive the data packets that are broadcast, such as poll requests.

Oracle JDBC for Rdb servers use the Administrative Scoping range of addresses that allow

easy limiting of multicast transmission to well defined boundaries within your network.

Administrative Scoping is the restriction of multicast transport based on the address range

of the multicast group. It is defined by RFC 2365 "Administratively Scoped IP Multicast." and is

restricted to the address range:

 239.0.0.0 to 239.255.255.255

The IP address for server multicast polling should be chosen from within the following

range:

 239.192.0.0 to 239.192.255.255

This range is known as the IPv4 Organization Local Scope and has a subnet mask of

255.252.0.0 It is intended for use by an entire organization setting multicast scopes

privately for its own internal or organizational use and allows up to 262,144 group

addresses.

By default, Rdb servers use the multicast IP 239.192.1.1 with a base port of 5517.

http://www.ietf.org/rfc/rfc2365.txt

 81

Multicast Group IP addresses can be assigned to a server using the srv.mcGroupIP

option within a server configuration file or the server start-up command line.

The srv.mcBasePort option allows you to change the Multicast Base port.

Note:

When a server participates in a multicast group, as part of the standard multicast

protocol its presence in the group will be broadcast at regular intervals. This may

conflict with the network policy and procedures of your network administration.

Please consult your network manager to ensure that multicast polling is allowed

on your system. Your network manager may also allocate a specific IP address

and Port range that may be used by the Rdb Native Drivers, and you should

change your server and session configuration files to reflect these allocated

addresses.

Setting the Multicast Base port to zero (0) will effectively disable multicast

broadcast and receipt for that server. This also means that the server will not

respond to any POLL requests issued by the Controller.

 See Polling Servers for more details on how the controller may be used to POLL servers.

Contents

6.5 Server Matching

To allow the selectivity of servers when issuing controller commands, certain commands

may take a server matching pattern.

The server matching pattern may be a Regular Expression that may be used to select out

those servers on the system that should either respond and/or carry out the required

operation.

Note:

In addition to the server matching criteria, only servers that are using the same Group

IP will respond to controller command such as POLL. See Multicast Polling for more

details.

Note:

 82

Currently the only controller command allowing server matching is the POLL

command. See Polling Servers for more details.

Example 1

rdbthincontrol>poll #type:RdbThinSrvPool#node:ALPHA.*

In this example the server matching pattern refines the server selection for the POLL

request to only POOL servers currently running on nodes starting with names "ALPHA".

Format

The format of the server match pattern is:

[#<match type>:<match value>]…

where <match type> is one of:

 type – the type of server

 name – the server name

 port - the port the server is listening on

 stat – the state of the server

 node – the node the server is running on

 vers – the version JDBC the server is running

and <match value> depends on the <match type>. Some <match type>s will

allow a Regular Expression pattern to match on. The following sections describe each of

the <match type>s and their allowable <match value>s.

See your JAVA documentation for more information on Regular Expressions.

6.5.1 type match

The type <match type> specifies the type of server that should respond. . The

following table shows the <match value>s allowed for a type match:

Table 6.5-1 RdbThin Format Elements

Type name Type code Description

RdbThinSrv 0 standard thin server

RdbThinSrvMP 1 multi-process server

RdbThinSrvSSL 2 thin server using SSL for communication

RdbThinSrvMPSSL 3 multi-process server using SSL

RdbThinSrvPool 4 pool server.

RdbThinSrvPoolSSL 5 pool server using SSL

 83

The <match value> for server type may be either an int value, representing the server

type code as shown above, or a string value to match the server type name.

The <match value> may be a Regular Expression. Character case will be ignored.

Example 1

All SSL server types

 rdbthincontrol>poll #type:.*SSL

Example 2

All multi-process server types

 rdbthincontrol>poll #type:[13]

Example 3

Any multi-process server using SSL

 rdbthincontrol>poll #type:rdbthinsrvmpssl

6.5.2 name match

The name <match type> specifies the name of server that should respond.

The <match value> may be a Regular Expression. Character casing will be ignored.

Example 1

All servers named "MY_MP_SRV"

 rdbthincontrol>poll #name:MY_MP_SRV

Example 2

All servers with names starting with "MP_", ending with "_SRV" and any 2 characters in

between.

 rdbthincontrol>poll #name:MP_.._SRV

Example 3

All servers with names starting with "P_", ending with "_SRV" and 1 or more digits in

between.

 rdbthincontrol>poll #name:P_(\d+)_SRV

6.5.3 port match

The port <match type> specifies the port numbers for server that should respond.

 84

The <match value> may be a Regular Expression.

Example 1

All servers listening on port 1701

 rdbthincontrol>poll #port:1701

Example 2

All servers listening on port 1700 though 1709

 rdbthincontrol>poll #port:170\d

6.5.4 stat match

The stat <match type> specifies only servers currently in the specified state should

respond. The following table shows the <match value>s allowed for a stat match:

Table 6.5-2 RdbThin Format Elements

Match Value Description

AVAILABLE server is currently available and has at least one client

connected

BUSY server has the maximum number of clients connected. See

maxClients server property.

CLOSED server is currently closed with no clients connected. See

Closing Servers.

CLOSING server is currently closing but still has at least one client

connected. See Closing Servers.

IDLE server is currently available and no clients connected

The <match value> may be a Regular Expression. Character casing will be ignored.

Example 1

All idle servers

 rdbthincontrol>poll #stat:idle

Example 2

All closed servers or servers in the process of closing

 rdbthincontrol>poll #stat:clos.*

Example 3

All available servers irrespective of the number of clients connected

 85

 rdbthincontrol>poll #stat:IDLE|BUSY|AVAIL.*

6.5.5 node match

The node <match type> specifies that only servers running on the specified node(s)

should respond.

The <match value> may be a Regular Expression. Character casing will be ignored.

The <match value> pattern can represent either the name of the node or the IP address of

the node.

Example 1

All servers running on node ALPHA1

 rdbthincontrol>poll #node:ALPHA1

Example 2

All servers running on node ALPHA1, ALPHA2 and ALPHA3

 rdbthincontrol>poll #node:ALPHA[123]

Example 3

All servers running in the sub-network 192.169.1.*

 rdbthincontrol>poll #node:192.169.1.(\d+)

6.5.6 vers match

The vers <match type> specifies that only servers running under the specified Oracle

JDBC for Rdb version should respond.

The <match value> may be a Regular Expression. Character casing will be ignored.

The <match value> pattern may optionally include the "V" prefix for the version.

The <match value> pattern strings "*", ".*" and "ALL" are handled as special

patterns and indicate that ALL versions should matched. This wildcard version specification

may be used to allow prior-version servers to respond to controller command containing

match selectivity. See Handling prior version Servers for more details.

Example 1

All servers with version V7.3 Oracle JDBC for Rdb

 86

 rdbthincontrol>poll #vers:73

Example 2

All servers running on node ALPHA1 including prior-version servers

 rdbthincontrol>poll #vers:ALL#node:ALPHA1

6.5.7 Handling prior version Servers

Server matching relies on special handling of controller command by the servers that is only

available in servers from Version 7.3 Oracle JDBC for Rdb and later. This handling ensures

that only those servers that match the selection criteria will carry out the operations

requested.

If your network has prior-version JDBC servers running, while these servers may respond to

standard control requests such as POLL they may not respond to the control statements

containing V7.3 matching patterns. For example, assuming the network has several V7.3

servers and one V7.2 server, named "V72SRV", running, the standard POLL request will

discover all of the servers:

rdbthincontrol> poll

Polling servers ...

mpx(1) //192.168.1.2:1899/ (0xC6C<3180>) node = froggy2

rdbthnsrv1(0) //192.168.1.2:1701/ (0x9A8<2472>) node = froggy2

rdbthnsrv2(0) //192.168.1.2:1702/ (0xB30<2864>) node = froggy2

v72srv(0) //192.168.1.2:1800/ (0xC10<3088>) node = froggy2

But a POLL request with matching criteria will not:

rdbthincontrol> poll #node:192.168.1.\d+

Polling servers (using qualifiers : #node:192.168.1.\d+) ...

mpx(1) //192.168.1.2:1899/ (0xC6C<3180>) node = froggy2

rdbthnsrv1(0) //192.168.1.2:1701/ (0x9A8<2472>) node = froggy2

rdbthnsrv2(0) //192.168.1.2:1702/ (0xB30<2864>) node = froggy2

If match criteria is required and prior version servers are present, then the #VERS match

condition set to ALL may be used to indicate to the controller that matching should be done

by the controller, rather than the servers. This will allow prior version servers to respond

correctly:

rdbthincontrol> poll #node:192.168.1.\d+#vers:all

Polling servers (using qualifiers : #node:192.168.1.\d+#vers:all) ...

mpx(1) //192.168.1.2:1899/ (0xC6C<3180>) node = froggy2

rdbthnsrv1(0) //192.168.1.2:1701/ (0x9A8<2472>) node = froggy2

 87

rdbthnsrv2(0) //192.168.1.2:1702/ (0xB30<2864>) node = froggy2

v72srv(0) //192.168.1.2:1800/ (0xC10<3088>) node = froggy2

6.6 Server Operations

 This section details the operations you may carry out on servers using the controller both

interactively and in command mode.

The following sub-sections describe:

 Closing Servers

 Opening Servers

 Showing Servers

 Starting Servers

 Stopping Servers

 Watching Servers

 Polling Servers

Note:

The examples in this section assume that JAVA has been set up and the following

DCL symbol has been set in the environment.

$ thincontrol :== 'java' -jar rdb$jdbc_home:rdbthincontrol.jar –

 –cfg my_servers.xml –controlpass "MySecretPassword"

The configuration file contents used for these examples may be seen in Sample

configuration file MY_SERVERS.XML

Server Matching may be used in conjunction with the following server commands to target

specific servers or groups of servers on your network.

6.6.1 Closing Servers

Active servers may be closed using the controller. You must provide a valid control

password for the server.

Closing a server sets its maxClients attribute to zero (0) thus preventing any further

connections to be made. Already established connections are not affected. You may issue

an open command later to re-open a closed server, which will reestablish the

maxClients value for the server back to the value it was prior to closing. See Opening

Servers for more details.

 88

Only those servers where the control password matches the control session control

password will be closed.

6.6.1.1 Interactive mode
The interactive control commands available to close servers can be seen in the following

table:

Table 6.6-1Interactive Close Server

Command Description

close active servers

close all servers

Closes all responding servers.

all and active in this context are considered

synonyms.

close server

Closes the currently connected server

close server <server_connection>

Closes the active server specified by the server

connection information. See Connecting to Servers

for more information

Example

rdbthincontrol> close server myserver

rdbthincontrol> close server //prod_node:1766/

rdbthincontrol> close server 1701

rdbthincontrol> close active servers

rdbthincontrol> close server myserver george MySecretPassword

6.6.1.2 Command mode

The command mode commands available to close servers can be seen in the following

table:

Table 6.6-2Command Mode Close Server

Command Required
options

Additional
options

Ignored
options

Description

-closeServer

 -name

-node

-port

-URL

-active
-all

-using

-in

Close the server as specified by

other command line options

-closeServer -active or -name Close all servers that are

 89

Command Required
options

Additional
options

Ignored
options

Description

-all -node

-port

-URL

-using

-in

responding to the multicast poll

request.

Qualifiers specifed in the Ignored Options column are silently ignored if present on the

Command line.

Example

$ thincontrol –closeServer –url //prod_node:1766/

$ thincontrol –closeServer –port 1701 –node localhost

$ thincontrol –closeServer –active

$ thincontrol –closeServer –name myserver

6.6.2 Opening Servers

Active servers may be opened using the controller. You must provide a valid control

password for the server.

Opening a server allows new client connections to be made using that server.

You may issue a open command to re-open a closed server, which will reestablish the

maxClients value for the server back to the value it was prior to closing.

Only those servers where the control password matches the control session control

password will be opened.

6.6.2.1 Interactive mode

The control commands available to open servers can be seen in the following table:

Table 6.6-3Interactive Open Server

Command Description

open active servers

open all servers

Opens all responding servers.

open server

Opens the currently connected server

open server <server_connection>

Opens the active server specified by the server

connection information. See Connecting to Servers

 90

for more information

Example

rdbthincontrol> open server

rdbthincontrol> open server myserv

rdbthincontrol> open server //prod_node:1766/

rdbthincontrol> open server 1701

rdbthincontrol> open all servers

rdbthincontrol> open server //prod_node:1766/ fred mypass

6.6.2.2 Command mode

The command mode commands available to open servers can be seen in the following

table:

Table 6.6-4Command Mode Open Server

Command Required
options

Additional
options

Ignored
options

Description

-openServer

 -name

-node

-port

-URL

-active
-all

-using

-in

Opens the server as specified by

other command line options

-openServer -active or

-all
 -name

-node

-port

-URL

-using

-in

Open all servers that are

responding to the multicast poll

request.

Qualifiers specifed in the Ignored Options column are silently ignored if present on the

Command line.

Example

$ thincontrol –openServer –url //prod_node:1766/

$ thincontrol –openServer –port 1701 –node localhost

$ thincontrol –openServer –active

$ thincontrol –openServer –name myserver

 91

6.6.3 Showing Servers

Information about active and known servers may be displayed using the controller. You

must provide a valid control password for the server before information will be displayed.

If showing all or active servers only those servers where the control password matches the

control session control password will have information displayed.

All server definitions as stored in the configuration file will be displayed when showing

stored or all servers irrespective of the control password.

6.6.3.1 Interactive mode

The control commands available to show servers can be seen in the following table:

Table 6.6-5Interactive Show Server

Command Description

show active servers Show all servers that are responding to the multicast

poll request

show all servers Shows active servers as well as the server definitions

as found in the configuration file used to start the

controller

show stored servers Shows the server definitions as found in the

configuration file used to start the controller

show server Shows information about the currently connected

server

show server <server_connection>

Shows information about the active server specified

by the server connection information. See

Connecting to servers for more information

Example

rdbthincontrol> show server

rdbthincontrol> show server myserv

rdbthincontrol> show server //prod_node:1766/

rdbthincontrol> show server 1701

rdbthincontrol> show active servers

rdbthincontrol> show server //prod_node:1766/ fred mypass

 92

6.6.3.2 Command mode

The command mode commands available to show servers can be seen in the following

table:

Table 6.6-6Command Mode Show Server

Command Required
options

Additional
options

Ignored
options

Description

-showServer

 -name

-node

-port

-URL

-active
-all

-using

-in

Shows the server as specified by

other command line options

-showServer -active -name

-node

-port

-URL

-using

-in

Show all servers that are

responding to the multicast poll

request.

-showServer -all -name

-node

-port

-URL

-using

-in

Shows active servers as well as

the server definitions as found in

the configuration file used to

start the controller.

-showServer -stored -name

-node

-port

-URL

-using

-in

Shows the server definitions as

found in the configuration file

used to start the controller

Qualifiers specifed in the Ignored Options column are silently ignored if present on the

Command line.

Note:

If multiple conflicting keywords are found on the one command line only one

action will be taken and the following precedence is used:

• -all

• -active

• -stored

• specified server

Example

 93

$ thincontrol –showServer –url //prod_node:1766/

$ thincontrol –showServer –port 1701 –node localhost

$ thincontrol –showServer –active

$ thincontrol –showServer –all

$ thincontrol –showServer –stored

$ thincontrol –showServer –name myserver

6.6.4 Starting Servers

Servers may be started using the controller.

If the server specifies a node or URL that is not the same as the node the controller is running

on an exception will be raised.

Note:

Currently a server can only be started if its configuration specifies the same node as

the node the controller is running on.

Starting remote servers is not currently available.

6.6.4.1 Interactive mode

The control commands available to start servers can be seen in the following table:

Table 6.6-7Interactive Start Server

Command Description

start all servers Starts all autostart servers found in the XML-

formatted configuration file used when invoking the

controller.

Only those servers that have the autostart

attribute and are for the local host will be started.

start server

Starts a server of type RdbThinSrv on the local host

with all default characteristics.

start server <port id>

Starts a server of type RdbThinSrv listening on the

designated port on the local host with default

remaining characteristics

start server <name> Starts the server that matches the name provided. See

 94

Command Description

 XML formatted Configuration File for more

information on named server definitions.

Example

rdbthincontrol> start server myserver

rdbthincontrol> start server 1799

rdbthincontrol> start server all

6.6.4.2 Command mode

The command mode commands available to start servers can be seen in the following table:

Table 6.6-8Command Mode Start Server

Command Required
options

Additional
options

Ignored
options

Description

-startServer

 -name

-node

-port

-URL

-active
-all

-using

-in

Starts the server as specified by

other command line options

-startServer -all -name

-node

-port

-URL

-using

-in

Starts all autostart servers

found in the XML-formatted

configuration file used when

invoking the controller.

Qualifiers specifed in the Ignored Options column are silently ignored if present on the

Command line.

Example

$ thincontrol –startServer –port 1701 –node localhost

$ thincontrol –startServer –name myserver

$ thincontrol –startServer –all

6.6.5 Stopping Servers

 95

Active servers may be stopped using the controller. You must provide a valid control

password for the server.

Only those servers where the control password matches the control session control

password will be stopped.

Note:

Stopping a server will forcibly terminate all database connections on that server and does

not wait for client transaction completion. Consider using the Close Server command

first, to stop further client connections and then use the Stop Server command later

when no clients are bound. See Closing Servers for more details.

You may use Show Server or Show Clients command to see if any clients are

currently using the server. See Showing Servers for more details.

6.6.5.1 Interactive mode

The control commands available to stop servers can be seen in the following table:

Table 6.6-9Interactive Stop Server

Command Description

stop active servers

stop all servers

Stops all responding servers.

 The keywords all and active in this context are

considered synonyms.

stop server

Stops the currently connected server

stop server <server_connection>

Stops the active server specified by the server

connection information. See Connecting to servers

for more information

Example

rdbthincontrol> stop server

rdbthincontrol> stop server myserv

rdbthincontrol> stop server //prod_node:1766/

rdbthincontrol> stop server 1701

rdbthincontrol> stop active servers

rdbthincontrol> stop server //prod_node:1766/ fred mypass

6.6.5.2 Command mode

 96

 The command mode commands available to stop servers can be seen in the following

table:

Table 6.6-10 Command Mode Stop Server

Command Required
options

Additional
options

Ignored
options

Description

-stopServer

 -name

-node

-port

-URL

-active
-all

-using

-in

Stops the server as specified by

other command line options

-stopServer -active or
-all

 -name

-node

-port

-URL

-using

-in

Stops all responding servers.

Qualifiers specifed in the Ignored Options column are silently ignored if present on the

Command line.

Example

$ thincontrol –stopServer –url //prod_node:1766/

$ thincontrol –stopServer –port 1701 –node localhost

$ thincontrol –stopServer –active

$ thincontrol –stopServer –name myserver

6.6.6 Watching Servers

The trace output for an active server may be displayed on the controller console. You must

provide a valid control password for the server to be able to watch its trace. Only those

servers where the control password matches the control session control password will be

watched.

When you watch a server, all trace output from that server will also be sent to the current

console running the controller.

The display of trace output messages occurs asynchronously with the command line

interface. The same trace information will also be sent to the servers log file.

Watch is only available in interactive mode.

Note:

 97

Because the server uses Java logger to log trace message to remote consoles such

as the controller, the output from the server will be buffered prior to being sent

across the network to the console. This means that the trace output may be

displayed sporadically on the console as the buffer is first filled and then flushed.

6.6.6.1 Interactive mode
The control commands available to watch servers can be seen in the following table:

Table 6.6-11 Interactive Watch Server

Command Description

watch [server]

Watch the currently connected server

watch server <server_connection>

Watch the active server specified by the server

connection information. See Connecting to servers

for more information

Example

rdbthincontrol> watch server myserv

rdbthincontrol> watch server //prod_node:1766/

rdbthincontrol> watch server 1701 jack password1

rdbthincontrol> watch

6.6.7 Polling Servers

The poll command uses the multicast information to poll responding Oracle JDBC for Rdb

servers:

Each available server will respond with information about which node and port it is

listening on. In addition the poll response identifies the Process ID the server is using on

that node.

A control password is not required to use the poll command.

As the operation is a poll, the thin controller will wait a prescribed amount of time before

displaying the responses from the poll request. The pollTimeout attribute specifies the

amount of time in milliseconds that the controller should wait for a reply on the receiving

socket. If no reply is received within that period of time the poll operation is deemed

complete and the responding servers will be sorted and listed.

 98

The default value for the pollTimeout attribute is 2000 milliseconds (2 seconds).

If the network or the servers are very busy it is possible that a server may not respond

within the default time, if this is the case the timeout may be increased by specifying a

larger value for pollTimeout attribute in either the command line or the session section

of the configuration file used when invoking the controller.

The pollTimeout attribute may also be set within a controller session using the Set

command on the controller command line.

6.6.7.1 Interactive mode

The control commands available to poll servers can be seen in the following table:

Table 6.6-12 Interactive Poll Server

Command Description

poll

Poll active servers

Example

rdbthincontrol> poll

Polling servers ...

i73spregtestsrv(5) //111.137.33.8:2505/ (0x23E3B538<602125624>) node = alfred

i73sslregtstsrv(2) //111.137.32.212:2503/ (0x2400FF7E<604045182>) node = victoria

i73sslregtstsrv(2) //111.137.33.8:2503/ (0x23E3CC2A<602131498>) node = alfred

regtestsrv_a71(0) //111.137.32.177:1850/ (0x2026C201<539410945>) node = spencer

rdbthincontrol>

6.6.7.2 Command mode

The command mode commands available to poll servers can be seen in following table:

Table 6.6-13 Command Mode Poll Server

Command Required
options

Additional
options

Ignored
options

Description

-poll

 -active
-all

-name

-node

-port

-URL

-using

-in

Poll active servers

 99

Example

$ thincontrol –poll

6.6.8 POLL Sub-commands

Starting with V7.3-01 the thin controller will allow subcommands to be issued during a

POLL request.

When a listening server receives a POLL request it may optionally carry-out a sub-

command sent to it within the POLL request message.

There is currently only one recognized POLL sub-command:

 Reopenlogs

Note:

The POLL sub-command funtionality is only available when using the thin

controller JAR from version 7.3-01 (or above). Only version 7.3-01 (or above)

servers will accept a POLL sub-command.

6.6.8.1 Reopenlogs sub-command

The reopenlogs subcommand tells the listening server to re-open its log files allowing

the prior version of the files to be read or copied.

Due to a restriction within Java on OpenVMS, log files opened by a JDBC server cannot

be be read or copied while the log files are currently being used by the server, thus to see

the contents of these files they must first be closed by the server process.

On receiving this sub-command the server will flush out its log stream and then close its

currently opened log files. It will then create a new version of the log files using the

same file names.

6.6.8.2 Interactive mode

The control commands available to poll servers can be seen in the following table:

 100

Table 6.6-14 Interactive Poll reopenlogs

Command Description

poll reopenlog

Poll active servers and request the logfiles to be re-

opened

Example

rdbthincontrol> poll reopenlogs

Polling servers ...

i73spregtestsrv(5) //111.137.33.8:2505/ (0x23E3B538<602125624>) node = alfred

i73sslregtstsrv(2) //111.137.32.212:2503/ (0x2400FF7E<604045182>) node = victoria

i73sslregtstsrv(2) //111.137.33.8:2503/ (0x23E3CC2A<602131498>) node = heinln

regtestsrv_a71(0) //111.137.32.177:1850/ (0x2026C201<539410945>) node = spencer

rdbthincontrol> poll reopenlogs #name:regtestsrv_a71

Polling servers (using qualifiers : #name:regtestsrv_a71) ...

regtestsrv_a71(0) //111.137.32.177:1850/ (0x2026C201<539410945>) node = spencer

6.6.8.3 Command mode

The command mode commands available to poll servers can be seen in following table:

Table 6.6-15 Command Mode Poll reopenlogs

Command Required
options

Additional
options

Ignored
options

Description

-poll reopenlogs

 -active

-all

-name

-node

-port

-URL

-using

-in

Poll active servers and request

the logfiles to be re-opened

Example

$ thincontrol –poll reopenlogs

$ thincontrol –poll reopenlogs #name:MY_MP_SRV

 101

6.7 Client Operations

6.7.1 Showing Clients

Information about clients within active servers may be displayed using the controller.

You must provide a valid control password for the server.

Clients will only be displayed for those servers where the control password matches the

control session control password.

6.7.1.1 Interactive mode

The control commands available to show clients in can be seen in following table:

Table 6.7-1Interactive Show Clients

Command Description

show active clients

show all clients

Shows all clients on responding servers.

show active clients <name>

show all clients <name>

Shows all clients with username <name> on

responding servers

show active clients in

<database_spec>

show all clients in <database_spec>

Shows all clients currently connected to the specified

database on all responding servers

show clients

Shows all clients in the currently connected server

show clients in <database_spec>

Shows all clients currently connected to the specified

database on the currently connected server

Example

rdbthincontrol> show active clients

rdbthincontrol> show all clients fred

rdbthincontrol> show clients

rdbthincontrol> show clients in disk1:[dbc]pers

rdbthincontrol> show all clients in disk1:[dbc]pers

6.7.1.2 Command mode

 102

The command mode commands available to show clients can be seen in following table:

Table 6.7-2Command Mode Show Clients

Command Required
options

Additional
options

Ignored
options

Description

-showClient

<client id> -active
-all

Show specified client on the

currently connected server.

 -name

-node

-port

-URL

 If present will be used to

establish a connection to a server

 -using

 <user>

 If present specifes that only users

using the username <user>

should be shown
-showClients Show all clients on the currently

connected server.
 -name

-node

-port

-URL

 If present will be used to

establish a connection to a

server:

 -using

 <user>

 If present specifes that only users

using the username <user>

should be shown
 -in

<database_

spec>

 If present specifes that only users

connected to <database_spec>

should be shown
-showClients

-all or

–active
 -name

-node

-port

-URL

Show all clients on all

responding servers.

 -using

 <user>

 If present specifes that only users

using the username <user>

should be shown
 -in

<database_

spec>

 If present specifes that only users

connected to <database_spec>

should be shown

Qualifiers specifed in the Ignored Options column are silently ignored if present on the

Command line.

Example

$ thincontrol –showclients -all

$ thincontrol –showclients –port 1701 –node mynode

$ thincontrol –showclients –all –in db_dir:personnel

$ thincontrol –showclients –all –using murray

 103

6.7.2 Stopping Clients

Clients within active servers may be stopped using the controller. You must provide a valid

control password for the server.

Clients will only be stopped in those servers where the control password matches the

control session control password.

If a database file specification is used, then only those clients current connected to that

database will be stopped. The database file specification must match exactly (ignoring

character case) to that shown in the Show Client output.

 Note:

Stopping a client will forcibly terminate all database connections on that server for that

client and does not wait for client transaction completion.

You may use Show Clients command to see clients that are currently using the server.

See Showing Clients for more details.

In the following command, if <client_id> is provided it must match a client id

returned by the show clients command. Leading zeroes (0) may be left off the

<client_id>.

6.7.2.1 Interactive mode

The control commands available to stop clients can be seen in following table:

Table 6.7-3Interactive Stop Clients

Command Description

stop active clients

stop all clients

Stops all clients on responding servers.

stop active clients <name>

stop all clients <name>

Stops all clients with user name <name> on

responding servers.

stop active clients in<database_spec>

stop all clients in <database_spec>

Stops all clients currently connected to the specified

database on all responding servers

stop clients

Stops all clients in the currently connected server

stop clients in<database_spec> Stops all clients on the currently connect server that

are currently connected to the specified database.

 104

Command Description

stop client <client_id>

Stops the specified client on the currently connected

server

Example

rdbthincontrol> stop active clients

rdbthincontrol> stop all clients fred

rdbthincontrol> stop clients

rdbthincontrol> stop client 0000000A

rdbthincontrol> stop all clients in disk1:[dbs]pers

6.7.2.2 Command mode

The command mode commands available to stop clients can be seen in the following table:

Table 6.7-4Command Mode Stop Clients

Command Required
options

Additional
options

Ignored
options

Description

-stopClient

<client id> -active
-all

Stops specified client on the

currently connected server.

 -name

-node

-port

-URL

 If present will be used to

establish a connection to a server

 -using

 <user>

 If present specifes that only users

using the username <user>

should be stopped
-stopClients Stops all clients on the currently

connected server.
 -name

-node

-port

-URL

 If present will be used to

establish a connection to a

server:

 -using

 <user>

 If present specifes that only users

using the username <user>

should be stopped
 -in

<database_

spec>

 If present specifes that only users

connected to <database_spec>

should be stopped
-stopClients -all or -name Stops all clients on all

 105

Command Required
options

Additional
options

Ignored
options

Description

 –active -node

-port

-URL

responding servers.

 -using

 <user>

 If present specifes that only users

using the username <user>

should be stopped
 -in

<database_

spec>

 If present specifes that only users

connected to <database_spec>

should be stopped

Qualifiers specifed in the Ignored Options column are silently ignored if present on the

Command line.

Example

$ thincontrol –stopClient 0000000A

$ thincontrol –stopClients –all

$ thincontrol –stopClients –active –in db_dir:mf_personnel

$ thincontrol –stopClients –all –using murray

$ thincontrol –stopClients –port 1701 –node mynode –using murray

Contents

6.8 Other Commands
The Controller has several commands that are neither server nor client operations:

 digest

 obfuscate

6.8.1 Digest

Digest will create a non-reversible obfuscated control password to be used in

configuration files. See obfuscating Control Passwords for more details.

6.8.1.1 Interactive mode

The control command available to obfuscate control passwords can be seen in following

table:

 106

Table 6.8-1Interactive Mode Obfuscate

Command Description

digest <plain text pwd> Obfuscates the control password

Example

rdbthincontrol> digest thisismypassword

digest : 0x31435008693CE6976F45DEDC5532E2C1

6.8.1.2 Command mode

The command mode commands available to obfuscate user passwords can be seen in

following table:

Table 6.8-2Command Mode Show Clients

Command Description

-digest <plain text pwd> Obfuscates the control password

Example

$ java -jar rdbthincontrol.jar -digest "MySecretPassword"

 digest : 0x7315A012ECAD1059A3634F8BE1347846

Note:

If double quotation characters are not used to surround the plain text password DCL

may, depending on your environment, force the value to all lower case or all upper case

which may differ from the original.

6.8.2 Obfuscate

Obfuscate will create a reversible obfuscated user password to be used in configuration

files. See obfuscating User Passwords for more details.

6.8.2.1 Interactive mode

The control command available to obfuscate user passwords can be seen in following table:

Table 6.8-3Interactive Mode Obfuscate

Command Description

obfuscate <plain text pwd> Obfuscates the user password

 107

Example

rdbthincontrol> obfuscate mypassword

 obfuscation : ##016BA4158E5884C8D6EAFE71697D4DC9483417DA0BA1

6.8.2.2 Command mode

The command mode commands available to obfuscate user passwords can be seen in

following table:

Table 6.8-4Command Mode Show Clients

Command Description

-obfuscate <plain text pwd> Obfuscates the user password

Example

$ thincontrol -obfuscate "mypassword"

 obfuscation : ##0145A4158E5884C8D6EAFE71697D4DC9483417DA0BA1

Note:

If double quotation characters are not used to surround the plain text password DCL

may, depending on your environment, force the value to all lower case or all upper case

which may differ from the original.

Contents

 108

Chapter 7
Oracle SQL/Services and Oracle JDBC for

Rdb Servers

The Oracle SQL/Services management command line may be used to start and stop servers

using the new dispatcher protocol called JDBC available in Oracle SQL/Services V7.1.6 and

later.

Currently the Oracle SQL/Services interface to Oracle JDBC for Rdb Servers is minimal and

may only be used to start and stop a JDBC dispatcher which in turn will start or stop the

associated Oracle JDBC for Rdb server.

Starting an Oracle JDBC for Rdb server using Oracle SQL/Services involves the following

steps:

1. Create an SQL/Services Dispatcher with the protocol JDBC. See Creating an Oracle

SQL/Services JDBC Dispatcher.

2. Associate the JDBC Dispatcher with an Oracle JDBC for Rdb server. See Associating

an Oracle SQL/Services JDBC Dispatcher to a Server

3. Start the JDBC dispatcher. See Starting a JDBC Dispatcher

In order for the dispatcher to start a server, the dispatcher must determine the name and type

of the server as well as the command procedures and configuration files to use during startup.

 The following sections show how these determinations are carried out.

A1.3 Sample Setup, Starting an Oracle JDBC for Rdb thin server from Oracle SQL/Services.

provides a working example on creating a JDBC dispatcher and its server associations.

7.1 JDBC Dispatcher

A new SQL/Services dispatcher protocol of JDBC was introduced in V7.1.6 of Oracle

SQL/Services. This dispatcher type allows you to create JDBC dispatchers that may be

associated with Oracle JDBC for Rdb servers.

7.1.1 Creating an Oracle SQL/Services JDBC Dispatcher

 109

To be able to start and stop Oracle JDBC for Rdb servers using Oracle SQL/Services, a

dispatcher with protocol JDBC must be defined using the Oracle SQL/Services management

console.

You must provide the new dispatcher with a unique name and network_port. It is important

to ensure that the use of the PORT_ID is unique as the port provided will be used by the

associated Oracle JDBC for Rdb server and only one server at a time may listen on a single

TCPIP port.

Format

CREATE DISPATCHER <dispatcher name> NETWORK_PORT TCPIP PORT_ID <port>

PROTOCOL JDBC;

Where:

 <dispatcher name> is a unique name for this dispatcher instance

 <port> is the port number the associated server will listen on

Example

$ MCR SQLSRV_MANAGE71
SQLSRV> CONNECT SERVER;
SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1880

PROTOCOL JDBC;

SQLSRV> SHOW DISPATCHER;

Dispatcher JDBC_DISP

 State: UNKNOWN

 Autostart: on

 Max connects: 100 clients

 Idle User Timeout: <none>

 Max client buffer size: 5000 bytes

 Network Ports: (State) (Protocol)

 TCP/IP port 1880 Unknown JDBC clients

 Log path: SYS$MANAGER:

 Dump path: SYS$MANAGER:

Caution:

The existing version of the Oracle SQL/Services Management GUI does not recognize

dispatchers of the type JDBC.

This means that you will no longer be able to use the GUI once a JDBC dispatcher has been

defined.

7.1.2 Associating an Oracle SQL/Services JDBC Dispatcher to a Server

 110

Each Oracle SQL/Services JDBC dispatcher must be associated with an Oracle JDBC for

Rdb server. The PORT_ID specified in the dispatcher creation is the key to this relationship.

The PORT_ID specifies the TCPIP port that will be used by the Oracle JDBC for Rdb server

and is used by the dispatcher start up procedures to determine information about the

associated server.

In addition to which port the server will listen on, the PORT_ID may be used by the

dispatcher to determine:

• What type of Oracle JDBC for Rdb server to start

• The name that will be given to this server

• What configuration file to use for this server

• Any DCL command to run during the server startup procedure

The overloading of the use of the PORT_ID by the JDBC dispatcher is necessary as the

amount of information stored for a JDBC dispatcher is minimal keeping it in line with the

information stored for other SQL/Services Dispatcher types.

In the process of determining the server attributes the dispatcher may try to translate the

following logical names:

• RDB$JDBC_SQSNAM_<port>

• RDB$JDBC_SQSCFG_<port>

• RDB$JDBC_SQSCMD_<port>

• RDB$JDBC_SQSTYPE_<port>

In the above logical names the <port> will be substituted by the PORT_ID of the JDBC

dispatcher prior to logical name translation

If no such logical names exist, the dispatcher will then use alternate methods to provide the

server with a name and will to try to locate a suitable command procedure and configuration

file. The following sections detail how these determinations are carried out.

When determining the server information required to correctly start the associated Oracle

JDBC for Rdb server, the dispatcher will carry out the following steps in the order specified:

1. First the dispatcher will create a name for the server

2. Any DCL command required to be executed during server start up is then determined

3. The file specification of the configuration file to provide to the server is then

determine

4. The server type for the server is then determined.

7.1.2.1 Determining the server name

 111

A server name is required as it may be used by the server start up procedure to locate

properties from its configuration file. The name used will determine various characteristics of

the started server.

In addition the server name will be used as the OpenVMS process name and will determine

the naming of any associated executors if the server is a Multi-Process server.

The server name is also used in creating log and temporary files during the running of the

server.

The PORT_ID is used to determine the name of the Oracle JDBC for Rdb server using the

following precedence:

1. If the logical name RDB$JDBC_SQSNAM_<port> exists then it is translated to

provide the server name

2. If the logical name does not exist the server name will be SQS<port>

Example 1

Logical name not defined:

$ show log RDB$JDBC_SQSNAM_1888

%SHOW-S-NOTRAN, no translation for logical name RDB$JDBC_SQSNAM_1888

$ MCR SQLSRV_MANAGE71

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1888

PROTOCOL JDBC;

This will create a server named SQS1888.

Example 2

Logical name defined:

$ DEFINE/SYSTEM RDB$JDBC_SQSNAM_1888 MY_POOL_SRV

$ MCR SQLSRV_MANAGE71

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1888

PROTOCOL JDBC;

This will create a server named MY_POOL_SRV.

7.1.2.2 Determining extra DCL commands for use during start-up

During the invocation of a JDBC server, the following DCL command procedure is executed:

RDB$JDBC_HOME:RDBJDBC_STARTSRV.COM

 112

This is the standard startup command procedure used by Oracle JDBC for Rdb and was

created for you during the installation of the Oracle JDBC for Rdb product.

This command procedure will setup some environmental elements and then execute a JAVA

command to start the server. A discrete dispatcher process will be set up by the

SQL/Services START DISPATCHER command and the JAVA command will be run under

this process context.

The RDBJDBC_STARTSRV command procedure will try to locate and execute any specific

setup command procedures you may have designated for its use. This is done prior to the

procedure executing the JAVA command that will ultimately start the server instance.

The PORT_ID is used to determine the name of an Open VMS DCL command procedure

that may be invoked containing your system and environmental setup procedures. The file

specification of the command procedure is determined using the following precedence:

1. If the logical name RDB$JDBC_SQSCMD_<port> exists then it is translated to

provide the command procedure file specification

2. If the logical name does not exist the dispatcher will try to locate and execute the

file rdb$jdbc_com:rdbjdbc_sqs_onStartup.com.

3. If this file does not exists the dispatcher will try to locate and execute the file
rdb$jdbc_home:rdbjdbc_sqs_onStartup.com

Example 1

Logical name not defined and file rdb$jdbc_com:rdbjdbc_sqs_onStartup.com does exist:

$ show log RDB$JDBC_SQSCMD_1888

%SHOW-S-NOTRAN, no translation for logical name RDB$JDBC_SQSCMD_1888

$ MCR SQLSRV_MANAGE71

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1888

PROTOCOL JDBC;

The file RDB$JDBC_COM:RDBJDBC_SQS_ONSTARTUP.COM will be executed.

Example 2

Logical name defined:

$ DEFINE/SYSTEM RDB$JDBC_SQSCMD_1888 RDB$JDBC_COM:MY_SRV1888_ONSTART.COM

$ MCR SQLSRV_MANAGE71

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1888

PROTOCOL JDBC;

The file RDB$JDBC_COM:MY_SRV1888_ONSTART.COM will be executed.

 113

7.1.2.3 Determining the server configuration file

The PORT_ID is also used to determine the configuration file to use on server startup. This

file can be a CFG or an XML-formatted configuration file and is used to provide information

to the server about what characteristics it should use when running. See Configuration Files

for more details on the use of configuration files.

You may choose to provide a separate configuration file for the server associated with each

JDBC dispatcher, or you may choose to use a single XML-formatted configuration file

containing the server attributes for all your servers.

The appropriate configuration file is determined by the dispatcher by trying to translate the

logical name RDB$JDBC_SQSCFG_<port> where PORT_ID is substituted for <port>

prior to logical name translation. If the logical name is not there then the dispatcher will try

use a configuration file from the JDBC system directories.

The following is the precedence for this file search

1. The file pointed to by the RDB$JDBC_SQSCFG_<port> if it exists.

2. RDB$JDBC_COM:<server name>_CFG.XML where the server name as

determined in previous steps is substituted for <server_name>

3. RDB$JDBC_COM:SQLSRV_JDBC_SERVER_CFG.XML
4. RDB$JDBC_COM:RDBJDBCCFG.XML

Example 1

Logical name not defined and file RDB$JDBC_COM:SQLSRV_JDBC_SERVER_CFG.XML

does exist:

$ show log RDB$JDBC_SQSCFG_1888

%SHOW-S-NOTRAN, no translation for logical name RDB$JDBC_SQSCFG_1888

$ MCR SQLSRV_MANAGE71

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1888

PROTOCOL JDBC;

The file RDB$JDBC_COM:SQLSRV_JDBC_SERVER_CFG.XML will be used.

Example 2

Logical name defined:

$ DEFINE/SYSTEM RDB$JDBC_SQSCFG_1888 RDB$JDBC_COM:MY_SRV1888_CFG.XML

$ MCR SQLSRV_MANAGE71

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1888

PROTOCOL JDBC;

The file RDB$JDBC_COM:MY_SRV1888_CFG.XML will be used.

 114

7.1.2.4 Determining Server Type

During the startup of the server associated with the Oracle SQL/Services JDBC dispatcher,

the type of the server to startup also needs to be determined.

The server type will be used by the dispatcher to determine the appropriate JDBC JAR file to

use when invoking the server. The server type will also used to determine other server

attributes that have to be set for a successful instantiation of a server process.

The dispatcher will use the PORT_ID to try to identify the appropriate JDBC server type to

start.

There are three types of Oracle JDBC for Rdb servers recognized by Oracle SQL/Services:

 POOL - a pool server i.e. type="RdbThinSrvPool"

 MP - a multi-process server i.e. type="RdbThinSrvMP"

 STD - a standard thin server i.e. type="RdbThinSrv"

When the dispatcher determines the server type, the following steps are used :

1. If the logical name RDB$JDBC_SQSTYPE_<port> exists, it is translated to

provide the server type. The translated logical name must be one of the valid server

types as shown above.

2. If the logical name does not exist the server type will be POOL

Note:

As the dispatcher cannot currently use the server name to determine the server type,

it is important that this logical name be correctly setup if the type of the server to

start is not a POOL server i.e. type="RdbThinSrvPool". If this is not correctly

set the wrong JDBC JAR file may be used and the server may fail to start correctly.

The log files associated with the server, usually written to the directory

RDB$JDBC_LOGS will show the start-up failure and the reason for the failure.

Example 1

Logical name not defined:

$ show log RDB$JDBC_SQSTYPE_1888

%SHOW-S-NOTRAN, no translation for logical name RDB$JDBC_SQSTYPE_1888

$ MCR SQLSRV_MANAGE71

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP

 PORT_ID 1888 PROTOCOL JDBC;

This will create a server with type RdbThinSrvPool.

 115

Example 2

Logical name defined:

$ DEFINE/SYSTEM RDB$JDBC_SQSTYPE_1888 MP

$ MCR SQLSRV_MANAGE71

SQLSRV> CONNECT SERVER;

SQLSRV> CREATE DISPATCHER JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1888

PROTOCOL JDBC;

This will create a server with type RdbThinSrvMP.

7.1.3 Starting a JDBC Dispatcher

Once you have defined a JDBC dispatcher, it can be started like any other Oracle SQL/Services
dispatcher:

Example
SQLSRV> start dispatcher jdbc_disp;

SQLSRV> show disp jdbc_disp;

Dispatcher JDBC_DISP

State: STARTING

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes

Network Ports: (State) (Protocol)

TCP/IP port 1880 Inactive JDBC clients

Log path: SYS$MANAGER:

Dump path: SYS$MANAGER:

SQLSRV> show disp jdbc_disp;

Dispatcher JDBC_DISP

State: RUNNING

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes

Network Ports: (State) (Protocol)

TCP/IP port 1880 Inactive JDBC clients

Log path: SYS$MANAGER:

Dump path: SYS$MANAGER:

Log File: SYS$SYSROOT:[SYSMGR]SQS_DECRDB_JDBC_DISP06O71.LOG;

Dump File: SYS$SYSROOT:[SYSMGR]SQS_DECRDB_JDBC_DISP06O.DMP;

The Oracle SQL/Services monitor will attempt to start the server associated this dispatcher

and create a log of the dispatcher events in the SYS$MANAGER directory in a log file

named:

SYS$MANAGER:SQS_<nodename>_JDBC_DISP<nnnnn>.LOG

 116

The <nodename> depends on the node the dispatcher is started up on.

The <nnnnn> is the unique id given to this dispatcher instance by Oracle SQL/Services

For example:

SQS_MALIBU_SQLSRV_DIS06010.LOG

This log can be useful in determining why a dispatcher did not start up properly. For example

if appropriate logical names have not been setup as specified in the installation of Oracle

JDBC Drivers for Rdb then a message similar to the following may be found at the end of the

log file:

.

.

.

$ @rdb$jdbc_home:rdbjdbc_startsrv SQS1880 "SQS"

%DCL-E-OPENIN, error opening RDB$JDBC_HOME:[SYSMGR]RDBJDBC_STARTSRV.COM;

as input

-RMS-F-DEV, error in device name or inappropriate device type for

operation

SYSTEM job terminated at 21-JUL-2004 21:52:07.56

Accounting information:

Buffered I/O count: 37 Peak working set size: 2272

Direct I/O count: 14 Peak virtual size: 173072

Page faults: 192 Mounted volumes: 0

Charged CPU time: 0 00:00:00.04 Elapsed time: 0 00:00:00.21

7.1.4 Stopping a JDBC Dispatcher

The STOP DISPATCHER statement may be used to stop a running JDBC dispatcher.

Example
SQLSRV> STOP DISPATCHER JDBC_DISP

This will also stop the associated Oracle JDBC for Rdb server.

If you have associated the dispatcher with a pool server, and the pooled servers have

autoStart enabled, then these pooled servers will also be shut down at this time.

See your Oracle SQL/Services documentation for more information on the Oracle

SQL/Services management console.

Contents

 117

7.2 Command Procedures used by Oracle SQL/Services

When a JDBC dispatcher is started, Oracle SQL/Services will use the OpenVMS command

procedure

SYS$MANAGER:SQLSRV_JDBC_SERVER_STARTUP<version>.COM

to start the server associated with a JDBC dispatcher.

As multiple versions of SQL/Services may be present on your system, the Oracle JDBC for

Rdb installation provides multiple versions of the SQLSRV_JDBC_SERVER_STARTUP

command procedure. The <version> of the command procedure determines the version

of SQL/Services it is associated with, thus:

 SYS$MANAGER:SQLSRV_JDBC_SERVER_STARTUP71.COM

will be the command procedure used by version 7.1 SQL/Services during the JDBC

dispatcher startup.

These command procedures in turn execute the following command procedure:

RDB$JDBC_HOME:RDBJDBC_STARTSRV.COM

This enables you to have multiple versions of the Oracle JDBC for Rdb on your systems,

each with potentially different startup requirements specified in the

RDBJDBC_STARTUP.COM. The logical name RDB$JDBC_HOME in your SQL/Services

environment may be used to select the specific version of the Oracle JDBC for Rdb it will

use.

Note:

As the releases of Oracle JDBC for Rdb are independent of the releases of Oracle

SQL/Services, the currently installed version of Oracle JDBC for Rdb may not have

installed an appropriate SQL/services JDBC Server command procedure for all

SQL/Services versions installed on your system.

If this is the case, JDBC dispatchers will not startup correctly for the installed

SQL/Services version.

To fix this problem you can simply copy an existing SQL/services JDBC Server

command procedure within SYS$MANAGER: and alter the version number of its

filename to reflect the SQL/Services version you are using.

 118

7.2.1 JDBC Dispatcher Setup Procedure

In addition, an additional OpenVMS command procedure can be defined to set up

environmental characteristics required for your system. This command procedure is located

for use with this server using the following precedence:

1. the file pointed to by the logical name RDB$JDBC_SQSCMD_<port> if defined

2. RDB$JDBC_COM:RDBJDBC_SQS_ONSTARTUP.COM
3. RDB$JDBC_HOME:RDBJDBC_SQS_ONSTARTUP.COM

If command procedure is found on your system using this search list, this command

procedure will be executed just prior to the server being invoked. You may use this

command procedure and to setup environmental conditions for the server execution, for

example:

$@sys$share:rdb$setver 71

$@sys$common:[java$141.com]JAVA$141_SETUP.COM

7.3 Using Pool Servers

Each JDBC dispatcher defined is related only to a single server. Use a pool server if you

require more than one server to be started for a single dispatcher.

By defining a pool of servers that the pool server can use and enabling autoStart on

each of these servers, a whole pool of servers can be started by starting a single dispatcher.

See Pool Server Operation for more information on pool servers.

The following example shows how you can define a dispatcher to start up a pool server that

will automatically start up three standard thin servers as part of its pool:

Note:

This example uses the default server naming, default server type of POOL and a

standard SQS_ONSTARTUP command procedure. No RDB$JDBC_SQS* logical

names need be set up.

1. Define an Oracle SQL/Services dispatcher

$ MCR SQLSRV_MANAGE71
SQLSRV> CONNECT SERVER;
SQLSRV> CREATE DISPATCHER POOL_DISP NETWORK_PORT TCPIP PORT_ID 1880

PROTOCOL JDBC;

2. Create a configuration file for this server in

RDB$JDBC_COM:SQS1880_CFG.XML

 119

<?xml version = '1.0'?>

<!-- Configuration file for Rdb Thin JDBC Drivers and Servers -->

 <config>

 <!-- SERVERS -->

 <servers>

 <!-- DEFAULT server characteristics-->

 <server

 name="DEFAULT"

 type="RdbThinSrv"

 url="//localhost:1880/"

 maxClients="-1"

 srv.bindTimeout="0"

 srv.idleTimeout="0"

 srv.mcBasePort="5520"

 srv.mcGroupIP="239.192.1.10"

 autoStart="false"

 controlUser="jdbc_user"

 controlPass="0x811B15F866179583EB3C96751585B843"

 cfg="rdb$jdbc_com:sqlsrv_jdbc_server_cfg.xml"

 srv.startup="rdb$jdbc_home:rdbjdbc_startsrv.com"

 srv.onStartCmd="@rdb$jdbc_com:rdbjdbc_sqs_onstartup.com"

 />

 <!-- now the servers that will be started up by pool server -->

 <server

 name="SQSrjs1"

 type="RdbThinSrv"

 url="//localhost:1891/"

 autoStart="true"

 maxClients="10"

 />

 <server

 name="SQSrjs2"

 type="RdbThinSrv"

 url="//localhost:1892/"

 autoStart="true"

 maxClients="10"

 />

 <server

 name="SQSrjs3"

 type="RdbThinSrv"

 url="//localhost:1893/"

 autoStart="true"

 maxClients="10"

 />

 <!-- Pool Server -->

 <server

 name="SQS1880"

 type="RdbThinSrvPool"

 url="//localhost:1880/" >

 <pooledServer name="SQSrjs1"/>

 <pooledServer name="SQSrjs2"/>

 <pooledServer name="SQSrjs3"/>

 </server>

 </servers>

 120

 </config>

3. Create an onStartup command procedure that sets up the appropriate Rdb and

Java versions for your system:

For example, RDB$JDBC_COM:RDBJDBC_SQS_ONSTARTUP.COM may contain:

$@sys$share:rdb$setver 71

$@sys$common:[java$141.com]JAVA$141_SETUP.COM

4. Start the dispatcher

SQLSRV> start dispatcher pool_disp;

Remarks

In this example the command procedure pointed to by default srv.onStartCmd in the XML

configuration file happens to be the same as the one created as the SQS_ONSTARTUP

command procedure. These do not have to be the same command procedure.

The Oracle SQL/Services JDBC dispatcher SQS_ONSTARTUP command procedure is used

during the startup of the associated pool server. Those servers that the pool server starts up

use the command procedure pointed to by the srv.onStartCmd switch.

The Oracle SQL/Services JDBC dispatcher does not directly use any information from the

JDBC XML configuration file.

Contents

 121

Chapter 8
Performance

The overall performance of application access to an underlying relational database depends on

a number of factors including:

 Database performance including:

o Speed of query compilation

o Efficiency of query optimization

o Efficiency of record lookup using indexes

o Efficiency of record retrieval

o Performance of the underlying operating system and hardware

 JDBC performance including

o Efficiency of object creation and disposal

o Efficiency of internal message protocols

o Degree of buffering of data and metadata

o Efficiency of the underlying subsystem used by the drivers and servers including the

JAVA VM, operating system and hardware

 Network performance including:

o The number of client /server message round-trips

o The network “distance” between the client and server machines, the more hops taken

between the two nodes, the longer the round-trip time

o Size of network buffers and flush times

o Overall performance of the network

 Application performance including

o Effective utilization of database and operating system resources

o SQL statement re-use utilizing PreparedStatements

o Use of data buffering by utilizing appropriate FetchSize

Details on performance considerations for the underlying Rdb database system may be found

in your Oracle Rdb documentation.

Details about performance and your network may be found in the appropropriate

documentation provided by your hardware and operating system vendors.

Details about JAVA VM and operating system perfomance may be found in documentation

provided by your operating system vendors.

Details about performance consideration related to the use of Oracle JDBC for Rdb drivers and

servers maybe be found in the following sub-sections and elsewhere in this document and the

Oracle JDBC for Rdb Release Notes.

 122

8.1 Performance Features

There are several features available in Oracle JDBC for Rdb to help improve the overall

performance of your applications using the JDBC drivers and the efficiency and performance

of the JDBC servers.

 FetchSize may be used to improve the overall performance of record retrieval by

reducing the number of network round-trips used to retrieve records

 Lockwait and Maxtries may help overall concurrency and performance when using

thin servers

 Inactivity timeouts may be used to limit the number of resources tied-up by unused

servers and inactive connections

 SQL statement caching may be used to reduce the compilation and setup time of

frequently used queries

 Results caching may be used to improve record retrieval times by caching frequently

used query results

8.2 FetchSize

The SetFetchSize methods in Statement and ResultSet allow you to set the

record fetch size for server record retrieval. The FetchSize gives a hint to the server as to

how many records to batch up and send over the network at one time.

Network I/O is very expensive, so the more data you can send in a single I/O the better the

performance. If you do not explicitly change the default FetchSize by using the

FetchSize option, the default is 100.

8.3 Lockwait and Maxtries

The standard thin server is a multi-threaded server that allows concurrent access to Oracle

Rdb by many client processes. Within a single OpenVMS process, Oracle Rdb is single-

threaded, thus the thin server has to synchronize client database activity.

Because database actions must be serialized, any action that might take a prolonged length of

time may seriously impact the overall throughput of the server.

By default the server will wait indefinitely for a lock, however, in order to try to minimize

the impact of one client thread on another you may specify the period of time the server

should wait for a lock.

 123

If this wait is not indefinite, any thread will wait for the specified amount of time trying to

get a lock. If the lock is not granted control is returned to the server. By default, the server

will then try to get a lock ten (10) times, waiting for the specified amount of time each time,

before raising a locking exception.

Specifying a short wait duration, for example one (1) second, may help reduce the impact

that one thread may have on another sibling thread.

The lockwait connection option or server option allows control of the duration of the wait

for a lock, the minimum actual wait period being one (1) second, which is the minimum lock

wait time supported by Rdb transactions.

A lockwait of 0 is the same as starting up a transaction with NOWAIT. A lockwait of

minus one (-1) is the same as starting up a transaction with WAIT without specifying a value,

which causes the server to wait indefinitely,

The maxtries connection option or server option allows you to specify the maximum

number of times the server will try to get a lock before giving up. The default maxtries

value is 10.

The higher the value you assign to the lockwait switch, the more likely that a locked

object may slow down all clients, so it is preferable to keep the lockwait at a minimum but

increase the number of lock attempts appropriately.

8.3.1 Lockwait precedence

As well as being able to specify the lockwait either at the server level or at the connection

level as shown above, Oracle Rdb allows you to specify a maximum lock wait for the process

by using the RDM$BIND_LOCK_TIMEOUT_INTERVAL logical name. In addition a

database-wide lock timeout value may be established using the LOCK TIMEOUT

INTERVAL clause of the SQL CREATE DATABASE and SQL ALTER DATABASE

statements.

The following describes the order of precedence observed when lockwait has been specified

in more than one way.

1. A connection lockwait value as specified explicitly on the connection string will take

precedence over the server lockwait value but only for that one connection.

2. An explicit lockwait set on either the server or connection will take precedence

over the value set by the RDM$BIND_LOCK_TIMEOUT_INTERVAL logical name.

3. The database-wide lock timeout interval if specified will place an upper limit on the

interval specified by the RDM$BIND_LOCK_TIMEOUT_INTERVAL logical name

or the lockwait on both the server and connection.

 124

Example 1
RDM$BIND_LOCK_TIMEOUT_INTERVAL = 10

server LOCKWAIT = 20

connection LOCKWAIT = 30

LOCK TIMEOUT INTERVAL not specified

 Results in a lockwait of 30.

Example 2
RDM$BIND_LOCK_TIMEOUT_INTERVAL = 10

server LOCKWAIT = 20

connection LOCKWAIT = 30

LOCK TIMEOUT INTERVAL = 25

 Results in a lockwait of 25.

Example 3
RDM$BIND_LOCK_TIMEOUT_INTERVAL = 10

server LOCKWAIT = 20

connection LOCKWAIT = 30

LOCK TIMEOUT INTERVAL = 35

 Results in a lockwait of 30.

Example 4
RDM$BIND_LOCK_TIMEOUT_INTERVAL = 10

server LOCKWAIT = 20

connection LOCKWAIT not specified

LOCK TIMEOUT INTERVAL not specified

 Results in a lockwait of 20.

Example 5
RDM$BIND_LOCK_TIMEOUT_INTERVAL = 10

server LOCKWAIT not specified

connection LOCKWAIT not specified

LOCK TIMEOUT INTERVAL = 25

 Results in a lockwait of 10.

See your Oracle Rdb Documentation for more information on the use of the

RDM$BIND_LOCK_TIMEOUT_INTERVAL logical name and the LOCK TIMEOUT

INTERVAL clause.

8.4 Inactivity timeouts

 125

The amount of time either a client connection or a server may remain inactive before being

forcibly terminated may be set using server and connection switches.

8.4.1 Client connection timeout

The –cli.idleTimeout switch may be used to specify the amount of time in

milliseconds that a connection may remain inactive before being closed down. The default

value of 0 specifies that the time is indefinite, i.e. the connection will not timeout.

You may specify the client idle timeout as a server configuration option either in the server

definition within an XML-formatted configuration file or as a command-line switch when

starting a server.

Example

For example:

$ java -jar rdbthinsrv.jar –port 1701 –cli.idleTimeout 3600000

specifies that any client connection may remain idle for 1 hour before being terminated

or in the Xml-formatted configuration file :

 <server

 name="srv2forRdb"

 type="RdbThinSrv"

 url="//localhost:1708/"

 cli.idleTimeout="3600000"

 />

When a client is forcibly terminated by this timeout the following message will be logged in

the server log:

oracle.rdb.jdbc.common.RdbException: Client terminated

due to inactivity

When specified as a server switch, the timeout will apply to all clients connected using that

server.

You may also specify the client timeout as a qualifier on the connection string on the client-

side application.

Connection conn = DriverManager.getConnection(

"jdbc:rdbthin://bravo:1701/my_db_dir:personnel@cli.idleTimeout=3600000",us

er, pass);

When specified this way the timeout will only apply to this one connection.

 126

If a non-zero cli.idleTimeout is specified in both the server configuration and as a

connection qualifier, the lesser of the two values will be used for that connection.

Inactivity is determined by the lack of activity on the socket the server is listening to the

client on, if no request is sent from the client for the specified amount of time, a timeout is

deemed to have occurred.

If a client inactivity timeout occurs on a connection that is using a Multi-Process server

executor, that executor will be terminated. Even though the connection will be correctly

closed down after the timeout event, as it is unknown why there was no activity seen on the

connection, the executor sub-process is deemed "unsafe" and consequently is terminated.

8.4.2 Server Inactivity Timeout

You can specify the amount of time that a server may remain idle before being closed down

due to inactivity.

The –srv.idleTimeout switch may be used to specify the amount of time in

milliseconds that a server may remain inactive before being closed down. The default value

of 0 specifies that the time is indefinite, i.e. the server will not timeout.

You may specify the server idle timeout as a server configuration option either in the server

definition within an XML-formatted configuration file or as a command-line switch when

starting a server.

Example

For example:

$ java -jar rdbthinsrv.jar –port 1701 –srv.idleTimeout 3600000

specifies that the server may remain idle for 1 hour before being terminated

Or in the Xml-formatted configuration file :

 <server

 name="srv2forRdb"

 type="RdbThinSrv"

 url="//localhost:1708/"

 srv.idleTimeout="3600000"

 />

When server is terminated by this timeout the following message will be logged in the server

log:

Server terminated due to inactivity

 127

2006-02-08 12:28:03.578 : Forced disconnect by Server terminated due

to inactivity @ LOCAL

A server inactivity timeout will occur if, for the length of time specified, no new client

connection is made to that server. In other words the timeout period is started after each new

connection. If the timeout expires and there are current connections still using the server, the

timeout period will be reset to start again.

Thus the timeout value is the minimum time that the server will accept between new

connection requests before closing down, but due to current server activity this may be

extended until there are no more connections current.

Contents

8.5 SQL Statement Cache

When using the thin driver, performance may be improved by enabling SQL statement

caching.

Whenever the thin driver needs to prepare a SQL statement, the statement must be sent over

the network to the server for Oracle Rdb to prepare the statement and to send back a list of

columns or parameters that the statement references.

If the same SQL statement is prepared repeatedly during a single connection, without SQL

statement caching the statement will be prepared and column information sent back each

time. This can be time consuming because it requires network traffic, the preparation of the

statement, and getting the column and parameter information. These steps can be a

substantial part of the network I/O and performance cost of the queries.

To help reduce this cost, the thin driver allows you to cache SQL statements so that if the

exact same SQL string is prepared more than once during a single connected session, the cost

for retrieving column information is only incurred once.

SQL statement caching can be enabled by using the sqlcache switch when you request a

connection either by placing the switch in the connection URL or using the information block

that is passed in the connect request.

Example

Set the sqlcache property of the Properties passed to the

DriverManager.getConnection method:

Properties info = new Properties();

info.put("user", user);

info.put("password", pw);

info.put("sqlcache", 100);

conn = DriverManager.getConnection (connStr, info);

 128

Or append @sqlcache to the database specification part of the connect URL:

Connection conn = DriverManager.getConnection(

"jdbc:rdbthin://bravo:1701/my_db_dir:personnel@sqlcache=100",user,

pass);

In addition a SET SQLCACHE statement can be executed.

 Stmt.executeUpdate("set sqlcache 100");

Remarks

The value specified with the sqlcache switch tells the thin driver how many SQL statements

it can hold concurrently in its cache. A value of 0 (the default) specifies that SQL statement

caching be disabled.

Once the SQL statement cache is full for a given connection, the storing of a new statement

will remove the least commonly used statement from the cache.

Because SQL statements may be held in cache even after the user has closed the containing

java.sql.Statement, the query will still be registered as current by Oracle Rdb and may

prevent actions such as DROP TABLE from being done. In addition each concurrent statement

that is held in cache may take up memory on both the server and client side of the

connection.

You can clean out the connection SQL cache by issuing a SET SQLCACHE statement with

value 0 and then issuing another SET SQLCACHE statement to reset the cache to the desired

size.

Currently you cannot specify the removal of a specific SQL statement from cache.

Note:

SQL statement caching is a client-side action and is disabled by default. This

feature is only applicable to the thin driver. Using the SQL Statement cache

property or using the set sqlcache statement will be silently ignored by the native

driver.

Contents

8.5.1 Caching Statement Handles

 129

In addition to saving the network cost of retrieving column information, enabling SQL

statement handle caching may also improve application performance when used in

conjunction with SQL statement caching.

Similar to using the PreparedStatements, enabling statement handle caching allows the Thin

driver to re-use compiled Rdb statements which may improve the overall performance of

retrieving results as the statement does not have to be compiled again or the column

information retrieved from the server.

SQL statement handling caching works for both Statements and PreparedStatements. If the

exact SQL text is recognized as being prepared previously in the same connection context,

and that Statement is nolonger in use (i.e. the Statement or PreparedStatement has been

closed) then, instead of sending down a request to the server to compile the query again, the

driver will re-use the statement handle compiled by the previous request.

This is particulary effective where applications may be using connection pooling. As it

cannot be guaranteed that the query they wish to use is available within the connection

context of the pooled connection allocated to the connection request, the same

PreparedStatements may have to be issued repeatedly within the same actual Rdb connection

context. This redundant query compilation may be costly in terms of network traffic.

If SQL statement handle caching is enabled, PreparedStatements may be effectively re-used

across serial re-use of a pooled connection, thus saving expensive network IO required for

query recompilation.

Statement handle caching can be enabled by using the sqlcachePS switch when you

request a connection either by placing the switch in the connection URL or using the

information block that is passed in the connect request.

Example

Set the sqlcacheps property of the Properties passed to the

DriverManager.getConnection method:

Properties info = new Properties();

info.put("user", user);

info.put("password", pw);

info.put("sqlcacheps", ―true‖);

conn = DriverManager.getConnection (connStr, info);

Or append @sqlcacheps to the database specification part of the connect URL:

Connection conn = DriverManager.getConnection(

"jdbc:rdbthin://bravo:1701/my_db_dir:personnel@sqlcacheps=true",user,

pass);

In addition a SET SQLCACHEPS statement can be executed.

 130

 Stmt.executeUpdate("set sqlcacheps true");

Remarks

The value ―true‖ specified for the sqlcacheps switch tells the thin driver to keep hold of

Rdb statement handles and other statement information to re-use if exactly the same

Statement SQL text is recognized. A value of ―false‖ specifies that SQL statement handle

caching be disabled.

SQL Statement caching must be enabled for SQL statement handle caching to take place; if

SQL statement caching is disabled (i.e. sqlcache having the value „0‟), the sqlcacheps

switch is ignored.

Enabling SQL statement handle caching by executing a SET SQLCACHEPS = TRUE

statement will automatically clear out any the existing SQL statement that may already be

cached to ensure that handles are being maintained for all cached statements.

Disabling SQL statement handle caching on by executing a SET SQLCACHEPS = FALSE

statement will prevent any further statement handles being saved. Existing cached

statements will still be available for reuse for query compilation but the associated statement

handles will not be reused.

To release all the resources associated with holding statement handles in cache you must

clear the SQL cache by issuing a set sqlcache 0 statement.

Note:

SQL statement handle caching is a client-side action and is disabled by default.

This feature is only applicable to the thin driver. The sqlcacheps switch will

be silently ignored by the native driver, or if SQL statement caching is not

enabled.

Contents

8.6 Results Cache

When using the thin driver, performance may be improved by enabling Results caching.

Results caching will maintain ResultSet context across the life of a connection, allowing

frequently used data to be cached and reused by subsequent identical queries within the same

connection.

Results cache effectively takes a “snapshot” of the query results the first time a particular

SQL query is executed within a connection.

 131

Results caching can be enabled by using the resultscache switch when you request a

connection either by placing the switch in the connection URL or using the information block

that is passed in the connect request.

Example

Set the resultscache property of the Properties passed to the

DriverManager.getConnection method:

Properties info = new Properties();

info.put("user", user);

info.put("password", pw);

info.put("resultscache", 10);

conn = DriverManager.getConnection (connStr, info);

Or append @resultscache to the database specification part of the connect URL:

Connection conn = DriverManager.getConnection(

"jdbc:rdbthin://bravo:1701/my_db_dir:personnel@resultscache=10",user,

pass);

In addition a SET RESULTSCACHE statement can be executed.

 Stmt.executeUpdate("set resultscache 10");

Remarks

The value specified with the sqlcache switch tells the thin driver how many SQL statements

it can hold concurrently in its cache. A value of 0 (the default) specifies that results caching

be disabled.

The Results cache may be cleared by clearing the SQL cache by issuing a SET SQLCACHE

statement with value 0 and then issuing another SET SQLCACHE statement to reset the

cache to the desired size.

Currently you cannot specify the removal of a specific SQL statement from cache.

Note:

SQL statement caching is a client-side action and is disabled by default. This

feature is only applicable to the thin driver. Using the SQL Statement cache

property or using the set sqlcache statement will be silently ignored by the native

driver.

Contents

 132

Chapter 9
Other Features

9.1 Anonymous Usernames

By default, the thin driver disallows blank usernames to be passed to it during database

connection. A valid username for that database must be used. If the client attempts to connect

to the database using a blank username the following exception will be raised:

rdb.RdbException: Io exception : Io exception :

in <rdbjdbcsrv:connect>

%RDB-E-AUTH_FAIL, authentication failed for user .Anonymous.

The following server configuration option can be used to change this behavior:

anonymous

Use this option tells to allow anonymous connections (that is, where the username is blank)

to the Oracle JDBC for Rdb thin server, for example:

$ java -jar rdbthinsrv.jar -anonymous

In addition, if anonymous connections are allowed, you can specify the default username and

password to use on an anonymous connection by using the following options:

username <username>

password <password>

Example

$ java -jar rdbthinsrv.jar -anonymous –

 -username fred -password "jones"

9.2 BYPASS Privilege

Privilege checking on Oracle Rdb uses the layered method. Sometimes it is not obvious how

privilege checking obtains its results.

 The first pass at privilege checking occurs at an object identifier level, asking if this

entity has the right to do this action to this object. If access is denied at this level a

series of cascading attempts are made to try to get the privilege.

 133

 After the object protection is checked, the entity's privilege at the database is checked.

If the entity has been granted DBADM it will be allowed to carry out the operation

even if it does not have the explicit privilege such as CREATE. This privilege is a

kind of catch all much like BYPASS on OpenVMS

 If the entity still has not been granted the privilege at the database level, the

OpenVMS privileges for the OpenVMS user that the application is running under are

checked.

 If that user has the appropriate level of privilege, they are then granted the action on

the object.

This means that privilege checking within Oracle JDBC for Rdb server not only depends on

the privilege assigned to the connection user within the database, but also on the privilege of

the OpenVMS user that started the server application (the Executor).

Note:

The Executor is the standard term used for the OpenVMS user under which the

application is executing. This should not be confused with the "executor" processes

used in conjunction with Multi-process servers.

This allows you to set up a privileged server that has access to data that the user may not

have. In other words, you can restrict users access to data in the database if and only if they

come through the Oracle JDBC for Rdb server; they do not have access directly.

If you wish restricted access, grant restricted access only to the Executor and set minimum

privileges. Then grant the appropriate rights to connection users so that they will have the

required access. If they do not have the rights and the Executor does not have the rights,

access is denied. If the user does have the right even though the Executor does not, access is

allowed.

Within the thin server the BYPASS and SYSPRV privileges are disabled by default. The

user will only get the privileges he has been granted and will not inherit privileges from the

Executor.

If the server must run is required to run with BYPASS privilege, thus allowing less

privileged users access to the database objects, use the -bypass option

9.2.1 BYPASS and Multi-Process servers

When you use a Multi-process server a separate executor process is used to carry out the

database operations. This executor process inherits the privileges and authorization

characteristics from the server process that started it.

 134

Thus the information as described above applies to the executor processes in exactly the

same manner as described for the server process.

9.3 Persona

When an Oracle JDBC for Rdb thin server is running, it assumes the default privileges and

identifiers of the user that started the server process. Similarly, when a SQL Services JDBC

Dispatcher starts a server, the server will inherit the privileges and identifiers of the

SQL/Services dispatcher process.

You can change this behaviour by specifying a persona value in the server definition for the

server in the XML-formatted configuration file, or by using the persona switch on the

command line when starting up the server.

When started with a persona, the server process will inherit its privileges and identifiers from

the named persona.

BYPASS and SYSPRV privileges are still disabled by default, see BYPASS Privilege for

more details.

To start a server with a specific persona, you will need to be logged into an account that has

IMPERSONATE privilege and read access to the system authorization database.

The persona value associated with the server must be a valid OpenVMS persona on the

system you are running the server on.

See Server Configuration Options for the format of the Persona option.

9.3.1 Persona and Server Operations

When persona is used with a server, you should ensure that the persona used has appropriate

access to the JDBC command procedures and JDBC log directories.

This is especially important if you use persona with a pool server or a multi-process server.

Before a server carries out any other operation it will assume the persona provided and then

by default disable BYPASS (see BYPASS Privilege). So from that time on the server is

operating under the persona supplied and will be restricted to the rights and authorization

given to that persona.

When persona is used both the multi-process server and the pool server will need to have

read/execute/write access to the RDB$JDBC_COM directory and read/write access to the

RDB$JDBC_LOG directory.

 135

By default the installation of the JDBC drivers will create these directories on your

installation destination directory and set the access to both these directories to world

READ/EXECUTE. You will have to alter the file protection on these directories and grant

WRITE access to the persona.

If you have redirected these logical names to another directory you must ensure that the

persona has the read/write access to these directories.

See File and Directory access Requirements for more details.

9.4 Default Transaction

The type of transaction the Oracle JDBC for Rdb drivers start up when a transaction is

required depends on a number of conditions

• Whether autoCommit is enabled

• The verb of the SQL statement to be executed

• The default transaction type specified on connection using the connection switch
transaction

• The setting of the transaction types in the connection if changed by methods such as

Connection.setReadOnly() and

Connection.setTransactionIsolation().

If no specific behaviour has been specified, by default the Oracle JDBC for Rdb drivers will

start in AUTOCOMMIT mode and will start up a READ_WRITE SERIALIZABLE

transaction if the SQL statement requires a read-write transaction, for example, INSERT or

UPDATE. If the statement does not require a read-write transaction, a READ_ONLY

transaction is started.

When AUTOCOMMIT is disabled, the type of transaction started will depend on whether the

connection has been set read-only and whether a default transaction type has been specified

on the connection using a connection switch. By default, a READ_WRITE SERIALIZABLE

transaction will be started if autoCommit is turned off and no other method has been called

to change the default transaction type.

If the setting of the transaction type in the connection is MANUAL this default behaviour

changes. Setting transactions to MANUAL indicates that the client will take responsibility for

the starting of transactions. The drivers will no longer start transactions, however, if

autoCommit is enabled, the driver will still commit transactions appropriately.

When transactions are set to MANUAL, and the first operation after a connection or after a

transaction termination is not SET TRANSACTION, Oracle Rdb will start a transaction on

behalf of the client. Please see the Oracle Rdb documentation for information on the default

transaction mechanism provided by SQL.

 136

9.5 Executor Sub-process used with the Rdb Native driver

To improve multi-threaded concurrent access to the database while using the Rdb Native

driver, you may specify that separate sub-process executors should be started for each

connection request.

By default all database operations within a standard Rdb Native driver instance are carried

out synchronously, within a single OpenVMS process. This synchronization is required as

Rdb will only let one thread carry out a database operation at a time. This may limit the

general concurrency that may be seen if you are using the Rdb Native driver within a multi-

threaded environment.

To improve concurrency in a multi-threaded environment you can request the Rdb Native

driver to start-up a separate executor for the database connection.

To start a separate executor for the connection you need to specify the multiprocess

switch on connection URL you use for your database connection.

Connection conn = DriverManager.getConnection(

 "jdbc:rdbNative:my_db_dir:pers@multiprocess=true",

user, pass);

Note that this switch is only available when you use the Rdb Native driver.

As a separate sub-process is created for each connection made, output written by the executor

process to SYS$OUTPUT and SYS$ERROR will be redirected to log files specific to that

sub-process. You should ensure that your process has write access to the log directory

RDB$JDBC_LOGS.

9.5.1 Setting Maximum Handshake Tries and Wait Duration

When the main process starts an executor process a handshake protocol is established

between the two processes to allow them to carry out subsequent inter-process

communication.

The main process will attempt 100 times in quick succession to establish the handshake, and

then, by default, will try 500 more times with a delay of 10 ms between each try.

On some systems where the workload is heavy and particularly on single-cpu systems it is

possible that after the sub-process is created the main process may attempt to establish the

communication unsuccessfully. Depending on process and thread scheduling it is possible

 137

that the maximum number of attempts to establish handshake may occur before the sub-

process is scheduled for execution.

On these systems you may wish to increase the number of attempts at handshake or the

duration to wait between handshake attempts to prevent the premature aborting of the driver-

executor connection. You may use the handshakeTries and handshakeWait options

on the connection string to change these values.

See Connection Options for more details.

Contents

9.6 JDBC Hint Methods

Several methods in the JDBC classes are considered to provide hints to the drivers or

underlying database system and do not have to be strictly observed. Many existing drivers

silently ignore these methods.

To allow compatibility with other drivers, you may specify that optional hint methods be

ignored by using the usehints connection switch:

 @usehints=false

This setting tells the Oracle JDBC for Rdb drivers to ignore hint methods.

By default the Oracle JDBC for Rdb drivers will observe hint methods.

The following methods are perceived as non-mandatory hints:

• Connection.setReadOnly()

• ResultSet.setFetchDirection()

• ResultSet.setFetchSize()

• Statement.setFetchDirection()

• Statement.setFetchSize()

9.7 Logging

Oracle JDBC for Rdb drivers and servers can now use the Java Logging utilities to log error

messages and trace information.

By default Java Logging is turned off.

See your Java JDK 1.4.1 for information on the Java Logger.

 138

9.8 Ignoring Statement.cancel() Method Calls

Currently the method Statement.cancel() is not supported in the Oracle JDBC for

Rdb drivers. If an application calls this method the driver will raise the following Exception:

oracle.rdb.jdbc.common.RdbException: Unsupported feature

<Statement.cancel>

In applications and application servers that expect this feature to be present, the raising of

this exception may cause problems with the application functionality or may lead to

excessive messages being written to the application log file.

If your application does not depend on the statement cancellation to actually take effect, and

that failure to cancel can be safely ignored, you may specify the

ignoreStatementCancel switch of the connection URL:

Connection conn = DriverManager.getConnection(

 "jdbc:rdbNative:my_db_dir:pers@ignoreStatementCancel=true",

user, pass);

9.9 Server Name

Each server may be given its own name that may be used to identify a server within the

controller and to look up configuration information. The name of a server may be used to

identify configuration setting within an XML-formatted configuration file on server start up.

Example 1

For example given the following entry in MY_CFG.XML file:

 <servers>
 <server

 name="myMPServer"

 type="RdbThinSrvMP"

 url="//localhost:1788/"

 />

 </servers>

and the following command line statement:

 $ java -jar rdbthinsrv.jar -cfg MY_CFG.XML -name myMPServer

 139

A multi-process server with the name myMPServer will be started up on localhost listening

to port 1788.

Names of servers within an XML-formatted configuration file must be unique as it is by

name alone that server characteristics are searched for within the configuration file. Note that

on OpenVMS character case is not significant in name matching.

The following two special server names may be used, DEFAULT and DEFAULTSSL, within

the XML-formatted configuration file.

The server characteristics defined in the DEFAULT server will be used to provide the base

configuration information for all servers, but any of these characteristics can be over-ridden

either by command line switches or by characteristics defined within the specified named

server in the configuration file.

Example 2

For example given the following server entry in MY_CFG.XML file:

 <servers>

 <server

 name = "DEFAULT"

 type = "RdbThinSrv"

 url = "//localhost:1755/"

 maxClients="-1"

 />

 <server

 name="myServer"

 maxClients="10"

 />

 </servers>

and the following command line statement:

 $ java -jar rdbthinsrv.jar -cfg MY_CFG.XML -name "myServer"

A thin server with the name myServer will be started up on localhost listening to port 1755

with maxClients =10.

The server characteristics within the DEFAULTSSL server will be used to provide base SSL

information for RdbThinSrvSSL type servers.

Example 3

If an XML-formatted configuration file is used, a server is not found that matches the name

provided on the command line, and a DEFAULT server definition is provided, then the

DEFAULT server characteristics will be used for that server.

For example given the following server entry in MY_CFG.XML file:

 140

 <servers

 <server

 name = "DEFAULT"

 type = "RdbThinSrv"

 url = "//localhost:1799/"

 maxClients=-1

 />

 </servers>

and the following command line statement:

 $ java -jar rdbthinsrv.jar -cfg MY_CFG.XML -name "myServer"

A thin server with the name myServer will be started up on localhost listening to port 1799

with unlimited maxClients.

Contents

9.10 Named Databases

The XML-formatted configuration file allows the specification of known named databases,

allowing the Oracle JDBC for Rdb servers the ability to recognize alternate names for

databases served on the node the server is running on.

Similar to logical names and JNDI name spaces, the use of alternate names allows the

separation of the name the client uses for the database and the actual file specification of the

database.

Before requesting Oracle Rdb connect to a database, the thin server will check its list of

known databases for a match against the file specification portion on the given Connection

URL. If one matches, then the file specification portion of the URL property of the named

database will be used to provide the connection database specification.

Example

For example, given the following named database:

<database

 name="mf_pers"

 url="//localhost:1701/disk1:[databases]mf_personnel"

 driver="oracle.rdb.jdbc.rdbThin.Driver"

 URLPrefix="jdbc:rdbThin:"

/>

And the following connection statement:

 Connection conn = DriverManager.getConnection(

"jdbc:rdbThin://bravo:1701/mf_pers",user, pass);

 141

The client will be connected to the Oracle Rdb database

disk1:[databases]mf_personnel.rdb

During the translation of the named database, the node and port part of the URL within the

named database definition is discarded.

Named databases may also be used to restrict database access within the server. See

Restricting Database Access for more information on this feature.

The list of named databases may be made available for client application access if the server

configuration option allowShowDatabases is set to ―true‖. See Getting a List of

Known Databases from Server for more details.

9.11 On Start Commands

There are three startup command attributes that may be specified in the XML-formatted

configuration file server section: srv.onStartCmd , srv.onExecStartCmd and

srv.onCliStartCmd.

These options allow the specification of DCL command that should be executed just prior to

the start up of a server or executor.

Note:

The srv.onStartCmd, srv.onExecStartCmd and the

srv.onCliStartCmd point to a command that will be execute on start up of the

server, executor or CLI invocation. If the command is to invoke a DCL command

procedure you must also include the DCL invocation symbol @ in the command line.

9.11.1 srv.onStartCmd

This option specifies a DCL command to be executed prior to the invocation of the specified

thin server. It must be a valid OpenVMS DCL command and must be valid within the

context of the server process created by the controller or pool server.

If multiple DCL commands are required then they should be placed within a DCL command

procedure, which in turn should be made available to the environment under which the

controller or pool server runs. Oracle recommends that these command procedures be placed

within the rdb$jdbc_com directory and the file protection set to allow the controller or

pool server execute access.

 142

Example 1

For example, if your system requires a specific setup to be run to set your Java environment

and Oracle Rdb environment, you may create a command procedure similar to the following

example.

Create rdb$jdbc_com:our_setup.com containing

$@sys$share:rdb$setver 71

$@sys$common:[java$141.com]JAVA$141_SETUP.COM

and provide a pointer to this command procedure in the srv.onStartCmd option

<server

 name="srv2forRdb"

 type="RdbThinSrv"

 url="//localhost:1708/"

 srv.onStartCmd="@rdb$jdbc_com:our_setup.com"

/>

Care should be taken when providing commands for the server process to execute using this

property. These commands will be executed prior to the invocation of the Java statement that

starts the actual server instance. As detached OpenVMS processes will be used to run the

server you must ensure that all the necessary symbols and logical names are available for the

server's use within the detached process.

In particular if you redefine the standard RDB$JDBC_* logical names within your set-up to

use a private version of Oracle JDBC for Rdb, you must ensure that appropriate

JAR file and images are available and executable within the detached process server

environment.

Example 2

For example, care should be taken in how the logical names are specified. The following

redefinition may appear to point the logical name to the current default directory:

$define rdb$jdbc_home []

However this logical name will be translated during the creation of the temporary command

procedure that will be used to start the server, which in this case as only the directory has

been specified, the disk or device will default to the current device of the login directory of

the detached process, which might not be the same device as you expected. This may

prevent the server process form correctly starting.

If you need to redefine a logical name to the current default directory you can use the

f$environment DCL lexical function:

 $define rdb$jdbc_home 'f$environment("DEFAULT")

This will set both the default device and directory.

 143

If problems are found with starting a server process you can look for new log files in the

RDB$JDBC_LOGS directory which may provide some information on any errors found.

Caution:

Do not use the SET VERIFY command within these command procedures. As the method

Runtime.exec() may be used by the servers to create processes, the use of the SET

VERIFY command within the command procedure may hang the server. This is a

documented limitation of using Runtime.exec() on Open VMS Java. The logical name

JAVA$EXEC_TRACE is available to help debug Runtime.exec() calls on OpenVMS.

Refer to the OpenVMS Java documentation for more details.

Note:

The srv.onStartCmd command is only used by the controller or pool server to

start a server. If the server is started by any other means, neither the server startup

command procedure nor any commands in the srv.onStartCmd server attribute

will be executed.

9.11.2 srv.onExecStartCmd

This option specifies a DCL command to be executed prior to the invocation of an executor

by a multi-process server. It must be a valid OpenVMS DCL command and must be valid

within the context of the multi-process server process.

If multiple DCL commands are required, then they should be placed within a DCL command

procedure, which in turn should be made available to the environment under which the server

runs. It is recommended that these command procedures should be place within the

rdb$jdbc_com directory and the file protection set so that the server can access them.

Example

For example, if your system requires a specific setup to be run to set your Oracle Rdb

environment, you may create a command procedure similar to the following example.

Create rdb$jdbc_com:our_exec_setup.com containing

$@sys$share:rdb$setver 7.1

and provide a pointer to this command procedure in the srv.onExecStartCmd option

<server

 name="MPsrv2forRdb"

 type="RdbThinSrvMP"

 url="//localhost:1788/"

 srv.onExecStartCmd="@rdb$jdbc_com:our_exec_setup.com"

/>

 144

Caution:

Do not use the SET VERIFY command within these command procedures. As the method

Runtime.exec() may be used by the servers to create processes, the use of the SET

VERIFY command within the command procedure may hang the server. This is a

documented limitation of using Runtime.exec() on Open VMS Java. The logical name

JAVA$EXEC_TRACE is available to help debug Runtime.exec() calls on OpenVMS.

Refer to the OpenVMS Java documentation for more details.

9.11.3 srv.onCliStartCmd

This option specifies a DCL command to be executed prior to the invocation of a CLI

statement by a JDBC server. It must be a valid OpenVMS DCL command and must be valid

within the context of the server process.

If multiple DCL commands are required, then they should be placed within a DCL command

procedure, which in turn should be made available to the environment under which the server

runs. It is recommended that these command procedures should be place within the

rdb$jdbc_com directory and the file protection set so that the server can access them.

Example

For example, if your system requires a specific setup to be run to set your Oracle Rdb

environment, you may create a command procedure similar to the following example.

Create rdb$jdbc_com:our_cli_setup.com containing

$@sys$share:rdb$setver 7.1

and provide a pointer to this command procedure in the srv.onCliStartCmd option

<server

 name="MPsrv2forRdb"

 type="RdbThinSrvMP"

 url="//localhost:1788/"

 srv.onCliStartCmd="@rdb$jdbc_com:our_cli_setup.com"

/>

Caution:

Do not use the SET VERIFY command within these command procedures. As the method

Runtime.exec() may be used by the servers to create processes, the use of the SET

VERIFY command within the command procedure may hang the server. This is a

documented limitation of using Runtime.exec() on Open VMS Java. The logical name

JAVA$EXEC_TRACE is available to help debug Runtime.exec() calls on OpenVMS.

Refer to the OpenVMS Java documentation for more details.

 145

Contents

9.12 Password Obfuscation in Server Configuration Files

There are two types of passwords that may be stored in the server configuration files

 control passwords

 user passwords

In addition, two types of obfucated passwords are allowed in server configuration file:

 Obfuscations produced by the digest command which is an allowed form for

control passwords

 Obfuscations produced by the obfuscate command which is an allowed form of

obfucation of user passwords

The main difference in the obfucation produced by these two commands is that digest uses

one-way algorithms where-as obfuscate uses reversible algorithms.

9.12.1 Control Passwords

To help prevent an unauthorized user from controlling server operations such as closing

down a running server, a control password should be assigned to each server on startup.

This password must be used whenever server control operations are carried out using the

Oracle JDBC for Rdb Controller interface.

To ensure better security of these control passwords, the server configuration file may

contain the server control password in an obfuscated form. You can obtain an obfuscated

password for a control password by using the digest statement in the Controller.

Example 1
rdbthincontrol> digest thisismypassword

digest : 0x31435008693CE6976F45DEDC5532E2C1

The value can then be used in the configuration file where you would have normally

provided a plain text control password.

Example 2
<server

 name="RdbThinSrv1707"

 type="RdbThinSrvMP"

 url="//localhost:1707/"

 srv.execStartup="mystartup"

 controlUser="jdbc_user"

 controlPass="0x811B15F866179583EB3C96751585B843"

/>

This value must be copied exactly as returned by the digest command.

 146

The plain text password conversion to its obfuscated form is case-sensitive, so the same word

or phrase but with different character casing will produce a different digested form.

Passwords are case sensitive so you must ensure that the value of the password used in plain

text and in it digested form match exactly character by character including case.

This is particularly important if a password is used on the DCL command line. If double

quotation characters are not used to surround the plain text password DCL may, depending

on your environment, force the value to all lower case or all uppercase which may differ

from the original.

Example 3

For example when -digest is used in command mode make sure the value is enclosed in

double quotations:

$ java -jar rdbthincontrol.jar -digest "MySecretPassword"

 digest : 0x7315A012ECAD1059A3634F8BE1347846

$ java -jar rdbthincontrol.jar -digest MySecretPassword

 digest : 0x4CAB2A2DB6A3C31B01D804DEF28276E6

Note:

Obfuscated control passwords are only valid when used in conjunction with a server

definition in a configuration file or as a server start up command line configuration

option. To connect to the server as a control user to carry out operations on it using

the controller, the control password you use in the connect request must still be in

plain text. You cannot use the obfuscated value as a password on connection.

 See also: Digest in the section Oracle JDBC for Rdb Controller.

9.12.2 User Passwords

User passwords may be stored in the server configuration file, however storing these

password in plain text form may leave your system vunerable to anyone who can read the

configuration file. To help improve security, user passwords may be stored in the

configuration file in obfucated form.

As user passwords must be passed to SQL and Oracle Rdb in their plain-text form, any

obfuscation of these passwords must be reversible. The obfuscate command of the

Controller may be used to create a reversible obfuscation of a password.

 147

Example 1
rdbthincontrol> obfuscate mypassword

obfuscation : ##016BA4158E5884C8D6EAFE71697D4DC9483417DA0BA1

The value can then be used in the configuration file where you would have normally

provided a plain text user password.

Example 2
<server

 name="RdbThinSrv1701"

 type="RdbThinSrv"

 url="//localhost:1701/"

 anonymous = "true"

 User="jdbc_user"

 Password="##016BA4158E5884C8D6EAFE71697D4DC9483417DA0BA1"

/>

This value must be copied exactly as returned by the obfuscate command.

The plain-text password conversion to its obfuscated form is case-sensitive, so the same word

or phrase but with different character casing will produce a different obfucated form.

Passwords are case sensitive so you must ensure that the value of the password used in plain

text and in it digested form match exactly character by character including case.

This is particularly important if a password is used on the DCL command line. If double

quotation characters are not used to surround the plain text password DCL may, depending

on your environment, force the value to all lower case or all uppercase which may differ

from the original.

The value of the obfuscated form of the password will change every time the obfuscate

command is used:

Example 3

rdbthincontrol> obfuscate mypassword

 obfuscation : ##01114E48372901FAADFF86A79B1304CCBC9F51872FAF

rdbthincontrol> obfuscate mypassword

 obfuscation : ##01329A04611A8C6DAC388BBA0DD369C20C2E4DFCB801

rdbthincontrol>

Note:

Obfuscated user passwords are only valid when used in conjunction with a session

or server definition in a configuration file or as a server start up command line

configuration option. Any user password used in a connection statement must be in

plain text form.

 See also: Obfuscate in the section Oracle JDBC for Rdb Controller.

Contents

 148

9.13 Restricting Server and Database Access

In addition to the standard Rdb authorization checking that is carried out during the

connection to a database using a thin server, the databases accessed and the usernames

allowed may be restricted at the server level.

The following sub-sections detail how access to a thin server and its served databases may be

intentionally restricted.

9.13.1 Restricting Database Access
You may restrict connections made via a server to only those databases specified as allowed

databases.

This may be done by setting the restrictAccess property for the server in the

configuration file and then providing a list of databases that may be accessed using

allowDatabase subsections.

Example
<server

 name="srv2restrict"

 type="RdbThinSrv"

 url="//localhost:1701/"

 restrictAccess="true">

 <allowDatabase name="mf_pers"/>

 <allowDatabase name="disk1:[databases]customers"/>

</server>

The name value of an allowDatabase subsection may be either the name of a database

already declared within the same configuration file, or the database file specification portion

of a connection URL

If a client is using a server with restricted access, then the file specification portion of the

JDBC Connection URL used must match one of the names within the allowed database

subsections. No file expansions or logical name translations are done on the Connection URL

before the server checks these names against the allowed databases, so it is important that,

apart from the variations in case, the names be exactly as specified in the allowed database

subsections.

If the server restrictAccess property is true and there is at least one allowDatabase

subsection specified then the server will allow access to only those databases specified.

If the server restrictAccess property is false or not specified or if no

allowDatabase subsection is specified for the server then no database restrictions will be

applied.

 149

Example 1

For example given the above server description of a server running on the node bravo :

Connection conn = DriverManager.getConnection(

"jdbc:rdbThin://bravo:1701/mf_pers",user, pass);

 will be allowed.

Example 2
Connection conn = DriverManager.getConnection(

"jdbc:rdbThin://bravo:1701/MF_Pers",user, pass);

 will be allowed because character case in the database specification is not significant.

Example 3
Connection conn = DriverManager.getConnection(

"jdbc:rdbThin://bravo:1701/disk1:[databases]customers",user, pass);

will be allowed.

Example 4
Connection conn = DriverManager.getConnection(

"jdbc:rdbThin://bravo:1701/disk1:[databases]customers.rdb",user, pass);

 will NOT be allowed due to the extra ".rdb".

Example 5
Connection conn = DriverManager.getConnection(

"jdbc:rdbThin://bravo:1701/cust",user, pass);

will NOT be allowed even though cust may be a logical name that translates to

disk1:[databases]customers

9.13.2 Restricting User Access

When using a thin server, Rdb authorization checking is carried out during the connection to

the database. Rdb will check the username and password provided to determine the

authorization access for the given user.

In addition you may further restrict which users may use the server by setting the

restrictAccess property for the server in the configuration file and then providing a list

of usernames that will be allowed using allowUser subsections.

Example
<server

 name="srv2restrict"

 type="RdbThinSrv"

 150

 url="//localhost:1701/"

 restrictAccess="true">

 <allowUser name="jdbc_user"/>

 <allowUser name="smith"/>

 <allowUser name="jones"/>

</server>

The name value of an allowUser subsection must be a valid Rdb username.

If a client intends to use a server with restricted user access, then the username used for the

connection must match one of the names within the allowed user subsections. The username

match is not case-sensitive.

If the server restrictAccess property is true and there is at least one allowUser

subsection specified then the server will restrict access to only those users specified.

If the server restrictAccess property is false or not specified or if no allowUser

subsection is specified for the server then no user restrictions will be applied to the server.

9.13.3 Privileged Users Access

Users may be granted a “Privileged User” status when accessing a JDBC server. Privileged

users may be allowed to carry out operations on the server or the server‟s host that would not

normally be granted, for example, access to the command line.

A user is designated “privileged” by having their username specified within an

allowPrivUser configuration option for that server, for example:

<allowPrivUser name = "jdbc_user"/>

Normal OpenVMS authorization and privilege checking is still carried out on all operations

executed by a privileged user. The username/password provided for the database connection

will be used for authorization checking by OpenVMS.

9.13.4 Access to the Command Line

Users may be granted access to execute command line operations on the host that the server

is executing on.

 151

If the user has been granted access, the server may execute OpenVMS DCL commands on

the server‟s host system on behalf of the user. The commands are executed in a separate

loginout session established specifically for command line access.

During the execution of the DCL command, messages that are written to either

SYS$OUTPUT or SYS$ERROR will be relayed back to the client application.

Enabling command line access for a server requires two server configuration options:

1. The server must have Command Line access enabled by having the server configuration

option allowAccessToCL set to ―true‖, see Server Configuration Options for more

details.

2. The user must be a designated “Privileged User”, see Privileged Users for more details.

The following example shows that both ―jdbc_user‖ and ―smith‖ will be allowed

command line access when using srv1.

 <server

 name = "srv1"

 type = "RdbThinSrv"

 url = "//localhost:1701/"

 autoStart="true"

 allowAccessToCL = "true">

 <allowPrivUser name = "jdbc_user"/>

 <allowPrivUser name = "smith"/>

 </server>

Command line access is only available when using certain applications such the

SQLDeveloper Extension for Rdb and is used to provide the ability to execute RMU and

other operations required by the SQLDeveloper application.

This command line access feature is currently not available for general application use.

9.13.5 Further server access protection

In addition to restricting the databases accessed and the users allowed to use the server, a

server may also be protected using a server password.

 152

This may be done by setting the srv.password property for the server in the

configuration file. This password may be either a plain text password or an obfuscated

password value.

Oracle recommends not to store password in your configuration file, however if you choose

to store them then an obfuscated from should be used. You may use the digest function

within the Controller application to generate an obfuscated password that is suitable to use

with the srv.password property. See Password Obfuscation in Server Configuration Files

for more details.

To make a successful connection to a database using a password-protected server the client

connection properties must also provide the plain text value of the password on the client

connection request.

Example
<server

 name="srv2restrict"

 type="RdbThinSrv"

 url="//localhost:1701/"

 srv.password="0x811B15F866179583EB3C96751585B843"

 />

In this example, an obfuscated password is used which matches the plain text password

"jdbc_user"

 To connect to a database using this server the client must provide a @srv.password

value on the connection request and the password must be a plain text password that matched

the one specified for the server.

 Connection conn = DriverManager.getConnection(

 "jdbc:rdbThin://bravo:1755/my_db_dir:pers@srv.password=jdbc_user",

 user, pass);

9.14 Scope of CONNECTION.setReadOnly()

By default, the scope of the CONNECTION.setReadOnly() method is session, that is, if

the method CONNECTION.setReadOnly(true) is called, the default transactions for

the rest of the connected session will be READ_ONLY unless changed by another call to

CONNECTION.setReadOnly().

However, the standard Oracle JDBC Drivers have a different scope for

CONNECTION.setReadOnly(). If the method

CONNECTION.setReadOnly(true) is called, only the next transaction will be READ

 153

ONLY; once that transaction has ended, the default transaction will resort back to READ

WRITE.

To provide semantics consistent with the standard Oracle JDBC Drivers, a value of

ORACLE may be specified within the TRANSACTION connection option.

Format
 @transaction=oracle

The default transaction will be READ_WRITE when this switch is used, but this transaction

type may be changed by issuing the CONNECTION.setReadOnly(true) method call.

This will set only the next transaction to READ_ONLY.

9.15 Server Command Procedures

OpenVMS DCL command procedures are used in the creation of processes in which a thin

server is started using the controller and when a multi-process server starts up an executor

process. A command procedure is also used whenever the server has to execute a CLI

statement on behalf of a client.

These command procedures may be tailored for your system environment so that operation

such as software version setup and re-direction of output may be customized.

There are three command procedures used for startup, the server startup command procedure:

 rdb$jdbc_home:rdbjdbc_startsrv.com

and the executor startup command procedure:

 rdb$jdbc_home:rdbjdbc_startexec.com

and the CLI startup command procedure:

 rdb$jdbc_com:rdbjdbc_execcli.com

Caution:

Do not use the SET VERIFY command within these command procedures. As the method

Runtime.exec() may be used by the servers to create processes, the use of the SET

VERIFY command within the command procedure may hang the server. This is a

documented limitation of using Runtime.exec() on Open VMS Java. The logical name

JAVA$EXEC_TRACE is available to help debug Runtime.exec() calls on OpenVMS.

Refer to the OpenVMS Java documentation for more details.

Note:

If the only changes required are environmental setup, Oracle recommends that

 154

instead of altering the start-up command procedures, the server attribute

srv.onStartCmd, srv.onExecStartCmd or srv.onCliStartCmd

should be considered. See On Start Commands for more details.

9.15.1 Server Startup Command Procedure

The controller uses the server startup command procedure to start a thin server.

The srv.startup option within the server section of an XML-formatted configuration file

may be used to specify the file specification of the command procedure that should be used

to start that server.

Example

For example:

<server

 name="srv2forRdb"

 type="RdbThinSrv"

 url="//localhost:1708/"

 autoStart="true"

 logfile="rdb$jdbc_logs:srv2forRdb.log"

 srv.startup="rdb$jdbc_com:our_customized_startsrv.com"

/>

During the driver kit installation the command procedure rdbjdbc_startsrv.com is

placed in the rdb$jdbc_home directory. This file will be used by default for server start

up using the controller and pool servers.

The DEFAULT server provided in the default configuration file rdbjdbccfg.xml specifies this

command procedure.

srv.startup=rdb$jdbc_home:rdbjdbc_startsrv.com

You can choose to change this default command procedure to customize for your system

settings, or you can create a new customized procedure and change the configuration file so

that servers use this new file. However Oracle recommends that you use the

srv.onStartCmd server attribute instead. See srv.onStartCmd for more

information.

Caution:

Do not use the SET VERIFY command within these command procedures. As the method

Runtime.exec() may be used by the servers to create processes, the use of the SET

VERIFY command within the command procedure may hang the server. This is a

documented limitation of using Runtime.exec() on Open VMS Java. The logical name

JAVA$EXEC_TRACE is available to help debug Runtime.exec() calls on OpenVMS.

Refer to the OpenVMS Java documentation for more details.

 155

Note:

The server startup command procedure is only used by the controller or pool server

to start a thin server, if the server is started by any other means neither the server

startup command procedure nor any commands in the srv.onStartCmd server

attribute will be executed.

9.15.2 Executor Startup Command Procedure

The thin multi-process server uses the executor startup command procedure to start an

executor process for a client connection.

You can use the srv.execStartup option to specify the file specification of the

command procedure that should be used to start executors by a multi-process server.

Example

For example:

<server

 name="MPsrv2forRdb"

 type="RdbThinSrvMP"

 url="//localhost:1788/"

 srv.execStartup="rdb$jdbc_com:our_customized_startexec.com"

/>

You can choose to change this default command procedure to customize for your system

settings, or you can create a new customized procedure and change the configuration file so

that servers use this new file. However Oracle recommends that you use the

srv.onExecStartCmd server attribute instead. See srv.onExecStartCmd for more

information.

Caution:

Do not use the SET VERIFY command within these command procedures. As the method

Runtime.exec() may be used by the servers to create processes, the use of the SET

VERIFY command within the command procedure may hang the server. This is a

documented limitation of using Runtime.exec() on Open VMS Java. The logical name

JAVA$EXEC_TRACE is available to help debug Runtime.exec() calls on OpenVMS.

Refer to the OpenVMS Java documentation for more details.

The srv.execStartup and srv.onExecStartCmd options are only valid within the XML-

Formatted configuration file server section for a multi-process server.

 156

9.15.3 CLI Startup Command Procedure

The JDBC server uses the CLI startup command procedure to execute any CLI statements it

is required to issue on behalf of a client.

If the server attribute srv.allowAccessToCLI is set to true, clients may issue CLI statements

to execute OpenVMS DCL commands in the context of the running server.

You can use the srv.cliStartup option to specify the file specification of the command

procedure that should be user to execute the CLI commands.

Example

For example:

<server

 name="Srv2forRdb"

 type="RdbThinSrv"

 url="//localhost:1777/"

 srv.cliStartup="rdb$jdbc_com:our_customized_cli.com"

/>

You can choose to change this default command procedure to customize for your system

settings, or you can create a new customized procedure and change the configuration file so

that servers use this new file. However Oracle recommends that you use the

srv.onCliStartCmd server attribute instead. See srv.onCliStartCmd for more

information.

Caution:

Do not use the SET VERIFY command within these command procedures. As the method

Runtime.exec() may be used by the servers to create processes, the use of the SET

VERIFY command within the command procedure may hang the server. This is a

documented limitation of using Runtime.exec() on Open VMS Java. The logical name

JAVA$EXEC_TRACE is available to help debug Runtime.exec() calls on OpenVMS.

Refer to the OpenVMS Java documentation for more details.

The srv.execStartup and srv.onExecStartCmd options are only valid within the XML-

Formatted configuration file server section for a multi-process server.

Contents

9.16 Server/Client Protocol Checking

To ensure that the protocol between the Oracle JDBC for Rdb thin driver and servers

correctly align, the Oracle JDBC for Rdb servers check versioning information transmitted

by the client. This allows the quick trapping of problems that may occur because of a

mismatch between the server instance and the thin driver.

 157

Example

The following is an example of the type of error message that will be seen if the client and

server mismatch:

oracle.rdb.jdbc.common.RdbException: Io exception :

Io exception : Server Protocol error : received 1 : expected 2

@rdb.Client.FetchBlobSeg

To prevent these protocol errors, all the Oracle JDBC for Rdb driver JAR files should be

replaced at the same time whenever a new kit is installed.

To check that the server/clients instances match enable @tracelevel=-1 on the

connection URL for your client application. See Trace for more details.

Near the start of the log there will be messages indicating the instance values for both the

client and the server. If these two numbers do not match then protocol errors are likely.

An example of the log messages showing Instance information:

>> main ThinConnect@3.setTraceLevel msg : Rdb nativeInstance=20030508

>> main ThinConnect@3.setTraceLevel msg : Rdb serverInstance=20030508

Contents

9.17 Using OpenVMS FailSAFE IP.

OpenVMS FailSAFE IP may be using in conjunction with Oracle JDBC for Rdb thin driver

and servers. During failover, FailSAFE IP will redirect the existing Oracle JDBC for Rdb

client/server IP connections to the standby service.

If the failover service exists on the same node as the failed service the connections should

continue to be viable transparently.

If however, the failover service is on another node, then as Rdb connections cannot be

transferred between processes, the failover will not be transparent. The thin driver should

receive a socket exception on the failed TCP/IP port, as the original service is no longer

available.

Note that server socket exceptions will only be raised on a connection if there is a network

read or write outstanding. If the driver is currently idle and not carrying out a read or write

on the socket to the server, no exception will be raised. Subsequent operations on that

connection by the driver will however raise the socket exception.

 158

The socket exception will be passed through to the application wrapped in an SQLException.

It is then up to the application catch the exception and to cleanup its environment and if

applicable establish a new Connection to the driver

Depending on where the client is running it is possible that the client operating system may

not raise a SocketException even if a read or write is pending. On these systems it is

possible for the client connection to be held in limbo waiting for a read or write to complete.

To help reduce the impact of possible hangs due to the failure of the socket subsystem to

raise the correct socket exception, a timeout may be placed on network read/writes. If the

read/write does not complete within the designated time an exception will be raised.

Care should be taken in setting this timeout value as longer-duration database operations

such as statement compilation may delay the server sending back its results.

The client-side will have a socket read waiting on the return of the results, which could

timeout if this duration is set too short in relation to the performance of your system and

database software. Oracle recommends that if used, this timeout value should be set to a large

value (in the order of several minutes) if you suspect that query operations on the server side

may take some time.

See networkTimeout in Connection Options for more details on network read and write

timeout.

Contents

9.18 Attaching to Multiple Databases in the Same Connection

Oracle Rdb allows the application programmer to attach to multiple databases using the same

connection context. Starting with Version 7.3 of Oracle JDBC for Rdb, this feature is also

available to developers using the Oracle JDBC for Rdb drivers.

Both the Native and Thin Driver classes have Oracle Rdb-specific extensions allowing the

developer to attach more databases to an existing Connection.

Example

.

.

.

 String dbUrl = "jdbc:rdbThin://localhost:1701/db_dir:DB_one";

 String user = "jdbc_user";

 String pwd = "jdbc_user";

 Connection dbConnection = DriverManager.getConnection(dbUrl, user, pwd);

 dbConnection.setAutoCommit(false);

 159

 oracle.rdb.jdbc.rdbThin.Driver d =

 (oracle.rdb.jdbc.rdbThin.Driver)DriverManager.getDriver(dbUrl);

 dbConnection2 = d.attach("db_dir:DBtwo","MYDB2",user, pwd, dbConnection);

 Statement s1 = dbConnection.createStatement();

 // first declare a transaction

 s1.execute("declare transaction read only");

.

.

.

s1.execute("commit");

.

.

.

dbConnection2.close();

dbConnection.close();

The attach() methods in the Oracle JDBC for Rdb drivers allow the developer to attach

another database to an existing Connection. The following conditions should be noted:

 Autocommit must be disabled prior to attaching a second database and should remain

disabled until the connections have been closed.

 Each attach must provide a unique alias for Oracle Rdb to use.

 Transaction must be handled manually:

 Transactions must be declared or set manually prior to executing any SQL

statement

 Transactions must be finalized manually prior to disconnecting from the

databases.

 Rdb transaction handling when multiple databases are attached is more complex than

single database connections. See the Oracle Rdb documentation for other limitations

and conditions applying to multiple database attaches.

See attach() Public Method in the Driver class for more information on attach().

Contents

9.19 Shutdown Thread

 160

During the normal shutdown of a multi-threaded application on OpenVMS, the shutdown

will wait on all children threads of the application to terminate before the shutdown will be

finalized.

If for any reason a thread still remains running, the shutdown of the application will stall

indefinitely until the thread terminates.

Normal JAVA class finalizers are not run during application shutdown and so class finalizer

cannot be used to ensure that subordinate threads are correctly terminated during shutdown.

When the multi-process option is used with the JDBC Native Driver, each connection made

by the user application will create its own thread to execute under. This thread is correctly

terminated when the connection Disconnect is called.

If one or more application connections are not closed prior to shutting down the application,

the application will hang during shutdown waiting for these connections to terminate. Thus

the developer should ensure that all connections made using the multi-process Native Driver

during the application are correctly disconnected prior to terminating the application.

Starting with version V7.3 the Oracle JDBC for Rdb drivers will create a shutdown thread

when they are initially invoked. The purpose of this thread is to use the shutdown-hook

feature provided by OpenVMS that will execute the thread at shutdown. The shutdown

thread will ensure that any connection left open by the application will be correctly

disconnected prior to the application shutdown proceeding, thus preventing application hangs

at shutdown.

The application developer does not need to change any code for this shutdown feature to be

enabled, as long as the application is using V7.3 (or later) JDBC driver libraries the

shutdown hook will be in place.

Contents

9.20 Getting a List of Known Databases from Server

Databases known to servers may be listed within the databases section of the server

configuration file.

This list of known databases is made available to the client application utilizing the Oracle

JDBC for Rdb thin driver by using either:

 Show Databases SQL statement or the

 getDatabases() method

 161

A list of known databases will be returned to the caller only if the server configuration option

allowShowDatabases has been set to true for the connected server. See Server

Configuration Options for more details on this option.

9.20.1 Show Databases SQL statement

The Oracle JDBC for Rdb thin driver will allow the following SQL syntax extension in the

SQL text of a Statement or PreparedStatement:

SHOW DATABASES

This syntax is specific to the Oracle JDBC for Rdb thin driver and is not passed through to

the underlying database system. On recognizing this SQL statement, the driver will create a

ResultSet that will contain a list of databases known to the connected thin server.

Example

.

.

.

Connection conn = DriverManager.getConnection(dbUrl,user,pwd);

Statement sc = conn.createStatement();

ResultSet rs = sc.executeQuery("show databases");

while (rs.next())

{

 System.out.println(

 rs.getString("RDB$DATABASE_NAME") + " : " +

 rs.getString("RDB$DESCRIPTION"));

}

rs.close();

sc.close();

conn.close();

.

.

.

See Extended SQL Syntax – SHOW DATABASES for more information.

Contents

9.20.2 getDatabases()

 162

The Oracle JDBC for Rdb thin driver has a JDBC extension method, getDatabases()

that may be used to return a list of databases known to a server.

Unlike the SHOW DATABASES SQL statement, the getDatabases() method does not

require a connection to a database prior to being called. The getDatabases() takes a

single parameter, the URL to the server that will be interrogated.

Example

.

.

.

Hashtable h = oracle.rdb.jdbc.rdbThin.Driver.getDatabases("//localhost:1701/");

if (h != null)

{

 Enumeration e = h.keys();

 while (e.hasMoreElements())

 {

 String key =(String)e.nextElement();

 log(key + " : " + h.get(key));

 }

}

.

.

.

See the Driver class extension getDatabases() Public Static Method for more information.

Contents

9.21 Trace

Trace provides tracing of method calls and other debug information within the Oracle JDBC

for Rdb drivers and servers. See Trace Values for valid trace level values.

The trace level value may be a signed decimal or a Java-style hexadecimal literal.

By default, trace output is written to the normal JDBC DriverManager.PrintWriter.

You can override the default by using one of the following settings:

• rdb.Debug.setLogStream(PrintStream ps)

• rdb.Debug.setLogWriter(PrintWriter pw)

Example

The following example shows how to override the default:

 163

rdb.Debug.setLogStream(new PrintStream(

 new FileOutputStream("mylog.log")));

If trace is enabled and the DriverManager.PrintWriter is not currently defined a

PrintWriter for System.out is defined for you.

9.21.1 Setting tracelevel

Trace of JDBC operations may be enabled using one of the following methods:

• tracelevel property

• tracelevel switch

• tracelevel option

• Doracle.rdb.jdbc.tracelevel system option

• Set tracelevel

Details of these methods can be found in the following sections.

9.21.1.1 Tracelevel Property

Tracing can be enabled by setting the tracelevel property of the Properties passed to the

DriverManager.getConnection method to the appropriate value:

Example

Properties info = new Properties();

info.put("user", user);

info.put("password", pw);

info.put("tracelevel", -1);

conn = DriverManager.getConnection (connStr, info);

See Connection Options for more details.

9.21.1.2 Tracelevel Switch

Using the tracelevel switch when starting a server can enable tracing:

Example

$java -jar rdb$jdbc_home:rdbthinsrv.jar -cfg thinsrv.cfg -tracelevel -1

See Starting a Thin Server from the Command Line, Starting a Multi-process Server from the

Command Line and Starting a Pool Server from the Command Line for more details.

 164

9.21.1.3 Tracelevel Option

Placing the tracelevel option in the server definition within an XML-Formatted

configuration file can enable tracing.

Example
<server

 name="mypoolserver"

 type="RdbThinSrvPool"

 traceLevel="-1"

 url="//localhost:1702/" >

 <pooledServer name="srv1forRdb"/>

 <pooledServer name="srv2forRdb"/>

 <pooledServer name="srvMPforRdb"/>

</server>

See Server Configuration for more details.

9.21.1.4 Tracelevel System Property

Using the Rdb system property Doracle.rdb.jdbc.tracelevel when invoking your

application or Rdb server can enable tracing

Example
$java Doracle.rdb.jdbc.tracelevel=-1 my_application

See Oracle JDBC for Rdb System Properties for more details.

9.21.1.5 Set Tracelevel statement

Using the SET TRACELEVEL command in the controller can enable tracing.

Example
$java -jar rdb$jdbc_home:rdbthincontrol.jar

rdbthincontrol> connect //localhost:1701/ jones mypassword

rdbthincontrol> set tracelevel –1

See Controller Command Line for more details.

9.21.2 Abbreviated form of tracelevel

The abbreviated form for the traceLevel keyword, "tl", may also be used in the same

manner.

 165

9.21.3 Trace Values

The value passed to trace is actually a 32bit flag mask. Each bit set determines what will be

traced, as shown in the following table.

Bit Hexadecimal Value Decimal Value Traces

0 0x00000001 1 Standard JDBC methods

1 0x00000002 2 Standard JDBC class

create/finalize

2 0x00000004 4 SQL statements

4 0x00000010 16 Non-standard JDBC methods

5 0x00000020 32 Non-standard JDBC class

create/finalize

6 0x00000040 64 Garbage collection

7 0x00000080 128 SQL statement cache information

8 0x00000100 256 Rdb JNI calls

9 0x00000200 512 Network sends

10 0x00000400 1024 Server actions

11 0x00000800 2048 Performance information

14 0x00004000 16384 Dump SQLDA information

29 0x20000000 536870912 Memory information

30 0x40000000 1073741824 Full provides more details on

certain flags

(ALL) 0xFFFFFFFF -1 Trace everything

Contents

9.22 File and Directory access Requirements

There are certain file and directory access requirements that must be met to successfully use

Oracle JDBC for Rdb servers, drivers and the controller.

The controller and servers require access to the directories pointed to by the following logical

names

• RDB$JDBC_HOME

• RDB$JDBC_COM

• RDB$JDBC_LOGS

During installation a command procedure will be created for you that you can use to set up

these logical names for your system pointing to the installation directory. It is your decision

 166

whether to add these logical names to your startup command procedure or require some other

mechanism such as a login setup command procedure to set these up for JDBC users.

The logical names may be placed in any of your logical name tables, the normal OpenVMS

logical translation precedence will be followed when any of the JDBC components try to

access files using these logical names. This allows you to have system-wide, group level or

private copies of the JDBC kits each using their own set of directories.

It is important that the appropriate access be granted to users that require to startup servers or

use the JDBC jar files.

During installation the three directories will be created under the installation directory, and

be given the following protection.

(S:RWE, O:RWE, G:RE, W:RE)

This allows the world read/execute access to all the directories and contents. If this does not

comply with your organizational requirements then you should alter these protections

appropriately.

Users of the controller, or those that startup servers manually will also require WRITE access

to both the RDB$JDBC_COM and RDB$JDBC_LOGS directory to successfully startup

servers, as the server process needs to be able to write log and temporary files to these

directories.

If a server is started up using the SQL/Services JDBC dispatcher then the account under

which the dispatcher runs needs WRITE access to these directories.

If you redirect these logical names to other directories you must ensure that the file and

directory protections comply with the above requirements.

If persona is used with servers then you must ensure that the persona has the appropriate

access rights as described above.

Contents

 167

Chapter 10

JDBC Extensions for Oracle Rdb

The following sections provide information on features that are extensions to the JDBC

standard provided by Oracle JDBC for Rdb.

The following Oracle JDBC for Rdb classes have been enhanced:

 Blob Class

 Connection Class

 Driver Class

 ResultSet Class

 Statement Class

In addition to enhancements made to classes, developers using Oracle JDBC for Rdb drivers

may use extended SQL syntax within Statement and PreparedStatement SQL text:

 SET

 SHOW DATABASES

10.1 Blob Class

Classpath

oracle.jdbc.rdb.common.Blob

An additional public method has been added to Blob:

 setSegSeparator()

Note:

The maximum size of a blob segment supported by Oracle Rdb today is 65535. The

Oracle JDBC for Rdb drivers will correctly handle segments up to this maximum size.

There is no limit on the number of segments that can be stored for a single Blob,

however, as the drivers materialize the blob into internal byte arrays. The correct

handling of very large blobs in this version of the Oracle JDBC for Rdb drivers is

limited to the free memory that is available to the Java environment.

10.1.1 setSegSeparator() Public Method

 168

Declaration
// Additional method

public void setSegSeparator(java.lang.String separator)

Parameters

• separator

The separator string to use between segments. A null or empty string will clear the

separator value.

Remarks
To enable limited formatting of data returned from Oracle Rdb segmented strings, an

additional public method has been added to oracle.jdbc.rdb.common.Blob that

allows the specification of a separator string value to be inserted between segments when the

segmented string is converted to a JDBC blob object.

The separator can be cleared by passing either a null object or empty String as the parameter

to setSegSeparator().

Example
The following code segment shows how to add a newline break between segments.

.

.

.

import oracle.rdb.jdbc.common.Blob;

.

.

.

ResultSet rs = s.executeQuery(

 "select resume from resumes where employee_id = '00164'");

rs.next();

Blob bl = (Blob)rs.getBlob(1);

bl.setSegSeparator("\n");

byte[] bytes = bl.getBytes(1,9999);

String st1 = new String(bytes);

System.out.println("resume : " + st1);

.

.

.

Contents

10.2 Driver Class

Classpath

oracle.jdbc.rdb.rdbThin.Driver

or

oracle.jdbc.rdb.rdbNative.Driver

 169

An additional public method has been added to both Oracle JDBC for Rdb driver classes:

 attach() Public Method (overloaded)

An additional public static method has been added to the Oracle JDBC for Rdb thin driver

class:

 getDatabase() Public Static Method

10.2.1 attach() Public Method

The attach() method allow another database to be attached within the same Connection

context. Databases that are attached within the same connection may take part in the same

SQL compound statement.

Overload List:

 attach(String, java.util.Properties. java.sql.Connection)

Attach the database using the provided propreties to the given connection.

 attach(String, String, String, String, java.sql.Connection)

Attach the database using the provided alias, username and password to the given

connection.

10.2.1.1 attach(String, java.util.Properties, java.sql.Connection)

Declaration
// Additional method

public void attach(String url, java.util.Properties info,

java.sql.Connection parent)

Parameters

• url

The URL of the database to attach.
• info

Properties for the new database attach
• parent

The parent connection the database should be attached to.

Remarks

The url string must contain the specification of the database to attach to. Any driver prefix,

for example, "jdbc:rdbThin:" , node and/or port supplied in the url string will be

disregarded.

See Oracle Rdb Database URL Specification Used with the Oracle JDBC for Rdb native

driver and Oracle Rdb Database URL Specification Used with the Oracle Rdb thin driver for

more information on specifying a URL.

 170

The info properties object should contains at least the alias, username and password used

for the database attach. See Connection Options for more details on using the connection

properties object.

In addition:

 Autocommit must be disabled prior to attaching a second database and should remain

disabled until the connections have been closed.

 Each attach must provide a unique alias for Oracle Rdb to use.

 See the Oracle Rdb documentation for other limitations and conditions applying to

multiple database attaches.

Example
.

.

.

 String dbUrl = "jdbc:rdbThin://localhost:1701/db_dir:DB_one";

 Properties info = new Properties();

 info.setProperty("user", "jdbc_user");

 info.setProperty("password", "jdbc_user");

Connection dbConnection = DriverManager.getConnection(dbUrl, info);

 info.setProperty("alias", "MYDB2");

 dbConnection.setAutoCommit(false);

 oracle.rdb.jdbc.rdbThin.Driver d =

 (oracle.rdb.jdbc.rdbThin.Driver)DriverManager.getDriver(dbUrl);

 dbConnection2 = d.attach("db_dir:DBtwo",info, dbConnection);

.

.

.

10.2.1.2 attach(String, String, String, String, java.sql.Connection)

Declaration
// Additional method

public void attach(String url, String alias, String username, String

password, oracle.rdb.jdbc.common.Connection parent)

Parameters

• url

The URL of the database to attach.
• alias

The alias to use for the database.
• username

 171

The username to use to attach.
• password

The password to use to attach.
• parent

The parent connection the database should be attached to.

Remarks

The url string must contain the specification of the database to attach to. Any driver prefix,

for example "jdbc:rdbThin:" , server and/or port supplied in the url string will be

disregarded.

See Oracle Rdb Database URL Specification Used with the Oracle JDBC for Rdb native

driver and Oracle Rdb Database URL Specification Used with the Oracle Rdb thin driver for

more information on specifying a URL.

In addition:

 Autocommit must be disabled prior to attaching a second database and should remain

disabled until the connections have been closed.

 Each attach must provide a unique alias for Oracle Rdb to use.

 See the Oracle Rdb documentation for other limitations and conditions applying to

multiple database attaches.

Example
.

.

.

 String dbUrl = "jdbc:rdbThin://localhost:1701/db_dir:DB_one";

 String user = "jdbc_user";

 String pwd = "jdbc_user";

 Connection dbConnection = DriverManager.getConnection(dbUrl, user, pwd);

 dbConnection.setAutoCommit(false);

 oracle.rdb.jdbc.rdbThin.Driver d =

 (oracle.rdb.jdbc.rdbThin.Driver)DriverManager.getDriver(dbUrl);

 dbConnection2 = d.attach("db_dir:DBtwo","MYDB2",user, pwd, dbConnection);

.

.

.

10.2.2 getDatabases() Public Static Method

 172

The Oracle JDBC for Rdb thin driver static method getDatabases() returns a list of databases

known to the specified thin server.

Declaration
// Additional method

public static Hashtable getDatabases(String serverUrl)

Parameters

• serverUrl – a string containing a partial connection URL containing just the node and

port components of the server in the format : "//<node>:<port>/"

This static method is available only in the Oracle JDBC for Rdb thin driver. It returns a

Hashtable containing the list of databases known to the specified server.

Each key in this Hashtable contains the name of a database as found in the Databases section

of the configuration file used during the server's invocation. The value associated with the

Hashtable key contains the description of the database.

Example

.

.

.

Hashtable h = oracle.rdb.jdbc.rdbThin.Driver.getDatabases("//localhost:1701/");

if (h != null)

{

 Enumeration e = h.keys();

 while (e.hasMoreElements())

 {

 String key =(String)e.nextElement();

 log(key + " : " + h.get(key));

 }

}

.

.

.

Contents

10.3 ResultSet Class

Classpath

oracle.jdbc.rdb.common.ResultSet

A semantic enhancement has been made to an existing public method

 getBytes() – all overloaded methods

 173

10.3.1 getBytes() Public Method

The JDBC standard limits the use of the all the overloaded getBytes() methods for

access to BINARY, VARBINARY and LONGVARBINARY data only. The Oracle JDBC for

Rdb drivers relax this limitation and will attempt to return byte arrays for all valid SQL data

types using these methods.

Using getBytes() on:

 CHAR and VARCHAR columns will return the raw data as returned by Rdb to the

driver.

 Numeric, columns will be returned in their Rdb native format as a big-endian array of

bytes.

 DATE, and TIME will be returned as 64 bit big-endian array of bytes.

10.4 Extended SQL Syntax - SET

In addition to the standard SQL SET statements allowable in dynamic SQL, the Oracle JDBC

for Rdb drivers will recognize driver specific SET statements as specified below.

 Format

The SET statements can be issued as a SQL statement in the following methods:

• java.sql.Statement.execute

• java.sql.Statement.executeUpdate

• java.sql.Statement.executeQuery

 These SET statements will not be sent down to the underlying database system.

Example
Statement stmt = conn.createStatement();

stmt.execute("set sqlcache 10");

Contents

SET TRACELEVEL <trace_level>

Sets the trace level, see Trace for more information.

SET SQLCACHE <sqlcache_size> Sets the SQL statement cache size to the specified

value. A value of 0 disables SQL statement caching.

 174

10.5 Extended SQL Syntax – SHOW DATABASES

The Oracle JDBC for Rdb Thin driver allows the developer to retrieve the list of known

databases from a connected server.

Format
SHOW DATABASES

The SHOW DATABASES statement is captured by the Thin driver, which will return a

ResultSet containing a row for each database that is known to the connected thin server.

A known database is any database specified in the server XML-formatted configuration file

Databases Section of the configuration file used during start up of the server.

As this is a SQL statement, a valid Connection to a database on the server is required before

the SHOW DATABASES statement can be executed.

The SHOW DATABASES statement will not be sent down to the underlying database system.

The ResultSet returned by the SHOW DATABASES statement contains one row for each

database known, and each row contains the following columns:

Table 10.5-1 SHOW DATABASES Columns

Column Name Datatype Description

RDB$DATABASE_NAME string The name given to the database in

the server configuration file

RDB$DESCRIPTION string Description of the database in the

server configuration file

The value of the RDB$DATABASE_NAME column may be used as the database file

specification component of a URL string for Connections made to this server.

Example

.

.

.

Connection conn = DriverManager.getConnection(dbUrl,user,pwd);

Statement sc = conn.createStatement();

ResultSet rs = sc.executeQuery("show databases");

while (rs.next())

{

 String dbnam = rs.getString("RDB$DATABASE_NAME");

 175

 String desc = rs.getString("RDB$DESCRIPTION"));

 System.out.println(dbnam + " : " + desc);

 Connection conn2 = DriverManager.getConnection(

 "jdbc:rdbThin://localhost:1701/"+dbnam,

 user,pwd);

 System.out.println (" version : " +

 conn2.getMetaData().getDatabaseProductVersion();

 conn2.close();

}

rs.close();

sc.close();

conn.close();

.

.

.

Contents

 176

Chapter 11

Other Information

11.1 Disallowed Dynamic SQL Statements

Because JDBC has its own connection protocol, the following dynamic SQL statements will

raise an exception if they are executed from a Statement or PreparedStatement

SET CONNECT

CONNECT

DISCONNECT

11.2 Sample Setup, Starting and Using an Oracle JDBC for

Rdb thin server.

 This section describes step by step how you can start a simple JDBC server and use it to

access a database on your system

1. Install Oracle JDBC for Rdb on the database server

2. Decide on the versions of Rdb and JAVA you wish to use on the server

3. Setup server-side configuration files and command procedures

4. Start the Oracle JDBC for Rdb thin server

5. Install Oracle JDBC for Rdb thin driver on your client machine

6. Write you application using the JDBC API

7. Run your applications

You may choose to start-up a server by either:

• Invoking the rdbthinsrv JAR directly at the DCL command line. See Starting a

Thin Server from the Command Line

• By creating and starting a JDBC Dispatcher in SQL/Services. See Starting a Thin

Server from Oracle SQL/Services

• Or by using the Oracle JDBC for Rdb controller. See Starting a Thin Server from

the Oracle JDBC for Rdb controller

In this walk-through we will use the controller to maintain the servers. It is important that

the command procedures used during the start-up of a server from the controller be

 177

correctly specified thus details of the appropriate command procedures will be provided

below.

Step 1 Install Oracle JDBC for Rdb

The Oracle JDBC for Rdb Release Notes describe the steps required to install Oracle

JDBC for Rdb. These steps should be followed to install the product on the OpenVMS

node that will be used as server for you Oracle Rdb database.

The server machine requires JAVA to be installed prior to installing the Oracle JDBC for

Rdb kit.

Once you have installed the kit you must set up your system so that it can use the JDBC

kit. Several configuration files may have to be created or altered. Details of these steps

follow.

Step 2 Decide on the versions of Rdb and JAVA

The Oracle JDBC for Rdb Release Notes will tell you the minimum versions of Rdb and

JAVA supported by Oracle JDBC for Rdb. You may however have several versions of

both Rdb and JAVA on your server that meet the minimum requirements. When the thin

servers run they will need to have the environment they are running within set up so that

the correct version of Rdb and JAVA will be used depending on your organization

requirements, and which Oracle Rdb databases you wish the thin servers to access.

If you do have multiple versions of Rdb on your system, it is important that the server

runs within the correct version of Rdb for the databases it will access. The Rdb

environment is set up at the process level and cannot be changed for that server while the

server is actually running. This means that a single running instance of a thin server may

only be able to access databases for a single Rdb version.

If you try to connect to a database that does not match the version of Rdb you have set up

for the thin server execution instance you will get an exception similar to:

SQLException: Failed to connect : in <rdbjdbcsrv:connect failure>

%RDB-F-WRONG_ODS, the on-disk structure of the database file is not

supported by this version

-RDMS-F-ROOTMAJVER, database format 71.0 is not compatible with

software version 72.1:S1000

You may have different version of JAVA on your system as well. In addition you can

choose different JAVA VMs to run under. The VM version and type must be decided for

a single thin server instances as once JAVA has been invoked and the server is running it

cannot be changed for that server instance.

 178

Both Rdb and JAVA provide mechanisms by which you can set up your environment for

a specific version or variant. The Rdb version set up and the JAVA VM set up may be

carried out manually by you prior to invoking a thin server from the DCL command line.

Alternatively there are ways of providing the appropriate set up during the thin server

start-up when you choose to start the server using SQL/Services JDBC Dispatcher or by

using the controller. An example of this type of set up can be seen in the steps that

follow.

 For the purpose of this walkthrough we will use the following on the server machine:

• Oracle Rdb V7.2

• JAVA 6.0 (1.6.0) FAST VM

Step 3 Setup server-side configuration files and command procedures

Oracle JDBC for Rdb uses various command procedures to carry out server operations

and set up its environment. These command procedures may have to be altered to suit

your organizational and operational needs.

You may be required to:

• Modify RDBJDBC_STARTUP.COM

• Add an invocation RDBJDBC_STARTUP.COM from your system startup

procedure

• Create a XML-formatted configuration file for your server definitions

• Create a server set up command procedure

In addition Oracle recommends that XML-Formatted configuration files should be used

to maintain server and other information. These configuration file will have to be created

by you. An example of a server configuration file may be found below and in Sample

configuration file MY_SERVERS.XML.

RDBJDBC_STARTUP.COM

During installation a RDBJDBC_STARTUP.COM file will be created which may be used

to set up the required system wide logical names for Oracle JDBC for Rdb to function

correctly. You may choose to use this command procedure with or without changes to

set up the JDBC environment.

If the JDBC servers and drivers are to be used system wide then system logical names

should be used. In this case it may be appropriate to add the RDBJDBC_STARTUP.COM

command procedure to your system startup procedure.

 179

If you only require private use then JOB level logical names should be used, in

which case the RDBJDBC_STARTUP.COM may be copied and/or modified to change the

logicals to JOB level. Each user of the Oracle JDBC for Rdb on your server system will

then need to invoke this startup procedure prior to carrying out operations such as

controller actions, starting or stopping or accessing the thin servers.

The RDBJDBC_STARTUP.COM file provides logical names that will be used by the

Oracle JDBC for Rdb components to locate JARS, images and command procedures and

where to write log and temporary files. See the Oracle JDBC for Rdb Release

Notes for more information on this command procedure and the JDBC specific logical

names.

The steps that follow assume that the appropriate logical names have been set up and are

available for use by you and Oracle JDBC for Rdb.

Server Configuration File

Server, session and connection options may be added individually on the DCL command

line when you invoke a server or the controller, but it may be more convenient to place

these options in a configuration file and then use this configuration file when you carry

out server operations.

See Configuration Files for more information on what may be contained in the

configurations files and the format of the data within the file. Oracle recommends using

the XML-formatted form of the configuration files as it does allow greater flexibility of

option specification and allows more than one server definition to be defined in a single

configuration file.

During installation a generic configuration file RDBJDBCCFG.XML is copied to the

RDB$JDBC_HOME directory. You may use this file as a basis of your server

configuration file. The configuration file provides information to Oracle JDBC for Rdb

about the various servers you may be running. In addition it provides session information

for users of the controller.

For this walkthrough we have decided to create the definition for a thin server called

MY_SRV listening on port 1888. The generic configuration file was copied and changed

to add this information.

We have also chosen to place configuration and any other site specific files in the

RDB$JDBC_COM directory, mainly as this is a standard Oracle JDBC for Rdb directory

and the logical name should be already set up for us at the system level. The files may be

placed anywhere on your system, as long as the controller and server processes can

access them. Remember that a server process will be started up in much the same way as

a normal login to the system, so it is important that any logical names used in the file

 180

specification be available to that process. The easiest way to ensure this is to have

OpenVMS system wide logical names.

In addition a control password, MySecretPassword has been chosen for control

access to the servers.

Although the controlpass can be stored in its plain text form in the configuration file,

Oracle recommends that you use the obfuscated form in the server characteristics section.

But make sure that you are consistent with the casing of the password as passwords are

case-sensitive

The controller may be used to provide this obfuscated password, but make sure that you

keep the casing correct by placing double quotations around the password phrase if you

use the controller in command mode.

Example

 $ java -jar rdbthincontrol.jar -digest "MySecretPassword"
 digest : 0x7315A012ECAD1059A3634F8BE1347846

See Password Obfuscation in Server Configuration Files for more details.

The new configuration file called MY_CFG.XML :

<?xml version = '1.0'?>

<!-- Configuration file for MY servers -->

<config>

 <!-- SESSION -->

 <session

 name="DEFAULT"

 tracelevel="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.192.1.1"

 />

 <!-- SERVERS -->

 <servers>

 <!-- DEFAULT server characteristics-->

 <server

 name="DEFAULT"

 type="RdbThinSrv"

 url="//localhost:1701/"

 maxClients="-1"

 srv.bindTimeout="1000"

 srv.idleTimeout="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.192.1.1"

 tracelevel = "0"

 autostart = "false"

 autorestart = "false"

 181

 restrictAccess = "false"

 anonymous = "false"

 bypass = "false"

 tracelocal = "false"

 relay = "false"

 srv.startup="rdb$jdbc_home:rdbjdbc_startsrv.com"

 />

 <!—My new server -->

 <server

 name="MY_SRV"

 controlUser="GROUND_CONTROL"

 controlPass="0x7315A012ECAD1059A3634F8BE1347846"

 type="RdbThinSrv"

 url="//localhost:1888/"

 cfg="rdb$jdbc_com:my_cfg.xml"

 srv.onStartCmd="@rdb$jdbc_com:my_setup.com"

 />

 </servers>

</config>

Note:

The server definition for MY_SRV is fairly minimal allowing most of the DEFAULT

characteristics to inherited. Also that the session section is used to ensure that the

broadcast IP the controller will check will be the same as the server uses.

RDB$JDBC_HOME:RDBJDBC_STARTSRV.COM

The default server properties in MY_CFG.XML sets the server configuration file used by

the server by using the srv.startup property:

srv.startup="rdb$jdbc_home:rdbjdbc_startsrv.com"

This file is used by the controller during the start-up of a detached OpenVMS process

that the server will run within. In most situations the default command procedure,

rdb$jdbc_home:rdbjdbc_startsrv.com created during installation, can be

used without change.

Sever Setup Command Procedure

During server start-up any DCL command specified on srv.onStartCmd for the

server, will be executed prior to the server class being invoked. So this a good place to

carry out system specific and version specific set up procedures.

 srv.onStartCmd="@rdb$jdbc_com:my_setup.com"

 182

Note that as this properties is an executable DCL command, the @ character is required

so that the command procedure is correctly invoked.

Example

my_setup.com

$@SYS$LIBRARY:RDB$SETVER 72

$@sys$common:[java$60.com]JAVA$60_SETUP.COM FAST

$define/job MY_DB_DIR sys$common:[DBS]

These commands ensure that the environment is correct for the server process to access a

V7.2 Oracle Rdb database using the FAST JAVA VM.

Step 4 Start the Oracle JDBC for Rdb thin server

Now that set up and configuration files are created in place the controller may be used to

start the server. The configuration file containing the server definitions is used as a

parameter to the DCL command line invoking the controller. In the example we use

command mode –startServer to start the server

Example

$ JAVA -JAR RDBTHINCONTROL.JAR –CFG RDB$JDBC_COM:MY_CFG.XML –

CONTROLPASS "MySecretPassword" –STARTSERVER –NAME MY_SRV

.

RDB$NODE : 138.1.14.91

RDB$PORT : 1888

RDB$STATUS : Idle

RDB$SERVER_NAME : srv1

RDB$SERVER_TYPE : RdbThinSrv

RDB$SERVER_VERSION : V7.3-000 20100101 BA11

RDB$SERVER_SHR_VERSION : V7.3-000 20100101 BA11

RDB$SERVER_PID : 0x2030DA4D(540072525)

RDB$ALLOWS_ANON : false

RDB$ALLOWS_BYPASS : false

RDB$NUMBER_OF_CLIENTS : 0

RDB$MAX_CLIENTS : -1

RDB$TRACE_LEVEL : 0

RDB$RESTRICT_ACCESS : false

In the example we provided both the configuration file to use and the control password.

The controlpass could have been set in plain text in the configuration session section, but

Oracle does not recommend placing plain text passwords in plain text files. Note also that

the password is enclosed in double quotation marks to prevent case changing.

mailto:$@sys$common:%5Bjava$60.com%5DJAVA$60_SETUP.COM

 183

Step 5 Install the Oracle JDBC for Rdb thin driver on your client machine.

Once the Oracle JDBC for Rdb kit is installed on you OpenVMS server machine you

must copy the thin driver component to the machine on which you will be running your

application. This machine will also need to have JAVA installed.

The client-side components of the thin driver are contained in the RDBTHIN.JAR file.

A file transfer program such as FTP may be used to copy this JAR file to your client

machine. Remember to ensure that a binary mode transfer is done as JARs are binary

files.

You should place the JAR in an appropriate directory on your client machine. This may

depend on how you will ultimately use the JDBC drivers and on the application and

development systems you will be using on your client machine. See your application or

development environment documentation on where JDBC drivers should be placed.

You should ensure that the RDBTHIN.JAR is part of your CLASSPATH so that JAVA

will be able to load it when your application requests it.

Depending on the client system there will be methods by which you can include the

driver JAR as part of the JAVA command when running your application, in which case

the JAR does not have to placed in the CLASSPATH environmental variable.

Example

For example, in MSDOS. JAVA allows the use of –cp switch to specify classpath

elements

dos> java –cp .;rdbThin.jar my_app

Note:

JAR files are binary files so you should ensure that the transfer utility copies the JAR

file in binary mode.

Step 6 Write your application using the JDBC API

The following is a simple application that tests that you have installed JDBC and carried

out any set up correctly. This example is based on RdbJdbcCheckup.java from the

installation and assumes that the Rdb server node has an IP of 555.1.14.91 and that the

thin server we will use, the one we started earlier, is listening on port 1888.

 184

 Example

/*

 * This sample can be used to check the JDBC installation.

 * Just run it and provide the connect information. It will select

 * "Hello World" from the database.

 */

// You need to import the java.sql package to use JDBC

import java.sql.*;

// We import java.io to be able to read from the command line

import java.io.*;

class my_app

{

 static BufferedReader in;

 public static void main(String args[])

 throws SQLException, IOException, Exception

 {

 String driverConStr = "jdbc:rdbThin://555.1.14.91:1888/";

 in = new BufferedReader(new InputStreamReader(System.in));

 Class.forName ("oracle.rdb.jdbc.rdbThin.Driver");

 // Prompt the user for connect information

 System.out.println(

 "Please enter information to test connection"+

 " to the database");

 String user;

 String password;

 String database;

 user = readEntry("user: ");

 int slash_index = user.indexOf('/');

 if (slash_index != -1)

 {

 password = user.substring(slash_index + 1);

 user = user.substring(0, slash_index);

 }

 else

 password = readEntry("password: ");

 database = readEntry("database: ");

 System.out.print("Connecting to the database...");

 System.out.flush();

 System.out.println("Connecting...");

 Connection conn = DriverManager.getConnection(

 driverConStr + database, user, password);

 System.out.println("connected.");

 // Create a statement

 Statement stmt = conn.createStatement();

 // Do the SQL "Hello World" thing

 ResultSet rset = stmt.executeQuery(

 "select 'Hello World' from rdb$database");

 185

 while (rset.next())

 System.out.println(rset.getString(1));

 // close the result set, the statement and connect

 rset.close();

 stmt.close();

 conn.close();

 }

 // Utility function to read a line from standard input

 static String readEntry(String prompt)

 {

 try

 {

 StringBuffer buffer = new StringBuffer();

 System.out.print(prompt);

 System.out.flush();

 return in.readLine();

 }

 catch(IOException e)

 {

 return "";

 }

 }

}

Step 7 Run your application

 With the server started you can run the sample application and provide the thin server

connection information

Example

 The following example assumes an Oracle Rdb database personnel in MY_DB_DIR

$java –cp .;rdb$jdbc_home:rdbThin.jar "my_ap"

Please enter information to test connection to the database

user: my_name

password: my_password

database: my_db_dir:personnel

Connecting to the database...Connecting...

connected.

Hello World

Your JDBC installation is correct.

Contents

 186

11.3 Sample Setup, Starting an Oracle JDBC for Rdb thin

server from Oracle SQL/Services.

 The following sections describe step by step how you can setup and start a simple JDBC

server using Oracle SQL/Services.

 Basically you have to:

1. Decide on the versions of Rdb and JAVA you wish to use on the server

2. Setup server-side configuration files and command procedures

3. Create a JDBC dispatcher in SQL/Services

4. Associate configuration and setup files

5. Start the JDBC dispatcher

See Chapter 7 Oracle SQL/Services and Oracle JDBC for Rdb Servers for more

information on these operations.

Step 1 Decide on the versions of Rdb and JAVA

This step is basically the same as Step 2 Decide on the versions of Rdb and JAVA, as

covered in Sample Setup, Starting and Using an Oracle JDBC for Rdb thin server.

Step 2 Setup server-side configuration files and command procedures

For the server to start correctly a command procedure and a configuration file have to be

created.

The following two files must be created:

• The Server Configuration file

• The Server Setup file

You may use a XML configuration file to store the server definitions for you server. In

addition you should provide a command procedure to set up the Rdb and JAVA

environments correctly for

this server. This environment setup may also be done as part of the setup of dispatcher

environment in SQL/Services, but for the purpose of this example, we shall create our

own setup procedure.

Server Configuration File

 187

As limited information can be passed to the server at the command line, most of the

server characteristics for a JDBC Dispatcher server can be placed in a configuration file.

See Configuration Files for more information on what may be contained in the

configurations files and the format of the data within the file. Oracle recommends using

the XML-formatted form of the configuration files as it does allow greater flexibility of

option specification and allows more than one server definition to be defined in a single

configuration file.

During installation a generic configuration file RDBJDBCCFG.XML is copied to the

RDB$JDBC_HOME directory. You may use this file as a basis of your server

configuration file. The configuration file provides information to Oracle JDBC for Rdb

about the various servers you may be running. In addition it provides session information

for users of the controller.

For this walkthrough we have decided to create the definition for a thin server called

SQS1888 listening on port 1888. The generic configuration file was copied and changed

to add this information.

We have also chosen to place configuration and any other site specific files in the

RDB$JDBC_COM directory, mainly as this is a standard Oracle JDBC for Rdb directory

and the logical name should be already set up for us at the system level. The files may be

placed anywhere on your system, as long as the controller and server processes can

access them. Remember that a server process will be started up in much the same way as

a normal login to the system, so it is important that any logical names used in the file

specification be available to that process. The easiest way to ensure this is to have

system wide logical names.

In addition a control password, MySecretPassword has been chosen for control

access to the servers.

Although the controlpass can be stored in its plain text form in the configuration file,

Oracle recommends that you use the obfuscated form in the server characteristics section.

But make sure that you are consistent with the casing of the password as passwords are

case-sensitive

The controller may be used to provide this obfuscated password, but make sure that you

keep the casing correct by placing double quotations around the password phrase if you

use the controller in command mode.

Example

 $ java -jar rdbthincontrol.jar -digest "MySecretPassword"

 digest : 0x7315A012ECAD1059A3634F8BE1347846

See Password Obfuscation in Server Configuration Files for more details.

 188

We have chosen to create a configuration file using one of the standard file specification

used by the dispatcher when searching for configuration files. See Determining the server

configuration file on how the dispatcher locates a configuration file to use.

As the port used by the server will be 1888 we will create a new configuration file called

SQS1888_CFG.XML and place it RDB$JDBC_COM directory:

$type RDB$JDBC_COM:SQS1888_CFG.XML

<?xml version = '1.0'?>

<!-- Configuration file for MY servers -->

<config>

 <!-- SESSION -->

 <session

 name="DEFAULT"

 tracelevel="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.192.1.1"

 />

 <!-- SERVERS -->

 <servers>

 <!-- DEFAULT server characteristics-->

 <server

 name="DEFAULT"

 type="RdbThinSrv"

 url="//localhost:1701/"

 maxClients="-1"

 srv.bindTimeout="1000"

 srv.idleTimeout="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.192.1.1"

 tracelevel = "0"

 autostart = "false"

 autorestart = "false"

 restrictAccess = "false"

 anonymous = "false"

 bypass = "false"

 tracelocal = "false"

 relay = "false"

 srv.startup="rdb$jdbc_home:rdbjdbc_startsrv.com"

 />

 <!—My new server -->

 <server

 name="SQS1888 "

 controlUser="SQS_CONTROL"

 controlPass="0x7315A012ECAD1059A3634F8BE1347846"

 type="RdbThinSrv"

 url="//localhost:1888/"

 />

 </servers>

</config>

 189

Note:

The server definition for SQS1888 is fairly minimal allowing most of the DEFAULT

characteristics to inherited. Also that the session section is used to ensure that the

broadcast IP the controller will check will be the same as the server uses.

Server Setup File

The JDBC dispatcher may require environmental setup for JAVA and the correct Oracle

Rdb version to run. This setup can be done in a command procedure that will be

executed just prior to starting the actual server image.

As the setup is fairly generic we have decided to create the file

RDBJDBC_SQS_ONSTARTUP.COM and place it RDB$JDBC_COM directory. By

default, this file will be used by the dispatcher whenever a server has to be started. JDBC

Dispatcher Setup Procedure describes the use of a setup command procedure for the

dispatcher.

Example

$type RDB$JDBC_COM:RDBJDBC_SQS_ONSTARTUP.COM

$@SYS$LIBRARY:RDB$SETVER 72

$@sys$common:[java$60.com]JAVA$60_SETUP.COM FAST

$define/job MY_DB_DIR sys$common:[DBS]

These commands ensure that the environment is correct for the server process to access a

V7.2 Oracle Rdb database using FAST JAVA VM.

 Step 3. Create a JDBC dispatcher in SQL/Services

Now that the configuration file and setu0p procedure have been created and moved to the

appropriate directory we can now create a JDBC Dispatcher. We will use 1888 as the

PORT_ID as this will be the key value used by the dispatcher to locate the necessary files

for server start-up.

$ MCR SQLSRV_MANAGE71
SQLSRV> CONNECT SERVER;
SQLSRV> CREATE DISPATCHER MY_JDBC_DISP NETWORK_PORT TCPIP PORT_ID 1888

PROTOCOL JDBC;

SQLSRV> SHOW DISPATCHER;

Dispatcher MY_JDBC_DISP

 State: UNKNOWN

 Autostart: on

 Max connects: 100 clients

 Idle User Timeout: <none>

 Max client buffer size: 5000 bytes

 190

 Network Ports: (State) (Protocol)

 TCP/IP port 1888 Unknown JDBC clients

 Log path: SYS$MANAGER:

 Dump path: SYS$MANAGER:

Step 4. Associate configuration and setup files

Next we must associate the server configuration and setup files with this dispatcher.

As we chose to use standard configuration file names, the dispatcher will make the

following associations automatically and we need take no further action to make this

happen.

Given the PORT_ID of 1888:

• server name = SQS1888

• configuration file = RDB$JDBC_COM:SQS1888_CFG.XML

• setup file = RDB$JDBC_COM:RDBJDBC_SQS_ONSTARTUP.COM

If we had chosen not to use standard naming then we would have had to set up logical

names to point to the appropriate files. See Associating an Oracle SQL/Services JDBC

Dispatcher to a Server for more details.

However, we still need to tell the dispatcher what type of server it will be starting so we

have to create the appropriate logical name. For simplicity we shall place this logical

name in the SYSTEM logical name table. See Determining Server Type for information

on server type associations.

$DEFINE/SYSTEM RDB$JDBC_SQSTYPE_1888 STD

If we had chosen to start up a POOL server we would not have needed to create this

logical name as this is the default server type used by the JDBC dispatcher, but as the

server type is a normal thin server we must inform the dispatcher of this fact using the

logical name.

Step 5 Start the JDBC dispatcher

Now that the configuration files are in place and any logical names used by the dispatcher

have been defined we can now use the SQL/Services manager to start the JDBC

dispatcher.

SQLSRV> start dispatcher my_jdbc_disp;

SQLSRV> show disp my_jdbc_disp;

Dispatcher MY_JDBC_DISP

State: STARTING

 191

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes

Network Ports: (State) (Protocol)

TCP/IP port 1888 Inactive JDBC clients

Log path: SYS$MANAGER:

Dump path: SYS$MANAGER:

SQLSRV> show disp my_jdbc_disp;

Dispatcher MY_JDBC_DISP

State: RUNNING

Autostart: on

Max connects: 100 clients

Idle User Timeout: <none>

Max client buffer size: 5000 bytes

Network Ports: (State) (Protocol)

TCP/IP port 1888 Inactive JDBC clients

Log path: SYS$MANAGER:

Dump path: SYS$MANAGER:

Log File: SYS$SYSROOT:[SYSMGR]SQS_DECRDB_JDBC_DISP08O91.LOG;

Dump File: SYS$SYSROOT:[SYSMGR]SQS_DECRDB_JDBC_DISP08O.DMP;

See your Oracle SQL/Services documentation and Starting a JDBC Dispatcher for more

details on starting a dispatcher.

If the server starts up correctly you should be able to use the server from any JDBC client

using the Oracle JDBC for Rdb thin driver.

You may also use the controller to check that the server is actually running:

$ java -jar rdb$jdbc_home:rdbthincontrol.jar –cfg

RDB$JDBC_COM:SQS1888_CFG.XML –controlpass "MySecretPassword" –name

SQS1888 –showServer

11.4 Sample configuration file MY_SERVERS.XML

<?xml version = ‗1.0‘?>

<!—Configuration file for Rdb Thin JDBC Drivers and Servers -->

<config>

 <!—SESSION -->

 <session

 name="fred"

 user="jdcb_user"

 tracelevel="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.192.1.1"

 192

 />

 <!—SERVERS -->

 <servers>

 <!—DEFAULT server characteristics.-->

 <!-NOTE that the control password is the obfuscated form of

"MySecretPassword".-->

 <server

 name="DEFAULT"

 type="RdbThinSrv"

 url="//localhost:1701/"

 maxClients="-1"

 srv.bindTimeout="1000"

 srv.idleTimeout="0"

 srv.mcBasePort="5517"

 srv.mcGroupIP="239.192.1.1"

 tracelevel = "0"

 autostart = "false"

 autorestart = "false"

 restrictAccess = "false"

 anonymous = "false"

 bypass = "false"

 tracelocal = "false"

 relay = "false"

 controlUser="control_user"

 controlPass="0x7315A012ECAD1059A3634F8BE1347846"

 cfg="rdb$jdbc_com:rdbjdbccfg.xml"

 srv.execStartup="rdb$jdbc_home:rdbjdbc_startexec.com"

 srv.startup="rdb$jdbc_home:rdbjdbc_startsrv.com"

 sharedmem = "0"

 ssl.default="true"

 />

 <!—DEFAULT Secure socket server -->

 <server

 name="DEFAULTSSL"

 type="RdbThinSrvSSL"

 ssl.default="false"

 ssl.context="TLS"

 ssl.keyManagerFactory="SunX509"

 ssl.keyStoreType="jks"

 ssl.keyStore="rdbjdbcsrv.kst"

 ssl.keyStorePassword="CHANGETHIS"

 ssl.trustStore="rdbjdbcsrv.kst"

 ssl.trustStorePassword="CHANGETHIS"

 />

 <!—now specific servers that will be started up by pool server -->

 <server

 name="srv1forRdb"

 type="RdbThinSrv"

 url="//localhost:1701/"

 autoStart="true"

 autoRestart="true"

 logfile="rdb$jdbc_logs:srv1forRdb.log"

 tracelevel="-1"

 maxClients=1

 />

 <server

 193

 name="srv2forRdb"

 type="RdbThinSrv"

 url="//localhost:1708/"

 autoStart="true"

 logfile="rdb$jdbc_logs:srv2forRdb.log"

 />

 <server

 name="myserver"

 type="RdbThinSrv"

 url="//localhost:1788/"

 />

 <!—MP server -->

 <!—sharedmem is in KB default = 1024 -->

 <server

 name="srvMPforRdb"

 type="RdbThinSrvMP"

 url="//localhost:1705/"

 autoStart="true"

 maxClients="10"

 maxFreeExecutors="10"

 prestartedExecutors="10"

 sharedMem="10240"

 />

 <!—the pool server -->

 <server

 name="rdbpool"

 type="RdbThinSrvPool"

 url="//localhost:1702/" >

 <pooledServer name="srv1forRdb"/>

 <pooledServer name="srv2forRdb"/>

 <pooledServer name="srvMPforRdb"/>

 </server>

 <!—Secure socket server -->

 <server

 name="srvssl1forRdb"

 type="RdbThinSrvSSL"

 url="//localhost:1709/"

 />

 </servers>

 <!-DATABASES -->

 <databases>

 <database

 name="mf_pers"

 url="//localhost:1701/mydisk:[databases]mf_personnel"

 driver="oracle.rdb.jdbc.rdbThin.Driver"

 URLPrefix="jdbc:rdbThin:"

 />

 <database

 name="pers"

 url="//localhost:1702/mydisk:[databases]personnel"

 driver="oracle.rdb.jdbc.rdbThin.Driver"

 URLPrefix="jdbc:rdbThin:"

 194

 />

 </databases>

</config>

11.5 Datatype Mapping from Oracle Rdb to java.sql.Types

Rdb SQL datatype java.sql.Types

CHAR(n) CHAR

NCHAR(n) CHAR

VARCHAR(n) VARCHAR

NCHAR VARYING VARCHAR

FLOAT[(n)] If n > 24 then DOUBLE else FLOAT

REAL FLOAT

DOUBLE PRECISION DOUBLE

DECIMAL[(n[,n])] DECIMAL

INTEGER[(n)] If n == 0 then INTEGER else NUMERIC

SMALLINT[(n)] If n == 0 then SMALLINT else NUMERIC

TINYINT[(n)] If n == 0 then TINYINT else NUMERIC

BIGINT[(n)] If n == 0 then BIGINT else NUMERIC

QUADWORD[(n)] If n == 0 then BIGINT else NUMERIC

DATE ANSI DATE

DATE VMS TIMESTAMP

TIME TIME

TIMESTAMP TIMESTAMP

INTERVAL BIGINT

BYTE VARYING VARBINARY

LIST OF BYTE VARYING BLOB

11.6 Datatype Mapping from java.sql.Types to Oracle Rdb

SQL Type (from java.sql.Types) Rdb SQL datatype

CHAR CHAR(n)

NCHAR NCHAR(n)

VARCHAR VARCHAR(n)

 195

FLOAT REAL

DOUBLE DOUBLE PRECISION

DECIMAL DECIMAL[(n[,n])]

INTEGER INTEGER

SMALLINT SMALLINT

TINYINT TINYINT

BIGINT BIGINT

NUMERIC BIGINT(n)

DATE DATE ANSI

TIMESTAMP TIMESTAMP

TIME TIME

BIGINT INTERVAL

VARBINARY BYTE VARYING

BLOB LIST OF BYTE VARYING

CLOB LIST OF BYTE VARYING

11.7 JDBC Specification SQL to Java Datatype Mappings

SQL Type (from java.sql.Types) Java Type

BIT boolean

TINYINT byte

SMALLINT short

INTEGER int

BIGINT long

REAL float

FLOAT double

DOUBLE double

DECIMAL java.math.BigDecimal

NUMERIC java.math.BigDecimal

CHAR java.lang.String

VARCHAR java.lang.String

LONGVARCHAR java.lang.String

DATE java.sql.Date

TIME java.sql.Time

 196

TIMESTAMP java.sql.Timestamp

BINARY byte[]

VARBINARY byte[]

BLOB java.sql.Blob

CLOB java.sql.Clob

11.8 JDBC Specification Java to SQL Datatype Mappings

Java Type SQL Type (from java.sql.Types)

boolean BIT

byte TINYINT

short SMALLINT

int INTEGER

long BIGINT

float REAL

double DOUBLE

java.math.BigDecimal NUMERIC

java.lang.String VARCHAR or LONGVARCHAR

byte[] VARBINARY or LONGVARBINARY

java.sql.Date DATE

java.sql.Time TIME

java.sql.Timestamp TIMESTAMP

java.sql.Blob BLOB

java.sql.Clob CLOB

Contents

