
Oracle® Rdb Developer Tools for Visual Studio
Developer's Guide
Release 7.3.6.0.0
March 2018

Oracle Rdb Data Provider for .NET Developer's Guide, Release 7.3.6.0.0.

Copyright © 2011, 2018 Oracle and/or its affiliates. All rights reserved.

Primary Author: Jim Murray.

Contributing Author:

Contributor:

This software and related documentation are provided under a license agreement containing restrictions on use

and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license

agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit,

distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering,

disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you

find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on

behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data

delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"

pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As

such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license

terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the

Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License

(December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software or hardware is developed for general use in a variety of information management applications. It is

not developed or intended for use in any inherently dangerous applications, including applications that may

create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be

responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use.

Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or

hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their

respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are

used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the

AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices.

UNIX is a registered trademark of The Open Group.

 2

This software or hardware and documentation may provide access to or information on content, products, and

services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all

warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its

affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-

party content, products, or services.

 3

Contents

Preface .. 5

Chapter 1 ... 8

Introducing Oracle Rdb Developer Tools for Visual Studio. ... 8

Chapter 2 Installing Oracle Rdb .NET Products ... 9

Chapter 3 Using Oracle Rdb Developer Tools for Visual Studio 10

3.1 Using Oracle Rdb Developer Tools .. 10

3.2 Connecting to the Oracle Rdb Database .. 10

Chapter 4 Building a Simple .NET Application Using ORDP.NET 16

4.1 Creating a New Project .. 16

4.2 Adding a Reference ... 20

4.3 Adding Namespace Directives .. 22

4.4 Designing the User Interface .. 23

4.5 Writing the Connection Code.. 28

4.6 Compiling and Running the Application... 31

4.7 Error Handling ... 33
4.7.1 Using Try-Catch-Finally Block Structure .. 34

4.7.2 Handling General Errors .. 34

Chapter 5 Retrieving and Updating with ORDP.NET ... 37

5.1 Using the Command Object .. 37

5.2 Retrieving Data: a Simple Query .. 39

5.3 Retrieving Data: Bind Variables .. 42

5.4 Retrieving Data: Multiple Values ... 44

5.5 Using the DataSet Class with Oracle Rdb Data Provider for .NET ... 46

5.6 Enabling Updates to the Database ... 48

Chapter 6 ORDP.NET and Visual Studio Wizards .. 52

6.1 Create a New application ... 52

 4

6.2 Add connection to Rdb database in Server Explorer .. 52

6.3 Create a datasource for the employees table .. 52

6.4 Design the windows application ... 56

Chapter 7 ORDP.NET and drag and drop .. 58

7.1 Create a New application ... 58

7.2 Add connection to Rdb database in Server Explorer .. 58

7.3 Add a new Typed DataSet ... 58

7.4 Designing the windows application .. 61

7.5 Running the windows application ... 62

Chapter 8 Configuration wizard and generating queries ... 64

8.1 Using the Query Configuration Wizard .. 64

8.2 Using the Query Builder ... 67

8.3 Methods Generation.. 72

Chapter 9 Copying a Form ... 75

Chapter 10 Oracle Rdb Entity Framework Provider ... 78

10.1 Creating new Windows Form Application .. 79

10.2 Reference the Oracle Rdb EntityFramework Provider ... 79

10.3 Adding an Entity Data Model .. 82

10.4 Adding a new Data Source ... 85
10.4.1 Using the Data Source in a Windows Form... 87

10.4.2 Adding Code to Populate the Data Grid View .. 88

10.5 Create a new Entity ... 90

10.6 Creating Complex Types ... 93

10.6.1 Using the Complex Type created ... 96

10.7 Generating Database Schema from Model ... 98

10.8 Using Fluent API .. 100
10.8.1 Database Creation and Removal .. 103
10.8.2 Creating and Dropping Oracle Rdb Databases .. 104

Chapter 11 Unsupported features ... 105

Glossary

 5

Send Us Your Comments
Oracle Rdb Developer Tools for Visual Studio Developer’s Guide

Oracle Corporation welcomes your comments and suggestions on the quality and usefulness of this

publication. Your input is an important part of the information used for revision.

• Did you find any errors?

• Is the information clearly presented?

• Do you need more information? If so, where?

• Are the examples correct? Do you need more examples?

• What features did you like most about this manual?

If you find any errors or have any other suggestions for improvement, please indicate the title and part

number of the documentation and the chapter, section, and page number (if available). You can send

comments to us in the following ways:

• Electronic mail: nedc-doc_us@oracle.com

• FAX — 603-897-3825 Attn: Oracle Rdb

• Postal service:

Oracle Corporation

Oracle Rdb Documentation

One Oracle Drive

Nashua, NH 03062-2804

USA

If you would like a reply, please give your name, address, telephone number, and electronic mail

address (optional).

If you have problems with the software, please contact your local Oracle Support Services.

Preface
This document is your primary source of introductory and usage information for Oracle Rdb Developer

Tools for Visual Studio.

This preface contains these topics:

• Audience

• Access to Oracle Support

• Organization

• Related Documentation

• Conventions

Audience
Oracle Rdb Developer Tools for Visual Studio Developer’s Guide is intended for developers who are

developing applications to access an Oracle Rdb database using Oracle Rdb Data Provider for .NET.

This documentation is also valuable to systems analysts, project managers, and others interested in the

development of database applications.

To use this document, you must be familiar with Microsoft .NET Framework classes and ADO.NET

and have a working knowledge of application programming using Microsoft C#, Visual Basic, or C++.

Users should also be familiar with the use of Structured Query Language (SQL) to access information

in relational database systems.

 6

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing impaired.

Organization
This document contains:

 Chapter 1, Introducing Oracle Rdb Developer Tools for Visual Studio.
Provides an overview of Oracle Rdb Developer Tools for Visual Studio.

 Chapter 2, Installing Oracle Rdb .NET Products
Describes how to install Oracle Rdb Data Provider for .NET and provides system

requirements. Read this chapter before installing or using Oracle Rdb Developer Tools for

Visual Studio.

 Chapter 3, Using Oracle Rdb Developer Tools for Visual Studio
Describes how to create a database connection using ORDP.NET within Visual Studio.

 Chapter 4, Building a Simple .NET Application Using ORDP.NET
Provides an example on how you may build a simple application with database access using

ORDP.NET.

 Chapter 5, Retrieving and Updating with ORDP.NET
Provides an example of data retrieval and update using the features of Visual Studio and data

access using ORDP.NET.

 Chapter 6, ORDP.NET and Visual Studio Wizards
Provides an example on using standard Visual Studio wizards to automatically generate the

code to access data from your Rdb database.

 Chapter 7, ORDP.NET and drag and drop
Provides an example of using the drag and drop features of Visual Studio to generate code for

your application.

 Chapter 8, Configuration wizard and generating queries
Provides an example of using Table Adapter Query Configuration Wizard to generate queries

on your database.

 Chapter 9, Copying a Form
Describes how to copy a form as required when following the examples provided in this

document.

 Chapter 10. Oracle Rdb Entity Framework Provider
 Describes how to use ORDP.NET within the Entity Framework using standard Entity

Framework tools and features of Visual Studio.

 Chapter 11. Unsupported features
Specifies what Visual Studio features are currently not supported by ORDT.

 Glossary

Defines terms used in this document.

Related Documentation

For more information, see these Oracle Rdb resources:

• Oracle Rdb7 Guide to Database Design and Definition

• Oracle Rdb7 Guide to Database Performance and Tuning

• Oracle Rdb Introduction to SQL

• Oracle Rdb SQL Reference Manual

• Oracle Rdb Guide to SQL Programming

• Oracle SQL/Services Server Configuration Guide

• Guide to Using the Oracle Rdb Oracle SQL/Services (tm) Client API

http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs

 7

• Oracle Rdb JDBC Driver Users Guide

To download free release notes, installation documentation, white papers, or other collateral, please

visit the Oracle Rdb web site:

http://www.oracle.com/technetwork/database/rdb

For additional information, see:

http://msdn.microsoft.com/netframework

Conventions

Oracle Rdb Data Provider for .NET is often referred to as ORDP.NET.

Oracle Rdb is often referred to as Rdb.

Hewlett-Packard Company is often referred to as HP.

The following conventions are used in this document:

word A lowercase word in a format example indicates a syntax element that you supply.

[] Brackets enclose optional clauses from which you can choose one or none.

{ } Braces enclose clauses from which you must choose one alternative.

... A horizontal ellipsis means you can repeat the previous item

.

.

.

A vertical ellipsis in an example means that information not directly related to the example has been

omitted.

Conventions in Code Examples

Code examples illustrate SQL or other command-line statements. They are displayed in a monospace

(fixed-width) font and separated from normal text as shown in this example:

SELECT last_name FROM employees WHERE last_name = 'TOLIVER';

Example Screen Shots

Unless otherwise stated, examples and screen shots found within this document relate to

Visual Studio 2012.

As the user interface for Visual Studio may change between versions, if you are using another

version of Visual Studio, please consult your Visual Studio documentation to determine how

to carry out the same operations described in the provided example.

http://www.oracle.com/technetwork/database/rdb
http://msdn.microsoft.com/netframework

 8

Chapter 1
Introducing Oracle Rdb Developer Tools for
Visual Studio.

Oracle Rdb Developer Tools for Visual Studio (ORDT) is a set of application
tools that integrate with the Visual Studio environment. These tools provide
graphical user interface access to Oracle Rdb functionality, enable the user to
perform a wide range of application development tasks, and improve
development productivity and ease of use.

ORDT includes:

 Oracle Rdb Data Provider for .NET (ORDP.NET).

A standard .NET Data Provider that allows access to Oracle Rdb databases
from the .NET environment

 Oracle Rdb DDEX Provider.

A standard .NET DDEX provider that integrates ORDP.NET functionality
into Visual Studio.

 Oracle Rdb Entity Framework Provider.

A standard .NET Entity Framework provider that integrates ORDP.NET
functionality into Entity Framework.

 9

Chapter 2 Installing Oracle Rdb .NET
Products

See the Oracle Rdb Developer Tools for Visual Studio Release Notes for information on how

to install Oracle Rdb .NET products.

 10

Chapter 3 Using Oracle Rdb Developer
Tools for Visual Studio

This chapter contains:

 Using Oracle Rdb Developer Tools
 Connecting to the Oracle Rdb Database

3.1 Using Oracle Rdb Developer Tools

Oracle Rdb Developer Tools for Visual Studio (ORDT) is a tightly integrated
Add-in for Visual Studio. Using enhancements that ORDT brings to the Server
Explorer, you can automatically create tables, indexes, constraints, data
connections and other database schema objects. Additionally you can
automatically generate application code.

3.2 Connecting to the Oracle Rdb Database

This section shows you how to use the Server Explorer to connect to the
Oracle Rdb Database for the purpose of automatically creating or modifying
database schema objects.

To connect to the database:

Step1: From the View menu, select Server Explorer.
Step2: In Server Explorer, right-click Data Connections.
Step3: Select Add Connection.

 11

Step4: If you have selected any Data Source in the past, the Add Connection
window appears, determine if the Data source says “Oracle Rdb Database
(RdbClient)”. If it does, skip to Step 6.

If Data source does not say “Oracle Rdb Database (RdbClient)”, select
Change.

If you have not already selected a Data source previously, or you have
selected Change, the Choose Data Source window will appear.

Step5: Choose Oracle Rdb Database and then select .NET Framework Data

Provider For Oracle Rdb.
Step6: On the Connection Details tab, in the Add Connection window, enter

the following information:

To connect to a database using a SQL/Services universal service:

 12

For Server, enter the node address and a valid SQL/Services service that will
be running on the selected node. Remember to separate the node address

and service name with a colon (:). In this example we assume that a

universal service called GENERIC is running on the selected node.

The node address must be valid TCP/IP node specification.

For User name, enter a valid username for the database you will select.

For Password, enter the password for that user

To save the password for future sessions, check the Save password box.

For Database name, Enter a valid database file specification. Depending on
the setup of SQL/Services on the server node, this database specification may
include device and directory information as well as the database filename and
may use OpenVMS logical names.

The Connection name should be generated automatically from the
Database name.

 13

To connect to a database using a SQL/Services database service:

For Server, enter the node address and a valid SQL/Services database service
that will be running on the selected node. Remember to separate the node

address and service name with a colon (:).

In this example we assume that a database service called MF_PERS is
running on the selected node. The node address must be valid TCP/IP node
specification.

For User name, enter a valid username for the database you will select.

For Password, enter the password for that user

To save the password for future sessions, check the Save password box.

Leave the Database name blank as this is not required when a database
service is used.

The Connection name should be generated automatically from the Database
name.

 14

To connect to a database using a JDBC Thin Server:

For Server, enter the node address and port for a valid JDBC server that will
be running on the selected node. Remember to separate the node address

and port with a colon (:). The node address must be valid TCP/IP node

specification.

Click the Use Thin Server box.

For User name, enter a valid username for the database you will select.

For Password, enter the password for that user

To save the password for future sessions, check the Save password box.

For Database name, Enter a valid database file specification. This database
specification may include device and directory information as well as the
database filename and may use OpenVMS logical names.

The Connection name should be generated automatically from the
Database name.

 15

Step7: Click Test connection.

The test should succeed. Click OK.

If the test fails, it may be due to one or more of the following issues that you
must address before proceeding with further steps:

o The database listener or server is not started.
o The database connectivity is not properly configured.
o You do not have the correct user name, or password.

Step8: In the Add Connection window, click OK.
Step9: In the Server Explorer, expand the database connection to show the

contents of the database . You should see Tables, Views, Procedures,

Functions, Packages, Synonyms, Sequences, and so on.

 16

Chapter 4 Building a Simple .NET
Application Using ORDP.NET

This chapter contains:

 Creating a New Project
 Adding a Reference
 Adding Namespace Directives
 Designing the User Interface
 Writing the Connection Code
 Compiling and Running the Application
 Error Handling

4.1 Creating a New Project

Visual Studio groups all development code that you create into containers
known as projects. Simpler projects often contain only one file. In this section,
you will learn how to create a new development project.

The application you build in this chapter serves as a starting point for work in
subsequent chapters, so it is important to follow the order of this guide.

Note:

 When necessary, instructions specify Visual C# or Visual Basic.

To start a new project:

Step1: Start Visual Studio.

Open the Start menu, select All Programs, and then select Microsoft Visual Studio

2012.

The Microsoft Visual Studio IDE environment appears.

 17

Step2: In the Start Page, under the Start heading, click New Project….

Alternatively, from the File menu, select New, and then select Project.

A New Project dialog box appears.

Step3: In the Installed Templates tree at the left of the screen, select the type
of project you are creating:

Visual C#:

Visual C#: Windows

Select Windows Forms Application.

Visual Basic:

 18

Other Languages: Visual Basic: Windows

Select Windows Forms Application.

Step4: In the Name field, enter the appropriate name.

Visual C#:

PERS_Connect_CS

Visual Basic:

PERS_Connect_VB

The abbreviation CS indicates C# projects and VB indicates Visual Basic

projects.

Step5: In Location, enter the directory where you want to save the files.

For this guide, enter this directory

C:\PERS_Projects

Step6: In Solution Name, the appropriate name, PERS_Connect_CS or
PERS_Connect_VB should appear.

A solution can contain several projects; when it contains only one project, you
can use the same name for both.

Step7: Check Create directory for solution.
Step8: Click OK.

 19

The project is created.

The main window now displays a new title, either PERS_Connect_CS -
Microsoft Visual Studio or PERS_Connect_VB - Microsoft Visual
Studio, depending on the language, and contains Form1 shown below.

It is important to remember that many projects automatically name the first
form Form1. This is the name of the form control. Do not confuse this with

the actual name given to the code file, which is typically Form1.cs or

Form1.vb.

Both Form1 and Form1.xx can be renamed. For the purposes of this guide,

we will rename Form1.xx several times.

 20

4.2 Adding a Reference

This section shows you how to add a reference to the

Oracle.DataAccess.Rdb.dll file, which contains the data provider,

Oracle Rdb Data Provider for .NET.

To add a reference:

Step1: From the Project menu, select Add Reference.

 21

The Add Reference windows appears.

Step2: In the Reference Manager window, in the Search Assemblies field,
Enter “Oracle.” And select Oracle.DataAccess.Rdb that is displayed by
clicking the box to the left of the name. Click OK.

Note that the new reference appears in the Solution Explorer.

 22

4.3 Adding Namespace Directives

You can add Oracle namespace directives that allow you to indicate an

assembly's namespaces within the module. To do this, add C# using

statements or Visual Basic Imports statements, at or near the top of a code

file.

Adding a reference makes the namespace available within the
application. Adding a namespace directive within the application code
makes the namespace more visible and allows for additional scoping.

To add Oracle Rdb namespace directives:

Step1: With Form1 active, from the View menu select Code.

Alternatively, you can use the F7 keyboard shortcut.

Step2: Add the following statements to the list of declarations depending on
the language you are using.

Visual C#:

Add with other using statements, before the namespace.

using Oracle.DataAccess.RdbClient;

Note:

 23

Visual Basic:

Add to the top of the file, in the declarations section.

Imports Oracle.DataAccess.RdbClient

Step3: Save the changes by selecting Save from the File menu, or using the
Ctrl+S keyboard shortcut.

4.4 Designing the User Interface

You can create a user interface by adding the toolbox controls to the design
form. This interface accepts connection information from the user.
To add toolbox controls:

Step1: From the View menu, select Designer.

This opens Form1, in design view, if it is not already open.

 24

You will toggle between Code and Designer a lot. The keyboard shortcuts are
F7 and shift- F7 respectively.

Step2: From the View menu, select Toolbox.
Step3: In the Toolbox, expand Common Controls.

Step4: In the Toolbox, select Label, and drag it onto the Form1.

Step5: On Form1, right-click label1.

 25

Step6: From the menu, select Properties, if the Properties Window is not
already visible.

The Properties Window appears.

Step7: In the Properties Window, change the Text property from label1 to
User ID.

 26

Step8: Repeat steps 4 through 7 three times, placing three more labels on
Form 1 and changing their text properties to Password, Server and
Database.

Step9: You may want to now expand the form by dragging the left margin to
allow for reasonably sized fields to be accommodated. In the Toolbox, select
TextBox, and drag it onto the Form1, under the User ID label.

Step10: In the Properties Window, change the Name property to userID.

 27

Step11: Repeat steps 9 and 10 three times, positioning three more text boxes
under the existing labels, and setting the Name property to password,
server and database.

Step12: Select the text box under the Password label. In the Properties
Window, scroll to the PasswordChar property and set it to an asterisk (*).

This masks the password during entry.

Step13: From the Toolbox, select Button and drag it onto Form1.

In the Properties Window, change the Text property of the button from
button1 to Connect, and change the Name property to connect.

 28

Step14: Save.

4.5 Writing the Connection Code

Now we write the code that takes the information provided to the user interface and

connects to the database.

To connect to the database, you must create a connection object.

To write code that connects to the database:

These steps enable your application to connect to the database based on data
that the user enters into the Form1 control. See Compiling and Running the
Application.
From the View menu, select Code.

Step1: Add the code indicated to instantiate a database connection string.

Visual C#: Add the class variable conn to the Form1 class right after the

public Form1() block with this code.

private RdbConnection conn = new RdbConnection();

 29

Visual Basic: Add the conn class variable in the Form1 class declaration,

using this code.

Public Class Form1
 Dim conn As New RdbConnection

Step2: Save your changes.

Step3: Change to Designer view by clicking on the View menu and selecting
Designer.

Step4: Double-click the Connect button on Form1 to open the code window

to the connect_Click() method.

Insert the code indicated into the connect_Click() method.

Visual C#:

 conn.ConnectionString = "User Id=" + userID.Text +

 ";pwd=" + password.Text +

 ";server=" + server.Text +

 30

 ";database=" + database.Text +

 ";type=Thin;";

 conn.Open();

Visual Basic:

conn.ConnectionString = "User Id=" + userID.Text & _
 ";pwd=" + password.Text & _

 ";server=" + server.Text & _

 ";database=" + database.Text & _

 ";type=Thin;"

conn.Open()

Visual Basic Imports statements, at or near the top of a code file.

Before a connection can be opened, it must be built from user input for the

User Id, pwd, server, and database.

The Open() method makes the actual connection.

Note that in this example we are making a connection to a JDBC Thin Server
as designated by the ";type=Thin;" portion of the connection string we are
building. If you wish to make a connection to a SQL/Services service, omit
this part of the connection string.

Step5: Set the Enabled attribute of the button to false by inserting the

indicated code at the end of the connect_Click() method.

This disables the Connect button, which is a good practice once a

connection is successfully made.

Visual C#:

connect.Enabled = false;

 31

Visual Basic:

connect.Enabled = false

You have now finished writing an application that can connect to the Oracle
Rdb database.

The following sections show how to use it.

4.6 Compiling and Running the Application

This section shows how to compile and run the application you created in the
previous sections.

 32

To compile and run the application:

Step1: From the Build menu, select Build Solution.

Step2: Ensure that there are no errors reported in the output window,
available from the View menu.

The following graphics shows a typical output result.

Step3: If there are any errors indicated, from the View menu, select Error
List and fix the errors.

Step4: From the Debug menu, select Start Without Debugging to run the
application.

 33

Step5: In the Form1 application, enter the User ID, Password , Server, and
Database. If you used the connection string exactly as shown in Step 4
above, you will be making a connection to a JDBC Thin Server. Please ensure
that the data you enter in the Server field does contain a valid JDBC server

specified in the form "host:port", for example "my_server_node:1701"

If you omit the ";type=Thin; " part of the connection string, then you are

requesting for a SQL/Services service connection, in which case ensure the

data entered in the Server field is in the form of "host:service" for

example, "my_sqs_server:GENERIC".

Step6:

Click Connect.

Once the connection is opened, the Connect button is disabled. You have
succeeded in implementing a connection to an Oracle Rdb Database.

4.7 Error Handling

Applications must be able to handle run-time errors gracefully. For example, if
you try to log in using an incorrect password, the application you developed

 34

so far cannot establish a connection to the database, and exits with the
following unhandled exception

%RDB-E-AUTH_FAIL: authentication failed for user

You must reselect Start Without Debugging to try this with a different
password.

Error handling manages occurrences of conditions that change the normal
flow of program execution. Oracle Rdb Data Provider for .NET contains a
single classes for error handling and support:

 The RdbException class represents an exception that is thrown when the

Oracle Rdb Data Provider for .NET encounters an error. Each

RdbException object contains a description and an error number that

describes the error or warning.

4.7.1 Using Try-Catch-Finally Block Structure

.NET languages use Try-Catch-Finally block structure for error handling. With
this structure, the Try code is the main code, the goal that the application
wants to accomplish. The Catch code catches errors of various types, as
shown in the next two section. The Finally block comes last and always
executes.

The Finally block frequently contains the Dispose method, which closes and

disposes of the connection. Having the Dispose method in the Finally block

ensures that the database connection is always closed after the Try-Catch-
Finally block completes. Closing database connections after the application no
longer requires database access is important for many reasons, especially data
security.

Attempting to close a closed database connection does not cause an error.

The attempt is irrelevant. Nonetheless, placing Dispose() in the Finally

code block guarantees that the connection is closed.

The next section shows how to use Try-Catch-Finally block structure with
general errors, and the section after that, with Oracle Rdb errors.

4.7.2 Handling General Errors

 35

This section shows how to handle general errors using a Try-Catch-Finally
block.

To handle general errors:

Step1: Change the code of the connect_Click() method in Form1 by

adding an implementation of the Try-Catch-Finally syntax.

New code is in bold font.

Visual C#:

private void connect_Click(object sender, EventArgs e)
{

 conn.ConnectionString = "User Id=" + userID.Text +

 ";pwd=" + password.Text +

 ";server=" + server.Text +

 ";database=" + database.Text +

 ";type=Thin;";conn.Open();

 try

 {

 conn.Open();

 connect.Enabled = false;

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message.ToString());

 }

 finally

 {

 conn.Dispose();

 }

}

Alternatively, you can use C# syntax that disposes of a connection when it

goes out of scope, with the using keyword, as follows:

using (RdbConnection conn = new RdbConnection())
{

 conn.Open();

 // application code

 ...

}

Visual Basic:

Try
 conn.Open()

 connect.Enabled = false

Catch ex As Exception

 36

 MessageBox.Show(ex.Message.ToString())

Finally

 conn.Dispose()

End Try

Step2: From the Build menu, select Rebuild Solution.

Ensure that there are no errors.

Step3: From the Debug menu, select Start Without Debugging.
Step4: Run the application again, as described in section Compiling and

Running the Application, and attempt to connect using an incorrect password.

This time, the application catches the error and displays it in a pop-up

window, %RDB-E-AUTH_FAIL: authentication failed for user.

 37

Chapter 5 Retrieving and Updating with
ORDP.NET

This chapter contains:

 Using the Command Object

 Retrieving Data: a Simple Query
 Retrieving Data: Bind Variables
 Retrieving Data: Multiple Values
 Using the DataSet Class with Oracle Rdb Data Provider for .NET
 Enabling Updates to the Database

5.1 Using the Command Object

To view, edit, insert or delete data in a database, you must encapsulate a

request in an RdbCommand object specifying a SQL command, stored

procedure, or table name. The RdbCommand object creates the request,

sends it to the database, and returns the result.

To use the command object:

Step1: Make two copies of Form1.xx, from application PERS_Connect_xx in

Building a Simple .NET Application Using ORDP.NET. To make copies, see the
instructions in Copying a Form.

Name the copies Form2.cs or Form2.vb and Form3.cs or Form3.vb.

The first copy is for the first part of the chapter, and the second copy for the
second part of the chapter

Step2: Open Form2.cs or Form2.vb.

Note that the actual form in the designer still says Form1, as you renamed
code files but not the actual form controls within the project.

Step3: Create a string that represents the SQL query and add to the body of

the try statement.

The new code is in bold typeface.

Visual C#:

 38

try
{

 conn.Open();

 connect.Enabled = false;

 // SQL Statement

 string sql = "select department_name from departments"

 + " where department_code = ‘ENG’";

}

Visual Basic:

Try
 conn.Open()

 connect.Enabled = False

 Dim sql As String = "select department_name from departments" & _

 "where department_code = ‘ENG’"

Step4: Use the new sql variable to create the RdbCommand object, and set

the CommandType property to run a text command.

Visual C#:

try
{

 conn.Open();

 connect.Enabled = false;

 // SQL Statement

 string sql = "select department_name from departments"

 + " where department_code = ‘ENG’";

 RdbCommand cmd = new RdbCommand(sql, conn);

 cmd.CommandType = CommandType.Text;

}

Visual Basic:

Try
 conn.Open()

 connect.Enabled = False

 Dim sql As String = "select department_name from departments" & _

 "where department_code = ‘ENG’"

 Dim cmd As New RdbCommand(sql, conn)

 cmd.CommandType = CommandType.Text

Step5: Save your work.

 39

5.2 Retrieving Data: a Simple Query

This section demonstrates retrieving data from the database.

The ExecuteReader() method of an RdbCommand object returns an

RdbDataReader object, which can be accessed to display the result on the

form. The application uses a ListBox to display the results.

To retrieve data:

Step1: Create an RdbDataReader object, by adding the code indicated to

the bottom of the Try block of the connect_Click() method.

This enables you to read the result of the query.

The new code is in bold typeface

Visual C#:

try
{

 conn.Open();

 connect.Enabled = false;

 // SQL Statement

 string sql = "select department_name from departments"

 + " where department_code = ‘ENG’";

 RdbCommand cmd = new RdbCommand(sql, conn);

 cmd.CommandType = CommandType.Text;

 RdbDataReader dr = cmd.ExecuteReader();

 dr.Read();

}

Visual Basic:

Try
 conn.Open()

 connect.Enabled = False

 Dim sql As String = "select department_name from departments" & _

 "where department_code = ‘ENG’"

 Dim cmd As New RdbCommand(sql, conn)

 cmd.CommandType = CommandType.Text

 Dim dr As RdbDataReader = cmd.ExecuteReader()

 dr.Read()

 40

Step2: Open Form1 in Design view. From the View menu, select Designer.
Step3: From the View menu, select Toolbox.
Step4: From the Toolbox, select a Label and drag it onto Form1.
Step5: From the View menu, select Properties Window.
Step6: In the Properties window, change the Text of the label to

Department.

Step7: From the Toolbox, under Window forms, select a ListBox and drag it
onto Form1.

Step8: In the Properties window, under Design, change the Name to

departments.

Step9: Add accessor type methods for retrieving data from the query result.

Double-click the connect button to edit the connect_click() method,

and add the code indicated to the bottom of the try block.

Visual C#:

departments.Items.Add(dr.GetString(0));

Visual Basic:

departments.Items.Add(dr.GetString(0))

Typed accessors, such as GetString, return native .NET data types and

native Oracle Rdb data types. Zero-based ordinals passed to the accessors
specify which column in the result set to return.

The try block should look like this now:

 41

Visual C#:

try
{

 conn.Open();

 connect.Enabled = false;

 // SQL Statement

 string sql = "select department_name from departments"

 + " where department_code = ‘ENG’";

 RdbCommand cmd = new RdbCommand(sql, conn);

 cmd.CommandType = CommandType.Text;

 RdbDataReader dr = cmd.ExecuteReader();

 dr.Read();

 departments.Items.Add(dr.GetString(0));

}

Visual Basic:

Try
 conn.Open()

 connect.Enabled = False

 Dim sql As String = "select department_name from departments" & _

 "where department_code = ‘ENG’"

 Dim cmd As New RdbCommand(sql, conn)

 cmd.CommandType = CommandType.Text

 Dim dr As RdbDataReader = cmd.ExecuteReader()

 dr.Read()

 departments.Items.Add(dr.GetString(0))

Step10: Build and save the application.
Step11: Run the application. Enter the login server and database information.

After you connect, the departments list box shows Engineering, the

correct name for department with code ‘ ENG’ in the Departments table, as

requested by the SELECT statement.

 42

5.3 Retrieving Data: Bind Variables

Bind variables are placeholders inside a SQL statement.

The following code shows a typical SELECT statement that does not use bind

variables, with the value 10 specified in the WHERE clause of the statement.

SELECT department_name FROM departments WHERE department_code = ‘ENG’

The following code replaces the numerical value with a bind

variable :department_id. A bind variable identifier always begins with a

single colon (:).

SELECT department_name FROM departments WHERE department_code = :department_id

Note that bind variables can also be used with UPDATE, INSERT, and

DELETE statements, and also with stored procedures. The following code

illustrates how to use bind variables in an UPDATE statement:

UPDATE departments SET department_name = :department_name

 WHERE departname_code = : department_id

You can use the RdbParameter class to represent each bind variable in

your .NET code. The RdbParameterCollection class contains the

RdbParameter objects associated with the RdbCommand object for each

statement. The RdbCommand class passes your SQL statement to the

database and returns the results to your application.

 43

To retrieve data using bind variables:

Step1: Move the ListBox named Departments to the right.
Step2: From the View menu, select Toolbox.
Step3: From the Toolbox, select a TextBox and drag it onto Form1, under the

label that says Department.
Step4: From the View menu, select Properties Window.
Step5: In the Properties window, change Name to departmentID.

Step6: Change the SELECT statement to use the bind variable by adding the

code indicated to the Try block of the connect_Click() method.

Changed or new code is in bold typeface.

Visual C#:

string sql = "select department_name from departments "+
 "where department_code = :department_id";

RdbCommand cmd = new RdbCommand(sql, conn);

cmd.CommandType = CommandType.Text;

RdbParameter p_department_id = new RdbParameter("department_id", DbType.String);

p_department_id.Value = departmentID.Text;

cmd.Parameters.Add(p_department_id);

RdbDataReader dr = cmd.ExecuteReader();

dr.Read();

departments.Items.Add(dr.GetString(0));

Visual Basic:

Dim sql As String = "select department_name from departments " & _
 "where department_code = :department_id"

Dim cmd As RdbCommand = New RdbCommand(sql, conn)

cmd.CommandType = CommandType.Text

Dim p_department_id as RdbParameter = new RdbParameter(“department_id”,

DbType.String)

p_department_id.Value = departmentID.Text

cmd.Parameters.Add(p_department_id)

Dim dr As RdbDataReader = cmd.ExecuteReader()

dr.Read()

departments.Items.Add(dr.GetString(0))

 44

For this code, the parameter object sets the DbType property, but there is no

need to set the Direction property because it uses the default value,

Input. There is no need to set the Size property because the object is an

input parameter, and the data provider can determine the size from the value.

Step7: Save and run the application.
Step8: Enter the login information, and a typical department code, such as

“MNFG”, from the MF_PERSONNEL database.
Step9: Click Connect.

The application returns the name of the department that corresponds to the
department ID.

5.4 Retrieving Data: Multiple Values

You frequently need to retrieve more than just one value from the database. A

DataReader object can retrieve values for multiple columns and multiple

rows. Consider the multiple column, multiple row query in the following
example:

SELECT department_code, department_name, manager_id FROM departments
 WHERE department_code < ‘ENG’

Processing multiple rows from the DataReader object requires a looping

construct. Also, a control that can display multiple rows is useful. Because the

RdbDataReader object is a forward-only, read-only cursor, it cannot be

bound to an updatable or backward scrollable control such as Windows Forms

DataGrid control. An RdbDataReader object is, however, compatible

with a ListBox control.

To retrieve multiple values:

 45

Step1: In the try block of the connect_Click() method, change the SQL

query to return a multiple row result set and add a while loop to enclose the
read method that displays the department names.

Visual C#:

try
{

 ...

string sql = "select department_name from departments " +

 "where department_code < :department_id";

...

 while (dr.Read())

 {

 departments.Items.Add(dr.GetString(0));

 }

}

Visual Basic:

Try
 ...

 Dim sql As String = "select department_name from departments " & _

 "where department_code < :department_id"

...

 While (dr.Read())

 departments.Items.Add(dr.GetString(0))

 End While

Step2: Save and run the application.
Step3: Enter the login information and enter “ENG” for the department.
Step4: Click Connect.

The application returns the name of the departments that correspond to the
query.

 46

5.5 Using the DataSet Class with Oracle Rdb Data Provider
for .NET

The DataSet class provides a memory-resident copy of database data. It

consists of one or more tables that store relational or XML data. Unlike an

RdbDataReader object, a DataSet is updatable and backward scrollable.

To use the DataSet class:

Step1: If you have not done so before, make another copy of the Form1 that

you completed in Chapter 3, and name it Form3.vb or .cs, as described in

Copying a Form

Step2: If Form1.xx does not appear in the Solution Explorer, from the

Project menu, select Show All Files.
Step3: From the View menu, select Designer view.
Step4: From the View menu, select Toolbox.
Step5: From the Toolbox, select a DataGridView and drag it onto Form1.
Step6: From the View menu, select Properties Window.
Step7: In the Properties window, change the Name of the data grid view to

departments.

Step8: From the View menu, select Code.

Step9: Immediately after the conn declaration in the code, add variable

declarations to the class variables, as indicated.

Visual C#:

public partial class Form1 : Form
{

 public Form1()

 {

 InitializeComponent();

 }

 private RdbConnection conn = new RdbConnection();

 private RdbCommand cmd;

 47

 private RdbDataAdapter da;

 private RdbCommandBuilder cb;

 private DataSet ds;

...

Visual Basic:

Public Class Form1
 Dim conn As New RdbConnection

 Private cmd As RdbCommand

 Private da As RdbDataAdapter

 Private cb As RdbCommandBuilder

 Private ds As DataSet

Step10: Within the connect_Click() method try block, add code to:

o Query the database

o Fill the DataSet with the result of the command query

o Bind the DataSet to the data grid (departments)

Visual C#:

conn.Open();
connect.Enabled = false;

string sql = "select * from departments where "+

 "department_id < ‘ENG’";

cmd = new RdbCommand(sql, conn);

cmd.CommandType = CommandType.Text;

da = new RdbDataAdapter(cmd);

cb = new RdbCommandBuilder(da);

ds = new DataSet();

da.Fill(ds);

departments.DataSource = ds.Tables[0];

Visual Basic:

conn.Open()
connect.Enabled = False

Dim sql As String = "select * from departments where " + _

 "department_id < ‘ENG’"

cmd = New RdbCommand(sql, conn)

cmd.CommandType = CommandType.Text

da = New RdbDataAdapter(cmd)

cb = New RdbCommandBuilder(da)

ds = New DataSet()

da.Fill(ds)

 48

departments.DataSource = ds.Tables(0)

Step11: Build and save the application.
Step12: Run the application, entering the login and data source.

After you successfully connect to the database, the data grid is populated with
the results of the query.

5.6 Enabling Updates to the Database

At this point, the DataSet contains a client copy of the database data. In

this section, you will add a button that enables client data changes to be
saved back to the database. The following section will show you how to test
updating, inserting, and deleting the data.
To enable saving data from the DataSet to the database:

Step1: From the Toolbox, drag and drop a Button onto Form1.

Step2: In the Properties window, change the Name of the button to save.

Change the Text property to Save.

Step3: At the top of the Properties Window, click Events (the lightning bolt). In
the list of events, select the click event. In the second column, enter the event

name, save_Click.

 49

Step4: From the View menu, select Code.

Step5: Add code that updates the data, to the body of the save_Click()

method, as indicated.

Visual C#:

da.Update(ds.Tables[0]);

Visual Basic:

da.Update(ds.Tables(0))

You may see some errors show up in the Error List. These will disappear after
you add the code in the next step.

Step6: Within the Form() method or Form1_Load method, add the code

indicated.

Visual C#:

public Form1()
{

 InitializeComponent();

 save.Enabled = false;

}

Visual Basic:

Private Sub Form1_Load(ByVal sender As System.Object, & _
 ByVal e As System.EventArgs) Handles MyBase.Load

 save.Enabled = false

 50

Step7: Within the connect_Click() method try block, add code to

enable the Save button as indicated:

Visual C#:

conn.Open();
 ...

departments.DataSource = ds.Tables[0];

save.Enabled = true;

Visual Basic:

conn.Open()
...

departments.DataSource = ds.Tables(0)

save.Enabled = True

Step8: Remove the conn.Dispose() call from the finally block in the

connect_Click() method.

Note: In the previous code used in this example, this method was necessary
to dispose or close the connection. However, with these changes to the code,
it is necessary to keep the connection open after the query result returns, so
that data changes made by the end user are propagated to the database. A

general override call, components.Dispose(), is already part of the

definition of Form1.

Step9: Build and save the application.
Step10: Run the application, entering the login and data source.

After you successfully connect to the database, the data grid is populated with
the results of the query.

 51

 52

Chapter 6 ORDP.NET and Visual Studio
Wizards

In this section you will use the Visual Studio integrated development
environment (IDE), along with the standard Visual Studio wizards to
automatically generate the code to access data from your Rdb database

This chapter contains:

 Create a New application
 Add connection to RDB database in MS server explorer
 Create a datasource for the employees table
 Design the windows application

6.1 Create a New application

Create a new windows forms application using the File New project
menu. Call it empapp.

See Creating a New Project for the steps to create a new project.

6.2 Add connection to Rdb database in Server Explorer

See Connecting to the Oracle Rdb Database for steps to connect to your
database.

6.3 Create a datasource for the employees table

To create a new Data Source:

Step1: Using the top-level menu Project Add New Data Source.

 53

Step2: In the wizard, keep the default selection for “Database”. Click Next
Step3: In Choose a Database Model keep the default selection for

“Dataset”. Click Next
Step4: From the list of connection, select the connection to the sample that

was created that was created earlier, select the option to include the sensitive
data in connection string. Click Next

Step5: Check to save the connection string to the Application Configuration

File Click Next

 54

Step6: A tree of available table will be displayed, select the employees table
from the list of tables by checking the box next to it. Click finish

 55

Step7: A data source for employees will be added in the “Data Sources” tab
panel.

 You can make the data source window visible using the top level menu
View Other Windows Data sources

 56

6.4 Design the windows application

Step1: Ensure that From1.cs is open in design mode.

Step2: Drag and Drop the Employees data source from the data sources
window onto the form. You will have to drag the left side of the form to make
it wider so it may accommodate the fields from employees.

 57

Step3: Build and Run the windows application

 58

Chapter 7 ORDP.NET and drag and drop

In this section you will use the Visual Studio integrated development
environment (IDE), along with drag and drop to automatically generate the
code to access data from your Rdb database.

This chapter contains:

 Create a New application

 Add connection to RDB database in MS server explorer
 Add a new Typed DataSet
 Designing the windows application
 Running the windows application

7.1 Create a New application

Create a new windows application using the File New project menu.
Call it empapp2.

See Creating a New Project for the steps to create a new project.

7.2 Add connection to Rdb database in Server Explorer

See Connecting to the Oracle Rdb Database for steps to connect to your
database if you do not already have a connection.

7.3 Add a new Typed DataSet

To add a new Typed DataSet to your project:

Step1: Using the Microsoft Solution Explorer, right click on the empapp2, and
select Add New Item

 59

Step2: Select DataSet. Click Add. The Microsoft Dataset Designer will be opened.

From the Microsoft Server Explorer, drag and drop “Employees” table onto the
open designer.

 60

This will create a datasource and an associated EMPLOYEESTableAdapter
that can you use in your application to access the employees table.

 61

Step3: Ensure the password is added to the connection string. Select
EMPLOYEESTableAdapter, and right click to view its properties. Click in the
ConnectionString field and append your password in the below format
Password=yourpassword

7.4 Designing the windows application
To design the application:

Step1: Ensure the Form1.cs is open in design mode.
Step2: Using the Microsoft data sources window, use the smart menu on the

Employees data source, and select Details

 62

Step3: Drag and drop the Employees data source from the data source window
onto the form.

A prototype form to access the employees data will be created for you.

7.5 Running the windows application
Run the application using the top-level menu. You can insert, delete rows and
change the existing data.

 63

 64

Chapter 8 Configuration wizard and
generating queries

Wizards make it easy to perform many operations within Visual studio. The
Table Adapter Query Configuration Wizard simplifies the creation of queries
you may execute on your Rdb database.

This chapter contains:

 Using the Query Configuration Wizard
 Using the Query Builder
 Methods Generation

8.1 Using the Query Configuration Wizard

To use the Query Configuration Wizard:

Step1: In the DataSet XSD window right click dataset and click addQuery

The Table Adapter Query Configuration Wizard will be shown.

 65

Step2: Select Use SQL Statement
Clicking Next will bring up the query Type window. This window allows you to
choose from several types of standard SQL statements.

 66

Step3: Select the query type SELECT which returns rows.
Step4: Click Next to bring up the query specification window. This is where you

may enter a SQL query statement.. Use the “:” character pre-pended to
parameter names to specify parameters you wish to use.

 67

For example to return details of an employee giving the employee_id:

SELECT CITY, FIRST_NAME FROM EMPLOYEES WHERE EMPLOYEE_ID=:EMPLOYEE_ID

Step5: Click Finish. We have just added a select functionality to the typed

dataset using TableAdapter without writing a single line of code.

Repeat the above steps to produce other statements such as UPDATE and
DELETE .

8.2 Using the Query Builder

Instead of entering the SQL text directly Visual Studio provides the Query
Builder option within the configuration Wizard that allows quick and easy
creation of syntactically correct SQL queries on your datasets.

 68

Using Query Builder to generate queries:

Step1: Startjng with Query Configuration Wizard used in the previous walk-
through, Click Query Builder to bring up the builder window .

Step2: This will bring up a window allowing you to choose columns for your
query, in this case it will be preloaded with the query we typed in before.

 69

Step3: Within the EMPLOYEES table check the columns name and
Parameters to the query (Filter) as shown below.

 70

Step4: Click Execute Query to execute the generated query. You will be
prompted for the employee_id. Enter a valid id and press OK.

Step5: The results of the operation will be displayed in the results window.

 71

Step6: Click “OK” to accept the query .

 72

Step7: Click “Finish”. Your query is now ready to use. The Query
Configuration Wizard will now display the Methods Generation window.

8.3 Methods Generation

Once you have generated a query, this query may be used within the
TableAdapter . The next step is to choose what methods should be available
within your TableAdapter.

How to choose methods:

Step1: Press NEXT in the Query Configuration Wizard to bring up the choose
Methods To Generate panel.

Step2: Select the Fill A DataTable and Return a DataTable .
Step3: Change the Return a DataTable method name to

GetDataBy_EMPID
Step4: Press FINISH.

The final dataset in the designer show look like the following:

 73

Step5: To execute the above functionality in your code, instantiate the table
adapter as follows:

DataSet1TableAdapters.EMPLOYEESTableAdapter adapt = new

DataSet1TableAdapters.EMPLOYEESTableAdapter();

This new select function can now also be seen in the TableAdapter
intellisense.

Step6: The methods provide by the TableAdapter may be used within your code

// Get Employee details by employee_id

dataGridView1.DataSource=adapt.GetDataBy_EMPID(00164);

 74

 75

Chapter 9 Copying a Form

Because you will be using this application to learn about various aspects of
application development with Oracle Rdb, you should make copies of your
form for reuse.

To create a copy of an existing form:

Step1: In the Solution Explorer, right-click on Form1.xx or any other file you

need to copy. Select Copy.

If Form1.xx does not appear in the Solution Explorer, from the Project

menu, select Show All Files.

Step2: Right-click HR_Connect_CS or other project. Select Paste.

 76

Step3: Right-click Copy of Form1.cs. Select Rename. Change the name of

the form to Form2.cs.

Step4: Right-click on Form1.cs, and select Include In Project.

 77

Step5: Right-click on Form1.cs, and select Exclude From Project.

You can include and exclude forms from the project just by reversing these
steps.

Note:

This process generally works smoothly. If you encounter a problem, try
running Rebuild Solution from the Build menu.

 78

Chapter 10 Oracle Rdb Entity Framework
Provider

The Entity Framework is a new part of ADO.NET that allows you to build your
applications against conceptual data models. It provides a greater level of
abstraction and supports code that is independent of any particular relational
database.

It provides an Entity Data Model (EDM) for defining data at the database and
conceptual level and mapping between the two. It includes a nice set of tools
that can be used to generate the EDM and corresponding objects that
represent the database. This eliminates much of the required boilerplate data
access code, and makes it a snap to create data-centric applications.

The chapter also provides some simple examples on how to carry out Model-
First and Database-First application development using the Oracle Rdb Entity
Framework Provider.

Model-first is the ability to start with a conceptual model and create the
database from it. Database-first is the ability to start with the database and
build your EDM from the database objects.

The examples in this chapter are based on Visual Studio 2012. If you are using

another version of Visual Studio, the user interface may have changed. Please
refer to your Visual studio documentation to see how the same objectives may
be achieved.

 This chapter contains:

 Creating new Windows Form Application

 Reference the Oracle Rdb EntityFramework Provider

 Adding an Entity Data Model

 Create a new Entity

 Creating Complex Types

 Generating Database Schema from Model

 79

10.1 Creating new Windows Form Application

The first step is to create a new Windows Forms application:

Step1: In Visual Studio IDE, select FileNewProject from the main menu.

Choose the Windows Forms Application installed template. Click OK. The
solution is created.

Step2: Right-click on Form1.cs and select Exclude From Project.

10.2 Reference the Oracle Rdb EntityFramework Provider

Before you can use EntityFramework 6 with Oracle Rdb you should install the
latest version of the Oracle Rdb Entity Framework provider using the Microsoft
NuGet package installer.

Microsoft NuGet is the software development package manager for
Microsoft .NET. The NuGet client tools produce and consume these packages,
including non-Microsoft software, such as ORDP.NET.

The NuGet Gallery is the central repository for hosting and consuming
packages.

Starting with release 7.3.4.0.0 ORDT, you can use the Oracle Rdb Entity
NuGet package to configure your Microsoft Projects to use ORDT in
conjunction with Entity Framework release 6 (EF6) .

Note: Currently the Oracle Rdb Entity NuGet package only configures
your projects for use with EF6, you still must manually download and
install ORDT. This may change in future releases of ORDT.

The following steps show how to use NuGet to help configure your project to
use ORDT with EF6.

Step1: In Visual Studio IDE, select View > Solution Explorer from the main

menu.

http://www.nuget.org/

 80

Step2: Right-click References in the Solution Explorer and choose Manage

NuGet Packages.

Step3: In the Manage NuGet Packages window, ensure that you have

selected nuget.org in the left panel, under the Online tab. On the upper right side

of the window, there is a search bar. Search for Oracle Rdb.

Select Oracle Rdb Entity Framework Provider (with the Id
Oracle.Rdb.EntityFramework) in the search results and click Install.

 81

The package installation will not download any software, but it will setup your
environment so that you may use the NuGet package to configure your
projects. Once the package has been installed, a green tick mark will be
placed against the product name.

Step4: To confirm that ORDP.NET and Entity Framework have been
automatically configured, from the Solution Explorer window,
open App.config.

You will see that ORDP.NET and Entity Framework configuration information has
been added to the project.

 82

You can now proceed to generate an Entity Data Model from an existing
database schema.

10.3 Adding an Entity Data Model

How to add an Entity Data Model:

Step1: In the Solution Explorer, right-click your application and select Add
New Item. This opens Visual Studio installed templates screen.

Step2: From Visual Studio installed templates, select ADO.NET Entity
Data Model. Click Add.

 83

You will now see the Entity Data Model Wizard. This wizard is used to
generate the Entity Data Model from the database specified in the database
connection string (in next step).

Step3: Select the icon Generate from database. Click Next.

Step4: You can now select the connection if you have made connection to the
test database earlier or create a new connection:

 84

If you have not already done so, you can create the new connection at this
time by clicking New Connection. See Connecting to the Oracle Rdb
Database for details on each fields shown in New Connection Form.

Step5: Click Next

The Entity Data Model Wizard connects to the database. You are then
presented with a tree structure of the database.

Here you can select the object you would like to include in your model. Here
also we have chosen to select all tables, just as a part of example. But, you
have an option to select any specific table.

Step6: Check the box against Tables node.

 85

Step7: Click Finish to create the model and exit the wizard.

Visual Studio will generate the model then display it.

10.4 Adding a new Data Source

You will now add a new Data Source to your project and see how it can be
used to read and write to the database.

 86

To add a new Data source:

Step1: From the Visual Studio Main Menu, select Project Add New Data
Source.

You will be presented with the Data Source Configuration Wizard.

Step2: Select the Object icon. Click Next.
Step3: You will now select the Object you wish to bind to. Expand the tree.

In this tutorial we have chosen Con table as a example. Once the Con table
has been selected click Finish.

 87

The Con object will be displayed in the Data Sources panel. If the Data
Sources panel is not displayed, select DataShow Data Sources from the
Visual Studio Main Menu.

The docked panel will then be displayed.

10.4.1 Using the Data Source in a Windows Form

To use the Data Source:

Step1: In the Data Sources panel, select the Data Source you just created and
drag and drop it onto the Form Designer.

By default the Data Source object will be added as a Data Grid View
control.

Note: the Data Grid View control is bound to the consBindingSource and
the Navigator control is bound to consBindingNavigator.

 88

Step2: Save and rebuild the solution before continuing.

10.4.2 Adding Code to Populate the Data Grid View

You are now ready to add code to ensure that the Data Grid View control will
be populated with data from the Con database table.

How to add code to Populate the view:

Step1: Double-click the form to access its code.
Step2: Add code to instantiate the Entity Data Model's EntityContainer object

and retrieve data from the database to populate the control.

 89

Step3: Save and rebuild the solution.
Step4: Run the solution. Ensure the grid is populated and you can navigate

through the data.

 90

10.5 Create a new Entity

 A new Entity Data model can be created from scratch by using the Entity Data

 Model Designer.

 How to create an Entity Data Model:

Step1: In the Solution Explorer, right-click your application and select Add
New Item.

Step2: From Visual Studio installed templates, select ADO.NET Entity Data
Model. Click Add.

You will now see the Entity Data Model Wizard. This wizard is used to generate the

Entity Data Model from the database specified in the database connection string

Step3: Select the icon Entity model. Click Finish.

 91

An empty Entity Data Model Designer Form should now be displayed.

We will now show how to design a following sample entity:

 92

Step4: Add a new Entity by right-clicking in the Model Designer and selecting
Add Entity.

The Add Entity form will be displayed.

Step5: Change the Entity name to Emp_Table and the Key Property name

to Emp_id. The Entity Set will be automatically changed to Emp_TableSet

Step6: press OK.

 93

Step7: Right-click the new entity and use Add Scalar Property to add three

more String properties Last_name, First_name and Title

Remember to change the Properties Type for each of the new properties
to String by selecting the respective scalar properties.

10.6 Creating Complex Types

Complex types are non-scalar properties of entity types which enable scalar
properties to be organized within entities. This makes easier to work with
objects, allowing the grouping of related properties in Entities.

As an example, let us create the Complex type Employee_Name instead of

the Last_Name and First_Name properties.

To create a Complex type:

 94

Step1: Hold the CRTL key and Select the properties in the data model that
you want to group together

Step2: Right click in the context menu, select Refactor into New Complex
Type

The model browser will display a new Complex Type.

Step3: Now let's give a more meaningful name. If you expand the Complex
Type1, you will see the properties that we previously selected. Change the

name from ComplexType1 to Employee_Name.

 95

If you look at your data model you will see that ComplexProperty has been
added to the list.

Step4: Change the name from ComplexProperty to Emp_Name.

If you look at the properties, you will see that the type of Emp_Name is the
complex type name that is Employee_Name which we just created.

 96

10.6.1 Using the Complex Type created

The Complex type you created may be used as follows:

Step1: In Visual Studio, select FileNewProject from the main menu.

Choose the Console Application installed template. Click OK. The solution is
created.

 Step2: Design a new Entity with Complex Types. See Create a new Entity ,
Creating Complex Types

Step3: Generate the Database schema from the data model you have designed.
See Generating Database Schema from Model

 The Console Application’s solution explorer looks as follows:

Step4: Open Program.cs file by double clicking on it.

Step5: Write the code to use the complex type just created.

 97

Step6: The Complete code looks as follows.

 98

Step7: Save and rebuild the solution. See Compiling and Running the
Application

Step8: Run the solution and we get following output on Console.

10.7 Generating Database Schema from Model

Beginning with Visual Studio 2010 and Entity Framework V3.5, you can
generate a database schema from an existing Entity Data Model.

This section will take you through the steps required to generate a fresh
database schema definition from a model.

How to generate a schema from an Entity Data Model:

Step1: From the Properties window of your selected data model choose
SSDLToOracleRdb.tt in the DDLGeneration Template property as shown
below:

 99

Step2: Right click on entity designer and select Generate Database from
model

Step3: Add a Connection to the database when prompted.
Step4: Click Next. A new SQL script will be generated .

You can now copy the SQL script create and execute on your Rdb database using
Interactive SQL.

 100

10.8 Using Fluent API

Fluent API provides a mechanism to change the default behavior of the database
SQL generated by Entity Framework when your POCO objects are transformed
into Oracle Rdb table definitions.

The following example shows how to use fluent API with ORDT.

Note: This example assumes you are already familiar with using Entity
Framework DbContext to create code first data objects.

To begin with we will create our new model :

 Visual C#:

public class ComicsEntities : DbContext

{

 #region Properties

 public DbSet<Series> Series { get; set; }

 public DbSet<Issue> Issues { get; set; }

 #endregion

 #region Methods

 protected override void OnModelCreating(

 System.Data.Entity.ModelConfiguration.ModelBuilder modelBuilder)

 {

 base.OnModelCreating(modelBuilder);

 // the fluent code will be added here

 }

 #endregion

}

public partial class Issue

{

 #region Properties

 public int IssueID { get; set; }

 public string Title { get; set; }

 public DateTime Time { get; set; }

 public int SeriesID { get; set; }

 public virtual Series Series{ get; set; }

 #endregion

}

public class Series

{

 #region Properties

 101

 public int SeriesID { get; set; }

 public string Name { get; set; }

 public DateTime StartDate { get; set; }

 public string Publisher { get; set; }

 public virtual ICollection<Issue> Issues { get; set; }

 #endregion

}

Once the model has been created we can use fluent API to configure the model
further. Generally this is done by overriding the standard OnModelCreating
method of DbContext:

 Visual C#:

protected override void OnModelCreating(ModelBuilder modelBuilder)

{

 base.OnModelCreating(modelBuilder);

 modelBuilder.Entity<Series>().

 Property(s => s.Name).

 IsRequired().

 HasMaxLength(50);

 modelBuilder.Entity<Series>().

 Property(s => s.SeriesID).

 HasDatabaseGenerationOption(DatabaseGenerationOption.None);

 modelBuilder.Entity<Series>().

 HasMany(s => s.Issues).

 WithRequired(i => i.Series).

 HasForeignKey(i => i.SeriesID);

 modelBuilder.Entity<Series>().

 Ignore(s => s.PublisherID);

 modelBuilder.Entity<Issue>().

 Property(i => i.Title).

 IsRequired().

 HasMaxLength(50).

 HasColumnName("Name");

}

In the code above, we can use Fluent API to start to configure our Comics model.

We have set the maximum size of the Series Name column to 50 characters.

 102

By default the ID fields are database-generated, that is, the field will be declared as
an Identity column in the table. In the above example this behaviour has been
suppressed for the SeriesID column.

As we want a one to many relationship between Series and its Issues we have
declared the Series entity to have the HasMany property.

As we are not interested in storing the Publisher information in the database, we
have suppressed column generation using Ignore. We have also chosen to change
the column name that will be used in the database for the Issue title.

Now we can tie these components together in a small program that will generate
the appropriate database objects for us, based on our model and the fluent API
modifications:

 Visual C#:

class Program

{

 static void Main(string[] args)

 {

 using (ComicsEntities context = new ComicsEntities())

 {

 var series = new Series

 {

 SeriesID = 1,

 Publisher = "NoWhereComics",

 Name = "FabAndFamous",

 StartDate = DateTime.Now

 };

 var issue = new Issue

 {

 Time = DateTime.Now,

 Title = "Entity Framework Funnies",

 Series = series

 };

 context.Series.Add(series);

 context.SaveChanges();

 }

 }

}

Running this example will generate a new database by the name ComicsEntities
with the configurations provided in the OnModelCreating method. By default, the
name of the database will be taken from the context name. To change the
generated database name you need to change the constructor DbContext and
pass in a string parameter specifying the required name:

 Visual C#:

public CommicsEntities() : base("MyComicDatabase")

 103

 {

 }

Note: Please see the section Creating and Dropping Oracle Rdb Databases if you

intend to create or drop databases.

10.8.1 Database Creation and Removal

Fluent API provides methods to control the creation and deletion of database
instances. In the prior example the database will be created for you automatically,
however you may wish to override this by specifying a Database Initializer.

The database initializer is called when the given DbContext type is used to access a
database for the first time. The default strategy for Code First contexts is an
instance of System.Data.Entity.CreateDatabaseIfNotExists<TContext>,
thus in the prior example a database would be created if it did not already exist.

The following example shows how to change the database initializer:

 Visual C#:

public class ComicsEntities : DbContext

{

 Public ComicsEntities(String url)

 {

 Database.setInitializer<ComicsEnties>(new ComicsInitializer());

 }

 #region Properties

 public DbSet<Series> Series { get; set; }

 public DbSet<Issue> Issues { get; set; }

 #endregion

 #region Methods

 .

 .

 .

}

public class ComicsInitializer : DropCreateDatabaseAlways<ComicsEntities>

{

 .

 .

 .

}

In this example the database will be recreated each time the application is run.

 104

Please see the Microsoft Entity Framework documentation for more information on
database contexts and initialization.

Note: See the following section Creating and Dropping Oracle Rdb Databases if you
intend to create or drop databases.

10.8.2 Creating and Dropping Oracle Rdb Databases

Currently, the creation and deletion of databases is only supported when using Thin
connectivity within ORDP, that is, only connections using JDBC servers will accept
these database operations.

By default JDBC servers do not allow CREATE and DROP database operations. The
following requirements must be satisfied before these database operations may be
carried out:
 The application is using Thin Connectivity.
 The JDBC server is running Oracle JDBC for Rdb Release 7.3.4.0.0 or later.
 The JDBC server is configured to allow your username access to server root

and the CREATE or DROP database operations.
 The username provided has adequate OpenVMS privileges and quotas to carry

out the operation.
 The username provided has appropriate Oracle Rdb privilege and

authorization to carry out the operation.

Please see your Oracle JDBC for Rdb User Guide for more information on
support of CREATE and DROP database.

 105

Chapter 11 Unsupported features

 Foreign Key support
 Open Table definition

 Alter Procedure
 Data View Designer
 Import/export table data as XML.

 106

Glossary
assembly
Assembly is Microsoft's term for the module that is created when a DLL or .EXE is

complied by a .NET compiler.

Binary Large Object (BLOB)
A large object datatype who's content consists of binary data. Additionally, this data is considered raw

as its structure is not recognized by the database.

Character Large Object (CLOB)
The LOB datatype whose value is composed of character data corresponding to the database character

set.

data provider
As the term is used with Rdb Data Provider for .NET, a data provider is the connected component in the

ADO.NET model and transfers data between a data source and the DataSet.

dirty writes
Dirty writes means writing uncommitted or dirty data.

DDL
DDL refers to data definition language, which includes statements defining or changing data structure.

DOM
Document Object Model (DOM) is an application program interface (API) for HTML and XML

documents. It defines the logical structure of documents and the way that a document is accessed and

manipulated.

flush
Flush or flushing refers to recording changes (that is, sending modified data) to the database.

instantiate
A term used in object-based languages such as C# to refer to the creation of an object of a specific class.

Large Object (LOB)
The class of SQL datatype that is further divided into internal LOBs and external LOBs. Internal LOBs

include BLOBs, CLOBs, and NCLOBs while external LOBs include BFILEs.

Microsoft .NET Framework Class Library
The Microsoft .NET Framework Class Library provides the classes for the .NET

framework model.

namespace

• .NET:

A namespace is naming device for grouping related types. More than one

namespace can be contained in an assembly.

• XML Documents:

A namespace describes a set of related element names or attributes within an

XML document.

 107

National Character Large Object (NCLOB)
The LOB datatype whose value is composed of character data corresponding to the

database national character set.

octet
An 8-bit unit, usually referred to as BYTE

RdbDataReader

An RdbDataReader is a read-only, forward-only result set.

primary key
The column or set of columns included in the definition of a table's PRIMARY KEY constraint.

reference semantics
Reference semantics indicates that assignment is to a reference (an address such as a pointer) rather

than to a value. See value semantics.

result set
The output of a SQL query, consisting of one or more rows of data.

savepoint
A point in the workspace to which operations can be rolled back.

stored procedure
A stored procedure is a block of SQL code that Rdb stores in the database and can be

executed from an application.

Unicode
Unicode is a universal encoded character set that enables information from any language to be stored

using a single character set.

URL
URL (Universal Resource Locator).

value semantics
Value semantics indicates that assignment copies the value, not the reference or address (such as a pointer). See

reference semantics.

